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Abstract 

Knee osteoarthritis (OA) is a global problem that causes joint pain and decreased 

mobility and quality of life. Knee OA costs the Canadian economy billions of dollars.  

Cartilage and bone are both implicated in knee OA pathogenesis.  Obesity is a major risk 

factor for knee OA.  Physical activity decreases pain and improves quality of life in those 

with knee OA.  Nonetheless, we have limited biomechanical evidence to create concrete 

recommendations for prescription of aerobic exercise that improves clinical outcomes 

without exacerbating pain or worsening joint structures in knee OA.  We have a limited 

understanding of how cartilage of the OA knee responds to physical activity, and the role 

of bone shape on the response. 

 

This thesis fills four identified gaps in the literature.  First, Chapter 2 used a fully-crossed 

random assignment study design where 40 healthy participants completed 18 bicycling 

positions to define novel equations for setting bicycle saddle position based on minimum 

or maximum knee flexion angle.  This work is important because the current gold-

standard of setting bicycle saddle position for mitigating injury focuses on a desired knee 

flexion angle; yet no easy methods exist.  Second, Chapter 3 used the same dataset to 

identify how joint kinematics affect tibiofemoral and patellofemoral joint forces during 

bicycling.  This work showed joint forces are least sensitive to the gold standard bicycle-

fit parameter, minimum knee flexion angle; instead, minimum hip flexion angle was the 

most important.  Third, Chapter 4 describes and validates a multi-stage convolutional 

neural network framework for efficiently segmenting cartilage and bone from magnetic 
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resonance imaging data.  The algorithm produced state-of-the-art predictions on the 

commonly tested Osteoarthritis Initiative dataset in an average of 1.5 mins per knee.  

These methods will be crucial for improving experimental and epidemiologic studies of 

cartilage and bone.  Fourth, Chapter 5 combines statistical shape models of the tibia and 

femur, joint forces estimated at the knee, and statistical parametric mapping to explore 

continuously over the cartilage surface how cartilage deforms after walking and 

bicycling.  This study showed for the first time that the acute response of cartilage in 

women with symptomatic knee OA is dependent on bone shape and knee joint forces. 

 

The bicycle-fit related studies provide the first comprehensive insights into how lower 

limb joint kinematics affect knee joint forces and provide novel equations to use this 

knowledge to easily set bicycle saddle position in the clinic, bicycle shop, or at home.  

The image analysis chapter describes an image segmentation framework that excels when 

applied to the knee.  The final chapter integrates biomechanical measures with statistical 

shape models using custom data processing pipelines that yielded new insights and that 

hold great potential for evoking novel and specific findings about knee OA 

pathophysiology at the intersection of bone, cartilage, and mechanics. 
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1 Background 

1.1 Osteoarthritis 

Osteoarthritis (OA) is a degenerative joint disease that can be described in terms of 

symptoms experienced by the individual and structural changes to the joint.  For knee 

OA, symptoms include knee pain, joint stiffness, crepitus, and bony tenderness (Altman 

et al., 1986).  Symptomatic knee OA is estimated to affect >15 million Americans 

(Deshpande et al., 2016), representing more than 7% of the American population; 

similarly, knee OA affects >8% of adults living in China (Tang et al., 2016).  These 

statistics demonstrate that knee OA is a global problem (Safiri et al., 2020).  Knee OA 

prevalence also increases with age (Tang et al., 2016), and OA in general is estimated to 

affect >14% of Canadians over 30 years of age (Birtwhistle et al., 2015) and >50% of 

adults over 65 years of age (Arden & Nevitt, 2006).  Ultimately, painful knee OA leads to 

a 2.2 times greater risk of death compared to those without pain and osteoarthritis (Y. 

Wang et al., 2020).  Knee OA has a greater prevalence in elderly adults than any other 

chronic disease (Guccione et al., 1994).  OA is a global problem causing pain, and 

decreased mobility and quality of life. 

 

Not only does OA, and knee OA in particular, affect numerous adults, it also poses 

significant financial burden.  The Arthritis Alliance of Canada estimated that OA cost the 

Canadian economy > $27 billion ($10.2 billion direct costs, $17.3 billion indirect 

costs)(Bombardier et al., 2011).  Another estimate of direct costs performed in 2015 

indicated that direct healthcare costs related to OA (pharmacological and non-
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pharmacological treatment, total joint replacement, hospital resource usage, treatment 

complications) were $2.9 billion in 2010 and are expected to rise to $7.6 billion by 2031 

(Sharif et al., 2015). Regardless of discrepancies in the exact estimate, direct healthcare 

costs are in the billions and are expected to increase (Bombardier et al., 2011; Sharif et 

al., 2015).  These increases were linked to increased age among Canadians over that time 

period, with 2010 including 26.3 million Canadians over 20 years of age, and 2031 

expected to include 32.2 million Canadians over 20 years of age (>20% increase). It is 

also estimated that there will be a concurrent increase in OA prevalence over that same 

time period, increasing from 16% to 21% in women and from 11% to 16% in men (Sharif 

et al., 2015). These projections indicate that the economic burden of OA in Canada is 

expected to steadily increase for the foreseeable future (Bombardier et al., 2011; Sharif et 

al., 2015). 

 

1.1.1 Pathophysiology 

Damaged articular cartilage is hypothesized to be one of the earliest changes resulting 

from OA (Buckwalter et al., 2005).  Knee OA is a degenerative joint disease that affects 

the whole joint.  Knee OA includes deterioration of articular cartilage, changes to the 

bone that lays under cartilage (subchondral bone), and formation of bone cysts, bone 

marrow lesions, and osteophytes (bony-enlargements)(Creamer & Hochberg, 1997; 

Felson, 2006).  Degenerative changes also extend to muscles, ligaments, and the 

synovium (Felson et al., 2000).  
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A recent theory of OA coined the “Integrated Joint System” (IJS) posits that healthy 

joints are at an equilibrium state between joint tissues (e.g., cartilage thickness and bone 

mineral density), as well as between joint mechanics and these tissues (e.g., peak joint 

reaction forces (JRF) during gait and cartilage thickness)(Edd et al., 2018).  That is, the 

IJS theory states that in a healthy joint, tissues and mechanics are adapted to one another.  

For example, in a healthy joint, thicker cartilage is typically located in areas of higher 

subchondral bone mineral density (Babel et al., 2020).  Also in healthy adults, higher 

joint loads are associated with both greater tibiofemoral cartilage thickness and greater 

subchondral bone mineral density (Edd et al., 2018; Van Rossom et al., 2017).  The IJS 

theory states that initial disruption in homeostasis is considered initiation of OA and that 

once disrupted, with time, the healthy relationship turns into a degenerative one.  For 

example, if subchondral bone mineral density increases, as it does with increased joint 

loads, but cartilage thickness does not concurrently increase – the healthy homeostasis is 

broken (Edd et al., 2018).  Without this concurrent adaptation, joint loads will lead to 

even greater cartilage surface pressures (Li et al., 2001) and thus higher probabilities of 

cartilage damage.  Cartilage damage further reduces cartilage thickness (or other 

characteristics relevant to load bearing capacity) and its ability to transmit load.  A cycle 

ensues that progressively diverges from the original healthy homeostasis between joint 

tissues and mechanics.  Lending support to the IJS theory, high bone mineral density 

adjacent to cartilage damage reflects Radin and Rose’s theory that subchondral bone 

sclerosis is related to initiation and progression of cartilage degeneration (Radin & Rose, 

1986). 
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1.1.2 Articular Cartilage 

In a healthy joint, articular cartilage reduces friction and transmits forces between 

articulating bony surfaces in synovial joints.  According to the triphasic theory of 

cartilage, (Lu & Mow, 2008) its load attenuation properties come from three primary 

phases: 1) a solid structure made up of collagen, proteoglycans, and chondrocytes, 2) a 

fluid phase, and 3) an ion phase.  Collagen fibers within cartilage provide the scaffolding 

that prevent sheering and minimize swelling of cartilage.  Fluid (water) within cartilage 

aids in attenuating deformation because under compression fluid will try to flow from 

areas of high pressure (compression) to areas of low pressure; frictional drag of fluid 

through the solid structure during this flow resists deformation and attenuates loads (Lu 

& Mow, 2008).  Finally, the dissolved salts (typically Na+ and Ca++ ions) are attracted to 

negatively charged chemical groups (sulfate: SO3-, carboxyl: COO-) on 

glycosaminoglycans attached to the solid structure.  This attraction creates an osmotic 

pressure gradient (Donnan osmotic pressure) that increases tissue hydration and further 

resists flow of fluid within cartilage (Lu & Mow, 2008).  This osmotic pressure is thought 

to contribute between 30-50% of the equilibrium stiffness of cartilage (Lu & Mow, 

2008).  In addition to load bearing ability, cartilage provides a low friction surface 

between articulating bones with Lubricin playing a primary role (Y. Lee et al., 2018; 

Nordin & Frankel, 2012).  Lubricin along with hyaluronic acid reduces friction between 

the adjacent cartilage surfaces by diminishing shear energy in joint gliding (Y. Lee et al., 

2018).  Lubricin also plays a role in preventing protein and synovial cell deposits on 

cartilage surfaces (Y. Lee et al., 2018; G Musumeci, 2013).  Damage or disruption to any 
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component of this cartilage structure will hinder its ability to reduce friction and transmit 

forces to the underlying bone. 

 

Cartilage undergoes remodeling based on mechanical and chemical changes in the joint 

induced by loading (Mazor et al., 2019; Ramage et al., 2009).  For example, cyclic 

compression of cartilage under forces and frequencies considered physiologic produce 

anabolic responses that generate new cartilage extracellular structures, including but not 

limited to increased glycosaminoglycan synthesis, increased proteoglycan synthesis, and 

increased proliferation of chondrocytes (Ramage et al., 2009).  Chondrocytes are central 

to this anabolic response (Ramage et al., 2009).  In individuals with OA, 3-months of 

daily strengthening exercises increased hyaluronic acid and decreased markers of joint 

degeneration within joint fluid (Mazor et al., 2019).  These changes are postulated to 

indicate increased anabolism and thus generation of new cartilage solid structure (Mazor 

et al., 2019).  However, overloading is associated with increased proteases within the 

joint (e.g., matrix metalloproteinase: extracellular matrix degeneration; aggrecanase: 

aggrecan degeneration).  Proteases are commonly responsible for joint tissue catabolism.  

By definition, OA occurs when catabolic pathways exceed anabolic ones leading to 

cartilage degeneration (Ramage et al., 2009).  This body of research indicates that there is 

likely a yet to be identified ideal range of loading that promotes cartilage health without 

causing damage. 
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1.1.3 Bone in Relation to Osteoarthritis and Cartilage 

While cartilage is a common focus in knee OA research, bone has increasingly been 

thought to play a central role in OA pathogenesis (Mansell et al., 2007).  In particular, 

bone-remodeling is thought to lead to changes in bone material properties (Burr & 

Gallant, 2012; Goldring & Goldring, 2010) that may affect the biomechanical 

environment of the joint.  Changes to bone shape are also a commonly noted feature of 

OA (Barr et al., 2015). 

 

Animal models indicate that increased bone remodeling reduces thickness in subchondral 

cortical bone (subchondral plate) before other joint tissue changes (Burr & Gallant, 2012; 

Goldring & Goldring, 2010).  Along with bone remodeling comes increased 

vascularization of the subchondral bone with potential for invasion of this vasculature 

into the deep layers of articular cartilage (Burr & Gallant, 2012; Glyn-Jones et al., 2015; 

Goldring & Goldring, 2010; Lories & Luyten, 2011).  It is postulated that this vascular 

innervation may leak catabolic agents into cartilage, providing one mechanism of 

cartilage degeneration (Burr & Gallant, 2012; Lories & Luyten, 2011).  As time 

progresses, bone resorption decreases but deposition rates are maintained, leading to 

increased thickness of the subchondral plate and calcified zone of cartilage (Burr & 

Gallant, 2012; Goldring & Goldring, 2010; Lories & Luyten, 2011).  The increased 

calcified zone of cartilage reduces cartilage thickness on its own (Burr & Gallant, 2012; 

Goldring & Goldring, 2010; Lories & Luyten, 2011). 
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Greater subchondral plate thickness and bone mineral density is commonly believed to 

increase subchondral bone stiffness; this proposed phenomenon was the basis of Radin 

and Rose’s theory on the role of subchondral bone in cartilage degeneration (Radin & 

Rose, 1986).  However, recent belief is that the high rate of bone remodeling and 

deposition that occurs in OA in fact leaves behind bone with suboptimal mineralization 

and thus reduced stiffness (Burr & Gallant, 2012; Lories & Luyten, 2011).  It is important 

to note that plain radiographs and dual-energy X-rays extract “apparent bone density” 

(bone mass divided by total tissue volume) whereas biopsy samples are needed to 

measure “material density” (bone mass divided by bone volume).  Therefore, apparent 

bone density increases if the bone volume increases relative to the total tissue volume.  

When bone volume but not mineralization increases, there is an increase in the apparent 

bone density, but decrease in both material density and bone stiffness (Burr & Gallant, 

2012).  Nonetheless, current imaging modalities consistently observe subchondral 

sclerosis and increased apparent bone mineral density from underlying regions of 

cartilage degeneration and these changes are thought to be relevant in the disease course.  

The IJS theory relies entirely on the apparent bone mineral density reported from medical 

images and does not relate the theory to stiffness of the bone (or material density) (Babel 

et al., 2020; Edd et al., 2018).  As Radin and Rose observed, there is in fact increased 

amounts of bone under regions of cartilage degeneration (Pugh et al., 1974; Radin & 

Rose, 1986).  More work is necessary to examine the role of mineralization and stiffness 

of this bone in the early stages of OA to understand the validity of the IJS theory. 
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Bone shape has been of particular interest in relation to OA diagnosis and progression.  It 

is postulated that increased rate of subchondral bone remodeling during early OA may 

lead to changes in joint shape and congruence (Burr & Gallant, 2012).  These changes in 

bone shape and congruence are postulated to alter load transmission, potentially causing 

cartilage damage (Burr & Gallant, 2012; Goldring & Goldring, 2010; Lories & Luyten, 

2011).  Concurrent with changes to subchondral bone is osteophyte formation, one of the 

most noticeable changes in the OA knee*(Goldring & Goldring, 2010).  Osteophytes form 

at the joint margins, where cartilage and bone meet.  Animal models indicate that 

osteophytes arise from proliferation of periosteal cells that differentiate into 

chondrocytes, hypertrophy and subsequently ossify to create skeletal outgrowths at the 

joint margin.  Additional changes to the joint that occur in injured or diseased knees 

include increases in the absolute size of the tibial plateau, (Antony et al., 2011; Barr et al., 

2015) and other changes to bone shape such as narrowing of the inter-condylar notch in 

those with ruptured anterior cruciate ligaments (Pedoia et al., 2015).  It is postulated that 

many of these large changes to bone shape occur during periods of increased bone 

remodeling common in early OA (Burr & Gallant, 2012; Mansell et al., 2007).  

 

* Osteophyte formation and changes to bone structure and organization precede detection in articular 

cartilage thickness changes and reductions in joint space narrowing (Goldring & Goldring, 2010). 
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Osteophytes, in particular, are one of three† main features that are used to diagnose and 

stage radiographic OA using the most common method, the Kellgren and Lawrence (KL) 

grading system (Kellgren & Lawrence, 1957). 

 
1.1.4 Obesity 

In addition to age, obesity is the major risk factor for knee OA (Blagojevic et al., 2010; 

Davis et al., 1990; Felson et al., 1988; Stürmer et al., 2000).  The relationship between 

knee OA and obesity is hypothesized to exist due to the increased mechanical loads 

placed on the knee as a result of increasing body mass, (Stürmer et al., 2000) and 

systemic inflammation induced by fat mass (Kluzek et al., 2015).  Increased body mass 

necessarily increases knee joint forces during weight-bearing activity.  Also, white 

adipose tissue produces adipokines (e.g., leptin, resistin and chemerin) as well as 

inflammatory cytokines (e.g., tumour necrosis factor TNF, interleukin-1 IL-1, and 

interleukin-6 IL-6) which are both associated with and hypothesized to play a role in OA 

pathogenesis through altering the integrity of joint tissues (Kluzek et al., 2015; Giuseppe 

Musumeci et al., 2015).  These inflammatory cytokines are linked to catabolic activity of 

cartilage, putting the anabolic/catabolic balance in favour of degeneration (catabolism) 

 

† The Kellgren and Lawrence grading system utilizes three main features: joint space narrowing, osteophyte 

formation, and subchondral sclerosis to diagnose and stage knee OA. A further description of the KL 

system is provided in section 1.4.3. 
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(Ramage et al., 2009).  Weight loss effectively reduces an individual’s risk of developing 

knee OA (Felson et al., 1992). 

 

1.2 Physical Activity and Osteoarthritis 

Physical activity decreases an individuals’ risk of cardiovascular disease, cancer, 

osteoporosis, hypertension, diabetes, depression, and it decreases all-cause mortality (I.-

M. Lee & Skerrett, 2001; Warburton, 2006).  In relation to knee OA, a Cochrane review 

of 54 randomized controlled trials (RCTs) found strong evidence that activity reduces 

pain and improves quality of life, as well as moderate evidence suggesting physical 

activity improves physical function in knee OA (Fransen et al., 2015).  Another review 

concluded that physical activity may be beneficial to joint health (Urquhart et al., 2011).  

A study (n = 2,073) on the effect of physical activity on future incidence of symptomatic 

knee OA, and joint space narrowing progression, showed that individuals in the highest 

quartile of activity were less likely to worsen in terms of symptoms or joint structure 

(Felson et al., 2013).  Even high-impact activity, such as running, may be beneficial, or at 

least cause no harm: participating in running decreased, (Williams, 2013) or had no effect 

(Chakravarty et al., 2008; Lo et al., 2018) on risk of developing OA.  After accounting for 

obesity, running still decreases an individual’s risk of OA, (Williams, 2013) highlighting 

that even high impact activities like running may maintain joint health, in the healthy 

joint.  Furthermore, the Intensive Diet and Exercise for Arthritis (IDEA) trial showed that 

the combination of diet and exercise benefitted knee OA outcomes including systemic 

inflammation, pain, and function more than diet or exercise alone (Messier et al., 2013). 
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This body of work suggests that physical activity (1) reduces the risk of OA onset in 

healthy joints, (2) can ameliorate pain and improve quality of live in those that already 

have OA, and (3) that its benefits on knee OA are augmented by diet-based weight-loss. 

 

In terms of joint structures, OA compromises the integrity of cartilage, therefore reducing 

the ability of this tissue to bear load.  Knee OA is primarily characterized by pain at the 

joint that can be aggravated by simply walking (Farrokhi et al., 2017).  In fact, walking 

>10,000 steps/day is associated with increased development of bone marrow lesions, 

meniscal pathology, and worsening cartilage defect scores in 405 community-dwelling 

adults (51-81 years) (Dore et al., 2013).  It is important to note that this investigation 

found an interaction between step count and baseline cartilage volume, where those with 

higher baseline cartilage volume actually benefitted from higher step counts (Dore et al., 

2013).  These findings support the notion that activity may be beneficial and prevent OA 

in healthy adults, but may be detrimental to joint structure and pain in people with knee 

OA.  This finding further supports the IJS theory that in OA a healthy homeostasis has 

been broken, initiating and propagating the disease process.  

 

To allow individuals with knee OA to obtain the health benefits associated with physical 

activity, it is imperative that we identify activities that do not cause further damage, and 

ideally promote health in the knee affected by OA.  Strides have been made at identifying 

(Longpré et al., 2015) and testing (Brenneman et al., 2015; Multanen et al., 2014) 



 12 

strengthening exercise for knee OA.  These investigations have utilized biomechanics to 

provide objective data about the forces being exerted on the body, and medical imaging 

to identify what is occurring inside of the joint.  The next step is to produce aerobic 

activity recommendations for individuals with knee OA that do not aggravate symptoms 

or accelerate degeneration.  

 

1.3 Biomechanical Indicators of Knee Osteoarthritis 

Biomechanics assesses how mechanical principles relate to movement and biological 

function.  In knee OA, it is postulated that joint loads beyond tissue tolerances lead to 

damage, initiating OA pathogenesis and deterioration of cartilage health.  Therefore, 

biomechanics of knee OA primarily focuses on identification of measures of joint 

mechanics that represent cartilage loading.  Measures of medial knee forces are of 

particular interest because medial knee OA is most prevalent (Metcalfe et al., 2012). 

 

1.3.1 Joint Moments 

A key outcome of interest for knee OA is the frontal plane joint measurement, the knee 

adduction moment (KAM).  The KAM is an external moment of force (torque) that 

provides a surrogate measure of medial relative to lateral or relative to total knee 

compressive forces (Kutzner et al., 2013; Moyer et al., 2014).  The KAM has also shown 

success at identifying those with and without knee OA, (Maly et al., 2013) and in 

predicting OA progression (Bennell et al., 2011; Brisson et al., 2017; Chang et al., 2015; 
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Chehab et al., 2014).  Gait re-training to reduce the KAM also reduces self-reported knee 

OA severity (Cheung et al., 2018).  A limitation of the KAM is that it does not actually 

measure the forces that are being translated between structures at the knee.  For example, 

analysis of 6 male and 3 female participants with instrumented tibial prostheses showed 

R2 of 0.56 between the KAM and medial contact force at the tibia, when measured over 

the whole stance phase of gait (Trepczynski et al., 2014).  The high R2 of 0.56 may be 

attributed to re-alignment of the joint after surgery or a statistical effect of analyzing the 

whole waveform instead of the peaks (Kutzner et al., 2013).  Another study on one male 

participant with an instrumented tibial prosthesis showed that the knee adduction moment 

peak explained between 29-69% of the variance (R2) in the peak medial contact force 

with coinciding root mean squared errors ranging from 41-129% of body weight 

depending on whether the first peak, second peak, or both peaks were analyzed‡ (Walter 

et al., 2010).  Furthermore, the KAM on its own likely misses important muscular 

contributions across the knee.  Accounting for muscular contributions to joint loading 

may be ameliorated by inclusion of the knee flexion moment (KFM) in quantifying knee 

joint loading.  The KFM is indicative of the net muscle contraction across the knee 

 

‡ The root mean squared errors and R2 for these models were inversely related, with the higher R2 models 

(peak 2, both peaks) producing poorer (higher) errors. These incongruent findings indicate that differences 

in variance of the dependent variable between models may be a larger driver of R2 than prediction errors. In 

these cases, the root mean squared error is likely a better measure of fit and is relatively large ranging from 

41 to 129% of body weight (Walter et al., 2010). 
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(Creaby, 2015).  For example, during the early stance phase of gait the quadriceps 

counterbalance the KFM, therefore the KFM provides some indication of the quadriceps 

activation during this portion of stance.  An editorial by Creaby argues that many 

interventions which aim to decrease the KAM may in fact increase the KFM, leading to 

no net change or even a possible increase in loading across the tibiofemoral joint, 

particularly in the medial compartment (Creaby, 2015).  This rationale is supported by 

work showing that the combination of the KAM and KFM are better at predicting medial 

contact forces at the tibiofemoral joint (Manal et al., 2015; Trepczynski et al., 2014; 

Walter et al., 2010). 

 

Including the KFM in modelling knee biomechanics helps account for muscular forces 

across the joint.  The importance of these muscular contributions is highlighted by the 

fact that simple ground reaction forces during walking are less than half of the loads 

measured inside of the knee (Damm et al., 2017); this insinuates that muscular 

contributions may account for more than half of the forces across the knee.  However, as 

stated in the editorial by Creaby, it is possible that opposite changes between different 

moments (e.g., KAM and KFM) may counteract one another.  We therefore require 

methods of estimating forces acting inside of the joint. 

 

1.3.2 Joint Forces 
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Use of advanced modeling software such as the open-source platform OpenSim created 

by the National Center for Simulation in Rehabilitation Research (Stanford University) 

allows for modeling of muscular forces, providing physiologic estimates of joint loading 

(Delp et al., 1990, 2007; Seth et al., 2018).  OpenSim and other multi-body 

biomechanical modelling software packages sum conventional mechanical measures of 

joint reaction forces with muscular forces acting across the knee to estimate the total 

physiologic loading at the joint (Gerus et al., 2013; Hamner et al., 2010; Knarr & 

Higginson, 2015; Lerner et al., 2014; Saxby et al., 2016; Thelen & Anderson, 2006).  

After calculating the total knee JRF vector, it can be decomposed into components.  Of 

particular interest in knee OA is compression between the tibia and femur.  This 

compressive force is typically modeled as the component of the total knee JRF acting 

along the long-axis of the tibia (DeMers et al., 2014; Lerner et al., 2014; Steele et al., 

2012). 

 

To represent the total knee JRF and decompose it into its anatomic components, the 

muscular contributions must be estimated.  One of the most common approaches of doing 

this is to perform traditional inverse kinematic and dynamic analyses of the acquired 

motion capture data, and then solve for the muscle activations and forces that would be 

necessary to observe these motions.  These muscle activations can be calculated using 

static optimization or forward dynamic methods (Thelen et al., 2003; Thelen & Anderson, 

2006).  
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Static optimization identifies a set of muscle activations that would produce the joint 

moments obtained from inverse dynamics while minimizing an objective function.  When 

using this approach, most often the mathematical objective function is optimized to 

minimize the total muscular contribution required to produce the observed kinematics.  It 

is important to note that researchers may choose to optimize other parameters.  This 

approach typically analyzes each frame of recorded data independently.  The default 

objective function for OpenSim minimizes the sum of muscle activations squared: 

Equation 1-1 min∑ ai
2N

i	=	1  

Where ai is the activation of muscle i and N is the number of muscles in the model.  A 

function converting muscle activations into forces inherently models factors like the force 

length, force velocity, and muscle size (Delp et al., 2007).  Squaring muscle activations 

helps distribute forces over multiple muscles by exponentially penalizing with every 

increase in activation of any one muscle; this results in greater distribution of activations 

across muscles.  For example, if no exponent was used, then the solution that minimizes 

muscle activations would select the muscle that produces the largest moment (per unit of 

activation).  By including the power of 2, the more activated that a muscle is the more 

costly it is to use (Equation 1-1).  Therefore, as the activation of the most efficient muscle 

increases, it will become optimal to activate smaller muscles.  A major limitation of static 

optimization is that this approach does not account for time dependence, such as the 

electromechanical delay between electrical muscle activations and force production, or 

the time-dependent characteristics of viscoelastic tissues like tendons and the muscles 

themselves (Zajac, 1989).  Forward dynamic methods can include these time-dependent 
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features, often inputting a set of muscle activations and then relying on computer 

simulations to determine what the state of the system will be fractions of a second later 

(Delp et al., 2007; Thelen et al., 2003). 

 

In walking and other non-ballistic tasks, static optimization produces comparable results 

to dynamic simulation methods (e.g., computed muscle control (CMC) in 

OpenSim)(Anderson & Pandy, 2001; Lin et al., 2012).  Both methods report similar 

activation patterns as EMG, with neither outperforming the other (Roelker et al., 2020).  

Muscle weightings further improve prediction of physiologic muscle activations for static 

optimization by penalizing use of the gastrocnemius and hamstrings, making their use 

more costly in terms of the objective function, thus making them less likely to be used 

(Steele et al., 2012).  Prediction of the compressive component of the knee JRF using 

static optimization and muscle weightings produce small reported errors (root mean 

squared error (RMSE) = 0.28 body weights) when compared to measured in vivo knee 

contact forces (DeMers et al., 2014; Gerus et al., 2013; Meyer et al., 2013; Steele et al., 

2012; Walter et al., 2010).  It is important to note that these JRF predictions, whether 

based on static or forward dynamics, can only be validated on individuals with 

instrumented joint replacements and thus generalization to natural knees is unknown.  

Nonetheless, given the comparable results by static and forward dynamics methods, the 

much lower computational load associated with static methods, and the accuracy of static 

optimization plus muscle weighting at predicting in vivo forces make static optimization 
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ideal, and recommended, for modelling activities such as walking and bicycling (Lin et 

al., 2012). 

 

1.4 Medical Imaging Measures of Knee Osteoarthritis 

Conventional magnetic resonance imaging (MRI), allows for quantification of joint 

characteristics including cartilage volume, cartilage thickness, bone shape, as well as 

joint tissue composition.  Cartilage volume and thickness are traditional measures that 

characterize cartilage morphology; cartilage damage and loss are disease hallmarks.  

Knees affected by OA also have characteristic bone shapes, such as osteophytes at the 

joint margins, that are categorized using Kellgren and Lawrence grading and statistical 

shape models (SSMs) (Kellgren & Lawrence, 1957; Neogi et al., 2013).  Of recent 

interest are MRI sequences such as transverse-relaxation time (T2) that quantifies 

cartilage composition. 

 

1.4.1 Cartilage Morphology 

Measurement of cartilage morphology (thickness and volume) is important in the study of 

knee OA as loss of cartilage is a hallmark sign of the disease.  Morphometric outcomes 

are recommended by the Osteoarthritis Research Society International (OARSI) to assess 

structural disease progression in clinical OA trials (Hunter et al., 2015).  Finally, cartilage 

thickness is inversely related to cartilage surface pressures, von Misses stresses, and 
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hydrostatic pressure modeled using finite element analysis (FEA) of an axial load (Li et 

al., 2001).  In theory, these higher loads are more likely to cause cartilage damage. 

 

1.4.2 Cartilage Composition 

Cartilage composition may be an early biomarker of knee OA (Razmjoo et al., 2020).  

Compositional measures are also used to test the acute response of cartilage to loading 

(Gatti et al., 2017).  The MRI outcomes most commonly used to quantify cartilage 

composition are T2 relaxation time, T1r relaxation time and delayed Gadolinium 

Enhanced Magnetic Resonance Imaging of Cartilage (dGEMRIC).  

 

T2 relaxation time has a positive relationship with free water, and is sensitive to collagen 

fiber alignment (Choi & Gold, 2011; Palmer et al., 2013).  T2 has been of particular 

interest as its relation to free water content is postulated as being indicative of cartilage 

degeneration.  That is, as cartilage degenerates water content and mobility increases 

(Felix Eckstein et al., 1999; Xia, 2000), thus increasing free water content and T2 

relaxation time (Choi & Gold, 2011).  Furthermore, T2 relaxation is related to collagen 

alignment.  Due to the depth dependence of collagen alignment (deep radial zone 

collagen fibres are aligned perpendicular to the bone, intermediate depth fibres are 

randomly oriented, and superficial fibres are oriented parallel to the articular surface), 

there is a depth dependence of T2 relaxation times (Gatti et al., 2016; Timothy J. Mosher 

et al., 2005; Xia, 2000).  Because T2 reflects composition, it is ideal for in vivo 
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experiments designed to determine the response of cartilage to mechanical stimuli and to 

use baseline compositional measurements to determine the effect of intrinsic cartilage 

characteristics on said response.  For example, under the triphasic theory of cartilage 

mechanics, fluid re-distribution occurs in response to mechanical loads.  Therefore, 

changes in T2 throughout cartilage may provide insight into not only where loads are 

being applied, but also how fluid is redistributed in response to these loads.  Furthermore, 

T2 is acquired at every voxel of an image and therefore we can characterize depth 

dependent responses of cartilage to mechanical loading (Gatti et al., 2016; Timothy J. 

Mosher et al., 2005).  With carefully designed studies, these tools have the ability to 

confirm theoretical and computational models of cartilage mechanics, furthering our 

understanding of the role of mechanics on OA pathophysiology. 

