
DISTORTION OF TEMPORAL FINE

STRUCTURE CUES IN SPEECH AND

ANALYSIS OF RESULTING SPEECH

INTELLIGIBILITY



DISTORTION OF TEMPORAL FINE STRUCTURE CUES IN

SPEECH AND ANALYSIS OF RESULTING SPEECH

INTELLIGIBILITY

BY

SEAN CLARKE, B.Sc.

a thesis

submitted to the department of Electrical & Computer Engineering

and the school of graduate studies

of mcmaster university

in partial fulfilment of the requirements

for the degree of

Master of Applied Science

© Copyright by Sean Clarke, December 2020

All Rights Reserved



Master of Applied Science (2020) McMaster University

(Electrical & Computer Engineering) Hamilton, Ontario, Canada

TITLE: Distortion of Temporal Fine Structure cues in Speech and

Analysis of Resulting Speech Intelligibility

AUTHOR: Sean Clarke

B.Sc. (Honours Mathematical Physics),

University of Waterloo, Waterloo, Ontario, Canada

SUPERVISOR: Dr. Ian C. Bruce

NUMBER OF PAGES: x, 60

ii



Abstract

Auditory nerve fiber models provide further insight into the inner workings of the

ear and brain. These models have helped us to develop physiologically based speech

intelligibility metrics, to assess the difficulty of understanding speech objectively.

Several metrics have been developed, but they have been developed using a range

of auditory nerve (AN) fiber models. A full comparison of different metrics on even

footing should be performed to evaluate the accuracy of their predictions.

Speech intelligibility is understood to be dependant on both temporal fine structure

and envelope cues in the acoustic speech signal, which are however linked in a way

where they are very difficult to split. This makes the evaluation of speech intelligibility

metrics tricky, as metrics often aim to analyze mean rate and fine timing information

in the auditory nerve representation of the acoustic cues.

In this study, a method of phase distortion was developed, with the goal of degrading

the fine timing information of a speech signal to the point where only the mean rate

representation in the AN is contributing to the speech intelligibility. Also, the neural

cross correlation coefficients developed in Heinz & Swaminathan (2009) were adapted

from the Zilany & Bruce (2007) auditory nerve model to the Bruce, Erfani & Zilany

(2018) AN model.
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Chapter 1

Introduction & Literature Review

1.1 Introduction

Speech is a complex form of information coding in sound, and the decoding process

is just as intricate. The human auditory system has a unique method of decoding,

and is the subject of much research. Speech intelligibility is the measure of difficulty

of understanding speech, and the development of an accurate metric for calculating

speech intelligibility is a key step towards better understanding the auditory system.

As metric design becomes more based in physiology, it becomes a more useful tool in

research and audio digital signal processing.

In this first part of the thesis, background information will be presented, including

an overview the importance of envelope and temporal fine structure (TFS) cues, and

speech intelligibility measures. These are important to understanding the basis of the

work presented here, as it relates to speech intelligibility.

Chapter 2 features a literature review of the Xu et al. (2017) work in degrading TFS

cues in a speech signal, as it forms the basis of the phase distortion work presented

1



M.A.Sc. Thesis – S. Clarke McMaster University – Electrical Engineering

later in Chapter 4.

Similarly, Chapter 3 features a review of Heinz & Swaminathan (2009), as well as

some related work (Louage et al., 2004); (Swaminathan and Heinz, 2012), and the

development of the neural cross-correlation coefficient speech intelligibility metric.

Chapter 4 presents the work that has been done in this thesis: the development of

a process of phase distortion for speech signals to isolate envelope cues, and the de-

velopment of a process to calculate neural cross-correlation coefficients on the Bruce,

Erfani & Zilany (2018) AN model.

Chapter 5 summarizes the findings of this study and suggests future investigations

based on the results.

MATLAB code produced in this study is found in the Appendices.

1.2 Speech Intelligibility

Speech intelligibility is a powerful measure for our understanding of the human au-

ditory system. Speech information is typically described in terms of the slow moving

envelope information, and the faster temporal fine structure (TFS), the finer details of

the oscillations. It has been shown that envelope cues alone, in as few as 4 frequency

bands, can be enough for speech to be understood in a quiet environment (Shannon

et al., 1995). The role of the TFS is more specific, as it comes into play for sound

localization, music perception and, notably for this study, distinguishing speech from

background noise (Lorenzi et al., 2006). When looking at speech in terms of its fre-

quency components, envelope is typically considered the information below 50 Hz,

and temporal fine structure is considered above 50 Hz (Xu et al., 2017), though that

exact number is up for debate.

2
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To make any use of speech intelligbility, an accurate metric for measuring it is re-

quired. Early attempts at speech intelligibility metrics, like the Articulation Index

(French and Steinberg, 1947) and the Speech Intelligibility Index (ANSI, 1997) are

based in signal processing techniques, aiming to explain speech intelligibility as a

measure of signal to noise ratio (SNR). While SNR accounts for some degradations of

speech intelligibility, distortions to the speech itself would not be accounted for, even

though they affect how easy it is understand speech. They weight frequency bands

based on the general shape of human speech, but the inner workings of the ear and

brain do not come into play with these metrics. The next step would be to develop

speech intelligibility metrics with a focus on human physiology.

The Neurogram Similarity Index Measure (NSIM) is one such physiologically based

metric, that takes advantage of the neurogram output of auditory nerve model (Hines

and Harte, 2012). It is based on the structural similarity index measure (SSIM) which

is a metric for comparing two images. The same principles are used, with neurograms

being treated as any other image. The NSIM takes 3×3 pixel chunks of the neurogram

and analyzes the luminence, contrast and structure of each chunk, as it compares to

the neurogram for a clean speech signal. In this way, the NSIM measures the devia-

tion of the neurogram from the response to the unaltered signal. The NSIM metric

is designed to use auditory nerve models, so its predictions are concretely based in

physiology.

