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In order to further explore the nature of anesthesia-induced unconsciousness
and its relationship to nociception, investigators attempted to determine whether
mismatch negativity could be detected during general anesthesia and surgery.
An auditory odd-ball paradigm designed to elicit mismatch negativity was pre-
sented to ten patients during general anesthesia and surgery. Five of the ten also
underwent testing in the awake state prior to surgery. Multiple EEG recordings
were obtained in each patient and each condition using the BioSemi ActiveTwo
64 EEG electrode system. The anesthetic regime required only that 0.7 MAC of
an inhaled agent was administered. Several methods of analysis were utilized
to determine whether an MMN response could be identified: visual inspection
of ERP waveforms, targeted t-tests, cluster permutation tests, and multivariate
pattern analysis. Whereas deviant-related negativity was readily detected in the
awake state, deviant-related negativity was not detected during surgery and
general anesthesia. Results demonstrate that essential components of the MMN
response are abolished during typically conducted general anesthesia even with
significant surgical stimulation. These results are consistent with previous re-
search on ERPs and anesthesia. Results cast doubt on the possibility of sensory
memory related to intraoperative events.
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Chapter 1

Introduction

1.1 Purpose
Over the last 50 years our understanding of the biophysical properties and
cellular actions of anesthetic drugs has greatly expanded. Exactly how these
properties and actions result in unconsciousness is still incompletely
understood. The most obvious impediment to better understanding this state is
the amnesia and immobility that invariably accompanies the anesthetic state.
Therefore, much of what we now understand is derived indirectly from studies
using neuroimaging and electrophysiology. In gross terms the former provides
a spatial perspective while the latter provides a temporal perspective into the
cognitive processes involved in losing and regaining consciousness. Both
investigative tools now inform current leading theories of consciousness
which, for the most part, involve brain network connectivity. High definition
electroencephalography (EEG) is arguably the most powerful and accessible
electrophysiological tool for elucidating network dynamics. However, the
event related potential (ERP) technique continues to provide insight into nature
of consciousness by tracing the course of neural events on the millisecond
timescale.

The purpose of this study is to investigate the extent of auditory sensory
processing during surgery and general anesthesia. Its main goals are twofold:
one, to determine whether mismatch negativity (MMN), a specific ERP which
is a biomarker of auditory cortical processing, can be detected during routine
surgery and general anesthesia; and, two, if detectable, determine whether this
marker is consistently or only transiently present. Since it is one the first
studies of this sort conducted during surgery, it also provides opportunity to
assess whether surgery itself can effect cortical responses and to describe some
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of the challenges that accompany measurement of microvolt responses in the
modern operating room.

1.2 Relevance

1.2.1 Anesthesia and Surgery
Approximately 2.5 million surgical procedures are performed each year in
Canada (OECD, 2017; Picard, 2014). Though precise data are lacking, many, if
not most, of these procedures involve general anesthesia (GA).
Understandably, surgical patients expect to be unconscious during
surgery (Rowley et al., 2017) and want assurance that the effects of GA are
transient and reversible (Cole-Adams, 2017). At this time, the nature of
consciousness is poorly understood; and so, guaranteeing lack of it is
problematic. Anecdotes suggest that some patients are “never the same” after
major surgery. Given the rising demand for surgical services and our aging
population, much more research is needed to better address the gaps between
what patients expect and need, and what current medical practice delivers.

Knowledge gaps and methodological limitations persist due to: inadequate
understanding of underlying pathophysiology, lack of validated and
standardized preoperative assessment tools, inadequate monitoring
technology, and lack of biomarkers (Vlisides, 2019). Of note, inadequate
understanding of how the brain generates consciousness has hindered
development of a useful intraoperative monitor of unconsciousness. The direct
consequences of our inability to objectively differentiate the conscious and
unconscious state can result in both inadequate anesthesia (resulting in
awareness, for example) and excessive anesthesia (resulting in post-operative
cognitive dysfunction, for example). Traditional approaches based on
phenomenal description of brain states are unlikely to yield useful
results (Vlisides, 2019). Elucidation of the true neural correlates of
consciousness will require new perspectives and new technologies applied to
the study of the human brain, the primary motivation for the present work.
Translation of this science into clinical practice will directly impact the way
anesthetics are delivered and lead to new, safer, anesthetic techniques.
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1.2.2 Disorders of Consciousness
Understanding the neurobiology of consciousness remains one of the greatest
challenges of modern science; and field experts generally agree that
investigation into disorders of consciousness is both revealing and
essential (Mashour, 2006). Some researchers argue that consciousness (or lack
of it) can be explained by specific, biologically grounded "neural correlates",
and that any unified theory of (un)consciousness must explain all alterations of
consciousness, whether based in pharmacology, physiology, or
pathology (Koch et al., 2016). In this way, research into anesthesia induced
unconsciousness overlaps with other "disorders" of consciousness: sleep and
coma (Brown, Lydic, and Schiff, 2010). Whereas underlying pathophysiology
may differ, experimental approaches use similar techniques and methods
including both fMRI and EEG. These neurophysiologic studies tend to focus on
network connectivity and evoked responses (ERP and TMS, e.g.), though
specific techniques understandably differ (Boveroux et al., 2008). Therefore,
experimental findings in any one condition ought to inform theories of
consciousness; and methodolgical advances should benefit present and future
consciousness research.

1.2.3 ERP Research
As outlined below, the "ERP" technique evolved years after Berger’s discovery
of the EEG in 1929. Since the first description of the evoked response called
"mismatch negativity" by Butler in 1968 (Butler, 1968), interest in the
measurement, underlying neural components, and significance of this response
has grown and remains highly visible in scientific publications. Mismatch
negativity (MMN), also described as the "novelty response" in some studies, is
considered to be a biomarker of consciousness (Näätänen et al., 2007). Notably,
it serves as an outstanding example of "predictive coding," hierarchical
processing," and the Bayesian brain," prominent themes in contemporary
cognitive neuropsychology (Garrido et al., 2009). Clearly, investigation into
anesthesia-induced unconsciousness using the ERP technique, in general, and
the MNN, specifically, expands understanding of the MMN itself. This
investigation also highlights some the classic problems in MMN work - namely,
the (low) signal to noise ratio, the multiple comparison problem, and
processing of single subject data at the epoch level. These issues are critical to
real world applications such as brain computer interfaces and clinical
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monitoring systems. The current investigation reappraises the relationship of
the MMN to the conscious brain, and, as well, proposes opportunities and
challenges for future research in this area.

1.3 Background

1.3.1 ERPs and Consciousness Research
Why use ERPs to study consciousness? Functional connectivity studies
utilizing either fMRI or EEG currently dominate the field (Bonhomme et al.,
2019). Most of these studies focus on network connectivity and dynamics and
aim to demonstrate various differences between the conscious and unconscious
state. On a practical level , performing surgery in an MRI scanner is simply not
possible. On a theoretical level, Logothetis raises "red flags" about drawing
conclusions from fMRI data when the neurobiology is uncertain (Logothetis,
2008). Based on the fact that hemodynamic responses, which form the basis of
the BOLD signal, are sensitive to the size of the activated population, he
concludes:

"The fMRI signal cannot easily differentiate between
function-specific processing and neuromodulation, between
bottom-up and top-down signals, and it may potentially confuse
excitation and inhibition. The magnitude of the fMRI signal cannot
be quantified to reflect accurately differences between brain regions,
or between tasks within the same region."

Yet attempts to use fMRI to investigate anesthesia-induced unconsciousness
and cortical processing are published (Plourde et al., 2006; Alkire, 2008;
Palanca, Avidan, and Mashour, 2017; Boveroux et al., 2010; MacDonald et al.,
2015; Uhrig et al., 2018; Demertzi et al., 2019) and continue to shape our
thinking about consciousness. Similar studies using high definition EEG
actually comprise the bulk of recent scientific publications in this area.
Remarkably, despite use of advanced imaging technologies and analytical
methods, the nature of anesthesia-induced unconsciousness is still poorly
understood, mainly because of the confounding of state-related and
drug-related effects (Pal et al., 2020). Pal’s animal study, for example,
demonstrated that wakefulness can be dissociated from cortical connectivity.
Shahaf suggests that, given the complexity of the nature of consciousness,
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focusing on the neurophysiology of behavioral processes that underlie
consciousness - rather than consciousness itself - is more likely to yield desired
results (Baron Shahaf, Hare, and Shahaf, 2020). These processes are perception
and attention. These processes are embedded in the EEG signal and are easily
accessible as ERPs. Early evoked responses in the 50 -200 ms range inform
understanding of perceptual processes, while later responses up to 600 ms
inform understanding of attentional processes. Accordingly, abstract
discussion of neurophysiologic markers of consciousness are replaced with the
more concrete markers of perception and attention which support conscious
experience. Conceptually, this approach also embodies study of bottom-up
(sensation) and top-down (memory) processes. Such an approach involves
assumptions, such as a congruous relationship between consciousness,
attention and memory; but this assumption in not unreasonable. Most
importantly, ERPs are an easily accessible tool to study the impact of anesthesia
and surgery on the various cognitive processes that comprise consciousness.

1.3.2 Mismatch Negativity
This research focuses on mismatch negativity for two main reasons: (1) it is a
"taskless" ERP; and (2) it is a late latency ERP (or at least components of it are
late latency), which implies that it plays some role in perception in addition to
mere sensation. During general anesthesia subjects are immobilized and
therefore unable to perform any task involving a motor response. Indeed, some
researchers (detailed below) have utilized task paradigms, such as the P3
response, to study general anesthesia , but these studies have focused more on
the transitions between states rather than the unconscious state itself (see
Chapter 2). Finally, since early and mid-latency evoked potentials largely
reflect sensory processing at the level of the brainstem and thalamus, studies
focused on these responses will unlikely provide new insights into the extent of
cortical activity and cognitive processing during general anesthesia.

