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Abstract

Modern neural networks are powerful predictive models. However, when it comes

to recognizing that they may be wrong about their predictions and measuring the

certainty of beliefs, they perform poorly. For one of the most common activation

functions, the ReLU and its variants, even a well-calibrated model can produce incor-

rect but high confidence predictions. In the related task of action recognition, most

current classification methods are based on clip-level classifiers that densely sample a

given video for non-overlapping, same sized clips and aggregate the results using an

aggregation function - typically averaging - to achieve video level predictions. While

this approach has shown to be effective, it is sub-optimal in recognition accuracy

and has a high computational overhead. To mitigate both these issues, we propose

the confidence distillation framework to firstly teach a representation of uncertainty

of the teacher to the student and secondly divide the task of full video prediction

between the student and the teacher models. We conduct extensive experiments

on three action recognition datasets and demonstrate that our framework achieves

state-of-the-art results in action recognition accuracy and computational efficiency.
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Abbreviations

ANN Artificial Neural Network

DNN Deep Neural Network

CNN Convolutional Neural Network

RNN Recurrent Neural Network

LSTM Long short-term memory

DRL Deep Reinforcement Learning

FLOP Floating Point Operation

KD Knowledge Distillation

KLD Kullback-leibler Divergence

MCFP Monte-carlo forward pass

SGD Stochastic Gradient Descent

FPS Frames Per Second

CPS Clips Per Second

FP False Positives

TN True Negatives

TP True Positives

FN False Negatives
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FPR False positive rate

FNR False negative rate
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Notation

V A full length video

Vi The i-th clip of a video

Ω A computationally expensive pre-trained clip classifier

Φ A computationally efficient clip sampler/classifier

T Arbitrary length for a video

s Network’s output logit vectors

p Output probability vectors after applying softmax to a network’s logit vector

p̃ Scaled probability vectors after applying temperature scaling

p̂ Modified probability vectors after applying confidence scaling

τ Temperature hyperparameter for distillation

z Ground truth scalar confidence score

z̃ Predicted scalar confidence score

λ Weight of the confidence loss

µ Weight of the positive component of the confidence loss

α The learning rate hyperparameter

K The number of sampled clips

H Empirical entropy
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Chapter 1

Introduction

1.1 Deep Learning

The human brain has 100 billion neurons. Each of these neurons is, on average

connected to 10,000 other neurons to exchange information. Some neurons feed other

neurons with data (e.g. vision, sound, pain), some other neurons control actions

like muscles, and most other neurons are hidden somewhere in between, continually

changing their signal strength in order for us to learn. Inspired by this abstract

understanding of biology, deep learning aims to model non-linear relationships of the

input data through an end-to-end differentiable architecture that can be optimized

with gradient-based learning. While neural networks have been around since the

1960s [1], they were later optimized with a popular form of gradient descent based

error propagation [2] (although this was independently rediscovered many times).

Architectures that comprise the backbone of today’s neural networks such as the

convolutional neural network (CNN) [3, 4] and the long short-term memory (LSTM)
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[5] were later introduced and have been applied to problems that took images, time-

series and natural language as input.

As of today, there has been tremendous progress and success made with research

on deep neural networks in a wide array of real-world artificial intelligence problems.

These algorithms’ effloresence has provided us with powerful models to solve problems

in computer vision, reinforcement learning and natural language processing, wherein

commercial applications focus on supervised learning to make artificial neural net-

works (ANN) imitate human teachers using human labelled data. In 2014, attention

mechanisms [6] allowed for locating information in theoretically infinite sized con-

texts. In 2015, the ResNet architecture [7] surpassed the human level accuracy in

the ImageNet classification challenge by increasing the depth of CNNs and tackling

the vanishing gradient problem. In 2016, the AlphaGo [8] reinforcement learning

agent beat the then human world champion Lee Sedol in the game of Go. In 2018,

human-level parity was achieved in the task of Chinese-to-English translation [9].

These successes can be mostly attributed to: (i) the increased complexity of the

models, (ii) the curation of many high-quality, large-scale datasets and (iii) the dra-

matical increase in computing power. However, this means that using large-scale

datasets is crucial to train deep neural networks, which can contain billions upon

billions of parameters. For example, the ImageNet [10] dataset, which contains more

than a million high-quality labelled images, facilitates the training of very deep CNNs

that acquire generic feature representations [11] transferable from the source tasks

(classification) to other tasks such as semantic segmentation, image captioning and

object detection.

2
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1.1.1 Video Recognition

Like image recognition, video recognition is an active research topic in the computer

vision community due to its significant potential for improving accessibility, better

video recommendation, video retrieval, and other contexts. The growth of online

social platforms and portable video recording devices has lead to an ever-increasing

amount of videos being captured, shared and consumed every day, consequently in-

creasing access to large scale datasets.

Training Datasets

Compared to their image recognition datasets, it is more challenging to aquire and

label video recognition datasets. Until recently, representative benchmark datasets

such as the UCF-101 [12] and HMDB-51 [13] only contained around 10K videos, a

number too small to be used for optimizing and training very deep spatiotemporal

neural networks from scratch. Before the introduction of larger benchmark video

datasets, many video recognition models were pre-trained on ImageNet and then

tuned on these video datasets.

In 2015, ActivityNet [14] was produced, which is somewhat larger and allows for

untrimmed action classification with a limited number of action instances. More re-

cently, the Kinetics dataset [15] was created and became one of the de facto video

dataset standards for video recognition. As of the time of writing, the dataset con-

tains [16] more than 650 K videos for 700 action classes. It has been shown that this

dataset is sufficient [17] to train generic feature representations for the task of video

recognition in spatiotemporal CNNs. Notwithstanding, even bigger datasets such

as Sports-1M [18], YouTube-8M [19] and IG-65M [20] have been produced. While

3
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Table 1.1: Action recognition datasets.

Dataset Objective Trimmed Collection #Category #Video
(all splits)

UCF-101 Fine-tuning Yes YouTube 101 13,320
HMDB-51 Fine-tuning Yes Movie 51 7,000
ActivityNet Fine-tuning No YouTube 200 19,994
Kinetics* Pre-training Yes* YouTube 700** 650,000
MiT Pre-training Yes YouTube 339 903,964
All datasets contain a single label per video.
* Videos can be untrimmed depending on the processing scheme.
** The kinetics dataset has several variations, with 400, 600 and 700 classes.

these datasets are larger than Kinetics, noisy and weakly labelled video-level annota-

tions prevents them from providing sufficient generalization capability to models after

training. Another dataset of note used in conjunction with Kinetics for pre-training

is the moments in time (MiT) dataset [21]. This dataset is larger than Kinetics with

close to a million videos. However, its ability to efficiently train a general represen-

tation is at best on par with Kinetics [22]. In Table 1.1 we provide a summary of the

mentioned datasets.

The datasets, as mentioned earlier, are usually utilized to measure a network’s

ability to learn. Therefore, they are mostly used to pre-train a spatiotemporal CNN

that is later fine-tuned on the specific video recognition task. Of the task-specific

datasets in this study’s scope, the Something-Something dataset [23] and the Jester

dataset [24] are better suited to benchmark temporal-related tasks.

As can be seen, in recent years, considerable effort has been made to address the

lack of data for video recognition, laying the foundation for the development of better

models for this task.

4
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Architectures

As opposed to images, videos have an additional temporal dimension. This extra

dimension requires us to model the temporal dependencies to understand temporal

tasks efficiently. In this study, we focus on models that target spatiotemporal visual

recognition. In the deep learning era, there are primarily three different categories of

models to extract a video representation:

• 2D CNNs, starting from the idea of CNN+LSTM [25] as their baseline. This

approach generally also involves a two-stream CNN [26, 27] architecture, one

stream for an RGB image and another stream to feed the optical flow to the

network.

