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Abstract

The memory cells used in modern field programmable gate arrays (FPGAs) are highly

susceptible to single event upsets (SEUs). The typical mitigation strategy in the in-

dustry is some form of hardware redundancy in the form of duplication with com-

parison (DWC) or triple modular redundancy (TMR). While this strategy is highly

effective in masking out the effect of faults, it incurs a large hardware cost. In this

thesis, we explore a different approach to hardware redundancy.

The core idea of our approach is to exploit the conflict-driven clause learning

(CDCL) mechanism in modern Boolean satisfiability (SAT) solvers to provide us

with invariants which can be realized as hardware checkers. Furthermore, we develop

the algorithms required to select a subset of these invariants to be included as part

of a checker circuit. This checker circuit then augments the original FPGA design.

We find which look-up table (LUT) memory cells are sensitive to bitflips, then we

automatically generate a checker circuit consisting of hardware invariants targeted

towards those faults. We aim to reach 100% coverage of sensitizable faults. After

extensive experimentation, we conclude that this approach is not competitive with

DWC with respect to hardware area. However, we demonstrate that many bitflips

will have reduced a detection latency compared to DWC.
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Chapter 1

Introduction

We as a species have developed an unquenchable thirst for data. The need for data

processing has permeated every aspect of our lives. We find it in our personal comput-

ers and our mobile devices. Furthermore, applications in space, medicine, military,

nuclear reactors, and particle physics also need this performance. The harsh radi-

ation environments of these applications imposes addition reliability requirements.

Naturally, we use redundancy to fulfill these requirements. But reliability and perfor-

mance can often be at odds with each other. Thus, while our electronics are evolving

to match our need for processing power, we are also constantly developing strategies

to ensure their reliability.

While microprocessors have guided our way into the information age, our data

processing needs made us look towards more parallel architectures. We need custom

digital logic. Application specific integrated circuits (ASICs) are the natural choice for

high volume consumer electronics. However, these devices have high non recurring

engineering (NREs) costs. For low volume applications, field programmable gate

arrays (FPGAs) have emerged as an attractive solution. They offer high flexibility,
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lower cost than ASICs and reduced design time.

1.1 FPGA Architecture

Field-programmable gate arrays (FPGAs) are integrated circuits (ICs) that can be

configured to perform a wide variety of digital logic functions. FPGAs contain look-up

tables (LUTs), flip-flops, embedded memories, input/output (IO) blocks, transceivers,

phase-locked loops (PLLs) and flexible arithmetic units often referred to as digital

signal processing blocks (DSPs). The FPGA interconnect is a network of wires that

can be configured to connect these components together to form logic networks. This

combination of interconnect and components allows the FPGA to implement most

digital circuits.

FPGAs from Xilinx and Intel use an island-based routing architecture. This rout-

ing can be well described as islands of logic floating in an ocean of interconnect.

Other routing architectures exist, but island-based is the most common. The compo-

nents are arranged in a 2-D array. The interconnect consists of horizontal and vertical

tracks. Figure 1.1 shows the layout of the components and interconnect. Components

are connected to vertical and horizontal tracks using connection boxes. The vertical

and horizontal tracks can then be connected with switch boxes to create more com-

plicated paths. Furthermore, there are implementation details like global tracks and

different length tracks. The specific details of how connection and switch boxes are

implemented as well as the lengths of different tracks are device and vendor specific.

An FPGA will contain two layers: the user layer and the configuration layer. The

user layer is what implements the desired functionality. This consists of LUTs, flip-

flops, DSP slices, and IO blocks. The configuration layer is the configuration memory

2
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Connection box Switch box

Logic
block

Programmable
interconnect

switches

SRAM cell

Look-up table
(LUT)

Flip-flop

Figure 1.1: Example of a fictional island-based FPGA routing architecture

that is required to configure these components. For example, an SRAM cell could

control the input multiplexer to the flip-flop of a logic block. The configuration of

the switches in the interconnect is also controlled by SRAM cells. The components

and interconnect are both configured through configuration RAM (CRAM).

3
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1.2 Computer Aided Design for FPGAs

Implementing a design in an FPGA requires all programming switches to be speci-

fied. Human designers cannot feasibly manage the millions of programmable bits of

FPGAs, thus computer aided design (CAD) tools were developed to map high level

descriptions of circuits into usable implementations of FPGA configurations called

bitstreams. The high level description of the circuit is often called register transfer

level (RTL) and is often implemented in a language like Verilog. An FPGA synthesis

engine compiles the RTL into a logic network consisting of components that exist in

that FPGA device family. The placement step assigns each component to a physical

location on the device. Finally, the route step finds an interconnect configuration

that will implement the connections of the logic network.

RTL (Verilog, VHDL,
SystemVerilog, schematic

entry... )

Place logic blocks in
FPGA

Route connections
between logic blocks

Synthesize to logic
blocks

FPGA programming file
(bitstream)

Figure 1.2: FPGA CAD flow adapted from [1]
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1.3 Radiation Effects in FPGAs

At the high level, radiation effects can be categorized as dose effects or single-event

effects (SEEs). Single-event effects are caused by the impact of a single particle

whereas dose effects represent accumulated damage from particle strikes over some

time period. Prolonged exposure to radiation will eventually cause functional failures

due to leakage currents. This is known as the total ionizing dose effect (TID) [6] and

it is the degradation of a complementary metal-oxide semiconductor device (CMOS)

due to the accumulation of a variety of radiation effects. TID effects are of concern in

any radiation environment, and thus an FPGA with an appropriate TID rating must

be used.

Linear energy transfer (LET) models the energy that is deposited by a high energy

particle into a specific material. LET is a function of the particle type, material type,

and particle energy. When an ion with sufficient LET passes through a semiconductor

device, it will leave behind a cylindrical track of electron-hole pairs. In a reverse-

biased p-n junction, the reverse current is minuscule. Thus, if this strike reaches a

reverse-biased p-n junction, this can cause a voltage or current spike [7]. Such an

event is known as a single-event transient (SET). This transient may then propagate

throughout the logic of the circuit or through the clock network to affect a latch or

memory element. The transient may also be severe enough to cause other effects.

A transient can have destructive effects as well. For example, an ion strike could

activate a parasitic thyristor, placing the device into a high current state [8]. This is

known as a single-event latchup (SEL).

The transient could also occur inside a memory element like an SRAM cell or a

flip-flop. If the SET occurs in the bistable element of an SRAM cell, then the charge

5
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collection caused by the ion strike could cause the bit to flip [9]. This is known as a

single-event upset (SEU). SRAM-based FPGAs are especially susceptible to this type

of fault because they can contain millions of bits of configuration memory. This type

fault is non-destructive, but it will persist until the bit is rewritten.

A single-event transient may become latched into a critical device control register.

Example effects of this could be triggering a built-in self test or a device reset [10].

These effects interrupt the functionality of the device and are thus known as single-

event functional interrupts (SEFIs). They may last for some amount of time or require

a device reset to recover.

Multiple technologies exist for implementing the configuration memory. The

CRAM may be implemented using Flash, static RAM (SRAM), or antifuse tech-

nology. Each one of these technologies has its own benefits and drawbacks. Despite

SRAM-based FPGAs being very susceptible to single event upsets (SEUs), they are

attractive for many reasons. For a new process technology, SRAM FPGAs are usu-

ally the easiest to manufacture. They are less susceptible to total ionizing dose effects

(TID) than flash FPGAs and their reconfigurability gives them an advantage against

antifuse FPGAs. Reconfigurability allows a reduction in development time, and the

ability to perform updates in the field. Due to these advantages, this thesis will focus

exclusively on SRAM-based FPGAs.

SEUs can occur in both user memory (flip-flops or embedded memory) or config-

uration memory. Since the FPGA’s functionality is determined by the configuration

RAM, an SEU occurring in this configuration RAM can change the intended function-

ality of the device. An SEU could occur in a LUT changing the function implemented

6
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by that LUT. It could occur in a routing switch, accidentally, connecting or discon-

necting parts of the circuits.

Radiation Effect

Single-Event Effect (SEE)

Total Ionizing Dose (TID)

Single-Event Upset (SEU)

Single-Event Transient (SET)

Single-Event Functional Interrupt (SEFI)

Single-Event Latchup (SEL)Destructive

Non-Destructive

Figure 1.3: Classification of radiation effects in FPGAs

1.4 FPGAs in Harsh Radiation Environments

The use of FPGAs in satellites allows for data compression and the computation

of intermediate results. It is then more beneficial to transmit these intermediate

results. For example, some US missions could have payload data requirements of 1–5

terabytes raw uncompressed data [11]. However this requirement can be drastically

reduced using lossless data compression and intermediate calculations. However due

to the susceptibility to radiation effects, SRAM-based FPGAs are usually limited to

use in non-mission critical parts of the payload like on-board signal processing and

sensor data processing [12].

In terrestrial environments, susceptibility to SEEs can be mitigated through addi-

tional shielding. However, this is not always viable. In particle accelerators, particles

are collided at extreme energies to produce new particles and study their properties.

The readout electronics for the detectors used in the ALICE experiment are controlled

by SRAM-based FPGAs [13]. Another example is the CMS detector. Radiation tests

7
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demonstrated that most of the digital components would perform reliably except for

the Xilinx Virtex-6 FPGAs. These devices were shown to suffer from multiple SEUs

per chip per day [14].

8
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Chapter 2

Background

Given the flexibility of SRAM-based FPGAs, they are desirable even in harsh radia-

tion environments. It is no wonder then that much research has gone into mitigating

the effects of SEUs. Some methods are general fault tolerance methods for all digital

circuits while others are specifically targeted towards FPGAs. The strategies are di-

verse, each imposing various tradeoffs in terms of area, time, memory and complexity.

In this chapter, we provide an overview of the methods used to detect and mitigate

SEUs in FGPAs.

2.1 Area Redundancy

The most common fault-tolerant technique is the introduction of additional copies of

the logic circuit. Triple-modular redundancy (TMR) involves creating three copies of

the same circuit. The outputs of the circuits can then be fed to a voter circuit [15].

In the case of a single error in any one of the three circuits, it can be masked out by

the other two. Duplication with comparison (DWC) is a similar method that only

10
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requires a single copy and comparison logic. The area cost is reduced compared to

TMR, but it is no longer possible to recover from a single error. Both TMR and

DWC have a high area overhead but benefit from instant detection of errors.

Module

VoterModule

Module

(a) Triple-module redundancy (TMR)

Module

Module Compare

(b) Duplication with comparison (DWC)

Figure 2.1: TMR and DWC

Given a logic network, not all internal nodes are equally likely to propagate errors.

Samadrula et al. [16] propose to triplicate only the subcircuits which are deemed

sensitive to SEUs. First the probability of each internal node is estimated, then,

starting from the circuit outputs proceeding to the inputs, subcircuits are identified

as chains of sensitive gates. The Boolean values of the internal nodes are evaluated

using a selected probability threshold. A gate in this chain is deemed sensitive if

an inversion of one of its inputs can change the output. The area overhead from

triplicating only these subcircuits is about 60% - 70% of full TMR. Depending on the

nature of the circuit, this form of reduced redundancy can effectively mask out most

errors.

Digital circuits can be divided into persistent and non-persistent portions. The

persistent portion of the circuit is the portion of the circuit in which an SEU can

result in a corrupt state that can persist indefinitely. Partial TMR places emphasis

11
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on first covering the persistent components of the circuit with TMR [17]. The portion

of the design in which state outputs are fed back into logic for the next state are given

priority. Applying TMR here gives the highest return in protecting against persistent

errors.

Although TMR is expensive in terms of area, it is well understood and straight-

forward to implement. Often, proposed alternatives do not actually increase the

reliability and turn out to have even higher overhead. In alternatives, the mitigation

circuitry can increase the SEU sensitive cross section [18].

TMR introduces at least 200% area overhead. There are other forms of spatial

redundancy that use less. Instead of triplicating the functional logic, only one redun-

dant path is added. The outputs of both the functional logic and the redundant path

are fed to a checker. If the redundant path is simply a copy of the functional logic,

then this is simply duplication with comparison (DWC). However, the redundant

path does not have to be a copy of the functional logic. If a systematic code can be

constructed from the outputs of the circuit, then the redundant path can be a parity

prediction circuit that only computes the parity bits of that systematic code [19].

