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Abstract

Orbital-free density functional theory requires accurate approximations for the

noninteracting kinetic energy as a functional of the ground-state electron den-

sity. For explicit functionals in real space, it has proved difficult to supersede

the quality of the gradient expansion, truncated at second order. This is partly

because the gradient expansion diverges for atomic and molecular densities.

In an effort to include information about higher-order terms in the gradient

expansion but avoid divergences, we consider resummations for the series using

Padé approximants and Meijer-G functions. To regularize terms that appear

in the denominator, we consider various damping functions, which introduces

parameter(s) that can be fit to atomic data. These results improve upon the

second-order truncation, but do not achieve the exquisite accuracy that would

be required for practical orbital-free density-functional theory calculations.
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Chapter 1

Introduction

When modelling chemical phenomena computationally, one is limited primar-

ily by one’s computational resources. For example, if one wishes to simulate

the movements of large molecules on significant timescales, one typically uses

classical molecular mechanics methods. These methods are fast enough to

treat systems with millions of atoms, or somewhat smaller molecules on the

millisecond timescale because they directly encode the energy using a classi-

cal potential energy function, which is typically expressed in terms of bond-

stretching, angle-bending, bond-torsion, and nonbonded terms.[3]. For chemi-

cal reactions, however, one needs to be able to not only stretch and bend, but

break, chemical bonds [4]. Classical force fields do not suffice here.

To describe the dynamics of chemical reactions, one can use ab initio molec-

ular dynamics (AIMD), where the forces on atoms are determined by solving

the electronic Schrödinger equation.[5]. This allows bond-breaking to be con-

1



M. Sc. Thesis - X. Huang McMaster University - Chemistry and Chem. Bio.

sidered but typically only systems with hundreds of atoms can be treated, and

even then, only for a few picoseconds.[4].

This motivates work on improving the speed by which atomic forces can be

evaluated from quantum mechanics. For most applications, the current state-

of-the-art is Kohn-Sham density functional theory (KS-DFT). KS-DFT is not

as costly as more traditional wavefunction-based methods, but achieves sim-

ilar performance. For studying systems with hundreds of atoms at nonzero

temperature, or thousands of atoms at zero temperature, KS-DFT is not rou-

tinely practical. The temperature dependence can be understood because as

the temperature increases, additional electronic states are required and the

atoms move more rapidly, necessitating solving for more electronic states and

using smaller time-steps.[6]. In addition, the cost of KS-DFT methods näıvely

increases as O(N3). While linear-scaling KS-DFT methods exist, their effi-

ciency is mostly realized for very large systems.

The poor computational scaling of Kohn-Sham DFT is determined by the need

to solve, either explicitly or implicitly, for the orbitals of each electron in the

system.[7]. It has been known since the 1920’s that this cost can be reduced

by using orbital-free methods. In orbital-free density-functional theory (OF-

DFT), the electron density is determined directly, without any consideration

of the electronic orbitals. Low-cost calculations are easily realized and, in

fact, for OF-DFT the limiting cost becomes evaluating long-range Coulomb

interactions, which is exactly the same operation that limits the effectiveness

of classical molecular dynamics methods. Despite its great promise, however,

2
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OF-DFT is not commonly used. This is because it is difficult to determine

the energy as a functional of the electron density without any reference to

electronic orbitals.[8].

The energy in density functional theory is commonly decomposed into the

noninteracting kinetic energy (which is exactly computed from orbitals in KS-

DFT), the classical Coulomb attraction of the electrons to the nuclei, the

classical Coulomb repulsion of the electrons for each other, and the exchange-

correlation term, which captures the effects of the Pauli principle (on the

potential energy) and electron correlation (on both the kinetic and potential

energy). The classical electrostatic terms can be exactly expressed as func-

tionals of the electron density, and accurate approximations to the exchange-

correlation energy have been developed over the last 30 years.[9]. Accurate

approximate expressions for the noninteracting kinetic energy as an explicit

functional of the electron density, on the other hand, are sorely lacking.[10, 11].

There are many strategies for developing kinetic energy density functionals,

and in this work we will focus on strategies in real space. (Approximations

in reciprocal space are also possible, and often perform a bit better, but have

their attendant difficulties also.[12]) The starting point for most calculations

is the Thomas-Fermi functional.[13, 14, 15]. The Thomas-Fermi functional

is exact for the uniform electron gas (also called jellium), where the electron

density is the same everywhere and the relative error in the Thomas-Fermi

functional for neutral atoms decreases to zero as the atomic number increases

to infinity. Unfortunately, the Thomas-Fermi functional is inaccurate both

3
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quantitatively and qualitatively. In particular, the Teller nonbinding theo-

rem indicates that Thomas-Fermi OF-DFT predicts that no stable diatomic

molecules exist.[16]. The electron density in atoms and molecules is far from

uniform, which suggests that one might improve the Thomas-Fermi method

using perturbation theory in the norm of the gradient of the density: that is,

one might consider, perturbatively, the effect of inhomogeneity in the electron

density. This leads to the gradient expansion.[10, 17, 18, 19, 20]. The odd-

order terms in the gradient expansion vanish uniformly, so it was a relief to

observe that the second-order term in the gradient expansion approximation

(GEA2) was already a great improvement over the Thomas-Fermi functional

in most cases. Unfortunately, higher-order terms in the expansion do not

improve the situation.[21]. In fact, the expansion diverges for atomic and

molecular densities and even specific terms in the expansion diverge.[19, 22].

This result is perhaps not that surprising as atomic and molecular electron

densities are highly inhomogeneous, but it is nonetheless discouraging, since it

makes it seem very difficult to ever build a systematic mathematical approach

to more accurate kinetic energy functionals.

But are matters this hopeless? There are numerous methods—some recently

developed—for resumming divergent series. For example, Sergeev et al. [23,

24] demonstrated that using a Padé approximant to resum the gradient ex-

pansion gives some improvement in estimating the kinetic energy. Padé ap-

proximants are not the most general way to resum a series, however, because

they assume that the underlying function is a rational function. A traditional

(m,n) Padé approximant, for example, is a poor choice for a series that di-
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verges due to a branch point. Recently, Mera et al. [25, 26] showed that a

Meijer-G function is more appropriate for such series, and the convergence of

a hypergeometric resummation happens at low orders.

The primary goal of this thesis is to explore these hyperasymptotic resumma-

tion techniques for the gradient expansion of the noninteracting kinetic energy

functional in Kohn-Sham DFT. Chapter 2 reviews the main concepts of re-

summation and DFT. Chapter 3 contains computational details and discusses

the various functionals we considered. Finally, our results are presented, and

summarized, in chapters 4 and 5.

5



Chapter 2

Theoretical Framework

2.1 Summation of Divergent Series

Series are often used to approximate functions that are difficult to evaluate

directly. For example, when evaluating the electronic energy of an N-particle

system, the exact energy can only be evaluated in the limit where the electron-

electron interactions vanish. However, by using the value of the energy and its

derivatives with respect to electron-electron interaction strength in this limit,

one can form a Taylor series. Evaluating this Taylor series term-by-term, and

truncating the expansion at some order, is the Möller-Plesset perturbation

theory method [27].

6
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2.1.1 Series Convergence

The summation of a Taylor series may converge to a certain value or diverge.

A series is convergent when the Cauchy criterion is met [28, 29]. Given a

series
∑∞

n=0 an, it converges if its partial sums are a Cauchy sequence. That

is, defining sj =
∑j

n=0 an, a series converges if for every ε > 0, there exists

a number N , such that for all i > N and j > N , |sj − si| < ε. One can

do a preliminary analysis by checking if the terms, an, ultimately go to zero.

This test does not guarantee convergence (consider the case an = n−p with

0 < p ≤ 1) but if it fails, then the series diverges. A better test in the same

spirit is the D’Alembert ratio test of successive terms. [29]

ρ = lim
n→∞

an+1

an
(2.1)

If ρ < 1 the series converges, if ρ > 1, it diverges and if ρ = 1 then it

is undetermined. Many other tests can be used, such as the quotient test,

comparison test, root test, and integral test.

Establishing the convergence of a series is helpful, but perturbation theory

is only practical when the series is rapidly convergent. In cases where a se-

ries is divergent, sometimes useful results can be obtained by identifying the

optimal truncation, as there sometimes a low-order truncation can provide

usefully accurate results.[30]. Clearly the fewer terms need to be evaluated to

obtain a sufficiently accurate approximation, the more practically useful series

expansion is.

7
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Asymptotic analysis is useful when studying divergent series. A Taylor series

is said to be asymptotic to a certain function f(x), if, for a certain N and

value of x→ L, [30]

∣∣∣∣∣f(x)−
N∑
n=0

znx
n

∣∣∣∣∣ ∼ o
(
xN+1

)
, (2.2)

meaning that the error in the function evaluated at x and the truncated sum

of the series up to the N th term has an error of the same order as the first

neglected term in the series. Every convergent series is asymptotic but not

every asymptotic series is divergent. One well-known asymptotic series is

Stirling’s approximation for the logarithm of the Gamma function,

ln Γ(x) ∼ x lnx− x+
1

2
ln

(
2π

x

)
+

N−1∑
n=1

B2n

2n(2n− 1)x2n−1
(2.3)

For example, for a fixed value of x, the error with respect to ln Γ(x) reaches

an x-dependant minimum after a certain N and grows indefinitely afterwards.

A series is supersaymptotic if it is optimally-truncated, usually meaning that

the chosen N yields the minimum error for a given x. Generally the error is

smaller than any term in the expansion (e.g., proportional to exp(− constant
x

)).

The optimal truncation often occurs for the smallest term in the expansion, and

typically the optimal N often increases as x increases (e.g., Nopt ∝ x−1).[31].

A hyperasymptotic approximation uses a resummation technique. That is, it

adds terms to a superasymptotic expansion based on the asymptotic series,

giving a lower error than the superasymptotic expansion by itself.[31]. The

8
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main objective of hyperasymptotics is to reduce error, and also the number

of terms needed for it. Convergence acceleration can also be achieved us-

ing sequence transformations, meaning a new sequence with better numerical

properties is considered. Convergence of the sum of the new sequence is not

guaranteed, and trial and error is often required. For example, the simplest

transformation is a linear scaling using a set of weights. The advantage is

that they resulting series converges to the same limit, but it is no more ef-

ficient. Nonlinear transformations are less straightforward, but they can be

very powerful if used correctly. The disadvantage is that the convergence is

not guaranteed and, because of the complicated form, the properties of the

transformations are not always completely understood.[32].

Resummation techniques are especially important for divergent series. In

favourable cases, a resummation technique can estimate the original func-

tion that gave rise to the asymptotic or even wholly divergent series. One

popular technique is Padé approximants, where terms in the Taylor series re-

produced by a rational function with polynomials as the denominator and

numerator.[30]. Padé approximants work well for series which diverge due

to poles in the complex plane. For example, the Padé approximant p(x) =

(1+x2)−1 is an exact resummation of the divergent series s(x) = 1−x2 +x4−

x6 + · · · .