• 2D CNNs augmented with temporal modelling [28, 29] blocks that aim to effi-

ciently propagate information through time.

• 3D CNNs that directly compute video volumes with spatiotemporal xyt kernels

(e.g. C3D [30], CSN [31] or 3D ResNets [17]) and (2+1)D CNNs (e.g. R(2+1)D

[32]) that perform similarly to 3D CNNs but separately process the spatial and

temporal volume at each stacked block.

The majority of models developed for action recognition focus on building powerful

clip-level classifiers that operate on short time-windows spanning several seconds [33,

30, 32, 31, 34, 35, 36]. The classifier is applied to all the clips across a video to

recognize actions, and the results are aggregated using an aggregation operator or

some more sophisticated spatio-temporal modelling technique such as a recurrent

neural network or weighted averaging.

5
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Even though initially 2D CNNs outperformed their 3D counterparts, the most

recent trend has shifted to focus on 3D CNNs which have started to significantly

outperform RNN and 2D CNN alternatives on video classification benchmarks. More

specifically, 3D and (2+1)D methods are said to be the most promising methods for

video recognition [17, 22]. Nevertheless, they also suffer from poor computational

efficiency and high parameterization, making them prone to overfitting.

Video Classification

Action recognition and video classification models are typically evaluated by two met-

rics: (1) classification accuracy and (2) number of floating-point operations (FLOPs)

per clip. Optimizing the second metric - which is commonly used to determine in-

ference efficiency - is a great challenge for large-scale applications due to the massive

number of parameters in deep spatio-temporal CNNs. Most modern action recogni-

tion models operate by first classifying individual clips (segments) of fixed temporal

length. Full videos are then classified by aggregating the clip-level predictions over

the full video. This aggregation can be done by averaging or a more sophisticated

approach (e.g. long-term filtering and pooling using temporal strides in [37]). How-

ever, the most common and practical approach is simple averaging. Applying a clip

classifier over all individual clips of a video stream may be reasonable when the video

length is known to be short. In real-world applications, however, such an assumption

does not hold. Videos may be more than a few seconds long, providing the classifier

with ample opportunity to misclassify, negatively affecting the video-level classifica-

tion accuracy. When accuracy is not that important, one could simply sample clips

at random intervals. Other recent works [38, 29, 39] perform equidistant sampling

6
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instead of sampling all clips or random sampling; that is, instead of averaging predic-

tions over all clips, predictions are averaged for K clips, sampled at equidistant inter-

vals over the video. This approach would improve computational efficiency; however,

the naive assumption of equidistant positioning for keyframes will make the models

inaccurate. In a real-world setting, aleatoric uncertainty (the uncertainty inherent in

the data) of input clips does not necessarily follow an equidistant distribution, and

there is still ample opportunity to misclassify by the classifier.

The goal of this thesis is to design an effective clip sampling scheme for methods

that utilize clip averaging for video classification.

1.2 Challenges

Given that most architectures for video classification task rely on a form of spatio-

temporal aggregating of clip-level results, two significant challenges arise. (1) Com-

putational efficiency : applying a clip classifier to the entire video is computationally

expensive. For instance, if a video is comprised of 18 clips, this would mean that each

clip has to go through a forward pass through an expensive but accurate 3D classifier.

In the case of a state-of-the art model such as I3D [40], this requires 11,289,856 Mega

FLOPs of computations in total. (2) Aggregation over incorrect predictions : ReLU

networks (and other variants of the ReLU, basically any network which results in a

piecewise affine classifier function) are shown to be biased towards producing high

confidence (probability) scores even after calibration [41] (which we will expand upon

later in Chapter 2); as such they can often produce high-confidence incorrect pre-

dictions. This means that by incorporating these high-confidence incorrect clip-level

predictions in the aggregate video-level score, the overall video-level accuracy will be

7
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negatively affected. In summary, we are paying a high computational price for worse

results.

A case study is shown in Table 1.2 below using the 3D ResNeXt-101 classifier [33]

on the Kinetics-600 dataset (validation set). Here the classifier takes as input clips of

shape 112 × 112 × 3 × 16, i.e. a stack of 16 RGB frames. The aggregation operator

is average pooling.

Table 1.2: Dense sampling vs. sampling only the best k clips

Dense Oracle
k = All k = 1 k = 5 k = 10 k = 15

ResNeXt-101 68.3 81.27 76.64 71.3 69.1

In Table 1.2, the top-1 accuracy on the Kinetics-600 video classification task is

shown. Here accuracy denotes cases where the true class matches with the most

probable class predicted by the model. Dense sampling applies the classifier to all

frames and averages the results. To calculate an upper bound for classification scores

we define an Oracle that cheats by looking at the label y and only considers clips that

yield the k highest classification scores for y to return an average prediction. The

maximum k is 18 (this is similar to how an upper bound was calculated in [42]). The

results are aggregated at the video level and averaged over the whole dataset.

Based on this case study, we can posit that by accurately discarding even a few

bad clips - clips that are incorrectly classified with high confidence - we can improve

the model’s classification performance. By taking a closer look at Table 1.2 we see

that as K increases, the Oracle’s accuracy also decreases. In simple terms, this means

that some videos are more challenging than others, where a classifier is only correctly

classifying a subset of clips out of all clips for a full video. Furthermore, in terms

8
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of computational efficiency, the detection of these clips should be less costly than

densely applying the classifier to all clips.

In order to address the two challenges, we propose a confidence distillation frame-

work. We propose a loss function to train a light-weight classifier using knowledge

distillation that also learns to predict which clips will be ambiguous for the teacher. In

other words, the student learns to output a score z̃ for its confidence in the teacher’s

correct classification of that specific input. By delegating the sampling task to the

student, we will only perform prediction on the best clips using the teacher model,

which leads to a reduction of computational cost. Furthermore, using this loss also

allows us to devise simple scheme to divide the prediction task between the student

and the teacher, depending on how difficult a clip is to classify. We show in exper-

imental results that using confidence distillation, the accuracy of a given clip-based

action recognition can be increased by up to 30% compared to other baselines and up

to 5% compared to expensive dense sampling; the mean time per video also decreases

by up to 30-70%. By dividing the classification task between the student and the

teacher, this reduction in video processing time can be further increased to 35-80%

at a negligible cost to accuracy. An overview of this framework is given in Figure 3.1.

1.3 Contributions

In this thesis, we make the following contributions:

1. We propose a confidence distillation framework that can be applied to any ReLU

based CNN. We take the “imperfectness” of the teacher in the distillation into

account using a custom loss function to learn to classify and estimate confidence

9
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jointly.

2. We propose a distillation loss function to train a classifier that also learns am-

biguity of the samples for the teacher. Using this loss also allows us to devise a

simple scheme to divide the prediction workload. More specifically, in this loss

function, the teacher would dynamically adjust the amount of information it

gives to the student based on 1) its confidence and 2) the student’s confidence.

Contrary to the previous work, we directly tackle learning clip ambiguity instead

of using clip redundancy as a proxy.

3. We show that confidence distillation outperforms other baselines through rig-

orous experiments. It performs up to 30% more accurately than both naive

approaches (such as equidistant sampling), and more sophisticated approaches

such as model-based sampling [43, 42, 44, 45]. Furthermore, it also outperforms

dense sampling in both long and short videos, not explored in previous work.

1.4 Organization of this Thesis

The rest of this thesis is organized as follows: The second chapter will be focused on

the related work. The third chapter will present a formulation of the problem and the

solution. The fourth will discuss the experimental settings, implementation details

and hyperparameter choices, with a final focus on ablation studies. The fifth chapter

will be dedicated to discussion of the results, conclusion and the directions for future

work.