Module

Parity
Prediction

Parity
Checkerk

n

Figure 2.2: Parity checking circuit with n outputs using k parity bits

Some FPGA applications primarily require arithmetic. In these cases, a specially

targeted technique known as reduced precision redundancy can be used [2]. This

introduces additional copies of the modules in question, but at a reduced precision.

12
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If there is an error in the full precision module, then the reduced precision output

will be used.

Full
Precision
Module

Reduced
Precision
Module

Reduced
Precision
Module

Truncate

Decision
Block

Decision
Block

Decision
Block

Voter

FPout

RP2out
Truncate

RP1out

k

k

n

n n

n

n

Where a “Decision Block” implements:
if ((|FPout − RP1out| > Th)AND (RP1out = RP2out))

output⇐ RP2out
else

output⇐ FPout

Figure 2.3: Reduced precision redundancy (RPR) adapted from [2]

2.2 Temporal Redundancy

Rather than introducing additional logic, it is possible to introduce redundancy across

time. By repeating calculations across multiple clock cycles, it is possible to detect

SETs (Single Event Transients). However, it is unlikely an SEU would be detected

using in such a manner. After the initial upset event, the fault might not immediately

propagate to an observable point. A permanent fault would remain dormant until it

is finally excited by an appropriate set of inputs. The temporally redundant compu-

tations would then yield the same result. Thus, simply repeating the same operation

multiple times is not sufficient to detect an SEU.

If the circuit some kind of repeating structure, then it can be a candidate for

temporal partitioning. For example, arithmetic circuits like adders and multipliers

13
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can be split into multiple lower precision operations [20–22]. The operation on is

partitioned into multiple lower precision operations on partial words. For example,

in the case of addition, each word could be split into upper bits and lower bits. In

the first clock cycle, the lower bits are added. Subsequently, the upper bits are added

in the second clock cycle. In each clock cycle a lower precision operation can be

duplicated or triplicated.

Lima et al. [23] present a hybrid approach of temporal and area redundancy.

During the normal operation of no faults or just a single fault, the circuit operates

without a performance penalty. A DWC scheme continuously compares the two out-

puts. When a mismatch is detected, the outputs are held in registers, and additional

clock cycles are spent searching for which of the two circuits contains the fault by

using a concurrent error detection (CED) scheme. Assuming a decent CED scheme

can be found for the block being duplicated, this method can use less area than TMR

while being able to mask all of the faults.

Algorithm-based fault-tolerance (ABFT) is an approach that can apply to linear

algebra based algorithms like matrix multiplication, QR decomposition and FFT [24].

For example, in matrix multiplication, the first matrix can be augmented with a row

of checksums and the second matrix can be augmented with a column of checksums.

The resultant matrix contains an additional row and column of checksums. Extra

validation hardware in the form of an additional multiply accumulate add (MAC)

unit can be added to compute an expected checksum for the resultant matrix. If an

inner parallel loop hardware architecture is used for the matrix calculation, then the

overhead for this additional validation hardware is very small.

14
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2.3 Information Redundancy

A strategy for protecting the integrity of memory bits is to insert redundant memory

bits. These additional bits allow for the use of error correcting codes (ECC) to detect

and correct errors. ECC is widely used to protect memory in many applications:

NAND flash, DVDs, CDs, hard disks, DRAM and more. The Hamming family of

codes [25] is a popular strategy that allows for the correction of one bit per codeword.

Extending the Hamming code with a whole word parity bit allows it to also detect

double bit errors (but not correct them). These extended codes are known as single

error correcting double error detecting (SEC-DED) codes.

SEC-DED codes are a popular choice for the protection of FPGA embedded mem-

ories. When the memory is accessed, the parity bits and the data can be decoded

to correct single bit errors and detected double bit errors. This method is not lim-

ited to embedded memories. Configuration frames also typically store ECC bits. In

Xilinx FPGAs, a specific decoder module can then be instantiated to perform error

detection/correction. In the Xilinx Virtex 5 FPGA, a configuration frame is 1312

bits. When reading one of these configuration frames, a 12-bit syndrome value can

be calculated. A syndrome value of 0 represents no error. If the 12th bit is 1, then

the bottom 11 bits will point to the location of a single bit error in the configuration

frame. Otherwise, if the 12th bit is 0, but the bottom 11 bits are not 0, then there is

a double bit error [26].

SEC-DED codes are complementary to CRC checksums. While SEC-DED codes

allow for single error correction, there exists the possibility of miscorrection of multiple

bit errors. Thus, for a complete strategy, CRC checking should be used as well [27].

With the ongoing minimization of process technology, multiple cell upsets are
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becoming more prevalent. It is becoming increasingly likely that multiple adjacent

bits could be upset [28–30]. This has spurred the development of various truncated

Hamming codes. In the standard Hamming code, each non zero syndrome value maps

to a single-bit error. A truncated Hamming code has more possible syndrome values

than there are possible single bit errors. The truncated Hamming codes then map the

unused syndrome values to different types of errors [31–33]. These syndrome values

can be mapped to double or triple adjacent errors, or any arbitrary length adjacent

errors.

2.4 Scrubbing

Scrubbing refers to the action of rewriting the configuration memory after the initial

configuration has occurred. Upsets in configuration memory are repaired by over-

writing them with the correct bits. It should be noted that even though methods like

TMR are able to mask out single upsets, eventually the upsets will accumulate and

cause a failure. Therefore a method to repair errors is required [34].

Blind scrubbing is when these writes are done without any reading of the con-

figuration memory. The scrubber has no idea what upsets may or may not exist in

the configuration memory. The configuration memory is periodically rewritten with

a known good copy. Thus, radiation hardened external memory and some sort of

controller is required. The effectiveness of the scrubbing increases with the scrubbing

frequency. Xilinx recommends that the scrub rate should be 10 times greater than

the expected upset rate. However, because the configuration memory is written pe-

riodically, many unnecessary configuration writes will occur. Thus there is a greater

chance the interface to the configuration memory will be affected by a SEFI.
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In order to avoid unnecessary configuration writes, readback scrubbing can be

performed instead. A readback scrubbing controller will compare the contents of

configuration frames with the golden copy either directly or indirectly [35]. A read-

back scrubber must be able to detect the presence of an error. This can be done by

directly comparing against a golden copy of the configuration memory.

To reduce the amount of total memory required by the controller, each config-

uration frame can be augmented with a CRC checksum. The controller can then

compute the checksum for the configuration frame and compare it to the golden copy

instead of storing the entire bitstream. This allows the controller to also pinpoint

which exact frame contains an error and correct only that frame.

If error-correcting codes (ECC) are used, then the golden copy only needs to be

accessed in the presence of an uncorrectable error. Single error correcting codes can

pinpoint the location of a single bit error through a syndrome value. Unfortunately,

ECC also introduces the probability of miscorrection because multiple bit errors can

sometimes produce the same syndrome as a single bit error.

Scrubbing can be internal or external to the FPGA. In internal scrubbing, the

scrubbing controller is implemented in the FPGA. This can make the scrubber it-

self vulnerable to SEUs. In contrast, external scrubbers can use radiation hardened

hardware. Although an internal scrubber can efficiently correct single errors using

ECC, external blind scrubbers have been shown to be more reliable. Internal scrub-

bers encounter unrecoverable errors more often [36]. It is also possible to extract the

benefits of both types of scrubbing by combining the techniques [27]. The internal

scrubber can fix single bit upsets and diagnose multiple bit upsets with CRC. The

external scrubber then fixes any multiple bit upsets.

17



M.A.Sc. Thesis – S. Dumitrescu McMaster University – Computer Engineering

Not all configuration bits are equally likely to cause a failure. One proposal is to

create a scrubbing schedule that will scrub different configuration frames at different

rates [37]. Bits that will be more likely to cause an error can be scrubbed more often.

This can improve the mean time to failure (MTTF). However this benefit is reduced

with increased configuration frame size.

2.5 Tool Based Techniques

The various steps in the FPGA design flow can be improved to take SEU sensitivity

into account. The synthesis and place and route steps are natural points to hook into

to provide SEU specific optimizations.

Placement can be performed with the goal of minimizing scrubbing time. If the

scrubbing is performed on a frame level, then it can be beneficial to tightly pack all

the sensitive CLBs into as few frames as possible [38]. Such an approach is possible

by analyzing the sensitivity of each CLB and then using placement constraints to fit

them into specific configuration frames.

A checkpointing strategy requires the checkpointing interval to be large enough

to be able to include a scan of all relevant configuration frames. When the scrubbing

time is reduced, then checkpointing with rollback can become effective at mitigating

SEUs [39].

The majority of FPGA configuration bits are used for the interconnect [1] which

is highly sensitive to soft errors. Zarandi et al. [40] propose to augment the typical

simulated annealing algorithms used for place and route with SEU sensitivity terms.

They define three types of faults that can occur: open, short, and bridging faults.

Routing should avoid bridging faults at all costs as they can connect two separate
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domains of the circuit, even two TMR domains.

Modern FPGAs typically implement LUTs that are fracturable into smaller LUTs.

The Xilinx Virtex series of FPGAs provides 6-input LUTs that can implement two

5-input functions. Das et al. [41] propose using logic restructuring and decomposition

to create 5 input functions which contain mostly 0s or 1s. These 5-input functions

are duplicated inside the 6-input LUT. Then by using an AND gate, 0 to 1 errors can

be masked out. Similarly, using an OR gate, 1 to 0 errors can be masked out. While

Lee et al. [42] propose to implement the AND/OR gates inside the fanout LUTs, Das

et al. [41] propose using spare carry chain logic instead.

The authors measure the number of bits that can be masked out in this manner

for every LUT. If this number falls below some threshold, then the LUT can be

replaced by two new LUTs such that the fault masking is maximized, i.e. the new

LUTs have a higher proportion of 0 or 1 bits. A different approach is to decompose

the LUT such that the probability of a fault of that LUT reaches a primary output

is minimized [43]. This decomposition can be extended to use other combining logic

and not just AND/OR gates.

Another synthesis-based technique is to attempt to remap logic blocks to pre-

defined fault tolerant programmable logic block (PLB) templates. Fault tolerant

Boolean matching can improve the the percentage of input vectors for which the cir-

cuit does not produce the expected outputs by 25% without any penalty in area [44].

The in-place X-filling algorithm [45] exploits don’t care bits that cannot be excited

without the presence of a fault. However, if an SEU occurs, these bits might be

accessed after all. Thus they should be set in the way that would most likely mask a

fault appearing on a LUT input.
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2.6 Summary

In this chapter, we explored the diverse strategies of SEU detection and mitigation

in FPGAs. The strategies discussed are not necessarily mutually exclusive. Indeed,

it is common to combine strategies because no single strategy is bullet proof. Most

modern FPGAs include CRC checking and frame ECC, so it is natural to include

these in the overall error mitigation strategy.

In future chapters we will discuss our proposed SEU detection strategy which will

fall under the umbrella of area redundancy. The most common method is to use TMR,

but this incurs a large area overhead. Even DWC imposes a high overhead of over

100%. Parity prediction can sometimes be less costly, but creating the appropriate

systematic code is a difficult problem. This motivated us to create a different flow for

generating checker circuits. Our checker circuit would be based on provable properties

of the functional logic. These properties can map directly to hardware assertions.
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Chapter 3

SAT Prerequisites

The previous chapters provided some background on SEU mitigation in FPGAs. In

this chapter, we present the prerequisites for constructing hardware assertions. Our

method for generating hardware assertions relies on a byproduct of SAT solvers. Thus

we will explain some of the inner workings of modern SAT solvers.

3.1 Overview of SAT

The Boolean satisfiability problem (also known as SAT) was the first problem to

be proven as NP-complete [46]. Despite being NP-complete, algorithms have been

developed that can solve surprisingly large instances. This has allowed SAT to be

used in a wide range of applications including electronic design automation (EDA).