 

T1r relaxation time is another measure of cartilage composition.  T1r is positively 

correlated with proteoglycan concentration (Akella et al., 2001; Choi & Gold, 2011; 

Wáng et al., 2015).  T1r is thought to have less dependence on cartilage collagen content, 

and therefore may be a more sensitive measure of proteoglycan content than T2 (Wáng et 

al., 2015).  T1r relaxation time has been used to determine the in vivo response of 

cartilage to mechanical stimuli and how baseline composition affects deformation 

(Collins et al., 2018; Esculier et al., 2019; Souza et al., 2014).  However, unlike T2 which 

is directly proportional to free water content T1r is most strongly related to concentrations 

of proteoglycans.  The absolute number of proteoglycans should not change from a single 
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bout of activity.  Therefore, changes in T1r are most likely indirect measures of changes 

in water content caused by loading.  Nonetheless, a combination of T2 and T1r may 

provide a broader perspective on the acute changes of cartilage to loading. 

 

Also of interest for cartilage imaging has been dGEMRIC (Choi & Gold, 2011).  For 

dGEMRIC, gadolinium is injected (intravenously or intra-articular) and the participant is 

asked to walk around for a period of time to enable the gadolinium to diffuse throughout 

their joint and articular cartilage.  Due to its negative charge, gadolinium will be repelled 

from negative chemical groups on glycosaminoglycans ultimately settling in areas of 

cartilage with low glycosaminoglycan concentrations.  Because the presence of 

gadolinium affects T1 relaxation a T1 relaxation map is then acquired and can be used to 

infer gadolinium concentration, which is inversely related to glycosaminoglycan 

concentration.  While dGEMRIC is used for assessing cross-sectional health of cartilage, 

(Van Ginckel et al., 2010) it is not appropriate for studies of the acute response to 

loading.  Gadolinium has a half-life that will necessarily decrease the contrast and thus 

estimate of glycosaminoglycan concentration with time.  Therefore, even in an 

unchanged individual there will be an apparent change in their acquired T1 map and thus 

the perceived glycosaminoglycan concentration. 

 

T2, T1r, and dGEMRIC all show promise as markers of cartilage composition.  However, 

clinical usage of all these outcomes is hindered by difficulty in standardizing 



 22 

measurements and dGEMRIC is limited by required injection of a contrast agent 

(Balamoody et al., 2013; Choi & Gold, 2011; Raya et al., 2009; Wáng et al., 2015). 

 

1.4.3 Bone Shape 

The KL system, the gold standard in classifying the severity of knee OA, identifies the 

presence of key bone features to stage OA severity.  Stage 0 has no joint space narrowing 

(JSN; approximating femur and tibia) or other changes, Stage 1 has doubtful JSN and 

possible presence of small osteophytes (lipping), Stage 2 has definite osteophytes and 

possible JSN, Stage 3 has moderate osteophytes, definite JSN, some sclerosis, and 

possible deformity of the femur and tibia, Stage 4 includes large osteophytes, much JSN, 

severe sclerosis, and definite deformity of the tibia and femur§(Braun & Gold, 2012; 

Kohn et al., 2016).  While this classification system reflects elements of bone shape, the 

advent of 3D-meshes of knee bones calculate more precise measures of bone shape. 

 

 

§ Other systems of classifying radiographic knee OA have been proposed (Kohn et al., 2016). The primary 

reason for these alternate methods is to enable separate quantification of JSN and osteophyte formation in 

each compartment. Separate scores for JSN and osteophytes are important because under the KL system an 

individual with JSN but no osteophytes would be considered to not have OA as definite osteophytes is a 

requirement of KL grade 2, the threshold at which OA is diagnosed.  
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The 3D-meshes for bone shape are created from sets of MRI or CT images capturing 

three dimensions of a joint and provide detailed information about bone and joint 

morphology.  Statistical shape models (SSM) built from these 3D-meshes provide a 

method to characterize features of bone shape, such as features that are characteristic of 

knee OA (Barr et al., 2015, 2016; Hunter et al., 2016; Neogi et al., 2013; Pedoia et al., 

2015).  The major features apparent on these OA models are broadening of the bone 

cartilage interface surface areas and the formation of osteophytes at the cartilage margins 

(Barr et al., 2016; Neogi et al., 2013).  Knees that would be classified as “healthy” on the 

KL system (KL grade 0 or 1) but that showed features of OA based on these SSM models 

were 3-12.5 times more likely of developing KL grade 2 or worse knee OA 12 months 

later (Neogi et al., 2013).  This predictive ability is likely owed, at least in part, to the fact 

that these 3D-meshes and SSM models capture more information than their 2D 

radiograph counterparts.  Furthermore, KL grades from radiographs are shown to be 

highly sensitive to positioning error and inter-rater biases (Guermazi et al., 2011; Hayashi 

et al., 2018).  The new information garnered from these models enables earlier 

identification and therefore greater treatment options to alter or divert the disease process.  

 

1.4.4 Image Segmentation 

While MRI is clearly useful for capturing cartilage morphology, cartilage composition 

and bone shape, we must first segment the MRIs to localize the anatomical tissues of 

interest and extract desired outcomes.  For knee OA, the primary tissues of interest are 

cartilage and bone; other tissues that are relevant to knee OA disease include ligaments, 
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muscles, menisci, and bone abnormalities including subchondral cysts and bone marrow 

lesions.  Segmentation of knee MRIs, particularly cartilage, requires fast, accurate, and 

reliable methods for basic science, clinical trials, and even clinical usage.  The gold 

standard of cartilage segmentation from MRI is manual.  Manual segmentation takes 

hours to perform, requires highly specialized knowledge, and shows within and between 

rater segmentation errors (Pedoia et al., 2016).  Highlighting the lack of feasible methods 

of acquiring quantitative cartilage outcomes from MRIs is the small fraction of the 

Osteoarthritis Initiative (OAI) database for which quantitative cartilage outcomes are 

available.  This dataset includes >4,000 participants with bi-lateral knee MRIs collected 

at 7 time-points over 8 years.  This data source has been immensely valuable; however, 

the vast majority of this data has remained un-analyzed and thus its full potential is 

under-realized.  

 

A number of automated methods of cartilage segmentation have been proposed.  

Historically, these methods used a variety of registration (SSMs, active appearance 

models, atlas-based algorithms) and traditional machine learning methods (support vector 

machines, k-nearest neighbours)(Ahn et al., 2016; Dam et al., 2015; Dodin et al., 2010; 

Fripp et al., 2010; Prasoon et al., 2013; Shan et al., 2014; Tamez-Pena et al., 2012; Q. 

Wang et al., 2014).  However, these methods fell short of human level accuracies, (Shim 

et al., 2009) and many still took relatively long to analyze knees, with times ranging from 

tens of minutes to days.  Currently, all of the most accurate methods of cartilage and bone 
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segmentation incorporate convolutional neural networks, a type of deep learning 

(Ambellan et al., 2019; Desai et al., 2020; Gaj et al., 2020; Panfilov et al., 2019). 

 

1.4.4.1 Artificial Neural Networks and Deep Learning 

Artificial neural networks (ANN) are at the basis of deep learning.  ANNs were initially 

designed based on preliminary understanding of biological neural networks.  That is, 

information or a signal is passed through a series of nodes (neurons) (Figure 1-1). Figure 

1-1 describes the network parts and a potential example of predicting sex (male/female) 

from three inputs of height, weight, and eye colour.  With the exception of the input 

nodes, the value at each node is calculated similar to a linear regression model 

(Goodfellow et al., 2016).  For example, node B1 in Figure 1-1 would be calculated using 

Equation 1-2 

 

Equation 1-2 B1	 = 	β'
( 	+ 	A1(β'

') 	+ A2(β'
)) 	+ 	A3(β'

*) 

 

where 0+
, is the beta coefficient for input node i connecting to hidden layer node j and i = 

0 is equivalent to the intercept in a regression model.  In the machine learning literature, 

the intercept is called the bias, and the beta coefficients for the individual nodes the 

weights;(Goodfellow et al., 2016) we use beta coefficients here due to familiarity in the 

health sciences domain. 
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Figure 1-1. Example of an artificial neural network (ANN). The input layer includes three 
nodes (A1, A2, A3). Each input node is connected to every hidden layer node (B1, B2, 
B3, B4). Finally, the hidden layer nodes all connected to the output node (C1). In this 
example, A1, A2, and A3 could be any three input parameters, e.g., height, weight and 
eye colour. The output node can be anything we could model with a single output, e.g., a 
person’s sex (male or female). 

 

To enable the system to be non-linear, after calculating B1 (or the value for another 

hidden node), a non-linear activation function is applied to the output of Equation 1-2 

(Goodfellow et al., 2016).  The canonical activation function is the sigmoid or logistic 

function which turns all values to be in the range of 0 and 1 and is easily differentiated, 

which is important for learning the optimal parameters (Goodfellow et al., 2016).  The 

output node (C1 in Figure 1-1) also uses Equation 1-2 but may differ in the activation 

function choice depending on the purpose of the ANN.  For the example of predicting sex 
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in Figure 1-1 the logistic function would be used to classify the prediction to be binary; 0 

(male) or 1 (female). 

 

The optimal beta coefficients for each of the nodes is learned in a supervised fashion**.  

To learn the optimal coefficients, an error or loss function is defined, mean squared error 

(MSE) is commonly used (Goodfellow et al., 2016; Janocha & Czarnecki, 2017).  The 

learning begins by starting with randomly assigned beta coefficients and inputting an 

example from the training dataset into the network (e.g., height, weight, and eye colour 

from Figure 1-1).  The network outputs a prediction and the MSE of the prediction is 

calculated based on the known label.  Based on the MSE, the beta coefficients are 

updated to improve the prediction.  Specifically, 1) the partial derivative of the error 

function with respect to each individual beta coefficient is calculated††.  2) Each beta 

coefficient is then updated by taking a step (increase or decrease the beta coefficient) in 

 

** Supervised learning includes example data for which the label is available and the network is trained to 

predict the right output label. Unsupervised learning infers new information from data or learns the labels, 

most commonly clustering. Reinforcement learning includes an agent (the ANN) and an environment (e.g., 

game). The agent learns to maximize some reward through trial and error and is often used for games; the 

popular AlphaGo or AlphaZero by Google’s DeepMind are examples of reinforcement learning.  

†† The partial derivatives are the slope of the error function with respect to that particular beta coefficient. 

This method of calculating partial derivatives of the error function is known as back propagation 

(Goodfellow et al., 2016). 
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the direction which decreases MSE (has a negative slope)‡‡.  This process of inputting a 

new example, calculating the MSE and performing 1) and 2) is conducted iteratively until 

the MSE converges. 

 

Deep learning is an extension of ANNs that uses many layers of neurons in varying 

structures to predict an output.  For example, the latest language network entitled 

generative pre-trained transformer-3 (GPT-3 ) contains 175 billion learned parameters 

(Brown et al., 2020).  Convolutional neural networks for computer vision and image 

segmentation are purposely built for efficient analysis and perception of images.  Instead 

of learning individual betas (weights and biases) for each input pixel, convolutional 

neural networks instead learn convolutional filters (Figure 1-2)(Goodfellow et al., 2016).  

Convolutional filters reduce memory usage, increase computational speed, and improve 

generalization (Goodfellow et al., 2016).  A kernel is the primary element of a 

convolutional filter.  A kernel is a data matrix, typically sized 3x3 or 5x5.  This kernel 

slides over the entire image, multiplying the kernel elementwise by the pixels underneath 

it, summing all of the products and placing the total at the center of the kernel in the 

output image (Figure 1-2)(Goodfellow et al., 2016).  Historically, hand-crafted 

convolutional filters such as the Sobel filter (Figure 1-2) which identifies edges have been 

 

‡‡ One of the most common methods of updating these coefficients is called stochastic gradient descent 

(Goodfellow et al., 2016). 
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used.  Convolutional neural networks learn a sequence of filters necessary to achieve the 

task at hand (Goodfellow et al., 2016). 

 

Figure 1-2. Sobel filter, an example of a convolutional filter. The Sobel filter calculates 
the gradient of the image in the horizontal or vertical directions. These gradients identify 
lines that run perpendicular to them because we expect there to be a gradient in the image 
when we cross an edge or boundary between two regions or colors in an image. If there is 
no gradient, then the output is zero (no edges). This can be seen by the mostly 
homogenously 0 (teal) coloring in the consistently dark regions of bone or background in 
the original image. To achieve this, the kernel (vertical gradient or horizontal gradient 
kernel shown in the figure) slides over the entire image. As it slides, the kernel is 
multiplied elementwise by the pixels that lay underneath it and then these products are 
summed together; the sum is placed at the center of the kernel in the output image. 
Examples for applying the vertical gradient kernel to get the horizonal edges and the 
horizontal gradient kernel to get the vertical edges are shown in the figure for a sagittal 
slice of a knee MRI. The absolute magnitude of the output images identifies how 
“prominent” the edge is, or how large the gradient change is. The sign of each pixel 

1 2 1
0 0 0
−1 −2 −1

1 0 −1
2 0 −2
1 0 −1

Vertical Gradient Kernel Horizontal Gradient Kernel
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identifies the direction of the gradient and therefore whether the image is going from a 
dark region to a light region or vice versa. 

 

Deep learning methods have been successful at image tasks, however, a limitation when 

analyzing 3D medical image data is the high memory footprint of a 3D image, and the 

relatively low memory available on graphics processing units (GPU) used to train deep 

learning models. 

 

1.5 Physical Activity, Osteoarthritis, Biomechanics and Medical Imaging – 

Current State of the Literature 

Characterizing the response of cartilage to mechanical loading caused by physical activity 

can be categorized as acute changes/deformation or longitudinal adaptations.  Acute 

changes (deformations) include changes to the joint that are measurable during or 

immediately post loading; acute changes are often transient.  Longitudinal adaptations 

include changes to the actual anatomy or physiology of the joint induced by days, weeks, 

or months of an intervention and slowly occur/develop over time; longitudinal 

adaptations are not easily reversed.   

 

Longitudinal investigations indicate that too much (Dore et al., 2013) or too little 

(Hinterwimmer et al., 2004; Souza et al., 2012) exposure to activity is detrimental to 

cartilage health.  For example, unloading of the knee during recovery from an ankle 

sprain decreased cartilage thickness, (Hinterwimmer et al., 2004) and produced adverse 
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changes to cartilage composition, as measured using T2 (reflecting water and collagen 

content (Choi & Gold, 2011; Palmer et al., 2013; Souza et al., 2012)) and T1r 

(proteoglycan concentration (Choi & Gold, 2011; Palmer et al., 2013; Souza et al., 

2012))(Souza et al., 2012).  Gradually increasing exercise participation benefits cartilage 

health.  An exercise intervention in healthy young women showed that gradually 

increasing activity level increases glycosaminoglycan concentration, as measured using 

dGEMRIC (delayed gadolinium enhanced magnetic resonance imaging of cartilage)(Van 

Ginckel et al., 2010).  Furthermore, a 12-month randomized controlled trial comparing a 

step-class to no exercise in women with mild knee OA (mean age 58 years) showed no 

change in cartilage composition as measured using T2 and dGEMRIC (Multanen et al., 

2014).  These exercise classes consisted of aerobic and step-aerobic jumping exercises 

that were gradually increased over 12-months.  The first 3-months had step heights of 5-

10cm, progressing to 20cm after 3-months.  This slow progression is likely important in 

minimizing adverse outcomes and allowing cartilage to adapt to these loads.  Before 

continuing with longitudinal investigations, it is important that we first understand how 

the OA joint acutely responds to activity.  A fundamental understanding of cartilage’s 

acute response to activity and loading is crucial for understanding which exercises are 

safe for the OA knee. 

 

Current literature on the acute response of cartilage (deformation) to activity focuses on 

healthy adults; we must include more studies that directly assess the OA knee.  The 

current body of knowledge shows that cartilage volume and thickness is decreased after 
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as little as 30 knee bends, (F Eckstein, 2005) and that recovery is approximately linear 

(Felix Eckstein et al., 1999).  Greater deformation and more rapid recovery is thought to 

occur due to lower resistance to fluid flow within cartilage, suggesting cartilage 

degeneration (Felix Eckstein et al., 1999; Lu & Mow, 2008).  Assessment of acute 

changes to cartilage composition have mostly been performed in running, showing that 

superficial cartilage typically undergoes the greatest changes after running, (Cha et al., 

2012; T.J. Mosher et al., 2010; Subburaj et al., 2012) and that older runners (>45 years of 

age) have greater changes in cartilage composition compared to younger runners (<20 

years of age)(Cha et al., 2012).  When comparing the acute effect of running on cartilage 

T2 in healthy versus OA knees, it was found that healthy cartilage T2 did not change 

(Esculier et al., 2019).  However, OA cartilage had increased T2, relative to pre-activity 

levels, at 60- and 90-minutes post-activity. This study had its earliest post-activity time-

point at ~20 minutes and therefore may have missed the traditional decrease observed 

after activity.  A more recent study also found that when measuring T2 before and then 

within 10-hours post marathon that T2 increased, (Z. Wang et al., 2020) and that this 

increase is more pronounced the higher an individuals’ body mass index (BMI).  These 

studies show that while the immediate acute response to mechanical load is decreased T2, 

in the hours afterwards there appears to be an increase.  Previously, we compared the 

acute changes in cartilage composition and morphology after running versus bicycling in 

healthy young men.  We found that when normalized to total load just 15-minutes of 

running changed cartilage composition (reduced T2) and reduced cartilage thickness and 

volume while 46-minutes of bicycling did not (Gatti, 2015; Gatti et al., 2017).  The 
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finding that bicycling produced no changes in cartilage highlights its potential to enable 

exercise while minimizing the need for cartilage to dissipate loads by deforming for 

individuals with knee OA. 

 

Most studies of cartilage change (acute or longitudinal) use similar rigid definitions of 

cartilage regions of interest, e.g., the entire medial or lateral tibial plateau, and the entire 

medial or lateral weight-bearing femur.  It is possible that these standard definitions, 

which calculate mean outcomes over anatomically defined regions, may washout or miss 

subregional changes.  In the worst case, it is possible that using these region definitions 

may actually produce erroneous results.  

 

To combat problems encountered by broad region of interest definitions, some work in 

the knee OA literature has begun using statistical parametric mapping (SPM)(Brenneman 

et al., 2019a, 2019b; Gatti & Maly, 2018; MacKay et al., 2020).  SPM has also gained 

popularity in the biomechanics field over the past decade, particularly owing to creation 

of the open-source package SPM-1D (Pataky, 2010; Pataky et al., 2008, 2016).  SPM is a 

technique pioneered and made popular in brain MRI research (Forman et al., 1995; 

Friston et al., 1994).  SPM enables hypothesis testing of spatially correlated data while 

accounting for the multiple comparisons problem inherent in performing statistical 

analyses in this type of data. 
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1.6 Bicycling & Knee OA 

Bicycling may be the ideal activity to allow individuals with knee OA to exercise for 

weight management and general aerobic health.  Supporting the use of bicycling for 

weight management, a study on young sedentary overweight women showed that indoor 

cycling training 3 times per week for 12 weeks resulted in 3.2% reductions in body 

weight and 5% reductions in fat mass (Bianco et al., 2010).  Furthermore, an RCT in 100 

adults between 67 and 76 years of age showed that participation in 3x1 hour cycling 

classes per week for 12-weeks resulted in significantly greater reductions in weight (0.83 

kg; p=0.007), body mass index (0.26 kg/m2; p=0.032), and waist circumference (1.7 cm; 

p=0.023) compared to the control group (Finucane et al., 2010). 

 

Bicycling improves function, pain, and quality of life in adults with knee OA.  In 2016, 

Alkatan and colleagues found that 12-weeks of bicycling (3 times/week; 45 mins/session) 

reduces joint pain, stiffness, and physical limitations while concurrently increasing 

quality of life and physical function (Alkatan et al., 2016).  Another 12-week RCT found 

that bicycling classes lead to increased preferred gait speed, decreased joint pain after a 6-

minute walk, and decreased joint pain and stiffness compared to a no-exercise control 

group (Salacinski et al., 2012).  Furthermore, exercise intensity does not seem to matter; 

when randomized to a high-intensity or low-intensity stationary cycling program, 

regardless of group, participants with knee OA had significant improvements in 

functional tests, measures of overall pain, and aerobic capacity (Mangione et al., 1999). 
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These findings indicate that bicycling is a promising activity for minimizing joint contact 

forces at the knee, while allowing individuals with knee OA to improve body 

composition and physical function.  Not only does bicycling produce small changes to 

cartilage, (Gatti et al., 2017) it has other health and economic benefits.  Bicycling 

indoors, reduces the risk of injury from falls that may occur during walking, running, or 

other activities performed in an unpredictable environment.  With appropriate positioning 

and cycling biomechanics, lower limb movements during bicycling are almost entirely in 

the sagittal plane and minimize movements in the frontal plane.  Minimizing frontal plane 

movement may be important for maintaining stability for osteoarthritic and/or potentially 

unstable joints.  Recent investigations also show that the peak KAM during bicycling is < 

0.1 Nm/kg in adults with knee OA bicycling at a moderate 80 W (Gardner et al., 2015) 

and the KAM was <0.18 Nm/kg over a range of resistances and pedaling cadences in 

healthy adults between 40 and 79 years of age (Fang et al., 2016).  These values are less 

than half of those reported during gait (0.4-0.5 Nm/kg)(Maly et al., 2013).  Furthermore, 

the bicycle is highly adaptable; positioning of the bicycle seat, handlebars, and pedals can 

be optimized to minimize loading at the knee.  Not only does the bicycle have mechanical 

and injury prevention benefits, bicycling can also be performed in a group format which 

augments exercise adherence, (Jordan et al., 2010) and minimizes costs (McCarthy et al., 

2004). 

 

1.6.1 Bicycle-fit 
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While bicycling does show promise as an intervention for knee OA, (Alkatan et al., 2016; 

Mangione et al., 1999; Salacinski et al., 2012) and many people (>40% of Canadians) 

bicycle, (Ramage-Morin, 2017) more than 51% of cyclists report overuse injuries 

(Silberman, 2013).  Further cause for concern in knee OA, the joint that is most affected 

by overuse injuries is the knee (1/3 of overuse injuries)(De Bernardo et al., 2012).  The 

primary method of mitigating musculoskeletal injuries during cycling is bicycle-fit 

(Dettori & Norvell, 2006; Silberman, 2013).  Bicycle-fit primarily includes adjusting 

positioning of the saddle and handlebars and changing the length of the bicycle crank 

arms (Figure 1-3).  For minimizing injuries at the knee, saddle positioning and crank arm 

length are of primary interest (Bini et al., 2011).  However, a review of bicycle saddle 

positioning for knee injury risk and cycling performance concluded that:  

“Methods for determining saddle height are varied and have not been comprehensively 

compared using experimental research studies. There is limited information on the effects 

of saddle height on lower limb injury risk, but more information on the effects of saddle 

height and cycling performance.”(Bini et al., 2011) 

 

There is limited new experimental research since this review (Bini, 2016; Bini et al., 

2014; Menard et al., 2018).  Given this state, the gold-standard recommendation for 

setting bicycle saddle height is based on knee flexion at the bottom of the revolution (6 

o’clock), and is provided based on clinical expertise (Bini et al., 2011; Holmes et al., 

1994).  It is recommended that saddle height be such that it elicits a minimum knee 

flexion angle (knee flexion at the bottom of the revolution) of 25-40º, with 25-35º 
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recommended for static measurements and 30-40º recommended for dynamic 

measurements (Bini et al., 2011; Ferrer-Roca et al., 2012; Fonda et al., 2014; Priego 

Quesada et al., 2017).  Within these ranges, individual recommendations are based on 

injury history and performance aspirations.  Generally, saddle positions with less flexion 

(25-30º) are desired for performance and for those trying to prevent or alleviate 

conditions associated with the patellofemoral joint (Bini et al., 2011; Dettori & Norvell, 

2006; Silberman, 2013).  More knee flexion is commonly recommended for those with 

iliotibial band syndrome (Silberman, 2013).  Additional research is needed to confirm the 

mechanical hypotheses linking bicycle fit (e.g., saddle height, knee flexion angle) and 

joint mechanics (e.g., joint reaction forces).  With these data in hand, prospective studies 

are needed to determine whether these changes in bicycle-fit actually affect injury risk 

(Bini, 2016). 
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Figure 1-3. Bicycle-fit anatomy. Depiction of key bicycle components relevant for 
bicycle-fit of the lower extremity: saddle positioning and crank arm length. Saddle 
position can be described using two conventions. The first describes the position of the 
saddle using the straight-line distance from the bottom bracket to the top of the saddle 
(red dashed line, seat tube) and the angle of this line with respect to the horizontal (seat 
tube angle, yellow arch). This method effectively uses a polar coordinate system to 
describe saddle position relative to the bottom bracket. The second method that has 
become more popular, particularly for bicycle-fit, breaks this positioning into an x- and y- 
cartesian coordinate system, again centered at the bottom bracket. In this figure the 
cartesian coordinate system is noted in the bottom right corner; the x-axis always points 
toward the back of the bicycle. Using this method, the saddle position is described 
relative to the bottom bracket using an x-component (blue line) and a y-component 
(dashed purple line). In addition, crank arm length is the length of the arms to which the 
pedals attach (crank arm, green double line). The crank arm length is the radius of the 
circle which a rider’s pedals rotate around when they are pedaling. The total distance 
from the pedal attachment to the top of the saddle is the saddle height. The saddle height 
can be calculated by adding the crank arm length (green double line) and the bottom 
bracket to top of saddle distance (red dashed line).  
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Even if specific recommendations backed by research existed, measuring knee flexion 

angles either statically or dynamically on the bicycle remains a challenge.  This problem 

is highlighted by a reliability study of knee flexion angle measurements obtained at the 

bottom of a revolution (average of 15 revolutions) using high speed video recorded in 

laboratory conditions (Fonda et al., 2014).  In the reliability study, the standard error of 

measurement of the knee flexion angle was 3º.  This error is equivalent to a minimum 

detectable difference at 95% confidence of +/- 8.3º (i.e., 95% of unchanged individuals 

(same saddle height) will have random fluctuations of their average of 15 revolutions 

within +/- 8.3º).  In the context of recommendations for dynamic knee flexion being 

within a 10º window (30-40º), +/- 8.3º is considerable.  For this reason, we need either 

new technologies to measure joint kinematics during cycling that enable smaller 

measurement error, or we need alternative methods of prescribing saddle height that 

elicits a desired set of joint kinematics. 

 

1.7 Gaps in the literature.  

1. There is no easy way to prescribe or determine the optimal saddle position to 

elicit a desired amount of knee flexion. 

2. There are no thorough experimental studies that determine how changing bicycle 

saddle position, and thus joint kinematics, affect forces acting inside of the knee.  

3. Current methods of segmenting cartilage and bone from MRI for quantitative 

analyses are slow and prone to error.  Faster and more accurate methods are 

required to enable efficient analysis.  
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4. We lack an understanding of how knee cartilage affected by OA acutely responds 

to physical activity in vivo and what biomechanical or joint health factors affect 

the response.   

1.8 Thesis overview 

The purpose of this thesis is to improve our understanding at the intersection of aerobic 

activity, knee biomechanics, quantitative MRI outcomes of the knee, and knee OA.  

 

Chapters 2 and 3 of this thesis use data from one experimental study.  That study had 41 

healthy adult participants complete 18 different bicycling postures where 1 posture was 

derived from commercial guidelines and the remaining 17 were random deviations from 

commercial.  

 

Chapter 2 uses this data to construct a set of equations that enable prediction of saddle 

position that elicits a user desired joint kinematic.  The equations enable the operator to 

define a desired minimum or maximum knee flexion angle and it will return a saddle 

height predicted to achieve this kinematic outcome.  

 

Chapter 3 determines how joint kinematics affect tibiofemoral and patellofemoral JRFs 

during cycling.  Both the individual sensitivity of the JRFs to each lower-limb kinematic 

outcome (ankle flexion, knee flexion, hip flexion) as well as the best set of kinematic 

outcomes to predict each of the tibiofemoral and patellofemoral JRFs are reported. 
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Chapter 4 describes and validates a novel multi-stage convolutional neural network 

framework designed to efficiently segment cartilage and bone from high resolution MRI 

data acquired from both healthy and OA afflicted knees. 

 

Chapter 5 explores how JRFs obtained during walking and bicycling, as well as bone 

morphology measured using SSMs affects the acute response of OA cartilage to walking 

and bicycling in a sample of older women with symptomatic knee OA.  This study used 

results from chapters 2 and 3 to prescribe the bicycle-fits for women with knee OA and 

uses the convolutional neural network framework from chapter 4 to analyze the MRI 

data. 
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2 Equations to Prescribe Bicycle-Fit based on Desired Joint Kinematics and 

Bicycle Geometry 

 

This paper was submitted to the European Journal of Sport Science on September 14th, 

2020 (TEJS – 2020 – 1319). 
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Abstract 

Background. Overuse knee injuries are common in bicycling and are often attributed to 

poor bicycle-fit. Bicycle-fit for knee health focuses on setting saddle height to elicit a 

minimum knee flexion angle of 25-40º . Equations to predict saddle height include a 

single input, resulting in a likely suboptimal bicycle-fit. The purpose of this work was to 

develop an equation to predict saddle height from anthropometrics, bicycle geometry, and 

user-defined joint kinematics.  

Methods. Forty healthy adults (17 women, 23 men; mean (SD): 28.6 (7.2) years; 24.2 

(2.6) kg/m2) participated. Kinematic analyses were conducted for 18 three-minute 

bicycling bouts including all combinations of 3 horizontal and 3 vertical saddle positions, 

and 2 crank arm lengths. For both minimum and maximum knee flexion, predictors were 

identified using Least Absolute Shrinkage and Selection Operator (LASSO) regression, 

and final models were fit using linear regression.  

Results. The equation to predict saddle position from minimum knee flexion angle 

(R2=0.97; root mean squared error (RMSE)=1.15 cm) was: Saddle height (cm) = 7.41 + 

0.82(inseam cm) – 0.1(minimum knee flexion º) + 0.003(inseam cm)(seat tube angle º). 

The maximum knee flexion equation (R2=0.97; RMSE=1.15 cm) was:  Saddle height 

(cm) = 41.63 + 0.78(inseam cm) – 0.25(maximum knee flexion º) + 0.002(inseam 

cm)(seat tube angle º).  

Conclusions. These equations provide a novel, practical strategy for bicycle-fit that 

accounts for rider anthropometrics, bicycle geometry and user-defined kinematics. 
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2.1 Introduction 

Bicycling is associated with injuries caused by acute trauma (48.5%) and overuse 

(51.5%), with overuse injuries most commonly occurring at the knee (32.1%)1,2. 