10



Chapter 2

Related Work

A bird’s eye view of the problem of action recognition/video classification was given

in the previous chapter. This chapter will explain the relevant methods in more de-

tail as well as other work that is not related to action recognition but could be used

in this setting to solve this problem. More specifically, there are three categories of

recent work that are relevant: (1) Works related to video classification and action

recognition; (2) works on efficient video analysis and (3) works that inspire our ap-

proach in solving this problem, namely a succinct overview of model compression,

action localization and uncertainty in deep learning.

2.1 Video Classification

The task of video classification is to map an input video to a set of video classes. This

problem has been widely investigated in action recognition, where each video would

be mapped to a set of action classes; or, each video can have either one class at the

video-level or multiple classes at the timeframe-level. In this study, we focus on the

11
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Figure 2.1: A taxonomy of related work.

former.

Recent architectures for accurate action recognition are mostly designed by ex-

tending image classifiers with a temporal dimension while preserving the spatial

properties of each frame. Among them include directly transforming 2D models

[46, 47, 7, 48] such as Inception or ResNet to 3D [40, 17], adding RNNs on top of 2D

CNNs [25, 49, 50, 51, 52, 53], using two identical 2D CNNs or using more sophisti-

cated volume based convolutions [34, 54, 55, 30, 31, 32]. A taxonomy of related work

is given in Figure 2.1.

2.1.1 2D Convolutional Networks

Convolutions are standard operations in convolutional neural networks. Unlike the

convolution operation used in signal processing, the convolution operation used in

12
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deep learning has more resemblance to the cross-correlation operation. Suppose we

have an N × N image I and a convolution filter F with size f × f . The resulting

convolution Z from the image and the filter would be:

Z = F ∗N

Z[i, j] =

f∑
u=1

f∑
v=1

F [u, v]I[i+ u, j + v]

More simply, a convolution operation slides a filter across the input incrementally,

adding the results into each cell of Z at each step. In CNNs, this Z is fed into a

non-linearity function like ReLU to calculate the activations A of the current layer,

fed into later layers as inputs. The result of a single convolution filter is an area.

Typically images have multiple channels, and there are multiple convolutional filters

per layer whose weights are learned through back-propagation.

Recurrent 2D Networks

Figure 2.2: RNN and LSTM cells.

To model the temporal relations in a video, one approach is the Recurrent 2D

CNN architecture. In Figure 2.2 an overview of the main building blocks of RNNs and

13
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LSTMs are shown. These so-called hidden cells model complex temporal dynamics by

mapping input sequences (namely, frames of a video) to a sequence of hidden states

and then from hidden states to outputs. LSTMs [5] were designed to deal with the

vanishing / exploding gradient problem of RNNs through memory cells.

Models that incorporate this structure [25, 51, 53, 52, 49, 50] for action recognition

use the aforementioned building blocks for temporal modelling. For instance, in

Figure 2.3, the building architecture of [25] is shown as an example.

Figure 2.3: A 2D CNN + LSTM for Action Recognition.

Here all frames are passed through a 2D CNN backbone [7, 47, 46, 48] to produce

a low-level representation. These representations are then fed as features into an

LSTM architecture, and the prediction scores are aggregated in the end through an

aggregation function.
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Two-stream 2D Networks

A further extension of the above idea would be to incorporate motion information.

Typically this is achieved through designing a two-branch 2D CNN where one branch

takes optical flow (which is a handcrafted feature) as input [26, 27, 40, 56] and the

other branch is fed RGB frames. In Figure 2.4 the two-stream architecture of [26] is

shown.

Figure 2.4: The two-stream image and flow architecture.

Here frames for the spatial stream are sampled according to a sampling policy (for

instance, randomly), while the temporal stream corresponds to the optical flow over a

fixed number of adjacent frames. One issue with this design is from a methodological

standpoint, optical flow is a hand-crafted feature, which is undesirable in an end-to-

end optimized setting.

2.1.2 3D Convolutional Networks

Tough promising, recurrent 2D CNNs and two-stream CNNs are shown to be inferior

in terms of learning capacity at spatio-temporal modelling compared to 3D CNNs [17];

3D CNNs can outperform their 2D counter-parts as more data becomes available and

overfitting is less of an issue.
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Figure 2.5: 2D Convolutions vs. 3D Convolutions.

As seen in Figure 2.5, the main building block of 3D spatio-temporal neural net-

works is the 3D convolutional filter. The 3D convolution is an extension of 2D con-

volutions across time, i.e. instead of a single image, the input to a 3D convolutional

network will be a volume of many images.

Inflation and Direct Transformation

This simple transformation allows many powerful 2D CNNs [7, 47, 46, 48] to be

simply extended into a 3D one [40, 17, 54, 55, 30]. Although they provide superior

spatio-temporal modelling capabilities, before larger datasets such as Kinetics were

available, these models were prone to overfitting since a large enough dataset was not

available for pre-training.

Instead of training a 3D CNN from scratch, it is possible to pre-train a 2D CNN

[7, 47, 46, 48] on an image-based dataset and inflate that CNN into a 3D one [34, 40].
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In the I3D model, [40], a given pre-trained 2D architecture is inflated - endowed

with an additional temporal dimension - into a 3D model across all convolutional

and pooling layers, adding another dimension to enable spatio-temporal modelling on

input volumes with convolutional filters. For example, a given N ×N filter would be

inflated to N ×N ×N .

A downside to this approach is that it makes video architectures inherently biased

towards their image-based counterparts.

(2+1)D Convolutional Networks

In R(2+1)D [32], a 3D convolution block is decomposed into a 2D spatial convolution

followed by 1D temporal convolution, named (2+1)D convolution which is also closely

related to Psuedo-3D networks [54].

Figure 2.6: The (2+1)D Convolution. A) 3D convolution, B) (2+1)D convolution
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In Figure 2.6, an illustration of a simplified setting is given where the input con-

sists of a single feature channel of a spatio-temporal volume. A full 3D convolution

(A) is carried out using a filter with shape T ×D×D, where T and D denote tempo-

ral and spatial extents respectively. A (2+1)D convolutional block decomposes the

computation into a spatial 2D convolution followed by a temporal 1D convolution.

The number of 2D filters Mi here is chosen so that the number of parameters the

(2+1)D block matches that of the full 3D convolutional block.

Other 3D Convolutional Networks

In SlowFast [35], instead of processing one input volume of videos, an input clip is

decomposed into a low frame rate, low temporal resolution Slow pathway and a high

frame rate and higher temporal resolution Fast pathway. The Fast pathway uses fewer

channels, and the two pathways are fused using lateral connections. In [36] whether

the slow pathway is needed given a competitive fast pathway is investigated.

2.2 Efficient Video Classification

2.2.1 Efficient Architectures

There have also been many innovative architectures proposed for efficient video clas-

sification [39, 57, 38, 58, 59, 60, 31, 61, 62, 63, 64, 65, 66, 67, 68, 36]. Here the

idea is to optimize the architecture itself, while our framework is mostly architecture-

independent. For instance, in [36], a given 2D architecture is extended to an efficient

spatio-temporal one through a step-wise expansion approach over the key variables

such as temporal duration, frame rate, spatial resolution or network width. Similarly,
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efficient architectures [69, 70] using depth-wise and channel-wise separable convolu-

tions have recently been applied [39, 31] to video processing. In [29], an efficient

temporal shift module (TSM) is introduced to extend a ResNet to capture temporal

information using memory shifting operations. These approaches are orthogonal to

ours and can be applied in conjunction with the proposed method.

