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ABSTRACT 

Irrigation water allocation is essential to the management of agricultural water use in irrigation 

districts. Many irrigation optimization models were proposed from previous studies to provide decision 

support for water managers. In order to capture the complex nonlinear relationships and meet different water 

demands, more advanced multi-objective nonlinear programming models were developed in the past decade. 

However, it is still a challenging task to address varies uncertainties associated with irrigation optimization. 

Fuzzy programming, interval programming, and chance-constrained programming can be used to quantify 

uncertainties in simplified formats, but none of them can represent complex uncertainty in a composite format. 

In this thesis, a cloud-based dual objective nonlinear programming (CDONP) model is developed by 

implementing a cloud modeling method in an irrigation model to address the uncertainties of reference 

evapotranspiration (ET0) and surface water availability (SWA). The cloud modeling method is used to 

generate 2,000 data samples from historical data. The results show that the generated samples are consistent 

with historical data. Optimized allocation schemes are provided, and the performance of the CDONP model 

are discussed. This is the first Canadian study that used the cloud modeling method in irrigation water 

allocation. This method provides a solution to quantify composite uncertainties based on limited data, which 

represents a unique contribution to irrigation water allocation modeling. This study provides valuable 

decision support for agriculture management to improve water use efficiency.  
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CHAPTER 1 – INTRODUCTION 

1.1 Background 
Water demand never stops due to continuous and rapid population growth (Lalehzari 

et al., 2016). Industrial and agricultural activities, as well as the increasing population result in 

a considerable global water consumption. Water is an irreplaceable resource to support daily 

life, and it also is the foundation for technology development. Among different water demands, 

agriculture water usage accounts for approximately 60% of the global water usage (Pimentel et 

al., 2004). Irrigation water management has become a critical problem for decision makers.  

Optimization of irrigation water allocation is a complex and challenging problem. A 

major challenge in irrigation water allocation is system complexity. The water allocation 

process is governed by complex interactions among different factors. For example, the 

relationship between system economic net profit (ENP) and water allocation is often complex 

and nonlinear, which cannot be described by linear models. Meanwhile, maximizing ENP may 

not be the only objective in irrigation water allocation. When water availability is limited, 

decision makers need to minimize the use of water resources or maximize irrigation system 

efficiency (ISE), which makes the optimization of irrigation water allocation a complex multi-

objective programming problem. Another major challenge is model uncertainty. There are 

many factors in irrigation water allocation systems that are associated with various uncertainties. 

For example, meteorological data, crop market price, and resource availability. The 

uncertainties of such parameters can lead to huge differences in the optimal water allocation 

plan. These uncertainties must be addressed when developing an irrigation water allocation 

model. 

1.2 Irrigation Optimization Models 
To address those challenges in irrigation water allocation, a number of optimization models 

have been proposed. Irrigation optimization models can be used to generate optimal water allocation 
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plans. The decision variables in irrigation water allocation are mostly the amount of water allocated for 

each crop (Li et al., 2018). Crop cultivation area can also be used with water allocations as decision 

variables (Kumar et al., 1998). The objective functions can be maximizing ENP, total crop yield, or the 

ratio of crop yield over water usage, or minimizing water usage, crops’ water shortage, irrigated area, 

water loss level, agricultural pollution, or groundwater exploitation (Li et al., 2018; Ren et al., 2017; 

Kilic et al., 2010).  Examples of commonly used constraints include availability of water and land 

resources, food demand.  

A major challenge for the development of irrigation optimization models is how to adequately 

analyze and quantify the parameter uncertainty. Rainfall, evapotranspiration, land use, and river inflow 

can change the result of irrigation models, and the uncertainties associated with those critical parameters 

can lead to different optimal decisions. In the past ten years, several uncertainty modelling approaches 

were developed to address this issue such as fuzzy sets, random variables, and intervals. However, there 

are more advanced uncertainty quantification approaches that are yet to be investigated for irrigation 

water allocation. 

1.3 Objective 
The goal of this study is to introduce a new uncertainty quantification method, the cloud model, 

to address parameter uncertainties in a dual-objective nonlinear programming (DONP) model for the 

optimization of irrigation water allocation. The DONP model is used to generate the optimal irrigation 

water allocation scheme that maximizes ENP and ISE. The cloud model is used to address the complex 

uncertainties associated with two model parameters, reference evapotranspiration (ET0) and surface 

water availability (SWA). The new cloud-based dual-objective nonlinear programming (CDONP) model 

is applied to a real-world case study in the Yingke Irrigation District (YID), Northwest China. A risk 

evaluation approach is also developed to analyze the optimal irrigation water allocation schemes under 

different scenarios of extreme conditions.  
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1.4 Thesis Outline 
Chapter 2 presents a literature review of irrigation optimization models and methodologies used 

in irrigation models to address uncertainty. The advantages and limitations of existing models and 

methods are reviewed and discussed.  

Chapter 3 introduces the CDONP model and its application in YID. The results and performance 

of CDONP model are presented. A drought risk analysis is conducted based on four scenarios of extreme 

conditions. This chapter includes a journal article that has been submitted for publication.  

Chapter 4 summarizes the conclusions and recommendations for future work.  

CHAPTER 2 – LITERATURE REVIEW 

2.1 Multi-Objective Optimization Models 
The most commonly used objective function in irrigation optimization models is to maximize 

economic profit. Ganji et al. (2006) developed a nonlinear programming model to obtain maximum net return 

from the irrigation system under deficit irrigation conditions. The same objective function was also used by 

Kumar et al. (1998), Maqsood et al. (2005), Georgiou et al. (2008), Kilic et al. (2010), Lalehzari et al. (2016) 

and Li et al (2017), 

The increase of economic profit often requires and leads to an increase in irrigation water usage. As 

water resources become scarce, water reduction becomes another goal that irrigation decision makers seek 

for. To address this issue of multiple objectives, a number of multi-objective programming models were 

developed. Lalehzari et al. (2016) proposed a DONP model with objective functions of maximizing total 

benefits and minimizing water usage. Li et al. (2017) developed a multi-objective programming model to 

maximize crop yield and water saving. This model has three objective functions, including the maximization 

of crop yield increase and water saving, and the minimization of water supply cost. Regulwar et al. (2011) 

used the maximization of employment in addition to the maximization of crop production a, considering that 

employment growth can enhance social development and it also can facilitate economic growth. Kilic et al. 