Minimizing exposure to the biomechanics associated with overuse injury risk is a primary 

goal of “bicycle-fit”2,3. Bicycle-fit to prevent knee injuries involves adjusting saddle 

position2, which alters lower extremity kinematics and joint reaction forces at the knee4–

10. Yet, there is no consensus on the most effective method to prevent bicycling-related 

musculoskeletal injury4. It is likely that no single saddle height can be optimal for all 

riders. Instead, saddle height must be tailored based on anthropometrics, bicycle 

geometry and goals (i.e., maximize performance and/or minimize injury risk). There are 

multiple conventions that describe saddle position, with the most common requiring 

measurements of seat tube angle and saddle height or of the horizontal and vertical saddle 

positions (Figure 2-1). 
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Figure 2-1. Bicycle fit parameters are shown on a conventional bicycle (A) and the 
bicycle-fit device (Purely Custom) used in this study (B). Both methods of describing 
saddle position have an origin at the bottom bracket (axis of rotation of the bicycle 
pedals), which is located at the intersection of the seat tube, saddle X, and saddle Y lines. 
Method 1 of describing saddle position uses the seat tube angle (gold) and the distance 
from the bottom bracket to the top of the saddle along the seat tube (red) to describe the 
location of the top of the saddle in space. Method 2 decomposes the seat tube into X and 
Y components on a Cartesian coordinate system. Methods 1 and 2 can be interchanged 
using trigonometry; e.g., to get conventions of Method 1 from Method 2, the seat tube 

angle can be calculated as 123415(
-.//01	2

-.//01	3
) and the saddle height as 

A

B

Y

X

= Crank Arm

= Seat Tube Angle

= Seat Tube

= Saddle Y

= Saddle X
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32156	127	895:4ℎ	(:2995) 	+ 	<=44=7	<213694	4=	>1??89	3817@	?A>41539	 +

	>1??89	3817@	4=	4=@	=B	>1??89	?A>41539, where bottom bracket to saddle clamp is 
calculated as √>1??89	D) 	+ 	>1??89	E) and saddle clamp to the top of saddle along the 

seat tube is calculated as 
-.//01	4156,7.0	/1869

-,:(-1.6	6<=1	.:>01)
. 

 

“Ideal” saddle position is commonly achieved by assessing the minimum knee flexion 

angle, and the horizontal saddle alignment using knee-over-pedal-spindle (KOPS)2, 

though both techniques can be challenging for clinicians to implement. Prior literature, 

based on clinical expertise, recommends minimum knee flexion angle is between 25-35º 

for static and 30-40º for dynamic measurements4,11–13. High knee flexion is hypothesized 

to instigate patellofemoral knee pain, while low knee flexion is hypothesized to aggravate 

the iliotibial-band and hamstrings2–4. The equipment or expertise to accurately measure 

knee flexion angles in the clinic or bicycle-shop is often unavailable and can be 

erroneous. For example, measurement of knee flexion angle at the bottom of a pedal 

revolution, acquired from video in a laboratory, showed a standard error of measurement 

of 3° 12 †. While this error seems small, the coinciding smallest detectable difference at 

95% confidence was +/- 8.3° 14. As reflected by the different recommended ranges, 

minimum knee flexion angle obtained from static measurements is systematically lower 

 

† Standard error of measurement (SEM) was calculated as: "#$	 = 	 '!
√2
*  where '! = standard deviation 

of the difference between repeated measurements. Fonda et al (2014) found that '! of repeated 

measurements taken with dynamic 2D video was 4.3º. Therefore, "#$	 = 	4.3
√2
* 	= 	3.0° 
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than dynamic measurements12. Horizontal saddle alignment using KOPS recommends the 

anterior knee be at or behind the pedal spindle with the pedal at 3 o’clock2. KOPS 

presumes that a more anterior knee alignment is associated with higher patellofemoral 

forces, however, recent work disputes this assertion5,9,10. Horizontal alignment is fine-

tuned by sliding the saddle anterior/posterior at the seat clamp. Horizontal alignment 

affects the effective seat tube angle.  

 

Minimum knee flexion angle and horizontal saddle alignment may not be ideal to 

mitigate patellofemoral conditions. During bicycling, peak quadriceps activations and 

forces occur near the top of the revolution9,15, where the knee is most flexed. Greater knee 

flexion decreases the quadriceps moment arm, necessitating higher quadriceps forces, and 

therefore higher patellar compression, for a given knee extension moment16. In fact, 

patellofemoral joint reaction forces are three times more sensitive to maximum knee 

flexion angle as they are to minimum knee flexion angle10.  In this scenario, bicycle-fit 

may be most effective if focused on identifying the maximum, rather than minimum, 

knee flexion angle. 

 

A practical approach to setting saddle height is using an anthropometry-based equation, 

such as, Hamley and Thomas (109% of inseam)17, trochanteric height (100% of 

trochanter height)18, ischial tuberosity height (113% of ischial tuberosity height) 19, and 

the LeMond equation (distance from the bottom bracket to the top of saddle at 88% of 
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inseam height) 4. While popular, these equations present key problems. All prescribe 

saddle height as a percentage of a single anthropometric measurement4. Their derivations 

are based on performance athletes, primarily men. These do not account for confounding 

effects of bicycle geometry (e.g., seat tube angle). These are based on data at a limited 

number of saddle heights. It is therefore not surprising these equations produce different 

saddle height recommendations from one another, with the inseam-based equations often 

yielding saddle heights outside the recommended range20,21.  

 

The purpose of this investigation was to develop an equation that enables accurate 

prediction of saddle height for a desired knee flexion angle based on simple 

anthropometrics and bicycle geometry (seat tube angle) that can be applied across a range 

of recreational bicyclists.  Our secondary objectives were to determine (i) the best 

equations to predict bicycle saddle height when one of maximum knee flexion, minimum 

hip flexion, or maximum hip flexion were included in each equation; and (ii) whether 

saddle height prediction equations differed by sex.  We hypothesized that all equations to 

predict saddle height would include inseam, foot length, and seat tube angle.  

 

2.2 Methods 

A fully-crossed random assignment experimental design, the same as described 

previously, was used10. Participants provided written, informed consent. The funders 
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played no role in the design, conduct, or reporting of this study. This study was approved 

by the Hamilton Integrated Research Ethics Board.  

 

2.2.1 Participants 

A convenience sample of healthy adults between 18-45 years of age who had cycling 

experience from recreational urban cycling to regional age-group level cyclists in 

mountain biking, cyclocross, and triathlon were recruited from the Hamilton, Ontario 

community. Participants were excluded if responses on the Get Active Questionnaire 

(GAQ) suggested exercise was unsafe22, if they self-reported any injury to the lower 

extremity during the past 3-months, or self-reported arthritis, gout, unstable angina, 

neurologic conditions, or any previous surgery to the lower extremities. Descriptors 

included the Lower Extremity Functional Scale23, sex, body height, body mass, body 

mass index, foot length, and inseam height. 

 

2.2.2 Protocol 

Participants completed one study visit (2.5-4 hour duration) and wore shorts, running 

shoes, and were either shirtless or wore a sports-bra. Participants could wear their own 

cycling shorts, though not required. The protocol included five steps: (i) measuring 

anthropometrics, (ii) defining commercial bicycle-fit, (iii) determining the experimental 

exercise intensity, (iv) instrumenting for kinematic analysis, (v) conducting the 

experimental bicycling protocol (18 x 3-min bicycling bouts). 
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2.2.2.1 Anthropometrics 

Height, inseam, lateral malleolar height, greater trochanter height, and foot length were 

measured for both legs while standing barefoot. Inseam was measured from the floor to 

the top of a level which participants held between their legs while applying gentle 

pressure upward4,20. Malleolar, trochanter, and femoral condyle heights were measured 

from the floor. Foot length was measured from the posterior aspect of the calcaneus to the 

end of the longest toe using calipers. One researcher (AAG) palpated each anatomical 

structure and completed all measurements. 

 

2.2.2.2 Commercial Bicycle-Fit 

A fully-adjustable commercial fit-bike (Fit Bike Pro, Purely Custom, Twin Falls, ID, 

USA) was used. The commercial bicycle-fit included setting the saddle horizontal and 

vertical position using the Hamley and Thomas4,17 equation, assuming a seat tube angle 

of 73.7° (mean of all 2018 Trek road and city bicycles), and a crank arm length of 172.5 

mm. The vertical handlebar position was initially set level with the saddle, and the 

horizontal distance was set to achieve a 70-90° angle between the torso and upper arms. 

From the initial handlebar position, participants were encouraged to provide feedback to 

adjust handlebars to their preference. Flat pedals were used with the first metatarsal head 

aligned over the pedal spindle and the foot firmly secured using custom Velcro straps. 

Foot placement and fastening on the pedal were performed by the same researcher 

(AAG). 
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2.2.2.3 Determining Experimental Exercise Intensity 

The exercise intensity used during the experimental bicycling bouts was determined from 

an incremental bicycling protocol that was a modified version of the YMCA submaximal 

test of maximal oxygen uptake10,24,25. Using the commercial bicycle-fit, participants 

started cycling with a resistance of 4 Newton-metres at a self-selected cadence (30-45W). 

Every three minutes resistance was increased by one gear. Heart rate (HR) was recorded 

every minute (Polar T31, Kempele, Finland). If HR differed by more than 5 beats 

between consecutive measurements, the stage was extended by 1 minute until steady-

state was achieved. The protocol continued until participant HR was within 70-75% of 

their age-predicted maximum (208-0.7*Age)10,26. The average power output and cadence 

of the final stage were used for the experimental bicycling bouts. If the final stage HR 

was greater than 75% of age predicted maximum, power was set to the second last stage. 

 

2.2.2.4 Instrumenting for Kinematic Analysis  

For kinematic analysis with a passive motion capture system of 12 high-speed infrared 

cameras (Raptor-4, Motion Analysis Corporation, Santa Rosa, CA, USA), participants 

were outfitted with 40 retroreflective markers. Markers were affixed to both feet (1st 

metatarsal head, 5th metatarsal head, calcaneus, and lateral midfoot), lower legs (medial 

and lateral malleoli, tibial tuberosity, and 4 markers affixed to a rigid body placed on the 

lateral shank), thighs (medial and lateral femoral epicondyles, greater trochanter, and 4 

markers affixed to a rigid body placed on the lateral midthigh), and the pelvis (right and 

left anterior superior and posterior iliac spines). Marker data were collected at 112.5 Hz.  
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2.2.2.5 Experimental Bicycling Bouts 

Each participant completed 18 three-minute cycling bouts, each at the cadence and power 

derived from the incremental protocol, in randomized order. These 18 positions included 

all combinations of 3 vertical saddle positions (Y), 3 horizontal saddle positions (X), and 

2 crank arm lengths. The Y component was the vertical distance from the bottom bracket 

to the centre of the saddle clamp, and the X component was the horizontal distance from 

the bottom bracket to the centre of the saddle clamp. One position of each factor was 

commercial, and the others were random deviations. Each random saddle X and Y 

position was independently randomly sampled within +/- 10% for X and 5% for Y of the 

commercial position. A shorter range of 5% was used for saddle Y because higher ranges 

were not anatomically possible. The random crank arm length was either 2.5 mm longer 

or shorter than commercial (172.5 mm). Randomization of the saddle and crank arm 

positions are described in Supplemental 1. For every position, effective seat tube angle 

(F@A) was calculated as 123415(
2

3
), and represents a seat tube from the bottom bracket to 

the X-Y position of the saddle clamp on the fit-bike. Effective seat tube angle takes 

saddle fore-aft into account, where a steeper effective seat tube is equivalent to a more 

anterior saddle position. The effective saddle height was calculated by summing the crank 

arm length, the bottom bracket to saddle clamp distance (1	 = 	√D) 	+ 	E) ), and the 

saddle clamp to top of saddle distance. The saddle clamp to top of saddle distance was 

calculated along the line of the effective seat tube as: 

>1??89	3817@	4=	4=@	=B	>1??89	?A>41539	 = 	
-.//01	4156,7.0	/1869

-,:(B"#)
 where the saddle 

vertical depth was the vertical height from the centre of the saddle rails to the top of the 
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saddle. The effective saddle height was equivalent to the distance from the top of the 

saddle to the pedal spindle using a straight line that intersected the bottom bracket (Figure 

2-1). In each position, handlebars were moved to maintain their position relative to the 

saddle. 

 

2.2.2.6 Data Processing  

All marker data were manually assessed to ensure accuracy (Cortex, Motion Analysis 

Corporation, Santa Rosa, CA, USA). Marker data were filtered using a second order dual 

low-pass 6 Hz Butterworth filter. The cut-off frequency retained 95% of the signal 27. 

Data from the commercial trial were used to fit a functional knee centre using the 

symmetric centre of rotation estimation method constrained to the midpoint of the 

mediolateral axis of the femur28. Hip joint centres were calculated using the Harrington 

method29. Joint centres and anatomical markers were used to scale a 16 degrees of 

freedom (DOF) lower-body musculoskeletal model (provided by Lai and colleagues: 

simtk.org/projects/model-high-flex) using OpenSim30,31. The lower-body model subtalar 

joint was locked, reducing the original model from 18 to 16 DOF. Using the lower-body 

model, joint angles were calculated for the final minute of each bout using inverse 

kinematics31. The final minute reflected steady state 32.  

 

Kinematic data from the right and left legs were divided into individual revolutions, 

starting and ending when the pedal was in the 12 o’clock position, as tracked by 4 
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retroreflective markers permanently affixed to each pedal. 12 o’clock was defined as the 

instant when the centre of the pedal was at a local maximum. Minimum and maximum 

knee and hip flexion were obtained from every revolution. For each posture, kinematic 

outcomes were calculated as the average across all revolutions.  

 

2.2.3 Statistical Analysis 

To predict saddle height from bicycle geometry (F@A) and anthropometrics, a 10-fold 

cross-validation and a Least Absolute Shrinkage and Selection Operator (LASSO) 

regression was used.  This machine learning approach identified the combination of 

predictors that had the smallest testing error33. We then identified the final model 

coefficients for the identified predictors using least squares regression with all available 

data.   

 

2.2.3.1 Least Absolute Shrinkage and Selection Operator  

LASSO is a form of least squares regression that is done through regularization using a 

tuneable parameter (G), that when set to 0 is equivalent to least squares regression. As G 

is increased unimportant beta coefficients are reduced to zero, therefore simplifying 

model selection. The optimal G was identified using a grid-search that identified the 

smallest out-of-sample mean squared error (MSE) using 10-fold cross-validation. That is, 

in each of the 10 cross-validation steps, a different 1/10th of the data was withheld (not 

used to fit the model). The fitted model was then used to predict the outcomes of the 
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withheld data and the MSE was calculated. This was repeated for every tested G. The G 

with the smallest average MSE (across the 10 cross-validation steps) was the optimal G. 

The final predictors are those that had non-zero beta coefficients at the optimal G. 

Potential predictors were: minimum knee flexion, seat tube angle, lateral malleolar 

height, femoral condyle height, greater trochanter height, inseam, foot length, and body 

height, squared terms for each predictor, and the interactions between minimum knee 

flexion and seat tube angle with each of the anthropometrics.  

 

2.2.3.2 Least Squares Regression 

Final model coefficients were determined by fitting the final predictors using linear least 

squares and a cluster-robust variance matrix to account for non-independence between 

measurements of the same participant. The final model was fit using all data. The model 

was checked for assumptions of linear regression. To assess generalizability, the final 

regression model was re-fit using 10-fold cross-validation where each iteration estimated 

the root mean squared error (RMSE) on withheld data.  

 

2.2.3.3 Secondary Analysis 

To address the secondary questions, we replaced minimum knee flexion with each of the 

respective kinematic variables. Also, sex and its interaction with each predictor were 

added as covariates in each model and a backwards deletion method determined if sex 

added to the model33.  
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LASSO regression was run using Scikit-learn version 0.22 for Python 3.7. All other 

statistical analyses were conducted using statsmodels version 0.11 for Python 3.7.  

 

2.3 Results 

Forty-one healthy adults (17 women, 24 men) completed the study. Analyses include data 

from 40 participants (Table 2-1); data from one man (38 years, 27.9 kg/m2) was excluded 

due to error in their recorded saddle positions. Participants reported Lower Extremity 

Functional Scale scores (mean 79.2, standard deviation (SD) 1.9) consistent with no 

impairment23. The distributions, including the mean, standard deviation, skew, and 

kurtosis, of minimum and maximum knee and hip flexion angles, normalized saddle 

heights (5=2718AH9?	>1??89	ℎ9A:ℎ4	 = 	 >1??89	ℎ9A:ℎ4 A5>917⁄ ) and seat tube angles 

obtained over all bicycling bouts are included in Supplemental 2. 
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Table 2-1. Participant demographics including age, body mass index (BMI), height, body 
mass, foot length, lateral malleolar height, lateral femoral epicondyle height, greater 
trochanter height, and inseam height, as well as cadence and power during the bicycling 
activity. Demographics are presented for Women, Men, and All participants. Each cell is 
formatted as: mean (standard deviation) [range]. 

 Women (n=17) Men (n=23) All (n=40) 
Age (y) 27.7  (6.0)   [23 – 42] 29.2   (8.0)   [19 – 44] 28.6   (7.2)   [19 - 44] 
BMI (kg/m2) 23.7  (3.1)   [20.1 – 31.6] 24.5   (2.2)   [20.3 – 30.5] 24.2   (2.6)   [20.1 - 31.6] 
Height (m) 1.66  (0.07) [1.57 – 1.78] 1.80   (0.08) [1.65 – 1.95] 1.74   (0.10) [1.57 – 1.95] 
Body Mass (kg) 65.5  (9.3)   [54.2 – 92.1] 79.6   (10.0) [ 63.2 – 102.3] 73.6   (11.9) [54.2 – 102.3] 
Foot Length (cm) 24.3  (1.3)   [21.7 – 26.6] 27.2   (1.2)   [24.8 – 28.9] 26.0   (1.9)   [21.7 – 28.9] 
Lateral Malleolar Height 
(cm) 

6.9    (0.7)   [5.5 – 8.0] 7.4     (0.6)   [6.5 – 9.0] 7.2     (0.7)   [5.5 – 9.0] 

Lateral Femoral 
Epicondyle Height (cm) 

47.3  (3.0)   [41.0 – 52.5] 52.1   (2.7)   [47.5 – 57.5] 50.0   (3.7)   [41.0 – 57.5] 

Greater Trochanter Height 
(cm) 

84.8  (5.4)   [75 – 93.5] 92.4   (5.1)   [82.0 – 102.0] 89.2   (6.4)   [75.0 – 102.0] 

Inseam Height (cm) 78.7  (4.9)   [67.8 – 85.8] 84.3   (5.2)   [73.3 – 96.0] 81.9   (5.7)   [67.8 – 96.0] 
Cadence (rpm) 81.2  (6.1)   [70 – 92] 85.5   (6.6)   [72 - 99] 83.7   (6.7)   [70 - 99] 
Power (W) 86.4  (30.6)   [40 – 146] 140.4 (37.7) [75 - 216] 117.4 (43.8) [40 - 216]  

 

The model that best predicted saddle height using minimum knee flexion (R2=0.97, 

RMSE=1.15 cm; Table 2-2) is presented in Equation	2-1. The RMSE from cross 

validation was 1.16 cm; a small reduction in RMSE from cross validation indicates there 

was little to no overfitting. Higher inseam, steeper (higher) seat tube angles and lower 

knee flexion angle resulted in a higher predicted saddle height (Figure 2-2). Saddle height 

was most sensitive to changes in inseam, where a 1 SD change in inseam resulted in a 

5.96 cm change in saddle height. 

Equation	2-1 

":;;<=	>=?@ℎB	 = 	7.41	 + 	0.82(?G'=:H)	− 	0.10(H?G	KG==	L) 	+ 	0.003('=:B	BMN=	L)(?G'=:H)  
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Table 2-2. Results of the regression models predicting saddle height based on minimum 
knee flexion angle (top model), and maximum knee flexion (bottom model). 

 Coefficient Standard Error P-value 

Minimum knee flexion model 

R2 = 0.97; F = 1232 (3, 1390) 
   

Intercept 7.41 2.27 0.001 
Inseam 0.82 0.08 <0.001 
Minimum knee flexion -0.10 0.02 <0.001 
Seat tube angle X inseam 0.003 0.001 0.001 
Maximum knee flexion model 

R2 = 0.97; F = 994.2 (3, 1390) 
   

Intercept 41.63 5.48 <0.001 
Inseam 0.78 0.08 <0.001 
Maximum knee flexion -0.25 0.04 <0.001 
Seat tube angle X inseam 0.0020 0.001 0.058 

 

When creating secondary models to predict saddle height, neither minimum nor 

maximum hip flexion added to the model fit. Therefore, only maximum knee flexion 

results are presented. Equation 2-2 shows the maximum knee flexion model (R2=0.97, 

RMSE=1.15 cm; Table 2-2). The RMSE of predicted saddle height for the cross 

validation (1.19 cm) demonstrates negligible overfitting. Lower specified maximum knee 

flexion, higher inseam, and steeper seat tube angles resulted in higher predicted saddle 

height (Figure 2-2).  

Equation 2-2 

	":;;<=	>=?@ℎB	 = 	41.63	 + 	0.78(?G'=:H)	− 	0.25(H:Q	KG==	L) 	+ 	0.002('=:B	BMN=	L)(?G'=:H) 

 

Sex did not add to the minimum or maximum knee flexion angle models.   
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Figure 2-2. Line graphs with prediction bands demonstrating the change in predicted 
saddle height (cm) resulting from changes in inseam, minimum knee flexion, maximum 
knee flexion, and seat tube angle. Blue fitted lines and shaded areas are for the minimum 
knee flexion model. Orange dashed lines and shaded areas are for the maximum knee 
flexion model. Saddle height was positively related to inseam and seat tube angle, and 
inversely related to minimum and maximum knee flexion. Saddle height is most sensitive 
to changes in inseam. 

 

2.4 Discussion 

This study generated two novel equations to predict saddle height from inseam, the 

desired knee flexion angle (minimum or maximum) and the effective seat tube angle of 

the bicycle. As demonstrated by identical R2 and RMSE, the minimum and maximum 

knee flexion models were not meaningfully different. Pragmatically, the model including 

minimum knee flexion angle, an industry standard for bicycle-fit, is likely the most 

useful. This is the first study to develop a saddle height prediction equation that enables 
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specification of user-defined joint kinematics, while accounting for bicycle geometry. 

Our study has direct practical implications for bicycle-fit among healthy adults.  

 

We produced the first experimentally-derived equation that accounts for rider and bicycle 

geometry to yield a desired saddle position. Compared to the Hamley and Thomas17 

method, which was derived as the discrete saddle position that minimized time to 

exhaustion, the current study produced a smaller magnitude beta coefficient (0.82 vs 

1.09) for inseam. For a given increase in inseam, our equation predicts a smaller increase 

in saddle height, likely due to the inclusion of multiple predictors. The significant 

intercept indicates that the single predictor methods of predicting saddle height 

(trochanteric18, ischial tuberosity19, LeMond4) are likely oversimplified and inadequate 

for people with anthropometrics outside of those collected in the original study. This 

point is highlighted in work by Millour and colleagues who found that when using 

inseam based methods to set saddle height, those with short inseams (children) and those 

with longer than average inseams had knee flexion angles outside of the recommended 

range20. Both bicycle geometry (seat tube angle) and desired kinematics (minimum or 

maximum knee flexion) improve saddle height prescription. The fitted beta coefficients 

more closely align with findings from Ferrer-Roca and colleagues11. Ferrer-Roca and 

colleagues improved upon the single-predictor models by including knee flexion, though 

their equation was derived based on between-subject differences in a single bout of 

bicycling at the participant’s habitual bicycle-fit. The current study used a fully-crossed 

random assignment of 18 bicycling postures to capture within-participant relationships. 
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Furthermore, the current study used machine-learning (LASSO regression) to identify the 

optimal combination of factors for robust estimates of saddle height.  

 

Importantly, the equations derived from this study provide an accurate solution for 

positioning saddle height without the need for measuring knee kinematics. Measuring 

knee kinematics requires one to choose between highly accurate and costly approaches 

that require specialized training (e.g., motion capture camera system, video analysis) 

versus practical, low cost but less accurate approaches (e.g., static goniometry). There is 

currently no consensus on the best method. The most common practical approaches 

extract: (i) knee angle when the pedal is at the bottom dead centre (6 o’clock)12,34, (ii) 

knee angle when the crank is aligned with the seat tube11,20, and (iii) minimum knee angle 

of the revolution35. Methods (i) and (ii) can be executed both statically and dynamically. 

Method (i) is flawed because rotation of all bike components (seat and handlebars) about 

the bottom bracket results in the same geometry of the rider, though shifted relative to the 

bicycle.  This approach is likely to conserve the overall joint kinematic pattern, though 

this pattern would likely occur at a different crank arm angle. Method (ii) accounts for 

gross bicycle geometry (seat tube angle) and measures joint angles when the pedals are 

theoretically furthest from the saddle. However, Method (ii) does not account for 

horizontal saddle adjustment 1, changes in handlebar position, and rider position on the 

saddle5. Method (iii) directly measures the smallest knee flexion angle in the revolution. 

In practical settings, use of Method (iii) is likely limited by access to technology.  
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In the minimum knee flexion equation (Equation	2-1), the positive relationship between 

the interaction of seat tube angle and inseam to saddle height is not intuitive. 

Individually, inseam and seat tube angle are positively related to saddle height (Figure 

2-2). The interaction indicates that their individual effects are multiplicative. Yet, it is 

unclear how steeper seat tube angles predicted higher saddle heights. Insight can be 

provided by a study of 14 competitive triathletes, which found that changing seat tube 

angle did not affect ankle, knee or hip kinematics.35 However, steeper seat tube angles 

resulted in greater anterior pelvic tilt, perhaps by re-orienting the body with respect to 

gravity. It is possible that changes to pelvic tilt in the sagittal plane moved the hip centre 

of rotation relative to the bottom bracket, requiring a higher saddle height for a given 

knee flexion angle and inseam.  

 

The predictive ability of the minimum and maximum knee flexion models are similar. 

Therefore, we recommend the minimum knee flexion model because it is a standard in 

bicycling4. However, the maximum knee flexion equation may be relevant for 

patellofemoral ailments, where minimizing patellar compression is hypothesised to be 

achieved with higher saddle height and a smaller effective seat tube angle (more posterior 

saddle)2,36. However, a recent report indicated that seat tube angle had little/no effect on 

patellofemoral loading9. Higher saddle height does reduce knee flexion34 throughout the 

pedal revolution, and under constant quadriceps force, patellofemoral joint reaction force 

theoretically increases proportional to knee flexion to a point37. Musculoskeletal 

modelling9,30 and electromyography studies15 show peak quadriceps forces and 
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activations occur when the pedal is between 9 and 3 o’clock, the same region in which 

graphs of knee flexion by crank arm angle show the knee is most flexed38. Recent work 

also shows that patellofemoral joint reaction forces are more sensitive to maximum than 

to minimum knee flexion angle10. Therefore, maximum knee flexion may ultimately 

prove to be more important than minimum knee flexion for patellofemoral ailments.  

 

Sex did not modify bicycle saddle height predictive equations. This finding is in contrast 

to the only previous study to compare bicycle fit between men and women, which found 

that using existing inseam based equations based on men (1.77 (0.4) m)11, men achieved 

knee flexion angles within the recommended range, while women had lower than 

recommended knee flexion39.  However, the men (1.79 (0.065) m) were on average taller 

than the women (1.63 (0.049) m)39. In contrast, equations generated from the current 

study included men and women from 1.57 to 1.95 m tall. The women in this sample 

covered the 25th to >95th percentile heights of women over 20 years of age, and the men 

covered from <10th to > 95th percentile of heights (McDowell et al., 2008).  More data is 

needed on shorter women (<1.57 m), however these equations should generalize to a 

wider range of the healthy adult population. 

 

2.4.1 Limitations 

Data were collected while participants bicycled using flat pedals with straps and running 

shoes, which may not be applicable to clipless systems. Participant anthropometrics were 
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obtained while participants were barefoot and shoe thickness may have added to the error 

in estimated saddle height. It is possible that some participants fatigued. The bicycling 

conditions accumulated to ~ 1 hour of cycling. To minimize the potential impact of 

fatigue on the findings, participants were encouraged to rest between bouts of cycling and 

the order of conditions was randomized. To enable maximum utility of these equations, 

future research should identify the optimal knee flexion angle (minimum or maximum) 

for specific ailments, such as patellofemoral pain. 

 

2.5 Conclusions  

The current investigation gives clinicians and bike shops a method to accurately prescribe 

bicycle saddle height with knowledge of the desired minimum (or maximum) knee angle, 

inseam length and bicycle seat tube angle.  Separate equations were determined for 

minimum and maximum knee flexion angles. Due to comparable predictive ability 

between the minimum and maximum knee flexion angle equations, we suggest use of the 

minimum knee flexion angle equation as it is the standard in the bicycling community. 

The derived equations may be generalized to riders of both sexes.  
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2.7 Supplemental  

2.7.1 Supplemental 1 

Participants completed 18 bicycle conditions. The conditions included all possible 

combinations of 3 saddle X (horizontal) positions, 3 saddle Y (vertical) positions, and 2 

crank arm lengths.  

Saddle X Saddle Y Crank Arm Length 

Commercial Commercial Commercial (172.5 mm) 
Random X position 1 within 
+/- 10% of commercial 

Random Y position 1 within 
+/- 5% of commercial 

Random crank arm position  
(170 or 175 mm) 

Random X position 2 within 
+/- 10% of commercial 

Random Y position 2 within 
+/- 5% of commercial 

 

 

The 18 positions ensured that participants completed all possible combinations of each 

level (3 x 3 x 2 = 18). Random positions for X and Y were random independent samples 

and were completed independently for each participant. In particular, each mm increment 

within the defined range (e.g., for the saddle X position: from commercial – 10% to 

commercial + 10%) had equal probabilities of being sampled.  

 

Once the random Saddle X, Saddle Y, and crank arm lengths were sampled, their orders 

within each group (Saddle X, Saddle Y, and crank arm) were randomized. The following 

table is an example of one possible random order of the positions: 

 

Position Saddle X Random Order Saddle X 

1 Commercial Random X position 2 within 
+/- 10% of commercial 

2 Random X position 1 within +/- 10% of 
commercial 

Random X position 1 within 
+/- 10% of commercial 

3 Random X position 2 within +/- 10% of 
commercial 

Commercial 
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After re-ordering, the positions (commercial or random) were equally likely to be in any 

of the positions (1, 2, or 3 for Saddle X and Saddle Y, and 1 or 2 for Crank arm length).  

 

The following table provides the randomly ordered positions as completed in this study. 

All trials that included the re-ordered crank arm position 1 were completed first; then all 

of the re-ordered crank arm position 2 were completed second. Blocking crank arm 

lengths (as well as Saddle X and Saddle Y) was completed for feasibility. 

 

Collection 
number 

Crank arm 
length 

Saddle X Saddle Y 

1 Position 1 Position 1 Position 1 
2 Position 1 Position 1 Position 2 
3 Position 1 Position 1 Position 3 
4 Position 1 Position 2 Position 1 
5 Position 1 Position 2 Position 2 
6 Position 1 Position 2 Position 3 
7 Position 1 Position 3 Position 1 
8 Position 1 Position 3 Position 2 
9 Position 1 Position 3 Position 3 
10 Position 2 Position 1 Position 1 
11 Position 2 Position 1 Position 2 
12 Position 2 Position 1 Position 3 
13 Position 2 Position 2 Position 1 
14 Position 2 Position 2 Position 2 
15 Position 2 Position 2 Position 3 
16 Position 2 Position 3 Position 1 
17 Position 2 Position 3 Position 2 
18 Position 2 Position 3 Position 3 
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2.7.2 Supplemental 2  

Histograms of minimum and maximum knee and hip flexion, as well as normalized 

saddle height (normalized saddle height = saddle height / inseam) and seat tube angle for 

all bicycling postures of all participants. The histograms demonstrate that the breadth of 

recommended bicycling postures were encapsulated by the study randomization protocol. 