The Neural Cross-Correlation coefficients are another approach to designing a phys-

iologically based metric. Instead of using neurograms, the neural cross-correlation

coefficients use raw spike train data generated by the AN model. Shuffled correlo-

grams are histograms constructed by comparing the timing of individual spikes from

3
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one spike train to the timing of other spike trains. The cross correlation coefficents

compare the cross-correlation between two responses due to different stimuli with

strength of the autocorrelation of each stimulus response, using the shuffled correl-

ograms to compute the correlations. (Heinz and Swaminathan, 2009). This process

was originally developed to use the Zilany & Bruce (2006) AN model.

4



Chapter 2

Envelope and Temporal Fine

Structure Information

2.1 Phase Distortion

As discussed in the introduction, speech is described in terms of envelope and tem-

poral fine timing cues in the acoustic signal. To assess the importance of each on the

understanding of speech in various noise environments, the next challenge becomes

splitting ENV and TFS information so each can be analyzed alone. For degrading the

envelope information, a common tactic is saturating the signal; in this way, the fine

structure of the individual oscillations are preserved, yet the envelope of the signal

is deteriorated. To degrade the fine structure, the Hilbert transform of the speech

signal can be calculated, which can be used to extract just the envelope of the signal

(Wirtzfeld et al., 2017). Another approach to degrading the fine struture would be

to calculate the short time Fourier transform (STFT) of the signal. From there, the

phases can be distorted before reconstruction of the time domain signal. This should

5
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reproduce a speech signal following the same envelope information, without holding

on to the original fine structure information. One advantage of such an approach

is the ability to partially degrade temporal fine structure, as the Hilbert transform

approach allows only for total replacement of the temporal fine structure.

This method of phase distortion in the STFT space has been performed before (Xu

et al. 2017), however in their research, the speech signal was split into 64 frequency

bands, and only the 6 bands with the highest energy had their phases distorted.

This makes sense for vowel sounds, which consist of high energy in only the for-

mant frequencies. Vowels can be synthesized using as little as the 3 most prominent

formants, so distorting the 6 most prominent frequency bands covers the key informa-

tion. Consonants tend to be broadband in their frequency spectrums, so the remaing

undistorted frequency bands will still retain much of the information. A metric based

in a spectrotemporal analysis should be required to properly account for the effects

of phase distortion on speech intelligibility (Chabot-Leclerc et al., 2014). As seen in

Figure 2.1, in the Xu et al. study, phase distortion was evaluated for different ampli-

tudes and attempted both distorting original phase information and fully replacing

it.

6
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Figure 2.1: Spectrum of various levels of phase distortion

Spectrogram and FFT of phase distorted speech sentence “the silly boy’s hiding”. (S1)

Clean speech signal. (S2) Clean audio reconstructed using only 6 highest energy fre-

quency bands. (S3) Phase distortion of range [
−π
2
,
π

2
]. (S4) Phase distortion of range

[−π, π]. (S5) Phase information replaced with random numbers. (S6) All phase infor-

mation set to 0. Figure 1 from Xu et al. 2017. Used under creative commons license

https://creativecommons.org/licenses/by/4.0/
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Chapter 3

Speech Intelligibility Metrics

In this section, speech intelligibility metrics will be discussed. Speech intelligibility

metrics are mathematical formulae that attempt to quantify intelligibility without

the need to have human subjects listen to the audio, then rate the difficulty of un-

derstanding. The metrics in question are physiologically based, and were designed to

work with auditory periphery models as part of their calculations.

3.1 NSIM

The Neurogram Similarity Index Measure (NSIM) may not be the subject of this

study, but does come into play in the analysis of the phase distortion in Chapter

4. The calculation of the NSIM begins with presenting an auditory nerve model

with both clean and distorted speech. The Bruce, Erfani & Zilany (2018) model can

generate neurograms, a time-frequency representation of the neural signal. The NSIM

is a comparison of the neurograms of the reference signal r and the degraded d. The

NSIM considers not just a single pixel, but the surrounding 8, making for 3× 3 pixel

8
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squares.

Three measures of this 3×3 square are needed. First is the luminance, which uses the

mean value of the square µx. Next is the contrast, using the variance of the square σx.

Finally, the structure is measured as the correlation coefficient of the square and the

equivalent square of the other neurogram σxy. The full equation for the calculation

of the NSIM is as follows:

NSIM(r, d) = (
2µrµd + C1

µ2
r + µ2

d + C1

)α ∗ (
2σrσd + C2

σ2
r + σ2

d + C2

)β ∗ (
σrd + C3

σrσd + C3

)γ

The constants C1, C2, C3 are used to avoid leaving any instabilities in the equation at

the boundary conditions, but should otherwise have little effect on the full calculation.

The exponents α, β, γ are used as weighting coefficients. Based on tests incrementing

the weighting coefficients, the optimal coefficients for testing speech intelligibility

were found to be α = γ = 1, β = 0 (Hines and Harte, 2012). The resulting NSIM

calculation is then as follows.

NSIM(r, d) =
2µrµd + C1

µ2
r + µ2

d + C1

∗ σrd + C3

σrσd + C3

3.2 Neural Cross-correlation Coefficients

The first step towards calculating neural cross-correlation coefficients is producing

shuffled auto-correlograms and shuffled cross-stimulus correlograms (Joris, 2003). As

illustrated in Figure 3.1, an auditory model of a single nerve fibre is presented with

a speech stimulus to generate neural spiketrains. This speech stimulus is presented

N times to the model, and an inter spike interval (ISI) histogram is generated. If

9
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interspike intervals from the same spiketrain were used, the refractory period of the

nerve fibre will obfuscate the pattern of interspike intervals. To correct this, only

interspike intervals across stimulus presentations will be counted.