(2010) develop an irrigation optimization model to minimize both the production area and the water loss at 

the irrigation network. Minimizing the production area is an alternative way to save water.  
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The DONP framework can effectively address the complexity of multiple objectives in irrigation 

optimization. However, there are various uncertainties that exist in irrigation water allocation processes. 

These uncertainties in DONP models should be tackled to provide reliable and robust decision support for 

irrigation water allocation. 

2.2 Uncertainty Analysis for Optimization Models  
There are many existing uncertainty analysis methods for optimization models. Different techniques, 

such as chance-constrained programming, fuzzy programming, and interval programming, have been 

developed and applied to quantify uncertainties in the formats of randomness, fuzziness, or intervals.  

Fuzzy programming (Sakawa et al., 1998) represents uncertainty using the likelihood or satisfaction 

degree of an estimated value. The likelihood is determined by its fuzzy membership function, and the 

commonly used fuzzy membership functions are triangle and trapezoid functions. The triangular fuzzy 

membership function can be defined using the most possible value and the range of all possible values. The 

satisfaction degree describes the possibility that a constraint with fuzzy parameter(s) is satisfied. For example, 

Ren et al. (2017) developed a linear multi-objective fuzzy programming (LMOFP) irrigation optimization 

model. The LMOFP model integrates rainfall, evapotranspiration and soil water as fuzzy sets and it generates 

optimization schemes under different satisfaction degrees. Guo et al. (2014) used fuzzy chance-constrained 

programming to address the uncertainty associated with cultivate area and crop price. 

 Xu et al. (2017) used two stage fuzzy chance-constrained programming to address the uncertainty 

associated with water quantity, water quality, and economical targets. Zhang et al. (2018) used interval fuzzy 

constrained programming to address the uncertainty associated with available water, crop area, 

evapotranspiration and crop price. 

The essence of interval programming (Crarnes et al., 1976) is to use intervals with an upper and a 

lower bound values to describe parameter uncertainty. Interval programming models can be solved by 

formulating two deterministic submodules corresponding to the upper and lower bounds of the objective 

function (Huang et al., 1995). For example, Li et al. (2018) proposed an interval linear multi-objective 

programming (ILMP) model for irrigation water allocation. Interval social-economic and hydrological 
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parameters were generated through statistical simulation, and then introduced into a linear multi-objective 

programming framework for the optimization of irrigation water allocation. 

Although the abovementioned techniques are useful in quantifying simple format uncertainties, 

uncertainty often exists in a hybrid format in real world problems, for example, in the prediction of 

meteorological data. Those types of predictions lack reliability because it is difficult to define one probability 

distribution or one fuzzy membership that can reflect a real world scenario from existing data. There is a lack 

of techniques for solving uncertainties with high complexity.  

2.3 The Cloud Model 
The cloud model was proposed by Li et al (2009) as a new method to describe uncertainty. It can 

represent randomness and fuzziness at the same time. The cloud model uses historic data to define a fuzzy 

membership function and a probability distribution for an uncertain parameter, and then generate cloud drops 

to describe the composite uncertainty of the parameter. The cloud drops form a cloud membership function, 

and the characteristics of a cloud membership function can be described by three parameters: expect value 

(𝐸𝑥), entropy (𝐸𝑛), and hyper entropy (𝐻𝑒). With this property, the cloud generator is developed, and it can 

use a historical data set to form a new data set that has the same characteristic in cloud membership.  

Liu et al. (2017) used the cloud model in a failure mode analysis. Cheng et al. (2018) used the cloud 

model in water resource carrying capacity evaluation analysis. Those studies indicate that the cloud model 

has been successfully applied in some studies, and it has a potential to address the complex uncertainties in 

irrigation optimization models. Although the cloud model has been successfully applied to a number of real 

world case studies, it has yet to be investigated for irrigation water allocation.
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CHAPTER 3 – CLOUD-BASED DUAL-OBJECTIVE NONLINEAR PROGRAMMING 
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Abstract 
Agricultural water management has become an essential problem in recent years due to the 

increasing water demands. Irrigation water resources allocation is a dynamic decision making process 

associated with various uncertainties, which often exist in a complex and composite format. In this study, a 

new uncertainty quantification technique, the cloud model, is introduced to a dual-objective nonlinear 

programming (DONP) framework, and a cloud-based dual-objective nonlinear programming (CDONP) 

model is developed to support irrigation water allocation and agricultural water planning under composite 

uncertainties. The cloud model is applied to address the complex composite uncertainties associated with 

reference evapotranspiration (ET0) and surface water availability (SWA). A case study of the Yingke 

irrigation district (YID) in Northwest China is conducted to demonstrate the applicability of the developed 

model. The results show that the net economic profit (ENP) and irrigation system efficiency (ISE) are 

influenced by ET0 more than SWA. The obtained results are also compared to those of a traditional dual-

objective nonlinear programming model to illustrate the advantages of the proposed CDONP model. In 

addition, four water shortage scenarios are built and discussed for risk analysis.  

1.0 Introduction 
Water resources play an irreplaceable role in the agriculture field, which has resulted in abundant 

research in irrigation. As the population grows, the increasing food demand leads to increasing water demand. 

Both groundwater and surface water resources have their limits. Overuse of water resources will bring 

devastating consequences that may require considerable time and money to fix. Therefore, how to allocate 

limited water resources to maximize agricultural benefits has become an important topic in agriculture 

management. 

Optimization models have been widely used to optimize water allocation for agricultural use. For 

example, Maji and Heady (1981) built a linear programming model with deterministic and stochastic inflows 

to determine the optimal storage for reservoir. Bozorg et al. (2008) developed a linear programming model 

to optimize multi-crop irrigation areas. Satari et al (2006) developed a nonlinear deterministic model for the 

capacity planning of a small irrigation reservoir. Zhang et al. (2007) applied a nonlinear optimization model 

in corn cultivation and used the genetic algorithm (GA) to solve the nonlinear model. Most coefficients in 
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these models are deterministic. These deterministic models provided theoretical interpretation to understand 

agricultural water allocation processes; however, they were unable to tackle the uncertainties associated with 

the water management systems and thus could not provide robust decision support for agricultural water 

management and planning.  