A Boolean formula is satisfiable if there exists an assignment of its variables such

that the formula evaluates to TRUE. Otherwise, if there exists no such assignment, the

formula is unsatisfiable.

Boolean formulas are typically specified in conjunctive normal form (CNF). This
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form consists of a conjunction of a set of clauses. A single clause is a disjunction of

a set of literals. A literal is a variable or its negation. For example, if x is a variable,

then both x and ¬x are possible literals. In the clause (x1 ∨ ¬x2), the literals are

x1 and ¬x2. The following expression represents an example of a SAT formula in

conjunctive normal form: (x1 ∨ x2 ∨ x3) ∧ (x2 ∨ ¬x3) ∧ (x4 ∨ ¬x2 ∨ x5 ∨ ¬x6).

3.2 SAT Solvers

SAT Solvers are applications that solve SAT instances. They accept input in con-

junctive normal form (CNF) and output either a satisfying set of assignments to its

variables if the problem is satisfiable or UNSAT otherwise.

The Davis-Putnam-Logemann-Loveland (DPLL) algorithm [47] is a backtracking

search algorithm that lies at the heart of most modern SAT solvers. With a few

modern additions to this backtracking search algorithm, modern SAT solvers can

handle problems with millions of variables.

In every iteration of the DPLL algorithm, a variable is chosen. The variable is

assigned to either 0 or 1. If the assignment results in having a clause that is unsatisfied,

then the algorithm backtracks. If we have tried only one value, then we try the other

value (i.e. 0→ 1 or 1→ 0), otherwise, we must backtrack to the previous level of the

search tree. Figure 3.1 demonstrates how this process implicitly traverses a search

tree. When unsatisfiable partial assignments are reached, that branch of the tree is

cut off by backtracking. The leaves represent complete satisfying assignments. If a

leaf is reached, the algorithm returns the associated assignment. If no leaves can be

reached, the algorithm returns UNSAT.
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Figure 3.1: Implicit traversal of the search tree

3.2.1 Boolean Constraint Propagation

Literals in a clause can be partitioned into assigned and unassigned literals. As the

algorithm progresses, more unassigned literals will become assigned literals. At some

point, a clause may contain only one unassigned literal. A unit clause is a clause which

contains only one unassigned literal. In a unit clause, then the remaining variable

must be assigned such that it satisfies the clause.

In every iteration, the assignment might result in new unit clauses. In DPLL,

these new unit clauses are used to make new assignments before a new iteration of

the algorithm. This rule is referred to as the unit propagation rule and the repeated

application of this rule is known as Boolean constraint propagation (BCP). Boolean

constraint propagation is repeated until a conflict is reached or until all possible

propagations have been performed at the current decision level. When lazy data

structures containing two watched literals per clause are used, BCP proves to be very

powerful and efficient for large clauses [48].

When using BCP, we call each iteration of the DPLL procedure a decision level.
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Multiple variables can be assigned at a particular decision level. The first is the

decision variable, then the following are the variables that are assigned due to the

repeated application of the unit propagation rule. Consider the formula (x1 ∨ x2) ∧

(x4∨x3∨x5)∧ (x1∨x4∨¬x5). Figure 3.2 demonstrates the search tree corresponding

to this particular formula. In this search tree, variables x2 and x5 are assigned due

to BCP. Then, a conflict is detected at d = 2, so x4 and x5 have to be unassigned

and then the other branch (x4 = 1) is explored. The conflict occurs because the

assignment of x5 = 1 causes ¬x5 = 0 and C3 = 0, thus that particular partial

assignment cannot satisfy all clauses.

x1

x3

x1 = 0
x2 = 1

x3 = 0

x4 = 0
x5 = 1

x4

x5

x4 = 1

x5 = 0
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ω2 = (x4 ∨ x3 ∨ x5) = 1

ω3 = (x1 ∨ x4 ∨ ¬x5) = 0

Conflict
(ω3 = 0)

0 1

0

00

0

1

0

Figure 3.2: The effect of BCP on the search tree
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3.2.2 Conflict-Driven Clause Learning

Learned clauses are clauses that can be derived from the original SAT formula. If the

SAT formula evaluates to TRUE then any learned clause must also evaluate to TRUE.

In the DPLL algorithm, when a conflict is reached, the algorithm backtracks to

the previous decision level to attempt the other branch. If the other branch also does

not work, it backtracks once again to a lower decision level. This kind of backtrack-

ing is called chronological backtracking because each decision level is visited by the

backtrack. However, it is possible that the underlying reason for the conflict was an

assignment at a much lower decision level. In this case, the algorithm would waste

time searching branches that could never lead to a satisfiable assignment.

The DPLL procedure was enhanced with non-chronological backtracking by the

GRASP solver [49]. In GRASP, every time a conflict occurs, the conflict is analyzed to

find the underlying assignments that caused the conflict to occur. These underlying

assignments are known as the conflict set. Then, instead of backtracking to the

previous level, the algorithm can backtrack to the most recent decision variable of

the conflict set.

This conflict set yields a derived conflict clause that can be appended to the

original set of clauses in order to prune the search space. This conflict analysis lies

at the heart of most modern SAT solvers and is called conflict-driven clause learning

(CDCL).

Figure 3.3 shows the derivation of a conflict clause from the analysis of the im-

plication graph formed by the assignments and from BCP. The arrows represent as-

signments due to applications of the unit propagation rule, and they are labeled with

the clause that implies that assignment. Cuts of the implication graph correspond to
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ω6
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ω6

ω9 = ¬x7 ∨ ¬x3 ∨ x8

Figure 3.3: Derivation of a conflict clause

conflict clauses. This can be demonstrated by the cut corresponding to clause ω9 in

Figure 3.3. This cut identifies the nodes x7 = 1, x3 = 1, and x8 = 0 as being sufficient

to create a conflict. The clause ω9 then encodes that these three assignments are not

allowed together. In a SAT solver, usually only one cut is used. In this example, the

learned clause ω9 is added to the clause database. Then, in future explorations of the

search space, clause ω9 will constrain the search space such that the algorithm does

not waste time backtracking.

This clause learning procedure generates clauses that must be true if the original

formula is true. Taatizadeh and Nicolici [3] noted that the clauses learned from this

procedure would map to circuit invariants if the SAT formula being solved was a

CNF encoding of some digital circuit. This insight will allow us to generate a large

candidate set of invariants which will be narrowed down and combined to construct

a checker circuit.
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3.3 CNF Representation of a Digital Circuit

In order to generate a pool of hardware invariants for a digital circuit using the CDCL

mechanism, we must first encode the circuit in CNF. Larrabee [50] demonstrated how

a digital circuit can be converted into a CNF by using the transformation proposed

by Tseitin [51]. We can regard a digital circuit as a set of gates that form a directed

acyclic graph (DAG). Then new variables are added to the output of every gate.

The appropriate CNF clauses are constructed for each node of the graph and then

combined to form the final CNF. This final CNF formula encodes assignments to

the inputs and outputs of the circuit as well as the intermediate nodes that are

consistent. When we input this formula into a SAT solver, the conflict-driven clauses

will correspond to relationships of the internal circuit signals.

In the case of an FPGA LUT we would be able to obtain the appropriate clauses

from the truth table of the LUT. Each distinct set of inputs to the LUT would have

its own LUT. Figure 3.4 provides an example of how the Tseitin transformation can

be applied to obtain a CNF formula. In the example, the block f represents a 3-input

LUT.
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(a) Example circuit

x3 x4 x5 f
0 0 0 0
0 0 1 1
0 1 0 0
0 1 1 1
1 0 0 0
1 0 1 0
1 1 0 0
1 1 1 1

(b) Truth

table of f

∨

f

¬

∧

⊕x1

x2

x3
x4
x5

x6

x7

x8

x9

x10

(x8 → f(x3, x4, x5))
(f(x3, x4, x5)→ x8)

(x6 → x1 ∨ x2)
(x1 ∨ x2 → x6)

(x7 → ¬x6)
(¬x6 → x7)

(x9 → x1 ⊕ x6)
(x1 ⊕ x6 → x9)

(x10 → x7 ∧ x8)
(x7 ∧ x8 → x10)

(c) Adding the intermediate variables

∨

f

¬

∧

⊕x1

x2

x3
x4
x5

x6

x7

x8

x9

x10

(x3 ∨ x4 ∨ x5 ∨ ¬x8)
(x3 ∨ x4 ∨ ¬x5 ∨ x8)
(x3 ∨ ¬x4 ∨ x5 ∨ ¬x8)
(x3 ∨ ¬x4 ∨ ¬x5 ∨ x8)
(¬x3 ∨ x4 ∨ x5 ∨ ¬x8)
(¬x3 ∨ x4 ∨ ¬x5 ∨ ¬x8)
(¬x3 ∨ ¬x4 ∨ x5 ∨ ¬x8)
(¬x3 ∨ ¬x4 ∨ ¬x5 ∨ x8)

(¬x6 ∨ x1 ∨ x2)
(¬x2 ∨ x6)
(¬x1 ∨ x6)

(¬x7 ∨ ¬x6)
(x6 ∨ x7)

(x1 ∨ x6 ∨ ¬x9)
(x1 ∨ ¬x6 ∨ x9)
(¬x1 ∨ x6 ∨ x9)

(¬x1 ∨ ¬x6 ∨ ¬x9)

(x10 ∨ ¬x7 ∨ ¬x8)
(x7 ∨ ¬x10)
(x8 ∨ ¬x10)

(d) Final clauses

Figure 3.4: Applying the Tseitin transformation
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3.3.1 Hardware Invariants

We have mentioned that learned clauses are invariants of a particular digital circuit.

These invariants (which we also refer to as hardware assertions) can be mapped to

OR gates as shown in Figure 3.5. In this example, if the output of the AND gate

is 1, then the output of the OR gate is 1 as well. Since the learned clauses should

also be satisfied if the original formula is satisfied, the output of the OR gate should

be 1. If the output is not 1, then the CNF encoding must not represent the actual

circuit. A fault must have occurred that resulted in a different CNF encoding. Thus

the invariant may no longer be valid.

x1

x2

x3

x4

x5

(¬x1 ∨ ¬x2 ∨ x4)
(x2 ∨ ¬x4)
(x1 ∨ ¬x4)

(x2 ∨ x3 ∨ ¬x5)
(¬x2 ∨ x5)
(¬x3 ∨ x5)

(¬x4 ∨ x5)

1

Figure 3.5: Example of a simple hardware invariant

3.3.2 Unrolling a Digital Circuit

The procedure we have mentioned can be used to generate a CNF representation for

a combinational circuit. In the case of circuits with sequential elements, the inputs

and outputs of the state elements must be cut, and these become pseudooutputs

and pseudoinputs respectively. Performing these cuts effectively makes the circuit

combinational. However, running the SAT solver would ignore interesting properties

that occur solely due to the sequential nature of the circuit.

If we “unroll” the circuit across k timesteps, then we would be allowing the SAT
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solver to learn invariants that can only be observed after k timesteps have passed

in the sequential circuit. This “unrolling” consists of cloning the cut circuit and

stitching the pseudoinputs (PSIs) and pseudooutputs (PSOs) together. Figure 3.6

demonstrates time frame expansion across 3 clock cycles. It also shows an example

of an invariant that is only possible due to time frame expansion. The notation xi@k

represents a signal xi at the kth unrolling step.

D Qx1
x2

Pseudooutput
(PSO)

Pseudoinput
(PSI)

x3

x4

x5

(a) Digital circuit with D flip-flop

x1
x2

x3

x4
x5

(b) Combinational part

x1@0
x2@0

x3@0 x4@0

x1@1
x2@1 x1@2

x2@2

x3@1

x3@2x4@1

x4@2

timeframe 0 timeframe 1 timeframe 2

1

(¬x3@0 ∨ x5@0 ∨ ¬x5@1 ∨ ¬x5@2 ∨ x4@2)

(c) Unrolling and stitching PSOs and PSIs

Figure 3.6: Unrolling a digital circuit

3.3.3 Hardware Invariants Across Multiple Timeframes

The hardware invariant of Figure 3.6 spans multiple timeframes. To represent this

invariant with digital hardware we must use flip-flops to capture the values of the

previous time frames. Figure 3.7 shows how this invariant can be added to the
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original circuit. The maximum timeframe of the invariant will represent the current

time t, then previous time frames will be t − 1, t − 2, and so on. We will call the

number of time frames the invariant spans the depth d of the invariant. The notation

xi,t−j represents that this signal captures the value of xi, j clock cycles ago.