The traditional MMN was defined by Näätänen (Näätänen and Picton, 1987)
and refined in subsequent studies and reviews (Näätänen et al., 2007, e.g.). The
MMN is generated by the brain’s response to a change in sensory stimulation.
Identifying a change in the environment is a basic neurophysiologic function,
which at a behavioral level, (re-)orients attention. This change is typically
elicited in the laboratory by providing subjects with a stream of "standard"
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stimuli with randomly dispersed "deviant" stimuli known as an "oddball"
paradigm. The response is seen on the electroencephalogram as a negative
deflection which is maximal in frontal or fronto-central scalp electrodes when
referenced to the mastoids. The MMN usually peaks at 150-250 ms after the
stimulus. Näätänen states that the auditory response consists of two
components: a relatively early component generated by the bilateral superior
temporal lobes, and a late component generated by the right inferior frontal
cortex. Modern imaging techniques confirm his description of the MMN’s
functional anatomy. The relationship of the N1 response, which is synonymous
with activation of primary sensory cortex, to the MMN is not straightforward;
nonetheless, because of overlap of latencies, the MMN is often visualized as a
difference wave obtained by subtracting the (average) deviant response from
the (average) standard response. Näätänen’s early work demonstrated that the
MMN can be elicited in the absence of attention, and this "automatic" feature of
the MMN is a defining feature. Although an MMN response can be observed in
all sensory modalities (Näätänen et al., 2007), subsequent discussion will focus
on auditory sensory processing which is the easiest to study in patients under
general anesthesia.

The neurophysiologic interpretation of this response is still debated. A
comprehensive review is beyond the scope of this thesis (see Fishman, 2014),
but broadly three theories dominate current discussions. Näätänen’s original
interpretation maintains that the MMN is a discrimination process where the
deviant event is found to be discongruent with the memory representation of
the preceding stimuli (even in the absence of attention)." The memory trace of
preceding sensory input is key to this interpretation. Another
interpretation (May and Tiitinen, 2010) argues that the MMN results from
"fresh" afferents which are not adapted (i.e. suppressed) by the standard steam.
According to this "adaptation" hypothesis, the MMN is simply a difference
wave between the N1 generated by the two different population of neurons.
Cleverly constructed paradigms, source localization, and pharmacologic
studies are just some of the kinds of evidence that have been used to assess the
validity of these theories. However, Garrido (Garrido et al., 2009) combines
elements of both the memory and adaptation models into a third model called
"predictive coding" or hierarchical inference." Prediction-errors generated by
the interaction of bottom-up and top-down streams are passed up the
processing hierarchy. Depending on the weight of these prediction-errors,
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determined by an adaptive or neuro-plastic process, changes in cortical
connectivity occur to enhance the precision of top-down predictions.
According to this theory, the MMN "represents a failure to predict bottom-up
input and consequently a failure to suppress prediction error." Clearly, the
memory-trace and predictive coding models have greater relevance to
understanding the anesthetized brain. If either interpretation of the MMN is
correct, then ability to elicit an MMN response during general anesthesia
would imply cortical activity associated with the conscious brain.

What "automatic" or "pre-attentive" actually means is another topic of debate.
Näätänen argues that this feature of the MMN response is unique and defining
because it could be elicited in comatose patients, in healthy people during
some stages of sleep, and in newborns who naturally have undeveloped
nervous systems. May, on the other hand, refutes this claim with studies that
show that attention modulates the MMN and can even abolish it. As well, he
summarizes the then extant body of cognitive science that deals with attention
and perception and concludes:

"Attention clearly affects all stages of auditory sensory
processing. There seems to be no specific location in the auditory
pathway that forms the border between automatic and
nonautomatic processing, and so the effect of attention is not a
division of the pipeline of auditory processing into pre- and
postattentive sections."

Recently, this debate has been reframed as whether the MMN requires
"perceptual awareness." Using a sophisticated masking technique,
Dykstra (Dykstra and Gutschalk, 2015) demonstrated that the MMN is
observed only when the standard stream was consciously perceived. While
admitting that teasing out the effects of attention versus awareness can be
difficult, he offers arguments that on balance favor the concept that awareness -
not attention - underlies the mechanism of the MMN response. Therefore, the
MMNs recorded in patients with disorders of consciousness would require at
least "partial" perceptual awareness despite lack of confirming behavioral signs
of it. This interpretation is highly relevant to the current study where the extent
of sensory processing under general anesthesia is investigated and issues of
attention are not directly relevant.
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1.3.3 General Anesthesia
The administration of medication to render a patient insensitive to surgery was
termed "general anesthesia" by Holmes in 1846 following Morton’s
demonstration of the use of dimethyl ether during excision of a neck mass at
the Massachusetts General Hospital the same year 1. The definition has since
been refined by Brown: "general anesthesia is a drug-induced reversible state
consisting of unconsciousness, amnesia, antinociception, and immobility, with
maintenance of physiologic stability" (Brown, Pavone, and Naranjo, 2018).
Used in combinations known as "balanced general anesthesia," different drugs
target specific behavioral endpoints: e.g. intravenous hypnotics or halogenated
ethers for unconsciousness, benzodiazepines for amnesia, opioids for
antinociception, and acetylcholine receptor blockers for immobility - though
the actions of these various drug classes overlap to greater or lesser extent.
Thus, general anesthesia is typically initiated in adults as a series of injections.
Most of these drugs are extremely short acting, so the anesthetic state needs to
be maintained by intermittent injections or by continuous infusions or
ventilation with inhaled agents. Reversal of the state is achieved passively by
ceasing administration of anesthetizing drugs and facilitating the normal
physiologic processes that eliminate them. Except when drugs are
administered by computerized pumps that incorporate elaborate
pharmacokinetic models (TCI e.g.), plasma levels of anesthetic drugs vary
somewhat unpredictably throughout the course of surgery. Medications are
often administered in anticipation of or in reaction to surgical events -
specifically events that trigger a nociceptive response. Nociception, which is a
physiologic response to tissue injury (as opposed to "pain" which is the
conscious perception of it), causes harmful hemodynamic and neuroendocrine
responses that lead to organ failure and chronic pain. So-called "nociceptive
breakthrough," occurring when the intensity of surgical stimulation exceeds the
suppressive effects of the anesthetic drugs, is common during every type of
surgery; and management of the nociceptive response is one of the primary
preoccupations of the anesthesiologist.

While huge strides in understanding how anesthetics produce unconsciousness
occurred in the 175 years following Morton’s demonstration, many issues
remain unresolved (Bonhomme et al., 2019; Hemmings et al., 2019). At the
cellular level anesthetics interact with cell surface proteins to modulate
neurotransmission. These drugs are believed to interact with more than 300
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known proteins (and likely additional unknown ones). GABAA, NMDA,
2-pore K, HCN, and ACh receptors all have established roles. At the circuit
level much less is known. Multiple lines of investigation propose that
anesthetics cause a disruption of thalamocortical connectivity as well as
fronto-parietal directed connectivity; but proving a causal relationship between
changes in connectivity and consciousness remains elusive. Most studies use
unresponsiveness as a surrogate marker of unconsciousness, and they are
almost certainly not equivalent neurocognitive states. Even interpretation of
the most consistently observed changes in the scalp EEG and spectrogram -
anteriorization of alpha power - are questioned due to the presumed minor role
of frontal cortex in generating consciousness (Boly et al., 2017). Whereas return
of the consciousness was once thought to be the reverse of loss of
consciousness, increasing evidence suggests that emergence from
anesthesia-induced unconsciousness involves activation of sub-cortical arousal
pathways in the brainstem, hypothalamus, and basal forebrain (Nir et al., 2019;
Kelz et al., 2019). Anesthesia-induced unconsciousness may not be a unitary
state after all; many different alterations of the connectome may lead to the
observable behavioral features of general anesthesia.

The relationship of arousal (wakefulness), consciousness, and nociception is a
key to this thesis. Numerous imaging studies confirm that nociception
predominantly activates hypothalamus and periaqueductal gray area of the
brain (Brooks and Tracey, 2005; Leone et al., 2006). Imaging also implicates
prefrontal, insular, anterior cingulate, and posterior parietal cortex (Lichtner
et al., 2018). All these structures play a role in mediating arousal; and the latter
three have also been touted as neural correlates of consciousness (Alkire,
Hudetz, and Tononi, 2008). Critically, drugs that mitigate nociception tend to
reduce arousal (Lydic and Baghdoyan, 2005; Brown, Pavone, and Naranjo,
2018). Opioids, which classically exert effects on the periaqueductal gray area
of the descending inhibitory pain pathway, diminish arousal by inhibiting
brainstem cholinergic circuits, median pontine reticular formation, and
thalamus. Ketamine, an extremely potent NMDA blocker acting principally on
dorsal horn neurons, decreases arousal by blocking excitatory glutaminergic
circuits in parabrachial nucleus, median pontine reticular formation, thalamus,
and basal forebrain. The point is this: nociception causes arousal and
antinociception causes sedation. Whether nociception that escapes
pharmacologic suppression can induce sufficient arousal to engage higher
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cortical structures is a question posed in this research. Surgical stimulation
models the nociceptive response, the MMN models cortical activation, and the
experimental setting is general anesthesia.

1Typical of the times, original reports describing these events appeared in local newspapers
- not scientific journals. The earliest reference in a trade publication to Morton’s demonstration
appeared in HJ Bigelow’s article on inhalational anesthesia in the Boston Medical and Surgical
Journal, 1846 (35), p. 309-317.
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Chapter 2

Review of Literature

2.1 Introduction
What follows is a curated, not comprehensive, review of studies relevant to the
MMN response and general anesthesia. Studies that specifically looked at the
MMN during any kind of sedative or hypnotic drug administration are
included. Similarly, studies that specifically focused on long latency ERPs, but
not the MMN, are included if they included recordings during general
anesthesia. Because this research is motivated by the need to better understand
the nature of anesthesia-induced consciousness, some very notable ERP studies
of drug-induced amnesia and ketamine based models of schizophrenia are not
reviewed. All good studies build on the work of others; but, understandably,
the sum total cannot be reasonably reviewed in the present context. Hopefully,
this review will successfully convey the rich history of this line of research and
highlight the most significant past and present contributions.