2.2.2 Input Sampling

There is also a line of active research on adaptive frame sampling techniques [71, 42,

72, 73, 74, 75, 44] to reduce the computational cost by not processing redundant parts

of the video.

At the clip-level, SCSampler [42] uses compressed features with softmax confidence

scores to score clips for their visual sampler and selects the top k clips. Similarly, in

IMGAUD2VID [44] multiple modalities such as audio and video are used to select

less redundant frames. Other state-of-the-art frame selection methods include rein-

forcement learning based approaches such as AdaFrame [74] which uses a single agent

with a global memory, and [73] that uses multiple agents to perform frame selection

collaboratively. By contrast, our method requires neither a complex RL policy gradi-

ent nor access to audio level features. Furthermore, by focusing on redundancy, the

effectiveness of these models diminishes as the size of the dataset becomes shorter

and there are less irrelevant sections in the video.

Additionally, many input sampling methods do not explicitly consider the classi-

fier’s uncertainty in sampling decisions. For instance, using the softmax confidence

scores is not a good surrogate for classifier confidence. When deployed in the real

world, machine learning models [76, 77] and ReLU networks specifically [78] often fail
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“silently” by providing high confidence predictions (giving a high probability to one

class) while being lamentably incorrect.

This is in fact the main motivation for designing the confidence distillation frame-

work. We make no such assumption that the highest probability score in the output

of the network indicates its confidence. Furthermore instead of complex policy gra-

dients or the need of access to multiple modalities, we sample the same input to the

network using the confidence distillation framework.

2.2.3 Other Related Work

Among other related work, adaptive computation aims to achieve decent recognition

accuracy while accommodating varying computational budgets. Among the earliest

work to save computations are cascaded classifiers [79] that quickly reject easy nega-

tive windows for face recognition. Another way to reduce computations related to our

work is knowledge distillation. Inspired by how humans learn, knowledge distillation

[80, 81, 82] is an approach to address the problem of compressing large models into

smaller models, achieving widespread success and recent efforts have been made into

understanding why it performs better than learning from raw data [83, 84]. More

specifically, in offline knowledge distillation, a pre-trained teacher trains the student

with a smaller size and efficient basic operations. Since a compression problem is be-

ing addressed, typically, the student is deployed without the teacher. Here we employ

both the student and the teacher to address the problem of efficient video analysis

cooperatively.

This form of two-step filtering and analysis has been utilized before in the context

of Action Localization. The goal of action localization is to designate the start and
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end of an action in an untrimmed video and then recognize the action class [85, 86,

87, 88, 56]. Most approaches to this problem have a two-step design [86, 87, 88, 56].

First, an action segment proposal method identifies a large number of candidate

segments. Subsequently, a sophisticated method validates each candidate and refines

the temporal boundaries. Translated to our approach, a less sophisticated student

model will designate candidate clips for the more sophisticated teacher model. A key

difference between this analysis of action recognition models and action localization

is that it is assumed that the class labels of each video belong to a single action class

for action recognition. Furthermore, both steps in action localization mechanisms

can be sophisticated and expensive. In some cases, sophisticated features like flow

[88] are used that are at least as expensive as computing one forward pass through

an expensive clip classifier. We aim to take high efficiency into account and, instead,

identify a small number of candidate clips using an efficient classifier before invoking

the expensive classifier.

Finally, a highly active and related area of research is the task of determining

when a network should say “I do not know.” or provide confidence and uncertainty

estimates of a network’s outputs. Work in this category includes Bayesian neural

networks [89], variational inference [90, 91] and more stable and simpler methods

such as Monte Carlo dropout [43] where measures such as predictive entropy are used.

Some methods learn unsupervised, unbounded [92] or bounded confidence values [45]

for classification and regression. In [43, 78], Predictive entropy is a measure applied to

capture aleatoric uncertainty; the type of uncertainty inherent in the data such as an

image of a number 7 that may appear similar to a number 1. In [45], a given untrained

classifier is regularized during training to detect out-of-distribution samples without

21



M.Sc. Thesis - Shervin Manzuri Shalmani McMaster - Computer Science

supervision. We take a different approach by having the student learn confidence

estimates of its teacher to maintain computational efficiency in the video analysis

task.
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Chapter 3

Approach

This chapter will focus on a formal definition of the problem and the learning objec-

tive of confidence distillation. Our goal is to perform accurate and efficient action

recognition in videos. We will first formally define our problem in Section 3.1; we then

introduce how to teach the student the notion of confidence - how confident it is that

the teacher will not make a mistake - using the teacher’s outputs and its alternatives;

finally, we present how this confidence score will be used to skip over ambiguous clips

in the video.

3.1 Problem Formulation

Given a video V , the goal of video classification is to map V ∈ RT×3×H×W of arbitrary

length T into a predefined set of C classes.

Because of the length of V and memory constraints, it is often intractable to

process and stack all the video frames together - which can be hundreds - into a single

deep network. As such, a majority of current approaches [26, 30, 40, 32, 93, 35] first
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train a clip classifier Ω(·) to operate on a short fixed-length video clip V ∈ RF×3×H×W

of F frames with spatial resolution H ×W , typically spanning less than a second.

Then, given a sample video, these methods apply the clip-classifier to all N clips

{V1,V2, . . . ,VN} where N = T
F

and padding is applied to the last clip when not

divisible. The final video-level prediction is obtained by aggregating the clip-level

predictions of all N clips. The aggregation is usually an average pooling operation,

but there have been other sophisticated schemes devised.

As the length of V grows, so does the computational cost. This makes inference

using these methods very costly. This can also result in poor prediction accuracy

since every incorrect clip prediction across {V1,V2, . . . ,VN} will negatively affect

the overall prediction for V . Given a pre-trained clip classifier, our goal is to train an

efficient classifier Φ(·) that can predict whether Ω(·) will misclassify a given clip Vi.

First, to address the problem of efficiency, we choose shufflenet-v2 as the backbone

for Φ(·). We specifically use the version with 3D convolutions for their superior

performance in short time-frame spatio-temporal modelling, high speed, and modest

learning capacity [39]. Next, we will address the learning objective of Φ(·).

3.1.1 Learning Objective

We consider three learning objectives for Φ(·) and experimentally compare them in

later chapters.

Training the sampler separately

A baseline and naive choice would be to train the sampler Φ(·) separately from the

classifier Ω(·) on the same training set D with one-hot labels. We have two options
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to train a sampler separately from Ω(·):

1. Training an efficient classifier Φst−ent(·) and calculating the predictive entropy

of the output as a substitute for confidence scores. Given a clip V as an input,

Φst−ent(V) yields a vector of prediction logits, the softmax function is applied

to this vector and finally, the predictive entropy of this vector is calculated as

a psuedo confidence score. We call this variant of Φ as the ST loss (Separate

Training) on entropy (ST-Ent).

2. Since no ground-truth values for confidence are available in this case, separately

train an efficient classifier Φst−conf (·) using the method in [45] to obtain unsu-

pervised confidence estimates. Using this method, the output of the network

will have two branches, one for classification and one for confidence estimation.

Given a clip V as an input, Φst−conf (V) yields a vector of prediction logits and

a confidence logit. Then the softmax function is applied to the prediction log-

its, and the confidence logit is passed through a sigmoid function to obtain a

confidence score z̃ ∈ [0, 1]. We call this variant of Φ as the ST loss (Separate

Training) on confidence (ST-Conf).

In both cases Φ will be trained as an action classifier that performs sampling.

Distilling only the confidence

Intuitively, training Ω(·) and Φ(·) independently implies that without supervision

signals from Ω(·), there is no guarantee that the sampler and the classifier would

agree on clip ambiguity. For us, only the clips Ω(·) finds ambiguous are relevant.

