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Lay Abstract 

Wearable health monitoring systems can be a viable solution to meet the increased demand 

for affordable healthcare and monitoring services. However, such systems need to be 

energy–efficient, accurate and ergonomic to enable long–term monitoring of health reliably 

while preserving user comfort.  

In this thesis, we develop efficient algorithms to obtain real–time estimates of on–body 

sensors' orientation, gait parameters such as stride length, and gait velocity and lower–limb 

joint angles. Furthermore, we develop a simple, low–cost and computationally efficient 

gait–analyzer using miniature and low–power inertial motion units to track the health of 

human gait in a continuous fashion.  

In addition, we design flexible, dry capacitive electrodes and use them to develop a portable 

single–lead electrocardiogram (ECG) device. The flexible design ensures better conformity 

of the electrode to the skin, resulting in better signal quality. The capacitive nature allows 

for obtaining ECG signals over insulating materials such as cloth, thereby potentially 

enabling a comfortable means of long–term cardiac health monitoring at home. Besides, 

we implement an automatic anomaly detection algorithm that detects Atrial Fibrillation 

with good accuracy from short single–lead ECGs. 

Finally, we investigate the association between gait and cardiac activities. We observe that 

some important cardiac signs, such as heart rate and heart rate variability and physical 

parameters, such as age and BMI show good association with gait asymmetry and gait 

variation. 
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Abstract 

Global rise in life expectancy has resulted in an increased demand for affordable healthcare 

and monitoring services. The advent of miniature and low–power sensor technologies 

coupled with the emergence of the Internet–of–Things has paved the way towards 

affordable health monitoring tools in wearable platforms. However, ensuring power–

efficient operation, data accuracy and user comfort are critical for such wearable systems. 

This thesis focuses on the development of accurate and computationally efficient 

algorithms and low–cost, unobtrusive devices with potential predictive capability for 

monitoring mobility and cardiac health in a wearable platform. 

A three–stage complementary filter–based approach is developed to realize a 

computationally efficient method to estimate sensor orientation in real–time. A gradient 

descent–based approach is used to estimate the gyroscope integration drift, which is 

subsequently subtracted from the integrated gyroscope data to get the sensor orientation. 

This predominantly gyroscope–based orientation estimation approach is least affected by 

external acceleration and magnetic disturbances. 

A two–stage complementary filter–based efficient sensor fusion algorithm is developed for 

real–time monitoring of lower–limb joints that estimates the IMU inclinations in the first 

stage and uses a gradient descent–based approach in the second stage to estimate the joint 

angles. The proposed method estimates joint angles primarily from the gyroscope 

measurements without incorporating the magnetic field measurement, rendering the 

estimated angles least affected by any external acceleration and insensitive to magnetic 

disturbances. 



Ph.D. Thesis – S. Majumder                              McMaster University - Electrical and Computer Engineering 

 

v 

 

An IMU–based simple, low–cost and computationally efficient gait–analyzer is developed 

to track the course of an individual's gait health in a continuous fashion. Continuous 

monitoring of gait patterns can potentially enable detecting musculoskeletal or 

neurodegenerative diseases at the early onset. The proposed gait analyzer identifies an 

anomalous gait with moderate to high accuracy by evaluating the gait features with respect 

to the baseline clusters corresponding to an individual’s healthy peer group. The adoption 

of a computationally efficient signal analysis technique renders the analyzer suitable for 

systems with limited processing capabilities. 

A flexible dry capacitive electrode and a wireless ECG monitoring system with automatic 

anomaly detection capability are developed. The flexible capacitive electrode reduces 

motion artifacts and enables sensing bio–potential over a dielectric material such as cotton 

cloth. The virtual ground of the electrode allows for obtaining single–lead ECG using two 

electrodes only. ECG measurements obtained over different types of textile materials and 

in presence of body movements show comparable performance to other reported ECG 

monitoring systems. An algorithm is developed separately as a potential extension of the 

software to realize automatic identification of Atrial Fibrillation from short single–lead 

ECGs.  

The association between human gait and cardiac activities is studied. The gait is measured 

using wearable IMUs and the cardiac activity is measured with a single–lead handheld ECG 

monitor. Some key cardiac parameters, such as heart rate and heart rate variability and 

physical parameters, such as age and BMI show good association with gait asymmetry and 

gait variation. These associations between gait and heart can be useful in realizing low–

cost in–home personal monitoring tool for early detecting CVD–related changes in gait 

features before the CVD symptoms are manifested. 
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Chapter 1  

Introduction 

In recent years, the Internet–of–Things (IoT) has attracted much attention from researchers, 

entrepreneurs, and tech giants [1.1]–[1.3] around the globe. IoT is an emerging technology 

that connects to the internet, collects and shares data from a variety of devices and systems 

such as sensors, actuators, appliances, computers, and cellular phones, thus leading towards 

a highly distributed intelligent system capable of communicating with other devices and 

human beings [1.1]–[1.3]. The dramatic advancements in computing and communication 

technologies coupled with modern low–power, low–cost sensors, actuators and electronic 

components have unlocked the door of ample opportunities for the IoT applications. Remote 

health monitoring in a Smart home platform through wearable systems is such an example of 

IoT application that can potentially play a pivotal role in revolutionizing the healthcare 

system, particularly for the elderly, facilitating active aging at home. As the world is rapidly 

moving towards the new era of the IoT, a fully functional smart home with heath monitoring 

capability is closer to reality than ever before (See Figure 1.1).  

In this chapter, we describe the motivation of this research that is followed by a discussion 

on the IoT–based health monitoring framework. We briefly present the current state–of–the–

---------------------------------------------- 

* Adapted from - 

S. Majumder, T. Mondal, and M. J. Deen, “Wearable sensors for remote health monitoring,” Sensors, vol. 17, no. 1, 45 

pages, 2017. 

S. Majumder et al., “Smart homes for elderly healthcare—Recent advances and research challenges,” Sensors, vol. 17, 

no. 11, 32 pages, 2017. 

S. Majumder and M. J. Deen, “Smartphone sensors for health monitoring and diagnosis,” Sensors, vol. 19, no. 9, 45 pages, 

2019. 
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art of wearable systems, following a discussion on device interoperability and 

standardization. Next, a short discussion on the regulatory concerns associated with the 

smartphone applications for health monitoring is presented. Then, the research contributions 

are given. Finally, the organization of this thesis is presented. 

 

Figure 1.1 IoT–enabled Smart Homes, integrated with automated with automated healthcare 

systems. 

1.1 Research motivation 

In the last few decades, the life expectancy in most countries has increased dramatically. This 

improvement is achieved primarily due to significant advancements in medical science and 

diagnostic technology, as well as the rising awareness about personal and environmental 

hygiene, health, nutrition, and education [1.4]–[1.7]. However, increased life expectancy 

coupled with falling birthrates is expected to result in a large aging population in the near 

future. In fact, according to the World Health Organization (WHO), the elderly population 

over 65 years of age would outnumber the children under the age of 14 by 2050 [1.6]. In 
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addition, about 15% of the world's population suffers from various disabilities, with 110–190 

million adults having significant functional difficulties [1.8]. People with disabilities are 

often deprived of their regular healthcare needs due to their limited mobility and 

independence. Furthermore, chronic diseases and conditions such as heart disease, stroke, 

cancer and diabetes, are among the most common health problems in adults. Half of all 

American adults aged 18 years or older are reported to have at least one chronic condition, 

and one in three adults suffering from multiple chronic conditions. Out of the ten leading 

causes of death, chronic diseases account for ~65–70% of total mortality [1.9]. In particular, 

heart disease and cancer together are the leading causes of death, accounting for 48% of all 

deaths [1.10].  

Therefore, it is no wonder that the demand for healthcare services increases with the rise of 

average life expectancy. An important issue related to providing adequate healthcare services 

is the continuously increasing cost of pharmaceuticals, modern medical diagnostic 

procedures and in–facility care services, which together renders the existing healthcare 

services unaffordable for many. To give one example, in the 2017 budget of the Province of 

Ontario in Canada, an additional $11.5 billion was allocated for the next three years in 

healthcare sectors [1.11]. Further, the total health spending per Canadian was expected to be 

$6839 in 2018, representing more than 11% of Canada’s GDP and these numbers are similar 

to most other OECD (Organization for Economic Co–operation and Development) countries 

[1.12]. Therefore, present–day healthcare services are likely to cause a substantial socio–

economic burden on many nations, particularly the developing and least developed countries 

[1.13]–[1.17]. Furthermore, a large fraction of the elderly relies on other persons such as 

family members, friends and volunteers, or expensive formal care services such as caregivers 

and elderly care centers for their daily living and healthcare needs [1.18]–[1.20]. Therefore, 

enabling superior healthcare and monitoring services at an affordable price is urgently 

needed, particularly for persons having limited access to healthcare facilities or to those living 

under constrained or fixed budget conditions. However, through long–term monitoring of 

key physiological parameters and activities of the elderly in a continuous fashion, many of 
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the medical complications can be avoided or managed properly [1.20]–[1.23]. Long–term 

monitoring of health enables early diagnoses of developing diseases. However, current 

practice requires frequent visits to or long–term stays at expensive healthcare facilities. In 

addition, a shortage of skilled healthcare personnel and limited financial capability, coupled 

with increasing healthcare costs [1.24] contribute to the bottleneck in realizing long–term 

health monitoring. On the other hand, wearable healthcare systems can potentially enable a 

cost–effective alternative for long–term health monitoring and may allow the healthcare 

personnel to monitor and assess their patients remotely without interfering with their daily 

activities [1.20],[1.25]. 

In order to be compatible for long–term monitoring purposes, wearable health monitoring 

systems need to satisfy certain medical and ergonomic requirements. For example, the system 

needs to be comfortable; the components should be flexible, small in dimensions and must 

be chemically inert, nontoxic, and hypo–allergenic to the human body. In addition, limitation 

of hardware resources is a major concern for a multi–sensor system where the central on–

body processing node needs to handle a large amount of data from different sensor nodes. It 

also impacts the system power requirements significantly that needs to be minimized in order 

to extend the battery life for long–term use. Finally, the system needs to be inexpensive and 

user–friendly in order to ensure its widespread acceptance among the people for ubiquitous 

health monitoring. Therefore, the critical design challenge for wearable health monitoring 

system is to integrate several electronic and sensing components while ensuring data 

accuracy, efficient processing for real–time monitoring, and low–power consumption as well 

as user’s wearing comfort. 

To obtain the abovementioned goals, this research focuses on the development of highly 

accurate yet computationally efficient algorithms and low–cost, unobtrusive devices with 

potential predictive capability to realize reliable health monitoring in the wearable platform. 

This research particularly focuses on developing monitoring solutions for cardiovascular 

health and mobility i.e. health of the lower–limb — two key factors that are strongly 

associated with the human aging process. 
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1.2 Smart health–monitoring framework 

The advancement of miniaturized and inexpensive sensors, embedded computing devices, 

and wireless networking technologies as well as growing penetration of internet, tablets and 

smartphones, have paved the way for realizing in–home health monitoring systems. People 

can stay in their familiar home environment and enjoy their normal lives with friends and 

family while their health is being monitored, analyzed and assessed from a remote facility 

based–on the physiological data collected by different on–body sensors. The system can 

perform long–term health trend analysis, detect anomalies, and generate alert signals in the 

case of an emergency (See Figure 1.2). 

 

Figure 1.2 General framework of smart health–monitoring system showing the network among 

different stakeholders. 

Such a smart health–monitoring system (SHS) can be realized by exploiting the IoT 

framework and incorporating sensors, actuators, and smart devices in a ‘Smart Home’ to 

potentially facilitate monitoring of the occupants’ health, safety, wellbeing, comfort and 

security remotely, over the internet from anywhere. The IoT can be defined as a network of 

intelligent objects that is capable of organizing and sharing information, data and resources, 

decision making, and responding to feedback [1.26]. It allows human–to–human, human–to–

things and things–to–things interaction by providing a unique identity to each and every 

object [1.27]. The US National Intelligence Council (NIC) considered the IoT technology as 

one of the six disruptive civil technologies that can potentially impact US national power 
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[1.28]. Some researchers envisioned the IoT as an emerging field that can enable new ways 

of living by bridging the physical world with the digital computing platform by means of 

smart sensing and actuating devices, and appropriate communication technologies such as 

Bluetooth Low Energy (BLE), ZigBee, and ANT [1.29]–[1.32]. Therefore, the concept of 

IoT can be exploited in a wide range of applications such as E–health, assisted living, 

enhanced learning, intelligent transportation, environmental protection, government work, 

public security, smart homes, intelligent fire control, industrial monitoring and automation 

[1.33].   

The SHS may include a set of environmental, activity and physiological sensors and 

actuators, connected through a wireless communication medium. The advancement in low–

power, smaller dimension sensing, actuating and transceiver systems coupled with modern 

communication technologies and inexpensive computing platforms such as field 

programmable gate array (FPGA), microcontrollers, microprocessors paved the way for low–

cost smart health–monitoring systems. A four–layer architecture of SHS [1.22] is presented 

in Figure 1.3.  

 

Figure 1.3 A four–layer architecture of the smart health–monitoring system [1.22]. 
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1.2.1 Sensors and actuators 

Sensors and actuators are critical in monitoring systems described in Section 1.2 that 

bridges the gap between the physical world and the digital domain. This in–home health 

monitoring system may make use of wearable sensors to monitor physiological parameters 

such as heart rate (HR), heart rate variability (HRV), arterial oxygen saturation (SpO2), blood 

pressure (BP), galvanic skin response (GSR), respiratory rate (RR) and body temperature (T). 

This system may also incorporate fixed–position sensors to collect data about the home 

environment such as light illumination level, temperature, pressure, gas leakage and oxygen 

level, and about the activity or location of the occupants by using inertial measurement units, 

RFID tags or passive infrared (PIR) sensors to ensure the occupants’ safety and comfort. 

Actuators, on the other hand, can respond to the feedback from the occupants or from the 

central decision making platform by performing small scale maneuvers to control the 

environment or to deliver drugs such as insulin to the occupant’s body. These sensors and 

actuators can communicate with the central computing and decision making platform over 

the wireless communication medium. The sensors, particularly the on–body sensors, need to 

be energy efficient and unobtrusive in order to facilitate long–term monitoring. Also, 

adoption of energy harvesting technologies can effectively increase the run–time of the 

ambulatory devices. 

1.2.2 Communication network 

All sensors and actuators in the SHS are connected with the central communication and 

decision–making platform though a communication network, which forms the second layer 

of the health monitoring framework. Signals measured by the sensors are transmitted to a 

central computing node over a wireless and/or wired communication medium. Although 

wired connection is a feasible solution for fixed–position based environmental sensors, it is 

not suitable for wearable and long–term monitoring systems. Wired connections for the 

wearable BSN may cause inconvenience to the user and restrict their mobility. It may also 

cause occasional connection failure among the on–body sensors. Textile based conductive 

medium such as conductive fabrics can be used to communicate with the on–body sensors as 

an alternative to the wired connection. However, conductive textiles suffer from low 

durability and limited washability, thus resulting in poor or failed connectivity after 

prolonged use [1.34]. Therefore, modern low–power wireless communication technologies 

appear to be the most viable and reliable medium for short–range communication. Table 2 
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presents the key features of some commonly used wireless technologies for short range 

communication.  

The wearable sensors can be connected in a Body Sensor Network (BSN), where the 

central BSN node is connected with all fixed–position sensors and actuators through the 

Wireless Sensor Network (WSN). All the sensors and actuators in the Smart Home are 

connected, thus forming a Local Area Network (LAN) or Personal Area Networks (PAN) to 

enable data communication inside the home [1.35]. The central decision making platform 

can communicate with any sensors and actuators in the network through the WSN to collect 

data or send feedback to perform necessary actions, if required.  

Table 1.1 Communication technologies for Smart health–monitoring systems. 

Wireless 

tech. 
Frequency Range Data rate 

Power 

(mW) 

Max # 

nodes 

Network 

topologies 
Security 

RFID 

13.56 

MHz 860–

960 MHz 

0–3 m 640 kbps 200 
1 at a 

time 

peer–to–peer 

(P2P) passive 
–– 

Bluetooth 
2.4–2.5 

GHz 

1 – 

100 m 
1–3 Mbps 2.5–100 

1 M1, 

7 S2 
P2P, star 

56–128 bit 

key 

BLE 
2.4–2.5 

GHz 

1 – 

100 m 
1 Mbps 10 

1 M,  

7 S 
P2P, star 

128–bit 

AES3 

HomePlug 

GP 

1.8–30 

MHz 
~100 m 4–10 Mbps 500 – 

P2P, star, tree 

and mesh 

128–bit 

AES 

EnOcean 
902, 928, 

868 MHz 

30 – 

300 m 
125 kbps 

~0.05 with 

energy 

harvesting 

– 
P2P, star, tree 

and mesh 

128–bit 

AES 

ZigBee 
2.4–2.5 

GHz 

10 – 

100 m 
250 kbps 50 65,533 

P2P, star, tree 

and mesh 

128–bit 

AES 

WiFi 
2.4–2.5 

GHz 

150 –

200 m 
54 Mbps 1000 255 P2P, star 

WEP,WPA, 

WPA2 

DASH7 
315–915 

MHz 

200 m 

–2 km 
167 kbps <1 – 

P2P, star, tree 

and mesh 

128–bit 

AES 

Insteon 

RF:869.85, 

915, 921 

MHz 

powerline: 

131.65kHz 

40 – 

50 m 

38 kbps (RF)  

2–13 kbps 

(powerline) 

– 

64,000 

nodes per 

network 

P2P, star, tree 

and mesh 

256–bit 

AES 

Sigfox 
868/902 

MHz 

10 – 

50 km 
10–1000 bps 0.01–100 – P2P, star 

No default 

encryption 

NFC 
13.56 

MHz 
5 cm 424 kbps 15 

1 at a 

time 
P2P AES 

Wireless 

HART™ 
2.4 GHz 

50 – 

100 m 
 10 – 

P2P, star, tree 

and mesh 

128–bit 

AES 

6LoWPAN 2.4 GHz 
25 – 

50 m 
250 kbps 2.23 – 

P2P, star, tree 

and mesh 

128–bit 

AES 

ANT 
2.4–2.5 

GHz 
30 m 20–60 kbps 0.01–1 

65,533 in 

one 

channel 

P2P, star, tree 

and mesh 
64–bit key 

Z–Wave 
860–960 

MHz 
100 m 

9.6–100 

kbps 
100 232 mesh 

128–bit 

AES 
1M: Master,  2S: Slave, 3AES: Advanced Encryption Standard 
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1.2.3 Computing and decision making platform 

The third layer of smart health–monitoring architecture is responsible for computing and 

decision making, thus functioning as the brain of the system. This layer is equipped with 

computing systems such as smartphones, computers or custom–built processing nodes based 

on Field Programmable Gate Arrays (FPGAs) or microprocessors. It gathers data from the 

sensors and actuators over the WSN, processes, stores, and analyzes the measured data. 

It may also perform trend analysis, run prediction algorithms and send feedback to the 

user or to the actuators. The prediction algorithms can exploit the features of artificial 

intelligence (AI) and make use of deep learning and machine learning techniques such as 

artificial neural network (ANN), support vector machine (SVM), and K–Nearest Neighbors 

(KNN) to model the behavioral and physiological patterns of the occupants, and potentially 

predict and/or identify anomalies at their onset. Such models are used by the computing 

platform to make predictive decisions about the occupant’s health status or home 

environment based on the information received from several sensors. The adoption of AI will 

also allow this platform to exploit robotics [1.36],[1.37] to control the system’s peripherals 

and to provide services to the occupants in an automatic fashion with continuous 

improvements in accuracy and precision over time. One such platform, Lab–of–Things 

(LoT), developed by Microsoft Research, used an operating system named HomeOS to 

monitor, manage, and control interconnected devices in homes, and to analyze data received 

from the sensors [1.38]. This layer is also responsible for ensuring a secured, long–range 

communication channel to the remote service provider. It can transmit the measured data, 

key physiological or environmental parameters over the internet or cellular network, thus 

functioning as the home gateway to the remote facility. This platform monitors and assesses 

the measured physiological or environmental data continuously. If any abnormality in the 

home environment or in the vital signs of the user’s health is detected, it can raise an alarm 

or send alert messages to the service providers in the form of a voice call, a text message or 

an e–mail.  

1.2.4 Services 

The top layer of the smart health–monitoring architecture consists of the services 

delivered to the user by the service providers. These services may be associated with the 

health of the occupants, environment, safety, or security of the home and the residents. 

Services provided to the Smart health–monitoring system can be tailored according to the 
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requirements of the occupants based on the level of medical attention or safety and security 

required. In such systems, the gateway platform functions as the primary service provider, 

for example, by activating necessary actuators to control the home environment, door locks 

or dosage of medical drugs, in the case of automated drug delivery. The gateway system may 

adopt AI technologies to assess the safety, security and environment of the homes and control 

the smart devices to provide the occupants with better services [1.36],[1.37]. The gateway 

can learn and keep continuous track of the occupants’ physiological conditions with the help 

of the BSN–connected wearable health sensors. The AI technologies implemented in the 

gateway will allow the smart devices in the SHS to be controlled to adjust the home 

environment according to the occupants’ requirement. It can also monitor the home 

environment and can detect any hazardous situation such as the presence of smoke or gas 

leakage using the environmental sensors installed at different places in the home. In case of 

any anomalous physiological or environmental conditions, the gateway raises alarms and 

sends electronic notifications such as emails, text messages, and phone calls to the secondary 

service provider.  

The secondary service provider is the central hub for all the subscriber and responsible 

for management, maintenance, connectivity, and information security of the SHS network 

and systems. It continuously monitors for alarms or emergencies and immediately notifies 

other third party services such as emergency medical service (EMS), caregivers, police 

station and fire station, if necessary. 

1.3 Interoperability and standardization 

One of the key concerns in adopting the IoT technologies for SHS and Smart Homes evolves 

from the fragmentation of the technologies [1.39]–[1.41]. The fragmentation of the IoT 

technologies, which is not only driven by technology constraints but marketing and business 

policies also [1.39],[1.42] causes lack of interoperability among the devices, platforms and 

systems. These issues need to be addressed for ubiquitous adoption of the IoT in such smart 

monitoring systems. Smart health–monitoring systems, as the term implies, are envisioned 

to be fully automated, energy efficient, and sustainable as well as capable of monitoring, and 

assessing the health, safety and wellbeing of the users. It also requires a robust 

communication platform and may also assist the users to monitor the ADLs. Therefore, the 

SHS, and thereby the Smart Homes are expected to be equipped with a wide variety of 
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devices, systems and platforms from different suppliers in order to provide the users with a 

wide range of services. However, the communication technologies used in those devices and 

systems may vary from supplier to supplier, thus leaving a fragmented IoT market and 

thereby posing a great challenge for the service providers in bringing together different 

technologies in a cost–effective and energy–efficient manner. For example, there exists long–

range cellular communication technologies such as GSM, EDGE, 3G, HSPA, and LTE along 

with several non–cellular short or medium range wireless connectivity solutions presented in 

Figure 1.4, while new technologies such as ABB–free@home® [1.43] and Thread Protocol 

[1.44] are emerging. Each of these non–cellular technologies offer its own advantages and 

also has its limitations. However, a key concern is that they are often not compatible with 

each other.  

 

Figure 1.4 Fragmentation of wireless communication platforms. 

A common, extensible and standardized platform is thus required to ease the integration of 

different technologies, systems and services from different manufacturers. The internet of 

things, services and people (IoTSP) is such a platform that is particularly designed for 

building automation [1.39],[1.45]. In fact, there exists a number of standards for the IoT 

developed by major standard development organizations (SDOs) such as Institute of 

Electrical and Electronics Engineers (IEEE), International Organization for 

Standardization/International Electrotechnical Commission (ISO/IEC), International 

Telegraph Union–Telecommunication Standardization Sector (ITU–T), Internet Engineering 

Task Force (IETF), and European Telecommunications Standards Institute (ETSI) 
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[1.40],[1.41]. Each SDO has their own point–of–view towards the IoT; however they are 

putting their efforts to bridge the gap among the standards. The interoperability issue is 

currently being addressed by adopting the internet protocol (IP) as the common platform, 

which, by assigning local IP addresses to the devices and systems, allows for realizing a cost–

effective solution for device level connectivity and system integration [1.39],[1.41]. 

BACnet/IP, KNXnet/IP, HomePlug, and Modbus TCP/IP (transmission control protocol 

/internet protocol) are some examples of IP–based wired communication technologies. There 

also exist some IP–based versions of wireless communication technologies such as IPv6 over 

Low–Power Wireless Personal Area Networks (6LoWPAN) over Bluetooth, ZigBee IP, 

6LoWPAN over DECT ULE, and Thread. In fact, ETSI and the IPSO Alliance organized 

their fourth Constrained Application Protocol (CoAP) Plugtests™ event in London, UK in 

March 2014 [1.46]. They also organized the first 6LoWPAN Interop event in Berlin, 

Germany in July 2013 [1.47]. These events allowed the vendors to assess the level of 

interoperability of their systems and verified whether the IETF base specifications were 

interpreted correctly. The tests were performed using the 2006 release of the 2.4 GHz low–

rate wireless personal area networks (LR–WPANs) PHY/MAC standards. Although all 

implementations were observed to send and interpret data correctly, they exhibited poor 

compliance with IETF RFC 6775, which describes optimization of neighbor discovery and 

addressing mechanisms for 6LoWPANs [1.48]. 

In addition, there is a growing consensus among the engineering and scientific community 

of using Representational State Transfer or RESTful web services to develop the application 

programming interfaces (APIs) for the IoT applications [1.39],[1.40]. RESTful web services 

are light weight and highly flexible, which uses Hypertext Transfer Protocol (HTTP) for data 

communication. It allows the system to communicate with different devices in the network 

running on different communication platforms. It thus allows for building a bridging platform 

for all the sensors, actuators and systems used in the Smart Homes, irrespective of the 

manufacturer and can successfully fulfill the integration requirements, which are critical for 

seamless operation of these smart systems [1.49],[1.50]. The adoption of RESTful web 
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services in the IoT may also enable adopting other semantic technologies such as OPC UA 

(Open Platform Communications Unified Architecture) and oBIX (Open Building 

Information Xchange) from the internet industry in future. 

1.4 Sensors and devices  

A Smart health–monitoring system may comprise several on–body sensors connected in a 

BSN and/or several stand–alone devices and systems connected in a LAN or PAN to facilitate 

monitoring of different physiological signs such as HR, HRV, SpO2, GSR, BP, body 

temperature, RR, and BP as well as ADL, gait quality, joint–health and mobility. In order to 

enable unobtrusive long–term monitoring of the aforementioned health parameters it is 

critical that the sensors and devices be at least portable, and preferably wearable. In this 

section, a brief review on such devices and sensors proposed in the literature for 

cardiovascular health and activity monitoring is presented. 

 

 

 

(a) (b) 

Figure 1.5 Cardiovascular monitoring: (a) a typical lead I ECG signal (not scaled); (b) Electrode 

placement in a standard 12–lead ECG system; 

Heart rate (HR) or pulse rate is one of the four ‘vital signs’ that is routinely monitored by 

physicians to diagnose heart–related diseases such as different types of arrhythmias 

[1.20],[1.34]. HR and HR variability (HRV) are typically extracted from the 

Electrocardiogram (ECG) (Figure 1.5(a)). Electrocardiograms (ECGs) represent a non–
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invasive approach for measuring and recording fluctuations of the cardiac potential. A 

standard 12–lead ECG (Figure 1.5(b)) is the most widely used and effective diagnostic tool 

that physicians have used for decades to identify heart–related problems such as different 

forms of arrhythmias. Although many arrhythmias are not life–threatening, some results from 

weak or damaged heart such as myocardial infarction (MI) that may lead to cardiac arrest, if 

not managed immediately. After a heart attack, patients are required to receive immediate 

medical attention, which otherwise may turn fatal. These complications can be avoided if any 

inconsistency in cardiac activity is detected and treated in an early stage that calls for 

outpatient ambulatory monitoring of ECG. Some rare, but serious arrhythmias such as, 

Brugada syndrome, arrhythmogenic right ventricular cardiomyopathy, long QT syndrome, 

and hypertrophic cardiomyopathy are infrequent and can only be detected in prolonged 

monitoring.  

Daily physical activities such as walking, running and climbing stairs involve several joints 

and muscles of the body and require proper coordination between the nervous system and the 

musculoskeletal system. This activities involve several joints including the spine, hip, knee, 

ankle, tarsal and metatarsal joints. They also involve several muscles, for example, muscles 

of the back, around hip joints, thighs, calf muscles and several small muscles in the feet. 

Therefore, any abnormalities in the functioning of these biological systems may potentially 

affect the natural patterns of these activities. For example, persons at the early onset of 

Parkinson’s disease tend to exhibit small and shuffled steps, and occasionally experience 

difficulties to start, stop and take turns while walking [1.20],[1.51]. Additionally, due to 

gradual deterioration of motor control with age, older adults are at high risk of fall and 

mobility disability. In fact, an estimated 10% (2.7 million) of Canadians, aged 15 years and 

over, suffered from mobility–related disabilities in 2017 [1.52]. Furthermore, falls in the 

older adults may cause hip and bone fractures, joint injuries, and traumatic brain injury, 

which not only require longer recovery time, but also restrict physical movement, thereby 

affecting an individual’s daily activities. In addition, fall–related fractures reportedly have a 

strong correlation with mortality [1.53]. Therefore, quantitative assessment of gait, knee 
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joints and daily activities are critical in early diagnosing of musculoskeletal or cognitive 

diseases, fall and balance assessment, as well as in the post–injury rehabilitation period. 

1.4.1 Smartphone–based systems 

 Cardiovascular health monitoring 

HR and HRV can be measured using portable and hand–held single–lead ECG devices 

[1.20],[1.34]. Furthermore, with the advancement of wearable sensor technologies, HR and 

HRV can now be obtained using commercial fitness trackers such as Fitbit® (San Francisco, 

CA, USA), Jawbone® (San Francisco, CA, USA), Striiv® (Redwood City, CA, USA), and 

Garmin®, (Olathe, KS, USA) [1.20].  

 

 

Figure 1.6 Photoplethysmograph (PPG) signal from the pulsatile flow of blood volume is used to 

measure HR and HRV using smartphone 

However, these portable and wearable systems require additional accessories, which can be 

avoided by exploiting the embedded sensors such as a camera and microphone in a 

smartphone for monitoring HR and HRV. Using smartphone camera sensors, it is possible to 

estimate HR and HRV from the photoplethysmogram (PPG) signal derived from a video of 

the bare skin such as of the fingertip or the face. The light absorption characteristics of 

hemoglobin in blood differ from the surrounding body tissues such as flesh and bone. PPG 

estimates the volumetric changes in blood by detecting the fluctuation of transmissivity 

and/or reflectivity of light with arterial pulsation through the tissue (Figure 1.6) [1.20],[1.54]. 

Although near–infrared (NIR), red light sources are used in most commercial systems 

[1.20],[1.54], some researchers [1.55]–[1.59]exploited the smartphone embedded white 

flashlight to illuminate the tissue to measure the PPG. 
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Table 1.2 Smartphone–sensors for cardiovascular health monitoring. 

Ref. Year 
Measured 

signs 
Type 

Smartphone 

model 

Sensor 

used 

Video 

Resolution 

Frame rate 

(fps) 

Video 

length 
Method 

Performance wrt 

standard monitors 

# of 

subjects 

[1.56] 2018 HR, HRV 

Contact–

based 

(index 

finger) 

iPhone 6, 

Apple Inc., 

Cupertino CA 

Front 

camera 
1280 × 720 240 5 min 

•Reflection of light from the finger is 

measured. 

Pearson Correlation 

coefficient (PC) for 

most parameters 

between PPG and 

ECG: >0.99 

50 (11 F, 

39 M) 

[1.58] 2016 HR, HRV 

Contact–

based 

(index 

finger) 

iPhone 4S, 

Apple Inc., 

Cupertino CA 

Rear 

camera 
 30 5 min 

•Combination of the steepest slope detection 

of pulse wave derived from the green channel 

of the reflected light and its correlation to an 

optimized pulse wave pattern. 

PC: >0.99 (HR), 

≥0.90 (HRV) 

68 (28 F, 

40 M) 

[1.57] 2016 HR, RR 

Contact–

based (HR) 

and 

contactless 

(RR) 

HTC One M8, 

HTC 

Corporation, 

New Taipei 

City, Taiwan 

Front (for 

RR) and 

rear (for 

HR) 

camera 

RR: 320 × 240 

(ROI: 49 × 90 

abdomen) 

HR: 176 × 144 

(ROI:176 × 72) 

30 (down–

sampled to 

20 (RR), 25 

(HR)) 

–– 

•Frequency domain analysis of the 

noncontact video recordings of chest and 

abdominal motion. 

Average of median 

errors for RR: 1.43%–

1.62% between 6 and 

60 breaths per minute 

11  

(2 F, 9 M) 

[1.64] 2012 HR 
Contactless 

(face) 

iPhone 4, 

Apple Inc., 

Cupertino CA 

Front 

camera 
640 × 480 30 20 s 

•Analysis of the raw video signal (green 

channel) and ICA–decomposed signals of the 

face in the frequency domain. 

Error rate: 1.1% (raw 

signal), 1.5% (ICA–

decomposed signals) 

10  

(2 F, 8 M) 

[1.68] 2018 HR, RR 
Contactless 

(face) 

LG G2, LG 

Electronics 

Inc., Korea 

Rear 

camera 
–– 

30 (down–

sampled to 

10) 

20 s 

•Frequency domain analysis of the color 

variations in the reflected light (hue) from the 

face. 

PC:  0.9201 (HR) and 

0.6575 (RR) 

25 (10 F, 

15 M) 

[1.55] 2016 HR 

Contact–

based 

(index 

finger) 

–– 
Rear 

camera 
1920 × 1080 –– –– 

•Frame–difference based motion detection for improving data 

quality. 

•Uses all 3 channels (R, G, B) for PPG extraction. 20 

•Blood volume flow was observed clearly in 

the Red channel. 

Average accuracy:  

98% 

[1.69] 2015 
Pulse, 

HR, HRV 

Contact–

based 

(index 

finger) 

Motorola 

Moto X, 

Motorola, 

Libertyville, 

IL and 

Samsung S 5 

Rear 

camera 
640 × 480 30 100 s 

•Extracts PPG by averaging the Green 

channel data of the video. 

•HR is calculated by detecting the 

consecutive PPG peaks. 

PC of pulse and R–R 

interval from two 

phone models > 0.95 

11 
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Table 1.2 Smartphone sensors for cardiovascular monitoring (contd.). 

Ref. Year 
Measured 

signs 
Type 

Smartphone 

model 

Sensor 

used 

Video 

Resolution 

Frame rate 

(fps) 

Video 

length 
Method 

Performance wrt 

standard monitors 

# of 

subjects 

[1.59] 2014 HR, NPV 

Contact–

based 

(index 

finger) 

iPhone 4S, 

Apple Inc., 

Cupertino CA 

Rear 

camera 

ROI:  

192 × 144 
30 20 s 

•HR and NPV were measured in the presence 

of a controlled motion (6 Hz) of the left hand.  

•Evaluated the effect of motion artifact (MA) 

on the PPG in all three color (R, G, B) 

channels. 