In the past two decades, more advanced optimization techniques have been developed to address 

various uncertainties in agricultural water management systems. There are four types of techniques to address 

uncertainty in the agriculture field: interval linear programming (ILP), fuzzy mathematical programming 

(FMP), chance-constrained programming (CCP) and stochastic mathematical programming (SMP). Paudyal 

et al. (1990) integrated SMP in an irrigation water allocation model. Li et al. (2014) developed a CCP model 

for irrigation water allocation. Zhang et al. (2018) proposes an enhanced CCP model, i.e., the double-sided 

stochastic chance-constrained programming model, to manage irrigation water uncertainty. Li et al. (2018) 

applied ILP in a multi-objective framework for irrigation water allocation. Ren et al. (2017) implement FMP 

in a multi-objective model for optimal use of irrigation water and land resources. In these previous irrigation 

water allocation models, only uncertainties in a simple format, described as interval, fuzzy or random, were 

tackled. The fuzziness and randomness are described using possibility and probability distributions, 

respectively. In practice, as water resources allocation is a dynamic decision making process influenced by 

subjective factors, uncertainties often exist in a more complex, composite format. The lack of appropriate 

interpretation of such uncertainties could lead to misrepresentation of the system and underestimation of the 

system-failure risks. 

Recently, a new approach, called the cloud model, was proposed to address uncertainties in a 

complex format. The cloud model can synthetically describe the randomness and fuzziness of a system 

element and efficiently obtain quantitative information of the composite uncertainty (Li et al., 2009). It 

provides a straightforward way to decode complex uncertainties; it can also be used to generate reliable data 

for facilitating risk assessment when there is a data scarcity issue. Cheng et al. (2018) applied the cloud model 

in a factor analysis of water resource capacity, to address the varied index value in a risk evaluation framework. 

Liu (2017) integrated the cloud model in a failure mode and effect analysis approach to assess possible failure 
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modes of process, products, services, and systems. The cloud model has shown a great potential to address 

complex uncertainties that are both fuzzy and random; however, it has not been investigated for irrigation 

water allocation. 

Therefore, the objective of this study is to introduce the cloud model and develop an advanced 

optimization model to support irrigation water allocation and agricultural water planning under composite 

uncertainties. Based on a dual-objective nonlinear programming (DONP) framework, a cloud-based dual-

objective nonlinear programming (CDONP) model will be developed. The cloud model will be applied to 

address the complex composite uncertainties associated with reference evapotranspiration (𝐸𝑇଴) and surface 

water availability (SWA). A case study of the Yingke irrigation district (YID) in Northwest China will be 

conducted to demonstrate the applicability of the developed model. The risk of water shortage will be 

analyzed based on the cloud model results, and optimal water allocation schemes will be generated for 

different risk scenarios. 

2.0 Methodology 

2.1 The cloud model  

2.1.1 Cloud membership  

The cloud model synthetically describes fuzziness and randomness, which are the two most common 

uncertainties inherent in decision-making processes. Given a concept 𝑇, and let 𝑥 ∈ 𝑇 be a random realization 

of the concept 𝑇 and 𝜇( 𝑥) is the degree of 𝑥 belonging to 𝑇. Each 𝑥 is called a cloud drop, and all the 

possible 𝑥 realizations form a cloud 𝐶்.  

The cloud model integrates possibility and probability distributions and uses a unique cloud 

membership to describe uncertainty. Figure 1 shows an example cloud model of daily average inflow. 

Traditionally, when there is not enough historical data, a triangular fuzzy membership function can be used 

to describe the uncertainty of daily average inflow. To define a traditional triangular fuzzy membership, it 

requires a minimum of three estimates (the maximum, minimum, and the most likely value) from experts. In 

the cloud model, each inflow value has a corresponding membership degree, and each membership degree 
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has a probability. The blue dots represent 500 samples generated by the example cloud model. For each value, 

the model has multiple values for the membership degree. For example, when the inflow is 45 m3/s, the 

membership degree varies from 0.5 to 0.7. The probability of the membership degree being 0.65 is higher 

than the two bounds, as there are more dots clustered near 0.65. 

  

 

Figure 1 Cloud membership 

The cloud model can describe the composite uncertainty of randomness and fuzziness using three 

characteristics: the expect value (𝐸𝑥), the entropy (𝐸𝑛), and the hyper entropy (𝐻𝑒). For an uncertain 

parameter  𝑢, let 𝑈 be a cloud that includes 𝑛 cloud drops 𝐶ଵ, 𝐶ଶ, … 𝐶௡. Each cloud drop is a possible value 

for parameter  𝑢. Let  𝜇( 𝐶௜) be the degree of the 𝑖௧௛ drop 𝐶௜ belonging to cloud 𝑈 (membership degree). 𝐸𝑥 

is the most representative drop in cloud 𝑈, defined as the expected value of cloud 𝑈. 𝐸𝑛 is the uncertainty 

magnitude of cloud 𝑈. In the fuzzy concept, this represents the range of all drops that belong to cloud 𝑈. In 
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the randomness concept, this represents the dispersing extent of 𝐶௜. 𝐻𝑒 is the uncertainty magnitude of 𝐸𝑛, 

representing the range of 𝐸𝑛 and the dispersing extent of 𝐸𝑛.  

There are different types of cloud models depending on the probability distribution and fuzzy 

membership types. The types of probability distribution and fuzzy membership can be changed for different 

datasets. In this study, a Gaussian cloud model based on the integration of a normal distribution and a 

Gaussian fuzzy membership function is used.  

2.1.2 Forward cloud generator 

A forward cloud generator takes 𝐸𝑥, 𝐸𝑛, 𝐻𝑒, number of clusters (𝑛) as input and returns 𝑛 cloud 

drops 𝐶ଵ, 𝐶ଶ, … 𝐶௡ with corresponding membership 𝜇( 𝐶ଵ), 𝜇( 𝐶ଶ) ,…. 𝜇( 𝐶௡). This can be achieved using the 

following procedure: 

Step 1: Generate 𝑛  number of normally distributed random numbers with a mean of 𝐸𝑛  and a 

variance of 𝐻𝑒ଶ. Record as 𝐸𝑛𝑛 (𝐸𝑛𝑛ଵ, 𝐸𝑛𝑛ଶ, … 𝐸𝑛𝑛௡). 

Step 2: Generate 𝑛  number of normally distributed random numbers with a mean of 𝐸𝑥  and a 

variance of 𝐸𝑛𝑛ଶ, record as 𝐶 (𝐶ଵ, 𝐶ଶ, … 𝐶௡). 