Each figure includes the mean, standard deviation (SD), skew, and kurtosis of the 

distribution. Density is the normalized height of each bin such that the total area of all 

bins sums to 1.0.  
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3 Hip and ankle kinematics are the most important predictors of knee joint 

loading during bicycling 

 

This paper was accepted by the Journal of Science and Medicine in Sport and is currently 

in-press (https://doi.org/10.1016/j.jsams.2020.07.001). Included is the final submitted 

version of the manuscript. The Journal of Science and Medicine in Sport allows 

reproduction of accepted manuscripts in theses and on University online repositories 

without permission as long as they are not for commercial purposes 

(https://www.elsevier.com/about/policies/copyright/permissions#).  
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Abstract 

Objectives: To assess the effect of ankle, knee, and hip kinematics on patellofemoral and 

tibiofemoral joint reaction forces (JRF) during bicycling. Secondarily, to assess if sex, 

horizontal saddle position, or crank arm length were related to JRFs, after accounting for 

kinematics. 

Design: Experimental cross-sectional study. 

Methods: Forty healthy adults (mean (SD); 28.6 (7.2) years, 24.2 (2.6) kg/m2, 17 

women) bicycled under 18 bicycling positions. One position used commercial guidelines 

and 17 randomly deviated from commercial. Resultant patellofemoral as well as 

compressive and shear tibiofemoral JRFs were calculated. Linear mixed-effects models 

with a random intercept of leg-nested-in-participant were used.  

Results: Patellofemoral resultant forces were most sensitive to all joint kinematics (i.e., 

sensitivity was defined as the slope of single predictor models); all JRFs were least 

sensitive to minimum knee flexion. Tibiofemoral compression was predicted by 

minimum hip flexion and maximum ankle dorsiflexion (R2=0.90). Tibiofemoral shear 

(R2=0.86) and the resultant patellofemoral JRF (R2=0.90) were predicted by minimum 

hip flexion, maximum ankle dorsiflexion, minimum knee flexion, and the interaction 

between minimum hip flexion and minimum knee flexion. Adding sex as a factor 

improved fit of all models. This sex-effect was driven by differences in cycling intensity, 

reflected by the tangential crank arm force. Horizontal saddle position and crank arm 

length were not related to JRFs. 
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Conclusions: Optimizing joint kinematics should be the primary goal of bicycle-fit. JRFs 

were least sensitive to the current gold standard for assessing bicycle-fit, minimum knee 

flexion. Bicycle-fit is of particular importance for those working at high intensities. 

Keywords: Biomechanical Phenomena; Injuries; Knee; Musculoskeletal Modeling 

Practical Implications 

- The amount of flexion at the hip and dorsiflexion at the ankle were most 

important for predicting forces inside of the knee.  

- Men had higher forces inside of their knee than women; these differences were 

attributed to men (on average) working at a higher intensity.  

- The effect of intensity indicates that bicycle-fit is likely more important for 

individuals cycling at higher intensities.  

- Bicycle crank arm length and horizontal alignment of the bicycle saddle did not 

affect forces inside of the knee. 
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3.1 Introduction 

More than 40% of Canadians report having bicycled in the past 12-months1. Bicycling is 

utilized for weight management2 and rehabilitation of many chronic conditions, including 

knee osteoarthritis because the seat off-loads lower extremity joints3. However, >51% of 

cyclists report overuse injuries4, 1/3 of which occur at the knee5. Anterior knee pain is the 

most common reason cyclists seek medical care4.  

 

Common bicycle-fit aims to prevent and alleviate knee injuries with two primary 

recommendations. The first is to set the saddle position to elicit minimum knee flexion of 

25-40°. Higher knee flexion is hypothesized to minimize iliotibial-band and hamstrings 

injuries, while lower knee flexion is hypothesized to minimize patellofemoral/anterior 

knee pain4,6. The second recommendation is to set the horizontal alignment of the saddle 

using the knee-over-pedal-spindle (KOPS) methodology4,6. KOPS recommends the 

anterior knee be at, or behind, the pedal spindle when the pedal is at 3 o’clock4. 

 

Only a small body of literature has tested the knee flexion and KOPS approaches. A 

mathematical model comparing three bicycle saddle heights (commercial 

recommendation,  +3%,  – 3%), using data from nine men, showed saddle height did not 

affect tibiofemoral and patellofemoral joint reaction forces (JRF)7. Menard and 

colleagues used a musculoskeletal model to investigate the effect of saddle horizontal 

positions (recommended, – 10%, + 10%) on tibiofemoral and patellofemoral joint loading 
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in ten cyclists8. Saddle setback did not affect patellofemoral forces, but a posterior saddle 

position increased tibiofemoral compression. These studies included only males, 

compared discrete positions that do not reflect the continuous relationship between 

bicycle-fit and joint loading, and only assessed a single facet of saddle position, either 

saddle height or set-back. Complicating things further, the saddle height axis (straight 

line from bottom bracket to top of saddle) and set-back axis (horizontal) are not 

perpendicular and are therefore inter-related. Thus, the impact of each of saddle height, 

set-back, and their interaction on knee JRFs remains unclear.  

 

Joint kinematics likely drive the relationship between saddle position and joint loading. 

For example, lower saddle height increases knee flexion9. Greater knee flexion increases 

patellofemoral reaction forces (given an equivalent quadriceps force)10. Making matters 

worse, in the knee flexion range observed during cycling11, higher knee flexion decreases 

the quadriceps moment arm thereby requiring higher muscle forces to produce a given 

extension moment12. Maximum knee flexion may be particularly important to 

patellofemoral JRFs because peak quadriceps forces and activations occur while the pedal 

is near the top of the revolution8, where the knee is most flexed13. Cartilage surface 

pressures are likely more appropriate measures of joint loading than JRFs as joint 

congruence changes with knee flexion and may therefore dissipate a given JRF over a 

larger surface area10.  Nevertheless, no work has investigated which kinematic outcomes 

are most important for predicting knee JRFs. 
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The JRFs may also be influenced by crank arm length, that is, the radius around which 

the bicycle pedals rotate. Research to-date has produced conflicting results, where one 

study showed that longer crank arms decreased knee extension moment and power, while 

increasing hip extension power14; and another study reported that increased crank arm 

length increased knee moments15,16. 

 

The purpose of this study was to assess the effect of ankle, knee, and hip kinematics on 

patellofemoral and tibiofemoral JRFs during bicycling in healthy adults. The secondary 

purpose was to assess if sex, saddle horizontal position, or crank arm length further 

explained variance in JRFs, after accounting for joint kinematics. We hypothesized that 

higher ankle, knee and hip flexion would be positively related to patellofemoral and 

tibiofemoral reaction forces. Since we believed that JRFs would be driven primarily by 

differences in kinematics, we hypothesized that sex, saddle horizontal position, and crank 

arm length would not explain additional variance in any JRFs.  

 

3.2 Methods 

This cross-sectional study employed a fully-crossed design, using random assignment of 

18 bicycle postures. All participants provided written, informed consent. This study was 

approved by the Hamilton Integrated Research Ethics Board.  
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Healthy adults (18-45 years) with a range of cycling experience from recreational urban 

cycling to regional age-group level athletes in mountain biking, cyclocross, and triathlon 

were recruited. Participants were excluded if it was unsafe to exercise based on the Get 

Active Questionnaire (GAQ)17, or if they self-reported injury to the lower extremity 

during the past 3-months, rheumatoid or osteoarthritis, gout, unstable angina, or 

neurologic conditions. Descriptive variables included the Lower Extremity Functional 

Scale18, age, sex, height, and body mass index (BMI).  

 

Participants attended one visit and donned shorts, running shoes, and were either shirtless 

or wore a sports bra. The protocol included three steps: (i) commercial bicycle-fit, (ii) 

incremental cycling protocol to determine the experimental exercise intensity, and (iii) 

experimental bicycling protocol including 18 bouts of three-minute bicycling. 

 

To scale a musculoskeletal model and track kinematics at the ankle, knee, and hip, 

participants were outfitted with 40 markers attached to anatomical locations 

(Supplemental 1). Four markers were located on each bicycle pedal. Marker data were 

collected at 112.5 Hz using 12 high-speed infrared cameras (Motion Analysis 

Corporation, Santa Rosa, CA). Synchronous pedal kinetics were collected at 450 Hz 

using pedals that measure three-dimensional forces and moments (Science To Practice, 

Ljubljana, Slovenia). The pedals can be outfitted with multiple clip interfaces; in the 

current study a flat pedal with Velcro straps was utilized. Marker positions and pedal 
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kinetics were filtered using a second-order low pass dual pass Butterworth filter at a cut-

off frequency of 6 Hz.  

 

Functional knee joint centres were calculated from one bicycling trial using the 

symmetric centre of rotation estimation method19. Hip joint centres were calculated using 

the Harrington method20. A 16 degree-of-freedom lower body musculoskeletal model 

actuated by 86 musculotendon actuators was scaled to the anatomical markers using 

OpenSim21. Joint kinematics were calculated by minimizing the squared error between 

experimental and model markers. Ankle knee and hip moments were calculated using 

inverse dynamics. Kinematic outcomes (minimum and maximum angles) were extracted 

from each revolution in the final minute22; outcomes were calculated as the mean from all 

revolutions. Intra- and inter-rater standard error of measurement for kinematic waveforms 

was <2.6°, and for lower extremity joint moments was <0.08 Nm/kg23. 

 

Static optimization that accounts for muscle coordination while minimizing the sum of 

muscle activations squared was used to determine the muscle forces needed to produce 

joint moments from inverse dynamics24.  The muscle coordination schema was based on 

weighting constants that minimize the error compared to in vivo JRFs from an 

instrumented total knee replacement24. Supplemental 2 provides the static optimization 

protocol and a comparison to in vivo JRFs, during bicycling, from an instrumented knee 

replacement25.  
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The primary outcomes, patellofemoral and tibiofemoral JRFs, were calculated using the 

Joint Reaction tool in OpenSim24. This tool calculates the resultant force not accounted 

for in the model, thus incorporating bone-on-bone and ligamentous forces. Because the 

model defines transverse and coronal plane knee kinematics as a function of knee flexion, 

only sagittal plane forces were included. The sagittal plane resultant of the patellofemoral 

JRF was defined in the patellar coordinate system (Supplemental 1). Tibiofemoral JRFs 

were defined in the tibial coordinate system24 (Supplemental 1) and include a 

compressive and anterior/posterior shear component. The tibiofemoral compressive 

component is primarily comprised of “bone-on-bone” forces, where compression of the 

femur into the tibia is negative. Tibiofemoral shear forces primarily account for forces by 

ligamentous structures and patellofemoral reaction forces24; posterior forces on the femur 

were positive.   

 

The reaction forces were extracted using all revolutions from the last minute of each 

bout22. All data were divided into individual pedal revolutions starting and ending with 

the pedal at 12 o’clock and were normalized to 101 points. A median ensemble curve was 

generated for each condition and reaction force. The peak of each ensemble curve was the 

primary outcome.  
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The commercial bicycle-fit included setting the saddle position to 109% of inseam6,26 

with an effective seat tube angle of 73.7° (mean of 2018 Trek road / city bicycles), and a 

crank arm length of 172.5mm on a commercial fit-bike (Fit-bike Pro 1; Purely Custom, 

USA). Handlebars were positioned based on comfort, after initially being set to level with 

the saddle, and at a horizontal distance that achieved 70-90° between the torso and upper 

arms.  

 

Bicycling intensity of the experimental bouts, in cadence (revolutions per minute, RPM) 

and in power (watts, W), was determined during an incremental bicycling protocol based 

on the YMCA submaximal VO2 test27. Participants initially cycled at a resistance of 

~four newton-metres at a self-selected cadence (30-45W, dependent on cadence). Every 

three minutes, resistance was increased by one gear (4th order exponential). Participant 

heart rate (HR) was recorded every minute (Polar T31, Kempele, Finland). If HR differed 

by more than five beats between consecutive measurements, the stage was extended by 

one minute until steady-state was achieved. The protocol continued until HR was within 

70-75% of age-predicted maximum (208-0.7*Age)28. A HR range of 70-75% of 

maximum was chosen to elicit a moderate intensity that improved function and symptoms 

in a sample with knee osteoarthritis3,29. The average power output and cadence of the 

final stage were used for the experimental bicycling bouts.  
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Each participant completed 18 three-minute bicycling bouts, each at the cadence and 

power derived from the incremental protocol, in random order. Bicycle positions included 

all combinations of three vertical saddle positions (Y), three horizontal saddle positions 

(X), and two crank arm lengths (3 × 3 × 2 = 18). The same bicycle saddle (Selle Royal, 

Seta, 143 mm width) was used for all positions. The three saddle X and three saddle Y 

positions each included one position that was based on a commercial bicycle-fit; and the 

other two were random independent samples within +/-10% (X) and +/-5% (Y) of 

commercial. Y deviations only ranged 5% as larger deviations were not anatomically 

possible. The commercial crank arm length was 172.5 mm, the second crank arm length 

was randomly chosen to be either 2.5 mm longer (175 mm) or shorter (170 mm) than 

commercial. In each position, handlebars were moved to maintain the same position 

relative to the saddle. Randomization of positioning was performed independently for 

each participant (Supplemental 3). Randomized positions were used to achieve sampling 

of the continuous relationship between factors.  

 

To answer the primary question, mixed-effects models were used. First, to identify the 

independent effect of kinematic variables on joint loading, six models that included only 

one predictor (maximum and minimums of knee flexion/extension, hip flexion/extension, 

ankle dorsi/plantar flexion) were generated for each of the three kinetic outcomes 

(patellofemoral resultant, tibiofemoral compressive and shear forces). The beta 

coefficients (slope) between each kinematic and kinetic measurement represent the 

sensitivity of the kinetic measurement to independent changes in the kinematic 
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measurement expressed in N/°. Second, the most parsimonious models that predicted the 

kinetic outcomes were generated using forward selection where a predictor was deemed 

to improve a model if it improved model fit measured using the likelihood ratio test 

(p<0.05) and had a significant beta coefficient (p<0.05). If multiple predictors improved 

the model, the one with the highest model log likelihood was selected. 

 

To answer the secondary research questions, each of the three secondary-predictors of 

interest (sex, normalized saddle horizontal position, and crank arm length) were 

independently added to the most parsimonious models. Interactions between secondary-

predictors and base-predictors were tested using forward selection. Model comparisons 

were conducted using the likelihood ratio test. 

 

All models included data from both legs. To satisfy assumptions, all models used a 

random intercept with random effects of legs-nested-within-participants. A rounded 

assessment of goodness-of-fit for mixed models was provided using the marginal (fixed 

factors) as well as conditional (fixed and random factors) coefficients of determination 

(R2)30. Analyses were performed using the StatsModels package (Python 3.7).  

 

3.3 Results 

Forty-one adults (age: 28.6 (7.2) years, BMI: 24.2 (2.6) kg/m2, height: 1.74 (0.09) m, 17 

women) completed the study. Analyses were conducted on 40 participants; data from one 
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participant (male, 38 years, 27.9 kg/m2) was excluded due to error in recording saddle 

positions. Women were on average shorter than men (1.66 (0.07) versus 1.80 (0.08) m, 

p<0.001), with no difference in BMI (23.7 (3.1) versus 24.5 (2.2) kg/m2, p=0.345). 

Participants had Lower Extremity Functional Scale scores reflecting excellent function 

(mean 79.2, SD 1.9)18. Participants bicycled with a breadth of power outputs (mean 117.4 

W, SD 43.8), and narrower range of cadences (mean 83.7 RPM, SD 6.7). Men cycled at 

systematically higher cadences (85.5 (6.6) versus 81.2 (6.1) RPM, p=0.040) and powers 

(140 .4 (37.7) versus 86.4 (30.6), p<0.001). Supplemental 4 shows the distributions of 

each kinematic outcome over bicycling bouts. 

 

The sensitivity of the three JRF outcomes to each kinematic measurement, represented by 

the single predictor model beta coefficients, is presented in Figure 3-1. The resultant 

patellofemoral JRF was most sensitive to joint kinematics, while the tibiofemoral shear 

force was least sensitive. All reaction forces were least sensitive to changes in minimum 

knee flexion. 

 

The best kinematic models for predicting each of the JRFs are presented in Table 3-1 and 

visualized in Figure 3-2. For the compressive component of the tibiofemoral reaction 

force, only minimum hip and maximum ankle dorsiflexion were included (marginal R2: 

0.14, conditional R2: 0.90). For the shear component of the tibiofemoral reaction force 

(marginal R2: 0.11, conditional R2: 0.86), and the resultant patellofemoral JRF (marginal 
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R2: 0.15, conditional R2: 0.90), minimum hip flexion, maximum ankle dorsiflexion, 

minimum knee flexion, and the interaction of minimum knee flexion and minimum hip 

flexion were included. 
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Figure 3-1. Visual representation of the independent relationship between each kinematic 
outcome and the three joint reaction force outcomes. Each square includes the beta 
coefficient from a single predictor mixed effects model on top and the significance of that 
beta coefficient on the bottom. The beta coefficients can be interpreted as the change in 
newtons of the coinciding joint reaction force for a 1° increase in the kinematic outcome 
of interest. The cells are coloured according to the absolute magnitude of the beta 
coefficient. More yellow (brighter) indicates higher sensitivity of joint reaction forces to 
the kinematic outcome, more purple (darker) indicates lower sensitivity. 
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For the secondary analyses, crank arm length and saddle horizontal alignment did not add 

to any model (Supplemental 5). Sex contributed to every model (Table 3-1, Figure 3-2). 

The sex-effect was likely driven by the differences in power and cadence between the 

sexes.  

 

Figure 3-2. Visual representation of the base models (left column) as well as the sex 
interactions (right column) for predicting joint reaction forces. All sex models (right 
column) follow their equivalent base model (left column) legend. In the sex interaction 
plots (right column) solid lines represent women and dashed lines represent men. 



 93 

Because we hypothesized the sex effects were driven by intensity differences, base 

models were re-run including the crank arm tangential force (“tangential force” =  

8CD15	(D)

7./1:71(514C0<6,C:-	815	-17C:/	)×	)	F	75.:G	.5H	01:>69	(H)
 ) as a covariate (mean difference 

31.3 N, p<0.001). For the tibiofemoral compressive force, the tangential force, and the 

interaction of the tangential force with each of minimum hip and maximum ankle 

dorsiflexion were included (marginal R2: 0.45, conditional R2: 0.90; Supplemental 6). For 

the tibiofemoral shear force (marginal R2: 0.33, conditional R2: 0.87), and the 

patellofemoral JRF (marginal R2: 0.45, conditional R2: 0.90), tangential force, and the 

interaction of tangential force with minimum knee flexion as well as maximum ankle 

dorsiflexion were included (Supplemental 6). Interactions resulted in a multiplicative 

effect.   
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Table 3-1. Results from the base models and the base plus sex models used to predict 
resultant patellofemoral, as well as compressive and shear tibiofemoral forces. Bolded p-
values indicate significance at p<0.05. 

Model Predictor Beta 
Coefficient 

Standard 
error 

p-
value 

Base Models 
Patellofemoral 
Resultant 
Marginal R2: 0.15 
Conditional R2: 0.90 

Intercept 1307.41 158.22 <0.001 
Minimum hip flexion 2.31 3.56 0.516 
Maximum ankle dorsiflexion 18.21 2.05 <0.001 
Minimum knee flexion -11.94 3.98 0.003 
Minimum hip flexion X minimum 
knee flexion 

0.41 0.10 <0.001 

Tibiofemoral 
Compression 
Marginal R2: 0.14 
Conditional R2: 0.90 

Intercept -767.20 66.40 <0.001 
Minimum hip flexion -10.39 0.98 <0.001 
Maximum ankle dorsiflexion -11.14 1.39 <0.001 

Tibiofemoral Shear 
Marginal R2: 0.11 
Conditional R2: 0.86 

Intercept 391.73 45.28 <0.001 
Minimum hip flexion -1.59 1.07 0.139 
Maximum ankle dorsiflexion 3.60 0.62 <0.001 
Minimum knee flexion -5.07 1.20 <0.001 
Minimum knee flexion X 
minimum hip flexion 

0.19 0.03 <0.001 

Base Models + Sex 
Patellofemoral 
Resultant 
Marginal R2: 0.46 
Conditional R2: 0.87 

Intercept 1082.65 163.74 <0.001 
Minimum hip flexion 5.89 3.53 0.096 
Maximum ankle dorsiflexion 11.84 2.74 <0.001 
Minimum knee flexion -15.45 3.97 <0.001 
Minimum knee flexion X 
minimum hip dorsiflexion 

0.29 0.10 0.005 

Sex 38.43 162.80 0.813 
Sex X minimum knee flexion 16.78 2.64 <0.001 
Sex X maximum ankle 
dorsiflexion 

13.05 3.29 0.001 

Tibiofemoral 
Compression 
Marginal R2: 0.47 
Conditional R2: 0.90 

Intercept -629.88 75.56 <0.001 
Minimum hip flexion -7.19 1.24 <0.001 
Maximum ankle dorsiflexion -7.04 1.88 <0.001 
Sex -138.45 107.71 0.199 
Sex X minimum hip flexion -7.92 1.95 <0.001 
Sex X maximum ankle 
dorsiflexion 

-7.74 2.72 0.004 

Tibiofemoral Shear 
Marginal R2: 0.43 
Conditional R2: 0.87 

Intercept 322.22 45.42 <0.001 
Minimum hip flexion -0.80 1.08 0.456 
Maximum ankle dorsiflexion 1.86 0.83 0.025 
Minimum knee flexion -5.77 1.20 <0.001 
Minimum knee flexion X 
minimum hip flexion 

0.17 0.03 <0.001 

Sex 49.06 41.51 0.237 
Sex X minimum knee flexion 3.37 0.80 <0.001 
Sex X maximum ankle 
dorsiflexion 

3.24 1.19 0.007 
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3.4 Discussion 

This study is the first to provide empirical data showing that appropriate bicycle-fit 

should aim to optimize joint kinematics at the hip, ankle and knee. Higher flexion at any 

of the lower extremity joints resulted in higher JRFs for both the tibiofemoral and, to a 

larger degree, patellofemoral joint. After accounting for kinematics, saddle horizontal 

alignment and crank arm length were not related to JRFs. Further, sex improved 

prediction of all JRFs, though this effect was explained by sex-differences in bicycling 

intensity, reflected by crank arm tangential forces. These findings are particularly 

important for individuals cycling at higher intensities. 

 

Knee JRFs were most sensitive to hip flexion and to ankle dorsiflexion, suggesting these 

are important targets during bicycle-fit. Ankle dorsiflexion may be the most sensitive 

because it reflects how flexed the lower extremities were as a whole. Bi-articular 

gastrocnemius muscles may also play an important role. Gastrocnemius are activated 

during the downstroke31,32. However, the gastrocnemius flexes the knee, and there is a net 

knee extension moment during this same phase31; therefore, increased gastrocnemius 

activation requires a concomitant increase in knee extensors to maintain the same net 

knee extension moment.  

 

Hip, knee and ankle kinematics have more important influences on JRFs than saddle 

position or crank arm length. After accounting for joint kinematics, saddle horizontal 
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position and crank arm length did not add to the models. In contrast, Menard and 

colleagues found that moving the saddle posteriorly increased tibiofemoral compression8. 

The contradictory findings are likely attributed to inclusion of joint kinematics. Knee and 

hip flexion increase with increasing crank arm length14, potentially explaining why 

inclusion of kinematics makes crank arm length unimportant.  

 

Sex was a predictor in all models. This relationship reflected differences in crank arm 

tangential force between the sexes. Similarly, adults with force-measuring joint 

replacements that produced higher power outputs or lower cadences (which both increase 

tangential crank arm forces) demonstrated larger tibiofemoral JRFs25. Not only do JRFs 

increase with increasing tangential forces, but they have a multiplicative effect, whereby 

a given change in kinematics has a more pronounced effect on JRFs when the crank arm 

tangential force is higher. The magnitude of change highlights the importance of bicycle-

fit for individuals bicycling at high intensities.  

 

Higher flexion at any of the hip, knee or ankle increased both patellofemoral and 

tibiofemoral JRFs, a finding that supports the recommendation of a higher saddle height 

to reduce joint loading4. However, a saddle height that is too high may elicit iliotibial 

band impingement4 around 30° of knee flexion33,34 or cause the pelvis to rock from side-

to-side 4. Therefore, when aiming to reduce patellofemoral and/or tibiofemoral loading 

(e.g., patellofemoral and tibiofemoral osteoarthritis, anterior knee pain) the highest 
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feasible saddle height is recommended. A good upper limit would be a minimum knee 

flexion at 30°. Another metric commonly monitored is excessive lateral pelvic tilt (i.e., 

pelvis rocking side-to-side)4.  

 

This study is not without limitations. JRFs were calculated based on assumptions of 

physiologic parameters. However, comparisons to in vivo measurements during bicycling 

show strong agreement (Supplemental 2), particularly for peak forces. Participants were 

healthy adults between 18-44 years old who completed all bicycling bouts using flat 

pedals with a Velcro strap and running shoes and therefore findings may not generalize to 

other samples, or to clipless pedals and rigid soled cycling shoes. Finally, one saddle was 

used. It is possible that different individuals require different saddle shapes or sizes. 

Future studies should explore clipless pedals and compare different saddles.  

 

3.5 Conclusion 

Higher lower extremity joint flexion increased tibiofemoral and, to a greater degree, 

patellofemoral JRFs. These findings highlight that kinematics of all lower-body joints 

should be considered during bicycle-fit. After accounting for joint kinematics, saddle 

horizontal alignment and crank arm length were not related to joint loading, showing that 

bicycle-fit should continue to focus on joint kinematics. Changes in JRFs were more 

sensitive to kinematics in men compared to women. This sex-effect reflects differences in 
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bicycling intensity, indicating that changes in bicycle-fit are more important for those 

producing higher power output.  

 

Practical Implications 

- The amount of flexion at the hip and dorsiflexion at the ankle were most 

important for predicting forces inside of the knee.  

- Men had higher forces inside of their knee than women; these differences were 

attributed to men on average working at a higher intensity.  

- The effect of intensity indicates that bicycle-fit is more important for individuals 

cycling at higher intensities.  

- Bicycle crank arm length and horizontal alignment of the bicycle saddle did not 

affect forces inside of the knee.   
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3.7 Supplemental 

3.7.1 Supplemental 1.  

The following table describes the location of retroreflective markers used to scale a 

participant-specific musculoskeletal model, and to determine joint kinematics. Markers 

listed for the thigh, shank, and foot were included on both legs. A total of 40 markers 

were used. 

Segment Markers 
Pelvis Right anterior superior iliac spine 

Left anterior superior iliac spine 
Right posterior superior iliac spine 
Left posterior superior iliac spine 

Thigh Greater trochanter 
Lateral femoral condyle 
Medial femoral condyle 
Rigid cluster of 4 markers attached to the lateral thigh 

Shank Tibial tuberosity 
Lateral malleolus 
Medial malleolus 
Rigid cluster of 4 markers attached to the lateral shank 

Foot Calcaneus 
1st metatarsal head 
5th metatarsal head 
Lateral midfoot 

 

The following shows the patellar (A) and tibial (B) coordinate systems of the 

musculoskeletal model. Axes lines originate at the origin and point in the positive 

direction; X (red) is anterior/posterior, Y (green) is inferior/superior, Z (blue) is 

medial/lateral. Patellofemoral forces were expressed in the patellar coordinate system; the 

resultant patellofemoral force was in the plane created by X and Y. Tibiofemoral forces 

were expressed in the tibial coordinate system; Y is compression and X is shear. 
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The joints of the above musculoskeletal model have the following degrees of freedom.  

Joint Rotational 
Degrees of 
Freedom 

Translational 
Degrees of 
Freedom 

Total 
Degrees of 
Freedom 

Description 

Pelvis 3 3 6 The pelvis was free to translate and rotate 
about all axes. 

Hip 3 0 3 The hip had a fixed joint centre but was 
free to rotate about all 3 axes. 

Knee 1 0 1 The knee consisted of a single degree of 
freedom that was a function of knee 
flexion. Rotations and translations occurred 
about the other axes but were prescribed 
based on knee flexion. 

Ankle 1 0 1 The ankle only allowed for ankle 
plantar/dorsiflexion. 

 

  

X

Y

ZX

Y

Z

A B
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3.7.2 Supplemental 2. 

Static optimization minimized the function:  

7A5	R3,1,
)

I

,J'

				(1) 

where N is the number of muscles, ai is the activation level of muscle i and ci is a 

weighting constant for muscle i. Previously reported weighting constants determined to 

minimize the error between in vivo joint reaction forces, from an instrumented total knee 

replacement, and model predicted joint reaction forces were used3. Weighting constants 

of 1 are equivalent to regular static optimization.  Weighting constants less than one will 

promote activation of the muscle, and higher than one will penalize activation of that 

muscle. All muscles had a weighting constant of 1, except for the hamstrings 

(semimembranosus, semitendinosus, biceps femoris long head, and biceps femoris short 

head) and gastrocnemius (medial and lateral) muscles which had weightings of three and 

seven, respectively3. 

The compressive component of the tibiofemoral joint reaction force from this 

investigation was compared to the compressive component of the tibiofemoral joint 

reaction force measured using an instrument knee replacement1. All force curves are 

ensembles that were interpolated to 101 points (0-100%). The participant with the 

instrumented joint replacement was bicycling at a power output of 120W (black line), 

whereas two representative participants from the present study were bicycling at 117W 

(blue) and 118W (orange), under their commercial bicycle setup conditions. The vertical 
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compressive force is negative because forces are expressed in the tibial coordinate system 

(superior is positive). The x-axis shows the percent of the revolution, with 0% when the 

crank arm is at the top-dead-centre position (12 o’clock) and 50% is the bottom-dead-

centre (6 o’clock). Within the first 20% of the revolution, the magnitude and timing of the 

first peak aligns. A second peak in the instrumented knee occurs at about 50% of the 

revolution; this peak is also apparent in the modelled reaction forces, though of a lower 

magnitude. It is important to note that the instrumented knee appears to reduce 

tibiofemoral joint reaction forces during the upswing phase of the revolution (65-90%). 

These differences may be attributed to differences in the cycling posture, differences 

between the samples, or those caused by the knee replacement itself. 
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3.7.3 Supplemental 3.  

The experimental protocol included 18 bicycle conditions. These conditions comprised of 

all combinations of 3 saddle horizontal (X) positions, 3 saddle vertical (Y) positions, and 

2 crank arm lengths.  

Saddle Horizontal Position (X) Saddle Vertical Position (Y) Crank Arm Length 
Commercial Commercial Commercial (172.5 mm) 
Random X position 1 within +/- 10% 
of commercial 

Random Y position 1 within +/- 
5% of commercial 

Random crank arm position  
(170 or 175 mm) 

Random X position 2 within +/- 10% 
of commercial 

Random Y position 2 within +/- 
5% of commercial 

 

 

The 18 positions ensured that participants completed all possible combinations of each 

level (3 x 3 x 2 = 18). Randomly allocated positions for X and Y were independent 

samples where each mm increment within the defined range (e.g., for the saddle 

horizontal position: from commercial – 10% to commercial + 10%) had an equal 

probability of being sampled. This approach resulted in every participant having one 

position that was commercial (cycling position 1 below). The order in which cycling 

positions were tested was randomized for each participant. 