It is worth noting that this hardware invariant may not always equal 1 now. The

invariant will only be valid after d−1 clock cycles have passed. This is relevant when

circuits are reset. When constructing checker circuits we will have to take note of the

maximum depth of any invariant. The output of the checker circuit will only be valid

after that amount of time has passed.

x1
x2

x3
x4

x5

1
D Q D Q

D Q D Q

D Q

x3,t
x3,t−1

x5,t−1
x5,t

x3,t−2

x5,t−2

x4,t

Figure 3.7: A hardware invariant spanning multiple timeframes

3.4 Summary

In this chapter, we have given a brief overview of the inner workings of a SAT solver.

We have also described how the CDCL procedure of modern SAT solvers can be

leveraged to generate hardware invariants. In the next chapter, we will outline the

automated procedure we use to collect these invariants, and how to use them to

construct checker circuitry. We will show that by modifying an extensible SAT solver,

we can repurpose the conflict analysis procedure to collect a large pool of candidate

invariants to repurpose as hardware assertions.
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Chapter 4

Hardware Assertion Selection

In the previous chapter, we discussed the concepts used by modern SAT solvers. We

showed how digital circuits can be represented in CNF format so that we can form

SAT queries based on them. We showed how learned clauses can map to hardware

assertions. In this chapter we will discuss our proposed flow for the construction of

a checker circuit using hardware assertions that are obtained as a byproduct of a

CDCL-based SAT solver. Then we will discuss how the performance of this circuit

can be benchmarked.

One of the steps of the synthesis procedure is called technology mapping which

maps digital logic to device specific blocks that are present in the FPGA. One of

the output products of a typical FPGA compilation flow is a simulation netlist. The

technology mapping can be deduced from the simulation netlist because the contents

of the simulation netlist contains all of the low-level primitive modules a commercial

logic simulator will need to simulate the design. The instantiated logic blocks will

typically contain muxes, LUTs and flip-flops and these components are sufficient to

construct a simple CNF representation of an FPGA minus the interconnect. Our

32



M.A.Sc. Thesis – S. Dumitrescu McMaster University – Computer Engineering

flow parses the simulation netlist to construct a simplified CNF representation of the

design implemented by the FPGA.

A requirement of our flow is that once a design has been technology mapped,

the technology mapping must no longer change. We can only add components, not

change the existing mapping. The flow that we have devised is shown at a high level

in Figure 4.1. We reuse the simulation netlist and combine it with the checker circuit

as the input for a recompilation. By reusing the simulation netlist, we ensure that

the technology mapping of the design does not change and our selected hardware

assertions will remain valid throughout the second compilation. The synthesis tool

realizes that the contents of the simulation netlist are already low-level primitives,

thus it will not need to do any remapping.

RTL (Verilog, VHDL,
SystemVerilog, schematic

entry... )

Place logic blocks in
FPGA

Route connections
between logic blocks

Synthesize to logic
blocks

Place logic blocks in
FPGA

Route connections
between logic blocks

Synthesize to logic
blocks

FPGA programming file
(bitstream)

Hardware
Assertion
Selection

Simulation Netlist

Checker circuit RTL

Figure 4.1: Integration of hardware assertion selection with a typical FPGA flow
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Simulation Netlist

FPGA CNF Representation

Assertion Mining

Find Sensitizable Bitflips

Assertion Ranking

Greedy Assertion Selection

Checker Circuit

Assertion Filtering

Figure 4.2: Major steps comprising hardware assertion selection

Figure 4.2 outlines the major steps of hardware assertion selection in Figure 4.1.

Each of these major parts will be detailed in this chapter.

4.1 FPGA CNF Representation

Muxes, LUTs and flip-flops make up the user-level hardware in the FPGA. Unfor-

tunately, it is not possible to deduce the configuration memory from the simulation

level netlist. That information is typically locked away in the internal data structures

of FPGA design tools. FPGA vendors do not reveal a detailed description of exactly

what each programmable switch controls. Some of the functionality can be deduced

by reverse engineering or by piecing together information from datasheets and device

handbooks. However this is not enough to obtain a complete picture.

Given the lack of information regarding FPGA internals, we do not know how
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to exactly construct a logic network including every single reprogrammable switch.

However, we do know the configuration memory that configures the LUTs. Thus

we can conceptualize a logic network containing LUTs, muxes, and flip-flops, where

LUTs are defined by SRAM cells.

Due to the imperfect knowledge of device specific internals, we will focus on de-

tecting SEUs in the SRAM cells that define LUTs only. It should be noted that the

hardware assertions we create could still detect SEUs occuring in SRAM cells that

control the interconnect, multipliers, memories and other components. However,

without being able to construct an exact CNF representation of those components,

we will not be able to quantify those effects. Thus, we will restrict ourselves with

using only the simplified FPGA model of LUTs, muxes, and flip-flops.

4.2 Sensitizable Bits vs Unsensitizable Bits

To judge the effectiveness of our assertions, fault simulation must be performed for

all SEU sensitive bits. However, not all LUT bits are worth considering. If we can

reduce the size of the set of potential bitflips we are interested in then we can reduce

the amount of simulations required.

We can decide if LUT bits are sensitive by formulating the question as a SAT

problem. Figure 4.3 illustrates how to construct a miter circuit to detect if a particular

LUT bit can affect the outputs or pseudooutputs of a circuit. Specifically, the circuit

can be unrolled for some number of clock cycles, and then a miter circuit consisting

of a good half and a faulty half is inserted in the final time frame.

Due to the structure of the circuit, certain states may not be reachable. As we

further unroll the circuit, more states become unreachable. There may exist LUT
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bits which are only sensitizable by states that are only reachable within the few clock

cycles. Thus, by unrolling the circuit, we can prune some bits which are unsensitizable

because the states required to sensitize them are unreachable after k clock cycles have

elapsed. This also means we assume no SEUs will occur during these k clock cycles

after a reset. We are discounting the LUT bits which are only sensitizable in the first

few clock cycles after a reset. In Figure 4.3, some states may not be reachable within

two clock cycles. We assume that no bitflips will occur within those first two clock

cycles.

For every possible SEU, we construct a SAT encoding from the miter circuit with

the appropriate fault inserted in the corresponding CNF clause of the faulty half. The

fault is simply inserted by changing the appropriate LUT clause of the faulty half.

The final timeframe of the unrolled circuit contains a good half and a faulty half, the

outputs of these halves are XORed together and then ORed together. If the output

of the final OR is 1, then the bitflip is detectable.

Unlike assertion mining, we solve the SAT instance without any modification of

the solver. We simply want to know if the output of the miter circuit can be 1. We do

this for all possible faults to create the set S of sensitizable LUT bits. All assertion

ranking will then be done only considering the bits of S.
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Figure 4.3: Construction of miter circuit for detecting sensitizable/unsensitizable
bits.

4.3 Assertion Mining

As mentioned in the previous chapter, we can leverage the CDCL mechanism in a SAT

solver to develop a large pool of invariants. One simple modification we will add to the

SAT solver is to register a callback function for conflict occurences. In an iteration of

the DPLL procedure of the SAT solver, if a conflict occurs, then the callback function

is called. This callback function will insert the clause into a database if the clause has

not been seen before. It is possible that the callback function could receive a clause

that has already been learned, or a clause that is a time-shifted variant of an already

learned clause. We consider these clauses equivalent and thus reject them.

For a CNF representation of a digital circuit, a satisfying assignment will quickly

be found but we need the search to be prolonged in order to develop a large pool
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of invariants. Thus, if a satisfying assignment is found we will modify the solver to

force a new descent of the search. Furthermore, rather than using variable selection

heuristics to pick the variable to branch on, we tell the solver to always select a

random variable to branch on and to ensure the polarity of the branching (the order

in which 0 and 1 is searched) is also random. This ensures that each new search will

traverse different parts of the search space.

Taatizadeh and Nicolici [3] also used a solver to mine assertions, however their

approach relied on first extending the circuit by creating a logically equivalent CNF

and XORing it with the CNF representing the original circuit. This allowed them to

extend the runtime of the SAT solver. Some clauses will then contain literals that

are not solely limited to the original CNF. This adds an additional step of having to

filter out irrelevant clauses. In contrast, by simply forcing new descents in the solver,

we avoid having to do this extra work.

Original Netlist
CNF

Structurally
different but

logically
equivalent

CNF

XOR CNF
Clauses

Figure 4.4: Miter CNF configuration used in [3]

Without some sort of timeout, the modified solver will run indefinitely. Thus

we have elected to keep track of the time between accepted clauses. If the time

exceeds some user-defined threshold or if the pool’s size has reached some user-defined

maximum, then we terminate the assertion mining step. These measures are necessary
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to restrict the memory usage and runtime of the flow.

4.3.1 Time-Shifted Invariants

As discussed in Section 3.3.2, unrolling the circuit across k timeframes can help us

discover more invariants. Some of these will be invariants that span multiple time

frames, others will be invariants that are only valid after more than one clock cycle.

However, there will also be invariants that are time-shifted versions of other invariants.

Thus before accepting an invariant we must also check that it is not a time-shifted

version of an invariant we have already collected. Figure 4.5 shows an example of

three invariants ωL1 , ωL2 , ωL3 that are time shifted versions of each other.

x1@0
x2@0

x3@0 x4@0

x1@1
x2@1 x1@2

x2@2

x3@1

x3@2x4@1

x4@2

timeframe 0 timeframe 1 timeframe 2

1

ωL1 = (¬x1@0 ∨ ¬x2@0 ∨ x3@0 ∨ ¬x4@0)

1

ωL2 = (¬x1@1 ∨ ¬x2@1 ∨ x3@1 ∨ ¬x4@1)

1

ωL2 = (¬x1@2 ∨ ¬x2@2 ∨ x3@2 ∨ ¬x4@2)

Figure 4.5: Example of time shifted invariants

4.4 Assertion Filtering

Assertion filtering allows us to reduce the number of clauses that we must carry

forward to the remaining steps of the flow. Thus, we must develop some meaningful
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heuristic that will allow us to quickly decide which clauses to keep. To do this,

we introduce the concept of selector variables which is common in incremental SAT

solving. Suppose we have a SAT formula ϕ = ω1 ∧ ω2 ∧ . . . ∧ ωn. If a clause specifies

the behaviour of a LUT Lj for bit k of that LUT and if that bit is sensitizable, then

we will add the selector literal Lj,k to that clause as shown in Figure 4.8. Note that

we only add selector variables for the bitflips which have been proved sensitizable in

Section 4.2, otherwise we do not care about them.

The function of these selector variables is to activate or deactivate the clause.

The polarity of all selector literals is positive, so we can run the SAT solver with the

partial assignment of 0 to all selector variables to perform the SAT query with all

clauses activated. On the other hand, if any selector variable is assigned to 1, then its

corresponding clause is deactivated. The clause would be satisfied from the beginning

of the search, thus it would not imply any assignments to any variable. It could never

appear as an intermediate node in a conflict analysis graph.

During the assertion mining procedure, we run the SAT solver with all selectors

partially assigned to zero. It may seem that this accomplishes nothing because we do

not deactivate any clauses. However, now the clauses we get from conflict analysis

contain selector variables. In conflict analysis, every edge of the implication graph

that is traveled corresponds to a clause resolution operation. However, because se-

lector literals always have positive polarity, they can never be eliminated through

clause resolution. Thus if any clauses with selectors were used in the derivation of a

conflict clause, those selectors will appear in the final learned clause. Suppose that we

obtained a learned clause ωlearned and we knew all the clauses ωi, with i ∈ I, where I

is the set of all indices i for which ωi was used in the derivation of the clause ωlearned,
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then:

∧
i∈I

ωi → ωlearned

¬ωlearned → ¬

(∧
i∈I

ωi

)

¬ωlearned →
∨
i∈I

¬ωi (4.4.1)

This tells us that if ωlearned was to be converted into a hardware assertion, then

if its output was zero at least one of its clauses used for its derivation must also be

zero. If a clause corresponding to a LUT bit was zero, then that would mean that a

bitflip has occurred in that LUT. Thus we may want to prioritize clauses containing

a large number of selector variables. If a selector variable is present in a clause, then

because we have only added selectors to LUT bit clauses, the presence of the selector

indicates the learned clause may be able to detect a bitflip in that LUT bit.

