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Abstract
There is a strong interest in the climate community to improve the ability to ac-

curately predict future trends of climate variables. Recently, machine learning

methods have proven their ability to contribute to more accurate predictions of

historical data on a variety of climate variables. There is also a strong interest

in using statistical downscaling to predict local station data from the output of

multi-model ensembles. This project looks at using the machine learning algo-

rithm XGBoost and evaluating its ability to accurately predict historical monthly

precipitation, with a focus of applying this method to simulate future precipitation

trends.
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Chapter 1

Introduction

Climate change is one of the most important challenges facing humanity in the

coming decades. There has been many work done detailing the extent of climate

change and the future projections that are possible under various future climate

scenarios. One of the most commonly used projections for climate data comes

from the Coupled Model Intercomparison Project (CMIP). The most recent of

those models is the CMIP Phase 6 (CMIP6) (Eyring et al., 2016), which follows

the CMIP Phase 5 (CMIP5) (ENES, 2019) and is an extension of the CMIP5 struc-

ture. In particular, the CMIP projects include Regional Climate Models (RCMs)

and Global Climate Models (GCMs). RCMs are dynamically downscaled using

GCMs (Giorgi and Gutowski, 2015), where "the GCM can describe the response

of the global circulation to large-scale forcings [...] while the RCM can spatially

and temporally refine this large-scale information by accounting for the effects of

sub-GCM grid scale forcings and processes" (Giorgi, 2019). Currently, the GCMs

are available for CMIP6, but the RCMs have not yet been released. There are

many climate variables that are relevant in measuring climate change, and the two

1



M.Sc.Thesis– Milena Hadzi-Tosev; McMaster – Mathematics and Statistics

that are of most interest are temperature and precipitation. There are various

time scales of interest including hourly, daily, monthly, and yearly data. Previous

studies that have found accurate methods for predicting historical temperature

in Ontario, Canada, (Wang et al., 2014; Li et al., 2020; Wang et al., 2014) but

the methods used in precipitation prediction in the same region are very limited

and returned poor predictive results (Wang et al., 2014). In particular, there are a

limited number of papers discussing the prediction of precipitation in Ontario; this

could in part be due to the difficulty of predicting the pattern of the daily precipi-

tation data. Additionally, there are very few papers that investigate the ability to

predict monthly precipitation in Ontario. Recent machine learning methods have

improved the ability to predict historical climate data with a moderate degree of

accuracy. Some of these methods include neural networks (Nair et al., 2018; Gizaw

and Gan, 2016; Bochinski et al., 2017; Zheng et al., 2017; Soares Dos Santos et al.,

2016), support vector regression (Gizaw and Gan, 2016; Kisi and Sanikhani, 2015;

Wang et al., 2014; Okkan and Kirdemir, 2016), and random forests (Xu et al.,

2020). Another machine learning method that has shown an ability to predict

data well in the context of climate research and in general is tree boosting (Chen

and Guestrin, 2016). In particular, this research will look at extreme gradient

boosting (XGBoost), which has demonstrated good predictive ability in recent lit-

erature (Zheng et al., 2017). XGBoost is used in this project in combination with

a multi-model ensemble of climate models, with an aim of improving the ability

to predict monthly precipitation for 12 climate stations in Ontario, Canada.
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Chapter 2

Data Introduction

2.1 Physical Climate Models

The climate model data comes from the Coupled Model Intercomparison Project

Phase 5 (ENES, 2019) and Phase 6 (PCMDI, 2019) historical and future simu-

lations, where the two phases are denoted by CMIP5 and CMIP6, respectively.

CMIP is organized under the World Climate Research Programmes (WCRP)

Working Group on Coupled Modelling (WCRP, 2017). According to the WCRP,

“the objective of CMIP is to better understand past, present, and future climate

changes arising from natural, unforced variability, or in response to changes in

radiative forcings in a multi–model context” (WCRP, 2017). The research in this

study will be looking at historical simulations, which estimate the actual observed

states, and future scenarios, which represents a possible future under different

“radiative forcing pathways from greenhouse gas emissions” (Hausfather, 2019).

The CMIP historical simulation is an experiment that simulates the recent past,

and the main purpose of this experiment is to evaluate the ability of the climate

3
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models to accurately predict historical climate data. The CMIP6 future simu-

lations are experiments that simulate the near future, under different emissions

scenarios (Michaut, 2020).

Table 2.1: Locations of the 12 selected stations and their corre-
sponding RCM grid (Li et al., 2020).

Short Station RCM Grid
Station Name Name Latitude Longitude Latitude Longitude Elevation

Big Trout Lake BTL 53.83◦ N 89.87◦ W 53.76◦ N 89.84◦ W 224.1m
London International Airport LA 43.03◦ N 81.15◦ W 42.98◦ N 81.04◦ W 278.0m
Moosonee MUA 51.27◦ N 80.65◦ W 51.34◦ N 80.60◦ W 9.1m
North Bay Airport NB 46.36◦ N 79.42◦ W 46.28◦ N 79.50◦ W 370.3m
Ottawa International Airport OMIA 45.32◦ N 75.67◦ W 45.40◦ N 75.76◦ W 222.2m
Sault Ste. Marie Airport SSMA 46.48◦ N 84.51◦ W 46.50◦ N 84.56◦ W 192.0m
Sioux Lookout Airport SLA 50.12◦ N 91.90◦ W 50.02◦ N 91.82◦ W 294.7m
Timmins Victor Power Airport TVPA 48.57◦ N 81.38◦ W 48.48◦ N 81.48◦ W 383.4m
Toronto Island Airport TIA 43.63◦ N 79.40◦ W 43.64◦ N 79.72◦ W 173.4m
Toronto Pearson International TPIA 43.68◦ N 79.40◦ W 43.64◦ N 79.50◦ W 76.8m
Airport
Wiarton Airport WTA 44.75◦ N 81.11◦ W 53.76◦ N 81.04◦ W 114.0m
Windsor Airport WSA 42.28◦ N 82.96◦ W 53.76◦ N 83.02◦ W 189.6m

Figure 2.1: Locations of the twelve selected meteorological sta-
tions in Ontario, Canada (Li et al., 2020).

In particular, these scenarios are run as part of Scenario Model Intercomparison

Project (ScenarioMIP), which provides “multi–model climate projections based on
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alternative scenarios of future emissions and land use changes produced with in-

tegrated assessment models” (WCRP, 2017). For this project, the future climate

change scenarios are projected under three different emission pathways. The pri-

mary focus is on the 12 stations listed in Table 2.1, and Fig. 2.1 contains a map

of these stations Ontario, Canada. For the CMIP5 historical prediction, the seven

RCMs that were used for this project were downloaded from the North American

Coordinated Regional Downscaling Experiment (NA-CORDEX) (Mearns et al.,

2020). Data was extracted for monthly observations from 1950–1999. When ac-

cessing the RCM files the experiment family is historical, the realm is land, the

climate variable of interest is pr, and the climate model experiment ensemble

is r1i1p1. The ensemble member in the CMIP projects are named in the rip–

nomenclature, “r for realization, i for initialization and p for physics, followed by

an integer, e.g. r1i1p1” (ENES, 2019). The CMIP simulated data are stored in

NetCDF format, containing the variables longitude, latitude, in addition to time

and the climate variable. The data is gridded at a 50km resolution and extracted

for the Ontario station coordinates, and the RCMs are seen in Table 2.2.

Table 2.2: Information on the 7 CMIP5 RCMs and their associ-
ated GCMs.

GCM RCM Resolution Modeling Institution Full Name
(≈50km) Institution

CanESM2 CanRCM4 0.44◦ CCCma Canadian Centre for Climate Modelling and
Analysis

CanESM2 CRCM5 0.44◦ UQAM Université du Québec à Montréal

CanESM2 RCA4 0.44◦ SMHI Swedish Meteorological and Hydrological
Institute

EC–EARTH HIRHAM5 0.44◦ DMI Danish Meteorological Institute

EC–EARTH RCA4 0.44◦ SMHI Swedish Meteorological and Hydrological
Institute

MPI–ESM–LR CRCM5 0.44◦ UQAM Université du Québec à Montréal

MPI–ESM–MR CRCM5 0.44◦ UQAM Université du Québec à Montréal
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The RCMs are CanESM2.CanRCM4 (ECCC, 2018; GOC, 2018), CanESM2.–

CRCM5 (Takhsha et al., 2018; GOC, 2018), CanESM2.RCA4 (GOC, 2018; Kjell-

ström et al., 2016), EC–EARTH.RCA4 (Kupiainen et al., 2015; EC-Earth, 2020),

EC–EARTH.HIRHAM5 (EC-Earth, 2020; Christensen et al., 2007), MPI–ESM–

LR.CRCM5 (Giorgetta et al., 2013; Takhsha et al., 2018), and MPI–ESM–MR.–

CRCM5 (Climate Workspace TCW, 2020; Takhsha et al., 2018). For the CMIP6

prediction, the fourteen GCMs under historical scenario and future scenario Shared

