
Making Simulink Models Robust

with Respect to Change

Making Simulink Models Robust

with Respect to Change

By

Monika Jaskolka, B.Co.Sc., M.A.Sc.

a thesis

submitted to the Department of Computing and Software

and the School of Graduate Studies of McMaster University

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

Doctor of Philosophy (December 2020) McMaster University

(Software Engineering) Hamilton, ON, Canada

Title: Making Simulink Models Robust with Respect to

Change

Author: Monika Jaskolka

B.Co.Sc. (Laurentian University)

M.A.Sc. (McMaster University)

Supervisors: Dr. Mark Lawford, Dr. Alan Wassyng

Number of Pages: xi, 206

ii

For my husband, Jason

iii

Abstract

Model-Based Development (MBD) is an approach that uses software models

to describe the behaviour of embedded software and cyber-physical systems.

MBD has become an increasingly prevalent paradigm, with Simulink by

MathWorks being the most widely used MBD platform for control software.

Unlike textual programming languages, visual languages for MBD such as

Simulink use block diagrams as their syntax. Thus, some software

engineering principles created for textual languages are not easily adapted to

this graphical notation or have not yet been supported. A software

engineering principle that is not readily supported in Simulink is the

modularization of systems using information hiding. As with all software

artifacts, Simulink models must be constantly maintained and are subject to

evolution over their lifetime. This principle hides likely changes, thus

enabling the design to be robust with respect to future changes.

In this thesis, we perform repository mining on an industry change

management system of Simulink models to understand how they are likely to

change. Then, we explore the various modelling mechanisms available in the

Simulink language to see how they could support modular design with

information hiding. Next, we propose a module structure, syntactic interface,

and modelling conventions for Simulink designs, which are supported by our

iv

open-source Simulink Module Tool. Finally, we apply the proposed

techniques on case studies from the aerospace and nuclear domains, in order

to demonstrate their practicality and validate their effectiveness. Overall, the

approach helped support information hiding by encapsulating secrets and

facilitating likely changes. It also had a positive effect on interface

complexity, cohesion, and coupling. The larger system also exhibited

reductions to cyclomatic complexity, testing effort, and execution time, but

the smaller case study benefited less in these areas.

v

Acknowledgments

My sincerest appreciation to Dr. Mark Lawford and Dr. Alan Wassyng for

supervising me throughout my graduate studies. Thank you for encouraging

me and providing me with incredible opportunities that enriched my studies.

Many thanks to Dr. Jacques Carette and Dr. Ryszard Janicki for serving on

my supervisory committee, as well as for providing constructive input and

thought-provoking questions that shaped the course of my doctoral research.

I would also like to thank my external examiner Dr. Pieter J. Mosterman for

reviewing my thesis and for the interesting discussions at my defence.

Thank you to Dr. Vera Pantelic for her indispensable input and guidance. It

was a pleasure to work with you over the years.

Many thanks to my colleagues and friends from the McMaster Centre for

Software Certification (McSCert). I have immensely enjoyed publishing,

developing tools, and working with such a dynamic group. Thank you to

Stephen Scott for his collaboration on content presented in this thesis.

vi

Table of Contents

Descriptive Note . ii

Dedication . iii

Abstract . v

Acknowledgments . vi

List of Figures . xii

List of Tables . xv

List of Acronyms . xvi

1 Introduction . 1

1.1 Motivation . 1

1.1.1 Why Simulink? . 2

1.2 Research Questions . 4

1.3 Thesis Contributions . 5

1.4 Related Publications and Submissions 9

1.5 Thesis Outline . 10

2 Preliminaries . 11

2.1 Principles for Supporting Likely Changes 11

2.1.1 Information Hiding . 12

2.1.2 Modularity . 13

2.1.3 Encapsulation . 13

2.1.4 Separation of Concerns 14

2.1.5 Object-Orientation . 14

2.1.6 Aspect-Orientation . 15

2.2 Simulink . 15

2.2.1 Subsystems . 17

vii

2.2.1.1 Virtual Subsystem 19

2.2.1.2 Nonvirtual Subsystem 21

2.2.2 Library . 25

2.2.3 Model Reference . 26

2.2.4 Data Passing . 28

2.2.4.1 Data Store Memory 28

2.2.4.2 Goto, From, and Goto Tag Visibility 29

2.2.5 Workspaces and Data Dictionaries 29

2.2.6 Exporting Data . 30

2.2.7 Stateflow . 30

2.3 C to Simulink Concept Mapping 31

2.4 Chapter Summary . 32

3 Model Changes . 33

3.1 Related Work . 34

3.2 Methodology . 36

3.2.1 Tool Support . 38

3.2.2 Model Comparison Utility 40

3.3 Changes in Simulink Models . 42

3.3.1 What basic elements change the most? 44

3.3.2 What blocks are most often involved in changes? 46

3.3.3 What does a commit usually entail? 47

3.3.4 What are identified categories of change? 50

3.3.4.1 Changes to Interface Elements 54

3.3.4.2 Changes to Signal Routing and Attributes . . . 55

3.4 Chapter Summary . 56

4 Decomposition of Simulink Models 57

4.1 Related Work . 58

4.2 Comparison of Constructs . 60

4.2.1 Use in Industry . 61

4.2.2 Reusability . 64

4.2.3 Sharing of Program State 66

4.2.4 Information Hiding and Encapsulation 68

4.2.4.1 Limitation of Use 69

viii

4.2.4.2 Restriction of Data Passing 70

4.2.5 Code Generation . 78

4.2.6 Comparison Summary 81

4.3 Conversion and Limitations . 82

4.4 Conventions for Modularity . 83

4.5 Chapter Summary . 85

5 A Simulink Module Structure 87

5.1 Related Work . 88

5.1.1 Model Structure . 88

5.1.2 Interfaces . 91

5.2 A Simulink Module . 92

5.3 A Simulink Module Interface . 94

5.3.1 Definition . 96

5.3.2 Limitations . 101

5.3.3 Representation . 102

5.3.4 Benefits . 102

5.4 Modelling Guidelines . 105

5.4.1 Simulink Functions . 105

5.4.2 Interfaces . 108

5.5 The Simulink Module Tool . 111

5.5.1 Subsystem to Simulink Function Conversion 111

5.5.2 Scope Changes . 112

5.5.3 Function Calling . 114

5.5.4 Automatic Function Configuration 115

5.5.5 Interface Generation . 116

5.5.6 Dependency Viewing . 117

5.5.7 Guideline Checking . 117

5.6 Chapter Summary . 117

6 Case Studies . 120

6.1 Evaluation Methods . 120

6.1.1 Design Equivalence . 121

6.1.2 Information Hiding . 123

6.1.3 Interface Complexity . 123

ix

6.1.4 Coupling and Cohesion 124

6.1.5 Cyclomatic Complexity 125

6.1.6 Testability . 126

6.1.7 Performance Comparison 127

6.2 Aerospace Case Study . 127

6.2.1 Flight Control Computer (FCC) Components 128

6.2.1.1 Attitude and Heading Reference System

(AHRS) Voter 128

6.2.1.2 Helicopter Outer Loop Control (HOLC) 132

6.2.1.3 Helicopter Inner Loop Control (HILC) 132

6.2.1.4 Actuator Loop (AL) 133

6.2.2 Application of the Simulink Module Structure 133

6.2.2.1 Attitude and Heading Reference System

(AHRS) Voter 134

6.2.2.2 Attitude and Heading Reference System

(AHRS) Control 135

6.2.2.3 Actuator Loop (AL) 139

6.2.3 Using the Simulink Module Tool 139

6.2.4 Evaluation . 140

6.2.4.1 Information Hiding 141

6.2.4.2 Interface Complexity 142

6.2.4.3 Coupling and Cohesion 143

6.2.4.4 Cyclomatic Complexity 145

6.2.4.5 Testability . 146

6.2.4.6 Performance Comparison 147

6.2.5 Case Study Summary . 147

6.3 Nuclear Case Study . 148

6.3.1 Application of the Simulink Module Structure 149

6.3.1.1 Power Estimation (PE) Module 149

6.3.1.2 Entire Shut Down System (SDS) 150

6.3.2 Using the Simulink Module Tool 153

6.3.3 Evaluation . 157

6.3.3.1 Information Hiding 157

6.3.3.2 Interface Complexity 158

x

6.3.3.3 Coupling and Cohesion 159

6.3.3.4 Cyclomatic Complexity 161

6.3.3.5 Testability . 163

6.3.3.6 Performance Comparison 163

6.3.4 Case Study Summary . 164

6.4 Challenges and Limitations . 165

6.4.1 Variable-Step Solvers and Continuous States 165

6.4.2 Inheriting Sample Time 166

6.4.3 Block States . 166

6.4.4 Algebraic Loops . 167

7 Conclusion . 172

7.1 Summary of Contributions . 172

7.2 Future Work . 174

7.3 Closing Remarks . 177

A Construct Comparison Generated Code 178

A.1 Virtual Subsystem Generated Code 178

A.2 Atomic Subsystem Generated Code 183

A.3 Simulink Function Generated Code 188

A.4 Library Import Generated Code 193

A.5 Model Reference Generated Code 198

Bibliography . 207

xi

List of Figures

2.1 Simplified Simulink metamodel. 16

2.2 A simple Simulink example computing integer sums. 18

2.3 Summary of subsystems, classified as virtual and non-virtual. . . 20

2.4 Legend for Figures 2.5–2.8. 23

2.5 Case 1—Function Visibility of the Simulink Function is global.

Therefore, it is available in the model hierarchy. 24

2.6 Case 2—Function Visibility of the Simulink Function is scoped

and it is placed at the root. Therefore, it is available in the

model hierarchy. Outside of the model its name is qualified. . . 25

2.7 Case 3—Function Visibility of the Simulink Function is scoped

and it is placed in a subsystem. Therefore, it is only available

in the parent subsystem and its descendants. 26

2.8 Case 4—Function Visibility of the Simulink Function is scoped

and it is placed in a nonvirtual subsystem. Therefore, it is only

available in the subsystem and its descendants. 27

3.1 Methodology for examining and supporting model changes. . . . 37

3.2 Toolchain for extracting the change data set. 39

3.3 Examples of basic changes in Simulink models and comparison

trees. 43

3.4 Types of Simulink model elements that change. 45

3.5 Simulink block types that change > 20 times. 48

3.6 Median changes per commit. 49

3.7 Categories in the Simulink block library. 51

3.8 Categories of Simulink blocks that change. 54

xii

4.1 Simulink componentization constructs examined. 61

4.2 Definitions of componentization constructs in industry projects. 62

4.3 Uses of componentization constructs in industry projects. 62

4.4 An on-board diagnostics example from industry, showing

implicit Goto/From data passing. 73

4.5 Experiment with Goto/From input. 74

4.6 Experiment with Goto/From output. 75

4.7 A shifter position checking example from industry, showing

implicit Data Store Memory data passing. 77

4.8 Experiment with local Data Store Memory input. 78

4.9 Experiment with global Data Store Memory input. 78

4.10 Code generation model for the Subsystem construct. 80

4.11 Conventions to support public/private functionality. 84

5.1 Module structure in Simulink based on C. 93

5.2 Simulink interface data flow. 98

5.3 Interface representations for Figure 2.2a, as generated by the

Simulink Module Tool. 103

5.4 Restricted interface elements dashed/crossed out, per

Guideline 4 for production-ready models. 110

5.5 Simulink Module Tool: Convert a Subsystem into a Simulink

Function. 112

5.6 Simulink Module Tool: Change the scope of a Simulink Function. 114

5.7 Simulink Module Tool: Call Simulink Functions that are in scope. 115

5.8 Simulink lists an inaccessible Simulink Function in the list of

callable functions (centre), whereas the Simulink Module Tool

does not (right). 116

5.9 Simulink Module Tool: Generate interface and dependency views.117

5.10 Simulink Module Tool: Check module guideline compliance. . . 118

5.11 Simulink Module Tool: Example output of guideline checks. . . 118

6.1 Verification of equivalence between model versions. 122

6.2 Top-level view of the helicopter system example. 129

6.3 Original FCC decomposition. 131

6.4 Structure of the FCC before and after restructuring. 136

xiii

6.5 New FCC decomposition. 138

6.6 Implementation of a change in the FCC. 143

6.7 Structure of the FCC before and after applying a change to the

controller strategy. 144

6.8 Interface changes between FCC and the Library. 144

6.9 Structure of the SDS system, focusing on power estimation. . . . 151

6.10 PE module interface representations. 155

6.11 Interactions of the SDS system. 160

6.12 Original sensor trip example. 168

6.13 Correct new sensor trip example. 169

6.14 Incorrect new sensor trip example. 170

A.1 Simulink model for generating virtual Subsystem code in order

to determine C code outcomes. 178

A.2 Simulink model for generating Atomic Subsystem code in order

to determine C code outcomes. 183

A.3 Simulink model for generating Simulink Function code in order

to determine C code outcomes. 188

A.4 Simulink model for generating Library code in order to determine

C code outcomes. 193

A.5 Simulink model for generating Model Reference code in order to

determine C code outcomes. 198

xiv

List of Tables

2.1 Summary of Simulink Function scope. 23

2.2 Comparison of C and Simulink constructs. 32

3.1 Categories of Simulink blocks used in Figure 3.8. 52

4.1 Componentization summary fragment from the Simulink User’s

Guide [The MathWorks, 2019]. 59

4.2 Simulink construct support for encapsulation. 69

4.3 Summary of the comparison of componentization constructs. . . 83

5.1 Model structure recommended by MAB [The MathWorks, 2020c]. 90

6.1 FCC system module secrets. 135

6.2 FCC complexity, testing, and SiL performance comparison. . . . 146

6.3 SDS complexity, testing, and SiL performance comparison. . . . 161

xv

List of Acronyms

ACET Average Case Execution Time.

AHRS Attitude and Heading Reference System.

AL Actuator Loop.

AOP Aspect-Oriented Programming.

AUTOSAR AUTomotive Open System ARchitecture.

CLI Command Line Interface.

CMS Change Management System.

CR Change Request.

FCC Flight Control Computer.

HILC Helicopter Inner Loop Control.

HOLC Helicopter Outer Loop Control.

IMA Integrated Modular Avionics.

ISO International Organization for Standardization.

ITS Issue Tracking System.

LabVIEW Laboratory Virtual Instruments Engineering Workbench.

LVDT Linear Variable Differential Transformer.

xvi

MAB MathWorks Advisory Board.

MBD Model-Based Development.

MCDC Modified Condition/Decision Coverage.

MES Model Engineering Solutions GmbH.

MiL Model-in-the-Loop.

MISRA Motor Industry Software Reliability Association.

ms millisecond.

OOP Object-Oriented Programming.

PE Power Estimation.

PI Proportional/Integral.

PID Proportional/Integral/Derivative.

SCADE Safety Critical Application Development Environment.

SDS Shut Down System.

SDV Simulink Design Verifier.

SiL Software-in-the-Loop.

SysML Systems Modeling Language.

UML Unified Modeling Language.

WCET Worst Case Execution Time.

xvii

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Chapter 1

Introduction

We begin by presenting the motivation for this research in Section 1.1. Then,

Section 1.2 concisely sets forth the research questions. Section 1.3 lists the

contributions that address the research questions and Section 1.4 lists the

associated publications that resulted from the research. An outline of the

remainder of this thesis is given in Section 1.5.

1.1 Motivation

At the beginning of the computing era, software primarily consisted of small

programs, running on massive computers. Today, software has become

ubiquitous. Massive programs run on multiple small devices, many of which

are embedded in everyday objects. These programs can consist of over 100

million lines of code [Information Is Beautiful, 2015]. While the C language

remains the most widely used programming language for embedded

software [AspenCore, 2019; BARR Group, 2018], writing code by hand is

prohibitively time-consuming and error-prone because of the increasing

1

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

complexity of software [Broy et al., 2014]. To address these concerns, the

emerging software development paradigm of Model-Based Development

(MBD) has gained widespread adoption for the development of embedded

software via visual programming languages. Modelling languages such as

Simulink [The MathWorks, 2020e] address the aforementioned problems by

supporting automatic generation of C code, simulation capabilities, and

verification and validation earlier in software development [Kakade et al.,

2010]. Simulink has become one of the most widely used languages for

modelling embedded software systems in industry [Liebel et al., 2014, 2018].

However, models also suffer from growing complexity, making them difficult

to maintain and change [Dajsuren et al., 2013]. To combat the increasing

complexity in textual programming languages, ideas on structured

programming originated from individuals now considered to be pioneers of

software engineering [Broy and Denert, 2002]. In particular, Parnas’ design

principle of information hiding and ideas on stable interfaces are fundamental

to modern software engineering. Information hiding enables the building of

systems that are robust with respect to anticipated changes. In developing

systems according to this principle, qualities such as changeability,

maintainability, understandability, and development independence are

improved [Parnas, 1972a]. Therefore, information hiding is a valuable

software engineering principle that should be leveraged in the MBD world.

1.1.1 Why Simulink?

There exists a wide spectrum of modelling languages. In software engineering

in general, the Unified Modeling Language (UML) [Object Management

2

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Group, 2017] is the de-facto modelling language standard. However, in the

embedded software domain, where C is the most used programming

language, the use of structural diagrams such as class diagrams is less

relevant [Akdur et al., 2018]. In certain product domains, domain-specific

architectures such as AUTomotive Open System ARchitecture (AUTOSAR)

for automotive and Integrated Modular Avionics (IMA) for aerospace, are

favoured over the structural diagrams of UML or the Systems Modeling

Language (SysML) [Object Management Group, 2019].

The MATLAB [The MathWorks, 2020d], Simulink [The MathWorks,

2020j], and Stateflow [The MathWorks, 2020k] product family is the most

widely used environment for specifying the behaviour of embedded software

systems [Liebel et al., 2014, 2018]. Many major companies and agencies

across automotive, aerospace, telecommunications, medical, and industrial

automation industries actively use Simulink to develop their software and

products (e.g., Toyota, General Motors, Tesla, NASA, U.S. Air Force,

Boeing, Cochlear, Johnson & Johnson, etc.) [The MathWorks, 2020a]. The

popularity of Simulink is due to its comprehensive toolset and ability to

create executable designs that support simulation, early testing, and code

generation. MATLAB itself is also a popular, widely used programming

language in general [Spectrum, 2020], so the popularity of Simulink is also

tied to its close integration with MATLAB.

Many other modelling languages exist that can be viewed as alternatives

to Simulink, however they typically provide a subset of the capabilities of

Simulink or are not as widely adopted. Safety Critical Application

Development Environment (SCADE) [ANSYS, 2020] is a modelling language

specializing in the development of safety-critical systems. When mapped to

3

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Simulink, SCADE provides a subset of the capabilities of Simulink because it

is only capable of modelling the discrete part of a system [Caspi et al., 2003;

Colaco et al., 2017]. In this thesis, we too are primarily concerned with the

modelling of discrete systems, however, the point is that Simulink is more a

comprehensive modelling environment which likely contributes to its

widespread use. Likewise, Modelica [The Modelica Association, 2020] is

capable of modelling physical components, and is more comparable to the

Simscape extension to Simulink. In this thesis, we focus on the modelling of

controllers, rather than plant models. Laboratory Virtual Instruments

Engineering Workbench (LabVIEW) [National Instruments, 2020] is a

modelling language for implementing virtual measurement systems, and can

be compared to the Dashboard blocks available in Simulink.

Ptolemy II [University of California at Berkeley, 2020] is an alternative to

Simulink, however, it is an academic tool and as such, has not seen wide

adoption in industry. As a result, this thesis focuses on MBD using

MATLAB Simulink.

Another reason we choose to focus on Simulink is because of an existing

collaboration with an industrial partner that primarily uses this language for

developing production software. We used our partner’s software repository as

the basis for Chapter 3.

1.2 Research Questions

This thesis endeavours to address the following research question areas:

4

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

RQ1: Model Changes. How do Simulink models change over time? Which

parts of a model are particularly likely to change?

RQ2: Supporting Model Changes. How can the identified changes be

better supported in Simulink? What well-known software engineering

principles can be leveraged? How can the principles be supported in the

Simulink environment? Are currently available language mechanisms

sufficient? If the language is sufficient, how can the available mechanisms be

leveraged to implement information hiding? If the language is deficient, how

must it be augmented? Can tool support be provided to help support

changes?

RQ3: Validation. Do the contributions resulting from RQ2 benefit

designs, developers, and others? Are they practical for real-world systems?

What are the impacts on MBD designs and development activities (e.g.,

performance, complexity, and testing)? Are there any limitations?

The chapters in the main body of this thesis are focussed on each of these

three research question areas: RQ1 is addressed in Chapter 3, RQ2 in

Chapters 4 and 5, and RQ3 in Chapter 6.

1.3 Thesis Contributions

The novel contributions of this thesis are outlined below.

1. Data-supported insights into model changes over time, from

an industrial change repository. In order to propose solutions for

5

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

ensuring that Simulink models are robust with respect to change, we

must first understand how they change and identify areas on which to

focus. To date, there are currently no published industrial case studies

that describe how Simulink models change over the span of years. As a

result, we performed such an analysis on the software Change

Management System (CMS) provided by an industrial partner. This

provided novel insights into the changes that Simulink models undergo.

The results are presented in Section 3.3, and show that models

experienced an unexpected amount of changes to interfaces and model

structure. These findings shaped the approach that is proposed in this

thesis to make models robust with respect to change.

2. A comparison of existing Simulink decomposition constructs.

There are several constructs with which to structure a Simulink model.

Although MathWorks provides some guidance, no thorough comparison

of the decomposition constructs has been done, in particular examining

support for encapsulation and ultimately information hiding. As a result,

we perform an in-depth analysis and present the results in Section 4.

Although used more infrequently than the others, Simulink Functions

proved to possess qualities that are better suited for structuring models.

We chose to leverage this construct in our subsequent contributions.

3. The creation of a Simulink module concept. The current available

literature does not clearly describe how the concept of a module can be

used to structure Simulink models. We create the concept of a Simulink

module in Section 5.2 in order to be able to construct models that are

robust with respect to change.

6

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

4. The definition of a Simulink module syntactic interface. Well-

defined interfaces are crucial for achieving modularity in designs. The

current understanding of a Simulink model interface is deficient because

it fails to reflect all of the interactions that can occur. As a result,

in Section 5.3 we define the syntactic interface of a Simulink module, in

order to give developers a complete understanding of the model interface.

5. Four guidelines to address gaps in Simulink modelling

standards. Given the proposed Simulink module and interface

concepts, we provide novel modelling guidelines to assist developers in

utilizing the proposed approach effectively in practice. The guidelines

can also be used in general, without structuring a Simulink design as

we recommend in Contribution 3. The guidelines are described in

Section 5.4.

6. Two alternative Simulink modelling conventions. We recognize

that it may not always be appropriate or possible to restructure a

design so that it relies on Simulink Functions, such as in earlier versions

of Simulink that did not yet have this construct. For this reason, we

describe two novel modelling conventions that can be used to structure

a Simulink model to still support information hiding, albeit in an

alternative structure. These conventions are given in Section 4.4.

7. Two new open-source tools: the Model Comparison Utility,1

and the Simulink Module Tool.2 The Model Comparison Utility

was created to support the large-scale model comparisons required for

1https://doi.org/10.5281/zenodo.4321649
2https://doi.org/10.5281/zenodo.4321692

7

https://doi.org/10.5281/zenodo.4321649
https://doi.org/10.5281/zenodo.4321692

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Contribution 1. Currently, MATLAB lacks functionality to support

command line or programmatic querying of Simulink model

comparisons. This tool supplies several necessary functions for

searching and retrieving data about a model comparison. This enables

us to perform model comparison analysis over thousands of models.

This tool is described in Section 3.2.2. The Simulink Module Tool

automates several operations that are tied to Contributions 2-4,

including helping to structure existing models as Simulink modules,

generating syntactic interfaces, checking adherence to the guidelines,

and several others. This tool is designed to facilitate the application of

our contributions in a real-world setting. Its full capabilities are

presented in Section 5.5.

8. Two case studies in the aerospace3 and nuclear domains. Both

of these case studies were undertaken to apply and evaluate the

contributions on real systems of varying sizes and from two different

sources. They both found that our proposed module structure for

Simulink designs resulted in models that were more robust with respect

to change. Several other related criteria were evaluated such as design

equivalence, coupling and cohesion, cyclomatic complexity, testability,

and performance comparison, to better understand the impact of our

proposed Simulink module structure. The aerospace case study is

presented in Section 6.2. The nuclear case study is presented in

Section 6.3.

3https://mathworks.com/matlabcentral/fileexchange/56056-do178 case study

8

https://mathworks.com/matlabcentral/fileexchange/56056-do178_case_study

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

I was the primary creator/contributor of each of these contributions,

aside from what follows. Towards Contribution 8, I performed the first

proof-of-concept application on a portion of the nuclear case study, the

results of which I described in [Jaskolka et al., 2020b]. With my direction, an

undergraduate student assisted with the full treatment of the nuclear system.

This was followed by the aerospace case study, which I also guided and

described in [Jaskolka et al., 2020c].

I was the primary developer of the tools listed as Contribution 7. Two

students later contributed to these tools by implementing bug fixes and

enhancements. All contributors and their commit histories towards these

tools are viewable on GitHub.

1.4 Related Publications and Submissions

Below is a list of the publications related to the research presented in this

thesis. I am the first author on these publications.

• Bialy, M., Pantelic, V., Jaskolka, J., Schaap, A., Patcas, L., Lawford,

M., and Wassyng, A. (2016). Software engineering for model-based

development by domain experts. In Griffor, E., editor, Handbook of

System Safety and Security, chapter 3, pages 39–64. Elsevier,

Cambridge, MA, USA, 1 edition

• Jaskolka, M., Pantelic, V., Wassyng, A., and Lawford, M. (2020a). A

comparison of componentization constructs in Simulink. In SAE

Technical Paper, number 2020-01-1290, pages 1–16. SAE International

9

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

• Jaskolka, M., Scott, S., Pantelic, V., Wassyng, A., and Lawford, M.

(2020c). Applying modular decomposition in Simulink. In 2020 IEEE

International Symposium on Software Reliability Engineering

Workshops (ISSREW), pages 31–36

• Jaskolka, M., Pantelic, V., Lawford, M., and Wassyng, A. (2021).

Repository mining for changes in Simulink models (In Preparation)

• Jaskolka, M., Pantelic, V., Wassyng, A., and Lawford, M. (2020b).

Supporting modularity in Simulink models. arXiv:2007.10120 (In

Preparation)

1.5 Thesis Outline

The thesis is organized into six chapters, with Chapter 1 being this

introduction. Chapter 2 introduces the background concepts used throughout

this work and establishes our understanding of relevant design principles.

Chapter 3 presents the methodology and results for mining a CMS for

Simulink model changes. Chapter 4 presents the results of a comparison of

available Simulink model decomposition constructs. Chapter 5 presents an

approach for supporting modular design in the Simulink language while

leveraging information hiding and syntactic interfaces. Chapter 6 describes

the methods, results, and challenges in performing two case studies to

validate the contributions. Chapter 7 concludes with a summary and

directions for future work.

10

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Chapter 2

Preliminaries

In this chapter we introduce basic concepts used throughout this work.

Section 2.1 summarizes some software engineering principles and techniques

for supporting likely changes (hardware changes, behaviour changes, or

software design decision changes) that are touched on in this work.

Section 2.2 presents various Simulink language concepts, while Section 2.3

maps them to the C language.

2.1 Principles for Supporting Likely Changes

Information hiding is a seminal concept in software engineering, influencing

ideas of structured design and object-oriented design. This section presents

key concepts related to information hiding, which, although used extensively

throughout literature on software design principles, have no universally

accepted definitions. In particular, information hiding, modularity,

separation of concerns, and encapsulation are commonly used

interchangeably when discussing software design modularity. Although

11

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

related, they delineate different concepts. To avoid misinterpretation, we

establish their definitions as we understand them and as we will use them

throughout this work.

2.1.1 Information Hiding

Information hiding is a software design principle that provides criteria for

performing system decomposition [Parnas, 1972b; Parnas et al., 1985]. More

specifically, when dividing a system into a number of separate modules,

information hiding seeks to do so such that modules each localize, or “hide,”

a likely change from the rest of the system. Likely changes of a system arise

because of hardware changes, behaviour changes stemming from a change in

requirements, or changes in software design decisions (e.g., change in data

structure) [Parnas et al., 1985]. As a result, the main categories of modules

are behaviour-hiding, hardware-hiding, and software design decision

modules [Middleton and Sutton, 2005]. These likely changes are called

“secrets” because they should remain a secret from outside the module. This

is achieved by ensuring that the interface of the module does not reveal the

module’s inner workings through the passing of information that is too

detailed, arbitrary, or potentially changeable [Parnas, 2002]. The interface

must be designed such that it does not change when the module secret is

modified [Parnas, 2003]. Information hiding enables the division of labour, as

well as improves a system’s reusability, maintainability, complexity, and

testability [Korson and Vaishnavi, 1986; Parnas, 1972b; Parnas et al., 1989].

12

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

2.1.2 Modularity

A module is a component of a software system. It is a set of closely related

programs and data objects [Parnas, 2018, 1972b]. A module can also be

thought of as a work assignment for an individual or a group [Parnas, 2018;

Parnas et al., 1989; Parnas, 1972a]. Designing a system that is modular

means that the system is decomposed into simpler pieces, or modules [Ghezzi

et al., 2002]. Using information hiding as the principle to guide the

decomposition process will add the stipulation that each module of the

system should implement a single design decision or likely requirements

change (i.e., secret), and keep it hidden from the rest of the system.

2.1.3 Encapsulation

There are various definitions of encapsulation [Berard, 1993]. The simplest of

these definitions states that encapsulation groups data and functions together

into a single module [Schach, 2010], but does not describe the nature of the

module, such as the degree of visibility of its internals (i.e., whether the module

is a black, grey, or white box). In practice, encapsulation as supported by

different programming languages, comes with varying degrees of visibility. The

IEEE standard on vocabulary [International Organization for Standardization,

2010] also supports definitions of encapsulation that include notions of external

interfaces and access restriction.

The terms encapsulation and information hiding are commonly used

interchangeably, however, there is certainly a distinction between the two.

Firstly, information hiding is a principle for how to go about decomposing a

system into modules and encapsulation does not address this. Encapsulation

13

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

is a mechanism towards achieving information hiding, however, information

hiding describes what it is that should be encapsulated. Secondly,

information hiding states specifically that the internal module data is to be

hidden from other modules, whereas the definitions of encapsulation are

ambiguous in the most general case. Of course, how much data is able to be

hidden is dependent on the language, and even so, can potentially be

by-passed by the developer with bad design. In this work, we will adopt the

definition of encapsulation that describes it as a means of grouping data and

functions together as well as restricting access in order to hide

implementation internals.

2.1.4 Separation of Concerns

Separation of concerns is a design principle first introduced by Edsger

Dijkstra [Dijkstra, 1972, 1982]. Software concerns, such as features and

properties, are isolated and addressed separately [Ghezzi et al., 2002;

Sommerville, 2015]. Information hiding leads to separation of

concerns [Parnas et al., 1989]. Information hiding treats likely changes as the

concerns and, as with encapsulation, goes further by ensuring that concerns

are in separate black-box modules.

2.1.5 Object-Orientation

The object-oriented approach models the logical units of a system via classes

and objects, with inheritance relationships between the classes [Booch, 2004].

Specifically, classes are used to express modules in the design. The major

difference between the classes and modules is that a class can be instantiated

14

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

as one or more objects. Information hiding states that the classes should

contain a secret. Not only should it be grouped in a class, but the interface

of the class should prevent access to the secret. In object-oriented design, the

containment or scope of classes impacts access from outside the class, as well

as the class interface.

2.1.6 Aspect-Orientation

Aspect-Oriented Programming (AOP) was first introduced by Gregor

Kiczales [Kiczales et al., 2001]. Its aim is use aspects to encapsulate

crosscutting concerns that cannot be modularized using procedural or

object-oriented approaches. Examples of crosscutting concerns include

logging, security, exception management, and others that usually impact

several modules of an application. Although AOP is an approach for

decomposing systems, we do not focus on it in this work.

2.2 Simulink

Simulink [The MathWorks, 2020e] is a visual programming language for

creating time-based block diagrams. The Simulink language and its

accompanying Simulink development environment are an add-on to the

MATLAB environment. Several Simulink language metamodels exist

(e.g., [Dajsuren et al., 2013; Legros et al., 2010; Amelunxen et al., 2008]).

Figure 2.1 is a simple version that highlights the elements that are used

throughout this work. The Simulink language is fundamentally comprised of

the elements shown in Figure 2.1. A block diagram is a representation of a

model. It contains blocks, that represent various mathematical concepts

15

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Figure 2.1: Simplified Simulink metamodel.

(e.g., unit delay, gain, subsystem), provided by a built-in block library. The

Simulink block library provides 401 unique blocks. Blocks are further

specified via parameters. For example, the Value parameter of a constant

block is set to a number that specifies the block’s outputted value. Other

parameters that describe the block are read-only parameters. For example,

each block has a BlockType parameter that describes the kind of block it is.

The Simulink block library contains 150 unique block types. Blocks can also

be composed of a mask, which provides a customized appearance for that

block. Bocks are connected together via lines representing the passing of

data or control. Blocks usually have ports, which is where a line connects

blocks together. A block diagram can also be commented on through the use

of annotations. Block diagrams can be further customized through the use of

configurations, which specify parameters for simulation, diagnostics, and

other properties. The frequency with which blocks, lines, annotations, etc.

occur in Simulink models is discussed in Section 3.3.1.

16

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

A block diagram is stored as a Simulink model in either an .mdl or .slx

file. A Simulink model is the primary design artifact of a Simulink system.

Figure 2.2a shows a simple example model that computes the sum of positive

integers using three methods: using Product and Sum blocks (Figure 2.2b),

using a For Iterator Subsystem (Figure 2.2c, top), and using the Fcn block with

textual operations (Figure 2.2c, bottom).

In the following sections we describe in further detail the Simulink blocks

and other concepts that are integral to this work. We also provide analogies

for some Simulink constructs to the standard C language (C18) [IEEE, 2018]

to better understand Simulink and to eventually draw comparisons between

their design principles. This analogy is discussed further in Section 2.3.

2.2.1 Subsystems

In general, subsystems are types of blocks, with their BlockType parameter

set to SubSystem. There are many different kinds of subsystems, but they all

visually organize a model by grouping together a part of a model’s design. A

subsystem also introduces hierarchical layering (or levels), where its

contained elements are considered to be in a lower level of the hierarchy. All

the kinds of subsystem blocks available in Simulink are shown in Figure 2.3,

with a classification of their intended use on the left-hand side of the

diagram. There are many built-in varieties of subsystems that not only add

hierarchy, but also provide additional semantics, especially with respect to

the execution of the model. For example, the For Iterator Subsystem is an

Atomic Subsystem that also acts like a for loop, repeatedly executing its

contained elements for a number of iterations. Another example is the Code

17

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

(a) A Simulink model (in Interface Display view).

y	=	(u(u+1))/2

y

ArgOut1

u

ArgIn1

f()

f

2

Constant2

Product

1

Constant1

(b) Simulink Function subsystem from Figure 2.2a.

Copyright	1990-2013	The	MathWorks,	Inc.

2
Out2

1
Out1

10

N

In1 Out1for	{	...	}

For	System

(u	*	(u+1))	/	2

Fcn Display1

Display

(c) Model sl subsys for1 referenced in Figure 2.2a.

Figure 2.2: A simple Simulink example computing integer sums.

18

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Reuse Subsystem, which is simply an Atomic Subsystem with its Function

packaging set to Reusable function. We do not elaborate on these

subsystems, as they are too specialized to be pertinent for our purposes.

They can be thought of as Atomic Subsystems, with additional semantics for

iteration, branching, etc. We are primarily interested in subsystems that can

be used for modularization purposes.

Subsystems can be viewed as either virtual (Section 2.2.1.1) or nonvirtual

(Section 2.2.1.2) [The MathWorks, 2020j]. A virtual subsystem is any

subsystem block with the IsSubsystemVirtual parameter set to on, while for

a nonvirtual subsystem it is set to off. A virtual subsystem’s boundaries are

ignored when the block execution order is determined, while a nonvirtual

subsystem is executed as a unit. These two groups of subsystems are

delineated in Figure 2.3.

2.2.1.1 Virtual Subsystem

A virtual subsystem visually groups together a portion of the design,

however, it does not have any behavioural impact on the model nor the

generated code. It is simply a visual convenience for developers. The default

subsystem (see Figure 2.3) is a virtual subsystem. It is the most commonly

used kind of subsystem, so we refer to it simply as a Subsystem henceforth.

The Simulink engine expands virtual subsystems in place before the

execution of the model [The MathWorks, 2020j], akin to a C preprocessor

expanding a macro—but one time only.

19

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Subsystems

Virtual	Subsystems

Nonvirtual	Subsystems

State
Manipulation

Atomic
Execution

Textual
Code

Function

Variant
Management

Trigger	
Manipulation

Code
Generation

Manipulation

Conditional
Branch

Loop

Default

1 1

Atomic	Subsystem

1 1

CodeReuseSubsystem

1 1

Enabled	and
Triggered	Subsystem

For	Each1 1
N

For	Each
Subsystem

1 1

Triggered
Subsystem

1 1

Enabled
Subsystem

1)	Add	Subsystem	or	Model	blocks	as	valid	variant	choices.
2)	You	cannot	connect	blocks	at	this	level.	At	simulation,	connectivity	is	automatically	
determined,	based	on	the	active	variant	and	port	name	matching.

1 1

Variant	Subsystem

While	IteratorIC

1

IC
1while	{	...	}

While	Iterator
Subsystem

Reset

1 1R

Resettable
Subsystem

function

1 1
function()

Function-Call
Subsystem

For	Iterator1 1for	{	...	}

For	Iterator
Subsystem

1)	Add	Subsystem	or	Model	blocks	as	valid	variant	choices.
2)	You	cannot	connect	blocks	at	this	level.	At	simulation,	connectivity	is	automatically	
determined,	based	on	the	active	variant	and	port	name	matching.

1 1

Variant	Model

f

Simulink	Function

y	=	f(u)

Action	Port1 1
Action

Switch	Case	Action
Subsystem

Action	Port1 1
Action

If	Action
Subsystem

1 1

Subsystem

Event	Listener

?

Initialize	Function

initialize

u y

MATLAB	Function

Event	Listener

?

Reset	Function

reset
?

