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Lay Abstract 

Freeway work zones can increase congestion with higher travel time, safety risk, 

emissions and fuel consumption. This research aims to improve traffic conditions near 

work zones using a variable speed limits control system. By exploiting redundant traffic 

information, a variable speed limit control system that is insensitive to traffic sensor 

failures is presented. The proposed system was evaluated under realistic freeway work 

zone conditions in a simulation environment. The results show that the proposed system 

can reliably detect sensor failures and consistently provide improvements in mobility, 

safety and sustainability despite the presence of traffic sensor failures. 
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Abstract 

Freeway work zones with lane closures can adversely affect mobility, safety, and 

sustainability. Capacity drop phenomena near work zone areas can further decrease work 

zone capacity and exacerbate traffic congestion. To mitigate the negative impacts caused 

by freeway work zones, many variable speed limits (VSL) control methods have been 

proposed to proactively regulate the traffic flow. However, a simple yet robust VSL 

controller that considers the nonlinearity induced by the associated capacity drop is still 

needed. Also, most existing studies of VSL control neglected the impacts of traffic sensor 

failures that commonly occur in transportation systems. Large deviations of traffic 

measurements caused by sensor faults can greatly affect the reliability of VSL controllers. 

To address the aforementioned challenges, this research proposes a fault-tolerant VSL 

controller for a freeway work zone with consideration of sensor faults. A traffic flow 

model was developed to understand and describe the traffic dynamics near work zone 

areas. Then a VSL controller based on sliding mode control was designed to generate 

dynamic speed limits in real time using traffic measurements. To achieve VSL control 

fault tolerance, analytical redundancy was exploited to develop an observer-based 

method and an interacting multiple model with a pseudo-model set (IMMP) based 

method for permanent and recurrent sensor faults respectively. The proposed system was 

evaluated under realistic freeway work zone conditions using the traffic simulator SUMO. 

This research contributes to the body of knowledge by developing fault-tolerant VSL 

control for freeway work zones with reliable performance under permanent and recurrent 

sensor faults. With reliable sensor fault diagnosis, the fault-tolerant VSL controller can 
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consistently reduce travel time, safety risks, emissions, and fuel consumption. Therefore, 

with a growing number of work zones due to aging road infrastructure and increasing 

demand, the proposed system offers broader impacts through congestion mitigation and 

consistent improvements in mobility, safety, and sustainability near work zones.  
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1 Introduction 

1.1 Problem Statement and Motivation 

With aging road infrastructure and increasing traffic demand, a growing number of 

freeway work zones are employed in roadway projects. More than $3.9 billion was spent 

in road projects for National Highway System in Canada in 2015 [1]. An estimate of $1.3 

billion will be invested in Ontario, Canada from 2020 to 2023 for highway restoration 

and rehabilitation projects [2]. Despite long-term benefits of these maintenance projects, 

freeway work zones and their associated lane closures can easily lead to congestion and 

increase travel time, safety risk, emissions, and fuel consumption. In addition, capacity 

drop phenomena near work zone areas can further reduce work zone capacity and 

exacerbate traffic congestion [3]. In 2017, approximately 8.8 billion hours delays and 

additional 3.3 billion gallons of fuel consumption were caused by congestion in the U.S. 

urban areas [4]. Nearly 10 percent of these congestion costs are attributed to work zones 

[5]. Around 94 thousand work zone crashes occurred in 2017 in the U.S [6]. Therefore, it 

is of paramount importance to mitigate the negative impacts caused by freeway work 

zones. Variable speed limits (VSL) control as one of the intelligent transportation 

systems has been widely studied to alleviate congestion near freeway work zone areas. 

1.1.1 Variable Speed Limits Control 

VSL control systems can proactively regulate traffic flow and affect the evolution of 

the traffic flow near work zone areas. Compared with static speed limits, VSL control can 
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dynamically adjust speed limits according to real-time traffic conditions or weather 

conditions. By restricting mainline traffic flow and harmonizing traffic speeds, VSL 

controllers can mitigate congestion near freeway bottlenecks. Some jurisdictions such as 

the UK, Australia, and the U.S. have implemented VSL control systems on highways. 

VSL signs on the M25 highway in the UK from Google street view are shown in Fig. 1.1. 

VSLs mounted on gantries are displayed to control the traffic flow in response to the 

traffic conditions. 