Cycling Position Saddle horizontal Saddle vertical Crank arm length 
1 Commercial Commercial Commercial 
2 Commercial Commercial Random position 1 
3 Commercial Random position 1 Commercial 
4 Commercial Random position 1 Random position 1 
5 Commercial Random position 2 Commercial 
6 Commercial Random position 2 Random position 1 
7 Random position 1 Commercial Commercial 
8 Random position 1 Commercial Random position 1 
9 Random position 1 Random position 1 Commercial 
10 Random position 1 Random position 1 Random position 1 
11 Random position 1 Random position 2 Commercial 
12 Random position 1 Random position 2 Random position 1 
13 Random position 2 Commercial Commercial 
14 Random position 2 Commercial Random position 1 
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15 Random position 2 Random position 1 Commercial 
16 Random position 2 Random position 1 Random position 1 
17 Random position 2 Random position 2 Commercial 
18 Random position 2 Random position 2 Random position 1 
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3.7.4 Supplemental 4. 

Histograms of ankle, knee, and hip kinematics from all participants and all bicycling 

postures. Each panel includes the mean and standard deviation of the distribution. 

Density is the normalized height of each bin such that the total area of all bins sums to 

1.0. 
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3.7.5 Supplemental 5.  

Results from the base + crank arm length model and base + saddle horizontal position 

model. Crank arm length and horizontal saddle position were not significant predictors in 

any models. Bolding indicates significance at p<0.05. 

Model Predictor Beta 
Coefficient 

Standard 
error 

p-
value 

Base Models + Crank Arm Length 
Patellofemoral 
Resultant 
Marginal R2: 0.15 
Conditional R2: 0.90 

Intercept 1892.37 808.05 0.019 
Minimum hip flexion 2.37 3.55 0.505 
Maximum ankle dorsiflexion 18.08 2.06 <0.001 
Minimum knee flexion -12.05 3.98 0.002 
Minimum knee flexion X 
minimum hip flexion 

0.41 0.10 <0.001 

Crank arm length -33.78 45.76 0.460 
Tibiofemoral 
Compression 
Marginal R2: 0.14 
Conditional R2: 0.90 

Intercept -1154.99 542.76 0.033 
Minimum hip flexion -10.42 0.98 <0.001 
Maximum ankle dorsiflexion -11.06 1.39 <0.001 
Crank arm length 22.51 31.26 0.472 

Tibiofemoral Shear 
Marginal R2: 0.11 
Conditional R2: 0.86 

Intercept 89.66 243.42 0.713 
Minimum hip flexion -1.62 1.07 0.132 
Maximum ankle dorsiflexion 3.66 0.62 <0.001 
Minimum knee flexion -5.02 1.20 <0.001 
Minimum knee flexion X 
minimum hip flexion 

0.19 0.03 <0.001 

Crank arm length 17.44 13.81 0.207 
Base Models + Saddle Horizontal Position 

Patellofemoral 
Resultant 
Marginal R2: 0.15 
Conditional R2: 0.90 

Intercept 1226.04 220.03 <0.001 
Minimum hip flexion 2.23 3.56 0.531 
Maximum ankle dorsiflexion 18.23 2.05 <0.001 
Minimum knee flexion -11.74 4.00 0.003 
Minimum knee flexion X 
minimum hip flexion 

0.41 0.10 <0.001 

Horizontal saddle position 34.10 64.11 0.595 
Tibiofemoral 
Compression 
Marginal R2: 0.15 
Conditional R2: 0.90 

Intercept -752.01 116.47 <0.001 
Minimum hip flexion -10.38 0.98 <0.001 
Maximum ankle dorsiflexion -11.13 1.39 <0.001 
Horizontal saddle position -6.81 42.92 0.874 

Tibiofemoral Shear 
Marginal R2: 0.11 
Conditional R2: 0.86 

Intercept 338.24 64.66 <0.001 
Minimum hip flexion -1.64 1.07 0.126 
Maximum ankle dorsiflexion 3.61 0.62 <0.001 
Minimum knee flexion -4.94 1.21 <0.001 
Minimum knee flexion X 
minimum hip flexion 

0.19 0.03 <0.001 

Horizontal saddle position 22.42 19.35 0.247 
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3.7.6 Supplemental 6.  

This supplemental document includes a table and a figure that present the findings of the 

relationship between crank arm tangential force, joint kinematics, and knee joint reaction 

forces. The following table summarizes the results of the base + crank arm tangential 

force models used to predict resultant patellofemoral, as well as compressive and shear 

tibiofemoral forces. Bolding in the table indicates significance at p<0.05.  

Model Predictor Beta 
Coefficient 

Standard 
error 

p-
value 

Base Models + Crank Arm Tangential Force 
Patellofemoral 
Resultant 

Marginal R2: 0.45 

Conditional R2: 0.90 

Intercept 1173.27 263.08 <0.001 
Minimum hip flexion 5.15 3.50 0.140 
Maximum ankle dorsiflexion -5.97 5.67 0.293 
Minimum knee flexion -29.24 4.83 <0.001 
Minimum hip flexion X minimum 
knee flexion 

0.28 0.10 0.006 

Tangential force -0.34 3.00 0.909 
Tangential force X minimum 
knee flexion 

0.31 0.05 <0.001 

Tangential force X maximum 
ankle dorsiflexion 

0.33 0.07 <0.001 

Tibiofemoral 
Compression 

Marginal R2: 0.45 

Conditional R2: 0.90 

Intercept -690.87 177.46 <0.001 
Minimum hip flexion 2.31 3.22 0.474 
Maximum ankle dorsiflexion 1.97 3.90 0.613 
Tangential force -0.20 2.35 0.931 
Tangential force X minimum hip 
flexion 

-0.18 0.04 <0.001 

Tangential force X maximum 
ankle flexion 

-0.18 0.05 <0.001 

Tibiofemoral Shear 

Marginal R2: 0.33 

Conditional R2: 0.87 

Intercept 376.56 73.81 <0.001 
Minimum hip flexion -0.97 1.07 0.362 
Maximum ankle dorsiflexion -3.72 1.72 0.031 
Minimum knee flexion -8.26 1.47 <0.001 
Minimum knee flexion X 
minimum hip flexion 

0.16 0.03 <0.001 

Tangential force  -0.25 0.83 0.766 
Tangential force X maximum 
ankle dorsiflexion 

0.10 0.02 <0.001 

Tangential force X minimum 
knee flexion 

0.06 0.02 <0.001 
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The following figure visually demonstrates the interactions between the crank arm 

tangential force and minimum knee flexion on the resultant patellofemoral reaction force, 

the crank arm tangential force and maximum ankle dorsiflexion on tibiofemoral 

compression, and the crank arm tangential force and minimum knee flexion on 

tibiofemoral shear. Each line represents a different tangential force. All panels follow the 

same legend.  
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4 Automatic Cartilage and Bone Segmentation using Multi-Stage Convolutional 

Neural Networks: Data from the Osteoarthritis Initiative 

 

This paper was submitted to the journal Medical Image Analysis on October 8th 2020 and 

transferred to the journal Computerized Medical Imaging and Graphics on October 14th 

2020. 
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Abstract 

Presented is a method of automatically segmenting bone and cartilage from magnetic 

resonance imaging (MRI) images using a multi-stage convolutional neural network 

framework. Stage 1 coarsely segments images outputting probability maps of each voxel 

belonging to eight classes of interest: 4 cartilage, 3 bone, 1 background. Stage 2 segments 

overlapping sub-volumes that include the probability maps outputted from Stage 1, 

concatenated to raw image data. Using 6-fold cross-validation, this framework was tested 

on two datasets: 176 images from 88 individuals in the Osteoarthritis Initiative (OAI) and 

60 images from 15 healthy young men. The framework produces the best reported 

segmentation accuracies (Dice similarity coefficient; DSC) on the OAI dataset for the 

femoral (0.907) and medial tibial cartilage (0.876). It also produced the second-best 

accuracies for lateral tibial cartilage (0.913), and patellar cartilage accuracy of 0.840. The 

healthy cartilage accuracies are the best reported to-date (femoral = 0.938, medial tibial = 

0.911, lateral tibial = 0.930, patellar = 0.956). Average surface distances are less than in-

plane resolution. Segmentations take 91 +/- 11 s. The framework learns how to 

automatically segment cartilage and bone from MR images acquired with two different 

sequences, producing efficient, accurate quantifications at varying disease severities. 
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4.1 Introduction 

Knee osteoarthritis (OA) is a chronic joint disease estimated to affect more than 7% of 

Americans (Deshpande et al., 2016). While OA damages all joint tissues, cartilage 

degeneration is the hallmark (Creamer and Hochberg, 1997; Kraus et al., 2015). As such, 

magnetic resonance imaging (MRI) is recommended for assessing structural OA by 

quantifying cartilage outcomes (Conaghan et al., 2011; Hunter et al., 2015; Peterfy et al., 

2006). Medial joint cartilage is of particular interest due to a higher prevalence of medial 

knee osteoarthritis (Metcalfe et al., 2012). Cartilage localization must be highly accurate 

to enable specific and sensitive measurements necessary for identifying disease 

modifying OA drugs in clinical trials and for clinical usage. 

 

A major hurdle to quantifying cartilage outcomes from MRI scans is the resources 

necessary for tissue segmentation. Manual segmentation is the gold standard for 

segmenting cartilage from MRI images, however it takes hours to perform, requires 

highly specialized knowledge, and suffers from inter- and intra- rater errors (Duryea et 

al., 2007; Pedoia et al., 2016; Shim et al., 2009). As a result, manual segmentation is not 

a realistic strategy to manage large volumes of data necessary to understand knee OA 

progression or to evaluate changes in joint structure in clinical trials. For example, the 

Osteoarthritis Initiative (OAI), a private-public collaboration by the National Institutes of 

Health (NIH), acquired serial MRI scans of thousands to study disease progression 
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(Peterfy et al., 2008). Not surprisingly, quantitative cartilage outcomes are unavailable for 

most OAI scans.  

 

Automated extraction of cartilage outcomes is necessary to enable efficient analysis. 

Conventional methods include statistical shape modelling (SSM), active appearance 

models (AAM), atlas-based algorithms, and traditional machine learning (support vector 

machines, k-nearest neighbours). These methodologies require 10-minutes to 48 hours 

(Ahn et al., 2016; Dodin et al., 2010; Fripp et al., 2010; Shan et al., 2014) and currently 

fall short of human accuracies (Ahn et al., 2016; Dam et al., 2015; Dodin et al., 2010; 

Fripp et al., 2010; Prasoon et al., 2013; Shan et al., 2014; Tamez-Pena et al., 2012; Wang 

et al., n.d.; Yin Yin et al., 2010). Convolutional neural networks (CNN) have become the 

state-of-the-art method for many tasks in computer vision (Shen et al., 2017), and have 

shown promise in cartilage segmentation (Ambellan et al., 2019; Liu, 2018; Norman et 

al., 2018; Zhou et al., 2018). 

 

Major barriers in segmenting 3D medical data using deep learning are the limited 

memory available on graphics processing units (GPUs) and small samples. The standard 

3D CNN trained on a 12GB GPU typically handle images with dimensions of 

128x128x64 (Milletari et al., 2016) with a batchsize of only one. The batchsize is the 

number of examples passed through the network before updating the weights (Hastie et 

al., 2009). Images from the OAI commonly used for cartilage quantification 
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(384x384x160) would thus require downsampling to less than 5% of their original size. 

Deep learning methods have drastically reduced segmentation times, with the fastest 

algorithms taking <15 s but still fall short of traditional automated methods in terms of 

accuracy (Liu, 2018; Norman et al., 2018). Meanwhile, Ambellan and colleagues showed 

that a combination of SSMs with deep learning had promise, matching or exceeding 

traditional methodologies in accuracy, with a segmentation time of 10 min per knee 

(Ambellan et al., 2019). Nevertheless, heterogeneity introduced by osteophytes required 

manual definitions in this SSM, making transfer to new tissues more challenging. We 

require methods that better balance speed and accuracy to enable wide-spread usage of 

cartilage analyses.  

 

Multiple methods have been proposed to overcome the memory constraints. Original 

methods used sub-volume or patch-based methods (Yu et al., 2017). More recently, 

multi-stage methods have been proposed, using stage one to localize and stage two to 

produce a higher resolution segmentation, or to vote using machine learning methods 

other than deep learning. For example, the SSM plus deep learning method by Ambellan 

and colleagues leverages stage one to localize the bone surface using a CNN, refines the 

CNN segmentation using an SSM and then does sub-volume segmentation using a 

smaller 3D-CNN over the bone surface (Ambellan et al., 2019). The authors trained a 

different network for each cartilage tissue. In applications to segment abdominal tissues, 

Zhu and colleagues (2019) use a patch-based method.  First, to identify a bounding box of 

the tissue of interest, the whole image was segmented in large patches (643 pixels), then 
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smaller patches re-segmented this smaller region. The authors indicated that the larger 

patches improve specificity while the smaller patches improve sensitivity (Zhu et al., 

2019). Roth and colleagues (2018) use a similar approach but without a bounding box; 

instead this approach identified a new region of interest of arbitrary shape from stage one 

and then re-segmented this smaller region using a second network in stage two (Roth et 

al., 2018). Subsequently, Roth and colleauges use holistically nested CNNs to segment all 

three orthogonal planes of an image in 2D and then aggregate the 2D predictions using a 

random forest classifier (Roth et al., 2018). Similarly, Pang et al. used a CNN at stage one 

and then refined the segmentation in stage two using a custom conditional random field 

(Pang et al., 2019).  

 

The purpose of this study is to define a general multi-stage fully CNN framework for 

segmenting cartilage and bone from knee MRI data that overcomes memory constraints, 

while balancing computation time and accuracy when segmenting a variety of sequences 

and disease severities. Our method builds upon previous segmentation literature.  In our 

multi-stage framework, Stage 1 uses multiple CNNs to segment the image coarsely and 

Stage 2 conducts a fine segmentation, where the CNN takes inputs of both raw image 

data as well as the probabilities outputted from Stage 1. Providing probabilities gives 

global context to the second stage that segments image sub-volumes in 3D; this global 

context has not been used in previously proposed methods. We describe the segmentation 

algorithm, then train and test the algorithm on images acquired from two MRI vendors 

using different pulse sequences, and in samples with and without OA.  
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Figure 4-1. Visualization of the algorithm. Stage 1 coarsely segments the input image 
using two convolutional neural networks (CNNs). Probability outputs of Stage 1 are 
combined with the raw image to perform full resolution segmentation of sub-volumes 
using a third CNN in Stage 2. Stage 2 segmentations from the main tissues, or classes, of 
interest are combined with coarse segmentations at the periphery to produce the final 
segmentation. 

 

4.2 Methods 

4.2.1 Segmentation Framework 

The framework (Figure 4-1) uses two stages of CNNs. Stage 1 performs two coarse 

segmentations (one 2D, one 3D CNN) of the entire MRI volume. Each outputs a 4D 

probability map, with the indices along the last (4th) dimension contain the probabilities 

for each voxel belonging to each of the eight classes of interest. Classes are the different 

categories that each voxel can be categorized to; here 7 anatomical tissues and the 

background. Stage 2 segments overlapping sub-volumes of the image, taking inputs of 
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full resolution image data and priors (probability maps) outputted from Stage 1. The 

segmented sub-volumes are then combined to create a full-resolution segmentation.  

 

4.2.1.1 Stage 1 

Two networks that share the same U-Net style architecture segmented the background 

and 7 tissues of interest: femur, tibia, patella, femoral cartilage, medial tibial cartilage, 

lateral tibial cartilage, and patellar cartilage from a single MRI volume (Ronneberger et 

al., 2015). The first had an input shape of 128x128x64 and an output shape of 

128x128x64x8 and segmented an entire image in a single pass. The second network 

segmented an individual slice at an image size of 384x384 and had an output of 

384x384x8. The last dimension of the two networks was length 8 to accommodate the 8 

classes (7 tissues, 1 background). The 2D network was applied to each slice, then the 

slices were combined to create the full 4D segmentation. The results of the 2D and 3D 

analyses were resampled to be the same shape as the original image. For both networks, 

prior to segmentation, the whole 3D image was normalized to have mean 0 and unit 

variance by subtracting the mean and dividing by the standard deviation of the pixel 

intensities. 

 

4.2.1.1.1 Stage 1 Network  

The coarse network used for Stage 1 is described in Figure 4-2. Like U-Net, the coarse 

network included long residual connections from the compression to decompression 
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branches. It also included short residual connections at each level of the compression and 

decompression branches (Milletari et al., 2016; Yu et al., 2017). All short residual 

connections used a summation methodology and all long residual connections used 

concatenation (Figure 4-2)(Kayalibay et al., 2017). For every step down the compression 

branch, the image dimension was compressed to half its previous size using a stride of 2 

with a regular convolution. For every step up the decompression branch, the image 

dimension was doubled by using a stride of 2 with a transpose convolution. The number 

of filters for each convolution is included in Figure 4-2. Filters included on the 

decompression branch mirrored the compression branch. Convolutions throughout the 

network comprised of 5x5 (2D) or 3x3x3 (3D) convolutional filters, followed by batch 

normalization, dropout (probability = 0.2), and a parametric rectified linear unit (PReLU) 

(He et al., 2015). In addition to the traditional compression and decompression branches, 

we included a form of deep supervision inspired by Kayalibay et al., 2017. The deep 

supervision more directly passed data from the deep layers directly to the final output, 

using the same number of filters as classes. However, we used a PReLU activation 

instead of a logistic or Softmax function as used previously (Kayalibay et al., 2017). The 

final convolution of the network used a Softmax activation which gives probabilities of 

each voxel belonging to each of the 8 classes (4 cartilage, 3 bone, 1 background). 
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Figure 4-2. Visual depiction of the Stage 1 (coarse) and Stage 2 (fine) segmentation 
network architectures. Yellow cubes represent inputs, white are regular convolutions with 
parametric rectified linear unit (PReLU) activations, red are down convolutions (2x2x2 
stride) with PReLU activations, green are transpose (up) convolutions (2x2x2) with 
PReLU activations, orange are transpose convolutions (2x2x2) with Softmax activations, 
blue are regular convolutions with a 1x1x1 filter and Softmax activations. Orange circles 
represent addition and blue circles represent concatenation. The number of filters in a 
convolution is printed on the face of each cube. 

 

4.2.1.1.2 Stage 1 Training  

During training, the 3D network used batch sizes of 1 and the 2D network used batch 

sizes of 16. Image augmentation was implemented, including 50% probability of flipping 

along the slice-axis (3D network only), random height and width shift within +/- 20%, 

and random in-plane rotation within +/- 6 degrees. The Adam optimizer (Kingma and Ba, 
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2017) with a learning rate of 10-4 and early stopping was implemented. Early stopping 

was invoked after 10 consecutive epochs with less than 0.02 improvement in the loss 

function, when evaluated on validation data. Learning rate and early stopping criteria 

were determined using a grid-search in a previous study (Gatti, 2018). The loss function 

was a custom generalized Dice similarity coefficient (gen-DSC). In the following, (1) is 

the traditional DSC, and (2), which utilizes (1) in its definition, is the gen-DSC:  

 !"#	(&!, (!) 	= 	
2	|&! ∩ (!|
|&!| 	+	|(!|

 (1) 

 /01 − !"#	 = 	3−1	 ∗ 	!"#	(&!, (!)	
"

!#$
 (2) 

where N is the number of classes, Xn is the predicted probability map for class n, and Yn 

is the ground truth (manual) segmentation for class n. Under this paradigm, the best 

possible gen-DSC score was -8 (the negative of the number of classes). 

 

4.2.1.2 Stage 2 

This single 3D CNN (Figure 4-2) segmented sub-volumes, sized 32x32x32 of the original 

image. This network took a 4-dimensional input, where the first 3 dimensions were the 

physical dimensions of the sub-volume, and the 4th dimension was length 17; 1 for the 

original image data, 8 for the probabilities outputted from the coarse 3D based 

segmentation from Stage 1, and 8 for the probabilities outputted from the coarse 2D 

based segmentation from Stage 1. The output was also 4-dimensional, with the 4th 

dimension being equal to eight, the number of classes. The whole image was normalized 

before sub-volumes were extracted. For efficiency, a region 30% bigger than the region 
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containing all cartilage, determined using results from Stage 1, was extracted and 

segmented (Figure 4-3). From this extracted space, sub-volumes that overlap by 50% in 

each of the three dimensions were sampled. Using such a scheme resulted in a total of 8 

predictions for all but the most peripheral voxels. 

 

 

Figure 4-3. Example of the region that was extracted (orange) then segmented in Stage 2. 
The region is 30% larger than the cartilage segmentations and includes all cartilage as 
well as the primary bone areas of interest, e.g., locations of osteophyte formation. 
Osteophytes are bony growths at the joint margin characteristic of osteoarthritis (OA). 
The example image is a participant from the OA dataset. 

 

4.2.1.2.1 Stage 2 Network 

This fine network (Figure 4-2) used convolutions of 3x3x3 throughout. The same as the 

Stage 1 coarse network, the final convolution filter used a Softmax activation to give 

probabilities of each voxel belonging to the classes of interest. The fine network had 

differences compared to the coarse network. The fine network included 3 down 

convolutions (as opposed to 4), a greater number of filters (64 at the first level, doubling 

Sagittal Coronal Transverse
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after each down convolution), and used addition for long and short residual connections. 

The greater number of filters at the first level enabled high level feature extraction that is 

not possible in the coarse network due to memory constraints. The shallower depth 

enabled bigger batch sizes. Finally, the deep supervision branch used a Softmax 

activation as was originally designed (Kayalibay et al., 2017). 

 

4.2.1.2.2 Stage 2 Training  

During training, every 33 epochs, 1000 sub-volumes were selected from each image 

using stratified random sampling. Stratified random sampling ensured that, at a 

minimum, each tissue was included in the following percentages of sub-volumes: femur 

9%, tibia 9%, patella 7%, femoral cartilage 22%, medial tibial cartilage 15%, lateral tibial 

cartilage 15%, patellar cartilage 15%, and background 8%. A batch-size of 8 and the 

Adam optimizer with a learning rate of 10-3 with early stopping was implemented. For the 

fine network, early stopping was invoked after 10 consecutive epochs with less than 

0.00025 improvement when tested on the validation data. These parameters were 

determined using a grid-search. 

 

To enable efficient training of the class-imbalanced tissues, a custom weighted 

generalized DSC (weighted-DSC) was utilized. Class-imbalance refers to the unequal 

occurrences of the different classes (that is, tissues) within a knee MRI scan. The 

weighted-DSC multiplied a DSC per class by a weighting factor. The background class 
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weighting factor was always 1.  The weighting factors for the non-background classes 

summed to 7, equal to the number of non-background classes. For each new sub-volume, 

the weightings for the non-background classes were re-calculated to distribute the total 

available weighting over the non-background classes. The weighting for each sub-volume 

was distributed based on the percentage of non-background voxels (from both the 

predicted segmentation and the ground truth), which each class occupied. For example, if 

the sub-volume only contained one class in both the prediction and ground truth 

segmentations, then that class received a weighting of 7 (1.0x7) and all others 0 (0.0x7); 

if there were only two classes in the sub-volume, one in 25% of the voxels and the other 

in 75%, then they would have weightings of 1.75 (0.25x7) and 5.25 (0.75x7), 

respectively, with all other classes being weighted at 0 (0.0x7). Because predictions were 

not binary, the number of voxels for any one class was calculated by summing the 

probabilities of each voxel belonging to that class. In the following, (3) describes the 

calculation for the number of non-background-voxels (NBV), (4) describes the proportion 

of NBVs for a given class (pNBV), and (5) describes the full weighted-DSC calculation:  

 678	 = 	3333&%,',(,! 	+ 	(%,',(,!	
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where N is the number of classes, and 1 is the background class; I is image dimension 1, J 

is image dimension 2, and K is image dimension 3; X is the predicted probability map, 
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and Y is the ground truth probability map; the first 3 dimensions of X and Y are the 

image dimensions and the 4th dimension is the segmentation class. This approach 

efficiently learned to segment the tissues of interest and outperformed the generalized-

DSC described in Equation 2 used in previous implementations of this algorithm (Gatti, 

2018).  

 

4.2.1.3 Compiling Final Segmentations 

To create full-resolution segmentation probability maps, first the full-sized 2D and 3D 

segmentation probabilities from Stage 1 were averaged, yielding the average-coarse-

segmentation. From Stage 2, the segmentation probabilities for each class from 

overlapping sub-volumes were averaged, yielding the average-fine-segmentation. The 

final segmentation consisted of the average-fine-segmentation in the region it was 

extracted from, and the average-coarse-segmentation in the area outside this region. This 

scheme efficiently segmented the full image, with high resolution for cartilage and bone 

approximating the articular surfaces. 

 

Each voxel was classified according to the class that it had the highest probability of 

belonging to. To remove potentially spurious segmentations, any connected regions of a 

class that were <500 connected voxels were labelled as background.  
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4.2.2 Testing Accuracy and Segmentation Times 

To test the accuracy and segmentation times of the framework, we conducted a 6-fold 

cross-validation. The cross-validation used data from two samples: (1) 176 knee MRI 

scans from 88 individuals enrolled in the OAI, and (2) 60 MRI scans from 15 healthy 

young men. 

 

4.2.2.1 Osteoarthritis Sample 

Data were from individuals in the OAI with doubtful (grade 1; n=2), minimal (grade 2; 

n=31), moderate (grade 3, n=52), and severe (grade 4; n=3) OA severity defined on the 

gold standard Kellgren and Lawrence (KL) classification system (Kellgren and 

Lawrence, 1957). Images were acquired using a 3T Siemens MRI scanner at one of four 

sites (Peterfy et al., 2008). All images were acquired with the same 3D sagittal water 

excited Dual Echo in the Steady State (DESS) sequence with in-plane resolution of 

0.365x0.456 mm and resampled to be 0.365x0.365 mm, with a slice thickness of 0.7 mm, 

and no gaps (Peterfy et al., 2008). Manual segmentations of cartilage were performed for 

the OAI by an industrial partner (iMorphics)(Williams et al., 2010). As well, manual 

segmentations of the 3 bones (femur, tibia, patella) were conducted by one researcher 

(AAG). 

4.2.2.2 Healthy Sample 

In a previous study, (Gatti et al., 2017) healthy participants completed 2 MRI visits, 

obtaining 2 sets of knee MRI scans per visit (4 image sets per participant). Images were 

acquired using a 3T GE Discovery MR750 (GE Healthcare, Milwaukee WI) using a 3D 
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sagittal fat saturated fast spoiled gradient recalled sequence (FSPGR), in-plane resolution 

of 0.3125x0.3125 mm, slice thickness of 1.0 mm, and no gaps (Gatti et al., 2017). 

Manual cartilage and bone segmentations were conducted by one researcher (AAG). 

 

4.2.2.3 Experiments 

To conduct the 6-fold cross-validation, 236 MRI volumes from 103 participants were 

split into 6 partitions by participant. The 6 partitions are described in Table 4-1. Five to 

ten cross-validation folds balance the trade-off between bias and variance (Hastie et al., 

2009). During each cross-validation step, one unique partition of the data was held out for 

final testing. Of the remaining five partitions, one was used for validation and four were 

used to train all stages of the algorithm. The validation partition was used to identify 

when training was complete using the aforementioned early stopping criteria. 

Assessments of segmentation quality were performed for five cartilage classes (femoral, 

medial tibial, lateral tibial, all tibial, patellar) and three bones (femur, tibia, patella).   
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Table 4-1. Partitions used for cross-validation including the number (n) of participants 
with osteoarthritis (OA), the number of healthy participants, the total number of 
participants, and the total number of images per partition.  

 

 Partitions 
 1 2 3 4 5 6 

n OA  15 15 15 15 14 15 

n healthy  2 2 2 3 3 3 

n total  17 17 17 18 17 18 
n total images 38 38 38 42 40 42 

 

Quality assessments were run on the entire image volume, as well as on cropped image 

volumes that were 30% bigger than the region containing all cartilage, with cropping 

performed based on the reference segmentations. Assessments were performed for all 

final testing data, and separately for the validation data used for early stopping.  

 

Assessment of segmentation accuracies was performed using the DSC (Equation 1), the 

volume difference (VD; (6)), and the average surface distance (ASD; (7)) (Ambellan et 

al., 2019; Dam et al., 2015; Desai et al., n.d.; Liu, 2018). The DSC and average surface 

distance are symmetric; volume difference is a percent difference relative to the reference 

volume (Ambellan et al., 2019). Time to complete all segmentation steps was recorded. 

Volume difference and average surface distance were defined as follows:  

 8!	 = 	100	
|&!| 	−	 |(!|

|(!|
 (6) 
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where Xn is the predicted segmentation for tissue n, and Yn is the ground truth, ∂X and 

∂Y are the boundary voxels of segmentations X and Y, n∂X and n∂Y are the number of 

boundary voxels for ∂X and ∂Y, |∙| is the volume, and ‖∙‖) the Euclidean distance.  

 

To explore the role of disease severity and cartilage morphometry on cartilage 

segmentation accuracies, two analyses were performed. In the OA sample, we explored 

whether cartilage DSC was dependent on radiographic disease severity (KL grade), using 

one-way analysis of variance (ANOVA). In all participants, we determined whether the 

DSC was dependent on tissue volume using linear regression; separate regression models 

were run for the OA and healthy samples. These secondary analyses were run 

independently for each cartilage tissue of interest.  

 

Finally, an ablation study is performed to determine how the Stage 2 (fine stage) adds to 

prediction accuracy. Using only the testing data, we report the segmentation accuracies 

(DSC, volume difference, and average surface distance) separately for the two Stage 1 

networks, as well as a simple average of the two Stage 1 networks. All post-processing 

was implemented the same as the full model (4.2.1.3); e.g., the segmentation was one-

hot-encoded and islands less than 500 connected voxels were removed. These data enable 

identification of if and how much Stage 2 improves segmentations.  
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All experiments were conducted using a virtual machine with 12 CPU threads, 78 GB of 

RAM, and an NVIDIA Tesla V100 GPU on the Google Cloud Platform. Deep learning 

was done using Keras (Chollet, 2015) with a Tensorflow backend in Python.  

 

4.3 Results 

Summary statistics of the segmentation accuracies, by sample, are presented in Table 4-2 

and graphically displayed in Figure 4-4. An example of the automated cartilage 

segmentations as well as segmentation surface errors are presented in Figure 4-7. For the 

testing data of the OA sample, the mean (SD) DSCs were: femoral cartilage 0.907 

(0.023); medial tibial cartilage 0.876 (0.042); lateral tibial cartilage 0.913 (0.026); all 

tibial cartilage 0.897 (0.026); and patellar cartilage 0.840 (0.128). DSC distributions by 

KL grade (Figure 4-5) show small decreases in accuracy with worse disease severity. In 

the OA sample, mean volume differences were systematically larger using the proposed 

methodology for the femoral and tibial cartilage, and smaller for the patellar cartilage, 

compared to the reference. The mean and median average surface distance for all OA 

segmentations were less than in-plane resolution (0.365 mm). The OA sample 

segmentation times were on average 91.4 (9.6) s. 
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 Table 4-2. Segmentation results presented separately for the osteoarthritis (OA) and healthy samples. Results are presented for 
the testing (held out), validation (used for early stopping), and testing images assessed only in the cropped segmentation 
region. Results include the Dice similarity coefficient (DSC), the volume difference (VD), and the average surface distance 
(ASD). Results are presented as median; mean ± standard deviation. -- means that the results for the testing cropped region 
were identical to when assessed for the testing full image.  