Event	Listener

Terminate	Function

terminate

Figure 2.3: Summary of subsystems, classified as virtual and non-virtual.

20

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

2.2.1.2 Nonvirtual Subsystem

Although there are many nonvirtual subsystems in Simulink, we firstly focus

on the Atomic Subsystem. An Atomic Subsystem is the most basic nonvirtual

subsystem as it only has its Is Subsystem Virtual parameter set to off. All

other nonvirtual subsystem blocks are variations of an Atomic Subsystem

(e.g., with additional parameters enabled or containing special blocks that

change behaviour), and/or are not pertinent to the goal of this evaluation

(e.g., textual implementation, loops). A special type of nonvirtual subsystem

is the Simulink Function, which is described below.

Atomic Subsystem An Atomic Subsystem is a Subsystem block with its

Treat as atomic unit parameter enabled. This ensures that the blocks in the

Atomic Subsystem are executed as one unit. The majority of other nonvirtual

subsystem blocks have additional abilities to control their execution in various

ways (e.g., Simulink Function, Triggered Subsystem, For Iterator Subsystem, etc.).

Simulink Function A Simulink Function is a kind of reusable subsystem.

It was first introduced into Simulink in version R2014b. It can receive input

via the conventional Inport and Outport blocks, as well as through

input/output arguments via the ArgIn/ArgOut blocks. It can be invoked

several ways: graphically via Function Caller blocks or using its prototype in

textual contexts, such as MATLAB Function blocks or Stateflow chart

transitions. As a result, a Simulink Function’s advantage is that it need not be

connected via signal lines to be invoked, and can be called many times from

multiple locations. A simple example of a Simulink Function is shown in

Figure 2.2a, where the Simulink Function y = f(u) is executed when its

21

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Function Caller block is executed. Figure 2.2b shows the contents of the

function.

A Simulink Function has a Function Visibility parameter (introduced in

R2017b) which, in conjunction with its placement in the model, limits the

accessibility, or scope, of the Simulink Function. The parameter can be set to

either scoped or global, but by default it is scoped [The MathWorks, 2020j]. The

rules for determining the scope are summarized in Table 2.1. An illustrative

example is also provided in Figures 2.5–2.8, where there are three models:

model1 which contains a Simulink Function, model2 which has a model reference

to model1, and model3 which model1 references. The Simulink Function symbol

displays the prototype of the function (i.e., fcn()) and this symbol’s placement

in the model tree denotes the hierarchical placement of a Simulink Function

in a model. The way in which the function can be called from the various

subsystems/models where it is accessible is printed in the subsystem nodes.

Subsystem nodes are empty if the function is not accessible from that location

in the model. The legend is provided in Figure 2.4.

Case 1 (Figure 2.5) A Simulink Function with global function visibility can

be placed anywhere in a model and will be accessible for external use in the

model hierarchy. We see that although the Simulink Function is in ss2, it is

available in model1 and any model in which it is referenced (in this example,

model2).

Case 2 (Figure 2.6) The Simulink Function has scoped visibility. As a result,

its placement in the model affects its accessibility. In this case, it is placed

in the root system. Thus, it is externally accessible in the model hierarchy,

22

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Table 2.1: Summary of Simulink Function scope.

Case Placement Function Visibility Scope

1 Don’t care Global External to Model
2 Root Scoped External to Model
3 Virtual Subsystem Scoped Internal to Model
4 Nonvirtual Subsystem Scoped Internal to Subsystem

Simulink Function

Model Reference

(Sub)system

(Sub)system containment

Model hierarchy where Simulink Function is in scope

Model hierarchy where Simulink Function is not in scope

LEGEND

Nonvirtual Subsystem

Figure 2.4: Legend for Figures 2.5–2.8.

specifically model2. The difference between a global Simulink Function and a

scoped Simulink Function placed at the root is in the way it is called. In the

latter, the function name must be qualified with the model reference block

name, as shown in the subsystems in model2.

Case 3 (Figure 2.7) If the scoped Simulink Function is placed in a subsystem

it is accessible in the parent subsystem and any descendants. In this figure, the

Simulink Function is not available above its parent subsystem. This is denoted

by the lined background.

Case 4 (Figure 2.8) A scoped Simulink Function placed in another

nonvirtual subsystem can be accessed only within that subsystem. Here we

see that ss2 is a nonvirtual subsystem, and as a result, the function can only

be called in ss2 and below. Placing a global function in a nonvirtual

23

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

model1

model2

model3

fcn()

fcn() fcn()

fcn()

fcn()

fcn()

fcn()

ss1

ss2 ss3

ss4

ss1

ss1fcn()

Figure 2.5: Case 1—Function Visibility of the Simulink Function is global.
Therefore, it is available in the model hierarchy.

subsystem is not permitted, per the Simulink language rules [The

MathWorks, 2020j].

The concept of a Simulink Function is analogous to a function in C, with

some semantic differences. While C functions are external by default, Simulink

Functions are scoped by default. In C, one can use functions from a different

source by including the header file. To use a Simulink Function from a different

model, that model must include a Model Reference and the function must have

external scope. C static functions support modularity by restricting the

scope of design details. In this case, the function’s name is invisible outside of

the file in which it is declared, and is analogous to a local Simulink Function.

24

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

model1

model2

model3

fcn()

fcn() fcn()

fcn()

fcn()

modelref.fcn()

modelref.fcn()

ss1

ss2 ss3

ss4

ss1

ss1

fcn()

modelref

Figure 2.6: Case 2—Function Visibility of the Simulink Function is scoped
and it is placed at the root. Therefore, it is available in the model hierarchy.

Outside of the model its name is qualified.

2.2.2 Library

A Library is a special kind of block diagram (or model) which contains a

collection of blocks. The contained Library blocks serve as prototype blocks

that can be repeatedly instantiated in many models. When used in a model,

the blocks act as a reference or link to the source Library block, and are

updated pre-compile time. Any updates to the Library will propagate into the

models that use the linked blocks. In general, one can place any subsystem

block into a Library in order to make it reusable in multiple instances. A

library block is akin to a normal (multi-use) macro in C.

25

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

model2

model3

fcn() ss2 .fcn()

ss2 .fcn()

fcn()

ss1

ss2 ss3

ss4

ss1

ss1fcn()

model1

Figure 2.7: Case 3—Function Visibility of the Simulink Function is scoped
and it is placed in a subsystem. Therefore, it is only available in the parent

subsystem and its descendants.

2.2.3 Model Reference

A model can be directly referenced from another model using a Model Reference

block. This effectively adds the contents of one model into another. Using a

Model Reference is a way that entire models can be made reusable. Like a

Library, any subsystem can be made reusable if placed in a model that is

referenced in multiple locations. The difference is that the entire model is

referenced, instead of only a particular block as in the case of a Library. In a

similar way that subsystems introduce layers in a model, each Model Reference

also introduces hierarchy [The MathWorks, 2020j]. Figure 2.2a shows a Model

26

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

model1

model2

model3

fcn()

fcn()

ss1

ss2 ss3

ss4

ss1

ss1fcn()

Figure 2.8: Case 4—Function Visibility of the Simulink Function is scoped
and it is placed in a nonvirtual subsystem. Therefore, it is only available in

the subsystem and its descendants.

Reference to the (built-in) MathWorks model sl subsys for1, displayed in

Figure 2.2c.

The use of a model reference is similar to the C preprocessing directive

#include. A referenced model is modelled independently, and is code

generated separately from the models in which it is referenced. A model

reference in some parent model will make available all exported Simulink

functions (see Section 2.2.1.2) to that parent model in a similar way that

including a C header will give access to externally defined functions and

variables.

27

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

2.2.4 Data Passing

The passing of data in a Simulink model is represented using signal lines.

However, constructs such as Goto/From pairs and Data Store Memory/Data

Store Read/Data Store Write blocks enable the passing of data implicitly

throughout a model, without a direct line connection. This is known as

hidden data passing because data can cross certain block boundaries (e.g.,

Subsystems) without being immediately evident [Bender et al., 2015].

In C, variable names represent stored data, while in Simulink data is

represented with (named or unnamed) signal lines. In C, there are ways we

can store and move data that are difficult to trace, using pointers for

instance. As mentioned previously, Simulink has a variety of ways of storing

and passing data that, if not used carefully, make it difficult to understand a

model’s data flow. For that reason, it is important to define interfaces of

modules to improve their understandability.

2.2.4.1 Data Store Memory

A data store is named memory that can be written to with signal data, and

as well as read. A data store can either be local to the model, or externally

defined and global to the model. There are three blocks for modelling data

store memory that is local to the model:

• Data Store Memory – Declaration of a named memory region.

• Data Store Read – Obtains data from the Data Store Memory.

• Data Store Write – Writes data to the Data Store Memory.

28

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

The placement of a Data Store Memory block in the model affects the ability

for its Data Store Read/Data Store Write blocks to access it. If the Data Store

Memory is placed in the top-level system, it is accessible within the entire

model. If placed in a Subsystem, it is accessible in the Subsystem and all layers

below it. In all cases where a Data Store Memory block is used, the scope

of the data is confined to the model in which it resides. Data store memory

can also be defined globally in the base workspace or a data dictionary as

a Simulink.Signal object, instead of a Data Store Memory block. This is the

usual use for production embedded code development. Figure 2.2a contains a

Data Store Write that passes data outside of the model.

2.2.4.2 Goto, From, and Goto Tag Visibility

Instead of using signal lines to pass data, Goto and From blocks can be used.

Data fed into a Goto is passed implicitly to all From(s) with the same Tag

parameter. A single Goto block can have multiple From blocks, but a From

may only receive data from a single Goto. The Tag Visibility parameter of

a Goto allows the scope of where the signal can be accessed in the model by

From blocks to be altered. This includes:

• local – Accessible in the same level of the hierarchy (default).

• scoped – Accessible to all levels at or below the Goto Tag Visibility block.

• global – Accessible to all levels of the model.

2.2.5 Workspaces and Data Dictionaries

Information that contributes to the specification and simulation of a Simulink

model can exist outside of the block diagram that forms a model, that is,

29

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

in the MATLAB (base) workspace, model workspace, and/or one or more

data dictionaries [The MathWorks, 2020j]. The MATLAB workspace is for

temporary data storage. For permanent data storage, a model workspace is

used to associate data with a model, or a data dictionary can store persistent

data in a separate .sldd file associated with one or more models. Workspaces

and data dictionaries are similar to a C module dedicated to storing/defining

external variables.

2.2.6 Exporting Data

The To Workspace block writes signal data to the base workspace as a variable.1

The To File block writes the signal data into a .mat file. Two To File blocks can

be seen in Figure 2.2a. Data is written incrementally to the file throughout

simulation, and if the file already exists, data is overwritten. These blocks are

analogous to the standard file output functions in C.

2.2.7 Stateflow

Stateflow [The MathWorks, 2020k] is another graphical language that is an

add-on to MATLAB or Simulink. It has separate syntax and semantics from

Simulink that includes state transition diagrams, state transition tables, and

truth tables. Full treatment of the Stateflow language is left to future work.

1The exception is a MATLAB function using a sim command to simulate a model. In
this case, the signal data is written to the calling function workspace.

30

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

2.3 C to Simulink Concept Mapping

In this section we draw an analogy between the Simulink and C languages

in order to better understand Simulink and to eventually draw comparisons

between their design principles. Surveys routinely list C as one of the most

widely used programming languages for embedded software [Spectrum, 2020;

AspenCore, 2019; BARR Group, 2018]. It is a language in which software

design principles have been thoroughly studied and applied over the years.

Although it does not support Object-Oriented Programming (OOP), modular

programming in C is a well-known technique [Kochan, 2014; Reddy and Ziegler,

2009; Qian et al., 2009; Oualline, 1997]. Similarly, Simulink is a very popular

modelling language in the embedded domain, and it too does not support

OOP. However, modular design for Simulink has not yet been introduced.

For this reason we believe there is a strong basis for comparison between

the two languages. Moreover, in our experience in industry, most developers

of Simulink models also work closely with C, because models are generated

into C code, and it is common practice to inspect model changes at the C

level. Therefore, explaining concepts with respect to C is an effective way of

introducing ideas that are easy for engineers to understand. Note, we do not

discuss how a model is generated into C code, but rather position a model as

the primary design artifact in Simulink, in the same way source files are in

C. We are interested in the design-time view of the software, rather than the

compile-time view.

The comparison between C and Simulink constructs, as explained

throughout Section 2.2, is summarized in Table 2.2. A Simulink model

(.mdl/.slx) is comparable to a C source file (.c). However, there is no

31

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Table 2.2: Comparison of C and Simulink constructs.

C Simulink

Source file Model
Header file Not Available
Include Model Reference
Function “Global” Simulink Function (Case 1)
Member function “Scoped” Simulink Function (Case 2)
Static function “Local” Simulink Function (Case 3 & 4)
Macro (single-use) Virtual Subsystem
Macro Library
Variable Data Store Memory
Goto/Label Goto/From
External data definitions Workspace/Data Dictionary data

notion of a header file (.h) and the interface that it provides. This is because

of the top-level block diagram not providing sufficient information about the

interface. This issue is explored in more detail in Section 5.3. Given this

mapping, Simulink Functions can be used with other Simulink constructs to

support modularity in a way that facilitates information hiding. This is

further described in Chapter 4.

2.4 Chapter Summary

This chapter summarized software engineering principles and techniques for

supporting likely changes. We will focus on information hiding and modularity

in subsequent chapters. We also described Simulink and C concepts that will

be used throughout this thesis.

32

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Chapter 3

Model Changes

In Simulink, models are the primary design artifact and, as with all software,

they must be constantly maintained and evolved over their lifetime. It is

necessary to develop models that support likely changes in order to assist

with development and maintenance processes. Thus, the types of frequently

performed changes must be understood, and appropriate language mechanisms

must be available to support these likely changes. However, Simulink model

changes are currently not well understood. In this chapter, we analyze an

industrial software repository and its version control system to provide insights

into the likely changes for Simulink.

Section 3.1 presents the current state of the literature. Section 3.2 presents

the methodology and tools used. Section 3.3 explains changes in Simulink

models in general, and then presents several more focussed analyses of changes.

Section 3.4 provides a summary of the results.

33

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

3.1 Related Work

Much work has been done to classify the changes of software in general.

Taxonomies of software evolution have been predominantly based on

evaluating the purpose of a change. Swanson [Swanson, 1976] created a

typology of three reasons for change: corrective (because of failures),

adaptive (because of changes in data or environment), and perfective (to

enhance performance, efficiency, etc.). The International Organization for

Standardization (ISO) added a fourth type: preventive maintenance, for

dealing with latent faults. The typology was expanded to a taxonomy of 12

types of software changes, grouped into four clusters: support interface

(evaluative, consultive, training), documentation (updative, reformative),

business rules (enhancive, corrective, reductive), and software properties

(adaptive, performance, preventive, groomative) [Chapin et al., 2001]. In this

work, we study software changes at a more basic level. We are less concerned

with the purpose of the change and more with what elements are changing.

There is much work on identifying changes in software systems developed

with textual programming languages at the source file level [Robbes et al.,

2008; Canfora and Cerulo, 2005; Ying et al., 2004], program element

level [Zimmermann et al., 2005], and code statement level [Giger et al., 2012;

Rysselberghe and Demeyer, 2004]. Other work is targeted at identifying

clones [Abd-El-Hafiz, 2012], predicting faults/defects [Kim et al., 2008; Hata

et al., 2010; Yatish et al., 2019], predicting vulnerabilities [Scandariato et al.,

2014; Neuhaus et al., 2007], etc. While these focus on textual code, we are

concerned with graphical models, prior to code generation. This is because in

34

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

MBD, the code is volatile and not the primary design artifact with which

developers interact.

Work is limited when it comes to categorizing changes for Simulink

models, particularly on how models evolve. Much of the work that has been

published is from a variant management perspective. There has been work

on detecting clones and variation points, and different authors classify

Simulink model variabilities in different ways. Ryssel et al. identify three

variations across models: adding/removing components, adding/removing

connections, and changing parameter values [Ryssel et al., 2010]. Schlie et al.

focus on two changes: adding blocks and adding hierarchical levels (i.e.,

inserting Subsystem blocks) [Schlie et al., 2017]. Haber et al. specify delta

operations as the addition, removal, modification, or replacement of

elements, where the elements in question are subsystems, connections, ports,

and model references [Haber et al., 2013]—a small subset of the Simulink

language. Alalfi et al. propose a taxonomy of Simulink mutations in order to

support the injection of clones into models, and later define a set of

variability operators for clone detection in a single model [Alalfi et al., 2014].

Mutations include layout modification, renaming blocks/lines,

adding/deleting blocks, changing block parameters, and Subsystem

grouping [Stephan et al., 2014]. The derived variability operators categorize

variations into five categories: block variability, input/output variability,

function variability, layout variability, and subsystem name variability [Alalfi

et al., 2019]. The results in that work were empirically derived from six

demonstration models from MathWorks. This is useful because it illustrates

how a group of experts modified relatively small examples. We also need to

35

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

analyze changes that occur in industry projects, where models can be

comprised of hundreds of thousands of blocks, and thousands of subsystems.

Current classifications of variations appear to be relatively ad hoc.

Nothing is said about the completeness of these classifications with respect to

the entire Simulink language, which is comprised of 150 unique blocks.

Current work focuses on specific blocks or operations, while neglecting

others. A more complete treatment of Simulink is required to better

understand where to focus evolution, maintenance, and variant management

efforts in the first place. In general, analyzing changes across different model

versions is needed. Our work considers changes to models made during the

development and maintenance phases of the software development lifecycle.

While the analyzed models belong to different software variants within a

software product line, we do not analyze the differences between the models

belonging to different variants.

3.2 Methodology

The overall methodology of this thesis is shown in Figure 3.1. The dark grey

steps used to analyze changes in industrial Simulink models are the focus of

this chapter. The tools used to support these steps are detailed in Section 3.2.1.

The light grey steps are the focus of subsequent chapters.

1. Extract Data: Relevant data from the repository is extracted by querying

the Issue Tracking System (ITS) for Change Requests (CRs). Labelling

of CRs is built into the ITS, as managers assign the Change Category and

Change Stimulus to each request. We use these designations to construct

queries to the CMS which return CRs that satisfy the query constraints.

36

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

1. Extract Data 2. Process Data

Change Request

Model SnapshotsChange Management
System

Rational Change

Rational Synergy

Issue Tracking
System

Model Changes

StatisticsChange
Dataset

n

n - 1

3. Develop Support 4. Validate

Case StudiesMethods
and Tools

Figure 3.1: Methodology for examining and supporting model changes.

For each CR, we further focus on those that have a change impact on

one or more control model files, and retrieve the before and after model

snapshots related to the change. To understand what elements were

changed and how they were changed, a model difference is performed

and saved for later processing.

2. Process Data: Statistics on the changes are gathered, computed, and

visualized. These are presented in Section 3.3.

3. Develop Support: Given an understanding of the most common model

changes, methods and tools are developed to support robustness with

respect to the changes. This activity is presented in Chapters 4 and 5.

4. Validate: The proposed methods and tools are then validated on case

studies to demonstrate and evaluate their effectiveness in supporting

changes. This activity is presented in Chapter 6.

We analyzed a proprietary software repository of an industrial partner,

which we are unable to name. A total of 1,354 repository commits were

retrieved, with 21,369 model snapshots collected. The dataset spans a time

37

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

frame of 6 years. These models contain 3,206,448 changed elements in total.

Data on 429,074 elements were discarded, pertaining to the following:

• Stateflow element changes. Stateflow is a graphical language with

separate syntax and semantics from Simulink. Full treatment of the

Stateflow language is left to future work.

• Parameter nodes. Usually, model elements that have had their

parameters changed are represented by a single node, where the node’s

Parameters attribute describes the modified parameters. When

parameters are more complex (e.g., structure array), they will instead

be represented with a node of their own, as a child to the model

element. These do not represent distinct elements in the model, so we

do not treat them as a standalone change.

• Nonfunctional and defaults changes. The MathWorks Simulink

Comparison Tool automatically applies filters to the comparison to

discard nonfunctional changes (e.g., layout) and block defaults. At the

time of writing, there is no way to remove these filters when performing

the comparison from the command line.

The remaining 2.7 million model change elements are analyzed in this

thesis.

3.2.1 Tool Support

The toolchain for the methodology described in Section 3.2 is shown in

Figure 3.2. The scripts surrounded with a solid line were developed as part of

this thesis, while a dashed line denotes third-party software.

38

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

MATLAB Script

Model
Comparison
Utility

Simulink
Comparison
Tool

Python
Script

CMS

Query

Download

Model
Difference

ITS

CRs

Modeln Modeln+1 Meta Data

Query

Difference
Tree

Change
Data Set

Figure 3.2: Toolchain for extracting the change data set.

39

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

This first step of the methodology is automated with a Python script that

uses Command Line Interface (CLI) commands of the CMS to query the CMS,

find those with models, and download their data. Next, the Model Comparison

Utility was developed to facilitate interactions with the Simulink Comparison

Tool output. A MATLAB script bundles these steps together and performs the

model differencing using the Simulink Comparison Tool, saves the comparison

tree, and then the Model Comparison Utility is used to create a database of

changes. The next section provides more detail on the Model Comparison

Utility.

3.2.2 Model Comparison Utility

Differencing between two models is natively supported in Simulink. Using a

method based on hierarchical XML comparison [Chawathe et al., 1996], the

Simulink Comparison1 Tool can generate a Word or HTML report of the

differences between the two models. As an alternative, the Simulink

Comparison Tool can also output the results in the MATLAB workspace as

an two n-ary trees of differences between two models, stored in an

xmlcomp.Edits object. If the two models are a single design before and after

changes have been made, the trees effectively represent model elements

before and after changes. We will simply call these models the before model

and after model. The nodes represent elements from the model, and links

between nodes are representative of the model hierarchy. Unfortunately,

MathWorks provides no built-in commands to be able to easily and

programmatically query or parse the trees from the command line or a script.

Moreover, extracting information from the tree requires thorough knowledge

1https://www.mathworks.com/help/matlab/matlab env/compare-xml-files.html

40

https://www.mathworks.com/help/matlab/matlab_env/compare-xml-files.html

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

of the tree structure and the object parameters, and thus is nontrivial. The

Model Comparison Utility2 is an open-source tool that was created to

facilitate such operations via a collection of commands.

The scripts provided by the Simulink Module Tool support searching the

comparison tree, getting node handles or paths, plotting the tree, and printing

a custom summary of changes. The following is a list of some of the functions

that this tool provides:

• find node – Searches the comparison tree for nodes with specific block

types, changes, names, etc.

• getHandle – Gets the handle of the model element associated with the

node from the comparison tree.

• getPath – Gets the pathname of the model element associated with the

node from the comparison tree.

• getPathTree – Gets the node’s full path in the comparison tree.

• plotTree – Plots the graph of the comparison tree.

• highlightNodes – Colours model elements corresponding to nodes from

the comparison tree.

• summaryOfChanges – Prints a summary report of the changes in the

comparison tree to the Command Window or a .txt file.

Many other commands are included but are not listed here. Please see the User

Guide provided with the Model Comparison Utility for more details. After a

model comparison was performed, the Simulink Module Tool was used to query

2https://doi.org/10.5281/zenodo.4321650

41

https://doi.org/10.5281/zenodo.4321650

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

the results of the comparison in order to extract the information required to

produce the results described in the following sections.

3.3 Changes in Simulink Models

At a fundamental level, we categorize changes in model elements into four

types: added elements, deleted elements, modified elements, and renamed

elements, where elements are any blocks, lines, ports, or annotations in a

Simulink model. We created these categories based on the information

provided by the comparison tree generated by the MathWorks Simulink

Comparison tool. The four types of changes are represented in Figure 3.3.

Added elements are those that are not present in the before model but exist

in the after model (e.g., new blocks added). Deleted elements are those that

exist in the before model, but are not present in the after model

(e.g., removed blocks). Modified elements exist in both the before and after

models, but have had their parameters changed (e.g., a gain block’s Gain

parameter changed from 1 to 2). Note that we consider a model element to

be modified if the element itself has changed, whether or not its children are

changed. Renamed elements also exist in both the before and after models,

but have their Name changed to a different value. These could be considered

to be modified elements, however, the Simulink Comparison Tool treats

renamed and modified elements as two separate types of changes.3 As a

result, our scripts identify renamed elements in a different manner from those

that are modified. Elements can be both renamed and modified.

3This may be confusing because in a Simulink model, an element’s name is considered a
parameter. In the Simulink comparison tree however, it is not treated as a parameter.

42

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Block
Diagram

Element2 Element3

Before

After

Added Deleted Modified

Element4

Block
Diagram

Element3 Element4Element1

Renamed

NameParameter

Figure 3.3: Examples of basic changes in Simulink models and comparison
trees.

Similarly to the presence/absence of these elements in the before/after

models, these change types are represented the same way in the trees generated

via the Simulink comparison operation. For example, elements that are added

to a model are found in the after tree, but not the before tree. Changes to

models can then be classified in terms of changes to model elements and also as

combinations of changes to elements. In this work, we focus on the above four

fundamental types of changes to model elements. Identifying and analyzing

typical compound changes comprised of several fundamental changes (e.g.,

block replacements, which are a combination of deleting and adding a block)

is left to future work. Currently, these changes are treated individually.

The results of the mining analysis are broken down into four different

categories:

43

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

1. Changes to basic elements. The basic elements of Simulink were shown

in Figure 2.1. Section 3.3.1 presents the frequency of changes to these

elements over all the tasks included in the repository.

2. Changes to Simulink block types. Section 3.3.2 describes the frequency

with which different types of Simulink blocks are changed.

3. Model changes in a single commit to the repository. Section 3.3.3 presents

the most frequent block changes that were included in a single commit.

This is one measure of what a likely change may look like.

4. Categories of Simulink blocks that are changed. Section 3.3.4 categorizes

blocks as pertaining to “Interfaces,” “Logic,” etc. and then analyze what

percentage of these categories are changed.

3.3.1 What basic elements change the most?

Given the fundamental building blocks of a Simulink model as given by the

metamodel in Figure 2.1, the frequency with which they change is shown in

Figure 3.4. The bars are further broken down to describe the types of change

that they undergo. Blocks in general provide the main functionality of block

diagrams, so it is natural that they are also the most frequently manipulated

between model versions.

Lines appear to follow closely in the frequency in which they change.

Upon a deeper inspection of how MathWorks performs the model comparison

operation, it was discovered that it is impossible to distinguish between the

addition of a new line versus a block replacement. For example, if a block is

replaced with another, any lines into and out of the original block will be

44

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Figure 3.4: Types of Simulink model elements that change.

45

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

considered as deleted when they are disconnected. When the new block is

connected to the original lines, these lines are now considered to be new, that

is, added. This makes it seem like lines are added/deleted when they actually

are not. As a result, we largely omit lines from direct consideration in

subsequent analyses, because of the way MathWorks performs the

comparison operation. Signal routing changes are still monitored, as

described in Section 3.3.4.2.

In a similar way, changes to ports are not particularly useful to analyze.

Ports are automatically added or deleted when their corresponding

Inport/Outport block is added or deleted, and this is done automatically by

the Simulink environment. Therefore, changes to ports are primarily related

to the occurrence of blocks that represent or enable ports, that is, Inport,

Outport, Trigger, Enable, etc. block changes. For example, for every

port-related block that is added, a corresponding port is added. Also, ports

are automatically renumbered when ports preceding them are added/deleted

(e.g., if port 3 is deleted, port 4 becomes port 3, port 5 becomes port 4, etc.).

This too can make it appear like many elements are affected when merely a

single port-related block is added/deleted. As a result, we also omit ports

from consideration in subsequent analyses.

Finally, masks, annotations, and configurations are the least involved in

model changes, and will not be examined in the remainder of this work.

3.3.2 What blocks are most often involved in changes?

The Simulink block library contains 401 uniquely named blocks with which

a developer can design a model. However, some have a common BlockType

46

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

parameter (e.g., AND and OR blocks have the BlockType of “Logic”). There

are 150 unique block types. The blocks that change the most in total are

shown in Figure 3.5. The top three changed blocks are Inport, Outport, and

From block. It is notable that the most frequently changed blocks deal with

interfaces at the model and subsystem levels. Logic blocks are only in the

seventh spot.

Although there are 150 unique block types, the version of Simulink used

and the configuration of the designed system will impact what blocks will

actually be used by any one project. For the example used in this study,

newer blocks introduced after R2016b are not used at all, such as the 18 string

manipulation blocks introduced in R2018a. Furthermore, we are working with

control systems that use a discrete solver, and so continuous blocks are never

used.

3.3.3 What does a commit usually entail?

In order to understand which elements are usually modified in any given

commit to a Simulink project, we examine the median of all the commits

that changed models. The median change is shown in Figure 3.6 and

describes how a model usually changes during a single commit. We include

information about both the block type and the kind of change (i.e., whether

it was added/deleted/modified/renamed). Most of the changes deal with

elements being added to the model, because it is most common for designs to

be augmented with new functionality to meet new requirements. Changes to

Subsystems make up the most changes. It is concerning why many

Subsystems are modified in a single change, and points to poor

47

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Inport
Outport

From
Constant

SubSystem
Goto
Logic

Reference
Enumerated Constant

RelationalOperator
DataTypeConversion

Gain
Switch

EnablePort
Merge

DataStoreWrite
Sum

ActionPort
If

Product
Terminator

DataStoreRead
TriggerPort
UnitDelay
ModelInfo
MinMax

S-Function
ManualSwitch

Selector
DataStoreMemory

Scope
Delay

Bitwise Operator
BusSelector

Bit Set
Demux

Abs
Bit Clear
DocBlock

Mux
Saturate

Signal Builder
FromWorkspace

Assignment
RateLimiter

Function-Call Generator
Enabled Subsystem

Rounding
SignalConversion

Math
SwitchCase

Ground
Data Type Propagation

DataTypeDuplicate
Display

BusCreator
InportShadow

Step
Sqrt

Compare To Zero
ForIterator

Signum
1-D Lookup Table
GotoTagVisibility

RateTransition

326,996
255,641

149,640
122,760

117,723
87,099

53,305
42,341

30,923
29,087
26,163
24,899
22,215

15,340
13,309
12,882
11,024
10,944
10,106
9,539
9,285
8,401
7,733
7,553
6,302
5,719
4,717
4,253
3,990
2,677
2,415
2,063
1,800
1,778
1,518
1,450
1,294
1,215
1,151
1,136
1,125
1,049
626
530
324
243
233
230
228
225
203
201
166
166
164
163
145
137
74
62
50
49
37
37
29

Total Number of Blocks Changed

S
im

u
li
n
k

B
lo

ck
T

y
p

e

Figure 3.5: Simulink block types that change > 20 times.

48

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

B
lo

ck
S
u
b
S
ys

te
m

M
od

ifi
ed

B
lo

ck
In

p
or

t
A

d
d
ed

B
lo

ck
O

u
tp

or
t

A
d
d
ed

B
lo

ck
C

on
st

an
t

A
d
d
ed

B
lo

ck
F
ro

m
A

d
d
ed

B
lo

ck
S
u
b
S
ys

te
m

A
d
d
ed

B
lo

ck
G

ot
o

A
d
d
ed

0

5

10

10

7

5

3 3

2 2

Simulink Block Change

M
ed

ia
n

N
u
m

b
er

of
C

h
an

ge
s/

C
om

m
it

Figure 3.6: Median changes per commit.

modularization of the model. If likely changes were adequately hidden, a

single change should ideally impact a single Subsystem. This is clearly not

the case, and motivates our work for providing a better structure for

Simulink models such that they support information hiding via modularity.

We also examined the average change, however, the data had a large

variance. This was because of several reasons. First, migration to a new

version of Simulink resulted in changes to all the models that comprise the

system, where thousands of elements in each model were changed during

migration activities. Migration of custom, company-specific, block libraries is

a significant pain-point during the migration of the Simulink ecosystem to a

49

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

newer version. Custom blocks are usually used in two cases: to provide

functionality that is lacking in the current modelling language and to

specially configure blocks so that they function in a desired manner across all

designs (e.g., to generate specific code, to use a specific rounding approach,

etc.). Companies are hesitant to migrate to newer versions of Simulink

because of the time and effort required to prepare models for migration and

ensure that the generated code behaviour is not inadvertently altered. In the

change dataset, over 300,000 block changes were associated with migration

efforts to Simulink R2016b. This represents 11% of the 2.7 million changes to

models we analyzed.

Second, some drastic changes (e.g., new algorithms, model restructuring)

result in change sets that comprise hundreds to thousands of modifications.

This occurs when a new product is being developed, for example, which

involves novel feature implementations. Last, models that make up an

industrial project vary in size greatly. Some are smaller models of a few

hundred blocks or less and are primarily used in a model referencing capacity.

Other models we have encountered are comprised of over a million blocks.

3.3.4 What are identified categories of change?

The Simulink language block libraries already categorize blocks into categories

pertaining to their purpose (e.g., signal routing) or a common quality (e.g.,

discrete), as shown in Figure 3.7. We took direction from these groups and

applied some modifications to create the categories of changes identified in

Table 3.1. Examples of blocks within each category are also listed.

50

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Simulink	Block	Library	10.1
Copyright	1990-2020	The	MathWorks,	Inc.

User-Defined
Functions

Sources Sinks Signal
Routing

Signal
Attributes

Ports	&
Subsystems

Misc

Model-Wide
Utilities

Model
Verification

Math
Operations

Lookup
Tables

Logic	and	Bit
Operations

Discrete Discontinuities

Dashboard

Demos

Continuous

Commonly
Used	Blocks

Blocksets	&
Toolboxes

Additional	Math
&	Discrete

"Abc"

String

Quick
Insert

Messages
&	Events

Figure 3.7: Categories in the Simulink block library.

We did not use all the MathWorks groups directly, for several reasons.

First, some are just a regrouping of blocks present in other groups, such as

Commonly Used Blocks and Quick Insert. Second, we broke up some groups

into smaller, more homogenous groups. For example, the Ports and Subsystems

group contained many different types of blocks together. We separated this

group into four: Conditional, Trigger, Structural, and Interface. Moreover,

based on the definition of a Simulink module interface [Jaskolka et al., 2020b]

we further added to the Interface group by including blocks that make up

a module interface. This also helped to delineate top-level interfaces from

internal subsystem interfaces that we grouped in the Signal Routing category.

For these two categories, we distinguish between global and local data stores.

Global data stores are on the model interface, since they pass data outside of

the model. Local data stores are those that pass data inside the model only,

thus they are included in the Signal Routing category. The same treatment is

51

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Table 3.1: Categories of Simulink blocks used in Figure 3.8.

Category Example Blocks

(Model) Interface root-level Inport/Outport, global
DataStoreRead/DataStoreWrite, FromFile/ToFile,
FromSpreadsheet, ToWorkspace/FromWorkspace

Signal Routing non-root Inport/Outport, Goto/From, local
DataStoreRead/Write, BusCreator, Merge, Assignment

Signal Attributes RateTransition, DataTypeDuplicate, SignalConversion,
DataTypeConversion

Structural SubSystem, Reference

Conditional If, Switch, SwitchCase, ManualSwitch

Discrete Delay, UnitDelay, Filter, Integrator

Math Sum, MinMax, Rounding, Abs, Gain

Logic RelationalOperator, LogicalOperator

Trigger TriggerPort, EnablePort, ActionPort

Sources Ground, Step, Clock, Constant

Sinks Terminator, Scope, Display

Documentation ModelInfo, DocBlock

Custom S-Function

given to inports and outports. When they are located at the root of the model,

they are on the model interface, while Inport/Outport blocks inside subsystems

are used to pass signals internally.

The Sources and Sinks groups remained largely unchanged, except that

Inport and Outport blocks were removed, as mentioned previously. The Math,

Discrete, and Signal Attributes categories are unchanged from the MathWorks

grouping.

We made a separate Documentation group for blocks related to

documentation within Model-Wide Utilities. Some other notables changes

were: the Switch block in the Simulink block library is part of the Signal

52

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Routing group, however, we put it into the Conditional group, as it is

traditionally known as a conditional control structure; Simulink Function

blocks are contained in the User-Defined Functions group, but are in fact

Subsystem blocks, so they were added to the Structural group.

Lastly, we renamed the User-Defined Functions group to simply Custom,

as the blocks in this category were entirely project-specific custom blocks, and

not blocks that were defined by the engineers (users) themselves.

Not all of the groups from the Simulink block library are present in our

categories. As mentioned in Section 3.3.2, this particular project does not

make use of concepts such as Dashboard, Strings, etc., so those are omitted.

It is worth noting that our classification scheme has another distinct

advantage—element changes are counted in only one of the categories; there

are no overlaps. For instance, global data stores contribute to the Interface

category, while data stores internal to a block contribute to Signal Routing.

Figure 3.8 shows the occurrence of block changes in each category. First, we

can see that the largest amount of change occurs to model interfaces at the root

level. Second, signal routing within the model is changed extensively. Third,

structural changes to subsystems, model references, and library links occur

frequently. It is interesting to note that these three aforementioned changes

happen more than actual math and logic changes to the control algorithms.

This leads one to conclude that developers are spending less time actually

implementing the algorithms, and are more focused on passing data across

the system. The large amount of interface changes at the top level points to

unstable interfaces and change propagation between models. Even within the

models, signals are being modified and moved around the model hierarchy.

53

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Figure 3.8: Categories of Simulink blocks that change.

3.3.4.1 Changes to Interface Elements

This section describes the changes to Simulink interfaces and their frequency

over the lifespan of the models. A model or subsystem interface is comprised

of both the explicit and implicit incoming/outgoing data flow [Jaskolka et al.,

2020b; Bender et al., 2015]. For the Simulink language, the explicit data flow

is represented with Inport and Outport blocks, and the MathWorks

documentation considers this to be the entire interface. However, implicit

data passes via Data Store Memory, Goto Tag Visibility, To Workspace, To File,

and many other blocks, across model or subsystem boundaries, as described

in the interface definition in [Jaskolka et al., 2020b].

Using the definition of a Simulink module interface [Jaskolka et al.,

2020b], we identify the changes that occur to Simulink model interfaces. This

includes changes to top-level Inport/Outport blocks, global Memory

Read/Write, To File/From File blocks, To Workspace/From Workspace blocks,

54

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

From Spreadsheet blocks, and exported Simulink Functions. 35.1% of all block

changes are interface changes. This is larger than expected, and points to

unstable interfaces that are sensitive to implementation changes. In fact,

Inports at the root-level of the model change 6 times as often as internal

Inports (281,236 changes vs. 45,760 changes). Root-level Outports are also

changed 6 times as often as internal outports (219,291 vs. 36,350). However,

the internal routing of signals can be achieved via several other Simulink

blocks, and indeed we find that they are heavily used, as discussed in the

next section.

