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Abstract 

Large-scale transcriptomic studies are among of the most comprehensive accounts we have of 

the biological processes underlying human brain development and ageing. However, many 

analyses and descriptive models applied to gene expression data implicitly assume that 

developmental change is continuous and uninterrupted. Perhaps this bias is often overlooked 

because the emphasis is on what is changing during development rather than how development 

itself is changing. Indeed, despite the richness of transcriptomic data and its capacity to 

recapitulate higher-order functions, few have used it to understand the dynamics of brain 

development. Gene expression is determined by complex, high-dimensional interactions of the 

gene regulatory network. Dynamic systems theory states that the interactions of components in 

any complex systems will converge on certain stable patterns, also known as attractor states. To 

approximate these stable states, the current study leveraged robust and sparse k-means clustering 

to identify tissue samples with similar patterns of gene expression across the transcriptome. 

Sample ages were then used to visualize when in developmental time these stable patterns are 

present. The resulting model describes the developmental dynamics of the brain transcriptome as 

a series of non-linear, overlapping states that progress across the lifespan.  
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1.1 Dynamics of development  

 Stages and states have served as essential heuristics in developmental science since its 

inception. In general, a stage or state describes a discrete period of time characterized by certain 

psychological or physical abilities. Stage-like processes have also been described in 

neurobiological studies of brain development. For example, the critical period refers to a time-

restricted window of enhanced plasticity during which experience is essential for normal 

development (Hensch, 2005). Animal models have provided clear molecular, cellular, and 

structural evidence of critical periods in the primary sensory systems of several species (Berardi, 

Pizzorusso, & Maffei, 2000). Focused sequencing stuides in these systems demonstrate that the 

critical period is driven by unique and transient patterns of gene expression (Lyckman et al., 

2008). When gene expression is measured on a larger scale, however, distinct stages are rarely 

considered. Modern transcriptomic stuides include hundreds of tissue samples spanning 

numerous brain areas and developmental periods. Thus, gene expression data is preferentially 

analyzed with methods that assume continuous change across the lifespan. This conceptual bias 

is often overlooked because the emphasis is on what is changing during development rather than 

how development itself is changing. 

 In the current section, I review traditional theories of developmental dynamics that 

culminate in modern dynamic systems theory. In essence, dynamic systems theory posits that 

developmental trajectories are nonlinear and converge on stable “attractor states” over time. I 

demonstrate the utility of this descriptive model at various levels of analysis, including motor 

development, functional brain networks, and cellular differentiation. Accordingly, I propose that 

transcriptomic stuides may capture the developmental dynamics of the human brain and discuss 

the potential benefit of approaching this data with states and nonlinearity in mind.  

1.1.1 Traditional developmental theories  

Development is derived from the Old French word desvoloper, which means “to unwrap” 

or “to unfold.” (van Geert, 2003). In this sense, developmental psychologists and neurobiologists 

are chiefly concerned with how the brain and the behaviours it produces unfold over time. There 

has been much debate, particularly in developmental psychology, regarding the dynamics of this 

process. That is, what is the shape of developmental change? Is it best modeled by a continuous 
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curve, or are there discontinuities representing spontaneous re-organization of structure and 

behaviour (Flavell, 1971)? Returning to the etymological roots of the word, let us imagine 

development as the process of unfolding a folded piece of paper. This metaphor illustrates some 

fundamental aspects of traditional views of development. First, the process consists of a finite 

number of steps. Second, the nature of transformation is determined by the initial state of the 

folded paper. Third, all the states are qualitatively different (i.e. forms of the paper). And lastly, 

the process of transformation is the same for all states, namely unfolding. 

Jean Piaget (1896 – 1980) noticed that children demonstrate large-scale shifts in 

behaviour elicited by cognitive tasks, which are strongly correlated with age. Piaget used these 

stable individual differences to describe four stages of cognitive development: (I) sensorimotor, 

(II) preoperational, (II) concrete operational, and (IV) formal operational. Stages were defined by 

qualitative differences across a number of fundamental concepts such as quantity, time, 

causality, and relationships (Piaget & Cook, 1952, Piaget & Inhelder, 1969). Piaget regarded 

cognitive development as a process of biological maturation and interaction with the 

environment. In this view, children come to understand their surrounding by assimilating new 

information into knowledge structures known as schemas, which are updated through 

accommodation. When a child’s internal schemas can no longer accommodate new information, 

the current state dissolves into disequilibrium before a new state that is sufficiently resistant to 

further change is achieved (Feldman, 2004). Piaget’s theory fits well with our folded paper 

metaphor; it describes cognitive development as a finite, invariant sequence of states, where the 

distinction between states is qualitative and determined by the properties of the previous step, 

and transition is driven by consistent forces (i.e. assimilation, accommodation, and 

equilibration). Piaget’s theories of development have been criticized for a lack of explanatory 

power and have lost considerable support over the years (Fischer & Silvern, 1985; Brainerd, 

1987). Despite this, Piaget’s interpretation of the mind as a dynamic biological organ that adapts 

the individual to the environment, and the environment to the individual, involved concepts that 

would become extremely popular and well-regarded.  

The 1950s and 1960s witnessed the birth of many important ideas regarding the dynamics 

of development. British embryologist Conrad Hal Waddington (1905 – 1975) was interested in 

how complex and distinctive tissues – bones, muscle, lungs, and so on – could emerge from a 
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homogenous single cell. He opposed the widespread preformist view that the adult form of an 

organism is entirely coded for by genes. Instead, he believed that an animal is “a developmental 

system,” wherein genes establish the starting point of development and the process of 

development itself actively determines the animal’s final form (Waddington, 1957; Griffiths & 

Tabery, 2013). In this view, genes code for the production of certain tissues that, once formed, 

can influence the expression of genes and formation of other tissues (Slack, 2002). These ideas 

are illustrated by Waddington’s famous epigenetic landscape. Taking our piece of paper from 

earlier and unfolding it completely, we notice that the creases form hills and valleys. Placing a 

marble on this surface causes it to move towards valleys and away from hills. In this metaphor, 

the marble represents the organism in a space defined by developmental dimensions or 

possibilities. The marble can start anywhere on the landscape, but development creates hills and 

valleys of increasing complexity and depth. Over time, the organism will fall towards states of 

differentiation and stability. Importantly, movement of the marble simultaneously warps the 

landscape, so it is possible to arrive at the same valley through various paths. This bi-directional 

and probabilistic nature of epigenesis was later refined by Gilbert Gottlieb (1929 – 2006), who 

highlighted the influence of environmental and physiological factors (Griffiths & Tabery, 2013). 

In sum, Waddington and Gottlieb described a process by which an organism becomes 

increasingly differentiated and structured via a bi-directional relationship between genes, the 

environment, and the organism itself.     

1.1.2 Dynamics systems theory  

Dynamic systems theory (DST) provides a contemporary theoretical approach to studying 

development that continues traditions started by Piaget and Waddington. Systems theory has its 

roots in mathematics, physics, and chemistry. In the 1970s, Belgian chemist Ilya Prigogine (1917 

– 2003) became interested in chemical reactions that appeared the violate the second law of 

thermodynamics; they would spontaneously create complex spatial and temporal patterns from 

less ordered chemical reactants. In these “autocatalytic” reactions, reactants produce a chemical 

compound that facilitates the formation of another product, which in turn has varying facilitatory 

or inhibitory effects on other compounds in the reaction. Provided with enough heat, this reaction 

oscillates violently between spontaneous chemical states (Agladze, Krinsky, & Pertsov, 1984). 

Prigogine noted that such reactions share important properties with biological systems: First, 
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they are thermodynamically open and able to take energy from their environment to increase 

their own order. Second, they live in thermodynamic nonequilibrium, where constant 

fluctuations can become amplified and shift the system into a new state (Prigogine & Nicolis, 

1971). Developmentalists immediately recognized the relevance of dynamic system principles to 

age-old questions of self-organization and changing states in development (Thelen & Smith, 

1994).  

By their very nature, dynamic systems are high-dimensional; comprised of countless 

interacting elements spanning multiple, often heterogeneous, levels (e.g. genes, neurons, circuits, 

and behaviour). Despite the immeasurable degrees of freedom, the interactions of system 

components converge on certain “preferred” spatial and temporal patterns (Thelen & Smith, 

2007). In this sense, dynamic systems are self-organizing because they spontaneously create 

“structure” through self-sustaining patterns of interactions (van Geert, 2020). Some terminology 

will aid further discussion. The state of a system is a snapshot of its ongoing processes and is 

defined by the current values of the order parameters being used to characterize the system. A 

set of parameters that the system actively reproduces over time is called an attractor state. The 

concept of an attractor state is not unlike a valley in Waddington’s epigenetic landscape, which is 

a resting point that developmental trajectories in the space converge on. A stable attractor state 

can be visualized as a marble lying at the bottom of a steep valley – it would require a lot of 

energy to send over the top, and if perturbed, it will quickly return to the bottom.  A series of 

neighbouring, shallow valleys would facilitate metastability, where the system may switch from 

one attractor to another (Thelen & Smith, 2007). Metastable states are particularly interesting the 

context of development, and we will revisit them later. The stability of a state can be 

theoretically indexed by the statistical probability of that state existing relative to other potential 

configurations and by its resistance to external perturbations. Stability is also related to the 

system’s response to internal fluctuations. Recall that stability is not merely the default state of a 

system, but a highly specific pattern of interactions that the system expends energy to reproduce 

(van Geert, 2020). These interactions carry intrinsic noise that act as stochastic forces on the 

stability of a state. Crucially, intrinsic noise can provide potential energy for shifting the system 

into a new state over time. These ideas come together to describe development as a 

fundamentally dynamic process, where the interaction of countless elements organically 

produces stable states that ultimately define function and behaviour.   
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Stability and change are two sides of the same coin. We have already discussed how 

dynamic systems produce stability, but how do they create progressive patterns of change – as 

seen in development? A system is stable when components cooperate and form a stable pattern 

of interactions that resists internal and external fluctuations. However, if the intrinsic noise from 

component sub-systems increases, or external pressures on the system change, then the old 

pattern of interactions becomes incoherent (Thelen & Smith, 2007). This describes criticality, 

where any minor perturbation can cause a cascade of changes that shifts the system into a 

qualitatively new pattern over a short period of time (van Geert, 2020). From a developmental 

perspective, the discontinuities in function and behaviour caused by these shifts may give the 

impression that a new stage has emerged, as Piaget had hypothesized. Nevertheless, several 

studies have demonstrated that these changes are as not global as Piaget had thought and are 

likely confined to specific developmental domains (Fischer & Bullock, 1981; Collins, 1984). 

Moreover, not all changes in a system are discontinuous shifts. Some parameters may change in 

a linear and continuous manner. Studying early language development, van Dijk and van Geert 

(2007) argue that continuity and discontinuity are not necessarily dichotomous but can be 

conceived as two extremes of one continuum. For example, the sudden emergence of a new 

grammatical structure that can be characterized as a discontinuity does not imply that the former 

grammatical behaviour completely disappears. The two behaviour modes co-exist for some time, 

and the replacement of the old mode by the new may occur in a linear, continuous fashion. This 

transition will likely differ between individuals, resulting in patterns that are more discontinuous 

in some individuals and more continuous in others (van Dijk & van Geert, 2007).  

1.1.3 Dynamic systems in motor development   

Dynamic systems theory has made major contributions to developmental psychology 

over the past 20 years (Spencer, Austin, & Schutte, 2012). In particular, the field of infant motor 

development has witnessed a revitalization due to the introduction of dynamic systems concepts 

and tools (Newell, Liu, & Mayer-Kress, 2003). In the traditional view, the development of motor 

actions occurs in a series of relatively fixed milestones that are mostly under genetic or 

biological control (Adolph & Berger, 2006). This model struggles to explain qualitative changes 

in behaviour over multiple time scales. For example, an infant can go from crawling to walking 

in the matter of seconds, but how does this transition relate to the more gradual shift in time 
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spent crawling verses walking that occurs over months (Spencer, Perone, & Buss, 2011)? In the 

dynamic systems perspective, behaviour arises from multiple components interacting and 

combining freely from moment to moment; like musicians playing jazz (Thelen & Smith, 1994). 

The resulting behavioural attractors are a product of the current context, task, and developmental 

history of the individual, and certain attractors become more likely (stable) over developmental 

time. In detail, crawling is a behaviour that infants use to move around when they have the 

strength and coordination to use their arms and knees, but cannot yet balance themselves or walk 

up-right. When infants learn to walk, the crawling pattern becomes destabilized by the pattern of 

bipedal locomotion. Contrary to the traditional theory of motor development, crawling is not 

hard coded for by genes or the nervous system. It self-organizes as a task-specific solution, and is 

later replaced by a more efficient solution, namely walking (Thelen & Smith, 2007). The 

concepts of dynamic systems theory have also been successfully applied to a number of other 

research topics including language development (van Geert, 1991), cognitive development 

(Smith & Thelen, 2003; Spencer et al., 2007), and socioemotional development (Lewis, Lamey, 

& Douglas, 1999).  

1.1.4 Dynamic systems in functional brain imaging  

Systems theory has been indispensable in furthering our understanding of the dynamics 

of the human brain. For decades, neuroimaging studies have measured task-specific brain 

activation relative to some putative baseline state, in which brain activity is thought to be low. 

Many studies also presume that spontaneous brain activity at baseline is sufficiently random 

enough to be averaged out in statistical analysis (Deco, Jirsa, & McIntosh, 2011). However, 

Biswal et al. (1995) demonstrated that brain regions that are active together during motor activity 

maintain a high correlation of BOLD (blood-oxygen-level-dependent) fMRI (functional 

magnetic resonance imaging) signal fluctuations at rest. These consistent, distributed patterns of 

activity in the absence of an overt task are referred to as resting-state networks (RSNs). RSNs 

map onto anatomical and functionally connected brain regions, and are disrupted in brain 

disorders (Hagmann et al., 2008; Garrity et al., 2007). Accordingly, their activity dynamics may 

reflect some important aspect of the function of neural circuits. In the view of Deco, Jirsa, and 

McIntosh (2011), brain dynamics at rest represent a constant state of inner state exploration, 

where the brain can freely generate network configurations that would be optimal for an 
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incoming input: “The resting state is like a tennis player waiting for the service of his or her 

opponent. The player is not static, but continues to move with small lateral jumps left and right 

to be able to react more effectively to the impending serve” (Deco, Jirsa, McIntosh, 2011).  

As this metaphor illustrates, one key feature of RSNs are their intrinsic fluctuations or 

“noise.” This noise may reflect the imprecise nature of biological operations on the level of 

individual neurons (e.g. variation in the activation of ion channels) and ensembles of neurons 

(e.g. variation in transmission timing). On the level of nonlinear dynamic systems, we have 

discussed the contribution of intrinsic noise to the formation of new states. In the absence of 

noise, there is little capacity for the system to explore new states. With noise, the systems can 

visit several metastable network configurations spontaneously and converge on a configuration 

that meets the demands of the current situation. McIntosh and colleagues (2010) use empirical 

data from infants and children to show that brain noise appears to increase with maturation. They 

hypothesize that this reflects the formation of new functional networks through the refinement of 

anatomical connectivity and learning during development. Thus, noise enables the exploration 

of, and is a reflection of, the brain’s dynamic repertoire (McIntosh et al., 2010).  

1.1.5 Dynamic systems in cellular differentiation and gene expression 

 The dynamic systems principles at play at the level of brain networks also scale to the 

cellular and molecular levels. A central question in developmental biology is that of 

multipotency and cell fate; specifically, how do genetically identical cells differentiate into 

vastly distinct, stable, and specialized cell types? One major influence are extrinsic factors that 

act nonuniformly on cell populations and thus trigger a cellular response in only a subset. For 

example, during brain development, the generation of neural diversity depends on temporal and 

layer-specific spatial patterning of neural progenitors and the transcription factors they produce 

(Holguera & Desplan, 2018). However, even a clonal culture of cells exposed to uniform 

environmental conditions comes to show enduring phenotypic heterogeneity (Orkin & Zon, 

2002). This intrinsic variability is linked to stochasticity in gene expression. Gene expression 

noise is a consequence of the random molecular events underlying transcription and translation, 

including the formation and decay of single molecules and multi-component complexes (Kaern 

et al., 2005). Recent genome mapping studies have suggested that variability in nuclear and 

chromatin organization also contribute (Finn & Misteli, 2019). Gene noise is accentuated when 
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transcription follows slow kinetics, resulting in uneven transcriptional products that are amplified 

by a high translation rate. This phenomenon is called translational bursting (Kaufmann & van 

Oudenaarden, 2007). Because fluctuations in protein production are generally not synchronized 

between cells, they eventually create a heterogeneous population over time. In addition to 

relatively fast fluctuations caused by gene expression noise, studies in mammalian cells 

demonstrate slow fluctuations in protein levels on the order of days (Sigal et al., 2006; Chang et 

al., 2008). In clonal cultures of mouse haematopoietic progenitor cells, this process resulted in 

spontaneous “outlier” cells, reconstituting the distribution of the parental population over the 

course of a week. Although the unique gene expression profiles reverted, they lasted long enough 

to create a differential proclivity for the erythroid or myeloid lineage (Chang et al., 2008). Thus, 

intrinsic variability in gene expression appears to have a developmental role.  

While several formal frameworks have attempted to explain how slow fluctuations cause 

intrinsic non-genetic heterogeneity, the most comprehensive account comes from dynamic 

systems theory. In this framework, gene expression is determined by the complex, high-

dimensional interactions of the gene regulatory network (GRN), which encompasses virtually the 

entire genome (Huang, 2009). Again, the dynamics of this network are best conceptualized as a 

potential landscape, where the gene expression profile associated with an attractor state can be 

interpreted as defining a particular cellular phenotype. Huang (2009) uses GRN consisting of two 

mutually inhibiting genes (A and B) to demonstrate basic concepts in network dynamics. In this 

example, each point in state space represents a combinatorically possible network state resulting 

from the expression levels of A and B. However, not all states are equally probable. A network 

state with high expression levels of both A and B would be highly unstable and hence unlikely to 

exist. This state forms a “hill” between two stable attractors – one with high A expression and 

low B expression, and one with the reverse. External regulatory signals (e.g. transcription 

factors) and larger perturbations (e.g. strong gene expression noise) can alter the expression of 

multiple genes and induce a transition across hills separating attractor states. This discontinuous 

transition embodies a differentiation event for an individual cell (Huang and Kauffman, 2009). 

Accordingly, cell-to-cell heterogeneity in a population of cells is best characterized as a “cloud” 

of individual points moving over the potential landscape. Kauffman (1993) describes the 

landscape of a complex network as “rugged,” containing multiple nested attractors and sub-

attractors. Thus, the simultaneous occupation of multiple major attractors by the cloud represents 
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a population with a number of distinct cell-type. On the other hand, the cloud can disperse over 

several sub-attractors within a cell-type attractor (Huang, 2009). Facilitated by gene expression 

noise, transitions between these sub-attractors manifest as the slow fluctuations in protein 

expression seen in empirical studies. 

1.1.6 Summary and extension to critical periods   

 The brain is a dynamic system – at all times and on all levels. Dynamics is the language 

of stability and change, thus developmental science is the study of when systems are stable or 

changing, and what makes them change (Thelen & Smith, 2007). We have discussed the 

tendency of complex systems, consisting of many embedded levels, to self-organize into 

cohesive patterns. Many of the systems we have covered are highly non-linear, meaning that 

small changes in one or more components can lead to large-scale reorganizations of the system. 

The idea that the brain naturally passes through periods of stability punctuated by spontaneous 

change is our main takeaway from dynamic systems theory.  

 In one final example, I will demonstrate the utility of dynamic systems theory for 

unpacking a classical property of brain development. For half a century, neuroscientists have 

known that plasticity is enhanced during specific windows of opportunity. During these critical 

periods, experience provides information that is essential for normal development and that 

permanently alters function (Hensch, 2005). Animal models have provided clear molecular, 

cellular, and structural evidence of critical periods in the primary sensory systems of several 

species (Berardi, Pizzorusso, & Maffei, 2000). I will focus on the primary visual cortex (V1C), 

which is the premier model of experience-dependent plasticity. Neuronal activity is important for 

the formation and maturation of neural circuits in this area (Katz & Shatz, 1996). For example, 

thalamocortical axons that serve either the right or left eye terminate in layer IV of the visual 

cortex to produce alternating ocular dominance (OD) columns (Hubel, Wiesel, & LeVay, 1976; 

Shatz & Stryker, 1978). Occluding one eye during development causes expansion of the OD 

columns serving the open eye and retraction of thalamic inputs serving the occluded eye, which 

become reduced in size and complexity (Antonini & Stryker, 1996; Antonini, Fagiolini, & 

Stryker, 1999). This structural reorganization and concomitant shift in spiking response of 

neurons in visual cortex following monocular deprivation (MD) occurs only during a critical 

period defined by behavioral amblyopia (Gordon & Stryker, 1996). However, the critical period 
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itself is plastic. The onset of plasticity in mice can delayed by preventing the maturation of 

GABA (γ-aminobutyric acid)-mediated transmission via Gad65 knockout (Hensch et al., 1998), 

or by dark-rearing from birth (Morales, Choi, & Kirkwood, 2002). Conversely, the critical period 

can be expedited by enhancing GABA transmission with benzodiazepines shortly after eye-

opening (Fagiolini et al., 2004), or by promoting the rapid maturation of inhibitory interneurons 

via transgenic overexpression of BDNF (brain-derived trophic factor) (Huang et al., 1999). There 

is also evidence that critical period closure is not absolute and may even be “reversed.” For 

example, although brief MD in the rodent model only produces OD plasticity within the critical 

period (Gordon & Stryker, 1996), a slightly longer duration of MD causes a robust OD shift in 

adults (Sawtell et al. 2003). Moreover, preceding a brief MD with a prolonged binocular 

deprivation in adult rats induces a “juvenile-like” OD plasticity (He et al., 2006). Studies from 

our lab have also demonstrated that the proteins associated with the molecular mechanisms 

underlying critical period plasticity show protracted developmental trajectories and dynamic 

changes well beyond the closure of the critical period (Pinto et al., 2010; Siu et al., 2017). 