Therefore, to transfer ambiguity supervision signals from Ω(·) to Φ(·), we design

pseudo-ground-truth binary confidence labels on the training set D denoted zi as
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follows: Given that the ground-truth classification label for each clip Vi is y, we apply

the softmax function to the prediction logits from Ω(Vi) to obtain the vector of class

prediction probabilities p. We then find which class c has the maximum prediction

probability pc in p. The confidence score zi for each clip Vi are then defined as:

zi =


1 if argmaxc∈{1,...,C}(p) = y

0 otherwise

(3.1)

In other words, a clip has a confidence score of 0 when the pre-trained Ω(·) misclas-

sifies it. Then, the learning objective for Φ(·) corresponds to a binary classification

task on these confidence labels using binary cross-entropy as the loss function. It out-

puts a score between 0 and 1 for each clip that indicates whether the teacher is likely

to classify the clip correctly. In practice, the positive samples outnumber the negative

samples significantly; therefore we downsample the majority class during training. We

call this variant of Φ(·) the BCE-C loss (Binary cross entropy confidence).

Learning confidence scores as part of the classification task

Intuitively, when learning where one is likely to make mistakes, it would also help

to learn about the context; here, the context is the video class where some clips

belonging to harder classes can be more ambiguous than others. This prior could lead

to sparser, and more informative predictions [94]. For instance, to classify activities

between abseiling and hiking using binary labels, one would only know that a video

belongs to the “abseiling” class, and no information is given about similarities to other

classes; when the class distribution is softer - i.e. other than the highest probability
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class, other classes also have non-zero probabilities in the categorical distribution -

one can see that the video most likely belongs to the “abseiling” class, but it may

also be “hiking” with a lower probability. In the context of learning when the teacher

is likely to make mistakes, this dark knowledge [81] may be useful.

Inspired by multi-task learning [95], where a shared representation is learned for

multiple different tasks to improve the overall accuracy, we contend that learning this

shared representation would improve the accuracy of the sampler Φ(·) for the task of

detecting ambiguous clips.

In contrast to the loss variant introduced in Section 3.1.1, the idea behind teacher-

student knowledge distillation is that the output softmax or “soft” probabilities of a

trained teacher network contains a lot more information about a data point than just

the class label. For example, if multiple classes are assigned high probabilities for a

video clip, the clip may lie close to a decision boundary among those classes. Having

the student mimic these probabilities can assimilate some of the teacher’s knowledge,

providing information beyond the one-hot training labels.

Concretely, given an input video clip V the teacher network Ω(·) produces a vector

of logits st(V):

st(V) = [st1(V), st2(V), . . . , stC(V)] (3.2)

In order to produce “softened”, non-peaky and more informative probability distri-

butions from the logit vector st(V), temperature scaling is used alongside the softmax

function [81, 41] to produce p̃t(V):
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p̃t(V) = [p̃t1(V), p̃t2(V), . . . , p̃tC(V)] (3.3)

p̃tk(V) =
es

t
k(V)/τ∑

j e
stj(V)/τ

(3.4)

where τ is the temperature hyperparameter. The student model Φ(·) similarly

produces a softened class probability distribution, p̃s(V). The student also needs to

learn a confidence score z̃s(V) ∈ [0, 1] using the pseudo-ground-truth binary labels

defined in Section 3.1.1. This presents an interesting optimization issue: When the

student is learning to classify, we want the overall loss to decrease when it has correctly

classified the input; but in cases where the confidence score of a video clip is 0, pt(V)

as provided by the teacher would be misleading. To mitigate this issue, we modify

the loss function similar to [92, 96, 45], and guide the student by incorporating the

confidence scores into the distillation loss.

Imagine a student learning in a History class; a teacher is right most of the time

and seldom wrong. To learn from the teacher, the student must have confidence that

the teacher is right. When the student is confident, learning takes place by mimicking.

The teacher then proclaims that “Spartacus won the war against the Romans.” Based

on prior knowledge, the student may now think that the teacher may be wrong and

ask for more information from the teacher; “How did Spartacus win?” the teacher

would then be inclined to give more information to the student. Translated to the

distillation mechanism, this is akin to increasing τ when the predicted confidence
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is low. When τ → ∞, the pseudo-probability output classes would have a uniform

distribution. When the z̃ = 0, we would want τ →∞ and when z̃ = 1, τ → T which

is a hyperparameter.

Specifically, for a given video clip V we further modify the teacher’s probability

scores after applying the softened softmax function to pt(V) as:

p̂t(V) =


z̃ ∗ p̃t(V) + (1− z̃) ∗ U([0, 1]C) if z(V) = 1

(1− z̃) ∗ p̃t(V) + z̃ ∗ U([0, 1]C) o.w.

(3.5)

where U([0, 1]C) is the uniform distribution between 0 and 1 over the C classes

(the same shape as p̃t). In the overall loss function, we include a distillation loss

LKD to match the student and teacher outputs. Furthermore, to prevent a naive

solution of z̃ = 0 from being converged to as the training progresses, we add a binary

cross-entropy loss Lconf over the ground-truth confidence labels. The overall is then

given by:

L = zLKD(p̂t, p̃s) + (1− z)LKD(p̂t, p̃s) + λLconf (3.6)

wherein τ and λ are hyperparameters. In LKD(p̂t, p̃s) the similarity of the two

pseudo-probability posterior distribution vectors for input V of the student and the

teacher is measured using the KL divergence metric:
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LKD(p̂t, p̃s) = τ 2[− 1

n

n∑
i=1

p̂ti(V)log
p̃si (V)

p̂ti(V)
] (3.7)

which is equal to the difference between the cross entropy of the labels H(p̂t, p̃s)

and the empirical entropy H(p̂t):

LKD(p̂t, p̃s) = H(p̂t, p̃s)−H(p̂t) (3.8)

In essence, we include two KL distances. One to supervise learning under cer-

tainty and one for supervising learning under uncertainty. The two KL terms can be

integrated together to update the network parameters using gradient descent opti-

mization.

When the student is wrong about the teacher’s confidence, she can ask for more

information. When the teacher is wrong, and the student cannot tell, the teacher gives

hints by providing more information. This creates an optimization problem where the

most undesirable outcome is where the student-teacher confidences differ while the

student learns from the teacher. We refer to this loss variant as ConDi-SR (Confidence

distillation shared representation). A high-level overview of the framework is shown

in Figure 3.1.
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Figure 3.1: An overview of the distillation framework.

3.1.2 Inference

Sampling Algorithm

Using the afore-mentioned loss variants, we can train a sampler that outputs a z̃

sampling score. ST-Ent outputs an entropy score, while ST-Conf, BCE-Conf and

ConDi-SR all output a confidence score z̃ ∈ [0, 1] for each clip. After all the clips in

a video are scored by the sampler, the outputs are sorted to produce a ranked list in

descending order. The top K clips in the list will then be considered for classification.

A high-level overview of this algorithm is shown in Figure 3.2.

The yellow student prediction branch in Figure 3.2 indicates that this branch is

only used during training to provide supervision signals during backpropagation. It

can be safely removed during inference.
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Figure 3.2: Inference using only the teacher’s best clips.

Division of Inference Task

In the case of ST-Ent, BCE-Conf and ST-Conf losses we feed all top K clips to Ω to

be classified. However, in the case of ConDi-SR, we have more options. Since a shared

representation is being learned for both classification and confidence estimation in

these tasks, φ can be utilized to also classify identified good clips alongside Ω, dividing

some of the tasks and providing additional computation savings. In this case, two

ranked lists would be generated, one representing the uncertainty of the teacher (or

in other words, the confidence of the student that the teacher will be right) and one

representing the uncertainty of the student, where we can use the predictive entropy

of the student’s classification output.