A few introductory notes may help those unfamiliar with ERPs. All published
studies adhere to conventional ERP nomenclature. The initial letter refers to the
polarity of the post-stimulus amplitude - positive, "P", or negative, "N" . The
number following this letter refers to either the ordinal number of the
deflection (in the series of post-stimulus deflections of same polarity) or latency
in milliseconds. Additional lower-case letters following the number may
further distinguish the ERP with regard to within-family subtype (e.g. P300a).
A very general description of the ERPs referenced below is included in
Appendix B). As noted in Appendix B, exact characterization of these ERPs can
be difficult without consideration of the experimental context in which they
arise. Reviewed studies also refer to standardized scalp electrode designations
and locations. These are shown in the graphic in Appendix D which displays a
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variant of the international "10-20" layout. In the studies below, the most
commonly used scalp electrodes are located front to back (frontal, F; central, C;
and parietal, P) in the anatomical saggital plane (central, z). Finally, commonly
used behavioral scales of alertness are shown in Appendix A. These few notes
should provide some assistance in interpreting the studies described below and
the discussion that follows presentation of results (Chapter 5).

2.2 Historical Context
Picton, et.al. published the first detailed description of auditory evoked
responses (AEP) of the brain in 1974 (Picton et al., 1974; Picton and Hillyard,
1974). Years later Thornton (Thornton et al., 1984; Thornton and Newton, 1989)
and Jones (Jones, 1994) tested the hypothesis that the amplitude and latency of
AEPs reflected the level of consciousness during general anesthesia. While
brainstem components (<8 ms) remained unchanged with intravenous agents,
mid-latency components (8-40 ms) consistently changed with increasing doses
of inhaled and intravenous anesthetics alike. Furthermore, the Nb component
of the MLAEP changed with surgical stimulation, providing further validation
of MLAEPs as a depth of anesthesia monitor. However, by the early 1990’s the
accumulated evidence merely correlated mid-latency AEPs with the “arrival of
sensory information at primary cortex”: higher cognitive processing -
perception, as opposed to sensation - could not be assumed (VanHooff et al.,
1997). Many researchers in this field speculated that general anesthetics
interfere with this very process, and their interest shifted to long-latency AEPs
which purportedly reflected cognitive rather than receptive aspects of
information processing.

Picton and colleagues also described N1 and P2 long-latency components of
the cortical auditory response in their original paper. In the same paper the
investigators make brief mention of the effect of physiological sleep on the N1
and P2 components. Collaborating with Näätänen, Picton further characterized
the N1-P2 response in awake subjects (Näätänen and Picton, 1987). Only a few
years after Picton’s landmark 1974 paper, Donchin (Donchin et al., 1983) and
colleagues suggested that these components might change with the subject’s
psychological state. This suggestion, together with a better understanding of
the late AEP components, spawned interest in measuring them during
physiological sleep and general anesthesia. These lines of research developed
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in parallel with characterization of the mismatch negativity (MMN) and P3
long-latency responses. Because these two responses appeared to be
independent of attention (specifically the MMN and P3a), they ultimately
became important tools in studying disorders of consciousness, namely: coma,
sleep, and anesthesia

2.3 ERPs and Depth of Anesthesia
The stated purpose of nearly all early investigations measuring ERPs in
anesthetized subjects was to devise a way to objectively assess the level of
consciousness or "depth of anesthesia." Physical signs were believed to be
unreliable, and the widespread use of muscle relaxants further clouded the
clinical picture. The portability of EEG together with the knowledge that
auditory stimuli reached cortex, even during deep general anesthesia, led to the
first use of evoked potentials to assess consciousness during general anesthesia.

In 1990 Plourde and Picton reported that that the 40 Hz auditory steady state
evoked response (ASSR) varied throughout the course of routine surgery in 10
human subjects (Plourde and Picton, 1990). Changes in the level of
consciousness were objectively assessed by a button press task, and the ASSR
was observed to decrease with decreasing level of consciousness. This work
built on Galambos’s initial characterization of the ASSR (Galambos, Makeig,
and Talmachoff, 1981) and observations regarding its dynamic
nature (Galambos and Makeig, 1988). Plourde and Picton’s results were
consistent with the results of other similar studies on steady state (Hogan, 1987)
and transient MLAEPs (Henegan et al., 1987). The authors could not conclude
that the ASSR measured consciousness as opposed to arousal or wakefulness.

Persisting in efforts to assess cognitive function during general anesthesia,
Plourde and Picton studied the N1 and P3 components in 14 human subjects
undergoing routine surgeries (Plourde and Picton, 1991). Their EEG recording
system consisted of 3 electrodes: Fz, Cz, and Pz. The P3 was elicited by an
“oddball” paradigm with standards (500 Hz, 15 ms) presented at 40 Hz and a
single deviant (700 Hz, 75 ms) presented at 10 per minute. Subjects were
requested to press a button in response to the deviant - a “hit”; failing to do so
counted as a “miss”. For “misses” during induction, surgery, and emergence,
the amplitudes of the N1 and P3 were indistinguishable from zero.
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Interestingly, a few “hits” were observed during emergence, even though
resulting responses were also indistinguishable from zero. The authors
recognized that the stimulating paradigm was optimized for steady-state
responses and therefore not typical. The authors also clearly identified the
problem of distinguishing inability or unwillingness to attend from
unconsciousness. On the other hand, they confirmed the feasibility of
measuring ERPs during surgery and anesthesia. Plourde and Boylan employed
a similar study protocol in 8 patients undergoing cardiac surgery and
high-dose sufentanil anesthesia (Plourde and Boylan, 1991). While the P3
disappeared post-induction, other components (N1, P2, SW) were preserved.
This study highlighted differences in long-latency responses with different
anesthetics. The authors concluded that, with some technological tweaking, the
P3 response promised to become a useful monitor of consciousness.

Van Hooff and colleagues studied the extent of cortical auditory processing
during general anesthesia by focusing on the N1 response (VanHooff et al.,
1997). Investigators used a total of 5 scalp electrodes. A classic “oddball”
paradigm was presented to 41 patents undergoing cardiac surgery with total
intravenous anesthesia. They observed clear differences in the latency and
amplitude of P1-N1-P2 complex between the awake and anesthetic states.
Deviant responses produced overall higher amplitudes which led the
investigators to speculate that MMN and P3a responses might overlap their
P1-N1-P2 responses. Importantly, they reported high variability in individual
ERPs and that only a minority (30%) showed no ERPs responses. Their study
suggested that cortical processing of sensory input is more extensive than
previously thought and provided an electrophysiologic basis for the concept of
implicit memory during general anesthesia. Finally, especially since anesthetic
and patient factors had little effect on their results, these investigators further
validated use of ERPs for consciousness monitoring.

As Simpson and colleagues pointed out in their own 2002 report (Simpson
et al., 2002), studies on the effects of general anesthesia on long latency
auditory-evoked potentials (LLAEPs) were sparse. Recognizing the relevancy
of LLAEPs to investigating the anesthetic state as well as the potential
usefulness of measuring LLAEPs as a clinical monitor, Simpson et. al.
investigated the transition from wakefulness to unconsciousness during a
target-controlled infusion (TCI) of propofol. They measured MMN and N1
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responses in 21 patients prior to surgery using an “oddball” paradigm
consisting of both frequency and duration deviants. EEG data was acquired
from 10 standard placed electrodes. The protocol was designed to present only
32 deviants and greater than 200 standards per condition per subject in order to
adapt testing to the clinical environment. The MMN disappeared prior to loss
of consciousness, defined by the usual criteria of failure to obey commands and
loss of lid reflex; whereas the N1 changed from baseline only with loss of
consciousness. They confirmed previous findings regarding the usefulness of
the N1 response for depth of anesthesia monitoring but concluded that the
MMN was insufficiently robust to serve the same purpose. The investigators
also noted that over the duration of each epoch ERP waveforms actually
became more positive with increasing levels of unconsciousness (i.e. propofol
effector site concentration), a finding that suggested the possibility of cortical
processing even at deep levels of anesthesia and that deserved further
investigation. The authors pointed out the challenge of distinguishing signal
from noise with only 32 deviants and acknowledged that reporting results as
grand means was dictated by methodology but not ideal. Their study differs
from the previously described studies in that, despite the clinical setting, no
surgery was performed during the testing period. The Simpson study remains
one of the few studies that attempted to measure the MMN response during
anesthesia induced unconsciousness (in contrast to sedation only).

Heinke and colleagues studied the differential effects of increasing doses of
propofol on the P1, MMN, and ERAN (early right anterior negativity)
responses (Heinke et al., 2004). The group hypothesized that responses that
were generated in the frontal cortex would disappear prior to those that were
generated in the temporal cortex. Eighteen patients were administered
propofol by TCI to achieve four different conditions: awake, light sedation,
heavy, sedation, and unconsciousness, each defined by target concentrations
and behavioral response. Patients were presented with separate ERAN and
MMN blocks of stimuli. The ERAN block was based on Koelsch’s technique
and consisted of sequences of five chords, the third or fifth of which was
randomly discordant (25% each). A total of 80 chord deviants were presented
to the subject per condition. The MMN block also consisted of a series of five
tones, the third or fifth of which was randomly increased in frequency (10%). A
total of 40 deviants were presented to the subject per condition. The study
employed 18 electrodes placed according to the 10-20 system and predefined
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criteria for identifying event-related potentials. The P1 was observed in all four
conditions, though reduced in amplitude during unconsciousness; while the
ERAN and MMN decreased in amplitude with increasing doses of propofol
and disappeared completely during unconsciousness. The investigators
observed that the P1 response paralleled typical MLAEPs reported decades
earlier. The investigators concluded that propofol does indeed have “different
effects on cognitive processes mediated by different cortical structures.”
Patients were not subjected to surgery during this study.