 The critical period can be thought of as a unique state that the visual cortex inhabits early 

in life. The sheer amount of ongoing change in the constituent parts (e.g. synaptogenesis, 

synaptic pruning, synaptic spine motility, glutamatergic and GABAergic receptor maturation, 

intra-cortical myelin formation) maximizes the intrinsic noise of the system and pushes it to the 

edge of criticality. Under these conditions, the system is exquisitely sensitive to extrinsic 

influences, namely visual experience. Even the shadows of blood vessels in the eye are imprinted 

on the visual cortex (Adams & Horton, 2002). During normal development, visual experience 

enables the systems to transition from an energetically expensive and unstable state – defined by 

exuberant axonal processes and immature synapses – to a preferable state of stability where the 

adult cortex is organized into functional patterns serving each eye. If input from one eye is 

absent, as in MD, the adult attractor state forms without its influence. Studies demonstrating that 

the onset and closure of the critical period can be manipulated by pharmacological and 

environmental agents highlight that it is the product of a dynamic system, in contrast to a 

deterministic window that is hard coded within the organism. The dynamic view of the visual 

cortex is also supported by studies exhibiting “reversal” of the critical period and reinstatement 

of plasticity. These results can be conceptualized as a return of the system to a set of attractors 

that were present during the critical period. Nevertheless, these studies cannot fully induce the 
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same level of plasticity found during the critical period in adults. The limited and irreversible 

nature of the critical period is a property of dynamic systems in general. Self-sustaining patterns 

of interactions that define the structure and function of the brain persist because they are able to 

consume and dissipate energy. The more energy dissipation takes place, the more the process of 

organization – such as the emergence of states or attractors – becomes irreversible. This is 

because the number of possible paths back to the initial state grows exponentially, and the 

probability of the system getting onto a path back to a previous state is extremely low (van Geert, 

2020). It is likely, however, that the system exhibits transient states that are reflective of a future 

configuration. Interestingly, this is exactly what is found in studies investigating synaptic 

phenotypes in animal models of monogenic neurodevelopmental disorders (Meredith, Dawitz, & 

Kramvis, 2012; Kroon, Sierksma, & Meredith, 2013).  

The following section will review the paucity of developmental dynamics concepts in 

cross-sectional transcriptomic studies of the human brain, and the benefit of approaching this 

data with states and nonlinearity in mind.  

1.2 Developmental transcriptomics of the human brain 

 The brain is an exceptionally complex structure comprised of billions of glial and 

neuronal cells that organize into dense functional networks, capable of communicating within 

and across brain regions to produce cognition and other sophisticated behaviours. The 

development of the brain is equally miraculous. During the first few years of life it nearly 

quadruples in size, growing through the birth of new neurons, multiplication of glial cells, 

expansion of myelination, formation of synaptic connections, and the pruning of unused ones 

(Breen et al., 2018). In humans, the brain continues to undergo refinement and maturation well 

into adolescence, and is further shaped by ageing and degeneration in late adulthood (Keil, 

Qalieh, & Kwan, 2018). These processes are coordinated by cascades of molecules that are 

synchronized in space and time via tightly regulated gene expression. Accordingly, much of our 

current knowledge of biological changes underlying human brain development and ageing has 

been deduced from transcriptomic data. For decades, the expression of individual genes has been 

investigated with lower-throughput techniques such as in situ hybridization and Western blotting. 

The advent of microarray and RNA-seq technologies have made unbiased, genome-wide 
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interrogation of the transcriptome possible, and paved the way for a number of large-scale 

studies. 

1.2.1 Contributions of recent developmental brain transcriptome studies  

 In one of the most comprehensive human brain transcriptome stuides to date, Kang et al. 

(2011) used a high-throughput exon array to analyze 16 human brain regions (hippocampus, 

striatum, cerebellar cortex, amygdala, mediodorsal nucleus of the thalamus, and 11 neocortical 

areas) from 57 post-mortem human brains. Tissue samples were collected from early fetal 

development (5 weeks after conception) through ageing (82 years), covering virtually the entire 

human lifespan. The results of this work indicate that the majority of brain-expressed genes 

coding for proteins are temporally, and to a lesser extent, spatially regulated, and that this 

regulation occurs primarily during prenatal development (Kang et al., 2011). The authors used 

weighted gene co-expression network analysis (Zhang & Horvath, 2005) to identify 29 modules 

corresponding to distinct spatiotemporal patterns and biological processes. For example, two 

large-scale modules were identified with opposing developmental trajectories across regions. 

The waning module was enriched for gene ontology (GO) categories related to transcription 

factors and zinc-finger proteins, whereas the waxing module was enriched for processes involved 

in postnatal brain maturation, such as calcium signalling, synaptic transmission and neuroactive 

ligand-receptor interaction (Kang et al., 2011). Additionally, the authors analyzed the trajectories 

of individual genes and lists of manually curated genes associated with specific neurobiological 

categories. This approach enabled the validation of expression data for several neuronal genes 

with independent immunohistochemical findings, and the visualization of lifespan changes in 

several processes including synapse development, dendrite development and myelination. 

In a more focused study, Colantuoni et al. (2011) explored the temporal dynamics of the 

transcriptome in the dorsolateral prefrontal cortex. With the use of two-color arrays, gene 

expression was quantified in 269 human brain samples spanning gestational week 14 through 80 

years of age. Interestingly, a significant number of genes showed a reversal of expression 

between fetal development and early postnatal life. This pattern of reversals was mirrored 

decades later in ageing and neurodegeneration (Colantuoni et al., 2011). 

The high-quality transcriptomic data from both of these studies are publicly available on 

the Gene Expression Omnibus (GEO). Advances in sequencing technology coupled with funding 
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from the National Institute of Health (NIH) and private foundations (e.g. Allen Brain Institute) 

have contributed to a growing body of brain transcriptome databases (Keil, Qalieh, & Kwan, 

2018). These repositories serve as general cartographers of human neurodevelopment and hold 

the potential to identify important biological mechanisms as well as appropriate tissues and 

developmental points to query in experimental studies. For example, Shim et al. (2012) 

performed a focused gene co-expression analysis on the Kang et al. (2011) dataset and identified 

SOX4 and SOX11 as novel regulators of the Fezf2 E4 enhancer. The spatiotemporal nature of 

the same dataset was leveraged by Bae et al. (2014) to determine how a mutation upstream of 

GPR56 leads to perisylvian polymicrogyria, a disruption of gyri formation in the area around the 

sylvian fissure. The authors assessed candidate gene expression in the ventrolateral prefrontal 

cortex during the fetal development, and identified members of the RFX transcription factor 

family as potential mutational targets. Lastly, Kwan et al. (2012) used the Kang et al. (2011) 

dataset to build a list of proteins that interact with NOS1 in the fetal cortex; a protein-mRNA 

interaction that is unique to humans. This helped identify FMRP as a post-transcriptional 

regulator of human NOS1 expression. In sum, cross-sectional transcriptomic stuides of the 

human brain facilitate our understanding of the biological events that occur during normal 

development and that are potentially disrupted in disease.  

1.2.2 Potential gaps in developmental transcriptome studies 

 Despite their utility, there are a number of caveats to consider when gathering, 

processing, and interpreting transcriptomic data. Important technical and biological factors 

include post-mortem tissue quality, RNA extraction and stabilization methods, differences in 

platform technology, batch-effects, library generation, genome mapping, normalization methods, 

differential splicing, and mRNA-to-protein correspondence. While crucial, these topics are 

outside of the scope of the current review. Instead, I will focus on conceptual biases baked into 

common methods of analyzing developmental gene expression. 

 Unlike other areas of developmental science, most studies in developmental neurobiology 

lack an overarching theoretical framework. Often, they ask what is changing during development 

rather than how development itself is changing. This is a common approach to exploratory 

investigations that seek to study a particular phenomenon in an unbiased fashion. Accordingly, 

transcriptomic studies will survey the entire genome and identify changing patterns of gene 
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expression in space and time. The rationale is that an increase or decrease in the transcription of 

a particular gene (depending on the function of its protein product) says something about the 

biological processes occurring at that point in developmental time. As sequencing technology 

has become cheaper and more efficient, transcriptomic stuides have been able to add more tissue 

samples to their analyses. With enough samples spanning from fetal development to senescence, 

it becomes possible to model continuous change in gene expression throughout the human 

lifespan. Thus, using linear or non-linear regression to approximate the developmental trajectory 

of genes is one of the most popular analyses in this area of research. It also produces a striking 

and intuitive visualization of when things are changing. A less common approach, belonging to a 

lower-throughput era, is age-group comparison. Samples are binned into age groups, often 

characterized by certain developmental milestones, and are compared using t-tests or an 

ANOVA.  

 Both of these approaches have implicit biases about the dynamics of development that are 

often overlooked. The first assumption of linear regression is that the relationship between X and 

the mean of Y is linear, followed by the assumptions of homoscedasticity, independence, and 

normality. While the assumption of normal residuals is not needed for non-linear regression, the 

main assumption is still that the data is well represented by the model (Berry, 1993). When 

analyzing gene expression using regression, we assume that there is some underlying continuous 

pattern in the data that is captured by the model. Unsurprisingly, this approach is not suited for 

describing discontinuities in empirical data, such as sudden increases or decreases in expression. 

Even sigmoidal functions, which can change in value rapidly, are still continuous if there are no 

gaps in the curve. In the previous section, we covered several examples that suggest brain 

development is at times non-linear and discontinuous. Therefore, we must ask whether 

continuous curves are indeed the descriptive format that neuroscientists wish to use when 

extracting developmental information from their data. While assigning samples to age-defined 

groups may appear to agree with discontinuous, stage-like development, the groups are 

determined a priori and cannot reveal anything new about the dynamics of development.  

 Variability is an important driver of development that is handled differently in various 

statistical analyses. Due to the cross-sectional design and use of bulk tissue in nearly all human 

developmental transcriptomic studies, one cannot directly determine the source of variability in 
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gene expression and parse the biological, technical, and random effects. In regression models, 

the goal is to estimate the mathematical formula applied to a set of explanatory variables (e.g. 

age, sex, post-mortem internal, pH, probe quality) that best predicts the dependent variable (e.g. 

gene expression). Most regression programs use a method such as least squares to estimates the 

coefficient of each explanatory variable while minimizing unexplained variance in the error 

term. In other words, regression asks how much of the variance in gene expression can be 

explained by age in combination with other explanatory variables. Let us consider a hypothetical 

scenario where two samples have a similar phenotype (age and sex), but are starkly different in 

terms of expression for a particular gene. In a regression analysis, the differences between these 

samples is not captured by the explanatory variables and is instead attributed to error, resulting in 

a poor fit. Thus, when fitting a continuous model onto developmental gene expression, each 

individual data point is treated as an error-laden instance of a common, underlying biological 

pattern. It is possible, however, that this “error” represents multiple heterogeneous patterns (or 

states) that overlap in developmental time. While the ideal approach to understanding the source 

and function of biological variability would involve measuring gene expression at a cellular 

resolution across multiple developmental periods within the same individual, this is not yet 

possible with current technology. In the interim, there should be an emphasis on using analyses 

that treat variance as an essential element of the higher-order patterns that constitute the system, 

rather than noise that should be averaged out.  

 Kang et al. (2011) quantified probes representing 17,565 protein-coding genes in 1,340 

tissue samples, producing a total of 23,537,100 data points. The size and high dimensionality of 

spatiotemporal transcriptomes pose several challenges to computational analyses. It is clear that 

the complex phenotypes of the brain arise from the collective activity of many genes, so 

neuroscientists must first summarize this data to identify the biological significance. A common 

workflow is to group genes that share common functions defined by prior knowledge or 

experimental data. Gene-set databases like the Gene Ontology project (Ashburner et al., 2000) 

use hierarchically structured terms that describes gene products in terms of their associated 

biological processes, cellular components, and molecular function. Genes can be categorized by 

their involvement in human diseases (Amberger et al., 2015), and single-cell RNA-seq stuides 

have identified groups of markers genes that are up-regulated in certain cell-types (Tasic et al., 

2016). These resources are valuable but incomplete. Alternatively, we can identify groups of 
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genes with similar expression patterns over a set of samples, as they are likely to be involved in 

the same biological processes. Gene co-expression is useful for functional annotation, pathway 

analysis and reconstruction of gene regulatory networks. Nevertheless, the most common 

measure of co-expression is Pearson correlation, which can only capture linear relationships 

between variables (Mahfouz et al., 2017). Co-expression analyses can be extended using a 

network-based approach. The most commonly used is weighted gene co-expression network 

analysis (WGCNA), where genes are organized into modules based on topological overlaps in 

co-expression patterns (Zhang & Horvath, 2005). The overall expression profile of each module 

is represented by an eigengene, which is often visualized in developmental time with a 

continuous curve.   

 In this section, we have reviewed various approaches to analyzing transcriptomic data 

with the goal of linking gene expression to the etiology of neurodevelopment and ageing. Many 

studies focus on identifying spatiotemporal expression patterns across genes, as these are thought 

to reflect developmental events, such as neurogenesis, myelination, and cellular senescence. In 

general, the emphasis is on processes that change over the lifespan rather than the overall 

dynamics of the change. Often, development is implicitly assumed to be continuous, following 

from the use regression-based analyses and visualizations. Several studies have broadly 

discussed the dynamics of gene expression. Kang et al. (2011) found that over 80% of genes are 

differentially regulated across brain regions and developmental periods, and that the greatest 

regional differences in expression occur during prenatal development. Colantuoni et al. (2011) 

found that the rate of gene expression changes remains relatively low until 50 years of age, when 

it increases to mirror the changes seen in early postnatal life. However, a number of important 

questions remain unaddressed: namely, can gene expression be used to model non-linear, stage-

like development and ageing in the human brain? Further, can non-linear analyses reveal new 

insights into the biological changes occurring in healthy development and ageing, as well as in 

disease? 

1.3 The current study  

 Human brain development and ageing are complex, multidimensional processes. A 

formal framework for describing systems with these properties is dynamic systems theory. 

Briefly, the interactions between components of a complex system tend to self-organize into 
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relatively stable patterns or states (Prigogine & Nicolis, 1971). Development can be 

conceptualized as the progressive generation and exploration of stable states, which occurs at 

multiple levels of analysis and over multiple timescales, and in response to internal and external 

fluctuations (Thelen & Smith, 1994). Crucially, change between states is often sudden and takes 

the form of a discontinuity. Our understanding of the dynamics of the system occurs through the 

measurement of some selected property. By doing so, we can take a few properties out of the 

system, but we can never take the system out of the properties (van Geert, 2020). Currently, one 

of the most comprehensive measures of brain development is gene expression. Transcriptomic 

data is exceptionally rich, and several studies demonstrate that it captures high-level processes 

including gene-regulation and biological function (Dillman et al., 2017; Colantuoni et al., 2011; 

Kang et al., 2011; Breen et al., 2018). More focused studies have found that special 

developmental states, such as critical and sensitive periods, are driven by specific patterns of 

protein expression (e.g. excitatory-inhibitory balance in primary visual cortex) (Hensch, 2005). 

Nevertheless, most models describing the brain transcriptome over the lifespan are continuous. 

An important question remains: can human brain development and ageing be described as a 

series of stable, biological states?  

 To address this question, the current study leverages large-scale transcriptomic datasets 

available on the Gene Expression Omnibus (GEO) and modern, data-driven analyses. We 

implement robust and sparse k-means clustering (RSKC) (Witten & Tibshirani 2010; Kondo et 

al., 2016) to identify groups of samples with similar high-dimensional patterns of gene 

expression. This approach yielded developmental clusters with clear progression across the 

lifespan and identified feature genes that predict the separation of clusters. Several feature genes 

emphasized the developmental influence of well-known mechanisms, such as inhibitory 

interneurons and intracortical myelin in primary visual cortex (V1C), in addition to other genes 

that may merit further investigation, such as VAMP1. Clusters were unpacked using differential 

gene expression analysis, allowing enriched biological processes and cell types to be visualized. 

Data from 16 brain regions were independently surveyed using our analysis pipeline, revealing 

spatially distinct patterns of developmental clusters. Notably, gene expression in subcortical 

structures does not separate samples into postnatal developmental clusters. RSKC was also used 

to cluster brain regions with similar patterns of gene expression in order to identify common 

developmental clusters. Interestingly, region clusters roughly charted anatomical separation, and 
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clusters enriched for frontal areas exhibited sample separation by sex. Lastly, our clustering 

approach was used to test the hypothesis that individuals with bipolar disorder experience 

accelerated brain ageing. This hypothesis was not supported, but a new way to conceptualize 

clinical subgroups is presented.  

 In sum, the current study demonstrates that the lifespan dynamics of the human brain 

transcriptome can be described by a series of overlapping developmental clusters. These clusters 

exhibit regional and sex-based differences, and are driven by a small subset of feature genes. 

Moreover, clustering detected nuanced differences in gene expression during postnatal 

development that were underrepresented in the original publication. Further testing is required to 

ascertain whether developmental clusters indeed represent stable biological states, and whether 

they represent inter-individual differences or intrinsic variability. Even so, developmental 

clusters present a different way of thinking about human brain development that shifts away 

from discrete age-defined stages or continuous trajectories to a hybrid classification scheme of 

overlapping states. In this model, the brain at any point during the lifespan may be represented 

by two or more states. An intriguing possibility is that cortical tissue transitions between states in 

either a single step or by fluctuating back and forth until the optimal state is achieved.  

1.4 Study rationale, objective, and specific aims  

Rationale: Transcriptomic studies are one of the most comprehensive accounts we have of the 

biological events underlying human brain development and ageing. Many analysis methods and 

descriptive models applied to gene expression data implicitly assume that developmental change 

is continuous and uninterrupted. Perhaps this bias is often overlooked because the emphasis is on 

what is changing during development rather than how development itself is changing. Indeed, 

despite the richness of transcriptomic data and its capacity to recapitulate higher-order functions, 

few have used it to understand the dynamics of brain development. 

Objective: To explore the developmental dynamics of the human brain transcriptome by testing 

whether brain development and ageing can be described as a series of stable, biological states.  

Specific Aims:  

1. Cluster developmental samples from primary visual cortex (V1C) by gene expression and 

describe the pattern of cluster progression across the lifespan. Identify feature genes 
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driving the separation of developmental clusters and investigate their biological 

functions. Assess the contribution of cell type to each cluster. 

2. Compare developmental clusters and features genes across 16 brain regions. Cluster 

regions by gene expression and compare developmental progression.  

3. Cluster developmental controls and bipolar cases together. Investigate whether bipolar 

samples cluster with older controls, if at all, as suggested by the accelerated ageing 

theoretical framework.  

Approach: I leverage large-scale transcriptomic datasets available on the Gene Expression 

Omnibus (GEO) and modern, data-driven analysis. We implement robust and sparse k-means 

clustering (RSKC) (Witten & Tibshirani 2010; Kondo et al., 2016) to identify groups of samples 

with similar high-dimensional patterns of gene expression. This algorithm also selected weighted 

features that drive the separation of clusters. Lists of genes up-regulated and down-regulated in 

each cluster were unpacked using differential gene expression analysis. These lists were queried 

for enrichment of cell type markers and Gene Ontology (GO) biological processes.  
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Chapter 2. Introduction to Clustering  
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2.1 Introduction    

 Descriptive models of human brain development have evolved over time to suit the 

precision of investigative tools. Early theories were informed by behavioural observations made 

by cognitive psychologists, many of whom described development as a series of distinct stages 

(Piaget, 1952; Erikson, 1959; Vygotsky, 1987). Morphometric studies of cortical synapses and 

dendrites found rapid growth early in life, followed a protracted period of synaptic pruning 

(Huttenlocher, 1978; Huttenlocher, 1990). The non-constant change of these processes is 

represented by improvised axes used to describe the number of synapses over developmental 

time. One strategy for increasing statistical power is to measure age on a categorical scale, where 

individuals of a similar age are binned together. Many low-throughput molecular studies (Martin 

et al., 1998; Williams et al., 1993) and studies of psychological development (Fischer et al., 

1985; Flavell, 1982) have relied on this approach. The advent of technologies such as fMRI, 

EEG and MRS provided better windows into the living brain, and longitudinal analyses of brain 

structure and function blurred the divisions between developmental periods. Consequently, the 

dominant view today is that human developmental progresses along a continuum (Shaw et al., 

2008; Grydeland et al., 2013; Mills et al., 2014; Fjell et al., 2015).  