Step 3: Calculate the cloud membership degree for each cloud drop of 𝐶 (𝐶ଵ, 𝐶ଶ, … 𝐶௡). The equation 

for membership degrees is as follows (Li, D et.al, 2009): 

 
𝜇( 𝐶௜) = exp (−

(𝐶௜ − 𝐸𝑥)ଶ

2(𝐸𝑛𝑛௜)
ଶ

) 
(1) 

where 𝜇( 𝐶௜) is the membership degree of 𝐶௜. 

2.1.3 Backward cloud generator 
A backward cloud generator takes a set of data as a group of cloud drops, then returns 𝐸𝑥, 𝐸𝑛, and 

𝐻𝑒 values for this data set (i.e., cloud). The equations to calculate 𝐸𝑥, 𝐸𝑛, 𝐻𝑒 are as follows (Li, D et al., 

2009): 
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𝐸𝑥 =  

1

𝐼
෍ 𝐶௜

ூ

௜ୀଵ

 
(2) 

 
𝐸𝑛 =  ට

𝜋

2
∗

1

𝐼
෍ |𝐶௜ − 𝐸𝑥|

ூ

௜ୀଵ

 
(3) 

 

𝐻𝑒 =  ඩ
1

𝐼 − 1
෍(𝐶௜ − 𝐸𝑥)ଶ − 𝐸𝑛ଶ

ூ

௜ୀଵ

 

(4) 

where 𝐼 is the total number of cloud drops.  

2.2 CDONP model for irrigation water allocation 

In this study, reference evapotranspiration (ET0) and surface water availability (SWA) are identified 

as two major sources of uncertainties. These two parameters are common uncertainty sources in irrigation 

models (Li et al., 2014; Zhang et al., 2018; Ren et al., 2017). By introducing the cloud model to address the 

uncertainties associated with ET0 and SWA, a cloud-based dual-objective nonlinear programming (CDONP) 

model was proposed for irrigation water allocation. The objective functions and model constraints are 

described as below.  

2.2.1 Objective functions of CDONP model  
The two objective functions of the CDONP model are economical net profit (ENP) and irrigation 

system efficiency (ISE). The ENP objective is defined as follows: 
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(5a) 

where ENP is in the unit of Chinese Yuan (CNY); k is the crop type of grain crops, and the total number of 

grain crops is K; m is the crop type of economic crops, and the total number of economic crops is M; 𝑃௞ is 

the price of grain crop k (Yuan/kg); 𝑃௠ is the economic benefit per unit water of economic crop m (Yuan/m3); 

ak, bk, ck are coefficients of the water production function for grain crop k; 𝑥௞
௦ is the amount of surface water 

allocated to grain crop k (m3/ha); 𝑥௞
௚ is the amount of groundwater allocated to grain crop k (m3/ha); 𝑥௠

௦  is 

the amount of surface water allocated to economic crop m (m3/ha); 𝑥௠
௚  is the amount of groundwater allocated 

to economic crop m (m3/ha); 𝐴௞ is the area of grain crop k (ha); 𝐴௠ is the area of the economic crop m (ha); 

𝐶௞ is the cost of grain crop k per unit yield (Yuan/kg); 𝐶௠ is the cost of economic crop m per unit area 

(Yuan/ha); 𝑊𝑐
𝑠 is the cost of surface water (Yuan/𝑚ଷ); 𝑊௖

௚ is the cost of groundwater (Yuan/𝑚ଷ); 𝜂௦ and 𝜂௚ 

are the surface water and groundwater irrigation efficiencies, respectively.  

The change in ET0 has significant effects on the ISE. The ISE objective is defined as: 

𝑀𝑎𝑥 𝐼𝑆𝐸

=
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ெ
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ெ
௠ୀଵ )

 

(5b) 

where ISE is the efficiency of irrigation water utilization; 𝐾௖,௞ is the crop coefficient of grain crop k; 𝐾௖,௠ is 

the crop coefficient of economic crop m; ET0 is the reference evapotranspiration (m3/ha); EP is the effective 
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precipitation (m3/ha); 𝛥௪ is the variation of soil water (m3/ha); 𝐸𝑃 + 𝛥௪ represents the rainfall water and the 

water in soil absorbed by crops.  

2.2.2 Constraints  
The constraints of the CDONP model are listed as below: 

SWA: 

𝑄
𝑠

෥ = {𝑄
𝑠
ଵ, 𝑄

𝑠
ଶ, … , 𝑄

𝑠
𝑛} (5c) 
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ெ

௠ୀଵ
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෪ 
(5d) 

Groundwater availability: 

෍(

௄

௞ୀଵ

𝑥௞
௚

/𝜂௚) ∗ 𝐴௞ + ෍ (

ெ

௠ୀଵ

𝑥௠
௚

/𝜂௚) ∗ 𝐴௠ ≤ 𝑄௚ 
(5e) 

Irrigation water requirement: 

 𝐸𝑇0෪ = {𝐸𝑇0ଵ , 𝐸𝑇0ଶ, … , 𝐸𝑇0௡} (5f) 

 𝑥௞
௦ + 𝑥௞

௚
+ 𝐸𝑃 ≥ 𝐾௖,௞ ∗ 𝐸𝑇0෪  (5g) 

Minimum food demand: 
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௄
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௚
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ெ
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𝑥௠
௚

/𝜂௚) ∗ 𝐴௠ ≤ 𝑄௚ 
(5h) 

Maximum irrigation water for economic crops: 

𝑥௠
௦ + 𝑥௠

௚
≤ 𝐼𝑄௠ (5I) 

Non-negativity constraints: 

𝑥௞
௦, 𝑥௞

௚
, 𝑥௠

௦ , 𝑥௠
௚

≥ 0 (5J) 
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where 𝑄௚ is the maximum allowable groundwater (m3); 𝑄௦ is the SWA (m3); 𝑄
𝑠

෥  is the cloud set of SWA 

and its uncertainty is quantified using the cloud model; 𝑄
𝑠
ଵ, 𝑄

𝑠
ଶ, … , 𝑄

𝑠
௡  are the cloud drops of 

SWA;  𝐸𝑇଴
෪   is the cloud set of ET0 and is the second cloud parameter in the CDONP model; 

𝐸𝑇0ଵ, 𝐸𝑇0ଶ, … , 𝐸𝑇0௡ are the cloud drops of ET0; 𝑃௣ is the population (person); 𝐺௣ is the minimum 

food demand (kg/person); 𝐼𝑄௠ is the maximum irrigation amount for economic crop m (m3/ha).  