Socioeconomic Pathways (SSP) are available through the WCRP Data Portal

(WCRP, 2017). The GCMs are gridded at a 100km resolution, and are extracted

for the closest Ontario station coordinates. The historical CMIP6 GCMs have

data available for the entire time period 1950–1999, under r1i1p1f1. Information

about the CMIP6 GCMs can be accessed in Table 2.3. The 14 GCMs are BCC–

CSM2–MR (Wu et al., 2019; Xin et al., 2018), CAMS–CSM1–0 (Rong, 2019),

CESM2 (UCAR, 2019), CESM2–WACCM (Danabasoglu, 2019), EC–Earth3 (EC-

Earth, 2020), EC–Earth3–Veg (EC-Earth, 2020), FGOALS–f3–L (He et al., 2019),

FIO–ESM–2–0 (Song et al., 2019), GFDL–ESM4 (Dunne, 2019), INM–CM4–8

(Volodin et al., 2018), INM–CM5–0 (Volodin and Gritsun, 2018), MPI–ESM1–2–

HR (Gutjahr et al., 2019; Botzet, 2020), MRI–ESM2–0 (Yukimoto et al., 2019),

and NorESM2–MM (Bethke, 2016). The future climate projections data from the

CMIP6 GCMs have five available SSP. Representative Concentration Pathways

(RCPs) are “scenarios that include time series of emissions and concentrations

of the full suite of greenhouse gases (GHGs) and aerosols and chemically active

gases, as well as land use/land cover” (IPCC, 2020). The relationship between the

CMIP6 SSP and CMIP5 RCP are seen in Table 2.4. This study will look at the

three pathways SSP1–2.6, SSP2–4.5, and SSP5–8.5, and the monthly precipitation

6
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data simulated for the years 2020 to 2099. The pathways can be separated into

three greenhouse gas emission levels scenarios: low future emissions (SSP1–2.6),

moderate future emissions (SSP2–4.5), and high future emissions (SSP5–8.5).

Table 2.3: Information on the 14 CMIP6 GCMs used for this
project.

GCM Spatial Modeling Source Institution full name
Resolution Institution

1 BCC–CSM2–MR 1◦ BCC AOGCM Beijing Climate Center, China
110km Meteorological Administration

2 CAMS–CSM1–0 1◦ CAMS AOGCM Chinese Academy of Meterological
100km Sciences

3 CESM2 1◦ NCAR AOGC, BGC National Center for Atmospheric
100km Research

4 CESM2–WACCM 1◦ NCAR AOGC, BGC, National Center for Atmospheric
100km CHEM, AER Research

5 EC–Earth3 1◦ EC– Earth AOGCM European community
100km Earth–consortium

6 EC–Earth3–Veg 1◦ EC–Earth AOGCM European community
100km Earth–consortium

7 FGOALS–f3–L 1◦ CAS AOGCM Chinese Academy of Sciences
100km

8 FIO–ESM–2–0 1◦ FIO AOGCM First Institute of Oceanography,
100km SOA,China

9 GFDL–ESM4 1◦ NOAA– AOGC, AER, National Oceanic and Atmospheric
100km GFDL CHEM, BGC Administration –Geophysical Fluid

Dynamics Laboratory

10 INM–CM4–8 1◦ INM AOGC, AER Institute for Numerical Mathematics
100km

11 INM–CM5–0 1◦ INM AOGC, AER Institute of Numerical Mathematics
100km

12 MPI–ESM1–2–HR 1◦ MPI–M AOGCM Max Planck Institute for
100km Meteorology

13 MRI–ESM2–0 1◦ MRI AOGC, AER, Meteorological Research Institute
100km CHEM

14 NorESM2–MM 1◦ NCC AOGC, AER, Norwegian Climate Centre
100km BGC

7
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Table 2.4: The relationship between CMIP6 SSP and CMIP5
RCP.

SSP RCP Explanation of how they are connected
(CMIP6) (CMIP5)

SSP1–2.6 RCP2.6 RCP2.6 has “radiative forcing peaks at approximately 3Wm−2 before 2100 and
then declines” (IPCC, 2020). SSP1–2.6 shows a more “gradual decline in emissions
than RCP2.6, and a higher starting point” (Hausfather, 2019).

SSP2–4.5 RCP4.5 RCP4.5 is an intermediate stabilisation pathway, “radiative forcing is stabilised
at approximately 4.5Wm−2 after 2100” (IPCC, 2020). SSP2–4.5 has a “higher
starting point, and slightly slower decline than RCP4.5” (Hausfather, 2019).

SSP5–8.5 RCP8.5 RCP8.5 one high emissions pathway where, “radiative forcing reaches greater
than 8.5Wm−2 by 2100 and continues to rise for some amount of time”
(IPCC, 2020). SSP5–8.5 has “higher CO2 emissions than RCP8.5, correspondingly
larger cuts in non–CO2 emissions” (Hausfather, 2019).

2.2 Observed Weather and Climate Data

The historical weather data is accessed through the Government of Canada his-

torical database under Past Weather and Climate Data (ECCC, 2020). The data

is available for hourly, daily, and monthly time intervals. This project is looking

at monthly data for the years 1950–1999. The historical data for each respective

station are extracted in CSV format containing coordinate variables like longi-

tude, latitude, elevation, and time, as well as the observed weather data. The

historical observed daily and monthly precipitation data were accessed through

the Government of Canada’s historical database under Past weather and Climate

data (ECCC, 2020). The historical data for each respective station is extracted

in CSV format containing coordinate variables longitude and latitude, elevation,

time, and the climate variables. Table 2.5 contains the average annual precip-

itation for each station and the number of missing data for each station. It is

important to compute the average annual precipitation in order to compare the

average annual precipitation to the monthly RMSE values for each station. The

8
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average annual precipitation for each period is calculated by aggregating the aver-

age monthly precipitation values, where mi,j is the average monthly precipitation

value calculated from the non–missing data for month i and station j. The average

annual precipitation for station j is defined in Eq. 2.1.

AAPj =
12∑
i=1

mi,j (2.1)

Table 2.5: Summary of the observed monthly station data.

Station Average Annual Precipitation Number of Missing Notes
(1950–1999) (1950–1989) (1990–1999) Monthly Observations

(1950–1989) (1990–1999)

BTL 667.887 669.638 608.000 0 3 Obs. end 1992
LA 1029.624 1016.155 1083.500 0 0
MUA 801.140 804.881 776.469 3 41 No observations:

1994 01– 1996 11
NB 1060.880 1052.725 1093.500 0 0
OMIA 977.350 969.310 1009.51 0 0
SSMA 980.253 983.266 971.830 7 0 Obs start in 1961
SLA 798.806 788.733 839.100 0 0
TVPA 920.648 930.967 884.89 0 5 Obs start in 1955
TIA 853.957 851.258 871.075 8 1 Obs start in 1957,

and end in 1994
TPIA 847.770 843.510 864.810 0 0
WTA 1069.721 1062.072 1099.840 4 0
WSA 962.314 951.838 1004.22 0 0

2.3 Data Summary

This project assumes that using the historical data to compile predictions can give

an accurate method to simulate future precipitation data. The correlation val-

ues between monthly precipitation and the temperature variables for each station

are seen in Table A1.1. Most of the stations have a strong correlation between

the average monthly precipitation (AMP) and the observed mean monthly mini-

mum temperature, as well as between the AMP and the observed mean monthly

maximum temperature. As seen in Table A1.1, the correlation between AMP

9
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and the RCM historical values is the strongest between AMP and the RCMs

CanESM2.CanRCM4 and MPI–ESM–LR.CRCM5, and these RCMs are expected

to be important in constructing the predictive algorithms. From the correlations

between AMP and the 14 GCMs as found in Table A1.2, we expect the GCMs

CESM2-WACCM, INM-CM4-8, MRI-ESM2-0, and NorESM2-MM to have the

strongest predictive ability for the Ontario stations. It is noted that there is a

slight difference in the correlation structure between the training (1950–1989) and

full period (1950–1999). There is a large difference in the most highly correlated

GCMs between the training (1950–1989) and testing period (1990–1999). It is

important to note that in particular the correlation structure of the 1950’s is dif-

ferent to the correlation structure of the 1990’s, as seen in Table A1.7, which looks

at Station 12 as an example. This project looks at the entire available data from

1950-1999, but it is noted that there are limitations in this approach since the cor-

relation structure of the training period, and the correlation structure within the

training period by decade, is different than the correlation structure of the testing

period. Once available, data from more recent years (the 2000’s and 2010’s) should

be used for historical prediction. The correlation structure of precipitation from

more recent years is expected to help produce a stronger predictive algorithm for

the near future precipitation.

For each of the 14 GCMs, the spread of the average monthly simulated data is

looked at across the time period of 1950–1999, compared to the observed average

monthly precipitation. The plots for each respective station are seen in Fig. A1.1

and Fig. A1.2. There is a large spread for the average monthly precipitation

values of each of the GCMs, but it varies amongst the stations. For station LA,

10
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the range between the smallest and largest average GCM values is observed to

be the highest for the months of January and August, at a 75mm difference in

magnitude. Conversely for station MUA, most of the months have a much more

tightly packaged spread of average GCM values, with the largest difference in

magnitude being 50mm. Overall, the GCMs are much larger than the average

observed monthly precipitation values for the months October to March, and the

GCMs are much closer to the average observed monthly precipitation values for the

months May to September. On average, the observed values peak for the summer

months June to September, and the simulated GCM values peak for the winter

months November to January. This analysis shows that none of the models on

their own result in a perfect simulation of the historical precipitation values, but a

combination (or ensemble) of the models might be better equipped to accurately

capture the historical values.