 

Fig. 1.1.  VSL signs on the M25 highway in the UK (Map data © 2020 Google) 

To generate appropriate VSLs, previous studies have developed various VSL control 

methods. Feedback-based VSL controllers [7], [8] were designed to stabilize traffic states 

near the critical density via linearization methods such that capacity drop phenomena can 

be avoided and the maximum work zone capacity can be achieved. However, the 

discontinuity of the fundamental diagram caused by capacity drop may affect the 

effectiveness of the linearization methods. In contrast, kinematic wave theory based 

methods [9], [10] and rule based methods [11], [12] were used to directly derive speed 

limits for freeway bottlenecks from the fundamental diagram. Since kinematic wave 

theory based methods and rule based methods heavily relied on the calibrated 
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fundamental diagram, stochastic characteristics of traffic flow may influence the 

performance of VSL controllers. In [13], [14], [15], model predictive control methods 

were developed to solve VSL control as optimization problems. VSLs were generated by 

maximizing the work zone throughput at the cost of increasing the computational 

complexity. Methods based on reinforcement learning were also developed to reduce 

congestion near freeway bottlenecks [16], [17]. However, freeway work zones, especially 

short-term work zones, may not provide enough traffic data to train and design VSL 

controllers based on reinforcement learning. Therefore, a VSL controller is needed that 

can efficiently generate VSLs with consideration of the nonlinearity caused by capacity 

drop and stochastic characteristics of traffic flow, for freeway work zones. 

1.1.2 Sensor Faults 

The effectiveness of VSL controllers heavily relies on reliable traffic measurements. 

With traffic states detected by sensors, VSL control can generate appropriate speed limits 

in real time. However, stationary traffic sensor faults commonly exist in transportation 

systems. More than 30 percent of traffic sensors suffer from different types of sensor 

faults and cannot provide reliable traffic measurements on a typical day in California, 

U.S. [18]. Due to sensor faults, traffic measurements may have large deviations from the 

actual traffic states and cause system degradation. However, the previous studies [7]-[17] 

on VSL control did not consider the impacts of sensor failures. Different types of sensor 

faults may also have different impacts on VSL controllers. 

Sensor faults can be broadly categorized into permanent and recurrent sensor faults. 

Permanent sensor faults can persist indefinitely until the sensors are repaired whereas 
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recurrent sensor faults can repeatedly fail and recover without external intervention. Due 

to uncertain factors such as loose connections and environmental disturbances, the 

occurrence of recurrent sensor faults can be 10 to 30 times as frequent as permanent 

sensor faults in electronic systems [19]. Both permanent and recurrent sensor faults also 

commonly occur in transportation systems [18], [20]. 

To address the impacts of stationary traffic sensor faults, previous studies have 

developed various approaches by exploiting the spatial and temporal dependencies of 

traffic data. Tensor decomposition [21] and generative adversarial networks [22] were 

proposed to impute faulty traffic measurements offline. However, traffic measurements 

from a faulty sensor beyond the sensor failure time are incorporated in these offline 

methods. Since VSL control needs real-time measurements and has limited access to 

sensor measurements when a sensor fails, offline methods may not be feasible for VSL 

controllers. In contrast, online methods such as regression models [23], pattern clustering 

[24], and graph Markov networks [25] were developed to detect sensor faults and provide 

real-time traffic state estimations when sensor faults occur. However, large historical 

traffic data were needed to calibrate the estimation models in these online methods. In 

practice, traffic sensors near short-term freeway work zones may not generate enough 

data for these online methods. In addition, the previous studies [23]-[25] only considered 

permanent sensor faults. Accordingly, traffic measurements from a sensor were 

completely discarded when the sensor fails. In the case of recurrent sensor faults, 

complete removal of measurements from a faulty sensor may neglect potential faultless 

data when the sensor restores to working order. Besides, the systems in [23]-[25] may be 
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vulnerable as fewer traffic sensors were used. Therefore, to ensure the performance of 

VSL control for freeway work zones when sensor faults occur, it is essential to develop 

fault diagnosis for permanent and recurrent sensor faults, and provide reliable traffic state 

estimations for VSL control. 

1.2 Research Objectives 

The main objective of this research is to develop fault-tolerant VSL control for 

freeway work zones with consideration of permanent and recurrent sensor faults. To 

mitigate the negative impacts caused by freeway work zones, VSL control can 

proactively regulate traffic flow in response to real-time traffic conditions to achieve 

improvements in mobility, safety, and sustainability. Also, fault tolerance of VSL control 

to permanent and recurrent sensor faults contributes to practical implementation of the 

developed VSL controller. To develop the fault-tolerant VSL control system, specific 

objectives include: 

 Design a traffic flow model to understand and describe traffic dynamics near 

freeway work zone areas. 