3.3.4.2 Changes to Signal Routing and Attributes

Changes to signal routing entails modifying the way signal data is created,

combined, passed, and selected. As mentioned in Section 3.3.1, directly

analyzing changes to the lines themselves will not yield meaningful results.

For this category of changes, we consider the list of blocks in the Signal

Routing group, which includes Goto/From, Mux, Bus, non-global Data Store

Read/Write, etc. We can see in Figure 3.8 that routing signals throughout

models is a very large portion of the changes. In a similar way that using

goto statements in textual programming languages leads to “spaghetti code,”

over-use of these similar Simulink blocks can lead to “spaghetti models.”

Although abstraction through hierarchy is a well-known approach to

managing complexity, the side-effect is that large hierarchies cause

substantial signal routing of blocks between layers. Both Subsystems and

Model References introduce a hierarchical layer in a Simulink model. Clearly,

models need to be better structured in order to reduce the pervasive passing

of signals.

55

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

3.4 Chapter Summary

This chapter provided data-supported insights about how large Simulink

models change over time. We analyzed over 2.7 million changes over a span

of six years in an industrial partner’s repository. This chapter shed light on

how Simulink models change with respect to their basic language elements

and block types. A categorization of the changes that occur in Simulink

models was also presented to succinctly show where the development and

maintenance effort resides in the design of a model. It highlighted that

Simulink model interfaces and structure experience large amounts of change.

These are areas that require further attention in order to facilitate

modularity and information hiding with Simulink.

56

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Chapter 4

Decomposition of Simulink

Models

It is well-known that modular designs better facilitate evolution [Baldwin

and Clark, 2000; Parnas et al., 1985; MacCormack et al., 2007]. Thus, as a

model grows larger and more complex, it is desirable to decompose it into

smaller units of related functionality. In traditional imperative programming

languages, a system is decomposed into modules, with facilities to create

private and public functionality to support encapsulation and information

hiding [Parnas, 1972a]. International standards such as

AUTOSAR [autosar.org, 2018] seek to apply traditional software engineering

principles in the automotive domain. For example, AUTOSAR emphasizes

separation and well-defined interfaces between application software, base

software, and hardware. However, limited guidance is given pertaining to

decomposition at the application layer where components typically

correspond to Simulink models. It is not currently clear how to further

decompose the functionality of a Simulink model.

57

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

As a first step in achieving a modular decomposition, we seek to

determine which Simulink constructs can be used to group together

functionality and data as a unit that can be separate, reusable, encapsulated,

and ultimately facilitate information hiding. To support this goal, this

chapter examines and compares the available constructs in the Simulink

language in a more focused and comprehensive manner than is available in

the MathWorks documentation [The MathWorks, 2019, 2020b,h] and that we

have found in the literature. The contributions of this chapter will assist

practitioners in choosing appropriate componentization constructs for

structuring designs in Simulink models. It also lays the groundwork for

creating a Simulink module, as described in Chapter 5.

Section 4.1 begins with related literature. Section 4.2 performs an in-

depth comparison of the available Simulink model decomposition constructs.1

Section 4.3 discusses how to convert between constructs. Section 4.4 presents

modelling conventions for supporting modular design with information hiding.

Lastly, Section 4.5 provides a summary of this chapter.

4.1 Related Work

The literature sets forth recommendations on the constructs to use for

decomposing models for various purposes. MathWorks provides a general

guide in the Simulink User’s Guide [The MathWorks, 2019] for choosing

appropriate decomposition constructs. It focuses on only three

constructs—Subsystem, Library, and Model Reference—and compares them

according to how each supports the development process, model

1Also called “componentization techniques” in the MathWorks documentation.

58

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Table 4.1: Componentization summary fragment from the Simulink User’s
Guide [The MathWorks, 2019].

Requirement or Feature Subsystem Library Model Reference

Component reuse Not supported Well suited Well suited

Intellectual property
protection

Not
supported

Not
Supported

Well suited

Simulation speed for
large models

Supported,
with limitations

Supported,
with limitations

Well suited

Code generation Supported,
with limitations

Supported,
with limitations

Well suited

performance, component reuse, and other factors. Modularity is not

examined explicitly, nor are encapsulation or handling of program state.

Reusability of each construct is examined, with a Model Reference or Library

being best suited for reuse. A fragment of this guide is given in Table 4.1,

highlighting the more relevant differences between constructs. We refer the

reader to the Simulink User’s Guide for an in-depth comparison [The

MathWorks, 2019]. Subsystems are most commonly used in practice (e.g.,

[Xiao and Agbossou, 2009; Yang et al., 2012; Astrov and Pedai, 2012], etc.)

as they are recommended for designs with less than 500 blocks [The

MathWorks, 2019]. Otherwise, a Library or Model Reference are

recommended. General descriptions of code generation outcomes are given

throughout other MathWorks documentation [The MathWorks, 2020b,h],

however, no comparison is concisely provided.

Other work on structural patterns for Simulink models usually proposes

decomposing Simulink models using virtual Subsystems or Model References

(e.g., [The MathWorks, 2020c],[Whalen et al., 2014]), while other work

assumes Subsystems as the decomposition construct used [Dajsuren et al.,

59

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

2013]. Drawbacks to using Subsystems have been noted as their lack of reuse

and formal interface [Rau, 2001; Bender et al., 2015; Bialy et al., 2016]. As

far as we are aware, no analysis has been published that determines which

Simulink constructs can, and should, be used for supporting the traditional

software engineering principles of modularity, encapsulation, and information

hiding.

4.2 Comparison of Constructs

The decomposition of a model into smaller units can be achieved with three

different constructs that are built into the Simulink language: Subsystem

(Section 2.2.1), Library (Section 2.2.2), and Model Reference (Section 2.2.3).

However, there are many different kinds of subsystems, as shown in

Figure 2.3. We evaluate three specific kinds of subsystems that are most

suitable for decomposition purposes: virtual Subsystem (Section 2.2.1.1),

Atomic Subsystem (Section 2.2.1.2), and Simulink Function (Section 2.2.1.2),

along with the Library and Model Reference constructs. These five constructs

are shown in Figure 4.1.

A comparison of the five different constructs is now presented, focusing

on how they are used in industry. The different constructs are also compared

with respect to four characteristics: reusability, sharing of program state,

encapsulation, and code generation. This section consolidates and

summarizes the Simulink User’s Guide where relevant comparison

information is available. Production-scale models are used to exemplify how

the constructs have been used in industrial designs. Additionally, simple

experimentation models have been designed to evaluate and illustrate core

60

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Figure 4.1: Simulink componentization constructs examined.

capabilities of each construct. Other factors such as model loading,

simulation speed, or memory storage, are not considered in the comparison,

as they are beyond the scope of this work.

4.2.1 Use in Industry

Let us begin by examining how each of these constructs are used in industry,

by analyzing projects from an industrial partner. The frequency with which

these constructs are used is shown in Figure 4.2 and Figure 4.3. The Simulink

Function, Library, and Model Reference constructs are defined and used with

separate blocks, thus we present two charts. Figure 4.2 shows how many

constructs are defined, while Figure 4.3 shows how many times they are used

(i.e., called, linked, referenced). Note that the numbers in the two charts are

the same for virtual Subsystems and Atomic Subsystems because their

definition and use are one and the same block. The projects are displayed in

decreasing order according to project size, as reflected in the number of

Simulink models used in their implementation. Specifically, Project1 is

comprised of 653 Simulink models, Project2 of 134 Simulink models, and

Project3 of 92 Simulink models. We provide more insight into the structure

of each project in the following paragraphs.

Project1 is a relatively new project that began development in 2015 and is

currently implemented in Simulink R2016a. It contains approximately 419,000

61

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Virt
ual

Subsy
ste

ms

Atom
ic

Subsy
ste

ms

Sim
ulin

k Functi
on

s

Librar
y Block

s

Refe
ren

ced
M

odels
0

5,000

10,000

15,000

1
3,

52
0

7
,5

4
5

4
,2

6
7

29
8

22
9

3
,6

18

1,
72

9

16
6

20
2

0

4
,2

7
9

1
,6

97

0

94
2

0N
u
m

b
er

of
d
efi

n
it

io
n
s

in
m

o
d
el

s
Project1
Project2
Project3

Figure 4.2: Definitions of componentization constructs in industry projects.

Virt
ual

Subsy
ste

ms

Atom
ic

Subsy
ste

ms

Sim
ulin

k Functi
on

Call
ers

Librar
y Links

M
odel

Refe
ren

ces

20,000

40,000

60,000

80,000

13
,5

20

7
,5

45

3
,1

0
7

4
,7

48

3
62

N
u
m

b
er

of
u
se

s
in

m
o
d
el

s

3,
61

8

1,
7
29

30
9

1
7,

06
7

0

4
,2

7
9

1
,6

97

0

79
,4

18

0

Project1
Project2
Project3

Figure 4.3: Uses of componentization constructs in industry projects.

62

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

blocks, and of these blocks 6% are among the componentization constructs

examined in this work. Each model on average contains 642 blocks. Virtual

Subsystems are used 53% of the time, followed by Atomic Subsystems at 29%.

As this is a newer project, the use of Simulink Functions is also sizeable at 17%.

Project2 was also developed in 2015 and is also implemented in Simulink

R2016a. It is comprised of approximately 250,000 blocks and on average a

single model contains 1,894 blocks, with only 2% being componentization

constructs. As with Project1, Project2 also relies mostly on virtual

Subsystems, followed by Atomic Subsystems, and Simulink Functions.

Project3 is a large legacy project that was originally created in Simulink

R14, and has been migrated over the years to newer Simulink versions. It

contains approximately 1.3 million blocks, which is on average 14,338 blocks

per model. This project is made up of very large models, where

componentization constructs only amount for 0.5% of all the blocks used.

Project3 relies primarily on virtual Subsystems, followed by Atomic

Subsystems. This project only recently migrated from MATLAB Simulink

R2011b to R2016b, thus Simulink Function blocks are not used in this project.

This project uses 942 unique Library blocks in its implementation. These

Library blocks are used very frequently with over 79,000 instances (or links)

throughout the models. However, this large number of Library links is

attributed to the use of a custom Library of blocks that are developed

in-house, rather than using the built-in Simulink blocks. The custom Library

for this project contains customized blocks that fulfill the same function of a

core Simulink block, but are pre-configured or modified in order to better

support the project (e.g., with more efficient code generation). Figure 4.3

shows that custom block usage makes up 85% of the cases of Library links, as

63

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

denoted by the lighter area of the bar. The remaining Library links are to

Library blocks whose purpose is to structurally decompose the model.

Project1 and Project2 also use the custom Libraries to redefine some of

Simulink’s built-in blocks, but to a much lesser extent.

From this data, it is clear that virtual Subsystems are most commonly used

in practice. Two of the three projects (Project2 and Project3) also rely on

Atomic Subsystem blocks, but barely use Simulink Function blocks. Project1

on the other hand uses Simulink Function blocks to a greater extent, but they

are still third to virtual Subsystems and Atomic Subsystems. Out of all the

constructs, Model References are used the least, across all the projects.

4.2.2 Reusability

One of the purposes of componentization constructs is to reuse functionality

throughout one or more models. Reusability is directly tied to the

maintainability of a system, as it reduces the number of models or

subsystems that must be modified when a change is made. When reusability

is not adequately supported, developers often turn to the use of clones, which

negatively affect the model’s understandability and ability to be refactored.

Here, we compare the reusability of the different constructs. The reusability

of a construct is determined by the Simulink language semantics, and is

described in the MathWorks User’s Guide [The MathWorks, 2019]. The

reusability of the five constructs is outlined in the following paragraphs.

Subsystem A Subsystem block cannot be reused in multiple places in a

model without copying and pasting the block. Using clones of Subsystem

blocks through a model is not recommended, as this hinders maintainability

64

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

and limits readability [Stephan et al., 2013; Alalfi et al., 2012]. Otherwise, the

same Subsystem can be invoked multiple times in a single model via loops. On

its own, a Subsystem is not a construct that supports reusability. However,

combined with a Library or Model Reference, they can be made reusable.

Atomic Subsystem Atomic Subsystems behave like Subsystems when it

comes to reusability. See the paragraph above for more details.

Simulink Function A Simulink Function can be invoked multiple times in

its own model and any model that references the model where the Simulink

Function is defined (see Figure 2.5 and Figure 2.6). Unlike the other

constructs, it can be invoked both via signal lines or textually, making it a

flexible construct that alleviates complex signal routing. Unlike the Library or

Model Reference constructs, a Simulink Function has the benefit of not

needing to be stored in a separate file to be reused.

Library A Library can store Subsystems in order to make them reusable.

Subsystem blocks placed in a Library can be linked and used in other models.

Even so, an alternative is desired so that a Subsystem is reusable without the

need to keep it in a Library file, separate from its associated model [Rau,

2001]. For small functions especially, separate Libraries are cumbersome to

use, and in fact, the Simulink User’s Guide recommends the use of Libraries

for large-scale modelling with more than 500 blocks [The MathWorks, 2019].

Moreover, it is generally intended for storing utility functions that are

infrequently changed [The MathWorks, 2019].

65

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Model Reference Model referencing lends itself well to reusability, however,

on the scale of a model. A model can be referenced from other models via Model

blocks. However, like Libraries, this construct is more appropriate for reuse of

very large designs. Moreover, the user must include the entire contents of the

model.

In summary, the Simulink Function, Library, and Model Reference

constructs can be used to implement reusable functionality, while the

Subsystem and Atomic Subsystem are not reusable (without the aid of a

Library or Model Reference).

4.2.3 Sharing of Program State

A program’s state is comprised of all the contents of its stored data in memory,

at any point during program execution. In textual programming languages,

these storage locations are commonly represented by variables. In Simulink,

Data Store Memory blocks are comparable to variables, so they are included in

the state of a model. Additionally, when the outputs of a model are functions

of its previous values, these values are also states [The MathWorks, 2019]. The

two types of states that can occur in a Simulink model are discrete (e.g., unit

delay) or continuous (e.g., integrator). These kinds of blocks require persistent

memory to store values representing the state of the block between consecutive

time intervals.

For constructs that are reusable, their state can be persistent and shared

between calls, or each instance can be treated as separate with no sharing of

data. In general, it is well-known that avoiding the sharing of internal state

data is useful for decreasing complexity and bugs, as well as reducing

66

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

dependencies [Schwinghammer et al., 2010; O’Hearn et al., 2009; Edwards,

1997; Hoare, 1971]. This approach prevents users from unintentionally

causing an invalid or inconsistent state. Moreover, it prevents users from

becoming reliant on internal data outside of its intended scope. Exposed

state data can lead to design decisions creeping into the interfaces of

subsystems, making them context dependent, and ultimately less modifiable

in the future. Encapsulating shared state reduces implicit interdependencies

and facilitates reuse, maintainability, and evolution. The decomposition

constructs we are evaluating handle program state differently, and we

describe this in the following paragraphs.

Subsystem As discussed previously, Subsystems are not reusable on their

own. As a result, each Subsystem in a model is its own separate entity. Thus,

Subsystem blocks that are clones of each other do not share any state.

Atomic Subsystem Atomic Subsystems behave like Subsystems when it

comes to program state. See the previous subsection for more details.

Simulink Function Simulink Function blocks have persistent and shared

state between function calls by default. However, it is possible for the developer

to use additional blocks in the Simulink Function to selectively reset state values,

for example, by using a Resettable Subsystem2 or Reset Function.3

Library Each Library block in a model is a separate instance and state

between blocks is not shared.

2https://www.mathworks.com/help/simulink/slref/resettablesubsystem.html
3https://www.mathworks.com/help/simulink/slref/resetfunction.html

67

https://www.mathworks.com/help/simulink/slref/resettablesubsystem.html
https://www.mathworks.com/help/simulink/slref/resetfunction.html

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Model Reference Model Reference blocks do not share state data between

each reference, however, one can get around this via a Data Store Memory block

with the Share across model instances parameter enabled.

In summary, Subsystem, Atomic Subsystem, and Library blocks do not share

state. Simulink Function blocks do share state by default, but it is possible to

implement a reset of state. Generally, Model Reference blocks do not share

state, but it is possible with a Data Store Memory block only.

4.2.4 Information Hiding and Encapsulation

Information hiding is a fundamental principle in supporting modularity and

robustness with respect to change [Parnas, 1972a] during the evolution of a

system. Information hiding aims to decompose a system such that each likely

change is localized (hidden) in a single module (e.g., hardware changes,

behaviour changes, and software design decision changes [Parnas et al.,

1985]). Encapsulation is integral to supporting information hiding as it is a

mechanism for restricting access to a portion of the module’s

data [International Organization for Standardization, 2017; Snyder, 1986].

Two properties are needed in Simulink to support encapsulation:

• Limitation of Use – The ability to selectively hide or expose a portion

of the functionality.

• Restriction of Data Passing – The ability to effectively restrict

information passing that is outside of the explicit interface.

This section describes a set of experiments that reveal how each of the

constructs support, or do not support, these properties. Note that the

68

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Table 4.2: Simulink construct support for encapsulation.

Construct Limitation of Use Restriction of Data Passing

Goto/From Data Store

Subsystem No No No
Atomic Subsystem No No No
Simulink Function Yes Yes No
Library No No No
Model Reference No Yes Local Only

experiments evaluate how each construct enforces these properties. It is

possible to use conventions to recommend best practices, as described later in

Section 4.4. Our stance is that language enforcement is a stronger approach,

as opposed to trusting developers to adhere to guidelines.

4.2.4.1 Limitation of Use

In this section, we examine if it is possible to selectively restrict or allow the

use of functionality encapsulated by a componentization construct. The results

are shown in Table 4.2 under “Limitation of Use.”

Subsystem As Subsystems are not reusable, this property is not applicable.

If a Subsystem is “reused” via copy-and-paste, a Subsystem copy can be placed

and used anywhere in a model or other models without restriction.

Atomic Subsystem Atomic Subsystems behave like Subsystems when it

comes to limitation of use. See the previous subsection for more details.

Simulink Function Simulink Functions have the ability to be scoped,

allowing one to limit its accessibility. This can be leveraged to make private,

69

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

or hide, the information within the model, or choose to expose it to other

models, as described in Section 2.2.1.2.

Library Library blocks can be instantiated and used anywhere in other

models without restriction.

Model Reference A model can be referenced from any other model,

without restriction. Models have the option to enable “intellectual property

protection,” however, it is intended for third-party suppliers to be able to

password protect certain operations on a model (e.g., simulation and code

generation). Thus, it is not particularly useful for information hiding

purposes.

In summary, a Simulink Function is the only construct that has the ability

to specify its scope. All others examined can be used anywhere in a model.

4.2.4.2 Restriction of Data Passing

Next, we look into how each of the constructs restricts implicit data passing

across its boundaries. We want to ensure that implicitly exposing internal

design, or implicitly reading in data, outside of the explicit interface is not

possible. In particular, the hidden data passing mechanisms of Goto/From

and data stores can be used to implicitly pass data across the construct

boundaries [Bender et al., 2015]. Moreover, they can reduce the readability

and traceability of a model [Tran et al., 2013]. We examine these two ways of

passing data in/out in the following scenarios. We construct Simulink models

to test these scenarios by trying to implicitly pass a signal with value 1

70

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

across the construct boundaries via Goto/From blocks and Data Store

Read/Write blocks.

Case 1 (Goto/From as Implicit Input and Output) Implicit data

passing via global or scoped Goto/From connections occurs in practice, and

Figure 4.4a shows a portion of a production-scale model that implements

on-board diagnostics functionality. In addition to the data that passes

through the ports of the two subsystems, data is implicitly passed via the

highlighted global Goto/From connection shown originating in the subsystem

shown in Figure 4.4b and being passed into the subsystem of Figure 4.4c.

This type of behaviour should be avoided to support encapsulation. A

construct should effectively hide its internal data by not allowing for it to be

passed out implicitly, and likewise, a construct should not implicitly read in

external data.

The example demonstrates that implicit data passing is possible for the

Subsystem construct, however, we need to investigate how the other constructs

handle such a scenario. Thus, we create an experiment model (Figure 4.5a)

where a global Goto is placed outside of each construct to see if it is possible

to pass data into the construct by writing to an internal From block inside of

the construct. Each of the constructs is coloured in grey, while the Goto/From

blocks are green. Display blocks inside each construct are connected to the

From blocks in order to report their values (not pictured).

Likewise, to determine if the construct effectively hides its internal data, a

global Goto is placed inside the construct. This second experiment model is

shown in Figure 4.6a. We attempt to access its data outside of the construct

by reading it via an external From block. Each of the constructs is coloured in

71

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Inport1

Inport2

Inport3

Inport4

Inport5

Inport6

Inport7

Inport8

Inport9

Inport10

Outport1

Outport2

Outport3

Outport4

Subsystem1

Inport1

Inport2

Inport3

Inport4

Inport5

Inport6

Inport7

Inport8

Inport9

Inport10

Outport1

Subsystem2

[GotoFrom1]

[GotoFrom11]

[GotoFrom2]

[GotoFrom3]

[GotoFrom4]

[GotoFrom2]

[GotoFrom4]

[GotoFrom3]

[GotoFrom13]

[GotoFrom14]

[GotoFrom16]

[GotoFrom5]

[GotoFrom2]

[GotoFrom17]

[GotoFrom6]

[GotoFrom7]

[GotoFrom22]

[GotoFrom22]

[GotoFrom8]

Outport1

[GotoFrom5]

[GotoFrom9]

[GotoFrom10]

[GotoFrom6]

[GotoFrom1]

[GotoFrom1]

(a) Model with constructs using Goto/From as input.

72

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

(b) Subsystem1 from Figure 4.4a implicitly outputting data via a Goto.

Inport1

Inport2

Inport3

Inport4

Inport5

Inport6

Inport7

Inport8

Inport9

Inport10

Inport11

Outport1

Outport2

Outport3

Outport4

Subsystem5

Input1

Input2

Input3

Input4

Input5

Input6

Input7

Input8

Input9

Output1

Output2

Output3

Output4

Output5

Output6

Output7

Output8

Event1()

Event2()

StateflowChart2

GotoFrom28

GotoFrom9

GotoFrom10

GotoFrom11

GotoFrom11

GotoFrom9

GotoFrom10

z
1

z
1

z
1

1
Outport1

[GotoFrom7]

1
Inport1

3
Inport3

[GotoFrom7]

Constant13

2
Inport2

GotoFrom8

GotoFrom8

4
Inport4

5
Inport5

6
Inport6

7
Inport7

8
Inport8

9
Inport9

10
Inport10

Outport1

Outport1

Outport1

Outport1

(c) Subsystem2 from Figure 4.4a implicitly reading data via a From.

Figure 4.4: An on-board diagnostics example from industry, showing implicit
Goto/From data passing.

73

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

(a) Model with Subsystem constructs using Goto/From as input.

(b) Simulation warnings and errors for Figure 4.5a.

Figure 4.5: Experiment with Goto/From input.

grey, while the Goto/From blocks are magenta. Display blocks are connected

to each From block in order to display their values.

The result of the first test shows that a Goto/From can be implicitly read

inside a Subsystem, Atomic Subsystem, and Library, but not read in a Simulink

Function or Model Reference. The Simulink Function causes the error shown in

Figure 4.5b, while the Model Reference causes warnings of missing Goto/From

connections. The result of the second test is that Atomic Subsystems and

Simulink Functions restrict access to their internal Goto, as no result is shown

in the From block and the error in Figure 4.6b is thrown.4 The Model

Reference also successfully restricts access because the default 0 is passed to

4Note that the Atomic Subsystem causes the error shown in Figure 4.6b. However, if the
Atomic Subsystem is commented-out, the Simulink Function will cause the error.

74

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

(a) Model with constructs using Goto/From as output.

(b) Simulation warning and errors for Figure 4.6a.

Figure 4.6: Experiment with Goto/From output.

the From block and warnings of missing Goto/From connections are displayed

(Figure 4.6b). On the other hand, a Subsystem and Library do not restrict

access, as we can see that the value 1 is indeed passed implicitly across their

boundaries.

Case 2 (Data Store as Implicit Input and Output) Data Store Memory

blocks are another mechanism by which data can be passed implicitly into and

out of constructs. A production-scale example from industry that deals with

the shifter position checking is shown in Figure 4.7a. Datastore1 is declared at

this level, and we see that there is an Atomic Subsystem (Subsystem1) and a

Simulink Function (Simulink Function1). The internals of the Atomic Subsystem

75

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

are shown in Figure 4.7b, where we see that it is implicitly outputting data via

a Data Store Write. This data is passed across the Atomic Subsystem boundary

and consumed by the Simulink Function via a Data Store Read. Neither of

these constructs effectively restrict the passing of implicit data across their

boundaries.

Again, we replicate such a scenario for the other constructs. We do this by

placing a Data Store outside of the construct to determine if it is possible to

pass data into the construct. It is possible to define a data store as a Data Store

Memory block in the model, or outside the model in the base workspace as a

Simulink.Signal object. In both cases, we attempt to read from it inside

the construct via a Data Store Read block. The models to test these cases

are shown in Figure 4.8a and Figure 4.9. Each of the constructs is coloured

in grey, while the Data Store Read/Write blocks are yellow or cyan. Display

blocks inside each construct are connected to the Data Store Read blocks in

order to display their values (not pictured).

The result of these tests show that a Data Store Memory in the model, but

outside of a Subsystem, Atomic Subsystem, Simulink Function, or Library can be

read implicitly by these constructs. On the other hand, this is not allowed

with a Model Reference, and the error shown in Figure 4.8b is raised. All of

these constructs do not restrict the passing of data store memory when it is

global (Figure 4.9).

A summary of results is shown in Table 4.2. In general, no construct

effectively prevents hidden data passing from circumventing the construct’s

explicit interface, and this is a deficiency of these Simulink constructs.

Nevertheless, out of the constructs examined, a Simulink Function most

76

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

(a) Model with constructs using Data Store Read/Write as input/ouput.

(b) Atomic Subsystem1 from Figure 4.7a implicitly outputting data via a Data
Store Write.

f()

Data

Error

DataStore1 In1 Out1

Subsystem1

(c) Simulink Function1 from Figure 4.7a implicitly reading data via a Data Store
Read.

Figure 4.7: A shifter position checking example from industry, showing
implicit Data Store Memory data passing.

77

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

(a) Model with constructs using a local Data Store Memory block as input.

(b) Simulation error for Figure 4.8a.

Figure 4.8: Experiment with local Data Store Memory input.

Figure 4.9: Experiment with global Data Store Memory input.

effectively supports information hiding by allowing developers to restrict its

access via its scoping ability.

4.2.5 Code Generation

This section explores the code generation outcomes of the constructs. In

most embedded development, particularly when adhering to AUTOSAR,

Simulink models are used to implement individual software components, and

the integration of components happens at the C code level. In this scenario,

the generated code is of primary importance since the generated software

78

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

files are the integration units. Efforts to make the generated code more

modular have been explored [Lublinerman and Tripakis, 2008; Tripakis and

Lublinerman, 2018].

We compare the different constructs in terms of the C code they generate.

Differences can arise depending on the complexity of the contained blocks,

as well as how many times the exact same construct is used/called. Because

of this variability, we examine how the code generated for the constructs in

several scenarios, and for each construct we create a model such as that shown

in Figure 4.10. The Subsystem blocks containing simple logic perform a signal

Gain (multiplication in the C code) while the more complex Subsystem blocks

contain a Switch based on the input (if-else branch in the C code). Then,

we generate the code and use the built-in code mappings to trace blocks to

C code. The following code generation outcomes were observed, and are also

documented in the Embedded Coder [The MathWorks, 2020b] and Simulink

Coder [The MathWorks, 2019] documentation. The generated code for each

construct is provided in Appendix A.

Note that the observed code generation rules apply in general, however,

Simulink Coder and Simulink Embedded Coder may perform further

optimizations to the code, potentially resulting in inlined code. Moreover, we

do not go into the finer Simulink Coder configurations or block parameters

that impact code generation (e.g., storage class and function packaging). We

use the blocks in their default configuration.

Subsystem The model used to observe code generation for Subsystem blocks

is shown in Figure 4.10. In all cases, Subsystem blocks are flattened, thus no

code is generated for the Subsystem block itself (i.e., the Subsystem does not

79

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Single	use,	simple

Multiple	uses,	simple

Multiple	uses,	complex

Inlined

Inlined

Inlined

Code	OutcomeScenario

Sine	Wave

1 1

Subsystem1

1
Out1

2
Out2

1 1

Subsystem2

3
Out3

1 1

Subsystem3

4
Out4

1 1

Subsystem4

5
Out5

1 1

Subsystem5

Figure 4.10: Code generation model for the Subsystem construct.

translate into a function). Instead, the contents of a Subsystem are repeatedly

generated as inlined code throughout the model, usually resulting in code

duplication.

Atomic Subsystem An Atomic Subsystem code can be generated in different

ways, depending on how complex its internals are, and whether the Atomic

Subsystem is used more than once in a model. If the Atomic Subsystem is

trivial (e.g., Gain block only), it will be inlined, otherwise it will be generated

into a function. Simulink attempts to recognize identical instances of the

same Subsystem so it can generate function code for only one, increasing code

reuse [The MathWorks, 2019].

80

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Simulink Function In the case of an exported Simulink Function, it is

generated as an external function with its own separate C module. Function

Caller blocks are then translated into calls to the external functions of the

module. If a Simulink Function is not exported, then it remains a local

function in the module where it is defined. Fundamentally, a Simulink

Function is akin to an Atomic Subsystem with added behaviour, so the C code

of a scoped or local Simulink Function results in code similar to code

generated for a Library with an Atomic Subsystem. Otherwise, if the Simulink

Function is global, the generated code is comparable to a Model Reference.

Library When a Subsystem is placed in a Library, it will not result in a

function in the code, however, nonvirtual subsystems will, as long as they are

nontrivial and used more than once in the model. That is, a single use of a

nonvirtual subsystem from a Library will result in inlined code, however, blocks

used more than once will result in a single function with multiple calls.

Model Reference Model Reference blocks refer to a separate model and so

are generated as separate code modules (with their own .c/.h files). The

Model Reference blocks are then code generated into calls to the model via

their external functions.

4.2.6 Comparison Summary

The comparison is summarized in Table 4.3. Although used the most

frequently in industry, the default virtual Subsystem and Atomic Subsystem

constructs have the disadvantage of not being reusable, not offering users the

ability to scope the internal implementations, and generating code that

81

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

usually is inlined. Using Simulink Function blocks as a componentization

construct leads to more reusable functionality in Simulink, as well as in the

generated code. It is also possible to scope the implementation appropriately,

which to our knowledge, is not supported by any other construct in Simulink.

Therefore, the Simulink Function construct is a powerful means by which to

decompose a model while also supporting encapsulation and facilitating

information hiding. Library blocks and referenced Models, while reusable, do

not have built-in capabilities to selectively scope contents and hide

information. Ideally, information hiding (via scoping or otherwise) would be

supported by the Simulink language. However, because it is not, modelling

conventions or rules can be introduced, and we do this in Section 4.4.

Although it was demonstrated that decomposition via the use of Simulink

Functions most effectively supports encapsulation and thus information

hiding, this approach may not suit all applications, for example, due to code

generation needs. Depending on the design requirements of the system, other

constructs may be more suitable. Section 4.3 further elaborates on some of

the considerations when converting between componentization constructs.

4.3 Conversion and Limitations

Conversion between the different componentization constructs is possible.

MathWorks provides a guide on converting Subsystems into Model

References [The MathWorks, 2019], however it does not address other

combinations. Converting a Subsystem, Atomic Subsystem, Model Reference,

or Library block to a Simulink Function is possible, however, one must be

5e.g., Resettable Subsystem, Reset Function

82

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Table 4.3: Summary of the comparison of componentization constructs.

Construct Reusable Shared State Limitation
of Use

Code Generation

Subsystem No No No Inlined code

Atomic Subsystem No No No Separate function if used
multiple times; otherwise
inlined code

Simulink Function Yes Yes, by default.
Can reset using
other blocks5

Yes Separate function (If
exported, in separate
module also)

Library Yes No No Separate function if
nonvirtual and used
multiple times; otherwise
inlined code

Model Reference Yes Data Store only No Separate function, in
separate module

aware that there can be differences in the code that is generated. This may

be important for some applications and should be taken into consideration.

Moreover, shared state is treated differently. Thus, the constructs are not

interchangeable without slight modification to the design. When converting

to a Simulink Function, special consideration for blocks with state needs to be

given, with a possible remedy being the exclusion of such blocks from the

Simulink Function, or implementing resets. Also, MathWorks does not

recommend using Simulink Functions for continuous systems, as they do not

inherit continuous sample time [The MathWorks, 2019].

4.4 Conventions for Modularity

Conventions can be used to encourage best practices when it comes to

information hiding, particularly when a language does not have built-in

support, such as in the absence of a construct like the Simulink Function.

83

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Model1

Subsystem1

Modeln

Subsystem1

LibraryPrivate

SubsystemP1 SubsystemP2

LibraryPublic

Subsystem1

Subsystem2
SubsystemP1

Library Links

…

(a) Library hierarchy convention.

Model1

ModelPublic

Modeln

ModelPublic

ModelPrivate

SubsystemP1 SubsystemP2

ModelPublic

Subsystem1

ModelPrivate

…

Model Reference

(b) Model reference hierarchy convention.

Figure 4.11: Conventions to support public/private functionality.

84

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Next, we present a modelling convention alternative to modelling with

Simulink Functions. The approach is shown in Figure 4.11a. Two libraries

exist for separately storing public functions and private functions

(LibraryPublic and LibraryPrivate, respectively). Developers then must adhere

to a convention that allows them to use the functions from the public

Library, but dictates that the private Library cannot be used directly. Only

public functions are able to directly use private functions in their

implementation. The disadvantage of this approach is that it relies on users

to adhere to a convention, but does not actively enforce access restrictions. It

is easily possible to bypass this convention, as shown by the dashed line in

Figure 4.11a. Automated checks for these convention violations could provide

a solution to this. A hierarchy of Model References can also be achieved in a

similar fashion, as shown in Figure 4.11b. The difference between using a

Model Reference versus a Library is that model referencing means including

the entire model, instead of a specific block. Another well-known approach

for supporting modularity is through the decomposition of a software system

into modules via information hiding [Parnas, 1972a]. We will introduce this

approach for Simulink in Chapter 5.

4.5 Chapter Summary

The comparison performed in this section lays the groundwork for achieving

modularity in the Simulink language. In particular, it demonstrated that

Simulink Function blocks are capable of encapsulating reusable implementations

that can be made public or private by altering the Simulink Function block’s

scope. Two conventions for supporting modular design were also introduced,

85

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

which did not rely on the use of Simulink Function blocks. However, because

Simulink Function blocks can be used to actively hide implementation details

and enforce encapsulation, we recommend using them in a stronger approach.

To this end, Chapter 5 presents the creation of a module structure for Simulink

models, along with a formal interface definition.

86

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Chapter 5

A Simulink Module Structure

Information hiding is a fundamental principle for modularizing software so

that it is robust with respect to change [Parnas, 1972a; Parnas et al., 1985]. It

aims to decompose a system such that each likely change (e.g., hardware

changes, behaviour changes, software design decision changes [Parnas et al.,

1985]) is treated as a “secret” and localized (hidden) in a single module.

Surprisingly, information hiding and encapsulation have not been readily

supported in Simulink [Bialy et al., 2016; Molotnikov et al., 2016; Ziegenbein

et al., 2020]. Parnas criticized the widely used approach of decomposing a

system in a “flowchart” manner, in which modules are simply major

processing steps in the program [Parnas, 1972a]. As Simulink is a graphical

modelling language, this is the de facto method of decomposition currently

used. However, with the introduction of constructs in the language, in

particular Simulink Functions (available since Simulink R2014b), it is possible

to design models that break free from the data flow approach. This chapter

presents a novel approach for decomposing Simulink models that supports

information hiding via the use of Simulink Function blocks. In particular, a

87

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Simulink module and a module’s syntactic interface are defined. Well-defined

interfaces are crucial for achieving modularity in designs. A syntactic

interface should make clear all the communication and dependencies of a

module and ensure that private information is not exposed on the interface.

A visual representation to provide a model-level view of this interface is

created. New modelling guidelines to support best practices using the new

decomposition and interface concepts are established. A tool to support

decomposition, interface views, and guideline checking is also developed.

Section 5.1 provides an overview of the literature related to model

structuring, modularity, and interfaces in Simulink. Section 5.2 introduces

the idea of a Simulink module and presents design principles to support

modularity. Section 5.3 defines the notion of a module interface. A visual

representation is also created in order to represent the interface in a model.

Tying this all together, Section 5.4 presents new guidelines for structuring

designs as modules based on Simulink Functions and interfaces. Section 5.5

introduces an open-source tool for supporting module creation, interface

representation, and guideline checking. Finally, Section 5.6 concludes with a

summary.

5.1 Related Work

In this section, related work on model structure and interfaces is summarized.

5.1.1 Model Structure

MathWorks is the authority when it comes to Simulink model structuring.

The Simulink User’s Guide [The MathWorks, 2019] provides a guide for

88

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

choosing the decomposition construct at the model level and compares three

constructs—subsystems, libraries, and model referencing—according to how

each supports the development process, model performance, component

reuse, etc. Modularity is not examined explicitly, however, there is a

discussion on the related concept of component reuse, which positions the

Model Reference and Library constructs as well suited for reuse, but not

Subsystems. Nevertheless, the ability to hide implementation details is not

discussed in the guide. The Simulink User’s Guide also provides

recommendations for interface design when it comes to Bus usage, naming

conventions, parameter partitioning, and explicit interface configuration [The

MathWorks, 2019].

The MathWorks Advisory Board (MAB) proposes decomposition using

Subsystem blocks also, but more specifically recommends structuring a model

into several layers, as shown in Figure 5.1. This decomposition is broadly

separated into top and bottom layers, with further decomposition into other

layers optional and possible in different combinations. The top (or root) layer

gives an overview of the feature being modelled as well as triggering

information. The bottom layers can be comprised of a subfunction layer for

organizing individual functional units, a control flow layer that deals with

input processing and intermediate processing for the functional units, and a

data flow layer that implements the actual control algorithm. A selection

layer can also be included in order to select between different Subsystems of

control algorithms.