Recently, molecular tools have become integrated with developmental neuroscience and 

an abundance of research has focused on mapping the transcriptomic development of human 

cortex (e.g. Allen Human Brain Atlas, Human Connectome Project, PsychEncode). As 

sequencing technology has become cheaper and more efficient, transcriptomic stuides have been 

able to add more tissue samples to their analyses. With enough samples spanning from fetal 

development through to senescence, it becomes possible to model continuous change in gene 

expression throughout the human lifespan. The precision afforded by the inclusion of many 

individuals in functional and structural imaging studies (Gogtay et al., 2004) and sequencing 

stuides (Kang et al., 2011; Colantuoni et al., 2011) has biased our view of brain development 

towards a continuous vignette. Conversely, the current study asks whether discontinuous stages 

of development are represented in the human brain developmental transcriptome.  

One approach to addressing this question is the identification of subgroups in 

developmental samples. Unsupervised clustering is an analysis method perfectly suited for this 

task. Clustering is the process of identifying distinct groups of objects in a dataset, and can be 
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described as either hierarchical or partitional. Hierarchical clustering involves calculating all the 

pair-wise similarities between samples and constructing a tree-like dendrogram by iteratively 

grouping the most similar gene pairs. The major drawbacks of this method are that it is sensitive 

to outliers, cannot undo a suboptimal previous step, and can be ambiguous to interpret (Duda, 

Hart, & Stork, 2012). Hierarchical clustering is most appropriate when a hierarchical 

organization is expected in the data, and the main goal is reconstructing that organization. On the 

other hand, partitional clustering involves optimizing a simple model to fit the data. The most 

widely used partitional algorithm is k-means, where groups are formed by minimizing the 

within-cluster sum of square distances between each point in the cluster and the cluster center. 

K-means has several disadvantages: it requires the number of clusters to be set a priori, is 

influenced by the starting seed, and has trouble scaling with the number of dimensions in the 

data (Tibshirani, Walther, & Hastie, 2001). In parallel with clustering, dimensionality-reduction 

methods aim to find features that can adequately characterize the original high-dimensional data 

in a lower dimensional space. Principal component analysis (PCA) describes the process of 

computing a series of orthogonal vectors that iteratively capture the greatest amount of variance 

in the data. Despite its utility, PCA cannot describe non-linear relationships (Jolliffe & Cadima, 

2016).  

Several transcriptomic (Kang et al., 2011; Colantuoni et al., 2011) and proteomic (Carlyle 

et al., 2017; Breen et al., 2018) developmental studies have used clustering and PCA to visualize 

the molecular differences between individual samples. However, none found good separation of 

developmental periods. This is possibly because many of the clustering algorithms used in these 

studies require hundreds or even thousands of independent data points to reliably capture global 

structure. Nevertheless, most studies of the human brain include less than 100 unique samples.  

2.2 Robust and sparse k-means clustering  

Witten and Tibshirani (2010) present sparse clustering as a solution to clustering data 

with relatively few observations, which is common in investigations that include rare samples. 

This approach was originally developed for the classification of cancer types using gene 

expression profiling (Tibshirani et al., 2001; Witten & Tibshirani, 2010). Sparse clustering 

leverages high-dimensional datasets with many features (e.g. genes) to enhance the precision of 

clustering observations. One challenge that arises from including many features is that not all 



24 
 

features contribute to clustering. Some features are expected to change from cluster to cluster, 

while other behave similarly across clusters. Standard K-means clustering is vulnerable to the 

influence of noise variables (Kondo et al., 2016). On the other hand, sparse k-means (SK-means) 

simultaneously finds clusters and clustering feature. A lasso-type penalty is used to assign 

weights to each feature and cluster according to a weight dissimilarity measure (Witten & 

Tibshirani, 2010). Kondo et al. (2016) extend the SK-means method to make it resistant to 

outliers by trimming a fixed proportion of observations in each iteration. These outliers are 

flagged both in terms of their weighted and unweighted distances to eliminate the effects of 

outliers in the selection of feature weights and the selection of partitions. The RSKC algorithm is 

implemented in the R package RSKC (Kondo et al., 2016) and is used extensively in the current 

study.  

The capacity of RSKC to simultaneously identifies clusters and features benefits the 

current study in two ways. First, transcriptomic data have a large number of features (genes) 

relative to observations (samples) – in our case, we have 1,340 samples with 17,243 associated 

features. One expects that the underlying clusters in the data differ only with respect to a small 

fraction of features (Witten & Tibshirani, 2010). Sparse clustering is ideally suited to 

transcriptomic data as it utilizes a lasso-type penalty to adaptively select a subset of features that 

best cluster the data. Second, since we are clustering observations according to genes, we can use 

feature weights as a proxy for the contribution of each gene to the formation of developmental 

clusters. Its important to emphasize that unsupervised clustering algorithms such as RSKC 

classify objects without external classification (e.g. age). Developmental clusters are identified 

by gene expression alone.  

2.3 Evaluation of clustering methods   

 Clustering is an unsupervised technique used to group together objects that are “close” in 

a multidimensional feature space (Brock et al., 2008). In the analysis of high-throughput 

transcriptomic data, clustering is often used to identify genes with similar expression patterns 

over a collection of samples. The present study used clustering to perform the inverse – identify 

groups of samples with similar patterns of gene expression across the genome. The resulting 

sample clusters serve as a proxy for a developmental “phenotype” that individuals may express 
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during a particular period of the lifespan. Therefore, the selection of a clustering algorithm is an 

important step that directly influences the formation of development clusters.  

 

 

 

 

 

 

 

 

 

 

 

 

  

There are a variety of measures that can be used to determine which clustering algorithm 

performs the best for a particular dataset or experiment. Internal validation measures reflect the 

compactness, connectedness, and separation of clusters (Brock et al., 2008). Connectivity is the 

extent to which observations are placed in the same clusters as their neighbours in feature space, 

and is a function that should be minimized (Handl et al., 2005). Compactness uses intra-cluster 

variance to assess homogeneity, and separation is measured by the distance between cluster 

A.  B.  

Figure 1. Internal validation of clustering algorithms. A) Connectivity, B) silhouette width, and C) 

Dunn index for hierarchical, k-means, DIANA, FANNY, SOM, and PAM computed for 4 to 8 

clusters using expression data from DFC. Made with clValid (Brock et al., 2008).  

C.  
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centroids. Both are combined in the Dunn index and silhouette width methods, which should be 

maximized (Dunn, 1974; Rousseeuw 1987).  

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Here, expression data from DFC is used to assess the internal validity of various 

clustering algorithms across different numbers of clusters using the clValid package (Brock et 

al., 2008). The algorithms evaluated here are ward.D2 hierarchical clustering, k-means 

clustering, divisive analysis (DIANA), fuzzy clustering (FANNY), self-organizing maps (SOM), 

and partitioning around medoids (PAM). The results of internal validation indicate that DIANA 

A.  B.  

C.  

Figure 2. Stability validation of clustering algorithms. A) FOM, B) AD and C) APN measures for 

hierarchical, k-means, DIANA, FANNY, SOM, and PAM computed for 4 to 8 clusters using 

expression data from DFC. Made with clValid (Brock et al., 2008).  
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is superior across most numbers of clusters, followed closely by k-means and hierarchical 

clustering (Figure 1). 

Clustering performance can also be validated using stability measures, which compare 

the results of clustering based on the full data verse clustering based on iteratively removing each 

sample (Datta & Datta, 2006). Measures of stability include the average proportion of non-

overlap (APN), the average distance (AD), and the figure of merit (FOM). In all cases the 

average is taken over all the deleted columns, and all measures should be minimized (Brock et 

al., 2008). The stability of clusters produced by each algorithm over different numbers of clusters 

were assessed with these measures. The results suggest that DIANA, k-means, and hierarchical 

clustering have the best performance (Figure 2). Taken together, internal and stability validation 

measures indicate that gene expression in DFC is most competently clustered by the DIANA, k-

means, and hierarchical algorithms. The previous steps were repeated for several brain regions 

with similar results.  

The performance of robust and sparse k-means clustering (RSKC) was assessed in 

comparison to these three methods. Samples from each brain region were clustered by all four 

algorithms across different numbers of clusters, and performance was evaluated using distance-

based statistics available in the cluster.stats function from the fpc package (Hennig, 2010). The 

statistics measured include: average distance between and within clusters; average silhouette 

width; Calinski and Harabasz index, which measures the ratio of the sum of between-clusters 

dispersion and of inter-cluster dispersion for all clusters, and should be maximized (Calinski & 

Harabasz, 1974); Dunn index, which measures minimum separation over maximum diameter, 

and should be maximized (Dunn, 1974); Dunn 2 index, which measures minimum average 

dissimilarity between clusters over maximum average within cluster dissimilarity, and should be 

maximized; entropy, which represents the uncertainty of splitting data into clusters, and should 

be minimized (Meila, 2007); minimum cluster size; Pearson gamma, which is the correlation 

between distances and a 0-1-vector where 0 means same cluster and 1 means different clusters, 

and should be minimized (Halkidi et al., 2001); separation index, which measures the magnitude 

of the gap between a pair of clusters, and should be maximized (Qiu & Joe, 2006); and the ratio 

of average within cluster distance over average between cluster distance, which should be 

mimimized. 
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 Clustering validation revealed that hierarchical, k-means, DIANA, and RSKC perform 

similarly (Figure 3A). RSKC was superior in some measures, namely average distance within 

clusters, Calinski and Harabasz index, and Pearson gamma. In other measures, RSKC performed 

comparability to other algorithms or more poorly, such as in average distance between clusters,   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Clustering validation comparison with RSKC. A) Several distance-based cluster validation 

statistics measured for DIANA, hierarchical, k-means, and RSKC across 4 to 8 clusters using 

expression data from DFC. B) Boxplots visualizing the separation of developmental clusters in DFC 

by hierarchical, k-means, DIANA, and RSKC. The y-axis represents sample age on a log2 scale, and 

the dotted line denotes birth.  

A.  

B.  
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average silhouette width, entropy, and separation index. There are some important caveats to 

consider. Cluster validation statistics are not prescriptive, rather, they are tools for assessing the 

general performance of a clustering algorithm applied to a particular dataset. Clustering 

algorithms are also variable, and can produce different results over multiple runs. Lastly, some 

measures are linear and will favour certain clustering approaches over others. An important 

criterion for the current study that is not explicitly captured by validation statistics is the ability 

to identify developmental clusters that show progression across the lifespan. While hierarchical, 

k-means, and DIANA are able to identify developmental clusters, RSKC demonstrated the best 

separation of samples by age using gene expression data (Figure 3B). These observations were 

comparable across all brain regions. 

2.4 Selection of k  

 An important step in k-means clustering is the selection of k, which denotes the number 

of groups to classify observation into. The correct choice of k is often ambiguous, as there are 

many different approaches for making this decision. Intuitively, an optimal k lies in between 

maximum generalization of the data using a single cluster and maximum accuracy by assign each 

observation to its own cluster. One of the most common heuristics for determining k is the elbow 

plot method, where the sum of squared distances of observations to the nearest cluster center are 

plotted for various values of k. As k increases, the sum of squared distances tends towards zero. 

The “elbow” occurs at the point of diminishing returns for minimizing the sum of squared 

distances, and the k value at this point is selected as the optimal number of clusters (Thorndike. 

1953).  

In order to tailor the selection of k to RSKC, we applied the elbow method to the 

weighted between sum of squares (WBSS), the objective function that is maximized by the 

algorithm. WBSS was calculated for various values of k and averaged over 100 iterations. The 

elbow was identified using the elbowPoint function in the akmedoids package (Genolini et al., 

2015), which uses a Savitzky-Golay filter to smooth the curve and identifies the x where the 

curvature is maximized. This method indicated that k = 6 (Figure 4). It should be noted that the 

elbow plot can be an unreliable and subjective method of selecting k. In the future, another 

method should be used to corroborate these results.   
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2.5 Minimizing biases   

 Before the expression data can be clustered by RSKC, some adjustments must be made. 

A principal finding of the original Kang et al. (2011) publication was that the majority of 

spatiotemporal differences in gene expression were detected before birth. While RSKC is 

capable of detecting subtle differences in the presence of larger ones, the selection of feature 

weights may become biased. In order the circumvent this issue, we use a double-layered 

approach. The data are first clustered to separate prenatal and postnatal samples, and then 

clustering is performed again on each subcluster. The resulting developmental clusters are 

comparable to performing RSKC once on all samples, and we obtain two sets of feature genes: 

one describing the separation of prenatal and postnatal samples, and another describing the 

separation of postnatal samples only. Features selected during the clustering of prenatal samples 

are not discussed here.  

 Another important consideration is the effect of random seed. When k-means clustering 

is performed, a randomly generated seed is used to determine the starting centroids of the 

clusters. If features perfectly match observations to groups, then the starting seed will not have 

an impact on the final cluster memberships. However, if there are many features that are evenly 

distributed, then cluster membership may be influenced by the initial random seed. To mitigate 

this source of error, each step of RSKC was iterated 100 times. The most common cluster for 

Figure 4. Selection of k. Elbow plot for 

estimating the optimal number of 

clusters in the data. Weighted between 

sums of squares (WBSS) was 

calculated for k between 2 and 12, and 

averaged over 100 iterations to 

minimize seed effects. The elbow was 

determined by maximum curvature 

(red line).  
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each sample over all iterations was chosen as the final cluster membership. If a sample did not 

fall into a particular cluster for more than 50/100 iterations, indicating that cluster membership 

was split across multiple clusters, it was labelled “noisy.” Feature weights were also averaged 

across 100 iterations.  

2.6 Summary  

An increase in the precision of investigative tools and the inclusion of more individuals in 

modern stuides has favoured continuous models of human brain development. Conversely, the 

current study asks whether the transcriptome can be used to describe development as a 

discontinuous process. One approach is the identification developmental subclusters using global 

patterns of gene expression. Previous clustering and dimensionality reduction approach do not 

find clear separation of developmental periods. A potential solution is sparse clustering, which is 

specifically suited to data with more features (genes) than observations (samples), and can 

simultaneously identify features that drive cluster separation. We validate the use robust and 

sparse k-means clustering (RSKC) against other methods, discuss the selection of k, and review 

steps for mitigating the biases of strong differential expression and seed effects. In the 

subsequent chapter, RSKC is used to identify developmental clusters and features in primary 

visual cortex.  
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Chapter 3. Developmental Clusters in Primary Visual Cortex   
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3.1 Introduction    

To demonstrate the steps of our analysis pipeline, we will focus on a single brain area – 

the primary visual cortex (V1C). V1C is the first cortical area that processes visual information, 

and has served as model of critical period plasticity for over 40 years (Hensch, 2005). The 

physiological changes that take place in V1C over normal and abnormal development have been 

studied extensively in animal models (Wiesel & Hubel, 1963; Hubel & Wiesel, 1970; Hubel & 

Wiesel, 1976), but less is known about the neurobiology of the human visual cortex.  

While brain imaging studies can address the structural and functional development of the 

human visual cortex, the lack of information about molecular and cellular mechanisms has 

limited our ability to address developmental disorders such as amblyopia. Transcriptomic stuides 

provide a unique opportunity to address this gap. The aim of the current study is to identify and 

characterize developmental clusters in V1C that are driven by gene expression. This model may 

help align biological mechanisms with well-know anatomical and visual processing milestones. 

3.2 Methods      

3.2.1 Data acquisition and processing  

Data for the current study was originally collected by Kang et al. (2011) and later 

integrated into the Human Brain Atlas (http://hbatlas.org). In brief, the authors measured 

genome-wide exon-level gene expression in 1,340 sample collected from 57 brains and 16 brains 

regions: 

All tissue specimens were collected from clinically unremarkable donors without history or 

signs of neurological or neuropsychiatric illness or drug use. The Affymetrix Human Exon 1.0 

ST array, which features 1.4 million probe sets, was used to assay exon expression across the 

entire genome. Outlier samples were detected using hierarchical clustering and Spearman 

correlation, and removed from further processing steps. Affymetrix CEL files were then 

processed using a standard approach, involving RMA background correction, quantile 

normalization, mean probe set summarization, and log2-transformation. A total of 17,656 main 

protein-coding genes were surveyed.  
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The preprocessed data from Kang et al. (2011) were downloaded directly from the Gene 

Expression Omnibus (GEO) under the accession number GSE25219 using the GEOquery 

package (Davis & Meltzer, 2007). All data processing and visualization were performed in the R 

statistical software. The exon-summarized expression data were extracted, and probe identifiers 

were matched to genes. If a gene was matched by two or more probes then probe expressions 

were averaged if highly correlated (Pearson correlation, r ≥ 0.9).  

3.2.2 Analysis of neuroanatomy   

In the present chapter, we investigate the histological localization of VAMP1 in coronal 

slices of the visual cortex. Briefly, full resolution in situ hybridization images of VAMP1 in 

visual cortex were downloaded from the Allen Human Brain Atlas (Hawrylycz et al., 2012). 

Specimen H0-0069.01.02 (22 years, male, right hemisphere, African American) was selected for 

good staining as well as distinct gyral and sulcal landmarks. The three most anterior slices were 

imported into Photoshop CC (2015), where a 1500 x 4000 μm section spanning six layers of the 

neocortex, beginning at the pial surface and ending in the white matter, were sampled from the 

upper and lower bank of the calcarine fissure. A total of six samples were imported into ImageJ 

(Eliceiri, 2017) and processed through the following steps: 1) conversion to 8-bit format, 2) 

background subtraction using 50-pixel rolling window, 3) image threshold adjustment to include 

only stained objects, 4) processing into binary format, and 5) particles analysis using custom 

upper and lower area bounds. Bounds were set after several measurements of various cells (area 

= 15 - 800 μm2). Particle analysis results were imported into Microsoft Excel (2020), and cells 

were counted in a rolling window of 75 μm along the y-axis (perpendicular to the pial surface). 

Measurements were separated by small (≤ 30 μm2) and large (> 30 μm2) cells in order to detect 

any distinct laminar patterns.  

3.2.3 Differential gene expression analysis  

To unpack which genes are over-expressed and under-expressed within clusters, we 

implemented a differential expression (DE) analysis using the limma package (Ritchie et al., 

2015). Limma utilizes linear models to analyze microarray experiments. A linear approach at this 

step is appropriate as the non-linear structure in the data has already been captured by RSKC. 

Two important inputs for limma are the design matrix, indicating which groups samples belong 

to, and the contrast matrix, which specifies the comparisons to make between samples. In the 
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current study, the design was informed by RSKC cluster membership and the contrasts were set 

such that each cluster was compared to all other clusters pooled together. The automated steps in 

a limma analysis are as follows: 1) compute the pool variance by computing within sample 

variance for each gene and the correlation among samples within a cluster, 2) create a coefficient 

matrix for the contrasts, 3) compute the moderated contrast t-statistic for each gene, and 4) 

identify significant genes based on p-values after adjustment for multiple comparisons. 