The Borel method is another popular resummation technique. In the Borel

method, one first performs the Borel transformation of the series, wherein

each term in the series is divided by n!. The series is then summed (perhaps

9
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approximately) in the Borel plane, and then transformed back by a Laplace

transform. For example, appling the Borel transform to the divergent series

Z(x) = 1− x2 + x4 − x6 + · · · (2.4)

B(t) = 1− 1
2!
t2 + 1

4!
t4 − 1

6!
t6 + · · · (2.5)

which we can recognize as

B(t) = cos(t) (2.6)

The re-summed series is

ZB(x) =

∫ ∞
0

cos(xt)e−tdt (2.7)

= (1 + x2)−1 (2.8)

The link to the Laplace transform may not be entirely clear, but notice that

we can rearrange the transformation from the Borel plane as:

ZB(x) =

∫ ∞
0

B(xt)e−tdt (2.9)

= x−1
∫ ∞
0

B(u)e−u/xdu (2.10)

ZB(y−1) = y

∫ ∞
0

B(xt)e−yudt (2.11)

Borel transformation is effective when it is possible to resum the transformed

series in some way, preferably a way such that the Laplace transform can

be evaluated analytically. A common technique is to resum the series in the

10
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Borel plane using Padé approximants. However, it is often helpful to use a more

general form, which can model transcendental functionals also. In Ref. [25, 26],

a hypergeometric resummation was considered, which results in a Meijer-G

approximant. This method is advantageous because the Laplace transform

of hypergeometric functions is known, and because hypergeometric functions

are extremely flexible, and can model polynomials, rational functions, and

transcendental functions. One conclusion from the examples above is that if

the series expansion corresponds to a function, and that function is used to

model the resummation of that expansion, then the resummation is exact.

I.e., the divergent Taylor series of a rational function is exactly resummed by

a Padé approximant. Similarly, given a divergent series that corresponds to

the Meijer-G function, a Meijer-G resummation will be exact. More generally,

if a divergent series corresponds to a function that can be accurately fit by a

Padé approximant or a Meijer-G function, then resummations based on those

functions will be exact.

2.1.2 Padé approximants

Padé approximants are commonly used for series resummation to tackle con-

vergence problems. The strategy consists of estimating a certain function using

a quotient BL/M(x) of order N = L + M . For instance, given a asymptotic

expansion Z(x) =
∑∞

n=0 znx
n, where zn and x are the expansion coefficients

and the variable, respectively, the corresponding Padé approximant of order

[L/M ] would be a ratio of two polynomials of order L on the numerator and

11
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M on the denominator [33],

BL/M(x) =

∑L
n=0 pnx

n

1 +
∑M

n=1 qnx
n
. (2.12)

The coefficients are normalized by assigning q0 = 1 and determined by ensuring

that the Padé approximant matches the Taylor series of Z(x) through order

L+M . Ergo,

Z(x) = B[L/M ](x) + O(xL+M+1). (2.13)

In practice, the coefficients of the Padé approximant are obtained by solving

a system of L + M + 1 linear equations, which are obtained by setting the

derivatives of the target function and its Padé approximant equal at x = 0.

Specifically, from dnZ(x)
dxn

∣∣∣
x=0

=
dnBL/M (x)

dxn

∣∣∣
x=0

one obtains [33]:

z0 = p0

z1 +z0q1 = p1

z2 +z1q1 +z0q2 = p2

...

zL +zL−1q1 + · · · +z0qL = pL

zL+1 +zLq1 + · · · +zL−M+1qM = 0

...

zL+M−1 +zL+M−2q1 + · · · +zL−1qM = 0

zL+M +zL+M−1q1 + · · · +zLqM = 0 (2.14)

12
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A table of Padé approximants can be easily tabulated by setting different

values for L and M . Because it is a rational function, the singularities of a

Padé approximant in the complex plane are poles. The Padé approximant,

then, is less suitable for modelling functions with algebraic branch points or

essential singularities.

2.1.3 Meijer-G function

A Meijer-G function is a very general expression that can represent most spe-

cial functions by suitable choices for its parameters.[34, 35]. The set of integers

m, n, p, and q determine the order of the Meijer-G function. Given a set of

parameters {a1, · · · , ap} and {b1, · · · , bq}, the Meijer-G function is expressed

as a function of z and r,

Gm,n
p,q

(
a1,··· ,an; an+1,··· ,ap
b1,··· ,bm; bm+1,··· ,bq

∣∣∣x; r
)

=
1

2πi

×
∫
L

∏m
j=1 Γ(bj + s)

∏n
j=1 Γ(1− aj − s)∏p

j=n+1 Γ(aj + s)
∏q

j=m+1 Γ(1− bj − s)
x−s/r ds, (2.15)

Here, 0 ≤ m ≤ q and 0 ≤ n ≤ p, and Γ is the gamma function:

Γ(x) =

∫ ∞
0

tx−1e−tdt. (2.16)

In most applications of the Meijer-G function, one chooses r = 1.

The Meijer-G function can mimic singularities beyond poles. Unfortunately,

until recently, there was no simple way, analogous to Eq. (3.4) for the Padé

13
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approximant, to determine the parameters in a Meijer-G approximant.

2.1.4 Borel approach

Recall that for any positive integer, the Gamma function can also be expressed

as a factorial function:

Γ(x) = (x− 1)! =

∫ ∞
0

tx−1e−tdt (2.17)

The Borel method consists of using a factorial function to regularize divergent

series.[36]. The basic idea is that if one observes a series where the size of the

coefficients is diverging,

Z(x) =
∞∑
n=0

znx
n (2.18)

then it would be beneficial to divide the coefficients by n!.[37]. This defines

the Borel transformation of Z(x),

BZ(t) =
∞∑
n=0

bnt
n (2.19)

bn =
zn
n!

(2.20)

14
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To invert the Borel transformation, it is beneficial to rewrite (2.18) using the

integral form of the Gamma function,

Z(x) =
∞∑
n=0

znx
nΓ(n+ 1)

n!

=

∫ ∞
0

(
∞∑
n=0

zn
n!
xn

)
tne−tdt

=

∫ ∞
0

(
∞∑
n=0

zn
n!

(xt)n

)
e−tdt

=

∫ ∞
0

BZ(xt)e−tdt (2.21)

If the coefficients zn grow factorially, the Borel transform removes such growth

yielding a finite nonzero radius of convergence. In summary, for a given diver-

gent expansion Z(x) =
∑∞

n=0 znx
n, the Borel method follows these steps:

1. Borel transform the coefficients.

bn =
zn
n!

(2.22)

2. Sum the Borel-transformed series in the Borel plane.

BZ(t) =
∞∑
n=0

bnt
n (2.23)

3. Use an integral related to the Laplace transform to return (an approxi-
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mation to) the original function,

ZB(x) =

∫ ∞
0

e−tB(tx)dt (2.24)

In practice, one usually truncates the original Taylor expansion and therefore

the Borel-transformed series in Eq. 2.19 is also truncated. Different resumma-

tions of the series in the Borel plane give different results when transformed

back.

In the Borel-Padé method is similar, but the summation in the Borel plane

is done using a Padé approximant.[38]. This requires solving the set of equa-

tions to find the parameters pn and qn that give the best fit. This method is

summarized in the following steps:

1. Borel transform the coefficients.

bn =
zn
n!

(2.25)

2. Summation in the Borel plane using a Padé approximant.

BL/M(t) =

∑L
n=0 pnt

n

1 +
∑M

n=1 qnt
n
. (2.26)

3. Take the Laplace transform to return the Borel sum.

ZB(x) =

∫ ∞
0

e−tBL/M(tx)dt (2.27)
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The Borel-Padé approach is attractive because the integral in Eq. 2.27 can be

evaluated exactly using exponential integrals.

Borel-Padé approximants converge slowly when the Borel-transformed series

has a branch cut. However, generalized hypergeometric functions have a built-

in branch cut singularity, and potentially can model the series 2.19 more

accurately.[38, 25, 26].

Mera et al. present an algorithm that improves the Borel-Padé resummation

using Meijer-G functions.[25, 26]. One of the differences is that the coefficients

of the series must be normalized, z0 = 1, and the first N+1 terms of the series

must be known, where N is the order of the approximant. After the Borel

transform bn = zn
n!

, the ratios of the new consecutive coefficients are obtained.

Then, a generalized hypergeometric ansatz is made for each of the ratios by

setting it equal to a Padé approximant function of m, the index of the ratio.

The order of the Padé, both L and M , is fixed to be integer l = (N − 1)/2.

Note that in the case of even orders, l is a fraction, so the first term of the

series can be subtracted, and the remaining terms are normalized so that

z0 = 1. The one-subtracted expansion can then be treated with odd order

N − 1 resummation, and the removed term can be added to the Meijer-G

function in the end.

The basic algorithm for extracting the Meijer-G approximant of N th order,

where N is odd, is as follows:
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1. Normalize the function so that z0 = 1. When N is odd,

Z̃(x) =
Z(x)

z0
≈

N∑
n=0

zn
z0
xn (2.28)

=
N∑
n=0

z̃nx
n (2.29)

z̃n =
zn
z0

(2.30)

When N is even we use the one-subtracted series,

Z̃(x) =
Z(x)− z0

z1x
≈

N−1∑
n=0

zn+1

z1
xn (2.31)

=
N−1∑
n=0

z̃nx
n (2.32)

z̃n =
zn+1

z1
(2.33)

In both cases there are an even number of terms in the summation, and

z̃0 = 1.

2. Borel transform Z̃(x).

BZ̃(t) =
∞∑
n=0

z̃n
n!
tn =

∞∑
n=0

bnt
n (2.34)

≈
N∑
n=0

bnt
n (2.35)

bn =
z̃n
n!

(2.36)

3. Calculate ratios of consecutive terms in the Borel series. For 0 ≤ m ≤
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N − 1.

r(m) =
bm+1

bm
(2.37)

4. Fit the ratios, r(m) with a Padé approximant, B[
N
2
/
N
2

]. This gives a

system of N equations, 0 < m < N − 1,

r(m) =
bm+1

bm
=

∑N
2
n=0 pnm

n

1 +
∑N

2
n=1 qnm

n

(2.38)

5. This can be rearranged into a linear system of equations, which are then

solved for the {pn} and {qn}.

6. To fit the Borel-transformed function, BZ̃(t), we find the roots of the

numerator and the denominator of our approximation to r(m),

l∑
n=0

pnx
n = 0 (2.39)

1 +
l∑

n=1

qny
n = 0 (2.40)

Label the roots ~x =

[
x1, x2, . . . , xN

2

]
and ~y =

[
y1, y2, . . . , yN

2

]
.