Whalen et al. propose structuring Simulink models for the purpose of

verification [Whalen et al., 2014], decomposing a system into models based

on their role: functional, property (requirement), environment, or test input

89

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Table 5.1: Model structure recommended by MAB [The MathWorks, 2020c].

Layer Concept Layer Purpose

Top Layer Function layer Broad functional division

Schedule Layer Expression of execution timing (sampling, order)

Bottom Layer Subfunction layer Detailed function division

Control flow layer Division according to processing order
(input → judgement → output, etc.)

Selection layer Division (select output with Merge) into a format
that switches and activates the active Subsystem

Data flow layer Layer that performs one calculation that cannot
be divided

models. Furthermore, vertical decomposition separates each subsystem into

its own file. This structure supports independent development and

traceability.

Dajsuren et al. define metrics for modularity in Simulink models in terms

of coupling (number of exchanged input/output signals) and cohesion

(related functionality) for subsystems, ports, and signals [Dajsuren et al.,

2013]. Coupling metrics include: Coupling Between Subsystems, Degree of

Subsystem Coupling, Number of input Ports, Number of output Ports,

Number of input Signals, and Number of output Signals. Cohesion metrics

include: Depth of a Subsystem, Number of Contained Subsystems, and

Number of Basic Subsystems. It is clear that the Subsystem is considered to

be a module in this context.

Section 4.2 presented a thorough comparison of the five available

Simulink componentization constructs for decomposition purposes [Jaskolka

et al., 2020a]. A Simulink Function’s ability to be scoped makes it unique

because one can hide it from other parts of the model in which it resides, or

90

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

other models. As a result, we leverage Simulink Functions in our proposed

module structure in Section 5.2.

5.1.2 Interfaces

Well-defined interfaces are an integral part of achieving modularity in

designs. Commonly, a Simulink model’s interface is considered to be

comprised of the Inports and Outports of the top-level system [Dörr, 2017;

Gerlitz et al., 2015], also called the explicit interface. Bender et al. concluded

that implicit data flow is a crucial part of a Subsystem’s interface, and go on

to define a signature as a representation of the interface of a Simulink

Subsystem that effectively captures both the explicit and implicit data flow

between Subsystems [Bender et al., 2015]. We use a similar approach to

define a module interface. Rau’s work on Simulink model interfaces

recommends simplifying the signal flow into and out of a model by using a

Bus to group them together [Rau, 2002]. Masked Subsystem blocks are then

used to encapsulate signal operations such as selection, conversion, and

renaming. The drawback is a loss of direct visibility of data flow, so we will

not incorporate it in our work. The use of pre-/post-condition contracts as

verifiable interface specifications for Subsystems has also been

proposed [Boström, 2011; Boström et al., 2007; Iwu et al., 2004]. While this

design-by-contract approach provides a way of ensuring desired behaviour at

the Subsystem level, our approach aims to document the interface syntax in a

complete fashion at the Model level. Our interface definition can then be

used to establish the sets of inputs and outputs between which constraints

can be expressed. We discuss interface-related guidelines in Section 5.4.

91

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

5.2 A Simulink Module

A module is a component of a software system. It is a separate unit of a

program that encapsulates closely related algorithms (e.g., functions and

procedures) and data (e.g., data structures and variables) [Parnas, 1972a].

Encapsulation means restricting access to a portion of the module, such that

certain elements are not accessible outside of the module, but can be

manipulated via public elements revealed on the module’s interface. In this

section, the notion of a module in Simulink is introduced, drawing from the

C analogy in Section 2.3.

Modular programming in C entails decomposing a system into separate

modules [Srivastava et al., 2008; Oualline, 1997]. Each module consists of a

source file that groups together definitions of related functionality and data,

while a module’s interface is described by its header file. A module’s

implementation should be considered private, or internal, to the module, and

only those elements listed on the interface should be accessible to other

modules which import the interface. The ability to selectively hide or expose

functions is achieved via the use of the static keyword, as shown in

Figure 5.1, where the functions set and get are public, while the static

function foo and static variable var1 are private. If another module wishes

to use this module’s public elements, it can do so by including the module’s

interface (i.e., its header file), and then making calls to public functions in

the module, with parameter values from the calling program.

It is possible to use the same modular approach in Simulink. Although

there are several componentization constructs in Simulink, we wish to use the

construct that best supports encapsulation, and thus information hiding. In

92

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

C Module Simulink Module

Module.c Module.slx (or .mdl)

var1

OtherModule

Module.h

extern int set(int p);
extern int get();

Data Store Memory

Referenced Model

y = set(p)
Simulink Function 1

y = foo()
Simulink Function 3

Subsystem

#include “Module.h”
#include “OtherModule.h”

static int var1;

int set(int p) {
...
var1 = p;

}
int get() {

return var1;
}

static int foo() {
...

}

y = get()
Simulink Function 2

Figure 5.1: Module structure in Simulink based on C.

Chapter 4 we found that a Simulink Function’s unique ability to be scoped

enables one to effectively hide it from other parts of the model in which it

resides, or other models (Table 4.2). Moreover, a Simulink Function helps

to prevent some hidden data flow implicitly crossing its boundary. Simulink

Functions prove to be best suited to help us build modular Simulink designs

that can actively support encapsulation and thus facilitate information hiding.

The result of the comparison of Simulink componentization constructs (i.e.,

[Jaskolka et al., 2020a]) leads to the proposed method for constructing modules

in Simulink. Figure 5.1 illustrates how we can build Simulink modules based

on the essential components of a module in C. The Simulink module uses:

93

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

• Model References to import other Simulink modules;

• Data Stores that are properly scoped as state data private to the module

(alternatively, in some cases Unit Delay or Memory blocks may be used);

• Simulink Functions as functions exported by the module; and

• Subsystems to restrict a Simulink Function so that it is private to the

module.

Like in C, the proposed Simulink modules are not object-oriented classes,

and cannot be instantiated multiple times to create multiple objects. However,

they make it possible to achieve information hiding in Simulink designs, by

making modules that are separate, with the ability to selectively hide or expose

their internals. These modules can be used to structure Simulink designs that

are more robust with respect to anticipated changes.

5.3 A Simulink Module Interface

An interface is the set of services that each module provides to its

clients [Ghezzi et al., 2002]. A syntactic interface is generally represented as

a statement of elements and their properties that the module chooses to

make known to a user or client modules. As shown in Figure 5.1, a Simulink

module has no concept of an explicit interface like the header file provided in

C. For this reason, we now define a Simulink module interface, so as to be

able to extract it automatically from a Simulink module. A syntactic module

interface contains:

• inputs — data the client needs to provide

94

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

• outputs — data the module promises to provide

• exports — functionality the module provides to users

It is important that only necessary information is disclosed to the client

on the interface. The client needs to know what the module agrees to provide

via the interface but does not need to understand the details of the

implementation. As long as the interface remains the same, changes to the

implementation can take place without affecting users in any way.

This interface is consistent with how many programming languages

specify interfaces. Modern programming languages typically use keywords

such as Definition or Public to delineate the “interface,” and Implementation

or Private to separate out the private implementation. The interface usually

consists of only those elements that are necessary to make use of the

exported functionality (e.g., constant, type, variable, and function

prototype), but can also import elements that are needed in the interface

itself. Note that it is usually possible to make module variables public, but in

the spirit of information hiding, module variables (as opposed to

“parameters”) should never be exposed on the interface.

The prevailing view is that a Simulink model’s interface is comprised of

the Inports and Outports of the top-level system (e.g., [Dörr, 2017; Gerlitz

et al., 2015]), as shown in Figure 5.2a. This is reflected in the Interface

Display feature provided by Simulink, as shown in Figure 2.2a. The Interface

Display aims to provide users with a better view of the system’s

interface [The MathWorks, 2019], and we can see that one Inport and three

Outports are displayed around the edge of the model. However, a model’s

interaction with other systems and its environment can consist of additional

95

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

communication constructs that the Interface Display fails to show—in this

case a Data Store Write, two To File blocks, and an exported Simulink

Function. The Interface Display is thus insufficient in describing the actual

interface of a model. Although this example is simple, the interface of a

model can quickly become more difficult to understand due to the fact that

these constructs can be placed anywhere in a model, potentially several

layers deep. Thus, it can be difficult to “see” a Simulink module’s interface

and to understand what the module is exposing to other modules. The

notion of a signature of a Simulink Subsystem can be used to represent the

subsystem’s interface [Bender et al., 2015]. It addresses the concerns with

implicit data flow between subsystems by including in the subsystem’s

signature both the explicit data flow mechanisms (i.e., Inport/Outport) and

the implicit data flow mechanisms (scoped or global Goto/From blocks and

Data Store Read/Write/Memory blocks). We build on this idea to define the

module’s interface and represent it in the module in a similar way. This

definition is then used to develop a visual representation in Simulink, as well

as tool support to automatically extract and visualize it in a model.

5.3.1 Definition

A depiction of all the elements of a Simulink module’s interface is shown in

Figure 5.2b. Shared data is defined via Inport blocks, as well as others that

are usually not considered, such as the From File and global Data Stores that

are read. The interface also includes the module outputs via Outport blocks,

as well as other blocks such as To Workspace and global Data Stores that are

written to. Shared functions are Simulink Functions that are exported from a

96

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

module. The lines show all the possible data flow between a module and other

workspaces

We can describe a Simulink module interface via standard set-theoretic

definitions. These definitions not only help to make the interface precise, they

also support the creation of tools. In particular, we use this definition to

implement the interface extraction and representation in the Simulink Module

Tool (Section 5.5).

A set containing n elements is written {a1, . . . , an}. We define sets using the

usual set builder notation A = {a | P (a)} where A is a set containing elements

satisfying property P . The notation a ∈ A denotes element a is contained in

set A. The notation A ⊆ B indicates that A is a subset of the set B. The

union of A and B, denoted A∪B, is the set containing elements in either A or

B. The difference of A and B, denoted A \ B, is the set containing elements

in A but not in B. The ∧ symbol denotes logical conjunction. A function f

with domain D and range R is denoted in the usual way: f : D → R.

We define a Simulink module M simply as a set of blocks. We consider

the block diagram (top-level) system itself to be a part of this set, so as to

treat the system and subsystems the same. We abstract away the notion of

signal flow between the blocks, as we are not concerned with intra-module

communication (it was previously addressed [Bender et al., 2015]), but rather

the inter-module communication not represented by conventional signals.

Definition 1 (Identifiers I).

• B(M) is the set of all blocks in the module M , that is, those at the top

level as well as any that are contained within other blocks (regardless of

hierarchy).

97

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Module

OutportInport

Base/MATLAB Workspace

Model Workspace

Simulation Data (Simulink.SimulationData)

Data Types, Parameters, Lookup
Tables, Breakpoints, …

(a) Generally accepted view of the interface.

Module

OutportInport

Base/MATLAB Workspace

Data Dictionaries
Data Types, Parameters, Lookup

Tables, Breakpoints, …

From File

From Spreadsheet

To File

Model Workspace

From Workspace To Workspace

Data Store Read Data Store Write

Simulation Data (Simulink.SimulationData)

Signals (Simulink.Signal)

Signals (Simulink.Signal)

Data Types, Parameters, Lookup
Tables, Breakpoints, …

Data Types, Parameters, Lookup
Tables, Breakpoints, …

Excel/CVS

MAT-Files

Exported
Simulink Functions

(b) All possible interface data flow.

Figure 5.2: Simulink interface data flow.

98

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

• S(M) is the set of all Subsystem blocks in the module M , as well as the

root system, so S(M) ⊆ B(M).

Definition 2 (Block Containment). For some blocks b and c, b ∈ c denotes

that b is wholly contained in c. It can also be said that b is a child of the

container c.

Definition 3 (Parent Block). The function parent : B(M)∪ {undefined} →

S(M) ∪ {undefined} is defined,

parent(b) =


s s ∈ S(M) ∧ b ∈ s

undefined otherwise

Definition 4 (Root Block). The function atRoot : B(M) → B, where B =

{false, true}, is defined,

atRoot(b) =


true parent(parent(b)) = undefined

false otherwise

A block b is in the root system of module M when its parent in turn does not

have a parent, or, block b has no defined grandparent.

Definition 5 (Identifiers II).

• IP(M) is the set of all Inport blocks

? IR(M) represents root level inports (IR(M) ⊆ IP(M)) and is defined,

IR(M) = {ir | ir ∈ IP(M)∧ atRoot(ir)}

• OP(M) is the set of all Outport blocks

99

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

? OR(M) represents root-level outports (OR(M) ⊆ OP(M)) and is

defined, OR(M) = {or | or ∈ OP(M)∧ atRoot(or)}

• FD(M) is the set of all Simulink Function blocks

? FG(M) represents global functions (FG(M) ⊆ FD(M))

? FS(M) represents scoped functions (FS(M) ⊆ FD(M))

? FL(M) represents local functions (FL(M) ⊆ FS(M)) and is defined,

FL(M) = {fl | fl ∈ FS(M)∧¬ atRoot(fl)}

• TF(M) is the set of all To File blocks

• FF(M) is the set of all From File blocks

• FS(M) is the set of all From Spreadsheet blocks

• TW(M) is the set of all To Workspace blocks

• FW(M) is the set of all From Workspace blocks

• DS(M) is the set of all global data stores

? DSR(M) represents global data stores that have a corresponding

Data Store Read block

? DSW(M) represents global data stores that have a corresponding

Data Store Write block

Definition 6 (Inputs). The inputs of module M , denoted IN(M), is a tuple(
IR(M), FF(M), FS(M), FW(M), DSR(M)

)
of root-level Inport, From File,

From Spreadsheet, From Workspace, and global Data Store Read blocks.

100

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Definition 7 (Outputs). The outputs of module M , denoted OUT(M), is a

tuple
(
OR(M), TF(M), TW(M), DSW(M)

)
of root-level Outport, To File, To

Workspace, and global Data Store Write blocks.

Definition 8 (Exports). The exports of module M is the set of exported

Simulink Function blocks, EX(M) = FG(M)∪
(

FS(M) \FL(M)
)
. Global

Simulink Functions are included as they are always on the module interface.

Scoped Simulink Functions are included if they are at root-level, i.e., they will

be exported on the module interface.

Definition 9 (Interface). The interface I of a module M , denoted I(M), is

a tuple
(

IN(M),OUT(M),EX(M)
)

of inputs, outputs, and exports.

5.3.2 Limitations

Although unlikely, it is possible that a Simulink model can use custom code

and data from outside sources via the use of model callbacks,1 S-functions,2

and C Functions.3 Callbacks are used to automatically run commands when

a model is opened or closed, for example, and could be used to dynamically

define data for the model. S-functions are custom Simulink block

implementations using MATLAB, C, C++, or Fortran, which could

potentially read/write data externally via file I/O functions. C Function

blocks allow models to call external C code. These three mechanisms are

typically used by advanced Simulink users. Parsing the textual code used to

apply these techniques are outside of the scope of this work, and thus are not

reflected in the interface definition.

1https://www.mathworks.com/help/simulink/ug/model-callbacks.html
2https://www.mathworks.com/help/simulink/sfg/what-is-an-s-function.html
3https://www.mathworks.com/help/simulink/slref/cfunction.html

101

https://www.mathworks.com/help/simulink/ug/model-callbacks.html
https://www.mathworks.com/help/simulink/sfg/what-is-an-s-function.html
https://www.mathworks.com/help/simulink/slref/cfunction.html

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

5.3.3 Representation

We created a visual representation of the interface within the model file to

provide an easy to understand view of the module’s interface based on

Definition 9. The visual representation is placed in a Simulink module at the

root, to the left of any other elements at that hierarchical level. It contains

labelled sections corresponding to Definitions 6–8. Where possible, the

interface is represented using commented out blocks, thus preventing it from

having any behavioural impact on the module or adding new code during

code generation. If modifying in the module is not possible, the interface can

be represented in text form in the MATLAB Command Window. This

textual representation can also be used for automatic documentation

generation. In the textual description of the interface, each element’s full

path name, data type, dimensions, and sample time are listed. The tool we

developed, the Simulink Module Tool (Section 5.5), supports the automatic

creation of an interface in both visual and textual forms. The visual interface

for Figure 2.2a, as generated by the tool, is shown in Figure 5.3a, and has

four elements that the MathWorks Interface Display does not show. The

textual interface is shown in Figure 5.3b. This is a concrete application of

the definition of a module interface as presented in Section 5.3.1.

5.3.4 Benefits

There are several practical benefits and situations in a software engineering

methodology where an interface in a Simulink module is beneficial. We

describe these use cases in what follows.

102

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

(a) Visual interface representation.

Inputs

Inports:

SmallExample/In1, uint16, 1, 1

Outputs

Outports:

SmallExample/Out1, Inherit: auto, 1, 1

SmallExample/Out2, Inherit: auto, -1, 1

SmallExample/Out3, Inherit: auto, -1, 1

To Files:

SmallExample/To File1, Timeseries, N/A, -1

SmallExample/To File2, Timeseries, N/A, -1

Data Store Writes:

SmallExample/Data Store Write, uint16, 1, 1

Exports

Simulink Functions:

SmallExample/Simulink Function,

In: uint16, 1, -1

Out: uint16, 1, -1

(b) Textual interface description.

Figure 5.3: Interface representations for Figure 2.2a, as generated by the
Simulink Module Tool.

Development Passing information that is too detailed, unnecessary,

arbitrary, or potentially changeable, violates software design principles. Clear

interfaces help developers review them critically and examine whether their

constituents are, for example, likely to change, too low-level, or unnecessary.

Collaboration The presence of an interface is also invaluable in

understanding a module for the first time, particularly when it originates

from a different developer or source. If an interface is provided, the developer

103

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

can use the module in a black-box fashion, without taking the time to

understand the internals of the design.

Testing With an easy to identify interface, all the module inputs and outputs

are evident to a tester. When using a third-party Model-in-the-Loop (MiL)

testing tool, such as Reactis by Reactive Systems, a developer can quickly

identify module inputs/outputs that may not be included automatically by

the tool. Some testing tools neglect to automatically create input vectors, or

record input/output vectors for constructs outside of Inport/Outport blocks. A

developer can quickly identify module inputs/outputs that need additional test

points to be created prior to testing in order to record the results for omitted

inputs/outputs. For example, Data Store Read and Data Store Write blocks

may not be exercised adequately. With a complete and visual interface, the

tester can easily find these on the interface and harness them [Bender et al.,

2015]. Also, depending on the testing tool, blocks such as From Spreadsheet,

To File, etc. may not be supported at all. In such cases, it is useful if they are

made evident so that the user can deal with them appropriately, resulting in

better coverage.

Production Several constructs that can be on a module interface are not

recommended for a module that is to be used to generate production code

(e.g., To File and From Workspace). However, these constructs are useful to

developers during module development and simulation. An interface will

capture such constructs, and empower developers to use them with the

knowledge that they will be easy to identify and remove once a module is

ready to be transitioned to production.

104

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Documentation, Refactoring, and Maintenance Documentation of

Simulink models is often deficient [Schaap et al., 2018; Pantelic et al., 2019].

It can be difficult for developers to understand the overall functionality of

complex models, as well as how they interact with other models. An interface

makes this clear at the root level of the module, saving the developer from

navigating to other levels. Structuring a module such that it always contains

an up-to-date interface eases documentation efforts and supports the concept

of “self-documenting” software. Textual representation of the interface is

particularly useful for automatic documentation generation.

5.4 Modelling Guidelines

The use of Simulink Functions and a syntactic interface help create Simulink

modules. Guidelines are useful for further supporting good practices when

using these approaches. In this section, we discuss existing modelling

guidelines for Simulink, and present new ones to address gaps where current

guidelines fall short. The Simulink Module Tool provides automated

compliance checking for these guidelines and is discussed in Section 5.5. A

user is able to select one or more of these guidelines and any violating blocks

will be reported. To the best of our knowledge, no other tools support these

guidelines.

5.4.1 Simulink Functions

MathWorks is the de facto authority on best practices for designing with

Simulink. Their advisory boards [The MathWorks, 2020c] provide the most

influential guidelines, but currently none address Simulink Function scoping.

105

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

The Motor Industry Software Reliability Association (MISRA) Simulink

guidelines also pre-date Simulink Functions [The Motor Industry Software

Reliability Association, 2009]. Recommendations on using Simulink Functions

to promote best practices for supporting modularity and information hiding

are introduced below. These guidelines are widely accepted in other

languages to increase understandability, promote maintainability, and reduce

errors, thus, we adapt them for Simulink R2014b and newer releases.

Guideline 1 (Simulink Function Placement). Place the Simulink

Function block in the lowest common parent of its corresponding Function

Caller blocks. Do not position the Simulink Function in the top layer without

a reason. Avoid placing Simulink Function blocks below their corresponding

Function Caller blocks.

Guideline 2 (Simulink Function Visibility). Limit the Function Visibility

parameter of the Simulink Function block’s trigger port to scoped if possible.

In textual programming languages, it is good practice to ensure variables

and functions are declared at the minimum scope from which their identifiers

can still reference them [Martin, 2008]. This promotes readability, reliability,

and reusability of the code [Carnegie Mellon University, 2020]. In Simulink,

the same treatment is recommended for Data Store Memory blocks and Goto

blocks, in order to support code comprehension, maintenance, as well as to

avoid unintended access [Pantelic et al., 2018; The MathWorks, 2020c; The

Motor Industry Software Reliability Association, 2009]. For these reasons, we

introduce the two aforementioned guidelines for Simulink Function blocks.

Guideline 1 describes how to position Simulink Function blocks in order

to minimize their accessibility both inside and outside the module. This is

106

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

achieved by placing Simulink Function blocks as low as possible in the hierarchy,

while still allowing any function calls to reference their corresponding Simulink

Function block without added name qualifiers. The exception to this occurs

when the intent is to associate a Simulink Function with its parent subsystem.

This may be to increase the reusability of the subsystem itself, so the Simulink

Function is encapsulated by that subsystem, even though Function Callers may

be present above it in the hierarchy.

The hierarchical placement of a Simulink Function can also affect its presence

on the module’s interface. If it is scoped and placed at the root, it will be

externally accessible by other modules. A similar treatment for a Simulink

Function’s Function Visibility parameter is recommended in Guideline 2. It

should be set to its most restrictive setting possible, unless otherwise required.

Guideline 3 (Simulink Function Shadowing). Do not place Simulink

Functions with the same name and input/output arguments within each

other’s scope.

Function overloading occurs when multiple definitions of a function exist

with the same name but different input or output arguments. Simulink does

not allow a Simulink Function to be placed in a Subsystem that already

contains a Simulink Function with the same name. However, if the placement

of a Simulink Function is at a different hierarchical level than another of the

same name, one can define functions that shadow/mask each other. Since

scoping rules for Simulink Functions are complex, and users may be unaware

of a naming collision, it is best to avoid situations where more than one

function with the same name and arguments is accessible. The MAB

107

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

guideline jc 0791 recommends a similar treatment for data stored in multiple

workspaces [The MathWorks, 2020g].

5.4.2 Interfaces

The Simulink User’s Guide discusses good practices for interface design,

including Simulink subsystem interfaces [The MathWorks, 2019]. The

guidelines provide information about where model objects/data can be

stored, but provide no real guidance on where they should be stored.

Moreover, the use of constructs that contribute to hidden data flow into or

out of the model is not addressed. The MathWorks Simulink Check provides

guidelines for “high integrity systems modelling” for models that must

comply with DO-178C/DO-331, ISO 26262, and other standards [The

MathWorks, 2020i]. One guideline recommends that top-level Inport blocks

must have data type, port dimensions, and sample time parameters

populated. This is good practice in general and will assist in making the

details of the interface data flow clear.

MAB provides a single guideline regarding interfaces, recommending the

enabling of strong-typing in Stateflow charts. This is not directly useful for

examining the model’s top-level interface. MAB also provides a guideline

that lists prohibited Simulink blocks, including To File and To Workspace

blocks in control models [The MathWorks, 2020c]. Similarly, the Embedded

Coder User’s Guide describes which Simulink blocks support C code

generation, and provides details on how certain blocks are treated during

code generation [The MathWorks, 2020b]. In particular, the blocks described

in our proposed definition of an interface are treated as follows.

108

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

• Supported : Inport/Outport, Data Store Read/Write, Model Reference,

Library, Simulink Function, Function Caller

• Ignored : To Workspace/From Workspace

• Not recommended for production: To File/From File, From Spreadsheet

Although To File, From File, and From Spreadsheet blocks are not

recommended for production, developers may use them during development

because they are valuable for prototyping and logging purposes. Thus, To

File, From File, and From Spreadsheet may be represented on the interface.

When using these blocks for prototyping, an interface that highlights these

constructs will help in identifying them so they can be removed once the

design is finalized. This approach will help support the Embedded Coder

guideline.

Guideline 4 (Use of the Base Workspace). Do not use the base workspace

for storing, reading, or writing data on which a module depends. Instead, place

data in either the model workspace, if it is used in a single module, or a data

dictionary if it is shared across modules.

A likely change for a module that is used for code generation is that it will

change workspaces, from being situated in the base workspace of the Simulink

development environment to being flashed onto the target embedded device.

One can anticipate and prepare for this future change by creating a stable

interface from the first stages of development. This not only minimizes the

need for changes later on, but can also reduce dependencies. This is achieved

by restricting the use of interface elements that are used for prototyping or

that do not support code generation. In particular, developers should avoid

109

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Module

OutportInport

Base/MATLAB Workspace

Data Dictionaries
Data Types, Parameters, Lookup

Tables, Breakpoints, …

From File

From Spreadsheet

To File

Model Workspace

From Workspace To Workspace

Data Store Read Data Store Write

Simulation Data (Simulink.SimulationData)

Signals (Simulink.Signal)

Signals (Simulink.Signal)

Data Types, Parameters, Lookup
Tables, Breakpoints, …

Data Types, Parameters, Lookup
Tables, Breakpoints, …

Excel/CVS

MAT-Files

Exported
Simulink Functions

Figure 5.4: Restricted interface elements dashed/crossed out, per Guideline 4
for production-ready models.

using the base workspace for storing, reading, or writing data (including types,

signals, etc.). Naturally, it follows that the use of blocks that read/write to

the base workspace (e.g., To File/From File) should be avoided, unless they

are placeholders for root-level Inport/Outport blocks that will be added in the

future. Also, it may be the case that these restricted blocks are used for testing

purposes (e.g., reading test vectors to exercise the model). In this case, a test

harness model should be created to separate the testing-related blocks and

allow the module to remain production-ready.

110

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

To see Guideline 4 applied, Figure 5.4 has restricted items dashed/crossed

out, such as the base workspace and associated constructs. As a result, the

data flow has been simplified significantly, with the dashed lines showing data

flow that is eliminated. Interestingly, MAB explicitly prohibits the use of To

File and To Workspace blocks, but recommendations for their counterparts, the

From File and From Workspace blocks as well as the From Spreadsheet block,

are not provided.

5.5 The Simulink Module Tool

The Simulink Module Tool was developed to assist with applying our approach

for constructing Simulink modules as described in Section 5.2, generating the

interface defined in Section 5.3, and checking compliance to the guidelines

proposed in Section 5.4. It is open-source and available on the MATLAB

Central File Exchange, GitHub, and directly within MATLAB using the Add-

On Explorer. This tool is an extension to the Simulink environment, and

adds new options directly into the Simulink Context Menu (demonstrated in

Figures 5.5–5.7 and 5.9). The capabilities of the tool are described in the

following sections.

5.5.1 Subsystem to Simulink Function Conversion

The tool automatically converts Subsystems into Simulink Functions. In a

Simulink model, one can right-click on a Subsystem, choose Convert

Subsystem, specify the scope, and the tool will automatically replace it with

a Simulink Function. This is shown in Figure 5.5. This action encompasses

changes to the Subsystem, Trigger, and Inports/Outports. The pseudocode of

111

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Figure 5.5: Simulink Module Tool: Convert a Subsystem into a Simulink
Function.

the conversion algorithm is presented in Algorithm 1. We used this

functionality throughout the case studies in Chapter 6 to greatly speed-up

the migration of existing designs to the Simulink module structure.

In the case where ones chooses to convert an existing design to a module

structure, the MathWorks automated theorem proving toolbox Simulink

Design Verifier (SDV) can be used to prove that the design before and after

changes is behaviourally equivalent. Note that a limitation to our module

approach may arise when converting between componentization constructs

that contain blocks with discrete or continuous states, because while Simulink

Function blocks have persistent state between function calls, other constructs

may not share state. This limitation is elaborated on in 6.4. To avoid this,

one can leave out stateful blocks from Simulink Functions and ensure

behaviour is the same via SDV proof.

5.5.2 Scope Changes

The tool converts between the different kinds of scoping for Simulink Functions,

so the user does not have to be concerned with remembering the complex

scoping rules regarding Function Visibility and placement. The user simply

112

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Algorithm 1 Converting a subsystem into a Simulink function.

1: procedure subToSimFcn(ss, f name, f scope)
Ensure: ss is a subsystem
Ensure: f name is a valid function name
Ensure: f scope is a valid function scope

. Configure the Subsystem as a Simulink Function
2: ss.LinkStatus ← none
3: ss.TreatAsAtomicUnit ← on
4: Add trigger block t into ss
5: t.TriggerType ← function-call
6: t.IsSimulinkFunction ← on
7: t.FunctionName ← f name
8: t.FunctionVisibility ← f scope

. Convert inports to input arguments
9: allInports ← inports of ss

10: allInportsParams ← parameters of allInports
11: Replace allInports with ArgIn blocks
12: Fix allInportsParams that are incompatible with Simulink Functions
13: ArgIn parameters ← allInportsParams

. Convert outports to output arguments
14: allOutports ← outports of ss
15: allOutportsParams ← parameters of allOutports
16: Fix allOutportsParams that are incompatible with Simulink Functions
17: Replace allOutports with ArgOut blocks
18: ArgOut parameters ← allOutportsParams

113

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Exported to
module interface

Local to
new subsystem

Local to
existing subsystem

Figure 5.6: Simulink Module Tool: Change the scope of a Simulink Function.

needs to right-click on a Simulink Function, select Change Function Scope, and

choose how to scope the function. This is shown in Figure 5.6.

5.5.3 Function Calling

The tool assists users in calling Simulink Functions that are in scope, with

their appropriate qualifiers. Right-clicking in the model and then selecting

Call Function... from the Context Menu displays a listbox showing Simulink

Functions that can be called from that location. These steps are shown in

Figure 5.7. In order to view a similar list from MathWorks, one must first

manually add a Function Caller to the model, and then click on the Function

prototype field, which is shown in the centre of Figure 5.8. Moreover, the

Simulink Module Tool list is more accurate than the information that

114

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Figure 5.7: Simulink Module Tool: Call Simulink Functions that are in scope.

Simulink provides when configuring a Function Caller, as shown in the

example in Figure 5.8. On the left, a Simulink Function foo is stored in an

Atomic Subsystem, making it inaccessible at the current level of the hierarchy.

When trying to configure the Function Caller shown, Simulink lists the

Simulink Function in the list of callable functions (centre window). However,

selecting this Simulink Function will result in a simulation error that states

the Simulink Function is inaccessible. On the right, the Simulink Module Tool

does not list this Simulink Function. The Simulink Module Tool provides a

more accurate list, and does not require that a Function Caller block is first

added.

5.5.4 Automatic Function Configuration

Making a selection from the callable Simulink Function list, as described in

Section 5.5.3, creates a Function Caller and automatically populates its

Function prototype, Input argument specifications, and Output argument

specifications parameters. Simulink does not populate these fields

automatically, and it can be tedious to specify for a function with many

inputs and outputs.

115

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Figure 5.8: Simulink lists an inaccessible Simulink Function in the list of
callable functions (centre), whereas the Simulink Module Tool does not

(right).

5.5.5 Interface Generation

The syntactic interface (Section 5.3) for a Simulink module can be

automatically generated. The user simply needs to right-click in the model

and select the Interface > Show Interface option to represent it visually in

the model, or Print Interface to textually print it to the Command Window

(Figure 5.9). Both of these two views were shown in Figure 5.3.

When the interface is to be represented in the model, the tool will add

its representation into the model. The tool is also capable of updating the

interface representation when requested by the user. It is also possible to

delete the interface representation to revert the model to its original state, by

selecting Delete Interface, as shown in Figure 5.9.

116

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Figure 5.9: Simulink Module Tool: Generate interface and dependency views.

5.5.6 Dependency Viewing

Module dependencies, such as Model Reference, Library, and data dictionaries,

can be detected by the tool, and summarized for the developer. This is useful

for ensuring that the necessary definitions/files are available in order to compile

and simulate. This is option available by right-clicking in the model and

selecting Interface > Print Dependencies, as shown in Figure 5.9.

5.5.7 Guideline Checking

The four guidelines presented in Section 5.4 can be selected (Figure 5.10),

automatically checked, and lists of violations are returned to the user as shown

in Figure 5.11.

5.6 Chapter Summary

Previously, it was determined that a Simulink model’s structure and interface

were changing at a high frequency compared to other model elements. We

proposed the well-known approach of modularization via information hiding

to minimize change propagation. In comparing the available Simulink

decomposition constructs, we found that Simulink Functions were best suited

117

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Figure 5.10: Simulink Module Tool: Check module guideline compliance.

Guideline 1 ‘Simulink Function Placement’ violations:

Example/Simulink Function can be moved to Example/Subsystem

Example/Simulink Function1 can be moved to Example/Subsystem2/Subsystem1

Guideline 2 ‘Simulink Function Visibility’ violations:

Example/Simulink Function

Example/Subsystem/Simulink Function1

Guideline 3 ‘Simulink Function Shadowing’ violations:

Example/Subsystem2/Subsystem1/Simulink Function1 is shadowed by:

Example/Subsystem/Simulink Function1

Guideline 4 ‘Use of Base Workspace’ violations:

Example/From File

Figure 5.11: Simulink Module Tool: Example output of guideline checks.

118

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

to support encapsulation while also creating reusable designs. Simulink

Functions also have the unique ability to be scoped as public/private

functionality. As a result, a Simulink module concept was created that

leverages Simulink Functions. Additionally, a Simulink module syntactic

interface was defined. Four modelling guidelines were also proposed to

further encourage good practices when using these approaches. Finally, the

Simulink Module Tool was presented in order to automate and further

support developers when leveraging the aforementioned approaches.

Altogether, these contributions present a novel way of enabling

modularization using information hiding in the Simulink language.

119

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Chapter 6

Case Studies

This chapter describes how the concepts introduced in Chapter 5 were applied

to production industrial models. First, evaluation methods for both studies

are introduced in Section 6.1. Then, case studies in the aerospace and nuclear

domains are provided in Sections 6.2 and 6.3, respectively. Limitations and

workarounds are discussed in Section 6.4.

6.1 Evaluation Methods

Through the use of our proposed Simulink module structure, we aim to

achieve designs that are robust with respect to change. In order to perform

an evaluation of the proposed module structure, we sought to objectively

quantify the improvement to modularity and information hiding. This was

done by evaluating characteristics that are widely considered effective

indicators of design structure and modularity of large systems, such as

coupling and cohesion. In addition, we evaluated the approach by examining

120

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

potential impacts to the designs in terms of complexity, structural coverage,

and performance.

6.1.1 Design Equivalence

We want to ensure that the restructured models are behaviourally equivalent

to the original designs, and that no unintended behaviour was introduced as

a result of the restructuring. To do this, we use verification to formally prove

equivalence between specification outputs. MathWorks provides the Simulink

Design Verifier (SDV)1 toolbox that we use to perform a formal analysis on

models to either prove or disprove specified properties.

The process is shown in Figure 6.1. First, we begin with the Simulink

designs before and after restructuring. A verification model is created that

references both designs. We then instrument the verification model with proof

objectives which we want to remain invariant over the entire execution of

the verification model. To ensure equivalent behaviour, we specify that each

output of the original system must be equivalent to the corresponding output

of the restructured system. SDV is then executed in “property proving” mode

to formally prove the specified properties. This ensures that the outputs are

always identical, for each time step. A report of results is produced. It states

whether the objectives were satisfied or not satisfied. If they were not satisfied,

a counter example is provided. If all properties are successfully proven for our

verification model, this means that the before/after systems are behaviourally

equivalent. For both the case studies presented, we formally proved that the

designs before and after restructuring were indeed behaviourally equivalent.

1https://www.mathworks.com/products/simulink-design-verifier.html

121

https://www.mathworks.com/products/simulink-design-verifier.html

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Verification Model
(referencing design models)

+
Invariant Specification

(equality of outputs)

Design Models

Property Proving
(report of results)

Before After

Figure 6.1: Verification of equivalence between model versions.

122

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

6.1.2 Information Hiding

Although directly measuring information hiding has been attempted [Rising

and Calliss, 1994], no metric has been widely accepted in either academia

or industry. As a result, we use a qualitative analysis to reason about the

effectiveness of our approach in supporting information hiding in the system.

Firstly, given a list of secrets that are hidden appropriately in a module, it

should be the case that changes to the secret will not impact any other modules

of the system [Parnas et al., 1989]. Parnas referred to this as the changeability

of the system and used this as a way of demonstrating the effectiveness of

information hiding [Parnas, 1972a]. Secondly, use of the “hidden” internal

implementation of the module should be restricted, that is, private to the

module in which it is defined [Parnas et al., 1989]. We evaluate the first of these

two scenarios by performing the same change on the before and after systems,

and documenting the parts of the system that needed to be modified in order to

implement the change. The expectation is that the system that was designed

without information hiding in mind will require changes to several parts of the

system, while the modularization approach that we propose effectively restricts

changes to a single module. The second scenario is tested by creating a probe

model that attempts to access internal implementations that should be hidden

from other modules.

6.1.3 Interface Complexity

The complexity of a system is often attributed to the interactions, or

interfaces, between the system’s components. This complexity directly

impacts the reusability, testability, and maintainability of the components.

123

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Interfaces are essentially the links between modules that allow for separation

of concerns. Minimal and stable interfaces are integral to achieving

information hiding. As discussed in Section 5.3, the interface of a Simulink

model is generally considered to be comprised of Inport and Outport blocks,

when in fact many other Simulink elements also contribute to the interface.

This is also reflected in the tools currently available for interface complexity

checking, such as the Simulink Check Metrics Dashboard2 and Model

Engineering Solutions GmbH (MES) M-XRAY.3 As a result, we used the

Simulink module interface definition in Section 5.3 to provide a complete

syntactic description of a module’s interactions. The Simulink Module Tool

automatically generates interface information, as well as dependency

information, for a Simulink module (Section 5.5). Together this information

provides an overall view of the many interactions that exist in a Simulink

system. We compared the interfaces of the before and after system to

understand how the new module structure impacted interface complexity.