11



Chapter 3

Methodology

3.1 Background

The time frame that was the focus of this study was from 1950 to 1999, and the

historical RCMs and GCMs had data available for the full time period of 1950

to 1999. It is noted that there were some observed missing monthly values as

seen in Table 2.5, and the complete data used during analysis was the available

observed monthly values from 1950 to 1999. The goal was to maximize the total

available observed data that overlapped with the available RCM and GCM data.

First, the algorithm was trained on an ensemble of CMIP5 simulated historical

RCMs and observed values from 1950 to 1989, for a maximum of 480 data points.

The methods were tested using an ensemble of CMIP5 simulated historical data

RCMs and observed values from 1990 to 1999, for a maximum of 120 data points.

Next, the algorithm was trained on an ensemble of CMIP6 simulated historical

GCMs and observed values from 1950 to 1989, and tested using an ensemble of

CMIP6 simulated historical data GCMs and observed values from 1990 to 1999,

12
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for a maximum of 120 data points. The performance of each RCM and GCM

is rooted in its ability to accurately capture the historical monthly precipitation,

and its importance for predicting the observed data of a particular station. The

14 GCMs in Table 2.3 have simulated data available for the three SSPs of interest

in Table 2.4. Statistical downscaling is a form of regional climate downscaling,

and it is the process of first developing statistical relationships between climate

variables and predictors, and applying these relationships to simulate local station

data (Busuioc et al., 2001).

The algorithm is trained using nested cross–validation (Tashman, 2000), using

caret and the timeslice method. K-Fold cross–validation (McNicholas and Tait,

2019, p. 97) is not appropriate when looking at time series data because of tem-

poral dependencies. The goal of the cross–validation is to estimate the prediction

error of the algorithm on the training data (Fushiki, 2009). To do nested cross–

validation, we first must set the seeds for each of the nested predictions for each

of the parameter combinations, to make the cross–validation results reproducible.

The initialWindow is set for each individual station so that there are 40 nested

validations, such that the values in the initialWindow are used to test one time

points 12 units away from the end of the training window. In order to improve

the efficiency of the nested cross–validation, the parameter skip was set to 8.

3.2 Model Evaluation

The statistical downscaling prediction method is evaluated using RMSE and MAE,

comparing the predicted values resulting from the ensemble method to the observed

monthly historical precipitation values. For historical precipitation from a sample

13
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of size n, where the observed values are denoted by yi and the predicted values

are denoted by ŷi, the RMSE and MAE values are defined by Eq. 3.1 and Eq. 3.2,

respectively. In order to produce the best model for each respective station, the

available parameters must be selected in a manner such that the RMSE value is

minimized.

RMSE =
√√√√ 1
n

n∑
i=1

(yi − ŷi)2 (3.1)

MAE = 1
n

n∑
i=1
|yi − ŷi|. (3.2)

3.3 Extreme Gradient Boosting

The focus of the XGBoost algorithm is to minimize the objective function, which is

comprised of a loss function and a regularization term (McNicholas and Tait, 2019).

There are two learning task parameters that can be defined, the objective and

evaluation metric. The default objective is regression with the goal of minimizing

squared loss, and the evaluation metric in this case would be root mean squared

error (RMSE), but can also be updated to a metric like MAE (XGBoostDevelopers,

2020). The algorithm can be used on both regression and classification data, and it

is a form of supervised learning, where “labelled data are used to make predictions

about unlabelled data” (McNicholas and Tait, 2019). XGBoost uses an ensemble

of trees and updates the learner based on the previous tree. For this particular

research topic, the method will be regression based. XGBoost has the important

property of having tune–able parameters, where a set of parameters are chosen

by a grid search during the training of the algorithm on a set of data, and make

for very flexible prediction models. Another important property of XGBoost is
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that its set of parameters can be tuned to focus on reducing overfitting, and in

turn create models that can accurately predict the output of data outside of the

training set. The model can also use an L1, or L2 regularization term, defined

as α and λ respectively. Through increasing the value of the regularization term,

the boosting process is made more conservative, and overfitting is further reduced

(McNicholas and Tait, 2019). The regularization terms reduce overfitting, allowing

a more accurate test set prediction, and more generalized future simulations. The

algorithm starts with a dataset that has n observations and p predictor variables.

XGBoost uses an ensemble learning approach, where it builds a model of the form,

yi = f(xi)+ei, and the formula can be re–arranged so that the error can be written

as, ei = yi−f(xi) (McNicholas and Tait, 2019). The data is split into a training set

with the labelled data, and a test set with unlabelled data. The function f(x) is

called the learner and is constructed based on the training set data, and the error

is assessed based on the test set data (McNicholas and Tait, 2019). RMSE is used

to assess how well the learner performs. RMSE is highly sensitive to outliers, while

MAE is not affected by outliers. If we overfit f(x) to the training data, it may not

be able to perform well on the test data, even though the training set error may

be very small. The prediction of the ith instance at the tth iteration is defined as

ŷi
t, and the goal is to minimize the objective function (Chen and Guestrin, 2016),

which is defined in Eq. 3.3. The loss function in Eq. 3.3 is ∑n
i=1 l(yi, ŷ

(t−1)
i +ft(xi)),

and the regularization term is denoted by Ω(ft). In terms of tree construction

algorithm, for a small dataset, the exact greedy tree construction algorithm will

be used, which “enumerates all split candidates” (Zheng et al., 2017). The exact

greedy algorithm finds the best split by “enumerating over all the possible splits

on all the features” (Chen and Guestrin, 2016), and the split is seen in Eq. 3.4.
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The greedy algorithm “starts from a single leaf and iteratively adds branches to

the tree” (Chen and Guestrin, 2016).

L(t) =
n∑
i=1

l(yi, ŷ(t−1)
i + ft(xi)) + Ω(ft) (3.3)

Letting IL and IR be the “instance sets of left and right nodes after the split”, we

then define the loss reduction after the split by Lsplit (Chen and Guestrin, 2016).

In the XGBoost algorithm Lsplit is used in evaluating the split candidates (Chen

and Guestrin, 2016). Lsplit is defined in Chen and Guestrin (2016) as Eq. 3.4.

Lsplit = 1
2

 (∑
iεIL

gi)2∑
iεIL

hi + λ
+ (∑

iεIR
gi)2∑

iεIR
hi + λ

− (∑
iεI gi)2∑

iεI hi + λ

− γ (3.4)

In terms of variable selection, the score of a feature increases as the variable is

used more to make key decisions within boosted trees, and the measures of gain,

frequency, and cover are used to calculate importance (Zheng et al., 2017). The

focus for this study is on the gain measure, where gain is the mean accuracy

improvement brought on by creating a split in a tree on a particular variable

across the boosting ensemble (McNicholas and Tait, 2019), and each split “tries to

find the best feature and splitting point to optimize the objective” (He, 2016). The

XGBoost algorithm calculates the “gain on each node”, and at the end, “we look

into all the trees, and sum up all the contribution for each feature and treat it as

the importance” (He, 2016). The degree to which a variable is important in a single

decision tree can be written as the score, w2
l (T ) = ∑J−1

t=1 τ̂t
2, where the decision tree

has, “J-1 internal nodes, and partitions the region into two sub–regions at every

node t by the prediction feature” (Zheng et al., 2017). The tree algorithm selects

the feature that is estimated to provide the strongest improvement τ̂t2, “in the
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squared error risk over that for a constant fit over the entire region” (Zheng et al.,

2017). Over the additive M trees in XGBoost, the variable importance calculation

can be written as Eq. 3.5, as in Zheng et al. (2017).

w2
l (T ) = 1

M

M∑
m=1

τ̂t
2(Tm). (3.5)

3.3.1 XGBoost parameters

The number of boosting iterations is denoted by the parameter nrounds (McNi-

cholas and Tait, 2019). The learning rate, also known as the shrinkage parameter,

is denoted by η (eta), (McNicholas and Tait, 2019) and it is used to prevent

overfitting. The step size shrinkage works in such a manner where, “after each

boosting step we can directly get the weights of new features and η shrinks the

feature weights to make the boosting process more conservative” (XGBoostDe-

velopers, 2020). Additionally, shrinkage “scales newly added weights by a factor

eta after each step of tree boosting [. . . ] shrinkage reduces the influence of each

individual tree and leaves space for future trees to improve the model” (Chen and

Guestrin, 2016). Another parameter that can help with producing a more con-

servative model is γ (gamma), which is “the minimum loss reduction required to

make a further partition on a leaf node of the tree” (XGBoostDevelopers, 2020).