The following set of figures demonstrate how we use selector variables. Figure 4.6

is a simple 2-bit accumulator circuit constructed using LUTs, muxes and flip-flops.

Figure 4.7 shows how this circuit can be unrolled across 3 clock cycles and Figure

4.8 lists the CNF encoding of this circuit. Since we have two 2-bit LUTs and one

3-bit LUT, we require 16 selector variables for LUT clauses. Each Li,j is the selector

variable for the jth bit of the ith LUT. Figure 4.9 then shows how the conflict analysis

procedure would discover a learned clause. Each enumerated cut of the implication

graph adds an additional vertex to the conflict side of the cut. This corresponds

to resolving the current conflict clause with the clause that labels the edge we just
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incorporated. All selector variables are first set to 0 such that all clauses are activated.
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Figure 4.6: Example of simple LUT based circuit
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Figure 4.7: Unrolled version of Figure 4.6
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ω1 = (L1,0 ∨ i1@0 ∨ q1@0 ∨ ¬s1@0)
ω2 = (L1,1 ∨ i1@0 ∨ ¬q1@0 ∨ s1@0)
ω3 = (L1,2 ∨ ¬i1@0 ∨ q1@0 ∨ s1@0)
ω4 = (L1,3 ∨ ¬i1@0 ∨ ¬q1@0 ∨ ¬s1@0)

ω5 = (L2,0 ∨ i1@0 ∨ q1@0 ∨ ¬c1@0)
ω6 = (L2,1 ∨ i1@0 ∨ ¬q1@0 ∨ ¬c1@0)
ω7 = (L2,2 ∨ ¬i1@0 ∨ q1@0 ∨ ¬c1@0)
ω8 = (L2,3 ∨ ¬i1@0 ∨ ¬q1@0 ∨ c1@0)

ω9 = (L3,0 ∨ c1@0 ∨ i2@0 ∨ q2@0 ∨ ¬s2@0)
ω10 = (L3,1 ∨ c1@0 ∨ i2@0 ∨ ¬q2@0 ∨ s2@0)
ω11 = (L3,2 ∨ c1@0 ∨ ¬i2@0 ∨ q2@0 ∨ s2@0)
ω12 = (L3,3 ∨ c1@0 ∨ ¬i2@0 ∨ ¬q2@0 ∨ ¬s2@0)
ω13 = (L3,4 ∨ ¬c1@0 ∨ i2@0 ∨ q2@0 ∨ s2@0)
ω14 = (L3,5 ∨ ¬c1@0 ∨ i2@0 ∨ ¬q2@0 ∨ ¬s2@0)
ω15 = (L3,6 ∨ ¬c1@0 ∨ ¬i2@0 ∨ q2@0 ∨ ¬s2@0)
ω16 = (L3,7 ∨ ¬c1@0 ∨ ¬i2@0 ∨ ¬q2@0 ∨ s2@0)

ω17 = (¬en@0 ∨ ¬s1@0 ∨ d1@0)
ω18 = (¬en@0 ∨ s1@0 ∨ ¬d1@0)
ω19 = (en@0 ∨ ¬q1@0 ∨ d1@0)
ω20 = (en@0 ∨ q1@0 ∨ ¬d1@0)

ω21 = (¬en@0 ∨ ¬s2@0 ∨ d2@0)
ω22 = (¬en@0 ∨ s2@0 ∨ ¬d2@0)
ω23 = (en@0 ∨ ¬q2@0 ∨ d2@0)
ω24 = (en@0 ∨ q2@0 ∨ ¬d2@0)

ω25 = (d1@0 ∨ ¬q1@1)
ω26 = (¬d1@0 ∨ q1@1)

ω27 = (d2@0 ∨ ¬q2@1)
ω28 = (¬d2@0 ∨ q2@1)

ω29 = (L1,0 ∨ i1@1 ∨ q1@1 ∨ ¬s1@1)
ω30 = (L1,1 ∨ i1@1 ∨ ¬q1@1 ∨ s1@1)
ω31 = (L1,2 ∨ ¬i1@1 ∨ q1@1 ∨ s1@1)
ω32 = (L1,3 ∨ ¬i1@1 ∨ ¬q1@1 ∨ ¬s1@1)

ω33 = (L2,0 ∨ i1@1 ∨ q1@1 ∨ ¬c1@1)
ω34 = (L2,1 ∨ i1@1 ∨ ¬q1@1 ∨ ¬c1@1)
ω35 = (L2,2 ∨ ¬i1@1 ∨ q1@1 ∨ ¬c1@1)
ω36 = (L2,3 ∨ ¬i1@1 ∨ ¬q1@1 ∨ c1@1)

ω37 = (L3,0 ∨ c1@1 ∨ i2@1 ∨ q2@1 ∨ ¬s2@1)
ω38 = (L3,1 ∨ c1@1 ∨ i2@1 ∨ ¬q2@1 ∨ s2@1)
ω39 = (L3,2 ∨ c1@1 ∨ ¬i2@1 ∨ q2@1 ∨ s2@1)
ω40 = (L3,3 ∨ c1@1 ∨ ¬i2@1 ∨ ¬q2@1 ∨ ¬s2@1)
ω41 = (L3,4 ∨ ¬c1@1 ∨ i2@1 ∨ q2@1 ∨ s2@1)
ω42 = (L3,5 ∨ ¬c1@1 ∨ i2@1 ∨ ¬q2@1 ∨ ¬s2@1)
ω43 = (L3,6 ∨ ¬c1@1 ∨ ¬i2@1 ∨ q2@1 ∨ ¬s2@1)
ω44 = (L3,7 ∨ ¬c1@1 ∨ ¬i2@1 ∨ ¬q2@1 ∨ s2@1)

ω45 = (¬en@1 ∨ ¬s1@1 ∨ d1@1)
ω46 = (¬en@1 ∨ s1@1 ∨ ¬d1@1)
ω47 = (en@1 ∨ ¬q1@1 ∨ d1@1)
ω48 = (en@1 ∨ q1@1 ∨ ¬d1@1)

ω49 = (¬en@1 ∨ ¬s2@1 ∨ d2@1)
ω50 = (¬en@1 ∨ s2@1 ∨ ¬d2@1)
ω51 = (en@1 ∨ ¬q2@1 ∨ d2@1)
ω52 = (en@1 ∨ q2@1 ∨ ¬d2@1)

ω53 = (d1@1 ∨ ¬q1@2)
ω54 = (¬d1@1 ∨ q1@2)

ω55 = (d2@1 ∨ ¬q2@2)
ω56 = (¬d2@1 ∨ q2@2)

Figure 4.8: Clauses for Figure 4.7
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Figure 4.9: Implication graph demonstrating the derivation of a clause with selector
variables

In general we will want to prioritize invariants that are small so that they will

not incur a large hardware cost. But we will also want to have invariants that can

potentially detect many bitflips. Thus, given that for each learned clause we also have

its selectors which represent possible candidates for covered bitflips, let us define two

possible filtering heuristics: the selector potential, and the selector difficulty potential.

We need to create a heuristic which attempts to maximize the number of bitflips
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covered while minimizing the hardware cost of the clause. The benefit of this heuristic

that it is very quick to compute, then we simply need to sort the assertions by their

selector potential and select the top assertions. Thus, for a clause c, we define the

selector potential as:

selector potential =
c.selectors.size()

area estimate(c)
(4.4.2)

Unfortunately, this heuristic has a problem. If we sort our assertions by selector

potential, then it is possible that we will choose selectors which have a very high

potential but significant overlap in the bitflips they cover. Thus we will define a

procedure to select assertions by a potential which also aims to reduce bitflip coverage

overlap.

Algorithm 1 shows how we can try to reduce the bitflip coverage overlap. We

introduce an outer loop which will select num remove assertions at a time. In each

iteration of this outer loop we keep track of how many times a bitflip has appeared as

a selector in our set of selected clauses F . Then we estimate the probability of a bitflip

being covered as selector coverage [s] / F .size(). In order to place a greater emphasis

on bitflips which are very unlikely to be covered, we use the negative logarithm of

this ratio. Thus, we define the selector difficulty potential of a clause c as:

selector difficulty potential =

∑
s∈c.selectors()

− log

(
selector coverage[s]

F .size()

)
area estimate(c)

(4.4.3)

It is important to note that the selector coverage is computed using only the asser-

tions that have been selected so far in F , we should not use learned clause database
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P because in every iteration we want to place emphasis on bitflips that have not been

covered so far and remove emphasis on bitflips which are already covered by multiple

assertions.

Algorithm 1: Assertion filtering by selector difficulty potential

Input: The initial pool of learned clauses: P
The number of clauses to carry forward: filtered
The number of iterations: N

Data: Tallies of how many times each selector was encountered:
selector coverage
The number of clauses to carry forward per iteration: num remove

Output: The set of filtered clauses: F

1 num remove ← filtered / N
2 foreach 1 ≤ i ≤ N do

// Zero all selector counts and count them again based on
// the clauses we have selected so far

3 selector coverage.clear()
4 foreach clause c ∈ F do
5 foreach selector s in c.selectors() do
6 selector coverage [s]++

// Recalculate all clause scores of clauses remaining in P
7 foreach clause c ∈ P do
8 score ← 0
9 foreach selector s in c.selectors() do

10 score ← score − log(selector coverage [s] / F .size())

11 c.score ← score / area estimate(c)

12 Sort all clauses in P by score
13 Remove the top num remove clauses from P and place them in F

14 return F

Both filtering methods make reference to an area estimate function. Algorithm 2

defines the algorithm used to quickly estimate the area. This is a simple area estimate

that is proportional to the number of signals the assertion contains. This estimate

also aims to account for flip-flops that will be needed to hold past values of signals.
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We do not take into account any sharing of flip-flops that could potentially occur

when multiple assertions are taken into account.

Algorithm 2: Quick assertion area estimate for assertion filtering

Input: An assertion a with literals l1@d1 , l2@d2 , . . . , ln@dn where each di
denotes the timeframe in which li occurred

Output: The assertion cost C

1 dmax ← max(d1, d2, . . . , dn)
2 foreach 1 ≤ i ≤ n do
3 C ← C + dmax − di + 1

4 return C

4.5 Assertion Ranking

The next major step in the hardware assertion selection flow is to perform fault

simulation of our circuit with all hardware assertions inserted. We must simulate

every bitflip of interest to see if its effect can propagate to an assertion output. Doing

this will allow us to construct a violation matrix V , where every element vi,j of V

equals 1 if assertion ai can detect bitflip bj. Otherwise, element vi,j equals 0. We will

need this matrix later to perform our final assertion selection.

4.5.1 Differential Fault Simulation

Differential fault simulation [52] is a fault simulation technique well suited to tracking

faults in sequential circuits. In event-based simulation, a component is simulated only

when its inputs have changed. Differential fault simulation exploits this by simulating

one good circuit and multiple faulty circuits by keeping track of state differences. For

a particular input vector, first the good circuit is simulated, then each faulty circuit is

simulated by injecting the appropriate fault and by reconstructing the current state
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of the faulty circuit using the next state outputs of the previously simulated circuit.

Figure 4.10 shows how in differential fault simulation the sequential state elements

of a circuit in clock cycle i+1 can be reconstructed from two circuits from clock cycle

i. In this diagram, the notation Bi,k represents the state of the “bad circuit” i at clock

cycle k. Gi represents the state of the “good circuit”, i.e. the circuit without any

faults. ∆ represents the difference in the pseudooutputs which are used to reconstruct

the pseudoinputs in the next clock cycle.