6.1.4 Coupling and Cohesion

Coupling and cohesion are well-known as indicators of the quality of a

program decomposition, and are related to the concept of information

hiding [Stevens et al., 1999]. Coupling is a measure of the interconnections

between modules, and increases as the complexity of the interfaces between

modules increases [Stevens et al., 1999]. While information hiding aims to

hide the implementation details of a module, coupling measures how much

another module is reliant on another module. Minimizing the coupling of a

2www.mathworks.com/help/slcheck/ug/collect-and-explore-metric-data-by-
using-metrics-dashboard.html

3www.model-engineers.com/en/quality-tools/mxray/

124

www.mathworks.com/help/slcheck/ug/collect-and-explore-metric-data-by-using-metrics-dashboard.html
www.mathworks.com/help/slcheck/ug/collect-and-explore-metric-data-by-using-metrics-dashboard.html
www.model-engineers.com/en/quality-tools/mxray/

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

module makes it more robust with respect to changes because it reduces the

connections by which changes and errors can propagate [Stevens et al., 1999].

Thus, a good design that implements information hiding will also exhibit low

coupling. Designs with low coupling and high cohesion lead to software that

is more reliable and more maintainable [Fenton and Bieman, 2014]. Cohesion

is a measure of the relationships of the elements within a module, with the

aim of ensuring that module elements are highly related to each

other [Stevens et al., 1999]. Cohesion also supports information hiding by

ensuring that the contents of a module are strongly related to one secret. In

the context of Simulink, coupling and cohesion are typically defined on a

single Simulink model, based on the interactions of the contained

blocks [Olszewska, 2011], or specifically Subsystem blocks [Gerlitz and

Kowalewski, 2016; Dajsuren et al., 2013]. There is a lack of system-level

metrics for coupling and cohesion in the Simulink environment, and in turn,

an absence of tools that automatically measure these qualities. Consequently,

we manually analyzed the impact to coupling and cohesion in our case

studies.

6.1.5 Cyclomatic Complexity

The effort needed to maintain a software system is related to the complexity

of the system. Cyclomatic complexity is the most widely-used metric in

industry for gauging the structural complexity of software [Ebert et al.,

2016]. Cyclomatic complexity measures the amount of decision logic in a

program, or more specifically, the number of linearly independent execution

paths through a program [McCabe, 1976]. McCabe created this metric to

125

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

provide a way of reasoning about the modularity and maintainability of a

program [McCabe, 1976]. It is indicative of the maintainability of

software [Banker et al., 1989; Gill and Kemerer, 1991; Watson and McCabe,

1996], which is our ultimate goal in supporting information hiding and

modularity. The cyclomatic complexity metric has also been adapted for

Simulink [Olszewska et al., 2016; Model Engineering Solutions, 2020; The

MathWorks, 2020g] and is used widely in this context. MathWorks supports

this metric for use directly on Simulink models, and is provided as an

architecture metric via the Simulink Check toolbox. For more information on

how MathWorks adapts this metric to Simulink models, please see the

Simulink Check Reference [The MathWorks, 2020f]. We leveraged Simulink

Check to automatically compute cyclomatic complexity values for the designs

before and after restructuring, in order to compare them.

6.1.6 Testability

Information hiding encourages the decomposition of systems such that

module changes are prevented from propagating throughout several modules,

thus allowing the independent testing of modules [Parnas, 1972a]. Some

studies in OOP suggest that information hiding has a negative impact on

testing [Voas, 1996]. Therefore, we seek to understand and evaluate our

approach with respect to testing impact—both in the testing effort required

and test coverage.

The SDV toolbox automatically generates test cases for Simulink models

in order to maximize the structural coverage metrics of decision, condition,

Modified Condition/Decision Coverage (MCDC), and execution coverage. It

126

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

also records the test effort in terms of total objectives needed for testing. A

harness model was created and the vectors were used to perform MiL testing

in order to record these metrics.

6.1.7 Performance Comparison

As our approach relies heavily on the use of Simulink Function blocks, it is

important to be cognizant of the potential for added overhead due to the

increase in function calls and switching between modules in the new

decomposition [Parnas, 1972a]. To determine whether there was a change in

efficiency between the original system and our modified system, they were

both simulated as Software-in-the-Loop (SiL), and the Average Case

Execution Time (ACET) and Worst Case Execution Time (WCET) were

measured and compared. SiL simulation means that the model is generated

into code, and then the code is executed.

6.2 Aerospace Case Study

This section describes how the concepts of the previous chapters were applied

to an example from the aerospace domain. We use a helicopter control system

that is available on the MATLAB Central File Exchange4 as a small open-

source system that was originally developed by a MathWorks employee. This

system is shown in Figure 6.2. We focus on the Flight Control Computer (FCC)

(the controller) as the other components of the system are plant models.

First, the original design structure is described in Section 6.2.1, followed

by a description of how the module structure was applied in Section 6.2.2.

4https://mathworks.com/matlabcentral/fileexchange/56056-do178 case study

127

https://mathworks.com/matlabcentral/fileexchange/56056-do178_case_study

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Section 6.2.3 highlights how the Simulink Module Tool was used throughout

the system restructuring process and Section 6.2.4 evaluates the designs

before and after the changes according to the criteria set out in Section 6.1.

Section 6.2.5 summarizes the findings of the FCC case study.

6.2.1 Flight Control Computer (FCC) Components

The FCC system is shown in Figure 6.2, and is a typical closed-loop control

system comprised of a pilot model providing set points, plant models that

represent the actuators and the helicopter, sensor models providing feedback,

and an FCC model that provides attitude and heading control. The FCC is a

small Simulink model comprised of six top-level Model References, as shown in

Figure 6.3a. The referenced models, from left to right, implement the Attitude

and Heading Reference System (AHRS) Voter, Helicopter Outer Loop Control

(HOLC), Helicopter Inner Loop Control (HILC), and the Actuator Loop (AL),

which is instantiated thrice. The structure of the FCC is also represented in

Figure 6.4a. Note, the AL is a single model, so it is shown only once in the

graph.

6.2.1.1 Attitude and Heading Reference System (AHRS) Voter

The AHRS Voter model (Figure 6.3b) takes digital bus input from three sensors

and outputs either the middle, average, or individual sensor values depending

on the voting criteria. The input bus includes signals relating to: AHRS sensor

validity, pitch attitude, roll attitude, pitch rate, roll rate, and yaw rate. The

AHRS Voter contains three virtual Subsystems, namely: Mid Value, Avg Value,

128

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Figure 6.2: Top-level view of the helicopter system example.

129

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

1
Act_Pos1

1
Actuator1

ActuatorLoop

PositionFeedback

PositionCommand

ActuatorCommand

ActuatorControl1

2
Actuator2

ActuatorLoop

PositionFeedback

PositionCommand

ActuatorCommand

ActuatorControl2

3
Actuator3

ActuatorLoop

PositionFeedback

PositionCommand

ActuatorCommand

ActuatorControl3

2
Act_Pos2

3
Act_Pos3

4
Pilot_theta_cmd

5
Pilot_phi_cmd

6
Pilot_r_cmd

7
AHRS1

8
AHRS2

9
AHRS3

Heli_inner_loop
theta_cmd

phi_cmd

r_cmd

voted_fb

actuator_commands

Heli_outer_loop
Pilot_theta_cmd

Pilot_phi_cmd

Pilot_r_cmd

voted_fb

theta_cmd

phi_cmd

r_cmd

AHRS_voter

AHRS1

AHRS2

AHRS3

voted_fb

Copyright	2016	The	MathWorks,	Inc.

(a) Top-level view of the original FCC decomposition.

1
AHRS1

1
voted_fb

2
AHRS2

3
AHRS3

AHRS1

AHRS2

AHRS3

Mid_Value

Mid_Value

AHRS1

AHRS2

AHRS3

AHRS1_Valid

AHRS2_Valid

AHRS3_Valid

Avg_Value

Avg_Value

AHRS1

AHRS2

AHRS3

AHRS1_Valid

AHRS2_Valid

AHRS3_Valid

Single_Value

Single_Value

0

1

2

*,	3

MultiportSwitch

<valid>

<theta>

<phi>

<r>

<q>

<p>

<p>

<q>

<r>

<phi>

<theta>

<valid>

<theta>

<phi>

<r>

<q>

<p>

<valid>

Copyright	2016	The	MathWorks,	Inc.

(b) AHRS Voter Subsystem from Figure 6.3a.

130

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

1
Pilot_theta_cmd

1
theta_cmd

2
Pilot_phi_cmd

3
Pilot_r_cmd

4
voted_fb

2
phi_cmd

3
r_cmd

K	Ts
z-1

Integrator
-10	to		10

-30	to	30

K	Ts
z-1

Integrator1
-10	to		10

-30	to	30

K	Ts
z-1

Integrator2
-10	to		10

-30	to	30

TypeConversion
Scaling

TypeConversion1
Scaling1

TypeConversion2
Scaling2

theta

phi

r
Copyright	2016	The	MathWorks,	Inc.

(c) Heli Outer Loop Model from Figure 6.3a.

Roll-off	filters

1
theta_cmd

1
actuator_commands

SOF

2
phi_cmd

3
r_cmd

4
voted_fb

40
s+40

RollOff1
@100Hz

40
s+40

RollOff2
@100Hz

40
s+40

RollOff3
@100Hz

ds

dc

dT

Copyright	2016	The	MathWorks,	Inc.

(d) Heli Inner Loop Model from Figure 6.3a.

1
PositionFeedback

1
ActuatorCommand

z-1
z

K	Ts
z-1

Integrator
-0.1	to		0.1

2
PositionCommand

-0.3	to	0.3

Copyright	2016	The	MathWorks,	Inc.

TypeConversion
Scaling Scaling6

TypeConversion6

(e) Actuator Loop Model from Figure 6.3a.

Figure 6.3: Original FCC decomposition.

131

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

and Single Value, which contain the corresponding sensor voting algorithms.

Per the system requirements, the voting criteria are as follows:

• If three sensors are valid, output the middle value for each bus parameter.

• If two sensors are valid, output the average of the valid bus parameters.

• If one sensor is valid, output the value of the valid bus parameter.

6.2.1.2 Helicopter Outer Loop Control (HOLC)

The HOLC model (Figure 6.3c) receives pilot input commands for pitch, roll,

and yaw, as well as AHRS Voter sensor values. The HOLC outputs pitch, roll,

and yaw commands for the HILC model. Within the HOLC model, there are

three Proportional/Integral (PI) control loops, pertaining to the pitch, roll,

and yaw commands. Each PI control loop contains a state-holding Discrete-

Time Integrator block to perform accumulation of the input signals, as well

as unique controller gains. Per the system requirements, the HOLC model

operates on a 10 millisecond (ms) sample time.

6.2.1.3 Helicopter Inner Loop Control (HILC)

The HILC model (Figure 6.3d) receives pitch, roll, and yaw commands from

the HOLC model, as well as AHRS Voter sensor values. The HILC outputs

actuator position commands to three AL models. Within the HILC model,

there are three roll-off blocks for each of the input commands. These blocks

are linked from the external Library Heli Library. The roll-off blocks each

contain a Unit Delay block and act as filters for the input command signals

at a bandwidth of 40 rad/sec. The AHRS Voter signal is multiplied with a

132

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

gain matrix to compute the closed-loop control feedback signals. Similar to

the HOLC model, the HILC model also operates on a 10 ms sample time.

6.2.1.4 Actuator Loop (AL)

The three AL blocks in Figure 6.3a are Model References to one AL model,

shown in Figure 6.3e. The AL model receives actuator position command

input from the HILC model as well as current actuator position from three

Linear Variable Differential Transformer (LVDT) feedback signals. The AL

model outputs actuator commands to the three helicopter actuators. Within

the AL model, there are three Proportional/Integral/Derivative (PID)

control loops, pertaining to the pitch, roll, and yaw actuators. Each PID

control loop contains a state-holding Discrete-Time Integrator block to

perform accumulation of the input signals, a Unit Delay block to assist in the

discrete differentiation, and unique controller gains. In contrast to the HOLC

and HILC models, it is required that the AL model operates on a 1 ms

sample time, and thus three Rate Transition blocks are used to adjust the

sample time of the input signals from the HILC model to the AL models.

6.2.2 Application of the Simulink Module Structure

The FCC was decomposed using the approach described in Section 5, by

grouping models based on the secrets they contain (Table 6.1) and the model

sample time. These secrets were established based on the accompanying

software and system requirements documentation for the FCC project, as

well as our understanding of the system. Existing Subsystems were converted

to Simulink Functions using the automated process provided by the Simulink

133

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Module Tool. The change in the FCC model structure is represented in

Figure 6.4. The AHRS Voter and AL models remained from the original

system, however, the new model AHRS Control was added to replace the

original HOLC and HILC models, as it was established that these two

models were collectively hiding the AHRS cascade-control secret of the

system. In each of the three Model References, a Simulink Function was added

to encapsulate the top-level block diagrams, and then called via

corresponding Function Callers. The new decomposition is shown in

Figure 6.5a. Simulink Functions and their corresponding Function Callers are

highlighted in the same colour to ease readability. Lastly, SDV was used to

formally verify equivalence between units of the original and new designs, as

outlined in Section 6.1.1.

The following subsections elaborate on the decomposition of each

referenced model. Although the entire system was restructured, we show

figures of the changes that occurred in the HOLC and HILC because they are

the most complex. The entire system before and after restructuring can be

viewed on GitHub.5

6.2.2.1 Attitude and Heading Reference System (AHRS) Voter

The AHRS Voter was straightforwardly converted to a Simulink module. We

wanted to encapsulate the global sensor voting approach, as well as the three

sensor-dependent voting algorithms. As a result, the AHRS Voter itself was

encapsulated in a Simulink Function that is exported and callable outside of

the module. Each of the three voting algorithms were encapsulated in their

5https://groke.cas.mcmaster.ca/gitlab/scotts24/do178

134

https://groke.cas.mcmaster.ca/gitlab/scotts24/do178

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Table 6.1: FCC system module secrets.

Module Secret Module Type

AHRS Voter Sensor voting algorithm Behaviour-hiding
Mid Value Algorithm condition Behaviour-hiding
Avg Value Algorithm condition Behaviour-hiding
Single Value Algorithm condition Behaviour-hiding

AHRS Control Cascade controller Behaviour-hiding

Heli Outer Loop Pilot control algorithm,
scaling, saturation limits

Behaviour-hiding,
Hardware-hiding

Pitch Loop Pilot theta controller Software Design Decision
Roll Loop Pilot phi controller Software Design Decision
Yaw Loop Pilot r controller Software Design Decision

Heli Inner Loop Command control algorithm Behaviour-hiding
Filter Noise filter implementation Software Design Decision
Pitch Feedback Fore/aft cyclic position

command controller
Behaviour-hiding

Roll Feedback Left/right cyclic position
command controller

Behaviour-hiding

Yaw Feedback Pedal left/right command
controller

Behaviour-hiding

Actuator Loop Actuator control algorithm,
scaling, saturation limits

Behaviour-hiding,
Hardware-hiding

Actuator1 Loop Actuator 1 controller Behaviour-hiding
Actuator2 Loop Actuator 2 controller Behaviour-hiding
Actuator3 Loop Actuator 3 controller Behaviour-hiding

own scoped Simulink Function, where they each previously resided in a virtual

Subsystem.

6.2.2.2 Attitude and Heading Reference System (AHRS) Control

Before applying the approach to the AHRS Control model (Figure 6.5b),

improvements were made to better encapsulate design secrets deemed likely

to change. Within the HOLC model (Figure 6.5f), each of the PI controllers

is likely to change, and thus three Simulink Functions were added to

encapsulate each of these controllers. Within the HILC model (Figure 6.5d),

135

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Heli Outer Loop Heli Inner Loop Actuator Loop

Mid Value Avg Value Single Value

FCC

AHRS Voter

Model

Virtual Subsystem
Simulink Function
Contains
References
Links

Library

Heli Library

Filter

(a) Structure of the original FCC decomposition.

FCC

AHRS Voter AHRS Control Actuator Loop

Mid Value Avg Value Single Value

AHRS Control

Heli Outer Loop Heli Inner Loop

Pitch Feedback Roll Feedback Yaw Feedback Filter

AHRS Voter

Pitch Loop Roll Loop Yaw Loop

Actuator Loop

Actuator1 Loop Actuator2 Loop Actuator3 Loop

(b) Structure of the new FCC decomposition.

Figure 6.4: Structure of the FCC before and after restructuring.

the matrix gain was likely to change, and thus it was split into three separate

gains corresponding to the pitch, roll, and yaw signals. Then, three new

Simulink Functions were added to encapsulate each of the new gains with the

feedback summation block and the derivative roll-off filter as shown in

Figure 6.5e. The roll-off filter Library Links were removed and the blocks were

prepared for conversion to Simulink Functions by placing the Unit Delay

outside of the Subsystem, then routing the output of the Unit Delay as an

input to the Subsystem. This change was necessary as the filter block was to

be used in three separate instances, and thus it was undesirable for the

Subsystem to retain state. After this change, the Subsystem was converted

into a Simulink Function.

136

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

1
Act_Pos1

1
Actuator1

2
Actuator2

3
Actuator3

2
Act_Pos2

3
Act_Pos3

4
Pilot_theta_cmd

5
Pilot_phi_cmd

6
Pilot_r_cmd

7
AHRS1

8
AHRS2

9
AHRS3

ActuatorControl

ActuatorControl

caller
	ActuatorControl.Actuator_control()

Act1_pos

Act1_cmd

Act2_pos

Act2_cmd

Act3_pos

Act3_cmd

Actuator1

Actuator2

Actuator3

Actuator_control_caller

caller
	AHRSControl.AHRS_control()

Pilot_theta_cmd

Pilot_phi_cmd

Pilot_r_cmd

voted_fb

actuator_commands

AHRS_control_caller

AHRSVoter

AHRSVoter

caller
	AHRSVoter.AHRS_voter()

AHRS1

AHRS2

AHRS3

voted_fb

AHRS_voter_caller

AHRSControl

AHRSControl

(a) Top-level view of the new FCC decomposition.

AHRS_control

actuator_commands	=	AHRS_control(Pilot_theta_cmd,Pilot_phi_cmd,Pilot_r_cmd,voted_fb)

(b) AHRS Control Model Reference from Figure 6.5a.

This	module	encapsulates	the	AHRS	loop	control	modules.

Heli_outer_loop

[theta_cmd,phi_cmd,r_cmd]	=	Heli_outer_loop(Pilot_theta_cmd,Pilot_phi_cmd,Pilot_r_cmd,voted_fb)

Heli_inner_loop

actuator_commands	=	Heli_inner_loop(theta_cmd,phi_cmd,r_cmd,voted_fb)

caller
	Heli_inner_loop()

theta_cmd

phi_cmd

r_cmd

voted_fb

actuator_commands

Heli_inner_loop_caller

caller
	Heli_outer_loop()

Pilot_theta_cmd

Pilot_phi_cmd

Pilot_r_cmd

voted_fb

theta_cmd

phi_cmd

r_cmd

Heli_outer_loop_caller

f()

AHRS_control

Pilot_theta_cmd

Pilot_theta_cmd
Pilot_phi_cmd

Pilot_phi_cmd
Pilot_r_cmd

Pilot_r_cmd

voted_fb

voted_fb

actuator_commands
actuator_commands

(c) AHRS control Simulink Function from Figure 6.5b.

137

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

This	module	encapsulates	the	AHRS	"Inner	Loop"	control.

f()

Heli_inner_loop

theta_cmd

theta_cmd

phi_cmd

phi_cmd

r_cmd
r_cmd

voted_fb
voted_fb

actuator_commands
actuator_commands

40
s+40

Filter
@100Hz

[filtered_Signal,FeedbackSum]	=	Filter(Signal,prev_FeedbackSum)

This	module	encapsulates	creation	of	the	pitch	feedback	signal.

Filter_caller

pitch_feedback

theta_cmd

voted_fb

ds
ds

pitch_attitude

pitch_feedback

ds	=	pitch_feedback(theta_cmd,voted_fb)
This	module	encapsulates	creation	of	the	roll	feedback	signal.

Filter_caller

roll_feedback

phi_cmd

voted_fb

dc

roll_attitude

dc

roll_feedback

dc	=	roll_feedback(phi_cmd,voted_fb)
This	module	encapsulates	creation	of	the	yaw	feedback	signal.

Filter_caller

yaw_feedback

r_cmd

voted_fb

dT
dT

yaw_rate

yaw_feedback

dT	=	yaw_feedback(r_cmd,voted_fb)

caller
	pitch_feedback()

theta_cmd

voted_fb
ds

pitch_feedback_caller

caller
	roll_feedback()

phi_cmd

voted_fb
dc

roll_feedback_caller

caller
	yaw_feedback()

r_cmd

voted_fb
dT

yaw_feedback_caller

(d) HILC Simulink Function from Figure 6.5c.

This	module	encapsulates	creation	of	the	pitch	feedback	signal.

caller
	Filter()

Signal

prev_FeedbackSum

filtered_Signal

FeedbackSum

Filter_caller

f()

pitch_feedback

theta_cmd

theta_cmd

voted_fb

voted_fb

ds
ds

ds

pitch_attitude

(e) pitch feedback Simulink Function from Figure 6.5d.

This	module	encapsulates	the	AHRS	"Outer	Loop"	control.

theta

-30	to	30

-30	to	30

TypeConversion1
Scaling1

TypeConversion2
Scaling2

f()

Heli_outer_loop

Pilot_theta_cmd

Pilot_theta_cmd

Pilot_phi_cmd

Pilot_phi_cmd

Pilot_r_cmd

Pilot_r_cmd

voted_fb

voted_fb

theta_cmd
theta_cmd

phi_cmd
phi_cmd

r_cmd
r_cmd

This	module	encapsulates	the	"Roll	Loop"	algorithm.

Integrator1

Roll_loop

Pilot_phi_cmd phi_cmd

phi

Roll_loop

phi_cmd	=	Roll_loop(Pilot_phi_cmd,phi)

This	module	encapsulates	the	"Yaw	Loop"	algorithm.

Integrator2

Yaw_loop

Pilot_r_cmd r_cmd

r

Yaw_loop

r_cmd	=	Yaw_loop(Pilot_r_cmd,r)

-30	to	30
TypeConversion

Scaling

This	module	encapsulates	the	"Pitch	Loop"	algorithm.

Integrator
-10	to		10

Pitch_loop

Pilot_theta_cmd theta_cmd

theta

Pitch_loop

theta_cmd	=	Pitch_loop(Pilot_theta_cmd,theta)
caller

	Pitch_loop()
Pilot_theta_cmd

theta
theta_cmd

Pitch_loop_caller

caller
	Roll_loop()

Pilot_phi_cmd

phi
phi_cmd

Roll_loop_caller

caller
	Yaw_loop()

Pilot_r_cmd

r
r_cmd

Yaw_loop_caller

phi

r

(f) HOLC Simulink Function from Figure 6.5c.

Figure 6.5: New FCC decomposition.

138

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

6.2.2.3 Actuator Loop (AL)

In the AL Simulink model, the fact that the model was instantiated three times

for each actuator was internalized in the new AL module. The AL is contained

in a Simulink Function in order to encapsulate the control algorithm and several

hardware dependent values dealing with saturation limits, scaling, and type

conversions. This Simulink Function is exported from the module. Moreover,

the three loops were separated into their own Simulink Functions. This allows

for the control algorithms and their parameters to vary independently between

the three actuators. Changing the parameters of one actuator will no longer

impact the other two.

6.2.3 Using the Simulink Module Tool

We leveraged the tool to support the restructuring activities outlined in the

previous section. While the Simulink Module Tool is described in detail in

Section 5.5, we now describe how it was used in the context of the FCC case

study.

• The tool was used to convert 18 Subsystems into Simulink Function

blocks, as described earlier. This process encompasses several steps for

each Subsystem, such as adding a Trigger to the Subsystem, replacing

Inport/Outport blocks with ArgIn/ArgOut blocks, and configuring

multiple parameters for each of these blocks. The process was outlined

in detail in Algorithm 1. Automating this operation saved a significant

amount of time.

139

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

• After a Simulink Function was added to the design, it was necessary to

ensure that it was scoped at the appropriate visibility. To do this, the

tool converted between the different kinds of scope for Simulink Functions

when we were restructuring the FCC. Simulink Functions were easily made

internal/external to the module, as needed.

• For each Simulink Function block, it was necessary to also add Function

Caller blocks to call the Simulink Function. In the entire FCC, we added

20 Function Caller blocks, which the Simulink Module Tool was able to

create and configure automatically, also saving time.

• The syntactic interface and dependencies for the FCC were

automatically generated as shown in Figure 6.8. This information was

used in the interface complexity evaluation in Section 6.2.4.2, and

coupling evaluation in Section 6.2.4.3.

• The four guidelines presented in Section 5.4 were automatically checked

to ensure that the newly added Simulink Functions were properly scoped,

that they were placed at the appropriate level in the module, and that

we did not introduce Simulink Function shadowing.

In summary, the Simulink Module Tool saved time when restructuring the

new FCC, and made many of the activities less tedious to perform.

6.2.4 Evaluation

Through the use of our proposed Simulink module structure, we aim to achieve

designs that are robust with respect to change. In this section, we quantify

the improvement to the design of the FCC in terms of information hiding and

140

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

modularity by evaluating characteristics that are considered indicative of good

design structure, as described in Section 6.1.

6.2.4.1 Information Hiding

We evaluated the designs from the information hiding perspective by

observing how likely changes would propagate through the systems. One of

the likely changes that could impact the design is the use of a cascade

controller implementation. This was identified as a secret in Table 6.1. In

order to determine whether the new design more effectively hides this design

decision than the original design, we apply a change to the cascade controller

and observe how it impacts the system. Figure 6.3a shows the original

implementation of the FCC, where the HOLC and HILC models implement

the cascade controller. If the design is changed to a single loop controller, the

HILC would be deleted, and the model reference would be removed from the

FCC model, thus impacting two models. This is shown in Figure 6.6a.

Furthermore, the HOLC would also require changes in parameters in order to

maintain the required performance, meaning a third model would require

modification. Moreover, its interface would need to be modified in order to

output the appropriate commands. Since the custom roll-off filter block and

the Library are only used in the HILC model, it would be possible to delete

them entirely, as they are no longer used by the system. Deleting the Library

model means that a total of four models were deleted to implement the new

controller strategy.

To implement this same change in the newly restructured FCC system, no

changes would be required in the FCC model, and the model would remain as

shown in Figure 6.5a. The change to the controller strategy is contained within

141

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

the AHRS Control model, and no interface changes are necessary. The changed

model is shown in Figure 6.6b, as compared to the original in Figure 6.5c.

We also evaluated how the new structure actively restricts access to the

“hidden” design details. The original design used Model References, which were

further decomposed into Subsystems, and neither of these constructs limits the

use of its internals [Jaskolka et al., 2020a]. That is, a model can be referenced

from any other model, without restriction, and all of its functionality will be

available. In leveraging Simulink Functions that are locally scoped, we ensure

that upon the model being referenced, they will not be callable outside of the

model. This allows one to hide functionality that should remain hidden inside

the module.

To summarize, changing the cascade controller to a single loop controller

would require several model changes in the original decomposition, while the

new design requires the modification of only one model. Therefore, it is clear

that the new decomposition effectively hides the secret of the cascade controller

implementation and facilitates future changes.

6.2.4.2 Interface Complexity

In the original design, the HILC had three links to a roll-off filter block in

an external Library named Heli Library. A Library was clearly being used in

order to make one block reusable, however, this can alternatively be achieved

via Simulink Functions. Instead of using a separate Library, the roll-off filter

library block was converted to a Simulink Function and moved directly into the

HILC, as shown in Figure 6.5d. Then, the three linked blocks were replaced

with three Function Callers to the same Simulink Function. As a result, the

Library is no longer required. The interface of the FCC was improved by

142

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

1
Act_Pos1

1
Actuator1

ActuatorLoop

PositionFeedback

PositionCommand

ActuatorCommand

ActuatorControl1

2
Actuator2

ActuatorLoop

PositionFeedback

PositionCommand

ActuatorCommand

ActuatorControl2

3
Actuator3

ActuatorLoop

PositionFeedback

PositionCommand

ActuatorCommand

ActuatorControl3

2
Act_Pos2

3
Act_Pos3

4
Pilot_theta_cmd

5
Pilot_phi_cmd

6
Pilot_r_cmd

7
AHRS1

8
AHRS2

9
AHRS3

Heli_outer_loop
Pilot_theta_cmd

Pilot_phi_cmd

Pilot_r_cmd

voted_fb

actuator_commands

Heli_outer_loop

AHRS_voter

AHRS1

AHRS2

AHRS3

voted_fb

AHRS_voter

(a) Changes required in the FCC model to implement single loop control,
compared to Figure 6.3a.

This	module	encapsulates	the	AHRS	loop	control	modules.
Heli_outer_loop

[theta_cmd,phi_cmd,r_cmd]	=	Heli_outer_loop(Pilot_theta_cmd,Pilot_phi_cmd,Pilot_r_cmd,voted_fb)

caller
	Heli_outer_loop()

Pilot_theta_cmd

Pilot_phi_cmd

Pilot_r_cmd

voted_fb

theta_cmd

phi_cmd

r_cmd

Heli_outer_loop_caller

f()

AHRS_control

Pilot_theta_cmd

Pilot_theta_cmd
Pilot_phi_cmd

Pilot_phi_cmd
Pilot_r_cmd

Pilot_r_cmd

voted_fb

voted_fb

actuator_commands
actuator_commands

(b) Changes required in the AHRS Control model to implement single loop
control, compared to Figure 6.5c.

Figure 6.6: Implementation of a change in the FCC.

removing links to this library entirely, as shown in Figure 6.8. Additionally,

because we hid knowledge of the number of actuator loops required, the number

of model references was reduced from 6 to 4.

6.2.4.3 Coupling and Cohesion

In the original model, the HILC and HOLC models were two independent

models, however, they were tightly coupled because together they

143

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Heli Outer Loop Heli Inner Loop Actuator Loop

FCC

AHRS Voter

Unchanged Element

Changed Element

Heli Library

(a) Representation of change in the original FCC modules.

Actuator Loop

FCC

AHRS Voter AHRS Control

(b) Representation of change in the new FCC modules.

Figure 6.7: Structure of the FCC before and after applying a change to the
controller strategy.

FCC.slx

Interface
Inputs: 9
Outputs: 3
Exports: 0
Dependencies
Linked Blocks: 3
Model References: 6
Data Dictionary: 0

Interface
Inputs: 0
Outputs: 0
Exports: 1
Dependencies
Linked Blocks: 0
Model References: 0
Data Dictionary: 0

HeliLibrary.slx

(a) Before restructuring, the FCC relied on an external Library.

Interface
Inputs: 9
Outputs: 3
Exports: 0
Dependencies
Linked Blocks: 0 (-3)
Model References: 4 (-2)
Data Dictionary: 0

Interface
Inputs: 0
Outputs: 0
Exports: 1
Dependencies
Linked Blocks: 0
Model References: 0
Data Dictionary: 0

FCC.slxHeliLibrary.slx

(b) After restructuring, the FCC does not require the Library.

Figure 6.8: Interface changes between FCC and the Library.

implemented a cascade controller. Combining their functionality into the new

AHRS Control model resulted in a more cohesive and less coupled design.

144

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

This also eliminated one model reference. Moreover, in the original FCC, the

AL model was referenced three times, but in the new FCC, the three

actuator control loops were entirely contained by the AL module, which

further decreased coupling and increased cohesion. Furthermore, the coupling

between the FCC and the external Library was eliminated which also reduced

coupling.

6.2.4.4 Cyclomatic Complexity

Table 6.2 shows the change to cylomatic complexity. The original FCC had a

cyclomatic complexity of 41, whereas the restructured FCC has a cyclomatic

complexity of 61, resulting in an increase in complexity by 20. The change in

cyclomatic complexity is a result of our module structure leveraging Simulink

Function blocks to thoroughly decompose the system. MathWorks has

adapted the cyclomatic complexity metric to the Simulink language such

that each atomic Subsystem adds a value of 1 to the complexity [The

MathWorks, 2020f], because of the added decision point for calling/not

calling the function. As a result, for 15 of the 18 Simulink Functions, a value

of 1 was added to the cyclomatic complexity. The remaining three Simulink

Functions did not add complexity as they were directly converted from blocks

that were already atomic units, which already contributed a complexity of 1.

Other changes in complexity resulted from loss of reuse of the AL model, as

the new decomposition assumes that the actuator controllers are likely to

vary independently from one another (+8), and the removal of three model

references (–3).

145

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Table 6.2: FCC complexity, testing, and SiL performance comparison.

Metric Before After Difference Percent Difference

Cyclomatic Complexity 41 61 +20 +48.8%

Test Objectives 121 139 +18 +14.9%
Satisfied 113 (93.4%) 131 (94.2%) +18 +0.8%
Unsatisfiable 8 (6.6%) 8 (5.8%) 0 0%

Decision 101/105 (96.2%) 131/139 (94.2%) +30/+34 –2%
Execution 89/89 (100%) 185/185 (100%) +96/+96 0%

ACET (ns) 697 878 +181 +25.9%
WCET (ns) 5,360 4,257 -1,103 -20.6%

6.2.4.5 Testability

The SDV toolbox was used to automatically generate test vectors that

maximize structural coverage metrics of decision, condition, MCDC,6 and

execution coverage. A harness model was created and the vectors were used

to perform MiL testing, with the results given in Table 6.2. Naturally, with

increased complexity resulting from new Simulink Function blocks, there are

corresponding coverage objectives and test cases that are also added. We can

see that 18 additional test objectives were added for each of the new Simulink

Function blocks, and each of these were satisfied.

The number of decision objectives satisfied and total decision objectives

increased by 30 and 34, respectively. This was due to each of the 18 new

Simulink Functions adding 1 satisfied decision objective. Similar to the

cyclomatic complexity, the remaining 12 satisfied decision objectives and 16

total decision objectives resulted from the loss of reuse of the AL model. The

AL model originally had a decision coverage of 6/8, and was a single model

that was referenced three times, so the contained logic only contributed once

to the coverage objectives. However, in the restructured system, the logic

6Note, the FCC design did not contain blocks that require condition nor MCDC coverage.

146

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

contained in the AL is now defined three times as separate Simulink

Functions, so that they can be modified independently. This results in

decisions being added two more times, and thus the objectives associated

with the logic also increases twice.

Overall, the restructuring did not have a substantial impact on the testing

results, with the most significant change being the added objectives as a result

of Simulink Functions.

6.2.4.6 Performance Comparison

C code was generated for the FCC using the Embedded Coder toolbox. Then,

SiL testing was performed with the same test vectors from MiL testing, and

code execution profiling was performed to understand the performance of the

system before and after the decomposition changes. The results are reported in

Table 6.2. Overall, we expected the use of Simulink Functions to increase the

execution time because of the added function call overhead [Parnas, 1972a;

Jaskolka et al., 2020b] and to reflect the increase in cyclomatic complexity.

This was indeed the case as an increase of approximately 26% was observed in

the ACET of the system’s generated code. However, the WCET reduced by

approximately 20%.

6.2.5 Case Study Summary

In summary, the application of the approach on the FCC was beneficial in

reducing interface complexity, decreasing coupling, and increasing cohesion.

Most importantly, the new decomposition better supported information

hiding, and changes were easier to make on the restructured system.

147

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Nevertheless, the design’s additional Simulink Functions each added a

cyclomatic complexity value and decision test objective, and because the

FCC is a relatively small system, the amount of Simulink Function reuse did

not offset the added objectives (contrary to the second case study in

Section 6.3). As a result, the total cyclomatic complexity, and number of

decision objectives both increased in the new FCC, and the system exhibited

a decrease in ACET performance by approximately 26%.

6.3 Nuclear Case Study

This section describes how our concepts were applied to restructure a

Simulink implementation of a nuclear Shut Down System (SDS). The SDS

senses whether conditions in a nuclear reactor are no longer safe, and controls

the lowering of control rods to stop (“shut down”) the reaction. With 605

subsystems, 74 top-level inputs, 7 top-level outputs, and 6036 total blocks,

the model is too large to be presented here. However, it represents the size of

small to medium size designs found in practice. Both the documentation and

implementation details of the system are proprietary. It was developed by

researchers at McMaster University from proprietary requirements provided

by an industry partner. Although both the size and the proprietary nature of

the system prevent us from including a full comparison of design details, we

can report the details of restructuring one module, as well as the results of

the entire system, using the approach outlined in Chapter 5.

Section 6.3.1 begins by describing how the proposed module structure was

applied in the SDS on one module: the Power Estimation (PE) module. The

approach is first described in detail on this module, and an overview of the

148

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

restructuring of the entire SDS follows. An explanation of how the Simulink

Module Tool supported this process is provided in Section 6.3.2. Section 6.3.3

goes on to evaluate the approach’s effectiveness in terms of achieving a more

modular system. Finally, Section 6.3.4 summarizes the nuclear case study.

6.3.1 Application of the Simulink Module Structure

This section describes how the module structure was applied on the PE module

and the entire SDS.

6.3.1.1 Power Estimation (PE) Module

The first SDS implementation was implemented in Simulink R2012a by other

developers some years before Simulink Functions were introduced in the

Simulink language. The design makes heavy use of linked blocks, which link

to various blocks in the SDS Library. The structure of the system is shown in

Figure 6.9a. The PE subsystem estimates the power of the reactor based on

the average neutron over-power sensor values. It is one of the more complex

components in the SDS. The PE implementation consists of several

subsystems, which are defined in the SDS Library. PE contains secrets related

to both hardware (e.g., which sensors are used) and software (e.g., how to

accommodate for insufficient sensor readings). Unfortunately, a Library does

not enforce information hiding, as shown in Chapter 4. This is confirmed by

the creation of a test model (Test.mdl in Figure 6.9) to probe the Library.

Any of the blocks in the SDS Library can be used without restriction, and the

internals of any subsystem are free to clients to use as well, even if this is not

149

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

the developer’s intent. It is not possible to selectively expose or hide

functionality, as it is with our approach.