 Build a nonlinear VSL control with consideration of the discontinuity caused by 

capacity drop. 

 Detect and identify permanent sensor faults as well as recurrent sensor faults. 

 Provide reliable traffic state estimations when sensor faults happen. 

 Achieve consistent improvements in mobility, safety, and sustainability under 

fault-free and sensor faults environments. 
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1.3 Research Methodology 

To achieve the aforementioned objectives, the framework of the fault-tolerant VSL 

control system is shown in Fig. 1.2. 

 

 

Fig. 1.2.  Fault-tolerant VSL control system framework 

 

The VSL controller can generate speed limit control signals to track the control 

objective which is the critical density using traffic state estimations from the sensor fault 

diagnosis component. Then the speed limit control signal can affect the evolution of 

traffic flow that is described by the traffic flow model. Traffic measurements from 

sensors are sent to the sensor fault diagnosis to detect sensor faults and provide reliable 

traffic state estimations to the VSL controller. The performance of the fault-tolerant 

control system is evaluated in the performance evaluation component. The details of each 

component and the corresponding chapters are discussed as follows. 

 VSL controller: 

The design of the VSL controller is the focus of Chapter 2. To address the 

aforementioned limitations of VSL control, a simple yet robust VSL controller that 
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considers the discontinuity caused by capacity drop is needed. Due to the nonlinearity 

caused by capacity drop, the VSL controller was designed based on discrete-time sliding 

mode control. The control objective is to stabilize traffic density near the critical density 

from the fundamental diagram, such that the maximum work zone throughput can be 

achieved. With a sliding surface designed, the VSL controller can drive the system state 

trajectory to the desired equilibrium state using speed limit control signals. The controller 

with strong robustness is not sensitive to the parameter variations such as noisy traffic 

demand and traffic disturbance. Due to the stochastic nature of traffic flow, the inherently 

robustness and variable structure control of the controller make it suitable and efficient to 

achieve VSL control. To understand the impacts of speed limit control signals on the 

system state trajectory, the traffic flow model was designed. 

 Traffic flow model: 

The design of the traffic flow model is another focus of Chapter 2. Capacity drop 

phenomena and impacts of VSLs are the main considerations in the design of the traffic 

flow model. Discrete-time traffic flow model was designed using the modified cell 

transmission model. Capacity drop models were incorporated to consider the nonlinearity 

of the fundamental diagram near work zone areas. The restricted traffic flow governed by 

VSLs was used to depict the impacts of VSLs on traffic dynamics. 

 Sensor fault diagnosis: 

The sensor fault diagnosis component is the focus of Chapter 3 and 4. Specifically, 

Chapter 3 deals with permanent traffic sensor faults while Chapter 4 focuses on recurrent 

traffic sensor faults. Analytical redundancy is exploited to achieve fault diagnosis in both 
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chapters. In Chapter 3, the observer-based method was developed to provide redundant 

traffic state estimations. By comparing the likelihood estimations from two observers and 

a Kalman filter, sensor faults with zero flow rates in both stationary mainline traffic 

sensors and ramp traffic sensors are detected and identified. In Chapter 4, the interacting 

multiple model with a designed pseudo-model set (IMMP) method was developed to 

diagnose recurrent sensor faults and provide reliable traffic state estimations to the VSL 

controller. Different types of recurrent sensor faults such as faults with zero flow rate, 

partial mainline sensor faults, and faults with abnormally high flow rates are considered. 

To reduce the computational complexity caused by different types of sensor faults, an 

adaptive model set was designed to reduce the number of models running in parallel. 

State covariance adaption and the pseudo-model set were introduced to compensate for 

the discrepancies between the model parameters and the extent of corresponding sensor 

faults. Then reliable traffic state estimations are provided using the probabilistically 

weighted sum of state estimations from models in effect. 

 Performance evaluation: 

Traffic simulation was used to evaluate the performance of the proposed system. For 

a safety-critical system like VSL control, real-world development and implementation is 

highly risky and may have serious consequences if the development fails. In contrast, 

traffic simulation, which is widely used in transportation planning, offers a safe 

development environment before implementation in real world. Various models and 

methods can be extensively studied and evaluated using traffic simulation. In this 

research, the traffic simulator Simulation of Urban Mobility (SUMO) [26] was used to 
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evaluate the proposed system. 