10
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Figure 3.1: Example construction of Shuffled auto-correlograms from spiketrains

A visualisation of the construction of a shuffled auto correlogram. (A) The simulated

spiketrains generated by the auditory nerve model. (B) The removal of duplicate spiketrains,

as the goal of the SAC is to not compare a single spiketrain with itself. (C) The measurement

of the forward time delays between spike timings. Figure 1 from Louage et al. (2004).

This is how a shuffled auto-corellogram (SAC) is produced. The SAC is then

normalized using the number of stimulus presentations N, the average firing rate of

11
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the auditory fibre r, the bin width of the histogram ∆τ and the total duration of

the stimulus D. The SAC is normalized by dividing by N(N − 1)r2D∆τ . Figure 3.2

depicts ISI histograms and equivalent SAC plots.

Figure 3.2: Interspike Interval histograms and Shuffled Auto-correlograms of various
nerve fibers

Comparison of interspike interval histograms (ISI) and corresponding shuffled autocorrelo-

grams. Each column depicts a different nerve fibre being modelled (550, 2500, 3290, 5000

Hz characteristic frequencies). Notably, the ISI histograms show the effects of the refrac-

tory period, as there is a dead band starting at 0 delay, which is not present in the shuffled

autocorrelograms. Figure 3 from Louage et al. (2004).

The same auditory nerve fibre is also presented with the same stimulus with

inversed polarity. This results in a π phase shift across all frequency bins. The

shorthand for these stimuli has the clean response being denoted A+ and the inverse

12
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as A− (Swaminathan and Heinz, 2012). This covers presenting the auditory nerve

with the clean speech signal, but it also must be presented with degraded audio, since

our speech intelligibility will be a measure of how much harder the degraded speech is

to understand versus the clean audio. The nerve fibre is then presented with degraded

audio, as well as the inverse polarity of the degraded audio, denoted as B+ and B−

respectively.

Instead of comparing the spiketrains of the same stimulus, the shuffled cross-

stimulus correlogram (SCC) compares the spike timings of the response of one stim-

ulus to the reponse of a different stimulus. The SCC is normalized by dividing by

NaNbrarbD∆τ , where the number of stimulus presentations is N, the average firing

rate of the auditory fibre is r, the bin width of the histogram is ∆τ and the total

duration of the stimulus is D. Subscripts a, b refer to the two separate stimuli being

using for this measure.

To calculate the neural cross-correlation coefficients, several shuffled cross-stimulus

corellograms are required. The first SCC used to develop the neural cross-correlation

coefficients is the cross-polarity corellogram, taking the two stimuli as the base speech

stimuli and its inverse polarity SCC(A+, A−). Next up, the cross-stimulus corel-

logram is the comparison of the clean audio and the degraded audio, averaged with

the comparison of the clean inverse audio and degraded inverse audio.

SACAB =
SCC(A+, B+) + SCC(A−, B−)

2

Finally, the cross-stimulus cross-polarity corellogram compares the clean audio with

the degraded inverse audio, averaged with the clean inverse audio compared with the

13
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degraded audio.

SCCAB =
SCC(A+, B−) + SCC(A−, B+)

2

The shuffled correlograms are then used to produce difcors and sumcors. A difcor

is the difference between the shuffled auto correlogram and the cross-stimulus cor-

relogram of the same stimulus, or equivalently the cross-polarity and cross-stimulus

cross-polarity corellograms. This is meant to highlight the subtle changes in the

fine timing in the corellograms due to inverting polarity of the stimulus. Similarly,

the sumcor is the sum of both the associated SAC and SCC, meant to highlight

the commonalities between the two responses due to stimulus with the same shape.

The sumcors need slight adjustment, as the shuffled corellograms feature triangle

weighting centered around zero, a side effect of having a finite stimulus duration.

One method of accounting for this was by adding an inverted triangle to the correlo-

gram (Heinz and Swaminathan, 2009). Sumcor and difcor plots are seen in Figure 3.3.

14
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Figure 3.3: Difcors and Sumcors due to clean and 10 dB SNR \ABA\speech

Contruction of Difcor and Sumcor measures. (A-C) Overlay of shuffled auto-correlograms

(thick line) and cross-polarity correlograms (thin line). Note the oscillations are out of phase

for the two. (D-F) Difcor measures, representing the fine timing information captured in

the correlograms. (G-I) Sumcor measures, representing the mean rate information of the

correlograms. Column 1 is the response to speech in quiet, column 2 is the speech in 10

dB SNR, and column 3 is the cross-stimulus comparison of the 2 previous stimuli. Figure

1 from Swaminathan & Heinz (2012).

The shuffled correlograms feature a peak value at the characteristic delay, be-

ing the delay between the two responses in question. This peak value is the value

used for calculating neural cross correlation coefficients. The neural cross correlation

coefficients are calculated similarly to how you would calculate a cross correlation co-

efficient, except we look to the difcors and sumcors, as opposed to random variables.

15
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The fine timing coefficient is calculated as

ρTFS =
difcorAB√

difcorA × difcorB

The mean rate coefficient is calculated as

ρENV =
sumcorAB − 1√

(sumcorA − 1)× (sumcorB − 1)

The neural cross correlation coefficients range from 0 to 1, where 1 is high correlation

and 0 is no correlation between the clean speech and degraded speech signal. It should

be noted though the coefficients are labelled as TFS and ENV, they summarize the

information related to what is typically referred to as the fine timing and mean rate

of the spike trains. The terms TFS and ENV are typically reserved for describing

acoustic signals, and FT and MR for the neural responses. These distinctions are not

freely interchangeable, as through the cochlear filterbank, some of the ENV cues are

recovered into the FT neural cues, as well as the acoustic TFS cues being recovered

into the MR neural cues (Swaminathan et al., 2016), as illustrated in Figure 3.4.