There are two functional constraints relating to ET0 and SWA. ET0 affects the minimum crop 

irrigation amount (Equation 5g) and SWA affects the maximum allowable surface water usage (Equation 5d). 

2.3 Solution method 
To transform the composite uncertainties associated with ET0 and SWA to deterministic values and 

thus solve the proposed CDONP model, the following solution procedure is developed and applied:  

Step 1:  Collect historical data of ET0 and SWA; 

Step 2: Use the backward cloud generator to obtain the 𝐸𝑥, 𝐸𝑛 and 𝐻𝑒 values, and characterize the clouds 

for ET0 and SWA; 

Step 3: Use the forward cloud generator and the 𝐸𝑥, 𝐸𝑛 and 𝐻𝑒 values obtained from Step 2 to populate the 

cloud drops of ET0 and SWA, and record the synthetic cloud drops as 𝐸𝑇0௝  and 𝑆𝑊𝐴௝, respectively.  

Step 4: Pair the generated ET0 to SWA cloud drops, record them as 𝑃௝(𝐸𝑇0𝑗, 𝑆𝑊𝐴𝑗), and convert the 

CDONP model to a number of deterministic DONP models. 

These deterministic models are then solved using the genetic algorithm (GA). GA is a common tool 

to solve optimization models, and it is widely used for irrigation planning (Kuo, 2000). GA randomly 

generates a candidate solution (i.e., an individual) to the decision variables, and repeats the process to obtain 

a set of solutions (i.e., a population). In each generation, the non-dominant individuals are removed, and the 

dominant individuals are kept to create new individuals for the next generation through crossover with other 

dominant individuals. After a given number of generations, the final populations are recorded as Pareto front 
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solutions. In this study, Pareto front solutions are evaluated using Equation 6, and the individual with the 

highest score is recorded as the final solution. The optimal irrigation water allocation scheme is then obtained 

based on the final solution.  

 
𝐹௜ = ෍ 𝜔௝ ∗ 𝑑௜௝

௃

௝ୀଵ

 
(6) 

where 𝐹௜  is the evaluation score of solution 𝑖; 𝜔௝ is the weight coefficient for objective function 𝑗; 𝑑௜௝is the 

standardized value of the 𝑗௧௛ objective function solution 𝑖.  

3.0 Application of developed methodology 
A case study of the Yingke Irrigation District (YID) in Northwest China is presented to demonstrate 

the applicability of the proposed model. Figure 2 shows the location of YID (38⁰50’-38⁰58’N, 100⁰17’-

100⁰34’E). It is the third largest irrigation area in the Heihe River basin. This area has an elevation of 1450-

1600 m, with a total area of 19,200 ha, within which 13,147 ha is irrigated. YID is a major irrigation district 

in Zhangye City, which has a population of 1.2 million. There are four main crops grown in YID: grain corn, 
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forage corn, wheat, and vegetables. The cultivated areas are 6,025 ha for grain corn, 4,449 ha for forage corn, 

832 ha for wheat, and 2119 ha for vegetables. 

  

Figure 2 Study area 

YID has a cold, dry continental climate. The highest, lowest, and average daily temperatures 

during April to September in 1996-2012 are 33.5 ◦C, -28 ◦C, and 6.8 ◦C, respectively. The average ET0 

during the same period, computed by the PM-ET equation described in Allen et al. (1998), is 862mm. The 

estimated average SWA is 1.48 × 108 m3. Due to the arid climate, YID does not receive much rainfall. The 

annual mean precipitation is only 125 mm, approximately 80% of which occurs during July to September. 

The main water sources for irrigation are surface water and groundwater. Irrigation water is transferred to 

the field through a multi-level canal system that consists of one main canal and 11 sub canals. The 

transportation efficiency for surface water and groundwater are 0.68 and 0.8, respectively. 

Water scarcity has always been a critical problem in YID. Due to the limited access to surface 

water and the inefficient water allocation, local people took large amounts of groundwater to cope with 

water shortages during the 1990s (Qi and Luo, 2005; Jiang et al., 2015). As a result, the water table dropped 
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significantly. To protect groundwater resources, groundwater usage in YID is now limited to 0.6 × 108 

m3.per year. The historical data of SWA and ET0 for April to September during 1996-2012 are shown in 

Figure 3. It is shown that there are significant uncertainties associated with SWA and ET0. For example, the 

SWA in 1998 is twice as much as that in 2001. 

Figure 3 SWA and ET0 during 1996 to 2012 

In this study, meteorological data such as rainfall and temperature are collected from the Zhangye 

weather station (100⁰25’E, 38⁰51’N, 1425 m). ET0 is calculated using the PM-ET equation described in Allen 

et al. (1988). The streamflow data are obtained from the simulation results of an agro-hydrological model 

(SWAP-EPIC) proposed by Jiang et al. (2015). Water price, crop price, cultivated area, crop type, and 

cultivation cost data are obtained from the local government’s website and a previous study by Li et al. (2014).  

4.0 Results and discussion 

In this study, two Gaussian cloud models are built to analyze the uncertainties associated with SWA 

and ET0, respectively. Each cloud model has a total of 2,000 drops created from historical data using the 

forward and backward cloud generators as described in Section 2.1. The SWA and ET0 drops are paired and 

fed into the CDONP model to generate optimal irrigation water allocation schemes. The decision variables 

include monthly surface water usage and monthly groundwater usage for the four main crops in YID. The 
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developed CDONP model is solved using a GA with a population size of 2,500 and a maximum generation 

of 100. With the population size of 2,500, both objective functions can converge to a stable maximum value. 

If the population is too small, the solutions will lack diversity. On the other hand, if the population is too 

large, it will take a long time for the program to generate solutions that can meet the constraints in the initial 

population. A population of 100 can ensure the diversity of solutions and limit the computation time for each 

run within 3 minutes. 

4.1 Solution feasibility 

The 2,000 paired cloud drops of SWA and ET0 are presented in Figure 4. Feasible solutions are 

obtained for 1,625 pairs, while the models fed with the other 375 pairs are infeasible. Although no exact 

threshold of SWA or ET0 is found, it is clear that the model constraints are violated under extreme conditions 

of ET0 and SWA. The highest ET0 value with a feasible solution is 949 mm, and the lowest feasible SWA 

value is 0.93x108 m3.  