Higher SNR for B and 

G channel PPG in 

presence of 6Hz MA. 

PC: HR>0.996 (R, B, 

G), NPV = 0.79 (G) 

12 (M) 

[1.70] 2014 HR, HRV 

Contact–

based 

(index 

finger) 

Sony Xperia 

S, Sony 

Corporation, 

Tokyo, Japan. 

Rear 

camera 
–– –– 60 s 

•HR was estimated by detecting the 

consecutive PPG peaks and also the 

dominant frequency. 

•Combines several parameters (HR, HRV, 

Shannon entropy) to detect Atrial fibrillation 

(AFib). 

HR error rate: 4.8% 

AFib detection: 97% 

specificity, 75% 

sensitivity 

 

[1.71] 2012 HR, HRV 

Contact–

based 

(index 

finger) 

iPhone 4s and 

Motorola 

Droid, 

Motorola, 

Libertyville, 

IL 

Rear 

camera 

ROI:  

50 × 50 

30 (iPhone), 

20 (Droid) 

2, 5 min 

(iPhone, 

Droid) 

•Several ECG parameters were extracted 

with two different models of smartphone 

both in supine and tilt position and performed 

comparative analysis with the data obtained 

from a standard five lead ECG. 

PC: ~ 1.0 (HR), PC 

for Other ECG 

parameters: 0.72–1 

(Droid), 0.8–1 

(iPhone) 

9 (iPhone) 

13 

(Droid) 

[1.63] 2012 HR 

Contact–

based 

(index 

finger) 

HTC HD2 and 

Samsung 

Galaxy S 

Rear 

camera 

ROI:  

288 × 352 

(HTC) 

480 × 720 

(Samsung) 

25 

(HTC) 

30 

(Samsung) 

6 s 
•HR is calculated by detecting the 

consecutive PPG peaks. 
Error: ± 2 bpm 10 

[1.72] 2012 HR 

Contact–

based 

(index 

finger) 

Motorola 

Droid, 

Motorola, 

Libertyville, 

IL 

Rear 

camera 

ROI:  

176 × 144 
20 5 min 

•HR from the PPG signals was obtained at 

sitting, reading and video gaming by using an 

Android–based software. 

PC: ≥ .99 

Error: ± 2.1 bpm 

14 (11 F, 

3 M) 
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Most published smartphone–based HR and HRV monitoring applications [1.55]–[1.59] follow a 

similar approach where these parameters are extracted from the PPG signal either by measuring 

pulse–to–pulse time difference in time–domain [1.58] or by finding the dominant frequency in the 

frequency domain [1.55],[1.57]. Table 1.2 presents some smartphone–sensor based cardiovascular 

health monitoring systems presented in the literature. 

 Activity monitoring  

Most existing activity monitoring systems rely on a network of cameras fixed at key locations 

in a home [1.20],[1.73]. Although such systems can provide comprehensive information about 

complex gait activities, they are expensive and generally have a limited field–of–view. In recent 

years, there has been a growing interest in using smartphone embedded motion sensors such as 

accelerometers, gyroscopes, and magnetometers as well as location sensors such as the GPS sensor 

for real–time monitoring of human gait and activities of daily living (ADL) [1.74]–[1.101].  

 

Figure 1.7 General architecture of a smartphone–based activity monitoring system. 

These sensors measure the linear and angular movement of the body, and the location of the 

user, which can be used to quantify and classify human gait events and activities in real time. A 

general architecture of smartphone–based activity monitoring is presented in Figure 1.7. 

Table 1.3. Typical features extracted from motion signals [1.20]. 

Spatial Domain Temporal Domain Frequency Domain Statistical Domain 

Step length Double support time  Spectral power Correlation 

Stride length Stance time  Peak frequency Mean 

Step width Swing time Maximum spectral amplitude standard deviation 

RMS acceleration Step time  Covariance  

Walking speed Stride time  energy 

Signal vector magnitude  Cadence (steps/min)  Kurtosis 
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Table 1.4.  Smartphone–sensor based activity monitoring systems. 

Ref. Proposition Phone(Sensors) Experiment Protocol n Method Performance/ Comment 

[1.74] 

Human 

activity and 

gait 

recognition 

Samsung Nexus 

S 

(𝑎, ω) 

• Subjects walked ~30 m for each of 

three different walking speeds 

• Smartphone in the trouser pocket 

• Sampling rate: 150 sample/s 

25 

• Each gait cycle was detected and normalized in 

length. 

• Several distance metrics between the test and 

template cycle were calculated as features. 

• Statistical analysis and machine learning used 

for recognition. 

• Gait recognition accuracy 

89.3% with dynamic time 

warping (DTW) distance metric. 

• Activity recognition accuracy 

>99%. 

[1.75] 

Human 

activity 

recognition 

Samsung Galaxy 

S II 

(𝑎, ω) 

• University of California Irvine 

(UCI) Human activity recognition 

(HAR) dataset 

• Subjects performed an activity 

twice, with the phone 1) mounted on 

the belt at the left side 2) placed 

according to the user’s preference. 

30 

• Feature selection using random forests variable 

importance measures. 

• Two–stage continuous HMM for activity 

recognition. 

• First and 2nd level for coarse classification and 

fine classification, respectively. 

• Activity (walking, ascending 

and descending stairs, sitting, 

standing, and laying) 

recognition accuracy 91.76%. 

[1.76] 

Human 

activity 

recognition 

Samsung Galaxy 

S II 

(𝑎, ω) 

• UCI HAR dataset 

• Activities are: walking, ascending 

and descending stairs, sitting, 

standing, and laying 

30 

• A hybrid model based on the fuzzy min–max 

(FMM) neural network and the classification 

and regression tree (CART). 

• Activity (walking, ascending 

and descending stairs, sitting, 

standing, and laying) 

recognition accuracy 96.52%. 

[1.77] 

Evaluation 

of hyperbox 

(HB) NN for 

classifying 

activities  

Samsung Galaxy 

S II 

(𝑎, ω) 

• UCI HAR dataset  

• Five subsets of varying sizes (5%, 

10%, 20%, 50% and 100% of the 

dataset) were created for training 

purpose 

30 

• One HB is assigned for all attributes of a class 

and has one or more associated neurons for class 

distribution.  

• Points falling into 1) only one HB are 

immediately classified 2) overlapping regions of 

HBs use the neural outputs for prediction. 

• Performance was comparable 

to SVM, decision tree, KNN and 

MLP classifier. 

•Activity (walking, ascending 

and descending stairs, sitting, 

standing, and laying) 

recognition accuracy 75%–

87.4% 

[1.78] 

Human 

activity 

recognition 

Nexus One, 

HTC Hero, 

Motorola 

Backflip 

(𝑎) 

• Wireless sensor data mining 

(WISDM) dataset from 

http://www.cis.fordham.edu/wisdm/

dataset.php 

• Sampling rate: 20 samples/s 

36 

• Extracted 43 features from the mean and 

standard deviation of acceleration, mean 

absolute difference, mean resultant acceleration, 

time between peaks and binned distribution. 

• A Voting scheme to combine the results from 

the J48 decision tree, logistic regression and 

MLP. 

• Accuracy > ~97% (walking, 

jogging, sitting and standing), 

~86% (ascending stairs), and 

~73% (descending stairs) 

 

[1.100] 

Human 

activity 

recognition 

iPod Touch 

(𝑎, ω) 

• Measured activities: sitting, 

walking, jogging, and ascending and 

descending stairs at different paces 

16 

• Evaluated different classification models 

(decision tree, multilayer perception, Naive 

Bayes, logistic regression, KNN and meta–

algorithms such as boosting and bagging) in 

terms of recognition accuracy. 

• Accuracy for sitting, walking, 

and jogging at different paces: 

90.1%–94.1%  

• Accuracy for ascending and 

descending stairs: 52.3%–79.4%  

        

http://www.cis.fordham.edu/wisdm/dataset.php
http://www.cis.fordham.edu/wisdm/dataset.php
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Table 1.4: Cont. 

Ref. Proposition 
Phone 

(Sensors) 
Experiment Protocol n Method Performance/ Comment 

[1.79] 

Complex 

activity 

recognition 

system 

Samsung Galaxy 

S IV 

(𝑎, ω, P, T, H ( 

and Gimbal 

beacons)) 

• Four smartphones worn on the 

waist lower back, thigh, and wrist. 

• Participants performed 19 

activities in 45 minutes according to 

their own order of choice and 

repetition. 

 

• Conditional random field based classification 

was performed on each device separately.  

• Activity recognition accuracy > 

80% 

• Final recognition was based on the result from the most relevant device to that 

particular activity. • 19 activities are: walk and run indoors, clean utensil, cook, sit 

and eat, use – bathroom sink and refrigerator, move from/to indoor to/from outdoor, 

ascending and descending stairs, stand, lie on the – bed, floor, and, sofa, sit on the 

bed, floor, sofa, and, toilet. 

[1.80] 

A feature 

selection 

approach for 

faster 

recognition 

Samsung Galaxy 

S II 

(𝑎, ω) 

• UCI HAR dataset 

• Activities are: walking, ascending 

and descending stairs, sitting, 

standing, and laying. 

 

30 

• Data segmentation by sliding window and 

extraction of time and frequency domain features  

• A hybrid of the filter and the wrapper (FW) 

methods for feature selection  

• Performance verified by naïve Bayes and KNN. 

• Activity recognition Accuracy, 

precision and F1–score to 87.8%, 

88.0% and 87.7% (with 𝑎, ω 

data) • Significant reduction in 

recognition time. 

[1.81] 

Algorithm 

for Human 

activity 

recognition 

Google NEXUS 

4 

(𝑎, ω) 

• Subjects performed each activity 

twice for 30 s each, keeping the 

device at five different orientations. 

5 

• Employed coordinate transformation and 

principal component analysis (CT–PCA) on the 

data to eliminate the effect of orientation 

variation. • Used several classification models for 

evaluation. 

•Activity (static, walking, 

running, going upstairs, and 

going downstairs) recognition 

accuracy 88.74% with online–

independent SVM (OISVM) 

[1.82] 

A hardware 

friendly 

SVM for 

HAR 

Samsung Galaxy 

S II 

(𝑎, ω) 

• UCI HAR dataset 

• Activities are: walking, ascending 

and descending stairs, sitting, 

standing, and laying. 

30 

• Standard support vector machine (SVM) with 

fixed–point arithmetic for computational cost 

reduction. 

Activity recognition accuracy 

~89% (similar to standard SVM) 

[1.83] 

Unsupervise

d learning 

for activity 

recognition 

Samsung Galaxy 

Nexus 

(𝑎, ω) 

• Smartphone was kept in a pants 

pocket for measurements 

• n = 5 activities: walking, running, 

sitting, standing, and lying down 

• Each activity was performed for 10 

min. 

–– 

• Experiment 1: known n. k–means, Gaussian 

mixer model, and average–linkage hierarchical 

agglomerative clustering (HIER) were used for 

recognition.  

• Experiment 2: unknown n. Density–based 

spatial clustering of applications with noise 

(DBSCAN) along with three other models used 

for classification.  

• GMM achieved 100% 

recognition accuracy when n is 

known 

• HIER and DBSCAN achieved 

over 90% recognition accuracy 

when n is unknown. 

• DBSCAN requires setting two parameters (eps and minPts) and for other models, 

n was chosen based on local maxima of the Calin´ ski–Harabasz index (CH). 

[1.84], 

[1.85] 

DNN for 

Human 

activity 

recognition 

Samsung Galaxy 

S II 

(𝑎, ω) 

• UCI HAR dataset 

• Activities are: walking, ascending 

and descending stairs, sitting, 

standing, and laying. 

30 

• DNN was formed by stacking several convolutional and pooling layers to extract 

discriminative features. 

• Number of layers, number of feature maps, pooling and convolutional filter size 

were adjusted to maximize test–accuracy by ‘softmax’ classifier. 

• Multilayer perceptron for final recognition. • Accuracy: 94.79%–95.75% 
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Table 1.4: Cont. 
Ref. Proposition Phone(Sensors) Experiment Protocol n Method Performance/ Comment 

[1.92] 

Human 

activity 

recognition 

Samsung Galaxy 

and Huawei P20 

Pro S II 

(𝑎, ω) 

• Smartphone was attached to the 

waist. 

• Sampling frequency = 50 Hz  

• 10,299 samples with Samsung 

Galaxy SII and 4752 samples with 

Huawei P20 

30 

• An Ensemble Extreme learning machine with 

Gaussian random projection (GRP). 

• GRP was used for the initialization of input 

weights of base ELMs. 

Activity (sitting, standing, 

laying, walking, walking upstairs 

and downstairs) recognition 

accuracies: 97.35% (Samsung), 

98.88% (Huawei) 

[1.98] 

Human 

activity 

recognition 

Samsung Galaxy 

Note I, Motorola 

Droid, Nokia 

N900 

(GPS) 

• Collected 2 weeks of GPS data 

continuously  

• Subjects prepared a journal of real–

time information about their 

everyday activities. 

3 

• A fuzzy logic –based approach for 

classification. 
Classification accuracy: ~96% 

• Location uncertainty improved by calculating the probabilities of different 

activities at a single location. 

• Recognized activities by a segment aggregation method while adjusting for 

location uncertainties. 

[1.93] 

Human 

activity 

recognition 

Samsung Galaxy 

S 4 

(𝑎, ω) 

• Free walk at a natural pace and run 

in a straight path, maintain a standing 

position and minimize additional 

bodily movement (25 s each). 

1 

• Feature set consisted of linear acceleration, 

normal acceleration and angular velocity. 

• Naive Bayes and k–means clustering for 

classification 

Classification accuracy: 85% 

[1.94] 

Human 

activity 

recognition 

(𝑎, ω) 

• A database of 12 activities 

(standing, sitting, lying down, 

walking, ascending and descending 

stairs, stand–to/from–sit, sit–

to/from–lie, stand–to/from–lie, and 

lie–to/from–stand). 

–– 

• Extracted features were processed by a kernel principal component analysis 

(KPCA) and linear discriminant analysis (LDA).  

• Deep belief network (DBN) for classification. 

Mean recognition rate: 89.61% 

and 

overall accuracy: 95.85% 

[1.95] 

Human 

activity 

recognition 

Huawei Mate 9 

(𝑎, ω) 

• Activities were logged 

approximately 5–8 hours a day for 4 

months 

1 

• A six–layer independently recurrent neural 

network (IndRNN) processed data of different 

lengths and captured the temporal patterns at 

different time intervals. 

Classification accuracy: ~96% 

[1.96] 

Human 

activity 

recognition 

Samsung Galaxy 

S II 

(𝑎, ω, ф, and P) 

• UCI HAR dataset 

• Activities are: walking, ascending 

and descending stairs, sitting, 

standing, and laying 

30 

• DNN–based subassembly divides sensor data 

into various motion states. The transformation 

subassembly derives the intrinsic correlation 

between the sensor data and personal health. 

• Accuracy :95.9% with 

unsupervised feature extraction 

• 96.5% with manual feature 

extraction 

[1.97] 

Walk@Work

(W@W)–

App for 

HAR 

(𝑎, ω) 

•1 h laboratory protocol and two 

continuous hours of occupational 

free–living activities  

17 

(10F  

7 M) 

• Calculated agreement, intra–class correlation 

coefficients (ICC) and mean differences of sitting 

time against the inclinometer ActivPAL3TM, 

and step counts against the SW200 Yamax Digi–

Walker pedometer for performance comparison. 

• ICC: 0.85 for self–paced 

walking, 0.80 for active working 

tasks.  

• ICC (free–living): 0.99, 0.92 

with a difference of 0.5 min and 

18 steps for sitting time and 

stepping, respectively. 

        



Ph.D. Thesis – S. Majumder                              McMaster University - Electrical and Computer Engineering 

 

22 

 

Table 1.4: Cont. 
Ref. Proposition Phone(Sensors) Experiment Protocol n Method Performance/ Comment 

[1.99] 

Human 

activity 

recognition 

Samsung Galaxy 

S II 

(𝑎, ω, ф) 

• Four smartphones attached to four 

body position: right pocket, belt, 

right arm, and right wrist 

• Measured activities: walking, 

running, sitting, standing, walking 

upstairs and downstairs 

4 

• Data from three types of sensors were evaluated 

in terms of recognition accuracy using seven 

classifiers (naïve Bayes, SVM, neural networks, 

logistic regression, KNN, rule–based classifiers 

and decision trees). 

• Best performance was achieved 

using both gyroscope and 

accelerometer data together. 

• Magnetometer data played little 

role.  

[1.91] 

Balance 

analysis and 

Audio Bio–

Feedback 

(ABF) 

system 

iPhone 4 

(𝑎, ω, ф, mic) 

• Smartphone was mounted on a belt. 

• Subjects wore the belt on the 

posterior low back at the level of the 

L5 vertebra and a pair of earphones, 

placed arms close to the trunk, stood 

barefoot, with their eyes closed. 

20 

(11F 

and 

9 M) 

• Tilt angles and heading were calculated from 

accelerometer and gyroscope, respectively as 

well as from the magnetometer. 

–– 

• Kalman filter was used to correctly estimate the rotation angles from the 

difference between the two previous estimates.  

• Audio feedback sent through the mic when trunk orientation is above a threshold. 

• Subjects kept sway minimum in parallel feet (10 cm apart), tandem stance–positions, and 2 experimental conditions with and 

without ABF. • Each experimental condition was performed in random order six times, each for 30 s.  

[1.88] 

Fall 

detection and 

notification 

system 

Lenovo Le–

phone 

(𝑎) 

• Smartphone mounted on the waist 

 
–– 

• Extracted signal magnitude area (SMA), signal magnitude vector (SMV) and tilt 

angle from the median filtered accelerometer data. 

• Fall detection with a decision tree–based 

algorithm. 

• In case of a fall, a multimedia messaging service 

(MMS) was sent with time and location info. 

 

• Performance comparison not 

reported.  

[1.89] 
Fall 

detection 

Samsung 

Galaxy S III 

(𝑎) 

• Collected acceleration data  

• Detected a fall if the acceleration along a 

direction changed at a faster rate than that in 

normal daily activities. 

• Performance comparison not 

reported. 

[1.101] 

Fall 

detection, 

tracking and 

notification 

system 

(𝑎) 

• Evaluated the tracking error range 

at two outdoors and one indoor fall 

location. 

• Tests conducted near a school and a 

subway station at three periods of the 

day: 7:00–12:00, 12:00–18:00, and 

18:00–24:00 to evaluate the accuracy 

of tracking with mobile obstacles. 

10 

• Calculated accelerometer SMV. 

• Rapid change in the SMV to a large value 

indicated a fall. 

• In case of a fall detected, the GPS location of 

the smartphone is communicated. 

• The real–time location tracking system used 

Google’s 3D mapping services.  

• Overall accuracy of the location 

tracking system: < 9 m. 

• Larger error range observed 

between 12:00 and 18:00.  

• High density of Wi–Fi 

installations improves location 

accuracy. 

[1.102] 

Fall 

detection and 

daily activity 

recognition 

Sony C6002 

Xperia Z, Apple 

iPhone 4s 

(𝑎, ω, ф) 

• Subjects kept phones in the right, 

left and front–pockets and fall onto a 

15 cm thick cushion. 

• Activities: four types of fall 

(forward, backward, toward the left 

and right) and ADL. 

8 

• Activities were classified using supervised 

machine learning (SVM, Decision tree, KNN and 

discriminant analysis) algorithms. 

• A fall is detected when SMV goes above a 

threshold value (24.2 ms–2). 

• ADL (sitting, standing, 

walking, laying, walking upstairs 

and walking downstairs) 

recognition accuracy 99% with 

the SVM. 
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Table 1.4: Cont. 
Ref. Proposition Phone(Sensors) Experiment Protocol n Method Performance/ Comment 

[1.103] 

Fall 

detection 

algorithm 

Sony Z3 

(𝑎) 

• Smartphone was placed in the front 

pocket 

• Subjects performed six activities of 

daily living and six fall activities 

10  

(7 M 

and  

3 F 

• Six features (SMV, sum vector excluding gravity magnitude, max and min value 

of acceleration in gravity vector direction, mean of the absolute derivation of 

acceleration in gravity vector direction, and gravity vector changing angle) were 

derived from the accelerometer data. 

      
• SVM was used to classify fall and non–fall 

events. 

• 96.67% sensitivity, 95% 

specificity  

[1.104] 

Fall 

detection 

based on 

high–level 

fuzzy petri 

net (HLFPN) 

HTC Desire S 

(𝑎) 

• Smartphone was placed in the thigh 

pocket 

• Activities: Falls (forward, 

backward, vertical, and sideways) 

and ADLs (walking, jogging, 

jumping, sitting, and squatting). 

12  

(7 F 

and  

5 M) 

• Calculated accelerometer SMV and frequency 

of occurrences from the accelerometer data.  

• Fall detection accuracy 90% 

with HLFPN 

• Fuzzy degree was generated by substituting the calculated values into the 

membership function formulated by the experiment. 

• Final classification with HLFPN. 

[1.107] 
Knee Joint 

ROM 

iPhone 6 

(𝑎) 

• Dynamic knee extension ROM was 

measured three times with an interval 

of 5 min.  

• Phone was attached to the tibia 

• An isokinetic dynamometer used to 

generate and measure the knee 

motion for validation.  

21 

(M) 

• A MATLAB program automatically detected 

the min/max values of knee extension angles 

from the accelerometer data. 

• The difference between the min and max values 

was calculated as the dynamic knee extension 

ROM.  

• Highly correlated (rs = 0.899) 

and low error (~0.62°) wrt the 

commercial system (Biodex 

System 4 Pro) 

• Limits of agreement: −9.1to 8.8 

deg.  

• ICCE between two methods 

>0.862  

[1.108] 

Assessment 

of 

smartphone 

apps for 

measuring 

knee range 

of motion  

Camera, 

inclinometer 

(𝑎, ω, ф) 

• Five measurements of knee range of 

motion from each subject by a 

commercial system, two apps – 

Goniometer Pro and Dr. Goniometer  

• Goniometer Pro (by 5fuf5) and Dr. 

Goniometer (by CDM S.R.L.) were 

based on smartphone inclinometer 

and camera, respectively. 

10 

(5 F 

and  

5 M) 

• Goniometer Pro: attached to the anterior of the 

thigh proximal to the skin incision, and on the 

anterior of the distal tibia distal to the skin 

incision and knee flexion angle (𝜃𝐹𝑥) was derived 

by adding the two measured angles.  

• 𝜃𝐹𝑥 by Dr. Goniometer was 

clinically identical to 𝜃𝐹𝑥 from 

the commercial system, with a 

mean difference of <1° and 1/50 

difference >3° 

• Dr. Goniometer: calculated 𝜃𝐹𝑥 by taking pictures from the lateral side of the 

operated knee with markers virtually placed at the level of the greater trochanter, 

the knee joint and the ankle joint. 

𝑎: accelerometer, ω: gyroscope, P: pressure sensor, T: temperature sensor, H: humidity sensor, ф: magnetometer, n: number of subjects 
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At the heart of an activity monitoring and recognition system is the classification or 

recognition algorithm. However, signal processing techniques and extraction of appropriate 

features also play critical roles in realizing a computationally efficient and reliable system. 

Signal processing techniques may include filtering, data normalization and/or data 

windowing or segmentation. Subsequently, a number of key features from the statistical, 

temporal, spatial and frequency domains are extracted to feed into the classification model. 

Table 1.3 presents a list of typical features that are extracted from the motion signals. Finally, 

an appropriate classification model such as support vector machine (SVM) 

[1.81],[1.82],[1.99],[1.102],[1.103], naive Bayes (NB) [1.80],[1.93],[1.99],[1.100], k–means 

clustering [1.82],[1.93], logistic regression [1.78],[1.99],[1.100], k–nearest neighbor (KNN) 

[1.77],[1.80],[1.99],[1.100],[1.102], neural network (NN) [1.84],[1.85],[1.87],[1.95],[1.96] 

or a combination of models [1.78],[1.84],[1.85],[1.92],[1.94] are employed for activity 

recognition. Table 1.4 summarizes several recent smartphone–sensor based activity and sleep 

monitoring systems.  

1.4.2 Wearable devices 

A. Cardiovascular health monitoring 

In a conventional 12–lead ECG system, electrical activities of the heart along 12 particular 

spatial orientations are measured using ten Ag–AgCl electrodes (hydrogel method/wet ECG), 

which are affixed to some specific parts of the body. The electrodes contain conducting gel 

in the middle of the pad that functions as a conduction medium between the skin and the 

electrode. This conducting gel has potential toxic and irritant effects on the skin and is thus 

not best suitable to use for long–term ambulatory monitoring system though currently, it is 

the only system available [1.109]–[1.111]. However, only a few numbers of electrodes are 

used in ambulatory ECG monitoring system at the cost of limited information. A continuous 

ambulatory monitoring device requires a wearable and portable system that could be used 

comfortably without affecting an individual’s daily activities. Table 1.5 presents a 

comparison among the cardiovascular monitoring systems published in the literature.  
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Table 1.5.  Comparison among cardiovascular monitoring systems.  

Ref. Proposition Signs Electrode 

type 

Active material Electrode 

size 

Attac–

hment 

method 

Comm. Accuracy Signal acquisition module 

Size Fs A/D Bat. life, 

Power  

[1.112] Sensorized T–

shirt and textile 

belt 

ECG, 

HR  

Dry textile 

electrodes 

Silver based 

conductive yarns 

 
Snap 

buttons 

BLE 
 

–– 512 

Hz 

24 

bit 

–– 

[1.113] Wearable 

mobile 

electrocardiogra

m monitoring 

system 

ECG, 

HR, 

loca–

tion 

Dry foam 

electrode 

Ni/Cu coated 

compressed 

urethane polymer 

foam 

14 mm × 

8 mm × 8 

mm 

 
Bluetooth 

v2.0, and 

GSM 

99.51% correlation 

with prerecorded 

ECG data, QRS 

detection accuracy 

~98.14% 

4 cm 

× 2.5 

cm × 

0.6 

cm 

512 

Hz 

12 

bit 

33 hours, 

1100 

mAh Li–

ion 

battery 

[1.109] Wireless, 

portable 

capacitive ECG 

sensor 

ECG, 

HR 

Capacitive 

electrode 

with cotton 

insulator 

 
33 mm × 

33 mm × 

2 mm 

Woven 

under a 

stretcha

ble belt 

ANT 
 

45 

mm × 

60 

mm × 

9 mm 

500 

Hz 

10 

bit 

15 hours 

with 256 

mAh 3 V 

Li 

battery 

[1.114] Use of flexible 

capacitive 

electrodes for 

reducing MA 

ECG, 

HR 

Flexible 

capacitive 

electrodes 

Ni/Cu coated foam 

(polyolefin 

covered by 

polyurethane) 

300 mm × 

20 mm × 

(1.1 ± 0.2 

mm)  

Integrat

ed into a 

chest 

belt 

Bluetooth Up to 91.32% QRS 

detection at 7 km/h 

walking speed 

–– 256 

Hz 

–– –– 

[1.115] Common 

Electrode–Free 

ECG monitoring 

System 

ECG, 

HR 

Active 

capacitive 

electrodes 

 Copper layer 5 cm × 3 

cm 

Adhesiv

e tape 

–– 
 

–– 2 

kHz 

24 

bit 

–– 

[1.116] HR monitoring 

from pressure 

variance in  ear 

canal 

HR Piezoelectric 

film sensor 

 
3.5 mm × 

3.5 mm 

Earpiec

e like 

device 

2.4 GHz 

RF 

Sensitivity 97.25%, 

PPV 97.18%. 

15 

mm × 

17 

mm 

100 

Hz 

12 

bit 

Coin–

cell 

battery 

[1.117] Heart Rate 

Monitoring with 

pressure sensor 

HR Piezoresist–

ive pressure 

sensing 

C black/silicone 

rubber 

nanocomposite 

encapsulated in 

conductive  FCCL 

films 

15 mm × 

30 mm 

Embedd

ed in 

elastic 

belt 

–– Accuracy > 97% –– –– –– –– 
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B. Activity monitoring 

Monitoring an individual’s physical activities and locomotion can be useful in rehabilitation, 

sports, early detection of musculoskeletal or cognitive diseases, and fall and balance 

assessment. As mentioned earlier, fixed position monitoring systems such as camera–based 

systems are useful tool for activity monitoring. Although these systems are capable of 

recognizing complex gait activities, they, however, restrict the user within a limited range 

and are complex and expensive. Thus, they are not feasible for long–term continuous 

monitoring. In recent years, the use of wearable motion sensors such as accelerometers, 

gyroscopes, and magnetometers are gaining in popularity for measuring human gait activities 

[1.20],[1.21]in real time. The sensors measure linear and angular motion of the body from 

which a number of key features are extracted as presented in Table 1. 3 earlier. Table 1.6 

presents a comparison of the key features and performance characteristics among the activity 

monitoring systems published in the literature.  

1.4.3 Textile–based sensors 

Smart textiles associated with healthcare include sensors, actuators, communication, 

computing, and electronic systems that are made of textile or are suitable for embedding into 

textiles, thus enabling unobtrusive and comfortable means of monitoring physiological 

signals of the individuals. It makes use of conventional fabric manufacturing techniques such 

as weaving, knitting, embroidery, and stitching to realize or integrate sensing materials in 

clothes. Advanced fabrication methods, for example, inkjet–printing, coating, lithography, 

chemical vapor deposition (CVD) are also used in order to achieve high performance in terms 

of noise and sensitivity. The active or sensing material is usually built on a substrate and can 

either be in direct contact with the body surface or remain encapsulated in a fabric–based 

layer. 
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Table 1.6. Activity monitoring systems. 

Ref. Proposition Feature 

extraction 

Classification 

method 

Sensors and sensor placement Detected activities and performance 

[1.118] 

Activity and gait 

recognition system 

on a smartphone 

Fixed set of 

features 

SVM, Bayes 

network, and 

Random Tree 

Accelerometer is embedded in 

smartphone 

• Different walking speed 

• Accuracy> 99%.  

[1.119] 

In–home, fine–

grained activity 

recognition 

multimodal 

wearable sensors 

Fixed 

feature set 

Conditional 

random field 

(CRF) 

Smartphone’s onboard sensors 

(accelerometer, gyroscope, barometer, 

temperature and, humidity sensor), along 

with Gimbal Bluetooth beacons 

Waist, lower back, thigh and wrist 

• Walk and run indoors, use refrigerator, clean 

utensil, cook, sit and eat, use bathroom sink, move 

from indoor to outdoor, move from outdoor to 

indoor, walk upstairs, and walk downstairs, stand, 

lie on the bed, sit on the bed, lie on the floor, sit on 

the floor, lie on the sofa, sit on the sofa, and sit on 

the toilet  • Accuracy > 80%  

[1.120] 

Wearable device 

based on a 9–DOF 

IMU 

Fixed set of 

features 
 

• Accelerometer, gyroscope, and 

magnetometer • Limb or trunk 

• Bluetooth 

• Balance hazards, balance monitoring for fall 

prediction • High correlation 

• Streaming ~6 hours, Logging > 16 hours 

[1.121] 
Algorithm 

development 

Time–

Frequency 

analysis 

Hidden Markov 

Model 

• 3–axis accelerometer, 3–axis gyroscope 

• Chest • USB 

• Walking, running, ascending upstairs, descending 

downstairs and standing • Accuracy ~95%  

[1.122] 

A real–time, 

adaptive algorithm 

for  gait–event 

detection 

  

• Two inertial and magnetic sensors ( 1 

IMU = 1 accelerometer, 1 gyroscope) 

• External part of both shanks 

• Gait events: Initial Contact (IC), End Contact 

(EC) and Mid–Swing for both legs while walking at 

three different speed • F1–scores 1(IC, EC), 0.998 

(IC) and 0.944 (EC) for stroke subjects 

[1.123] 

Recognition method 

for similar gait 

action 

Inter–class 

relation Ship 

Support vector 

machine, K–

nearest neighbor 

• 3 IMUs (each IMU: 1 tri–axial 

accelerometer,1 tri–axial gyro) 

• Fixed at the back, left, and right waist  

• Walking on flat ground, up/down stairs, and 

up/down slope 

• Accuracy ~93% average 

[1.124] 

Stochastic 

approximation 

framework  

Fixed set of 

features 

K –means and 

Gaussian 

Mixture Models 

• Accelerometer 

• Belt–like strap around the waist 

• 3 intensity level of walking: 93.8%; 

• 3 intensity level of running 95.6% 

[1.125] 

Power–aware 

feature selection for 

minimum 

processing energy 

Minimum 

cost feature 

selection by 

using a 

redundancy 

graph 

KNN 

• 6 IMUs (each IMU has one 3–axis 

accelerometer and a 2–axis gyroscope) 

• Waist, right wrist, left wrist, right arm, 

left thigh, right ankle BSN 

• Switching between stand and sit, sit and lie, bend 

to grasp , rising from bending, kneeling right, rising 

from kneeling,  look back and return, turn 

clockwise, step forward and backward, jumping 

• 30% energy savings with 96.7% accuracy 
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Table 1.6. Activity monitoring systems.(Cont.) 

Ref. Proposition Feature 

extraction 

Classification 

method 

Sensors, Sensor placement Detected activities and performance 

[1.126] 

Optimization for 

phase–dependent 

locomotion mode 

recognition 

Fixed set of 

features 
 

• 2 IMUs, 2 pressure insoles (each 

having 4 pressure sensors) 

• IMUs on the shank and the shoe, 

pressure sensors insole 

• Walking, up/down stairs, and up/down slope, passive 

mode 

• Accuracy: 88%–98% 

[1.127] 

Electronic insole 

for motor activities 

and shoe comfort 

monitoring 

Fixed set of 

features 
 

• Humidity and temperature sensors, 

accelerometer and 4 pressure sensors 

• Insole • ZigBee 

• Foot accelerations, orientation in space, temperature 

and moisture data 

• 10 hours of data logging 

[1.128] 

Shoe–based activity 

monitoring 

system (smartshoe) 

Fixed set of 

features 
SVM, MLP  

• 5 pressure sensors (PS) and one 3–

D accelerometer  

• PS on insole and accelerometer on 

heel of shoe 

• Sit, stand, walk, ascend stairs, descend stairs and 

cycling 

• Accuracy: 99.8% ± 0.1% with MLP  

[1.129] 

A wearable device 

for monitoring daily 

use of the wrist and 

fingers 

Fixed set of 

features 
K–means 

• Two 3–D magnetometers 

• Watch–like enclosure worn on the 

wrist and a small neodymium ring 

worn on the index finger 

• Finger and wrist movement 

• Accuracy: 92%–98% with a 19%–28% STD 

• Power requirement: 20.5 mA at 3.3 V 

[1.130] 

Combined 

kinematic models to 

estimate human 

joint angles  

Unscented Kalman filter 
• 3 IMUs 

• Upper arm, forearm, and wrist 

• Shoulder internal/external rotation; flexion/extension 

of shoulder, elbow, and wrist, supination/pronation of 

forearm, wrist twist  

• Average RMS angle error ~3° 

[1.131] 

Wearable device 

with automatic gait 

and balance 

analyzer for 

Alzheimer patients  

Fixed set of features 

• 3 IMUs (each IMU has a 3–d 

accelerometer, a uni–axial gyroscope, 

and a biaxial gyroscope 

• On feet for gait analysis 

on waist for balance analysis 

• Gait parameters and balance 

• Power requirement: 30 mA at 3.7 V 

[1.132] 
IMU based fall 

Detection system 
Madgwick orientation filter 

Accelerometer, gyroscope, and 

magnetometer 

Waist 

Bluetooth 

• Backward fall, forward fall, lateral left fall, lateral 

right fall, syncope 

• Accuracy: 90.37%–100% • Sensitivity: 80.74%–

100% 

• Power requirement: 15 mA–34 mA using 3.7 V 
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A. Bio–potential sensor 

Smart textiles can be used to develop wearable on–body electrodes in order to measure 

electro–physiological signals such as ECG, electroencephalography (EEG), GSR, and 

electromyography (EMG). Textile based electrodes were reported to be as reliable as the 

traditional wet gel Ag–AgCl electrodes [1.133],[1.134]. Textile electrodes can be classified 

into two basic categories: active and passive. Passive textile electrodes sense electrical 

properties from the skin surface. It can be used to monitor cardiac or muscle activities by 

sensing potential fluctuations caused by the heart or muscle. They also have applications in 

GSR measurement where the change in the skin conductivity due to sweating is detected by 

attaching electrodes on the body surface. Traditional electrodes use adhesive and conductive 

gel to affix them to the skin. It requires skin preparation such as shaving and cleaning the 

attachment site. In addition, the conductive gel may cause irritation, allergic reactions, or 

inflammation [1.109],[1.110]. Furthermore, the gel dries out with time causing degraded 

signal quality. Although wet electrodes provide superior signal quality, they are not suitable 

for wearable and long–term monitoring system [1.109],[1.110]. 