16
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Figure 3.4: Difference between TFS / ENV and FT / MR

From Top to bottom, a brief visualization of the trip from speech to neural signal. Acoustic

TFS and Acoustic ENV are referred to as TFS and ENV, and Neural TFS and Neural ENV

are FT and MR for this study. The Neural Cross-Correlation coefficients Figure 10 from

Heinz & Swaminathan (2009).

17



Chapter 4

Methods and Results

In this section, the methods used in this study, as well as the resulting data, will be

discussed. Two projects contribute to this study: one investigating a new method

of phase distortion for degrading TFS information, and another looking to adapt the

neural cross correlation coefficients to the Bruce, Erfani & Zilany 2018 auditory nerve

model. Both investigations aim to better understand the individual roles of mean rate

and fine timing information in speech intelligibility.

4.1 Phase Distortion

As discussed in the Chapter 2, the Xu et al. 2017 study applied phase distortion

to the 6 freqeuncy bands with the highest energy. In this study, the goal was to

provide phase distortion in all frequency bands. The process begins by transforming

the speech signal to a STFT space. While in this space, an m× n matrix of random

complex numbers ranging the unit circle are generated, where m is the number of

time windows and n is the number of frequency bins. These were generated as white

18
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Gaussian noise, then scaled to [−π, π]. The random noise was finally evaluated as

eix, where x is the noise, so as to generate random complex phases. These random

phases are then multiplied in to the STFT, and the signal is reconstructed. Figures

4.1 - 4.2 show frequency representations of phase distorted speech.

Figure 4.1: Spectrograms of varied levels of phase distortion

Spectrograms after same phase distortion methods featured in Figure 2.1, using instead

synthesized \AH\as stimulus. (S1) Clean speech signal. (S2) Clean audio reconstructed

from STFT without distorting phase. (S3) Phase distortion of range [
−π
2
,
π

2
]. (S4) Phase

distortion of range [−π, π]. (S5) Phase information replaced with random numbers. (S6)

All phase information set to 0.

19
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Figure 4.2: FFT of varied levels of phase distortion

Spectrograms after same phase distortion methods featured in Figure 2.1, using instead

synthesized \AH\as stimulus. S5 significantly distorted from original spectrum. S6 does

have energy, just very low level outside of very low frequencies.

Synthesized vowel sounds were used as clean speech stimulus, and the NSIM met-

ric was used as a method for evaluating the effectiveness of the phase distortion of

degrading the TFS information, while leaving the envelope information still. Upon

analysis of the time series distorted signal, it was clear the process was distorting the

envelope of the signal as well; FFT also showed significant distortion in bins below

the threshold considered fine timing information. Neurograms were also generated,

as a method of visually interpreting the results. In response to white Gaussian noise

as phase distortion, NSIM calculations pointed towards a degradation of FT, while

maintaining the MR information. Upon inspection of the neurograms however, it be-

came clear that attempting to reconstruct the STFT with phases being totally varied

20
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from one window to the next was causing clicks at the intersection of the windows,

quick impulses across all frequencies, as can be seen in Figure 4.6.

Figure 4.3: Time series of white Gaussian phase distorted synthesized \AH\

Time series data of synthesized \AH\(top) before and (bottom) after undergoing phase

distortion. Distortion used was white Gaussian noise of amplitude [−π, π]. Significant

envelope distortion occured, as can be seen in the irregular amplitude shaping of the bottom

plot.

21
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Figure 4.4: Close-up time series of white Gaussian phase distorted synthesized \AH\

Close-up of time series data of synthesized \AH\(top) before and (bottom) after undergoing

phase distortion. Distortion used was white Gaussian noise of amplitude [−π, π]. TFS

distortion can be recognized in the distortion of the highest peaks in the bottom plot.

22
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Figure 4.5: FFT of white Gaussian phase distorted synthesized \AH\

Frequency domain data of synthesized \AH\(top) before and (bottom) after undergoing

phase distortion. Distortion used was white Gaussian noise of amplitude [−π, π]. Distortion

is apparent at all frequencies, importantly in the first formant band, starting at 100 Hz.

This band is in the area sometimes considered part of the envelope information.

23
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Figure 4.6: Neurogram of white Gaussian phase distorted synthesized \AH\

Neurogram of auditory response due to synthesized \AH\(left column) before and (right)

after undergoing phase distortion. Distortion used was white Gaussian noise of amplitude

[−π, π]. NSIM Predictions are in titles of right column plots. Test stimulus spectrogram

shows regular clicks at time window borders, with one extra click at end of signal.

The STFT was tested to ensure that without the inclusion of phase distortion,

the original signal was perfectly reconstructed. The reconstructed signal matched

properly, up to quantization noise. This suggested that the problem was the phase

distortion, not the STFT process. Instead of all white Gaussian noise, the m × n

matrix featured n vectors of
1

fα
noise of length m. For α > 1, the clicks became

less prevalent in the neurogram response, with limited effect on the NSIM calculated

speech intelligibilities, which are seen in Figure 4.9. To confirm that having the noise

be correlated in time was the correct approach, the extreme conditions of having

white noise in frequency and perfectly flat in time, and vice versa, were tested. It was
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found that correlation in the frequency axis granted higher calculated MR NSIM than

correlation in time, with little effect seen in FT cues. This approach of correlation

across frequency bins will continue to be used.