By restructuring the PE subsystems into a Simulink module, we aim to

hide implementation details from users of the PE module—the users should

only be able to access the estimated power output value. This is an essential

difference between defining modules as we recommend compared to using

“coding” guidelines that are not enforced by the language (such as those

proposed in Section 4.4). By using Simulink Function blocks, the Simulink

module structure actively enforces the hiding of design details. Figure 6.9b

shows the resulting module structure. A new model file (EstPower.mdl) was

created and all related functionality was structured as a module as described

in Section 5. This entailed organizing the operations as Simulink Function

blocks, choosing which are to be external and which are hidden in the

module, and scoping them based on our guidelines (Section 5.4). While there

are many possible decompositions, the only exported function that is

available for other modules to use is Estimated Power . By placing it at the

root level and setting the Function Visibility parameter to scoped, it can be

called like a member function (i.e., EstPower.Estimated Power (. . .)). The

SDS model imports this function definition using a Model Reference to the

module and calls the function using a Function Caller block wherever the

function is to be executed. Functionality in the SDS Library unrelated to PE,

such as f HTHPsentrip and f NOPsentrip, remained as is.

6.3.1.2 Entire Shut Down System (SDS)

Before applying the approach to the rest of the SDS, improvements were

made to the original design to better encapsulate hardware secrets. These

150

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

SDS_Library.mdl

Average_Power
_Defaulted

f_AvePower

Valid_ith_NOP
_Signal_Indicator

f_HTHPsentrip

Estimated_Power

SDS.mdl

f_NOPsentrip

Test.mdl

(a) Before: PE implemented in a Library.

f_EstPower_Output =
Estimated_Power(…)
Simulink Function 1

Subsystem

Output =
Average_Power_Defaulted(…)

Simulink Function 2

Output = f_AvePower(…)

Simulink Function 3

...

EstPower.mdl

SDS_Library.mdl

f_HTHPsentrip

f_NOPsentrip

Test.mdl

SDS.mdl

Simulink Function

Model Reference that is not possible

(Sub)system

Model Reference

Model hierarchy that is accessible

Model hierarchy that is inaccessible

LEGEND

(b) After: PE implemented with a module structure.

Figure 6.9: Structure of the SDS system, focusing on power estimation.

151

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

improvements included adding an additional Subsystem at the top-level to

encapsulate behaviour related to push-button hardware, as well as relocating

Subsystems related to communications behaviour into one dedicated

communications Subsystem.

Then, the SDS was restructured by converting all the top-level

Subsystems to Model References. Within each respective Model Reference, a

Simulink Function was added to encapsulate the root block diagram of the

Model. Then, in each model, all nested Subsystems were converted to

Simulink Functions with the exception of two, which remained as linked

Library Subsystems because they provided low-level utility functionality

throughout the SDS. Finally, the top-level Simulink Function of each Model

Reference was called from the root of the SDS Model.

Throughout the original SDS, many of the linked Library Subsystems were

used multiple times, which resulted in duplicate blocks of code in the

generated code. These Subsystems presented an excellent opportunity to

achieve Simulink Function reusability; however, many of the Subsystems

contained state-retaining Unit Delay blocks. Before replacing the Subsystems

with multiple Function Callers to the same Simulink Function, the

state-retaining Unit Delay blocks had to be moved outside of the Subsystems.

Section 6.4.3 further explores the reasoning behind this design change.

Subsequently, where multiple Function Callers to the same Simulink Function

were used, an additional Simulink Function was added to encapsulate the

multiple callers. Lastly, SDV was used to formally prove that the designs

before and after restructuring were behaviourally equivalent, as outlined in

Section 6.1.1.

152

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

6.3.2 Using the Simulink Module Tool

The Simulink Module Tool facilitates the creation of Simulink modules, as

we have done in the SDS example. The tool was used to make the changes

described in Section 6.3, generate syntactic interfaces, and check guidelines, as

described in this section.

Subsystem to Simulink Function Conversion The tool was a

significant help because of its automated Subsystem to Simulink Function

conversion functionality. This was particularly useful for the SDS because we

introduced 142 Simulink Function blocks. Manual conversion would be time

consuming without the automated assistance of the Simulink Module Tool.

Moreover, many of the Subsystems had a large number of Inport blocks, with

some containing over 50 Inports. Without the tool, we would need to

manually replace each Inport with an ArgIn block, and then configure its

parameters.

Scope Changes The tool converted between the different kinds of scoping

for Simulink Functions when we were decomposing the SDS functionality into

Simulink modules. The majority of Simulink Functions were easily made

internal to their module, while some externally visible Simulink Functions

were appropriately scoped so that they were exported Simulink Functions and

available to the SDS model. The tool allows one to quickly change the scope

without the need to remember the scoping rules described in Section 2.2.1.2.

Function Calling With the introduction of many Simulink Function blocks

comes the need to also add Function Caller blocks. In the entire SDS, we added

153

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

304 Function Caller blocks, which the Simulink Module Tool was able to create

and configure automatically. For example, the tool assisted in calling the

f EstPower Output Simulink Function, with its appropriate qualifier, from the

SDS model. A Function Caller was automatically created with its Prototype,

Input argument specifications, and Output argument specifications parameters

pre-populated, saving time.

Interface Generation The syntactic interface for the SDS and PE module

was automatically generated. The interface information was used in the

evaluation in Section 6.3.3.2 when examining changes to interface complexity.

Figure 6.10 shows the generated interface representations from both the

Simulink Module Tool and the MathWorks Interface Display for the PE

module. The representation of the interface should show that a single

Simulink Function is exported from PE, as also depicted in Figure 6.9b and

Figure 6.11b. In the interface generated by the Simulink Module Tool shown

in Figure 6.10a, we can see the Estimated Power function under the

“Exports” heading, to the left of the implementation. Unfortunately, the

exported function is not shown in the MathWorks Interface Display view

shown in Figure 6.10b, because it only shows the Inport and Outports, of

which there are none in this module. Our definition of an interface promotes

a better, more complete, view of elements present on the interface, as

demonstrated by the visible exported Simulink Function present in

Figure 6.10a, but missing from Figure 6.10b. Although this is a simple

example, it indicates that our definition of a Simulink module interface

ultimately leads to a better understanding of the data flow into and out of

the model.

154

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

(a) The Simulink Module Tool interface showing one exported Simulink Function.

(b) The MathWorks Interface Display does not show any exported Simulink
Functions.

Figure 6.10: PE module interface representations.

155

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Dependency Viewing Module dependencies were detected and listed by

the tool. This information was also used in the evaluation when analyzing

interface complexity and coupling, as shown in Figure 6.11.

Guideline Checking The four guidelines presented in Section 5.4 were

automatically checked. The entire new design adheres to the guidelines, but

we discuss the PE module as an example. First, all functions were placed as

low as possible in their module such that any corresponding Function Caller

blocks in the SDS module can still access them (Guideline 1). This minimizes

the scope of the Simulink Functions, and restricts their accessibility in the

module to only where it is required. In the PE module, only the

Estimated Power function is exported in order to make this functionality

available on the PE interface, so that the SDS model can import it. All

Simulink Function Function Visibility parameters are set to scoped, as global

visibility is not required (Guideline 2). These guidelines helped to enforce

information hiding in the system, and ensured the interfaces were as minimal

as possible. Furthermore, each Simulink Function has a unique name, thus

avoiding shadowing (Guideline 3). This made the new decomposition of the

PE module easy to understand. Lastly, the SDS was already prepared as a

production model. As a result, it did not contain any constructs that used

the base workspace (Guideline 4). No further action was needed to support

this guideline.

In summary, the Simulink Module Tool saved much time in restructuring

the new SDS, calling external module functionality, and analyzing interfaces,

dependencies, and guideline compliance.

156

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

6.3.3 Evaluation

In order to perform an evaluation of the proposed Simulink module

structure, we sought to objectively quantify the improvement to modularity

and information hiding. This was done by evaluating characteristics that are

widely considered effective indicators of design structure and modularity of

large systems, as described in Section 6.1. Throughout this section we

discuss the PE module as an example, because the details of the entire SDS

are proprietary. We provide results on the entire SDS where possible.

6.3.3.1 Information Hiding

Although the secrets of the SDS are proprietary and cannot be published, we

examine a single likely change of the system, in the PE module. The PE

implementation contains secrets related to both hardware (e.g., which sensors

are used), and software (e.g., how to accommodate for insufficient sensor

readings). In the original design, knowledge of these secrets was easily leaked

to the rest of the system, because the PE implementation internals were

accessible from the SDS library without restriction. This was demonstrated

through the use of a test model to probe the SDS library (Figure 6.9).

Ultimately, the test model is able to access any of the elements in the library.

For example, the f AvePower function can be used by the test model without

restriction, even though this should be a hidden function as it will expose the

secret of how the average is computed. Moreover, users can also directly

create links to any blocks that are internal to these top-level library blocks,

further leaking internal design decisions. Restructuring the PE-related

subsystems into a Simulink module allowed us to hide implementation details

157

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

from users of the PE module. In the newly modified design, information

hiding is enforced so that the user can access only the estimated power

output value. With reference to Figure 6.9a and Figure 6.9b, it is clear that

the new module effectively hides the secrets that were easily previously

accessible via the Average Power Defaulted, f AvePower, and

Valid ith NOP Signal Indicator Library blocks. In the restructured system,

attempting to access any of these functions from the test model yields an

error. This demonstrates that information hiding has improved.

We also examined how robust the new design was with respect to change.

For example, we observed the impact of applying a hardware change to the

system by switching from mechanical push buttons to a touch-screen interface.

To implement this change in the original design, 9 library-linked subsystems

were removed and the internals of 14 library-linked subsystems were modified, 4

of which were top-level subsystems in the system. In the new design, the

changes were confined to the push-button hardware-hiding module. Thus, the

new system effectively hides the secret pertaining to the use of push-button

hardware, demonstrating its robustness with respect to change.

6.3.3.2 Interface Complexity

The interactions for the nuclear example are shown in Figure 6.11. Simulink

models are represented with their interfaces and dependencies listed, while

arrows represent the interactions. In Figure 6.11a, the SDS model was

heavily coupled with the SDS Library, with 344 links in its implementation to

the 156 blocks exported from the Library. We restructured the PE

functionality into its own module, and five of the SDS Library blocks were

moved into this new module. The same treatment was applied to the

158

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

remaining Library blocks, however, the structure of the rest of the created

modules is not shown for confidentiality reasons. Only two Subsystems

remained in the Library, because they were low-level utility functions, and

storing them in a Library was appropriate in their case. We can see the SDS

Library in Figure 6.11a is reduced from 156 blocks to 2 blocks in Figure 6.11b.

Because of the PE module’s support for information hiding, only one of its

blocks is actually exported by the module, and the remaining four are hidden

and not available on the interface, causing a reduction of 4 fewer blocks on the

interface. In total, these hidden blocks reduced the dependency of the SDS

model on the Library by 31 links. However, a new Model Reference to include the

interface of EstPower.mdl was introduced, as reflected in the Model Reference

count in the SDS in Figure 6.11b. In fact, since 13 total Simulink modules were

created when we refactored the entire system (including PE), the top-level SDS

model has 13 new model references. This is a vast improvement compared to

the original system that had 344 Library links. By restructuring the system

into cohesive and minimally coupled Simulink modules, we have eliminated

nearly all of the interconnections between the SDS and its monolithic Library.

6.3.3.3 Coupling and Cohesion

The interconnections between the SDS Library and the SDS model as they

were originally structured is shown in Figure 6.9a via the arrows that exist

between the two. Although only a few of the connections are drawn in the

figure, it is evident that the PE implementation in SDS.mdl was highly

coupled with SDS Library.mdl when compared with the restructured design

in Figure 6.9b. The second design reduced the interconnections to only one

interconnection between SDS.mdl and EstPower.mdl. This reduction in

159

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

SDS.mdl

Interface
Inputs: 74
Outputs: 7
Exports: 0
Dependencies
Linked Blocks: 344
Model References: 0
Data Dictionary: 0

Interface
Inputs: 0
Outputs: 0
Exports: 156
Dependencies
Linked Blocks: 0
Model References: 0
Data Dictionary: 0

SDS_Library.mdl

(a) Before restructuring, the SDS Library exposed all of its functionality, and the
SDS heavily depended on it.

SDS.mdl

Interface
Inputs: 74
Outputs: 7
Exports: 0
Dependencies
Linked Blocks: 0 (-344)
Model References: 13 (+13)
Data Dictionary: 0

Interface
Inputs: 0
Outputs: 0
Exports: 2 (-154)
Dependencies
Linked Blocks: 0
Model References: 0
Data Dictionary: 0

EstPower.mdl

SDS_Library.mdl

Interface
Inputs: 0
Outputs: 0
Exports: 1 (+1)
Dependencies
Linked Blocks: 0
Model References: 0
Data Dictionary: 0

(b) After PE restructuring, the SDS Library functionality related to PE was hidden
in EstPower, and only one function was exposed to the SDS.

Figure 6.11: Interactions of the SDS system.

160

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Table 6.3: SDS complexity, testing, and SiL performance comparison.

Metric Before After Difference Percent Difference

Cyclomatic Complexity 2,413 1,363 -1,050 -43.5%

Test Objectives 7,099 3,874 -3,225 -45.4%
Satisfied 2,996 (42.2%) 1,589 (41%) -1,407 -1.2%
Unsatisfiable 2,044 (28.8%) 1,179 (30.5%) -865 +1.7%
Undecided 2,059 (29%) 1,104 (28.5%) -955 -0.5%

Decision 1,249/2,051 (61%) 751/1,168 (64%) -498/-883 +3%
Condition 946/2,606 (36%) 530/1,414 (37%) -416/-1,192 +1%
MCDC 188/1,242 (15%) 89/640 (14%) -99/-602 -1%
Execution 1,351/1,351 (100%) 1,424/1,428 (99.7%) +73/+77 -0.3%

ACET (ns) 15,005 8,357 -6,649 -44.3%
WCET (ns) 90,397 88,224 -2,173 -2.4%

coupling was additionally observed when comparing the syntactic interfaces

of the models, as described in the previous section and shown in Figure 6.11.

In the original system, the SDS library contained all functionality related

to the SDS. In the restructured system, related functionality was

restructured into cohesive Simulink modules that aimed to hide secrets. In

our example, functionality related to PE was separated into a Simulink

module of its own. When examining the entire SDS, coupling to the SDS

Library was reduced because of only two utility blocks. We created 13 new

modules to hide the various secrets listed in the design documentation.

Related functionality was grouped inside the new modules, which created a

more cohesive design, however, at the cost of necessary coupling links to the

new Simulink modules. Overall, our approach positively impacted the design

by reducing coupling and making the system more cohesive.

6.3.3.4 Cyclomatic Complexity

Table 6.3 shows the change of cyclomatic complexity for the entire system

before and after the restructuring. Typically, the addition of one Simulink

161

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Function increases the cyclomatic complexity by a value 1. This is because

MathWorks has adapted the cyclomatic complexity metric such that each

atomic Subsystem adds a value of 1 to the complexity [The MathWorks,

2020f]. However, due to the reusability of the Simulink Functions, if a

developer wishes to reuse (i.e., call) a Simulink Function several times in a

model, it will not add to the complexity. This is different for a block that is

stored in a Library because every reuse (i.e., link) creates a separate instance

of the Library block. Therefore, each instance of a Library contributes to the

complexity of the system. As a result, converting a virtual Subsystem stored

in a Library to a Simulink Function block will add 1 complexity value, but if is

it reused multiple times, the complexity savings will be greater. The

substantial decrease in cyclomatic complexity in the SDS by approximately

43% can be attributed to the removal of 154 Library Subsystems, which were

replaced by 20 Simulink Functions that were reused multiple times. There is a

high degree of reusability with an average of 7.7 Function Callers to each

Simulink Function. The change from a virtual Subsystem stored in a Library to

a Simulink Function will result in a decrease in cyclomatic complexity if that

Simulink Function is called more than once, to offset the initial increase of 1

to the cyclomatic complexity.

In summary, although the use of Simulink Function blocks may come at

a small initial cost to cyclomatic complexity, in this larger case study, the

amount of reuse in the system means that the cyclomatic complexity reduces

substantially due to the more reusable Simulink Function construct.

162

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

6.3.3.5 Testability

The SDV toolbox was used to compute the decision, condition, MCDC, and

execution structural coverage metrics. SDV was run on each system for

approximately 20 hours each, and the results are reported in Table 6.3.

There were approximately 43% fewer total test objectives in the restructured

system, which is a significant reduction in the test effort required by the

testing tool. Overall, the number of satisfied, unsatisfied, and undecided

objectives remained relatively stable.

Table 6.3 reports relatively small changes to structural coverage in the

totals for the entire system, with condition and decision coverage slightly

increasing, and MCDC and execution coverage slightly decreasing. We found

that the addition of the Simulink Function blocks increases the number of

decision objectives, and adds satisfied decision coverage. This was to be

expected as MathWorks’ definition of decision coverage encompasses function

call execution. The reduction observed in the other structural metics

occurred for the same reasons outlined in Section 6.3.3.4. The coverage

decreases when a Library block is converted to a Simulink Function, making it

one reusable function definition instead of several separate definitions. This

eliminates structural objectives, which were previously satisfied. Although

the metrics appear to slightly decrease, this is simply due to the elimination

of clones from the model, that were each adding to the satisfied objectives.

6.3.3.6 Performance Comparison

To determine whether there was a change in efficiency between the original

system and our restructured system, the SDS was simulated via SiL. The

163

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

results are reported in Table 6.3. The new structure of the system reduced

the ACET time by approximately 44%. Although the new modularization

increased the C program by 9,253 lines, the global memory decreased from

2,015 bytes to 461 bytes due to the reusability of the modules.

6.3.4 Case Study Summary

In this section, the proposed Simulink module approach was demonstrated

and evaluated on a nuclear example. We decomposed the system with the

intent of grouping together related functionality, and hiding the secrets of the

system in Simulink modules. This was largely facilitated by the use of the

Simulink Module Tool throughout the decomposition and evaluation process.

In our evaluation, we examined some well-known indicators of modularity and

information hiding. We observed that the restructured system had better

support for information hiding due to the appropriate scoping of design secrets

in our Simulink module structure. Applying a change to the system also

demonstrated that changes were restricted to the Simulink module, and did

not propagate to other parts of the system—unlike the original design. There

was also a decrease in interface complexity, as the new decomposition hid

previously exposed internal functions, thus removing them from the interface.

This in turn resulted in a decrease in coupling, as the system interactions

were reduced. An increase in cohesion was observed due to the grouping of

related functionality into Simulink modules. This was a stark difference from

the original design, which stored all functionality together in one large Library.

The cyclomatic complexity of the SDS decreased due to the decomposition

of the system utilizing Simulink Functions, which create designs that are more

164

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

reusable, as compared to Library blocks. Although there were no significant

changes to structural test metrics, there was a large reduction in the number of

coverage objectives, also due to the reusable nature of Simulink Functions. The

reusability of the Simulink Functions in the generated C code, as compared to

blocks stored in a Library, resulted in significant improvements to average and

worst case execution time on SiL. In summary, the use of the proposed Simulink

module concept for decomposing a Simulink system exhibits improvements in

key qualities that are indicative of modularity. The application of our proposed

approach lead to more a modular design overall.

6.4 Challenges and Limitations

This section discusses the challenges encountered in the application of the

approach. Some have been acknowledged by MathWorks as limitations of the

Simulink Function block itself, or more generally atomic Subsystems [The

MathWorks, 2020j]. These are factors that should be considered prior to

applying the approach. Alternatively, conventions using other decomposition

constructs are available [Jaskolka et al., 2020a] when switching to Simulink

Functions is not possible.

6.4.1 Variable-Step Solvers and Continuous States

Our approach is suitable for discrete, fixed-step controllers. It is not

applicable for systems using variable-step solvers or containing blocks with

continuous time (e.g., Simscape blocks) [The MathWorks, 2020j]. Using it in

this situation will result in a simulation error when executing the model. As

a result, this approach is not suited to physical modelling components, such

165

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

as plants. Furthermore, SDV is not compatible with variable-step solvers, so

equivalence-checking and testing would not be possible.

6.4.2 Inheriting Sample Time

All blocks nested in a Simulink Function must inherit sample time. As a

result, Subsystems that incorporate multiple sample times cannot be

modularized solely by means of Simulink Functions. For these systems, it is

recommended that other conventions for modularity, such as those proposed

in [Jaskolka et al., 2020a], be used to achieve information hiding. As a

workaround to this issue, blocks can be grouped into Models based on sample

time, then decomposed using Simulink Functions in each Model Reference.

6.4.3 Block States

Simulink Functions hold state between multiple Function Callers [Jaskolka et al.,

2020a]. As a result, using a Simulink Function to encapsulate state-holding

blocks, such as Unit Delays and Discrete-Time Integrators, results in undesired

behaviour between multiple Function Callers. Thus, Subsystems containing

state-holding blocks should not be modularized using Simulink Functions if

function reusability is desired. A workaround is to move all state-containing

blocks outside of the Subsystem, prior to converting to a Simulink Function.

This becomes more difficult as the amount of state-holding blocks increases.

An example that demonstrates incorrect behaviour due to state retention

between multiple Function Callers is shown in Figure 6.12. It is a simple sensor

trip algorithm. The sensor is tripped (1) when then input is above the setpoint

(50), otherwise the sensor is not tripped (0). There is a region of no-change

166

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

between 45-50 in which the sensor cannot change from a tripped to not tripped

state. We provide inputs of 40 and 75 to sensors 1 and 2, respectively. This

results in the first sensor not being tripped, but the second is tripped (see

green Display blocks).

In the correct example (Figure 6.13), the same behaviour is exhibited. In

the incorrect example (Figure 6.14), the same inputs were provided to the

sensors, but the output is the opposite of what is expected. This is due to the

Unit Delay block in the sensor trip Subsystem, which is used to feedback the

previous value of the sensor into the sensor trip algorithm. When the Simulink

Function is called multiple times, the state of the Unit Delay is held between the

two callers, resulting in incorrect behaviour in the separate sensors. Because

of the nature of this design, the Unit Delay was moved outside of the Simulink

Function, and the resulting output of the Unit Delay was routed back as an

input to the Simulink Function. This type of change was implemented in various

locations in the SDS, as well as for the roll-off filter block in the FCC.

6.4.4 Algebraic Loops

When a virtual Subsystem is converted into a non-virtual Subsystem (e.g.,

Simulink Function), the inadvertent introduction of algebraic loops is a

common issue [The MathWorks, 2020j]. This occurs as a result of a circular

dependency between blocks. In the FCC system, the Simulink environment

automatically diagnosed the issue during simulation and it was resolved by

moving a Unit Delay to prevent direct feedback.

167

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

c_Sensor_Trip_1m_Sensor_Signal_1
Delay

k_Hys

e_Tripped

e_NotTripped

k_Setpoint

Signal-Setpoint

prev_Sensor_Tripped

Signal-Setpoint+Hys
m_Sensor_Signal_1 c_Sensor_Trip_1

f_Sensor_Trip_1

c_Sensor_Trip_2m_Sensor_Signal_2
Delay

k_Hys

e_Tripped

e_NotTripped

k_Setpoint Signal-Setpoint+Hys

prev_Sensor_Tripped

Signal-Setpoint

m_Sensor_Signal_2 c_Sensor_Trip_2

f_Sensor_Trip_2

m_Sensor_Signal_1

m_Sensor_Signal_2

0

c_Sensor_Trip_1

1

c_Sensor_Trip_2

(a) Top-level of original sensor trip.

1
c_Sensor_Trip_1

1
m_Sensor_Signal_1

Delay

k_Hys

	>=	0

e_Tripped

	>=	0

e_NotTripped

k_Setpoint

Signal-Setpoint

prev_Sensor_Tripped

Signal-Setpoint+Hys

(b) Internals of f Sensor Trip i from Figure 6.12a.

Figure 6.12: Original sensor trip example.

168

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

k_Hys

e_Tripped

e_NotTripped

f_Sensor_Trip_i

m_Sensor_Signal_i c_Sensor_Trip_i

k_Setpoint

prev_Sensor_Tripped

Signal-Setpoint

Signal-Setpoint+Hys

f_Sensor_Trip_i

c_Sensor_Trip_i	=	f_Sensor_Trip_i(m_Sensor_Signal_i,prev_Sensor_Tripped)

caller
	f_Sensor_Trip_i()

m_Sensor_Signal_i

prev_Sensor_Tripped

c_Sensor_Trip_i

f_Sensor_Trip_1

caller
	f_Sensor_Trip_i()

m_Sensor_Signal_i

prev_Sensor_Tripped

c_Sensor_Trip_i

f_Sensor_Trip_2

m_Sensor_Signal_1

m_Sensor_Signal_2

0

c_Sensor_Trip_1

1

c_Sensor_Trip_2

(a) Top-level of correct sensor trip.

k_Hys

	>=	0

e_Tripped

	>=	0

e_NotTripped

f()

f_Sensor_Trip_i

m_Sensor_Signal_i

m_Sensor_Signal_i

c_Sensor_Trip_i
c_Sensor_Trip_i

k_Setpoint
prev_Sensor_Tripped
prev_Sensor_Tripped

Signal-Setpoint

Signal-Setpoint+Hys

(b) Internals of f Sensor Trip i Simulink Function from Figure 6.13a.

Figure 6.13: Correct new sensor trip example.

169

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Delay

k_Hys

e_Tripped

e_NotTripped

f_Sensor_Trip_i

m_Sensor_Signal_i c_Sensor_Trip_i

k_Setpoint

Signal-Setpoint

prev_Sensor_Tripped

Signal-Setpoint+Hys

f_Sensor_Trip_i

c_Sensor_Trip_i	=	f_Sensor_Trip_i(m_Sensor_Signal_i)

caller
	f_Sensor_Trip_i()m_Sensor_Signal_i c_Sensor_Trip_i

f_Sensor_Trip_1

caller
	f_Sensor_Trip_i()m_Sensor_Signal_i c_Sensor_Trip_i

f_Sensor_Trip_2

m_Sensor_Signal_1

m_Sensor_Signal_2

1

c_Sensor_Trip_1

0

c_Sensor_Trip_2

(a) Top-level of incorrect sensor trip.

Delay

k_Hys

	>=	0

e_Tripped

	>=	0

e_NotTripped

f()

f_Sensor_Trip_i

m_Sensor_Signal_i

m_Sensor_Signal_i

c_Sensor_Trip_i
c_Sensor_Trip_i

k_Setpoint

Signal-Setpoint

prev_Sensor_Tripped

Signal-Setpoint+Hys

(b) Internals of f Sensor Trip i Simulink Function from Figure 6.14a.

Figure 6.14: Incorrect new sensor trip example.

170

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

In summary, there are use cases that do not lend themselves to our

modularization approach. Limitations arise due to the nature of Simulink

Functions, such as the need to use particular solvers, inherit sample time, or

prevent the use of stateful blocks.

171

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Chapter 7

Conclusion

As with all software, Simulink models are constantly maintained and are

subject to evolution over their lifetime. The increasing complexity of

Simulink models, and their position as primary design artifacts maintained

over many years, demands approaches for ensuring that Simulink models are

robust with respect to change.

7.1 Summary of Contributions

This thesis began with a survey of likely changes in industrial Simulink

models. The Model Comparison Utility was developed to support the

analysis of model differences. Millions of Simulink models from an industry

version control system were analyzed and frequent changes were categorized.

This activity revealed that the interfaces and model structure were

particularly volatile. The large amount of changes to internal signal passing

mechanisms also indicated that changes were propagating throughout

models. Modularity and information hiding were identified as principles that

172

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

would enable Simulink designs to be more robust with respect to future

changes. However, it was unclear how information hiding could be leveraged

in a graphical language such as Simulink. To understand how to adapt these

practices for Model-Based Development (MBD) with Simulink, this thesis

presented a comparison of Simulink constructs to the constructs of the C

language. Then, a novel approach for modular modelling was proposed and

described. The approach entails structuring models as Simulink modules to

support encapsulation and facilitate information hiding. The definition of a

module interface was given, which effectively represents all data flow across

the module boundary. For those cases in which Simulink Functions are not

appropriate, two alternative ways of structuring Simulink modules were

created. These two conventions rely on guidelines rather than enforcement by

the Simulink language itself. Four new guidelines to encourage modelling

best practices were presented. The Simulink Module Tool was developed to

automate the aforementioned contributions and made available as an

open-source contribution on GitHub and the MATLAB Central File

Exchange.

The contributions were evaluated in two case studies: an open-source

Flight Control Computer (FCC) from the aerospace domain and a

proprietary Shut Down System (SDS) from the nuclear domain. We

demonstrated that in both case studies, the restructured system that

leveraged Simulink modules increased support for information hiding,

simplified interfaces, decreased module coupling, and increased cohesion.

Changes applied to the restructured systems were better encapsulated, and

did not propagate to other parts of the system. Impact on interfaces as a

result of performing a change was also eliminated. In the smaller, more

173

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

simple Flight Control Computer (FCC) system, an increase in cyclomatic

complexity was observed. This was because our approach relies on Simulink

Functions as a decomposition construct, and each added Simulink Function

contributed a complexity value. However, on the larger Shut Down System

(SDS), using Simulink Functions significantly reduced cyclomatic complexity

because they are a reusable construct that does not result in clones

throughout the model. The FCC did not have a high amount of reuse, so it

did not benefit in the same way. Again, the larger SDS benefitted from the

Simulink Functions by increased decision coverage, while the aerospace case

study did not. Otherwise, there were no significant changes to the testability

of the systems as a result of the Simulink module structure. Again, the

reusability of Simulink Functions resulted in a substantial reduction in

average execution time for the SDS, but incurred a performance penalty in

the FCC. Nevertheless, the case studies show that production industrial

systems that are medium to large in size would benefit from the use of

Simulink modules as a new approach for achieving designs that are robust

with respect to change.

7.2 Future Work

This section describes how the body of this work can be further improved and

how it leads to directions for future research.

Expanding to More Languages As future work, we plan to extend this

approach to the Stateflow environment, which is a separate language that

models finite state machines. First, we wish to apply the repository mining

174

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

approach on Stateflow implementations, to understand how its basic elements

(e.g., states, transitions, and junctions) are affected by model changes. Then,

recommendations on Stateflow design structure should be explored, in a similar

fashion as we did for Simulink.

There are several other graphical data flow languages which may benefit

from a similar treatment. Future work will entail studying languages such as

Safety Critical Application Development Environment (SCADE) [ANSYS,

2020], Modelica [The Modelica Association, 2020], Laboratory Virtual

Instruments Engineering Workbench (LabVIEW) [National Instruments,

2020], Ptolemy II [University of California at Berkeley, 2020], and others. A

broader view of several languages used for MBD may lead to observations

about common obstacles present in these languages, or the MBD domain in

general.

Open-source Repositories The findings of Chapter 3 are based on a

single, large, long-term engineering project encompassing a product line from

an industry partner. The rationale for the case study selection was simply

that we were granted unprecedented access to an industry product

development Change Management System (CMS). This gave us an

unparalleled opportunity to obtain insights into years worth of data, which is

typically exceedingly difficult for researchers to obtain. It would be beneficial

to expand our analysis to additional repositories, particularly those which are

open-source. Currently, there are 212 GitHub repositories on the topic of

Simulink,1 and 38 on Simulink models specifically.2 These could form the

basis of another study on model changes.

1https://github.com/topics/simulink
2https://github.com/topics/simulink-model

175

https://github.com/topics/simulink
https://github.com/topics/simulink-model

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Additional Model Changes The MathWorks Simulink Comparison Tool

does not provide information on changes to layout and other nonfunctional

changes from the command line. MathWorks has been made aware of this

limitation, and an enhancement request has been submitted to its developers.

It would be beneficial to consider these types of changes since previous

studies have shown that developers spend around 30% of their time on model

layout [Klauske and Dziobek, 2010].

Furthermore, we wish to examine more complex, compound changes in

Simulink models. Each change is currently treated as an individual change,

without considering the relationships between changes. For example, we

would also like to support identifying block replacements (deletions followed

by additions), and other more complex changes that are not identified by the

MathWorks Simulink Comparison Tool. For this, an automated

identification/categorization based on patterns is needed.

We also plan to look into determining the top n (e.g., n = 10, 15, etc.) types

of changes that are made to a model. This will involve analyzing combinations

of elements that are changed in a model in a single commit, most likely with

frequent pattern mining techniques [Han et al., 2007]. For example, a frequent

change may be to change one or more inports as well as one or more subsystems;

or perhaps to change only subsystems and logic within the model. The number

of combinations is large, and this creates an even more complex mining and

evaluation procedure.

Software Engineering Principles The focus of this research was on the

information hiding and modularity principles. However, there are many other

software engineering principles (e.g., object orientation) which could prove

176

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

beneficial if mapped to the MBD approach. Future directions for research

should entail a comprehensive review of which software engineering principles

need to be better supported in Simulink, followed by further work towards

addressing any identified gaps.

7.3 Closing Remarks

Simulink is one of the most popular languages used for the model-based

development of embedded software systems. Because of the size, complexity,

and safety-critical nature of systems developed using Simulink, we need to

focus our efforts on supporting software engineering principles for the MBD

paradigm. Creating designs utilizing principles of modularity and

information hiding is just the first step in adapting principles that will ease

model evolution, maintenance, and ultimately make designs robust with

respect to change.

177

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Appendix A

Construct Comparison
Generated Code

This appendix provides the code generation outcomes for various Simulink
decomposition constructs. Each section shows the Simulink model and the
corresponding generated C code.

A.1 Virtual Subsystem Generated Code

Single	use,	simple

Multiple	uses,	simple

Multiple	uses,	complex

Inlined

Inlined

Inlined

Code	OutcomeScenario

Sine	Wave

1 1

Subsystem1

1
Out1

2
Out2

1 1

Subsystem2

3
Out3

1 1

Subsystem3

4
Out4

1 1

Subsystem4

5
Out5

1 1

Subsystem5

Figure A.1: Simulink model for generating virtual Subsystem code in order to
determine C code outcomes.

178

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Listing A.1: VirtualSubsystem.c
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: VirtualSubsystem.c

7 *

8 * Code generated for Simulink model ’VirtualSubsystem’.

9 *

10 * Model version : 1.7

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 13:37:39 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #include "VirtualSubsystem.h"

23
24 /* Block signals and states (default storage) */

25 DW rtDW;

26
27 /* External outputs (root outports fed by signals with default storage) */

28 ExtY rtY;

29
30 /* Real-time model */

31 RT_MODEL rtM_;

32 RT_MODEL *const rtM = &rtM_;

33
34 /* Model step function */

35 void VirtualSubsystem_step(void)

36 {

37 real_T rtb_SineWave;

38
39 /* Sin: ’<Root>/Sine Wave’ */

40 if (rtDW.systemEnable != 0) {

41 rtb_SineWave = ((rtM->Timing.clockTick0) * 0.1);

42 rtDW.lastSin = sin(rtb_SineWave);

43 rtDW.lastCos = cos(rtb_SineWave);

44 rtDW.systemEnable = 0;

45 }

46
47 rtb_SineWave = (rtDW.lastSin * 0.99500416527802571 + rtDW.lastCos *

48 -0.099833416646828155) * 0.99500416527802571 + (rtDW.lastCos *

49 0.99500416527802571 - rtDW.lastSin * -0.099833416646828155) *

50 0.099833416646828155;

51
52 /* End of Sin: ’<Root>/Sine Wave’ */

53
54 /* Outport: ’<Root>/Out1’ incorporates:

55 * Gain: ’<S1>/Gain’

56 */

57 rtY.Out1 = 2.0 * rtb_SineWave;

58
59 /* Outport: ’<Root>/Out2’ incorporates:

60 * Gain: ’<S2>/Gain’

61 */

62 rtY.Out2 = 3.0 * rtb_SineWave;

63

179

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

64 /* Outport: ’<Root>/Out3’ incorporates:

65 * Gain: ’<S3>/Gain’

66 */

67 rtY.Out3 = 3.0 * rtb_SineWave;

68
69 /* Switch: ’<S4>/Switch’ incorporates:

70 * Switch: ’<S5>/Switch’

71 */

72 if (rtb_SineWave > 0.0) {

73 /* Outport: ’<Root>/Out4’ */

74 rtY.Out4 = rtb_SineWave;

75
76 /* Outport: ’<Root>/Out5’ */

77 rtY.Out5 = rtb_SineWave;

78 } else {

79 /* Outport: ’<Root>/Out4’ incorporates:

80 * Constant: ’<S4>/Constant’

81 */

82 rtY.Out4 = 1.0;

83
84 /* Outport: ’<Root>/Out5’ incorporates:

85 * Constant: ’<S5>/Constant’

86 */

87 rtY.Out5 = 1.0;

88 }

89
90 /* End of Switch: ’<S4>/Switch’ */

91
92 /* Update for Sin: ’<Root>/Sine Wave’ */

93 rtb_SineWave = rtDW.lastSin;

94 rtDW.lastSin = rtDW.lastSin * 0.99500416527802571 + rtDW.lastCos * 0.099833416646828155;

95 rtDW.lastCos = rtDW.lastCos * 0.99500416527802571 - rtb_SineWave * 0.099833416646828155;

96
97 /* Update absolute time for base rate */

98 /* The "clockTick0" counts the number of times the code of this task has

99 * been executed. The resolution of this integer timer is 0.1, which is the step size

100 * of the task. Size of "clockTick0" ensures timer will not overflow during the

101 * application lifespan selected.

102 */

103 rtM->Timing.clockTick0++;

104 }

105
106 /* Model initialize function */

107 void VirtualSubsystem_initialize(void)

108 {

109 /* Enable for Sin: ’<Root>/Sine Wave’ */

110 rtDW.systemEnable = 1;

111 }

112
113 /*

114 * File trailer for generated code.

115 *

116 * [EOF]

117 */

180

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Listing A.2: VirtualSubsystem.h
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: VirtualSubsystem.h

7 *

8 * Code generated for Simulink model ’VirtualSubsystem’.