 

 

Figure 4 Solution feasibility 
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The solution robustness is tested by substituting a random solution back into the CDONP model for 

2,000 runs, where the 2,000 paired cloud drops of SWA and ET0 are used as inputs. As an example, the 

solution of the CDONP model with an ET0 value of 862.97mm and an SWA value of 1.48x108 m3 is used, 

and its robust test result is presented in Figure 5. No constraint violation is detected for approximately 51% 

of the paired ET0 and SWA drops. It is also found that there is a clear threshold of ET0: when the ET0 values 

exceed 860 mm, one or more constraints are violated. There is no clear threshold of SWA that leads to 

constraint violation, which implies that the uncertainty of SWA has more complex implications on irrigation 

water allocation and that the water allocation system might be more resilient to changes in SWA.  

 

Figure 5 Robustness test result of the example solution 

4.2 Sensitivity to changes in ET0 and SWA  

4.2.1 Objective functions and total water usage 

Values of the two objective functions (i.e., ENP and ISE) in the 1,625 feasible runs are calculated. 

Figure 6 shows the variations of ENP, ISE, and total water usage as ET0 and SWA change. As ET0 changes 
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from 740 mm to 1,009 mm and SWA changes from 0.63x108 m3 to 2.31 x108 m3, ENP changes from 229.27 

million to 245.00 million; ISE changes from 40% to 45%; and the total water usage changes from 0.94x108 

m3 to 1.22x108 m3. It is worth mentioning that when ET0 is fixed, ENP, ISE, and total water usage are not 

sensitive to changes in SWA. Compared with SWA, ET0 has more significant effects on ENP, ISE, and total 

water usage. Both objective function values and the total water usage increase as ET0 increases. According 

to Equation 5g, a high ET0 value results in an increase of the minimum irrigation requirement. An increase 

of the minimum irrigation requirement implies a higher water usage for crops, which often leads to increases 

in production yields and thus higher ENP. When the minimum irrigation requirement increases, according to 

Equation 5b, ISE also increases. The results show that the optimal allocation scheme is sensitive to ET0.  

 

(a) 
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(b) 

 

(c) 

Figure 6 (a) ENP vs ET0 and SWA, (b) ISE vs ET0 and SWA, and (c) Total water usage vs ET0 and SWA 



M.A.Sc Thesis – Zehao Yan  McMaster University – Civil Engineering 

23 
 

4.2.2 Surface water and groundwater usage 

To analyze the sources of allocation water, the amounts of surface water and groundwater in the 

1,625 feasible runs are further calculated. Figure 7 shows the surface water usage’s and groundwater usage’s 

response to ET0 and SWA. The response surfaces in Figure 7 are rougher than that of Figure 6c, where total 

water usage is computed as the sum of surface water and groundwater usage. Figure 7b has a clear peak near 

ET0 of 897 mm and SWA of 1.35 x 107 m3, corresponding to the valley in Figure 7a. The surface water usage 

has an average value of 8.24 x 107 m3 and a range of [6.52, 8.99] x 107 m3; while the average and range of 

groundwater usage are 2.77 x 107 m3 and [2.11, 3.72]x107 m3, respectively. This indicates that although 

surface water is the major water source, groundwater still plays an important role. Groundwater can offset 

the changes in SWA. This also explains why the objective functions and total water usage are not sensitive 

to SWA as shown in Figure 6.  

 

(a) 
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(b) 

Figure 7 Surface water (a) and groundwater (b) usage vs ET0 and SWA 

4.2.3 Crop water usage 

Further analysis is performed to investigate how water allocation among the four types of crops 

responds to changes in ET0 and SWA. As shown in Figure 8, the water usages, ranking from highest to lowest, 

are: grain corn, forage corn, vegetable, and wheat. Figures 8a-c show similar patterns with different 

magnitudes, while the response of water allocated to wheat (Figure 8d) shows a significantly different pattern. 

Compared with the other crops, wheat has two remarkable features. Firstly, wheat has the smallest amount of 

water use. It has a growth period of 4 months, while the growth period of the other three crops is 6 months. 

Wheat also has the smallest cultivation area (831.57 ha) among the four crops. Secondly, wheat has the lowest 

unit profit. Wheat’s unit price (2.28 Yuan/kg) is lower than those of forage corn (2.31 Yuan/kg), grain corn 

(3.00 Yuan/kg), and the average vegetable profit (4.16 Yuan/kg). Due to the small cultivation area and the 

low profit, wheat contributes the least to ENP. High priority is given to the water demand and production of 

the other three crops. Water is allocated to the three crops to maintain a stable production rate, while the water 

allocated to wheat needs to be frequently adjusted to cope with the complex uncertainties of ET0 and SWA. 
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Figure 8 Forage corn (a), grain corn (b), vegetable (c), and wheat (d) water allocation vs ET0 and SWA 

4.3 Optimized irrigation water allocation strategy 

One optimal irrigation water allocation scheme is obtained for each of the 1,625 paired cloud drops 

using the CDONP model. The generated monthly water allocation schemes are analyzed in detail and are 

compared to historical irrigation water usage.  

4.3.1 Monthly water usage 

Figure 9 shows the maximum, 25th percentile, median, 75th percentile, and minimum values of the 

monthly usage of surface water and groundwater, as well as the monthly total water usage. The lowest 

variation of surface water use across the 1,625 runs is found in April. The peak of surface usage is in July 

with the highest variation across the 1,625 runs. It is worth mentioning that the peak of total water usage is 

also in July (Figure 3c). The temporal pattern of groundwater usage is different from that of surface water. 

The variation across the 1,625 cloud drop pairs is consistent throughout the growing season, and the peak 
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occurs in July. All of the interpercentile ranges in Figure 9 are small, which indicates that most solutions are 

clustered near the median of the cloud model. The results can provide decision makers with an important 

basis to evaluate their current allocation plan, as well as a set of optimal ranges for monthly water usage under 

complex uncertainties. 

 

Figure 9 Box plots of monthly surface water usage (a), groundwater usage (b), and total water usage (c) 
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4.3.2 Sources of irrigation water 

The surface water and groundwater uses are calculated for the 1,625 feasible CDONP runs, and the 

resulting histograms are shown in Figure 10 The use of surface water is significantly higher than that of 

groundwater. The 95% confidence interval of groundwater usage is [0.23, 0.33]x108 m3, and that of surface 

water usage is [0.65, 0.9]x108 m3. 