Another tune–able parameter is the maximum depth of a tree, max_depth and “in-

creasing this value will make the model more complex and more likely to over–fit”,

so this study will focus on smaller values of this parameter (XGBoostDevelopers,

2020). Another optional parameter that can be altered is α (alpha), the L1 reg-

ularization term on the weights, which if it is increased past its default value of
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1 it will return a more conservative model (XGBoostDevelopers, 2020). The L2

regularization term is denoted by the parameter λ (lambda), which reduces model

complexity and overfitting (XGBoostDevelopers, 2020). An additional parame-

ter that can help create a more conservative algorithm is minimum child weight

(min_child_weight), such that if a tree partition step results in a leaf node with

the “sum of instance weights less than this parameter value, then the building

process will give up further partitioning” (XGBoostDevelopers, 2020). Larger val-

ues of min_child_weight will return more conservative algorithms. A subsample

ratio (sub_sample) of the training instances is commonly used to prevent over-

fitting and is taken prior to growing the trees. This subsampling occurs “once

in every boosting iteration” (XGBoostDevelopers, 2020), and the default sam-

pling method is uniform. The subsample ratio of columns when constructing each

tree (colsample_bytree) can be tuned to be different from its default value of 1,

which considers all of the predictor variables at each tree split (XGBoostDevelop-

ers, 2020). Colsample_bytree values less than 1 ensure that all variables have a

better chance of being chosen at each step of the tree construction. It is noted

that column subsampling has a higher ability to prevent overfitting, more so than

the traditional row sub–sampling (Chen and Guestrin, 2016), and will be included

in parameter tuning measures.

3.3.2 Parameter Tuning

The default parameters are seen in Table 3.1. The best tune will be chosen from a

grid search, where an appropriate set of parameter values will be assigned, and the

lowest RMSE returned by a certain combination of parameters will be determined

to be the best tune on the training set. First, Grid Search 1 was ran as seen in
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Table 3.2, to show that extracting a personalized set of parameters for each station

can improve the predictive performance of the algorithm. The set of parameters

that are part of Grid Search 2, the fine tuned search, are seen in Table 3.3. The

goal is to use parameters that provide the best predictive model for each respective

station, without overfitting the training data. Through reducing overfitting, the

model will produce good results for data that does not directly mimic the training

set.
Table 3.1: Default XGBoost algorithm parameter values and their
range (XGBoostDevelopers, 2020).

Number Maximum Eta Gamma Column Sub Minimum
Parameter of Tree (η) (γ) Sampling Sample Child

Rounds Depth by Tree Weight
Default Value 100 6 0.3 0 1 1 1
Available Range [1, ∞) [1, ∞) [0, ∞) [0, ∞) (0,1] (0,1] [0, ∞)

of Values

Table 3.2: XGBoost Parameter Grid Search 1: Simple tune

Number Maximum Eta Gamma Column Sub Minimum
of Tree (η) (γ) Sampling Sample Child

Rounds Depth by Tree Weight
40,50,60,70,80 1,2 0.1,0.2,0.3,0.4 0,0.1,0.2,0.3 0.6,0.7,0.8 0.6,0.7,0.8 1

Table 3.3: XGBoost Parameter Grid Search 2: Fine tune

Number Maximum Eta Gamma Column Sub Minimum
of Tree (η) (γ) Sampling Sample Child

Rounds Depth by Tree Weight
40,45,...,80 1,2,...,5 0.1,0.15,...,0.5 0,0.05,...,0.3 0.5,0.6,..., 0.5,0.6,...,0.9 1

3.4 Historical and Future Prediction

3.4.1 Historical evaluation

Statistical downscaling takes place by training the XGBoost algorithm on the data

for the period 1950-1999 using the caret function, rolling average cross–validation,
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and the seed is set to 1 for reproducible results. Each climate model is used

as a predictive variable in determining the historical monthly precipitation. R

version 4.0.2 and RStudio version 1.3.959 were used to run the analysis for this

project. The R packages used to conduct the analysis were tidyverse (Wickham

et al., 2019), caret (Kuhn, 2020), XGBoost (Tianqi Chen et al., 2020), and ncdf4

(Pierce, 2019). The XGBoost algorithm is run using the full ensemble of variables

and using a reduced ensemble of variables. The goal is to reduce the number of

variables in the ensemble while keeping a similar degree of prediction accuracy

to the full ensemble. The prediction results from using the default parameters

are compared to the prediction results from using Grid Search 1 and Grid Search

2, to demonstrate how the results improve in accuracy after parameter tuning.

The L2 regularization term λ was increased to 1.2 to further reducing overfitting.

Predictor variables like temperature and month label were introduced to better

capture the cyclical nature of monthly precipitation. An ensemble method in the

context of climate prediction, is where the output from multiple climate models

are used to make predictions for each observed data point (Li et al., 2020). For

the CMIP5 Method, the full ensemble is the case where the algorithm is predict-

ing the observed historical monthly precipitation using the 7 CMIP5 RCMs, Mean

Monthly Minimum Temperature and Mean Monthly Maximum Temperature. The

CMIP6 Method 1 full ensemble involves predicting the observed historical monthly

precipitation using the 14 CMIP6 GCMs, Mean Monthly Minimum Temperature,

and Mean Monthly Maximum Temperature. The CMIP6 Method 2 full ensemble

involves predicting the historical monthly precipitation using the 14 CMIP6 GCMs

and the month labels. From these three full variable ensemble methods, the top

2 predictors returned by XGBoost variable importance for each of these methods
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were extracted. From the full ensemble of CMIP6 Method 2 predictors, the top

2 variables returned by forward/backward variable selection were extracted. For-

ward and backward variable selection uses a stepwise regression model similar to

that in Chowdhury and Turin (2020). For CMIP6 Method 2, both forward and

backward directions were used, and the Akaike information criterion (AIC) was

used as the selection criteria for the final model. We looked at the top 2 most

significant variables returned from the stepwise regression model. CMIP5 Method

and CMIP6 Method 1 were trained using the XGBoost algorithm on a reduced

ensemble consisting of the top 2 variables returned by XGBoost variable impor-

tance. Finally, for CMIP6 Method 2 the performance of the 2-variable ensemble

from both variable selection methods were compared, and the method that re-

turned the higher predictive accuracy was retained as the final model. The final

predictive models for these three reduced ensemble methods were tested on the

period 1990-1999, to evaluate the predictive accuracy of the XGBoost algorithm

in combination with a multi-model ensemble.

3.4.2 Future simulations

After the XGBoost algorithm CMIP6 Method 2: 2–variable ensemble best tune

is extracted, the personalized algorithm for each station is applied to simulate

future monthly precipitation data. The reduced ensemble method is then applied

to simulate the precipitation for the future time period 2020 to 2099. The time

periods that are often used to separate the simulation results fall into 30 year

intervals 2020–2049, 2050–2079, and 2080–2099. There are 9 sets of simulations in

total for each of the 12 stations.
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Chapter 4

Results

4.1 CMIP5 Historical Prediction

First, an exploratory analysis was conducted on a smaller set of data from CMIP5

RCMs, to test the ability of XGBoost in predicting precipitation data. For CMIP5

historical daily and monthly precipitation, there are a total of 7 RCMs for On-

tario. Previous precipitation prediction research often included various temper-

ature variables like mean monthly temperature, minimum monthly temperature,

and maximum monthly temperature as a part of the predictor variables (Du et al.,

2017). Previous studies such as Cong and Brady (2012) have shown an interde-

pendence between rainfall and temperature. Other weather variables came up in

previous methods of precipitation prediction, and various combinations of variables

were attempted for the CMIP5 monthly precipitation data that were subsets of

the available weather variables, in addition to the 7 RCMs as predictor variables.

The temperature variables were very useful in historical prediction, often appear-

ing in the top 2 predictor variables when assessing variable importance using the
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XGBoost algorithm, which may be due to their ability to capture the seasonal-

ity in the predictions. Other weather variables like mean monthly wind speed and

monthly mean temperature did not improve the predictive ability of the algorithm,

as they did not appear to drive the creation of the decision trees. Ultimately, mean

minimum monthly temperature and mean maximum monthly temperature were

chosen due to their strong importance in historical precipitation prediction. The

full CMIP5 ensemble included the 7 RCMs and the two weather variables, mean

monthly minimum temperature and mean monthly maximum temperature. From

this ensemble of 9 predictor variables, the top 2 most important historical pre-

dictors for each station’s respective set of training data were used to predict the

historical monthly precipitation. The results are seen in Table 4.1 for the CMIP5

reduced ensemble method. These historical predictions are used to evaluate and

Table 4.1: CMIP5 historical monthly precipitation prediction us-
ing Grid Search 1.

9 Variable 2–variable Top 2 variables
Ensemble Ensemble

Station RMSE MAE RMSE MAE Variable 1 Variable 2
BTL 24.24 18.92 25.20 20.35 Mean Monthly Min Temp Mean Monthly Max Temp
LA 40.41 29.75 40.79 29.80 Mean Monthly Min Temp MPI–ESM–MR.CRCM5
MUA 34.79 26.86 31.73 25.63 Mean Monthly Min Temp Mean Monthly Max Temp
NB 41.75 32.73 43.63 34.18 Mean Monthly Min Temp Mean Monthly Max Temp
OMIA 38.84 28.79 33.54 26.68 Mean Monthly Min Temp CanESM2.CanRCA4
SSM 33.87 26.87 33.54 26.26 Mean Monthly Max Temp CanESM2.CanRCA4
SL 36.18 26.22 35.52 24.98 Mean Monthly Min Temp MPI–ESM–MR.CRCM5
TVPA 30.31 23.66 32.16 25.71 Mean Monthly Max Temp EC–Earth.RCA4
TIA 29.04 23.67 31.85 25.22 Mean Monthly Min Temp CanESM2.CanRCA4
TPIA 29.04 23.67 31.85 25.22 Mean Monthly Min Temp CanESM2.CRCM5
WTA 36.48 29.08 36.77 28.66 CanESM2.CanRCA4 CanESM2.CanRCM4
WSA 39.60 30.54 38.38 29.98 Mean Monthly Min Temp MPI–ESM–MR.CRCM5

validate how well XGBoost can accurately predict monthly precipitation data us-

ing the RCMs. The 9–variable ensemble method applied to the historical data
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for the 12 stations test period produced RMSE values in the range from 24.24–

41.75 mm/month, and MAE values in the range from 18.92–32.73 mm/month.