2.4 ERPs and Recovery From Sedation
The distinction between deep sedation and general anesthesia is arbitrary.
Nonetheless a few studies focus on ERP responses during the transition from
deep sedation to recovery of consciousness. These studies aim to further
investigate cerebral auditory processing, characterize the ERP responses
themselves, identify electrophysiologic markers of adequate sedation or
recovery from sedation, or clarify the pharmacodynamics of particular drugs.
Propofol became widely available around the year 2000, and it quickly became
the preferred drug for ICU and procedural sedation. Therefore, in most of these
reports, ERP responses are studied in subjects sedated with propofol.

Yppärilä and colleagues studied the auditory event-related responses of 29
patients recovering from cardiac surgery and sedated with propofol in the ICU
setting (Yppärilä et al., 2002). ERPs of interest included the N100, MMN, and
P300a. Sedation level was assessed by behavioral criteria using the Ramsay
score (RS). Three recordings were obtained: baseline (day before surgery), deep
sedation (RS 6, immediately after surgery), and moderate sedation (RS 4,
during “weaning”). EEG data was acquired using only four electrodes: Fz, Cz,
C3, C4. The investigators used a typical “oddball” paradigm with a total of 700
stimuli consisting of 85% standards and 15% frequency deviants. During deep
sedation patient responses varied but could be grouped into three categories.
In the “no response” group (6/26) no responses were detectable. In the
“detection” group (9/26) only an N100 was observed. In the “arousal” (11/26)
group both an N100 and P300a was observed. The authors do not comment
specifically on the MMN in these three groups. But summarized data showed
that the MMN amplitude was significantly different between sedation and
baseline but not significantly different between moderate and deep sedation.
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Without elaboration the authors noted that a P300a was more likely observed
in deep sedation (11/26) than in the baseline condition (7/26). The
investigators concluded that N100, MMN, and P300a are delayed in latency
and reduced in amplitude during sedation and that propofol sedation causes a
sensory memory function deficit.

Koelsch, Heinke, Sammler, and Olthoff investigated auditory processing
during propofol sedation in 19 healthy volunteers (Koelsch et al., 2006).
Measurements were obtained in three conditions: awake, deep sedation, and
recovery. EEG data were acquired using an 18-electrode montage conforming
to the 10-20 system. Propofol was delivered by TCI to achieve deep sedation
which was verified by behavioral criteria (MOAAS 2 – 3), BIS (mean 68), and a
timbre detection task. Similar to this group’s previous study, study subjects
were presented both MMN and ERAN blocks. The MMN block consisted of
80% standards and 20% mixed deviants (frequency, timbre, omission);
however, only results for frequency deviants were reported. Approximately
300 deviants were presented. The ERAN block was similar to the group’s
previous study. Prior to the recovery phase, subjects were administered
additional propofol to produce unconsciousness. The infusion was then
discontinued, and subjects were allowed to recover. No measurements were
obtained during this brief period of unconsciousness. The MMN was
detectable during all three conditions, although it was significantly reduced in
amplitude during deep sedation. In contrast, the ERAN was not detectable
during deep sedation. Interestingly, a P3a response was not present during the
recovery period when BIS values were higher and propofol levels lower than
during sedation. The investigators concluded that during propofol sedation
auditory memory processes are intact, music (and language) syntactic
processing is abolished, and recovery of attention related processes is delayed.

A study led by Haenggi attempted to use ERPs to define adequate sedation in
an effort to avoid the side-effects and risks of sedative medications (Haenggi
et al., 2004). Ten healthy subjects were sedated with propofol, remifentanil, or a
combination of the two. Drugs were administered by TCI to staged behavioral
endpoints. At each stage a “habituation” and oddball auditory paradigm was
administered, and N100 and MMN responses were measured from a single
electrode (Cz). Investigators used a low pass filter of 8 Hz in order to remove
corticothalamic oscillations. N100 amplitudes decreased with increasing levels
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of sedation. The majority of patients did not show an N100 response at deep
levels of sedation (RS 5 or 6). Neither habituation (ratio of first N100 response
to second N100 response in the “habituation” paradigm) nor MMN could
discriminate between sedation levels. Remifentanil did not affect the ERPs at
various target concentrations. The authors conclude that measuring the N100
can effectively guide the level sedation when propofol is used in a way that
avoids loss of consciousness. Although the aims of this study were different, its
conclusions were similar to those of Simpson (2002).

In a recent study investigators attempted to use the MMN response to predict
awakening after discontinuation of sedation in ICU patients (Azabou et al.,
2018). Azabou and colleagues studied 43 intubated and ventilated patients
who required sedation. The sample population consisted of critically ill
patients with a wide variety of underlying medical problems but excluded
those with recent cardiac arrest, brain-death, and neuropathy. In this study the
majority of patients (>80%) were sedated with midazolam and sufentanil.
Investigators used a simple two electrode system (Fz, Cz) and exposed subjects
to a classic passive oddball paradigm implemented in crossover design. Data
points consisted of averaged responses based on 200 deviants. ERP responses
for 13 patients who did not awaken were visually distinct from the 30 patient
who did awaken. As shown by non-parametric statistical analysis, individual
patient MMN amplitudes were greater (more negative) in the awake group
than the non-awake group. Effects appeared related both to the cumulative
midazolam and the severity of illness. Authors of this pilot study concluded
that the MMN response predicts awakening in deeply sedated critically ill
patients. The authors also state that their results and conclusions are consistent
with the ability of the MMN to predict recovery in vegetative states.

2.5 ERPs as Biomarkers of Post-operative Cognitive
Dysfunction

Approximately 15-20% of all patients who undergo general anesthesia
experience delirium or postoperative cognitive dysfunction (POCD). Whereas
the effects of anesthetic drugs were once thought to be transient and reversible,
biologically plausible models of persistent cognitive changes now
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exist (Hemmings et al., 2019). The consequences of POCD include increased
costs to the health care system and an unknown contribution to long term
cognitive decline (dementia). Considerable resources are currently allocated to
prevention and early detection of POCD, as well as quantification of risk of
long-term cognitive deficit. Several large trials, ENGAGES for example,
investigated the relationship between the duration of burst-suppression on the
EEG during general anesthesia and various cognitive outcomes (Wildes et al.,
2019). The ENGAGES trial yielded negative results; despite methodological
strengths and weaknesses, results suggest that resting EEG may have
limitations. Since ERPs have an established role in differentiating coma-related
disorders of consciousness, they might equally identify subtle, subclinical
deficits that underlie POCD.

Holečková and colleagues studied auditory ERPs in 52 patients who
underwent spine surgery (Holečková et al., 2018). Patients were subdivided
into two groups based on anesthetic technique – inhaled (IA) versus total
intravenous anesthesia (TIVA). Preoperatively, and day 1, 6, and 42
postoperatively, they measured the N1, P3a, and P3b response using an
“oddball” paradigm consisting of 3 blocks of 400 stimuli (80% standards, 20%
frequency deviants). EEG analysis was based on scalp recordings at 2
electrodes, Fz and Pz. The study revealed a significant increase in N1 latency
response in IA compared to TIVA on day one. Amplitudes for P3a and P3b
were all reduced compared to preoperative measurements, but no differences
between IA and TIVA were noted. The reduction in the P3b amplitude
normalized by day 6, but reduction in the P3a amplitude persisted to day 42.
These results are difficult to interpret because of confounding factors of
analgesic therapy and pain. Whether the identified ERP abnormalities
correspond to behavioral outcomes is also open to question.

2.6 Anesthetic drugs as probes in ERP studies
Perturbational approaches to exploring consciousness have distinct advantages
over approaches based on the resting EEG (Boly et al., 2012). Propofol, arguably
the most studied anesthetic agent in recent times, affects cortical dynamics in
predicable ways. Therefore, analogous to TMS, it can perturb an experimental
model in order to induce observable changes in and draw conclusions about
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the underlying brain state. Unlike TMS, propofol is relatively easy to
administer and requires no additional equipment beyond the basic ERP setup.

Blain-Moraes and colleagues piloted use of propofol to predict transition of
individuals from the unresponsive wakefulness state (UWS) to the minimally
conscious state (Blain-Moraes et al., 2016). In this study of one patient
investigators compared ERPs and EEG connectivity measures at baseline,
during propofol infusion (TCI 2 mcg/mL), and during recovery. Propofol
altered all electrophysiologic measures in the UWS patient similarly to healthy
individuals: loss of ERP responses, decrease in high-frequency power,
anteriorization of alpha, and decrease of fronto-parietal connectivity. The
patient subsequently made a significant clinical recovery. The authors
speculate that observation of the typical cortical changes associated with
propofol indicated sufficient brain substrate for recovery from the traumatic
coma state. Subsequently, a larger clinical trial was planned.

Zhang and colleagues used propofol to further investigate the neurobiology of
the MMN response in humans (Zhang et al., 2018). Investigators speculated
that deviant stimuli would engage long distance cortical connections, which
would be blocked by propofol; whereas standard stimuli would only engage
short distance connections which would not be altered by propofol. EEG was
recorded during an MMN paradigm in 25 healthy subjects under conditions of
wakefulness and anesthesia. Source analysis identified connected brain regions
involved in the processing of the stimuli. In the awake state, deviant stimuli
induced a larger number of connections than standard stimuli. Long-distance
connections accounted for the majority of this difference. In the anesthetized
state, standards and deviants induced the same number and kind of
connections. However, the number of long-distance connections were
markedly reduced during general anesthesia compared to the awake state. The
authors concluded that the cortical regions corresponding to these differences
contribute to the generation of the MMN and that MMN activates a wide
fronto-temporo-parietal network.