7. Determine the generalized hypergeometric approximant l+1Fl in the Borel

plane, where l = N
2

BZ̃(t) =l+1 Fl

(
~x, ~y,

pl
ql
t

)
(2.41)

8. Take the Laplace transform of the hypergeometric function to return the
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Borel resummation,

Z̃(x) ≈
∫ ∞
0

e−tBZ̃(tx)dt (2.42)

Z̃(x) ≈
∏l

i=1 Γ(−yi)∏l
i=1(−xi)

Gl+2,1
l+1,l+2

(
1,−y1,··· ,−yl
1,1,−x1,··· ,−xl

∣∣∣∣− ql
plx

)
. (2.43)

2.2 Density Functional Theory

In density-functional theory (DFT), the 3-variable ground-state electron den-

sity n(x, y, z) replaces the 3N -variable wavefunction,

Ψ (x1, y1, z1;x2, y2, z2; . . . ;xN , yN , zN) as the fundamental descriptor of an N -

electron molecule. On its surface, this dramatically reduces the complexity of

quantum-mechanics, because the N -electron Schrödinger equation is replaced

by an equation using density functionals. Ideally, a DFT-based method scales

linearly as O(N), but limitations arise because the universal Hohenberg-Kohn

functional is not known in any exact, explicit, form.

The most common approximation is the Kohn-Sham DFT (KSDFT), which

introduces orbitals as auxiliary quantities with which to compute the nonin-

teracting kinetic energy. Determining the orbitals requires solving a system of

coupled one-electron equations (the Kohn-Sham equations), which means that

one must (either implicitly or explicitly) diagonalize a one-electron Hamilto-

nian, with inherent cost O(N3) (which may nonetheless be reduced for large

systems). If the noninteracting kinetic energy were expressed as an explicit
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density functional, however, near-ideal scaling can be recovered, as the cost of

evaluating the kinetic energy then grows linearly, in proportion to the volume

of the system.

Many different approaches have been taken to the kinetic energy density func-

tional [10], but this study focuses on the gradient expansion approximation.

Nonetheless, a gradient expansion of the kinetic energy is not accurate enough

for atoms and molecules, mainly because higher-order terms diverge. This

is not that surprising given the highly inhomogeneous nature of the electron

density in molecular systems. This inhomogeneity can be mitigated with local

pseudopotentials, at the cost of introducing still another approximation, which

is of dubious accuracy in many cases. Resummation of the gradient expansion

series by Padé approximants showed some improvement in accuracy.[23]. In

this work, Padé approximants and hypergeometric resummations are studied

and compared to the truncated sum of the series.

2.2.1 Thomas-Fermi model

In 1927, Thomas and Fermi presented the first attempt to model electronic

structure using only the electron density [14, 15, 39]. Their model estimates

the electronic distribution by dividing molecular space into small cubes, each

of which contained a uniform gas of noninteracting electrons. In this approxi-

matio, the kinetic energy of these volume elements can be determined exactly,

and was then integrated to approximate the total noninteracting kinetic energy
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of the system, giving the Thomas-Fermi functional,

TTF [n] = CTF

∫
n5/3dr =

3

10
(3π2)2/3

∫
n5/3dr (2.44)

This functional is sometimes called the local density approximation (LDA). As

its name and expression implies, the estimation of the local kinetic energy at

the point r is based on the electron density at r only. In the original Thomas-

Fermi model, exchange and correlation effects are neglected and the energy is

given as an explicit functional of the electron density by the expression:

ETF [n(r)] = CTF

∫
n5/3dr +

nuclei∑
A

∫
ZA

|r−RA|
n(r) dr

+
1

2

∫ ∫
n(r1)n(r2)

|r1 − r2|
dr1 dr2, (2.45)

Here ZA and RA denote the atomic number and positions of the atomic nuclei.

The calculation of ETF is fast, but it is only exact for the homogeneous gas

of non-interacting electrons. The strategy of determining ETF by minimizing

the energy expression with respect to the density was assumed to be valid in

the original work Thomas and Fermi and subsequent studies, all the way until

1964.

2.2.2 Hohenberg and Kohn Theorems

Two key precepts of wavefunction-based quantum mechanics are that

1. Any observable property of an system can be determined from its wave-
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function.

2. The ground-state wavefunction of a system can be determined by min-

imizing the energy,
〈

Ψ
∣∣∣Ĥ∣∣∣Ψ〉 over the space of physically permissible

(e.g., antisymmetric, normalized) wavefunctions.

Analogous theorems for the ground-state electron density were established by

Hohenberg and Kohn in their 1964 paper. The first theorem states that: ”The

external potential ν(r) is (to within a constant) a unique functional of the

ground-state electron density, n(r). Since ν(r) determines Ĥ, which is suffi-

ciently to determine the wavefunctions (by solving the Schrödinger equation),

we see that all observable properties of a system can be expressed as func-

tionals of n(r).” In particular, there is an exact density functional for the

ground-state energy of a system, and all the components thereof. The proof of

the theorem by reductio ad absurdum is straightforward and is shown in Ref.

[40]. Symbolically, the first Hohenberg-Kohn theorem can be summarized by

n0(r) −→ {N, ν(r)} −→ Ĥ −→ Ψ0 −→ E0, . . .

The second Hohenberg-Kohn theorem indicates that the ground-state electron

density, n0(r), yields the lowest energy; all other trial densities would give a

higher energy that E0.

Rather than write the ground-state energy directly as a functional of n(r), it

is convenient to write it as a sum of density functional contributing density

functionals,
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E[n(r)] = T [n(r)] + Vee[n(r)] + Vne[n(r)], (2.46)

where T is the kinetic energy, Vee is the sum of all the electron-electron in-

teractions, and Vne is the external potential energy due to nucleus-electron

interactions. The latter is easily expressed as an explicit density functional,

Vne[n(r)] =
nuclei∑
A

∫
ZA

|r−RA|
n(r) dr (2.47)

The first two terms must be approximated, and are often combined into the

universal Hohenberg-Kohn functional F . F [n] is universal in the sense that

its mathematical form does not depend explicitly on {N,ZA,RA} variables;

therefore the same F can be used for any system.

F [n(r)] = T [n(r)] + Vee[n(r)] (2.48)

This approach, which is often called Hohenberg-Kohn DFT (HKDFT) is exact,

follows the variational principle, and scales linearly, but unfortunately, the

exact mathematical expression for F is not known. The classical electron-

electron repulsion that contributes to Vee can also be written as an explicit

and exact density functional. Specifically, the classical Coulomb repulsion is

given by:

J [n(r)] =
1

2

∫ ∫
n(r1)n(r2)

|r1 − r2|
dr1 dr2. (2.49)
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The remaining contribution includes exchange and correlation effects. Explicit

exact functionals for these contributions, together with the kinetic energy func-

tional are still unknown. Because of this, HKDFT cannot be used for practical

electron structure calculations without further approximations. However, as

soon as approximations are made, the variational principle is not guaranteed (it

is possible to obtain results below the true energy). However, because HKDFT

is computationally inexpensive and amenable to linear-scaling techniques, it

is very attractive. Approximations like as the Thomas-Fermi model retain

the appealing low computational cost of HKDFT, but accuracy is severely

compromised, even when an exchange correction is included.

The Thomas-Fermi-Dirac (TFD) model extends the Thomas-Fermi model to

include exchange. Like Thomas and Fermi, Dirac used a periodic system with

electrons in a cubic unit cell to describe a noninteracting homogeneous gas of

electrons [41]. The kinetic energy is given by TTF , but the exchange energy

is no longer ignored, but computed exactly from the Hartree-Fock exchange-

energy expression,

KD[n] = CX

∫
n4/3dr =

3

4
(3π)1/3

∫
n4/3dr. (2.50)

The TFD model is a good first approximation, but its accuracy is not accept-

able [42]. One can systematically improve the functionals for kinetic energy

and exchange via a gradient expansion. That is, one can relax the assump-

tion that there is a noninteracting homogeneous gas by adding corrections for

inhomogeneity. However, before we assess this strategy, it is important to
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first discuss how the exact values for the kinetic and exchange energy can be

computed.

2.2.3 Kohn-Sham DFT

Hohenberg and Kohn showed that the energy can be obtained as a functional

of the density. The only problem is that no exact explicit mathematical ex-

pression of the functional is known, so the Hohenberg-Kohn theorems merely

prove the existence of a computational methodology based on the ground-state

electron density; they give no hint as to how to transform this methodology

into a practical computational method for studying chemical systems. A year

after Hohenberg and Kohn’s paper, Kohn and Sham proposed a strategy that

turned DFT into a practical tool for electronic calculations. Perhaps inspired

by the work of Thomas, Fermi, and Dirac for uniform electron gasses of non-

interacting electrons, they introduced a reference state consisting of noninter-

acting electrons, but with the same (nonuniform!) density as the true physical

system with interacting electrons. The kinetic energy of the reference system

can be calculated using orbitals,

Ts[{ψi}] = −1

2

∑
i∈occ

〈
ψi
∣∣∇2
∣∣ψi〉 , (2.51)

As in HKDFT, in KSDFT the classical Coulomb energy J is also used to

recover the classical electrostatic self-repulsion of the electron density. The re-

maining errors are assigned to the exchange-correlation term Exc. The ground-
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state electronic energy is thus expressed as

E[n(r)] = Ts[n(r)] + Vne[n(r)] + J [n(r)] + Exc[n(r)], (2.52)

The exchange-correlation energy includes the residual part of the kinetic en-

ergy (due to electron correlation), and the non-classical electrostatic contribu-

tions (including corrections due to the Pauli principle and electron correlation).

The exchange-correlation energy explicitly removes the self-interaction of elec-

trons. Exc is typically written as an integral of the exchange and correlation

density εxc over all space,

Exc[n(r)] =

∫
εxc(n,∇n,∇2n, · · · )dr (2.53)

The local density approximation (LDA) is the lowest rung of approximations

forExc, where εxc(r) only depends on electron density itself, at the same point

in space, n(r). The most intuitive approach for improving εxc(r) is to include

information about the electron density at points near r by using derivatives

of the electron density. The second rung of approximations includes the first

derivative; functionals of this form are called generalized gradient approxi-

mations (GGAs). Going beyond GGAS, on the third rung of the density-

functional hierarchy one includes information about higher-order derivatives

and/or the kinetic energy density (e.g., from the integrand in Eq. 2.50; these

are called meta-GGAs). One can also include truly nonlocal information; at

the fourth rung of the hierarchy one includes other information from the oc-
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cupied Kohn-Sham orbitals, most frequently the exact exchange energy (from

the Hartree-Fock energy expression) or the exchange-energy density. These

functionals, especially the ones that use the Hartree-Fock exchange expres-

sion, are commonly called hybrid density functionals. Hybrid functionals and

meta-GGAs generally require information about the Kohn-Sham orbitals, and

are thus inapplicable in HKDFT.