The 2–variable ensemble produced RMSE values in the range from 25.20–43.63

mm/month, and MAE values in the range from 20.35–34.18 mm/month. It is

noteworthy that the temperature variables often appeared in the top 2 predictor

variables when assessing for variable importance.

4.2 CMIP6 Method 1: Historical prediction

At the time of this project, predicting historical precipitation for Ontario, Canada

stations using CMIP6 data has not yet been used in any previous literature, and

so it is an area of interest. As of the time of this research, the CMIP6 only has

GCM data available. This area of research was extending the findings from the

previous CMIP5 data which has been extensively used and studied, to the newer

CMIP6 data which has limited literature. The CMIP6 GCM historical data pre-

diction looked at a larger time period of evaluating the ability of XGBoost to

predict historical data, and using XGBoost to simulate future monthly precipita-

tion. The XGBoost algorithm was used to train the data, using rolling window

cross–validation, for each of the 12 stations for the years 1950 to 1989. The re-

sulting best tune of the algorithm parameters were then applied to predict the

precipitation for the years 1990 to 1999. First, the default tuning was used for the

XGBoost algorithm, and then this prediction was compared to the results from the

Grid Search 1 and Grid Search 2. Through adding the two temperature variables

mean minimum monthly temperature and mean maximum monthly temperature
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to the ensemble of climate models, there was an improvement in the historical pre-

diction. CMIP6 Method 1 is an ensemble of the 14 GCMs and the two temperature

variables, for a total of 16 variables, and the results are in Table 4.2. The 16 vari-

able ensemble method applied to the historical data for the 12 stations test period

produced RMSE values in the range from 23.73–42.76 mm/month, and MAE val-

ues in the range from 18.42–34.05 mm/month. The reduced 2–variable ensemble

method, where variable importance was assessed using the XGBoost algorithm,

when applied to the historical data for the 12 stations test period produced RMSE

values in the range from 26.12–44.61 mm/month, and MAE values in the range

from 20.53–35.33 mm/month. It is important to note that CMIP6 Method 1 may

not be good for long term prediction, assuming we do not have observations in the

near future.

Table 4.2: CMIP6 historical monthly precipitation prediction un-
der Method 1 and fine parameter tuning.

16 Variable 2–variable Top 2 variables
Ensemble Ensemble (XGBoost algorithm)

Station RMSE MAE RMSE MAE 1st variable 2nd variable
BTL 23.73 18.42 26.12 20.53 Mean Monthly Min Temp Mean Monthly Max Temp
LA 42.76 31.65 42.53 30.81 CESM2–WACCM MPI–ESM1–2–HR
MUA 32.15 25.93 34.89 26.82 Mean Monthly Min Temp Mean Monthly Max Temp
NB 39.52 31.62 44.61 35.33 Mean Monthly Min Temp Mean Monthly Max Temp
OMIA 34.63 26.67 35.04 26.80 Mean Monthly Min Temp MPI–ESM1–2–HR
SSMA 38.71 30.27 34.52 27.21 Mean Monthly Min Temp GFDL–ESM4
SLA 35.64 26.05 36.89 26.82 Mean Monthly Min Temp Mean Monthly Max Temp
TVPA 38.19 30.11 34.87 28.83 Mean Monthly Min Temp BCC–CSM2-MR
TIA 35.49 29.34 32.77 26.08 BCC–CSM2–MR CAMS–CSM1–0
TPIA 35.49 29.34 32.77 26.08 INM–CM4–8 Mean Monthly Max Temp
WTA 41.05 32.97 35.28 27.45 CESM2 EC–Earth3–Veg
WSA 40.82 34.05 39.61 31.34 Mean Monthly Min Temp CESM2–WACCM

4.3 CMIP6 Method 2: Historical prediction

CMIP6 Method 2 consisted of the top 2 variables as chosen from the 14 GCMs and

the month label. Since it is not possible to use the observed temperature variables
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in the future simulations, instead the factor variable monthly label was added to

the method to capture the cyclical nature observed in the monthly precipitation for

each station. The algorithm was run using a fine tuned grid search, to evaluate if

prediction can be improved from extracting a finer set of individual parameters for

each station. For CMIP6 Method 2 there were two algorithms used to extract the

top 2 most important variables for predicting the monthly precipitation. First, we

extracted the top 2 variables that were returned by XGBoost variable importance

measures. Next, the top 2 most important variables from stepwise regression

were examined with respect to their p–values, treating the month label as one

variable, and finding the most important GCM to predict the monthly observed

precipitation. The results from the CMIP6 reduced ensemble method 2 are seen

in Table 4.3.

Table 4.3: CMIP6 Method 2 prediction accuracy under the 15
variable ensemble, the 2–variable ensemble using forward/backward
algorithm variable selection, and the 2–variable ensemble using XG-
Boost algorithm variable importance.

15 variable ensemble 2–variable ensemble 2–variable ensemble
(XGBoost Selected) (F/B Selected)

Station RMSE MAE RMSE MAE RMSE MAE

BTL 24.27 19.18 27.73 19.41 22.89 19.22
LA 42.88 32.61 42.08 30.83 40.93 30.14
MUA 32.64 25.66 38.94 32.05 30.17 24.74
NB 40.87 33.15 38.46 30.46 38.74 31.21
OMIA 35.14 26.85 36.13 27.69 33.96 26.70
SSMA 37.29 30.77 34.66 27.58 33.14 26.63
SLA 38.11 27.86 48.11 35.35 38.40 27.72
TVPA 35.12 28.14 39.72 31.01 29.60 23.13
TIA 30.60 24.01 32.77 26.08 30.15 24.52
TPIA 30.60 24.01 32.77 26.08 30.15 24.52
WTA 42.66 32.66 35.53 27.79 36.05 27.62
WSA 40.40 32.56 39.20 31.14 36.50 28.47
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The 15 variable ensemble method applied to the historical data for the 12 sta-

tions test period produced RMSE values in the range from 24.27–42.88 mm/month,

and MAE values in the range from 19.18–33.15 mm/month. The 2–variable en-

semble method, where variable importance was assessed using the XGBoost algo-

rithm, when applied to the historical data for the 12 stations test period produced

RMSE values in the range from 27.73–48.11 mm/month, and MAE values in the

range from 19.41–35.35 mm/month. The 2–variable ensemble where variable im-

portance was assessed using the forward/backward selection algorithm, produced

RMSE values in the range from 22.89–40.93 mm/month, and MAE values in the

range from 19.22–31.21 mm/month.

Table 4.4: CMIP6 Method 2: Top 2 Variables

Top 2 variables Top 2 variables
XGBoost selected Forward/Backward selected

Station 1st variable 2nd variable 1st variable 2nd variable
BTL month label INM–CM4–8 month label EC–Earth3
LA CESM2–WACCM FIO–ESM–2–0 month label FIO–ESM–2–0
MUA CESM2 EC–Earth3–Veg month label MRI–ESM2–0
NB month label NorESM2–MM month label NorESM2–MM
OMIA MPI–ESM1–2–HR CAMS–CSM1–0 month label BCC–CSM2–MR
SSMA NorESM2–MM FIO–ESM–2–0 month label INM–CM4–8
SLA EC–Earth3 INM–CM4–8 month label EC–Earth3–Veg
TVPA CAMS–CSM1–0 EC–Earth3–Veg month label CAMS–CSM1–0
TIA BCC–CSM2–MR CAMS–CSM1–0 month label NorESM2–MM
TPIA BCC–CSM2–MR EC–Earth3 month label FIO–ESM–2–0
WTA CAMS–CSM1–0 INM–CM4–8 month label FIO–ESM–2–0
WSA EC–Earth3–Veg CESM2–WACCM month label FIO–ESM–2–0

The CMIP6 reduced ensemble method 2 using the top 2 variables returned

by the forward/backward algorithm provided the lowest overall RMSE and MAE

values, as seen in Table 4.3. The CMIP6 Method 2 top 2 variables used for

the 2–variable ensemble using forward/backward algorithm variable selection, are

compared to the top 2 variables used in the 2–variable ensemble using XGBoost
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algorithm variable importance in Table 4.4. As seen in Table 4.4, the month label

often appeared in the top 2 predictor variables when assessing variable impor-

tance. The historical predictions for the 12 climate stations are seen in Fig. 4.1

and Fig. 4.2. The predictive results of the full ensembles are very similar to the

reduced ensembles, and using the reduced ensembles improves the efficiency of the

predictive algorithm. Through tuning the parameters to be more personalized to

each station than the default parameters, the predictive accuracy of the algorithm

is improved.