A fault is detectable if it eventually propagates the outputs of the circuit. Thus,

the outputs of the faulty circuits and the good circuit are compared at every time

frame. In our case, we are also interested if faults reach assertion outputs. This means

if an assertion output in a faulty circuit simulates as 0, then that assertion detects

the fault corresponding to that faulty circuit.
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Figure 4.10: Reconstruction of states in differential fault simulation

In our proposed flow, we take the entire pool of assertions after they have been

filtered, and convert them into hardware assertions that are simulated along with the
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logic network representing the original design. There are a few user-defined parame-

ters including: the number of clock cycles to wait until inserting faults (this allows us

to ensure all hardware assertions are valid, and ignores bits which are only sensitive

in the first handful of clock cycles), the number of clock cycles to simulate, and the

number of simulations to perform. During the simulation, whenever an assertion de-

tects a fault, the corresponding entry in the violation matrix is set to 1. That entry

is then proof that there exists an input sequence for which the assertion can detect

the fault.

Inside the inner loop of the algorithm we inject a fault into the circuit and perform

event-driven simulation. When no further events are to be processed, we look at the

assertion outputs. If any assertion is 0, then we update its corresponding entry in

the violation matrix to 1. Then, we store the pseudo outputs and remove the fault

that has been injected in this loop iteration so we can simulate the next fault in the

current clock cycle, or the “good circuit” in the next clock cycle.

49



M.A.Sc. Thesis – S. Dumitrescu McMaster University – Computer Engineering

Algorithm 3: Differential fault simulation for ranking assertions

Input: The circuit logic network with all assertions added
The number of clock cycles: C
The number of clock cycles to simulate before inserting faults: Cignore

The set of sensitive LUT bits: S
The number of simulations: N

Output: The violation matrix: V

1 Initialize V as all zeros
2 foreach 0 < n < N do
3 Initialize the circuit status including initializing sequential state elements

to 0
4 foreach 0 < c < C do
5 Recover current states of sequential elements
6 Randomly assign inputs to 1 or 0
7 Do event-driven simulation
8 if c >= Cignore then
9 foreach s ∈ S do

10 Recover current states of sequential elements
11 Inject current fault s
12 Do event-driven simulation
13 foreach assertion output that is zero do
14 update V

15 Store next state differences
16 Remove the fault s

4.6 Greedy Assertion Selection

After using differential fault simulation to create a violation matrix V , we can use

this violation matrix in a greedy algorithm to select the final set of assertions. In this

algorithm we will keep selecting the current best assertion while we are within the

area budget.
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4.6.1 Assertion FPGA Area Estimation

To use our greedy selection algorithm, we will need a quick way to estimate the

hardware area cost of an assertion. Given that our assertions will be implemented

using FPGA logic elements we will say that using a LUT or flip-flop adds 1 to the

area estimate. Thus we will need to estimate the total number of LUTs and flip-flops

required.

Since an assertion is a disjunction of literals, it can be implemented using a tree

of OR gates. In the case of an FPGA with k-bit LUTs, each LUT will implement

a k-bit OR function. The assertion can thus be represented as a k-ary tree where

each internal node represents an LUT, and each leaf represents a literal. Suppose we

were to implement an assertion with n literals, where n > 1, then the total number

of LUTs needed to implement the assertion will be

⌈
n− 1

k − 1

⌉
.

An assertion may also consist of time shifted literals of the form xi@k. As shown

in Section 3.3.3, these will require flip-flops to implement. However, once a time

shifted version of a signal has been implemented in one assertion, it can be reused

in another assertion. Figure 4.11 shows how flip-flops can be shared across multiple

assertions. In this figure, the LUTs implement OR gates with or without inverters

on the inputs. Thus, in our greedy assertion selection algorithm, when an assertion

requiring flip-flops is selected, those flip-flops should only contribute to the total cost

once. Algorithm 4 only counts the flip-flops once. Lines 3 – 8 calculate the maximum

delays of each net captured by the assertion. Lines 8 – 16 then find the appropriate

amount to add to the cost considering the cumulative flip-flops that have already

been included in other assertions.
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Figure 4.11: Example of hardware assertions sharing flip-flops
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Algorithm 4: FPGA area estimation using k-bit LUTs

Input: An assertion a with literals l1@d1 , l2@d2 , . . . , ln@dn where each di
denotes the timeframe in which li occurred
The associative array, cumulative delays, representing all the
flip-flops that have been added to implement the assertions selected
so far

Output: The assertion cost C

1 C ←
⌈
n− 1

k − 1

⌉
2 Initialize delays as an associative array
3 dmax ← max(d1, d2, . . . , dn)
4 foreach 1 ≤ i ≤ n do
5 if delays[name(li)] exists then
6 delays[name(li)]← max(delays[name(i)], dmax − di)
7 else
8 delays[name(i)]← 0

9 foreach (net, delay) ∈ delays do
10 if cumulative delays[net] exists then
11 if delay > cumulative delays[net] then
12 C ← C + delay− cumulative delays[net]
13 cumulative delays[name(i)]← delay]

14 else
15 C ← C + delay
16 cumulative delays[name(i)]← delay]

17 return C

4.6.2 Assertion Potential

We define the assertion score as the number of bitflips could detect given the violation

matrix V . This is given by adding the number of ones in row i of matrix V . Then,

the current best assertion is selected by a metric we call the assertion potential. The

assertion potential is defined as the assertion’s score divided by the assertion’s area
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estimate.

assertion score of ai =
∑
j

vi,j (4.6.1)

assertion potential of ai =
assertion score of ai
area estimate of ai

(4.6.2)

The purpose of the assertion potential metric is to balance the area cost of the

assertion with the amount of bitflips it can detect. We want to encourage the selection

of assertions which have a small area cost but can detect a large number of bitflips.

These definitions should not be confused with Equations 4.4.2 and 4.4.3. Those

define metrics that are used for assertion filtering. Assertion filtering is a heuristic

method based only on the contents of the assertions. Assertion score and assertion

potential are based on the results of differential fault simulation and used to inform

the greedy selection algorithm.

4.6.3 Greedy Assertion Selection

Using the newly defined assertion potential, we define the greedy assertion selection

algorithm. It is a simple algorithm where in every loop iteration we select the assertion

with the best potential.

The objective of this algorithm is to maximize the number of bitflips covered while

within the area budget. This is why the assertion potential is used as the selection

criteria. However, it is possible for two assertions to have a high potential, but also

a great overlap in the bitflips covered. Ideally, we would also like to minimize the

overlap in bitflips covered, i.e., when selecting an assertion we want to consider its
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potential with respect to the bitflips that have not yet been covered. This is why

Line 8 zeros the corresponding column of the violation matrix when and assertion

has been selected.

Algorithm 5: Greedy assertion selection

Input: The violation matrix: V
The area budget: area budget

Output: The final set of assertions comprising the checker circuit
1 current area ← 0
2 Calculate all assertion potentials
3 Sort assertions by potential
4 while current area < area budget do
5 Select the assertion with the largest potential
6 Remove the selected assertion from the pool
7 Update current area with area estimate of the assertion, also updating the

cumulative delays
8 For each bitflip covered by the assertion, set the corresponding column of

V to all zeros
9 Recalculate all assertion potentials

10 Sort assertions by potential

4.7 Final Assertion Evaluation

4.7.1 DSIM Coverage

Given the set of assertions selected to comprise the hardware checker circuit, we will

need to estimate its performance. We can once again use Algorithm 3 to do this.

Instead of simulating the whole pool of assertions, we can now simulate only the final

set of assertions. This will give us an idea of the percentage of sensitizable LUT bits

that we can expect to detect with our assertions given random inputs. We will call

this the DSIM coverage metric.
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Circuit@0 Circuit@1 Circuit@2 Circuit@3

Assertions 0

Figure 4.12: CNF Formulation of at least one assertion detecting a bitflip

4.7.2 SAT Coverage

Another question we can pose is: given this set of assertions and this bitflip present

in the circuit, is there any input sequence of length k that will cause at least one

assertion to be zero? Figure 4.12 shows how we can pose this question as a SAT

problem. Unrolling is necessary because the clauses corresponding to the assertions

will contain literals from different timeframes. The bitflip will be present in every

timeframe.

All the assertions are ANDed together and we set the output of the AND gate

to 0. If the SAT instance is satisfiable, then there exists an input sequence of length

k for which the bitflip would be detected by the checker circuit. By performing this

kind of SAT query for every sensitizable LUT bit we can find the percentage of the

sensitizable bits for which a sensitizing sequence exists. We will call this the SAT

coverage.
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We can expect the SAT coverage to always be greater than or equal to the DSIM

coverage. This is because if DSIM has shown that an assertion can detect a bitflip,

then an input sequence that would satisfy the analogous SAT query could be con-

structed from the random inputs that were used during DSIM. However, an input

sequence found using the SAT coverage method may only be a rare sequence that

sensitizes the bitflip. It could be the case that the bitflip is rarely sensitized and thus

it would not be detected within our DSIM experiments.

4.8 Summary

In this chapter we have laid out the steps of our proposed hardware assertion selection

flow. We have shown how we can take the technology mapping of a digital circuit and

create a set of hardware assertions based on it. We have used the CDCL mechanism of

a SAT solver to mine a large pool of invariants. Then we simulated those invariants in

the presence of bitflips proven to be sensitizable to create a coverage matrix. Finally,

we ran a greedy selection algorithm to create a final set of hardware assertions.
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Chapter 5

Experimental Results

In the previous chapter we proposed a flow for creating a checker circuit composed

of hardware assertions. In this chapter, we will dive into the implementation details

and experimental results. We will discuss the benchmarks and metrics we used to

assess the performance of our hardware assertion checker circuits.

5.1 Benchmark Circuits

The ISCAS89 [4] and ITC99 [5] benchmark sets are circuits meant for researchers to

develop algorithms based on circuits containing D flip-flops. These benchmarks offer a

variety of circuits of varying size. The larger circuits begin to push the runtime of our

algorithm to days and beyond, so these circuits are sufficient to push the boundaries

of our tool. These circuits can be found online in the standard bench format. We

convert these bench files into Verilog files using ABC [53]. Then we compile the

verilog file in Quartus [54] to produce simulation netlist our tool expects.
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5.2 Coverage Metrics

We use Algorithm 3 from the previous chapter to estimate the real world performance

of our checkers. Using differential fault simulation we can track whether any assertion

outputs are outputting 0 indicating the presence of a fault. However, it is possible

the input sequence being used for simulation cannot cause the fault to propagate

to a circuit output or pseudooutput. Thus, we also track whether the outputs or

pseudooutputs diverge from the “good circuit”.

The run statistics from differential fault simulation are reported as follows:

simulating with cycles = 10000, wait = 5, sims per fault = 16

{output, pseudooutputs, assertion} divergence info:

NO NPO NA: 680

NO NPO A: 201

NO PO NA: 36

NO PO A: 79

O NPO NA: 0

O NPO A: 0

O PO NA: 352

O PO A: 3020

total DSIM bitflip coverage: 3300 / 4368 (75.55%)

total DSIM divergence coverage: 3099 / 3688 (84.03%)

The acronyms NO, NPO, NA, O, PO, A are a shorthand for the various events

that occur during differential fault simulation. “O” represents the outputs diverging

between a fault and the “good circuit”, likewise “PO” represents the pseudooutputs

diverging. “A” represents an assertion firing. The addition of an “N” represents the

negation of an event, e.g., and assertion did not fire, or outputs did not diverge.