3.2.4 Cell-type analysis   

Nearly all developmental transcriptomic stuides of the human brain use whole tissue, and 

RNA expression from all cells are analyzed en masse. Kelley et al. (2018) reasoned that when 

many intact samples are analyzed together, genes expressed with the greatest sensitivity and 

specificity in the same cell class should appear highly correlated, as their expression levels 

depend on the proportion of that cell class in the homogenate. Accordingly, the authors 

aggregated single-cell RNA-seq data from the adult human brain to create synthetic samples 

representing the heterogeneity of intact brain tissue, and used unsupervised gene co-expression 

analysis to identify modules that were enriched for published marks of astrocytes, 

oligodendrocytes, microglia, and neurons (Kelley et al., 2018). The first principal component 

(PC1) of these modules was used to estimate the relative abundance of each cell class over all 

samples and calculate kME, which is the Pearson correlation between the expression pattern of a 

gene and PC1. The kME values for all significant cell-class modules across multiple datasets were 

combined to create a single z-score for each gene that measures its global expression fidelity for 

each cell class. Fidelity quantifies the extent to which a gene’s expression level are correlated 

with the inferred abundance of a cell type, where a higher score indicates high sensitivity and 

specificity for that cell type 

Scores generated using data from the occipital cortex were downloaded and subsetted to 

include only the genes available in the current study. For each developmental cluster, a one-

tailed Fischer’s exact test was used to identify a significant overlap of DE genes with genes in 

the top 95th percentile of fidelity scores per cell type. The Benjamini-Hochberg procedure was 

used to adjust p-values for multiple comparison within a cell-type. 
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3.3 Results      

3.3.1 A small selection of genes separates prenatal and postnatal samples   

 

 

 

 

 

 

 

 

 

 

 

 Robust and sparse k-means clustering (see section 2.2) correctly separates all prenatal 

and postnatal samples based on gene expression (Figure 5A). Figure 5B visualizes the feature 

weights for the top 30 genes that drive the separation of prenatal and postnatal samples. Notably, 

RGS4 (regulator of G protein signalling 4) has a transient phase of neuronal expression during 

embryonic development that overlaps substantially with Phox2b, and is thought to be involved in 

the type-specific program of neuronal differentiation (Grillet et al., 2003). SPARCL1 (SPARC 

like 1), better known as hevin, is highly expressed during embryogenesis, where it regulates 

extracellular matrix (ECM) organization and cell-ECM interactions, which are crucial for cell 

migration, survival, and the inhibition of cell proliferation (Vincent et al., 2008). Intriguingly, 

both RGS4 and SPARCL1 exhibit greater expression postnatally than prenatally in the current 

study (Figure 6). This finding is more consistent with reports that RGS4 expression peaks in rat 

neocortex after P2 (postnatal day 2) and is dynamically regulated in the hippocampus and 

thalamus, suggesting roles in experience-dependent brain development (Ingi & Aoki, 2002).  

Figure 5. Clustering and feature selection of prenatal and postnatal clusters. A) Raincloud plots 

visualizing the distribution of samples into prenatal and postnatal clusters. Y-axis denotes sample age on a 

log2 scale. B) Average RSKC weights for the top 30 feature genes. Weights are scaled between 1 and 0.  

B.  A.  
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Similarly, astrocyte-secreted hevin is required for the establishment of thalamocortical 

connections in the mouse cortex (Rischer et al., 2014). 

A concomitant increase in PLP1 (proteolipid protein 1) and MBP (myelin basic protein) 

expression was observed between prenatal and postnatal development (Figure 6). A 

developmental increase of intra-cortical myelin is thought to act as a structural brake on critical 

period plasticity in V1C (Bavelier et al., 2010). Myelin signaling inhibits experience-driven 

neurite growth through various myelin-associated proteins, including Nogo, MAG and OMgp 

(Wang et al., 2002; McGee et al., 2005; Akbik et al., 2012), and knockout of the Nogo receptor 

prolongs ocular dominance plasticity in V1C (McGee et al., 2005). Interestingly, expression of 

PLP1 and MBP reach adulthood levels as early as one year of age in the current study. This is 

well before the peak expression of MBP protein at 42 years of age in human V1C (Siu et al., 

2015), the protracted development of myelinated fibers (Miller et al., 2011), and the end of 

susceptibility to amblyopia at 7 years of age (Homes et al., 2011). One possible explanation is 

that MBP is expressed constantly through prenatal development and adulthood, and that 

Figure 6. Developmental trajectories for top feature genes separating prenatal and postnatal clusters in 

V1C. Developmental trajectories visualized with LOESS. Samples labelled by RSKC cluster for prenatal 

(red) and postnatal samples (maroon).  
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regulation of MBP occurs post-transcriptionally. This notion is supported by the fact that 

Classic- and Golli-MBP each have multiple isoforms and post-translation modification pathways 

(Harauz et al., 2009; Harauz & Boggs, 2013).  

 Other notable feature genes include TUBA4A (tubulin alpha 4a), which is essential for the 

generation, migration, and differentiation of neurons (Breuss et al., 2017). SLA, also known as 

SLAP1, is selectively expressed in neurons once they migrate to deep layers of the cortex, 

suggesting a role in axon guidance (Marton et al., 2015). ENPP2 (ectonucleotide 

pyrophosphatase/phosphodiesterase 2) synthesizes lysophosphatidic acid, which is crucial for 

embryonic axis formation in zebrafish (Frisca et al., 2016). S100B (S100 calcium binding protein 

B) is a peptide produced by astrocytes that exerts paracrine and autocrine effects on neurons and 

glia. S100B stimulates neurite outgrowth and enhances the survival of neurons during 

development, while excess amounts simulate the expression of proinflammatory cytokines and 

induce apoptosis (Rothermundt et al., 2003). ST9SIA2 (ST8 alpha-N-acetyl-neuraminide alpha-

2,8-sialyltransferase 2) synthesizes polysialic acid, which is implicated in multiple processes, 

including synaptic plasticity, migration of neural progenitors, and synaptogenesis (Ikegami et al., 

2019). Although the embryonic and prenatal functions of many of these gene are the dominant 

topic in the literature, some show increased expression after birth, suggesting that further 

investigation of their function in the mature brain may be worthwhile. Additionally, other feature 

genes such as TESPA1 (thymocyte expressed, positive selection associated 1), which is required 

for the development and maturation of T-cells, have not yet been functionally characterized in 

the brain. Altogether, features selected during the separation of prenatal and postnatal samples by 

RSKC appear to be biologically relevant. Some are implicated in general cortical development, 

while others, such as PLP1 and MBP, may be more particular to changes in V1C. 

3.3.2 Developmental clusters in primary visual cortex 

 The sub-clustering of prenatal and postnatal clusters revealed novel developmental 

dynamics in V1C (Figure 7A). Prenatal samples separated into two distinct clusters (1A and 1B), 

with median ages of 13 and 21 PCW (post-conception weeks) respectively. Conversely, postnatal 

samples separated into clusters with considerable overlap (2A, 2B, 2C, and 2D), although 

progression in median cluster age is observed (0.9, 2.0, 30.0, and 37.0 years). Cluster separation  
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was not explicitly driven by sample sex or hemisphere (Figure 8). Figure 7B demonstrates that 

traditional development periods, defined by anatomical and behavioural milestones (Kang et al., 

2011), are not described by a single transcriptomic “phenotype.” Instead, developmental periods 

may be defined by two or more patterns of gene expression across the transcriptome. Such 

patterns are not limited to a particular section of the lifespan, and may be recurring. For example, 

the transcriptional profile matching samples from cluster 2B describes early development at 120 

days as well as ageing at 82 years. Colantuoni et al. (2011) similarly found that numerous 

changes in infancy were mirrored by changes in ageing. Samples in clusters 2C and 2D overlap 

considerably in age, yet have presumably distinct transcriptomic profiles. This may reflect the 

dynamic systems principle of multiple “solutions” being presented by the brain during late 

development and adulthood. Further unpacking of these developmental clusters is required. 

Figure 9 lists the top genes that contributed to the clustering of postnatal samples and 

Figure 10 visualizes their respective expression patterns. The latter demonstrates the potential 

variability in gene expression between samples that are adjacent in developmental time. These 

differences are averaged in regression models such as LOESS (locally estimated scatterplot 

smoothing) (Figure 10A), whereas in RSKC they drive the separation of clusters (Figure 10B). 

An examination of the selected features will reveal whether the developmental variability 

resolved by RSKC has any biological significance.   

B.  A.  

Figure 7. Developmental clusters in V1C. A) Sub-clustering of prenatal and postnatal samples by RSKC, 

median sample age of each cluster denoted by vertical line. Y-axis denotes sample age on a log2 scale. B) 

Ratio of samples in each cluster for various development periods.  
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Several notable genes were selected as features of postnatal V1C development. PVALB 

(parvalbumin) had the greatest weight among all genes measured. Parvalbumin (PV) is a 

calcium-binding protein and a marker of fast-spiking GABAergic interneurons, which are crucial 

in governing feedforward and feedback inhibition in cortical microcircuits, as well as the tight 

regulation of fast network oscillations (Hu & Jonas, 2014). In V1C, the onset of critical period 

plasticity is determined by PV+ interneuron maturation (Fagiolini & Hensch, 2000). Moreover, 

the deposition of perineuronal nets (PNNs) onto PV+ interneurons acts as a break on critical 

period plasticity (Bradshaw et al., 2018). Accordingly, the disruption of PNNs by chondro-

itinases restores the ocular dominance shift in adult rats (Pizzorusso et al., 2002). In the current 

study, PVALB expression is relatively low in prenatal clusters but is substantial in cluster 2A 

(sample ages: 160 days – 4 years). Cluster 2C begins at the end of the period of susceptibility to 

amblyopia (~8 years) and shows the greatest PVALB expression. Another feature gene, SYT2 

(synaptotagmin 2), is known to be co-expressed with PVALB (Sommeijer & Levelt, 2012). SYT2 

has been identified as a functionally important Ca2+ sensor at fast-spiking inhibitory synapses 

(Bouhours et al., 2017), and shows a similar pattern of expression to PVALB in the current study. 

STT (somatostatin) is another feature gene that codes for a neuropeptide marker of a major 

subtype of GABAergic interneurons. STT+ interneurons are known to inhibit pyramidal neurons 

via GABA signaling, but can also disinhibit excitatory neurons via the inhibition of PV+ 

interneurons (Pfeffer et al., 2013). In V1C, the release of STT improves visual perception by  

B.  A.  

Figure 8. Sample sex and hemisphere by cluster. Bars represent the ratio of A) female to male samples, 

and B) samples collected from the left or right hemispheres in each developmental cluster.  
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enhancing the gain of visually responsive neurons through the reduction of excitatory 

transmission to PV+ interneurons (Song et al., 2020). STT+ interneurons also contribute to the 

surround suppression of pyramidal cells (Adesnik et al., 2012). Studies of cross-modal 

reactivation have identified STT+ interneurons as regulators of cortical plasticity following 

sensory loss. Scheyltjens et al. (2018) demonstrate that the stimulation of STT+ interneurons in 

visual cortex prior to monocular enucleation (ME) decreased functional recovery through spared-

eye potentiation and somatosensory activation in adult mice. In the current study, STT showed 

the greatest level of expression in cluster 2A, which spans critical period of visual acuity 

development in children (birth through 3-5 years of age) (Daw et al., 1998). HTR2A (5-

Hydroxytryptamine Receptor 2A) codes for the serotonin-2A receptor, which is highly 

concentrated in the layer IV of macaque V1C and exhibits activity-dependent expression 

(Watakabe et al., 2009; Nakagami et al., 2013). The administration of HTR2A antagonists has 

been shown to supress cross-modal plasticity in visual cortex following ME (Lombaert et al., 

2018). In the current study, HTR2A expression can be either relatively high (clusters 2A and 2C) 

or low (clusters 2B and 2D) at similar times during the lifespan.  

 Several feature genes did not have known specialized functions in V1C, but more general 

roles in the healthy and diseased brain. GLIPR1 (GLI Pathogenesis Related 1) and THBS1 

(Thrombospondin 1) are both upregulated in glioblastoma (Murphy et al., 1995; Daubon et al., 

2019). Specifically, THBS1 is an extracellular matrix (ECM) protein secreted mainly by 

astrocytes that is involved in regulating angiogenesis, synaptogenesis, and spine development  

Figure 9. Top feature genes for 

postnatal clusters in VIC. Average 

RSKC weights for the top 30 feature 

genes separating postnatal samples. 

Weights are scaled between 1 and 0.  



42 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.  

B.  

Figure 10. Developmental expression of top postnatal feature genes. A) Developmental  trajectories 

visualized with LOESS. Samples labelled by RSKC cluster. Y-axis denotes sample age on a log2 scale. B) 

Boxplots visualizing the spread of expression within each RSKC cluster.  
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(Cheng et al., 2017; Cheng et al., 2016). MAS1 (MAS1 Proto-Oncogene, G Protein-Coupled 

Receptor) is expressed in microglia and activates anti-inflammatory functions, as well as the 

regulation of angiogenesis (Foulquier et al., 2019). S100A8 (S100 Calcium Binding Protein A8) 

codes for one of the most prominently expressed S100 proteins in the brain, and is upregulated 

by ageing and neuronal damage (Hagmeyer et al., 2019). S100 proteins play many roles in 

inflammation and immune response, however, S100A8/A9 are largely characterized by their 

ability to undergo amyloid oligomerization and fibrillation in vitro, linking them to the 

pathogenesis of Alzheimer’s disease (AD) (Fritz et al., 2010). The gene product of CALB1 

(Calbindin 1) is one of the major calcium-binding and buffering proteins in the central nervous 

system (CNS), has critical roles in calcium homeostasis and neuroprotection, and is also a 

common marker of neuronal populations. Removal of CALB1 expression in transgenic mice 

susceptible to AD aggravated the pathogenesis of the disorder (Kook et al., 2014). 

Developmental stuides have found a significant loss of CALB1 in the hippocampus and striatum 

with ageing (Kishimoto et al., 1998). Additionally, immunocytochemical investigation of 

CALB1 in the mouse visual cortex revealed localization to stellate cells in layers II/II and V 

(Park et al., 2002). INA (Internexin Neuronal Intermediate Filament Protein Alpha), better known 

as α-Internexin, is the first neuronal intermediate filament (IF) expressed in neurons after they 

are committed to the neuronal lineage and then decreases as neurons mature (Lennarz & Lane, 

2013). While the physiological roles of α-Internexin remain undefined, they are suspected to 

contribute to late-onset dementia characterized by inclusions of neuronal IF proteins (Yuan et al., 

2006). DIO2 (Iodothyronine Deiodinase 2) encodes a protein that catalyzes the prohormone 

thyroxine (3,5,3',5'-tetraiodothyronine, T4) to the bioactive thyroid hormone (3,5,3'-

triiodothyronine, T3). Thyroid hormones such as T3 are important for brain development at 

multiple time windows influencing neurogenesis, neuronal migration, neuronal and glial 

differentiation, myelination, and synaptogenesis, and the amount of T3 the brain receives is 

regulated in part by DIO2 in astrocytes (Bernal, 2000). Interestingly, the inflow to T3 converted 

by DIO2 determines the start of the sensitive period for filial imprinting in chicks (Yamaguchi et 

al., 2012). FGF12 (Fibroblast Growth Factor 12) is a member of the non-secreted intracellular 

FGF family. FGF12 forms a complex with voltage-gated sodium channels at a subcellular 

domain specialized for action potential initiation, and increases channel availability (Wildburger 

et al., 2015). Recently, a de novo mutation in FGF12 has been reported in some cases of epileptic 
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encephalopathies (Shi et al., 2017). Lastly, GABRA5 (Gamma-Aminobutyric Acid Type A 

Receptor Subunit Alpha5) encodes one of the 16 distinct GABAA receptors subunits. In visual 

cortex, GABAA receptor subunit composition regulates synaptic plasticity. Namely, juvenile 

synapses are dominated by more GABAAα3 containing receptors that allow for long-term 

potentiation (LTP) in excitatory synapses and slower kinetics through the receptors. More mature 

synapses are dominated by GABAAα1 containing receptors that allow for more long-term 

depression (LTD) in excitatory synapses and faster kinetics through the receptors (Pinto et al., 

2010). The role GABAAα5 is not specifically mentioned in studies of visual cortex plasticity. 

However, it is expressed abundantly in the hippocampus, primarily populating extrasynaptic sites 

in CA1 pyramidal cells where it generates a tonic inhibitory conductance (Magnin et al., 2019). 

GABAAα5 is also a target for anesthetic drugs (Martin et al., 2009). Interestingly, GABAAα5 

null mutant mice (GABRA5−/−) exhibit a normal behavioral phenotype for contextual learning 

(Cheng et al., 2006) and normal LTP (Martin, 2010).  

 Genes that drove the clustering of postnatal samples in V1C overlapped with several 

genes involved in the development and function of the visual cortex. The top weighted genes 

included markers of distinct inhibitory interneuron subpopulations, which are crucial for the 

regulation of critical period plasticity and the normal functioning of visual circuits. Other feature 

genes had known roles in inflammation and immune responses. Recent studies have 

demonstrated that several immune molecules are endogenously expressed in the CNS, where 

they are essential for the establishment, function, and modification of synaptic connections 

(Boulanger, 2009; Garay & McAllister, 2010). Lastly, some features were associated with cancer 

and neurodegenerative disorders. In sum, RSKC is presents a new way of identifying 

developmentally regulated genes of interest. Other approaches, such as co-expression analysis, 

simply detect groups of genes that change together – no group is privileged over another, and 

they must be manually selected for further analysis. Feature selection is built into the RSKC 

algorithm, and presents an unsupervised method of identifying genes with the greatest 

developmental variance without the linear assumption of other dimensionality reduction 

approaches (e.g. PCA).  
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3.3.3 Further investigation of feature genes: VAMP1  

 The release of neurotransmitters (NTs) in the brain is mediated by the fusion of synaptic 

vesicles with the plasma membrane at the presynapse. Three proteins from the SNARE (soluble 

N-ethylmaleimide-sensitive factor attachment receptor) family are responsible for membrane 

fusion. Two t-SNAREs anchored in the plasma membrane, syntaxin and SNAP-25 

(synaptosomal-associated protein 25), form a four-α-helix bundle with one vesicle anchored v-

SNARE, synaptobrevin (Sørensen et al., 2006). The major v-SNARE in the mammalian brain is 

synaptobrevin 2 (syb2), also known as VAMP2 (vesicle-associated membrane protein 2) 

(Zimmermann et al., 2014). In addition to its role in exocytosis, VAMP2 has been implicated in 

the insertion of GluA1 (glutamate ionotropic receptor AMPA type subunit 1) receptors into the 

spine plasma membrane, which is crucial for LTP (Hussain & Davanger, 2015). Trimble et al., 

(1990) reported that VAMP1 and VAMP2 have distinct, but slightly over-lapping, patterns in the 

rat brain. VAMP2 expression was more ubiquitous, and found in neurons associated with 

autonomic, sensory, and integrative roles. VAMP1 expression was largely restricted to the spinal 

cord and a number of neurons involved in somatomotor functions (Trimble et al., 1990). A recent 

study investigating cultures of hippocampal neurons from VAMP2 knockout mice found that the 

majority of cells were devoid of any evoked or spontaneous NT release and had no measurable 

readily releasable pool (Zimmermann et al., 2014). However, a small subpopulation of neurons 

expressing VAMP1 demonstrated NT release. Subsequent rescue experiments found that 

VAMP1 can substitute VAMP2, albeit with a lower efficiency in NT release probability. 

Moreover, NT release in a culture of VAMP2-deficient neurons was significantly reduced 

following a knockdown of VAMP1, suggesting that VAMP1 is responsible for the remaining 

release activity (Zimmermann et al., 2014).  

 The current study identified VAMP1 as the second highest weighted gene contributing to 

the formation of postnatal developmental clusters in V1C (Figure 9). Furthermore, VAMP1 

expression increases gradually across the lifespan and across clusters (Figure 10). This v-

SNARE has not been explicitly studied in the visual cortex. VAMP1 may represent a 

functionally relevant gene of interest, given the role of v-SNAREs in receptor cycling (Hussain 

& Davanger, 2015) and the importance of AMPA receptor trafficking to homeostatic synaptic 

plasticity in visual cortex (Murphy et al., 2012).   
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Figure 11. In situ hybridization of VAMP1 in visual cortex. A) Coronal slice of striate cortex obtained from 

Allen Human Brain Atlas (Hawrylycz et al., 2012). B) Cellular morphology revealed by VAMP1 

hybridization, scale indicated bottom right. C) Laminar pattern of expression, 4000 μm deep from pial 

surface. D) Cells counts over laminar depth, averaged over 6 samples for small (blue) and large (red) cells.  
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 In situ hybridization validates the expression of VAMP1 in human V1C. Analysis of cell counts 

revealed a subpopulation of cells smaller than 30 μm2 with a relatively constant presence across 

cortical layers. These may represent nonneuronal cells or neuronal spines on apical dendrites. 

The majority (52.3%) of large cells (> 30 μm2) expressing VAMP1 were found in the granular 

layers (1650 – 2400 μm from pial surface). In the architecture of the sensory neocortex, layer IV 

is the main target of sensory inputs coming from the thalamus (Scala et al., 2019). The spiny 

morphology of these cells is consistent with excitatory pyramidal neurons (Figure 10B). Based 

on findings from Zimmermann et al. (2014) in hippocampus, VAMP1 may be responsible for NT 

release from pyramidal neurons in V1C. Intriguingly, VAMP1 does not appear to label non-

spiny cells corresponding to inhibitory interneurons in layer IV. This may reflect the restricted 

expression of VAMP1 to specific subpopulations, as seen in other studies (Trimble, 1990). A 

more far-reaching possibility is the involvement of VAMP1 in GluA1 receptor trafficking (as 

seen in VAMP2), which is more specific to excitatory neurons and necessary for synaptic 

plasticity (Kooijmans et al., 2014; Malenka et al., 1989). 