Like HKDFT, KSDFT is exact in principle. However, once an explicit and

approximate functional is chosen to approximate Exc, the variational principle

is generally no longer valid. Therefore, it is difficult to validate the quality of

the functional. It is especially complicated because improving approximations

by moving from LDA to GGA to meta-GGA to hybrid-GGA approaches does

not guarantee better accuracy. I.e., when choosing a suitable functional, one

must consider the the characteristics of the system of interest: different (types

of) functionals work better for different (types of) chemical systems.

2.2.4 Kinetic Energy Density Functionals

When approximating the kinetic energy functional, one encounters difficulties

analogous to those encountered in the exchange-correlation energy functional.

However, the kinetic energy makes a much larger contribution to the exact

energy and, as noted by Ruedenberg and Kutzelnigg, makes a decisive contri-

bution to chemical binding phenomena. Relative to the exchange-correlation

functional, the kinetic energy functional must be more accurate.
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Many techniques for approximating the noninteracting kinetic energy density

have been proposed. Some of these techniques are less suited to HKDFT

because they make it difficult to achieve linear scaling with HKDFT. However,

by analogy to the exchange-correlation energy functional, it is permissible to

approximated the noninteracting kinetic energy density functional (KEDF),

Ts[n] as an integral of the kinetic energy density over all space,

Ts[n(r)] =

∫
t(n,∇n,∇2n, · · · )dr (2.54)

The kinetic energy density for the Thomas-Fermi model is exact for a homo-

geneous noninteracting gas of electrons and is given by the integrand:

t0 = tTF = CTFn
5/3 (2.55)

The most straightforward approach for including inhomogeneity in the kinetic

energy density is by including dependence on higher-order derivatives of the

density, in analogy to GGA (and kinetic-energy-density-free meta-GGA) func-

tionals for the exchange-correlation energy. The von Weizsäcker KEDF was

the first correction that includes the gradient of the density,

tW =
1

8

|∇n|2

n
(2.56)

The von Weizsäcker functional is exact for systems with nondegenerate ground

states and up to two electrons; it is a strict lower bound to the true KEDF.
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However, when combined with Thomas-Fermi theory, the Weizsäcker correc-

tion is too large, and only a fraction of tW is necessary.

A more general form of the gradient expansion approximation of the KEDF is

Ts[n] = T0 + T2 + T4 + . . . (2.57)

=
∞∑
k=0

∫
t2k[n(r),∇n(r), ...,∇2kn(r)]dr (2.58)

Notice that odd order terms are not included because they are zerol The zeroth-

order term is the Thomas-Fermi KEDF. Kirzhnits [17] derived the second-order

term, which turns out to be 1
9

th
of the Weizsäcker KEDF,

t2 =
1

72

|∇n|2

n
(2.59)

Following the same methodology as Kirzhnits, Hodges [18] derived the fourth-

order term:

t4 =
(3π2)−2/3

540
n1/3

((
∇2n

n

)2

− 9

8

|∇n|2∇2n

n3
+

1

3

|∇n|4

n4

)
. (2.60)
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Similarly, Murphy [19] obtained the sixth order term:

t6 =
(3π2)−4/3

45360
n−1/3

[
13
|∇ (∇2n)|2

n2
+

2575

144

(
∇2n

n

)3

+
249

16

|∇n|2

n2

∇4n

n
+

1499

18

|∇n|2

n2

(
∇2n

n

)2

− 1307

36

|∇n|2

n2

∇n · ∇ (∇2n)

n2
+

343

18

(
∇n · ∇∇n

n2

)2

+
8341

72

∇2n

n

|∇n|4

n4
− 1600495

2592

|∇n|6

n6

]
. (2.61)

The second and fourth order terms are actually more complicated. They result

from the partial integration of the asymptotic gradient expansion described by

Jennings [20]. The complete second order term is given by:

tJ2 =
1

72

|∇n|2

n
+

1

6
∇2n, (2.62)

The second term integrates to zero for any system with rapidly decaying elec-

tron density, including atoms and molecules, and so this term is usually dis-

carded. However, the additional term does contribute to the kinetic-energy

density. Similarly, the complete fourth-order term is:

tJ4 =
(3π2)−2/3

4320
n1/3

(
12
∇4n

n
− 30

∇n · ∇(∇2n)

n2

− 14

(
∇2n

n

)2

− 7
∇2(|∇n|2)

n2

+
140

3

|∇n|2∇2n

n3
+

92

3

∇n · ∇ (|∇n|2)
n3

− 48
|∇n|4

n4

)
.

(2.63)
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Both the truncated and complete forms of the gradient expansion will be

considered here. The complete terms give different answers because we resum

the series expansions for the kinetic energy density first, then integrate r.

Since the additional terms can carry information that is useful for predicting

the kinetic energy density, they should be considered. Sim et al. [2] also

stress on the importance of analyzing the kinetic energy density when testing

a functional.
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Chapter 3

Methodology

3.1 Computational Details

The calculations of the kinetic energy approximations were made using

HORTON[1], specifically the iodata, grid and gbasis packages. The initial molec-

ular data, mainly the density matrix, is loaded with iodata from a Gaussian

16 [43] calculation at either UHF/UGBS or UPBEPBE/UGBS level of theory.

The energy partition option in Gaussian 16 is utilized to find the reference

Kohn-Sham kinetic energy. Note that while UPBEPBE exchange-correlation

functional is not exact, the kinetic energy from a UPBEPBE Kohn-Sham

calculation exactly corresponds to the electron density from a UPBEPBE cal-

culation in the basis-set limit. By using a the large, uncontracted, UGBS basis

set, we ensure that the reference kinetic energy is very close to the true value

(it will always be slightly too high) associated with the UPBEPBE calculation.
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While the Hartree-Fock kinetic energy and the Kohn-Sham kinetic energy are

different, they are very close, and it is common in the literature to study ki-

netic energy functionals for the Hartree-Fock kinetic energy, even though this

does not strictly fit into the KSDFT framework. We use the UHF/UGBS

results so that we can compare to these results from the literature.

A total of 21 functionals for the kinetic-energy functional are tested; six of

these functionals include a parameterization step using all other molecules in

the test set. When we include the complete form of the terms of the gradient

expansion (i.e., including the terms that integrate to zero over all space) we use

the index j. The test set comprises the atoms H-Ar and some small molecules

(H2, HF, LiH, LiF, N2, H2O, NH3, and CH4).

3.2 Methodology

Consider the gradient expansion of the kinetic energy density,

t(r) = t0(r) + t2(r) + t4(r) + · · · . (3.1)

The accuracy from gradient corrections is limited because this series does not

converge. Not only do the higher-order terms become larger and larger, in-

dividual terms diverge in certain regions (e.g., near the electron-nuclear cusp

in the electron density). In general, it is observed that t2 improves the ap-

proximation, but t4 does not always help. The following figure of the radial

distribution of the kinetic energy density summed up to different orders shows
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that t4 adds a singularity near the nucleus and deviates from the exact kinetic

energy density at long distances.

Figure 3.1: Gradient expansion approximated and exact ts kinetic energy den-
sities for the hydrogen atom. Figure taken from Ref. [2].

Clearly, the gradient expansion of the kinetic energy density is a non-convergent

series, and the truncation of the summation can lead to an asymptotic series

with partial information about the original functional [23, 21].

Fig. 3.2 shows that the radial distributions of t4 and t6 term diverge far from

the nucleus and near the nucleus. This is the general behaviour for all atoms

that were studied. The divergence of t4 is not as pronounced as t6 as the slope

and values of the fourth-order correction is smaller. As expected, truncation

up to t2 is usually the best approximation for the kinetic energy.

In this study, several functionals based on Padé and Meijer-G approximants
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(a) H (b) Be

(c) N (d) Ne

Figure 3.2: Plots of the radial distribution of the density and the terms of
the gradient expansion of the kinetic energy density for different atoms on a
logarithmic scale. The coefficients are obtained with Gaussian 16 UHF/UGBS
and the gradient expansion is calculated using HORTON 3.

were used to resum the divergent expansion of the kinetic energy. The Padé

approximant is useful for recovering information about the higher order terms

when they are small and avoiding them when they are large [23]. Low-order

Meijer-G approximants often perform better than Padé approximants because

they intrinsically include a branch cut, while the Padé only models poles [26].

For reference, we compare to the thoroughly studied gradient expansion ap-

36



M. Sc. Thesis - X. Huang McMaster University - Chemistry and Chem. Bio.

proximation functionals T0, T0 +T2, T0 +T2 +T4, and T0 +T2 +T4 +T6, which

are calculated by integration over molecular space [?, 21].

Following the Meijer-G approximant method, the series is normalized by di-

viding by the first term,

t(r)

t0(r)
= 1 +

t2(r)

t0(r)
+
t4(r)

t0(r)
+ · · · . (3.2)

A perturbation parameter x, which gives back the original gradient expansion

when x = 1, is then introduced,

t(r)

t0(r)
= 1 + z1(r)x+ z2(r)x2 + · · · , (3.3)

where z1 = t2(r)
t0(r)

, z2 = t4(r)
t0(r)

, and so on.

3.2.1 Padé Resummation

The simplest method consists of using a Padé approximant to resum the ki-

netic energy t(r). The derivation of the lowest order approximant B0/1(x) is

straightforward. Taking the set of equations 3.4, we obtain the following:

1 = p0

t2(r)

t0(r)
+ q1 = p1 = 0 (3.4)

Note that p1 = 0 because L = 0. Solving for the parameters, and inserting
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them into the expression for the Padé approximant, gives the following:

B0/1(x) =
1

1− t2(r)
t0(r)

x
=

t0(r)

t0(r)− t2(r)
(3.5)

In the final step, it is already taken into account that x = 1. The kinetic

energy is then expressed as

t(r) = t0(r)B0/1(x) =
t20(r)

t0(r)− t2(r)
. (3.6)

Clearly, singularities arise when t0(r) = t2(r). A possible solution is to use a

different function when this is the case, such as:

t(r) =

 t0(r)
∣∣∣ t0(r)−t2(r)t0(r)

∣∣∣� 1

t20(r)

t0(r)−t2(r) otherwise
(3.7)

Two approximations were proposed to ensure this behaviour with a smooth

transition. The first suggestion uses the softplus activation function, also called

the smooth ReLU (rectified linear unit) function.

softReLUξ(x) = ln(1 + exξ) (3.8)

Notice that the function is not zero at the origin and at big values of x,

the function returns the argument of the exponential. With the following
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expression, the transition from one case to the other can be softened,

tξ(r) = t0(r)

 1

a+ softReLUξ

(
− t2(r)
t0(r)

)
 . (3.9)

The parameter ξ can be fitted to a certain data set and to get a, certain

consideration must be made. When t2(r) = 0, one would also expect to re-

cover tξ(r) = t0(r). Taking this into account and substituting in the previous

equation,

1 = a+ softReLUξ(0)

1 = a+
1

ξ
ln(1 + 1)

a = 1− ln(2)

ξ
(3.10)

This function also shows reasonable behaviour when t2(r) −→ ±∞. For the

positive case, tξ(r) approaches t0(r)
a

and for the negative case, tξ(r) −→ 0.