On the other hand, dry electrodes do not use adhesive or conductive gel and are usually 

biocompatible. Owing to their ‘dry’ nature, they are more suitable for long–term monitoring 

and are being used extensively in textile–based health monitoring systems [1.135]–[1.139]. 

However, dry electrodes suffer from very high electrode–skin impedance and thus are more 

vulnerable to noise and motion artifacts compared to the wet electrodes. Active electrodes 

often incorporate a high input impedance preamplifier that reduces the impact of noise and 

motion artifacts by reducing the electrode–skin impedance [1.135],[1.140]. This also helps 

to reduce the impedance mismatch between the electrodes resulting in lower differential 

common mode voltage, which may otherwise cause signal saturation.  

.  
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Table 1.7. Summary of textile electrodes. 

Ref Proposition Electrode 

type 

Size Base material Conductive material Technology Performance 

[1.135] Direct attach 

and Interposer  

electrode 

Active 

electrode 

20 × 13 mm2 

(direct–

attach) 11.6 

× 11.6 mm2 

(Interposer ) 

Nonwoven Evolon 

fabrics 

Conductive ink (CMI 

112–15 ) 

Screen printing, 

stenciling, curing, and 

encapsulation 

*PSDs for sitting and jogging 

are close to Ag/AgCl electrodes 

*Durable up to 5 washing cycles 

[1.140] Active 

electrodes  on 

woven textiles 

Active 

electrode 

28 mm × 23 

mm (skin 

contact area) 

Woven textile of 

cotton, polyester and 

Lycra fibers 

Silver polymer paste 

(Fabinks TC–C–4001) 

Screen and stencil 

printing 

Printed active and Ag/AgCl 

electrodes had very similar rms 

levels after filtering  

[1.142] 2 textile 

nanofiber web 

electrodes 

Dry 

electrode 

9 mm 

diameter 

PVDF Nanofiber Web  PEDOT Electrospinning–vapor 

phase polymerization 

ECG is 95% similar to Ag/AgCl 

electrodes  

Contact resistance: ~1000 Ω 

    PVDF Nano fiber Web Silver  Silver mirror reaction ECG is ~92% similar to 

Ag/AgCl electrodes  

Contact resistance: ~100 Ω 

[1.143] Textile 

electrode 

Dry 

electrode 

4 cm × 6 cm Polypropylene 

nonwoven fabric 

Copper nanoparticles 

on fabric 

Multiple dip chemical 

processes 

Max conductivity: 

142.8 kΩm 

 

[1.147] 8 types of 

electro–thread 

Dry fabric 

electrode  

2 × 2 cm2, 2 

× 5 cm2 

Polyester 75 denier Silver thread Inclusion of one strand 

or two strands of 50 

μm silver thread  

32 kΩ at 120 Hz (for 2 Ag 

strand based 1300TM polyester 

fabric) 

[1.145] Several textile–

based electrodes 

Dry fabric 

electrode 

1.5 cm × 3 

cm 

PU laminated or dry– 

coated nylon 

Copper coating Sputtering 5.7 Ω (PU laminated nylon), 

10.26 Ω(PU dry–coated nylon).      
Ripstop, Mesh fabric Cu/Ni coating Electroless Plating 0.23 Ω/sq (Ripstop), 0.29 Ω/sq 

(Mesh)    
5 cm × 5 cm Cotton, Steel/cotton Stainless Steel 

Filament Yarn 

Embroidering or 

Knitting 

R peak detection accuracy: 

58.8% and 64.2%  

32.55 Ω/m (linear resistance) 

[1.146] Knitted fabric 

electrodes 

Dry 

electrodes 

20 mm × 20 

mm 

Wool and polyester Ag coated nylon, 

stainless steel yarn , 

and Ag coated Cu  

Knitting FFT response of the 

multifilament electrodes retains  

ECG spectral components  

[1.148] Embroidered 

textile electrode 

Wet, water 

vapor with 

polyester 

pad. 

2 cm × 7 cm Polyethylene 

terephthalate yarn of 50 

μm diameter 

Silver and ultra–thin 

titanium 

Coating by plasma 

sputtering 

Similar signal quality and signal 

strength after 1 h as after 72 

hours of use 
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Some active textile electrodes can stimulate muscle or nerve cells by applying an electrical 

current to the underlying tissues. This technique of muscle and nerve activation, commonly 

referred to transcutaneous electrical nerve stimulation (TENS) is widely applied in 

rehabilitation and therapeutic applications [1.137]–[1.139]such as chronic and postoperative 

pain management. 

Textile electrodes can be realized by integrating prefabricated electrodes into finished 

garments by simply stitching them at suitable locations on clothes. They can also be 

developed by directly depositing conductive layers on the fabric. The conductive layers can 

be formed on the surface of the fabric by depositing nano–fibers [1.141]–[1.143] using 

electrodeposition method or by applying a conductive layer with the help of screen–printing 

[1.144], sputtering, carbonizing and evaporation [1.145]. 

Although conductive coating on the surface of the fabric results in superior conductivity, the 

performance may deteriorate with time, especially after a number of wash cycles. Another 

attractive technique of textile electrode fabrication is weaving or knitting garment fabrics 

using conductive yarn [1.140],[1.144],[1.145]. The conductive yarn can be made of metal 

filaments [1.145]–[1.147], conductive nano–filaments [1.148] or produced by applying a 

metal coating on fibers such as cotton [1.140],[1.141],[1.144], nylon [1.145], Kevlar or 

polyester [1.140],[1.146]–[1.149]. Nano–fibers can be grown by the electrospinning method 

[1.142] whereas metal coating on the fiber is formed by employing chemical deposition 

process such as polymerization [1.150], electroless plating [1.145],[1.149], electroplating 

[1.151] and sputtering [1.145],[1.148]. Table 1.7 presents the summary of several textile 

electrodes reported in the literature.   

 Activity sensor 

Most researchers have used MEMS–based inertial sensors to measure the signal 

corresponding to human locomotion. They are mounted on small PCB boards, which are then 

embedded in belts, elastic bands or Velcro straps. MEMS–based motion sensors are cheap 

and small in size. Having good sensitivity, accuracy, and low power features, they are suitable 
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for long–term and real–time activity monitoring systems. However, the rigid PCB boards can 

be uncomfortable to some users. A MEMS accelerometer was fabricated in [1.152]on cotton 

cloth for measuring pelvic tilt angle. The accelerometer exploited the piezoresistive effect of 

the conductive Ag nanoparticles that was patterned on the textile by stamping and ironing.  

Flexible and stretchable strain sensors were also used by many researchers in textile–based 

activity monitoring systems. Strain sensors measure the physical deformation by changing 

its electrical characteristics such as resistance and capacitance in response to mechanical 

stress. The strain sensors for textile applications need to be highly flexible, stretchable, and 

durable. In addition, high sensitivity, and fast response/recovery time are critical for real–

time activity detection. Such sensors can be fabricated by embedding metal nanowire [1.153] 

and nanoparticles [1.154]in or between PDMS layers, using elastic and conductive webbing 

[1.155], embedding conductive fibers in textiles [1.156], [1.157], using flexible polymer fiber 

such as PU/PEDOT:PSS [1.158].  

A few researchers also investigated textile–based optical sensors for activity monitoring. In 

[1.159], a single optical Fiber Bragg Grating (FBGs) sensor encapsulated with a polymer foil 

was integrated into an elastic knee band. The flexion–extension movement of the knee causes 

strain variations resulting deflection in the resonance wavelength of the FBG. Instead of 

optical power, the FBG sensor performed measurement based on the wavelength thus was 

less sensitive to external noise and fluctuations in the optical source. Krehel et al. [1.160] 

designed an optical fiber based flexible force sensor that could be potentially be integrated 

into textiles. In the presence of an external force, the optical fiber experiences an elliptical 

deformation along the plane of its cross section. This deformation causes increased deflection 

of light within the fiber resulting reduced light intensity at the output, from which the force 

can be estimated. The sensor is flexible and can be integrated into textile for detecting 

moderate to strong forces corresponding to, for example, limb motion, and respiratory rate. 

However, the sensor is sensitive to temperature, causing inaccuracies in the measured data. 

Table 1.8 presents the summary of textile–based strain sensors.   
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Table 1.8.  Summary of textile–based strain sensors. 

Ref. Proposition Sensing mechanism Structure /Base Sensing material Gauge factor Stable strain 

range 

Applications 

[1.156] Textile–structured flexible 

strain sensor 

Contact resistance of 

fiber/ yarn/fabric 

Single warp 

fabric 

Carbon fiber 10–200 depending 

on fiber length 

Max 200% Wearable strain 

sensor 

[1.157] Textile–based strain sensor Contact resistance of 

conductive fiber 

loops 

Fabric with 

elastomeric 

yarns 

Silver coated polymeric 

yarn made loops 

0.75 40% Wearable strain 

sensor 

[1.153] Stretchable and Sensitive 

Strain Sensor 

Piezoresistive PDMS Ag nano–walls thin film 2 to 14 70% Finger movements 

[1.155] Textile–based strain sensor 

for monitoring the elbow 

and knee movements 

Piezoresistive Elastic yarns 

made from 

Lycra fiber 

wrapped with 

two polyester 

yarns. 

Carbon particles coated 

polyamide fiber twisted 

with polyester yarn  

~0.3 30% Flexion angle of 

elbow and knee 

movements 

[1.154] Stretchable strain sensor 

based on a metal 

nanoparticle thin film for 

human motion detection 

Piezoresistive PDMS Silver nanoparticle  2.5 20% Finger movements 

[1.159] Knee’s kinematic 

monitoring using single 

optical FBG sensor 

Fiber Bragg grating Optical Fiber Polymer encapsulated 

FBG sensor 

~0.8 0.04% Knee, finger 

movements, HR, RR 

[1.160] Force sensors based on light 

pipes in the form of 

multimode optical fibers 

made of copolymers. 

Loss of light due to 

deflection of the fiber 

with force 

Multimodal 

optical fiber 

Copolymers containing 

silicon and polyurethane  

  
Force sensing 

[1.152] Textile–based MEMS 

accelerometer 

Piezoresistive Cotton fiber Silver nanoparticles 7.796 ± 2.835 
 

Motion sensing 

[1.158] All–polymeric knitted textile 

strain sensor 

Piezoresistive Commercial 

Spandex yarn 

PU/PEDOT:PSS fibers 0.2 to 1 160% Knee bending 

movements 
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1.5 Regulatory concerns 

As portable health monitoring devices including smartphone–based systems and 

applications are increasing rapidly and becoming more pervasive in society, there is a 

growing concern about the safety issues and associated potential dangers [1.161],[1.162]. 

Concerns also remain among many researchers about whether and/or how a regulatory 

policy would be adopted and enforced by the government bodies such as the US Food and 

Drug Administration (FDA), or the Medicines and Healthcare Products Regulatory Agency 

(MHRA) in the United Kingdom (UK) [1.163],[1.164]. 

Many experts[1.165]–[1.173]have raised questions about the accuracy and reliability of 

smartphone–based health monitoring applications/systems, the vast majority of which 

reportedly lacked enough involvement of medical professionals during the design and 

evaluation phases. For example, in [1.167], the authors studied and tested a dermatology 

app called ‘Skin Scan’, which was found to recognize only 10.8% images correctly as high–

risk melanomas against 93 clinical images from the National Cancer Institute and 

Fitzpatrick’s Dermatology in General Medicine. Furthermore, in January 2017, a team of 

researchers [1.174] conducted a search for suitable apps in the iTunes App Store and 

Google Play that can assist people to deal with anxiety disorders and selected 52 apps for 

study. They found that 63.5% (33 out of 52) of the apps were reported as having no 

information about the intervention approach. In addition, no information related to the 

manufacturers’ professional credentials were available for more than two–thirds (35 out of 

52) of the applications. Only two out of the 52 anxiety apps were found to be thoroughly 

tested by the psychiatrists [1.174]. Therefore, cautious use of many of these applications 

was advised in [1.168],[1.170] due to their diagnostic inaccuracies and unreliability. Some 

of them are reported to be unsafe to use [1.166],[1.171],[1.172] and may even cause life–

threatening consequences [1.173]. Hence, adoption and enforcement of some regulatory 

policies were recommended by the experts [1.165],[1.169] to ensure accountability, data–

privacy, information security and patient welfare in terms of safety and diagnostic 

effectiveness. 
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Following the FDA’s release of a draft guideline for regulating mobile medical apps in 

2011, key experts in this industry expressed their expectations regarding the policies for 

medical apps [1.175]. These experts urged the FDA to draw a clear demarcation line 

between the medical apps and the fitness or wellness app, as well as between diagnosing 

apps and monitoring apps. They recommended for defining the risk–level threshold of 

regulatory significance for medical apps. They also suggested defining the boundaries of 

FDA regulations for apps serving as device accessories and making a guideline to deal with 

the modular applications. In February 2015, the FDA released the latest version of the 

guidelines defining the categories of smartphone–based healthcare applications that must 

require regulatory oversight [1.176]. According to the guideline, FDA will regulate only 

those medical applications that can turn a smartphone into a medical device such as 

ophthalmoscopes and dermatoscopes using external and/or internal sensors and devices. 

Regulatory oversight will also be applied to those applications that can be used as an 

accessory to the FDA–approved medical devices such as a smartphone–based ECG 

monitor. In short, regulatory oversight from the FDA is required if any application that can 

possibly affect the ‘performance or functionality’ of the FDA–regulated medical devices, 

and thus may pose a risk to patient safety. However, some mobile applications, although 

being a medical device by the definition, enjoy “enforcement discretion” as they pose a low 

risk to patients [1.176]. Regardless, all high–risk class III devices and about 75% of 

medium–risk Class II devices require clinical trials and/or other evidence to demonstrate 

their safety and compliance with the intended operation [1.162].  

However, if a device demonstrates substantially similar performance to an already 

approved and legally marketed device (predicate device), it may enjoy an exemption from 

new clinical trials upon proper evidence that shows the device has same intended use and 

technological characteristics as the predicate device [1.177]. In the case when the new 

device has different technological characteristics in terms of device safety and 

effectiveness—first, it must not raise any new concerns, and second, it must meet the 

minimum standards of the predicate device [1.177]. Nevertheless, there remain serious 

concerns about safety assurances in the process of device approval based on predicate 
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devices. Therefore, both the Institute of Medicine [1.178] and the U.S. Congress [1.179] 

understandably urged to curtail this approach of device approval. So far, the FDA has 

approved several healthcare applications developed for the mobile platform [1.180]. The 

diagnostic radiology app ‘Mobile MIM’ is the first such application ever available in iTunes 

stores [1.181]. This app allows a healthcare professional to view, assess and securely share 

images with patients, peers or partner institutions, thus reducing diagnosis and treatment 

delay. KardiaMobile (AliveCor, Inc.) is another FDA approved device that comes with an 

application, which can turn a smartphone into a portable single–lead electrocardiogram 

(ECG) machine [1.182]. Other FDA approved healthcare apps for smartphones include the 

iExaminer™ (Welch Allyn, Inc.) adapter for PanOptic™ Ophthalmoscope [1.183], 

BlueStar® (WellDoc, Inc.) for type 2 diabetes management [1.184], and ResolutionMD® 

(PureWeb Inc., Calgary, Canada) for viewing and assessing diagnostic images [1.185]. 

In Europe, according to the EU Medical Device Directive MDD 93/42/EEC [1.186], 

published on 14 June 1993 and amended in the Directive 2007/47/EC [1.187], any stand–

alone or combination of ‘instrument, apparatus, appliance, software, material or other 

article’ intended for healthcare purposes including diagnosis, monitoring, prevention and 

treatment will be considered be as ‘medical device’. Therefore, most smartphone–based 

healthcare applications including those that monitor and assess cardiovascular health, eye 

and skin health through imaging, and lung health, will fall under the umbrella of ‘medical 

device’ and thus require Conformité Européenne (CE) certification for marketing the 

product within the European Economic Area (EEA). The CE certification or ‘CE marking’ 

ensures the product’s conformity with the health, safety, and environmental protection 

standards set by the EU’s harmonization legislation [1.188]. For example, an Irish app 

ONCOassist™ [1.189] was designed as a decision support tool for professional oncologists 

at the point–of–care and incorporated prognostic tools, drug interaction checker, survival 

rate predictors for diseases such as breast cancer, colon cancer and lung cancer. In addition, 

this app also incorporated some algorithms to determine, for example, liver cirrhosis 

severity, level of consciousness, the prognostic score for patients with advanced Hodgkin 

lymphoma and appropriate dosage of chemotherapy agents based on patient’s body surface 
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area (BSA) and thereby, was considered as a medical device. ONCOassist™ received the 

CE certification in 2013 and displays the CE mark on its welcome screen.  

A new medical device regulation (MDR) [1.190] (EU) 2017/745 was published in the 

Official Journal of the European Union repealing the MDD 93/42/EEC on 5 May 2017. 

The new MDR brings previously unregulated non–medical and cosmetic devices under the 

umbrella of ‘medical device’, with many of them being reclassified as medium to high risk 

(such as class IIa, IIb and III) devices. The other key changes in the MDR over the MDD 

includes inclusion of medical purpose devices and active implantable medical devices 

(AIMD), requirements for the manufacturers to update clinical data, technical 

documentation, and labeling; and generate and provide detailed clinical data to validate 

safety and performance claims and enforce unique device identification (UDI) for tracking. 

A wider range of smartphone–based commercial healthcare apps will now be defined as 

the ‘medical devices’ according to the MDR that require the manufacturers, and app 

development companies to revisit their safety and quality control processes to ensure 

compliance with the new MDR, that was scheduled to be enforced on May 26, 2020. 

Although these changes are meant to ensure a much safer, transparent and sustainable 

regulatory framework for the consumer, changeover on such a scale in a limited timeframe 

is a mammoth task for manufacturers and regulatory bodies to achieve. Furthermore, the 

parting of the United Kingdom (UK) from the EU—popularly termed as ‘Brexit’—is 

causing more confusion for the manufactures in this already highly challenging task. It was 

unclear whether the UK would comply with EU regulations [1.191]. However, the UK 

Government, on 4 July 2017, vowed to work closely with the EU in terms of medicines 

regulation to ensure public health and safety even after leaving the EU [1.192]. In a recent 

statement, the UK’s Department of Health and Social Care declared that it will comply with 

the key elements of the MDR and recognize all medical devices approved for the EU market 

and CE–marked after leaving the EU, in the case a no Brexit deal is reached [1.193]. 

Currently, the Medicines and Healthcare Products Regulatory Agency (MHRA) of the UK 

complies with the existing Medical Device Directive (MDD) and defines any healthcare 

app or software as a ‘medical device’ based on the functionality or service it provides to 
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the users and the associated risks in terms of patient’s safety [1.194]. According to the 

MHRA, an app/software is most likely to be considered as a ‘medical device’ if it is 

designed to perform some calculations or run some algorithms on the raw data to detect, 

diagnose and prevent disease, or to monitor the course of a disease or injury. Apps that are 

intended for archiving records without modification, providing existing information, and 

making general recommendations for an expert’s advice, can safely be excluded from 

‘medical devices’ category. However, if the decision–support apps perform some 

calculations or interpret or interpolate the data and do not allow the clinicians to review the 

raw data, then such apps/software are highly likely to fall into the ‘medical device’ 

category. Apps that perform simple and straightforward calculations to track physical 

fitness such as heart rate, step–count or BMI (body mass index) are not considered as 

‘medical devices’. However, apps/software that perform complex calculations, for 

example, to determine medicine doses can potentially fall into the high–risk class III 

‘medical device’ category [1.195]–[1.197]. The MHRA recommends the users to use a CE 

marked medical purpose app to ensure user safety.  

In order to receive a ‘CE mark’ for the medical purpose apps—a ‘medical device’ by the 

MDD 93/42/EEC—the manufacturers need to identify the class of the device based on the 

perceived risk associated with it and select the corresponding conformity assessment 

procedure. The conformity assessment procedure ensures tighter control to be applied to 

the device in the case of higher perceived risks associated with it. Next, the manufacturer 

prepares a document that generally includes the technical details about the design and 

manufacturing process of the device as well as the intended operation of the product to 

demonstrate the product’s compliance with the MDD 93/42/EEC. For a low–risk i.e., class 

I device, the manufacturer can self–declare the device's compliance with the Directive. For 

class IIa devices, manufacturers must also declare the device's compliance with the 

corresponding regulatory requirements of the Directive. Additionally, class IIa devices as 

well as class IIb and class III devices must require a notified body (NB) to carry out a 

detailed conformity assessment and receive a ‘Declaration of Conformity’ certificate from 
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the NB to submit as an evidence of the app/software’s being compliant with the MDD 

93/42/EEC [1.186]. 

However, It was argued in a report to the U.S. Congress of the Global Legal Research 

Center that the ‘CE mark’ on a medical device does not necessarily ensure the quality of 

the device in terms of its performance and clinical effectiveness, rather it merely shows its 

compliance with the EU legislation [1.198]. Medical devices in the EU are approved based 

on the safety and performance standards, and demonstration of the devices’ clinical efficacy 

is not required by the MDD [1.162]. However, the new MDR, which is scheduled to be in 

force in 2020 has put more emphasis on clinical trials and evidence [1.190]. On the other 

hand, the US Food and Drug Administration (FDA) requires the devices to ensure not only 

the safety and performance, but also their clinical efficacy [1.199]. Furthermore, only one 

organization, the FDA, governs the entire process of device approval in the US. While this 

ensures better surveillance on the regulatory processes, however, often it turns out to be an 

expensive, rigid and lengthy process for manufacturers [1.200]. In contrast, in the EU, the 

manufacturers can flexibly appoint one of the many EU approved private, for–profit 

‘notified bodies’ to assess and approve the devices in terms of regulatory standards, thus 

expediting the process for obtaining a ‘CE’ mark, but this may be, at a potential risk of 

compromised safety [1.201],[1.202]. In addition, some ‘high–risk’ medical devices 

developed, for instance, by an academic institution, can likely be distributed 

through/among the associated entities for non–commercial use without a CE mark, whereas 

in the US, prior FDA–approval is necessary before distribution [1.203]. However, the 

approval process of medical devices based on the predicate device and without rigorous 

new clinical evidence can deter the manufacturers to carry out expensive and time–

consuming clinical trials, which not only raise concerns in terms of device safety and 

efficacy but also may lessen the scope of device improvement and innovation [1.203]. 

While the US and the EU represent 40% of the global markets for medical devices [1.204], 

other markets such as Canada, Australia, and Japan have their own regulatory bodies to 

enforce regulatory policies for medical devices. Health Canada, for example, categorizes 

the medical devices into four classes from, Class I to Class IV, based on the risks associated 
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with the devices [1.205]. Prior to marketing a medical device in Canada, the manufactures 

or the distributors must apply for and receive the Canadian Medical Device License (MDL) 

for class II, III, and IV devices and the Medical Device Establishment License (MDEL) for 

class I devices [1.205]. However, the information required to file an application for Health 

Canada approval is approximately the same as that required in the US and EU [1.206]. On 

the other hand, Australia’s Therapeutic Goods Administration (TGA) relies mostly on the 

EU regulations and CE mark certification from the European NBs before granting approval 

to market medical devices there [1.207]. Recently, Australia’s TGA decided to begin 

recognizing registrations and certifications from additional foreign medical device 

regulators including US FDA, Health Canada, the Japanese Pharmaceutical and Medical 

Devices Agency (PMDA) [1.208]. 

In 2014, the International Medical Device Regulators Forum (IMDRF) launched the 

Medical Device Single Audit Program (MDSAP) pilot to develop an efficient and 

standardized global directive to auditing and monitoring medical devices [1.209]. The 

regulatory bodies participating in this program include TGA of Australia, Agência 

Nacional de Vigilância Sanitária (ANVISA) of Brazil, Health Canada, the U.S. FDA, and 

the Ministry of Health and Labor and Welfare (MHLW) of Japan, while the EU participated 

as an observer [1.209]. TGA has recently decided to recognize registrations and 

certifications from MDSAP auditing organizations [1.208]. Starting in January 2019, 

Health Canada also planned to discard the Canadian Medical Device Conformity 

Assessment System (CMDCAS) and replace it with the MDSAP certification. In fact, 

Health Canada urged the MDL holders to submit evidence for MDSAP transition from 

CMDCAS and/or MDSAP certificates by the 31st December 2018 [1.210]. 

1.6 Research contributions and thesis organization 

The research work conducted in this thesis aims at developing highly accurate yet 

computationally efficient algorithms and low–cost, unobtrusive devices with potential 

predictive capability to realize reliable health monitoring in the wearable platform. This 

research particularly focuses on developing monitoring solutions for cardiovascular health 
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and mobility i.e. health of the lower–limb — two key factors that are strongly associated 

with the human aging process. The major contributions of this work are summarized as 

follows: 

Design, implementation, and validation of a three–stage sensor fusion algorithm. A 

gradient descent approach was used to estimate the gyroscope integration drift, which was 

subtracted from the cumulatively integrated gyroscope data to obtain the orientation of the 

IMU in real time. The roll and pitch angles were obtained from the first stage, whereas the 

second and third stages outputs a coarse and fine estimate of yaw angle, respectively. Since 

the estimation was obtained primarily from the gyroscope data, the estimated orientation 

was least affected by the external acceleration and magnetic disturbances. This 

complementary filter–based orientation estimation method is presented in Chapter 2. 

Design, implementation, and validation of a two–stage sensor fusion algorithm for 

real–time estimation of lower–limb joint angles. The drift in the cumulatively integrated 

gyroscope data was estimated in real–time using a gradient descent approach that was 

subsequently used to correct the inclination of the IMU sensors. The roll and pitch angles 

thus obtained for each sensor mounted above and below the joint were then fused in the 

second stage to obtain a real–time estimate of joint angle by exploiting a gradient descent 

method. Since the joint angles were estimated primarily from the gyroscope data and 

without incorporating any magnetic field measurement, the joint angles thus obtained were 

least affected by the external acceleration and insensitive to magnetic disturbances. This 

two–stage sensor fusion algorithm for real–time monitoring of lower–limb joints is 

presented in Chapter 3. 

Development of a simple, low–cost and non–invasive gait analyzer. The analyzer uses 

low–cost, wireless and miniature micro–electromechanical sensor based IMUs to obtain 

acceleration and angular velocity of walking from both legs. The information thus obtained 

are used to quantitatively identify the healthy gait corresponding to gender and age, and 

can thereby evaluate an individual’s gait with respect to the baseline characteristics of 

his/her peer group. The gait features obtained from the apparently healthy subjects were 
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further analyzed, forming two distinct clusters in the baseline gait characteristics 

corresponding to gender and age. This simple and inexpensive gait analyzer can potentially 

be transformed into a portable and continual remote monitoring tool to evaluate and early 

diagnose the decline of the musculoskeletal or cognitive health of the user, thus facilitating 

healthy aging at home. This simple, low–cost and computationally efficient gait–analyzer 

is presented in Chapter 4. 

Development of flexible and dry capacitive electrodes, a two–electrode wireless ECG 

monitoring system and an automatic detection method of anomalous ECGs. The 

capacitive–coupled dry electrodes can measure ECG signals over a textile–based interface 

material between the skin and electrodes. The flexible nature of the sensing part reduces 

motion artifacts and makes it suitable for long–term monitoring of cardiovascular health. 

Furthermore, the use of virtual ground in designing the electrodes enables realizing a two–

electrode ECG system instead of conventional three–electrode systems used in the portable 

ECG devices. The raw ECG signals obtained from the electrodes are transmitted to a 

computer by a data acquisition system over Bluetooth medium. A software application was 

developed to process, store and display the ECG signal in real time. An algorithm was 

developed separately as a potential extension of the software to realize automatic 

identification of Atrial Fibrillation (AFib) from short single–lead traces. Design of this 

flexible and dry capacitive electrode and a wireless ECG monitoring system with automatic 

anomaly detection capability is presented in Chapter 5. 

A study on the association between human gait and cardiac activities. The gait 

characteristics and the cardiac activity are measured using wearable IMUs and a single–

lead handheld ECG monitor. The gait asymmetry between two legs and variation in the gait 

show good association with some key cardiac parameters and physical parameters. These 

Quantitative association between gait and heart can potentially lead towards realizing a 

low–cost in–home personal monitoring tool for early detection of signs associated with 

CVD–related changes in gait features before the actual CVD symptoms are manifested. We 

investigate the association between human gait and cardiac activities in Chapter 6. 
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In addition, an introduction to smart health–monitoring system as a potential application of 

the IoT is presented in Chapter 1. Then, the motivation of developing computationally 

efficient algorithms and low–cost, unobtrusive devices is presented. The framework of a 

complete smart health–monitoring system is presented. The concerns regarding the 

interoperability of devices and the recent efforts on developing standardized platform are 

discussed. A comparative discussion on the recent research activities in portable and 

wearable sensors and devices for cardiovascular health and activity monitoring is presented 

that is followed by a brief discussion on the regulatory concerns associated with the 

portable and smartphone–based health monitoring systems. Finally, a summary of the main 

contributions of this research and the structure of this thesis are given. In Chapter 7, this 

thesis is concluded with a summary of the research and several recommendations for future 

research possibilities in the field of smart wearable health–monitoring systems.  
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Chapter 2  

A robust orientation filter 

Rapid advances in the micro–electromechanical systems (MEMS) technology have enabled 

us to realize low power, low cost and highly sensitive miniature sensors and actuators. 

MEMS–based magnetic field measurement devices (magnetometers) and inertial 

measurement devices such as accelerometers and gyroscopes have become an integral part 

of many consumer applications such as smartphones, automobiles, flying drones and fitness 

trackers [2.1]–[2.3]. In fact, the global market penetration of smartphones is increasing 

rapidly and is expected to exceed 3.8 billion by 2021 [2.4]. In addition, Magnetic and 

Inertial Measurement Units (MIMU) are expected to be an integral part of smart devices 

and systems in the upcoming era of Smart Home technologies, Internet–of–Things (IoT), 

and Internet–of–Everything (IoE) [2.5],[2.6]. Therefore, the integrated MIMU, when 

coupled with present–day energy efficient and high–speed computing and communication 

technologies, can enable continuous and in–home monitoring and assessment of activity, 

mobility, fitness and overall health of people without interrupting their daily living 

[2.1],[2.7],[2.8]. Furthermore, these miniature and low–power MIMUs, if integrated with 

smart textiles may potentially pave the way for unobtrusive remote monitoring of elderly 

health, allowing the healthcare personnel to monitor, assess and keep record of the overall 

health condition of individuals in terms of their fitness, activity, mobility and rehabilitation 

from distant facilities [2.1],[2.7],[2.8]. 

---------------------------------------------- 

* Adapted from S. Majumder and M. J. Deen, "A Robust Orientation Filter for Wearable Sensing Applications," 

in IEEE Sensors Journal, doi: 10.1109/JSEN.2020.3009388. (Appendix A) 



Ph.D. Thesis – S. Majumder                              McMaster University - Electrical and Computer Engineering 

 

46 

 

A MIMU–based gait analyzer can be one such tool to measure and analyze human gait 

characteristics, which is reported to have a strong association with health condition 

[2.1],[2.6]. For example, among middle–aged adults, slow walkers are found to be more 

vulnerable to die from heart failure than the brisk walkers of the same age group [2.8]. In 

addition, gait parameters such minimum foot clearance (MFC), step length, and step time 

as well as the variability in these parameters can provide useful predictive information 

about an individual’s health [2.10],[2.11]. However, the orientation of the on–body MIMUs 

for gait analysis are arbitrary. Therefore, estimation and correction of the sensor’s 

orientation is critical for accurate assessment of the gait parameters.  

The orientation of the sensor can be represented by the Euler angles or Quaternions. The 

roll (𝛷) and pitch (𝜃) orientations of the sensor can ideally be obtained from a tri–axial 

accelerometer from its orientation with respect to the direction of the gravity, whereas a 

tri–axial magnetometer can be used to obtain the yaw (𝜓) of the MIMU by measuring the 

geomagnetic field. Furthermore, all three orientations can ideally be obtained by integrating 

the angular velocity around the three axes measured by a tri–axial gyroscope. 

However, the accelerometer and magnetometer measurements are highly susceptible to 

noise due to external vibrations and magnetic disturbances, respectively. In particular, the 

magnetic field generated by ambient ferromagnetic materials can dominate the relatively 

weak geomagnetic field and thus can introduce large errors in the estimated orientation. In 

addition, estimation of orientation solely from the gyroscope is not reliable due to the drift 

introduced during integration. Nevertheless, measurement acquired by all three sensors can 

be exploited to obtain a more accurate estimation of orientation.  

2.1 Related works 

In a typical orientation filter, measurements acquired by the accelerometers, gyroscopes 

and magnetometers are combined to obtain an estimate of the device orientation. However, 

an efficient sensor fusion algorithm in terms of ease of implementation and computational 

complexity is critical for real time systems. Many researchers used Kalman filter–based 

approaches for orientation estimation [2.12]–[2.16]. For example, an Extended Kalman 

Filter (EKF) was used in [2.12] to estimate the attitude of a body–worn MIMU. There, they 
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determined the global frame from the accelerometer and magnetometer measurements and 

exploited the Gauss–Newton techniques to bring the arbitrary attitude (roll and pitch) 

measured by the gyroscopes closer to global frame by minimizing the error in the 

quaternion. However, the measurement equations obtained in [2.12] were complicated, 

non–linear and computationally intensive, thus making the approach unfeasible for real 

time applications. These issues were addressed in [2.13], where the authors computed the 

quaternion from the accelerometer and magnetometer data using a previously reported 

quaternion estimator (QUEST) [2.17]. The computed quaternion along with the gyroscope 

measurements were afterwards fed to the input of the Kalman filter. Although the QUEST 

algorithm introduced some complexities to the approach, the overall computational cost 

reduced due to the linear nature of the measurement equations. However, linearization can 

make the system sensitive to initial conditions and may cause issues with convergence and 

stability, particularly at a low sampling rate [2.18]. In addition, none of the above 

approaches compensate for external acceleration and magnetic disturbances.  