To combine these two ranked lists, we use a hyperparameter Ks to denote the

number of top clips to be predicted by the student and feed the rest Kt = K −Ks to
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the teacher.

Note that while ST-Conf learns a shared representation of confidence and clas-

sification, it differs from ConDi-SR. In ST-Conf, the confidence scores represent the

confidence of the model itself while in ConDi-SR the confidence scores represent the

confidence of the student regarding incorrect classification by the teacher. This allows

ConDi-SR to be able to produce two meaningful ranked lists. A high-level overview

of this algorithm is shown in Figure 3.3.

Figure 3.3: Inference by combining the top Ks clips from the student and the top Kt

clips from the teacher.

In Figure 3.3, the predictive entropy of the student’s predictions is calculated over

the video clips of video V . These are then sorted, and a reference to the original

prediction vector for each H(psi ) is kept. Finally, only the top-Ks prediction vectors

are used based on their predictive entropy from the student, while the top-Kt pre-

diction vectors from the teacher are used. When the lists contain overlapping clips,
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the score for those clips is averaged between the student and the teacher. The overall

prediction vector for video V is calculated using an averaging aggregation operator.
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Chapter 4

Experiments

In the experiments, we consider the following: (1) Action recognition datasets that

encompass different types of learning challenges. (2) State-of-the-art 3D CNN based

action recognition architectures; and (3) Sampling baselines such as random sampling

and more sophisticated sampling techniques in literature.

4.1 Datasets

We consider the following datasets: (1) the Kinetics dataset [15, 97, 16], a video

recognition dataset generally used to determine a model’s capacity to learn. The

videos in this dataset are less than 10 seconds long, too short for many current

sampling approaches to be directly applied successfully; (2) the UCF-101 dataset [12],

one of the most widely used benchmark datasets; and (3) the Something-Something

V2 dataset [23], a dataset containing short but complex actions for spatio-temporal

reasoning in videos.

In Table 4.5 an overview of all the aforementioned datasets is given.
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Table 4.1: Experiment datasets.

Dataset Instances Average Length Classes
UCF-101 13320 7 101
Something-Something V2 220847 2-8 174
Kinetics Varies 10 400-700

4.2 Models

We consider two baseline models for the teacher: 3D residual networks (3D-ResNeXt)

with 101 layers from [33]. We also consider a spatio-temporal network with 2+1D

convolutions [32]. For the student architecture we use a 3D ShuffleNetV2 [39]. Details

for each model are given in Table 4.2 below.

Table 4.2: Network baselines.

GFLOPs Params Depth Two-Stream
Baseline Model 3D ResNeXt-101 6.932 48.34M 101 No

R(2+1)D 6.321 38.76M 34 No
Sampler Model 3D ShuffleNet V2 0.360 6.64M* 26 No

Both teacher models are based on some form of spatio-temporal convolutions.

While this dataset is more suited for dense sampling, we show that the accuracy of

two state-of-the-art models can be improved compared to dense sampling by using

confidence distillation.

4.3 Sampling Baselines

For sampling baselines we consider a few simple and more complex options. All

samplers have a hyperparameter K that determines how many clips are sampled per

video.
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Figure 4.1: Random clip sampling.

Random sampling

Random sampling chooses K clips from a video randomly. The results over the

datasets are shown after 3 random passes over the datasets with different seeds. An

illustration of random clip sampling is shown in Figure 4.1.

Equidistant sampling

Equidistant sampling chooses K clips at equidistant time intervals. This is similar to

i-Frames in compression. An illustration of equidistant sampling is shown in Figure

4.2.

37



M.Sc. Thesis - Shervin Manzuri Shalmani McMaster - Computer Science

Figure 4.2: Equidistant clip sampling.

Predictive entropy sampling

The entropy [98] of a random variable captures the average amount of information

contained in the possible outcomes of the variable. The higher the entropy, the more

information the associated outcome has. Given an input V , the predictive entropy of

a model trained on dataset Dtrain is:

H(y|V,Dtrain) = −
∑
c

p(y = c|V,Dtrain)logp(y = c|V,Dtrain) (4.1)

where the summation is done over all the classes that y can take. The maximum

predictive entropy is reached with the uniform distribution and the minimum predic-

tive entropy is reached with one-hot probabilities. This measure was used in [43, 78]

to capture aleatoric uncertainty reliably; this uncertainty is the type of uncertainty
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inherent in the data, such as an image of a number 7 that may appear similar to a

number 1.

To sample with an entropy score, we train the sampler variant from Section 3.1.1

without the confidence branch using a soft-label distillation loss [81]. An illustration

of a sampler model is shown in Figure 4.3.

Figure 4.3: Model based clip sampling.

Other model based sampling techniques

Sampling based on predictive entropy requires a trained model. Similarly, other

methods train a model to do the video clip or frame sampling [42, 44, 74] which are

complementary to our method although they solve a similar problem of sampling

a subset of the video frames for classification by the expensive Ω(·) classifier. For

instance, in all methods, it is assumed that the video is very long and the number

of sampled clips can be large. Since we don’t make an assumption on video length,
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[44, 42, 74] can be applied to a long video to reduce the search space and sample a

subset of the video frames, and confidence distillation can be used to choose a subset

of sampled frames. This forms a stack of samplers. One drawback is that these

methods are redundancy based and do not apply to all the datasets, specifically those

with shorter videos. We will be comparing the reported results directly where a result

has been reported on the target dataset by the original authors.

Oracle Sampler

To calculate an upper bound for classification scores, we construct an Oracle sampler

similar to [42] which was previously referred to in Chapter 1. Oracle cheats by

looking at the ground-truth label y and only considers clips that yield the k highest

classification scores for y to return an average prediction.

4.3.1 Implementation Details

We have implemented the models using the PyTorch package. Nvidia P100 GPUs

have been used for testing the models. Both the teacher and student take stacks

of 16 × 3 × 112 × 112 clip volumes. For distillation hyperparameters, we use τ ∈

{0.9, 1.0, 2.0}. For confidence, we use λ = {0.5, 1.5, 2.0} and K ∈ {1, 3, 5, 7, 10}

where applicable. In knowledge distillation literature, τ is typically chosen to be a

large number like 5 or 20 in the beginning and may be annealed. In our case, the

reasoning behind using smaller τ values is that the teacher’s entropy (information)

will be dynamically adjusted depending on the student’s confidence. As such, it is

intuitive to start with smaller values as the baseline τ .

For other hyperparameters, we start with a learning rate α = 1e− 2 on UCF-101
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and Something-Something V2 datasets. We use a learning rate of α = 1e − 1 for

training on the Kinetics dataset. The learning rate is reduced by a factor of 10 every

15 epochs. The confidence branch’s learning rate starts the same as the rest of the

network but is reduced by a factor of 10 every epoch after the first epoch.

The models trained on Kinetics are trained from scratch without pre-training

similar to [33]. The models trained on UCF-101 and Something-Something V2 are

pre-trained on Kinetics and then fine-tuned on the target datasets.

For classification metrics, we consider the Top-1 accuracy, denoting the true class

matches with the most probable class predicted by the model.

Class Imbalance

As discussed in 3.1.1, binary confidence labels were generated for the teacher and

Binary Cross Entropy is used as a regularizer on these labels during training to

prevent trivial solutions by the optimizer. The teacher is right more often than it is

wrong, and thus there are many more positive classes than negative ones. However, we

find that for our case, false positives in the predicted confidence score (in other words,

a bad clip being considered a good clip) would always negatively affect accuracy.