 

Figure 10 Histograms of surface water (a) and groundwater (b) use obtained from the CDONP model 

 

4.3.3 Comparison between CDONP model and traditional DONP model 

To demonstrate the advantages of the proposed CDONP model, a traditional dual-objective 

nonlinear programming (DONP) model is built, and optimal solutions are obtained by feeding the DONP 

model with historic ET0 and SWA data. The historical dataset contains annual average ET0 and SWA during 

April to September from 1996 to 2012. It is a very small dataset with only 17 pairs of ET0 and SWA, which 
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is not sufficient for representing the complex uncertainties of ET0 and SWA. On the other hand, the cloud 

model integrated in the proposed CDONP model can extract the statistical characteristics of ET0 and SWA 

from the historic data and generate a much larger sample set to illustrative and represent their uncertainties. 

The histograms of water allocation across the four crop types obtain from CDONP and DONP are compared 

and presented in Figure 10. 

Figures 10 shows that the distributions of water allocation from the CDONP model and the 

traditional DONP model are similar, which validates the cloud model’s ability to provide meaningful and 

statistically reliable uncertainty analysis results. The density (%) is calculated by the frequency of solutions 

in a specific bin over the total number of feasible solutions. It is noteworthy that more extreme allocation 

values are found from the CDONP model. These extreme values represent possible combinations of ET0 and 

SWA conditions under the complex uncertainty, where irrigation contingency analysis is desired. The results 

demonstrate the need for robust uncertainty analysis for irrigation water allocation planning, and the CDONP 

model can provide the reliable and robust uncertainty analysis results to meet this need.  
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Figure 11 Cloud model and historical crop water allocation density: (a) grain corn, (b) forage corn, (c) wheat, and (d) 
vegetable 
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4.4 Analysis of extreme conditions  
Irrigation planning under extreme water availability conditions is critical for risk management. As 

shown in Figure 4, the solution is very likely to become infeasible when ET0 is higher than 863 mm or SWA 

is lower than 1.48x108 m3. To further investigate the impacts of extreme conditions, four scenarios with 

different levels of drought risk are created. The highest and lowest 500 values from both the ET0 and SWA 

clouds are paired to establish the four scenarios. The four scenarios include: 1) high risk (high ET0 and low 

SWA), 2) medium risk – A (low ET0 and low SWA), 3) medium risk - B (high ET0 and high SWA), and 4) 

low risk (low ET0 and high SWA). Ten risk levels are defined under each drought risk scenario, with each 

level corresponding to 50 cloud drop pairs. The drought risk increases from Level 1 to Level 10. For ET0, 

the drought risk increases as ET0 increases; for SWA, the drought risk increases as SWA decreases. When 

pairing the ET0 and SWA cloud drops, the highest 500 values are sorted from high to low, while the lowest 

500 are sorted from low to high. For example, the Level 10 risk under a high risk scenario is defined using 

the 451st to 500th highest ET0 values paired with the 1st to 50th lowest SWA values. The ranges of ET0 and 

SWA for the 10 risk levels under the four drought risk scenarios are shown in Table 1.  
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Table 1 Ranges of ET0 and SWA values in scenario analysis  289 

 290 

Risk 
level 

High risk Medium risk – A Medium risk – B risk Low risk 

ET0 (mm) SWA (108 m3) ET0 (mm) SWA (108 m3) ET0 (mm) SWA (108 m3) ET0 (mm) SWA (108 m3) 

1 [888, 890] [1.4, 1.3] [888, 891] [2.3, 2.0] 
[664, 780] 

[1.4, 1.3] [664, 837] [2.0, 2.3] 

2 [891, 893] [1.3, 1.3] [891, 894] [2.0, 1.9] 
[780, 793] 

[1.3, 1.3] [780, 834] [1.9, 2.0] 

3 [894, 898] [1.3, 1.3] [893, 898] [1.8, 1.8] 
[794, 804] 

[1.3, 1.3] [794, 831] [1.8, 1.8] 

4 [898, 901] [1.3, 1.3] [898, 901] [1.8, 1.8] 
[804, 812] 

[1.3, 1.3] [804, 827] [1.8, 1.8] 

5 [901, 906] [1.3, 1.3] [901, 906] [1.8, 1.7] 
[812, 818] 

[1.3, 1.3] [812, 823] [1.7, 1.8] 

6 [906, 911] [1.3, 1.2] [906, 911] [1.7, 1.7] 
[818, 823] 

[1.3, 1.2] [819, 818] [1.7, 1.7] 

7 [911, 918] [1.2, 1.2] [911, 918] [1.7, 1.7] 
[823, 827] 

[1.2, 1.2] [823, 812] [1.7, 1.7] 

8 [919, 931] [1.2, 1.1] [919, 931] [1.7, 1.7] 
[827, 831] 

[1.2, 1.1] [827, 804] [1.7, 1.7] 

9 [931, 946] [1.1, 1.0] [931, 946] [1.7, 1.6] 
[831, 834] 

[1.1, 1.0] [831, 793] [1.6, 1.7] 

10 [946, 1017] [1.0, 0.6] [946, 1016] [1.6, 1.6] 
[834, 837] 

[1.0, 0.6] [834, 780] [1.6, 1.6] 

 291 

 292 

 293 
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Figure 12 shows the scenario analysis results. The left column shows the changes in ENP and the 

right column shows the resulting changes in ISE. It is found that the medium risk B scenario has a significantly 

lower value for both objective functions compared to the other three scenarios, and that the other three 

scenarios show similar patterns of changes in ENP and ISE. This indicates that the highest drought risk does 

not necessarily lead to the highest ENP and ISE. This is because under high ET0 conditions, more water will 

be drawn to meet the increased irrigation requirement, as discussed in Section 4.2.1. According to Equation 

5b, 5f, and 5g, ET0 determines the minimum irrigation requirement, and ET0 is part of numerator in the ISE 

objective function. Under the medium risk – B scenario, the low SWA value forces the model to search for 

solutions with low water allocations, and the low ET0 value decreases the minimum water required for 

irrigation. As a result, the smallest amount of water is used for irrigation, leading to the lowest system benefit 

and water efficiency. Moreover, the ranges for ENP and ISE under the medium risk B scenario are the smallest 

across the four scenarios, and only the ranges of risk level 10 are narrow under the other three scenarios. This 

implies that as the uncertainties of ET0 and SWA propagates through the optimization process, their impacts 

on the uncertainties of ENP and ISE reduce as the risk level increases.  
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Figure 12 Changes of ENP and ISE under different drought risk scenarios 
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5.0 Conclusions 
In this study, a cloud-based dual-objective nonlinear programming (CDONP) model for irrigation 

water allocation was developed by introducing the cloud model to a dual-objective nonlinear programming 

framework. The integrated cloud model can quantify the complex and composite uncertainty associated with 

evapotranspiration (ET0) and surface water availability (SWA) using possibility and probability distributions. 