Figure 4.7: Neurogram due to phase distortion, correlated across frequencies

Neurogram of auditory response due to synthesized \AH\(left column) before and (right)

after undergoing phase distortion, which is correlated in frequency. Stimuli are displayed as

spectrograms (top), neural time-frequency representation of MR information (middle) and

FT information (bottom). NSIM intelligibility predictions are displayed in titles of right

column.
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Figure 4.8: Neurogram due to phase distortion, correlated across time

Neurogram of auditory response due to synthesized \AH\(left column) before and (right)

after undergoing phase distortion, which is correlated in time. Note lower predicted MR

NSIM and higher intensity clicks in test spectrogram than in Figure 4.7

The degree of correlation was also evaluated. For the
1

fα
noise, the exponent α

was varied from 0 to 5. As expected, the higher degree of correlation led to higher

calculated speech intelligibility. The MR cues, however, saw little variation in degra-

dation for α ≥ 2. Moving forward, α = 2 was taken for future phase distortions.
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Figure 4.9: NSIM metrics for varied correlation of phase distortions

Phase Distortion correlation was varied as
1

fα
, αε[0, 1, 2, 3, 4, 5], applied to synthesized

\AH\vowel sound. FT cues appear to be heavily influenced by phase jitter correlation,

though the effect on MR cues plateaus around α = 2.

The range of phase jitter angles was also analyzed. A greater degradation in TFS

was seen for higher amplitude of phase noise, typically of at least [
π

4
,
π

4
], while little

variation in envelope information was seen for any amplitude of phase noise.
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Figure 4.10: NSIM metrics for varied range of Phase distortions

Phase distortion was varied in level from 0 to 1, representing 0 to 2π of maximum am-

plitude, applied to synthesized \AH\vowel sound. NSIM results show little effect on MR

intelligibility, and greater affect on FT based on amplitude of phase jitter.

The MATLAB code used to apply phase distortion can be found in Appendix A.
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Figure 4.11: Time series of
1

f 2
noise phase distorted synthesized \AH\

Time series data of synthesized \AH \(top) before and (bottom) after undergoing phase

distortion. Distortion used was one on f2 noise of amplitude [−π, π]. Some artifacts at time

window reconstruction, but much lower level envelope distortion than in previous attempts.

Edge effects clear at the beginning of the distorted speech stimulus, which should be thrown

out before presentation to the auditory nerve model.
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Figure 4.12: Close-up time series of
1

f 2
noise phase distorted synthesized \AH\

Close-up of time series data of synthesized \AH \(top) before and (bottom) after undergoing

phase distortion. Distortion used was one on f2 noise of amplitude [−π, π]. TFS distortion

can be noted in the individual oscillations.
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Figure 4.13: FFT of
1

f 2
noise phase distorted synthesized \AH\

Frequency domain data of synthesized \AH\(top) before and (bottom) after undergoing

phase distortion. Distortion used was one on f2 noise of amplitude [−π, π]. Much lower

distortion in low frequency bands (1st formant), while still featuring distortion at higher

frequencies (formants 3,4,5).
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Figure 4.14: Neurogram of
1

f 2
noise phase distorted synthesized \AH \

Neurogram of auditory response due to synthesized \AH \(left column) before and (right)

after undergoing phase distortion. Distortion used was
1

f2
noise of amplitude [−π, π]. Note

lower intensity of clicks which were present for white Gaussian noise. Slightly higher fine

timing NSIM (0.12 vs. 0.07), and higher mean rate NSIM (0.78 vs. 0.70).

4.2 Neural Cross Correlation Coefficients

The Neural Cross Correlation coefficients, originally developed in Heinz & Swami-

nathan 2009, were generated using the Zilany & Bruce 2007 auditory model. This

study adapts the speech intelligibility metric to the Bruce, Erfani & Zilany 2018

model, which has been shown to calculate better predictions, based on physiological

auditory nerve fibre data. The model, which used a range of nerve fibers and applied

a filter ot generate a smoother nerve spiking output, was instead used to model only
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a single nerve fibre and using no filtering on the output, to get raw data. High spon-

taneous firing rate nerve fibres were used, which is set to 70 Hz for this study. The ISI

histograms and normalized shuffled auto-correlograms from Figure 3.2 were recre-

ated using the new process. Note the 3290 and 5000 Hz shuffled auto-correlograms

feature low frequency oscillation not seen in Figure 3.2. The neural cross-correlation

coefficients are calculated from the peak value of the characteristic delay, not the

overall energy of the correlograms, so these oscilllations are not expected to influence

the calculations.

Figure 4.15: Interspike interval histogram and normalized SAC for 550 Hz CF fibre

Interspike interval histogram and normalized shuffled auto-correlogram of a 550 Hz charac-

teristic frequency nerve fibre, with spontaneous firing rate of 70 Hz.
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Figure 4.16: Interspike interval histogram and normalized SAC for 2500 Hz CF fibre

Interspike interval histogram and normalized shuffled auto-correlogram of a 2500 Hz char-

acteristic frequency nerve fibre, with spontaneous firing rate of 70 Hz.
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Figure 4.17: Interspike interval histogram and normalized SAC for 3290 Hz CF fibre

Interspike interval histogram and normalized shuffled auto-correlogram of a 3290 Hz char-

acteristic frequency nerve fibre, with spontaneous firing rate of 70 Hz. Notably the shuffled

auto-correlogram features low frequency oscillation.
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Figure 4.18: Interspike interval histogram and normalized SAC for 5000 Hz CF fibre

Interspike interval histogram and normalized shuffled auto-correlogram of a 5000 Hz char-

acteristic frequency nerve fibre, with spontaneous firing rate of 70 Hz. Notably the shuffled

auto-correlogram features low frequency oscillation.

In Heinz & Swaminathan 2009, it was mentioned that the shuffled correlograms

had a triangular shape due to the limited stimulus duration. They used an inverted

triangular compensator ranging from 1 to 0 added in to make up for it. In this study,

the triangular shape appeared to not be of amplitude 1. The triangular weighting

was dealt with here by using a highpass 4th order Butterworth filter with a cutoff

frequency at 2 Hz, just enough to take care of the triangular shape.
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Figure 4.19: Difcors and Sumcors due to clean and 10dB SNR synthesized \AH \

Recreation of Figure 3.3. Synthesized \AH \used as stimulus, instead of \ABA \used for

3.3.