3.3.4 Differential gene expression analysis  

Lists of significantly over-expressed (positive log-fold change relative to all other 

clusters) and under-expressed (negative log-fold change relative to all other clusters) genes were 

determined for each cluster (FDR adjusted p-value < 0.05). Cluster 1A exhibited by far the 

greatest number of DE genes (Figure 12), consistent with the Kang et al. (2011) finding that most 

changes in gene-expression occurred during early prenatal development. This large effect biases 

the analysis towards identifying genes that are differentially expressed relative to samples in 

cluster 1A. Accordingly, all two-way comparisons made between clusters included only those 

samples in the DE analysis.  

Cluster 2A was used to validate the results of the DE analysis. The age of samples in this 

developmental cluster range from 160 day to 4 years, which encompasses the emergence and 

maturation of binocular fusion, stereopsis, spatial acuity, contrast selectivity, and orientation 

selectivity in children (Siu & Murphy, 2018). Figure 13A lists the top 40 over- and under-

expressed genes by log-fold change (adjusted p < 0.05), and Figure 13B show the expression 

levels of the top genes by adjust p-value. The latter clearly demonstrates the success of limma for 

identifying genes that are differentially expressed relative to other developmental clusters. One  
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of the top over-expressed gene in cluster 2A, PDGFB (Platelet Derived Growth Factor Subunit 

B) (logFC = 0.7485, adjusted p = 0.0039), is a crucial neuromodulator. PDGFRB, a receptor for 

the PDGFB ligand, colocalizes with both presynaptic synaptophysin and post-synaptic density-

95 (PSD-95) in the adult mouse hippocampus (Shioda et al., 2012). The application of PDGFB to 

slices from this area produces a long-lasting inhibition of NR2B-containing NMDA receptor 

currents and enhances LTD in an NR2B subunit-dependant manner (Funa & Sasahara, 2014). 

PDGFRB also binds to Na+/H+ exchanger regulatory factors (NHERFs), which are scaffold 

proteins distributed in dendritic spines and in axon terminals of hippocampal pyramidal neurons. 

Accordingly, PDGFRB crucially contributes to actin reorganization and may regulate dendrite 

spine morphogenesis and plasticity, both through PDGFB-dependent and independent manners 

(Svitkina et al., 2010; Funa & Sasahara, 2014).  

 

 

 

 

 

 

Figure 12. Sum of differentially expressed genes per cluster in V1C. A) Genes with a positive log-fold 

change, defined as over-expressed. B) Genes with a negative log-fold change, defined as under-expressed.  

A.  B.  
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A.  B.  

Figure 13. Differential gene expression analysis for cluster 2A. A) Top 40 DE genes listed by positive 

(blue) and negative (red) log-fold change relative to all other clusters (adjusted p-value < 0.05). B) 

Expression boxplots for top over-expressed (blue) and under-expressed (red) genes by adjusted p-value (< 

0.007).  
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3.3.5 Cell-type analysis  

Identifying DE genes within each cluster allows for the identification of biological 

features associated with those clusters. Brain tissue is highly heterogeneous, composed of diverse 

cell types characterized by distinct patterns of gene expression. The current study utilized fidelity 

scores from Kelley et al. (2018) to identify the enrichment of astrocytes, oligodendrocytes, 

microglia, and neurons in developmental clusters. Fidelity quantifies the extent to which a gene’s 

expression level are correlated with the inferred abundance of a cell type, where a higher score 

indicates high sensitivity and specificity for that cell type.  

Fidelity scores for all over-expressed and under-expressed genes in each developmental 

cluster were collected and their distributions visualized with violin plots (Figure 14). A cluster 

with a greater affinity for a particular cell type will have a top-heavy distribution, indicating 

more DE genes with high fidelity scores. In each cluster, a significant overlap between DE genes 

and genes with the highest fidelity for each cell type (top 95th percentile) is represented with a 

grey box (p < 0.05). This denotes a significant enrichment of cell-type specific markers within 

the list of DE genes for that cluster. For example, we find that cluster 2B demonstrates an 

upregulation of astrocyte- and oligodendrocyte-specific genes. On the other hand, cluster 1A saw 

a significant downregulation of astrocyte- and oligodendrocyte-specific genes.  

A striking outcome of the current cell-type analysis is the significant enrichment of genes 

specific to microglia in developmental clusters 1B and 2A (Figure 14A). Microglia are the 

resident immune cell of the CNS and have well-known roles in disease and response to injury, 

including inflammation and the clearance of cellular debris (Hanisch & Kettenmann, 2007). 

However, recent studies suggest that microglia may also play a role in synaptic sculpting and 

plasticity in the healthy brain. Microglial cells enter the developing brain early, preceding 

neurogenesis, neuronal migration, and gliogenesis (Bystron et al., 2008). Wakeselman et al. 

(2008) demonstrated that transgenic mice deficient in microglia-expressed molecules essential 

for cell adhesion and phagocytosis saw a significant reduction in neuronal apoptosis in neonatal 

hippocampus. Additionally, Cunningham et al. (2013) pharmacologically “inactivated” microglia 

with broad-spectrum tetracyclines and observed an increase in neuronal progenitor cells (NPCs). 

Both stuides suggest that microglia may actively regulate gestational neurodevelopment by 

inducing apoptosis of NPCs followed by phagocytosis (Schafer & Stevens, 2015). Similar to the  
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Figure 14. Cell-type analysis of differentially expressed genes per cluster. Distributions of fidelity scores 

for significantly A) over-expressed and B) under-expressed genes in each cluster are shown across 

astrocytes (red), oligodendrocytes (purple), microglia (blue), and neurons (green). Median fidelity across 

all clusters within a cell type is marked by a dotted line. Outliers are dots. Significant enrichment of DE 

genes with genes in the top 95th percentile of fidelity scores within a cell type is denoted by grey shading 

(one-tailed Fischer exact test, adjusted p > 0.05). 

A.  B.  
Over Expressed Under Expressed 
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excess of neurons born in early development, many excess synaptic connections are pruned by 

phagocytic microglia, producing precise synaptic circuitry. Recent stuides also suggest that 

microglia are involved in experience-dependent synaptic plasticity. The first evidence came from 

observations of microglia with “active” morphologies in brain regions undergoing synaptic 

remodeling, including the cerebellum, hippocampus, and visual system (Maślińska et al., 1998; 

Dalmau et al., 1998; Schafer et al., 2012). Tremblay et al. (2010) combined three-dimensional 

electron microscopy and two-photo live imaging to observe microglia in mouse V1C during the 

critical period. They found that microglia appeared to contact synaptic spines – often those 

smaller in size and that were no longer visible in subsequent imaging sessions – suggesting that 

they were being selectively eliminated. Following a dark adaptation paradigm, microglia 

expanded their processes and increased frequency of contact with synaptic clefts (Tremblay et 

al., 2010). Schafer et al. (2012) further tested the hypothesis that microglia prune exuberant 

synaptic connections in the mouse retinogeniculate system. The authors fluorescently labeled 

presynaptic inputs within the dorsal lateral geniculate nucleus (dLGN) from each eye. During the 

height of activity-dependent remodeling, microglia contained fluorescent presynaptic cell 

inclusions within their processes and lysosomal compartments. When competition between the 

two eyes was enhanced by pharmacologically inhibiting one with tetrodotoxin (TTX), microglia 

preferentially phagocytized inputs from the eye in which neuronal activity was decreased 

(Schafer et al., 2012). Microglia can also influence synapses indirectly though modification of 

the extracellular matrix (ECM). Studies have demonstrated that ECM modifiers such as tissue 

plasminogen activator (tPA) are likely responsible for generating a permissive environment for 

enhanced spine motility during ocular dominance (OD) plasticity (Oray, Majewska, & Sur, 2004; 

Mataga, Mizuguchi, & Hensch, 2004). Crucially, this plasticity occurs in a lamina-specific 

manner and is limited to the binocular zone where competition between inputs occurs during the 

critical period. The cellular source of ECM modifiers and their ability to achieve spatiotemporal 

specificity remains unclear, but microglia provide a likely solution. By targeting specific 

synaptic locations with their processes and modifying extracellular geometry locally, microglia 

can enable the compartmentalization of molecules secreted by neuron, astrocytes, and microglia 

themselves (Trembley & Majewska, 2011). A prime example of multi-cellular interactions at this 

“tetrapartite” synapse is the secretion of TGF-β (Tumor Growth Factor-β) by astrocytes which 

induces the expression of classical complement cases protein C1q on neurons. This serves as an 



53 
 

“eat-me” signal to local microglia, which opsonize the synapse with C3 (complement component 

3) and perform receptor-mediated phagocytosis via the C3R (C3 receptor) to eliminate the 

synapse (Cowan & Petri, 2018). In sum, the enrichment of microglia-specific genes in clusters 

1B and 2A is consistent with the prenatal regulation of cell survival (cluster 1B) and experience-

dependent synaptic plasticity (cluster 2A) by microglia in V1C.  

 Genes significantly under-expressed in cluster 1A were enriched for oligodendrocytes. 

This is reflective of the appearance of oligodendrocyte precursors at 22 PCW and 

commencement of myelination at 28 PCW succeeding the age of the oldest cluster member (16 

PCW) (Rezaie & Male, 1999; Jakovcevski et al., 2009). An interesting finding was the overlap 

between microglia-specific genes and significantly depleted genes in the two oldest clusters, 2C 

and 2D (mean sample age: 32.1 and 39.2 years). While there is considerable heterogeneity of 

sample age in both clusters, they account for 83 % of samples older that 40 years (Figure 7B). 

Microglia are the cell population most associated with the protection of neurons in the healthy 

brain and their destruction in disease, signifying their potential to mediate age related changes 

(Angelova & Brown, 2019). As discussed previously, there is evidence that microglia constantly 

survey neuronal states (Trembley et al., 2010). Microglia sense neuronal activity through the 

release of ATP, glutamate, and other neurotransmitters (Hickman et al., 2013). This information 

is used maintain cellular homeostasis, either through physical means such as phagocytosis and 

remodeling of the extracellular matrix, or the release of signalling molecules (York et al., 2018). 

For example, in the absence of neuronal activity, microglia release TNF-α (Tumor Necrosis 

Factor-α) to induce rapid integration of AMPA glutamate receptor isoforms expressing GluA1 

subunits and lacking GluA2 into the plasma membrane, leading to enhanced Ca2+ conductivity 

and excitatory activity (Pribiag & Stellwagen, 2014; Levin & Godukhin, 2017). If signs of 

damage are detected, microglia migrate to the site of injury and transition from their ramified 

surveillance state to an activated state characterized by thickened processes and secretion of 

cytokines and reactive oxygen species (ROS) (Colton, 2009). There is also evidence that 

microglia can support the re-myelination of damaged axons following injury (Lloyd & Miron, 

2019). Microglia are very long-lived cells, and widespread changes in microglia are reported in 

ageing (Weinberg, 2008). These include reduced process motility, deramification, cytoplasmic 

fragmentation, and other physical abnormalities (Streit et al., 2004). When responding to injury, 

senescent microglia exhibit lower migration rates and have a sustained inflammatory response, 
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consistent with the low-grade inflammation typical of the ageing brain (Damani et al., 2011; 

Sparkman & Johnson, 2008). Aged microglia are also characterized by reduced phagocytosis and 

increased ROS production (Koellhoffer et al., 2017). Altogether, microglia fail to maintain 

neurons healthy in ageing and may also impair them in neurodegenerative disorders. The 

depletion of microglia-specific genes in older clusters is challenging to interpret. Several gene 

associated with normal microglia functions are downregulated in ageing, such as IDE (insulin-

degrading enzyme) and SIRT1 (sirtuin 1), but many are upregulated, likely pro-inflammatory 

cytokines TNF-α and IL-β (interleukin 1- β) (Angelova & Brown, 2019). Nevertheless, a 

significant age-related change in the expression of core microglial genes is likely to represent a 

change function, which is potentially maladaptive.  

There are some caveats of consider when interpreting the results of this cell-type analysis. 

First, while changes in fidelity score across developmental clusters are most parsimoniously 

explained by a change in the proportion of cells from that class, this cannot be concluded from 

the analysis alone. Second, Kelley et al. (2018) determined fidelity scores using single-cell data 

from adult cases (> 18 years of age), so cell-type markers may not be reflective of very young or 

very old individuals.  

3.4 Summary  

In this chapter, we introduced our developmental clustering methodology using 

transcriptomic data from human primary visual cortex (V1C). Choice of clustering algorithm and 

cluster number were validated and discussed. Robust and sparse k-means clustering (RSKC) 

revealed novel developmental dynamics in V1C, characterized by overlapping clusters that 

progressed across the lifespan. This model suggests that developmental periods may be defined 

by two or more distinct patterns of gene expression. Examination of the features driving the 

separation of samples into clusters identified genes with known roles in the development and 

function of the visual cortex, including markers of distinct inhibitory interneuron subpopulations. 

Other feature genes were involved in immune responses and disease. In situ hybridization 

analysis of feature gene VAMP1 revealed localization to excitatory pyramidal neurons in layer 

IV, suggesting roles in neurotransmitter release or potential receptor trafficking in V1C. 

Differential expression (DE) analysis allowed for exploration of developmental clusters. When 

combined with an external database of cell-type markers, we were able to identify an up-
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regulation of microglial-specific genes during perinatal development, and a subsequent down-

regulation during ageing. In conclusion, developmental clustering pulled together several 

molecular mechanisms describing the development and ageing of the visual cortex and 

associated them with a more global pattern of expression which corresponded to known 

milestones in visual development.  
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Chapter 4. Developmental Clusters in Multiple Brain Regions    
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4.1 Introduction 

 The brain is functionally organized into regions, which are distinguished by compositions 

of cells with distinct molecular profiles and laminal organizations, as well as region-dependent 

patterns of long-range and short-range connectivities (Keil et al., 2018). These anatomical, 

functional, and circuit-level differences are reflected in the transcriptome. In the original analysis 

of the current data, Kang et al. (2011) performed unsupervised hierarchical clustering across 

different periods of cortical development. They reported distinct and developmentally regulated 

clustering of neocortex (NCX; combination of 11 areas), AMY and HIP, with CBC exhibiting 

the most distinctive gene expression profile. Transcriptional differences between regions were 

particularly pronounced during early development, but became increasingly correlated with age. 

Notably, most spatially regulated genes were also temporally regulated (Kang et al., 2011). In 

another large-scale study, Carlyle et al. (2017) performed an in-depth transcriptomic and 

proteomic survey of regions of postnatal human brain, ranging in age from early infancy to 

adulthood. The authors jointly modeled protein changes over time and between brain regions 

using regression and ANOVA, identifying 1,840 proteins with differential expression between 

one or more regions. Unsupervised hierarchical clustering of these proteins revealed groups with 

substantial differences between regions and specific functional enrichments. For example, the 

largest CBC-enriched cluster contained several proteins involved in mRNA processing, possibly 

reflecting the higher density of nuclei in the cerebellar granular layers (Carlyle et al., 2017). 

Principal component analysis (PCA) of RNA expression in the same samples showed a clear 

separation of CBC, but not other regions. In sum, transcriptomic and proteomic data capture 

anatomical differences in brain tissue.  

 Nearly all stuides investigating the developmental dynamics of brain structure and 

anatomy are performed with brain imaging technologies. Several show nonlinear regional 

changes in gray matter (GM) density during childhood and adolescence (Giedd et al., 1999; 

Sowell et al., 2001; Jernigan & Tallal, 1990). GM density captured by magnetic resonance 

imaging (MRI) is a proxy for the complexity of neuronal and glial networks. Studies of GM 

maturation show a loss of density over time, correlating with periods of increased synaptic 

pruning during adolescence and early adulthood (Huttenlocher et al., 1982). Gogtay et al. (2004) 

used brain-mapping techniques to investigate cortical GM development in 13 healthy children 
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(4-21 years old) scanned with MRI every 2 years for 8-10 years. They found that development 

had significant regional heterogeneity and appears to follow a functional maturation sequence. 

Frontal lobe matured in a back-to-front direction, starting in the primary motor cortex, and 

propagating anteriorly over the superior and inferior frontal gyri, ending with the prefrontal 

cortex. In the posterior half of the brain, maturation began in the primary sensory areas and 

spread laterally over the parietal lobe. The frontal and occipital poles matured earliest, and the 

lateral poles matured last (Gogtay et al., 2004). The molecular and neurobiological events 

underlying this nonlinear, hierarchical pattern of brain development remain unknown.  

 The current study presents a unique approach to exploring this gap. Unsupervised 

clustering of developmental samples using transcriptomic data allowed for the identification of 

stable patterns of gene expression across the lifespan. Data from 16 brain regions were 

independently surveyed using this analysis pipeline, revealing spatially distinct patterns of 

developmental clusters, which may shed light on the heterogeneous maturational sequence of the 

human brain. Further, features driving the developmental separation of samples was compared 

between regions. Clustering of brain regions with similar patterns of gene expression was used to 

search for common developmental patterns. Interestingly, region clusters roughly charted 

anatomical separation, and clusters enriched for frontal areas exhibited sample separation by sex. 

4.2 Methods 

Data for the current study was originally collected by Kang et al. (2011). In brief, the authors 

measured genome-wide exon-level gene expression in 1,340 sample collected from 57 brains and 

16 brains regions: 

1. Neocortex  

1.1. Frontal cortex  

1.1.1. Orbital prefrontal cortex (OFC) 

1.1.2. Dorsolateral prefrontal cortex (DFC) 

1.1.3. Ventrolateral prefrontal cortex (VFC) 

1.1.4. Medial prefrontal cortex (MFC) 

1.1.5. Primary motor cortex (M1C) 

1.2. Parietal cortex  
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1.2.1. Primary somatosensory cortex (S1C) 

1.2.2. Posterior inferior parietal cortex (IPC) 

1.3. Temporal cortex 

1.3.1. Primary auditory cortex (A1C) 

1.3.2. Posterior superior temporal cortex (STC) 

1.3.3. Inferior temporal cortex (ITC) 

1.4. Occipital cortex  

1.4.1. Primary visual cortex (V1C) 

2. Hippocampus (HIP) 

3. Amygdala (AMY) 

4. Striatum (STR) 

5. Mediodorsal nucleus of the thalamus (MD) 

6. Cerebellar cortex (CBC) 

All tissue specimens were collected from clinically unremarkable donors without history or 

signs of neurological or neuropsychiatric illness or drug use. The Affymetrix Human Exon 1.0 

ST array, which features 1.4 million probe sets, was used to assay exon expression across the 

entire genome. Outlier samples were detected using hierarchical clustering and Spearman 

correlation, and removed from further processing steps. Affymetrix CEL files were then 

processed using a standard approach, involving RMA background correction, quantile 

normalization, mean probe set summarization, and log2-transformation. A total of 17,656 main 

protein-coding genes were surveyed.  

 The preprocessed data from Kang et al. (2011) were downloaded directly from the Gene 

Expression Omnibus (GEO) under the accession number GSE25219 using the GEOquery 

package (Davis & Meltzer, 2007). All data processing and visualization were performed in the R 

statistical software. The exon-summarized expression data were extracted, and probe identifiers 

were matched to genes. If a gene was matched by two or more probes then probe expressions 

were averaged if highly correlated (Pearson correlation, r ≥ 0.9). Regions with less than 30 

developmental samples were removed.  
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4.3 Results       

4.3.1 Developmental clustering within brain regions 

 The analysis steps used in Chapter 2 to identify developmental clusters in V1C were 

applied to transcriptomic data from 16 distinct brain regions. The Kang et al. (2011) dataset 

includes samples from all four lobes of the neocortex (frontal, parietal, temporal, and occipital) 

and several sub-cortical structures, including the hippocampus (HIP), amygdala (AMY), striatum 

(STR), and mediodorsal nucleus of the thalamus (MD) (see section 2.2.1 for complete list of 

regions). Not all regions had the same number of developmental samples, and only those with at 

least 30 unique cases (two hemispheric samples per case) were selected for further analysis. Just 

as before, double-layered robust and spare k-means clustering (RSKC) was used to cluster pre- 

and post-natal samples, and subsequently identify subclusters. The results are visualized in 

Figure 15.         

Many regions exhibited clusters of samples that progressed across the lifespan. A1C, 

ITC, M1C, MFC, OFC and STC followed a pattern of developmental progression similar to the 

one previously discussed in V1C, with clear separation of prenatal clusters and significant 

overlap of postnatal clusters. Specifically, cluster 2B spanned nearly all of postnatal life, while 

clusters 2A, 2C, and 2D were relatively restricted to early development and ageing, respectively. 

Perhaps this reflects a system where several stable patterns of gene-expression are available to 

the neural substrate at particular points during the lifespan. Other regions, such as DFC, IPC, and 

S1C, had much more distinct developmental clusters with less extensive overlap. This may be 

conceptualized as cortical tissue with more consistent gene expression in various developmental 

periods. The most striking finding was that subcortical regions AMY, CBC, HIP, and STR had 

very poor separation of postnatal samples following RSKC. This suggests that age is not a 

significant driver of clustering, or that gene expression following early development is mostly 

homogenous and no meaningful subclusters exist within the data.  