9 *

10 * Model version : 1.7

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 13:37:39 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #ifndef RTW_HEADER_VirtualSubsystem_h_

23 #define RTW_HEADER_VirtualSubsystem_h_

24 #include <math.h>

25 #ifndef VirtualSubsystem_COMMON_INCLUDES_

26 # define VirtualSubsystem_COMMON_INCLUDES_

27 #include "rtwtypes.h"

28 #endif /* VirtualSubsystem_COMMON_INCLUDES_ */

29
30 /* Model Code Variants */

31
32 /* Macros for accessing real-time model data structure */

33
34 /* Forward declaration for rtModel */

35 typedef struct tag_RTM RT_MODEL;

36
37 /* Block signals and states (default storage) for system ’<Root>’ */

38 typedef struct {

39 real_T lastSin; /* ’<Root>/Sine Wave’ */

40 real_T lastCos; /* ’<Root>/Sine Wave’ */

41 int32_T systemEnable; /* ’<Root>/Sine Wave’ */

42 } DW;

43
44 /* External outputs (root outports fed by signals with default storage) */

45 typedef struct {

46 real_T Out1; /* ’<Root>/Out1’ */

47 real_T Out2; /* ’<Root>/Out2’ */

48 real_T Out3; /* ’<Root>/Out3’ */

49 real_T Out4; /* ’<Root>/Out4’ */

50 real_T Out5; /* ’<Root>/Out5’ */

51 } ExtY;

52
53 /* Real-time Model Data Structure */

54 struct tag_RTM {

55 /*

56 * Timing:

57 * The following substructure contains information regarding

58 * the timing information for the model.

59 */

60 struct {

61 uint32_T clockTick0;

62 } Timing;

63 };

181

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

64
65 /* Block signals and states (default storage) */

66 extern DW rtDW;

67
68 /* External outputs (root outports fed by signals with default storage) */

69 extern ExtY rtY;

70
71 /* Model entry point functions */

72 extern void VirtualSubsystem_initialize(void);

73 extern void VirtualSubsystem_step(void);

74
75 /* Real-time Model object */

76 extern RT_MODEL *const rtM;

77
78 /*-

79 * The generated code includes comments that allow you to trace directly

80 * back to the appropriate location in the model. The basic format

81 * is <system>/block_name, where system is the system number (uniquely

82 * assigned by Simulink) and block_name is the name of the block.

83 *

84 * Use the MATLAB hilite_system command to trace the generated code back

85 * to the model. For example,

86 *

87 * hilite_system(’<S3>’) - opens system 3

88 * hilite_system(’<S3>/Kp’) - opens and selects block Kp which resides in S3

89 *

90 * Here is the system hierarchy for this model

91 *

92 * ’<Root>’ : ’VirtualSubsystem’

93 * ’<S1>’ : ’VirtualSubsystem/Subsystem1’

94 * ’<S2>’ : ’VirtualSubsystem/Subsystem2’

95 * ’<S3>’ : ’VirtualSubsystem/Subsystem3’

96 * ’<S4>’ : ’VirtualSubsystem/Subsystem4’

97 * ’<S5>’ : ’VirtualSubsystem/Subsystem5’

98 */

99 #endif /* RTW_HEADER_VirtualSubsystem_h_ */

100
101 /*

102 * File trailer for generated code.

103 *

104 * [EOF]

105 */

182

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

A.2 Atomic Subsystem Generated Code

Single	use,	simple

Multiple	uses,	simple

Multiple	uses,	complex

Code	Outcome

Inlined

Scenario

Function

Inlined

Sine	Wave

1 1

Subsystem1

1
Out1

2
Out2

1 1

Subsystem2

3
Out3

1 1

Subsystem3

4
Out4

1 1

Subsystem4

5
Out5

1 1

Subsystem5

Figure A.2: Simulink model for generating Atomic Subsystem code in order to
determine C code outcomes.

Listing A.3: AtomicSubsystem.c
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: AtomicSubsystem.c

7 *

8 * Code generated for Simulink model ’AtomicSubsystem’.

9 *

10 * Model version : 1.9

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 13:29:52 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #include "AtomicSubsystem.h"

183

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

23
24 /* Block signals and states (default storage) */

25 DW rtDW;

26
27 /* External outputs (root outports fed by signals with default storage) */

28 ExtY rtY;

29
30 /* Real-time model */

31 RT_MODEL rtM_;

32 RT_MODEL *const rtM = &rtM_;

33 static real_T Subsystem4(real_T rtu_In1);

34
35 /*

36 * Output and update for atomic system:

37 * ’<Root>/Subsystem4’

38 * ’<Root>/Subsystem5’

39 */

40 static real_T Subsystem4(real_T rtu_In1)

41 {

42 real_T rty_Out1_0;

43
44 /* Switch: ’<S4>/Switch’ incorporates:

45 * Constant: ’<S4>/Constant’

46 */

47 if (rtu_In1 > 0.0) {

48 rty_Out1_0 = rtu_In1;

49 } else {

50 rty_Out1_0 = 1.0;

51 }

52
53 /* End of Switch: ’<S4>/Switch’ */

54 return rty_Out1_0;

55 }

56
57 /* Model step function */

58 void AtomicSubsystem_step(void)

59 {

60 real_T rtb_SineWave;

61
62 /* Sin: ’<Root>/Sine Wave’ */

63 if (rtDW.systemEnable != 0) {

64 rtb_SineWave = ((rtM->Timing.clockTick0) * 0.1);

65 rtDW.lastSin = sin(rtb_SineWave);

66 rtDW.lastCos = cos(rtb_SineWave);

67 rtDW.systemEnable = 0;

68 }

69
70 rtb_SineWave = (rtDW.lastSin * 0.99500416527802571 + rtDW.lastCos *

71 -0.099833416646828155) * 0.99500416527802571 + (rtDW.lastCos *

72 0.99500416527802571 - rtDW.lastSin * -0.099833416646828155) *

73 0.099833416646828155;

74
75 /* End of Sin: ’<Root>/Sine Wave’ */

76
77 /* Outputs for Atomic SubSystem: ’<Root>/Subsystem1’ */

78 /* Outport: ’<Root>/Out1’ incorporates:

79 * Gain: ’<S1>/Gain’

80 */

81 rtY.Out1 = 2.0 * rtb_SineWave;

82
83 /* End of Outputs for SubSystem: ’<Root>/Subsystem1’ */

84
85 /* Outputs for Atomic SubSystem: ’<Root>/Subsystem2’ */

86 /* Outport: ’<Root>/Out2’ incorporates:

184

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

87 * Gain: ’<S2>/Gain’

88 */

89 rtY.Out2 = 3.0 * rtb_SineWave;

90
91 /* End of Outputs for SubSystem: ’<Root>/Subsystem2’ */

92
93 /* Outputs for Atomic SubSystem: ’<Root>/Subsystem3’ */

94 /* Outport: ’<Root>/Out3’ incorporates:

95 * Gain: ’<S3>/Gain’

96 */

97 rtY.Out3 = 3.0 * rtb_SineWave;

98
99 /* End of Outputs for SubSystem: ’<Root>/Subsystem3’ */

100
101 /* Outputs for Atomic SubSystem: ’<Root>/Subsystem4’ */

102 /* Outport: ’<Root>/Out4’ */

103 rtY.Out4 = Subsystem4(rtb_SineWave);

104
105 /* End of Outputs for SubSystem: ’<Root>/Subsystem4’ */

106
107 /* Outputs for Atomic SubSystem: ’<Root>/Subsystem5’ */

108 /* Outport: ’<Root>/Out5’ */

109 rtY.Out5 = Subsystem4(rtb_SineWave);

110
111 /* End of Outputs for SubSystem: ’<Root>/Subsystem5’ */

112
113 /* Update for Sin: ’<Root>/Sine Wave’ */

114 rtb_SineWave = rtDW.lastSin;

115 rtDW.lastSin = rtDW.lastSin * 0.99500416527802571 + rtDW.lastCos *

116 0.099833416646828155;

117 rtDW.lastCos = rtDW.lastCos * 0.99500416527802571 - rtb_SineWave *

118 0.099833416646828155;

119
120 /* Update absolute time for base rate */

121 /* The "clockTick0" counts the number of times the code of this task has

122 * been executed. The resolution of this integer timer is 0.1, which is the step size

123 * of the task. Size of "clockTick0" ensures timer will not overflow during the

124 * application lifespan selected.

125 */

126 rtM->Timing.clockTick0++;

127 }

128
129 /* Model initialize function */

130 void AtomicSubsystem_initialize(void)

131 {

132 /* Enable for Sin: ’<Root>/Sine Wave’ */

133 rtDW.systemEnable = 1;

134 }

135
136 /*

137 * File trailer for generated code.

138 *

139 * [EOF]

140 */

185

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Listing A.4: VirtualSubsystem.h
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: AtomicSubsystem.h

7 *

8 * Code generated for Simulink model ’AtomicSubsystem’.

9 *

10 * Model version : 1.9

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 13:29:52 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #ifndef RTW_HEADER_AtomicSubsystem_h_

23 #define RTW_HEADER_AtomicSubsystem_h_

24 #include <math.h>

25 #ifndef AtomicSubsystem_COMMON_INCLUDES_

26 # define AtomicSubsystem_COMMON_INCLUDES_

27 #include "rtwtypes.h"

28 #endif /* AtomicSubsystem_COMMON_INCLUDES_ */

29
30 /* Model Code Variants */

31
32 /* Macros for accessing real-time model data structure */

33
34 /* Forward declaration for rtModel */

35 typedef struct tag_RTM RT_MODEL;

36
37 /* Block signals and states (default storage) for system ’<Root>’ */

38 typedef struct {

39 real_T lastSin; /* ’<Root>/Sine Wave’ */

40 real_T lastCos; /* ’<Root>/Sine Wave’ */

41 int32_T systemEnable; /* ’<Root>/Sine Wave’ */

42 } DW;

43
44 /* External outputs (root outports fed by signals with default storage) */

45 typedef struct {

46 real_T Out1; /* ’<Root>/Out1’ */

47 real_T Out2; /* ’<Root>/Out2’ */

48 real_T Out3; /* ’<Root>/Out3’ */

49 real_T Out4; /* ’<Root>/Out4’ */

50 real_T Out5; /* ’<Root>/Out5’ */

51 } ExtY;

52
53 /* Real-time Model Data Structure */

54 struct tag_RTM {

55 /*

56 * Timing:

57 * The following substructure contains information regarding

58 * the timing information for the model.

59 */

60 struct {

61 uint32_T clockTick0;

62 } Timing;

63 };

186

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

64
65 /* Block signals and states (default storage) */

66 extern DW rtDW;

67
68 /* External outputs (root outports fed by signals with default storage) */

69 extern ExtY rtY;

70
71 /* Model entry point functions */

72 extern void AtomicSubsystem_initialize(void);

73 extern void AtomicSubsystem_step(void);

74
75 /* Real-time Model object */

76 extern RT_MODEL *const rtM;

77
78 /*-

79 * The generated code includes comments that allow you to trace directly

80 * back to the appropriate location in the model. The basic format

81 * is <system>/block_name, where system is the system number (uniquely

82 * assigned by Simulink) and block_name is the name of the block.

83 *

84 * Use the MATLAB hilite_system command to trace the generated code back

85 * to the model. For example,

86 *

87 * hilite_system(’<S3>’) - opens system 3

88 * hilite_system(’<S3>/Kp’) - opens and selects block Kp which resides in S3

89 *

90 * Here is the system hierarchy for this model

91 *

92 * ’<Root>’ : ’AtomicSubsystem’

93 * ’<S1>’ : ’AtomicSubsystem/Subsystem1’

94 * ’<S2>’ : ’AtomicSubsystem/Subsystem2’

95 * ’<S3>’ : ’AtomicSubsystem/Subsystem3’

96 * ’<S4>’ : ’AtomicSubsystem/Subsystem4’

97 * ’<S5>’ : ’AtomicSubsystem/Subsystem5’

98 */

99 #endif /* RTW_HEADER_AtomicSubsystem_h_ */

100
101 /*

102 * File trailer for generated code.

103 *

104 * [EOF]

105 */

187

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

A.3 Simulink Function Generated Code

Single	use,	simple

Multiple	uses,	simple

Multiple	uses,	complex

Scenario

Function

Function

Function

Code	Outcome

Sine	Wave

1
Out1

2
Out2

caller
	g()u y

Function	Caller2

caller
	f()u y

Function	Caller1

f

Simulink	Function1

y	=	f(u)

f

Simulink	Function3

y	=	h(u)

f

Simulink	Function2

y	=	g(u)

caller
	g()u y

Function	Caller3

caller
	h()u y

Function	Caller4

caller
	h()u y

Function	Caller5

3
Out3

4
Out4

5
Out5

Figure A.3: Simulink model for generating Simulink Function code in order to
determine C code outcomes.

Listing A.5: SimulinkFunction.c
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: SimulinkFunction.c

7 *

8 * Code generated for Simulink model ’SimulinkFunction’.

9 *

10 * Model version : 1.13

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 12:56:55 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #include "SimulinkFunction.h"

23
24 /* Block signals and states (default storage) */

25 DW rtDW;

26
27 /* External outputs (root outports fed by signals with default storage) */

188

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

28 ExtY rtY;

29
30 /* Real-time model */

31 RT_MODEL rtM_;

32 RT_MODEL *const rtM = &rtM_;

33
34 /* Output and update for Simulink Function: ’<Root>/Simulink Function1’ */

35 real_T SimulinkFunction_f(const real_T rtu_u)

36 {

37 /* SignalConversion generated from: ’<S1>/y’ incorporates:

38 * Gain: ’<S1>/Gain’

39 * SignalConversion generated from: ’<S1>/u’

40 */

41 return 2.0 * rtu_u;

42 }

43
44 /* Output and update for Simulink Function: ’<Root>/Simulink Function2’ */

45 real_T SimulinkFunction_g(const real_T rtu_u)

46 {

47 /* SignalConversion generated from: ’<S2>/y’ incorporates:

48 * Gain: ’<S2>/Gain’

49 * SignalConversion generated from: ’<S2>/u’

50 */

51 return 3.0 * rtu_u;

52 }

53
54 /* Output and update for Simulink Function: ’<Root>/Simulink Function3’ */

55 real_T SimulinkFunction_h(const real_T rtu_u)

56 {

57 real_T rty_y_0;

58
59 /* Switch: ’<S3>/Switch’ incorporates:

60 * SignalConversion generated from: ’<S3>/u’

61 */

62 if (rtu_u > 0.0) {

63 /* SignalConversion generated from: ’<S3>/y’ */

64 rty_y_0 = rtu_u;

65 } else {

66 /* SignalConversion generated from: ’<S3>/y’ incorporates:

67 * Constant: ’<S3>/Constant’

68 */

69 rty_y_0 = 1.0;

70 }

71
72 /* End of Switch: ’<S3>/Switch’ */

73 return rty_y_0;

74 }

75
76 /* Model step function */

77 void SimulinkFunction_step(void)

78 {

79 real_T rtb_FunctionCaller5;

80 real_T rtb_FunctionCaller4;

81 real_T rtb_FunctionCaller3;

82 real_T rtb_FunctionCaller2;

83 real_T rtb_FunctionCaller1;

84
85 /* Sin: ’<Root>/Sine Wave’ */

86 if (rtDW.systemEnable != 0) {

87 rtb_FunctionCaller5 = ((rtM->Timing.clockTick0) * 0.1);

88 rtDW.lastSin = sin(rtb_FunctionCaller5);

89 rtDW.lastCos = cos(rtb_FunctionCaller5);

90 rtDW.systemEnable = 0;

91 }

189

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

92
93 rtb_FunctionCaller5 = (rtDW.lastSin * 0.99500416527802571 + rtDW.lastCos *

94 -0.099833416646828155) * 0.99500416527802571 + (rtDW.lastCos *

95 0.99500416527802571 - rtDW.lastSin * -0.099833416646828155) *

96 0.099833416646828155;

97
98 /* End of Sin: ’<Root>/Sine Wave’ */

99
100 /* FunctionCaller: ’<Root>/Function Caller1’ */

101 rtb_FunctionCaller1 = SimulinkFunction_f(rtb_FunctionCaller5);

102
103 /* FunctionCaller: ’<Root>/Function Caller2’ */

104 rtb_FunctionCaller2 = SimulinkFunction_g(rtb_FunctionCaller5);

105
106 /* FunctionCaller: ’<Root>/Function Caller3’ */

107 rtb_FunctionCaller3 = SimulinkFunction_g(rtb_FunctionCaller5);

108
109 /* FunctionCaller: ’<Root>/Function Caller4’ */

110 rtb_FunctionCaller4 = SimulinkFunction_h(rtb_FunctionCaller5);

111
112 /* Outport: ’<Root>/Out5’ incorporates:

113 * FunctionCaller: ’<Root>/Function Caller5’

114 */

115 rtY.Out5 = SimulinkFunction_h(rtb_FunctionCaller5);

116
117 /* Outport: ’<Root>/Out4’ */

118 rtY.Out4 = rtb_FunctionCaller4;

119
120 /* Outport: ’<Root>/Out3’ */

121 rtY.Out3 = rtb_FunctionCaller3;

122
123 /* Outport: ’<Root>/Out2’ */

124 rtY.Out2 = rtb_FunctionCaller2;

125
126 /* Outport: ’<Root>/Out1’ */

127 rtY.Out1 = rtb_FunctionCaller1;

128
129 /* Update for Sin: ’<Root>/Sine Wave’ */

130 rtb_FunctionCaller5 = rtDW.lastSin;

131 rtDW.lastSin = rtDW.lastSin * 0.99500416527802571 + rtDW.lastCos * 0.099833416646828155;

132 rtDW.lastCos = rtDW.lastCos * 0.99500416527802571 - rtb_FunctionCaller5 *

133 0.099833416646828155;

134
135 /* Update absolute time for base rate */

136 /* The "clockTick0" counts the number of times the code of this task has

137 * been executed. The resolution of this integer timer is 0.1, which is the step size

138 * of the task. Size of "clockTick0" ensures timer will not overflow during the

139 * application lifespan selected.

140 */

141 rtM->Timing.clockTick0++;

142 }

143
144 /* Model initialize function */

145 void SimulinkFunction_initialize(void)

146 {

147 /* Enable for Sin: ’<Root>/Sine Wave’ */

148 rtDW.systemEnable = 1;

149 }

150
151 /*

152 * File trailer for generated code.

153 *

154 * [EOF]

155 */

190

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Listing A.6: SimulinkFunction.h
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: SimulinkFunction.h

7 *

8 * Code generated for Simulink model ’SimulinkFunction’.

9 *

10 * Model version : 1.13

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 12:56:55 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #ifndef RTW_HEADER_SimulinkFunction_h_

23 #define RTW_HEADER_SimulinkFunction_h_

24 #include <math.h>

25 #ifndef SimulinkFunction_COMMON_INCLUDES_

26 # define SimulinkFunction_COMMON_INCLUDES_

27 #include "rtwtypes.h"

28 #endif /* SimulinkFunction_COMMON_INCLUDES_ */

29
30 /* Model Code Variants */

31
32 /* Macros for accessing real-time model data structure */

33 #ifndef rtmGetErrorStatus

34 # define rtmGetErrorStatus(rtm) ((rtm)->errorStatus)

35 #endif

36
37 #ifndef rtmSetErrorStatus

38 # define rtmSetErrorStatus(rtm, val) ((rtm)->errorStatus = (val))

39 #endif

40
41 /* Forward declaration for rtModel */

42 typedef struct tag_RTM RT_MODEL;

43
44 /* Block signals and states (default storage) for system ’<Root>’ */

45 typedef struct {

46 real_T lastSin; /* ’<Root>/Sine Wave’ */

47 real_T lastCos; /* ’<Root>/Sine Wave’ */

48 int32_T systemEnable; /* ’<Root>/Sine Wave’ */

49 } DW;

50
51 /* External outputs (root outports fed by signals with default storage) */

52 typedef struct {

53 real_T Out1; /* ’<Root>/Out1’ */

54 real_T Out2; /* ’<Root>/Out2’ */

55 real_T Out3; /* ’<Root>/Out3’ */

56 real_T Out4; /* ’<Root>/Out4’ */

57 real_T Out5; /* ’<Root>/Out5’ */

58 } ExtY;

59
60 /* Real-time Model Data Structure */

61 struct tag_RTM {

62 const char_T * volatile errorStatus;

63

191

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

64 /*

65 * Timing:

66 * The following substructure contains information regarding

67 * the timing information for the model.

68 */

69 struct {

70 uint32_T clockTick0;

71 } Timing;

72 };

73
74 /* Block signals and states (default storage) */

75 extern DW rtDW;

76
77 /* External outputs (root outports fed by signals with default storage) */

78 extern ExtY rtY;

79
80 /* Model entry point functions */

81 extern void SimulinkFunction_initialize(void);

82 extern void SimulinkFunction_step(void);

83 extern real_T SimulinkFunction_f(const real_T rtu_u);

84 extern real_T SimulinkFunction_g(const real_T rtu_u);

85 extern real_T SimulinkFunction_h(const real_T rtu_u);

86
87 /* Real-time Model object */

88 extern RT_MODEL *const rtM;

89
90 /*-

91 * The generated code includes comments that allow you to trace directly

92 * back to the appropriate location in the model. The basic format

93 * is <system>/block_name, where system is the system number (uniquely

94 * assigned by Simulink) and block_name is the name of the block.

95 *

96 * Use the MATLAB hilite_system command to trace the generated code back

97 * to the model. For example,

98 *

99 * hilite_system(’<S3>’) - opens system 3

100 * hilite_system(’<S3>/Kp’) - opens and selects block Kp which resides in S3

101 *

102 * Here is the system hierarchy for this model

103 *

104 * ’<Root>’ : ’SimulinkFunction’

105 * ’<S1>’ : ’SimulinkFunction/Simulink Function1’

106 * ’<S2>’ : ’SimulinkFunction/Simulink Function2’

107 * ’<S3>’ : ’SimulinkFunction/Simulink Function3’

108 */

109 #endif /* RTW_HEADER_SimulinkFunction_h_ */

110
111 /*

112 * File trailer for generated code.

113 *

114 * [EOF]

115 */

192

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

A.4 Library Import Generated Code

Single	use,	virtual	subsystem,	simple

Multiple	uses,	atomic	subsystem,	simple

Multiple	uses,	atomic	subsystem,	complex

Scenario

Function

Inlined

Code	Outcome

Inlined

Sine	Wave

1
Out1

3
Out3

1 1

Subsystem1

1 1

Subsystem_Atomic1

4
Out4

1 1

Subsystem_Atomic2

1 1

Subsystem2

2
Out2

1 1

Subsystem_Atomic_Complex1

1 1

Subsystem_Atomic_Complex2

5
Out5

6
Out6

Figure A.4: Simulink model for generating Library code in order to determine
C code outcomes.

Listing A.7: LibraryImport.c
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: LibraryImport.c

7 *

8 * Code generated for Simulink model ’LibraryImport’.

9 *

10 * Model version : 1.14

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 14:04:24 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

193

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

20 */

21
22 #include "LibraryImport.h"

23
24 /* Block signals and states (default storage) */

25 DW rtDW;

26
27 /* External outputs (root outports fed by signals with default storage) */

28 ExtY rtY;

29
30 /* Real-time model */

31 RT_MODEL rtM_;

32 RT_MODEL *const rtM = &rtM_;

33 static real_T Subsystem_Atomic_Complex1(real_T rtu_In1);

34
35 /*

36 * Output and update for atomic system:

37 * ’<Root>/Subsystem_Atomic_Complex1’

38 * ’<Root>/Subsystem_Atomic_Complex2’

39 */

40 static real_T Subsystem_Atomic_Complex1(real_T rtu_In1)

41 {

42 real_T rty_Out1_0;

43
44 /* Switch: ’<S5>/Switch’ incorporates:

45 * Constant: ’<S5>/Constant’

46 */

47 if (rtu_In1 > 0.0) {

48 rty_Out1_0 = rtu_In1;

49 } else {

50 rty_Out1_0 = 1.0;

51 }

52
53 /* End of Switch: ’<S5>/Switch’ */

54 return rty_Out1_0;

55 }

56
57 /* Model step function */

58 void LibraryImport_step(void)

59 {

60 real_T rtb_SineWave;

61
62 /* Sin: ’<Root>/Sine Wave’ */

63 if (rtDW.systemEnable != 0) {

64 rtb_SineWave = ((rtM->Timing.clockTick0) * 0.1);

65 rtDW.lastSin = sin(rtb_SineWave);

66 rtDW.lastCos = cos(rtb_SineWave);

67 rtDW.systemEnable = 0;

68 }

69
70 rtb_SineWave = (rtDW.lastSin * 0.99500416527802571 + rtDW.lastCos *

71 -0.099833416646828155) * 0.99500416527802571 + (rtDW.lastCos *

72 0.99500416527802571 - rtDW.lastSin * -0.099833416646828155) *

73 0.099833416646828155;

74
75 /* End of Sin: ’<Root>/Sine Wave’ */

76
77 /* Outport: ’<Root>/Out1’ incorporates:

78 * Gain: ’<S1>/Gain’

79 */

80 rtY.Out1 = 2.0 * rtb_SineWave;

81
82 /* Outport: ’<Root>/Out2’ incorporates:

83 * Gain: ’<S2>/Gain’

194

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

84 */

85 rtY.Out2 = 2.0 * rtb_SineWave;

86
87 /* Outputs for Atomic SubSystem: ’<Root>/Subsystem_Atomic1’ */

88 /* Outport: ’<Root>/Out3’ incorporates:

89 * Gain: ’<S3>/Gain’

90 */

91 rtY.Out3 = 3.0 * rtb_SineWave;

92
93 /* End of Outputs for SubSystem: ’<Root>/Subsystem_Atomic1’ */

94
95 /* Outputs for Atomic SubSystem: ’<Root>/Subsystem_Atomic2’ */

96 /* Outport: ’<Root>/Out4’ incorporates:

97 * Gain: ’<S4>/Gain’

98 */

99 rtY.Out4 = 3.0 * rtb_SineWave;

100
101 /* End of Outputs for SubSystem: ’<Root>/Subsystem_Atomic2’ */

102
103 /* Outputs for Atomic SubSystem: ’<Root>/Subsystem_Atomic_Complex1’ */

104 /* Outport: ’<Root>/Out5’ */

105 rtY.Out5 = Subsystem_Atomic_Complex1(rtb_SineWave);

106
107 /* End of Outputs for SubSystem: ’<Root>/Subsystem_Atomic_Complex1’ */

108
109 /* Outputs for Atomic SubSystem: ’<Root>/Subsystem_Atomic_Complex2’ */

110 /* Outport: ’<Root>/Out6’ */

111 rtY.Out6 = Subsystem_Atomic_Complex1(rtb_SineWave);

112
113 /* End of Outputs for SubSystem: ’<Root>/Subsystem_Atomic_Complex2’ */

114
115 /* Update for Sin: ’<Root>/Sine Wave’ */

116 rtb_SineWave = rtDW.lastSin;

117 rtDW.lastSin = rtDW.lastSin * 0.99500416527802571 + rtDW.lastCos * 0.099833416646828155;

118 rtDW.lastCos = rtDW.lastCos * 0.99500416527802571 - rtb_SineWave * 0.099833416646828155;

119
120 /* Update absolute time for base rate */

121 /* The "clockTick0" counts the number of times the code of this task has

122 * been executed. The resolution of this integer timer is 0.1, which is the step size

123 * of the task. Size of "clockTick0" ensures timer will not overflow during the

124 * application lifespan selected.

125 */

126 rtM->Timing.clockTick0++;

127 }

128
129 /* Model initialize function */

130 void LibraryImport_initialize(void)

131 {

132 /* Enable for Sin: ’<Root>/Sine Wave’ */

133 rtDW.systemEnable = 1;

134 }

135
136 /*

137 * File trailer for generated code.

138 *

139 * [EOF]

140 */

195

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Listing A.8: LibraryImport.h
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: LibraryImport.h

7 *

8 * Code generated for Simulink model ’LibraryImport’.

9 *

10 * Model version : 1.14

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 14:04:24 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #ifndef RTW_HEADER_LibraryImport_h_

23 #define RTW_HEADER_LibraryImport_h_

24 #include <math.h>

25 #ifndef LibraryImport_COMMON_INCLUDES_

26 # define LibraryImport_COMMON_INCLUDES_

27 #include "rtwtypes.h"

28 #endif /* LibraryImport_COMMON_INCLUDES_ */

29
30 /* Model Code Variants */

31
32 /* Macros for accessing real-time model data structure */

33
34 /* Forward declaration for rtModel */

35 typedef struct tag_RTM RT_MODEL;

36
37 /* Block signals and states (default storage) for system ’<Root>’ */

38 typedef struct {

39 real_T lastSin; /* ’<Root>/Sine Wave’ */

40 real_T lastCos; /* ’<Root>/Sine Wave’ */

41 int32_T systemEnable; /* ’<Root>/Sine Wave’ */

42 } DW;

43
44 /* External outputs (root outports fed by signals with default storage) */

45 typedef struct {

46 real_T Out1; /* ’<Root>/Out1’ */

47 real_T Out2; /* ’<Root>/Out2’ */

48 real_T Out3; /* ’<Root>/Out3’ */

49 real_T Out4; /* ’<Root>/Out4’ */

50 real_T Out5; /* ’<Root>/Out5’ */

51 real_T Out6; /* ’<Root>/Out6’ */

52 } ExtY;

53
54 /* Real-time Model Data Structure */

55 struct tag_RTM {

56 /*

57 * Timing:

58 * The following substructure contains information regarding

59 * the timing information for the model.

60 */

61 struct {

62 uint32_T clockTick0;

63 } Timing;

196

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

64 };

65
66 /* Block signals and states (default storage) */

67 extern DW rtDW;

68
69 /* External outputs (root outports fed by signals with default storage) */

70 extern ExtY rtY;

71
72 /* Model entry point functions */

73 extern void LibraryImport_initialize(void);

74 extern void LibraryImport_step(void);

75
76 /* Real-time Model object */

77 extern RT_MODEL *const rtM;

78
79 /*-

80 * The generated code includes comments that allow you to trace directly

81 * back to the appropriate location in the model. The basic format

82 * is <system>/block_name, where system is the system number (uniquely

83 * assigned by Simulink) and block_name is the name of the block.

84 *

85 * Use the MATLAB hilite_system command to trace the generated code back

86 * to the model. For example,

87 *

88 * hilite_system(’<S3>’) - opens system 3

89 * hilite_system(’<S3>/Kp’) - opens and selects block Kp which resides in S3

90 *

91 * Here is the system hierarchy for this model

92 *

93 * ’<Root>’ : ’LibraryImport’

94 * ’<S1>’ : ’LibraryImport/Subsystem1’

95 * ’<S2>’ : ’LibraryImport/Subsystem2’

96 * ’<S3>’ : ’LibraryImport/Subsystem_Atomic1’

97 * ’<S4>’ : ’LibraryImport/Subsystem_Atomic2’

98 * ’<S5>’ : ’LibraryImport/Subsystem_Atomic_Complex1’

99 * ’<S6>’ : ’LibraryImport/Subsystem_Atomic_Complex2’

100 */

101 #endif /* RTW_HEADER_LibraryImport_h_ */

102
103 /*

104 * File trailer for generated code.

105 *

106 * [EOF]

107 */

197

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

A.5 Model Reference Generated Code

Single	use,	simple

Multiple	uses,	simple

Multiple	uses,	complex

Function	in	separate	module

Function	in	separate	module

Scenario Code	Outcome

Function	in	separate	module
Sine	Wave

1
Out1

2
Out2

Model1
In2 Out2

Model2

Model1
In2 Out2

Model3

Model2
In1 Out1

Model4

Model2
In1 Out1

Model5

3
Out3

4
Out4

Model0
In2 Out2

Model1

5
Out5

Figure A.5: Simulink model for generating Model Reference code in order to
determine C code outcomes.

Listing A.9: ModelReference.c
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: ModelReference.h

7 *

8 * Code generated for Simulink model ’ModelReference’.

9 *

10 * Model version : 1.10

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 14:31:25 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #ifndef RTW_HEADER_ModelReference_h_

23 #define RTW_HEADER_ModelReference_h_

24 #include <math.h>

25 #ifndef ModelReference_COMMON_INCLUDES_

26 # define ModelReference_COMMON_INCLUDES_

27 #include "rtwtypes.h"

198

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

28 #endif /* ModelReference_COMMON_INCLUDES_ */

29
30 /* Child system includes */

31 #include "Model0.h"

32 #include "Model1.h"

33 #include "Model2.h"

34
35 /* Model Code Variants */

36
37 /* Macros for accessing real-time model data structure */

38
39 /* Forward declaration for rtModel */

40 typedef struct tag_RTM_ModelReference_T RT_MODEL_ModelReference_T;

41
42 /* Block signals and states (default storage) for system ’<Root>’ */

43 typedef struct {

44 real_T lastSin; /* ’<Root>/Sine Wave’ */

45 real_T lastCos; /* ’<Root>/Sine Wave’ */

46 int32_T systemEnable; /* ’<Root>/Sine Wave’ */

47 } DW_ModelReference_T;

48
49 /* External outputs (root outports fed by signals with default storage) */

50 typedef struct {

51 real_T Out1; /* ’<Root>/Out1’ */

52 real_T Out2; /* ’<Root>/Out2’ */

53 real_T Out3; /* ’<Root>/Out3’ */

54 real_T Out4; /* ’<Root>/Out4’ */

55 real_T Out5; /* ’<Root>/Out5’ */

56 } ExtY_ModelReference_T;

57
58 /* Real-time Model Data Structure */

59 struct tag_RTM_ModelReference_T {

60 /*

61 * Timing:

62 * The following substructure contains information regarding

63 * the timing information for the model.

64 */

65 struct {

66 uint32_T clockTick0;

67 } Timing;

68 };

69
70 /* Block signals and states (default storage) */

71 extern DW_ModelReference_T ModelReference_DW;

72
73 /* External outputs (root outports fed by signals with default storage) */

74 extern ExtY_ModelReference_T ModelReference_Y;

75
76 /* Model entry point functions */

77 extern void ModelReference_initialize(void);

78 extern void ModelReference_step(void);

79
80 /* Real-time Model object */

81 extern RT_MODEL_ModelReference_T *const ModelReference_M;

82
83 /*-

84 * The generated code includes comments that allow you to trace directly

85 * back to the appropriate location in the model. The basic format

86 * is <system>/block_name, where system is the system number (uniquely

87 * assigned by Simulink) and block_name is the name of the block.

88 *

89 * Use the MATLAB hilite_system command to trace the generated code back

90 * to the model. For example,

91 *

199

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

92 * hilite_system(’<S3>’) - opens system 3

93 * hilite_system(’<S3>/Kp’) - opens and selects block Kp which resides in S3

94 *

95 * Here is the system hierarchy for this model

96 *

97 * ’<Root>’ : ’ModelReference’

98 */

99 #endif /* RTW_HEADER_ModelReference_h_ */

100
101 /*

102 * File trailer for generated code.

103 *

104 * [EOF]

105 */

Listing A.10: ModelReference.h
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: ModelReference.h

7 *

8 * Code generated for Simulink model ’ModelReference’.

9 *

10 * Model version : 1.10

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 14:31:25 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #ifndef RTW_HEADER_ModelReference_h_

23 #define RTW_HEADER_ModelReference_h_

24 #include <math.h>

25 #ifndef ModelReference_COMMON_INCLUDES_

26 # define ModelReference_COMMON_INCLUDES_

27 #include "rtwtypes.h"

28 #endif /* ModelReference_COMMON_INCLUDES_ */

29
30 /* Child system includes */

31 #include "Model0.h"

32 #include "Model1.h"

33 #include "Model2.h"

34
35 /* Model Code Variants */

36
37 /* Macros for accessing real-time model data structure */

38
39 /* Forward declaration for rtModel */

40 typedef struct tag_RTM_ModelReference_T RT_MODEL_ModelReference_T;

41
42 /* Block signals and states (default storage) for system ’<Root>’ */

43 typedef struct {

44 real_T lastSin; /* ’<Root>/Sine Wave’ */

45 real_T lastCos; /* ’<Root>/Sine Wave’ */

46 int32_T systemEnable; /* ’<Root>/Sine Wave’ */

47 } DW_ModelReference_T;

200

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

48
49 /* External outputs (root outports fed by signals with default storage) */

50 typedef struct {

51 real_T Out1; /* ’<Root>/Out1’ */

52 real_T Out2; /* ’<Root>/Out2’ */

53 real_T Out3; /* ’<Root>/Out3’ */

54 real_T Out4; /* ’<Root>/Out4’ */

55 real_T Out5; /* ’<Root>/Out5’ */

56 } ExtY_ModelReference_T;

57
58 /* Real-time Model Data Structure */

59 struct tag_RTM_ModelReference_T {

60 /*

61 * Timing:

62 * The following substructure contains information regarding

63 * the timing information for the model.

64 */

65 struct {

66 uint32_T clockTick0;

67 } Timing;

68 };

69
70 /* Block signals and states (default storage) */

71 extern DW_ModelReference_T ModelReference_DW;

72
73 /* External outputs (root outports fed by signals with default storage) */

74 extern ExtY_ModelReference_T ModelReference_Y;

75
76 /* Model entry point functions */

77 extern void ModelReference_initialize(void);

78 extern void ModelReference_step(void);

79
80 /* Real-time Model object */

81 extern RT_MODEL_ModelReference_T *const ModelReference_M;

82
83 /*-

84 * The generated code includes comments that allow you to trace directly

85 * back to the appropriate location in the model. The basic format

86 * is <system>/block_name, where system is the system number (uniquely

87 * assigned by Simulink) and block_name is the name of the block.

88 *

89 * Use the MATLAB hilite_system command to trace the generated code back

90 * to the model. For example,

91 *

92 * hilite_system(’<S3>’) - opens system 3

93 * hilite_system(’<S3>/Kp’) - opens and selects block Kp which resides in S3

94 *

95 * Here is the system hierarchy for this model

96 *

97 * ’<Root>’ : ’ModelReference’

98 */

99 #endif /* RTW_HEADER_ModelReference_h_ */

100
101 /*

102 * File trailer for generated code.

103 *

104 * [EOF]

105 */

201

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Listing A.11: Model0.c
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: Model0.c

7 *

8 * Code generated for Simulink model ’Model0’.

9 *

10 * Model version : 1.9

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 14:30:57 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #include "Model0.h"

23
24 /* Output and update for referenced model: ’Model0’ */

25 void Model0(const real_T *rtu_In2, real_T *rty_Out2)

26 {

27 /* Gain: ’<Root>/Gain’ */

28 *rty_Out2 = 2.0 * *rtu_In2;

29 }

30
31 /*

32 * File trailer for generated code.

33 *

34 * [EOF]

35 */

Listing A.12: Model0.h
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: Model0.h

7 *

8 * Code generated for Simulink model ’Model0’.