A relatively recent study by Nourski and colleagues spans dual purposes of
attempting to understand anesthesia-induced unconsciousness and using
propofol as a probe to further elucidate auditory predictive coding (Nourski
et al., 2018). Their approach is significantly different from previously
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referenced studies: first, they used strategically placed implanted electrode
arrays (electrocorticography or ECoG); and second, they used the local-global
paradigm devised by Beckinschtein (Bekinschtein et al., 2009)1. Their subjects
included six patients with refractory epilepsy. ECoG recordings were obtained
during three states: awake, sedated, and unconscious, which was defined as
unresponsiveness to verbal command. No surgery was performed during
recordings. Effects were defined as differences between deviant and standard
and determined by cluster permutation tests, and differences among states
were confirmed by hierarchical regression techniques. Reconstruction of
anatomical locations was accomplished with standard imaging software. The
primary finding in this study was that in the unconscious state, local deviant
effects persisted in primary auditory cortex (but not other cortex), while global
deviant effects dissipated during sedation and were absent in unconsciousness.
These findings are remarkable for several reasons. They confirm that primary
auditory cortex is relatively resistant to anesthetic drugs and that loss of higher
cortical function occurs prior to loss of consciousness during drug
administration, which was demonstrated by Simpson in one of the very first
MMN anesthesia studies. In practical terms, absence of global deviant effects is
not a biomarker of unconsciousness, while absence of local deviant effects in
non-auditory cortex might well be a marker. The study is also interesting
because the investigators draw conclusions exactly opposite to those of Uhrig
and colleagues who also used a local-global paradigm and fMRI (Uhrig et al.,
2016). In multiple ways, this study highlights the usefulness of ERP for
investigating consciousness.

1The local-global paradigm is a variant of the classical auditory oddball paradigm. It has two
levels of regularity. The building block is a five tone sequence in which the first four tones do
not vary. The fifth tone may be the same as the previous four (standard) or different (deviant)
thereby generating local variation. The block, whether standard or deviant, is repeated multiple
times with random interspersing of the other kind of block, thus giving rise to global variation.
Blocks can be assembled to produce four kinds of trials: local standard/global standard, local
deviant/global standard, local standard/global deviant, local deviant/global deviant.



22

Chapter 3

Methods

3.1 Study Design
This study was an observational study. No intervention, other than an EEG
recording itself, was undertaken. When possible, two sets of EEG data were
collected in each participant: a "control" data set obtained during the awake
state; and a" test" data set obtained during general anesthesia and surgery. Data
were analyzed retrospectively for a specific event-related response (i.e. MMN)
using a variety of statistical techniques.

This study, inclusive of multiple amendments, was approved by the Hamilton
Integrated Research Ethics Board (Project 4861).

3.2 Study Population
This study targeted patients undergoing long (> 3 hours) surgeries with
general anesthesia. This time requirement allowed the study team to obtain
multiple EEG measurements during the same surgery. Eligibility was
determined by the following criteria and assessed by the physician member of
the study team. The exclusion criteria attempted to minimize any possible
confounding factors that might have an impact on the EEG recording.

3.2.1 Inclusion and Exclusion Criteria
Inclusion Criteria:

• Age 40 – 70
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• Scheduled surgical procedure (elective), which might include oncologic;
chest, urologic, abdominal wall, or bowel reconstruction; hepatobiliary;
and vascular surgeries.

• Anesthetic type: general anesthesia

• Duration of surgery: > 3 hours.

• ASA 1, ASA 2, or ASA 3, as defined by American Society of
Anesthesiologists (ASA) Physical Status Classification System
(Appendix C) with adequately treated and stable systemic disease

Exclusion Criteria:

• History of anesthetic related problems, such as airway or blood pressure
management

• Anticipated airway management problems

• Impaired hearing

• Intracranial pathology, at present or in past, including traumatic brain
injury

• Concurrent maintenance opioid therapy

• Substance abuse, ethanol, opioids, or amphetamines

• Neurodegenerative disease, formally diagnosed

• Seizure disorder, requiring treatment

3.2.2 Recruitment and Consent
Potential subjects were identified at the time of surgical consultation when
consent to proceed with surgical intervention was obtained. At that time
patients were approached by the surgeon or office assistant for consent to be
contacted by a member of the study team. Consenting patients were then
contacted by telephone for the purpose of obtaining consent to participate in
the actual study. Office staff who made a referral were offered a $10 gift card
(e.g., Starbucks or Tim Hortons) for every eligible patient. Pending consent to
participate, arrangements were made for performing the EEGs as outlined
below.
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3.2.3 Sample Size
In a study of this nature an appropriate sample size cannot be quantitatively
determined. The initial goal was to enroll 10 patients, which is a typical
number for event-related potential (ERP) studies. The small sample size and
relative overall difficulty recruiting patients, prohibited setting requirements
for specific demographics.

3.3 Anesthetic Care
Patients received standard anesthetic care. Standard CAS monitors were
applied, including a peripheral nerve stimulator. The choice of anesthetic
drugs and doses were determined by the attending anesthesiologist.
Maintenance consisted of inhaled agent (of choice) to achieve a minimum
alveolar concentration (MAC) of 0.7 or greater. Additional opioids, muscle
relaxants, and adjuvants were administered at the discretion of the attending
anesthesiologist. Prior to emergence, long-duration opioid (morphine or
hydromorphone) – if applicable – along with antiemetic medication and
neuromuscular blockade reversal drugs were administered. Routine
postanesthetic care was provided by the healthcare team.

3.4 Data Acquisition
Control recordings were made at the time of a preoperative visit to Hamilton
Health Sciences (HHSC) or, alternatively at the Language, Brain, Memory Lab
at McMaster University. Test recordings were made in one of the hospital’s
operating rooms after induction of general anesthesia and surgical incision.
Typically a gap of several days to 2 weeks separated the two recordings.
Control sessions consisted of two presentations of the auditory paradigm.
During surgery, the same auditory paradigm was presented two to 10 times,
depending on the duration of surgery; recording was terminated prior to
wound closure. All recordings were obtained by trained personnel.

An appropriately sized BioSemi 64-channel EEG cap was applied to each
participant. EEG data were acquired using the BioSemi ActiveTwoTM EEG
system (based on the international 10/20 system). This active system utilizes 2
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additional electrodes incorporated into the cap. Five "external" electrodes were
also applied directly to the patients skin. These included nasion, right and left
mastoid, and vertical and horizontal (left) eye electrodes. Standard conduction
gel was used to achieve contact between scalp or skin and the electrodes. Real
time data was sampled at 512Hz using a 0.1–100 Hz filter.

During all testing, participants wore earphones (Cortech, SD-AV-EAER1),
through which a multi-deviant auditory oddball paradigm (Todd et al., 2008)
was presented. A digital audio file, incorporating features of the paradigm,
was prepared using Presentation®(Neurobehavioral Systems) software and
played-back on a dedicated computer. The resulting audio output, along with
stimulus markers, was multiplexed to the EEG recording computer in order to
minimize any delay between the auditory stimulus and brain response. The
paradigm consisted of 82% standards, and three deviants forming a total of
18% of the stimuli. The inter-stimulus interval was 500 ms. Standards tones
were 1000 Hz presented for 50 ms at 80 dB sound pressure level (SPL). Each of
the deviant tones were identical to the standard in all but one feature:
frequency deviant, 1200 Hz; duration deviant, 150 ms; and intensity deviant, 90
dB SPL. Therefore, a single presentation or "block" consisted of 2400 items: 1968
standards, 144 frequency deviants., 144 duration deviants, and 144 intensity
deviants.

3.5 Data Analysis
Raw data was preprocessed using EEGLAB (Delorme and Makeig, 2004). On
import, data were re-referenced to mastoids (average of left and right). Next,
channel names were assigned using a standard BioSemi assignments, and
external electrode channels were removed. Data were filtered using a highpass
of 0.1 Hz and a lowpass of 30 Hz. A visual inspection of data was then
performed, with the goal of removing gross artifacts. Control data was
subjected to ICA (Infomax) in order to identify and remove eye blinks. All data
was then passed through the EEGLAB "Clean Raw Data" toolbox (Miyakoshi,
2020) to identify bad electrodes, defined as electrodes that failed to correlate
with neighboring electrodes more than 40% of the time. Bad electrodes were
then interpolated.
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3.6 Statistical Analysis
Analyses were performed at the epoch level with the goal of identifying any
statistically significant deviant-related negativity using
MNE-Python (Gramfort et al., 2013). Preprocessed data files (each representing
one block) were epoched using the markers attached to the raw data files by
Presentation®. Time contiguous blocks that contained less than 1000 standards
or 100 deviants were concatenated and re-inspected prior to further analysis.
Epochs from each file were visualized by averaging amplitudes from FCz, Fz,
and Cz for standards and each deviant. Means and standard deviations (over
epochs) were plotted over the time interval -100 ms to 600 ms. This plot
revealed which deviant produced the greatest response and whether the
response differed significantly from zero microvolts. Additionally, evoked
responses (averaged over the block’s epochs) were plotted over the same time
interval. The deviant showing the most significant negative deviation was then
plotted with its corresponding standard and difference wave. Next, using the
most prominent deviant, targeted t-tests were performed across two time
intervals, 200-250 ms and 250-300 ms, for each of FCz, Fz, and Cz. No error-rate
corrections were made. Finally, again using the epochs with the most
significant negative deviation, permutation cluster-based analyses were
performed (Maris and Oostenveld, 2007; Smith and Nichols, 2009). In order to
compare results from standard statistical tests and machine learning,
multivariate pattern analysis (MVPA) was also performed (King et al., 2018).

3.6.1 ERP Images
ERP images combine data visualization and statistical analysis (Gramfort,
Keriven, and Clerc, 2010; Gramfort et al., 2013). The ERP image consists of
epochs depicted as lines and stacked vertically. Each epoch is aligned along the
same time scale. Each time point in the epoch is color-coded for amplitude. On
a typical computer display hundreds of epochs can be displayed in a relatively
small format. Color-coding of amplitude allows patterns to emerge, often seen
as vertical bands, that represent significant positive or negative deflections in
the ERP. Thus, in a single glance, the viewer can assess whether the ERP of
interest is present in a majority of epochs. The average ERP at each time point
can be displayed below the image along with 95% confidence limits, which
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together provide reliable information about when and to what extent the
average ERP differed from zero microvolts (see 4.1).