Next, we asked whether differential patterns of lifespan gene expression across region 

reveal anything about the hierarchical maturation of the cortex as seen in imaging stuides 

(Gogtay et al., 2004; Giedd et al., 1999; Sowell et al., 2001; Jernigan & Tallal, 1990). To explore 

this question, the median age of samples in each cluster were plotted for all regions and grouped  
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roughly into subcortical structures, primary sensorimotor areas, prefrontal cortex, and integration 

areas. This analysis must be interpreted carefully. We find that subcortical structures in general 

jump quickly to an older median sample age by the first or second postnatal cluster (Figure 16A). 

This may perhaps be interpreted as early maturation of the transcriptome. Gogtay et al. (2004) 

reported that the phylogenetically oldest cortical regions (e.g. entorhinal cortex and posterior 

piriform cortex) matured the earliest, suggesting that development follows evolutionary sequence 

to some degree. As the deep structures of the brain are considered to be evolutionarily more 

ancient, the current results appear to agree. Nevertheless, we must keep in mind that separation 

of prenatal samples in these regions did not appear to be driven by age. Primary sensorimotor 

areas have a more gradual increase in median sample age across clusters (Figure 16B). While  

c 

Figure 15. Developmental clusters across distinct brain regions. RSKC sub-clustering of pre- and post-

natal clusters. Median sample age of each cluster is denoted with a vertical line. Y-axis denotes sample age 

on a log2 scale. 
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this might be interpreted as slow maturation; it only reflects a greater number of distinct gene 

expression patterns that map onto early development. Ultimately, this analysis cannot be used to 

understand differential maturation rates across regions, but it does suggest that differences in 

when transcriptomic patterns emerge is related to anatomical factors.  

4.3.2 Comparing developmental features across brain regions  

 Within each region, RSKC was used to identify two sets of feature genes: 1) those 

driving the separation of samples into pre- and postnatal clusters, and 2) those driving the 

separation of postnatal samples only (see section 2.3.1 for methodological justification). Weights 

were assigned to each of 17,243 genes, averaged over 100 iterations of clustering, and scaled 

between 1 and 0 for cross-region comparisons. Figure 17A visualizes the weights for the top 

thirty feature genes separating pre- and postnatal clusters. Several were observed to be shared 

c 

Figure 16. Median age of developmental clusters compared across brain regions. The median sample age 

is plotted against RSKC cluster. Y-axis denotes sample age on a log2 scale Regions are grouped roughly as 

follows: A) subcortical regions, B) primary sensorimotor areas, C) prefrontal cortex, D) integration areas 

surrounding primary sensory areas  

A.  B.  

C.  D.  
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between regions. To summarize this information, the top 50 feature genes from each region were 

pooled then ranked by the number of other regions they appeared in. The weights for the top 30 

most common features were visualized using a dot plot, and patterns of feature weights between 

regions were organized by hierarchical clustering. Figure 17B reveals considerable homogeneity 

in feature weights driving separation of pre- and postnatal clusters, however hierarchical 

clustering is still able to separate neocortical areas from subcortical structures, with MD and 

CBC exhibiting the most distinct patterns overall.  

Two of the highest weighted genes across regions were HIST1H3B (H3 clustered histone 

2) and HIST1H3C (H3 clustered histone 3). Both are sequence variants of histone H3, which is 

one of four core histones (H2A, H2B, H3, and H4) found in eukaryotic cells. Two core histones 

form an octamer, around which approximately 146 bp of DNA is wrapped in repeating units, call 

nucleosomes. The regulation of transcription through histone modifications and chromatin 

remodelling controls fundamental aspects of cell diversity and adaptation. Neurons in particular 

exhibit remarkable specialization and plasticity, which is mediated in part by activity-dependent 

changes in gene expression. Maze et al. (2015) demonstrate that HIST1H3C expression 

accumulates in neuronal and glial chromatin with age and remains highly dynamic throughout 

the lifespan. Manipulation of HIST1H3C dynamics in both embryonic and adult neurons 

confirmed its essential role in regulating cell-type specific gene expression programs and 

physiological plasticity (Maze et al., 2015). Another interesting common feature is ELAVL4 

(ELAV like RNA binding protein 4), better known as HUD. Precise regulation of mRNA 

processing and abundance are critical for proper spatiotemporal gene expression. These 

regulatory events in neurons are executed by several trans-acting factors, notably micro-RNAs 

(miRs) and RNA-binding proteins (RBPs), which bind to specific cis-acting elements or 

structures within mRNAs (Bonacci & Jasmin, 2013). The best characterized neuronal RBP is 

HUD, which has been demonstrated to govern the fate of many neuronal mRNAs through the 

modification of mRNA translation, processing, and stability. Accordingly, HUD is considered a 

“master-regulator” of various neuronal processes. Studies of HUD knockout (-/-) in mice 

revealed that HUD decreases self-renewal of neuronal progenitors and promotes cell-cycle exit, 

leading to the differentiation and commitment of cells. Adult knockdown increased neurogenesis 

in the subventricular zone (SVZ) (Akamatsu et al., 2005). HUD is also crucial for dendritic and 

axonal outgrowth, as demonstrated by the ectopic expression of HUD in forebrain neurons under  
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Figure 17. Pre- and postnatal developmental feature genes across brain regions. A) Average RSKC weights 

for the top 30 feature genes separating pre- and postnatal samples. Weights are scaled between 1 and 0 within 

each region. B) Dot plot visualizing the average RSKC weight for the top common feature genes across brain 

regions. The lowest 30 percent are trimmed to emphasize differences. Regions with similar patterns of RSKC 

weights are placed adjacent to one another following hierarchical clustering.  

A.  

B.  
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the control of the CAMKIIα promoter (Bolognani et al., 2007). Lastly, HUD appears to be 

involved in plasticity following nerve injury (Anderson et al., 2003) as well as hippocampal 

learning and memory (Bolognani et al., 2006).  

Figure 18B visualizes feature weights for common genes driving the separation of 

postnatal clusters. There is considerably more heterogeneity in weights during postnatal 

development, and hierarchical clustering revealed a distinct organization of regions relative to 

the separation of pre- and postnatal samples. This adds an interesting perspective to the original 

observation by Kang et al. (2011) of increasing correlation between regions with age. While 

transcriptional differences between regions might decrease after birth, the influence (weight) of 

genes driving their development grows more varied. One interesting feature gene is PDYN 

(prodynorphin), which is proteolytically processed to form the secreted opioid peptides, 

including dynorphin. Expression of dynorphin increases with age and has been associated with 

memory impairments in rats (Kotz et al., 2004) and Alzheimer’s disease in post-mortem tissue 

(Yakovleva et al., 2007). Ménard et al., (2013) reported that PDYN knockout (-/-) in mice results 

in significant changes in Group 1 metabotropic glutamate receptor (mGluR). Compared with 

age-matched wild-type (WT) littermates, mGluR1α and mGluR5 levels were elevated in the 

hippocampus and cortex of old, but not young, PDYN(−/−) mice. Increased mGluR expression in 

aged PDYN(−/−) mice was associated with enhanced LTP, implicating PDYN in the age-related 

decline of plasticity (Ménard et al., 2013). Additionally, individuals with a greater number of 

tandem repeat polymorphisms of the PDYN allele demonstrate decreased cognitive flexibility as 

measured by fMRI during reversal learning (Votinov et al., 2015). Another notable feature gene 

is HCN1 (hyperpolarization activated cyclic nucleotide gated potassium channel), which present 

in both cardiac muscle cells (DiFrancesco, 1993) and in neurons (Pape, 1996). In neurons, HCN 

channels are found in dendrites and presynaptic axon terminals, where they regulate synaptic 

transmission. Specifically, HCN channels drive depolarizing currents in pacemaker neurons that 

generate rhythmic activity, which synchronizes the activity of nearby neurons (Santoro & Baram, 

2003). The HCN1 isoform is expressed in mouse hippocampus during embryonic and postnatal 

development, and colocalizes with parvalbumin positive interneurons in the dentate gyrus (Seo et 

al., 2015). HCN ion channels are also associated with epilepsy (DiFrancesco & DiFrancesco, 

2015), PTSD (Ni et al., 2020), and depression (Kim & Johnston, 2018). Lastly, AKAP5 (A-

kinase anchoring protein 5) is a scaffolding protein found in dendritic spines that recruits PKA  



66 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c 

Figure 18. Postnatal developmental feature genes across brain regions. A) Average RSKC weights for the top 

30 feature genes separating postnatal samples. Weights are scaled between 1 and 0 within each region. B) Dot 

plot visualizing the average RSKC weight for the top common feature genes across brain regions. The lowest 30 

percent are trimmed to emphasize differences. Regions with similar patterns of RSKC weights are placed 

adjacent to one another following hierarchical clustering.  

A.  

B.  
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(cAMP-dependent protein kinase) and CaN (protein phosphatase 2B-calcineurin) to membrane-

associated AMPA receptors to control receptor phosphorylation and synaptic plasticity 

(Robertson et al., 2009). Overexpression of AKAP5 in cultured hippocampal neurons increases 

the number of dendritic filopodia and spines, as well as AMPAR postsynaptic localization and 

activity (Robertson et al., 2009). A knockout of AKAP5 (-/-) results in severe deficits in synaptic 

plasticity and operate learning, as demonstrated by electrophysiological and behavioural analyses 

(Weisenhaus et al., 2010). Interestingly, a functional genetic polymorphism (Pro100Leu) in 

human AKAP5 contributes to individual differences in aggression and anger control (Richter et 

al., 2011).  

 In sum, feature selection allows for the identification of genes that contribute the most 

distinct transcriptomic patterns across the lifespan. The influence of feature genes can be 

compared across regions and combined to distinguish those that drive brain development in 

general. Some, such as C11orf41, code for proteins with no known function in the brain and may 

represent putative genes of interest for future studies of neurodevelopment.  

4.3.3 Clustering of brain regions  

 Hierarchical clustering of feature weights revealed that some brain regions are more 

closely related than others. To explore this possibility further, RSKC was used to cluster regions 

by gene expression. The input for RSKC requires a matrix of observations (n) x variables (p). 

Each region (n) has several samples, each with an expression value for 17,243 genes. 

Accordingly, the data were organized such that each variable (p) corresponded to the expression 

of a specific gene for a specific sample (henceforth referred to as a gene-sample). There are an 

uneven number of samples across regions so any gene-samples missing data for 4 or more 

regions were removed, and the remaining gaps were imputed using nearest neighbour averaging. 

Reformatting of the data resulted in an input table with millions of columns, which was not 

computationally feasible. To circumvent this issue, the top 500 feature genes separating postnatal 

clusters most common across regions were used as a shortlist. This is viable because any sizable 

subset of the original data should still capture differences between regions.  

 As other studies have demonstrated, the most significant transcriptomic differences are 

found between neocortical and subcortical regions (Kang et al., 2011; Carlyle et al., 2017). 

Accordingly, RSKC was performed twice: 1) to separate between neocortical and subcortical 
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regions, and 2) to separate neocortical regions, which have more subtle differences in gene 

expression. Prior to clustering, the elbow method was used to estimate the optimal number of 

clusters, and k = 4 was selected (see section 2.2.4). As the results in Table 1 demonstrate, RSKC 

correctly separated all subcortical structures. The remaining neocortical regions were assigned 

into three clusters. Intriguingly, region clusters roughly charted anatomical separation. Cluster 1 

consisted of the primary visual cortex and several areas of the temporal lobe (A1C, IPC, ITC, 

and STC). Cluster 2 consisted of areas on the rostral surface of frontal cortex (DFC, MFC, and 

OFC), while cluster 3 included areas along the lateral sulcus (M1C, S1C, and VFC). Lastly, 

cluster 4 contains all subcortical structures (HIP, AMY, STR, MD, and CBC).  

 Performing a clustering analysis on brain regions presents the unique opportunity to 

explore the features that drive their separation. Recall that the genes selected as inputs for 

clustering regions were also those assigned more weight during postnatal cluster separation 

across regions. In other words, any features selected by the current analysis drive both the 

separation of postnatal development as well as brain regions. While the same analysis is possible 

with the separation of neocortical and subcortical areas, the current section will focus on features 

identified during the clustering of neocortical areas. Weights for each gene were averaged over 

gene-samples and 100 iterations of RSKC. To get a broader perspective on this list of features, a 

Gene Ontology (GO) over-representation test was performed using clusterProfiler (Yu et al., 

2012). Biological process terms enriched for the top 1000 feature genes were queried for 

common annotation categories, visualized in Figure 19. These included neurotransmitter 

transport (GO:0006836), regulation of ion transmembrane transport (GO:0034765), regulation of 

membrane potential (GO:0042391), regulation of neurotransmitter levels (GO:0001505), and 

synaptic vesicle cycle (GO:0099504). Remarkably, many of the genes underlying differential 

expression in postnatal development and between neocortical regions are associated with vital 

neuronal functions, especially neuronal communication. This finding agrees with the diversity in 

neuronal populations seen across cortical regions (Duath et al., 2017), and the functional 

maturation of neurons over development and ageing (Burke et al., 2020; Petralia et al., 2014). 
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4.3.4 Developmental clustering within region clusters  

 The identification of brain regions with similar patterns of gene expression allows us to 

update our developmental analysis. By pooling together samples from similar regions and 

increasing the amount of data points, RSKC can theoretically refine the boundaries of 

development clusters. The same analysis steps described previously were applied to the pooled 

sample data, and the results are presented in Figure 20. The development dynamics summarize 

those observed when regions were clustered independently (Figure 15). Cluster 1 (A1C, IPC, 

ITC, STC, V1C) demonstrate considerable overlap of postnatal clusters, whereas early and late 

postnatal development are more distinct for cluster 2 (DFC, MFC, OFC) and cluster 3 (M1C, 

S1C, VFC). Most striking result was the complete lack of developmental clustering in 

subcortical structures (cluster 4).  

Region RSKC 1 RSKC 2 

A1C 1 1 

AMY 2  

CBC 2  

DFC 1 2 

HIP 2  

IPC 1 1 

ITC 1 1 

M1C 1 3 

MD 2  

MFC 1 2 

OFC 1 2 

S1C 1 3 

STC 1 1 

STR 2  

V1C 1 1 

VFC 1 3 

Table 1. Results of region clustering. 

RSKC was performed twice to group 

brain regions by gene expression. 

RSKC 1 successfully separated all 

neocortical and subcortical 

structures. RSKC 2 identified three 

clusters of neocortical regions. 

Cluster designation is indicated by a 

number.  
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To identify variables other than sample age that might drive cluster separation, the 

region, hemisphere, and sex of samples in each cluster were examined (Figure 21). All regions 

included in clusters 1, 2, and 3 had equal representation in developmental clusters. In cluster 4, 

there was a significant relationship between sample region and RSKC cluster (chi-squared test of 

independence, p = 0.0072). In other words, the differences in gene expression are better 

described by sample region than sample age. Cluster 2B was dominated by samples from CBC, 

2C was dominated by samples from MD, and 2D by samples from STR. Examining the ratio of 

samples from each hemisphere revealed equal contribution from the right and left (Figure 21B).  

 The most interesting results comes from the analysis of sample sex. Postnatal samples in 

cluster 2 (DFC, MFC, OFC) and cluster 3 (M1C, S1C, VFC) appeared to separate into two sets 

of overlapping clusters spanning early and late development, respectively. The separation of  

Figure 19. Gene network for developmental and regional features. The top 1000 feature genes selected 

following the clustering of neocortical regions were queried for significantly enriched for Gene Ontology 

(GO) biological processes (FDR adjusted p < 0.05). The most common annotation categories and their 

associated genes are visualized. The size of category center represents the number of associated genes. 
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overlapping clusters at similar periods of the lifespan is driven entirely by sample sex, as 

demonstrated in Figure 22. Specifically, clusters 2A and 2C consist of entirely males whereas 

cluster 2B and 2D consist entirely of females. This suggests that clustering is driven jointly, 

where the greatest variance in transcriptomic expression is explained first by large differences in 

age, and second by the sex of the individual. Moreover, this phenomenon appears to be specific 

to areas from the frontal and temporal lobes.  

Differential expression (DE) analysis generates lists of genes that are significantly over- 

and under-expressed between groups. Here, DE analysis was used to make two-way comparisons 

between clusters separated by sample sex at similar periods during the lifespan (i.e. clusters 2A 

vs. 2B, and clusters 2C vs. 2D).  To better characterize the results and place them in a biological 

context, genes lists were functionally annotated using the Gene Ontology (GO) (Ashburner et al.,  

Figure 20. Developmental clustering of samples in region clusters. RSKC performed on samples from 

similar regions as determined by region clustering. Median age of samples in each cluster are denoted 

by a vertical line. Y-axis denotes sample age on a log2 scale. 
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Figure 21. Sample brain region and hemisphere per cluster. The ratio of sample from different A) brain 

regions and B) hemispheres in each developmental cluster.  

A.  

B.  
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Figure 22. Sample sex per cluster. A) Developmental clusters with samples colored by sample sex. B) 

The ratio of samples of each sex per developmental cluster.  

A.  

B.  
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2000). Briefly, limma contrasts were adjusted such that only the clusters of interest were 

compared. Log-fold change between clusters was calculated for each gene and p-values were 

adjusted by false-discovery rate (FDR). Gene Set Enrichment Analysis (GSEA) (Subramanian et 

al., 2005) was performed on a list of all genes ranked by log-fold change, and significantly 

enriched biological terms were selected (FDR adjusted p-value < 0.05). Redundant terms were 

reduced using a similarity cut-off  = 0.7.  The top 20 terms with a positive normalized 

enrichment score (NES), representing enrichment in the male cluster, and top 20 terms with 

negative NES, representing enrichment in the female cluster, were plotted.   

Figure 23A visualizes the enriched GO biological terms between clusters 2A (male, 

median age = 0.34 years) and 2B (female, median age = 2.0 years) for region cluster 2 (DFC, 

MFC, OFC). DE genes in cluster 2A are involved in axon development, neuron morphogenesis, 

synaptic transmission, and regulation of neurogenesis. The positive and negative regulation of 

neurodevelopment in cluster 2A relative to 2B is potentially due to younger samples in the 

cluster. Enrichment of processes related to the perception of smell in cluster 2B (female) is 

interesting given that women’s olfactory abilities outperform men’s (Sorokowski et al., 2019) 

and the sexual dimorphism of brain areas involved olfaction in humans (Oliveria-Pinto et al., 

2014). These findings are also surprising given that areas in the temporal lobe are specialized for 

the perception of smell, rather than prefrontal cortex (PFC).  

A greater number genes in clusters 2C (male, median age = 28.0 years) and 2D (female, 

median age = 30.0) were differentially expressed relative to the comparison between younger 

clusters. Several biological processes enriched in cluster 2C are involved in cell division, 

including DNA replication, sister chromatid segregation, g1/S transition of mitotic cell cycle, 

and nuclear division. This is surprising given that virtually all neuronal and glial cells in the 

frontal cortex are quiescent and permanently differentiated. Other processes are more pertinent to 

ageing, such as those involved in DNA repair. Genes differentially expressed in cluster 2D are 

largely involved in neuronal communication, represented by neuropeptide signalling pathway, 

action potential, ion transport, neurotransmitter transport, and regulation of neurotransmitter 

levels. This perhaps reflects greater activation of PFC areas in women to a range of stimuli 

(Stevens & Hamann, 2012; Goldstein et al., 2005) and increased neuronal activity in the 
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Figure 23. Enriched GO biological function terms in clusters with sex difference in DFC, MFC, OFC. A) 

Enriched biological terms for cluster 2A (activated, male) and 2B (supressed, female). B) Enriched biological 

terms for cluster 2C (activated, male) and 2D (supressed, female). Dot size reflects the number of genes 

matched to the term, and color scale reflects the FDR adjusted p-values for the term. X-axis denotes the ratio 

of genes matched in the current analysis to all genes in the term. Note that all terms in B) had the maximal 

adjusted p-value.  

A.  

B.  

A.  

B.  
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Figure 24. Enriched GO biological function terms in clusters with sex difference in M1C, S1C, VFC. A) 

Enriched biological terms for cluster 2A (activated, male) and 2B (supressed, female). B) Enriched biological 

terms for cluster 2C (activated, male) and 2D (supressed, female). Dot size reflects the number of genes 

matched to the term, and color scale reflects the FDR adjusted p-values for the term. X-axis denotes the ratio 

of genes matched in the current analysis to all genes in the term. Note that all terms in B) had the maximal 

adjusted p-value.  

A.  

B.  
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presence of estrogen (Zhou et al., 2005). Nevertheless, these biological processes are not overtly 

related to known sex-differences in the brain. 