In the construction of the neural cross-correlation coefficients in Figure 4.19, the

cross-stimulus sumcor resulted in a lopsided figure, as opposed to all others, which

were centered on zero. Given the \AH\speech stimuli, for clean signal and 10 dB

SNR, the resulting ρTFS was 0.98, and ρENV was 0.99. This puts the MR and FT

metrics as expected. The same speech stimuli was tested after applying the phase

distortion developed in this study. The expectation would be a degradation of FT

cues, and to a lesser extent the MR cues, as both MR and FT are both dependant

on TFS acoustic cues. The resulting neural cross-correlation coefficients gave ρTFS as

0.17, and ρENV was 0.82.

Neural cross-correlation coefficients were also calculated for uncorrelated white noise.

As expected, FT metric came back with 0.04. The MR metric came back as 0.88,
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which is reasonable, considering both signals were white noise of same duration and

energy.
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Chapter 5

Conclusions and Future Work

5.1 Conclusions

In this study, a method of distorting phase of a speech signal was produced. A short

time Fourier transform of the speech was calculated, then
1

fα
shaped noise was applied

to each frequency bin. The time series signal was reconstructed from the STFT, then

presented to the Bruce, Erfani & Zilany (2018) auditory nerve model. NSIM analysis

of the neural responses suggest the phase distortion is degrading the fine timing cues

in the original speech stimulus, while preserving the mean rate cues, as intended.

Also in this study, the Neural Cross Correlation coefficients developed by Heinz

& Swaminathan (2009) were adapted to work with the Bruce, Erfani & Zilany (2018)

auditory nerve model. The triangular compensation was accomplished through high-

pass filtering, as opposed to adding a triangle into the shuffled correlograms.
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5.2 Suggestions for Future Work

The Neural Cross Correlation coefficients were adapted to the Bruce, Erfani & Zilany

(2018) auditory model, which already can calculate the NSIM and STMI speech in-

telligibility metrics. Future work should aim to compare the predictions of the speech

intelligbility metrics and compare them with results of a human speech perception

study. This study could include having subjects listen to degraded speech signals,

and evaluate the difficulty of understanding, as well as what words they interpreted

from the speech. The phase distortion procedure developed in this study can be in-

troduced as one of several speech degradation processes for generating test cases. The

degradations for the speech would be targeted to attempt to exploit the calculations

for the metrics, in an attempt to evaluate the accuracy of the metric predictions.

Given the results of the human study, modifications could be made to the metrics or

even a hybrid metric could be constructed from the 3 being analyzed.
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Appendix A

Phase Distortion code

A.1 PhaseDist oneonf

function [ finalTone ] = PhaseDist_oneonf(rawTone ,fs,

windowSize ,randomness , colour)

zeropad = 3* windowSize;

if mod(windowSize ,2)==1

windowSize = windowSize + 1;

end

testTone = rawTone;

window = hann(windowSize);

numWindows = ceil(length(testTone)*2/ windowSize -1);
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testTone(length(testTone)+1: windowSize *( numWindows

/2+1)) = 0;

postTone = zeros ((2+ numWindows)*windowSize /2,1);

windowedTone = zeros(windowSize+zeropad ,numWindows);

for i = 1: numWindows

windowedTone(zeropad /2+1: zeropad /2+ windowSize ,i) =

window .* testTone (1+(i-1)*windowSize /2:(i+1)*

windowSize /2);

end

fftTone = fft(windowedTone ,windowSize+zeropad ,1);

randPhase = zeros(size(fftTone));

noise = oneonfnoise(size(randPhase ,1),colour);

for i = 1:size(randPhase ,2)

randPhase(:,i) = pi*randomness*noise/max(noise);

end

phase = cos(randPhase) + 1i*sin(randPhase);

fftPostTone = fftTone .*phase;

fftPostTone(windowSize+zeropad :-1:( zeropad+windowSize)

/2+2 ,:) = conj(fftPostTone (2:( zeropad+windowSize)

/2,:));
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processedTone = ifft(fftPostTone ,windowSize+zeropad ,1,

'symmetric ');

for i = 1: numWindows

postTone (1+(i-1)*windowSize /2:(i+1)*windowSize /2)

= postTone (1+(i-1)*windowSize /2:(i+1)*

windowSize /2) + processedTone(zeropad /2+1:

zeropad /2+ windowSize ,i);

end

finalTone = postTone (1: length(rawTone));

end
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Appendix B

Neural Cross-correlation

Coefficients code

B.1 example spiketrain code

% Check to see if running under Matlab or Octave

if exist ('OCTAVE_VERSION ', 'builtin ') ~= 0

pkg load signal;

if exist('rms')<1

rms = @(x) sqrt(mean(x.^2));

end

end

% Set audiogram

ag_fs = [125 250 500 1e3 2e3 4e3 8e3];

44



M.A.Sc. Thesis – S. Clarke McMaster University – Electrical Engineering

ag_dbloss = [0 0 0 0 0 0 0]; % Normal hearing

numcfs = 10;

cf = 550;

species = 2; % Human cochlear tuning (Shera et al., 2002)

Fs_stim = 60000;

reps = 20;

stim_A = wgn(reps *1.2* Fs_stim ,1,35);

seconds = reps *1.2;

stim_B = wgn(reps *1.2* Fs_stim ,1,35);

% for i = 1:reps

% stim_B(Fs_stim *1.2*(i-1)+Fs_stim +1: Fs_stim*i*1.2) =

zeros(Fs_stim /5,1);

% end

stimdb_A = 70; % speech level in dB SPL
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stim_A = stim_A/rms(stim_A)*20e -6*10^( stimdb_A /20);

stimdb_B = 70; % speech level in dB SPL

stim_B = stim_B/rms(stim_B)*20e -6*10^( stimdb_B /20);

binWidth = 5e-5;

binEdges = -0.1: binWidth :0.1;