In [2.14], an adaptive approach for orientation estimation was proposed that used a 

quaternion–based indirect Kalman filter to estimate the external acceleration, which was 

then compensated by increasing the measurement noise covariance. However, the authors 

did not compensate for the magnetic disturbances and did not report the accuracy of the 

estimated attitude and heading. In [2.15] and [2.16], the researchers performed 

observability analysis to identify large disturbances in measured acceleration and magnetic 

field. The information thus obtained were incorporated in an EKF–based approach to 

improve the accuracy of the estimated orientation. In fact, Kalman filter based approaches 

are considered as a superior tool for sensor fusion, motion prediction and filtering in terms 

of speed and accuracy [2.19]. However, the Kalman filter based approaches require 

experimentally determining its parameters such as the covariance matrices of process noise 

and measurement noise. In addition, its inherent computational complexity that arises from 

the inversion of large matrices can significantly reduce the battery life of the portable and 

wearable systems [2.20],[2.21].   
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Complementary Filter (CF)–based estimation approaches, on the other hand, are 

computationally efficient and require only a few tuning parameters. It estimates the 

orientation by combining information from at least two separate sources, 

1) accelerometer and magnetometer data, that are contaminated with noise and disturbances 

but free from drift problems, and  

2) gyroscope data, which are least affected by the high frequency noise, however, suffers 

from low–frequency drift [2.20],[2.22].  

Such a CF–based approach was proposed in [2.22], where the reference gravity and 

magnetic field information in the global reference were projected on the sensor frame and 

subtracted from the actual measurements to calculate the error. This error information was 

used to correct the gyroscope data and obtain an estimate of the quaternion. A somewhat 

similar approach was used in [2.23], where the estimation was made by minimizing the 

calculated error using a gradient descent algorithm. However, neither of the above approach 

addressed the disturbances present in the measured acceleration and magnetic field.  

A quaternion–based adaptive orientation filter was proposed in [2.24], which used an 

algebraic approach to minimize the effect of magnetic disturbances in the attitude 

estimation. The impact of external acceleration on the estimation of heading was minimized 

by adopting an adaptive gain control approach. However, the authors tested their 

orientation filter in the presence of a short burst of external acceleration that lasted for only 

four seconds. In [2.25], an external acceleration detector was designed to identify the 

dynamic condition of the body. In the case when an external acceleration due to the 

movement of the body was detected, the gain of the filter was adjusted accordingly to 

compensate for the external acceleration. A CF–based approach for external acceleration 

compensation was proposed in [2.26], where they estimated and compensated the external 

acceleration separately, outside of the attitude estimator. The filter’s performance was 

validated with a rotating turntable. However, the performance of the filter in complex 

dynamic situations was not tested. In a two–step complementary filter implemented in 

[2.27], the authors exploited a state–machine based approach to mitigate the effect of 

external acceleration and magnetic disturbance. The performance of the system was 
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validated in different dynamic conditions including daily–living environments and 

magnetically distorted conditions. 

2.2 Proposed orientation filter 

In this work, we propose a three–stage complementary filter that estimates the orientation 

of the MIMU by estimating and compensating for the integration drift from the gyroscope 

measurements, making the estimation least affected by the external acceleration and 

magnetic disturbances. In the first stage, the drift in the roll and pitch are estimated from 

the accelerometer and gyroscope data, which are subtracted from the roll and pitch obtained 

by integrating the gyroscope measurements along the x– and y–axes, respectively. A crude 

estimation of the yaw was made in the second stage by fusing the magnetometer 

measurements and the information obtained from the first stage. Finally, a similar approach 

to the first stage was used to combine the output of the second stage and the gyroscope data 

(z–axis) to improve the estimation accuracy of the yaw. The block diagram of the proposed 

orientation filter is shown in Figure 2.1. 

 

Figure 2.1 Proposed three–stage orientation filter. 

2.2.1 Stage one: Estimation of Roll and Pitch 

The angular velocity 𝜔𝑚 of the device about the 𝑥, 𝑦 and 𝑧 axes are measured with a tri–

axial gyroscope, and it is expressed as, 

𝜔𝑚  = [𝜔𝑚𝑥 𝜔𝑚𝑦 𝜔𝑚𝑧].                                                  (2.1) 

The orientation of the sensor 𝜑𝑚 can be obtained by integrating 𝜔𝑚 over time, i.e. 
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𝜑𝑚 = [𝛷𝑚 𝜃𝑚 𝜓𝑚] = ∫ 𝜔𝑚𝑑𝑡 = ∑ 𝑇𝜔𝑚,𝑖

𝑡𝑓−𝑡𝑖
𝑇

⁄

𝑖=1

𝑡𝑓
𝑡𝑖

  , 

                     (2.2) 

where, 𝛷𝑚, 𝜃𝑚 and 𝜓𝑚 represent the roll, pitch, and yaw of the device, respectively, and 𝑇 

is the sampling interval of the gyroscope. However, the gyroscope measurement drifts over 

time, which along with the measurement noise accumulate during integration. This causes 

the calculated orientation to drift over time. Therefore, at any given time, 𝜑𝑚 can be 

expressed as, 

𝜑𝑚 = 𝜑𝑡𝑟 + 𝜑𝑑𝑟,                                                      (2.3) 

where, 𝜑𝑡𝑟 is the true orientation and 𝜑𝑑𝑟 denotes the amount of drift in the measured 

orientation from the gyroscope. Eq. 2.3 can be rearranged as, 

𝜑𝑑𝑟 = 𝜑𝑚 − 𝜑𝑡𝑟.                                                      (2.4) 

Eq. 2.4 allows for formulating an optimization problem, where 𝜑𝑑𝑟 may be obtained as the 

solution to the Eq. 2.5, 

min
𝜑𝑑𝑟∈ ℜ

𝑓(𝜑𝑑𝑟 , 𝜑𝑚, 𝜑𝑡𝑟),                                                (2.5) 

where, the optimization problem is defined as Eq. 2.6. 

            𝑓(𝜑𝑑𝑟 , 𝜑𝑚, 𝜑𝑡𝑟) = 𝜑𝑑𝑟 − (𝜑𝑚 − 𝜑𝑡𝑟).                              (2.6) 

The drift, 𝜑𝑑𝑟 can be estimated iteratively by using the gradient descent algorithm with an 

initial orientation, 𝜑𝑑𝑟,0 and a step–size 𝛽, as presented in Eq. 2.7. 

𝜑𝑑𝑟,𝑘+1 = 𝜑𝑑𝑟,𝑘 − 𝛽
∇𝑓(𝜑𝑑𝑟 , 𝜑𝑚, 𝜑𝑡𝑟)

‖∇𝑓(𝜑𝑑𝑟 , 𝜑𝑚, 𝜑𝑡𝑟)‖
  .        𝑘 = 1,2,3… 

 (2.7) 

Here, ∇𝑓 denotes the gradient of the solution surface and is given by, 

∇𝑓(𝜑𝑑𝑟 , 𝜑𝑚, 𝜑𝑡𝑟) = 𝐽𝑇(𝜑𝑑𝑟)𝑓(𝜑𝑑𝑟 , 𝜑𝑚, 𝜑𝑡𝑟),                              (2.8) 

where, 𝐽 is the Jacobian of the objective function 𝑓(𝜑𝑑𝑟 , 𝜑𝑚, 𝜑𝑡𝑟). 

The drift, 𝜑𝑑𝑟 evolving from the integration of the gyroscope measurements is independent 

of the true orientation 𝜑𝑡𝑟. Ideally, 𝜑𝑡𝑟 can be obtained from the accelerometer; however, 

is contaminated with external noise and disturbances. Therefore, the Jacobian 𝐽 can be 

presented as,  
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𝐽𝑇(𝜑𝑑𝑟) = 1 −
𝜕𝜑𝑚

𝜕𝜑𝑑𝑟
. 

                  (2.9) 

Assuming that the sensor undergoes a small incremental change in the orientation at every 

sample, the Eq. 2.9 can be approximated as, 

𝐽𝑇(𝜑𝑑𝑟) ≈ 1                                                    (2.10) 

Consequently, Eq. 2.8 can be simplified as,  

∇𝑓(𝜑𝑑𝑟 , 𝜑𝑚, 𝜑𝑡𝑟) ≈ 𝑓(𝜑𝑑𝑟 , 𝜑𝑚, 𝜑𝑡𝑟).                             (2.11) 

Therefore, Eq. 2.7 can be rearranged as      

𝜑𝑑𝑟,𝑘+1 ≈ 𝜑𝑑𝑟,𝑘 − 𝛽 (𝜑𝑑𝑟,𝑘 − (𝜑𝑚,𝑘 − 𝜑𝑡𝑟,𝑘)) , 𝑘 = 1,2,3…               (2.12)  

where,  

                          𝜑𝑚,𝑖 = ∑ 𝑇𝜔𝑚,𝑖
𝑘
𝑖=1 ,                                                   (2.13) 

and 

𝛷𝑡𝑟,𝑘 = arctan (
𝑎𝑦,𝑘

𝑎𝑧,𝑘
) , roll

𝜃𝑡𝑟,𝑘 = −arctan

(

 
𝑎𝑥,𝑘

√𝑎𝑦,𝑘
2 + 𝑎𝑧,𝑘

2

)

 . pitch

 (2.14) 

                                                                         

Here, 𝑎𝑥,𝑘, 𝑎𝑦,𝑘 and 𝑎𝑧,𝑘 are the 𝑘–th measurements from the accelerometer along the 𝑥, 𝑦 

and 𝑧 axes, respectively. Then, the drift–free estimate of the roll and pitch angle �̌�𝑡𝑟,𝑘+1can 

be obtained by, 

        �̌�𝑡𝑟,𝑘+1 ≈ 𝜑𝑚,𝑘+1 − 𝜑𝑑𝑟,𝑘+1.                                           (2.15) 

2.2.2 Stage two: Coarse estimation of yaw 

The drift–corrected roll (�̌�𝑡𝑟) and pitch (�̌�𝑡𝑟) information obtained in the first stage are 

used to calculate a quaternion, 𝑞𝑖𝑚𝑢, while assuming a zero rotation around the 𝑧–axis 

(Yaw), i.e.                                  𝑞𝑖𝑚𝑢 = 𝑓(�̌�𝑡𝑟),                                                           (2.16) 

where, �̌�𝑡𝑟 = [�̌�𝑡𝑟 �̌�𝑡𝑟 0]. A rotation by an amount of 𝑞𝑖𝑚𝑢 brings the sensor frame (𝐹𝑆) 

on the 𝑥– 𝑦 plane of the earth frame (𝐹𝐸), aligning the unit’s 𝑧–axis to the 𝑧–axis of the 
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earth frame. However, the orientation of the 𝑥– and 𝑦– axes of the sensor with respect to 

that of the earth’s frame (𝛼𝑁) remains unknown (Figure 2.2).  

 
  

(a) (b) (c) 

Figure 2.2 Aligning sensor frame to the earth frame. 

Let the measured magnetic field in the sensor frame be 𝒎 = [𝑚𝑥 𝑚𝑦 𝑚𝑧], then the 

magnetic field in the earth frame 𝒃 = [𝑏𝑥 𝑏𝑦 𝑏𝑧],  can be obtained by, 

[0 𝑏𝑥 𝑏𝑦 𝑏𝑧] = 𝑞𝑖𝑚𝑢 ⊗ [0 𝑚𝑥 𝑚𝑦 𝑚𝑧] ⊗ 𝑞𝑖𝑚𝑢
∗ .            (2.17) 

Now, αN can be obtained by rotating the resultant of the magnetic field vector on the 𝑥– 𝑦 

plane of the earth frame, 𝑏𝑥𝑦 towards the reference north, 𝑬𝑁 = [1 0 0], where 

  𝒃𝒙𝒚 = [𝑏𝑥 𝑏𝑦 0].                                               (2.18) 

Rotation of an object by an angle 𝛼𝑁 around a vector, �̂�𝑁 can be described by a 

quaternion 𝑞𝑚𝑎𝑔,  

 𝑞𝑚𝑎𝑔 = [cos
𝛼𝑁

2
, �̂�𝑁 sin

𝛼𝑁

2
]. (2.19) 

where, �̂�𝑁 can be obtained from the vector cross product of 𝒃𝒙𝒚 and 𝑬𝑁, i.e. 

�̂�𝑁 =
𝒃𝒙𝒚 ×  𝑬𝑁

‖𝒃𝒙𝒚 ×  𝑬𝑵‖
, 

(2.20) 

and the angle 𝛼𝑁 between 𝒃𝒙𝒚 and  𝑬𝑁 can be obtained from the vector dot product of 𝒃𝒙𝒚 

and 𝑬𝑁, i.e. 

 𝛼𝑁 = cos−1 (
𝒃𝒙𝒚 •  𝑬𝑁

‖𝒃𝒙𝒚‖‖𝑬𝑵‖ 
) = arctan (

|𝑏𝑦|

𝑏𝑥
) . 

(2.21) 

   

The orientation of the sensor 𝑞 can then be obtained by,  

                 𝑞 = 𝑞𝑚𝑎𝑔 ⊗ 𝑞𝑖𝑚𝑢 = [𝑞0 𝑞1 𝑞2 𝑞3].                         (2.22) 
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Finally, a coarse estimate of the yaw angle 𝜓𝑐 can be obtained from the quaternion 𝑞 

according to Eq. 2.23, 

𝜓𝑐,𝑘 = arctan(2(𝑞0,𝑘𝑞3,𝑘 + 𝑞1,𝑘𝑞2,𝑘), 1 − 2(𝑞2,𝑘
2 + 𝑞3,𝑘

2 ))            (2.23) 

2.2.3 Stage three: Fine estimation of yaw 

A similar approach to stage one is used in stage three to combine the information from the 

gyroscope with the output from the stage two to further improve the accuracy of the 

estimated yaw. The drifted yaw angle 𝜓𝑚,𝑘 can be obtained from the gyroscope by Eq. 

2.13, which along with the estimated yaw from the second stage, i.e. 𝜓𝑐,𝑘 = 𝜓𝑡𝑟,𝑘 were 

used in Eq. 2.12 to estimate the amount of drift in the yaw 𝜓𝑑𝑟,𝑘+1 = 𝜑𝑑𝑟,𝑘+1. Then, the 

drift–free estimate of the yaw angle �̌�𝑡𝑟,𝑘+1 can be obtained by, 

            �̌�𝑡𝑟,𝑘+1 ≈ 𝜓𝑚,𝑘+1 − 𝜓𝑑𝑟,𝑘+1.                                     (2.24) 

2.3 Performance evaluation 

The performance of the proposed orientation filter was evaluated under different conditions 

and compared with other approaches described in the literature. In this section, we present 

the performance of our proposed filter in terms of estimation accuracy, robustness against 

noise and disturbances, and its application in gait monitoring. 

2.3.1 Orientation estimation 

In order to evaluate the estimation accuracy of the proposed filter, we tested the designed 

filter on a publicly available benchmark dataset [2.28]. The dataset was collected by a set 

of sensors mounted on an AscTec “Pelican” quadrotor. The sensors include a forward–

looking camera, a downward–looking camera, and an inertial measurement unit, which 

measured the quadrotor’s acceleration, angular velocity and magnetic field along three 

axes. The sensor–mounted quadrotor was flown in one, two and three loops in an indoor 

space (10m ×10m ×10m) equipped with eight Vicon cameras mounted on the four sides 

of the ceiling walls. The Vicon system allowed for obtaining the ground truth orientation 

of the quadrotor.  
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Figure 2.3 Estimated integration drift in the roll and pitch angles. 

Figure 2.3 presents the drift estimated from the accelerometer data and the angular velocity 

measurements for the first set of data (‘1LoopDown’). The drift thus estimated is subtracted 

from the roll and pitch angles obtained by integrating the angular velocity around the 𝑥– 

and 𝑦– axes. This results into a drift free estimate of roll and pitch at the end of stage 1. 

Figure 2.4 presents the estimated roll and pitch at the end of stage 1 for the first set of data 

in comparison to the ground truth.  

 

Figure 2.4 Estimated roll and pitch at first stage with respect to the ground truth. 

A coarse estimate of the yaw angle was obtained at the end of stage 2. The accuracy of this 

coarse estimate was further improved by fusing the z–axis information of the gyroscope in 
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stage 3. Figure 2.5 shows the comparison of estimated yaw at the end stage 2 and stage 3 

in reference to the ground truth. 

 

Figure 2.5 Estimated yaw with respect to the ground truth. 

Similarly, the proposed orientation filter was used to estimate the roll, pitch and yaw from 

the two other experiments. The Root Mean Square Error (RMSE) of the estimated roll, 

pitch and yaw were computed for all three experiments and compared with respect to the 

published results (Table 2.1) [2.29]. It can be seen that the proposed orientation filter gives 

the best estimation accuracy for most cases.  

2.3.2 Filter robustness 

In the proposed filter, the orientation was calculated by estimating and correcting for the 

drift from the integrated gyroscope data. Since the gyroscope measurement is less likely to 

be affected by high–frequency noise, it is expected that the estimated orientation would be 

least affect by any external acceleration and magnetic disturbance. In this section, we 

analyze the robustness of the proposed filter in presence of external acceleration and 

magnetic disturbance. 

Table 2.1 Comparison of root Mean Square error in estimated orientation (radians)  

1loopDown 

 RMSE 

 Roll Pitch Yaw 

Our Work 0.0250 0.0208 0.1282 

[2.29]  0.0233 0.0209 0.1429 

On-board 0.0464 0.0369 0.3388 

EKF 0.0287 0.0284 0.1888 

Madgwick 0.0370 0.0336 0.2543 
 

2loopsDown 

RMSE 

Roll Pitch Yaw 

0.0245 0.0316 0.1199 

0.0292 0.0223 0.1309 

0.0338 0.0313 0.3182 

0.0314 0.0384 0.3345 

0.0470 0.0369 0.9229 
 

3loopsDown 

RMSE 

Roll Pitch Yaw 

0.0246 0.0336 0.1755 

0.0277 0.0202 0.2890 

0.0315 0.0329 0.3255 

0.0331 0.0392 0.3545 

0.0405 0.0360 1.3327 
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 External acceleration 

In order to verify the filter’s performance in the presence of external noise, we generated 

zero–mean white Gaussian noise and added it to the measured acceleration of the 

benchmark dataset. This allows for simulating contamination of the dynamic accelerometer 

data at different signal–to–noise ratio (SNR) levels for different durations. Figure 2.6 shows 

the accelerometer data along the 𝑥–axis contaminated at three different SNR levels, where 

the acceleration fluctuated from ±0.05g to ±1g.  

 

Figure 2.6 Accelerometer data contaminated at different noise levels. 

The error in the estimated roll and pitch with respect to the ground truth is shown in Figure 

2.7. It can be seen that the error increases somewhat when the contamination in the 

accelerometer data is high thus having a poor SNR. Nevertheless, the errors quickly 

converge to the same level as the external acceleration disappears. However, the RMSE for 

both the roll and pitch angles during the duration of the external acceleration change a little 

in comparison to the error presented in Table 2.1 for the actual accelerometer measurement. 

The RMS error of estimation in presence of external acceleration is presented in Table 2.2. 

It can be noted that, the presence of external acceleration does not affect the estimated yaw 

and thereby the error in the estimated yaw remains unchanged. This is due to the fact that 

the yaw estimation stage is fully decoupled from the first stage and does not rely on the 
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accelerometer measurement directly. It rather uses the estimated roll and pitch angles from 

the first stage and combines this information with the measured magnetic field and 

gyroscope measurement around the 𝑧–axis to obtain a fine estimate of yaw. 

 

Figure 2.7 Error in the estimated roll and pitch at different noise levels. 

  Magnetic disturbance 

In order to verify the filter’s performance in presence of magnetic disturbance, we 

generated low–frequency Gaussian noise and added it to the measured magnetic field along 

the all three axes of the benchmark dataset. This allows for simulating contamination of 

magnetic field data in dynamic condition for different durations. Figure 2.8 shows the 

magnetic field data contaminated with simulated low–frequency disturbances and Figure 

2.9 presents the error in the estimated orientation with respect to the ground truth.  

Table 2.2. RMSE (radians) in estimated orientation in presence of external acceleration. 

Noise duration Orientation SNR 

  0.1dB -15dB -25dB 

1s 

Roll 0.0192 0.0219 0.0103 

Pitch 0.0082 0.0108 0.0170 

Yaw 0.0345 0.0345 0.0345 

10s 

Roll 0.0122 0.0152 0.0335 

Pitch 0.0180 0.0237 0.0281 

Yaw 0.1154 0.1154 0.1154 
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Figure 2.8 Magnetic field data contaminated with simulated low–frequency disturbances. 

It can be seen that the estimated orientation angles and the error using the ground truth field 

and the externally disturbed magnetic field follow each other very closely, inferring a little 

effect of the external magnetic disturbance on the estimated yaw (See Figure 2.9). 

 
Figure 2.9 Error in the estimated orientation in the presence of magnetic disturbance. 

This is due to the fact that, the orientation is obtained by estimating and subtracting the drift 

from the gyroscope measurement, which are not affected by any external acceleration or 

magnetic disturbances. 
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In addition to the simulation, we also performed an experiment where a MIMU was 

mounted on a wooden wheel and placed a magnet near the wheel. As we rotated the wheel 

the ambient magnetic field measured by the magnetometer was disturbed when the MIMU 

came closer to magnet (Figure 2.10). The MIMU was positioned in such a way that it 

rotated around its 𝑧–axis. 

 

Figure 2.10 Magnetic field disturbance in presence of a magnet. 

The Euler angles were estimated using the proposed filter. It can be seen from Figure 2.11 

that the estimated yaw was little affected by the presence of external magnetic field and 

achieved a complete 360° rotation on every occasion. 

 

Figure 2.11 Estimated yaw using the proposed filter. 

2.3.3 Gait parameter estimation  

As discussed earlier, gait is strongly associated with our health condition. For example, 

people at the early onset of Parkinson’s tend to walk with short and shuffled steps 
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[2.6],[2.30]. In addition, gait speed was reported to be strongly associated with 

cardiovascular disease related mortality [2.31]. Furthermore, older adults with high 

variability in the minimum foot clearance (MFC) are vulnerable to falling [2.32]. MIMUs, 

however, pave the way for simple, low–power, and unobtrusive solutions for in–home gait 

monitoring and assessment. In the final set of experiments, the proposed orientation filter 

is used to estimate some key gait parameters such as gait speed, and step length. 

We mounted a MIMU from Mbientlab Inc (MetaMotionR) on an elastic band and attached 

the device on the top of a shoe (See Figure 2.12). The MIMU houses a set of sensors 

including a tri–axial accelerometer, a tri–axial gyroscope and a tri–axial magnetometer and 

can communicate with a Smartphone over the Bluetooth Low Energy Smart platform.  

  

(a) (b) 

Figure 2.12 Inertial measurement unit (a) commercial sensor (Mbientlab MetaMotionR) (b) 

mounting of the sensor. 

 Walk on plain surface 

We recruited two participants to walk on a well illuminated and obstacle free 10–meter–

long path at their preferred pace. The walking was video–recorded in an attempt to track 

the stride length for validation purposes. In order to minimize any possible bias, we 

repeated the experiment four times for each participant at different times of the day.  

The orientation information obtained from the proposed filter was used to correct the 

acceleration measured in the sensor frame by using,  

      𝒂 = 𝐑(𝜑)𝒂′                                                        (2.25) 

where, 𝒂′ = [𝑎𝑥
′ 𝑎𝑦

′ 𝑎𝑧
′ ], is the measured acceleration, 𝒂 = [𝑎𝑥 𝑎𝑦 𝑎𝑧],  is the 

orientation corrected acceleration in the earth’s frame, and 𝐑 is the 3 × 3 rotation matrix, 
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which is a function of the estimated orientation 𝜑. Therefore, an accurate estimation of 

orientation will result in an accurate rotation matrix.  

 

(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 2.13 Gait parameter estimation– a) measured acceleration b) orientation corrected 

linear acceleration along three dimensions, c) drift–corrected instantaneous velocity and 

d) estimation of stride length. 
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This will eventually lead to an accurate estimation of linear acceleration, velocity and 

distance.is a function of the estimated orientation 𝜑. Therefore, an accurate estimation of 

orientation will result in an accurate rotation matrix, which will eventually lead to an 

accurate estimation of linear acceleration, velocity and distance. The acceleration due to 

gravity, g, was subtracted from the corrected acceleration in the earth frame to obtain the 

linear acceleration. We employed a simple zero velocity update (ZUPT) approach while 

integrating the linear acceleration to obtain a drift–free estimate of velocity. The velocity 

thus obtained was then integrated to obtain the stride length. Figure 2.13 shows an example 

of measured acceleration, corrected acceleration, instantaneous gait speed, and forward 

displacement of the foot during walking. The results from all eight sets of experiments are 

presented in Table 2.3. The root mean square error (RMSE) of the calculated stride length 

is 1.64 cm. It can be seen that the average stride length remains consistent for each 

participant throughout the experiments. 

 Staircase climbing 

In another experiment, we asked a participant to climb a staircase with the MIMU sensor 

mounted on the top of the shoe as shown in Figure 2.12. The measured acceleration, angular 

velocity and magnetic field data were fed into the proposed orientation filter to obtain the 

three–dimensional trajectory of the staircase climbing. The measured magnetic field and 

acceleration during the staircase climbing were found to be contaminated with external 

disturbances at every step, with the acceleration reaching to as high as 8g. Figure 2.14 

 

Table 2.3 Experimental validation of stride length calculation. 

Subject Experiment Average Stride Length (cm) 

 True Calculated RMSE 

1 1 158 157  

 

 

 

1.64 

2 152 151 

3 158 157 

4 157 156 

2 1 126 123 

2 121 120 

3 126 123 

4 121 120 
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presents the photograph of the staircase and the estimated trajectory of the staircase 

climbing obtained from the proposed orientation filter. Each step of the staircase was 17 

cm high and 26 cm wide. We employed the simple ZUPT approach to calculate the height 

and length of each step of the staircase. The mean height and width of each step was 16.8 

cm and 26.1 cm, respectively with an RMSE of 8.7% and 8.5%, respectively. However, the 

accuracy of estimated dimensions can be further improved by using high–accuracy position 

estimation approaches such as adaptive threshold–based ZUPT [2.33] or a Kalman filter–

based approach [2.34].  

 

Figure 2.14 Photograph of the staircase and estimated trajectory of staircase climbing using the 

proposed orientation filter. 

2.4 Conclusions 

Inertial motion and magnetic field sensors have become an integral part of modern–day 

smart gadgets. They can potentially be important components in the forthcoming era of 

smart home technologies, Internet–of–Things (IoT), and Internet–of–Everything (IoE). 

These miniature, low–power sensors, coupled with high–speed computing and 

communication technologies may enable in–home monitoring and assessment of people’s 

gait pattern, mobility, fitness and overall health in a continuous fashion without interrupting 
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their daily living. However, the orientation of the on–body sensors can be arbitrary, and if 

it is not corrected, may result in inaccuracies in the estimation and assessment of gait 

parameters. In this work, we have designed, implemented and validated a three–stage 

sensor fusion algorithm that outputs sensor orientation in Euler angles. We estimated the 

drift in the integrated gyroscope data using a gradient descent approach and subtracted it 

from the integrated gyroscope data to obtain the orientation in real time. The inclusion of 

the third stage of yaw estimation increased the estimation accuracy. As the estimation was 

made primarily based–on the gyroscope data, the estimated orientation was observed to be 

least affected by external acceleration and magnetic disturbances. Due to the adoption of a 

complementary filter–based approach, the proposed algorithm is inherently 

computationally efficient and well suited for real–time applications. However, in order to 

demonstrate a fair comparison with other filters, the proposed algorithm was validated 

using a publicly available dataset, and it showed better results for most parameters. The 

robustness of the algorithm was further tested in the presence of simulated external 

acceleration and magnetic disturbances. Finally, the proposed filter was used to derive 

some key gait parameters, such as stride length, gait asymmetry, gait speed, minimum foot 

clearance and gait variation, from gait measurements, which show high conformity to the 

ground–truth values.  
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Chapter 3  

Real–time monitoring of lower–limb 

joints 

An IMU–based system for monitoring the lower–limb joint health can be a cost–effective 

solution to measure and analyze human mobility that is known to have a strong association 

with one's muscle strength, fitness and overall health [3.1]–[3.10]. For example, the range 

of motion (ROM) of the lower–limb joints (hip, knee and ankle) decreases significantly 

with the progression of age as a result of age–related deterioration of the musculoskeletal 

system [3.9], [3.11]. In addition, ROM of lower–limb joints can provide useful predictive 

information about the early onset of the knee and hip osteoarthritis, which are reportedly 

associated with an increased risk of death from cardiovascular disease (CVD) [3.9],[3.12]. 

Therefore, regular monitoring of lower–limb joints is critical to assess the health of the 

joint, gait and activity performance, rehabilitation following an injury, and the onset of 

osteoarthritis. At present, clinicians primarily use video imaging–based tracking systems 

for the assessment of lower–limb joints and gait [3.6],[3.9]. Although these systems can 

provide accurate and comprehensive information, they, however, require skilled 

manpower, specialized infrastructure with several mounted cameras, high computational 

resources for image processing and analysis, and large memory size for storage. Therefore, 

imaging–based systems are not particularly suitable for continuous and in–home 

monitoring of lower–limb joints. Many researchers also proposed alternative measures for 

monitoring knee joints using optical fiber sensors [3.13], [3.14], textile–based strain sensors 
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[3.15], and flexible conductive wire [3.16]. The performance of these optical and flexible 

sensors, however, deteriorates over time due to mechanical wear and tear. In addition, these 

solutions are obtrusive and thus are not suitable for long–term applications. 

There is a growing interest among researchers in using miniature and low–power IMUs to 

realize unobtrusive, accurate and sensitive joint monitoring systems [3.6], [3.17], [3.18]. 

Multiple IMUs can be embedded in a wearable platform and connected wirelessly through 

a Body Sensor Network (BSN) to enable real–time monitoring of lower–limb joint 

movement [3.1], [3.6], [3.8]. In this chapter, we present a two–stage complementary filter–

based approach to estimate the lower–limb joint angles from IMU data in real–time. 

3.1 Background 

In a typical IMU–based joint monitoring system, measurements acquired by the 

accelerometer, gyroscope and magnetometer of each IMU attached above and below the 

joint are combined to obtain an estimate of the joint angle. It is critical to develop an 

efficient sensor fusion algorithm for joint angle estimation in terms of ease of its 

implementation and computational complexity for real–time applications. 

Ideally, the absolute angles of the neighbouring limb–segments of a joint can be obtained 

by simply integrating the gyroscope data. However, the problem of estimating absolute 

angles by integrating gyroscope data arises from the presence of integration drift in the 

calculated angle resulting from the accumulation of noise over time. Therefore, some 

researchers attempted using only accelerometers for obtaining joint angles. For example, 

the authors in [3.19] estimated the knee joint angle by using four accelerometers where two 

accelerometers were attached to each limb segments above and below the joint. The 

difference of signals from two accelerometers attached to a segment was passed through a 

band–pass filter (BPF) to obtain the absolute angle of the segment. The absolute angles 

obtained from the two segments were subtracted to obtain the joint angle. However, the 

joint angle thus obtained still had a drift problem that was minimized by a second–order 

low–pass Butterworth filter. The drift was further improved by incorporating a high–pass 

filter (HPF) in conjunction with the low–pass filter (LPF). However, the proposed approach 
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suffers from poor estimation accuracy, particularly at lower gait speeds. In addition, the use 

of a number of filters may introduce significant delay in the system output. Furthermore, 

using four accelerometers to estimate the angle of one joint is not a feasible solution for 

wearable systems in terms of ease–of–use, comfort and power requirements. Another key 

problem of accelerometer–based joint monitoring systems is that accelerometers are 

sensitive to high–frequency noise and vibrations associated with gait events and muscle 

movements. In an attempt to avoid dependence on noisy accelerometer data, the authors in 

[3.20] developed a gyroscope–based algorithm to estimate joint angles. There, they 

identified the knee angle minima at every gait cycle, and then integrated the gyroscope data 

until the next knee angle minima to obtain a drift–free estimate of the joint angle. This 

model requires accurate detection of the knee angle minima at every stride that may limit 

the application of the algorithm, making it inappropriate for users who cannot extend their 

knee completely. However, this algorithm, as mentioned by the authors, can be useful for 

users who exhibit decreased swing flexion during gait. 

As discussed earlier, measurements by the accelerometer can be contaminated with external 

noise and disturbances but are free from drift problems [3.21], [3.22]. In contrast, 

gyroscope measurements are inherently robust against external high–frequency noise; 

however, may suffer from low–frequency drift. To deal with integration drift of the 

accelerometers and the low–frequency drift of the gyroscopes while estimating joint angles, 

researchers mostly exploited Kalman filter–based approaches. For example, an unscented 

Kalman Filter (UKF) was used in [3.23] to estimate joint angles using body–worn IMUs. 

There, they exploited the kinematic models developed for control of robotic arms and 

expressed the model in state–space form, which was later used in the UKF to track the joint 

angle. The algorithm can potentially be used with any combination of sensors and can 

handle sensor malfunction or missing information. However, the authors verified the 

performance of the algorithm with synthetic data only. Moreover, the equations for the 

process model and the observation model were complicated and non–linear, thus making 

the approach computationally intensive for real time applications.  

Kalman filter was used in [3.24] to estimate the roll and pitch of each IMU attached above 
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and below the joint. Then they took advantage of biomechanical constraints based on joint 

anatomy to estimate the knee joint angle. Although the authors reported achieving good 

accuracy with respect to the measurement from a standard camera–based system for knee 

joint estimation, the non–linear nature of Gauss–Markov process, which was used to model 

accelerations, angular velocity and gyro biases, can potentially make this method 

computationally intensive for real–time applications. A quaternion–based extended 

Kalman filter (EKF), derived from a first–order linear model of the human musculoskeletal 

system, was implemented for joint ROM tracking in [3.25]. The model expressed the 

motion dynamics of the human musculoskeletal system while assuming the limb segments 

as rigid bodies of three degrees of freedom (DOF) that move independently of each other. 

Unlike in [3.23] and [3.24], the linear nature of the measurement equations of the Kalman 

filter proposed in [3.25] can significantly reduce the overall computational cost, thus 

making the algorithm potentially suitable for real–time systems. However, linearization of 

the model may lead to a system that is sensitive to initial conditions and vulnerable in terms 

of convergence and stability, especially at lower sampling rates [3.22], [3.26]. 

Nevertheless, in applications such as motion tracking, signal filtering and sensor fusion, 

Kalman filter based methods generally offer superior performance in terms of accuracy and 

speed [3.21], [3.27]. However, one major concern for such Kalman filter–based approaches 

is their requirement of covariance matrices of process noise and measurement noise that 

need to be determined experimentally. Furthermore, Kalman filter requires inversion of 

large matrices that increases the computational complexity of the algorithm, and thereby 

can potentially adversely affect the computing time and the battery life of portable and 

wearable systems [3.22],[3.28].     