 Developmental clusters 2A (male, median age = 0.33 years) and 2B (female, median age 

= 1.0 years) were also compared for region cluster 3 (M1C, S1C, and VFC). The male-

dominated cluster was enriched for biological processes involved in axon ensheathment, 

metabolic processes, and chemical synaptic transmission. A log-fold increase in genes related to 

myelination may reflect the bias of younger samples, or potentially the greater overall white 

matter volume in males (Cerghet et al., 2009; Ritchie et al., 2018). It is interesting that sensory 

perception of smell was enriched again for the female-dominated cluster (2B). Similarly, 

comparing the two older clusters reproduced the puzzling up-regulation of cell cycle processes in 

the male-dominated cluster (2C). In both female clusters, there was an increase in immune-

related processes. It should be noted that GO annotations are biased towards processes in the 

peripheral system, and terms describing peripheral immune activation may still reflect immune 

functions in the brain. We have previously discussed the critical role of microglial, the brain’s 

local immune cell, in neurodevelopment (see section 2.3.5). In addition, crosstalk between the 

peripheral immune system and the brain is an important mechanism by which sex differences in 

the brain are established (Arambula & McCarthy, 2020). Rilett et al. (2015) demonstrated that 

mice lacking T-cell receptor β and δ chains exhibit sex differences in behaviour as well as sexual 

dimorphisms in several brain regions.  

4.4 Summary       

 In this chapter, transcriptomic data from 16 brain regions were independently surveyed 

using our analysis pipeline, revealing spatially distinct patterns of developmental clusters. 

Notably gene expression in subcortical structures does not separate samples into postnatal 

developmental clusters. While the relationship between the transcriptome and the maturational 

sequence of the brain seen in MRI studies remains to be clarified, the varying patterns of lifespan 

gene expression seen between regions suggests a link. The visualization of shared features across 

regions identified several that are crucial for normal brain development and function. Moreover, 

the hierarchical clustering of regions based on feature weights demonstrated that while 

transcriptional differences between regions might decrease after birth (Kang et al., 2011), the 

influence of genes driving their development grows more varied. RSKC was also used to cluster 
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brain regions with similar patterns of transcriptomic expression. Interestingly, region clusters 

roughly charted anatomical separation, and provided a more nuanced separation of neocortical 

regions compared to the original analysis of this data (Kang et al., 2011). The feature genes 

driving both postnatal development and separation of neocortical areas were highly enriched for 

biological processes related to neuronal communication, agreeing with the diversity in neuronal 

populations seen across cortical regions, and the functional maturation of neurons over 

development and ageing. Samples within each regional cluster were pooled in order to refine our 

developmental analysis. The results surprising demonstrated that developmental clustering in 

DFC, MFC, OFC and M1C, S1C, VFC is driven jointly by sample age and sample sex. GO 

analysis of sex-specific clusters revealed the enrichment of interesting biological processes, 

although none were overtly related to known sex-differences in the human brain.   
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Chapter 5. Clustering Bipolar Cases with Developmental 

Controls     
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5.1 Introduction        

We have discussed the utility of stages for describing the discontinuous nature of 

development, particularly the spontaneous re-organization of function, structure, and behaviour. 

Staging is also an indispensable heuristic for clinicians. Bipolar disorder (BD) is a severe, 

chronic mood disorder characterized by recurrent episodes of mania, hypomania, and depression, 

punctuated by euthymic intervals (Belmaker, 2004). Since the 1920s, physicians have noted that 

a significant proportion of BD patients experience increasing frequency of episodes coupled with 

decreasing levels of cognitive and psychosocial functioning (Kraepelin, 1921). There is also 

evidence that patients at early stages of the illness have far better clinical outcomes and 

responses to treatments such as lithium, compared to those who have experienced multiple 

episodes (Schuepbach et al., 2008). Consequently, various staging models have been proposed 

that are intended to indicate where an individual sits on a succession from “at risk” but 

asymptomatic to an “end-stage” with poor prognosis (Kapczinski et al., 2004). Some define 

stages by the occurrence, remission, and recurrence of mood episodes (Berk et al., 2007), while 

others emphasize the assessment of cognitive and psychosocial functioning in between episodes 

(Kapczinski et al., 2009; Fries et al., 2012). All staging models, however, assume an underlying 

pathophysiological process that is associated with anatomical changes, loss of cellular fidelity, 

and cognitive decline. This pathological rewiring of the brain is referred to as neuroprogression. 

Neuroprogression is thought to be both multifactorial and interactive, putatively involving the 

dopaminergic system, inflammation, oxidative stress, mitochondrial stress, and changes in 

neurotrophins (Grande et a l., 2019). Several theoretical frameworks have attempted to explain 

the biological changes observed in severe psychiatric disorders. One nascent model is 

accelerated ageing (AA).  

Ageing refers to the decline of an organism’s fitness owning to internal physiological 

degeneration, and in humans, involves physical, neuropsychological, and social changes 

(Gladyshey et al., 2016). Early evidence for AA in severe mental disorders was the high 

prevalence and earlier onset of age-related medical conditions, including metabolic imbalances, 

cardiovascular disease, autoimmunity disorders, and cancer (Goldstein et al., 2009; Crump et al., 

2013). There is also a well-recognized link between severe mood disorders and dementia (da 

Silva et al., 2013). Several biological changes seen in normal ageing are mirrored in neuro-
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psychiatric disorders. These include a loss of myelinated fibers and white matter lesions (Raz & 

Rodrigue, 2006; Allen et al., 2005; Sassi et al., 2003), shortening of telomeres (Blackburn, 1991; 

Colpo et al., 2015), and increased oxidative stress (Şimşek et al., 2016; Brown et al., 2014). 

Another major topic in the literature is immunosenescence, which refers to changes in the 

function of the immune system that occur in with ageing. While older individuals are able to 

mount successful innate immune responses, their vulnerability to sustained low-grade 

inflammation may cause adaptive, anti-inflammatory networks to become overwhelmed and 

eventually fail, resulting in exposure to damaging agents (Franceschi et al., 2007). Individuals 

with BD demonstrate an inability to reduce inflammation after acute stimuli compared to healthy 

controls, as indicated by the lower percentage of regulatory T cells compared to healthy controls 

(Wieck et al., 2013). Several stuides also report significant changes in inflammatory markers in 

the bipolar brain (Kauer-Sant’Anna et al., 2009; Modabbernia et al., 2013).  

While evidence for theories of neuroprogression like AA is growing, it remains 

challenging to collect data across various physiological domains in a special population. Many 

stuides have turned to transcriptomic resources to address this limitation (Pfaffenseller et al., 

2016). In the standard praxis, gene expression is compared between age-matched groups of 

controls and BD cases. As the current work suggests, however, healthy brain samples of similar 

age may be represented by more than one distinct transcriptomic pattern. One solution is cluster 

BD samples together with developmental controls. This approach allows us to indirectly test the 

hypothesis of AA. If robust and sparse k-means clustering (RSKC) groups samples together 

based on similar expression across the transcriptome, we would expect BD samples to cluster 

with controls of a significantly higher physiological age, if at all. While this hypothesis was not 

supported by the results, we present a novel way to compare expression data from disease groups 

to data from controls.  

5.2 Methods  

5.2.1 Data acquisition  

 Two different datasets were used in the current chapter. The data for controls was 

originally collected and analyzed by Colantuoni et al. (2011). Using two-color arrays, gene 

expression was quantified in 269 human brain samples from prefrontal cortex (PFC) spanning 
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gestational week 14 through 80 years of age. This dataset was selected because it has 

substantially more samples from PFC than the Kang et al. (2011) study, and there are 

proportionally more adult samples. Additionally, using a different developmental dataset will 

allow us to validate our developmental clustering approach. The preprocessed data were 

downloaded directly from the Gene Expression Omnibus (GEO) under the accession number 

GSE5392 using the GEOquery package (Davis & Meltzer, 2007). 

The data for BD samples were originally published by Ryan et al. (2006). The authors 

used microarray technology to quantify the expression of 22,000 mRNA transcripts in 30 bipolar 

and 31 control subjects for the dorsolateral prefrontal cortex and 10 bipolar and 11 control 

subjects for the orbitofrontal cortex. The raw files were downloaded from GEO under the 

accession number GSE5392 and processed in the statistical language R. Briefly, .CEL files were 

read using the affix package (Gautier et al., 2004), normalized via RMA (Robust Multichip 

Average), and probes were aligned for the Illumina Human 49K Oligo array (HEEBO-7 set).  

5.2.2 In silico data merging  

 Both stuides were combined before downstream analyses using the workflow described 

by Taminau et al. (2012) for merging microarray gene expression datasets. First, the data was 

subsetted to included only genes common to both arrays (10081 in total). Quantile normalization 

was then applied to normalize expression between studies while maintaining meaningful 

differences. The density distributions for each study are visualized before and after normalization 

in Figure 25A-B. Subsequently, the ComBat function from the sva package (Leek et al., 2014) 

was used to remove batch effects across studies. Briefly, ComBat is an Empirical Bayes (EB) 

method where the mean and variance (L/S) parameters that represent batch effects are estimated 

by “pooling information” across genes in each batch to “shrink” the batch effect parameter 

estimates toward the overall mean of the batch effect estimates (across genes). These EB 

estimates are then used to adjust the data (Johnson et al., 2007). ComBat was supplied with the 

batch number for each sample from the metadata in each study. The effects of ComBat on the 

global structure of the data were visualized with tSNE (t-distributed stochastic neighbour 

embedding) (Figure 25C). Samples from both studies became integrated into the same feature 

space while retaining intra-study differences.  
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Figure 25. Data merging. Density distribution of gene expression in the control study (red) and BD study 

(green) plotted A) before and B) after quantile normalization. C) ComBat results visualized using tSNE. 

Each dot represents a case from the control study (red) and BD study (blue) before and after ComBat is 

applied.  

A.  B. 

  

 A.  

B.  

C. 

  

 A.  

B.  
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5.3 Results  

5.3.1 Clustering control and BD samples  

  RSKC clustering of samples pooled from Colantuoni et al. (2011) and Ryan et al. (2006) 

produced some unexcepted results (Figure 26). First, there was significant overlap of postnatal 

clusters with respect to sample age. This is in stark contrast to the minimally intersecting 

developmental clusters that formed between samples from prefrontal areas collected by Kang et 

al. (2011) (Chapter 3). One possible explanation is a 10-fold increase in the number of cases 

included the current analysis (330 compared to 37) and the greater proportion of samples from 

adult brains. While no distinct clusters formed during early development (0 – 4 years of age) 

there was still a moderate progression in cluster age across the lifespan (median sample age: 

17.3, 30.5, 39.4, 46.2 years, respectively).  

Even more surprising was the clustering of BD samples to different control-dominated 

clusters. One would expect the pathophysiology of the disorder to be broadly reflected in the 

transcriptome, resulting in a unique pattern of gene expression that would cluster BD samples 

together. However, the current results suggest that there is heterogeneity in the transcriptional 

profile of BD tissue, and that these differences are explained in part by heterogeneity seen in 

healthy individuals during normal development and ageing. Perhaps the sub-clustering of BD 

cases is not surprising considering the interindividual differences observed across several clinical 

characteristics, including age of onset (Bellivier et al., 2003), cognitive ability (Aminoff et al., 

2013; Burdick et al., 2014), risk of suicidality (Cavazzoni et al., 2007), and frequency of mood 

episodes (Papadimitriou et al., 2005), among others. Moreover, while the etiology of BD is 

considered highly polygenic, GWAS (genome-wide association studies) have only identified a 

handful of genes with significant associations (Charney et al., 2017). Several meta-analyses also 

show discordant levels of biomarkers measured in serum and cerebrospinal fluid (CSF) of BD 

individuals (Barbosa et al., 2014; Wang & Miller, 2018). These findings suggest interindividual 

differences in the expression of genes implicated in the pathophysiology of BD. Ultimately, if 

only a subset of genes contribute to BD, and these genes vary between BD individuals, 

developmental genes likely have a larger effect on clustering.  
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Figure 26. Clustering of control and BD samples. A) RSKC clustering of samples by gene expression. 

Median sample age of each cluster is denoted with a vertical line. Y-axis denotes sample age on a log2 scale. 

B) Samples categorized into controls (blue) and BD (red). 
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Figure 27. Expression of BD markers. A) The expression of IL-6, IL-1B, TNFRSF1A, TNFRSF1B, 

BDNF, and ACTB in control (blue) and BD (red) samples across the lifespan. A linear fit is applied to 

the control samples. The y-axis denotes sample age on the log2 scale. B) Boxplots comparing 

expression between BD samples and age-matched controls (within the 2nd and 3rd quantiles of the 

median BD age). T-test p-values shown.  
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To make sure that differences in gene expression between control and BD samples were 

not improperly minimized by data merging, the expression of five markers genes were plotted 

(Figure 27). A number of studies have reported increased serum levels of inflammatory cytokine 

interleukin (IL)-6 in BD (Kauer-Sant’Anna et al., 2009; Barbosa et al., 2014). However, the 

current study finds a significant downregulation of IL-6 relative to age-matched controls (p = 2.6 

x 10-11). This is actually in line with IL-6 measurement from CSF in bipolar individuals 

(Söderlund et al., 2011), which is a closer proxy for the brain’s environment. Differences in IL-

1B and TNFRSF1A expression were not observed, however TNFRSF1B expression was 

significantly greater in BD samples relative to controls (p = 0.0018). The peripheral levels of this 

cytokine in BD are similar to controls in some stuides (Kapczinski et al., 2011) and elevated in 

others (do Prado et al., 2013). BDNF (brain-derived trophic factor) was significantly depleted in 

BD samples (p = 4.6 x 10-8), which is consistent with multiple findings (Kauer-Sant’Anna et al., 

Figure 28. Age of control and BD samples in each cluster. The distribution of sample age in for each 

condition (control = blue, BD = red) in each postnatal RSKC cluster is shown. Boxplots depict the median 

and interquartile range. P-values for t-tests comparing the age of samples in each condition for each cluster 

are shown.  



88 
 

2009; Grande et al., 2010). Lastly, the expression of ACTB (actin beta), a common house-

keeping gene, was compared between controls and BD samples. No differences were found, as 

expected. It should be noted that some well-characterized markers (e.g. tumour necrosis factor 

alpha; TNF-α) were not included in both datasets, and could not be represented here.  

To take a closer look at the relationship between control and bipolar samples, the ages of 

each sample were plotted for each condition across postnatal clusters (Figure 28). A t-test was 

performed in each cluster to test whether there was a significant difference in age between 

conditions. Within the model of accelerated ageing (AA), we would expect concordance between 

the expression profile of BD samples and ageing controls, resulting in designation to the same 

cluster. Accordingly, the average age of control samples relative to BD samples should be higher 

in the same cluster. Yet, the results do not support this prediction. The only cluster with a 

significant difference in mean sample age between conditions was 2C (t-test, p = 0.0003), and in 

this case BD samples were older than controls. Notably, the younger BD samples matched to a 

relatively younger control cluster. 

5.3.2 Comparing BD transcriptional subgroups   

If an older transcriptional profile is not driving the separation of BD samples into 

different clusters, what is? To answer this question, the subject and clinical characteristic of 

cases in each cluster were examined (Table 2). There was no over-representation of one sex over 

the other in any cluster. Age of illness onset was 20.9 % younger in cluster 2B relative to the 

other clusters. The shorter duration of illness in this cluster likely reflects the younger median 

age of samples. Suicide was 37.4 % more common in cluster 2C relative to other clusters. No 

individuals in cluster 2B were prescribed lithium, but Valproate usage was consistent across 

clusters. Electroconvulsive therapy (ETC) had been administered to 4 individuals from cluster 

2C. Despite evidence that antipsychotics and other interventions can reduce ageing-related 

changes seen in severe mood disorders, such as oxidative stress (Machado-Vieira et al., 2007), 

no obvious trends across multiple clinical factors are apparent between clusters. 

Another approach to unpacking the differences between bipolar subgroups is to perform a 

differential gene expression (DE) analysis. Two-way comparisons between conditions within a 

cluster did not reveal many significant DE genes (< 50), as expected. Accordingly, both control 

and BD samples in each cluster were included in the analysis. Clusters 2B, 2C, and 2D were  
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individually compared against pooled samples from the two remaining clusters to identify genes 

that were significantly over-expressed (log-fold increase in average expression) or under-

expressed (log-fold decrease in average expression) in each. Cluster 2B had by far the most 

significant DE genes (4928, FDR adjusted p-value < 0.05). Consequently, Gene Set Enrichment 

Analysis (GSEA) (Subramanian et al., 2005) was performed to identify Gene Ontology (GO) 

biological processes that were activated and supressed in this cluster. The results are visualized 

in Figure 28. Cluster 2B was enriched for in myeloid leukocyte activation (GO:0002274), 

detoxification of inorganic compounds (GO:0061687), and stress response to metal ion 

(GO:0097501). As mentioned previously, GO annotations are biased towards processes in the 

peripheral system, and terms describing peripheral immune activation may still reflect immune 

functions in the brain. For example, leukocyte activation is characterized generally by the 

synthesis and release of inflammatory molecules. Several studies have linked the 

pathophysiology of BD with inflammation and changes in immune function. BD is frequently 

comorbid with autoimmune diseases such as multiple sclerosis, thyroiditis, and diabetes 

(Rosenblat &McIntyre, 2015). Acute mood episodes have been characterized as pro-

inflammatory states based on increased peripheral levels of interleukin (IL)-6 and tumour 

necrosis factor alpha (TNF-α) during depression, and IL-2, IL-16, IL-4, and TNF-α during mania 

(Oritz-Dominguez et al., 2007; Brietzke et al., 2009). Traditionally, the brain has been 

considered an immune-privileged site. However, this doctrine has been contested by recent 

evidence of communication between the peripheral immune system and the brain (Garay & 

McAllister, 2010), and the effect of systemic inflammation on brain function (D’Mello & Swain,  

Cluster N Female 

(percent) 

Median 

Age  

Age of 

Onset  

Duration Suicide 

(percent) 

Lithium 

(percent) 

Valproate 

(percent)  

ECT 

(percent) 

2B 7 57.1  35 19.3 15.4 42.9 0.0 28.6 0.0 

2C 18 44.6  48 24.3 21.7 55.6 33.3 33.3 11.1 

2D 15 46.6 48 23.3 22.7 33.3 33.3 33.3 0.0 

Table 2. Subject and clinical variables for BD cases. A summary of several variables describing the subject 

and clinical characteristic of BD samples in each postnatal cluster.  
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Figure 29. Enriched biological processes in cluster 2B. A) GSEA was used to identify significant GO 

biological processes (FDR adjusted p < 0.05) in cluster 2B. The most common annotation categories and their 

associated genes are visualized. The size of category center represents the number of associated genes. Log-

fold change in gene expression is denoted by the color scale. B) Activated (positive NES) and supressed 

(negative NES) biological terms in cluster 2B (FDR adjusted p < 0.05). Dot size reflects the number of genes 

matched to the term. X-axis denotes the ratio of genes matched in the current analysis to all genes in the term.   
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2016). Consequently, chronic inflammation can influence several brain systems, including 

serotonic transmission. In a pro-inflammatory state with elevated levels of IL-1, IL-6 and TNF-α, 

the activity of the tryptophan- and serotonin-degrading enzyme 2,3-dioxygenase is upregulated 

leading to a decrease in serotonin and substrates for the synthesis of serotonin (Müller & 

Schwarz, 2007). Moreover, there are several repercussions of inflammation on synaptic 

plasticity, DNA integrity, myelination, and neurotropic support of neurons (Kapczinski et al., 

2008). The upregulation of processes related to the detoxification of inorganic compounds and 

stress response to metal ions is relevant to neuroprogression. The brain has a high content of 

metal ions (e.g. calcium, copper, and iron) that act as oxidizing agents (Muneer, 2016). During 

acute mood episodes, a substantial release of neurotransmitters floods the synaptic space, 

exceeding the capacity of enzyme degradation and eventually leading to cellular toxicity. 

Dopamine auto-oxidizes in the presence of Fe2+, forming hydroxyl ions (-OH), which are among 

the most reactive free radicals (Halliwell, 1992). Glutamate can promote Ca2+ influx into 

neurons and the activation of nitric oxide synthase, which forms the powerful oxidate 

peroxynitire (ONOO-) (Lafon-Cazal et al., 1993). Together, imbalances in neurotransmitters and 

their interaction with metal ions contribute to oxidative stress in cells, leading to mitochondrial 

dysfunction and ultimately apoptosis.  