4.4 Method 2: CMIP6 Future Projections

The focus of the future results was to find the average change in precipitation

across the 12 stations, to get an overall sense for the future monthly precipitation

trends across Ontario. One of the main assumptions we are making is that ac-

curately capturing the historical precipitation using the GCM data will allow us

to accurately predict future monthly precipitation data for those same stations.

The change in precipitation refers to the difference between the most recent 30

years of historical average monthly observations and the simulated future average

monthly data, and the relative change in precipitation refers to the relative dif-

ference between the simulated future average monthly data and the most recent

30 years of historical average monthly observations. The most recent 30 years

of historical monthly observations are 1963–1992 for Big Trout Lake, 1965–1994

for Toronto Island, and 1970–1999 for the 10 remaining stations. The differences

between the historical precipitation and simulated precipitation are calculated to
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show the change in precipitation in accordance to each of the three SSP. The dif-

ference is defined as the change in precipitation for the simulated period, from the

historical period. The relative difference in precipitation takes into account the

magnitude of the difference in comparison with the monthly historical average pre-

cipitation. Setting the historical average monthly precipitation values be defined

as xi,j and future average monthly precipitation values be defined as yi,j,k, where i

= month, j = station, and k = future time period. The differences are calculated

for the twelve months, twelve stations, and three future time periods, with i=1–

12, j=1–12, and k=1–3. The difference in precipitation is defined by Eq. 4.1 and

the relative difference in precipitation is defined by Eq. 4.2. The average change in

precipitation across the 12 stations, between the historical and future time periods

are seen in Fig. 4.3.

δi,j,k = yi,j,k − xi,j (4.1)

∆i,j,k = yi,j,k − xi,j
xi,j

= δi,j,k
xi,j

(4.2)

The results are noticeably different if instead the focus is on comparing the simu-

lated future predictions and the simulated historical predictions. Since the future

predictions are based on the historical predictions, the difference between the fu-

ture predictions and historical predictions are smaller than the difference between

the future predictions and historical observations. The difference between the sim-

ulated historical predictions (1990-1999) and the simulated future predictions are

seen in Fig. A1.3. There is an expected increase in precipitation for the winter

months, and an overall expected decrease in precipitation for the summer months.

These changes are heightened as the time periods move from more recent future

(2020-2049) to more the distant future (2080-2099).
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Figure 4.1: CMIP6 Method 2 reduced 2–variable ensemble (for-
ward/backward algorithm variable selection). Average monthly
predicted precipitation versus average observed monthly precipi-
tation, for stations 1–6.
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Figure 4.2: CMIP6 Method 2 reduced 2–variable ensemble (for-
ward/backward algorithm variable selection). Average monthly
predicted precipitation versus average observed monthly precipi-
tation, for stations 7–12.
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Figure 4.3: The average change, and average relative change, in
monthly precipitation between the simulated future precipitation
and observed historical precipitation.
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Chapter 5

Discussion

5.1 Evaluating Model Performance

The historical monthly precipitation prediction was used to evaluate the accu-

racy of the chosen statistical downscaling method of the XGBoost algorithm and

an ensemble of climate models. The prediction accuracy of the downscaling was

assessed using the metrics of RMSE and MAE, where the lower value of these

metrics equates with a stronger predictive ability. The results from the XGBoost

algorithm were compared to other prediction methods like regression, decision

trees, and regular boosting. XGBoost returned the lowest RMSE scores, which

validated its potential in predicting precipitation data. The first useful finding

was that weather variables and the month label, in combination with the climate

models, are helpful in predicting historical monthly precipitation for Ontario sta-

tions. One important result coming from the historical precipitation prediction

is that XGBoost is moderately useful for predicting historical daily precipitation,

but it is more useful in constructing a model for historical monthly precipitation.
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Extreme daily precipitation is often defined as the top 1% of wet days (Agel

et al., 2015). Extreme monthly precipitation does not have one single definition,

and for this project it is defined as the top 1%, or the 99th percentile of monthly

precipitation for each climate station. The concept of extreme monthly precipita-

tion is very station dependent and varies across different regions. There was an

attempt to classify extreme precipitation events and remove these extreme events.

However, the results from removing the extreme monthly events were very similar

in predictive ability to the results which included all monthly data points, and thus

the extreme events were not removed for the CMIP6 predictive analyses moving

forward. Using a reduced 2–variable ensemble returned very similar, and often

more accurate results than using a reduced 3–variable ensemble, and so the final

reduced model for each method included a 2–variable ensemble. It is noted that

the months October and December had the weakest predictions, and the largest

bias, when applying down–scaling method on the Ontario stations. On average,

December had the most over–predicted historical monthly precipitation, and on

average October had the most under–predicted historical monthly precipitation.

The differences between the predicted and observed monthly precipitation are seen

in Table A1.6.

An important result from the historical prediction is that using a multi–model

ensemble of climate model outputs, in addition to weather variables like temper-

ature and the factor variable month label, improves the ability of the XGBoost

algorithm to capture the cyclical nature of precipitation trends at each climate

station. Weather variables like mean minimum monthly temperature and mean
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maximum monthly temperature, are valued as important by the XGBoost algo-

rithm in the pursuit of predicting historical monthly precipitation. In the absence

of observed weather data, the month label is also very useful in helping predict

monthly historical precipitation for Ontario stations. It is noted that XGBoost

is able to predict the precipitation at a level which is similar to other previous

methods used for predicting historical precipitation (Wang et al., 2014), but it is

limited in terms of its accuracy due to its difficulty in capturing the output of more

extreme values. Through tuning the XGBoost algorithm parameters with a focus

on reducing overfitting, we can further improve the prediction of historical pre-

cipitation. In particular, the parameter tuning helps produce lower RMSE output

for the test period historical monthly precipitation. The final results are relevant

since the predictive ability of XGBoost proved to be superior in performance with

respect to its RMSE values when compared to a variety of methods like neural

networks, random forests, and linear regression. The XGBoost algorithm was able

Figure 5.1: CMIP6 Method 2 prediction accuracy versus AAP,
where prediction accuracy is measured using RMSE.

to accurately capture some of the variability in the monthly average precipitation

for the test set data, however, it is important to note that the final predictive re-

sults did have a large degree of bias for the larger observed monthly precipitation
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values. It is significant to note that the average annual precipitation is highly cor-

related with the RMSE values returned by CMIP6 Method 2 (ρ = 0.821). Fig. 5.1

shows the RMSE values returned by CMIP6 Method 2, plotted against the average

annual precipitation, for each of the 12 stations.

5.1.1 CMIP5 Method

Looking at the CMIP5 historical predictions, the top 2 variables often included

the temperature variables mean minimum monthly temperature and mean maxi-

mum monthly temperature. Additionally, the CMIP5 historical predictions were

strongly influenced by the downscaled GCM–RCM pairings of EC–EARTH.RCA4

and CanESM2.RCA4. It is important to note that in Fig. 5.2 the performance of

the CMIP5 RCMs are very similar in the predictive ability of the CMIP6 GCMs,

for both the full ensemble and the reduced 2–variable ensemble. In particular, the

CMIP5 method under Grid Search 1 returns results similar to the CMIP6 Method

2 under Grid Search 2. The CMIP5 method performs better prediction under the

full ensemble, than under the reduced ensemble.

Figure 5.2: Comparing the prediction results from the CMIP5
Method to the results from CMIP6 Method 1 and Method 2.
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5.1.2 CMIP6 Method 1

The 16 variable ensemble model applied to the historical data is compared to the

2–variable ensemble using the top 2 variables returned by the XGBoost algorithm

in Fig. 5.3. It is important to note that the full 16 variable ensemble returned very

similar results to the 2–variable ensemble. The two temperature variables often

appeared in the top 2 predictor variables when assessing variable importance in

for the 2–variable ensemble.

Figure 5.3: Comparing the prediction results from CMIP6
Method 1 and CMIP6 Method 2.

5.1.3 CMIP6 Method 2

Fig. 5.3 compares the 15–variable ensemble to the reduced 2–variable ensemble

using the top 2 variables returned by the forward/backward algorithm, and the 2–

variable ensemble using the top 2 variables returned by the XGBoost algorithm. It

is noteworthy that the month label often appeared in the top 2 predictor variables

when assessing variable importance in this final reduced model. As well, the full

15–variable ensemble returned very similar results to the reduced 2–variable en-

semble. The RMSE values for CMIP6 Method 2 were similar to previous literature
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on precipitation prediction including Ontario and global stations. It is noted that

there is a limited amount of available literature on the 12 Ontario stations that are

the focus of this research, so there are limited results to compare to the historical

prediction in this project (Wang et al., 2014; Li et al., 2020). The lowest RMSE

values occurred for the more northern stations of BTL, MUA and TVPA, and the

more southern stations of WSA, NB and LA had some the largest RMSE values

from historical prediction. There were no specific patterns for stations located

near water versus the stations that are located more in–land. For the CMIP6

historical predictions using Method 2 (F/B) as seen in Table 4.4, the most im-

portant variables across all 12 stations for monthly precipitation prediction were

the month label, and the GCMs FIO–ESM–2–0 and NorESM2–MM. In particular,

the top predictor was the month label which was the top variable for all 12 of the

stations, and the most important GCM was FIO–ESM–2–0, which was in the top

2 variables for 4 of the stations.