Also, note that when the argument of the softReLU function is relatively big,

then the expression becomes

tξ(r) = t0(r)

 1

a− ξ
(
− t2(r)
t0(r)

)
 . (3.11)

The other regularizing function proposed is based on a hyperbolic tangent

function that defines the contribution percentage of each case to give a gradual
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transformation from one to the other.

tξ(r) = t0(r)

∣∣∣∣tanh

(
ξt0(r)

t0(r)− t2(r)

)∣∣∣∣+ t20(r)

t0(r)− t2(r)

(
1−

∣∣∣∣tanh

(
ξt0(r)

t0(r)− t2(r)

)∣∣∣∣)
(3.12)

Here, the factor ξ must also be parameterized using a set of molecules or atoms,

for which, the kinetic energy is already known. Other similar parameterized

functionals were tested, including:

tξ,B0/1,c
(r) = ξ t0(r) tanh

(
ξt0(r)

t0(r)− t2(r)

)
(3.13)

tξ,B0/1,d
(r) =

t0(r)

ξ
tanh

(
ξt0(r)

t0(r)− t2(r)

)
(3.14)

tξ,B0/1,e
(r) =

t0(r)

1− 1
ξ

tanh
(
ξt2(r)
t0(r)

) (3.15)

tξ,B0/1,f
(r) =

t0(r)

1 + ln 2
ξ
− softReLUξ

(
t2(r)
t0(r)

) (3.16)

The next order Padé approximant B1/1(x) can be obtained in the same manner.

Solving the set of equations gives p0 = 1, p1 =
t22(r)−t0(r)t4(r)

t0(r)t2(r)
, and q1 = − t4(r)

t2(r)
.

The final expression for the approximant is

t(r) = t0(r)B1/1(x) = t0(r) +
t22(r)

t2(r)− t4(r)
. (3.17)

When t4 is a large number, the quotient form removes the contribution of such

cases. On the other hand, when t4 is small, it is taken into consideration in
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the calculation.

The highest order Padé approximant that will be tested is B2/1(x) given by

t(r) = t0(r)B2/1(x) = t0(r) + t2(r) +
t24(r)

t4(r)− t6(r)
. (3.18)

Similar to the lowest order Padé approximant, a parameterized functional is

proposed for B1/1 and B2/1 to avoid the singularities from the term with the

quotient. They are given by the following expressions:

tξ,B1/1,a
(r) = t0(r) +

t2(r)

ξ
tanh

(
ξt2(r)

t2(r)− t4(r)

)
(3.19)

tξ,B1/1,b
(r) = t0(r) +

t2(r)

1− 1
ξ

tanh
(
ξt4(r)
t2(r)

) (3.20)

tξ,B1/1,c
(r) = t0(r) +

t2(r)

1− ln 2
ξ

+ softReLUξ

(
− t4(r)
t2(r)

) (3.21)

tξ,B1/1,d
(r) = t0(r) +

t2(r)

1 + ln 2
ξ
− softReLUξ

(
t4(r)
t2(r)

) (3.22)

tξ,B2/1,a
(r) = t0(r) + t2(r) +

t4(r)

ξ
tanh

(
ξt4(r)

t4(r)− t6(r)

)
(3.23)

tξ,B2/1,b
(r) = t0(r) + t2(r) +

t4(r)

1− 1
ξ

tanh
(
ξt6(r)
t4(r)

) (3.24)

tξ,B2/1,c
(r) = t0(r) + t2(r) +

t4(r)

1− ln 2
ξ

+ softReLUξ

(
− t6(r)
t4(r)

) (3.25)
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3.2.2 Meijer-G Resummation

The Borel approach was used to get the hypergeometric resummation of the ki-

netic energy density’s gradient approximation. Following the Borel approach,

the coefficients must be divided by n! to reduce the factorial growth of the zn

coefficients, giving:

b0(r) =
z0(r)

0!
= z0(r) = 1

b1(r) =
z1(r)

1!
= z1(r) =

t2(r)

t0(r)

b2(r) =
z2(r)

2!
=
z2(r)

2
=

t4(r)

2t0(r)

... (3.26)

For a hypergeometric resummation of order N = 1, only one ratio needs to be

set equal to a Padé approximant,

r(0) =
b1
b0

=
t2(r)

t0(r)
=
p0
1

= p0. (3.27)

The solution of the polynomials is empty, so the resulting hypergeometric

vectors are x = {1} and y = {}. The resulting

tMG1 = t0G
2,1
1,2

(
1
1,1

∣∣∣∣−t0t2
)

(3.28)

The expression for the Meijer-G approximant of the kinetic energy density
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expansion for order N = 2 is given by:

tMG2 = t0 + t2G
2,1
1,2

(
1
1,1

∣∣∣∣−t2t4
)

(3.29)

This expression is very similar to the the first order Meijer-G function. This is

the result of the additional step, describe previously, that transforms an even

order into an odd order Meijer-G function. For N = 3, we have

tMG3 = t0
Γ
(
p0
p1

)
Γ
(

1
q1

) G3,1
2,3

(
1, 1
q1

1,1,
p0
p1

∣∣∣∣−q1p1
)

(3.30)

where p0 = t2
t0

, p1 =
t0t4t6+3t2t24−4t22t6

4t0t2t6−6t0t24
, and q1 =

3t0t24−t0t2t6−3t22t4
2t0t2t6−3t0t24

. To remove

singularities, the ReLU function is also used.

tMG1,a = −t0 softReLUξ

(
t0
t2

)
U

(
1, 1,−t0

t2

)
(3.31)

tMG1,b
= t0

(
0.5 + softReLUξ

(
t0
t2
− 0.5

))
U

(
1, 1,−0.5− softReLUξ

(
t0
t2
− 0.5

))
(3.32)

where U(1, 1, z) =
∫∞
0

e−zt

1+t
dt is the Tricomi confluent hypergeometric function.

For the second order Meijer-G, introducing an activation function gives the
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following expression:

tMG2,a = t0

[
0.5 + softReLUξ

(
t2
t4
− 0.5

)]
U

(
1, 1,−0.5− softReLUξ

(
t2
t4
− 0.5

))
+

(
t2

[
−0.5− softReLUξ

(
t2
t4
− 0.5

)]2
− 0.5− softReLUξ

(
t2
t4
− 0.5

))

× U

(
2, 2,−0.5− softReLUξ

(
t2
t4
− 0.5

))
(3.33)
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Chapter 4

Results and Discussion

4.1 Results and Discussion

The noninteracting kinetic energy was evaluated for the the atoms H-Ar and

the molecules H2, HF, LiH, LiF, N2, H2O, NH3, and CH4. The calculation

was performed using Gaussian 16 with two different methods UHF/UGBS

and UPBEPBE/UGBS. These calculated kinetic energies will be considered

exact; they are exact except for basis-set truncation error, which we believe to

be negligible compared to the errors in the kinetic-energy functional for these

very large basis sets. For the functionals that had parameters, we used the

atoms to determine the parameter in the kinetic energy functionals and the

molecules to test the accuracy of the model. The average of the errors for the

non-parameterized functionals was also computed, so that comparisons with

the fitted data could be made.
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The mean, mean absolute, minimum and maximum percentage error are ob-

tained for each functional and method. Tables A.1 and A.2 are the results

of only taking the molecules of the set, and Tables A.3 and A.4 summarize

the percentage errors for all species considered, but do not include the fitted

functionals.

The truncated gradient expansion kinetic energy density functionals give very

similar results whether or not the extra terms that integrate to zero are in-

cluded. For example, in Table A.1, t0 + t2 and t0 + t2j give the exact same

numbers for the mean percentage error. This is expected since the only dif-

ferences between these functionals is the integration error associated with the

numerical integration of a term that analytically integrates to zero. Nonethe-

less, the resummation results can vary greatly when including or excluding

these terms. For example, in Table A.1 one notes that for the functionals

tMG2,a and tMG2j,a
differ by 2 orders of magnitude, even though they differ

only by whether the zero-integrating terms are included or not. This is likely

due to the behaviour of the kinetic energy densities near the nuclei, which

are very different. (Figure 4.1 shows how different t4 and t4j plots are for the

Be atom.) These fluctuations significantly affect the kinetic energy density

estimation because of the mathematical expressions of each functional.

It is also worth noting that the results for the sixth-order gradient expansion,
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t0 + t2 + t4 + t6, clearly show that the series diverges. The simple truncated

gradient expansion that gives the best result is t0 + t2. This is normal since t4

and t6 diverge near the nucleus far from the systems, as shown in Figure 3.2.

It is also not surprising, that tB2/1
, from Ref. [23], yields such low percentage

errors. This functional requires calculation of t6, meaning it is computationally

costly.

Figure 4.1: Plots of the radial distribution of the kinetic energy densities t4
and t4j of Be atom. Although the extra terms on t4j integrate to zero, the
behaviour of the function is very different.

Overall, the gap between using UHF/UGBS and UPBEPBE/UGBS gener-
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ated density matrices for the evaluation of the functionals is not significant

and no noticeable trend was determined. Tables A.3 and A.4 does not include

the fitted functionals because these numbers were calculated for the complete

set. These numbers are more reliable when comparing only non-parameterized

functionals. The only functional that gives better average accuracy than t0+t2

is tB2/1
. Some of the other functionals are relatively good, however, namely,

tB0/1
, tB1/1j

, tMG1 , tMG2 , and tMG2j.

Looking at Table A.1 and A.2, the parameterized functionals that give per-

centage errors comparable to t0 + t2 kinetic energy functional are: tB0/1j,a
,

tB0/1,c
, tB0/1,e

, tB1/1,a
, tB1/1j,a

, tB1/1,b
, tB1/1j,b

, tB1/1,c
, and tB1/1j,c

. The fitting does

improve the accuracy of the kinetic energy evaluation if it is compared to their

respective original expressions, but fitting does not guarantee better results,

for example, the Meijer-G approximants. This suggests that in the Meijer-

G functionals, the parameter values that are appropriate for atoms (used as

training data) are inappropriate for molecules (used as testing data). Based on

the results for the parameterized functionals, it would be interesting to extend

this study to include heavier atoms and molecules that are larger, or which

contain heavier atoms. However, since the worst results are usually associated

with the 2-electron Hydrogen molecule (where, incidentally, the Weizsäcker

functional is exact), it seems likely that our results would only improve for

larger molecular systems.
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Table 4.1: Mean, mean absolute, minimum and maximum percentage error
of the kinetic energy of each functional with UHF/UGBS being the reference.
Only the molecules of the set were considered. The fitting was done with
atoms H-Ar.