It is essential to reproduce real-world traffic dynamics in traffic simulation with good 

accuracy. Realistic work zone conditions are considered in Chapter 2, 3, and 4. Before 

implementation of the proposed system, the microscopic models such as car-following 

and lane changing models in simulation were calibrated and validated using historical 

traffic data in [18] to replicate traffic conditions in real world. The calibrated models are 

to minimize the discrepancies of the system performance between the simulation and the 

reality and ensure the effectiveness of the proposed system. 

Performance evaluation is included in Chapter 2, 3, and 4 to provide analytical results 

of the VSL control system. Since the focus of Chapter 2 is to develop a VSL controller, 

the performance evaluation focuses mainly on the controller performance. In Chapter 2, 

performance measures include work zone throughput, traffic densities, VSL commands, 

speed evolution, travel time, time-to-collision, emissions, and fuel consumption near 

work zone areas. Chapter 3 and 4 mainly focus on sensor fault diagnosis; the reliability of 

sensor faults detection and identification was added to performance analysis. Specifically, 

permanent sensor faults were detected using likelihood estimations in Chapter 3 while 

mode probabilities were used to diagnose recurrent sensor faults in Chapter 4. The 

impacts of sensor faults on state estimations and VSL control were considered. 

Estimations of density and ramp flow were evaluated in Chapters 3 and 4. Other 

performance measures used in Chapter 2 for mobility, safety, and sustainability were also 

studied in Chapter 3 and 4 to analyze the fault tolerance of the VSL controller. 
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1.4 Thesis Organization 

The framework of the research and the thesis organization is shown in Fig. 1.3. 

Chapter 1 presents an overview of the problems along with research motivations, 

research objectives, and research methodology to achieve the specific research objectives. 

Chapter 2 introduces the VSL controller for a freeway work zone without 

consideration of sensor faults. The focus of Chapter 2 is to develop the traffic flow model 

and the VSL controller. The performance of the proposed VSL controller was evaluated 

with analytical results. This chapter includes a published journal article. 

Chapter 3 extends the VSL control with fault tolerance to permanent sensor faults. 

The focus of Chapter 3 is to achieve sensor fault diagnosis and provide reliable traffic 

state estimations to VSL control.  Evaluation under realistic freeway work zone 

conditions demonstrates the developed system can produce consistent VSL performance 

despite permanent sensor faults. This chapter includes a published journal article. 

Chapter 4 presents fault-tolerant VSL control with the occurrence of recurrent sensor 

faults. The focus of Chapter 4 is to achieve fault tolerance to recurrent sensor faults for 

VSL control. Results show the proposed system can accurately estimate traffic states, 

reliably diagnose recurrent sensor faults, and consistently improve mobility, safety, and 

sustainability near work zone areas. This chapter includes a submitted manuscript. 

Chapter 5 summarizes the work presented in this thesis and discusses contributions, 

limitations and future work. 
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Fig. 1.3.  Thesis organization framework 

Chapter 2

Objectives 

Mitigate negative impacts of freeway 
work zones and avoid capacity drop. 
Develop VSL control for freeway 
work zone.

Methods

The traffic flow model was 
developed with consideration of 
capacity drop and impacts of VSLs.
The VSL controller was developed 
based on sliding mode control.
Evaluated the system under realistic 
work zone Conditions.

Results

The traffic flow model has sufficient 
accuracy for VSL control.
The VSL controller shows efficiency 
and robustness under noisy traffic 
demand and different layouts of 
freeway.
Consistent improvements in mobility, 
safety, and sustainability are 
achieved.

Chapter 1

Problem Statement and Motivation

Impacts of freeway work zones on mobility, safety, and sustainability. 
Methods for VSL control and limitations
Methods for sensor faults and limitations

Research Objectives

Develop fault-tolerant VSL control for freeway work zones with consideration of permanent sensor faults and 
recurrent sensor faults

Research Methodology

VSL controller, traffic flow model, sensor fault diagnosis, and performance measurements.

Chapter 3

Objectives 

Detect and identify permanent traffic 
sensor faults.
Extend VSL control with fault 
tolerance to permanent sensor faults.

Methods

Two observers were designed to 
provide analytical redundancy.
Sensor fault diagnosis was developed 
using likelihood estimations.
Evaluated the system under realistic 
work zone conditions with permanent 
sensor faults.