3.6.2 Cluster-based Analyses
Cluster-based analysis aims to reliably differentiate two conditions (Maris and
Oostenveld, 2007). Analysis is designed to obviate the multiple comparison
problem which invariably accompanies analysis of multidimensional EEG
data. Assuming the two time series (i.e. conditions) arise from the same
underlying probability distribution (null hypothesis), a t-test is performed on
each time point with a random selection of epochs from each condition.
Comparisons with t-values greater than an arbitrarily chosen threshold are
amassed into a "cluster." If the t-value of the next time point also exceeds the
threshold, its t-value is added to the cluster; otherwise the comparisons
continue until another comparison exceeds the threshold and a new cluster is
formed. The total t-values of the individual time points in the cluster(s) are
stored. A histogram representing the cluster permutations is constructed.
Finally, the clustering procedure is performed on the two observed conditions.
If the probability of the observed total t-value is less than 0.05, the two
conditions are assumed different. Thus, a single inference is drawn with regard
to the observation and the constructed cluster permutation distribution.

Results of cluster-based analysis can be visualized in different ways. When
time-based, analysis is performed electrode by electrode. The time course of
activity at each electrode can be depicted as a line; each time point can be
color-coded for the probability associated with the cluster permutation t-test.
Then the timelines of different electrodes can be stacked and grouped by
topography - anterior, central, parietal, e.g. - such that blocks of color represent
times and topographies where results were significant (see 4.3). Alternatively,
clusters can be defined in terms of adjacency in both space and time. In this
case, the global field power of all electrodes is plotted for each time point; and
significant clusters, identified as described above, are displayed by annotating
the plot at the corresponding time interval (see 4.4). The latter approach is
readily adapted to comparison of multiple conditions. Cluster-based
visualizations and statistics used in this study were implemented in
MNE-Python (Gramfort et al., 2013).
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3.6.3 Multivarvariate Pattern Analysis
Multivariate pattern analysis (MVPA) is a machine learning technique applied
to EEG data. (King et al., 2018). In this regard analysis incorporates the typical
steps of data transformation, model fitting, and prediction. When applied to
EEG data, MVPA amounts to deriving a spatial filter at every time point (from
a subset of train data) and then applying that filter to (test) data in order to
determine whether it can distinguish one condition from another. The train-test
data split was accomplished using simple 5-way cross-validation. The various
folds were not shuffled or stratified, and the cross-validation process was not
repeated. This study employed a logistic regression classifier with
hyperparameters optimized for imbalanced data sets. Linear classifiers have
the advantage of permitting back calculation and visualization of spatial filters.
Prediction accuracy was assessed by ROC-AUC at every time point; and 95%
confidence limits were derived from the cross-validation. Results of the
analysis were visualized by plotting accuracy versus time (see 4.5). Accuracies
with confidence interval greater than 50% were considered significant.
Empirical testing showed that this choice of methods for cross-validation and
fitting resulted in maximal accuracies with minimal computation time. The
MNE-Python implementation used in this study borrowed heavily from
ScikitLearn (Pedregosa et al., 2011).
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Chapter 4

Results

4.1 Collected data
Data collection as specified in Chapter 3 was completed on five patients. In
another five patients, control data was not collected due to scheduling of
surgery on short notice and inability to mobilize the study team. One of these
patients was recruited and consented, but due to intraoperative factors
(discussed below) data of sufficient quality was not recorded. Patient
demographics are described in Table 4.1. A summary of the data collection is
described in Table 4.2.

TABLE 4.1: Patient Demographics

Patient Age Sex Diagnosis Surgery Type
1 M 56 ventral hernia abdominal wall repair
2 F 70 colon Ca bowel resection
3 F 53 colon Ca resection
4 F 68 colon Ca bowel resection
5 F 52 breast Ca breast reconstruction
6 F 51 breast Ca breast reconstruction
7 F 62 breast Ca breast reconstruction
8 F 44 breast Ca breast reconstruction
9 F 53 breast Ca breast reconstruction

10 M 60 sarcoma muscle resection & reconstruction
M male; F female; Ca carcinoma
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TABLE 4.2: Acquired Data Blocks

Patient Control Test
Recorded Analyzed Recorded Analyzed

1 2 2 9 6
2 2 2 2 2
3 0 0 4 3
4 2 2 5 3
5 2 2 6 3
6 0 0 0 0
7 2 2 3 3
8 2 2 10 7
9 0 0 5 3

10 0 0 8 6

4.2 Control Data
Each of the five patients on whom control recordings were obtained provided
two blocks which were acquired sequentially. In all ten recordings an MMN
response could be identified on visual inspection. Inspection of the epoch
image plots (see Figure 4.1) revealed that the duration deviant produced the
most deviant related negativity. Targeted t-test statistics, without correction,
were significant in the 200-250 ms range for the duration deviant in all
recordings. Time-referenced cluster-based statistics, which compared standard
to duration deviant, were significant in all blocks, though in one block (patient
4, block 2) the number of identified clusters was very small. Sensor-time
referenced clustered-based statistics, once again comparing standards to
duration deviants, were significant in all blocks except one (patient 7, block 1).
Multivariate pattern analysis (MVPA) identified a difference between
standards and duration deviants in all patients with an accuracy of 0.643 - 0.761
ROC-AUC (area under the receiver operator curve). Peak accuracy fell in the
expected 170-240 ms time interval and was significantly different from chance
(50%) at a p-value of 0.05 in all blocks. Equal covariance between classes was
verified using the principal component method of Blankertz (Blankertz et al.,
2011). Taken together, these results demonstrate that the methods used in this
study could reliably distinguish standard from deviant in the evoked EEG.
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(A) Standard epochs (B) Frequency deviant epochs

(C) Duration epochs (D) Intensity deviant epochs

FIGURE 4.1: Example of control epoch images "stacked" on mean
amplitude with 95% CI. Figure (c) shows that duration deviants are
statistically distinguishable from zero in the time interval around

200ms.
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(A) Time series for all conditions (B) Time series for duration deviant

FIGURE 4.2: Example of control time series averaged over all
epochs in a single control block. Figure (b) shows a visually dis-
tinct deviant associated negativity in the time interval around 200

ms.
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FIGURE 4.3: Visualization of time clusters. Blue colored blocks rep-
resent statistically significant clusters. Axes indicate where these
clusters are located in sensor-time space. The most intense blue is

seen in central electrodes in the time interval around 200ms.
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FIGURE 4.4: Visualization of sensor-time clusters. Significant clus-
ters are indicated by the highest GFP in the time interval delimited
by the orange box. Analysis reveals significant clusters related to

the duration deviant in the time interval around 200 ms.

FIGURE 4.5: MVPA results for single control block. Results show
that the classifier can reliably distinguish standards from deviants

in the interval around 200ms.
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4.3 Test Data
The amount of recorded data depended on the duration of surgery, the use of
electrocautery, and presence of electromagnetic interference originating from
equipment in the operating room. Of the 52 blocks of acquired data, 35 were
suitable for further analysis. Table 4.3 shows the distribution of analyzed blocks
by patient. The 35 blocks varied in duration and number of epochs of interest
due to removal of artifacts, most of which were caused by the surgeon’s use of
electrocautery. The mean number of standard epochs in the analyzed blocks
was 1541 (interquartile range 1386 - 1702). The mean number of duration
deviant epochs in the analyzed blocks was 111 (interquartile range 99 - 127).

TABLE 4.3: Number of Test Blocks Per Patient

Patient Blocks
1 5
2 2
3 2
4 3
5 3
7 3
8 7
9 3
10 7

Visual inspection of the epoch images showed considerable overlap of 95%
confidence intervals around the mean amplitudes and zero microvolts
(Figure 4.6). Therefore the observed deviant related activity could not reliably
be labeled "negative," which is characteristic of the mismatch response.
Targeted t-tests were not significant in 29 blocks and were significant in six
blocks. These six blocks were acquired in five different patients. Only two of
the six blocks showed negative event-related potentials. Spatio-temporal
cluster based analyses were uniformly negative for all observed deviant related
negativity (Figure 4.8). With 95% confidence intervals overlapping the chance
level of 50% for 2-class classification, MVPA classification accuracies were
consistently statistically indistinguishable from chance or less than 60%
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(Figure 4.9). Taken together, these results demonstrate that deviants were
indistinguishable from standards during general anesthesia.
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(A) Standard epochs (B) Frequency deviant epochs

(C) Duration epochs (D) Intensity deviant epochs

FIGURE 4.6: Example of test epoch images "stacked" on mean am-
plitude with 95% CI. Confidence intervals for all deviants encom-
pass zero. Deviant related activity can not be statistically distin-
guished from zero and, therefore, cannot be reliably labeled "nega-

tive."
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(A) Time series for all conditions (B) Time series for duration deviant

FIGURE 4.7: Example of test time series averaged over all epochs
in a single control block. Standard and deviant time series are not

visually distinct in the time interval of interest, around 200ms.
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FIGURE 4.8: Visualization of time clusters in one test block. The
lack of any blue blocks in the graphic indicates failure to identify

any clusters encompassing deviant-related negativity.
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FIGURE 4.9: MVPA results for single test block. Confidence in-
tervals for accuracy encompass the chance level of 50% at all time
points. The classifier could not reliably distinguish standards from

deviants.
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Chapter 5

Discussion

This study addressed two questions: one, could a an MMN response be
detected during routine general anesthesia and surgery; and two, could the
presence (or absence) of the MMN response vary over time depending on the
state of the patient. Results indicate that an MMN response could not be
detected during routine general anesthesia and surgery. The significance of
these results - with regard to past ERP studies, auditory cortical processing,
and nature of anesthesia induced unconsciousness - is discussed below.
Following this discussion, attention shifts to the several important ways in
which this study differs from previous similar studies. These differences are
presented in the context of study strengths and weaknesses.