 Cartilage Bone 
 Femoral Medial Tibial Lateral Tibial All Tibial Patellar Femur Tibia Patella 
 OA 
 Testing 
DSC 0.910; 0.907 ± 0.023 0.885; 0.876 ± 0.042 0.918; 0.913 ± 0.026 0.901; 0.897 ± 0.026 0.875; 0.840 ± 0.128 0.990; 0.989 ± 0.006 0.991; 0.987 ±0.022 0.988; 0.986 ± 0.007 
VD 1.60; 1.82 ± 6.29 -0.17; 1.37 ± 12.19 0.74; 0.37 ± 6.49 0.17; 0.50 ± 7.11 -1.32; -0.62 ± 29.31 0.36; 0.35 ± 0.85 0.57; 0.16 ± 3.63 -0.13; -0.15 ± 0.97 
ASD 0.151; 0.174 ± 0.088 0.161; 0.229 ± 0.218 0.127; 0.145 ± 0.059 0.151; 0.187 ± 0.117 0.197; 0.354 ± 0.640 0.152; 0.179 ± 0.143 0.171; 0.247 ± 0.392 0.068; 0.093 ± 0.133 
 Validation 
DSC 0.912; 0.908 ± 0.022 0.885; 0.877 ± 0.041 0.921; 0.914 ± 0.024 0.902; 0.898 ± 0.025 0.876; 0.842 ± 0.126 0.990; 0.989 ± 0.005 0.991; 0.988 ± 0.020 0.987; 0.985 ± 0.007 
VD 1.68; 1.56 ± 6.08 -0.06; 0.97 ± 11.80 0.08; 0.54 ± 6.74 -0.10; 0.42 ± 7.15 -1.28; 0.88 ± 23.90 0.31; 0.32 ± 0.75 0.55; 0.16 ± 3.36 -0.11; -0.09 ± 1.18 
ASD 0.151; 0.172 ± 0.087 0.158; 0.238 ± 0.255 0.126; 0.145 ± 0.060 0.148; 0.189 ± 0.132 0.193; 0.358 ± 0.691 0.151; 0.170 ± 0.108 0.172; 0.254 ± 0.354 0.068; 0.106 ± 0.205 
 Testing - Cropped Region of Interest 
DSC -- -- -- -- -- 0.993; 0.992 ± 0.005 0.994; 0.991 ± 0.024 -- 
VD -- -- -- -- -- -0.06; -0.10 ± 0.74 -0.10; -0.50 ± 3.86 -0.14; -0.14 ± 0.99 
ASD -- -- -- -- -- 0.080; 0.102 ± 0.131 0.063; 0.096 ± 0.184 0.068; 0.091 ± 0.130 
 Healthy 
 Testing 
DSC 0.942; 0.938 ± 0.015 0.913; 0.911 ± 0.015 0.931; 0.930 ± 0.011 0.922; 0.922 ± 0.011 0.958; 0.956 ± 0.013 0.984; 0.984 ± 0.003 0.981; 0.978 ± 0.009 0.984; 0.981 ± 0.007 
VD -0.41; -0.45 ± 2.02 -2.86; -1.66 ± 5.41 -1.01; -1.30 ±3.56 -1.61; -1.53 ± 3.47 0.83; 0.13 ± 2.82 1.11; 1.05 ± 1.01 1.56; 1.62 ± 1.19 -0.16; 0.81 ± 2.06 
ASD 0.081; 0.088 ± 0.019 0.125; 0.134 ± 0.037 0.124; 0.127 ± 0.029 0.131; 0.131 ± 0.024 0.062; 0.068 ± 0.021 0.230; 0.240 ± 0.059 0.274; 0.317 ± 0.166 0.091; 0.113 ± 0.048 
 Validation 
DSC 0.943; 0.938 ± 0.016 0.914; 0.910 ± 0.016 0.934; 0.930 ± 0.012 0.924; 0.922 ± 0.012 0.958; 0.956 ± 0.012 0.984; 0.984 ± 0.003 0.982; 0.979 ± 0.007 0.983; 0.980 ± 0.007 
VD -0.23; -0.17 ± 2.13 -3.17; -2.36 ± 5.52 -1.18; -1.45 ± 3.78 -2.34; -1.91 ± 3.54 0.21; 0.23 ± 2.84 0.99; 1.03 ± 0.75 1.69; 1.59 ± 1.13 0.00; 0.87 ± 2.23 
ASD 0.082; 0.088 ± 0.019 0.123; 0.135 ± 0.041 0.121; 0.127 ± 0.031 0.127; 0.131 ± 0.028 0.059; 0.067 ± 0.020 0.227; 0.239 ± 0.062 0.262; 0.326 ± 0.198 0.091; 0.115 ± 0.051 
 Testing - Cropped Region of Interest 
DSC -- -- -- -- -- 0.991; 0.990 ± 0.002 0.992; 0.991 ± 0.003 -- 
VD -- -- -- -- -- -0.056; 0.096 ± 0.672 0.021; 0.045 ± 0.452 -- 
ASD -- -- -- -- -- 0.101; 0.108 ± 0.032 0.078; 0.086 ± 0.038 -- 
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Figure 4-4. Histograms of the Dice similarity coefficients (DSC) from testing data for the four cartilage classes of interest (femoral, 
patellar, medial tibial, lateral tibial). Blue is the osteoarthritis (OA) sample, orange is the healthy sample. 
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Figure 4-5. Violin plots of Dice similarity coefficient (DSC) by Kellgren and Lawrence (KL) disease severity for 
individuals with osteoarthritis (OA). One-way analyses of variance were run to compare DSCs across KL grades. Post-
hoc significant p-values, at Bonferroni corrected p <0.0125, are included. 
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In the healthy sample, the mean (SD) DSC values were: femoral cartilage 0.938 (0.015); 

medial tibial cartilage 0.911 (0.015); lateral tibial cartilage 0.930 (0.011); all tibial 

cartilage 0.922 (0.011); and patellar cartilage 0.956 (0.013). The average surface distance 

for all cartilage classes in the healthy sample were <0.135 mm, which is less than one-

half of the in-plane resolution (0.3125 mm). The average surface distance for the bone 

segmentations had higher errors (femur: 0.240 mm, tibia: 0.317 mm, patella: 0.113 mm), 

however, when only analyzing the cropped region, the errors for the femur (0.108 mm) 

and tibia (0.086 mm) dropped to <1/3 of the in-plane resolution. Patellar errors were 

unaffected by the cropping. Segmentation times for the healthy sample were on average 

91.4 (10.8) s.  

 

Dependence of DSC on cartilage volume (Figure 4-6) was observed in femoral cartilage 

in the healthy sample (R2=0.30) and patellar cartilage in the OA sample (R2=0.33). All 

other R2 for correlations between cartilage DSC and volume were <0.14, indicating 

negligible volume dependence.  
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Figure 4-6. Scatter plots and fitted regression lines predicting Dice similarity coefficient (DSC) from cartilage 
volume. Blue is for individuals with osteoarthritis (OA) and orange for healthy knees. The equation, its R2 and 
significance are presented for each fitted line in the respective legends.  
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The ablation study showed that, other than for volume difference in the medial tibial and 

lateral tibial cartilage of the healthy group, the full algorithm (Stage 2) outperformed all 

Stage 1 (2D, 3D, average) segmentations for all metrics (Table 4-3). In the exception, 

(tibial cartilage regions), the Stage 1 2D model had a small overestimation of volume 

(medial tibial cartilage: 0.87, lateral tibial cartilage: 0.24) whereas the full model had a 

small underestimation (medial tibial cartilage: -1.66, lateral tibial cartilage: -1.30). 

Broadly, the Stage 1 2D model outperformed the Stage 1 3D model, and the segmentation 

produced by their average. 

 

Comparing the Stage 1 2D model to the full model (Stage 2), in the OA sample, the full 

model outperformed the Stage 1 2D model in terms of DSC by 0.002 to 0.007 across all 

tissues. Similarly, in the bones of the healthy knees the full model outperformed in terms 

of DSC by 0.001 to 0.002. However, in the healthy cartilage there was a bigger difference 

with the full model outperforming the Stage 1 2D model by 0.016 to 0.022. In terms of 

average surface distance, the full model performed considerably better than the Stage 1 

2D model producing average surface distances between 6.9% (OA medial tibial cartilage) 

and 42.6% (OA patella) better. The average surface distance had the biggest difference in 

the bones, where the full model outperformed the Stage 1 2D model by 22.6% (healthy 

tibia) to 42.6% (OA patella). In cartilage regions the full model outperformed the Stage 1 

2D model by 6.9% (medial tibial cartilage) to 10.5% (lateral tibial cartilage) for the OA 

knees and by 14.2% (lateral tibial cartilage) to 21.4% (femoral cartilage) in the healthy 

knees.  
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The Stage 1 (coarse) 3D model was the worst in every region and outcome for both 

healthy and OA knees. The average prediction (average of Stage 1 2D and 3D 

predictions) outperformed the Stage 1 2D model for average surface distance of all OA 

bones (femur 0.251mm versus 0.258mm; tibia 0.308mm versus 0.322mm; patella 

0.132mm vs 0.162mm), and effectively tied the Stage 1 2D model for DSC in those same 

regions. With the exception of these OA bones, the average predictions had outcomes that 

fell in-between the Stage 1 2D and 3D models.  

 

 
Figure 4-7. Three-dimensional visualizations of automated cartilage 
segmentations from a healthy participant (left) and one in the 
osteoarthritis sample (right). The surfaces are coloured based on the 
surface distance to the reference (manual) segmentations. The 
majority of the errors occur on the cartilage peripheries where 
partial-volume effects are common.  
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Table 4-3. Results of the ablation study analyzing the prediction accuracies of the Stage 1 (coarse) segmentation networks on 
the testing (held-out) data. The Dice similarity coefficient (DSC), volume difference (VD), and average surface distance (ASD) 
are presented for each region. Results are presented for the Stage 1 (coarse) 2D model, the Stage 1 (coarse) 3D model, and the 
average of the Stage 1 2D and 3D models. Each cell includes the mean ± standard deviation. Separately for the osteoarthritis 
(OA) and healthy datasets, for each tissue and each outcome, the best outcome is bolded; in the event of a tie the prediction 
with the lower standard deviation is bolded. The OA dataset includes n=88 people and n=176 images, the healthy dataset 
includes n=15 people and n=60 images. * indicates that the metric outperformed the full model (Stage 2). 

Model Region DSC VD ASD DSC VD ASD 
  OA Healthy 
Stage 1 coarse 2D model        
 Femoral cartilage 0.900 ± 0.025 6.59 ± 6.95 0.193 ± 0.104 0.916 ± 0.013 2.32 ± 2.37 0.112 ± 0.018 
 Medial tibial cartilage 0.871 ± 0.045 6.13 ± 13.89 0.246 ± 0.242 0.889 ± 0.015 0.87 ± 5.64 * 0.164 ± 0.039 
 Lateral tibial cartilage 0.908 ± 0.028 5.05 ± 7.67 0.162 ± 0.067 0.914 ± 0.010 0.24 ± 3.44 * 0.148 ± 0.029 
 Patellar cartilage 0.835 ± 0.129 7.30 ± 31.77 0.390 ± 0.698 0.938 ± 0.012 2.44 ± 4.19 0.095 ± 0.023 
 Femur bone 0.986 ± 0.007 0.58 ± 1.06 0.258 ± 0.262 0.982 ± 0.003 1.07 ± 0.93 0.260 ± 0.049 
 Tibia bone 0.985 ± 0.023 0.18 ± 3.88 0.322 ± 0.459 0.977 ± 0.008 1.66 ± 1.29 0.328 ± 0.156 
 Patella bone 0.980 ± 0.008 0.35 ± 1.23 0.162 ± 0.259 0.979 ± 0.009 1.16 ± 2.32 0.144 ± 0.055 
Stage 1 coarse 3D model        
 Femoral cartilage 0.774 ± 0.033 19.43 ± 13.25 0.413 ± 0.091 0.812 ± 0.020 12.76 ± 8.82 0.298 ± 0.030 
 Medial tibial cartilage 0.735 ± 0.061 19.89 ± 21.72 0.536 ± 0.617 0.789 ± 0.020 5.08 ± 9.57 0.358 ± 0.171 
 Lateral tibial cartilage 0.787 ± 0.043 15.53 ± 15.65 0.387 ± 0.118 0.829 ± 0.019 3.91 ± 5.78 0.364 ± 0.191 
 Patellar cartilage 0.705 ± 0.140 36.21 ± 62.44 0.672 ± 0.905 0.855 ± 0.024 8.42 ± 9.73 0.276 ± 0.038 
 Femur bone 0.962 ± 0.018 2.32 ± 3.40 0.576 ± 0.277 0.960 ± 0.008 4.12 ± 2.22 0.600 ± 0.139 
 Tibia bone 0.965 ± 0.015 1.15 ± 3.36 0.649 ± 0.610 0.960 ± 0.013 3.30 ± 3.04 0.706 ± 0.516 
 Patella bone 0.947 ± 0.019 2.21 ± 4.28 0.434 ± 0.790 0.951 ± 0.007 3.24 ± 2.65 0.315 ± 0.067 
Average of Stage 1 models        
 Femoral cartilage 0.889 ± 0.026 8.88 ± 7.61 0.208 ± 0.097 0.914 ± 0.013 3.58 ± 2.59 0.115 ± 0.018 
 Medial tibial cartilage 0.854 ± 0.049 9.32 ± 15.75 0.270 ± 0.248 0.885 ± 0.017 1.34 ± 5.75 0.170 ± 0.039 
 Lateral tibial cartilage 0.894 ± 0.030 7.04 ± 9.10 0.183 ± 0.066 0.909 ± 0.011 0.54 ± 3.05 0.161 ± 0.032 
 Patellar cartilage 0.820 ± 0.132 14.19 ± 38.96 0.438 ± 0.824 0.935 ± 0.015 3.84 ± 5.41 0.101 ± 0.026 
 Femur bone 0.985 ± 0.007 0.83 ± 1.23 0.251 ± 0.233 0.981 ± 0.003 1.58 ± 1.07 0.279 ± 0.061 
 Tibia bone 0.985 ± 0.022 0.32 ± 3.76 0.308 ± 0.442 0.976 ± 0.009 2.03 ± 1.34 0.336 ± 0.165 
 Patella bone 0.979 ± 0.009 0.57 ± 1.34 0.132 ± 0.094 0.974 ± 0.007 1.58 ± 2.27 0.149 ± 0.060 
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4.4 Discussion 

The presented work describes and tests a novel framework for segmenting cartilage and 

bone from knee MRI scans using only CNNs. When benchmarked on the OAI dataset, 

the results demonstrate the best reported DSC and average surface distance for femoral 

and medial tibial cartilage, and the second best for lateral tibial cartilage (surpassed by 

one algorithm that was tested on data from 9 individuals (Table 4-4) (Ambellan et al., 

2019; Desai et al.,; Gaj et al., 2020; Panfilov et al., 2019). Amongst algorithms with 

predictions on the whole OAI dataset, we present the best accuracies for all cartilage 

regions (Table 4-4)(Ambellan et al., 2019). The results on the healthy dataset are the best 

cartilage segmentations reported to-date. The full model outperformed the Stage 1 

(coarse) predictions in overlap (DSC) and particularly surface distance (average surface 

distance) metrics. The segmentations produced were amongst the fastest times reported 

(Ambellan et al., 2019; Gaj et al., 2020; Liu et al., 2017; Norman et al., 2018). The 

proposed algorithm demonstrates an ability to learn, without human intervention, how to 

automatically segment cartilage and bone from both sagittal FSPGR and DESS MRI 

sequences on individuals with and without OA. This work enables an efficient 

quantification of cartilage outcomes for research (basic science, clinical trials) and 

clinical usage.  
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Table 4-4. Segmentation accuracies and sample sizes of algorithms trained and tested on 
the OAI iMorphics dataset. The table includes the Dice similarity coefficient (DSC) as 
well as the testing datasets sample size in-terms of people and images included. The rows 
are presented in descending order of sample size. The highest accuracy for each tissue is 
bolded; in the event of a tie the algorithm tested on the largest sample of data is bolded.  -
- denotes no data available.  

 Testing Sample 
Size  
(participants, 
images) 

Femur Tibia Medial 
Tibia 

Lateral 
Tibia 

Patella 

Ours 88 (176) 0.907 0.897 0.876 0.913 0.840 
Ambellan et al. 
2019 

88 (176) 0.893 -- 0.860 0.902 -- 

Panfilov et al. 
2019 

36 (72) 0.907 0.897 -- -- 0.871 

Desai et al. 2020 14 (28) 0.9 0.89 -- -- 0.86 
Gaj et al. 2020 9 (18) 0.897 -- 0.861 0.918 0.842 

 

The proposed framework failed to match the best cartilage segmentation accuracies for 

patellar cartilage, when benchmarked on the OAI dataset, achieving mean DSC of 0.840 

and mean average surface distance of 0.354 mm. Three algorithms beat the current 

implementation (Table 4-4)(Desai et al., n.d.; Gaj et al., 2020; Panfilov et al., 2019). All 

of these previous models tested their results on relatively smaller samples all using less 

than half of the sample included in this study (Table 4-4). As can be seen in Figure 4-4, 

there is a long tail of patellar cartilage DSCs on the OAI dataset, indicating a few poor 

performances reduced accuracy. Figure 4-6 shows that these poor results occurred in 

knees with low patellar cartilage volume. It is possible that previous algorithms were 

tested on sub-samples (Desai et al., n.d.; Gaj et al., 2020; Panfilov et al., 2019) that did 

not include these images of knees with low patellar cartilage volume (Figure 4-6). There 

are a few potential reasons for this volume dependence. First, as thin structures like 

cartilage decrease in volume, a greater proportion of the voxels are found on the 
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boundaries, where the majority of errors occur. Second, in low volume segmentations the 

cartilage itself is sparse, and at times disconnected, likely introducing greater error in the 

manual segmentations (Figure 4-8). Still, the framework proposed by Panfilov et al. 

produced excellent DSCs for patellar cartilage. The authors used a 2D approach with a 

deeper network and more filters than the current implementation. A bigger 2D coarse 

network may also improve the current frameworks results. Finally, it should be noted that 

segmentation of patellar cartilage in the healthy sample produced the highest accuracy 

cartilage segmentations we are aware of. It is possible that this discrepancy could be 

attributed to differences in the FSPGR versus DESS sequences or differences between the 

young healthy versus OA samples.  

Raw Image Reference Segmentation Predicted Segmentation

Figure 4-8. Raw image (left) and the manual (middle) and predicted (right) segmentations 
of a participant with OA from the Osteoarthritis Initiative. Femur (light blue), femoral 
cartilage (blue), tibia (light green), tibial cartilage (green), patella (light red), and patellar 
cartilage (red) are overlaid on the raw image. Of note is the region on the trochlea where 
the framework correctly omitted cartilage (orange arrow). It is also interesting to note that 
the predicted regions of patellar cartilage (green arrows) are plausibly correct, and 
therefore potentially indicate an instance of outperforming the reference segmentation.  
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When benchmarked on the whole OAI segmentation dataset, the current implementation 

produced bone DSCs for the femur (0.989) and tibia (0.987) that were better than those 

reported by Ambellan et al. (2019). In terms of average surface distance, when 

considering the whole image, the current implementation was slightly worse than 

Ambellan and colleagues (femur: 0.179 mm vs 0.17 mm; tibia: 0.25 mm vs. 0.18 mm), 

however, the current implementation only produced coarse segmentations for the 

periphery of the images. When considering only the high-resolution area, the average 

surface distance for the current implementation drops considerably to be 0.102 mm and 

0.096 mm for the femur and tibia respectively. The DSC also improved considerably for 

the cropped regions, yielding DSCs of 0.993 and 0.994 for the femur and tibia. These 

cropped regions include osteophytes and all primary classes of interest (Figure 4-3). The 

comparison to Ambellan et al. is noteworthy because they used multiple stages of 

segmentations as well as SSMs to control bone shape and minimize errors. The 

comparable errors between the two approaches indicate that a fully-learned CNN 

approach does not require the regularization imposed by a SSM.  

 

Segmentation times (~1.5 min) fall between extremely fast algorithms (<15 s) that 

produce lower-accuracy results (Liu, 2018; Norman et al., 2018), and slower methods 

(10+ min) (Ambellan et al., 2019) that produce comparable results. One algorithm of note 

by Gaj et al. reports segmentation times of less than 1 min with comparable segmentation 

accuracies to the current framework (Gaj et al., 2020). The work presented by Gaj et al. 



 147 

was tested on MRI scans from 9 individuals and thus inherently has greater variability 

associated with the DSC point estimate.  

 

In the current implementation, the relatively small OA and healthy datasets create 

potential short-comings. In particular, probabilities outputted from Stage 1 act as priors in 

Stage 2 and we trained Stage 1 and Stage 2 using the same images. With more data, Stage 

1 and 2 would ideally be trained using different sets of data, letting Stage 2 better learn 

how to weight priors. In addition to more data, it is possible that different network 

architectures or loss functions may improve results. For example, a deeper network, such 

as that by Panfilov et al. (Panfilov et al., 2019) applied to the Stage 1 (coarse) 2D 

network, may have yielded better performance. Or, since the Stage 1 (coarse) 3D network 

performed worst, it is possible that using two or three coarse 2D networks trained along 

orthogonal planes at Stage 1 may be better. Another potential alternative would be to 

train Stage 1 using multiple similar networks that have different loss functions. For 

example, one network could be trained to maximize volume overlap using DSC, and 

other networks could be trained based on surface errors (Caliva et al., 2019). This scheme 

could provide better information for Stage 2 to predict the final segmentation. 

 

To date, the gold standard of cartilage segmentation is manual. The only work to test 

manual segmentations tested the inter-radiologist DSC of all tibial, femoral, and patellar 

cartilage as one segmented region with one label (Shim et al., 2009). That work showed a 
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mean DSC of 0.878 for 10 individuals from the OAI with primarily mild OA (KL0: 1, 

KL1: 3, KL2: 4, KL3: 2). The cartilage DSCs for 3 of 4 individual compartments (femur, 

medial tibial, lateral tibia) from the current framework, and from many published results 

using deep learning (Ambellan et al., 2019; Desai et al., n.d.; Gaj et al., 2020; Panfilov et 

al., 2019), surpass this level (Shim et al., 2009). The only class that falls short is the 

patellar cartilage with a DSC of 0.84-0.87 from the 4 best algorithms. When assessing the 

DSC of all femoral, tibial, and patellar cartilage as one label on predictions from the 

current framework, the mean (SD) DSC of the OAI dataset was 0.901 (0.023). By these 

standards, many currently published deep learning algorithms are more accurate than the 

current gold-standard, manual segmentation. This may also be why many algorithms are 

converging to similar accuracies (Table 4-4) as we may be approaching the highest 

possible metrics when the benchmark is manual segmentation; this is highlighted by the 

plausibly correct segmentations predicted in Figure 4-8 where the manual segmentations 

said there was no cartilage. These performances are also achieved in timescales measured 

in seconds (Liu, 2018; Norman et al., 2018) or minutes (Ambellan et al., 2019; Gaj et al., 

2020) as opposed to hours (Shim et al., 2009). Nonetheless, algorithms make mistakes 

(Ambellan et al., 2019; Gaj et al., 2020). Spot-checking segmentations more likely to 

include errors (low cartilage volume, high KL) could enable efficient analysis of data 

while maintaining high fidelity. Checking segmentations for accuracy is recommended 

for individual analysis such as that required by clinical workflows. However, analyses of 

large datasets allow small errors to be overcome by group statistics. 
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4.5 Conclusions 

The proposed multi-stage CNN segmentation framework provides excellent accuracies 

when segmenting knee cartilage from OAI DESS images in an average of 1.5 min. 

Cartilage segmentation accuracies on the healthy dataset are the best reported to-date. 

The segmentation framework is flexible and fully learns from provided examples, 

therefore showing promise for segmenting other musculoskeletal tissues in future work. 

Furthermore, a single framework was trained to handle knees across the OA severity 

spectrum, and from different MRI vendors and sequences. Together, these results 

demonstrate an ability to efficiently analyze cartilage outcomes for basic science, clinical 

trials, and clinical usage.  
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Abstract 

Purpose: This proof-of-principle study integrates measures of joint reaction forces (JRF) 

and bone shape to assess the acute changes to cartilage caused by walking and cycling in 

women with symptomatic knee osteoarthritis.  Methods: Sixteen women with 

symptomatic knee OA were recruited.  All completed biomechanical assessments to 

estimate JRFs during walking and cycling.  Subsamples had magnetic resonance imaging 

(MRI) performed immediately before and after a 25-minute walking (n=7; mean (SD): 

62.2(4.9) kg, 28.1(5.9) kg/m2) and/or cycling (n=9; mean (SD): 62.9(5.7) kg, 28.6(5.5) 

kg/m2) activity.  MRI scans were obtained to assess cartilage shape and composition (T2 

relaxation time).  Bone shape was quantified using a statistical shape model (SSM), 

which was built using MRI scans from 100 age, height, body mass, and OA-severity 

matched women from the Osteoarthritis Initiative.  Cartilage change caused by activity 

and correlations between cartilage change with JRFs and SSM features were quantified 

using statistical parametric mapping (SPM).  Results: Cartilage thickness and T2 

decreased in the tibial plateau after activity.  On the femur, T2 decreased or increased in 

different regions, dependent on the activity.  Femur and tibia SSMs had features 

characteristic of osteoarthritis severity.  Greater tibiofemoral JRF was associated with 

more cartilage deformation on the lateral femoral condyle after walking.  Knees more 

consistent with osteoarthritis resulted in smaller decreases in tibial cartilage thickness. 

Conclusions: Walking and cycling caused distinct patterns of cartilage deformation 

dependent on knee JRFs and bone morphology.  For the first time, these results show that 

cartilage deformation is dependent on bone shapes and JRFs in vivo.   
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5.1 Introduction 

The integrated joint system (IJS) theory (Edd et al., 2018) suggests that joint disease 

disrupts homeostasis between joint mechanics and tissue characteristics.  IJS states that 

relationships between mechanics and tissue characteristics vary across the disease 

spectrum.  For example, in healthy joints, greater cartilage thickness and quality (denser 

proteoglycans) are related to larger joint loads (Koo et al., 2011; Scanlan et al., 2013; 

Souza et al., 2012) and cartilage surface pressures (Van Rossom et al., 2017), indicating 

adaptation to the mechanics.  Yet, in early OA, there is little to no correlation between 

joint loads and cartilage thickness (Blazek et al., 2014; Erhart-Hledik et al., 2015; 

Vanwanseele et al., 2010).  In late OA, there is a negative correlation between loading 

and cartilage thickness, suggesting loading exacerbates pathology (Erhart-Hledik et al., 

2015; Maly et al., 2015).  

 

There is little work evaluating how mechanics influence the acute response of cartilage to 

loading.  Higher peak (Boocock et al., 2009) but not cumulative (Gatti et al., 2017) loads 

contribute to greater cartilage deformation, measured as thickness and T2 change, in 

healthy adults.  T2 is a magnetic resonance imaging (MRI) measure of mobile water in 

cartilage (Choi and Gold, 2011).  Based on the triphasic theory of cartilage, water is 

redistributed away from areas of load application (Lu and Mow, 2008), decreasing T2 in 

these regions.  Under static load, those with OA trended towards greater deformation, 

suggesting poorer ability to attenuate load (Cotofana et al., 2011).  Quantification of the 

acute response of cartilage to physiologic loads across the disease spectrum is needed. 
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Bone has an important relationship with cartilage and mechanics.  Higher bone mineral 

density is associated with greater joint loading regardless of knee health, indicating that 

bone mineral density adapts to mechanics (Edd et al., 2018; Teichtahl et al., 2015).  In 

healthy knees, higher bone mineral density is positively related to cartilage thickness 

(Babel et al., 2020).  In OA, the opposite is true: higher bone mineral density is related to 

thinner cartilage (Omoumi et al., 2019).  IJS theory suggests cartilage thickness and bone 

mineral density reflect concurrent adaptive responses to increased loads, until cartilage 

can no longer adapt, the homeostatic relationship is broken, and a degenerative process is 

initiated. 

 

Bone shape is another critical consideration in joint health.  Three-dimensional bone 

shape quantified using statistical shape models (SSMs) is associated with structural 

disease severity (Barr et al., 2015).  Neogi and colleagues predicted radiographic knee 

OA progression using SSMs of bone; OA was characterized by widening and flattening 

of the medial joint surfaces, with a ridge of osteophytic growth (Neogi et al., 2013).  

Biomechanical modeling, exploring the effect of bone shape on joint mechanics 

(Clouthier et al., 2019), suggests that OA bone shapes (Neogi et al., 2013) increased 

medial knee contact pressures, providing a mechanical pathway to cartilage degeneration 

(Clouthier et al., 2019).  It remains unclear whether relationships between cartilage, bone 

shape and joint mechanics exist in vivo. 
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This proof-of-principle study integrates biomechanics, SSMs, and cartilage outcomes in 

an experimental study of joint tissues and mechanical loading in vivo.  In women with 

symptomatic knee OA, the primary objectives were to determine (1) whether cartilage 

thickness and T2 changed after activity; and (2) whether changes in cartilage thickness 

and T2 correlated with joint reaction forces (JRFs).  We also conducted exploratory 

analyses of bone shape as it relates with cartilage and JRFs to identify (3) whether bone 

shape features correlate with changes in cartilage thickness and T2; and (4) relationships 

between tibiofemoral and patellofemoral JRFs from gait with bone shape features.  We 

hypothesized that (1) cartilage thickness and T2 would decrease in the medial and lateral 

tibia, the weightbearing regions of the femur, and the trochlea; and (2) absolute 

tibiofemoral and patellofemoral JRFs would be inversely related to cartilage change in 

these same regions.  Due to the lack of a priori knowledge of the SSM shape features, 

objectives 3 and 4 were exploratory. 

 

5.2 Methods 

5.2.1 Participants 

We recruited sixteen women >50 years of age with symptomatic knee OA, according to 

the American College of Rheumatology criteria (Altman et al., 1986), and Lower 

Extremity Functional Scale (LEFS) scores between 30 and 71 (Kennedy et al., 2011).  

Exclusion included any of: rheumatoid arthritis, gout, unstable angina, acute lower-limb 

injury in the preceding 3-months, and contraindications to MRI.  The Get Active 

Questionnaire (GAQ) was used to ensure exercise was safe (Pre-Screening for Physical 
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Activity: Get Active Questionnaire, n.d.). Descriptive statistics included age, height, body 

mass, body mass index, inseam, 25-minute walking speed, cycling cadence and power 

output, and LEFS scores. 

 

5.2.2 Visits 

This experimental study included three visits: one for biomechanical analyses and two to 

obtain MRI scans immediately before and after cycling and walking.  MRI visits were 

scheduled in block-randomized order. 