The total bitflip coverage is computed from the addition of all rows containing

“A”. The percentage is with respect to all bitflips inserted. This metric allows us to
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estimate the percentage of bitflips that could be detected after a specific number of

clock cycles after bitflip injection.

total bitflip coverage =
# of times assertions fired

total bitflip injections
(5.2.1)

A second metric is the total divergence coverage, this second metric is motivated

by the cases where no outputs diverge, no pseduooutputs diverge, and no assertions

fire. Even if a bitflip is present, if no outputs or pseudooutputs diverge, then no errors

have occurred yet. This metric aims to measure, when errors occur, how likely it is

the errors are detected by assertions firing? This is computed similarly to the total

bitflip coverage except we discount the cases when neither outputs nor pseudooutputs

changed.

total divergence coverage =

# of times outputs or pseudooutputs

diverged and an assertion fired

# of times outputs or pseudooutputs diverged
(5.2.2)

5.3 User Arguments

The hardware assertion selection flow has a number of user arguments that are passed

through the command line.
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5.3.1 Amount of Clock Cycles to Unroll Before Bitflip Injec-

tion (--pre)

During the process of finding sensitizable bitflips, this argument controls how many

clock cycles to unroll the circuit as described in Section 4.2. With higher values, we

prove more bitflips are unsensitizable due to unreachable states. On the other hand,

higher values increase the size of the SAT instances and thus increase the runtime of

SAT queries exponentially. To balance out these two effects, we keep this value at 5

for all our experiments.

5.3.2 Amount of Clock Cycles to Unroll After Bitflip Injec-

tion (--post)

This argument specifies how many clock cycles to unroll the circuit after bitflip in-

jection. This is used to create the CNF representation that will be used for assertion

mining and SAT ranking. This setting will also affect the differential fault simulation.

If this argument takes the value k, then some of our candidate assertions may only

be valid after k clock cycles. Thus, assertions are only simulated after k clock cycles

have elapsed. Setting a higher value will allow us to discover assertions representing

relationships spanning across multiple timeframes. On the other hand, higher values

will impose additional runtime in assertion mining and assertion filtering. To balance

out these two effects, we elected to keep this value at 5 for all our experiments.
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5.3.3 Sensitizable Bitflip Timeout (--timeout)

Sensitizable bitflips are found through SAT queries as specified in Section 4.2. If the

SAT query does not complete within this timeout value, then the bitflip is assumed

to be sensitizable. For our experiments we maintain this value as 1 second.

5.3.4 Assertion Mining Timeout (--learn-timeout)

A callback function is called every time the SAT solver encounters a conflict. As

specified in Section 4.3 the callback function decides to accept or reject the clause.

If no new clauses have been accepted in the timespan of this timeout value, then the

assertion mining step terminates. For our experiments we maintain this value as 1

second.

5.3.5 Assertion Mining Maximum (--num-learn)

In addition to terminating due to a timeout, the assertion mining step may also

terminate when some maximum number of clauses has been reached. This argument

provides the maximum number of clauses. For larger circuits, it is necessary to specify

a maximum number of clauses due to computer memory constraints. For the results

presented in this chapter we will use a value of 1000000.

5.3.6 Assertion Filter Method(--filter-type)

This argument specifies the assertion filtering method to use. We can choose between

random filtering, selector potential filtering and selector difficulty potential filtering.

The latter two choices have been defined in Section 4.4. Random filtering has been
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included as a means to verify the effectiveness of the filtering method.

5.3.7 Assertion Mining Filter (--filter)

This argument controls the amount of assertions to carry forward to differential fault

simulation after assertion mining is complete. For the results presented in this chapter

we will use a value of 100000.

5.3.8 Assertion Mining Filter Iterations (--filter-iterations)

When using selector difficulty potential filtering, this argument specifies the number

of iterations in which assertions are selected to carry forward to differential fault

simulation as described in Section 4.4. For the results presented in this chapter we

have chosen to use a value of 100.

5.3.9 DSIM Cycles (--cycles)

This argument controls the number of clock cycles used to simulate assertions as of the

assertion ranking step (Section 4.5). By increasing this number, more bitflips will be

covered, and since this step acts as the feeder to the greedy assertion selection step

(Section 4.6.3), the greedy selection algorithm will have a more accurate violation

matrix and may be able to perform a better overall selection. However, this will

increase the runtime of the differential fault simulation. To balance out these two

effects, we have elected to use 1000 clock cycles as the default value.
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5.3.10 Area Budget (--area-budget)

This argument tells the greedy selection algorithm when to stop selecting assertions

to include in the checker circuit. Usually we will keep this value at 1.0. This ensures

that the size of the checker circuit is about the same as the size of the original circuit.

This will allow us to naturally compare the performance of this checker circuit against

duplication with comparison.

5.3.11 Final DSIM Cycles (--final-dsim-cycles)

This argument specifies for how many clock cycles to run differential fault simulation

to qualify the performance of the final checker circuit. This final simulation will be

used to generate the coverage statistics that will be reported in our tables and graphs

listed in this chapter. For the results presented in this chapter, we shall set this

argument to 10000.

5.3.12 Number of Simulations (--sims)

This argument specifies the number of differential fault simulations to run for the

circuit. In each simulation, every possible bitflip is injected once after k clock cycles

have elapsed, where k is specified by the --post argument. Increasing the number of

simulations will allow the coverage metrics to converge and allow the greedy selection

algorithm have a more accurate violation matrix.
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5.3.13 Threads (--threads)

This argument specifies the number of threads to use. Usually this will be kept the

same as the number of simulations and we will use as many threads as the CPU

can support running in parallel. If the number of simulations is larger than the

supported parallel threads, then the simulations will be distributed across a thread

pool containing how many threads were specified by this argument.

5.4 Hardware and Software Environment

The main PC used to run experiments was a dual Intel Xeon E5-2620 setup with

128GB of RAM. The workstation had 32 usable hardware threads and the compiler

used was GCC 9.1.1. If any table or graph was generated from results originating from

a different machine, then it will be noted alongside the table or graph in question.

Our proposed hardware assertion selection flow, uses the Minisat [55] based solver

Glucose [56] to mine assertions and perform other SAT queries. We made one simple

modification we add to Glucose to register a callback function for conflict occurrences.

In an iteration of the search procedure of Glucose, if a conflict occurs, then we call the

function and we must quickly decide to keep or discard the clause for our assertion

database.

We have chosen to target the Cyclone IVe family of FPGAs [57] paired with

Quartus 13.0sp1 [54]. These FPGAs are composed of 4 input lookup tables and

flip-flop elements. Quartus can be configured to provide a simulation netlist as one

of the outputs of its compilation. Our hardware assertion selection flow takes this

simulation as an input.

65



M.A.Sc. Thesis – S. Dumitrescu McMaster University – Computer Engineering

5.5 Assertion Filtering Performance
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Figure 5.1: Comparison of different assertion filtering methods using three ISCAS89
circuits [4]

In Section 4.4 we discussed two different methods for assertion filtering: selector

potential and selector difficulty potential. However, we discussed the possibility of

bitflip coverage overlap. If the majority of assertions end up covering the same group

of bitflips, then we might be better off simply selecting random assertions. Figure 5.1

compares these two methods against random assertion filtering. In order to focus on

the effect of filtering, we set the (–filter) parameter to 10000 which is 10 times less

than the rest of our experiments. We can see that in general, the selector difficulty

potential filtering method performs the best. We can also see that it is possible for

selector potential filtering to perform worse than even random filtering which could be

due to the selected assertions having significant overlap in the selector variables they

cover. Therefore, in subsequent results we will be using only the selector difficulty

potential filtering method.

66



M.A.Sc. Thesis – S. Dumitrescu McMaster University – Computer Engineering

5.6 Full Flow Performance
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Figure 5.2: Comparison of bitflip coverage using ISCAS89 [4] and ITC99 circuits [5]

67



M.A.Sc. Thesis – S. Dumitrescu McMaster University – Computer Engineering

Figure 5.2 catalogs the bitflip coverage across a variety of circuits. Ideally, we would

like to see all three coverage metrics place above 90% for all circuits. In order for a

hardware assertions to be competitive with DWC, it should cover 100% of bitflips.

However, it is evident that the performance for some circuits (e.g. s38417 and b12)

is very poor. On the other hand, for circuits like s953 and s1238, all coverage metrics

are close to 100%. We also observe that for some circuits, there is a big difference

between the DSIM coverage, and the DSIM divergence coverage. This may be an

indication that differential fault simulation was not run for long enough for bitflips

to cause observable effects on circuit outputs and pseudooutputs.

One of the circuits in which we see a large difference between DSIM coverage and

DSIM divergence coverage is in circuit b12. This circuit replicates the functionality

of the Simon toy [58]. The player must match a sequence of increasing length. It is

very unlikely that the full functionality of this circuit can be explored using purely

random input vectors as is done in our differential fault simulation. It is unlikely

that we could end up in a winning state purely through random simulation. Thus we

speculate that the majority of possible bitflips are never being excited such that they

can have an effect on the output.

Circuit b12 also features states which are controlled by counters. In these states,

the progression towards the next state cannot occur until the counter reaches a certain

value. This means that the length of sequences necessary to trigger certain functional-

ity can be quite large. This phenomenon is also present in circuit b13, which appears

to have a serializer FSM to communicate with some sensors. The serializer converts

an 8-bit word into a serial bitstream, but waits 104 clock cycles to transmit each bit.

It uses 832 clock cycles to transmit an entire word. Circuit b13 also shows a large
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discrepancy between the DSIM coverage and the DSIM divergence coverage, and the

length of the state sequences could be one reason for this.

The performance that is revealed by the DSIM coverage data is likely to be too

pessimistic. The random input vectors used by the differential fault simulation step

may not accurately reflect the real-world operating environment of the circuit. For

example, a benchmark circuit may contain a reset input that would normally not be

asserted high. However, the random simulation would constantly toggle this input

effectively restricting the states that are reachable through random simulation. On

the other hand, the SAT coverage data may be too optimistic, revealing very specific

requirements that would lead to a bitflip propagating to an assertion output given

some input sequence. Such an input sequence could be very unlikely during the

operation of the circuit, but its existence does reveal that the bitflip is detectable.

Thus the real performance of the hardware assertion approach should lie somewhere

in between the extremes revealed by these two metrics.
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Circuit
Sensitizable

Bits
Unsensitizable

Bits
LUTs Registers

Checker
LUTs

Checker
Registers

s208 180 188 23 8 25 3
s298 207 273 30 14 32 3
s344 228 188 26 15 30 4
s386 335 465 50 6 60 2
s400 210 526 46 21 55 4
s420 225 511 46 16 44 8
s444 210 526 46 21 54 4
s510 361 1,031 87 6 102 5
s526 231 441 42 21 48 3
s713 168 664 52 14 66 0
s832 538 1,302 115 5 147 0
s838 301 1,299 100 32 86 22
s953 930 1,710 165 29 202 1
s1238 1,118 2,146 204 18 255 3
s1423 775 1,689 154 74 155 41
s1494 1,333 2,779 257 6 227 51
s5378 3,541 3,115 416 160 514 15
s9234 1,667 2,605 267 124 253 57
s13207 4,813 5,379 637 422 522 258
s15850 5,301 7,611 807 441 687 158
s38417 15,447 23,097 2,409 1,387 1,952 283
s35932 17,681 18,127 2,238 1,472 1,827 146
s38584 13,367 25,865 2,452 1,154 2,400 232
b01 36 108 9 5 12 0
b02 15 49 4 4 2 0
b03 362 198 35 30 40 3
b04 1,656 1,032 168 66 170 10
b05 1,322 1,622 184 34 186 24
b06 56 104 10 9 11 0
b07 617 631 78 42 76 20
b08 230 394 39 21 47 4
b09 273 415 43 28 54 2
b10 346 646 62 17 75 2
b11 1,237 1,675 182 31 189 7
b12 2,565 3,963 408 119 356 33
b13 562 720 82 53 99 6
b14 8,549 17,499 1,628 215 1,616 21

Table 5.1: Comparison of sensitizable bits, circuit size, and final checker circuit size

Table 5.1 showcases the number of sensitizable bits. It also compares the original

circuit size to the size of the checker circuit. The size of the checker circuit is obtained
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by combining all the assertions into one module and reducing the outputs of all

assertions with a single OR gate. So this final checker area includes not only the

hardware assertion area, but also the area needed to reduce them to a single output.