Complementary Filter (CF)–based techniques have the advantage of being computationally 

efficient because they exploit information from at least two separate sources to obtain a 

final estimate [3.22]. CF–based joint angle estimation techniques combines information 

from the gyroscope, accelerometer, and/or magnetometer to estimate the joint angle and 

thus overcome the limitations of each source. Such CF–based approaches were proposed 

in [3.29], [3.30], where the accelerometer and gyroscope data were fused to determine the 
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knee and joint angles. Similar to [3.24] they made use of biomechanical constraints based 

on the joint anatomy to simplify the formulation of the problem and assumed the dynamical 

acceleration is negligible with respect to the acceleration due to gravity. Although the 

acceleration due to gravity dominates the dynamic acceleration signals in most practical 

situations, this assumption is not valid at low frequencies.  

The authors in [3.31] addressed this problem and proposed a complementary filter–based 

method that exploited a previously published [3.32] acceleration propagation–based 

method for the low frequency regime and gyroscope data for high frequency estimation. In 

order to avoid dealing with a large estimation error due to magnetic disturbances from 

ambient ferromagnetic materials in the indoor measurements, most researchers 

understandably preferred to not use the magnetometer data when developing joint 

monitoring algorithms. However, the accelerometer data can get also contaminated by 

external acceleration associated with gait anomalies, prosthetic lower–limbs, scar and 

adipose tissue, particularly during the stance phase of the gait [3.20]. The presence of high 

external acceleration can lead to inaccuracies in the estimated joint angles. However, none 

of the above approaches compensate for external acceleration or assess its impact on the 

accuracy of the estimated joint angles. 

3.2 Proposed method 

In this work, we propose a two–stage complementary filter that can estimate the joint angles 

of the lower limb using the accelerometer and gyroscope data from two MIMUs attached 

above and below the joint. The accelerometer data is exploited in the first stage based–on 

an approach proposed in [3.22] to estimate and compensate for the integration drift in the 

roll and pitch of the IMUs obtained thorough integration of the gyroscope measurements 

around the x– and y– axes, respectively.  This approach allows for obtaining roll and pitch 

information of the IMUs from the gyroscope measurements, which are inherently robust 

against high–frequency noise and vibrations, thus making the estimation least affected by 

the external acceleration. In the second stage, the joint angle is estimated by fusing the 
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inclination (roll and pitch) information of both the MIMUs obtained in the first stage. The 

block diagram of the proposed orientation filter is shown in Figure 3.1. 

 
Figure 3.1 Proposed two–stage filter for joint angle estimation. 

3.2.1 Stage one: estimation of inclination 

Since the orientation of each IMU attached to the limb segments above and below the joint 

is arbitrary, it is first necessary to correct the sensor orientation. In the first stage, Filter–A 

estimates and corrects the orientation of the IMUs to align them with the earth’s reference 

frame. 

The angular velocity of the IMU above the joint (𝜔𝑚
𝑢 ) about the 𝑥, 𝑦 and 𝑧 axes are 

measured with a tri–axial gyroscope that can be expressed as, 

                  𝜔𝑚
𝑢  = [𝜔𝑚𝑥

𝑢 𝜔𝑚𝑦
𝑢 𝜔𝑚𝑧

𝑢 ].                                          (3.1) 

The three–dimensional orientation of this sensor 𝜑𝑚
𝑢  can be obtained by integrating 

𝜔𝑚
𝑢  over time, i.e. 

𝜑𝑚
𝑢 = [𝛷𝑚

𝑢 𝜃𝑚
𝑢 𝜓𝑚

𝑢 ] = ∫ 𝜔𝑚
𝑢 𝑑𝑡 = ∑ 𝑇𝜔𝑚,𝑘

𝑢
𝑡𝑓−𝑡𝑖

𝑇
⁄

𝑘=1

𝑡𝑓
𝑡𝑖

  ,                   (3.2) 

where, 𝛷𝑚
𝑢 , 𝜃𝑚

𝑢  and 𝜓𝑚
𝑢  represent the roll, pitch and yaw of the IMU above the joint, 

respectively, and 𝑇 is the sampling interval of the gyroscope. 

However, the measured angular velocity drifts over time, which is in addition to the 

measurement noise accumulates during the integration of the gyroscope data. This causes 
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the calculated orientation to drift over time. Therefore, at any given time, 𝜑𝑚
𝑢  can be 

expressed as, 

𝜑𝑚
𝑢 = 𝜑𝑡𝑟

𝑢 + 𝜑𝑑𝑟
𝑢 ,                                                  (3.3) 

where, 𝜑𝑡𝑟
𝑢  represents the true orientation and 𝜑𝑑𝑟

𝑢  is the amount of integration drift in the 

orientation obtained from the gyroscope. 

Eq. 3.3 can be rearranged as, 

𝜑𝑑𝑟
𝑢 = 𝜑𝑚

𝑢 − 𝜑𝑡𝑟
𝑢 .                                                (3.4) 

An optimization problem can be formulated from Eq. 3.4, where 𝜑𝑑𝑟
𝑢  may be estimated 

from the solution to the Eq. 3.5, 

min
𝜑𝑑𝑟

𝑢 ∈ ℜ
𝑓(𝜑𝑑𝑟

𝑢 , 𝜑𝑚
𝑢 , 𝜑𝑡𝑟

𝑢 ), (3.5) 

where, Eq. 3.6 defines the optimization problem. 

𝑓(𝜑𝑑𝑟
𝑢 , 𝜑𝑚

𝑢 , 𝜑𝑡𝑟
𝑢 ) = 𝜑𝑑𝑟

𝑢 − (𝜑𝑚
𝑢 − 𝜑𝑡𝑟

𝑢 ).                              (3.6)                                              

By exploiting the gradient descent algorithm with an initial orientation 𝜑𝑑𝑟,0
𝑢 , and a step–

size 𝐾𝑎, the drift 𝜑𝑑𝑟
𝑢  can be estimated iteratively as presented in Eq. 3.7. 

𝜑𝑑𝑟,𝑖+1
𝑢 = 𝜑𝑑𝑟,𝑖

𝑢 − 𝐾𝑎

∇𝑓(𝜑𝑑𝑟
𝑢 , 𝜑𝑚

𝑢 , 𝜑𝑡𝑟
𝑢 )

‖∇𝑓(𝜑𝑑𝑟
𝑢 , 𝜑𝑚

𝑢 , 𝜑𝑡𝑟
𝑢 )‖

  .        𝑖 = 1,2,3… 
     (3.7) 

Here, ∇𝑓 represents the gradient of the solution surface and is given by, 

∇𝑓(𝜑𝑑𝑟
𝑢 , 𝜑𝑚

𝑢 , 𝜑𝑡𝑟
𝑢 ) = 𝐽𝑓

𝑇(𝜑𝑑𝑟
𝑢 )𝑓(𝜑𝑑𝑟

𝑢 , 𝜑𝑚
𝑢 , 𝜑𝑡𝑟

𝑢 ),                         (3.8) 

where,  𝐽𝑓 represents the Jacobian of the objective function  𝑓(𝜑𝑑𝑟
𝑢 , 𝜑𝑚

𝑢 , 𝜑𝑡𝑟
𝑢 ). 

The drift, 𝜑𝑑𝑟
𝑢 ,  which evolves from the accumulation of noise during the integration of the 

gyroscope measurements is independent of the true orientation 𝜑𝑡𝑟
𝑢 . In the ideal case, 

𝜑𝑡𝑟
𝑢  can be obtained from the accelerometer. However, in practical and dynamic 

applications, accelerometer measurements are contaminated with external noise and 

disturbances. Therefore, the Jacobian 𝐽𝑓 of the objective function can be presented using 

Eq. 3.6 as,  

𝐽𝑓
𝑇(𝜑𝑑𝑟

𝑢 ) = 1 −
𝜕𝜑𝑚

𝑢

𝜕𝜑𝑑𝑟
𝑢 . 

(3.9) 

Assuming that the sensor undergoes a small incremental change in the orientation at every 

sample, then Eq. 3.9 can be approximated as, 
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𝐽𝑓
𝑇(𝜑𝑑𝑟

𝑢 ) ≈ 1.                                                  (3.10) 

Consequently, Eq. 3.8 can be simplified as,  

 ∇𝑓(𝜑𝑑𝑟
𝑢 , 𝜑𝑚

𝑢 , 𝜑𝑡𝑟
𝑢 ) ≈ 𝑓(𝜑𝑑𝑟

𝑢 , 𝜑𝑚
𝑢 , 𝜑𝑡𝑟

𝑢 ).                              (3.11) 

Therefore, Eq. 3.7 can be rearranged as   

𝜑𝑑𝑟,𝑖+1
𝑢 ≈ 𝜑𝑑𝑟,𝑖

𝑢 − 𝐾𝑎 (𝜑𝑑𝑟,𝑖
𝑢 − (𝜑𝑚,𝑖

𝑢 − 𝜑𝑡𝑟,𝑖
𝑢 )) ,    𝑖 = 1,2,3…                  (3.12)        

where,  

𝜑𝑚,𝑖
𝑢 = ∑ 𝑇𝜔𝑚,𝑘

𝑢

𝑖

𝑘=1

, 
(3.13) 

and 

𝛷𝑡𝑟,𝑖
𝑢 = arctan (

𝑎𝑦,𝑖

𝑎𝑧,𝑖
) , roll

𝜃𝑡𝑟,𝑖
𝑢 = −arctan

(

 
𝑎𝑥,𝑖

√𝑎𝑦,𝑖
2 + 𝑎𝑧,𝑖

2

)

 . pitch

 (3.14) 

Here, 𝑎𝑥,𝑖, 𝑎𝑦,𝑖 and 𝑎𝑧,𝑖 are the 𝑖–th measurements from the accelerometer along the 𝑥, 𝑦 

and 𝑧 axes, respectively. 

Then, the drift–free estimate of the roll and pitch angle �̌�𝑡𝑟,𝑖+1
𝑢  of the IMU above the joint 

can be obtained from 

�̌�𝑡𝑟,𝑖+1
𝑢 ≈ 𝜑𝑚,𝑖+1

𝑢 − 𝜑𝑑𝑟,𝑖+1
𝑢 .                                         (3.15) 

A drift–free estimate of the roll and pitch angle �̌�𝑡𝑟,𝑖+1
𝐷  of the IMU below the joint can also 

be obtained similarly and is given as 

�̌�t𝑟,𝑖+1
𝐷 ≈ 𝜑m,𝑖+1

𝐷 − 𝜑𝑑𝑟,𝑖+1
𝐷 .                                        (3.16) 

3.2.2 Second stage: estimation of joint angle 

For the healthy population, it is sufficient to assume that the flexion–extension of the lower 

limb joints such as hip, knee and ankle occurs only around the transverse axis of the body 

(𝑦–axis) [3.19]. Therefore, any movement of the IMUs around the vertical 𝑧–axis (Yaw) 

can be reasonably neglected.  
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(a) (b) 

Figure 3.2 Aligning sensor frame to the earth frame assuming no rotation around the vertical 𝑧–

axis. 

The drift–corrected roll (�̌�𝑡𝑟
𝑢 ) and pitch (�̌�𝑡𝑟

𝑢 ) information obtained in the first stage for the 

upper IMU are used to calculate a quaternion, 𝑞𝐸
𝑢 while assuming a zero rotation around 

the z–axis (Yaw), i.e.                 

𝑞𝐸
𝑢 = 𝑓(�̌�𝑡𝑟

𝑢 ) ,                                                    (3.17) 

where, �̌�𝑡𝑟
𝑢 = [�̌�𝑡𝑟

𝑢 �̌�𝑡𝑟
𝑢 0] and 𝑞𝐸

𝑢 = [𝑞0
𝑢 𝑞1

𝑢 𝑞2
𝑢 𝑞3

𝑢]. Assuming the device does not 

experience any rotation around the 𝑧–axis, a rotation by an amount of 𝑞𝐸
𝑢 aligns the upper 

IMU frame 𝐹𝑈, to the earth frame 𝐹𝐸 , (see Figure 3.2).  

Similarly, the drift–corrected roll (�̌�𝑡𝑟
𝐷 ) and pitch (�̌�𝑡𝑟

𝐷 ) information of the IMU below the 

joint obtained in the first stage are used to calculate a quaternion 𝑞𝐸
𝐷 , while assuming a zero 

rotation around the z–axis (Yaw), i.e.                 

           𝑞𝐸
𝐷 = 𝑓(�̌�𝑡𝑟

𝐷 ) ,                                                     (3.18) 

where, �̌�𝑡𝑟
𝐷 = [�̌�𝑡𝑟

𝐷 �̌�𝑡𝑟
𝐷 0] and 𝑞𝐸

𝐷 = [𝑞0
𝐷 𝑞1

𝐷 𝑞2
𝐷 𝑞3

𝐷]. 

The upper IMU frame, 𝑞𝐸
𝑢 rotates by 𝑞𝑢

𝐷 to align with the lower IMU frame 𝑞𝐸
𝐷 (See Figure 

3.3), i.e. 

𝑞𝐸
𝐷 = 𝑞𝐸

𝑢 ⊗ 𝑞𝑢
𝐷 ,                                                    (3.19) 

where, 𝑞𝑢
𝐷 = [𝑞𝑢0

𝐷 𝑞𝑢1
𝐷 𝑞𝑢2

𝐷 𝑞𝑢3
𝐷 ]. 
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 Figure 3.3 Rotation of the joint in the reference frame.  

Eq. 3.18 allows for formulating an optimization problem, where 𝑞𝑢
𝐷 may be obtained as the 

solution to the Eq. 3.20, 

min
𝑞𝑢

𝐷∈ ℜ
𝐺(𝑞𝑢

𝐷 , 𝑞𝐸
𝐷 , 𝑞𝐸

𝑢),                                           (3.20) 

where, the optimization problem is defined as Eq. 3.21. 

𝐺(𝑞𝑢
𝐷 , 𝑞𝐸

𝐷 , 𝑞𝐸
𝑢) = 𝑞𝐸

𝐷 − (𝑞𝐸
𝑢 ⊗ 𝑞𝑢

𝐷).                               (3.21) 

The quaternion corresponding to the joint angle 𝑞𝑢
𝐷 , can be estimated iteratively by using 

the gradient descent algorithm with an initial orientation, 𝑞𝑢,0
𝐷  and a step–size 𝐾𝑏, as 

presented in Eq. 3.22. 

𝑞𝑢,𝑖+1
𝐷 = 𝑞𝑢,𝑖

𝐷 − 𝐾𝑏

∇𝐺(𝑞𝑢
𝐷, 𝑞𝐸

𝐷 , 𝑞𝐸
𝑢)

‖∇𝐺(𝑞𝑢
𝐷, 𝑞𝐸

𝐷 , 𝑞𝐸
𝑢)‖

  .        𝑖 = 1,2,3… 
(3.22) 

 Here, ∇𝐺 denotes the gradient of the solution surface and is given by, 

∇𝐺(𝑞𝑢
𝐷 , 𝑞𝐸

𝐷 , 𝑞𝐸
𝑢) = 𝐽𝐺

𝑇(𝑞𝑢
𝐷)𝐺(𝑞𝑢

𝐷, 𝑞𝐸
𝐷 , 𝑞𝐸

𝑢),                        (3.23) 

where,  𝐽𝐺  is the Jacobian of the objective function 𝐺(𝑞𝑢
𝐷, 𝑞𝐸

𝐷 , 𝑞𝐸
𝑢). 

Considering the flexion–extension (𝛼) of the lower–limb joints (i.e. hip, knee and ankle) 

occur only around the 𝑦–axis of the earth frame, the quaternion 𝑞𝑢
𝐷 can be simplified as,  

𝑞𝑢
𝐷 = [𝑞𝑢0

𝐷 0 𝑞𝑢2
𝐷 0],                                          (3.24) 

 where  

𝛼 = 2arctan (
𝑞𝑢2

𝐷

𝑞𝑢0
𝐷 ). 

(3.25) 
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Then, Eq. 3.21 can be reorganized as, 

𝐺 =

[
 
 
 
 
𝑞0

𝐷 − 𝑞0
𝑢𝑞𝑢0

𝐷 + 𝑞2
𝑢𝑞𝑢2

𝐷

𝑞1
𝐷 − 𝑞1

𝑢𝑞𝑢0
𝐷 + 𝑞3

𝑢𝑞𝑢2
𝐷

𝑞2
𝐷 − 𝑞2

𝑢𝑞𝑢0
𝐷 − 𝑞0

𝑢𝑞𝑢2
𝐷

𝑞3
𝐷 − 𝑞1

𝑢𝑞𝑢2
𝐷 − 𝑞3

𝑢𝑞𝑢0
𝐷 ]

 
 
 
 

, 

(3.26) 

and the Jacobian 𝐽𝐺  of the of the objective function 𝐺(𝑞𝑢
𝐷 , 𝑞𝐸

𝐷 , 𝑞𝐸
𝑢) becomes 

𝐽𝐺(𝑞𝑢
𝐷) =

[
 
 
 
−𝑞0

𝑢 0 𝑞2
𝑢 0

−𝑞1
𝑢 0 𝑞3

𝑢 0

−𝑞2
𝑢 0 −𝑞0

𝑢 0

−𝑞3
𝑢 0 −𝑞1

𝑢 0]
 
 
 

. 

(3.27) 

Eq. 3.21, Eq. 3.25, and Eq. 3.26 are then combined to obtain a real–time estimate of the 

quaternion, 𝑞𝑢,𝑖+1
𝐷  corresponding to the joint angle. The joint angle can then be obtained by 

rearranging Eq. 3.25 as 

𝛼𝑖+1 = 2arctan (
𝑞𝑢2,𝑖+1

𝐷

𝑞𝑢0,𝑖+1
𝐷 ) . 

(3.28) 

Finally, 𝛼𝑖+1 is passed through a second–order Butterworth low–pass filter (cut–off 

frequency 10 Hz) to remove the high–frequency components from the estimated angle. 

3.3 Performance evaluation 

The performance of the proposed joint monitoring algorithm was evaluated at three 

different walking speeds and compared with the ground truth measurements obtained using 

a camera–based standard system. In this section, we present the performance of our 

proposed filter in terms of estimation accuracy and robustness against external acceleration. 

3.3.1 Joint angle estimation 

In order to evaluate the performance of the proposed algorithm, we tested the designed 

filter on a publicly available benchmark dataset [3.33], [3.34]. Four IMU sensors were 

attached on the trunk, thigh, shank and foot of each participant, who walked on the treadmill 

at four different speeds of  0.5 𝑚𝑠−1, 1.0 𝑚𝑠−1, 1.5 𝑚𝑠−1 and their own comfort. The 

participants wore a marker set of Strathclyde functional cluster model [3.34], [3.35] to 

enable video tracking of their gait phases. A twelve camera Vicon motion capture system 
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obtained the ground truth measurements of the lower–limb joints synchronously with the 

IMU data at a rate of 100 samples per second.  

 

 
Figure 3.4 Estimated integration drift in the roll and pitch angles. 

An instance of the integrated gyroscope data and the real–time estimate by Filter–A of the 

integration drift from the accelerometer data is presented in Figure 3.4. The integration drift 

thus obtained is subsequently subtracted from the roll and pitch angles obtained by 

integrating the gyroscope measurements around the 𝑥– and 𝑦– axes, respectively.  

 

  

Figure 3.5 Estimated roll and pitch at the end of first stage. 

Filter–A thus outputs a drift free real–time estimate of roll and pitch of the IMU. An 

example of the estimated roll and pitch of the IMU at the output of Filter–A is presented in 
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Figure 3.5. The estimated roll and pitch of both IMUs above and below the joint are fused 

in Filter–B, which then outputs the trajectory of the flexion–extension angle of the joint in 

real–time. An example of the estimated angles from each of the hip, knee and ankle joints 

at 0.5 𝑚𝑠−1 walking speed on a treadmill with respect to the ground–truth measurements 

obtained from the Vicon motion capture system is shown in Figure 3.6. The proposed joint 

monitoring method was tested using the IMU data obtained from three subjects, who 

walked on a treadmill at four different speeds of  0.5 𝑚𝑠−1, 1.0 𝑚𝑠−1, 1.5 𝑚𝑠−1 and their 

own comfort.  

 
(a) 

 
(b) 

 
(c) 

Figure 3.6 Estimated angles with respect to the ground truth for– a) thigh joint b) knee 

joint, and c) ankle joint. 
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The performance of the proposed filter was evaluated with respect to the camera–based 

system in terms of Root Mean Square Error (𝑅𝑀𝑆𝐸) and Pearson correlation coefficient 

(𝑟) that are presented in Table 3.1.  

Table 3.1 Performance of the proposed filter with respect to the ground truth. 

It can be seen that the proposed method yields a highly accurate estimate of the lower–limb 

joint angles, showing a good agreement to the ground–truth with a mean 𝑟 and mean 𝑅𝑀𝑆𝐸 

of 0.951 and 2.50°. In particular, the estimated knee and thigh joint angles shows excellent 

agreement with the ground–truth with a mean 𝑟 of 0.997 and 0.982, respectively, thus 

making the proposed algorithm a suitable candidate for realizing a wearable in–home 

monitoring system of lower–limb joints. In addition, the average 𝑟 for all joints at different 

speeds were found consistent. However, the average 𝑅𝑀𝑆𝐸 for all joints were observed to 

increase slightly (~0.4°) with a 0.5 ms–1 increase of the walking speed. Nevertheless, the 

𝑅𝑀𝑆𝐸 in all cases remain within the mean error limit of 5°, which is accepted by the 

American Medical Association as reliable measurements for clinical evaluation of 

movement impairments [3.36]. 

3.3.2 Filter robustness 

In the proposed knee joint monitoring method, the joint angle was calculated in the second 

stage using the roll and pitch of the IMUs obtained from the first stage. Since the proposed 

method does not use any magnetometer data for angle estimation, this approach is 

inherently insensitive to magnetic disturbances in the ambient magnetic field generated by 

ferromagnetic materials. In addition, the roll and pitch of the IMUs were obtained by 

estimating and adjusting for the drift in the integrated gyroscope data. Since the gyroscope 

measurements are inherently robust against high–frequency noise and vibration, the 

estimated orientation obtained at the output of the first stage, and thereby the joint angle 

estimated in the second stage is expected to be least affected by any external acceleration. 

Speed 0.5 ms-1 1.0 ms-1 1.5 ms-1 Average 
 RMSE r RMSE r RMSE r RMSE r 

Thigh 1.91 ° 0.978 2.61 ° 0.981 3.02 ° 0.983   

Knee 1.73 ° 0.996 1.94 ° 0.997 2.07 ° 0.997 2.50 ° 0.951 

Ankle 3.15 ° 0.832 2.69 ° 0.894 3.17 ° 0.897   
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In this section, the robustness of the proposed method in the presence of an external 

acceleration is validated experimentally. 

In order to verify the performance of the proposed method in the presence of an external 

acceleration, the simulated zero–mean white Gaussian noise was generated and added to 

the measured acceleration of both the IMUs in the benchmark dataset. This allows for 

simulating the dynamic accelerometer data contaminated at different signal–to–noise ratio 

(SNR) levels for different durations. Figure 3.7 shows the accelerometer data of both IMUs 

above and below the joint contaminated at two different SNR levels, where the acceleration 

fluctuated within a range of ±2g.  

 

 

Figure 3.7 Accelerometer data contaminated at different noise levels. Data along the y–

axis data is presented only. 

The error in the estimated joint angles with respect to the ground truth at a walking speed 

of 0.5 ms–1 is shown in Figure 3.8. It can be seen that the error in the estimated joint angles 

changes slightly at a moderate level of SNR (~ –5dB) with respect to the error obtained 

using the actual accelerometer measurements. On the other hand, the error increase to some 

extent when the contamination is higher, but it quickly converges to the level of error from 

the actual accelerometer measurement as the external acceleration disappears. Therefore, 

the RMSE and the Pearson correlation coefficient (r) of the estimated angles for all three 
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joints change slightly during the duration of the external acceleration with respect to the 

error presented in Table 3.1 with the actual accelerometer measurements.  

 
(a) 

 
(b) 

 
(c) 

Figure 3.8 Error in the estimated angles at 0.5 ms–1 speed from a) hip joint, b) knee joint 

and c) ankle joint. 

 

The RMS error of estimated joint angles in presence of external acceleration at all four 

different speeds are presented in Table 3.2.  

Table 3.2 RMS error of estimated joint angles in presence of external acceleration. 

 Thigh Knee Ankle 

Speed 0.5 ms-1 1.0 ms-1 1.5 ms-1 0.5 ms-1 1.0 ms-1 1.5 ms-1 0.5 ms-1 1.0 ms-1 1.5 ms-1 

SNR RMSE r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE r RMSE r 

Clean 1.91° 0.978 2.61° 0.981 3.02° 0.983 1.73° 0.996 1.94° 0.997 2.07° 0.997 3.15° 0.832 2.69° 0.894 3.17° 0.897 

-5 dB 2.10° 0.973 2.67° 0.980 3.21° 0.981 1.71° 0.995 2.03° 0.997 2.14° 0.996 3.15° 0.829 3.53° 0.826 3.61° 0.853 

-10 dB 2.15° 0.972 2.91° 0.975 3.05° 0.981 1.77° 0.996 2.22° 0.996 2.34° 0.995 3.33° 0.810 3.76° 0.808 4.04° 0.823 

Mean  2.63° 0.978   1.99° 0.996   3.38° 0.841  
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It can be seen from Figure 3.8 and Table 3.2 that the proposed algorithm can withstand a 

moderate level of variation (±1g) in the external acceleration while estimating the joint 

angles for thigh and ankle. It is particularly robust against external acceleration as high as 

±2g for knee joint angle estimation. Also, the RMSE in all cases reside within the clinically 

acceptable mean error limit of 5°. 

3.4 Conclusions 

Inertial motion sensors play an integral role in present–day smart gadgets such as 

smartphones, tablets and fitness trackers. They can potentially be the part of new 

technologies such as smart homes, Internet–of–Things (IoT), and Internet–of–Everything 

(IoE). These small, low–power and potentially wearable sensors, coupled with advanced 

and power–efficient high–speed computing and communication technologies can be used 

in home–based monitoring and to asses people’s activity, mobility, gait pattern, fitness and 

overall health in a continuous fashion without interrupting their day–to–day living. The 

lower limb joints play critical role in locomotion and they deteriorate gradually with age, 

thereby affecting people’s mobility. Therefore, it is important to keep track of the health of 

the lower limb joints. One important metric of assessing joint health is its range of motion. 

In this work, we have designed, implemented and validated a two–stage sensor fusion 

algorithm that outputs joint angle in real–time. In the first stage, the drift in the integrated 

gyroscope data of each IMU was estimated using a gradient descent approach and later 

subtracted from the integrated gyroscope data to obtain the inclination of the IMU in real 

time. In the second stage, the inclination information of both IMUs were fused using a 

gradient descent approach to obtain a real–time estimate of the joint angle. Since the joint 

angle was estimated primarily based–on the gyroscope measurements and without 

incorporating the magnetic field measurement, the estimated orientation and joint angles 

were observed to be least affected by any external acceleration and insensitive to magnetic 

disturbances. In addition, the complementary nature of the proposed method made it 

computationally efficient and well suited for real–time systems, thus enabling a potential 

wearable tele–rehabilitation solution for objective measurement of lower–limb joint angles 
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in home or community settings. The proposed algorithm was validated against a standard 

video–based system using a publicly available dataset and showed superior performance at 

different gait speeds than that required for clinical acceptance. The robustness of the 

algorithm was also tested against different levels and duration of simulated external 

accelerations.
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Chapter 4  

A gait analyzer for healthcare 

applications 

Continuous increase in life expectancy will translate into a large aging population in the 

near future. However, in spite of the present healthcare system being highly advanced, 

especially in the developed world, or first–world countries, it is not yet cost–effective due 

to high costs associated with prescription drugs, diagnostic tools and in–hospital care 

[4.1],[4.2]. Therefore, predictive diagnostic and monitoring systems, which are simple, 

non–invasive, and low–cost yet reliable and precise, are of utmost necessity in order to 

provide affordable healthcare services to the elderly while ensuring their comfort and 

independence. The recent advances in wireless communications, information and 

computing technologies, as well as miniaturized sensors and actuators have paved the way 

for smart and cost–effective solutions for healthcare [4.3]–[4.6]. One such system, an 

inertial sensor based walking pattern analyzer, can potentially offer a simple and low–cost 

solution to monitoring the overall status of the health of the elderly.   

Walking and gait are the process of balance and locomotion that require proper 

coordination between the nervous and the musculoskeletal systems. Also, proper 

---------------------------------------------- 

* Adapted from S. Majumder, T. Mondal and M. J. Deen, "A Simple, Low-Cost and Efficient Gait Analyzer for 

Wearable Healthcare Applications," in IEEE Sensors Journal, vol. 19, no. 6, pp. 2320-2329, 15 March, 2019, 

doi: 10.1109/JSEN.2018.2885207. (Appendix A) 
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functioning of the respiratory and cardio–vascular organs as well as the nervous and 

musculoskeletal systems is critical for maintaining a normal and healthy gait [4.1]. 

Therefore, human gait is strongly associated with health condition [4.1],[4.3],[4.7], and any 

deviation in the walking pattern from its baseline characteristics can be indicative of a 

potential disease or malfunctioning of the musculoskeletal and/or nervous systems. 

Walking and gait patterns are distinctive in nature and vary with physical traits such as 

gender, age, height and weight owing to the inherent differences or gradual changes in 

musculoskeletal structure [4.1],[4.7],[4.8]. For example, females tend to have larger hip 

swing compared to males, whereas males exhibit larger shoulder swing [4.9]. On the other 

hand, elderly people tend to walk differently than the younger ones owing to the gradual 

decline in the motor control and muscle strength [4.10]. Therefore, a tool for the 

quantitative assessment of gait is needed to detect the early onset of any anomaly in the gait 

pattern and to monitor the rehabilitation of gait following an injury or illness such as to the 

knee or stroke. 

One such tool can be based on micro–electro–mechanical systems (MEMS). The integrated 

Inertial Measurement Units (IMUs), coupled with the wireless connectivity and superior 

processing capability of the smart devices, can be used for real–time gait monitoring and 

performing quantitative assessment of gait without interrupting the daily activities of 

individuals. In this chapter, we investigate the gait characteristics quantitatively using 

inertial sensors and propose an inertial sensor–based low–cost and computationally 

efficient gait analyzer for healthcare applications. We used an efficient signal analysis and 

features extraction technique, thus reducing the computational complexities for a continual 

gait monitoring system. In this way, our gait analyzer is suitable for real–time systems using 

limited processing resources such as microcontrollers or FPGAs (field programmable gate 

arrays).  

4.1 Background 

At present, clinicians mainly use pressure sensors [4.14],[4.15] or video imaging–based 

systems [4.13],[4.16],[4.17] for gait analysis and assessment. Pressure sensors are either 
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arranged in an array configuration and embedded in the floor [4.14], or integrated in the 

shoe to measure foot plantar pressure characteristics while walking [4.14],[4.15]. However, 

pressure sensors, being linearly dependent on external pressure, are unable to provide 

useable information about gait during the swing phase. On the other hand, video–based 

imaging systems can provide comprehensive information about the mechanical parameters 

such as gait speed, acceleration and tilting of the legs. However, video systems require 

specialized and expensive infrastructure with multiple mounted cameras and high 

computational resources with large memory sizes. An attractive alternative of the pressure 

sensor and video imaging based gait analysis systems can be the inexpensive, small–in–

size and low–power IMU–based systems for gait monitoring. These systems can be of 

immense benefit for continual assessment of human gait as one health metric. 

Researchers have been using IMUs for activity monitoring [4.1],[4.3],[4.4],[4.18], and 

motion tracking [4.19],[4.20]. IMUs can be embedded in a wearable platform 

[4.1],[4.3],[4.4] and connected through a Body Sensor Network (BSN) [4.21] to facilitate 

activity and gait monitoring. However, computational resources [4.21]–[4.23] and energy 

requirements [4.1],[4.24],[4.25] are some bottlenecks in such systems [4.1],[4.22] which 

were addressed in [4.21]–[4.25]. For example, the authors in [4.21] reported an efficient, 

modular and open–source software framework named Signal Processing In Node 

Environment (SPINE), which was used to implement a Hidden Markov Model (HMM)–

based classifier to classify four gait events.  

Apart from activity monitoring and motion tracking, there has been a growing interest in 

exploiting IMU–based gait analytics for health assessment and diseases prediction. 

Walking or gait requires proper coordination between the musculoskeletal system and the 

central nervous system (CNS). Therefore, any abnormalities in walking patterns are 

strongly associated with and thereby indicative of some health conditions [4.26]. For 

example, individuals with neurodegenerative disorders such as Alzheimer’s or Parkinson’s 

tend to exhibit short and shuffling steps [4.27]. Some IMU–based gait analysis tools in the 

literature focus on distinguishing the pathological gaits from the healthy ones [4.28],[4.29]. 

The gait pattern and features such as heel–strike and toe–off events, variability and 
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asymmetry, or stride length and speed in gait characteristics are found to change 

distinctively [4.30],[4.31] from its normal characteristics following a disease like 

Parkinson’s, Alzheimer’s and stroke. However, the changes in gait characteristics develop 

gradually and can potentially be detected with the IMUs through continual monitoring, thus 

facilitating early diagnosis and intervention of health problems. 

In this chapter, we propose a simple, efficient and low–cost IMU–based gait analyzer that 

can provide regular quantitative assessment of human walking patterns by comparing the 

gait of an individual with respect to the baseline gait parameters of his/her peer group. The 

gait characteristics of an individual with healthy musculoskeletal and nervous system are 

expected to be contained within the cluster corresponding to his/her gender and age. 

However, an anomalous gait pattern in an individual may fall outside the respective 

baseline clusters, which can be symptomatic of potential health issues [4.1],[4.6],[4.7]. We 

employed the DWPA (discrete wavelet packet analysis) to analyze the IMU signals 

corresponding to human walking and extract energy, and statistical and temporal features. 

DWPA can localize the signal components in both frequency and time domain, thus 

overcoming the limitation of Fourier Transform [4.32],[4.33],  which provides frequency 

localization only. It also removes the limitations of computationally intensive and time 

consuming Empirical Mode Decomposition (EMD) [4.34],[4.35] and Ensemble EMD 

[4.35]–[4.38] that require an exhaustive iterative ‘sifting’ process to generate intrinsic mode 

functions (IMF) [4.39],[4.40]. By adopting the tree–like decomposition technique, DWPA 

renders this gait analyzer suitable for the SPINE framework [4.21] and for other computer 

platforms with limited processing resources such as microcontrollers and FPGAs (field 

programmable gate arrays). The proposed gait analyzer is capable of tracking the user’s 

gait behavior and providing prompt and regular feedback to the users and/or the clinicians, 

thus potentially leading towards early detection of anomalies in the functioning of 

musculoskeletal and nervous systems to facilitate healthy aging at home. This system, if 

coupled with smart textiles and modern communication and information technologies, may 

also enable long–term monitoring from a remote healthcare facility while ensuring 

maximum user comfort and unhindered day–to–day living. 
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4.2 Data acquisition system and protocols 

4.2.1 Participants and protocols 

A total of 74 healthy subjects with their ages ranging from 18 to 65 years participated in 

this study. Prior to acquiring walking signals, some key information such as motivation for 

the study, data acquisition procedure, and data security and privacy protocols were 

explained in detail to each subject and a written consent was obtained. Each participant was 

requested to answer a questionnaire prepared by a physician. The questionnaire was 

developed to collect some key physical features of the subjects including weight, sex, age, 

leg length and height. All participants were healthy and did not have any major health issues 

or prior surgery. Prior approval was obtained from the Hamilton Health Sciences Research 

Ethics Board for the study. Table 4.1 presents the summary of the subjects’ characteristics. 