 

5.2.2.1 Biomechanics visit 

The biomechanics visit included four steps: First, we standardized walking speed to a 

Froude number (Fr) of 0.25, which produces ~3% cartilage strain after 25 min of walking 

(Paranjape et al., 2019). The Fr, a unitless scalar, normalizes walking speed to leg length 

where !"#$%&'	)*++,	 = 	.(01)	(#+'	#+&'3ℎ; 	6)	('1"7%38; 	9.81	6/)!).  Participants 

completed a 100 m walk at their fastest self-selected speed.  If their fastest speed was 

below the Fr-defined speed, the lower speed was used.  Second, bicycle-fit using an 

inseam-based equation and handlebars set based on rider preference (Gatti et al., 2019, 

2020) was determined.  Third, an incremental cycling protocol (Beekley et al., 2004) to 

determine moderate cycling intensity (i.e., steady-state heart rate between 70-75% of age-

predicted maximum (208-0.7*Age) (Gatti et al., 2020; Tanaka et al., 2001)).  Last, 
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collection of motion and force data during gait and cycling using the bicycle-fit and 

intensity from these protocols. 

 

5.2.2.2 Magnetic resonance imaging (MRI) visits 

Visits two and three required participants to arrive at 8 am and rest, laying supine, for 30 

min (Gatti et al., 2017). Then, participants underwent pre-activity scanning, followed by a 

25 min activity (walking or cycling) and finally post-activity MRI scans.  Activities were 

performed at the intensities determined at the biomechanics visit. 

 

5.2.3 Patellofemoral and tibiofemoral joint reaction forces 

JRFs were modeled from kinematic and kinetic data collected during walking and 

cycling.  Participants wore 40 markers attached to anatomical locations (Supplemental 1). 

Marker data were collected at 112.5 Hz (Motion Analysis Corporation, Santa Rosa, CA).  

During walking, synchronous force plate data was collected at 1125 Hz (OR6-7, AMTI, 

MA, USA).  During cycling, synchronous three-dimensional pedal forces and moments 

were collected at 450 Hz (Science To Practice, Ljubljana, Slovenia).  Marker positions 

and kinetic data were filtered using a second-order low-pass dual-pass Butterworth filter 

with a cut-off frequency of 6 Hz.  Motion and force data were processed as previously 

published (Gatti et al., 2020). 
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Functional knee joint centres were fit from cycling data (Ehrig et al., 2006).  Hip joint 

centres were determined using the Harrington method (Harrington et al., 2007).  A 16 

degrees-of-freedom lower-body model with 86 musculotendon actuators was scaled with 

Opensim (Delp et al., 2007).  Joint kinematics and dynamics were calculated using 

inverse methods (Delp et al., 2007).  Static optimization with muscle weightings 

validated using in vivo JRFs estimated muscle forces (Gatti et al., 2020; Steele et al., 

2012).  Using the OpenSim Joint Reaction Tool, the patellofemoral JRF was calculated as 

the sagittal plane resultant force, and the tibiofemoral JRF as the compressive component 

of the tibiofemoral JRF defined along the long axis of the tibia (Steele et al., 2012).  

Reaction forces were extracted using all revolutions from the last minute of each cycling 

bout and 5 gait trials (Gatti and Maly, 2019a).  Data were divided into individual pedal 

revolutions or stance phases to generate median ensemble curves for each reaction force 

and activity; the absolute peak JRF was extracted from each ensemble. 

 

5.2.4 Magnetic resonance imaging data acquisition and analysis 

MR images were acquired using a dedicated quadrature transmit and 16-channel receive 

knee coil array (Invivo Corp) in a 3-Tesla GE Discovery MR750 (GE Healthcare).  Two 

sequences were collected before and after activity.  Following a 3-plane localizer scan a 

commercial sagittal multi-echo spin echo (MESE) sequence (CartiGram; GE Healthcare) 

for T2 mapping (Gatti et al., 2017) (relaxation time (TR) 2450ms, 8 echo times (TE) at 

multiples of 6.312 ms, in-plane resolution 0.625x0.625 mm, slice thickness 3 mm, slice 

spacing 1mm) was acquired.  For segmentation, a 3D fat-saturated T1-weighted sagittal 
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fast spoiled gradient recalled (fSPGR) sequence was acquired (TR 17.388 ms, TE 5.832 

ms, in-plane resolution 0.3125x0.3125 mm, slice thickness 1 mm, slice spacing 0 mm).  

Pre-activity, the fSPGR scan was collected first and the MESE second.  Post-activity, the 

MESE was acquired first. 

 

5.2.4.1 Calculation of cartilage thickness and T2 

fSPGR images were segmented using a convolutional neural network (CNN), (Gatti, 

2018; Gatti and Maly, 2019b) then manually checked (Fedorov et al., 2012).  Bone and 

cartilage surfaces were created by applying a Gaussian filter to the binary mask from 

each tissue (bone >2 = 1.0 mm, cartilage >2 =  0.625 mm) followed by surface extraction 

using the marching cubes algorithm (Lorensen and Cline, n.d.; Mun and Kim, 2017).  

Bone surfaces were resampled to have 10,000 vertices using voronoi clustering (Valette 

et al., 2008; Valette and Chassery, 2004).  Cartilage thickness was calculated for each 

bone vertex by projecting vectors normal to the surface and calculating the 3D Euclidean 

distance from the bone to articular surface.  T2 maps were created by fitting a mono-

exponential decay curve (Equation 3) to the signal intensities (SI) collected at the 8 TEs 

using a Levenberg-Marquardt algorithm, where the intercept is equivalent to the mobile 

proton density (PD) (Gatti et al., 2017).  T2 map post-processing excluded voxels with T2 

> 100ms, and R2 <0.7 (Gatti et al., 2017).  Furthermore, T2 values were assigned to the 

bone meshes by projecting vectors normal to the surface.  When vectors intersected 

cartilage, all T2 cartilage voxels along the vector were averaged and assigned to the vertex 

(MacKay et al., 2020). 
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Equation 3  ?@(AB) 	= 	CD	 ×	+"#$/#! 

 

5.2.4.2 Statistical shape modelling 

The SSM was built using scans acquired from 113 women.  Of these, 13 scans were 

acquired from the women we recruited, and 100 from the Osteoarthritis Initiative (OAI) 

https://nda.nih.gov/oai (Peterfy et al., 2008).  From the OAI, stratified sampling was used 

across 5 Kellgren-Lawrence (KL) grades of severity (Kellgren and Lawrence, 1957).  For 

each KL grade, 20 sets of demographics were randomly sampled from a multivariate 

normal distribution based on demographics (age, height, and body mass) of the 13 

participants recruited for this study.  The OAI participant that best matched each set of 

demographics using a z-score normalized root mean squared (RMS) error was included.  

For each of these OAI participants, baseline knee images (sagittal dual echo in the steady 

state (DESS) with in-plane resolution 0.365x0.365 mm, slice thickness 0.7 mm and no 

gaps (Peterfy et al., 2008)) were extracted and segmented using the CNN. 

 

The SSM was built in four steps. (i) For each segmentation, a 3D surface with 10,000 

vertices was generated.  (ii) A reference knee, with the smallest RMS surface error to all 

other knees after rigid plus scaling registration using the iterative closest point algorithm, 

was identified; all knees were registered to it.  (iii) Point correspondences between the 

reference and every other bone were found using the Feature Oriented Correspondence 
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using Spectral Regularization algorithm with minimum and maximum curvature as the 

features (Lombaert et al., 2013; Pedoia et al., 2015).  (iv) Singular value decomposition 

was used to find the principal modes of variation of these correspondences.  SSM mode 

scores were generated by projecting each mesh onto the mode vectors.  SSM mode 1 

explains the most variance, each subsequent mode explains less variance than the 

previous one.  We tested correlations between cartilage outcomes and bone shape using 

SSM mode 1; and relationships between knee JRFs and the first three SSM modes. 

 

5.2.5 Statistical analysis 

5.2.5.1 Statistical parametric mapping 

Statistical parametric mapping (SPM) was used to perform statistical analyses 

continuously over the cartilage surfaces.  Cluster-wise inference was performed using a 

permutation method (10,000 permutations) to minimize the risk of committing a Type I 

error and assumptions involved with identifying field smoothness and stationarity (Cox et 

al., 2017; Eklund et al., 2016; Legendre et al., 1998; Nichols and Holmes, 2002).  Test 

statistics (z-statistics for one-sample difference tests, and t-statistics for correlations) were 

computed for every permutation.  Clusters above thresholds (p=0.05, 0.025, 0.01, 0.005, 

and 0.001) were identified. The maximum contiguous cluster area for every permutation 

and threshold was recorded.  Significance of a cluster at a given threshold was identified 

based on its position in the permutation distribution.  Clusters with p<0.05 at 2 or more 

threshold levels are presented. 
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For objective 1, we identified whether significant clusters of T2 or thickness change 

occurred using a one-sample difference test.  For objective 2, we identified whether 

significant clusters of correlation between T2 or thickness change and either 

patellofemoral or tibiofemoral JRFs existed.  In our exploratory analysis, we determined 

whether significant clusters of correlation between T2 or thickness change and the tibia or 

femur SSM modes 1 existed.  SPM analyses were conducted for: only walking data, only 

cycling data, and data from walking and cycling combined. 

 

5.2.5.2 Regression analyses 

For objective 4, we computed simple linear regressions between each of tibiofemoral 

compression and the resultant patellofemoral JRF during gait with each of the first 3 SSM 

modes. 

 

5.3 Results 

5.3.1 Participants 

Data collection was interrupted by COVID-19 restrictions.  Sixteen women were 

recruited and scheduled.  Of these, three completed all visits (biomechanics and 2 MRI).  

Ten participants completed the biomechanics visit and at least one MRI visit (n=4 

walking visit, n=6 cycling visit).  Demographics are included in Table 5-1. Three of 13 

participants (only 1 that completed the walking MRI visit) were unable to maintain the 
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Fr-defined walking speed (Table 5-1). These participants were negligibly slower (by 

0.001 to 0.045 m/s) than the Fr-defined speed. 

 

Table 5-1. Demographics (mean ± standard deviation) of women that completed just the 
cycling MRI visit, just the walking MRI visit, or both MRI visits. LEFS = Lower 
Extremity Functional Scale. 

 cycling MRI visit 
(n=6) 

Walking MRI visit 
(n=4) 

Both MRI visits 
(n=3) 

Age (years) 61.7 ± 6.5 59.8 ± 5.7 65.3 ± 3.5 

Height (m) 1.60 ± 0.04 1.66 ± 0.04 1.56 ± 0.03 

Mass (kg) 76.1 ± 10.4 81.2 ± 10.4 64.2 ± 19.9 

Body mass index (kg/m2) 29.8 ± 4.0 29.5 ± 4.1 26.2 ± 7.6 

Inseam length (m) 0.75 ± 0.03 0.77 ± 0.03 0.73 ± 0.01 

Walking speed (m/s) 1.42 ± 0.04 1.46 ± 0.04 1.39 ± 0.04 

Cadence (rpm) 67.5 ± 6.1  70.3 ± 5.5 

Power (watts) 52.2 ± 21.6  52.7 ± 5.7 

LEFS score 58.7 ± 8.8 70.0 ± 0.8 57.0 ±2.7 

n maintained Froude speed 4 4 2 

 

5.3.2 Cartilage response to activity 

Cycling, as well as walking and cycling analyzed together, reduced cartilage thickness on 

the lateral tibial plateau (Figure 5-1).  Cycling reduced T2 on the medial tibial plateau 

(Figure 5-1) and increased T2 along the lateral condyle.  On the lateral femoral condyle, 

cycling also caused a notable region of large, but not significant, decrease in T2 adjacent 

to the region of significant increase (Figure 5-3).  Walking decreased T2 at the lateral 

trochlea (Figure 5-2).  
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Figure 5-1. Superior view showing changes in tibial cartilage thickness (left two 
columns), and T2 (right column). The top is anterior, medial and lateral sides are labelled 
in the figure. Each tibial plateau shows the region of significant change after thresholding 
at the p-value on the y-axis. Walking & Cycling indicates that data from walking and 
cycling were combined in the analysis.  Surfaces are colored by the z-statistic associated 
with the change, where purple indicates a decrease in T2 or thickness. Spaces with no 
surface mesh indicate no significant clusters. No column is provided for walking data, 
because there were no significant changes when analyzing walking alone.  
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Figure 5-2. Inferior view (left column) and antero-inferior view (right column) of the 
changes in femoral cartilage T2 after walking or cycling.  Medial and lateral sides are 
labelled in the figure.  Each femoral surface mesh shows the region of significant change 
after thresholding at the p-value on the y-axis. Surfaces are colored by the z-statistic 
associated with the change, where purple indicates a decrease in T2 or thickness and 
yellow indicates an increase.  Spaces with no surface mesh indicate no significant 
clusters.  All surface meshes are of the right knee.   
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Figure 5-3. Inferior view of the mean change in femoral cartilage T2 after cycling for 25 
min at a moderate 70-75% of maximum heart rate.  The colormap shows decreases in T2 
as purple and increases as yellow.  The surface mesh is of a right knee; the anterior and 
lateral sides are labelled in the figure.  A region of large magnitude decrease in T2 can be 
observed on the lateral weight-bearing femur, with primarily increased or negligible 
change in T2 throughout the rest of the surface.  
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5.3.3 Relationships between joint reaction forces and cartilage change 

A greater tibiofemoral compressive JRF during walking resulted in greater reduction in 

lateral femoral cartilage thickness after walking (Figure 5-4).  On the lateral trochlea and 

the medial femoral condyle, greater tibiofemoral compression produced a greater increase 

in T2 after cycling. 

 

Figure 5-4. Visualization of statistically significant clusters of correlations between the 
tibiofemoral compressive joint reaction force (JRF) and cartilage change after walking or 
cycling. The top row shows correlations between changes in cartilage thickness after 
walking with peak tibiofemoral compression. The bottom row shows correlations 
between changes in T2 after cycling with peak tibiofemoral compression. The colormap 
shows t-statistics for the correlations, where yellow indicates positive correlations and 
purple indicates negative correlations. All meshes are of a right knee; the medial and 
lateral sides are labelled in the figure. 
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5.3.4 Statistical shape model 

Increased SSM mode 1 for both the tibia and femur were indicative of increased OA 

severity. Tibia mode 1 (Figure 5-5) had three main features.  First, viewed anteriorly, 

increasing values corresponded with an increased height of the medial plateau.  Second, 

when viewed superiorly, increasing values corresponded to widening the anterior lateral 

border of the lateral tibial plateau.  Last, when viewed posteriorly, increasing values 

corresponded with greater concavity between the shaft and the tibial plateau indicating 

relative broadening. 

 

Femur mode 1 (Figure 5-5) revealed one major feature: increasing values corresponded 

with an increased bone-cartilage-interface (BCI) surface area.  This feature was best 

observed in the inferior view where the femoral condyles broaden.  This broadening 

corresponded with a narrower intercondylar notch observed inferiorly and posteriorly.  

From an anterior view, increasing femur mode 1 corresponded with a ridge of 

osteophytes at the cartilage borders of the trochlea and weightbearing femur. 
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Figure 5-5. Visualization of mode 1 of the femur (top) and tibia (bottom) statistical shape 
models (SSM). The y-axis identifies the perspective displayed for that row. The x-axis 
identifies where on the continuum of the SSM mode the visualization falls from – 3 
standard deviations (SD) to + 3 SDs. The medial and lateral sides for each row are 
presented on the right and left borders.  
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5.3.5 Relationships between statistical shape model and cartilage change 

5.3.5.1 Cartilage thickness change and bone SSM correlation  

Analysing walking data only, increased tibia and femur modes 1 (greater OA severity) 

corresponded with smaller reductions in lateral tibial cartilage thickness after walking 

(Figure 5-6).  Meanwhile, analysing walking and cycling together, we noted increased 

femur mode 1 (greater BCI surface area) corresponded with smaller reductions in medial 

tibial cartilage thickness (Figure 5-6). 

 

Figure 5-6. Visualization of clusters of significant correlation obtained after thresholding 
the t-statistic at p=0.01. Correlations are between change in tibial cartilage thickness and 
the statistical shape model mode identified on the x-axis for data analyzed from activities 
listed on the y-axis.  Cycling & Walking indicates that cycling and walking were 
analyzed together.  No cycling column is included because no significant clusters existed 
for cycling data alone.  The colormap shows the t-statistic for correlations, with positive 
t-statistics, and thus correlations, in yellow.  The top is anterior.  Medial and lateral sides 
are labelled in the figure.  All visualizations are of the right knee.  For femur mode 1 
Cycling & Walking, the same significant cluster existed at thresholds of p=0.01, 0.005, 
and 0.001.  For femur mode 1 Walking data, the same significant cluster existed at 
thresholds of p=0.01 and 0.005. For tibia mode 1 Walking data, the same significant 
cluster existed at p=0.01 and 0.005. 
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5.3.5.2 Cartilage T2 change and bone SSM correlation 

Correlations between T2 change and SSM features occurred for the femur (Figure 5-7) 

and tibia (Figure 5-8).  With the analysis of walking and cycling together, greater 

increases in T2 on the medial femoral condyle occurred with higher femur SSM mode 1 

(Figure 5-7).  Following analysis of both activities, femoral and tibial bones with higher 

modes 1 showed smaller decreases in T2 on the tibial plateaus (Figure 5-8).  When 

analyzing cycling, higher femoral SSM mode 1 resulted in smaller decreases in T2 on the 

lateral tibia (Figure 5-8).  

 

Figure 5-7. Visualization of clusters of significant correlation between change in femoral 
cartilage T2 and femoral statistical shape model mode 1 when analyzing data from 
walking and cycling together. Each femoral surface mesh shows the region of significant 
correlation after thresholding at the p-value on the x-axis. Surfaces are colored by the t-
statistic associated with the change, where yellow indicates a positive t-statistic and 
correlation. All surface meshes are of the right knee; the medial and lateral sides are 
labelled in the figure. 
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Figure 5-8. Visualization of clusters of significant correlation between change in tibial 
cartilage T2 and statistical shape model features when thresholded at p=0.025. The x-axis 
identifies what statistical shape model mode was used in the correlation. The y-axis 
identifies what data was included in the analysis. The medial and lateral sides are labelled 
in the figure. Surfaces are colored by the t-statistic associated with the correlation, where 
yellow indicates a positive t-statistic and correlation. All surface meshes are of the right 
knee. The walking and cycling clusters were significant at every threshold level (p=0.05, 
0.025, 0.01, 0.005, 0.001). The cycling only cluster was significant at thresholds p=0.05 
and 0.025. 
 
5.3.6 Relationship between joint reaction forces and bone SSM features 

Femur SSM mode 1 negatively related to the patellofemoral resultant JRF (intercept = 

555.7, beta = -151.2, R2 = 0.4, p=0.021) (Figure 5-9).  Femur mode 1 explained 27% of 

the variance in tibiofemoral compression (intercept=2017.1, beta=-203.0, R2=0.27, 

p=0.067) (Figure 5-9).  All other correlations had R2<0.18 and p>0.14. 
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Figure 5-9. Visualization of the relationships between femur statistical shape model 
(SSM) mode 1 with each of the resultant patellofemoral joint reaction force (orange) and 
the compressive tibiofemoral joint reaction force (blue). 
 

5.4 Discussion 

This work uniquely integrated biomechanical outcomes, measures of cartilage thickness 

and quality, and bone shape to explore the acute responses of osteoarthritic cartilage to 

physical activity.  Walking and cycling caused distinct patterns of cartilage deformation.  

JRFs correlated with localized regions of cartilage change.  The bone SSMs identified 

characteristics of OA (Barr et al., 2016; Neogi et al., 2013; Pedoia et al., 2015) that 

associated with the cartilage changes resulting from activity.  Further, femurs with more 

severe OA had lower knee JRFs during gait.  Together these findings show that, among 
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women with symptomatic knee OA, weight-bearing cartilage T2 and thickness decrease in 

response to loading; however, greater disease severity and differences in knee JRFs 

modulate individual responses. 

 

Femoral cartilage deformation was associated with JRFs.  This finding corroborates a 

previous study that found lateral femoral cartilage deformation was related to 

tibiofemoral compression (Boocock et al., 2009).  After walking, we found a cluster on 

the lateral trochlea that was thinned more with greater tibiofemoral compression.  We 

also found greater increases in T2 on the posterior medial condyle with greater 

tibiofemoral compression (Figure 5-4).  Increased T2 likely reflects mobile water 

redistribution away from regions of compression; (Choi and Gold, 2011; Eckstein et al., 

1999; Lu and Mow, 2008) with more redistribution occurring with greater JRFs. 

 

Tibial plateau T2 and thickness decreases following loading observed in this sample 

(Figure 5-1) coincide with the regions of peak cartilage surface pressures during gait in 

previous work (Clouthier et al., 2019; Van Rossom et al., 2017).  After walking, trochlear 

T2 decreased, as hypothesized.  However, after cycling, T2 on the lateral condyle 

increased (Figure 5-2).  The increased T2 may reflect water redistribution away from 

adjacent regions of insignificant T2 decrease (Figure 5-3).  The larger area of T2 increase, 

compared to the region of decrease, may be why the region of decrease was not 

statistically significant.  Along the same line of thought, larger regions in different 
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compartments, could explain why tibial changes in T2 and thickness occurred in only one 

compartment.  These findings highlight that SPM may avoid challenges inherent in mean 

values of anatomically-defined cartilage subregions. 

 

Femur SSM mode 1 shows key features of OA.  This single mode closely matches the 

OA versus non-OA axis of the 70-dimensional SSM by Neogi and colleagues, which was 

also built from OAI data (Neogi et al., 2013).  Our model, and previously published ones 

(Barr et al., 2016; Neogi et al., 2013) included broadening of the distal femoral cartilage 

surfaces, increased osteophytes, and narrowing of the intercondylar notch.  Consistency 

between studies signifies robustness of these features. 

 

The acute response of cartilage to a standardized load depends on the SSM score.  Since 

the SSM reflected features of OA, this finding supports the IJS theory that relationships 

between cartilage, mechanics, and bone differ over the disease spectrum.  For example, at 

the lateral tibial plateau, T2 decreased less with increasing tibia mode 1, likely reflecting 

OA severity.  In this case, we propose broadening of the plateau may distribute forces 

over a larger area, reducing pressure leading to smaller cartilage changes.  Alternatively, 

more OA knees may have had thinner cartilage in those locations and therefore less to 

deform.  At the posterior medial femoral condyle, increased OA severity lead to greater 

increases in T2 after cycling.  In this case, more severe OA knees with pathologic 
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cartilage likely had greater fluid redistribution, which is congruent with the triphasic 

theory of cartilage (Choi and Gold, 2011; Eckstein et al., 1999; Lu and Mow, 2008).  

 

Knees more characteristic of OA had smaller JRFs.  Previous work supports our finding, 

showing that when walking at a constant speed (1.11 m/s) individuals with OA have 

lower compressive forces during gait than their healthy counterparts (Henriksen et al., 

2006).  These works highlight that JRFs during gait change with OA progression. 

 

5.4.1 Limitations 

Due to collection restrictions imposed by COVID-19 this study was under-sampled.  

Permutation methods ensured accurate p-values for these participants.  Point 

correspondences between 3D surfaces may affect the SSM. Alignment of SSM mode 1 

with previous models indicates convergent validity. 

 

5.5 Conclusion 

In women with symptomatic knee OA, walking and cycling caused distinct patterns of 

cartilage deformation that were dependent on knee JRFs and bone morphology.  

Individuals with femurs more consistent with OA had smaller tibiofemoral JRFs. This 

work supports the IJS theory that relationships between bone, cartilage, and mechanics 

change over the disease process and shows that bone shape should be considered an 

important factor in these relationships. 
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5.7 Supplemental 

5.7.1 Supplemental 1.  

Location of markers used to scale a musculoskeletal model, and to determine joint 

kinematics. Markers listed for the thigh, shank, and foot were included on the right and 

left legs. 

Segment Markers 

Foot Calcaneus 

1st metatarsal head 

5th metatarsal head 

Lateral side of the midfoot 

Shank Tibial tuberosity 

Lateral malleolus 

Medial malleolus 

Rigid cluster of 4 markers attached to the lateral shank 

Thigh Greater trochanter 

Lateral femoral condyle 

Medial femoral condyle 

Rigid cluster of 4 markers attached to the lateral thigh 

Pelvis Right anterior superior iliac spine 

Left anterior superior iliac spine 

Right posterior superior iliac spine 

Left posterior superior iliac spine 

 

 

 

 



 199 

6 Discussion 
This thesis consists of three main parts.  First, a fully crossed experimental study was 

designed to thoroughly capture motion and force data while a variety of healthy adults 

bicycled under random deviations of bicycle saddle position and crank arm length.  The 

second major component described a novel method of segmenting bone and cartilage 

from knee MRIs and tested its accuracies.  The third and final component integrated 

results from the first and second parts in order to investigate the interplay between bone 

shape and knee JRFs on the acute changes in knee cartilage T2 and thickness to the 

common aerobic activities of walking and bicycling. 

 

6.1 Thesis Overview 

This thesis filled four gaps in the literature relevant to bicycling and how it affects knee 

joint forces and cartilage.  The following sections highlight unique aspects of each study 

relevant to each gap:  

1.  There is no easy way to prescribe or determine the optimal bicycle saddle 

position to elicit a desired amount of knee flexion. 

2. There are no thorough experimental studies that determine how alterations in 

bicycle saddle position, and thus lower extremity joint kinematics, affect forces 

acting inside of the knee.  

3. Current methods of segmenting cartilage and bone from MRI for quantitative 

analyses are slow and prone to error.  Faster and more accurate methods are 

required to enable efficient analysis.  
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4. We lack an understanding of how knee cartilage affected by OA responds to 

physical activity.  Ultimately, we do not fundamentally understand how two 

common activities, walking and bicycling, affect the OA knee. 

 

6.1.1 Biomechanical Analyses of Bicycle-Fit and Knee Joint Reaction Forces 

Chapter 2 created a novel equation for prescribing bicycle saddle position that elicits a 

desired knee kinematic; this equation enables easy prescription of joint kinematics, the 

gold-standard of bicycle-fit, inside the clinic, bicycle-shop, or at home.  Chapter 3 

confirmed the popular notion that the patellofemoral JRF is most sensitive to joint 

kinematics.  Also, we were the first to show that knee JRFs are least sensitive to the most 

common bicycle-fit parameter, minimum knee flexion angle (Bini et al., 2011; Holmes et 

al., 1994; Silberman, 2013), and that the overall most important predictor of knee JRFs 

was minimum hip flexion angle. 

 

These findings were enabled by a fully-crossed random assignment study design 

specifically created to sample the breadth of possible saddle positions, continuously.  

Historically, studies of bicycle-fit have collected data on a small set of finite saddle 

positions (Bini et al., 2010; Menard et al., 2016, 2018; Tamborindeguy & Bini, 2011).  

These perturbations to saddle position were typically large, in the range of +/- 10% 

(Menard et al., 2018).  Practically, changes of these magnitudes would almost never be 

conducted and therefore findings may not translate to practical bicycle-fit adjustments.  
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Our design randomized each individual participant’s horizontal (recommended +/- 10%) 

and vertical (recommended +/- 5%) saddle positions to be any mm increment within 

similar ranges. We also tested all possible combinations of changing 3 bicycle-fit 

parameters (3 saddle X, 3 saddle Y, 2 crank arm length).  Because of their study designs, 

previous studies determine how the saddle position affects JRFs (Menard et al., 2018; 

Tamborindeguy & Bini, 2011).  That is, these studies used designs that tested a few 

discrete saddle positions and only tested differences using analysis of variance of the 

discrete positions.  By collecting continuous data, we were able to determine the 

relationship between kinematics and the outcomes of interest (saddle position and knee 

JRFs).  Comparing joint kinematics seems crucial as they have become the standard in 

bicycle-fit, (Bini et al., 2011; Fonda et al., 2014; Holmes et al., 1994) and are likely the 

mediators between changes in saddle position and knee JRFs.  By collecting continuous 

data on the largest sample used in any study of this nature, we were able to perform 

continuous analyses to provide novel equations for bicycle-fit and unique findings of how 

joint kinematics affect knee JRFs.  

 

It is interesting to note that hip flexion, which was not important when predicting saddle 

heights, was the most sensitive measurement and appeared in every JRF model.  I 

hypothesize that the statistical approach provides insight into why hip kinematics were 

identified as important to joint reaction forces.  Particularly, I propose that use of mixed-

effects models explains hip flexions inclusion in the joint reaction forces analysis but not 

the saddle height prediction equations.  Discussion section 6.2 outlines this rationale.  I 
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also propose that maximum knee flexion angle should continue to be explored, at least in 

the realm of patellofemoral conditions which are the most common reason for medical 

care amongst cyclists (Silberman, 2013). 

 

6.1.2 Advances in Cartilage Segmentation from Magnetic Resonance Images 

Chapter 4 presents a state-of-the-art multi-stage convolutional neural network framework 

that uses stage 1 predictions as inputs into stage 2 producing excellent results for 

segmenting all regions of interest, and in timescales (~1.5 mins) that do not hinder 

clinical or research timelines. 

 

To enable this testing, I designed a cross-validation study that assessed how the novel 

algorithm both learns from and predicts the presence and location of cartilage on knees 

ranging from healthy to severe OA, and from two different MRI vendors and sequences.  

The previous best method tested on the entirety of the same OAI dataset required a SSM 

to limit bone errors and localize cartilage.  We show that such an SSM is not needed.  In 

fact, the multi-stage convolutional neural network produced better DSC and average 

surface distance metrics than the SSM plus deep learning method that took 10-minutes to 

segment a knee.  Our approach could just as easily add other anatomical tissues at the 

knee, or be employed for the hip, brain or any other imaging data, without the need to 

manually define SSM features.  Chapter 4 highlights that the accuracies of this algorithm 

are better than inter-radiologist accuracies, and thus surpass the gold-standard (Shim et 
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al., 2009).  Automated, fast methods of analyzing data that previously required tedious 

manual work performed by experts is a trend being facilitated by machine learning that 

has the potential to have a major impact on biomedical research.  

 

6.1.3 Integrating Bone Shape and Biomechanics to Understand Cartilage 

Deformation 

In Chapter 5, we showed for the first time that in women with symptomatic knee OA, 

aerobic exercises walking and bicycling cause distinct patterns of cartilage deformation 

dependent on knee JRFs and bone shape.  These findings provide support for the IJS 

theory, and the methods provide new approaches to integrate the study of cartilage, bone, 

and mechanics. 

  

To achieve these outcomes, we used information garnered from chapters 2-4 and 

integrated musculoskeletal modelling, medical imaging, deep learning, and advanced 

statistical methods to study the acute response of osteoarthritic cartilage to physical 

activity.  To create the SSM used to categorize bone shape, we created and open-sourced 

two new packages for the Python programming language: cycpd and pyfocusr.  To 

analyze the changes in cartilage continuously over the bone surface using SPM we 

created and open-sourced a third package (pyKneeSPM).  Due to restrictions imposed by 

COVID-19, this study was performed on a small sample.  Nevertheless, the findings 

support the IJS theory (Edd et al., 2018).  Furthermore, the proposed framework is a 



 204 

strength that may be used in future studies that hope to integrate bone, cartilage, and 

mechanics.  

 

6.1.4 Key Ideas, Findings, and Concepts 

These studies bring about a few important ideas, findings, and concepts.  First, important 

for translating the findings to clinical usage, hip flexion angles were broadly the most 

important factors in the JRF analyses but did not aid in predicting saddle height.  This 

mis-match leaves the question as to how bicycle-saddle height should be set.  I propose 

that this is largely a result of the study purposes and statistical methods, as well as effects 

of upper body positioning on hip kinematics.  Second, as an alternative target for bicycle-

fit in the clinic or bicycle-shop, I propose that research should explore maximum knee 

flexion angle.  Third, the application of machine learning in chapters 2 and 4 highlights 

the potential importance in enabling biomedical research.  Fourth, open-source software 

produced and maintained by others has been crucial at enabling this research; this thesis 

also contributes three new packages to the open-source community.  Finally, 

biomechanical and biomedical imaging data have been foundational in the study of OA.  