5.1 A negative result in context
Inability to demonstrate an MMN response during general anesthesia is
consistent with previous studies. The Simpson (Simpson et al., 2002) and
Heinke (Heinke et al., 2004) studies failed to demonstrate an MMN during
general anesthesia. The sedation studies of Yppärlä (Yppärilä et al., 2002),
Koelsch (Koelsch et al., 2006), and Haenggi (Haenggi et al., 2004) demonstrate a
dose-dependent effect of anesthetic drugs on the MMN which supports the
notion that the higher doses used in general anesthesia might ablate the
response. Finally, studies examining the P300a or ERAN during administration
of anesthetic drugs (Plourde (Plourde and Picton, 1991), Heinke, Yppärlä, and
Koelsch) failed to demonstrate persistence of these long-latency ERPs. These
studies support the concept that higher cortical functions are impaired by
anesthetic drugs and, by implication, that the MMN would be equally
diminished. All of these studies used an odd-ball auditory paradigm, relatively
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simple EEG setups, and conventional univariate statistics. Only the Plourde
and Van Hoof (VanHooff et al., 1997) studies were conducted during surgery,
and neither study measured the MMN response. Despite the methodological
differences among all these studies, the summed evidence aligns with results of
the current study.

More recent studies investigate the neurobiology of cortical processing of
auditory stimuli, in general , and novel stimuli, specifically, during exposure to
anesthetic drugs. Both the Zhang (Zhang et al., 2019) and Nourski (Nourski
et al., 2018) studies, though very different, suggest that general anesthetics
have little effect on primary auditory cortex and mainly affect cortical network
dynamics. This conclusion is confirmed by other recent studies (Banks et al.,
2018; Krom et al., 2020) which do not incorporate an odd-ball paradigm into
their methods. In comparison to the older studies cited above, these studies use
source modeling and implanted electrode arrays. Nonetheless, they suggest
that an MMN response which incorporates a hierarchy cortical responses,
cannot be elicited in an anesthetized patient.

Long-latency ERPs figure prominently into currently prevalent theories of
consciousness, namely predictive coding (Friston, 2005) and global neuronal
workplace (GNW) theories (Mashour et al., 2020). In the case of predictive
coding, activation of primary sensory cortex coincides with a hierarchy of
processes: feedback of higher cortical predictions, feedforward prediction error
propagation, modulating estimates of significance of the error (precision), and
subsequent updating of the higher cortex. Proponents of predictive coding
recast the MMN response as a failure to suppress prediction error, a process
that "rests on plasticity in backward and lateral connections" (Friston, 2005). In
the case of GNW, long-latency ERPs represent evidence of "ignition", or
broadcast, to higher cortical areas which amplify and sustain sensory input
through recurrent activity. Proponents of the GNW theory cite the P300b as
evidence of ignition: with its characteristic timing and requirement for
attention, this response represents the threshold where stimuli become globally
accessible. This study and other similar studies (see Chapter 2) show that
general anesthetics suppress long-latency ERPs and, by implication, disrupt
functional connectivity. While the relationship of disrupted cortical
connectivity to anesthesia-induced unconsciousness is still a matter of
investigation and the results of the current study have no direct bearing on this
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matter, these results are nonetheless consistent with predominant themes in
consciousness research.

Finally, these results validate an important aspect of contemporary anesthesia
practice. Ongoing arguments about the choice of brain monitoring technologies
and their effectiveness - particularly with regard to preventing intraoperative
awareness - has led to a plethora of studies (Messina et al., 2016). One of the
most influential studies to date (Avidan et al., 2011) demonstrated that
maintaining an end-tidal anesthetic concentration (ETAC) of 0.7 MAC of any
inhaled agent reduces the probability of awareness to less than 0.4%.
Maintaining this concentration of inhaled agent was incorporated into the
methodology of the current study. No patient showed an MMN during general
anesthesia. One can only conclude that this concentration of inhaled agent
disrupts the brain’s perceptual processing and that this disruption contributes
to lack of awareness. Thus, this study provides a neurophysiological basis for
an important clinical finding.

5.2 ERPs in the operating room environment
Since previous studies failed to demonstrate an MMN during general
anesthesia, and the effects of surgical stimulation could only enhance CNS
activity, it seemed reasonable to determine whether an MMN could be
identified under general anesthesia during surgery. The aim of the study
design was to remain practical and not substantially alter the care of the
patient. Thus, participating anesthesiologists were required to use an inhaled
agent in a concentration consistent with unconsciousness, but were otherwise
unhampered in individualizing pharmacologic management. Accordingly
patients did receive, in varying amounts, benzodiazepines and opioids which
undoubtedly affected the state of the CNS. This result was unavoidable, given
the parameters of the study. To control the anesthetic to any greater degree
would lead to deviations from standard of care that would obviate research
ethics board approval or deter patients from participating. Moreover, the more
prescribed the anesthetic regimen, the less generalizable the results. Likewise,
nociceptive input could not be controlled in a rigorous way or even
quantitated. As stated above (in Chapter 1) the anesthesiologist’s primary role
is to mitigate the nociceptive response. Methods to quantitate the nociceptive
state do exist - pupillometry, skin conductance, e.g. - and follow up studies
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should perhaps incorporate these methods into their protocols. Nonetheless,
considering the anesthesiologist’s efforts to mitigate the nociceptive response
and the variable nature and intensity of surgical stimulation, questions arise
whether the resulting effects would in any circumstance be sufficient to trigger
an MMN response. What can be said is this: in ordinary patients, undergoing
ordinary surgeries with typical anesthetic techniques, an MMN was not
observed.

The operating room (OR) is a challenging place to conduct research.
Electrocautery was the leading cause of data loss. It is used in almost every
surgery, and some surgeons use electrocautery throughout the entire operation.
Surgeons use two different types of electrocautery - unipolar, and bipolar - each
causing different kinds of artifacts (see Figure 5.1). Despite efforts, recovery of
the underlying signal was not possible. Other OR instrumentation also likely
contributed to signal contamination, but the 30 Hz low pass filter effectively
eliminated most of it. Another source of signal contamination related to the OR
environment includes passive movement of the head (by the surgeon) and
involuntary movement of the patient. The latter was minimized, but not
completely eliminated, by the use of muscle relaxants. Tiny movements of the
neck, head and eyes were still possible. Whether the 30 Hz low pass filter
eliminated artifacts due to all muscle activity is unknown. Patients frequently
become diaphoretic during general anesthesia and surgery, and this causes a
potential problem of "electrode bleeding." In fact, patient no. 6 sweated so
profusely, that about 15 electrode locations were rendered useless;
consequently, the study was discarded. Potentially, the audio stream reaching
the patient was obscured or contaminated by operating room ambient noise.
The mean noise level in an OR is 60-65 dB, but levels can intermittently reach
100 dB (Giv et al., 2017). The "noise" is mix of monitoring alarms, powered
instruments, conversation, and music. Lastly, and somewhat related, when the
patient is unconsciousness there is no way to confirm that they are actually
receiving the intended audio stream. The unconscious patient cannot respond
verbally, and an N1 response is not uniformly seen under general anesthesia.
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(A) Electrocautery artifact (B) Unknown source

FIGURE 5.1: Examples of two types of artifact due to a electromag-
netic source. The source (A) was clearly related to unipolar cautery,
whereas source of (B) was never found with certainty but likely due

to bipolar cautery.

5.3 Serial recordings
Recent research into using ERPs to predict emergence from coma suggests that
in disorders of consciousness, an MMN response may be present only
transiently (Armanfard et al., 2016). The significance of this finding is not
discussed here, but this study posed the question whether a similar
phenomenon might be operative during general anesthesia and surgery. The
pharmacokinetics of intermittent dosing, which is common, and the variable
nature and timing of surgical stimulation might also create conditions where
the MMN response is transient. Using the analytical techniques described in
Chapter 3, no MMNs were observed during general anesthesia. This situation,
however, brings attention to the most vexing issue in ERP research: inherent
inter-trial variability and low signal to noise ratio necessitate averaging over
time. Each analysis averaged data over the duration of one block, typically 35
minutes, which encompassed approximately 100 responses. Any one of those
100 responses could have been a classic MMN response, but in order to obtain
any kind of statistical certainty, it would be subsumed in the epoch average.
The underlying assumption that single-trial ERP responses are not
representative of neural activity is challenged by Gaspar, who demonstrated
high intra-subject reliability for ERP shapes in face recognition paradigms over
time (Gaspar, Rousselet, and Pernet, 2011). Averaging, therefore, can result in
loss of information which is transient and, in some circumstances, extremely
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salient to the research question or application. New techniques in signal
processing or machine-learning approaches continue to address this
problem (Armanfard et al., 2016; Armanfard et al., 2019). Without some
advancement in this area of ERP analysis, the MMN might not achieve full
application potential in brain-computer interfaces and point-of-care testing.

5.4 Electrodes
In theory, an MMN response can be detected with one electrode. Though
typically a fronto-central response, the spatial distribution of the MMN does
vary (Duncan et al., 2009); so, if the goal of the study is to determine if such a
response is present or absent, using multiple electrodes makes sense. Using
multiple electrodes also allows channel interpolation if required. Using scalp
sensors where an MMN response is not expected helps validate the
experimental protocol and allows statistical contrasts. Finally, 64 electrodes is
the minimum number of electrodes required to conduct source localization and
connectivity studies, potential methodologies for future analyses.

5.5 Data Analysis
For the purpose of analysis, the primary study question - is a MMN response
present? - is recast as a statistical question - can any deviant related neural
activity be confidently distinguished from standard related activity? If deviant
related activity is confidently identified, then typical latency and topographic
criteria can be applied to determine if it qualifies as an MMN response. The
approach taken focuses on single-patient averaged trials. Any mathematical
treatment of the data must address two key challenges: the low signal to noise
ratio and the multiple comparison problem. The MMN response is a low
amplitude wave typically less than 8 microvolts and even less in disorders of
consciousness. Noise sources include not only external sources but also
internal sources of non-neural and neural origin. The latter consist of
background brain activity and the inherent variability of the deviant response
itself (Jackson and Bolger, 2014). In some ways, the only difference between
"noise" and "signal" is the relevance of the measured data to the neural process
of interest (Hebart and Baker, 2018). The high dimensionality of EEG data leads
to the multiple comparison problem. A typical ERP experiment involves
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comparing conditions, and those comparisons involve statistical tests
comparing amplitudes at multiple sensors and time points. Correcting the
p-value for 104 comparisons, a conservative number, would impose excessively
strict criteria for statistical significance; while failure to correct risks false
positives. These issues are significant and continue to challenge ERP
researchers. Accordingly, ERP researchers focusing on single-trial analysis
champion different approaches. These approaches broadly fall into two groups:
improving the quality of the signal by de-noising; or improving the accuracy of
various machine-learning classifiers. While not the focus of this study, these
methods are nonetheless highly relevant.