It is interesting to note that both of the RCMs that showed up the most in the

top 2 variables did not show up as being the most highly correlated with the average

monthly observed precipitation. This may have occurred since there is a difference

in the correlation structure between the training and testing periods, as well as

between each of the decades. The RCM CanESM2.RCA4 may have been useful in

accurately predicting the average precipitation for Ontario stations due to its use

of the Canadian Model of Ocean Carbon, and the Canadian Terrestrial Ecosystem

Model (GOC, 2018). It is interesting to note that the GCM FIO–ESM–2–0 which

showed up the most in the top 2 variables was not the most highly correlated GCM

with the average monthly observed precipitation for any of the 12 stations. The
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GCM FIO–ESM–2–0 may have been useful in accurately predicting precipitation

for Ontario stations due to its strong overlap with average observed monthly data,

as seen in Fig. A1.2 for stations 11 and 12, for the months June–September. The

GCM NorESM2–MM may have been useful in accurately predicting precipitation

for Ontario stations due to its low bias for total precipitation rate in the Ontario

region, as seen in Fig. 20 of Seland et al. (2020).

5.2 Improving the accuracy and efficiency of the

predictive methods

A grid search was used to select parameters that would improve individual station

predictive accuracy, using rolling window cross–validation. Parameters like γ and

λ were used to reduce overfitting the algorithm to the training data. Variable

selection was used to improve the efficiency of the predictive model. Two differ-

ent variable selection methods were used to extract the top 2 variables that had

the strongest predictive importance: variable importance calculated by the XG-

Boost algorithm, and forward/backward variable selection. The forward/backward

variable selection was assessed using the Akaike information criterion, and the XG-

Boost algorithm variable importance was assessed using the gain measure. The

two methods returned slightly different top 2 predictor variables, and the top 2

variables as returned by the variable selection method forward/backward selec-

tion returned the most accurate downscaled predictions. Using the 2–variable

ensemble to perform statistical downscaling returned similarly accurate results to

down–scaling using the full ensemble. Temperature data and the factor variable

month label were used to capture the cyclical trends over the period of a year. In
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particular, the mean monthly minimum temperature had a very strong impact on

predicting observed monthly precipitation for the majority of stations, and it was

often ranked in the top 2 variables by variable selection algorithms.

Figure 5.4: Comparing the prediction results from various levels
of parameter tuning using CMIP6 Method 2 reduced 2–variable
ensemble (variables from forward/backward selection algorithm).

There was an improvement in the predictive performance through tuning the

XGBoost algorithm parameters using a grid search, as seen in Fig. 5.4. Through

tuning the parameters from the default values to the fine tuned grid search, there

was a reduction in the RMSE values of up to 10mm/month. It is noted however

that the more fine tuned grid searches did not produce remarkably better results,

and for some stations they showed only a slight improvement. These results show

that a less detailed grid search (Grid Search 1: simple tuning) can perform equally

as well as a more fine–tuned parameter grid search (Grid Search 2: fine tuning).

A more detailed fine tuned grid search was also attempted, but it only improved

the RMSE values by a very small degree. Grid Search 2 returned values similar in

accuracy to the more detailed fine tuned grid search, but it is more computationally

efficient, taking less time and resources on the server.
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5.3 Future Precipitation Simulations

The results from CMIP6 Method 2 are used to simulate future monthly precipita-

tion for the years 2020–2099 in Ontario, under the three SSP as seen in Table 2.4.

The goal of the future simulations is to estimate the expected average change in

precipitation between the historical and the future time periods. The difference

between the most recent 30 years of historical monthly observations and the future

simulated monthly data, as well as the relative difference between these two time

periods were used to estimate the expected change in average monthly precipita-

tion. The mean relative change is a better representation of the significance of the

change in precipitation relative to the observed historical values, while the mean

change in average precipitation is a better representation of the magnitude of the

change in monthly precipitation.

The smallest change across all the stations, time periods, and SSPs was seen for

the month April, and the largest change across all the stations, time periods, and

SSPs was seen for the month September. As seen in Fig. 4.3, on average there is

an expected increase in precipitation for the months January and February and an

expected decrease in precipitation for the months July, September and October,

across all time periods and SSPs. For the three different time periods the expected

change in monthly precipitation is very similar across the three emission scenarios.

The change in precipitation is very similar for future time period 2050–2079 across

the three SSPs, and the most different for future time period 2080–2099 across the

three SSPs. The relative change is very similar for future time period 2050–2079

across the three SSPs, and the most different for future time period 2080–2099

across the three SSPs. The smallest relative change across all the stations, time
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periods, and SSPs occurred for August, and the largest relative change occurred

for September. It is notable that the largest relative change in precipitation occurs

for the month of January, at a 17–20% increase in precipitation between the two

time periods. Comparing the mean change in average precipitation between the

future time periods, the months March, April and August are the most similar

across the three time periods, and the months January, February and December

are the most different across the three time periods. June displayed the largest

difference in precipitation between the two time periods 2020–2049 and 2050–

2079 of 2.32 mm/month under SSP1–2.6. January shows the largest difference

between the two time periods 2050–2079 and 2080–2099 of 1.63mm/month under

SSP2–4.5. December displayed the largest difference in precipitation between the

two time periods 2020–2049 and 2080–2099 of 2.20 mm/month under SSP5–8.5.

Comparing the mean relative change in average precipitation between the future

time periods under the three SSPs, the months March, April, and October are the

most similar across the three time periods scenarios, and the months January, June

and December are the most different across the three time periods. In particular,

December shows the largest difference between the two time periods 2020–2049 and

2080–2099 of 3.24% under SSP5–8.5. June shows the largest difference between the

two time periods 2020–2049 and 2080–2099 under SSP2–4.5 of 2.01%, and January

shows the largest difference between the two time periods 2020–2049 and 2050–

2079 under SSP2–4.5 of 2.68%. February shows the largest difference between the

two time periods 2020–2049 and 2080–2099 of 1.25%. The differences between the

time periods and emissions levels are overall very small, but there is an overall

larger decrease in precipitation for the summer and fall months, and increase for

the winter months, as the greenhouse gas emissions increase in magnitude.

42



M.Sc.Thesis– Milena Hadzi-Tosev; McMaster – Mathematics and Statistics

Figure 5.5: Comparing simulation results (change in precipita-
tion) from the CMIP6 Method 2 reduced 2–variable ensemble, be-
tween the most northern stations and the most southern stations.

Looking at the most northern and the most southern stations with respect to

the expected change and relative change in precipitation under SSP1-2.6, from the

historical time period to the most near future time period 2020–2049. It is noted

in Fig. 5.5 that the change in precipitation between the most northern stations and

the most southern is the most different for months July, November, and December.

In particular, on average there is a larger decrease in the change in precipitation

for July for the more northern stations, compared to the more southern stations.

Additionally, there is a larger increase in the change in precipitation for both

November and December for the more northern stations. As seen in Fig. 5.6,

the overall trend for relative change in precipitation is that on average the more

northern stations have a larger increase, and the more southern stations have

a larger decrease on average. The relative change in precipitation between the

most northern stations and the most southern is the most different for months

January–March, and November–December. On average, there is a larger increase

in the relative change in precipitation for January–March for the more northern

stations, compared to the more southern stations. There is a larger increase in

the change in precipitation for November and December for the more northern
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stations.

Figure 5.6: Comparing simulation results (relative change) from
the CMIP6 Method 2 reduced 2–variable ensemble, between the
most northern stations and the most southern stations.
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Chapter 6

Conclusions and Future Work

This project investigated the ability of XGBoost and an ensemble of climate models

in predicting long term precipitation in Ontario. The predictive performance varies

across the 12 climate stations, and RMSE increases relative to the average annual

precipitation. Variable selection and parameter tuning contributed to improving

the efficiency and accuracy of the hindcast prediction. The predictive performance

of the algorithm is also improved through adding weather variables and the month

label. This may be due to the cyclical nature of these variables which improves

their ability to capture the cyclical trend of monthly precipitation. There is an

issue with XGBoost being unable to capture the larger magnitudes of precipitation,

which is in part due to the focus of the algorithm in minimizing RMSE, which then

also minimizes the variance. To accurately capture more near future predictions,

the most recent historical data should be used when available, which would contain

a correlation structure more similar to that of the near future.