Therefore during training, we want to minimize the number of false positives predicted

by the student. To guide the optimizer in the correct direction, a higher weight µ is

placed on the positive component of Lconf . Here we experiment with µ ∈ 1.0, 1.5, 2.
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4.4 Experimental Results

4.4.1 Classification Accuracy

Kinetics

The Kinetics dataset is a widely used, large dataset for action recognition. The

dataset is big enough to train models from scratch. However, there are different

variants, and a percentage of video samples may not be available or accessible. Nev-

ertheless, we train a ShuffleNet-V2 based sampler on this dataset and report the

results. Please note that due to the lack of available models, the ResNeXt-101 is

trained on the Kinetics-600 dataset, and the R(2+1)D is trained on the Kinetics-400

dataset as teacher models. Testing is performed on the same dataset.

(a) Results on the Kinetics-600 dataset with
ResNeXt-101.

(b) Results on the Kinetics-400 dataset with
R(2+1)D-34

Figure 4.4: Results for the two teachers on the kinetics dataset. Yellow error bars are
shown for random sampling.

Yellow error bars in Figure 4.4 show values within a 1 standard deviation interval

for the 10 passes of random sampling. From Figure 4.4, we see that ConDi-SR and

ST-Ent perform the best while the rest of the baselines achieve poorer but compa-

rable results amongst themselves. As K increases, all methods converge to the same
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point representing dense sampling. The oracle has a steep curve as K increases.

This suggests that there exists label noise in the dataset [43]. Additionally, we see

that confidence distillation has up to 10% improvement compared to other baselines,

achieving the highest accuracy at K = 7. In Table 4.3 more detailed results at this

K is shown.

Table 4.3: Detailed results for K = 7 for Kinetics.

Model
Random
(Mean)

Equidistant ConDi-SR ST-Conf ST-Ent Dense Oracle

ResNeXt-101 66.7 67 72.1 66.1 67.4 68.3 76.14
R(2+1)D-34 63.4 64.03 72.4 66.02 68.1 68 84.3

In [42], an accuracy of 70.9% has been achieved on the same task with the R(2+1)D

model. Here we can achieve a higher accuracy of 72.4% using confidence distillation

without the need for utilizing multiple modalities.

UCF-101

Recall the statistics of the UCF-101 dataset in Table 4.5. The challenge with this

dataset is two-fold. Firstly the size of the dataset is too small to allow model training

from scratch, and therefore the student and teacher models need to be pre-trained

on the Kinetics dataset (here, we use Kinetics-600 for ResNeXt and Kinetics-400 for

R(2+1)D). secondly, the videos are too short for sampling methods such as SCSampler

[42] or IMGAUD2VID [44] to work effectively. In Figure 4.5, the performance of

applicable baselines is shown. The results shown are the mean values of test results

over the three official validation folds of the UCF-101 dataset for reproducibility.

In Figure 4.5, error bar lines have also been drawn for random sampling similar to

Figure 4.4. As shown in Figure 4.5, confidence distillation consistently outperforms
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(a) With ResNeXt-101 as the teacher. (b) With R(2+1)D-34 as the teacher

Figure 4.5: Results for the two teachers on the UCF-101 dataset. Yellow error bars
are shown for random sampling.

all baselines. We can also see an “elbow” shape appear at an optimal K. As we

increase K to the maximum for the dataset, all methods converge to dense sampling.

We see that the Oracle has a close to linear steepness, suggesting less label noise than

the kinetics dataset. Furthermore, we see that the BCE-Conf loss variant performs

close to or worse than random. This may be a result of a lack of supervision signals in

the labels used for that loss. Finally we also see that equidistant sampling performs

comparably to a naive sampler with ST-Ent and ST-Conf losses.

In Table 4.4 more detailed results are given for K = 5.

Table 4.4: Detailed results for K = 5 for UCF-101.

Model
Random
(Mean)

Equidistant ConDi-SR ST-Conf ST-Ent Dense Oracle

ResNeXt-101 89.53 89.53 91.1 89.5 89.7 89.74 92.96
R(2+1)D-34 86.07 86.12 87.4 87.01 87.08 87 89.25

While both models are based on spatio-temporal convolutions and the dataset is

more suited for dense sampling, we can improve the accuracy of both state-of-the-art

models by 2− 3%, averaged over the three official folds of the UCF-101 dataset.
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Something-Something V2

This dataset is a collection of trimmed video clips that show humans performing

pre-defined actions with everyday objects [8]. It allows for the development of mod-

els capturing a fine-grained understanding of basic actions. A characteristic of this

dataset is that even though each video belongs to a single class, that class can be a

combination of two other classes semantically. The dataset consists of 220847 videos

of 174 classes, split into training, validation and test sets containing 168913, 24777

and 27157 videos, respectively. For the experiments, the validation set is used as the

test set labels are not available. Similar to the previous dataset, We pre-train the

models on the Kinetics dataset and perform fine-tuning using the training data of the

Something-something V2 dataset.

(a) With ResNeXt-101 as the teacher. (b) With R(2+1)D-34 as the teacher

Figure 4.6: Results for the two teachers on the Something-something V2 dataset.
Yellow error bars are shown for random sampling.

Figure 4.6 shows the task is harder and using confidence distillation improves

the results only marginally compared to dense sampling. We also see that the error

bars for random sampling are larger, indicating that the key frames have a more
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non-uniform distribution. The optimal K = 3.

Table 4.5: Detailed results for K = 3 for Something-Something V2.

Model
Random
(Mean)

Equidistant ConDi-SR ST-Conf ST-Ent Dense Oracle

ResNeXt-101 34.94 34.87 38.4 34.76 34.9 38 41.4
R(2+1)D-34 28.16 31.12 34 31.16 32.01 32.9 36.3

More detailed results are shown in Table 4.5. Here while a small improvement is

made to dense sampling, the overall results indicate that more sophisticated spatio-

temporal modelling is needed to model this dataset’s correlations.

4.4.2 Computational Efficiency

As seen in Table 4.2, the implementation of the sampler’s architecture uses at least

an order of magnitude less floating-point operations than that of the teacher. Addi-

tionally, it has close to an order of magnitude fewer parameters. As we increase K,

the overall computational gains are reduced. Table 4.6 shows average time/video on

the UCF-101 and Kinetics datasets. We omit the Something-something V2 dataset

from this comparison as the average video length is too small.

Here we can see that for even a small dataset such as UCF-101, we can improve

the prediction accuracy and the computation time. When the dataset becomes larger,

as in the case of kinetics, this improvement becomes more prominent.

4.4.3 Dividing the Prediction Workload

In Section 3.1.2, we devised a simple approach to divide the workload between the

teacher and the student during inference. This is done by selecting a Kt and Ks for
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Table 4.6: Computational Savings @ different K values for ResNeXt-101 Teacher
model.

UCF-101 Kinetics

Method K Accuracy
Mean
Time/Video(s)

Accuracy
Mean
Time/Video(s)

ConDi-SR 1 89 1.24 65.2 1.31
3 90.02 1.9 67.3 1.89
5 91.2 2.31 69.4 2.28
7 90.5 3.1 71.5 3.05

Random/Equidistant 1 86.02/87.11 0.29 1 0.29
3 88.916/88.94 0.84 3 0.84
5 89.54/89.54 1.42 5 1.42
7 89.68/89.68 2.1 7 2.1

Dense All 89.8 2.9 68.3 5.22

the teacher and student to infer respectively where Kt+Ks = K. We show the results

of this division of labour in Table 4.7. We show the results for the Kinetics and UCF-

101 datasets. We omit the Something-something V2 dataset from this comparison as

the average video length is too small to show a significant difference.

Table 4.7: Dividing the workload between the teacher and student at different Ks

values for the ResNeXt-101 teacher model.