Functional Mean Mean Abs. Min Max
t0 -7.35 9.39 LiH -13.9 H2 8.18

t0 + t2 2.1 3.54 LiH -3.67 H2 21.95
t0 + t2 + t4 4.28 4.65 LiH -1.17 H2 26.49

t0 + t2 + t4 + t6 -7.44×105 744×105 H2 -4.50×106 CH4 -2.81×104

t0 + t2j 2.1 3.54 LiH -3.67 H2 21.95
t0 + t2j + t4j 3.65 4.46 LiH -1.64 H2 26.5

tB1/1
4.2 4.89 LiH -1.98 H2 21.62

tB1/1j
3.1 4.05 LiH -2.67 H2 18.3

tB0/1
4.3 4.43 LiF -0.51 H2 24.99

tB0/1j -26.59 142.2 N2 -423.51 H2 425.18
tB2/1

2.29 3.98 LiH -3.08 H2 21.49
tMG1

5.12 5.5 LiH -1.54 H2 22.85
tMG1j

-24.86 24.86 LiH -29.8 H2 -18.03
tMG2

3.12 4.04 LiH -2.67 H2 23.29
tMG2j

3.16 4.07 LiH -2.48 H2 22.9
tξ,B0/1,a

-2.42 6.3 LiH -8.51 H2 15.5
tξ,B0/1j,a

-0.26 3.47 LiH -8.44 H2 12.84
tξ,B0/1,b

-5.59 8.11 LiH -12.17 H2 10.09
tξ,B0/1j,b

-7.35 9.39 LiH -13.91 H2 8.18
tξ,B0/1,c

0.58 3.56 LiH -6.21 H2 16.56
tξ,B0/1j,c

-6.67 9.29 NH3 -13.71 H2 10.49
tξ,B0/1,d

-25.74 25.74 LiH -30.58 H2 -13.73
tξ,B0/1j,d

-54.89 54.89 N2 -58.81 H2 -47.29
tξ,B0/1,e

2.39 3.65 LiH -3.69 H2 20.98
tξ,B0/1j,e

-2.91 5.31 LiH -10.1 H2 9.58
tξ,B0/1,f

-1.64 5.75 LiH -6.74 H2 16.42
tξ,B0/1j,f

-22.5 22.5 LiH -27.83 H2 -8.62
tξ,B1/1,a

-0.06 4.72 LiH -6.13 H2 18.64
tξ,B1/1j,a

0.51 4.19 LiH -5.76 H2 18.78
tξ,B1/1,b

2.76 3.83 LiH -2.95 H2 22.85
tξ,B1/1j,b

2.61 3.64 LiH -2.73 H2 22.03
tξ,B1/1,c

2.99 4.03 LiH -1.98 H2 23.33
tξ,B1/1j,c

3.88 4.99 LiH -3.0 H2 21.37
tMG1,a

5.24 5.56 LiH -1.27 H2 23.5
tMG1,b

-205.29 205.29 H2 -223.77 LiH -198.84
tMG1j,b

-144.18 144.18 HF -147.48 N2 -140.18
tMG2,a

-1976.97 1976.97 H2 -1.24×104 LiF -286.0
tMG2j,a 72.2 299.87 H2 -779.86 LiH 720.73
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Table 4.2: Mean, mean absolute, minimum and maximum percentage error
of the kinetic energy of each functional with UPBEPBE/UGBS being the
reference. Only the molecules of the set were considered. The fitting was done
with atoms H-Ar.

Functional Mean Mean Abs. min max
t0 -8.39 9.07 LiH -14.2 H2 2.69

t0 + t2 0.94 3.03 LiH -3.97 H2 15.9
t0 + t2 + t4 3.05 3.57 LiH -1.56 H2 20.09

t0 + t2 + t4 + t6 -320×105 3.20 ×105 H2 -1.95×106 LiF -224.38
t0 + t2j 0.95 3.03 LiH -3.97 H2 15.9

t0 + t2j + t4j 2.42 3.48 LiH -2.01 H2 20.12
tB1/1

3.67 4.61 LiH -2.34 H2 21.75
tB1/1j

2.33 3.26 LiH -2.32 H2 14.36
tB0/1

4.0 4.41 LiH -1.14 H2O 15.64
tB0/1j

-68.77 68.77 H2 -167.69 CH4 -7.51
tB2/1

0.99 3.15 LiH -3.72 H2 14.82
tMG1

4.02 4.42 LiH -1.62 H2 16.98
tMG1j -25.66 25.66 LiH -30.22 H2 -22.59
tMG2 1.95 2.99 LiH -2.97 H2 17.17
tMG2j

1.93 2.99 LiH -2.85 H2 16.6
tξ,B0/1,a

-382.06 382.06 H2 -475.87 LiF -364.39
tξ,B0/1j,a

-1.01 2.94 LiH -8.27 H2 7.74
tξ,B0/1,b

-6.64 7.77 LiH -12.43 H2 4.55
tξ,B0/1j,b

-8.4 9.07 LiH -14.2 H2 2.68
tξ,B0/1,c

-0.48 3.16 LiH -6.47 H2 10.72
tξ,B0/1j,c

-10.52 10.52 N2 -16.66 H2 -0.93
tξ,B0/1,d

-26.58 26.58 LiH -30.82 H2 -18.09
tξ,B0/1j,d

-55.87 55.87 N2 -59.4 H2O -51.28
tξ,B0/1,e

1.57 2.78 LiH -3.46 H2 15.81
tξ,B0/1j,e

-3.71 4.83 LiH -10.08 H2 4.46
tξ,B0/1,f

4.66 7.37 LiH -2.94 H2 48.11
tξ,B0/1j,f

-38.65 39.8 H2O -218.09 H2 4.6
tξ,B1/1,a

-1.2 4.37 LiH -6.43 H2 12.65
tξ,B1/1j,a

-0.64 3.82 LiH -6.01 H2 12.74
tξ,B1/1,b

1.73 2.86 LiH -3.1 H2 16.95
tξ,B1/1j,b

1.39 2.62 LiH -3.1 H2 15.78
tξ,B1/1,c

1.85 2.91 LiH -2.89 H2 17.23
tξ,B1/1j,c

1.72 2.82 LiH -2.93 H2 16.6
tMG1,a

4.13 4.47 LiH -1.38 H2 17.58
tMG1,b

-204.17 204.17 H2 -217.83 LiH -198.73
tMG1j,b

-144.75 144.75 HF -147.39 NH3 -142.41
tMG2,a

-1992.08 1992.08 H2 -1.24×104 HF -326.27
tMG2j,a

488.88 567.2 H2 -289.56 LiH 3116.61
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Table 4.3: Mean, mean absolute, minimum and maximum percentage error of
the kinetic energy of each functional with UHF/UGBS being the reference.

Functional Mean Mean Abs. min max
t0 -8.16 8.79 LiH -13.9 H2 8.18

t0 + t2 0.62 1.5 LiH -3.67 H2 21.95
t0 + t2 + t4 2.58 2.69 LiH -1.17 H2 26.49

t0 + t2 + t4 + t6 -4.35 ×1014 4.35×1014 O -1.13×1016 Mg -132.54
t0 + t2j 0.64 1.49 LiH -3.67 H2 21.95

t0 + t2j + t4j 3.77 4.17 LiH -1.64 O 50.38
tB1/1

1.12 3.84 Be -15.95 H2 21.62
tB1/1j

1.71 2.05 LiH -2.67 H2 18.3
tB0/1

3.0 3.04 LiF -0.51 H2 24.99
tB0/1j -62.53 181.57 Cl -1258.28 He 502.85
tB2/1

0.39 2.89 He -12.68 H2 21.49
tMG1 3.27 3.38 LiH -1.54 H2 22.85
tMG1j

-23.39 23.39 LiH -29.8 Ar -16.6
tMG2

1.55 1.83 LiH -2.67 H2 23.29
tMG2j

1.57 1.84 LiH -2.48 H2 22.9

Table 4.4: Mean, mean absolute, minimum and maximum percentage error
of the kinetic energy of each functional with UPBEPBE/UGBS being the
reference.

Functional Mean Mean Abs. min max
t0 -8.63 8.84 LiH -14.2 H2 2.69

t0 + t2 0.1 1.34 LiH -3.97 H2 15.9
t0 + t2 + t4 1.97 2.12 LiH -1.56 H2 20.09

t0 + t2 + t4 + t6 -1.15×109 1.15×109 Li -2.81×1010 S 3.45×104

t0 + t2j 0.11 1.33 LiH -3.97 H2 15.9
t0 + t2j + t4j 1.26 1.79 LiH -2.01 H2 20.12

tB1/1
-29.64 34.67 He -684.54 H2 21.75

tB1/1j
1.27 1.6 LiH -2.32 H2 14.36

tB0/1
2.02 2.57 He -4.77 H2O 15.64

tB0/1j
91.85 227.63 He -210.85 P 3619.33

tB2/1
0.31 2.38 H -7.08 H2 14.82

tMG1 2.8 2.93 LiH -1.62 H2 16.98
tMG1j -23.68 23.68 LiH -30.22 Ar -16.4
tMG2

1.02 1.34 LiH -2.97 H2 17.17
tMG2j

0.99 1.32 LiH -2.85 H2 16.6
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Chapter 5

Conclusions

5.1 Conclusions

As expected, the second-order Pade approximant, t0 + t2, and the tB2/1
Padé

approximant give good results. However, the t0 + t2 functional is more afford-

able to evaluate since it only requires two terms in the gradient expansion,

and the difference in quality between these two functionals is not very large.

The functionals tB0/1
, tB1/1j

, tMG1 , tMG2 , and tMG2j also gave relatively good

results, but not better than the simple second-order gradient expansion, t0+t2.

Some parameterized functionals, namely, tB0/1j,a
, tB0/1,c

, tB0/1,e
, tB1/1,a

, tB1/1j,a
,

tB1/1,b
, tB1/1j,b

, tB1/1,c
, and tB1/1j,c

give a low percentage error, though often with

larger mean errors (indicating a systematic bias).

Two functionals,tB0/1,c
and tB1/1j,a

, performed better than t0 + t2. They have
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similar expressions, and the first one only requires kinetic energy density terms

up to second order. Aside from the fitting, the evaluation of tB0/1,c
and t0 + t2

would have similar computational cost. This functional would seem promis-

ing, but a closer look at the behaviour of the expression, the low yield is a

result of a fortuitous cancellation of error. The functional does not recover the

original Padé functional at any value, and because there is no restriction on

the values or the argument of the hyperbolic tangent function, the evaluation

yields negative values, that compensate for the overestimation at other points

of the molecular space.