The predictions should be extended to cover more stations across Ontario to

confirm trends across various regions in the province. XGBoost is limited in its
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ability to accurately capture extreme values, as seen between the maximum ob-

served values, and the maximum predicted values, and this is an area that can be

further improved in future work. The prediction of monthly precipitation could

be improved by increasing the available training set of data, or adding an ex-

treme classification probability to each observed value, determining the chance of

that value being classified as extreme for a given station. Once the historical ex-

treme values are properly captured, the resulting ensemble method can be used

to simulate more accurate future monthly predictions. It is also possible to use a

combination of XGBoost and another machine learning algorithm, such as using a

Gaussian Mixture Model (GMM). The GMM could be used to cluster the training

data into M clusters, and the XGBoost algorithm could be applied to each of the

M clusters. Next, the probability of belonging to each of the M clusters can be

assigned for each of the observations in the test set. Each of the observations in

the test set could be predicted using the M different XGBoost algorithms. The

predicted values returned from each of the M algorithms could then be weighted

using the probability of each test data point belonging to each of the M clusters,

similar to the work done in Ni et al. (2020). Another suggestion for future work is

upgrading CMIP6 Method 2 to use the monthly temperature GCMs to capture the

monthly cyclical trends in precipitation. Temperature simulations tmax and tmin,

similar to the observed mean monthly maximum temperature and mean monthly

minimum temperature, might produce useful results as in the case of the histori-

cal predictions using CMIP6 Method 1. Finally, the upgraded CMIP6 Method 2

future predictions could be compared to the current CMIP6 future predictions to

see if the simulated temperature GCMs would result in very different predictions

under the three future climate scenarios.
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Appendix

Table A1.1: Assessing correlations between the RCM values and
observed average monthly precipitation (AMP) (1950–1999), be-
tween AMP and Mean Monthly Maximum Temperature, and be-
tween AMP and Mean Monthly Minimum Temperature (1950–
1999).

RCM: Highest Correlation Values
Station Correlation with AMP ρ(RCM,AMP ) ρ(maxtemp,AMP ) ρ(mintemp,AMP )

BTL CanESM2.CanRCM4 -0.739 0.892 0.930
LA MPI-ESM-LR.CRCM5 0.425 0.244 0.297
MUA CanESM2.CanRCM4 -0.631 0.882 0.916
NB CanESM2.CanRCM4 0.515 0.749 0.790
OMIA CanESM2.CanRCM4 -0.531 0.725 0.760
SSMA MPI-ESM-LR.CRCM5 0.600 0.479 0.588
SLA CanESM2.CanRCM4 -0.790 0.925 0.949
TVPA CanESM2.CanRCM4 -0.605 0.818 0.860
TIA CanESM2.CanRCM4 -0.468 0.716 0.750
TPIA CanESM2.CanRCM4 -0.691 -0.691 0.867
WTA MPI-ESM-LR.CRCM5 0.783 -0.218 -0.124
WSA CanESM2.CanRCM4 -0.756 0.797 0.794
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Table A1.2: Assessing correlations between AMP and average
monthly GCM values, for three time periods. Readers should refer
to Table 2.2 to find the corresponding GCM names.

Time Period 1950–1999 1950–1989 1990–1999

Station GCM ρGCM,AMP GCM ρGCM,AMP GCM ρGCM,AMP

BTL 4 -0.323 4 -0.343 14 0.431
LA 13 0.435 13 0.536 5 -0.479
MUA 6 -0.275 6 -0.313 4 -0.266
NB 14 -0.333 14 0.349 7 0.290
OMIA 1 -0.333 13 0.360 14 0.590
SSMA 13 0.554 13 0.606 14 0.647
SLA 4 -0.493 6 -0.551 1 -0.382
TVPA 14 0.250 14 0.245 10 -0.386
TIA 10 -0.509 10 -0.453 10 -0.593
TPIA 10 -0.680 10 -0.677 12 -0.612
WTA 13 0.846 11 0.853 13 0.765
WSA 4 -0.751 4 -0.692 12 -0.751

Table A1.3: CMIP5 Method reduced 2–Variable Ensemble, where
the parameters are tuned using Grid Search 1, parameter tuning
results.

Station Number Maximum Eta Gamma Column Minimum Sub
of Tree (η) (γ) Sampling Child Sample
Rounds Depth by Tree Weight

BTL 40 1 0.1 0.2 0.7 1 0.8
LA 40 2 0.1 0.3 0.8 1 0.7
MUA 40 1 0.1 0.3 0.7 1 0.6
NB 60 2 0.3 0.3 0.8 1 0.8
OMIA 70 1 0.4 0.3 0.7 1 0.8
SSMA 40 1 0.3 0.1 0.6 1 0.7
SLA 40 1 0.2 0.1 0.6 1 0.6
TVPA 40 1 0.4 0.3 0.7 1 0.7
TIA 40 2 0.4 0.3 0.6 1 0.6
TPIA 40 1 0.1 0.3 0.6 1 0.6
WTA 40 2 0.4 0.3 0.7 1 0.6
WSA 40 1 0.1 0 0.8 1 0.8
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Figure A1.1: Average monthly precipitation for the individual
GCMs versus AMP, stations 1-6.
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Figure A1.2: Average monthly precipitation for the individual
GCMs versus AMP, stations 7-12.
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Table A1.4: CMIP6 Method 1 reduced 2–Variable Ensemble,
where the parameters are tuned using Grid Search 2, parameter
tuning results.

Station Number Maximum Eta Gamma Column Minimum Sub
of Tree (η) (γ) Sampling Child Sample
Rounds Depth by Tree Weight

BTL 45 1 0.45 0.3 0.7 1 0.5
LA 70 1 0.5 0.05 0.9 1 0.5
MUA 60 2 0.5 0 0.5 1 0.6
NB 45 2 0.45 0.05 0.9 1 0.5
OMIA 45 2 0.2 0.3 0.9 1 0.8
SSMA 50 2 0.45 0.3 0.9 1 0.5
SLA 45 3 0.5 0.15 0.5 1 0.5
TVPA 40 2 0.5 0.25 0.7 1 0.5
TIA 45 1 0.5 0.3 0.6 1 0.5
TPIA 75 2 0.3 0.15 0.8 1 0.5
WTA 45 2 0.15 0.1 0.7 1 0.5
WSA 45 1 0.4 0.2 0.6 1 0.5

Table A1.5: CMIP6 Method 2 reduced 2–Variable Ensemble
(F/B), where the parameters are tuned using Grid Search 2, pa-
rameter tuning results.

Station Number Maximum Eta Gamma Column Minimum Sub
of Tree (η) (γ) Sampling Child Sample
Rounds Depth by Tree Weight

BTL 40 1 0.3 0.2 0.8 1 0.9
LA 40 2 0.3 0.2 0.8 1 0.9
MUA 50 1 0.3 0.2 0.8 1 0.9
NB 50 1 0.3 0.2 0.8 1 0.9
OMIA 50 1 0.3 0.2 0.8 1 0.9
SSMA 50 1 0.3 0.2 0.8 1 0.9
SLA 40 3 0.45 0.2 0.8 1 0.5
TVPA 40 1 0.45 0 0.8 1 0.5
TIA 45 2 0.5 0.05 0.5 1 0.5
TPIA 50 1 0.5 0.25 0.8 1 0.5
WTA 45 1 0.5 0.15 0.9 1 0.5
WSA 45 3 0.45 0.2 0.5 1 0.6
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Table A1.6: Difference between predicted and observed monthly
precipitation data, using the Method 2 reduced 2–Variable Ensem-
ble where the top 2 variables are chosen from the forward/backward
selection algorithm.

Month Mean Difference Maximum Difference Minimum Difference

Jan -2.34 17.309 -22.268
Feb 6.99 18.944 -2.937
Mar 5.62 17.226 -8.46
Apr -4.49 15.583 -20.036
May -3.88 9.753 -24.987
Jun 5.22 20.022 -12.538
July -7.87 3.534 -24.866
Aug 6.94 19.052 -14.552
Sept -7.52 11.702 -30.585
Oct -10.1 9.989 -23.434
Nov -3.37 11.054 -22.618
Dec 10.8 18.653 -1.272

Table A1.7: Correlation structure by decade for Station 12. The
correlations between the CMIP6 predictor variables and the ob-
served monthly precipitation (obs).

Time Period 1950-1959 1960-1969 1970-1979 1980-1989 1990-1999

Predictor Variable (xi) ρobs,xi
ρobs,xi

ρobs,xi
ρobs,xi

ρobs,xi

BCC–CSM2–MR -0.00756 -0.17638 -0.08258 -0.19534 -0.15233
CAMS–CSM1–0 -0.11463 -0.09533 0.06582 -0.09817 -0.11784
CESM2 -0.13253 -0.15824 0.01009 -0.10277 -0.13965
CESM2–WACCM -0.13285 -0.25552 -0.05912 -0.00630 -0.27150
EC–Earth3 -0.05990 -0.26493 -0.11774 -0.17886 -0.12251
EC–Earth3–Veg 0.12907 -0.16098 -0.22988 -0.11767 -0.03396
FGOALS–f3–L -0.00682 -0.13453 -0.09062 0.07844 0.01683
FIO–ESM–2–0 -0.12033 -0.10742 -0.02455 -0.02340 -0.04359
GFDL–ESM4 -0.08038 -0.17777 -0.05478 -0.14057 -0.17933
INM–CM4–8 -0.11001 -0.21844 -0.02357 -0.12670 -0.16074
INM–CM5–0 -0.11463 -0.19131 -0.07704 -0.17466 -0.15008
MPI–ESM1–2–HR 0.00662 0.09864 0.00559 -0.18475 -0.11067
MRI–ESM2–0 -0.14695 0.05430 -0.14705 -0.15366 -0.14822
NorESM2–MM -0.14337 -0.07781 -0.10325 0.01183 -0.08914
Mean Max Temp 0.09801 0.29467 0.15318 0.29800 0.14099
Mean Min Temp 0.11956 0.33221 0.19537 0.33752 0.15671
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Figure A1.3: Change in precipitation calculated using historical
and future simulations.
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