The proposed model can be used to provide reliable and robust decision support for optimizing irrigation 

water allocation under complex uncertainties.  

To demonstrate the applicability of the proposed model, a case study of Yingke Irrigation District 

(YID) was conducted. Based on historic data, 2,000 pairs of ET0 and SWA cloud drops (samples) were 

obtained through the cloud generator. Each pair of ET0 and SWA was passed to the CDONP model to 

generate its corresponding optimal solutions with the goals to maximize both economic net profit (ENP) and 

irrigation system efficiency (ISE). The feasibility of the 2,000 solutions was tested and analyzed. The effects 

of ET0 and SWA on ENP, ISE, and crop water usage were analyzed. The obtained results were also compared 

to those of a traditional dual-objective nonlinear programming model to illustrate the advantages of the 

proposed CDONP model. Moreover, four drought risk scenarios based on different combinations of high/low 

ET0 and SWA values were created and discussed. 

It was found that the impact of ET0 on ENP and ISE is greater than that of SWA. This is because 

groundwater can serve as a backup source of irrigation water when SWA changes, while there is no 

compensation mechanism for ET0 loss. The peak usage of surface water is most likely to occur in July, and 

the peak usage of groundwater is most likely to happen in June. The results also demonstrated the CDONP 

model’s advantage in providing reliable and robust uncertainty analysis results when compared to the 

traditional optimization model. The risk level analysis also showed that there is a significant drop in the values 

of both objective functions under the medium risk B scenario, and that the highest drought risk does not 

necessarily lead to the lowest ENP and ISE.  

In this study, a simple weighted sum method was used to select only one optimal solution from the 

Pareto frontier. More solutions on the Parato frontier should be investigated in further studies. Meanwhile, 
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only two uncertain parameters, ET0 and SWA, were and analyzed in this study. In future studies, more 

uncertain parameters, such as rainfall related parameters could be considered. 
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CHAPTER 4 – CONCLUSIONS 
The demand for effective irrigation water allocation is urgent since water demands keep increasing 

across the world. Previous studies proved that optimization models have a potential to provide decision 

support for irrigation water allocation in water shortage areas. Irrigation water allocation models could 

support decision makers to obtain higher profits and to save more water.  

In this study, a cloud-based dual objective nonlinear model programming (CDONP) model was 

developed for monthly irrigation water allocation. The objective functions included net economic profit (ENP) 

and irrigation system efficiency (ISE). The composite uncertainties of reference evapotranspiration (ET0) 

and surface water availability (SWA) were addressed by implementing cloud modeling. The cloud model 

generated a large number of data samples from a relatively small historical dataset for uncertainty 

quantification. Furthermore, a risk analysis was performed based on four scenarios of extreme conditions, 

which allowed the decision makers to better understand the water shortage risks and the corresponding risk 

mitigation schemes. The CDONP model can provide technical support for irrigation water allocation under 

complex uncertainties and with limited data.  

For future studies, the uncertainties of other parameters could be investigated using the proposed 

CDONP model. Different types of distributions could be considered for building the cloud model. Other 

solution algorithms for dual-objective nonlinear optimization could be investigated and incorporated. 

Additionally, ET0 and SWA were assumed to be independent when using the cloud generator. The correlation 

between ET0 and SWA should be further investigated. More work could also be carried out to integrate the 

develop model with existing irrigation simulation models.  
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LIST OF NOTATIONS 
Notation Definition 

𝐸𝑁𝑃 Economical net profit in the unit of Chinese Yuan (CNY) 
k The crop type of grain crops (1… K) 
m The crop type of economic crops (1… M) 
𝑃௞ The price of grain crop k (Yuan/kg) 
𝑃௠ The economic benefit per unit water of economic crop m (Yuan/m3) 
ak, Coefficient of the water production function for grain crop k 
bk, Coefficient of the water production function for grain crop k 
ck Coefficient of the water production function for grain crop k 
𝑥௞

௦ The amount of surface water allocated to grain crop k (m3/ha) 
𝑥௞

௚ The amount of groundwater allocated to grain crop k (m3/ha) 
𝑥௠

௦  The amount of surface water allocated to economic crop m (m3/ha) 
𝑥௠

௚  The amount of groundwater allocated to economic crop m (m3/ha) 
𝐴௞ The area of grain crop k (ha) 
𝐴௠ The area of the economic crop m (ha) 
𝐶௞ The cost of grain crop k per unit yield (Yuan/kg) 
𝐶௠ The cost of economic crop m per unit area (Yuan/ha) 
𝑊௖

௦ The cost of surface water (Yuan/𝑚ଷ) 
𝑊௖

௚ The cost of groundwater (Yuan/𝑚ଷ) 
𝜂௦ The surface water irrigation efficiencies 
𝜂௚ The groundwater irrigation efficiencies 

𝐼𝑆𝐸 The efficiency of irrigation water utilization 
𝐾௖,௞ The crop coefficient of grain crop k 
𝐾௖,௠ The crop coefficient of economic crop m 
ET0 The reference evapotranspiration (m3/ha) 
EP The effective precipitation (m3/ha) 
𝛥௪ The variation of soil water (m3/ha) 
𝑄௚ The maximum allowable groundwater (m3) 
𝑄௦ The maximum allowable surface water (m3) 
𝑄௦
෪ The cloud set of maximum allowable surface water (𝑄௦

ଵ, 𝑄௦
ଶ, … , 𝑄௦

௡) 
𝐸𝑇଴
෪  The cloud set of reference evapotranspiration (𝐸𝑇0ଵ, 𝐸𝑇0ଶ, … , 𝐸𝑇0௡) 
𝑃௣ The population (person) 
𝐺௣ The minimum food demand (kg/person) 

𝐼𝑄௠ The maximum irrigation amount for economic crop m (m3/ha) 
𝐹௜ The evaluation score of solution 𝑖 
𝜔௝ The weight coefficient for objective function 𝑗 
𝑑௜௝  The standardized value of the 𝑗௧௛ objective function solution 𝑖 
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