Current consensus suggests that there is no best way to analyze ERP data.
Gabriel’s small but insightful study compared six different methods for
identifying the MMN (Gabriel et al., 2016). The six methods were culled from
recently published coma studies. One technique was visual and the other five
were statistical. Gabriel reported on twenty-seven subjects, and in only 4 did all
6 methods detect an MMN; yet, in all subjects, at least two methods confirmed
the presence of an MMN. While any one method showed varied ability to
detect an MMN, the t-test on peaks performed the worst and the continuous
wavelet transform performed the best. Gabriel notes that differences may be
explained by different methods measuring different aspects of the neural
response. Other studies support similar conclusions (Manresa et al., 2015).
However, accuracy is not the only criterion relevant to selection of analytical
techniques. Interpretability, computational speed, and scalability are equally
important.

An approach that includes both visual inspection and multiple statistical
techniques seems prudent. However, the traditional visual analysis of the ERP
can be very misleading. This caveat applies to both epoch-averaged waveforms
and difference waves. Without some quantification of the inter-trial variation at
each time point, differences in amplitude between standard and deviant can
appear significant when they are not, especially in the setting of low
signal-to-noise measurements typical of MMN experiments. One
study (Gramfort, Keriven, and Clerc, 2010) suggests that visual inspection of
the "ERP image" (see Figure 4.1), which was part of the current protocol,
provides a good compromise between visualizing individual epochs and
trends in the time series. Though limited to the sensors of interest, this
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visualization provided a "snap-shot" of the data and corresponded quite closely
to the results of the statistical tests.

Each statistical treatment of the data offers a unique approach and addresses
the criteria discussed above. Targeted t-tests are the easiest to calculate and
interpret. These tests are tuned to the latency and spatial distribution of the
MMN itself. Even without correction for multiple comparison, they are still
useful in this setting where most t-tests were not significant. When simple
t-tests are nonsignificant, more computationally elaborate error-controlling
t-tests are unlikely to produce different results. Cluster permutation tests are
probably the most statistically valid way to differentiate two conditions.
Visualizations of clusters in time and space mesh with EEG data sets and are
typically very informative. A bit more difficult to compute and interpret, they
only allow the researcher to conclude that a difference exists and do not permit
inferences on latency or peak amplitudes despite the detail that visualizations
might show (Sassenhagen and Draschkow, 2019). Decoding, or multivariate
pattern analysis, is a machine learning technique that aims to classify
conditions by using sensor data as features. Interpretability and computational
complexity vary according to the classifier, cross-validation, and prediction
accuracy metrics. While classifying ERP responses based on spatial patterns
appears conceptually straightforward, condition-dependent error, expressed in
the variance and covariance of the datasets, can significantly affect
classification accuracy (Hebart and Baker, 2018). Many parameters that
fine-tune the classifier can have a huge impact on accuracy, and optimal
parameters for ERP data are determined empirically. Multi-collinearity, which
certainly exists amongst sensors due to volume conduction, limits the use of
decoding to prediction as opposed to interpretation (Shmueli, 2010). Classic
machine learning utilizing all discriminating features of the data, not just
sensors, makes more sense but adds levels of complexity to the analysis.
Nonetheless, decoding meets the desired criteria for this analysis and offers a
definitive view of the data: control recordings were uniformly positive; test
recordings were uniformly negative. In summary, types of analyses undertaken
in this study were chosen for their individual strengths and were very
different; but, remarkably, they produced the same results.
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Chapter 6

Conclusions & Future Directions

—————————————————————————————

Relying on high definition electroencephalography, a classic odd-ball
paradigm, and contemporary methods of data analysis, this study could not
demonstrate mismatch negativity during general anesthesia and surgery. The
state of (un)consciousness produced by the required baseline anesthetic
technique was likely sufficient to suppress this response. It was also likely
sufficient to blunt a nociceptive response potent enough to activate neural
components responsible for the MMN. These findings cast some doubt on the
existence of sensory memory, and by inference other types of memory, during
surgery and properly conducted general anesthesia.

As noted above (Chapter 5) the clinical setting of this study imposed
limitations. Anesthetic drug levels and surgical stimulation could not be
manipulated in any meaningful way. Employing a clinically validated measure
the nociceptive state would have been beneficial. Measuring the degree of
surgical stimulation and correlating peaks with the evoked EEG could have
yielded information highly relevant to the study hypothesis. Of course, the
time course of such peaks could be brief and transient; and so single trial
analysis would need to be sufficiently refined to capture an correspondingly
brief and transient evoked response. The rapid explosion in machine learning
techniques and their adaptation to EEG data hold some promise in this regard.

Nonetheless, this study’s findings are consistent with previous investigations.
In sedation studies or studies of general anesthesia alone, the MMN tends to
disappear with loss of responsiveness. And studies of other long-latency ERPs
(e.g. N1 or P3a) during general anesthesia or general anesthesia and surgery
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have also failed to identify persisting responses. No studies have attempted to
measure MMNs during surgery and general anesthesia, perhaps because
previous studies demonstrated that it disappeared prior to establishing drug
levels associated with general anesthesia. Of note, the most recent ECoG
studies show that the hierarchical processing characteristic of the MMN is
absent during propofol anesthesia.

This study’s findings are also consistent with the current body of research
concerning the neurobiology of consciousness. Although controversies remain,
the prevailing theory of anesthesia-induced unconsciousness posits that
anesthetics disrupt corticocortical and corticothalamic networks. Normal
functioning of these networks is required for the MMN response as it is
currently understood.

Despite numerous challenges, acquiring good quality, high definition EEG is
possible during routine surgery and anesthesia. This finding ensures continued
studies of this nature in the future. Such studies might continue to investigate
anesthesia-induced unconsciousness and focus on the dynamics of either the
resting or evoked EEG using connectivity metrics, for example. General
anesthesia continues to be a valuable model for investigating the neurobiology
of consciousness, and the operating room is a natural place to conduct such
studies.
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Appendix A

Commonly Used Behavioral Scales
of Alertness

MOAAS Response
Level
5 responds readily to name spoken in normal tone
4 lethargic response to name spoken in normal tone
3 responds only after name called loudly and/or repeatedly
2 responds only after mild prodding or shaking
1 responds only after painful stimuli
0 no response to painful stimuli

TABLE A.1: Modified Observer’s Assessment of Alert-
ness/Sedation Scale

Reference: Chernik, D.A., Gillings, D., Laine, H., Hendler, J., Silver, J.M., David-
son, A.B., Schwam, E.M., Siegel ,J.L. (1990). Validity and reliability of the Ob-
server’s Assessment of Alertness/Sedation Scale: study with intravenous mida-
zolam. J Clin Psychopharmacol, 10(4):244-51.
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Ramsay Clinical Status
Score
1 patient anxious or/or agitated
2 patient co-operative, oriented, and tranquil
3 patient responds to commands only
4 a brisk response
5 a sluggish response
6 no response to light glabellar tap or loud auditory stimulus

TABLE A.2: Ramsay Sedation Scale

Reference: Ramsay, M., Savage, B., Simpson, B. ()1974). Controlled sedation with
alphaxolene/alphdalone. Br. J Med., 42:656-659.
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Appendix B

Summary of Referenced ERPs

Label Time Scalp Neural Functional
(ms) Location Generator(s) Interpretation

P1, P50 50 FC STC , MFC sensory gating
N1 , N100 75 - 130 FC STC sensory reception
P2 150 - 275 C STC sensory reception
MMN 100 - 250 FC STC , IFC deviant detection
ERAN 100 - 200 FC STC, IFC music-syntactic processing
P3a, P300a 250 - 300 F STC attention
P3b , P300b 300 - 400 CP STC, PFC attention, memory

THAL, HC
SW 500 - 600 CP task-demand,memory

TABLE B.1: Basic Characteristics of Referenced ERPs

Abbreviations:
Label: MMN mismatch negativity, ERAN early right anterior negativity, SW
slow wave; Scalp Location: F frontal, C central, P parietal; Neural Generators:
IFC inferior frontal cortex, MFC medial frontal cortex, PFC prefrontal cortex,
STG superior temporal cortex, THAL thalamus, HC hippocampus

Notes:
Many characteristics of an ERP, such as neural source and functional interpreta-
tion, depend on the task and condition by/under which the ERP is generated.
Luck’s discussion on this topic in his introductory text is particularly relevant.
The text also provides a general, but similarly nuanced, discussion of a wide
range of ERPs.
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Label In-text References
P1 , P50 VanHooff et al., 1997, Heinke et al., 2004
N1 , P100 Plourde and Picton, 1991, VanHooff et al., 1997, Simpson et al., 2002,

Haenggi et al., 2004, Holečková et al., 2018
P2, P200 VanHooff et al., 1997
MMN Simpson et al., 2002, Yppärilä et al., 2002, Heinke et al., 2004,

Haenggi et al., 2004
ERAN Heinke et al., 2004, Koelsch et al., 2006
P3a, P300a Yppärilä et al., 2002, Koelsch et al., 2006, Holečková et al., 2018
P3b, P300b Plourde and Picton, 1991, Holečková et al., 2018
SW Plourde and Boylan, 1991

TABLE B.2: ERPs referenced in text

Abbreviations:
MMN mismatch negativity, ERAN early right anterior negativity, SW slow wave
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Appendix C

ASA Physical Status Classification

ASA 1 healthy

ASA 2 mild to moderate systemic disease that does not limit activity

ASA 3 severe systemic disease that limits activity but is not incapacitating

ASA 4 systemic disease that is incapacitating and a constant threat to life

ASA 5 moribund; not expected to survive 24 hr. with or without surgery
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Appendix D

Biosemi 64 Electrode Layout

FIGURE D.1: Electrode Layout for BioSemi 64 Cap
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