Dataset
(K)

Ks Accuracy
Mean
Time/Video (s)

UCF-101
(5)

0 91.2 2.31

1 90.65 2.16
3 90.105 1.96
5 89.03 1.7

Kinetics
(7)

0 71.5 3.05

1 70.99 2.9
4 69.51 2.6
7 66.89 2.17

While this approach will lead to a further increase of computational efficiency at a

small accuracy cost for the best Ks, it comes at an additional expense of time (sorting

the H(psi ) scores) and space (keeping both the Hps
i

and psi vectors in memory).
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We posit that the choice of dividing the workload will be application dependent.

Intuitively, this design choice is more pronounced in cases where a large number of

clips are being sampled and need to be classified (i.e. K is large). We similarly see

in Table 4.7 that the decrease in mean processing time per video is more pronounced

in the larger Kinetics dataset where K also tends to be larger for optimal values.

We can also compare the results to Table 4.6, where we see in some cases such

as at Ks = 1 for Kinetics a 5% increase in speed is achieved at the cost of less than

1 percent in accuracy. However we see that the division is more of a design choice

that is made possible through confidence distillation, while other approaches such as

[42, 74, 44] would not have this option.

4.5 Ablation Studies

In this section we explore the choices made to design the loss function and hyperpa-

rameters.

4.5.1 Hyperparameters

We find through grid search the optimal choices of learning rate α, positive weight

multiplier µ and loss parameter λ for ConDi-SR and finally the distillation tempera-

ture τ . Here we examine in-depth the rationales behind not using default parameters

for each choice.
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Positive Component Weight

For the choice of µ, we vary it from µ = 1, the default value for most binary classi-

fication tasks to µ = 1.5. The metric we compare is the false positive rate: FP
FP+TN

.

As discussed in Section 1.2, even a single false positive will hurt performance.

Figure 4.7: False positive rate for different µ values.

As shown in Figure 4.7, we see that by using the default weight of µ = 1, the

student will learn a trivial solution to confidence estimation. It will output uniform

scores for all inputs, which will reduce the overall loss since there are many more

positive examples. Since the worst outcome is false positives (i.e. a clip that will

lead to misclassification but is determined otherwise), this trivial solution will reduce

accuracy. With µ = 1.5, this problem can be mitigated, and more acceptable false-

positive rates are achieved over the validation set. We also find that using a higher

weight for µ beyond 1.5 will prevent the distillation loss LKD from decreasing at a
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reasonable rate.

Learning Rate

Typically, for classification tasks, a network’s learning rate α ∈ [1e−1, 1e−6] is used.

We find that for fine-tuning tasks (UCF-101 and Something-Something v2), α = 0.01

works best and for training from scratch (Kinetics) α = 0.1 works better. This also

holds when training the network with a confidence branch.

For the confidence score branch in ConDi-SR, we start with the same learning rate

as the rest of the network; starting with a higher learning rate (α ≥ 0.1) encourages

exploration of the loss landscape and escaping from sub-optimal local minimas. How-

ever, we find that the precision and recall over the validation set’s binary confidence

labels, diverges more quickly if the learning rate is dropped at the same rate as the

learning rate of the classification task branch. Therefore we reduce the learning rate

by a factor of 10 at every epoch but only for the confidence branch.

Temperature

In distillation literature [81] a value of τ > 1 is typically used to encourage more

information sharing between the student and the teacher by increasing the entropy

of the soft output labels. However, this is offset by a classification loss, which is kept

at τ = 1. In confidence distillation we omit the classification loss and only use the

LKD component of soft label distillation. We indirectly increase τ and the entropy of

the teacher towards infinity. The lower the student’s confidence, the higher τ will be

if she is right. As such, it is intuitive to start with a τ ≤ 1. We test with both τ = 1

and τ = 0.9. We find that there is not much difference between the two in terms of
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the overall loss. However, when τ > 1, the training fails to converge, indicating that

by using τ ≤ 1 which results in peakier output distributions when the teacher and the

student are both confident, we can provide better supervision signals in this loss. A

more peaky output means that the distribution is closer to the one-hot ground-truth

labels.

4.5.2 Loss Function Components

A naive approach to confidence distillation would be to use a loss function like below:

L = βLcls + (1− β)LKD + λLconf (4.2)

Here the loss is simply a linear combination of distillation loss [81] with a cross-

entropy regularizer to prevent trivial confidence scores. We discussed in Chapter 3

how this loss on its own would misdirect the student. In other words, the student

will not be able to decrease its overall loss when it correctly predicts the teacher’s

confidence score. Furthermore, Lcls will allow the student to cheat, reducing its overall

loss by learning to classify without learning a good representation of the confidence

scores. To illustrate this, consider a case study over the UCF-101 dataset.

Table 4.8: Different assumptions about loss function design.

ConDi-SR Naive Random
Method K Accuracy Accuracy Accuracy
ResNeXt-101 1 89 85.8 86.02

3 90.02 88.93 88.92
5 91.2 88.99 89.53
7 90.5 89.65 89.64

For confidence distillation we use the optimal hyperparameters (τ = 0.9, α = 0.01,
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µ = 1.5), for the naive loss we use the same hyperparameters, except we vary τ = 5

[81] and β = 0.9. We can see in Table 4.8 that the naive loss barely performs better

than random sampling and even in some cases, hinders performance slightly. This

is because it learns a trivial representation of confidence since there are not enough

supervision signals to guide the student on discriminating between good and bad

clips. As shown, We cannot expect a simple regularization term to do the job.

4.5.3 Summary

To summarise, in this chapter we showed that using confidence distillation, the effi-

ciency and accuracy of classifying actions using 3D neural networks can be increased.

We saw a 5% increase in accuracy as well as a 70% reduction in mean processing

time spent per video compared to dense sampling. We also saw that this reduction

in processing time can be increased to 80% when the workload is divided between

the student and the teacher at a small cost of accuracy. As the dataset sizes become

smaller, the efficiency and accuracy gains also become smaller as information becomes

more compact. However, even in these cases and in datasets such as UCF-101, we can

still gain 2% in accuracy and reduce mean processing time per video by 25%. Finally,

we showed that the problem requires a non-trivial solution, and trivial solutions such

as ST-Ent, ST-Conf or the loss function shown in Section 4.5.2, at best perform on

par with random sampling.
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Chapter 5

Conclusion and Future Work

In this thesis, we proposed a confidence distillation framework and demonstrated its

effectiveness in improving the prediction accuracy and computational efficiency of 3D

convolutional neural networks. We explored different choices of hyperparameters and

their effects on performance. We empirically evaluated the effect of this proposed form

of distillation on sampling for video recognition and found that the improvements are

noticeable across different datasets compared to baseline methods, with higher gains

when the dataset size is larger. We also showed that unlike other state-of-the-art

sampling models, our method learns a better estimate of confidence and is scalable

to small and large datasets, short and long videos. Here we have shown confidence

distillation to be effective when it is applied to the image modality. It would be of

interest to see if a similar improvement can be achieved when the student has been

trained using other modalities such as audio or optical flow.

While we have shown that confidence distillation is advantageous in efficient action

recognition, extending this method to other types of machine learning tasks is another

direction for future work. Additionally, different datasets have different characteristics
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related to label noise, out-of-distribution outliers, and adversarial attacks. It will be

interesting to investigate if confidence distillation provides any benefit to these tasks.

Furthermore, more experiments and analysis are needed to gain insights on why

confidence distillation works, other than acting as an indirect regularizer.

Finally, currently confidence distillation uses video clips (stacks of frames) in sam-

pling. Another promising direction for future work is to examine the effect of frame-

level sampling instead of clip-level in the accuracy/computational cost trade-off.
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