This comparison reflects the accuracy of the area estimation we used for assertion

selection in Section 4.6.1. We expect that DWC would also have a similar cost to

original circuit, with some extra for the comparison logic. In order for our checker

circuits to be competitive with DWC, they must cover 100% of bitflips while having

a hardware cost that is less than or equal to DWC. Thus, we must conclude that

the hardware assertion selection flow does not produce a checker circuit which can

compete with DWC, even when both have a comparable area cost.
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5.6.1 Area Budget Effect on Coverage
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Figure 5.3: Effect on DSIM coverage by varying the area budget using ISCAS89 [4]
and ITC99 circuits [5]
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Figure 5.4: Effect on SAT coverage by varying the area budget using ISCAS89 [4]
and ITC99 circuits [5]

We were also interested to see how varying the area budget can effect the performance

of the checker circuit. Varying this area budget allows the greedy assertion selection

algorithm to select more assertions from the assertions simulated by differential fault

simulation. Figure 5.3 shows the effect of increasing the area budget on a subset

of the circuits from Figure 5.2. Initially the DSIM coverage increases rapidly, but

eventually we see diminishing returns. Figure 5.4 shows the effect of increasing the
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area budget on SAT coverage. We can observe that for each circuit, the SAT coverage

provides an upper bound on the coverage.

What we can observe in Figure 5.3 is that circuits s953 and s1238 are able to

eventually approach 100% coverage while others like b12 and s38417 get stuck below

30%. This may be an indication that although we have increased the number of

assertions the greedy algorithm is able to select from its input set, there are simply

not enough good assertions in that input set.

In early investigations using SAT queries, we observed that the assertion pool

just before filtering was usually sufficient to cover almost every sensitizable bitflip.

For each sensitizable bitflip, we would check if there existed at least one candidate

assertion that would detect it. Obviously we cannot include millions of hardware

assertions in our checker circuit, so we must perform some sort of filtering. Thus if

we have mined sufficient assertions to cover almost all bitflips, and we also observe

that increasing the area budget of greedy assertion selection does not yield a large

improvement then this might mean that we did not hand off enough assertions to

differential fault simulation, or that the assertion filtering step performed poorly.

However, it is also possible that the length or number of simulations was not enough

to fully stress all the potential bitflips in the circuit.

Regardless of not being able to approach 100% coverage, what we do notice is

that even for a very small area budget, we are able to get a reasonable amount of

coverage. This indicates that there exist assertions which provide a high amount of

coverage relative to their hardware area cost.
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5.6.2 Assertion Timing in Relation to Outputs
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Figure 5.5: Assertion versus output divergence timing using ISCAS89 [4] and ITC99
circuits [5]
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One possible benefit to assertions is that they can detect the presence of a fault before

the fault manifests as an error. Thus in Figure 5.5 we kept track of the timing of

assertions firing in relation to outputs diverging. We observe that circuits like b12 and

s38417 that performed poorly in Section 5.6 are dominated by the category of neither

assertions firing nor outputs diverging. This again suggests that the simulation did

run for long enough to produce a random input sequence that would activate the

effect of these bitflips.

Arguably the only catastrophic scenario is when an assertion did not fire but

the outputs diverged. If this scenario occurs often for a particular circuit then the

performance is indeed poor. Circuits such as b06 and b02 are very small, with the

area budget only affording a few assertions, so the results here varied compared to

the experiments performed for Figure 5.2.
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5.7 Flow Runtime Measurements

Flow Step b14 s13207 s15850
Finding

Sensitizable Bits
35817.050 142.513 250.957

Assertion
Mining

2013.994 14510.008 22566.477

Assertion
Filtering

1515.633 258.754 1229.041

Assertion
Ranking

8154.746 1147.192 1984.762

Greedy
Assertion
Selection

1582.353 228.626 378.016

Final DSIM
Coverage

2108.490 908.272 1006.162

SAT Coverage 1369.026 29.493 75.446

Table 5.2: Runtime measurement in seconds of hardware assertion selection flow
using ISCAS89 [4] and ITC99 circuits [5]

Table 5.2 lists the runtime of all the steps of the hardware assertion selection flow for

one of the larger circuits. The runtime of each step in our flow depends not only on

the size of the circuit, but also on the various runtime arguments that were defined

in Section 5.3.

5.7.1 Finding Sensitizable Bits

It is evident that the runtime of b14 in Table 5.2 is dominated by the process of

finding sensitizable bitflips. Since, this step is SAT-based, the runtime will increase

exponentially as the size of the SAT instance increases, which depends on both the

size of the circuit and the number of timeframes for which it is unrolled.
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If this flow is expected to be run multiple times on the same FPGA netlist, this

initial step can be extracted out of the flow. Information about which bitflips are

sensitizable will remain valid across multiple runs, so this step is only needed to be

run once.

5.7.2 Assertion Mining

The runtime of assertion mining is usually controlled by user arguments. There are

arguments for how many clauses to learn and there is a timeout value which will stop

the assertion mining if the frequency of learning new clauses descends below some

threshold. We aim to select the number of learned clauses and the timeouts such

that we will have a reasonable runtime. However, if this step is extracted out and

the learned clauses are saved to a persistent database, then this runtime could be

arbitrarily long.

The runtime of circuits s13207 and s15850 are dominated by this step. We specu-

late that because these circuits are around half the size of b14, that is more difficult to

discover the same number of learned clauses as for b14, thus, the process of assertion

mining is slower when the target number of learned clauses is the same.

5.7.3 Assertion Filtering

Because we have chosen to use selector difficulty potential as our filtering method,

the runtime of this step will increase with the number of learned clauses and with

the number of filter iterations. In every filter iteration we must iterate through each

literal of each learned clause and then finally sort the learned clauses.
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5.7.4 Assertion Ranking

The second largest time sink is the assertion ranking. We expect this to be the

case. The runtime of assertion ranking step is proportional to the size of the circuit,

the number of candidate assertions to simulate, the number of simulations, and the

length of each simulation so we aim to select runtime arguments to our flow that will

balance the quality of the generated violation matrix with the runtime. We assume

that expanding the scope of the assertion ranking by adding more assertions, more

simulations, and making the simulations longer will improve the violation matrix and

thus improve the performance of greedy assertion selection.

5.7.5 Greedy Assertion Selection

The major contributor to the runtime of the greedy assertion selection is the fact

that every time an assertion is selected, all other rows in the violation matrix have to

be updated. Thus, the runtime of this step increases with the number of candidate

assertions that passed the assertion filtering step, the area budget, and the number

of sensitizable bitflips.

5.7.6 Final DSIM Coverage

The final DSIM coverage experiment is simply an assessment of the hardware asser-

tions using the same differential fault simulation technique as in assertion ranking.

Assuming all DSIM parameters are kept the same for this step as for assertion fil-

tering, this step will take less time because the circuit we are simulating will have a

smaller number of assertions included.
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5.7.7 SAT Coverage

In this step we use a SAT query to check that every sensitizable bitflip can be de-

tected by one of the hardware assertions we’ve selected. Thus the runtime will be

proportional to the number of sensitizable bitflips. The worst case runtime will be

exponential with regards to the size of the SAT instance, which not only depends on

the size of the circuit, but also on the number of timeframes for which it is unrolled.

5.8 Summary

In this chapter, we have assessed the performance of our proposed hardware assertion

selection flow. We defined the user-provided arguments and we showcased various

coverage metrics across a variety of standard benchmark circuits. We found that the

performance of the generated checker circuits was not competitive with DWC, and

we discussed reasons as to why that is the case. Even though compared to DWC we

were not able to cover the same number of bitflips with similar area, we were still

able to show that many bitflips will be detected before their effect will be propagated

to the circuit outputs. In the next chapter, we will provide some concluding remarks

and discuss possibilities for future research.
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Chapter 6

Conclusion and Future Work

In this thesis, we discussed a flow for generating checker circuits than can detect SEUs

in FPGAs. While the most common way to mitigate SEUs is with hardware redun-

dancy in the form of DWC and TMR, we sought a different approach to hardware

redundancy. We sought to use the hardware invariants that can be generated from

the CDCL mechanism of modern SAT solvers. By creating a CNF representation

of the compiled FPGA netlist, hardware invariants can be automatically extracted.

Then, out of a large pool of these hardware invariants, we attempt to cover as many

bitflips as our area budget allows.

We expected that using the hardware assertion selection flow, we would be able

to approach 100% bitflip coverage for most circuits when constraining the maximum

area of the checker circuit to the size of the original circuit. However, while this

was possible for a few circuits, most of our benchmark suite did not achieve this

goal. Thus we concluded that this approach to hardware redundancy would not be

competitive against more traditional approaches like DWC and TMR.

In some cases bitflips can be detected before they reach the output as discussed in
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Section 5.6.2. In a hardware redundancy solution such as TMR or DWC, if compar-

ison or voting is only used on the outputs, then it would only be possible to detect

faults once they have manifested as errors on the outputs. Here we show that there

are bitflips that can be detect before they affect the outputs. Thus, one benefit of

hardware assertions in contrast to hardware redundancy such as TMR or DWC is

that we can sometimes detect the state of the circuit becoming corrupted before this

manifests as an error.

An approach like TMR does not have to be mutually exclusive to the hardware

assertion approach. Regulations may mandate that an approach like TMR be used.

For example, to reach the highest safety integrity level (SIL), redundancy may be a

requirement [59]. The additional detection ability and circuit visibility provided by

assertions can still provide a benefit. TMR allows a single fault to be detected and

masked out. However, in an FPGA, upsets will continue to accumulate, so continuous

scrubbing of the configuration memory is necessary for reliable operation. In Section

5.6.2 we have shown how assertions can detect many bitflips before they have an

effect on the outputs. Thus, assertions could be added to a TMR implementation to

improve detection latency, and thus allowing the scrubbing period to be decreased.

6.1 Future Work

6.1.1 Exploring the Effect of Multiple Bit Upsets

In the presence of multiple upsets, the approach of N-modular redundancy is no

longer as reliable. Faults in multiple copies of the circuit mean a voter can no longer

be guaranteed to mask out those faults. In contrast, we speculate that the greater the
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number of faults, the more likely it will be that an assertion will be violated. Thus it

would be valuable to experimentally assess how the assertion approach can compare

to traditional redundancy approaches in the presence of multiple upsets.

6.1.2 Exploring Different Methods of Generating Assertions

In Section 5.6.1 we showed the there exist assertions providing high bitflip coverage

relative to their size. However, we simply rely on the CDCL mechanism to provide

us with a plethora of candidate assertions by randomly exploring the search space.

Although the CDCL mechanism of a SAT solver conveniently produces assertions

as a byproduct, we have little control over which area of the circuit is searched.

While CDCL allows us to find a vast number of assertions, it does not allow us to

narrow down the search space to target bitflips that have weak coverage. It would be

beneficial to construct a search algorithm for finding assertions that can also target

finding assertions that are candidates for specific LUT bits.

6.1.3 Exploiting Unsensitizable Bits in FPGA LUTs

A large portion of the SRAM cells comprising LUTs end up being unsensitizable

as seen from Table 5.1. These unsensitizable bits can be exploited to increase fault

masking [45]. In the presence of an SEU, a bit that was previously considered unsen-

sitizable, might become sensitizable, and the authors seek to assign these bits such

that fault masking is maximized. One area for future consideration is to try the

opposite approach: assign all such unsensitizable bits such that fault masking in the

presence of an SEU is minimized. As such we would increase the likelihood that such

a fault would propagate to a hardware assertion, and the hardware assertion would
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detect it.

6.1.4 Faults in Routing and Other FPGA Components

This thesis focused only on SRAM cells that define LUTs. Other SRAM cells control

the other functions of the PLBs (e.g. carry chains, flip-flops). There are also SRAM

cells that control routing. Because routing architecture is usually not detailed in

FPGA documentation, a simple custom routing architecture can be developed, or

an FPGA architecture that has been completely reverse engineered like the Lattice

iCE40 series [60].

6.2 Concluding Remarks

This thesis discussed novel methods of generating invariants and separating useful

invariants to use as hardware assertions. The biggest lesson we learned is that even

though the SAT CDCL mechanism allows us to generate a large pool of candidate

assertions, the big challenge lied in how to separate the useful assertions for hardware

checkers. Even though we did not attain our goal of being able to detect all bitflips, we

developed software and methods for begin able to deal with a large pool of candidate

assertions. The platform we developed will enable future research where different

methods of generating candidate assertions can be substituted.
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