Overall, even the best functionals have errors that are about three orders of

magnitude larger than is acceptable, since quantitative quantum chemistry

calculations require mean-absolute-errors of 10−3 a.u. We can only conclude

that the gradient expansion diverges too strongly for the resummation tech-

niques we have considered here to be effective. Since higher-order terms in

the gradient expansion are unlikely to be practical to compute, and are likely

to be extremely sensitive to basis-set convergence errors, including higher-

order terms is unlikely to be beneficial. However, if one could mathematically

characterize key features of the exact gradient expansion (including, for exam-

ple, the location and type of the singularities that are closest to the original

and/or the asymptotic form of the gradient expansion for the rapidly-varying

uniform-electron-gas limit), one could select a function that is more suitable

than either the Padé or the Meijer-G form. If such a form were known, one

might plausibly parameterize the form using low-order terms in the gradient

expansion and obtain a functional that would exceed the performance of those
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considered here. Failing that, one may only hope that one could find function-

als that, while far from universal, were nonetheless adequate for certain classes

of molecular systems and their reactions. Finding functionals which, while far

from universal, are nonetheless effective for specific chemical applications is a

challenging topic for future work.
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Appendix A

Detailed Results
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Table A.1: Mean, mean absolute, minimum and maximum percentage error
of the kinetic energy of each functional with UHF/UGBS being the reference.
Only the molecules of the set were considered. The fitting was done with
atoms H-Ar.

Functional ξ Mean Min. Max. Mean Abs. Min. Abs. Max. Abs.
t0 -7.35 LiH -13.9 H2 8.18 9.39 H2 8.18 LiH 13.9

t0 + t2 2.1 LiH -3.67 H2 21.95 3.54 CH4 0.02 H2 21.95
t0 + t2j 2.1 LiH -3.67 H2 21.95 3.54 CH4 0.02 H2 21.95

t0 + t2 + t4 4.28 LiH -1.17 H2 26.49 4.65 LiF 0.3 H2 26.49
t0 + t2j + t4j 3.65 LiH -1.64 H2 26.5 4.46 HF 0.02 H2 26.5

t0 + t2 + t4 + t6 -7.44×105 H2 -4.50×106 CH4 -28056.36 7.44×105 CH4 28056.36 H2 4.50×106

tB0/1
4.3 LiF -0.51 H2 24.99 4.43 LiF 0.51 H2 24.99

tB0/1j
-26.59 N2 -423.51 H2 425.18 142.2 HF 21.84 H2 425.18

tB1/1
4.2 LiH -1.98 H2 21.62 4.89 H2O 0.09 H2 21.62

tB1/1j
3.1 LiH -2.67 H2 18.3 4.05 HF 0.53 H2 18.3

tB2/1
2.29 LiH -3.08 H2 21.49 3.98 HF 0.25 H2 21.49

tB1/2
4.73 LiF -0.44 H2 25.4 4.85 H2O 0.03 H2 25.4

tMG1
5.12 LiH -1.54 H2 22.85 5.5 LiF 1.35 H2 22.85

tMG1j
-24.86 LiH -29.8 H2 -18.03 24.86 H2 18.03 LiH 29.8

tMG2
3.12 LiH -2.67 H2 23.29 4.04 HF 0.7 H2 23.29

tMG2j
3.16 LiH -2.48 H2 22.9 4.07 HF 0.54 H2 22.9

tξ,B0/1,a
∼ 1 -361.9 H2 -428.71 H2O -254.38 361.9 H2O 254.38 H2 428.71

tξ,B0/1j,a
1.16 -0.26 LiH -8.44 H2 12.84 3.47 HF 0.29 H2 12.84

tξ,B0/1,b
∼ 1 -5.59 LiH -12.17 H2 10.09 8.11 HF 6.69 LiH 12.17

tξ,B0/1j,b
190.17 -7.35 LiH -13.91 H2 8.18 9.39 H2 8.18 LiH 13.91

tξ,B0/1,c
1.24 0.58 LiH -6.21 H2 16.56 3.56 N2 0.43 H2 16.56

tξ,B0/1j,c
1.65 -6.67 NH3 -13.71 H2 10.49 9.29 H2O 0.37 NH3 13.71

tξ,B0/1,d
∼ 1 -25.74 LiH -30.58 H2 -13.73 25.74 H2 13.73 LiH 30.58

tξ,B0/1j,d
∼ 1 -54.89 N2 -58.81 H2 -47.29 54.89 H2 47.29 N2 58.81

tξ,B0/1,e
2.97 2.39 LiH -3.69 H2 20.98 3.65 HF 0.33 H2 20.98

tξ,B0/1j,e
3.07 -2.91 LiH -10.1 H2 9.58 5.31 HF 2.65 LiH 10.1

tξ,B0/1,f
2.72 -1.64 LiH -6.74 H2 16.42 5.75 N2 3.24 H2 16.42

tξ,B0/1j,f
1.16 -1.13 H2O -65.05 HF 91.99 30.28 CH4 8.29 HF 91.99

tξ,B1/1,a
∼ 1 -0.06 LiH -6.13 H2 18.64 4.72 N2 1.51 H2 18.64

tξ,B1/1j,a
∼ 1 0.51 LiH -5.76 H2 18.78 4.19 N2 0.51 H2 18.78

tξ,B1/1,b
8.15 2.76 LiH -2.95 H2 22.85 3.83 HF 0.35 H2 22.85

tξ,B1/1j,b
3.59 2.61 LiH -2.73 H2 22.03 3.64 HF 0.25 H2 22.03

super2 1.84 LiH -4.03 H2 20.48 3.41 H2O 0.02 H2 20.48
super4 2.95 LiH -2.87 H2 21.92 3.92 HF 0.7 H2 21.92
super6 4.01 LiH -1.72 H2 23.36 4.47 LiF 0.11 H2 23.36
super2j -28.0 LiH -35.19 H2O -23.46 28.0 H2O 23.46 LiH 35.19
super4j -29.61 LiH -36.99 H2O -24.64 29.61 H2O 24.64 LiH 36.99
logitt2 ∼ 1 -7.06 LiH -13.05 H2 8.28 9.13 N2 8.2 LiH 13.05
logitt2j ∼ 1 0.92 LiH -10.61 H2 6.73 3.98 LiF 1.44 LiH 10.61
logitt4 ∼ 1 -6.79 LiH -12.77 H2 8.28 8.86 N2 7.87 LiH 12.77
logitt4j ∼ 1 1.02 LiH -10.48 H2 6.91 4.01 LiF 1.45 LiH 10.48
logitt6 ∼ 1 -6.66 LiH -12.8 H2 8.2 8.71 N2 7.67 LiH 12.8

logitB0/1
∼ 1 -7.05 LiH -13.03 H2 8.27 9.12 N2 8.18 LiH 13.03

logitB0/1j
5.92 -19.57 NH3 -93.41 H2O 53.31 35.79 LiF 1.72 NH3 93.41

logitB1/1
∼ 1 -7.06 LiH -13.05 H2 8.27 9.13 N2 8.19 LiH 13.05

logitB1/1j
∼ 1 0.92 LiH -10.61 H2 6.72 3.98 LiF 1.45 LiH 10.61

logitB2/1
∼ 1 -6.28 LiH -12.62 H2 8.27 8.35 N2 6.69 LiH 12.62

tξ,B1/1,c
∼ 1 3.02 LiH -2.59 H2 23.33 3.95 HF 0.53 H2 23.33

tξ,B1/1j,c
2.01 2.74 LiH -2.79 H2 22.43 3.78 HF 0.34 H2 22.43

tξ,B1/1,d
∼ 1 2.99 LiH -1.98 H2 23.33 4.03 HF 0.32 H2 23.33

tξ,B1/1j,d
∼ 1 3.88 LiH -3.0 H2 21.37 4.99 HF 0.35 H2 21.37

tξ,B2/1,a
∼ 1 2.12 LiH -3.66 H2 21.82 3.55 H2O 0.02 H2 21.82

tξ,B2/1,b
51.64 4.07 LiH -1.35 H2 25.1 4.48 LiF 0.31 H2 25.1

tξ,B2/1,c
1682.70 3.03 LiH -2.66 H2 23.45 3.97 HF 0.55 H2 23.45

tMG1,a
∼ 1 5.24 LiH -1.27 H2 23.5 5.56 LiH 1.27 H2 23.5

tMG1,b
∼ 1 -205.29 H2 -223.77 LiH -198.84 205.29 LiH 198.84 H2 223.77

tMG1j,b
442.70 -144.18 HF -147.48 N2 -140.18 144.18 N2 140.18 HF 147.48

tMG2,a
185.85 -1976.97 H2 -12398.58 LiF -286.0 1976.97 LiF 286.0 H2 12398.58

tMG2j,a
360.77 72.2 H2 -779.86 LiH 720.73 299.87 H2O 30.92 H2 779.86
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Table A.2: Mean, mean absolute, minimum and maximum percentage error
of the kinetic energy of each functional with UPBEPBE/UGBS being the
reference. Only the molecules of the set were considered. The fitting was done
with atoms H-Ar.

Functional ξ Mean Min. Max. Mean Abs. Min. Abs. Max. Abs.
t0 -8.39 LiH -14.2 H2 2.69 9.07 H2 2.69 LiH 14.2

t0 + t2 0.94 LiH -3.97 H2 15.9 3.03 N2 0.26 H2 15.9
t0 + t2j 0.95 LiH -3.97 H2 15.9 3.03 N2 0.25 H2 15.9

t0 + t2 + t4 3.05 LiH -1.56 H2 20.09 3.57 LiF 0.51 H2 20.09
t0 + t2j + t4j 2.42 LiH -2.01 H2 20.12 3.48 H2O 0.4 H2 20.12

t0 + t2 + t4 + t6 -3.20×105 H2 -1.95×106 LiF -224.38 3.20×105 LiF 224.38 H2 1.954×106