Table 4.1 Participants' characteristics 

4.2.2 Data acquisition system  

Walking signals were measured using an inertial measurement unit (IMU) from InvenSense 

Inc (MPU–9150). A photograph of the IMU is shown in Figure 4.1 (a).  The IMU has 

dimensions of 43 mm × 37 mm and includes a tri–axial accelerometer and a tri–axial 

gyroscope. The accelerometer and the gyroscope has a full–scale range of ±16g and ±2000 

degrees per second (dps), respectively, and acquires signal at a rate of 50 samples per 

second. The IMU is equipped with a Bluetooth transceiver module that can communicate 

with a computer over the wireless platform. The computer runs a Python program to receive 

the measured data and store them as text files. A program was developed in MATLAB to 

read the data from the text files for further processing and analyses.  

 Male Female 18-40 years 41-65 years 

No. of sub. 45 29 50 24 

Age [years] 36.5 (20-65) 37 (22-60) 29.22 52.6 

Height [m] 1.76 (1.58-1.92) 1.66 (1.56-1.79) 1.73 (1.56-1.92) 1.71 (1.58-1.88) 

Weight [kg] 81.8 (51 -149) 65.26 (49.3-118.5) 73.5 (49.3-126) 79 (54-149) 
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      (a) (b) 

Figure 4.1 Inertial measurement unit (a) commercial sensor (Invensense MPU–9150) (b) 

position of the sensor. 

4.2.3 Data acquisition Protocol  

The IMU was mounted on a Velcro belt in order to attach the device at the frontal section 

of the left and right shanks of the subject. The frontal section was preferred over the 

posterior section to minimize any possible artifacts that might be induced in the measured 

signal due to the movement of the muscles and the soft–tissues. The orientation of the 

attached device was such that the x–axis, y–axis and z–axis point towards the upright 

direction (longitudinal), the outward direction (medio–lateral) and the forward direction 

(antero–posterior), respectively. To maintain the uniformity of measurements among all 

subjects, the IMU was always attached at 20 cm above from the ground level ( Figure 4.1 

(b)). Each participant was asked to walk 40 m in a well–illuminated, obstacle free walkway 

at their preferred pace. The long and wide walkway (~70 m × ~4 m) allowed for the 

acquisition of stable walking signals.   

4.3 Signal analysis and assessment  

The general algorithm for signal analysis and gait assessment consists of three main 

sections. First, a set of statistical and temporal features was extracted from the height–

normalized gait signals (linear acceleration and angular velocity). Second, the signals were 

decomposed using discrete wavelet packet analysis (DWPA) and the energy of each 

decomposed signal was calculated. Third, the significant features were extracted based on 

their statistical significance (t–test) and correlation coefficients. Following a dimensional 

reduction of the features, the features were finally classified using support vector machine 

(SVM). The method is described in detail in the following sections. 
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4.3.1 Preprocessing 

The gait characteristics can be affected by the height and weight of the subjects. In order to 

minimize the effects of these physical factors, it is important to normalize the walking 

signals. It was observed in a previous study [4.40] that normalization of gait signals by the 

height of the subjects is more effective for discriminative analysis compared to the weight–

normalized gait signals. The gait signals from the accelerometer were normalized according 

to Eq. 4.1 [4.40]. 

�̌� =
𝑨

√𝑔. ℎ𝑒𝑖𝑔ℎ𝑡
 

(4.1) 

where 𝑔 is the acceleration due to gravity (~9.81 ms–2) and 𝑨 represents walking signals 

from each axis of the accelerometer. The gait signals from the gyroscope were normalized 

according to Eq. 4.2,  

�̌� =
𝑮

√ ℎ𝑒𝑖𝑔ℎ𝑡
 

(4.2) 

where 𝑮 represents walking signals from each axis of the gyroscope. 

Since, the most significant features of the human gait signals remain in the low–frequency 

region, the high frequency components were removed by passing the normalized signal 

through a fourth order low–pass Butterworth filter (cut–off frequency = 12 Hz).  

4.3.2 Signal decomposition 

Gait signals, being non–linear and non–stationary in nature, can be effectively analyzed by 

decomposing them into their spectral components. For example, researchers in [4.40]–

[4.44] used empirical mode decomposition (EMD) and complete ensemble EMD 

(CEEMD) methods, respectively for decomposing gait signals. As discussed earlier, these 

methods are computationally intensive and time consuming. In contrast, discrete wavelet 

transform (DWT) follows a fast and hierarchical tree–like decomposition algorithm, which 

makes it suitable for real–time applications.  

The DWT decomposes a signal into approximation coefficients and detail coefficients by 

passing the discrete time–domain signal through several low–pas filters (LPF) and high–

pass filters (HPF), respectively. While the approximation coefficients i.e. the lower–
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frequency components at each level can be further decomposed in a similar fashion, the 

detail coefficients or the higher–frequency components remain unaltered. However, in the 

wavelet packet decomposition (WPD), both the detail and approximation coefficients are 

further decomposed at each level in a binary–tree like structure (Figure 4.2), thus allowing 

the signal to decompose evenly throughout its whole spectrum.  

 

Figure 4.2 Wavelet packet decomposition tree up to 2nd level. 

All components of the gyroscope signal around the medio–lateral axis decomposed at level 

2 are shown in Figure 4.3. In our work, we used Symlets 4 (sym4) mother wavelet to 

decompose the filtered signals at level 8 using WPD. 

 

Figure 4.3 Four components of the medio–lateral signal decomposed at 2nd level with wavelet 

packet decomposition using sym4 as the mother wavelet. 

4.3.3 Feature extraction 

A large set of features were extracted from the preprocessed signals. The features included 

the energy of each decomposed signal, timing, and statistical parameters of the gait signals. 
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The gait signal energies are associated with the mechanical work done during locomotion 

[4.38],[4.40]. Also, the gait timing parameters vary with age and gender [4.44],[4.45] thus 

making them good candidates as suitable features. The energy 𝐸 information of each 

decomposed signal during a straight walk was calculated using Eq. 4.3, 

𝐸 =
1

𝑀
∑[𝑆(𝑛)]2
𝑁

𝑛=1

, (4.3) 

where 𝑆 represents the components of decomposed signal, 𝑁 is the total number of samples, 

and 𝑀 is the total number of gait cycles in the signal. A gait cycle is the time between two 

consecutive heel–strike events of the same leg during locomotion. 

Extracted features also include bipedal gait asymmetry (𝐺𝐴) and coefficient of variation 

(𝐶𝑉) that determine the degree of coordination between the legs. The swing time and stance 

time from both legs were also measured. The swing time was calculated from the gyroscope 

signal around the medio–lateral axis (𝑔𝑦) by measuring the time difference between the last 

contact of the first support of the foot and the first contact of the following support. The 

stance time was obtained from the time difference between the first and the last contact of 

two consecutive supports of the same foot. As shown in Figure 4.3, the directionality of 𝑔𝑦 

changes rapidly at the contacts that results two valleys in each walking cycle. These contact 

valleys were detected automatically by calculating the time–derivative (𝑑𝑔𝑦/𝑑𝑡) of the 

low–pass filtered signal and identifying the points where the sign of (𝑑𝑔𝑦/𝑑𝑡) changes 

(zero crossing). The prior low pass filtering of 𝑔𝑦 allows for removal of false zero–

crossings due to high frequency noise and enables accurate identification of contact valleys. 

The stride time, which is the duration of the gait cycle, was then obtained by adding both 

the swing time and the stance time in a gait cycle. The foot, which spent shorter and longer 

time during the swing phase was determined in order to calculate GA and CV [4.42], using 

Eq. 4.4 and Eq. 4.5, respectively. 

𝐺𝐴 = 100 × |ln (
𝑆𝑤𝑠

𝑆𝑤𝑙
)|, (4.4) 

where 𝑆𝑤𝑠 is the mean shorter swing time and 𝑆𝑤𝑙 is the mean longer swing time and 
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𝐶𝑉 =  100 × (
𝜎

𝜇
), (4.5) 

where 𝜎 and 𝜇 are standard deviation and mean of swing time or stance time. 

Table 4.2 presents all features that were extracted from the gait signals. 

Table 4.2 Extracted gait features. 

4.3.4 Dimensional reduction 

Following the feature extraction process, an 8–length and a 32–length feature vector were 

derived for gender– and age–based gait classifications, respectively, based on the statistical 

significance (t–test) and correlation coefficients of the features. In order to reduce the 

redundancy and high dimensionality of the two feature vectors, a dimensional reduction 

was performed using Principal Component Analysis (PCA) [4.45]. PCA is a mathematical 

process that reduces the dimensionality of the data by projecting them onto a lower 

dimensional space after analyzing the covariance matrix of the data.  The new lower 

dimensions represent most of the variance of the original data, thus ensuring minimal loss 

of information. Therefore, both the original 8–length and 32–length feature vectors can be 

projected on the 2–dimensional spaces using the first two principal components without 

losing much information.  

4.3.5 Classification of the baseline gait data 

We exploited and trained the linear support vector machine (SVM) with the reduced 2–

length vectors, forming two distinct classes of baseline data corresponding to two specific 

gender and age groups. SVM is known to be very effective for classifying a two–class 

dataset with few samples [4.46],[4.47]. It is a supervised learning approach that determines 

a discriminative hyperplane in a multi–dimensional space by maximizing the geometric 

Temporal  Asymmetry Energy Statistical 

• stride time  (µ and 𝜎) • stance-to-swing 

time ratio 

• acceleration (a) • mean a, �̌� 

• swing time (µ and 𝜎) • gait asymmetry • angular velocity (�̌�) • Correlation  

(right and left leg signals) 

• stance time (µ and 𝜎) 

 

• coefficient of 

variation 

• DWPA decomposed 

signals 

• Covariance  

(right and left leg signals) 
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margin between different classes. Feature vectors determining the hyperplane are called 

support vectors. Other feature vectors do not alter the position of the hyperplane.  

4.3.6 Cross validation 

The performance of the proposed algorithms was evaluated using a 15–fold cross 

validation. Each time, five random subjects out of 74 were excluded, without overlap. 

Fifteen such non–overlapping subsets of test subjects were thus developed. The SVM was 

then trained in each case with the remaining 69 subjects. Finally, the excluded 5 subjects 

from each subset were classified using the developed model. An overall accuracy of the 

analyzer was then calculated by combining the results from each of the 15–fold validation. 

The block diagram of the proposed gait analyzer is shown in Figure 4.4. 

 

Figure 4.4 Block diagram of the gait analyzer. 

4.4 Results and discussion 

4.4.1 Stride characteristics 

Although all subjects were asked to walk at their preferred pace, some gait characteristics 
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were found to be significantly different between the two groups. On average, the female 

subjects walked with a shorter stride time and a higher cadence (115.6 steps/min) compared 

to the male subjects (107.5 steps/min), which was statistically significant at p < 0.001. The 

higher cadence is generally attributed to the increased joint torque and power [4.48] during 

walking, thus indicating a tendency among the females towards spending more energy 

while walking. Higher cadence requires faster angular movements (flexion, extension) of 

the joints within its range, thus causing increased generation or absorption of joint power 

[4.48],[4.49]. It is observed that the differences in the magnitude of the temporal gait 

characteristics between two groups are not large (~ 6%), yet highly consistent – a fact that 

can be verified by their small standard deviation values and smaller p–value (p < 0.001).  

It was observed that GA and CV do not differ much between the younger (< 40 years) 

males and females. The nervous systems as well as the musculoskeletal systems in younger 

persons are well–compensated. Any form of degeneration in any system possibly unmasks 

this asymmetry as age advances. According to previous studies [4.42],[4.50], gait 

asymmetry and variability are highly associated with cognitive function. It therefore 

possibly results in the same degree of balance, stability and coordination between right and 

left leg among the younger group of persons. A comparison of cadence, 𝐺𝐴 and 𝐶𝑉 between 

males and females is presented in Figure 4.5. 

 
                                             (a)                           (b)                      (c) 

Figure 4.5 Comparison between male and female gait (a) cadence (b) GA (c) CV. 

The energies of the significant components (𝑝 < 0.009) of the decomposed signals were 

calculated for all three axes. It was observed that the average energy of the antero–posterior 
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(𝑧–axis) and medio–lateral (𝑦–axis) acceleration were significantly higher for female 

subjects compared to their male counterparts. Females tend to have larger hip flexion and 

smaller knee extension before initial contact. They also have a tendency towards higher 

knee flexion moment and higher power absorption by the joints during the pre–swing phase 

of the gait cycle [4.48]. Since females exhibit a higher cadence compared to males, their 

joints and surrounding muscles need to perform higher amounts of mechanical work 

compared to males when walking a fixed distance in the same time.  

The female subjects also exhibited higher rotational energy around the longitudinal, medio–

lateral and antero–posterior axes than the male subjects. The distinct difference in medio–

lateral (𝑦–axis) acceleration energy, and rotational energy around the longitudinal and 

antero–posterior axes of females can be attributed to their greater pelvic tilt and larger 

swing while walking [4.8],[4.51].The female pelvis, commonly referred as gynecoid pelvis, 

has a distinctly different structure than male pelvis with a wider sacrum and pubic arch. 

This anatomical difference coupled with a relatively lax ligament of the female pelvis and 

hip joints results in a larger hip swing among the females. The comparison between male 

and female gait energies is presented in Figure 4.6. 

 

(a) (b) 

Figure 4.6 Comparison between male and female gait energies (a) acceleration energy (b) 

rotational energy. 

It was also observed that subjects from the older age group (> 40 years) walked with a 

shorter stride time (𝑝 < 0.001), which can be attributed to their shorter stride lengths 

compared to the younger adults. The bone and muscle mass as well as joint fluids among 

the older adults decline gradually with age. Therefore, they tend to compensate their 
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declining balance and stability by reducing their stride length. In the older age group, their 

stride frequency i.e. cadence, was observed to be ~3% higher. The 𝐺𝐴 and 𝐶𝑉 were found 

to be significantly higher in the older age group compared to the younger group. Stability, 

balance and cognitive function tend to decline with age, thus increasing the asymmetry and 

variability in gait among the older adults. The comparison of cadence, GA and CV between 

the two age groups is presented in Figure 4.7.  

 

                                   (a)                           (b)                       (c) 
Figure 4.7 Comparison between two age groups (a) cadence (b) GA (c) CV. 

As discussed earlier, higher cadence is usually associated with increased power and torque 

about the joint [4.48], [4.49]. However, the overall energies of the significant (p < 0.009) 

components of the signals were much lower (40%–60%) for the older age group, except 

for the energy of the frontal acceleration (𝑧–axis) and angular velocity around the medio–

lateral axis. The comparison of gait energies between younger and older adults is presented 

in Figure 4.8. The energy of these signals of the older age group were found to be 

significantly higher than the energy for the younger age group. This can be attributed to 

their shorter stride time and increased joint torques at hip extensors [4.52] during forward 

movement. Older people tend to spend less time in each stride, thus forcing the hip joints 

to perform more work in a gait cycle. However, the higher rotational energy around the 

longitudinal and antero–posterior in younger adults could be attributed to their tendency to 

maintain high ground clearance while maintaining an upright stance with enhanced control 

on the trajectory of their center of the mass. 

Higher medio–lateral (𝑦–axis) and longitudinal (𝑥–axis) acceleration among the younger 

adults indicate stronger grip that ensures better control and balance during the gait cycles. 

The younger adults generally possess a healthy musculoskeletal system and an unimpaired 
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somatosensory system. Therefore, the basal energy expenditure among the younger adults 

is well controlled owing to their better postural balance and alignment, as well as superior 

coordination between the central nervous and the musculoskeletal systems [4.53]. 

However, the older age group demonstrates a significant decline in stride time and gait 

symmetry, thus confirming an overall weaker gait compared to the younger age group.  

 

(a)   (b)  

Figure 4.8 Comparison between two age groups (a) acceleration energy (b) rotational energy. 

In [4.52], it was hypothesized that as age increases, the joint torque and power gets 

redistributed gradually, resulting in an increase in joint torques at hip extensors and a 

decrease in knee extensors and ankle plantar flexors while walking. These changes in the 

walking physiology can be attributed to the slow but gradual decline of muscle mass and 

joint fluids [4.40], [4.54]. Muscles play the key role in moving the limbs by providing the 

necessary force and strength. Therefore, the gradual loss of muscle mass with age results 

in a deteriorating walking performance, resulting in a shorter step size, which causes a 

reduction in stride time and gait symmetry. 

4.4.2 Gender–specific clustering of gait behavior  

After extracting and standardizing the walking features, the first two principal components 

were projected on a 2–D space. The support vector machine was trained with the two 

principal components along with their corresponding classes. We observed that the 

hyperplane determined by the SVM can successfully arrange the first two principal 

components of the subjects’ gait features into two separate classes with a high degree of 

accuracy which correspond to their gender identities, as shown in Figure 4.9. 
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Figure 4.9  Classification results showing two distinct groups (excluding outliers). 

Although, most of the subjects’ gait patterns were found to truly correspond to their gender 

groups, a few subjects showed different gait patterns, resulting them being falsely 

classified. The classification accuracy was evaluated by a 15–fold cross validation. Figure 

4.10 shows one instance of classifying 5 subjects based on a SVM trained with the 

remaining 69 subjects, where one subject was found to be misclassified.   

 

Figure 4.10  One instance of cross–validation showing one subject is falsely classified. 
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This observation may suggest a potential anomaly (inherent or developing) in the gait 

characteristics of the subject that prevents the gait behavior of that particular subject from 

being truly classified according to his/her gender identity. For example, the misclassified 

male was found to exhibit greater acceleration energy along the medio–lateral (y–axis), 

higher rotational energy around the longitudinal and antero–posterior axes, as well as 

shorter stride time, similar to that observed in healthy female subjects.  

We obtain an overall classification accuracy of ~92% from the 15–fold cross validation, 

reflecting a reasonably accurate system capable of monitoring and evaluating the gait 

patterns in reference to the corresponding baseline clusters with a high degree of precision. 

The confusion matrix for the classifier is presented in Table 4.3. The high TPR (~92% on 

average) and accuracy (~92%) as well as corresponding low FPR (~8% on average) of the 

classification outcomes ensures the analyzer’s capability in distinguishing potentially 

anomalous gait from healthy gaits with high confidence. 

Table 4.3 Confusion matrix for gender–specific gait classifier. 

4.4.3 Age–specific clustering of gait behavior  

In order to evaluate the age–specific differences in the baseline gait patterns, the gait 

features of the healthy subjects from two age groups were classified using the SVM 

algorithm, following the dimensional reduction using the PCA. Two distinct groups based 

on their “walking–age” [4.40],[4.42] were observed after the classification. One group 

comprises younger adults with their walking–age ranging from 18–40 years and the other 

group includes adults with walking–age from 41–65 years. The formation of two age 

groups is presented in Figure 4.11. Among all 74 subjects, 50 adults belonged to the 

chronological age group of 18–40. However, 47 of them have their walking–age matched 

to their chronological age. The remaining three subjects had their walking–age similar to 

those in the older “41–65 years” group. 

 True positive rate (TPR) False positive rate (FPR) Accuracy 

Male 91% 9% 
92% 

Female 93% 7% 
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Figure 4.11 Classification results showing two distinct age groups (excluding outliers). 

This aberration in the gait behavior may be attributed to an altered walking pattern caused 

by a potential health problem such as weak joints or degraded muscular strength. For 

example, the misclassified younger adults, on average show higher GA and CV and smaller 

stride time compared to the truly classified young adults, whereas the misclassified older 

adults exhibit higher stride time and better gait symmetry compared to the truly classified 

older adults. The accuracy of the gait classifier was evaluated by a 15–fold cross validation.  

Table 4.4 Confusion matrix for age–specific gait classifier. 

 Figure 4.12 shows one instance of cross–validation where one subject of 52 years of age 

was classified having a walking–age “<40 years”, potentially reflecting a better and 

healthier gait compared to the subjects of his/her chronological age group. An overall 

classification accuracy of ~88% was achieved from the 15–fold cross validation. The 

confusion matrix for the classifier is presented in Table 4.4.   

Age (years) True positive rate (TPR) False positive rate (FPR) Accuracy 

20-40 years 92% 8% 
88% 

41-65 years 79% 21% 
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Figure 4.12 One instance of cross–validation showing one subject falls in a different age group 

than his/her actual age. 

4.5 Conclusions 

The continual increase of aging population, coupled with soaring costs associated with 

present–day healthcare services is likely to adversely affect the socio–economic structure 

of many countries. A simple, easy–to–use and cost–effective yet reliable health monitoring 

system would therefore be of immense benefit in keeping track of individuals’ health status, 

thus facilitating healthy aging at home. Walking or gait, being reflective of the 

physiological functioning of the body, is a good indicator of overall health status. In this 

work, we report on a simple, low–cost and computationally efficient gait–analyzer based 

on MEMS inertial sensors to track the course of the gait health of an individual in a 

continuous fashion; thus potentially enabling early detection of health issues such as 

osteoporosis, osteoarthritis, dementia, Alzheimer’s, and Parkinson’s. The proposed system 

identifies an anomalous gait by evaluating its features with respect to the baseline clusters 

corresponding to an individual’s peer group. The adoption of a computationally efficient 

signal analysis technique like DWPA renders the analyzer suitable for systems with limited 

processing capabilities.  
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However, a limitation of this work evolves from being unable to recruit patients with known 

pathological gaits. The gait pattern changes gradually through different disease processes 

and at different severities, thus it is likely to deviate from the healthy gaits corresponding 

to an individual’s peer group. Although distinct clusters or patterns of healthy gait are 

reported in this work following a 15–fold cross validation, further in–depth study on 

different patient groups with a larger dataset from a wider age and BMI range, different 

walking surfaces as well as different walking speed would be useful to reinforce our 

inferences. Nevertheless, this research is critical and in fact mandatory in Canada according 

to our University’s Research Ethics Board (REB) that requires us to demonstrate the 

feasibility of the gait analyzer on healthy individuals before it can be used on patients, 

which requires an additional approval from Health Canada.
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Chapter 5  

Wearable ECG system with automatic 

anomaly detection 

Electrocardiography (ECG) has been proven to be among the most useful diagnostic tests 

in clinical medicine, which is now routinely used in the evaluation of patients with 

implanted defibrillators and pacemakers, as well as to detect myocardial injury, ischemia, 

and the presence of prior infarction. In addition to its usefulness in ischemic coronary 

disease, the electrocardiogram is also useful in diagnosing the disorders in the cardiac 

rhythm and evaluating syncope. Other common uses of the ECG include evaluation of 

metabolic disorders, direct and side effects of pharmacotherapy, and primary and secondary 

cardiomyopathy. 

In the early days, realizing a highly sensitive ECG system was a significant challenge. The 

electrical heart signals attenuate while travelling through the body tissues and become weak 

at the skin’s surface. However, Willem Einthoven [5.1] managed to improve the sensitivity 

of the ECG sensing systems by using a string galvanometer, which was considered to be a 

giant leap forward for electrocardiography. Einthoven’s improvements were very 

significant, since the characteristic peaks of the ECGs, now familiar as P, Q, R, S, and T 

---------------------------------------------- 

* Adapted from S. Majumder, L. Chen, O. Marinov, C. H. Chen, T. Mondal, and M. Jamal Deen, “Noncontact 

Wearable Wireless ECG Systems for Long-Term Monitoring,” IEEE Rev. Biomed. Eng., vol. 11, pp. 306–321, 

2018. (Appendix A) 
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waves, were apparently defined (Figure 5.1), while the scientists previously had 

demonstrated only ventricular depolarization and repolarization as it was shown in Waller’s 

work [5.2]. 

Different types of ECG systems [5.3]–[5.6] have been introduced so far to improve the 

signal quality in the clinical settings. The conventional ECG method uses a hydrogel 

between the skin and the electrodes to increase the conductivity of the signal path. 

However, the wet electrode method uses conductive gels that contain toxic materials, which 

can cause irritation to the skin of the patients. Some patients may even be allergic to the 

nickel particles or the acrylic adhesive present in the popular disposable conductive 

hydrogel based ECG electrodes [5.7]–[5.11]. Therefore, the wet electrode method is not 

suitable for ambulatory and long–term monitoring of the ECG. 

 

Figure 5.1 Basic features in the waveform of an ECG signal. 

In this work, a dry capacitive–coupled flexible electrode is designed and used to develop a 

portable wireless ECG monitoring system for both inpatient and outpatient monitoring of 

the ECG. The capacitive dry electrode method [5.3], [5.4] requires neither a conductive 

interfacial medium, nor any direct contact to the skin, thus making it suitable for long–term 

monitoring. Despite having a layer of interfacial material between the skin and electrodes, 

the proposed electrode still allows the detection of the ECG signals from the skin’s surface 

through capacitive coupling, thus making the system suitable for long–term monitoring of 

ECG in an ambulatory environment. 
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The interface material for capacitive electrodes can be a thin layer of textile material such 

as cotton, which is tightly attached to the skin to ensure an optimal signal quality. Cotton 

is a common fabric for clothes, which, along with other textile materials such as, wool, silk, 

or nylon, has higher dielectric constants, thus, resulting in better capacitive coupling [5.12]. 

These capacitive electrodes can potentially be integrated with the smart textiles [5.13]–

[5.15] to realize a wearable and comfortable long–term ECG monitoring system. Both the 

capacitive dry electrodes and smart textiles are increasingly being studied and developed 

for flexible and wearable ECG monitoring systems.  

5.1 Related works on ambulatory ECG systems  

The primary purpose of the ambulatory ECG systems is to facilitate monitoring the heart’s 

activity outside the clinical setting. It also allows for continuous monitoring of 

cardiovascular health thus enabling detection and diagnosis of any heart related issues at 

their early onset. Unlike the 10–electrode clinical ECG systems, ambulatory ECG systems 

are small, portable and generally exploit two to three electrodes to measure and record the 

electrical signals. Some systems incorporate wireless communication technologies such as 

Bluetooth, Bluetooth low energy (BLE), and ZigBee for real–time data transmission.  A 

general architecture of ambulatory ECG monitoring system is shown in Figure 5.2. 

 
Figure 5.2 General architecture of the ambulatory ECG monitoring system. 
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Ambulatory ECG systems with inherent wireless transmission capability can thereby play 

a key role in a smart home–based long–term and remote health monitoring system. In this 

section, we present a detailed review on ambulatory ECG systems reported in recent years. 

We also present a discussion on the current state of the portable ECG system market by 

highlighting some commercially available devices.    

5.1.1 ECG systems in the literature 

One of the key problems in the ambulatory ECG systems evolves from the contamination 

of the electrical signals by the electrode motion artifacts. The impedance of the interface 

between the electrode and the skin is disturbed with the movement of the body that corrupts 

the ECG signal and decreases the SNR. Therefore, many researchers put their efforts in 

improving the motion tolerance and the noise performance of the ambulatory ECG systems 

by exploiting flexible electrodes, improved analog front ends (AFE) and on–chip signal 

processing techniques.    

 Flexible electrodes 

In the conventional 12–lead clinical ECG systems, the heart’s electrical activities are sensed 

using conventional Ag–AgCl gel electrodes. Although, the conductive gel offers superior 

signal quality and motion tolerance, it is, however, toxic and may cause skin irritation if 

used for a prolonged period of time, making it inappropriate for long–term ambulatory 

monitoring. Researchers in [5.17] integrated a miniature water reservoir in the Ag and Ti 

coated polyethylene terephthalate yarn–based textile electrode to moisturize the electrodes 

with the water vapor. Although the ECG signals thus obtained were of good quality, the 

presence of the water reservoir, however, may cause reliability issues, for example, in the 

case of a leakage. The water level in the reservoir needs to be monitored regularly in the 

case of long–term monitoring. A superabsorbent polymer was exploited in [5.18] to 

regulate the humidity around a conductive polymer–based flexible fabric electrode thus 

enabling faster discharge of any accumulated charges and resulting shorter stabilization 
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time for the signal. These electrodes showed high signal quality at rest and short 

stabilization time. However, the motion tolerance of these electrodes was not evaluated.   

‘Dry’ electrodes, on the other hand, do not rely on any conductive gel or additional 

moisturizer and therefore, are suitable for long–term ambulatory monitoring systems. 

However, dry electrodes usually suffer from high electrode–tissue impedance (ETI) owing 

to the poor contact between the skin and the electrode and thereby, are prone to noise and 

motion artifacts. The electrode contact can be improved by using flexible substrates, which 

makes it highly conformable to the skin. Some researchers used polymer materials such as, 

polydimethylsiloxane (PDMS) [5.19], [5.20] and ethylene propylene diene monomer 

(EPDM) [5.21], urethane [5.22], [5.23] as the substrate to improve the contact between the 

electrode and the skin. The wearable dry electrodes can be realized by embedding 

conductive nanomaterials such as Ag–nanowire [5.19], [5.24], carbon nanoparticle [5.21], 

Ag–coated glass composite [5.25] and carbon nanotube (CNT) [5.20] in the flexible 

polymers or by employing a coating of conductive material such as Ni, Cu, and Au on the 

polymer substrate [5.22], [5.23]. With an adequate concentration of nanomaterials in the 

PDMS, these electrodes may achieve similar order of ETI to Ag–AgCl wet electrodes at 

lower frequencies. These flexible electrodes are tolerant to motion artifacts to some extent. 

In [5.24], an additional capacitive strain sensor was co–fabricated with the electrode on a 

self–adhesive, stretchable platinum silicone rubber–based substrate to estimate and 

minimize the motion artifacts through an adaptive filtering approach. These dry wearable 

electrodes are suitable for long–term monitoring systems. The signal quality, however, may 

degrade due to possible oxidation of the metal nanoparticles over time. For the CNT based 

electrodes, achieving homogenous dispersion of the CNT in PDMS may cause additional 

fabrication challenges due to the presence of strong van der Waals interactions in CNT. A 

novel concentric flexible multi–ring electrode was presented in [5.26], which consists of 

four hook–shaped silver electrodes and an inner disc fabricated on a flexible polyester 

substrate. The potential differences between the rings and the central disc contribute to 

achieving higher spatial resolution compared to the traditional disc electrodes. 
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Some researchers exploited microstructures to reduce the ETI by enhancing the adhesion, 

flexibility, and conformability of the electrodes. A 3D printed surface electrode was 

presented in [5.27]. An array of conical needles was printed on a truncated conical support 

by jetting thin layers of polymeric material and curing each layer by ultraviolet light. The 

developed model was then coated with Ti and Au to lower the ETI and prevent oxidation 

and corrosion. In [5.28], researchers exploited micro–electro–mechanical system (MEMS) 

process to fabricate a highly thin and flexible capacitive electrode.  The electrode consists 

of two insulating layers, an active shield plate and a Ni sensing plate, forming a parallel–

plate capacitor with the body, which enables sensing ECG over the cloth. In both works, 

the researchers reported to achieve ECG measurements comparable to the signal measured 

using wet electrodes. However, the impact of the MA on the measured signal was not 

reported. A filamentary serpentine mesh layout was exploited in [5.29] to realize a flexible 

and reusable epidermal capacitive sensor. Three such gold electrodes were embedded into 

silicone and connected to the anisotropic conductive film–based bonding pads. The 

stretchable membrane–like structure, with the aid of van–der Waals interaction, offers high 

conformability and ensures intimate contact to the skin. In addition, its low modulus and 

elastic properties allow the sensor to readily adapt to the skin deformation, thus making it 

less sensitive to MA compared to the traditional capacitive flat electrodes.  

Researchers in [5.30] fabricated Si microneedles array (MNA) and bonded it over a PDMS 

substrate to realize a flexible structure of the electrode. The conductive PEDOT/PSS coated 

sharp MNA can penetrate the skin layer and thus can make intimate contact to the skin. An 

interesting microstructure, inspired from the gecko’s toe pad was exploited in [5.31] to 

design a conductive dry adhesives (CDA) electrode. The CDA was fabricated by growing 

mushroom shaped micro–pillar structures of conductive elastomer on a Si platform, where 

the conductive elastomer was composed of 1D–2D hybrid carbon nano–fillers and PDMS. 

The structure showed a good adhesion force (∼1.3 N/cm2) on and conformity to the human 

skin. In addition, the surface of the pad showed super–hydrophobic property and thereby, 

having self–cleaning capability. Both structures showed close attachment and high 
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conformability to the skin even in the presence of movement, making them useful for long–

term ambulatory monitoring systems with reduce motion artifacts. 

There has also been a growing interest among the researchers in using textile materials for 

developing wearable, unobtrusive and comfortable health monitoring systems. Textile 

based sensors exploit conventional fabric manufacturing techniques such as weaving, 

knitting, embroidery, and stitching as well as advanced methods such as inkjet–printing, 

coating, lithography, chemical vapor deposition (CVD). Researchers in [5.32] fabricated a 

textile–based flexible and conformable electrode by screen printing Ag/AgCl based 

conductive ink on the propylene–based elastomeric nonwoven fabric. The dry electrode 

showed higher ETI than the commercial wet electrode as well as some motion artifacts. 

The impedance and motion artifacts, however, reduced significantly with the increase of 

the electrode area as well as with the application of hydrogel on the electrode. A similar 

electrode, based on nanofiber web textiles, was also reported in [5.33]. Another textile–

based electrode was proposed in [5.34], where a flexible but un–stretchable textile was 

coated with the conductive PEDOT/PSS. A soft foam layer was introduced in the electrode 

to improve the contact pressure and keep the electrode wet, thus lowering the contact 

impedance. The dry electrodes showed similar order of ETI to the conventional Ag/AgCl 

gel electrodes but poor performance in terms of baseline stability. The impedance and 

signal quality, however, improves when the electrodes are wet. Although the electrodes are 

low–cost and follow a simple fabrication process, they require regular moistening to 

maintain a low ETI and high SNR, especially in the presence of movement. One may find 

several early implementations of textile electrodes in [5.35]–[5.38]. 

 ECG systems 

Ambulatory ECG systems are small in size and by using only a few electrodes compared 

to the clinical ECG systems can still provide limited yet useful information about the 

cardiovascular health. A wearable ECG system can facilitate continuous and long–term 

monitoring of cardiovascular health without affecting the daily activities and comfort of 

the user. 
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Researchers mostly used polymer [5.22],[5.26],[5.39],[5.40] and textile [5.41]–[5.46] 

based flexible and direct–contact electrodes to realize the sensing part of the wearable ECG 

systems. The non–contact electrodes are capacitive in nature and capable of sensing bio–

potential over the cloth without having any direct contact to the skin. Such non–contact 

electrodes are embedded in chairs [5.43],[5.45] and bed covers [5.45] to measure the ECG 

at rest or during sleep. Direct–contact electrodes are usually embedded in textiles by using 

snap buttons [5.39],[5.40],[5.46]–[5.48], Velcro [5.49] or by means of conventional 

sewing, weaving or packaging techniques [5.42],[5.43],[5.44],[5.45]. 