Chapter 5 of this thesis provides new methods of thoroughly integrating these data; 

stronger integration appears integral for progression in applying these fields to the study 

of OA.  In the following sections I elaborate on each of these topics.  

 

6.2 Why Hip Kinematics are Related to Joint Forces but Not Saddle Positioning   
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Hip kinematics predicted bicycle saddle position, indicating that if saddle position is 

changed hip kinematics do not change consistently.  Conversely, knee kinematics 

predicted saddle position, indicating that changing saddle position will systematically 

affect knee kinematics.  Yet, hip kinematics were the most important predictors of knee 

JRFs, and minimum knee flexion was the least.  Together, these indicate that saddle 

position does not seem to affect JRFs, at least not through changes in knee or hip 

kinematics.  Yet, the current consensus is that bicycle-fit, primarily saddle positioning, is 

the gold standard method of avoiding musculoskeletal injuries, presumably via reductions 

in mechanical aetiologies such as JRFs (Bini, 2016; Bini et al., 2011; Silberman, 2013).  

This is particularly the case for patellofemoral pain which is hypothesised to be driven by 

high patellofemoral compression caused by poor bicycle-fit (Holmes et al., 1994).  My 

hypothesis for why this is the case comes down to the statistical methods used combined 

with the fact that hip kinematics likely vary more between participants than knee 

kinematics. 

 

The fully-crossed random assignment study design that contained repeated measurements 

of the same participants was a strength of this work.  Due to the repeated measurements, 

these data were correlated with one another, which is known to inflate statistical 

significance (Cameron & Miller, 2015).  Two common methods used to handle the 

correlated measurements for regression analyses are: 1) mixed-effects models that 

account for the between-subjects variance, (Detry & Ma, 2016) or 2) regular linear 

regression followed by correction of standard errors after fitting the model (StataCorp LP, 
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2013).  A mixed-effects model accounts for between-subjects variability, enabling 

modelling of the relationship between the independent and dependent variables within an 

individual.  Whereas, regular linear regression plus standard error correction, typically 

ignores the between-subjects effects and therefore does not enable within participant 

inference.  Therefore, if there are greater differences between participants than there are 

within participants, then the regular linear regression model will be fitted to these 

between-subjects effects missing the within-subject effects entirely. 

 

I believe that the purposeful statistical modelling decisions combined with between-

subject differences in hip kinematics are why hip flexion was important to JRFs but not 

bicycle-fit.  Specifically, hip kinematics systematically varied between participants.  That 

is, commercial bicycle saddle position was standardized and used as a reference frame.  

However, each participant was allowed to select their own preferred handlebar position.  

A more aggressive handlebar position would result in a more bent over rider and an 

anteriorly rotated pelvis (Silder et al., 2011).  Anterior rotation of the pelvis with respect 

to gravity will likely increase the hip flexion angles throughout the pedal revolutions, if 

we maintain all other bicycle-fit parameters (Silder et al., 2011).  Therefore, when trying 

to create one equation to predict saddle height, the between-subjects variability in hip 

kinematics precluded it being an important overarching predictor of saddle height.  
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When modelling the relationship between joint kinematics and knee JRFs, the purpose 

was not to attribute a specific relationship between joint kinematics and knee JRFs.  That 

is, we did not expect that a certain joint angle would produce the same JRF in all 

participants.  This is because other participant specific factors (e.g., power output, 

cadence) are likely more important for predicting these JRFs.  We were instead interested 

in how changing joint kinematics within an individual affected knee JRFs.  To achieve 

this outcome, we leveraged the fully-crossed study design and mixed-effects models.  

The fully-crossed design allowed us to garner a breadth of data on how the independent 

and dependent variables varied as we changed saddle positioning, within a person.  Then, 

the mixed-effects models accounted for the between-subjects effects due to factors like 

power output and cadence, enabling identification of the within-subject effect of hip 

kinematics on knee JRFs.  Ultimately, between-subjects differences in hip kinematics and 

appropriate use of modelling techniques were the drivers of the discrepancy between 

studies.  

 

6.3 Maximum Knee Flexion as a Future Measure of Bicycle-fit 

The fact that hip flexion is most important for JRF prediction but is unimportant for 

predicting saddle height leaves a void as to how saddle positioning should be set.  Taking 

an integrated view, I propose that maximum knee flexion warrants further study.  First, 

separate equations using either minimum or maximum knee flexion contained the same 

fit parameters (R2 0.97, RMSE 1.15 cm) and were very close in terms of cross-validation 

based RMSE (minimum knee flexion: 1.16cm, maximum knee flexion: 1.19 cm).  
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Second, we showed that the patellofemoral JRF was least sensitive to minimum knee 

flexion angle (5.6 N/º), however, it was ~3 times more sensitive to maximum knee 

flexion angle (15.9 N/º).  The sensitivity of the patellofemoral JRF to minimum hip 

flexion (17.9 N/º) was only slightly more than to maximum knee flexion.  Therefore, 

maximum knee flexion angle will enable prescription of bicycle saddle height while 

concurrently providing insight into the patellofemoral JRF. 

 

In addition to these new findings, there is strong theoretical reasoning why maximum 

knee flexion angle should be an important predictor of patellofemoral compression.  

While minimum and maximum knee flexion should, in theory, be strongly correlated, 

there are bicycle-fit related factors that affect one and not necessarily the other.  For 

example, shorter crank arms which are recommended commercially to reduce 

patellofemoral JRFs will have asymmetric effects on minimum and maximum knee 

flexion angles.  A focus on maximum knee flexion is important for at least three reasons.  

First, when bicycling, studies that use electromyography (Jorge & Hull, 1986; Lai et al., 

2017) or musculoskeletal modelling (Lai et al., 2017) show that the quadriceps are most 

activated in the top half of the pedal revolution (9 o’clock to 3 o’clock) and that there are 

peak patellofemoral compressive forces in this region (Bini, 2020).  Furthermore, these 

studies show minimum values at the bottom of the revolution, where the gold standard 

bicycle-fit parameter minimum knee flexion is measured (Bini, 2020; Jorge & Hull, 

1986; Lai et al., 2017).  Second, patellofemoral biomechanics indicate that with greater 

knee flexion, for a given quadriceps force, there will be higher patellofemoral JRFs 
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(Figure 6-1).  This is because, with increased flexion, the quadriceps/patellar tendon line 

of action is directed increasingly posteriorly.  Therefore, with greater knee flexion, a 

greater proportion of the quadriceps force compresses the patella into the femur 

(Hungerfordm & Maureenbarryb, 1979; Nordin & Frankel, 2012).  This scenario 

presumes that the quadriceps force is constant.  Third, with increased knee flexion above 

45º the quadriceps moment arm decreases, thus theoretically requiring an even greater 

quadriceps force for a given knee extension moment§§ (Krevolin et al., 2004).  I therefore 

propose that future research should focus on maximum knee flexion as a key bicycle-fit 

related parameter relevant to patellofemoral ailments.  In the meantime, this thesis 

highlights equations to predict bicycle saddle height based on a desired maximum knee 

flexion angle and indicates that less flexion will reduce patellofemoral JRFs. 

 

 

§§ Assuming the same extensor moment is needed for a given bicycling intensity (cadence 

and power). 
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Figure 6-1. Knee flexion angle versus patellar compression. Visual depiction of how 
changing knee flexion angle changes patellofemoral compression for constant quadriceps 
tendon (QT; orange solid vector) and patellar tendon (PT; blue solid vector) forces. The 
solid vectors (blue and orange) are all the same length, representing a constant force 
applied through each tendon. The dashed lines show the compressive component of the 
QT and PT forces under two hypothetical knee flexion angles. The dashed lines are 
placed tip to tail so that the total length of the dashed arrows visually represents the total 
compressive force. Subfigure A) shows a knee at near full extension and subfigure B) 
shows a knee flexed to approximately 90 degrees. The figure demonstrates that greater 
knee flexion, for a constant muscular (tendon) force, greatly increases patellofemoral 
compression.  
 

6.4 Machine Learning in Biomedical Research 

Machine learning, and deep learning, have received excesses of hype over the past 

decade, particularly to predict health-related outcomes from medical images.  Machine 

learning is a form of applied statistics that emphasizes using computers and is focused 

A B
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around prediction instead of inference (Goodfellow et al., 2016).  Deep learning is a 

flexible and non-linear type of machine learning (Goodfellow et al., 2016).  In the knee 

OA literature, machine learning methods have been used to directly predict structural 

disease progression from up to 366 predictors*** (Pedoia et al., 2018).  Deep learning has 

been extensively used to grade KL scores from radiographs (Norman et al., 2019; 

Thomas et al., 2020; Tiulpin et al., 2018).  Tolpadi et al. used deep learning to predict 

total knee replacement (TKR) from sagittal MRIs combined with clinical and 

demographics data (Tolpadi et al., 2020).  The growth of deep learning, and particularly 

convolutional neural networks has greatly improved the ability for direct prediction of 

outcomes from medical images. 

 

While machine learning has improved predictions obtained directly from images, using  

convolutional neural networks directly on the image does not automatically solve the 

problem at hand.  For example, in models predicting TKR using only imaging data (X-

ray or MRI) there is poor sensitivity when predicting TKR in those with KL grades 0 (7.9 

to 66.9%), and poor specificity in predicting TKR in those with KL grades 4 (7.2 to 

 

***Predictors included: demographics, patient reported outcomes, qualitative cartilage 

assessments, biomechanical outcomes, and compositional MRI outcomes.  
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9.2%)††† (Tolpadi et al., 2020).  Furthermore, using these pipelines to directly predict the 

clinical outcome does not improve our understanding of the underlying pathophysiology.  

Some work has been done to improve interpretability, particularly of convolutional neural 

networks.  Tolpadi et al. used an occlusion map technique to identify image “hot spots” 

relevant for predicting TKR (Tolpadi et al., 2020).  Saliency maps have also been used to 

identify image regions pertinent for predicting KL grades (Norman et al., 2019; Thomas 

et al., 2020; Tiulpin et al., 2018).  While occlusion maps highlight areas of interest they 

do not explain their importance. 

 

While applications of directly using machine learning are attractive, one of the greatest 

uses of machine learning today may be speeding up previously tedious and costly data 

processing steps.  In the biomechanics field, and in MRI studies of cartilage, small 

sample sizes are common.  Small samples are not by design, but feasibility.  Chapters 2 

and 3 used biomechanical data collected from 40 participants under 18 bicycling 

 

††† Integrating clinical data improves these predictions but is not perfect with moderate 

(KL 2, 3) and severe (KL 4) knees having sensitivities ranging from 64 to 84% and 

specificities ranging from 49.6% to 74.7% (Tolpadi et al., 2020). 
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positions each; this sample size is large relative to the previous work‡‡‡.  However, 

sample sizes even larger would provide more precise estimates of the relationships 

between joint kinematics and JRFs.  Larger samples were precluded by the fact that data 

collections took up to 4.5 hours per participant and data post-processing took longer.  

Preliminary post-processing took 40 hours for a single participant.  This efficiency was 

drastically improved, but it still took approximately one 8-hour day to manually process 

motion data from one participant. 

 

Markerless motion analysis systems may provide one solution to improving the 

efficiency of acquiring and processing biomechanical data.  Recently, markerless motion 

analysis systems have been proposed and made available as open-source (Mathis et al., 

2018) and commercial (Theia Markerless, Kingston, Ontario, Canada) software (Kanko, 

Laende, et al., 2020; Kanko, Strutzenberger, et al., 2020).  These software have the 

potential to reduce data collection and processing times.  Aside from the ease of use, if 

everyone uses the same automated software then research between labs will become more 

comparable, a difficulty today when different laboratories have different equipment, 

(Fonda et al., 2014; Kaufman et al., 2016) different protocols for data acquisition, varying 

 

‡‡‡ Previous investigations included 9 or 10 male participants (Bini, 2020; Menard et al., 

2018; Tamborindeguy & Bini, 2011) and just 3 conditions each totaling 27-30 trials. This 

thesis included 40 participants and 18 trials each, totaling 720 trials. 
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expertise in anatomical palpation and marker placement, (Gorton et al., 2009) different 

marker sets, (Kaufman et al., 2016) and different post processing methods (Kainz et al., 

2017).  However, these automated systems do have limitations.  While the marker 

placements may be more consistent, this does not mean that they are correct§§§ and there 

will be conditions and scenarios that these systems knowingly, and unknowingly, fail.  

For example, the system may fail when analyzing gymnastics or other aerial sports where 

people appear upside down in the frame due to a lack of sufficient training data in these 

edge cases.  Furthermore, there will likely be more than one vendor, posing new issues of 

comparability between systems.  Ultimately, like any tool, researchers will need to be 

informed and vigilant of the limitations of the systems they are using, which may pose a 

particular challenge as the technology underpinning the tools becomes more and more 

specialized. 

 

Specific to this thesis, the segmentation algorithm presented in Chapter 4 enabled 

automated segmentation of knee MRIs in ~1.5 minutes.  This efficiency saved hundreds 

of hours of manual analysis for the SSM creation and cartilage analysis used to explore 

 

§§§To date, the commercial Theia Markerless system has been evaluated for test re-test 

reliability, (Kanko, Laende, et al., 2020) and for validity of simple gait metrics only: gait 

speed, cadence, step time, stance time, swing time, double-limb support time, step length, 

stride length, and stride width (Kanko, Strutzenberger, et al., 2020). 
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the acute response of OA cartilage to walking and bicycling in Chapter 5****.  The 

increased capacity of automated methods is highlighted by a recent publication that 

quantified cartilage T2 relaxation time for the entire OAI dataset (Razmjoo et al., 2020).  

The segmentation DSCs in that study were markedly poorer (medial femur: 0.69, lateral 

femur: 0.69, medial tibia: 0.68, lateral tibia: 0.75, patella: 0.57) than those presented here 

(femur: 0.91, medial tibial: 0.88, lateral tibia: 0.91, patella: 0.84).  Nonetheless, analysis 

of a dataset with >25,000 knee MRIs enabled confirmation that T2 does increase with 

increasing disease severity and that it is predictive of disease progression†††† (Razmjoo et 

al., 2020).  However, similar to markerless analyses, different algorithms will likely be 

systematically different and therefore criteria necessary for clinical usage may be system 

specific.  While prediction of new images is relatively fast, training these algorithms is 

computationally expensive.  A single cross-validation fold trained to segment cartilage 

and bone from MRI images in the experiments of Chapter 4 using the latest Tesla V100 

 

**** The 132 MRI images used for building the SSM and conducting the analyses on 

acute changes to cartilage in Chapter 5 were segmented in ~ 198 minutes (3.3 hours) as 

opposed to the hundreds of hours manual analysis would have taken (~2-4+ hours per 

knee) (Shim et al., 2009). 

†††† The highest 25% quartile of T2 had a 5 times higher risk of developing radiographic 

knee OA (KL >= 2) 2 years later (Razmjoo et al., 2020). 
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(Nvidia, California, USA) graphics cards‡‡‡‡ took at least 10 days of continuous training, 

60+ days for all folds.  These times do not include time to develop and test the methods.  

Ultimately these tools have the ability to improve and expedite measurements, however, 

they will have their own sets of limitations that must be considered.  

 

6.5 Open-source Software 

This thesis would not be possible without open-source software.  I almost exclusively 

performed data analyses in the Python programming language, which has a strong open-

source community.  I also leveraged open-source libraries for biomechanical analyses 

(biomechanical tool kit, OpenSim), image analyses (Insight Toolkit [ITK], Visualization 

Toolkit [VTK], ScikitImage, pycpd), statistics (StatsModels), machine learning 

(ScikitLearn, Keras, Tensorflow), and general computation (Numpy, Scipy, Pandas, 

Jupyter, Matplotlib).  In the final chapter of my thesis, where I used SSMs and SPM to 

assess changes in cartilage from walking and bicycling, I contributed three new open-

source packages: cycpd, pyfocusr, and pyKneeSPM. 

 

 

‡‡‡‡ Purchase price of a Tesla V100 GPU is $10,000 and cloud rental is $1,800/month. 

These prices do not include other computer hardware, memory, storage, or central 

processing unit (CPU). 
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The three packages that I created leverage one another, and together did all of the 

computation for the main analysis in Chapter 5.  The pyfocusr package§§§§ was used for 

registering bones of different participants together, a step that was crucial for creating the 

SSMs in Chapter 5.  The pyKneeSPM package***** was designed to conduct SPM 

analyses on surface meshes, and thus was used for all of the SPM statistical analyses 

presented in Chapter 5.  Registering bones together is necessary for conducing SPM 

analyses, and therefore the pyKneeSPM package used pyfocusr.  Open-source 

contribution of these packages means that not only will I be able to better reproduce and 

run these analyses in the future, but others may also use them for their own research, 

expediting the research process.  The pyfocusr algorithm is already being tested by a 

researcher in bioinformatics†††††. 

 

§§§§ pyfocusr (https://github.com/gattia/pyfocusr) is a python implementation of the 

Feature Oriented Correspondence using Spectral Regularization (FOCUSR) algorithm 

(Lombaert et al., 2013). FOCUSR registers surface-meshes, e.g., the bones in this thesis. 

FOCUSR combines mesh spectral coordinates with features such as curvature of each 

point. These features help improve anatomical correspondence during registration. 

***** pyKneeSPM (https://github.com/gattia/pyKneeSPM) conducts SPM analyses on 3D 

mesh data (e.g., bones). pyKneeSPM uses pyfocusr for registration and permutation 

statistics which are more robust than random field theory analyses (Eklund et al., 2016). 

†††††https://github.com/gattia/pyfocusr/issues/1 
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Open-source software is developed and maintained in the open by contributors from 

anywhere.  Independent interaction and review of the codebase is a major asset of open-

source software because it identifies key features that users require as well as errors in the 

code.  Once errors are identified, these become public knowledge so that every user can 

update their code.  Key features that are requested by users can easily be added to the 

development path or can be carried out by any user if they require the feature faster.  For 

example, I contributed “bug fixes” to the Keras deep learning library‡‡‡‡‡ that fixed and 

enabled 3D transpose convolutions which were crucial for implementation of the 

convolutional neural networks used for the segmentation algorithm in Chapter 4.  In a 

closed-source ecosystem these features would only be available when it became a priority 

of the developers, not the users. 

 

 

‡‡‡‡‡ https://github.com/keras-team/keras-contrib/pull/67 
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Existing open-source projects help inspire new software.  I used the open-source 

pycpd§§§§§ package as the basis for my first open-source library cycpd******.  The reason 

for creating cycpd was that the pyfocusr algorithm I created and used for registering 

meshes together relied on the coherent point drift (CPD) algorithm, but the open-source 

pycpd version that was available was too slow.  cycpd therefore uses the basic structure 

of pycpd developed by Siavash Khallaghi except some of the key components were re-

written in Cython, a bridge between C code and Python.  Cython was used to speed up 

(3x) iterative parts of the CPD algorithm. I also added the low-rank option for deformable 

registrations into pycpd††††††. Low-rank further sped up non-rigid registration (9x) and 

enabled better regularization of non-rigid registration methods.  I have since contributed 

these non-rigid methods back to the pycpd library thus continuing its development and 

progress. 

 

 

§§§§§ pycpd (https://github.com/siavashk/pycpd) by Siavash Khallaghi is based on the 

Coherent Point Drift (CPD) algorithm originally written in Matlab (Myronenko & Xubo 

Song, 2010).  

******https://github.com/gattia/cycpd  

††††††Low-rank reduces the size of a linear system of equations that are solved iteratively 

during registration, thus reducing memory use and computation time. 
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I have not only used open-source software, but I have also learned immensely from this 

body of work.  Open-source software provides users with a tool and shows how that tool 

was built.  Reading code, contributing to other codebases, and generally being involved 

in the open-source data analysis community has helped hone my computer science and 

data science skills.  For example, I have learned coding style best-practices, how to use 

version control tools such as git that are crucial for maintaining all software (open or 

closed), and how to deploy cloud resources for enabling massively distributed 

computation. 

 

6.6 Integrating Biomechanics & Medical Imaging 

Biomechanics and medical imaging are often combined to determine how biomechanical 

measures are related to OA changes in cartilage or bone cross-sectionally and 

longitudinally (Andriacchi, 2009; Bennell et al., 2011; Brisson et al., 2017; Chehab et al., 

2014; Koo & Andriacchi, 2007; Maly et al., 2013, 2015).  These studies typically assess 

some mechanical outcome, commonly the KAM, and determine how it relates to cross-

sectional cartilage health, (Maly et al., 2015) or longitudinal changes in cartilage (Bennell 

et al., 2011).  Medical images have also been used to extract information that then 

informs generic biomechanical models.  For example, Harrington and colleagues used 

MRI data to formulate equations for determining the location of hip joint centers that 

could be applied during biomechanical gait analyses (Harrington et al., 2007).  While 

these studies have been important in improving biomechanical models and building the 
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links between mechanics and actual changes to the joint, they often lack specificity of 

joint mechanics or cartilage outcomes. 

 

Recent work has begun to change this lack of specificity.  The Concurrent Optimization 

of Muscle Activations and Kinematics (COMAK) routine created by Colin Smith (Smith, 

2017; Smith et al., 2018) is one example that enables quantification of cartilage surface 

pressures continuously over the cartilage surface using a biomechanical model.  This 

predicts contact pressures of the articular cartilage of subject-specific models.  However, 

it is more frequently used to run simulation analyses where parameters of a model of a 

single participant are perturbed and the resulting changes in cartilage pressures are 

monitored.  For example, comparisons between healthy knees, anterior cruciate ligament 

(ACL) deficient knees, menisci deficient knees, and ACL and menisci deficient 

knees‡‡‡‡‡‡ (Smith et al., 2019).  These simulations were performed on gait data from a 

single participant. In another study, Clouthier and colleagues used this same COMAK 

routine to investigate bone shape as an independent variable and the resulting cartilage 

surface pressures as well as arthromechanics as a response (Clouthier et al., 2019).  

Instead of directly running simulations for each participant for whom MRI data was 

available, Clouthier and colleagues created a SSM of the knee and used it to vary knee 

 

‡‡‡‡‡‡ The knees deficient of ACL or meniscus were created by omitting these structures 

from a healthy knee. 
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joint morphology.  This team also used gait data from a single participant for these 

simulations.  Another study used the COMAK routine to estimate cartilage surface 

pressures during gait analysis for 15 health participants and compared these pressures to 

cartilage thicknesses acquired from MRI (Van Rossom et al., 2017).  However, this study 

still used a generic musculoskeletal model for the COMAK routine as opposed to a 

subject-specific knee model to match the MRI data. 

 

In this thesis, I proposed novel methods of analyzing the MRI and biomechanics data 

statistically using SPM conducted on the bone surfaces and open-sourced these methods 

as pyfocusr, and pyKneeSPM.  In recent months (early 2020), Smith has open-sourced 

the COMAK routine (https://github.com/clnsmith/opensim-jam/) within the Joint and 

Articular Mechanics (JAM) OpenSim plugin.  By combining the methods used in this 

thesis for statistical analysis (SPM, pyKneeSPM) and those presented previously by 

Clouthier and Smith for calculating surface pressures (COMAK, JAM) we have the 

ability, for the first time, to quantify cartilage surface pressures and directly determine 

how they are related to cartilage deformation at those same surface locations, in vivo.  In 

addition to the in vivo studies, we can use SPM to expand the simulation studies 

conducted by Smith and Clouthier to now apply the perturbations (e.g., SSM variations or 

remove ACL) to gait or other biomechanical data collected from multiple participants.  

By including more participants for the biomechanical (e.g., gait) analyses the results of 

these simulations are more likely to generalize, as opposed to being highly specific to one 

person.  New research designs enabled by combinations of these methods open a new 
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door to investigating the intersection of bone, cartilage and mechanics in the study of 

knee OA. 

 

6.7 Limitations 

The studies presented in this thesis were not without limitations.  Chapters 2 and 3, which 

created equations to predict saddle position and explored relationships between joint 

kinematics and knee JRFs, only collected and analyzed data while participants wore 

running shoes.  Running shoes were chosen because exercise amongst the general 

population, particularly those with musculoskeletal ailments such as knee OA were the 

primary motivators of this work.  However, due to use of running shoes, these results 

may not generalize to cyclists who use cycling shoes and clipless systems.  The initial 

study design intended to get participants who had their own cycling shoes to repeat half 

of the cycling bouts wearing those shoes.  However, the duration of the existing protocol 

(upwards of 4.5 hours per participant), and the likelihood that participants would be 

systematically fatigued during the collections with cycling shoes precluded this being 

feasible. 

 

Chapters 3 and 5 used JRFs in their analyses, these studies were limited as we were only 

able to estimate JRFs, and not measure them.  With currently available technology, 

measurement of JRFs in vivo is only possible in those with instrumented prostheses and 

therefore we cannot be certain of the validity of these estimates.  However, Chapter 3 
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Supplemental 2 (3.7.2) compared the JRFs estimated for two participants in this thesis to 

measured in vivo JRFs of a male participant cycling under similar conditions (power, 

cadence).  This comparison showed good agreement, particularly at the regions of interest 

(peak forces), and the force profiles followed similar patterns. 

 

Chapter 4, which describes and validates the segmentation framework was developed and 

tested on two MRI vendors and sequences.  However, only healthy young adults were 

tested on one vendor/sequence (GE, FSPGR), and middle-aged or older adults across the 

spectrum of knee health were tested on the other (Siemens, DESS).  Continued validation 

is necessary on other sequences, and over more knee conditions and participant ages. 

 

Finally, Chapter 5 which explored the relationship between SSMs, JRFs, and changes in 

cartilage after walking and cycling was completed in a relatively small sample (n=16).  

Due to interruptions in data collections imposed by COVID-19 only ½ of the planned 

MRI collections were obtained.  To improve robustness of the reported statistical findings 

permutation style statistical analyses were used (Nichols & Holmes, 2002).  
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6.8 Future Directions 

This thesis highlights a few key areas of potential future research.  As identified in the 

limitations, we are uncertain how cycling with clipless pedals will affect the proposed 

equations to predict saddle height and relationships between joint kinematics and JRFs.  

A future study could compare joint kinematics and knee JRFs in riders under multiple 

saddle configurations and using both running shoes and clipless pedals.  Dependent on 

the findings of such an investigation it might be: (i) necessary to repeat the bicycle-fit 

related investigations of this thesis with clipless pedals, or (ii) possible to correct the 

findings for systematic differences in clipless systems versus running shoes, or (iii) that 

the results can reasonably be applied to clipless conditions directly. 

 

As indicated in this discussion, the combination of the COMAK routine created by Colin 

Smith (Smith et al., 2018) and software open-sourced as part of this thesis (pyKneeSPM, 

pyfocusr) enable new ways of exploring the intersection of cartilage, bone, and 

mechanics to understand knee OA pathophysiology.  First, I propose a study to acquire 

gait data of multiple participants, instead of just one as has been done previously for 

COMAK studies (Clouthier et al., 2019; Smith et al., 2019).  Then, using the COMAK 

routine, changes in cartilage surface pressures of each participant could be simulated for 

multiple joint conditions (e.g., presence/absence of ACL, posterior cruciate ligament, and 

meniscus) or over a range of bone shapes using SSMs.  Of particular interest would be to 

vary knee shape along principle modes of variation that are indicative of knee OA.  The 

acquired data on cartilage surface pressures from multiple subjects under multiple 
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simulated joint conditions could then be analyzed using pyKneeSPM to statistically test if 

any differences in cartilage surface pressures exist between these knee conditions.  

Findings from such a study design would likely be more generalizable than the n=1 

studies performed previously. 

 

A second potential investigation that uses COMAK and pyKneeSPM could collect gait 

data as well as MRI data pre and post walking from multiple subjects at multiple walking 

speeds.  With these data, the COMAK OpenSim knee model could be morphed to be 

subject specific, thus enabling prediction of cartilage surface pressures for each 

participant’s specific joint morphology and their multiple gait speed trials.  Changes in 

cartilage thickness, at the different speeds, could then be calculated continuously over the 

bone surface as presented in this thesis.  Finally, pyKneeSPM could be used to determine 

whether the cartilage surface pressures predicted by the COMAK routine correlate 

spatially over the cartilage surface with the observed cartilage deformations.  Such an 

investigation would provide predictive validity for the COMAK routine and greatly 

bolster evidence of its efficacy. 

 

The segmentation framework described and validated in Chapter 4 produces excellent 

segmentations as measured using the DSC and average surface distance.  However, 

studies of cartilage are primarily concerned with measures of cartilage thickness and 

volume.  Findings from this thesis show that the algorithm is able to detect small changes 
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in cartilage from a single bout of loading, indicating that it is sensitive to change.  

Nonetheless, the next steps in establishing this pipeline for research and clinical usage are 

to determine reproducibility for measures of cartilage thickness.  These reproducibility 

measures could be established continuously over the cartilage surface similar to how 

analyses were conducted in the final study of this thesis.  In addition, reproducibility 

should be established for average thickness measurements in the key cartilage regions of 

interest, e.g., medial tibia, lateral tibia, medial weight-bearing femur, and lateral weight-

bearing femur. 

 

Last, maximum knee flexion angle was proposed in this discussion as a key target for 

bicycle-fit.  This thesis provides evidence that maximum knee flexion angle is predictive 

of knee JRFs and that it can be used to predict saddle height.  Future work is needed to 

establish the optimal range of maximum knee flexion angles.  Separate lines of work 

could be conducted to determine optimal ranges for performance, and for injury 

avoidance.  For example, a study exploring the mean and range of maximum knee flexion 

angles amongst high level athletes could provide initial guidance for performance-based 

recommendations. 

 

6.9 Conclusion 

This thesis advances knowledge and research methods at the intersection of bicycling, 

knee OA, cartilage, bone, and computational methods.  Thesis studies on biomechanical 
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analyses of bicycling help improve our understanding of how bicycle-fit, primarily joint 

kinematics, affects joint forces and also provides news equations to predict saddle height 

for these same kinematics.  In this thesis discussion I highlight why I believe that 

maximum knee flexion angle, which is rarely if ever talked about in the bicycling 

literature or cycling community, is likely an important variable for patellofemoral related 

bicycling ailments and should be a target for use by clinicians and everyday cyclists.  A 

novel convolutional neural network framework for segmenting cartilage and bone from 

MRI data was presented.  These segmentation methods promise to improve accuracy of 

extracted data while concurrently speeding up processing times therefore enabling better 

powered studies.  Finally, integrating statistical shape models and new knowledge and 

methods from the previous chapters was performed in order to study how bone shape and 

knee JRFs affect the acute response of OA cartilage to physical activity.  Chapter 5 shows 

for the first time that the acute response of cartilage to loading is dependent on knee OA 

severity (reflected in a SSM) and that knee JRFs are inversely related to knee OA 

severity.  To accomplish these outcomes, Chapter 5 produced, and open-sourced, 

statistical and computational methods of combining and analyzing biomechanical data 

with joint anatomy and anatomical tissue compositions acquired from medical images.  

These methods hold great potential for evoking novel and specific insights that have not 

previously been possible and therefore open the door to better understanding the 

intersection of bone, cartilage, and mechanics in knee OA pathophysiology. 
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