Despite having the youngest median sample age (30.5 years), the greatest proportion of 

samples under 10 years of age (38.9 %) among the three clusters compared, and BD samples 

with the shortest mean illness duration (15.4 years), cluster 2B still demonstrated the greatest 

enrichment of biological processes associated with late-stage impairments in BD. There are a 

couple possible explanations. Microglia are one of the major sources of cytokines in the central 

nervous system (CNS). Post-mortem studies have described decreased size and numbers of 

microglia in late-stage BD individuals (Watkins et al., 2014). In order to reconcile this finding 

with reports of increased cytokine production, Streit (2006) hypothesizes that persistent 

microglial activation in BD wears out their cellular machinery, resulting in cellar death or 

senescence in the long term. Similarly, serum assays evaluating the production of cytokines 

following lymphocyte simulation with lipopolysaccharide (LPS) reported lower production of 

interferon gamma (IFN-γ) in BD patients compared with controls (Liu et al., 2004; Hope et al., 

2009), with no difference in IL-4 and IL-1β (Mota et al., 2013; Knijff et al., 2007). The apparent 

paradox of chronic low-grade inflammation and reduced cytokine production in response to 
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acute stimulation in BD can be explained within the AA framework. Namely, it is a symptom of 

an overstimulated immune system that is not able to respond to additional stimuli (Rizzo et al., 

2014). Taken together, these findings suggest that genes regulating immune activation are over-

expressed earlier on in BD, while their maladaptive effects propagate over the course of the 

disorder and eventually impair the cells that produce them. This is one potential reason why 

immune processes are enriched in cluster 2B relative to older clusters. In Chapter 2, we found 

that microglia were upregulated in early development of primary visual cortex (V1C) and 

subsequently downregulated in ageing. The importance of microglia and their immune-related 

functions in sculpting premature circuits and mediating synaptic plasticity were also discussed. 

Perhaps younger BD samples from individuals with a shorter average duration of illness matched 

with younger control samples because of an overlap between adaptive and maladaptive 

upregulation of immune-related genes.  

It should be noted that cluster 2C and 2D are enriched for other biological processes 

potentially implicated in neuroprogression (Figure 29). Specifically, over-expressed genes in 2C 

are linked to mitochondrial processes and metal ion homeostasis. Besides cellular energy 

production, mitochondria are crucial for regulating inflammatory response. It is hypothesized 

that oxidative stress, in which metal ions are active players, leads to mitochondrial dysfunction 

and the activation of the NLRP3 (Nod-like receptor, pyrin domain-containing 3) inflammasome 

(Gurung  et al., 2015). Cluster 2D was enriched for several processes involved in cellular 

division. While it is unlikely that cellular division is taking place in the brain, terms such as 

DNA replication, DNA repair, and DNA conformation change may be relevant. It is well known 

that oxidative stress is associated with DNA damage, including telomere shortening, which has 

been reported in peripheral cells for multiple psychiatric disorders (Ridout et al., 2015). 

Interestingly, the processes upregulated in each successively older cluster loosely follows a 

pathophysiological progression: immune activation, followed by mitochondrial dysfunction, 

followed by DNA damage and turnover.  

 

 

 



93 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A.  

B. 

  

 A.  

B.  

Figure 30. Enriched biological processes in cluster 2C and 2D. Activated (positive NES) and supressed 

(negative NES) biological terms in A) cluster 2C and b) cluster 2D (FDR adjusted p < 0.05). Dot size 

reflects the number of genes matched to the term. X-axis denotes the ratio of genes matched in the current 

analysis to all genes in the term.   
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Figure 31. Clustering control and BD samples using curated gene lists. RSKC clustering of samples by 

gene expression using A) immune-related genes and B) synapse-related genes. Median sample age of 

each cluster is denoted with a vertical line. Y-axis denotes sample age on a log2 scale. B) Samples 

categorized into controls (blue) and BD (red). 
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5.3.3 Clustering control and BD samples using curated gene lists   

 To test whether the transcriptomic pattern that would distinguish BD samples from 

controls is getting lost in “noise” of other genes, RSKC was performed using two curated lists of 

genes. The first list includes genes involved in immune responses and was taken from the GO 

annotated biological process (GO:0006955) (Ashburner et al., 2000). This list intersected with 

1996 genes in the current study and was used to cluster control and BD samples together. Figure 

31A demonstrates no significant differences from clustering with the full set of 10082 genes. The 

second list consisted of genes involved in synapse structure and function, acquired from the 

SynGO knowledgebase. Several post-synaptic genes in this curated list have significant 

associations with BD as identified in GWAS data (Koopmans et al., 2019). Still, no major 

changes in BD cluster designation were observed, with the exception of some BD samples 

switching from cluster 2B to clusters 2C and 2D. These results suggest that clustering of BD 

samples is driven by nuanced patterns of gene expression that likely span the transcriptome.  

5.4 Limitations and future directions  

 Not performing batch-correction during data preprocessing resulted in the formation of a 

BD-only cluster following RSKC. This is the result one might generally expect when clustering 

disease and control samples. However, this is also the result that would be expected from 

clustering expression data from two separate studies, with differences in tissue selection 

protocol, RNA extraction method, microarray platform used, data cleaning methods, etcetera. 

For instance, the control samples included in the BD study also clustered with BD samples when 

batch-correction was omitted. The current study used batch-correction via ComBat because batch 

effects are one of the main sources of variation which hinders in silico data merging (Lazar et al., 

2013). One limitation was absence of BD samples in both studies, meaning the results of 

ComBat could not be evaluated for clustering by condition and absence of clustering by study 

(Taminau et al., 2012). Nevertheless, Figure 27 suggests that meaningful differences in gene 

expression between conditions are preserved,  

 There is an experimental design that avoids the pitfalls of data merging and can be 

implemented in a future study. Each dataset would be clustered by RSKC separately, and then 

the average expression for genes across samples within a clusters would be compared to clusters 



96 
 

in the other condition, with the goal of identifying clusters with the most similar expression 

patterns. This could then be followed by a comparison of sample age between control and BD 

subgroups. One limitation is that this approach would likely use a linear method such as 

Pearson’s correlation to make comparisons, meaning some high-dimensional information would 

be lost.  

5.5 Summary  

 The purpose of this chapter was to demonstrate the prospective utility of developmental 

clustering for addressing a hypothesis-based research question. Individuals with bipolar disorder 

(BD) suffer from physiological and cognitive impairments that mirror the decline seen in ageing. 

These observations have been formalized in the conceptual framework of accelerated ageing 

(AA). To test the hypothesis that the transcriptomic profile of the bipolar brain is comparable to 

an aged brain many years older, bipolar and developmental controls were clustered together 

according to similar patterns of gene expression, with the expectation that bipolar samples would 

cluster with older controls. This prediction was not supported; however, bipolar samples did 

cluster with developmental controls of various ages. To unpack the differences between the three 

bipolar subclusters, differential expression analysis was used to identify genes uniquely over- 

and under-expressed in each, and Gene Set Enrichment Analysis (GSEA) was used to identify 

biological processes associated with these genes. The youngest cluster containing BD samples 

was enriched for immune-related functions relative to the older clusters. It was hypothesized that 

this reflects the earlier production of inflammatory molecules in BD, followed by maladaptive 

effects that eventually impair the cells that produce them. The other two clusters were enriched 

for processes that may indicate oxidative stress, mitochondrial dysfunction, and DNA damage. 
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Chapter 6. General Discussion  
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6.1 Summary of Main Findings  

6.1.1 Developmental clusters in primary visual cortex 

 The current study used modern, data-driven clustering to identify groups of 

developmental controls with similar patterns of transcriptomic expression. Robust and sparse k-

means clustering (RSKC) separated individuals into clusters that exhibited developmental 

progression across the lifespan. In primary visual cortex (V1C), postnatal clusters had 

considerable overlap within respect to sample age. RSKC also identified weighted features that 

drove the separation of developmental clusters. Features separating prenatal and postnatal 

samples included PLP1 (proteolipid protein 1) and MBP (myelin basic protein). The myelination 

of neurons by oligodendrocytes in known to increase precipitously following birth (Williamson 

& Lyons, 2018), and the developmental increase in intra-cortical myelin is thought to act as a 

structural break on critical period plasticity in V1C (Bavelier et al., 2010). Features extracted 

during clustering of postnatal samples highlighted markers of distinct inhibitory interneuron 

subpopulations, such as PVALB (parvalbumin) and STT (somatostatin). Both of these neuronal 

populations play critical roles in circuits underlying vision, and undergo age-related changes 

associated with critical period plasticity and visual decline (Fagiolini & Hensch, 2000; Bradshaw 

et al., 2018; Scheyltjens et al., 2018). Differential expression (DE) analysis was used to unpack 

genes that were over-expressed and under-expression in each developmental cluster. When 

combined with an external database of cell-type markers (Kelley et al., 2018), we were able to 

identify an up-regulation of microglia-specific genes during perinatal development, and a 

subsequent down-regulation during ageing. This is consistent with the literature, which 

demonstrates the role of microglia in perinatal synaptic refinement and experience-dependent 

synaptic plasticity, as well as the contribution of microglial dysfunction and senescence in 

neurodegeneration. Overall, clustering pulled together several molecular mechanisms describing 

the development and ageing of the visual cortex and associated them with a novel global pattern 

of expression which corresponded to known milestones in visual development. 

5.1.2 Developmental clusters in multiple brain regions  

Transcriptomic data from 16 brain regions were independently surveyed using our 

analysis pipeline, revealing spatially distinct patterns of developmental clusters. Notably, gene 
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expression in subcortical structures did not separate samples into postnatal developmental 

clusters. This suggests that age is not a significant driver of transcriptional profiles in subcortical 

structures following prenatal development. There was considerable variation in median cluster 

age across regions, implying that the appearance of transcriptional patterns also varies from 

region to region. This finding may be connected to the heterogeneous maturational sequence of 

the human brain observed in MRI studies (Gogtay et al., 2004). Several feature genes were 

assigned a high weight across regions, suggesting that they are common drivers of change during 

brain development. Features genes separating prenatal and postnatal clusters included those that 

regulate transcription, such as HIST1H3B (H3 clustered histone 2), HIST1H3C (H3 clustered 

histone 3), and ELAVL4 (ELAV like RNA binding protein 4). On the other hand, common 

features of postnatal development were involved in synaptic signalling, like PDYN 

(prodynorphin), HCN1 (hyperpolarization activated cyclic nucleotide gated potassium channel), 

and AKAP5 (A-kinase anchoring protein 5). Hierarchical clustering of regions based on feature 

weights demonstrated that while transcriptional differences between regions might decrease after 

birth (Kang et al., 2011), the influence of genes driving their development grows more varied. 

RSKC was also used to cluster brain regions with similar patterns of transcriptomic expression. 

Interestingly, region clusters roughly charted anatomical separation, and provided a more 

nuanced separation of neocortical regions compared to the original analysis of this data (Kang et 

al., 2011). The feature genes driving both postnatal development and separation of neocortical 

areas were highly enriched for biological processes related to neuronal communication, agreeing 

with the diversity in neuronal populations seen across cortical regions, and the functional 

maturation of neurons over development and ageing. Samples within each regional cluster were 

pooled in order to refine our developmental analysis. The results surprising demonstrated that 

developmental clustering in DFC, MFC, OFC and M1C, S1C, VFC is driven jointly by sample 

age and sample sex.  

6.1.3 Clustering bipolar cases and developmental controls  

Bipolar and developmental controls were clustered together according to similar patterns 

of gene expression. Given the etiological framework of accelerated ageing (AA), it was 

hypothesized that bipolar samples would cluster with older controls. This prediction was not 

supported; however, bipolar samples did cluster with developmental controls of various ages. To 
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unpack the differences between the three bipolar subclusters, differential expression analysis was 

used to identify genes uniquely over- and under-expressed in each, and Gene Set Enrichment 

Analysis (GSEA) was used to identify biological processes associated with these genes. The 

youngest cluster containing BD samples was enriched for immune-related functions relative to 

the older clusters. It was hypothesized that this reflects the earlier production of inflammatory 

molecules in BD, followed by maladaptive effects that eventually impair the cells that produce 

them. The other two clusters were enriched for processes that may indicate oxidative stress, 

mitochondrial dysfunction, and DNA damage. 

6.2 Significance  

6.2.1 Unsupervised clustering identifies stable patterns of gene expression 

 The transcriptome describes the full range of mRNA molecules that are expressed in a 

tissue at a given point in time. Large-scale studies have used high-throughput sequencing to 

survey gene expression across multiple brain areas and developmental periods (Kang et al., 

2011; Colantuoni et al., 2011). These datasets provide some of the most comprehensive accounts 

we have of the biological events underlying human brain development and ageing. Numerous 

groups of genes have been recognized for their involvement in neurogenesis, circuit refinement, 

and myelination, as well as neurodegeneration and disease. Nevertheless, most analysis methods 

and descriptive models assume that developmental change in gene expression is continuous and 

uninterrupted. Perhaps this bias is often overlooked because the emphasis is on what is changing 

during development rather than how development itself is changing. Indeed, despite the richness 

of transcriptomic data and its capacity to recapitulate higher-order functions, few have used it to 

understand the dynamics of brain development.  

 Gene expression is determined by the complex, high-dimensional interactions of the gene 

regulatory network (GRN), which encompasses virtually the entire genome (Huang, 2009). 

Dynamic systems theory states that the interactions of components in any complex systems will 

converge on certain stable patterns, also known as attractor states (Prigogine & Nicolis, 1971). 

To approximate these stable states, the current study leveraged robust and sparse k-means 

clustering to identify tissue samples with similar patterns of gene expression across the 

transcriptome. Sample ages were then used to visualize when in developmental time these stable 
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patterns are present. The resulting model describes the developmental dynamics of the brain 

transcriptome as a series of overlapping states that progresses across the lifespan.  

To our knowledge, this is the first study to use unsupervised clustering expressly to 

identify subgroups within developmental controls. In transcriptomics, clustering is mostly used 

to identify genes with similar expression across samples. The inverse is only performed in 

studies of neuropsychiatric disorders (Gandal et al., 2018), where significant differences between 

individual cases are expected, or single-cell datasets (Tasic et al., 2016), where the goal is to 

identify populations of different cell-types. Both of these examples represent the use of 

clustering by gene expression to identify stable states, whether it is a clinical phenotype or cell 

type. Why has a similar approach not been applied to developmental datasets? Perhaps it is for 

the same reasons why the selection criteria for brain donors is so stringent; namely, each sample 

is considered an error-laden instance of a common developmental program to be characterized. 

Clustering algorithms like RSKC group together samples that are “close” in a multidimensional 

feature space defined by gene expression. Unlike regression-based models, differences are not 

fitted to explanatory variables like age. This allows multiple heterogeneous patterns of gene 

expression to be identified in samples that overlap in developmental time.  

6.2.2 Overlapping patterns of gene expression  

The overlapping nature of developmental clusters in the current study has several 

implications. First, it suggests that traditional development periods, defined by anatomical and 

behavioural milestones, are not described by a single transcriptomic “phenotype.” Instead, 

developmental periods may be defined by two or more patterns of gene expression across the 

transcriptome. Such patterns are not limited to a particular section of the lifespan, and may be 

recurring. For example, the transcriptional profile matching samples from cluster 2B in V1C 

described early development at 120 days as well as ageing at 82 years (Figure 7). Colantuoni et 

al. (2011) also found that numerous changes in infancy were mirrored by changes in ageing.  

While it is impossible to determine with the current experimental design (see 

Limitations), an intriguing possibility is that cortical tissue transitions between transcriptomic 

states within an individual. This idea is not unlike McIntosh (2011)’s account of brain activity 

visiting several metastable network configurations spontaneously and converging on a 

configuration that meets the demands of the current task. If distinct, overlapping patterns of gene 
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expression represent metastable transcriptomic states, it is possible that the brain transitions to 

states that suit current biological needs. This notion is somewhat supported by current study, 

which demonstrated that only a subset of genes is responsible for the differences between 

clusters, and the biological principle that minor changes in a few proteins can have cascading 

effects that ultimately impact the whole organism. Neurodevelopmental disorders may be 

conceptualized as the failure to transition into suitable transcriptomic states, or remaining 

“stuck” in an unsuitable state, perhaps in part due to genetic mutations that affect gene 

expression. For example, normal brain development involves a period of synaptic pruning early 

in life that is likely orchestrated by a particular pattern of gene expression. Individuals with 

autism spectrum disorder (ASD) show hypomethylation and consequent over-expression of 

genes implicated in synaptic pruning (Nardone et al., 2014), suggesting that they may inhabit a 

transcriptomic state of pruning for a maladaptive period of time.  

Lastly, overlapping patterns of gene expression have implications for studying disorders. 

In order to identify genes that are differentially expressed in disorders, a comparison is often 

made to a group of age-matched controls. As the current work suggests, however, healthy brain 

samples of similar age may be represented by more than one distinct transcriptomic pattern. 

Therefore, it is prudent to compare gene expression first and assess the similarity of samples 

second. This was one reason why bipolar cases were clustered with all available developmental 

controls in Chapter 4.  

6.2.3 Biological significance of clusters and features  

 RSKC provides a new way to identify developmentally regulated genes of interest. Other 

approaches, such as co-expression analysis, only detect groups of genes that change together. No 

group is privileged over another, and they must be visualized and manually selected for further 

analysis. Feature selection is built into the RSKC algorithm, and presents an unsupervised 

method of identifying genes with the greatest developmental variance without the linear 

assumption of other dimensionality reduction approaches (e.g. principal component analysis). 

The current study identified several feature genes that were directly implicated in 

neurobiological development. Furthermore, RSKC identified feature genes not previously 

characterized in development, but that may be implicated developmentally regulated processes 

(see section 2.3.3). Differences in feature weights were enough to separate functionally and 
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anatomically distinct brain regions. Additionally, features driving the segregation of postnatal 

clusters and cortical brain regions were highly enriched for biological processes related to 

neuronal communication, agreeing with the diversity in neuronal populations seen across cortical 

regions, and the functional maturation of neurons over development and ageing.  

6.3 Limitations  

While the current study was informed by dynamic systems principles, no formal DST  

mathematical approaches were utilized (e.g. catastrophe theory). Furthermore, DST is most often 

used to analyze behavioural or imaging data collected from individuals over time. Time-series 

data captures the variability and fluctuation of intra-individual measures, which can be analyzed 

for the emergence of a stable patterns that are then compared between individuals. This 

experimental design also allows for the detection of transitions between stable states. 

Unfortunately, due to the cross-sectional design of nearly all human developmental 

transcriptomic studies, one cannot determine whether differences in gene expression reflect 

stable inter-individual differences or intrinsic fluctuations over some time scale (hour, days, etc.). 

This is a general limitation of studies that make use of post-mortem tissue. While the ideal 

approach to understanding the source and function of biological variability would involve 

measuring gene expression at a cellular resolution across multiple developmental period within 

the same individual, this is not yet possible with current technology. Instead, we employed 

unsupervised clustering, which treats all variance as an essential element of the higher-order 

patterns that constitute the system. Unfortunately, this still does not allow us to speak 

meaningfully about transitions in the data.  

One objective of the current study was to address whether human brain development and 

ageing can be described as a series of stable, biological states. Our approach involved using 

clustering to identify developmental samples with similar patterns of gene expression. The 

distribution of sample clusters across the lifespan served as a proxy for when distinct 

transcriptomic states are present. However, clustering can be variable and highly contingent on 

several factors. Some challenges include the selection of an appropriate clustering algorithm and 

the desired number of clusters. Both of these steps are subjective and have direct consequences 

on the outcomes of our descriptive model. Another factor is the number and distribution of 

samples in the original dataset, as demonstrated in Section 4.3.1. Even clustering the same data 
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can produce different results with each iteration. For these reasons and more, clusters cannot 

represent de facto biological states in human brain development. Instead, the success of the 

current study lies in demonstrating that the transcriptome can be modelled by a series of non-

linear states, which also capture important biological mechanisms that may not have been 

apparent in standard linear analyses.  

6.4 Future Directions   

The current study used three microarray datasets in total for clustering (Kang et al., 2011; 

Colantuoni et al., 2011; Ryan et al., 2006). While many large-scale transcriptomic stuides use 

microarray technology, the development of RNA-seq has shown that microarrays have several 

limitations, including a narrow dynamic range that can lead to underestimation of differential 

gene expression (Dillman et al., 2017). To better detect developmental differences, future studies 

should use data generated by RNA-seq. Furthermore, data across developmental studies should 

be pooled in order to refine the boundaries of developmental clusters.  

To begin to address whether transitions may occur between clusters, an algorithm called 

PHATE (potential of heat diffusion for affinity-based transition embedding) may be useful. 

PHATE constructs a non-linear embedding of high dimensional data that simultaneously 

denoises the data and emphasizes the continuous nature of any underlying progression and 

trajectories (Moon et al., 2017). The branching structures produced by this algorithm identify 

points where developmental trajectories may diverge or converge. Figure 32 shows the results of 

PHATE applied to samples pooled across regions in the Kang et al. (2011) dataset. The global 

structure of this data suggests that prenatal samples lie on a distinct branch which transitions into 

a much broader postnatal branch. The color-coding of samples by RSKC cluster reveals 

heterogenous substructures within the second branch. With more samples and well-defined gene 

expression values from RNA-seq, this method could reveal the transitions between 

developmental clusters.  
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Figure 32. PHATE analysis of developmental samples. Developmental control samples pooled across 

regions in the Kang et al. (2011) dataset, color-coded by A) sample age and B) RSKC cluster designation.  
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