The sensed bio–potential is fed to the analog front end (AFE), which filters and amplifies 

the ECG signal. The noise in a battery–operated ambulatory ECG system is primarily 

caused by the movement of the body. The flexible electrodes, due to their high 

conformability to the skin, can greatly reduce the motion artifacts (MA). The noise can be 

further reduced by designing the AFE with high input impedance and high common mode 

rejection ratio (CMRR). The input impedance of the AFE can be improved by using 

resistors [5.3],[5.44],[5.50],[5.51] or two anti–parallel diodes for biasing [5.49],[5.52]. 

However, anti–parallel diodes are preferred due to their low thermal noise and faster 

recovery time. Researchers also exploited advanced amplifier topologies, for example, 

differential difference amplifier (DDA) [5.40] to achieve high input impedance, high 

CMRR, low–power and low–noise performance. The filtered ECG signal is then digitized, 

which can be stored in a SD card and/or transmitted to a nearby computing platform such 

as computer, smartphone, and tablet, preferably over a wireless media.    

Another key concern for the ambulatory ECG systems is achieving high energy efficiency 

and low power consumption. Lower power consumption increases the battery life, which 

is critical for long–term monitoring systems. Some researchers exploited energy harvesting 

techniques [5.53],[5.54] to meet the power requirements of the ambulatory systems. Power 

consumption can also be minimized by using low–power electronic components [5.39] and 

wireless communication technologies such as Bluetooth [5.22],[5.26],[5.43],[5.49], 

Bluetooth LE [5.41],[5.42],[5.46], ZigBee [5.39],[5.48] and ANT [5.3]. Researchers in 

[5.48] developed a dynamic power adjustment method to optimize the power consumption 
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of the transmitter by analyzing the distance between the transmitter and the receiver. The 

system periodically computes the relative received signal strength (RSSI) and 

automatically adjust the transmitter power until the RSSI falls within –60 dBm and –70 

dBm. In [5.55], the human body was exploited as the low–power communication medium 

for transmitting ECG signal. They used impulse radio (IR)–type human body 

communication (HBC) technology to transmit ECG data. HBC generally operates in the 

megahertz (MHz) regime. The HBC transmitter generates a quasi–static electric field 

around and close to the body through capacitive coupling. As a result, HBC offers 

minimum interference with other wireless systems as well as high data security. The 

researchers reported to achieve low bit error rate (BER) at a data rate as high as 1.25 Mbps. 

The ECG data can be readily transferred to a computer by touching the receiver connected 

to the computer.  

After receiving the ECG data, the computing platform can perform further processing, store 

and display the result in real time. The system can exploit signal processing techniques 

such as adaptive filtering [5.56],[5.57], wavelet decomposition [5.58]–[5.61] and empirical 

mode decomposition [5.60],[5.62],[5.63] techniques to further reduce the noise and 

improve the SNR. The platform can also make use of artificial intelligence (AI) 

technologies such as machine learning, deep learning and neural network to learn and 

evaluate the health status of the user. An Android–based mobile application was developed 

in [5.42] that can display the ECG traces and calculate the heart rate (HR) in real time with 

high accuracy. In [5.49], the researchers additionally included an alert generation 

mechanism in their application. The system is capable of detecting arrhythmia with high 

accuracy, and high sensitivity and can inform the user by a text message. The H–shirt 

system presented in [5.41] includes a mobile phone application, which can detect six types 

of anomalous ECG. The application can evaluate the user’s health status by analyzing the 

ECG signal and warn the user about a potential health problem by sending voice messages 

to the phone. In [5.39], the researchers proposed and implemented a single integration 

platform to serve multiple ECG monitoring systems in a smart home, thus enabling 

management and long–term monitoring of multiple users at a reduced cost. 
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In order to realize seamless monitoring of the cardiovascular health from a remote facility, 

some researchers exploited cloud–based computing platform [5.43],[5.64]–[5.66]. Cloud–

based monitoring systems allow the clinicians, designated family members and the users to 

share and access health information through a common web–based platform. In [5.43], 

researchers developed a mobile application for their ECG monitoring system, which can 

analyze, summarize and monitor the health status of the user. It can also communicate and 

share resources with the healthcare professional through a common web–based cloud 

computing server over the internet. Similar cloud–based ECG monitoring systems were 

also reported in [5.64]. Instead of analyzing the ECG in the local computing machine (e.g. 

smartphone, laptop, tablet), the system presented in [5.65] periodically transmits the 

measured ECG to the web server via a smartphone. The web server runs an algorithm that 

evaluates and enhances the quality of the ECG, displays and analyzes the signal in real 

time. It also functions as a common communication platform between the user and the 

healthcare professionals. Researchers in [5.66] also developed a cloud–based wearable 

ECG monitoring system, particularly for women. They installed two gold–nanowire based 

electrodes, electronic and transmission modules at the bottom layer of a brassiere. Unlike 

most ambulatory systems presented above, they employed GPRS communication 

technology for direct and long–range communication with the remote server, thus 

eliminating the need of any intermediate gateway, however, at the cost of increased power 

consumption. Table I presents a comparison among several ambulatory ECG monitoring 

systems presented in the literature recently. 

5.1.2 Commercial portable ECG systems  

The 12–lead clinical ECG systems are expensive, bulky and require trained personnel to 

operate, making them infeasible for in–home monitoring of the electrical activities of heart. 

Recent developments in flexible dry electrodes, low–power electronics, and short–range 

communication technologies coupled with high market penetration of computing devices 

such as smart phones, tablets, and laptops have propelled the medical product industries 

towards developing small, light–weight, and portable wireless ECG measurement systems 

in an effort to enable continuous in–home monitoring of basic cardiac activities and 
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arrhythmias. Several portable and small–size ECG monitoring systems are currently 

available in the market [5.67]–[5.78]. Some ECG monitoring systems, such as 

HeartCheck™ PEN [5.71] can be bought over–the–counter. Most of the systems, however, 

are sold with a doctor’s prescription.  

These portable systems are compact, affordable and can measure basic I–lead ECG by 

using two to three electrodes [5.67]–[5.74],[5.77]. However, some systems are capable of 

providing 3–lead ECG measurement [5.75],[5.76],[5.78]. Most systems are capable of 

measuring and recording the ECG signal for only a short period of time, usually 30 seconds. 

Some advanced systems facilitate continuous monitoring of the ECG signal up to 48 hours 

[5.68],[5.72],[5.74],[5.76]–[5.78]. The measured ECG data is stored either in a flash 

memory embedded in the system [5.69]–[5.72],[5.75]–[5.78] or in an external SD card 

[5.74], [5.76], which is later transmitted to a computing and storage platform over a wired 

communication protocol, for example, Universal Serial Bus (USB) [5.69]–[5.72],[5.74]–

[5.76],[5.78]. Some systems also incorporate low–power wireless communication 

technologies, such as Bluetooth, Bluetooth Low Energy (BLE) to facilitate wireless 

transmission of ECG signal in real time [5.67],[5.68],[5.73],[5.74],[5.77].  

5.2 Proposed ECG system 

5.2.1 Overview 

The purpose of using the proposed dry ECG electrode is to obtain the ECG traces in 

presence of a textile material between the skin and the electrodes. The electrodes do not 

require any conductive gel or direct contact to the skin, thus preventing any skin irritations 

or possible allergies. Figure 5.3 presents the block diagram of the proposed wireless ECG 

monitoring system, which includes the designed capacitive electrodes, data acquisition and 

transmission system, and a computer software. Two capacitive electrodes, one for the left 

arm (LA) and another for the right arm (RA), are placed on the forearms and connected to 

the portable ECG device by flexible wires. The portable data acquisition device is small in 

size, consumes low power, and transmits the ECG data to a personal computer over the low 

power Bluetooth communication medium [5.13].   
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Figure 5.3 Block diagram of the proposed ECG sensing system. 

A computer software was developed, which, upon receiving the ECG data, performs 

filtering of the raw data, stores and displays the filtered ECG signal. This entire system is 

designed to allow the user to carry the ECG device throughout the day, thereby enabling 

long– term monitoring of cardiac activities. 

5.2.2 Capacitive electrodes 

The capacitive electrodes sense the bio–potential through the capacitance between the 

electrode and skin surfaces [5.3],[5.4], as shown in Figure 5.4. Capacitive electrodes allow 

measuring the ECG over the cloth. In practice, the patient wears the electrodes over a thin 

layer of textile material such as cotton. The layer of the cotton material is expected to be 

thin and remain in tight contact to the skin for optimal pickup of the ECG signals.  

 
Figure 5.4 Electrode–body interface with capacitive coupling of ECG bio–potential. 
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Figure 5.5 presents the schematic of the designed capacitive electrode. The sensing area of 

the electrode is 6 cm², providing about 20pF capacitive coupling to the skin. A 3 V coin 

battery serves as the power source for the operational amplifiers (Op–Amps). The power 

switches on when the electrode is connected with the cable of the portable ECG device. 

Thus, the battery charge starts draining only when the wire is plugged into the electrode. 

The coin battery has a capacity of 40 mAh, allowing for the electrode to last for up to 2 

weeks using the micro–power AD8617 CMOS dual Op–Amp.  

 
Figure 5.5 Schematic diagram of the capacitive electrode. 

The operational amplifier (op–amp) AD8617 is selected for its low input bias current (< 5 

pA) and low current consumption (< 0.1 mA). This op–amp also has a low offset voltage, 

a low input voltage, and current noise. The electrometric amplifier AD8617 is very suitable 

for portable medical devices. One of the op–amps is used for splitting the battery voltage 

symmetrically around the virtual ground (RET). The other op–amp is used for impedance 

buffering in the signal path, providing high impedance (50 GΩ) at the input and low 

impedance (few kΩ) at the output. The high input impedance of the electrodes makes them 

more tolerant to noise and artifacts. Shielding and guarding are carefully considered in the 
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layout in order to prevent external interferences being coupled to the sensitive input of the 

electrode.  

Resistors and a capacitor are added at the output of the sensor in order to comply with safety 

requirements for the ECG systems, initial signal conditioning and lead–off detection. The 

safety requirements ask for very small or no current to keep the heart beating. Overall, the 

advantages of the proposed electrodes come from their small size and low power 

consumption, which enables both portability and long–term monitoring. 

5.2.3 Portable ECG device 

The Biometrics DataLog [5.79] is used as the data acquisition and transmission module for 

the portable ECG system. The size of the device is 104  6  22 mm3, weight is 129 g. The 

device is powered by two AA batteries and can run continuously for about 24 hours. The 

device is capable of transferring data in real time from up to 24 programmable channels. 

However, only one channel is used to realize the developed ECG system. The device also 

supports automatic data backup on a Micro SD card. 

A photograph of the ECG measurement setup is shown in Figure 5.6. The electrodes are 

about 3 cm in diameter (Figure 5.3) and connected to the Biometrics DataLog device with 

flexible wires, which provides enhanced convenience to the user and also prevent the 

displacement of the electrodes in the case of body movement. 

 

Figure 5.6 Photograph of the ECG measurement set–up. 
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5.2.4 Computer monitoring system 

The Biometrics DataLog device acquires the ECG signals using the proposed capacitive–

coupled electrodes. The portable ECG device transmits the measured ECG data over the 

Bluetooth platform in real time to a wireless receiver connected to the USB port of the 

computer. The ECG data received from the portable ECG device is processed by an infinite 

impulse response (IIR) notch (60 Hz) and a band–pass (1 Hz – 30 Hz) filter implemented 

in the software application to minimize the noise in the ECG traces. After performing the 

filtering, the ECG readings are displayed in real time. The software can also store the ECG 

readings in comma separated value (CSV) format. Each CSV file contains 10–seconds of 

ECG data. Consecutive acquisitions are automatically stored in files with filenames 

containing sequentially incremented numbers. Thus, the stored files contain the whole 

record of the ECG acquisition, until the storing function is stopped by the user. Therefore, 

the duration of the record is practically unlimited, or until the free disk space of the 

computer is consumed. 

5.3 Performance evaluation 

The proposed ECG monitoring system was used to measure the electrocardiogram from 

three different healthy subjects. The LA and RA electrodes were placed on the forearms of 

the left and right hand, respectively. The experiment was conducted in a standard room 

environment. A formal consent was taken from the McMaster Research Ethics Board 

(REB) to conduct the experiments. A simple questionnaire was prepared for the subjects to 

collect information about any known cardiac or significant health problems. The impact of 

different interface materials and body movements on the signal quality are also evaluated 

with experiments. 

5.3.1 Experimental results 

The ECG monitoring system was first tested by measuring the ECG signal at rest. The first 

set of measurements was taken by attaching the electrodes directly to the dry skin without 

applying any conductive gel or liquid (Figure 5.7 (a)). ECG was also measured by placing 

a thin cotton cloth between the electrodes and the skin (Figure 5.7 (b)). Reasonably good 
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ECG signals with distinguishable QRS complexes, P and T waves were observed in both 

cases. However, as shown in Figure 5.7 (a), the bare skin causes better coupling of signals 

to the electrodes compared to the textile–covered dry skin, thus resulting in signal with 

higher amplitude. However, since the ECGs were measured at rest, both signals were 

observed to be affected by a similar level of noise.  

 

(a) 

 

(b) 

Figure 5.7 ECG acquisitions in the time domain without body movement, with electrodes on (a) 

bare dry skin and (b) cotton fabric covered dry skin. 

A second set of experiments was performed to evaluate the impact of body movements on 

the ECG signals. Signals were measured with body movements, which include slow and 

fast abduction/adduction of hands, body rotation and normal walking. First, the ECG 

signals were measured by keeping the electrodes in direct contact with the dry skin. In the 

later experiments, the ECG signals were acquired by placing a thin cotton cloth between 

the electrodes and the dry skin. Figure 5.8 and Figure 5.9 show the ECG signals obtained 

by the direct–contact and contactless methods, respectively with different patterns of body 

movements.  
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(a) 

 
(b) 

 
(c) 

 
d) 

Figure 5.8 ECG measured from the bare dry skin with body movements: (a) slow abduction–

adduction of both hands, (b) fast abduction–adduction of both hands, (c) body rotation, and (d) 

normal walking. 

It was observed that the movement of the body contaminates the ECG signals in all cases, 

which is attributed to the displacement of the electrodes with movements. It can also be 

seen that the ECG signals obtained with a thin cotton cloth at the electrode–skin interface 

(Figure 5.9) are more affected by the motion–induced noise compared to the signals 

measured by direct–contact method (Figure 5.8). The textile material at the interface 
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experiences faster and larger displacement with the movements of the body, thus increasing 

the noise in the measured ECG signals. The QRS complex is, however, maintained in all 

cases although the P and T waves are heavily distorted by the movements. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Figure 5.9 ECG measured from the textile covered dry skin with body movements: (a) slow 

abduction–adduction of both hands, (b) fast abduction–adduction of both hands, (c) body 

rotation, and (d) normal walking. 

More experiments were performed at rest with the proposed electrode by placing different 

dry and moisturized (by water) textile materials at the interface. In Table 5.1, a summary 
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of the results in presence of different types of cotton interface materials and moisture is 

provided. A good result denotes waveforms with distinguishable QRS complex, P and T 

wave with a typical period of 5 seconds. The amplitude of the waveform varies depending 

on proximity of the electrodes to the heart. A stronger signal with higher amplitude of the 

waveform can be detected by placing the electrodes closer to the heart. On the contrary, a 

poor result refers to either no signal (flat) or waveform with significant fluctuations due to 

noise.  

Table 5.1 Effects of interface materials and moisture on the ECG signal quality. 

Interface materials and moisturizing Signal quality 

Electrode directly on skin surface 
Dry Good 

Moisturized Good 

Thin cotton cloth 
Dry Good 

Moisturized Good 

Cotton face towel 
Dry Poor 

Moisturized Good 

Cotton hand wipe 
Dry Good 

Moisturized Good 
 

5.3.2 Comparison with existing results  

As discussed earlier, many ECG systems have been developed so far by the researchers by 

integrating different technologies such as, capacitive ECG electrodes, analog front ends, 

communication systems, and data processing techniques. Table 5.2 presents a comparison 

of key features between 10 different state–of–the–art ECG systems, including the proposed 

system. Compared to the technologies reported in these publications, the proposed ECG 

system presents a good balance among signal quality, size and power consumption. 

Although our proposed electrode is slightly larger than the electrodes presented in 

[5.5],[5.13],[5.80], it provides better flexibility in terms of integration with clothes. 

Additionally, the quality of the ECG signals obtained by the proposed system is similar to 

those reported in [5.4]–[5.14],[5.16],[5.22],[5.81]–[5.83]. The system also has lower power 

consumption and smaller size, which ensure better portability. 
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Table 5.2 Comparison between the proposed methods and recent alternatives for ECG sensing 

systems. 

Ref. Technology 
Implement–

ation 
Advantages Limitations Com 

[5.81] 
Capacitive 

sensing 

Integrated 

on chest belt 

Portable and integrated 

to the Android phones 

Power consumption 

issues 
Zigbee 

[5.80] 

Flexible 

PDMS dry 

electrode  

Integrated 

on wrist 

band 

Small, low power 

consumption 

Limited by the ECG 

recording systems 
N/A 

[5.13] 
Capacitive 

sensing 

Integrated 

on belt 

Flexible electrodes 

integrated into 

garment, convenient 

integration on the body 

Poor filtering (relatively 

small upper–corner 

frequency), Poor signal 

quality, Large Ref 

electrode – 250 cm2 

Bluetooth 

[5.4] 
Capacitive 

sensing 

Integrated 

on chest vest 

Picks up good signals 

through one or two 

layers of cotton 

Large size of electrodes 

and devices gives poor 

portability 

N/A 

[5.5] 
Capacitive 

sensing 

Integrated 

on thin cloth 

Small, low power 

electrodes 

Limited by the phone 

and monitoring network  
Bluetooth 

[5.82] 

Multiwall 

CNT/cotton–

electrode 

Integrated 

on cloth 

Low cost, good 

conductivity on cotton 

materials 

Limited by the circuits in 

electrodes and other part 

of the ECG system 

N/A 

[5.15] 

Wet textile, 

Ag/AgCl 

electrodes  

Integrated 

on belt 
Good conductivity 

Large in size, not 

portable 
N/A 

[5.83] 

Dry 

electrode 

sensing 

Integrated 

on cloth 
Good noise filtering 

Power consumption 

issues 

Bluetooth/

ZigBee 

[5.23] 

Capacitive 

sensing 

using 

conductive 

foam 

Embedded 

in chest belt 

Flexible electrodes 

integrated with chest 

belt 

3 electrodes, high 

resistor 5GΩ, Used for 

24 hours, depends on 

clothing material, 

thickness, contact 

pressure and humidity 

Bluetooth 

[5.32] 

Dry 

electrode 

sensing 

Nanowoven 

fabrics with 

Ag/AgCl 

conductive 

inks 

Screen printed dry 

electrode woven into 

fabric – comfortable, 

easy to use and suitable 

for wearable systems 

Only sensing electrode 

demonstrated.  
N/A 

[5.6] 

Dry–

electrode, 

Active 

shielding 

Integrated 

on cloth 

Small electrodes (down 

to 8 mm diameter), 

conductive rubber 

electrodes 

Relatively high power 

consumption, Low signal 

quality, Large sensor size 

Bluesense 

AD 

module 

This 

work 

Capacitive 

sensing 

using 

flexible PCB 

Integrable 

on a 

stretchable 

cloth 

Very low power 

consumption compared 

to other systems, 

relatively small–size, 

ultra–thin flexible 

electrodes combined 

with standard 2–layer 

PCBs, easy to use 

Semi–rigid electrodes 

using thin, flexible PCB 
Bluetooth 



Ph.D. Thesis – S. Majumder                              McMaster University - Electrical and Computer Engineering 

 

123 

 

In comparison with [5.5],[5.6],[5.13]–[5.15],[5.22],[5.83], our proposed method has better 

signal integrity primarily due to the flexible nature of the sensing material and better design 

of the capacitive electrode. Different wireless technologies have been adopted in different 

publications [5.5],[5.13],[5.16],[5.80]–[5.82]. For example, in [5.5],[5.13],[5.80],[5.81], it 

was suggested to develop mobile ECG monitoring applications in Android platforms for 

cell phones. However, cell phone consumes a significant amount of power during RF 

communications, which is an issue towards long term ECG monitoring. For long–term 

monitoring, an application specific transmitting device is preferred so that the battery can 

last for a minimum of one day of continuous operation of the portable unit. 

The developed ECG monitoring system is tested, as routinely done, in an outpatient 

environment. Using our system, we aim to identify Tachy and Brady arrhythmias including 

atrial fibrillation, ventricular and supraventricular tachycardia (narrow complex and wide 

complex), sick sinus syndrome, episodic syncope which are particularly intermittent and 

may not be evident in short–term ECGs. The low power consumption allows the porotype 

system to monitor the ECG for prolonged periods. Apart from the long–term monitoring of 

ECG, one can also measure single lead short–term ambulatory ECGs using the proposed 

system. 

5.4 Automatic anomaly detection 

A single–lead ECG system, coupled with automatic detection of Atrial Fibrillation (AFib) 

is of paramount importance for early diagnosis that may otherwise lead to fatal 

consequences such as stroke and heart failure. In fact, approximately one–fourth of all 

strokes after the age of forty are caused by Afib [5.85]. The risk of developing AFib 

increases with age and other factors such as, high blood pressure, diabetes, and underlying 

heart disease, affecting approximately 200,000 Canadians[5.85]. In the case of AFib, the 

electrical impulses that contracts the atria to push the blood to the ventricles are fast and 

irregular, causing the heart to pump blood inefficiently at an irregular and faster pace. This 

results in irregular R–R intervals with missing P waves in the ECG signals. Figure 5.10 

shows an example of single–lead ECG trace for normal and Afib signal. 
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(a) 

 
(b) 

Figure 5.10 Single–lead ECG signal (a) normal rhythm and (b) atrial fibrilation [5.86]. 

Most AFib detection methods reported are based on binary classification between normal 

rhythms and AFib using high quality 12–lead clinical ECG signals. Although 12–lead ECG 

system can provide detailed information about heart health, it is not feasible for in–home 

ambulatory monitoring. In addition, the broad spectrum of cardiac anomalies such as, 

tachycardia, bradycardia, and arrhythmias exhibit similar pattern in HR and HRV, making 

high–specificity AFib detection even more challenging. Therefore, an automatic AFib 

detection method is developed as a potential extension of the system software that uses 

single–lead short ECG traces to detect normal, AFib, and other abnormal ECGs.  

5.4.1 Data collection protocols 

A total of 8528 single–lead ECG recordings are obtained from a publicly available dataset 

[5.86],[5.87]. The ECGs were measured with AliveCor’s single–channel portable ECG 

device. The users held one electrode of the ECG device in each hand, thereby creating a 

lead I (LA–RA) equivalent of standard clinical ECG[5.88]. The ECGs were sampled at a 

rate of 300 samples per second and filtered by the AliveCor device. The ECG recordings 

are short with their duration varying from as short as 9s to 61s. The publicly available 

dataset comprises a heavily unbalanced set of four types of signals with 5076 normal ECG 
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traces, 785 AFib ECGs, 2415 other abnormal ECGs, and 279 noisy signals. The labelling 

of ECGs had been initially provided by the AliveCor that was further rechecked and 

relabelled by a group of experts [5.88]. However, for some ECG recordings even the 

experts could not reach to a consensus, further signifying the challenge associated with 

automatic anomaly detection [5.88].  

5.4.2 Signal processing  

Single–lead ECG signals measured by portable, non–clinical devices are generally 

vulnerable to noise and motion artifacts. The bodily movement and the rigid nature of the 

dry electrodes often disturb the contact interface between the skin and the electrode, thus 

corrupting the ECG signals and deteriorating the signal quality. Therefore, it is critical to 

improve the SNR of the ECG signals to ensure better classification performance. 

The noise in the ECG signals may include low–frequency baseline wander due to breathing, 

and muscle movement as well as high–frequency impulse noise that evolves from 

occasional loss of contact between the skin and the electrode. A fast and hierarchical tree–

like decomposition algorithm, discrete wavelet transform (DWT), is used to decompose the 

ECG signals into different frequency spectrums. As discussed before, the DWT 

decomposes a signal into approximation coefficients and detail coefficients by passing the 

discrete time–domain signal through several low–pas filters (LPF) and high–pass filters 

(HPF), respectively. While the approximation coefficients i.e. the lower–frequency 

components at each level can be further decomposed in a similar fashion, the detail 

coefficients or the higher–frequency components remain unaltered. A Daubechies 6 (db6) 

wavelet based discrete wavelet transform (DWT) method is used to decompose the ECG 

signals at level 9. The low–frequency approximation coefficients as well as the high–

frequency detail coefficients are set to zero before reconstructing the ECG signal.  

5.4.3 Feature extraction  

Finding key discriminatory features are of paramount importance for a reliable and high 

performance classification tool. In this work, a large set of 371 features is extracted from 

the ECG signals. The features include statistical and entropy measures related to the timing 
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and morphological parameters. The timing parameters include the intervals between 

different characteristic peaks of the ECGs and HRV parameters such as pNN10, pNN20, 

pNN50, SDNN, SDSD and normalized RMSSD. The morphological features include the 

amplitude, rising and falling slopes and width of characteristic peaks. The normalized 

signal energy at different frequency spectrums are also calculated and fed to the 

classification algorithm. The energy 𝐸𝑐 information of each component of the decomposed 

ECG signal is calculated using Eq. 5.1, 

𝐸𝑐 =
1

𝐵
∑ 𝑆𝑒(𝑛)2
𝑁

𝑛=1

 
(5.1) 

where 𝑆𝑒 represents the components of decomposed ECG signal, 𝑁 is the total number of 

samples, and 𝐵 is the total number of ECG cycles in the signal.  

In order to find the similarity measures among different segments of the ECG signal, the 

filtered ECG signals are segmented into three equal length windows (𝑀𝑤) with overlap to 

form a 𝑀𝑤 × 3 matrix. A set of features associated with the singular values are then 

obtained from singular value decomposition (SVD) of the matrix. 

Another measure of variation in the ECG parameters is obtained by calculating the 

coefficient of variation of the timing and morphological parameters. The coefficient of 

variation is given by, 

𝐶𝑉 =  100 ×
𝜎𝑝

𝜇𝑝
 

(5.2) 

where 𝜎𝑝 and 𝜇𝑝 are standard deviation and mean of parameter 𝑝. 

5.4.4 Predictive model  

The ECGs were classified using a two stage process. In the first stage, a rule–based decision 

support technique was used to identify some of the noisy signals and AFib signals based–

on some of the features’ probability distribution and prior clinical knowledge. For example, 

based–on the distribution of HR as well as clinical knowledge, ECGs with HR above 98 

bpm are identified as AFib. This simple rule–based identification in the first stage reduces 

computational burden in the second stage. However, ECGs showing normal and slower HR 

can still be AFib. 
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Therefore, a Bootstrap Aggregated tree (Bagged tree) is used in the second stage to classify 

normal, AFib, other rhythms and noisy signals. Decision tree is a very well–known and 

popular technique of decision making that uses a tree–like structure of decisions and their 

possible consequences. A decision tree can be a simple one with several branches, however, 

can get very complex in the case when many features and their values are interlinked or 

uncertain. A simple tree is prone to having a large model bias whereas a complex tree–

based model may suffer from high variance. Bagged tree is one of the ensemble methods, 

which instead of using a single decision tree combines the outcomes from several decision 

trees to realize a better predictive model.  

In an ensemble method, a strong learner is developed by combining a group of weak 

learners. In Bagged tree method, several subsets of the training data are picked randomly 

with replacement. Each subset of training data is then used to train a decision tree, thereby 

reducing the model variance associated with complex decision trees. The predictions from 

all such trees are then combined to obtain the final prediction, resulting in a more robust 

model than a single decision tree. 

5.4.5 Model performance  

The performance of the model was validated using 5–fold cross validation. Each time, 1706 

ECGs out of 6822 were excluded randomly without overlap. Five such non–overlapping 

subsets of 1706 ECGs were thus obtained. The model was then trained in each case with 

the remaining 6822 ECGs. Finally, the excluded 1706 ECGs from each subset were 

classified using the model. The performance of the model was evaluated by calculating the 

F1–scores for normal (F1n), AFib (F1a) and other rhythms (F1o), separately as well as by the 

mean F1–score of these three classes as recommended by [5.87]. The F1–score of one class 

is given by,  

𝐹1𝑥 =
2𝑇𝑃

2𝑇𝑃 + (𝐹𝑃 + 𝐹𝑁)
;                       𝑥 = 𝑛, 𝑎, 𝑜 

(5.3) 

where, 𝑇𝑃, 𝐹𝑃, and 𝐹𝑁 represent the number of ECGs classified as true positive, false 

positive and false negative, respectively. The overall F1–score is defined by [5.87] as, 
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𝐹1̌ =
𝐹1𝑛 + 𝐹1𝑎 + 𝐹1𝑜

3
 

(5.4) 

The performance of the classifier for all 5–fold validation is presented in Table 5.3. 

Table 5.3 Performance of the anomalous ECG detector. 

Folds 𝑭𝟏𝒏 𝑭𝟏𝒐 𝑭𝟏𝒂 𝑭�̌� 

1 0.90 0.73 0.75 0.80 

2 0.89 0.72 0.76 0.79 

3 0.89 0.70 0.73 0.78 

4 0.89 0.71 0.78 0.79 

5 0.90 0.72 0.78 0.80 

Overall 0.90 0.73 0.78 0.80 

It can be seen that the classifier performs well across all five folds with a mean 𝐹1̌ of 0.80. 

The small standard deviation of 0.6% among 𝐹1̌ from different test scenarios ensures the 

model’s robustness and stability. The model particularly achieves a very high F1–score in 

classifying normal ECGs with a mean 𝐹1𝑛 of 0.90 (±0.5%) and a moderately high F1–score 

in detecting AFib with a mean 𝐹1𝑎 of 0.78 (±2.1%), reflecting a reasonably accurate 

classifier that can potentially be incorporated in the proposed ECG system to facilitate in–

home detection atrial fibrillation at its onset. 

It should be noted that even the experts could not reach to a consensus while labelling some 

of the ECGs, potentially causing some signals to be wrongly labelled. This may have 

affected the model accuracy to some extent, further signifying the challenges associated 

with automatic anomaly detection with ambulatory ECG systems.  

5.5 Conclusions 

An Electrocardiography (ECG) monitoring system has been developed to achieve 

improved signal detection, portability and reduced power consumption by addressing the 

trade–offs among size, power requirements, and signal quality. Recent developments in the 

ambulatory ECG monitoring systems have been leaning towards the idea of contactless 

bio–potential sensing. Since the contactless ECG monitoring system does not require any 

direct contact to the skin, it offers better user comfort during prolonged monitoring. The 

proposed system is capable of measuring the ECG signal on a biocompatible textile–based 

interface material such as cotton. The smaller size of the electrodes also allows for better 
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portability and convenience to the user. The proposed system does not require a ground 

electrode. As a result, the single lead ECG can be measured by using only two electrodes. 

The proposed ECG electrodes consume small amount power and can run continuously for 

2 weeks from a 3V coin cell battery that makes the electrode suitable for long–term 

monitoring. The electrodes are connected to a portable ECG device that is capable of 

transmitting signals continuously for 24 hours over the Bluetooth platform to a personal 

computer in real time. Therefore, at present, the overall continuous run time of the system 

is limited by the battery life of the commercial data acquisition and transmission module. 

As observed from the results of the experiments, the proposed ECG monitoring system can 

properly acquire the ECG signals over the cloth with the QRS complexes, P and T waves 

being clearly distinguishable, when measured at rest. The proposed system, therefore, can 

potentially be used to detect abnormal ECGs by enabling long–term monitoring of cardiac 

activities.  

Despite the advances that are being made in ECG monitoring systems, there is still room 

for further improvements. In order to reduce the displacement of the electrodes with 

motion, the electrodes need to be firmly integrated over the cloth. Furthermore, the 

electrostatic coupling of the electrodes to the skin potential can be improved by employing 

a dedicated film or membrane materials with increased dielectric permittivity. Conductive 

polymers or smart textiles can also be used to realize conductive sensing part of the 

electrodes, which may offer enhanced flexibility and user comfort.  

Electrocardiography monitoring systems continue to be a very active area of research and 

technology development. So, a critical review and comparison of recent ambulatory ECG 

monitoring systems and ECG systems–on–chip solutions is presented and discussed. The 

major features and performance characteristics of recently published state–of–the–art ECG 

systems are compared and described. For long–term monitoring, electrodes integrated on 

skin and different types of interface clothing materials are desired. Therefore, a comparison 

of the advantages and limitations between the method proposed in this work and recent 

alternatives for ECG sensing systems is presented and discussed.
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Chapter 6  

Association between gait and heart 

Walking is the most common daily physical activity that people perform on a regular basis. 

As mentioned in Chapter 4, healthy walking requires proper functioning and coordination 

between the nervous and musculoskeletal systems. Any damage to these systems can affect 

this process of coordination that can be manifested through an altered gait pattern. For 

example, patients suffering from neurodegenerative disorders such as Parkinson's disease, 

tend to walk with short and shuffling steps. Therefore, walking or gait is understandably 

rich in clinical information and can be used as a simple but effective biomarker in 

identifying chronologically aged people from geriatric i.e. biologically aged patients as well 

as to assess overall health and longevity of the older adults.  

IMUs are the most suitable candidates for precise and accurate measurements of 

movements in a wearable platform, thus making them our device of interest for gait 

measurement. Furthermore, owing to the severity and global prevalence of cardiovascular 

diseases, we are particularly interested in studying the association between key cardiac 

features and gait features obtained from on–body IMUs. In this chapter, we investigate the 

quantitative association between human gait and cardiac activities measured with inertial 

sensors and single–lead portable ECG monitor, respectively. We present experimental 

results that show a good association between gait and heart activity. These associations can 

potentially enable realizing a low–cost monitoring tool to detect early signs of CVD–

associated changes in gait features before the actual CVD symptoms are manifested. 
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6.1 Background 

The central nervous system is both anatomically and physiologically linked to the 

cardiovascular system and the musculoskeletal system of the body, resulting in numerous 

interactions among them. The brain has three main parts: the cerebrum, cerebellum and 

brainstem (Figure 6.1). The brainstem part of the brain controls many automatic functions 

of the body including cardiac and lung function through the sympathetic and 

parasympathetic branches of the autonomic nervous system. It is thereby responsible for 

regulating the autonomic functions of the body, such as heart rate, respiratory rate, body 

temperature and blood pressure. The brainstem also serves as a relay hub, which connects 

the cerebrum and cerebellum of the brain to the spinal cord.  

 

Figure 6.1 The brain has three main parts: the cerebrum, cerebellum and brain stem. 

On the other hand, the cerebellum along with the spinal cord plays a vital role in motor 

coordination and regulating gait while maintaining postural stability and dynamic balance 

through a combination of voluntary and involuntary processes. The natural gait pattern 

results from the involuntary processes of the central nervous system (CNS). However, the 

gait and postural adjustments activate voluntarily or involuntarily upon receiving feedback 

about the environment from different sensory organs. In response to the sensory signals 

received from the spinal cord, the cerebellum sends signals to the cerebral cortex and the 

brainstem. These regions then relay the signals to the spinal cord that activates the motor 

neurons to adjust the gait pattern and postural stability and balance according to the 

environment. 
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Due to numerous intertwined interactions among the CNS, the cardiovascular system and 

the musculoskeletal system, it is understandable that some damage to or malfunctioning of 

one of these systems can disrupt this precise act of coordinated interactions, resulting in an 

altered gait pattern. For example, neurodegenerative disorders such as Parkinson's disease 

frequently cause slowly progressive autonomic failure that not only alters the gait pattern 

but also often causes cardiac autonomic dysfunction. However, the most prevalent cardiac 

abnormalities caused by CNS–associated disorders are arrhythmias. 