[neurogram_ft_A ,t_ft_A ,CFs] = generate_spiketrain_BEZ2018(

numcfs ,cf, stim_A ,Fs_stim ,species ,ag_fs ,ag_dbloss);

[SAC_A , uniqueFibres_A] = generate_SAC(neurogram_ft_A ,

t_ft_A , binEdges);

SAC_A = SAC_A /( uniqueFibres_A *( uniqueFibres_A -1) *70*70*

seconds*binWidth);

[neurogram_ft_inv_A ,t_ft_inv_A ,CFs_inv_A] =

generate_spiketrain_BEZ2018(numcfs ,cf , -stim_A ,Fs_stim ,

species ,ag_fs ,ag_dbloss);
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[SCC_A] = generate_SCC(neurogram_ft_A , t_ft_A ,

neurogram_ft_inv_A , t_ft_inv_A , binEdges);

SCC_A = SCC_A /( numcfs*numcfs *70*70* seconds*binWidth);

timeSeries = binEdges (1:end -1) + binWidth /2;

[neurogram_ft_B ,t_ft_B ,CFs_B] =

generate_spiketrain_BEZ2018(numcfs ,cf , stim_B ,Fs_stim ,

species ,ag_fs ,ag_dbloss);

[SAC_B , uniqueFibres_B] = generate_SAC(neurogram_ft_B ,

t_ft_B , binEdges);

SAC_B = SAC_B /( uniqueFibres_B *( uniqueFibres_B -1) *70*70*

seconds*binWidth);

[neurogram_ft_inv_B ,t_ft_inv_B ,CFs_inv_B] =

generate_spiketrain_BEZ2018(numcfs ,cf , -stim_B ,Fs_stim ,

species ,ag_fs ,ag_dbloss);

[SCC_B] = generate_SCC(neurogram_ft_B , t_ft_B ,

neurogram_ft_inv_B , t_ft_inv_B , binEdges);
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SCC_B = SCC_B /( numcfs*numcfs *70*70* seconds*binWidth);

[SAC_AB_temp1] = generate_SCC(neurogram_ft_A , t_ft_A ,

neurogram_ft_B , t_ft_B , binEdges);

[SAC_AB_temp2] = generate_SCC(neurogram_ft_inv_A ,

t_ft_inv_A , neurogram_ft_inv_B , t_ft_inv_B , binEdges);

SAC_AB = (SAC_AB_temp1 + SAC_AB_temp2)/2;

SAC_AB = SAC_AB /( numcfs*numcfs *70*70* seconds*binWidth);

[SCC_AB_temp1] = generate_SCC(neurogram_ft_A , t_ft_A ,

neurogram_ft_inv_B , t_ft_inv_B , binEdges);

[SCC_AB_temp2] = generate_SCC(neurogram_ft_inv_A ,

t_ft_inv_A , neurogram_ft_B , t_ft_B , binEdges);

SCC_AB = (SCC_AB_temp1 + SCC_AB_temp2)/2;

SCC_AB = SCC_AB /( numcfs*numcfs *70*70* seconds*binWidth);

clear neurogram*

difcor_A = SAC_A - SCC_A;

sumcor_A = (SAC_A + SCC_A)/2;
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difcor_B = SAC_B - SCC_B;

sumcor_B = (SAC_B + SCC_B)/2;

difcor_AB = SAC_AB - SCC_AB;

sumcor_AB = (SAC_AB + SCC_AB)/2;

[B,A] = butter (2 ,0.0001 ,'high');

sumcor_A = filtfilt(B,A,sumcor_A);

difcor_A = filtfilt(B,A,difcor_A);

sumcor_B = filtfilt(B,A,sumcor_B);

difcor_B = filtfilt(B,A,difcor_B);

sumcor_AB = filtfilt(B,A,sumcor_AB);

difcor_AB = filtfilt(B,A,difcor_AB);

CrossCorr_env = (max(abs(sumcor_AB -1)))/sqrt(max(abs(

sumcor_A -1))*max(abs(sumcor_B -1)));

CrossCorr_tfs = (max(abs(difcor_AB)))/sqrt(max(abs(

difcor_B))*max(abs(difcor_B)));

B.2 generate spiketrain BEZ2018
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function [neurogram_ft ,t_ft ,CFs] =

generate_spiketrain_BEZ2018(numcfs , cf, stim ,Fs_stim ,

species ,ag_fs ,ag_dbloss)

CFs = cf*ones(1,numcfs);

dbloss = interp1(ag_fs ,ag_dbloss ,CFs ,'linear ','extrap ');

% mixed loss

[cohcs ,cihcs ,OHC_Loss ]= fitaudiogram2(CFs ,dbloss ,species);

numsponts_healthy = [10 10 30]; % Number of low -spont ,

medium -spont , and high -spont fibers at each CF in a

healthy AN

if exist('ANpopulation.mat','file')

load('ANpopulation.mat');

disp('Loading existing population of AN fibers saved

in ANpopulation.mat')
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if (size(sponts.LS ,2)<numsponts_healthy (1))||( size(

sponts.MS ,2)<numsponts_healthy (2))||( size(sponts.HS

,2)<numsponts_healthy (3))||( size(sponts.HS ,1)<

numcfs ||~ exist('tabss ','var'))

disp('Saved population of AN fibers in

ANpopulation.mat is too small - generating a

new population ');

[sponts ,tabss ,trels] = generateANpopulation(numcfs

,numsponts_healthy);

end

else

[sponts ,tabss ,trels] = generateANpopulation(numcfs ,

numsponts_healthy);

disp('Generating population of AN fibers , saved in

ANpopulation.mat')

end

implnt = 0; % "0" for approximate or "1" for actual

implementation of the power -law functions in the

Synapse

noiseType = 1; % 0 for fixed fGn (1 for variable fGn)