tB0/1
4.0 LiH -1.14 H2O 15.64 4.41 LiF 0.49 H2O 15.64

tB0/1j
-68.77 H2 -167.69 CH4 -7.51 68.77 CH4 7.51 H2 167.69

tB1/1
3.67 LiH -2.34 H2 21.75 4.61 H2O 0.55 H2 21.75

tB1/1j
2.33 LiH -2.32 H2 14.36 3.26 HF 0.42 H2 14.36

tB2/1
0.99 LiH -3.72 H2 14.82 3.15 CH4 0.07 H2 14.82

tB1/2
2.05 LiH -2.87 H2 13.33 3.07 HF 0.41 H2 13.33

tMG1
4.02 LiH -1.62 H2 16.98 4.42 LiF 1.15 H2 16.98

tMG1j
-25.66 LiH -30.22 H2 -22.59 25.66 H2 22.59 LiH 30.22

tMG2
1.95 LiH -2.97 H2 17.17 2.99 HF 0.32 H2 17.17

tMG2j
1.93 LiH -2.85 H2 16.6 2.99 HF 0.15 H2 16.6

tξ,B0/1,a
∼ 1 -382.06 H2 -475.87 LiF -364.39 382.06 LiF 364.39 H2 475.87

tξ,B0/1j,a
1.16 -1.01 LiH -8.27 H2 7.74 2.94 HF 0.45 LiH 8.27

tξ,B0/1,b
∼ 1 -6.64 LiH -12.43 H2 4.55 7.77 H2 4.55 LiH 12.43

tξ,B0/1j,b
189.79 -8.4 LiH -14.2 H2 2.68 9.07 H2 2.68 LiH 14.2

tξ,B0/1,c
1.24 -0.48 LiH -6.47 H2 10.72 3.16 HF 0.91 H2 10.72

tξ,B0/1j,c
1.63 -10.52 N2 -16.66 H2 -0.93 10.52 H2 0.93 N2 16.66

tξ,B0/1,d
∼ 1 -26.58 LiH -30.82 H2 -18.09 26.58 H2 18.09 LiH 30.82

tξ,B0/1j,d
∼ 1 -55.87 N2 -59.4 H2O -51.28 55.87 H2O 51.28 N2 59.4

tξ,B0/1,e
2.52 1.57 LiH -3.46 H2 15.81 2.78 HF 0.13 H2 15.81

tξ,B0/1j,e
3.10 -3.71 LiH -10.08 H2 4.46 4.83 HF 2.79 LiH 10.08

tξ,B0/1,f
30.85 4.66 LiH -2.94 H2 48.11 7.37 N2 0.69 H2 48.11

super2 0.7 LiH -4.31 H2 14.53 2.93 N2 0.27 H2 14.53
super4 1.79 LiH -3.16 H2 15.91 2.88 HF 0.32 H2 15.91
super6 2.83 LiH -2.01 H2 17.3 3.41 LiF 0.31 H2 17.3
super2j -28.65 LiH -35.27 H2O -23.61 28.65 H2O 23.61 LiH 35.27
super4j -30.27 LiH -37.12 H2O -24.81 30.27 H2O 24.81 LiH 37.12
logitt2 ∼ 1 -8.12 LiH -13.34 H2 2.78 8.81 H2 2.78 LiH 13.34
logitt2j ∼ 1 -0.04 LiH -10.82 HF 3.46 3.07 LiF 1.27 LiH 10.82
logitt4 ∼ 1 -7.84 LiH -13.06 H2 2.79 8.54 H2 2.79 LiH 13.06
logitt4j ∼ 1 0.06 LiH -10.69 HF 3.46 3.09 LiF 1.27 LiH 10.69
logitt6 ∼ 1 -7.7 LiH -13.08 H2 2.76 8.39 H2 2.76 LiH 13.08

logitB0/1
∼ 1 -8.11 LiH -13.33 H2 2.77 8.8 H2 2.77 LiH 13.33

logitB0/1j
∼ 1 -60.73 H2O -248.86 H2 1.36 61.07 H2 1.36 H2O 248.86

logitB1/1
∼ 1 -8.12 LiH -13.35 H2 2.77 8.81 H2 2.77 LiH 13.35

logitB1/1j
∼ 1 -0.04 LiH -10.81 HF 3.46 3.06 LiF 1.27 LiH 10.81

logitB2/1
∼ 1 -7.35 LiH -12.88 H2 2.77 8.04 H2 2.77 LiH 12.88

tξ,B0/1j,f
∼ 1 -38.65 H2O -218.09 H2 4.6 39.8 H2 4.6 H2O 218.09

tξ,B1/1,a
∼ 1 -1.2 LiH -6.43 H2 12.65 4.37 N2 2.17 H2 12.65

tξ,B1/1j,a
∼ 1 -0.64 LiH -6.01 H2 12.74 3.82 N2 1.18 H2 12.74

tξ,B1/1,b
6.03 1.73 LiH -3.1 H2 16.95 2.86 HF 0.1 H2 16.95

tξ,B1/1j,b
3.68 1.39 LiH -3.1 H2 15.78 2.62 H2O 0.0 H2 15.78

tξ,B1/1,c
∼ 1 1.85 LiH -2.89 H2 17.23 2.91 HF 0.16 H2 17.23

tξ,B1/1j,c
2.48 1.72 LiH -2.93 H2 16.6 2.82 HF 0.07 H2 16.6

tξ,B1/1,d
∼ 1 1.56 LiH -3.34 H2 16.95 3.2 HF 0.07 H2 16.95

tξ,B1/1j,d
1.09 1.53 LiH -3.17 H2 15.3 2.84 N2 0.11 H2 15.3

tξ,B2/1,a
∼ 1 0.95 LiH -3.95 H2 15.72 2.97 N2 0.16 H2 15.72

tξ,B2/1,b
51.62 2.88 LiH -1.66 H2 18.97 3.43 LiF 0.52 H2 18.97

tξ,B2/1,c
2717.02 1.87 LiH -2.93 H2 17.38 2.93 HF 0.18 H2 17.38

tMG1,a
∼ 1 4.13 LiH -1.38 H2 17.58 4.47 LiF 1.16 H2 17.58

tMG1,b
∼ 1 -204.17 H2 -217.83 LiH -198.73 204.17 LiH 198.73 H2 217.83

tMG1j,b
472.37 -144.75 HF -147.39 NH3 -142.41 144.75 NH3 142.41 HF 147.39

tMG2,a
690.23 -1992.08 H2 -12435.73 HF -326.27 1992.08 HF 326.27 H2 12435.73

tMG2j,a
113.39 488.88 H2 -289.56 LiH 3116.61 567.2 N2 6.93 LiH 3116.61
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Table A.3: Mean, mean absolute, minimum and maximum percentage error of
the kinetic energy of each functional with UHF/UGBS being the reference.

Functional Mean Min. Max. Mean Abs. Min. Abs. Max. Abs.
t0 -8.16 LiH -13.9 H2 8.18 8.79 Ar 7.0 LiH 13.9

t0 + t2 0.62 LiH -3.67 H2 21.95 1.5 B 0.02 H2 21.95
t0 + t2j 0.64 LiH -3.67 H2 21.95 1.49 B 0.01 H2 21.95

t0 + t2 + t4 2.58 LiH -1.17 H2 26.49 2.69 LiF 0.3 H2 26.49
t0 + t2j + t4j 3.77 LiH -1.64 O 50.38 4.17 HF 0.02 O 50.38

t0 + t2 + t4 + t6 -4.35×1014 O -1.13×1016 Mg -132.54 4.35×1014 Mg 132.54 O 1.13×1016

tB0/1
3.0 LiF -0.51 H2 24.99 3.04 Ar 0.16 H2 24.99

tB0/1j
-62.53 Cl -1258.28 He 502.85 181.57 Si 13.68 Cl 1258.28

tB1/1
1.12 Be -15.95 H2 21.62 3.84 H2O 0.09 H2 21.62

tB1/1j
1.71 LiH -2.67 H2 18.3 2.05 Al 0.01 H2 18.3

tB2/1
0.38 He -12.73 H2 21.49 2.89 P 0.08 H2 21.49

tB1/2
3.64 He -7.46 H2 25.4 4.51 H2O 0.03 H2 25.4

tMG1
3.26 LiH -1.54 H2 22.85 3.38 LiF 1.35 H2 22.85

tMG1j
-23.39 LiH -29.8 Ar -16.6 23.39 Ar 16.6 LiH 29.8

tMG2
1.55 LiH -2.67 H2 23.29 1.83 Ar 0.15 H2 23.29

tMG2j
1.57 LiH -2.48 H2 22.9 1.84 F 0.11 H2 22.9

super2 0.46 LiH -4.03 H2 20.48 1.41 H2O 0.02 H2 20.48
super4 1.46 LiH -2.87 H2 21.92 1.76 F 0.19 H2 21.92
super6 2.43 LiH -1.72 H2 23.36 2.57 LiF 0.11 H2 23.36
super2j -25.57 LiH -35.19 Ar -13.88 25.57 Ar 13.88 LiH 35.19
super4j -26.75 LiH -36.99 Ar -13.93 26.75 Ar 13.93 LiH 36.99

Table A.4: Mean, mean absolute, minimum and maximum percentage error
of the kinetic energy of each functional with UPBEPBE/UGBS being the
reference.

Functional Mean Min. Max. Mean Abs. Min. Abs. Max. Abs.
t0 -8.63 LiH -14.2 H2 2.69 8.84 H2 2.69 LiH 14.2

t0 + t2 0.1 LiH -3.97 H2 15.9 1.34 He 0.13 H2 15.9
t0 + t2j 0.11 LiH -3.97 H2 15.9 1.33 He 0.13 H2 15.9

t0 + t2 + t4 1.97 LiH -1.56 H2 20.09 2.12 LiF 0.51 H2 20.09
t0 + t2j + t4j 1.26 LiH -2.01 H2 20.12 1.79 Ne 0.01 H2 20.12

t0 + t2 + t4 + t6 -1.15×109 Li -2.81×1010 S 34463.94 1.15×109 Mg 151.57 Li 2.81×1010

tB0/1
2.02 He -4.77 H2O 15.64 2.57 Ar 0.08 H2O 15.64

tB0/1j
91.85 He -210.85 P 3619.33 227.63 CH4 7.51 P 3619.33

tB1/1
-29.64 He -684.54 H2 21.75 34.67 S 0.07 He 684.54

tB1/1j
1.27 LiH -2.32 H2 14.36 1.6 F 0.0 H2 14.36

tB2/1
0.31 H -7.08 H2 14.82 2.38 CH4 0.07 H2 14.82

tB1/2
2.1 Si -2.95 H2 13.33 2.74 H 0.05 H2 13.33

tMG1
2.8 LiH -1.62 H2 16.98 2.93 LiF 1.15 H2 16.98

tMG1j
-23.68 LiH -30.22 Ar -16.4 23.68 Ar 16.4 LiH 30.22

tMG2
1.02 LiH -2.97 H2 17.17 1.34 F 0.04 H2 17.17

tMG2j
0.99 LiH -2.85 H2 16.6 1.32 Si 0.02 H2 16.6

super2 -0.06 LiH -4.31 H2 14.53 1.31 Be 0.14 H2 14.53
super4 0.93 LiH -3.16 H2 15.91 1.27 F 0.01 H2 15.91
super6 1.89 LiH -2.01 H2 17.3 2.07 LiF 0.31 H2 17.3
super2j -25.82 He -35.27 Ar -13.82 25.82 Ar 13.82 He 35.27
super4j -27.02 He -37.19 Ar -13.88 27.02 Ar 13.88 He 37.19
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