One of the easy–to–measure, nevertheless, critical gait parameters is the gait speed, which 

reflects the overall status of health. The body adjusts its natural gait speed according to the 

ability of all the systems associated with the gait to adapt to the walking environment while 

minimizing the energy expenditure simultaneously. As persons become frail with age their 

gait speed decrease gradually in an attempt to maintain dynamic postural stability [6.1]. It 

was reported that gait speed reduces significantly after 50 years of age in both male and 

female [6.2]. In addition, decreased physical strength and flexibility [6.3] due to loss of 

muscle mass results into a reduced but highly variable step length, minimum toe clearance 

(MTC) [6.2],[6.1],[6.5] and range of motion (ROM) of the joints [6.3],[6.6]. A reduced and 

highly variable MTC and ROM of the knee and hip joints put an individual at a greater risk 

of accidentally contacting the walking surface during the swing phase of the gait, thus 

resulting in a trip or fall [6.1],[6.5]. 

Gait speed is also known to be associated with the risk of developing heart disease. People 

with slow walking pace were reported to be more vulnerable to cardiac and all–cause death 

compared to the brisk walkers that is likely associated with their physical fitness. Among 

the slow walkers, those with a low BMI are at the highest risk that is possibly attributed to 

the malnourishment or excessive levels of muscle tissue loss with age. However, it is 

uncertain whether physical fitness leads to a faster gait speed or faster gait speed results in 

better fitness. Nevertheless, it is well recognized that better physical fitness leads to better 

cardiac health. 
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Therefore, gait speed is understandably regarded as a reliable measure of frailty [6.7] and 

an indicator of an individual’s likelihood of maintaining an independent and active life. In 

addition, gait speed, along with age and gender, has been shown to be a good predictor of 

life expectancy [6.1],[6.9]. Regular monitoring and trend analysis of a person's gait speed 

can therefore be very useful in identifying potential health problems at the very outset. 

Alongside the gait speed, step length is also affected by health conditions. For example, 

patients with chronic heart failure (CHF) take short and frequent steps, which in severe 

cases may lead to a shuffling gait [6.1]. A weak heart potentially leads to higher gait 

variability, lower gait speed and angular velocity, shorter steps, and increased gait 

asymmetry. Possible reasons for this type of gait in CHF patients may be attributed to the 

abnormalities associated with their vascular system and strength of skeletal muscle 

alongside the histological and biochemical anomalies [6.9]. This short–shuffling gait in 

CHF patients also likely affects their oxygen consumption and thereby the ability to 

perform physical exercise. The muscle tissues possibly cannot support the contraction 

necessary to maintain a longer stride and consistent rhythmic steps as gait speed and 

cadence are highly associated with the strength of calf–muscle [6.9].  

Another factor that links the cardiac health and gait is the energy expenditure during 

walking. Energy expenditure, which is measured by the rate of Oxygen consumption is 

reported to be linearly proportional to the gait speed over the range of 50–100 m/min [6.10], 

[6.11] and is also highly correlated with body weight [6.10]. However, oxygen 

consumption increases at a faster rate at higher gait speed [6.11]. In addition, motor 

impairments often reduces the efficiency of functional ability, resulting in increased oxygen 

expenditure [6.12]. Effective and efficient functioning of the heart is critical to maintain a 

sufficient supply of O2 in the body to keep up with the body’s demand of O2 during the 

period of a submaximal workload such as walking, jogging, and climbing staircase.  

A popular measure of gait efficiency that combines heart rate and gait velocity is the 

Physiological Cost Index (PCI), which was proposed by MacGregor [6.13] in 1979. PCI 

has since been extensively used in clinical and research settings [6.12]. MacGregor 
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assumed heart rate and oxygen consumption are linearly associated at submaximal 

workloads and proposed an indirect measure of oxygen expenditure during walking as, 

𝑃𝐶𝐼 =
∆𝐻𝑅(bpm)

𝑣 (m/min)
 

(6.1) 

where, ∆𝐻𝑅 is the difference between the steady–state walking heart rate (𝐻𝑅𝑤) during 

walk and resting heart rate (𝐻𝑅𝑟) and 𝑣 is the gait velocity. Figure 6.2 shows how the HR 

changes with physical activities. 

 

Figure 6.2 Change in HR due to submaximal workloads. 

A smaller change in HR with walking results in a smaller PCI i.e. a lower energy cost of 

walking, thus indicating an efficient gait. On the contrary, a bigger change in HR with 

walking gives rise to a higher PCI that is indicative of an inefficient gait. 

6.2 Data acquisition and protocols 

6.2.1 Participants and protocols 

In this study, we recruited 38 healthy persons with their age ranging from 18 to 65 years 

and obtained 50 set of ECG and walking measurements that includes an additional 12 set 

of measurements taken from the 12 participants at a different point of time. The participants 

were first briefed on the motivation of the study and the data privacy and security protocols 

prior to the experiment that was followed by a short session to familiarize the participants 

with the measurement systems and protocols. Each participant answered a questionnaire 

designed by a physician to collect information about some key physical features of the 
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participants such as their weight, sex, age, leg length, and height. For the experiments, we 

only recruited healthy subjects with no major health issues and/or prior surgeries and 

obtained a signed consent from each of them. Prior approval for the study was received 

from the Hamilton Health Sciences Research Ethics Board. 

6.2.2 Data acquisition systems  

Single lead ECG was measured using an FDA–approved portable, handheld ECG device 

(HeartCheck™). This device acquired 30s long ECG signals at a rate of 250 samples per 

second and stored the data on it. The ECG data were transferred to a computer via a USB 

cable and are stored there as text files. The motion signals corresponding to human walking 

were acquired using the inertial measurement units (IMUs) from InvenSense Inc (MPU–

9150). The IMU measured 43 mm, 37 mm, and 12 mm in length, width and height, 

respectively and included a tri–axial accelerometer and a tri–axial gyroscope. The 

accelerometer and the gyroscope offered a full–scale range of ±16g and ±2000 degrees per 

second (dps), respectively. The IMU was configured to acquire signals at a rate of 50 

samples per second. The measured motion data were transmitted to a computer in real-time 

using the IMUs onboard Bluetooth transceiver module. The computer runs a Python 

program to communicate with the IMUs over the Bluetooth medium and to store the data 

as text files. Finally, a program was developed in MATLAB to read both the ECG and 

walking data from the text files for further processing and analyses.  

6.2.3 Data acquisition protocol  

The IMU was mounted on a Velcro belt and attached at the frontal section of the shank of 

both legs (Figure 6.3a). The placement of the IMUs at the frontal section reduced the 

motion artifacts due to the movement of the muscles and the soft–tissues. The orientation 

of the attached device was such that the x–axis, y–axis and z–axis point towards the upright 

direction (longitudinal), the outward direction (medio–lateral) and the forward direction 

(antero–posterior), respectively. To maintain the uniformity of measurements among the 

subjects, the IMU was always attached at 20 cm above from the ground level. 
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(a)  (b)  

Figure 6.3 Experimental setup a) IMU attachment in the shank b) 20 m walking loop. 

The ECG was measured twice from each participant – at rest and immediately after 

walking. After measuring the resting ECG, the participant was taken to the starting point 

and asked to walk along a marked walkway at his/her preferred pace. The walkway was a 

well–illuminated 20m long loop and had 5 turns (45°, 120°, 45°, 30°, and 180°) along the 

path (Figure 6.3b). The participants were asked to complete 10 rounds along the path to 

complete walking a distance of 200m. This 200 m walk allowed the HR of the participants 

to reach a steady state during the walking. The participant started and stopped walking at 

the verbal commands of “start” and “stop” given by the investigator. The subject’s ECG 

was measured again immediately after completing the specified walk.  

6.3 Results and discussion 

6.3.1 Association between Resting HR and Gait 

Our study included a dataset of 50 measurements of ECG and gait signal from 38 

participants. The participants were divided into two groups. Group 1 (G1) included 34 

(68%) sets of measurements with a resting heart rate below 85 bpm and group 2 (G2) had 

16 (86.9%) sets of measurements with a resting heart rate equals and above 85 bpm. The 

comparisons of the gait parameters between the two groups were made with one–way 

analysis of variance (ANOVA) method. ANOVA shows if there is a significant separation 

in the distributions of a parameter between two groups that is assessed by the p–value (p). 

A p–value < 0.05 is considered as significant for all statistical tests.  

Among the physical characteristics, BMI was found to have a statistically significant 

association (p < 0.0001) with the two groups. It was observed that participants with higher 

BMI (mean BMI 28.1 vs 23.5) were more likely to having a higher resting HR. Overweight 
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and obesity occurs due to increase of white adipose tissue (WAT), which increases the 

body’s metabolic rate, resulting into increased number or size of blood vessels [6.14]. As a 

result, the total blood volume and the cardiac output increases in overweight and obese 

people, thereby affecting the structure and function of vascular system and cardiac vessels 

[6.15]. Therefore, the cardiac output, which is determined by the cardiac stroke volume and 

heart rate, is likely to increase in overweight and obese people than in people with normal 

weight [6.15]. 

A total of 486 gait features were extracted from the accelerometer and gyroscope signals 

measured from both legs. After performing the ANOVA test, a set of 76 statistically 

significant gait variables (p < 0.05) were selected to use in three different types of 

classification algorithms – linear support vector machine (SVM), linear discriminant 

analysis (LDA) and logistic regression (LG). Gait variables with p > 0.05 were considered 

as statistically not significant and were discarded during the parameter selection and 

training process. A set of only five gait features were finally obtained that maximized the 

model accuracies in classifying the two groups of resting HRs with a five–fold cross 

validation. The classification performance was further evaluated by Positive Predictive 

Value (PPV), Negative Predictive Value (NPV), Sensitivity and Specificity. The confusion 

matrices of the five–fold cross validation from all three models are presented in Table 6.1. 

The high and consistent classification performance achieved from all three simple models 

with the five gait features validate their relevance in the association with the resting HR. 

Table 6.1 Performance of the models after 5–fold cross validation. 
 

Model Accuracy PPV NPV Sensitivity Specificity 

SVM 90% 89% 92% 97% 75% 

LDA 88% 87% 92% 97% 69% 

LR 84% 86% 79% 91% 69% 

In order to find out the key contributors to the gait’s association with the resting heart rate, 

we performed principal component analysis (PCA) on the set of these five features and 

created a biplot of the first three principal component coefficients. The first three principal 

component (PC1) explains 77.8% of total variance in the data. Table 6.2 presents the 
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description of the five gait features that are likely to be associated with the resting heart 

rate and their contributions (coefficients) in the first three principal components.  

Table 6.2 Description of the five key gait features. 

Feature Description PC1 PC2 PC3 2–norm 

f1 Asymmetry between legs in terms of the proportion 

of gait cycles having more than 20% cycle–to–

cycle variation in 𝑎𝑝2𝑝𝑀𝑆 wrt the mean 𝑎𝑝2𝑝𝑀𝑆 
–0.196 0.6588 0.464 0.8294 

f2 Skewness of the peak acceleration during the mid–

swing phases of the dominant leg 
0.5861 0.1881 0.4045 0.7365 

f3 Proportion of gait cycles having 10–20% cycle–to–

cycle variation in 𝑎𝑚𝑥𝑀𝑆 wrt the mean 𝑎𝑚𝑥𝑀𝑆  of 

the dominant leg 

0.5912 0.2708 
–

0.0038 
0.6503 

f4 Standard deviation of minimum angular velocities 

at foot–lift 

–

0.5096 
0.1558 0.4067 0.6704 

f5 Proportion of gait cycles having more than 20% 

cycle–to–cycle variation in 𝜔𝑓𝑠 wrt the mean 𝜔𝑓𝑠 

of the dominant leg 

0.094 –0.658 0.675 0.9473 

𝑎𝑝2𝑝𝑀𝑆: Peak–to–peak acceleration during the mid–swing phase of the gait. 

𝑎𝑚𝑥𝑀𝑆: Maximum acceleration during the mid–swing phase of the gait.  

𝜔𝑓𝑠: The rate at angular velocity changes following the mid–swing phase. 

 

All five gait parameters are seen to be associated with resting HR are related with variability 

and asymmetry during the mid–swing phase of the gait, potentially suggesting an 

association of variability and asymmetry at the mid–swing phase of gait with cardiac 

output. The biplot of the first three principal component coefficients is presented in Figure 

6.4.  

 

Figure 6.4 Biplot of the first three principal component coefficients. 
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It can be seen from the biplot as well as from the 2–norm (Table 6.2) that f5, f1 and f2 are 

the three highest contributions in the first three principal components that are associated 

with resting HR. Features f1 explains the asymmetric pattern in the variability of 𝑎𝑝2𝑝𝑀𝑆 

between two legs. On the other hand, feature f2 explains the distortion in the distribution 

of peak acceleration during the mid–swing phases of the dominant leg, which along with 

feature f5 explain the control on gait after mid–swing. A high variability in 𝜔𝑓𝑠  following 

the mid–swing can be indicative of an individual’s adaptability to the walking environment 

[6.15],[6.16]. Figure 6.5 shows the trend of the feature f1, f3 and f5 with respect to the 

resting HR. In a nutshell, a more symmetric and skewed acceleration during the mid–swing 

phase as well as high adaptability or controllability of the gait following the mid–swing are 

some potential good indicators of better resting cardiac output. 

 

Figure 6.5 Association of key gait features with resting HR. 

6.3.2 Association between HRV and Gait 

Heart rate variability (HRV) is generally defined by beat–to–beat variations in the R–R 

intervals of the ECG signals. Although HRV manifests the variation in the heart's 

rhythmicity, it is regulated by the nervous system. The parasympathetic part of the nervous 

system that is often referred to as the rest and digest system decreases the heart rate, 

whereas the sympathetic nervous system or the fight–or–flight system, responds to 

situations like stress, anxiety, and exercise and increases the heart rate. In the case of a 

balanced and well–regulated Autonomic Nervous System (ANS), these two contrasting 

parts simultaneously send signals to the heart (Figure 6.6), resulting in a natural fluctuation 
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in R–R intervals. Therefore, HRV understandably represents the functioning of the ANS as 

well as overall health, endurance, and capacity to tolerate stress. 

 

Figure 6.6 Heart rate variability evolves from the interaction between the sympathetic and 

parasympathetic parts of ANS. 

A high resting–HRV is generally favorable that is indicative of a balanced ANS 

[6.18],[6.19]. A balanced ANS enables the body to effectively respond to both the 

parasympathetic and sympathetic inputs, making it highly adaptable to the environment and 

to perform efficiently. However, a low resting–HRV is indicative of disruption in the 

natural interaction between these two systems, leaving the body in a sympathetically 

dominant fight state even when the body is not involved in any activity. This results in 

inefficient use of bodily resources and leaves fewer resources available for actual fight–or–

flight scenarios such as physical activities, stress, and anxiety [6.18],[6.19]. 

HRV can be described both in time–domain, frequency–domain [6.18],[6.19]. Time–

domain HRV indices quantify the beat–to–beat variability in the ECG measurements, 

whereas frequency–domain indices explain the absolute or relative power into four 

frequency bands – ultra–low–frequency (≤ 0.003 Hz), very–low–frequency (0.0033–0.04 

Hz), low–frequency (0.04–0.15 Hz), and high–frequency (0.15–0.4 Hz) bands. Table 6.3 

presents the some of the HRV indices in time domain. 

Table 6.3 HRV indices in time domain. 

Parameter Unit Description 

SDNN ms Standard deviation of NN intervals 

pNN20 % % of consecutive NN intervals that differ by more than 20 ms  

pNN50 % % of consecutive NN intervals that differ by more than 50 ms 

RMSSD ms Root mean square of successive differences between NN intervals  
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 HRV with aging 

It can be seen that the HRV indices showed a negative correlation with aging. However, no 

HRV index showed any statistically significant correlation with BMI, gait speed, and stride 

length. Resting–HRV determined by pNN20 and pNN50 decreased following a quadratic 

regression pattern with aging (See Figure 6.7), with the Spearman correlation coefficient 

of −0.45 (p < 0.002) and −0.40 (p < 0.02), respectively that is consistent with the 

observations reported in [6.19].  

  

(a) (b) 

Figure 6.7 Relations between age and resting–HRV of healthy participants determined by a) 

pNN20 and b) pNN50. 

Although both SDNN and RMSSD at rest also showed a negative correlation with aging, 

they were not found statistically significant in this work. However, all four indices obtained 

from the ECGs immediately after the walking experiment showed statistically significant 

negative correlation with age. Table 6.4 presents the correlations of the four HRV indices 

with age both at rest and after walk. 

Table 6.4 HRV indices with age both at rest and after walk.   
At rest After walk  

r p r p 

RMSSD  −0.23 0.11 −0.42 <  0.003 

SDNN  −0.23 0.11 −0.42 <  0.003 

pNN20  −0.45 <  0.002 −0.41 <  0.004 

pNN50  −0.40 <  0.02 −0.42 <  0.007 
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The pNN50 is believed to reflect the parasympathetic activity of the body [6.20]. Therefore, 

the rapid decline of pNN50 as well as pNN20 with aging could be reflective of an early 

decline of parasympathetic activity compared to the sympathetic activity [6.20]. 

 HRV with gait 

The resting–HRV indices showed some association with the key gait parameters such gait 

speed, and stride length (Table 6.5). It was observed that participants who walked at a speed 

of or slower than 1.1 meter/s had on average a lower resting RMSSD (31 ms vs 59 ms) and 

SDNN (32 ms vs 60 ms) than the others that is statistically significant at p < 0.05. In 

addition, people with shorter stride length (≤ 1.1 m) had significantly lower (p < 0.05) 

pNN20, RMSSD and SDNN compared to the participants who had longer strides. The 

positive association of resting–HRVs and gait speed as well as stride length is likely 

indicative of the participants’ physical fitness. 

Table 6.5 Association of resting–HRVs with gait speed and stride length. 
 

Speed  

≤ 1.1m/s  

Speed  

> 1.1 m/s 

 
stride length 

 ≤ 1.1  

stride length   

>1.1  

 

 𝑛 = 17 𝑛 = 33 𝑛 = 22 𝑛 = 28  
µ 𝜎 µ 𝜎 𝑝 µ 𝜎 µ 𝜎 𝑝 

pNN50 13.0 17.9 18.1 20.7 0.39 12.4 16.4 19.5 21.8 0.21 

pNN20 41.7 23.7 49.5 24.3 0.29 39.1 24.0 52.9 22.9 <  0.05 

RMSSD 31 19 59 52 <  0.05 34 22 62 55 <  0.05 

SDNN 32 19 60 53 <  0.05 34 22 63 56 <  0.05 
µ: mean, 𝝈: standard deviation 

 

In addition, participants who spent more time in the stance phase i.e. showed a higher 

stance–to–swing time ratio, on average (1.36 vs 1.1) tend to have a lower resting RMSSD 

and SDNN at a significance of p < 0.05. Furthermore, participants with shorter swing time 

(47 ms vs 52 ms) had a lower pNN20 (30.5 vs 51.5), which was statistically significant at 

p < 0.01. Interestingly, participants showing a higher stance–to–swing time ratio and 

shorter swing time as well as lower resting HRV indices had a higher mean age (34 years 

vs 31 years and 36 years vs 32 years, respectively). As discussed in Chapter 5, the gradual 

decline in bone and muscle mass as well as joint fluids with age causes people to walk with 
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a shorter stride length as age progresses. To compensate for the declining balance and 

stability they tend to spend less time in the swing phase and more time in the stance phase. 

Besides, owing to their shorter stride length, older group of people have to exert higher 

torque [4.53] to the hip joints to perform more work in a gait cycle. As age progress, the 

basal energy expenditure efficiency declines owing to the gradual deterioration of gait 

symmetry, postural balance and alignment, as well as coordination between the central 

nervous and the musculoskeletal systems [4.54] that is likely to be associated with their 

reduced HRV. 

The gait asymmetry (GA) and variation (CV) in stance time were observed to be associated 

with some HRV indices. A lower RMSSD (43 vs 78) and SDNN (44 vs 79) were found to 

be associated with increased gait asymmetry (0.216 vs 0.025), both at a statistical 

significance of p < 0.05. In addition, a smaller variation in stance time (40 vs 72) that 

explains for the reduced adaptability and balance control [6.21] was observed to be 

significantly (p <0.02) associated with lower pNN20 (34 vs 52).  

6.4 Conclusions 

In this chapter, we studied the association between human gait and cardiac activities 

quantitatively based–on measurements obtained with inertial sensors and single–lead 

portable ECG monitor, respectively. It was observed that gait asymmetry between two legs 

and variation in the gait are generally associated with key cardiac parameters such as HR 

and HRV as well as physical parameters such as age and BMI. These quantitative 

associations between gait and heart can potentially be useful in realizing an IMU–based 

predictive or screening tool to detect or screen for subtle changes in CVD–associated gait 

features much ahead of the actual CVD symptoms are manifested.   

Although the reported observations mostly follow well–established and widely–accepted 

theories and results in the literature, there remain some limitations of this study. First, 

resting HRs are obtained from visibly healthy people and thus considered 'normal'. 

However, a recent study on 92,457 adults [6.24] showed that the normal resting HRs among 

people can vary as high as 70 bpm. Therefore, an HR, which is normal for an individual 
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can be abnormal for the other. The fluctuation of resting HR over a long period of time can 

be more useful for a more accurate assessment of cardiac health that further signifies the 

importance of a portable and wearable single–lead ECG monitor. Second, although the 

observed trends are similar to those reported in the literature, our observations may still 

have some inaccuracies due to a limited number of data. For example, resting–RMSSD and 

SDNN, although showed a negative correlation as reported in the literature, we, however, 

did not see a statistically significant association. Nevertheless, this work highlights the 

potential of using low–cost and small–size sensors and systems in quantifying the 

association between gait and heart in home–settings that otherwise have been done in the 

literature in clinical settings with medical devices.  
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Chapter 7  

Conclusions, perspectives and future 

work 

7.1 Conclusions 

Global life expectancy has increased dramatically over the last several decades, thanks to 

remarkable progress in science and technology and public health. Consequently, the 

demand for affordable healthcare solutions is also rising all over the world. However, 

present–day healthcare solutions and services are still unaffordable for many owing to the 

ever–rising cost of pharmaceuticals, diagnostic procedures, and inpatient care services. In 

addition, a large elderly demographic requires personal support for their daily living and 

healthcare needs. Therefore, affordable and reliable healthcare and continuous monitoring 

services are urgently needed to enable early diagnoses of developing diseases for people 

with limited access to healthcare services or those living with very limited financial 

resources. Current monitoring practice requires frequent visits to or long term stays at 

expensive healthcare facilities that is financially consuming for both individuals and 

nations. Wearable healthcare systems coupled with modern computing and communication 

technologies can play a pivotal role in enabling a cost–effective viable solution for long–

term health monitoring. 

To ensure ubiquitous acceptance of wearable health monitoring systems, they need to be 

inexpensive, user–friendly, medically safe and ergonomic. In addition, the systems should 

have low power requirements to enable a longer operation time for long–term use. 
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Therefore, the key concern in designing wearable health monitoring systems is integrating 

sensors, electronic components, and on–board computing and communication systems 

while ensuring data accuracy and privacy, efficient computing for real–time monitoring, 

low–power consumption, and wearing comfort for the users. 

In this research, we addressed some of the above–mentioned concerns and developed 

highly accurate and computationally efficient algorithms and low–cost, unobtrusive 

devices coupled with a prediction tool to enable continuous monitoring and assessment of 

mobility and cardiac health in a wearable platform. Next, we present short summaries of 

each chapter in this thesis. 

In Chapter 1, a framework of a complete smart health–monitoring system and its 

requirements for developing low–cost, and computationally efficient systems are 

discussed. A brief discussion on interoperability issues and standardized platforms is 

presented next. Then, we highlight some recent research activities and the regulatory 

concerns associated with portable and wearable health monitoring systems. Finally, the 

contributions of this research and the thesis organization are presented. 

In Chapter 2, a three–stage complementary filter–based approach for real–time orientation 

estimation is presented. The gyroscope–based estimation makes the proposed filter least 

affected by external acceleration and magnetic disturbances whereas the complementary 

filter–based approach makes it is inherently computationally efficient and well suited for 

real–time applications. The performance of the proposed algorithm is validated and some 

key gait parameters are derived using the proposed filter that shows high conformity to the 

ground–truth values. 

In Chapter 3, a two–stage complimentary filter–based approach is presented that for real–

time monitoring of lower–limb joint angles. The inclination of the IMUs estimated in the 

first stage are fused in the second stage to estimate the joint angles in real time. The 

gyroscope–based inclination estimation without requiring any magnetic field measurement 

makes the estimation least affected by any external acceleration and insensitive to magnetic 

disturbances. The performance of the proposed algorithm is validated for different walking 



Ph.D. Thesis – S. Majumder                              McMaster University - Electrical and Computer Engineering 

 

147 

 

speeds and in presence of external acceleration that shows high conformity to the ground–

truth. 

In Chapter 4, a simple, low–cost, and computationally efficient gait–analyzer is presented 

that uses miniature IMUs to facilitate continuous monitoring of human gait health, 

potentially leading towards early detection of gait affecting neurodegenerative and 

musculoskeletal diseases. A comparative discussion on the gait characteristics between two 

gender and two age groups is presented. The gait analyzer distinguishes an abnormal gait 

by evaluating an individual's gait features with respect to the baseline information 

corresponding to his/her peer group.  

In Chapter 5, the development of a flexible and dry capacitive electrode, a wireless ECG 

monitoring system, and an automatic anomalous ECG detection method is presented. The 

flexible capacitive electrodes allow ECG measurements over the fabric and offer better 

conformity to the surface of the body, thus reducing motion artifacts. Each electrode is 

virtually grounded that allows for obtaining single–lead ECG using only two electrodes. 

ECG measurements obtained over different types of textile materials and in presence of 

bodily movements show comparable results to other reported ECG monitoring systems. An 

automatic method of Atrial Fibrillation (AFib) detection from short single–lead ECGs is 

also presented as a future extension of the software developed for the ECG monitoring 

system. 

In Chapter 6, the association between human gait and cardiac activities is presented. The 

gait characteristics are measured using wearable IMUs and the cardiac activity is measured 

by a single–lead handheld ECG monitor. Experimental results show that gait asymmetry 

between two legs and variation in the gait has an association with cardiac parameters such 

as HR and HRV as well as physical parameters such as age and BMI. Quantification of 

these associations can potentially lead towards realizing a low–cost monitoring tool for 

early detection of signs associated with CVD–related changes in gait features before the 

actual CVD symptoms are observed. 
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7.2 General perspectives 

Owing to the emergence of low–power, miniature sensors, high–speed communication and 

computing technologies, there have been growing interests among researchers and 

manufacturers to develop wearable systems for healthcare and wellness purposes. 

However, there remain some key challenges that need to be addressed prior to achieving a 

global acceptance of these devices. 

First, the hardware and computation resources for the on–body central node of a multi–

sensor BSN system can be a limiting factor for seamless connectivity and data handling. 

The central processing node of the BSN network exchanges data with the on–body sensors 

as well as the home gateway, and sometimes performs limited processing. Therefore, a 

robust and efficient algorithm is required for the central BSN node to optimize its 

performance. In addition to that, an efficient data compression algorithm needs to be 

implemented in the central node in order to deal with a large volume of data and transmit 

them to the nearest gateway. 

Second, a key concern for the seamless operation of the smart home system is associated 

with its energy requirement. Low power consumption and high energy efficiency are 

critical for the smart home, especially for the wearable and mobile systems used for long–

term monitoring purposes. Advanced battery technologies as well as low–power electronic 

components can be used to increase the operating–time of the system. Researchers also 

may put their efforts into developing and integrating efficient energy harvesting 

technologies to fulfill the energy requirements of wearable and mobile systems in the smart 

home. 

Third, most of the standalone products which are currently available in the market are 

proprietary and generally developed for one or a few specific tasks or functionalities. 

Although these systems use standard communication protocols, they are mostly not 

compatible to, or interoperable with similar systems from other manufacturers, thus leaving 

the consumers with few alternatives. A common platform for all systems will raise the 

competition among the manufactures that will result in many alternatives for the 
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consumers, thus increasing the market penetration of smart homes. Therefore, a global 

industry standard based on a well–defined layered architecture is critical for the widespread 

acceptance of the smart home technology. Researchers and industry groups may work 

together to develop and adopt a common and unified industry standard for the smart home 

system. 

Fourth, textile based sensors or smart textiles, have great potential in wearable monitoring 

systems. For example, textile–based electrodes and temperature sensors can be used for 

physiological measurements, whereas textile–based strain sensors can be exploited for 

monitoring HR, respiration rate, pulse as well as human activities. However, ensuring high 

signal accuracy, sensitivity, SNR and stability in a textile–based platform are the key design 

challenges. Further, more work is needed for the proper selection of sensing materials and 

embedding technique as well as stable sensor–skin interface to ensure superior sensor 

performance. In addition, durability and signal integrity of the sensors with time and 

washing cycles should also be improved while fabricating smart textiles for long–term 

health monitoring. 

Fifth, big communication and media companies, who already have high market penetration 

and robust infrastructures for high speed and secured data communication, may collaborate 

with third–party healthcare service providers such as hospitals, clinics, and ambulance 

services to bring healthcare facilities to the doorsteps of consumers. Addition of 

comprehensive health monitoring systems and healthcare services to their existing smart 

home solutions can potentially be a giant leap towards a ubiquitous and fully–functional 

smart home. In fact, some major technology companies such as Samsung, Alarm, and ADT 

(founded as American District Telegraph) have acquired several small smart home 

companies in recent years to facilitate health monitoring along with their existing home–

security applications in the smart home platform. Also, the industry is still actively working 

to realize a fully functional smart home–based remote healthcare solution. 

Sixth, although major regulatory bodies have their own guidelines for a system to be 

considered as a ‘medical device’, the boundaries between the fitness and wellness 
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devices/apps and the medical devices remain ambiguous, particularly in a situation when 

the self–monitoring thorough a fitness and wellness device and associated smartphone 

application is integrated within the patient care and treatment scheme. These blurred 

boundaries need to be resolved to safeguard the users from possible harmful consequences. 

Seventh, unlike the US Food and Drug Administration (FDA), the intermediate– and high–

risk devices in the EU require an authorized private and for–profit third–party organization 

called the ‘Notified Body’ (NB) to assess and certify the device’s compliance with the 

corresponding directive. Although this process offers more flexibility to the manufacturers 

and reduces unnecessary delay in the approval process, it is, however, subject to the risk of 

compromised safety owing to varying standards, pricing and work ethics of different NBs.  

Eighth, approving a medical device based on a predicate may cause safety concerns and 

was therefore criticized by some experts. It was argued that some predicates were in the 

market even before any regulatory policies were implemented. Some predicate devices 

were never tested on humans and some were even recalled voluntarily from the market due 

to their poor performance, thus questioning the credibility of the predicate itself. In 

addition, this process of device approval encourages the manufacturers to evade the 

expensive and time–consuming but critical clinical trials before bringing the product in the 

market.   

7.3 Future work 

This research work resulted in several advances towards the development of accurate, 

efficient and low–cost sensing systems for long–term monitoring of cardiac and gait health 

in a wearable platform. However, there remains some important research questions, which 

need to be addressed in the future.  

First, the complementary filter approach used in designing the orientation filter and the 

knee joint monitor require appropriate tuning parameters for higher accuracy. An automatic 

calibration procedure needs to be developed to automate the tuning parameters selection 

process. 
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Second, a portable and low–cost health monitoring system can be developed and integrated 

into a complete wearable platform. Most current systems measure or monitor only specific 

bio–signals or parameters. However, it is necessary to monitor a set of key physiological 

signs such as HR or pulse, BP, respiratory rate and body temperature; often referred 

together as vital signs, as well as oxygen saturation level in the blood to perform a better 

assessment of an individual’s health condition. Such a monitoring device is particularly 

important in a pandemic situation like the current coronavirus disease (COVID–19) during 

the self–quarantine period. However, it is neither practical nor ergonomically sound to use 

several on–body systems for continuous and ambulatory monitoring of each parameter.  

A network of sensors for ECG, PPG, IMU, and temperature embedded in a wearable 

platform along with an on–body data acquisition and transceiver module can, therefore, be 

a viable solution for multi–parameter monitoring. An ECG sensor measures ECG signal, 

HR, and HRV while temperature sensor measures body temperature. Arterial oxygen 

saturation (SpO2) is calculated from the PPG signal. Besides, BP can be estimated from 

the pulse transit time (PTT), which is the time interval between the ECG and PPG signal 

peaks (See Figure 7.1a) using Moens–Korteweg or Bramwell–Hill relationships. 

Furthermore, ECG and PPG signals can also be used to determine the respiration rate (RR) 

by employing signal decomposition techniques such as empirical mode decomposition 

(EMD), principal component analysis (PCA) or wavelet transform. Figure 7.1b presents 

the concept of a multi–sensor monitoring system. 

 
 

(a) (b) 

Figure 7.1 (a) Pulse transit time (PTT) (b) Four sensor health monitoring system. 

Third, a detailed analysis on quantitative correlation between the MIMU–based human gait 

signals and human cognitive and cardiovascular function would be worth looking into, to 
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realize low–cost, in–home prediction tool for neurodegenerative disorders and diseases 

associated with musculoskeletal and cardiovascular systems. 

Fourth, the IMU data and information from the lower limb joints and gait patterns as well 

as the single–lead ECG signal can be fused together to formulate a ‘figure–of–merit’ like 

metric, for example, ‘Health index’ to quantitatively represent the general health status of 

an individual. 

Fifth, a limitation of this work evolves from being unable to recruit patients with known 

pathological gaits. The gait pattern changes gradually through different disease processes 

and at different severities, thus it is likely to deviate from the healthy gaits corresponding 

to an individual’s peer group. Further in–depth study on different patient groups with a 

larger dataset from a wider age and BMI range, different walking surfaces as well as 

different walking speeds would be useful to reinforce our inferences.  

Sixth, the electrostatic coupling of the electrodes to the skin potential can be improved by 

employing a dedicated film or membrane materials with increased dielectric permittivity. 

Conductive polymers or smart textiles can also be used to realize the conductive sensing 

part of the electrodes, which may offer enhanced flexibility and user comfort. 

Seventh, a biofeedback system can be developed by combining the proposed gait and heart 

monitoring systems. The system may provide instant feedback about walking quality in 

terms of balance and foot clearance above ground. It may also raise an alarm when 

arrhythmia are detected and assess gait and lower–limb joints for potential health risks such 

as a slip or fall, and make recommendations to adjust gait pattern to reduce the risk. It may 

suggest appropriate and customized actions using sensor data and inputs from the user. For 

example, if the system knows the user’s blood glucose level (BGL) and BMI it would 

suggest the number of steps and walking speed required for the user to normalize the BGL 

based–on their historical data. 
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