% stimulus parameters
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Fs = 100e3; % sampling rate in Hz (must be 100, 200 or

500 kHz)

stim100k = resample(stim ,Fs ,Fs_stim).';

T = length(stim100k)/Fs; % stimulus duration in seconds

% PSTH parameters

nrep = 1;

psthbinwidth_mr = 100e-6; % mean -rate binwidth in seconds;

windur_ft =1;%32;

smw_ft = hamming(windur_ft);

windur_mr =128;

smw_mr = hamming(windur_mr);

pin = stim100k (:).';

clear stim100k

simdur = ceil(T*1.2/ psthbinwidth_mr)*psthbinwidth_mr;

for CFlp = 1: numcfs

CF = CFs(CFlp);

52



M.A.Sc. Thesis – S. Clarke McMaster University – Electrical Engineering

cohc = cohcs(CFlp);

cihc = cihcs(CFlp);

numsponts = round ([0 0 1]); % Single high spont fiber

sponts_concat = [sponts.LS(CFlp ,1: numsponts (1)) sponts

.MS(CFlp ,1: numsponts (2)) sponts.HS(CFlp ,1: numsponts

(3))];

tabss_concat = [tabss.LS(CFlp ,1: numsponts (1)) tabss.MS

(CFlp ,1: numsponts (2)) tabss.HS(CFlp ,1: numsponts (3))

];

trels_concat = [trels.LS(CFlp ,1: numsponts (1)) trels.MS

(CFlp ,1: numsponts (2)) trels.HS(CFlp ,1: numsponts (3))

];

vihc = model_IHC_BEZ2018(pin ,CF,nrep ,1/Fs,simdur ,cohc ,

cihc ,species);

for spontlp = 1:sum(numsponts)

disp(['CFlp = ' int2str(CFlp) '/' int2str(numcfs)

'; spontlp = ' int2str(spontlp) '/' int2str(sum

(numsponts))])
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% flush the output for the display of the coutput

in Octave

if exist ('OCTAVE_VERSION ', 'builtin ') ~= 0

fflush(stdout);

end

spont = sponts_concat(spontlp);

tabs = tabss_concat(spontlp);

trel = trels_concat(spontlp);

[psth_ft ,meanrate ,varrate ,synout] =

model_Synapse_BEZ2018(vihc ,CF,nrep ,1/Fs,

noiseType ,implnt ,spont ,tabs ,trel);

psthbins = round(psthbinwidth_mr*Fs); % number of

psth_ft bins per psth bin

psth_mr = sum(reshape(psth_ft ,psthbins ,length(

psth_ft)/psthbins));

if spontlp == 1

neurogram_ft(CFlp ,:) = psth_ft;

else

neurogram_ft(CFlp ,:) = psth_ft;
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end

end

end

neurogram_ft = neurogram_ft (:,1: ceil(windur_ft /2):end); %

50% overlap in Hamming window

t_ft = 0:ceil(windur_ft /2)/Fs:(size(neurogram_ft ,2) -1)*

ceil(windur_ft /2)/Fs; % time vector for the fine -timing

neurogram

B.3 generate SAC

function [ SAC_ft , numFibres] = generate_SAC(spikes_ft ,

time_ft , binEdges)

%Fine Timing

uniqueFibres_ft = unique(spikes_ft ,'rows');

SpikesPerFibre = sum(uniqueFibres_ft ,2);

FibreCutoff = cumsum(SpikesPerFibre);

numFibres = length(FibreCutoff);

spikeTimes = uniqueFibres_ft .* time_ft;
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factor = 1000;

SAC_ft = histcounts (0,binEdges);

for i = 1:numFibres -1

currSpikes = nonzeros(spikeTimes(i,:));

otherSpikes = nonzeros(spikeTimes(i+1:end ,:));

for j = 1:floor(length(currSpikes)/factor) -1

SAC_data = zeros(factor ,length(otherSpikes));

for k = 1: factor

SAC_data(k,:) = currSpikes(factor *(j-1)+k)

- otherSpikes;

end

SAC_ft = SAC_ft + histcounts(SAC_data ,binEdges

);

end

remainder = rem(length(currSpikes),factor);

SAC_data = zeros(remainder ,length(otherSpikes));

for k = 1: remainder

SAC_data(k,:) = currSpikes(factor*j+k) -

otherSpikes;

end

SAC_ft = SAC_ft + histcounts(SAC_data ,binEdges);
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end

SAC_ft = 2* SAC_ft;

end

B.4 generate SCC

function [SCC_ft] = generate_SCC(spikes_ft , time_ft ,

spikes_ft_inv , time_ft_inv , binEdges)

%Fine Timing

numSpikes = sum(sum(spikes_ft));

spikeTimes = spikes_ft .* time_ft;

spikeTimes = nonzeros(spikeTimes);

invSpikeTimes = spikes_ft_inv .* time_ft_inv;

invSpikeTimes = nonzeros(invSpikeTimes);

invNumSpikes = sum(sum(spikes_ft_inv));

SCC_ft = histcounts (0,binEdges);

factor = 1000;
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for i = 1:floor(numSpikes/factor)-1

SCC_data = zeros(factor ,invNumSpikes);

for j = 1: factor

SCC_data(j,:) = spikeTimes(factor *(i-1)+j) -

invSpikeTimes;

end

SCC_ft = SCC_ft + histcounts(SCC_data ,binEdges);

end

remainder = rem(length(numSpikes),factor);

SCC_data = zeros(remainder ,invNumSpikes);

for k = 1: remainder

SCC_data(k,:) = spikeTimes(factor*i+j) -

invSpikeTimes;

end

SCC_ft = SCC_ft + histcounts(SCC_data ,binEdges);

end
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