9 *

10 * Model version : 1.9

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 14:30:57 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #ifndef RTW_HEADER_Model0_h_

23 #define RTW_HEADER_Model0_h_

24 #ifndef Model0_COMMON_INCLUDES_

202

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

25 # define Model0_COMMON_INCLUDES_

26 #include "rtwtypes.h"

27 #endif /* Model0_COMMON_INCLUDES_ */

28
29 /* Model Code Variants */

30 extern void Model0(const real_T *rtu_In2, real_T *rty_Out2);

31
32 /*-

33 * The generated code includes comments that allow you to trace directly

34 * back to the appropriate location in the model. The basic format

35 * is <system>/block_name, where system is the system number (uniquely

36 * assigned by Simulink) and block_name is the name of the block.

37 *

38 * Use the MATLAB hilite_system command to trace the generated code back

39 * to the model. For example,

40 *

41 * hilite_system(’<S3>’) - opens system 3

42 * hilite_system(’<S3>/Kp’) - opens and selects block Kp which resides in S3

43 *

44 * Here is the system hierarchy for this model

45 *

46 * ’<Root>’ : ’Model0’

47 */

48 #endif /* RTW_HEADER_Model0_h_ */

49
50 /*

51 * File trailer for generated code.

52 *

53 * [EOF]

54 */

Listing A.13: Model1.c
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: Model1.c

7 *

8 * Code generated for Simulink model ’Model1’.

9 *

10 * Model version : 1.10

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 14:31:10 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #include "Model1.h"

23
24 /* Output and update for referenced model: ’Model1’ */

25 void Model1(const real_T *rtu_In2, real_T *rty_Out2)

26 {

27 /* Gain: ’<Root>/Gain’ */

28 *rty_Out2 = 3.0 * *rtu_In2;

29 }

30
31 /*

203

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

32 * File trailer for generated code.

33 *

34 * [EOF]

35 */

Listing A.14: Model1.h
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: Model1.h

7 *

8 * Code generated for Simulink model ’Model1’.

9 *

10 * Model version : 1.10

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 14:31:10 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #ifndef RTW_HEADER_Model1_h_

23 #define RTW_HEADER_Model1_h_

24 #ifndef Model1_COMMON_INCLUDES_

25 # define Model1_COMMON_INCLUDES_

26 #include "rtwtypes.h"

27 #endif /* Model1_COMMON_INCLUDES_ */

28
29 /* Model Code Variants */

30 extern void Model1(const real_T *rtu_In2, real_T *rty_Out2);

31
32 /*-

33 * The generated code includes comments that allow you to trace directly

34 * back to the appropriate location in the model. The basic format

35 * is <system>/block_name, where system is the system number (uniquely

36 * assigned by Simulink) and block_name is the name of the block.

37 *

38 * Use the MATLAB hilite_system command to trace the generated code back

39 * to the model. For example,

40 *

41 * hilite_system(’<S3>’) - opens system 3

42 * hilite_system(’<S3>/Kp’) - opens and selects block Kp which resides in S3

43 *

44 * Here is the system hierarchy for this model

45 *

46 * ’<Root>’ : ’Model1’

47 */

48 #endif /* RTW_HEADER_Model1_h_ */

49
50 /*

51 * File trailer for generated code.

52 *

53 * [EOF]

54 */

204

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Listing A.15: Model2.c
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: Model2.c

7 *

8 * Code generated for Simulink model ’Model2’.

9 *

10 * Model version : 1.9

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 14:24:19 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #include "Model2.h"

23
24 /* Output and update for referenced model: ’Model2’ */

25 void Model2(const real_T *rtu_In1, real_T *rty_Out1)

26 {

27 /* Switch: ’<Root>/Switch’ incorporates:

28 * Constant: ’<Root>/Constant’

29 */

30 if (*rtu_In1 > 0.0) {

31 *rty_Out1 = *rtu_In1;

32 } else {

33 *rty_Out1 = 1.0;

34 }

35
36 /* End of Switch: ’<Root>/Switch’ */

37 }

38
39 /*

40 * File trailer for generated code.

41 *

42 * [EOF]

43 */

Listing A.16: Model2.h
1 /*

2 * Academic License - for use in teaching, academic research, and meeting

3 * course requirements at degree granting institutions only. Not for

4 * government, commercial, or other organizational use.

5 *

6 * File: Model2.h

7 *

8 * Code generated for Simulink model ’Model2’.

9 *

10 * Model version : 1.9

11 * Simulink Coder version : 9.3 (R2020a) 18-Nov-2019

12 * C/C++ source code generated on : Sat Oct 3 14:24:19 2020

13 *

14 * Target selection: ert.tlc

15 * Embedded hardware selection: Intel->x86-64 (Windows64)

16 * Code generation objectives:

205

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

17 * 1. Execution efficiency

18 * 2. RAM efficiency

19 * Validation result: Not run

20 */

21
22 #ifndef RTW_HEADER_Model2_h_

23 #define RTW_HEADER_Model2_h_

24 #ifndef Model2_COMMON_INCLUDES_

25 # define Model2_COMMON_INCLUDES_

26 #include "rtwtypes.h"

27 #endif /* Model2_COMMON_INCLUDES_ */

28
29 /* Model Code Variants */

30 extern void Model2(const real_T *rtu_In1, real_T *rty_Out1);

31
32 /*-

33 * The generated code includes comments that allow you to trace directly

34 * back to the appropriate location in the model. The basic format

35 * is <system>/block_name, where system is the system number (uniquely

36 * assigned by Simulink) and block_name is the name of the block.

37 *

38 * Use the MATLAB hilite_system command to trace the generated code back

39 * to the model. For example,

40 *

41 * hilite_system(’<S3>’) - opens system 3

42 * hilite_system(’<S3>/Kp’) - opens and selects block Kp which resides in S3

43 *

44 * Here is the system hierarchy for this model

45 *

46 * ’<Root>’ : ’Model2’

47 */

48 #endif /* RTW_HEADER_Model2_h_ */

49
50 /*

51 * File trailer for generated code.

52 *

53 * [EOF]

54 */

206

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Bibliography

Abd-El-Hafiz, S. K. (2012). A metrics-based data mining approach for software

clone detection. In Proceedings of the IEEE 36th Annual Computer Software

and Applications Conference, pages 35–41, Izmir, Turkey. IEEE.

Akdur, D., Garousi, V., and Demirörs, O. (2018). A survey on modeling

and model-driven engineering practices in the embedded software industry.

Software & Systems Modeling, 91:62–82.

Alalfi, M. H., Cordy, J. R., Dean, T. R., Stephan, M., and Stevenson, A.

(2012). Models are code too: Near-miss clone detection for simulink models.

In Proceedings of the 28th IEEE International Conference on Software

Maintenance (ICSM), pages 295–304. IEEE.

Alalfi, M. H., Rapos, E. J., Stevenson, A., Stephan, M., Dean, T. R., and

Cordy, J. R. (2014). Semi-automatic identification and representation of

subsystem variability in simulink models. In 2014 IEEE International

Conference on Software Maintenance and Evolution. IEEE.

Alalfi, M. H., Rapos, E. J., Stevenson, A., Stephan, M., Dean, T. R.,

and Cordy, J. R. (2019). Variability identification and representation

for automotive Simulink models. In Automotive Systems and Software

Engineering, pages 109–139. Springer International Publishing.

207

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Amelunxen, C., Legros, E., Schürr, A., and Stürmer, I. (2008). Checking

and enforcement of modeling guidelines with graph transformations. In

Applications of Graph Transformations with Industrial Relevance, pages

313–328. Springer, Springer Berlin Heidelberg.

ANSYS (2020). SCADE suite. https://www.ansys.com/products/embedded-

software/ansys-scade-suite. [Online; accessed Oct 2020].

AspenCore (2019). 2019 embedded markets study.

https://www.embedded.com/wp-content/uploads/2019/11/

EETimes Embedded 2019 Embedded Markets Study.pdf. [Online; accessed

Oct 2020].

Astrov, I. and Pedai, A. (2012). Three-rate neural control of tuav with coaxial

rotor and ducted fan configuration for enhanced situational awareness. In

Proceedings of the 1st International Conference on Control, Automation and

Information Sciences (ICCAIS), pages 78–83, Ho Chi Minh, Vietnam.

autosar.org (2018). Autosar classic platform release 4.4.0. https:

//www.autosar.org/standards/classic-platform/classic-platform-

440. [Online; accessed Oct 2020].

Baldwin, C. Y. and Clark, K. B. (2000). Design rules: The power of modularity,

volume 1. MIT press.

Banker, R. D., Datar, S. M., and Zweig, D. (1989). Software complexity

and maintainability. In Proceedings of the tenth international conference on

Information Systems - ICIS '89. ACM Press.

BARR Group (2018). Embedded systems safety & security survey.

208

https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.ansys.com/products/embedded-software/ansys-scade-suite
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.embedded.com/wp-content/uploads/2019/11/EETimes_Embedded_2019_Embedded_Markets_Study.pdf
https://www.autosar.org/standards/classic-platform/classic-platform-440
https://www.autosar.org/standards/classic-platform/classic-platform-440
https://www.autosar.org/standards/classic-platform/classic-platform-440

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Bender, M., Laurin, K., Lawford, M., Pantelic, V., Korobkine, A., Ong,

J., Mackenzie, B., Bialy, M., and Postma, S. (2015). Signature required:

Making Simulink data flow and interfaces explicit. Science of Computer

Programming, 113, Part 1:29–50. Model Driven Development (Selected &

extended papers from MODELSWARD 2014).

Berard, E. V. (1993). Abstraction, encapsulation, and information hiding.

http://www.tonymarston.net/php-mysql/abstraction.txt. [Online;

accessed Oct 2020].

Bialy, M., Pantelic, V., Jaskolka, J., Schaap, A., Patcas, L., Lawford, M., and

Wassyng, A. (2016). Software engineering for model-based development

by domain experts. In Griffor, E., editor, Handbook of System Safety and

Security, chapter 3, pages 39–64. Elsevier, Cambridge, MA, USA, 1 edition.

Booch, G. (2004). Object-Oriented Design and Analysis: With applications.

Pearson Education India, 2 edition.

Boström, P. (2011). Contract-based verification of Simulink models. In

Formal Methods and Software Engineering, pages 291–306. Springer Berlin

Heidelberg.

Boström, P., Morel, L., and Waldén, M. (2007). Stepwise development of

Simulink models using the refinement calculus framework. In Jones, C. B.,

Liu, Z., and Woodcock, J., editors, Theoretical Aspects of Computing –

ICTAC 2007, pages 79–93, Berlin, Heidelberg. Springer Berlin Heidelberg.

Broy, M. and Denert, E., editors (2002). Software Pioneers: Contributions to

Software Engineering. Springer.

209

http://www.tonymarston.net/php-mysql/abstraction.txt

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Broy, M., Kirstan, S., Krcmar, H., Schätz, B., and Zimmermann, J. (2014).

What is the Benefit of a Model-Based Design of Embedded Software Systems

in the Car Industry?, chapter 17, pages 310–334. Software Design and

Development: Concepts, Methodologies, Tools, and Applications. IGI

Global.

Canfora, G. and Cerulo, L. (2005). Impact analysis by mining software and

change request repositories. In Proceedings of the 11th IEEE International

Software Metrics Symposium (METRICS), pages 20–29, Como, Italy. IEEE.

Carnegie Mellon University (2020). SEI CERT C coding standard.

Caspi, P., Curic, A., Maignan, A., Sofronis, C., Tripakis, S., and Niebert, P.

(2003). From Simulink to SCADE/Lustre to TTA. ACM SIGPLAN Notices,

38(7):153–162.

Chapin, N., Hale, J. E., Khan, K. M., Ramil, J. F., and Tan, W.-G. (2001).

Types of software evolution and software maintenance. Journal of Software

Maintenance and Evolution: Research and Practice, 13(1):3–30.

Chawathe, S. S., Rajaraman, A., Garcia-Molina, H., and Widom, J. (1996).

Change detection in hierarchically structured information. In Proceedings of

the 1996 ACM SIGMOD international conference on Management of data

(SIGMOD), pages 493–504, Montreal. ACM Press.

Colaco, J.-L., Pagano, B., and Pouzet, M. (2017). SCADE 6: A formal

language for embedded critical software development (invited paper).

In 2017 International Symposium on Theoretical Aspects of Software

Engineering (TASE). IEEE.

210

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Dajsuren, Y., van den Brand, M. G. J., Serebrenik, A., and Roubtsov, S.

(2013). Simulink models are also software: Modularity assessment. In

Proceedings of the 9th international ACM Sigsoft Conference on Quality of

Software Architectures (QoSA), pages 99–106, Vancouver, Canada. ACM.

Dijkstra, E. W. (1972). Structured Programming, chapter Notes on Structured

Programming, pages 1–82. New York: Academic Press.

Dijkstra, E. W. (1982). On the role of scientific thought. In Selected Writings

on Computing: A Personal Perspective, pages 60–66. Springer New York.

Dörr, H. (2017). Good interfaces in large models. https://model-

engineers.com/files/upload/academy/mgigroup/large models.pdf.

Modeling Guidelines Interest Group (MGIGroup) [Online; accessed Oct

2020].

Ebert, C., Cain, J., Antoniol, G., Counsell, S., and Laplante, P. (2016).

Cyclomatic complexity. IEEE Software, 33(6):27–29.

Edwards, S. H. (1997). Representation inheritance: A safe form of “white box”

code inheritance. IEEE Transactions on Software Engineering, 23(2):83–92.

Fenton, N. E. and Bieman, J. (2014). Software Metrics: A Rigorous and

Practical Approach. CRC Press, 3 edition.

Gerlitz, T. and Kowalewski, S. (2016). Architectural analysis of

MATLAB/Simulink models with artshop. In Proceedings of the 2016 13th

Working IEEE/IFIP Conference on Software Architecture (WICSA), pages

307–310. IEEE.

211

https://model-engineers.com/files/upload/academy/mgigroup/large_models.pdf
https://model-engineers.com/files/upload/academy/mgigroup/large_models.pdf

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Gerlitz, T., Tran, Q. M., and Dziobek, C. (2015). Detection and handling of

model smells for MATLAB/Simulink models. In International Workshop

on Modelling in Automotive Software Engineering (MASE), volume 1487,

pages 13–22, Ottawa, Canada. CEUR.

Ghezzi, C., Jazayeri, M., and Mandrioli, D. (2002). Fundamentals of Software

Engineering. Prentice-Hall, Upper Saddle River, NJ, USA, 2 edition.

Giger, E., Pinzger, M., and Gall, H. C. (2012). Can we predict types of code

changes? an empirical analysis. In Proceedings of the 9th IEEE Working

Conference on Mining Software Repositories (MSR), pages 217–226, Zurich,

Switzerland. IEEE.

Gill, G. and Kemerer, C. (1991). Cyclomatic complexity density and software

maintenance productivity. IEEE Transactions on Software Engineering,

17(12):1284–1288.

Haber, A., Kolassa, C., Manhart, P., Nazari, P. M. S., Rumpe, B., and

Schaefer, I. (2013). First-class variability modeling in Matlab/Simulink. In

Proceedings of the 7th International Workshop on Variability Modelling of

Software-intensive Systems (VaMoS), pages 11–18, Pisa, Italy. ACM Press.

Han, J., Cheng, H., Xin, D., and Yan, X. (2007). Frequent pattern mining:

current status and future directions. Data Mining and Knowledge Discovery,

15(1):55–86.

Hata, H., Mizuno, O., and Kikuno, T. (2010). Fault-prone module detection

using large-scale text features based on spam filtering. Empirical Software

Engineering, 15(2):147–165.

212

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Hoare, C. A. R. (1971). Towards a theory of parallel programming. In Hoare,

C. A. R. and Perrot, R. H., editors, Operating Systems Techniques, pages

61–71. Academic Press.

IEEE (2018). Information technology – programming languages – C. ISO/IEC

9899: 2018.

Information Is Beautiful (2015). Codebases: Millions of lines of code.

https://www.informationisbeautiful.net/visualizations/million-

lines-of-code/. [Online; accessed Oct 2020].

International Organization for Standardization (2010). Systems and software

– vocabulary. ISO/IEC/IEEE 24765:2010.

International Organization for Standardization (2017). Systems and software

– vocabulary. ISO/IEC/IEEE 24765:2017(E).

Iwu, F., Galloway, A., Toyn, I., and McDermid, J. (2004). Practical formal

specification for embedded control systems. IFAC Proceedings Volumes,

37(4):165–170.

Jaskolka, M., Pantelic, V., Lawford, M., and Wassyng, A. (2021). Repository

mining for changes in Simulink models.

Jaskolka, M., Pantelic, V., Wassyng, A., and Lawford, M. (2020a). A

comparison of componentization constructs in Simulink. In SAE Technical

Paper, number 2020-01-1290, pages 1–16. SAE International.

Jaskolka, M., Pantelic, V., Wassyng, A., and Lawford, M. (2020b). Supporting

modularity in Simulink models. arXiv:2007.10120.

213

https://www.informationisbeautiful.net/visualizations/million-lines-of-code/
https://www.informationisbeautiful.net/visualizations/million-lines-of-code/

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Jaskolka, M., Scott, S., Pantelic, V., Wassyng, A., and Lawford, M. (2020c).

Applying modular decomposition in Simulink. In 2020 IEEE International

Symposium on Software Reliability Engineering Workshops (ISSREW),

pages 31–36.

Kakade, R., Murugesan, M., Perugu, B., and Nair, M. (2010). Model-based

development of automotive electronic climate control software. In Kühne,

T., Selic, B., Gervais, M.-P., and Terrier, F., editors, Proceedings of the 6th

European Conference on Modelling Foundations and Applications (ECMFA),

volume 6138, pages 144–155, Berlin, Heidelberg. Springer Berlin Heidelberg.

Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm, J., and Griswold,

W. G. (2001). An overview of AspectJ. In ECOOP 2001 — Object-Oriented

Programming, pages 327–354. Springer Berlin Heidelberg.

Kim, S., Whitehead, E. J., and Zhang, Y. (2008). Classifying software changes:

Clean or buggy? IEEE Transactions on Software Engineering, 34(2):181–

196.

Klauske, L. K. and Dziobek, C. (2010). Improving modeling usability:

Automated layout generation for Simulink. In Proceedings of the MathWorks

Automotive Conference (MAC).

Kochan, S. (2014). Programming in C. Pearson Education (US).

Korson, T. D. and Vaishnavi, V. K. (1986). An empirical study of the effects

of modularity on program modifiability. In Soloway, E. and Iyengar, S.,

editors, Papers Presented at the First Workshop on Empirical Studies of

Programmers, pages 168–186, Norwood, NJ, USA. Ablex Publishing Corp.

214

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Legros, E., Schäfer, W., Schürr, A., and Stürmer, I. (2010). MATE - a

model analysis and transformation environment for MATLAB Simulink. In

Giese, H., Karsai, G., Lee, E., Rumpe, B., and Schätz, B., editors, Model-

Based Engineering of Embedded Real-Time Systems, pages 323–328. Springer

Berlin Heidelberg.

Liebel, G., Marko, N., Tichy, M., Leitner, A., and Hansson, J. (2014).

Assessing the state-of-practice of model-based engineering in the embedded

systems domain. In Dingel, J., Schulte, W., Ramos, I., Abrahão, S.,

and Insfran, E., editors, Model-Driven Engineering Languages and Systems,

volume 8767, pages 166–182. Springer International Publishing.

Liebel, G., Marko, N., Tichy, M., Leitner, A., and Hansson, J. (2018). Model-

based engineering in the embedded systems domain: an industrial survey

on the state-of-practice. Software & Systems Modeling, 17(1):91–113.

Lublinerman, R. and Tripakis, S. (2008). Modularity vs. reusability: Code

generation from synchronous block diagrams. In Proceedings of the

Conference on Design, Automation and Test in Europe (DATE), pages 1504–

1509. ACM.

MacCormack, A., Rusnak, J., and Baldwin, C. Y. (2007). The impact of

component modularity on design evolution: Evidence from the software

industry. Harvard Business School Technology & Operations Mgt. Unit

Research Paper, pages 1–36.

Martin, R. C. (2008). Clean Code: A Handbook of Agile Software

Craftsmanship. Prentice Hall, 1 edition.

215

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

McCabe, T. J. (1976). A complexity measure. IEEE Transactions on Software

Engineering, SE-2(4):308–320.

Middleton, P. and Sutton, J. (2005). Lean Software Strategies: Proven

Techniques for Managers and Developers. CRC Press.

Model Engineering Solutions (2020). M-XRAY user guide. v4.3.

Molotnikov, Z., Schorp, K., Aravantinos, V., and Schätz, B. (2016). Future

programming paradigms in the automotive industry. FAT-Schriftenreihe,

287:108.

National Instruments (2020). LabVIEW. http://www.ni.com/labview.

Version 2020. [Online; accessed Oct 2020].

Neuhaus, S., Zimmermann, T., Holler, C., and Zeller, A. (2007). Predicting

vulnerable software components. In ACM Conference on Computer and

Communications Security, pages 529–540, Alexandria, Virginia, USA. ACM.

Object Management Group (2017). Unified Modeling Language (UML).

https://www.omg.org/spec/UML/2.5.1. Version 2.5.1 [Online; Accessed Oct

2020].

Object Management Group (2019). Omg system modeling language (SysML).

http://www.omg.org/spec/SysML/1.6. Version 1.6. [Online; accessed Oct

2020].

O’Hearn, P. W., Yang, H., and Reynolds, J. C. (2009). Separation and

information hiding. ACM Transactions on Programming Languages and

Systems (TOPLAS), 31(3):1–48.

216

http://www.ni.com/labview
https://www.omg.org/spec/UML/2.5.1
http://www.omg.org/spec/SysML/1.6

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Olszewska, M. (2011). Simulink-specific design quality metrics. TUCS

Technical Report 1002, Åbo Akademi University, Turku, Finland.

Olszewska, M., Dajsuren, Y., Altinger, H., Serebrenik, A., Waldén, M., and

van den Brand, M. G. J. (2016). Tailoring complexity metrics for Simulink

models. In Proccedings of the 10th European Conference on Software

Architecture Workshops - ECSAW '16. ACM Press.

Oualline, S. (1997). Practical C Programming. Nutshell Handbooks. O’Reilly

Media, Sebastopol, CA, USA, 3 edition.

Pantelic, V., Postma, S., Lawford, M., Jaskolka, M., Mackenzie, B., Korobkine,

A., Bender, M., Ong, J., Marks, G., and Wassyng, A. (2018). Software

engineering practices and Simulink: bridging the gap. International Journal

on Software Tools for Technology Transfer, 20(1):95–117.

Pantelic, V., Schaap, A., Wassyng, A., Bandur, V., and Lawford, M.

(2019). Something is rotten in the state of documenting Simulink

models. In Proceedings of the 7th International Conference on Model-Driven

Engineering and Software Development, volume 1 of MODELSWARD 2019,

pages 503–510. INSTICC, SciTePress.

Parnas, D. L. (1972a). On the criteria to be used in decomposing systems into

modules. Communications of the ACM, 15(12):1053–1058.

Parnas, D. L. (1972b). A technique for software module specification with

examples. Communications of the ACM, 15(5):330–336.

Parnas, D. L. (2002). The secret history of information hiding. In Software

Pioneers, pages 398–409. Springer, Berlin, Heidelberg.

217

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Parnas, D. L. (2003). Structured programming: A minor part of software

engineering. Information Processing Letters, 88(1-2):53–58.

Parnas, D. L. (2018). Software structures: A careful look. IEEE Software,

35(6):68–71.

Parnas, D. L., Clements, P. C., and Weiss, D. M. (1985). The modular

structure of complex systems. IEEE Transactions on Software Engineering,

SE-11(3):259–266.

Parnas, D. L., Clements, P. C., and Weiss, D. M. (1989). Enhancing reusability

with information hiding. In Biggerstaff, T. J. and Perlis, A. J., editors,

Software Reusability: Concepts and Models, volume 1, chapter 6, pages 141–

157. ACM, New York, NY, USA.

Qian, K., Haring, D. D., and Cao, L. (2009). Embedded Software Development

with C. Springer-Verlag GmbH.

Rau, A. (2001). On model-based development: Decomposition and data

abstraction in SIMULINK. Softwaretechnik-Trends, 21(3):1–6.

Rau, A. (2002). On model-based development: A pattern for strong interfaces

in SIMULINK. Gesellschaft für Informatik, FG, 2(1):12.

Reddy, R. and Ziegler, C. (2009). C Programming for Scientists and Engineers

with Applications. Jones & Bartlett Learning.

Rising, L. S. and Calliss, F. W. (1994). An information-hiding metric. Journal

of Systems and Software, 26(3):211–220.

218

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Robbes, R., Pollet, D., and Lanza, M. (2008). Logical coupling based on fine-

grained change information. In Proceedings of the 15th Working Conference

on Reverse Engineering, pages 42–46, Antwerp, Belgium. IEEE.

Ryssel, U., Ploennigs, J., and Kabitzsch, K. (2010). Automatic variation-

point identification in function-block-based models. In Proceedings of the

9th International Conference on Generative Programming and Component

Engineering (GPCE), pages 23–32, Eindhoven, The Netherlands. ACM.

Rysselberghe, F. V. and Demeyer, S. (2004). Mining version control systems

for FACs (frequently applied changes). In Hassan, A. E., Holt, R. C.,

and Mockus, A., editors, Proceedings of the 1st International Workshop on

Mining Software Repositories (MSR), pages 48–52, Edinburgh, UK.

Scandariato, R., Walden, J., Hovsepyan, A., and Joosen, W. (2014). Predicting

vulnerable software components via text mining. IEEE Transactions on

Software Engineering, 40(10):993–1006.

Schaap, A., Marks, G., Pantelic, V., Lawford, M., Selim, G., Wassyng,

A., and Patcas, L. (2018). Documenting Simulink designs of embedded

systems. In Proceedings of the 21st ACM/IEEE International Conference on

Model Driven Engineering Languages and Systems (MODELS): Companion

Proceedings, pages 47–51, Copenhagen, Denmark. ACM.

Schach, S. R. (2010). Object-Oriented and Classical Software Engineering.

McGraw-Hill, 8 edition.

Schlie, A., Wille, D., Schulze, S., Cleophas, L., and Schaefer, I. (2017).

Detecting variability in MATLAB/Simulink models. In Proceedings of the

219

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

21st International Systems and Software Product Line Conference (SPLC),

volume A, pages 215–224, Sevilla, Spain. ACM Press.

Schwinghammer, J., Yang, H., Birkedal, L., Pottier, F., and Reus, B. (2010).

A semantic foundation for hidden state. In Ong, L., editor, Foundations of

Software Science and Computational Structures, volume 6014, pages 2–17,

Berlin, Heidelberg. Springer Berlin Heidelberg.

Snyder, A. (1986). Encapsulation and inheritance in object-oriented

programming languages. In Proceedings of Object-Oriented Programming,

Systems, Languages & Applications (OOPSLA), volume 21, pages 38–45.

ACM.

Sommerville, I. (2015). Software Engineering. Addison-Wesley, 10 edition.

Spectrum, I. (2020). Interactive: The top programming languages. https:

//spectrum.ieee.org/static/interactive-the-top-programming-

languages-2020. [Online; accessed Oct 2020].

Srivastava, S., Hicks, M., Foster, J. S., and Jenkins, P. (2008). Modular

information hiding and type-safe linking for C. IEEE Transactions on

Software Engineering, 34(3):357–376.

Stephan, M., Alalfi, M. H., and Cordy, J. R. (2014). Towards a taxonomy

for Simulink model mutations. In Proceedings of the 7th IEEE International

Conference on Software Testing, Verification and Validation (ICST), pages

206–215, Cleveland, OH, USA. IEEE.

220

https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020
https://spectrum.ieee.org/static/interactive-the-top-programming-languages-2020

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Stephan, M., Alalfi, M. H., Cordy, J. R., and Stevenson, A. (2013). Evolution

of model clones in Simulink. In ME 2013 – Models and Evolution Workshop

Proceedings, pages 40–49. Citeseer.

Stevens, W. P., Myers, G. J., and Constantine, L. L. (1999). Structured design.

IBM Systems Journal, 38(2.3):231–256.

Swanson, E. B. (1976). The dimensions of maintenance. In Proceedings of

the 2nd International Conference on Software Engineering (ICSE), pages

492–497, San Francisco, CA, USA. IEEE Computer Society Press.

The MathWorks (2019). Simulink user’s guide. https://www.mathworks.com/

help/releases/R2019b/pdf doc/simulink/sl using.pdf. Version

R2019b [Online; accessed Oct 2020].

The MathWorks (2020a). Company overview. https://www.mathworks.com/

content/dam/mathworks/handout/2020-company-factsheet-8-5x11-

8282v20.pdf. [Online; accessed Oct 2020].

The MathWorks (2020b). Embedded Coder user’s guide. https:

//www.mathworks.com/help/releases/R2020b/pdf doc/ecoder/

ecoder ug.pdf. Version R2020b [Online; accessed Oct 2020].

The MathWorks (2020c). Mathworks advisory board control algorithm

modeling guidelines. https://www.mathworks.com/help/pdf doc/

simulink/simulink mab guidelines.pdf. Version 5.0. [Online; accessed

Oct 2020].

The MathWorks (2020d). MATLAB. https://www.mathworks.com/

products/matlab.html. [Online; accessed Oct 2020].

221

https://www.mathworks.com/help/releases/R2019b/pdf_doc/simulink/sl_using.pdf
https://www.mathworks.com/help/releases/R2019b/pdf_doc/simulink/sl_using.pdf
https://www.mathworks.com/content/dam/mathworks/handout/2020-company-factsheet-8-5x11-8282v20.pdf
https://www.mathworks.com/content/dam/mathworks/handout/2020-company-factsheet-8-5x11-8282v20.pdf
https://www.mathworks.com/content/dam/mathworks/handout/2020-company-factsheet-8-5x11-8282v20.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/ecoder/ecoder_ug.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/ecoder/ecoder_ug.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/ecoder/ecoder_ug.pdf
https://www.mathworks.com/help/pdf_doc/simulink/simulink_mab_guidelines.pdf
https://www.mathworks.com/help/pdf_doc/simulink/simulink_mab_guidelines.pdf
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

The MathWorks (2020e). Simulink. https://www.mathworks.com/products/

simulink.html. [Online; accessed Oct 2020].

The MathWorks (2020f). Simulink Check reference. https:

//www.mathworks.com/help/releases/R2020b/pdf doc/slcheck/

slcheck ref.pdf. Version 2020b [Online; accessed Oct 2020].

The MathWorks (2020g). Simulink Check user’s guide. https:

//www.mathworks.com/help/releases/R2020b/pdf doc/slcheck/

slcheck ug.pdf. Version R2020b [Online; accessed Oct 2020].

The MathWorks (2020h). Simulink Coder user’s guide. https:

//www.mathworks.com/help/releases/R2020b/pdf doc/rtw/rtw ug.pdf.

Version R2020b [Online; accessed Oct 2020].

The MathWorks (2020i). Simulink modeling guidelines for high-integrity

systems. https://www.mathworks.com/help/releases/R2020a/pdf doc/

simulink/simulink hi guidelines.pdf. Version 2020b [Online; accessed

Oct 2020].

The MathWorks (2020j). Simulink user’s guide. https://www.mathworks.com/

help/releases/R2020b/pdf doc/simulink/simulink ug.pdf. Version

R2020b [Online; accessed Oct 2020].

The MathWorks (2020k). Stateflow. https://www.mathworks.com/products/

stateflow.html. [Online; accessed Oct 2020].

The Modelica Association (2020). Modelica. https://www.modelica.org/

modelicalanguage. Version 4.0.0. [Online; accessed Oct 2020].

222

https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/help/releases/R2020b/pdf_doc/slcheck/slcheck_ref.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/slcheck/slcheck_ref.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/slcheck/slcheck_ref.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/slcheck/slcheck_ug.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/slcheck/slcheck_ug.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/slcheck/slcheck_ug.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/rtw/rtw_ug.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/rtw/rtw_ug.pdf
https://www.mathworks.com/help/releases/R2020a/pdf_doc/simulink/simulink_hi_guidelines.pdf
https://www.mathworks.com/help/releases/R2020a/pdf_doc/simulink/simulink_hi_guidelines.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/simulink/simulink_ug.pdf
https://www.mathworks.com/help/releases/R2020b/pdf_doc/simulink/simulink_ug.pdf
https://www.mathworks.com/products/stateflow.html
https://www.mathworks.com/products/stateflow.html
https://www.modelica.org/modelicalanguage
https://www.modelica.org/modelicalanguage

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

The Motor Industry Software Reliability Association (2009). MISRA AC SLSF

modelling design and style guidelines for the application of Simulink and

Stateflow. Version 1.0.

Tran, Q. M., Wilmes, B., and Dziobek, C. (2013). Refactoring of Simulink

diagrams via composition of transformation steps. In International

Conference on Software Engineering Advances, pages 140–145. Citeseer.

Tripakis, S. and Lublinerman, R. (2018). Modular code generation from

synchronous block diagrams: Interfaces, abstraction, compositionality. In

Lecture Notes in Computer Science, pages 449–477. Springer International

Publishing.

University of California at Berkeley (2020). Ptolemy II. https:

//ptolemy.berkeley.edu/ptolemyII/index.htm. Version 11.0. [Online;

accessed Oct 2020].

Voas, J. M. (1996). Object-oriented software testability. In Bologna, S. and

Bucci, G., editors, Achieving Quality in Software, pages 279–290. Springer

US.

Watson, A. H. and McCabe, T. J. (1996). Structured testing: A testing

methodology using the cyclomatic complexity metric. NIST Special

Publication, 500(235):1–114.

Whalen, M. W., Murugesan, A., Rayadurgam, S., and Heimdahl, M. P. E.

(2014). Structuring Simulink models for verification and reuse. In

Proceedings of the 6th International Workshop on Modeling in Software

Engineering (MiSE), pages 19–24, Hyderabad, India. ACM.

223

https://ptolemy.berkeley.edu/ptolemyII/index.htm
https://ptolemy.berkeley.edu/ptolemyII/index.htm

Ph.D. Thesis – Monika Jaskolka McMaster University – Computing and Software

Xiao, Y. and Agbossou, K. (2009). Interface design and software development

for PEM fuel cell modeling based on Matlab/Simulink environment. In 2009

WRI World Congress on Software Engineering, volume 4, pages 318–322,

Xiamen, China.

Yang, Y., Shen, D., Xie, Y., and Li, X. (2012). Matlab Simulink of COST231-

WI model. International Journal of Wireless & Microwave Technologies,

3:1–8.

Yatish, S., Jiarpakdee, J., Thongtanunam, P., and Tantithamthavorn, C.

(2019). Mining software defects: Should we consider affected releases? In

Proceedings of the 41st International Conference on Software Engineering

(ICSE), pages 654–665, Montreal, Quebec, Canada. IEEE Press.

Ying, A. T. T., Murphy, G. C., Ng, R., and Chu-Carroll, M. C.

(2004). Predicting source code changes by mining change history. IEEE

Transactions on Software Engineering, 30(9):574–586.

Ziegenbein, D., Saidi, S., Hu, X. S., and Steinhorst, S. (2020). Future

automotive HW/SW platform design (Dagstuhl seminar 19502). Dagstuhl

Reports, 9(12):28–66.

Zimmermann, T., Zeller, A., Weissgerber, P., and Diehl, S. (2005). Mining

version histories to guide software changes. IEEE Transactions on Software

Engineering, 31(6):429–445.

224

	Descriptive Note
	Dedication
	Abstract
	Acknowledgments
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Motivation
	Why Simulink?

	Research Questions
	Thesis Contributions
	Related Publications and Submissions
	Thesis Outline

	Preliminaries
	Principles for Supporting Likely Changes
	Information Hiding
	Modularity
	Encapsulation
	Separation of Concerns
	Object-Orientation
	Aspect-Orientation

	Simulink
	Subsystems
	Virtual Subsystem
	Nonvirtual Subsystem

	Library
	Model Reference
	Data Passing
	Data Store Memory
	Goto, From, and Goto Tag Visibility

	Workspaces and Data Dictionaries
	Exporting Data
	Stateflow

	C to Simulink Concept Mapping
	Chapter Summary

	Model Changes
	Related Work
	Methodology
	Tool Support
	Model Comparison Utility

	Changes in Simulink Models
	What basic elements change the most?
	What blocks are most often involved in changes?
	What does a commit usually entail?
	What are identified categories of change?
	Changes to Interface Elements
	Changes to Signal Routing and Attributes

	Chapter Summary

	Decomposition of Simulink Models
	Related Work
	Comparison of Constructs
	Use in Industry
	Reusability
	Sharing of Program State
	Information Hiding and Encapsulation
	Limitation of Use
	Restriction of Data Passing

	Code Generation
	Comparison Summary

	Conversion and Limitations
	Conventions for Modularity
	Chapter Summary

	A Simulink Module Structure
	Related Work
	Model Structure
	Interfaces

	A Simulink Module
	A Simulink Module Interface
	Definition
	Limitations
	Representation
	Benefits

	Modelling Guidelines
	Simulink Functions
	Interfaces

	The Simulink Module Tool
	Subsystem to Simulink Function Conversion
	Scope Changes
	Function Calling
	Automatic Function Configuration
	Interface Generation
	Dependency Viewing
	Guideline Checking

	Chapter Summary

	Case Studies
	Evaluation Methods
	Design Equivalence
	Information Hiding
	Interface Complexity
	Coupling and Cohesion
	Cyclomatic Complexity
	Testability
	Performance Comparison

	Aerospace Case Study
	FCC Components
	AHRS Voter
	HOLC
	HILC
	AL

	Application of the Simulink Module Structure
	AHRS Voter
	AHRS Control
	AL

	Using the Simulink Module Tool
	Evaluation
	Information Hiding
	Interface Complexity
	Coupling and Cohesion
	Cyclomatic Complexity
	Testability
	Performance Comparison

	Case Study Summary

	Nuclear Case Study
	Application of the Simulink Module Structure
	PE Module
	Entire SDS

	Using the Simulink Module Tool
	Evaluation
	Information Hiding
	Interface Complexity
	Coupling and Cohesion
	Cyclomatic Complexity
	Testability
	Performance Comparison

	Case Study Summary

	Challenges and Limitations
	Variable-Step Solvers and Continuous States
	Inheriting Sample Time
	Block States
	Algebraic Loops

	Conclusion
	Summary of Contributions
	Future Work
	Closing Remarks

	Construct Comparison Generated Code
	Virtual Subsystem Generated Code
	Atomic Subsystem Generated Code
	Simulink Function Generated Code
	Library Import Generated Code
	Model Reference Generated Code

	Bibliography