Results

Accurate traffic state estimations are 
provided for VSL control when 
sensor faults occur.
Reliable sensor faults detection and 
identification are achieved.
Consistent improvements in mobility, 
safety, and sustainability are 
maintained with permanent sensor 
faults.

Chapter 4

Objectives 

Detect and identify recurrent traffic 
sensor faults.
Develop fault-tolerant VSL control 
with recurrent sensor faults.

Methods

The adaptive model set was 
designed to reduce computation 
complexity.
State covariance adaption and the 
pseudo-model set were developed 
to consider the discrepancies of 
model parameters.
Evaluated the system under realistic 
work zone conditions with 
recurrent sensor faults.

Results

Accurate state estimations are 
provided without the prerequisite of 
good match between model 
parameters and the extent of 
corresponding sensor failures.
Reliable detection and identification 
of recurrent senor faults are 
achieved with less computational 
complexity.
Consistent improvements in 
mobility, safety, and sustainability 
are achieved with recurrent sensor 
faults.

Chapter 5
Contributions, limitations and future work
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2 Variable Speed Limit for Freeway Work Zone with 

Capacity Drop Using Discrete-Time Sliding Mode 

Control 

To address the negative impacts of freeway work zones, various VSL control 

methods have been proposed. However, a simple yet robust VSL controller is still needed. 

This chapter presents a VSL controller based on sliding mode control with consideration 

of the discontinuity caused by capacity drop. The proposed system is evaluated under 

realistic freeway work zone conditions using the traffic simulator SUMO. In comparison 

to a kinematic wave theory based method, the developed system shows robustness under 

noisy traffic demand and different freeway layouts. The following journal article is 

included in this chapter. 

 

 S. Du and S. Razavi, “Variable speed limit for freeway work zone with capacity 

drop using discrete-time sliding mode control,” Journal of Computing in Civil 

Engineering, vol. 33, no. 2, p. 04019001, 2019. 

 

The co-author’s contributions include: 

 Provide supervision and technical advice 

 Review and edit the manuscript 

 Financially support the research work 
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2.1 Abstract 

Freeway work zones with lane closures have direct negative impacts on travel time, 

safety, and environmental sustainability. Capacity drop at the onset of congestion can 

further reduce the discharging rate at work zone areas and worsen traffic conditions. 

Existing studies have developed various variable speed limit (VSL) control methods to 

mitigate the congestion; however, a simple yet robust VSL control strategy that considers 

the nonlinearity induced by capacity drop is still lacking. To address the above-

mentioned issues, this study proposes a VSL strategy using a nonlinear traffic flow model 

and discrete-time sliding mode control for a freeway work zone. The developed traffic 

flow model incorporates the nonlinearity caused by the capacity drop at the work zone 

using the cell transmission model. The sliding mode controller is designed to drive the 

traffic state, which is acquired from the traffic flow model, to the desired equilibrium 

state with different convergence rates. Under speed limit constraints, the VSL scheme is 

generated to regulate the traffic flow and mitigate the congestion near the work zone area. 

The proposed system is implemented and evaluated using the traffic microscopic 

simulator SUMO. The results indicate that the proposed VSL control can consistently 

improve traffic mobility, safety and environmental sustainability under noisy traffic 

demand and different control scenarios. Compared with the uncontrolled scenario, the 

developed system shows improvements by approximately reducing 17% of average travel 

time, 90% of safety risks, and 6% of NOx, CO2 emissions and fuel consumption. 
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2.2 Introduction 

Freeway traffic congestion is a critical issue in modern societies as it leads to higher 

travel time, safety risks, environmental emissions and fuel consumption. Estimated 888 

million hours delays, 90 thousand crashes, and 310 million gallons of fuel waste have 

resulted from work zones in the U.S. [27]. To improve traffic conditions in Canada, $3.9 

billion was invested into the National Highway System for the expansion of road 

networks, rehabilitation of freeway assets, deployment of intelligent transportation 

systems, etc. in 2015 [1]. However, despite long-term benefits from these freeway 

projects such as road expansion and maintenance, the associated work zones create traffic 

bottlenecks which result in substantial traffic delays and economic losses. Therefore 

effective control is needed to regulate the traffic flow at freeway work zone areas to 

improve traffic mobility, safety and environmental sustainability. 

The maximum flow rate at a work zone bottleneck can further decrease when a queue 

forms upstream of the bottleneck [28], [29]. The capacity decreases due to a work zone 

lane closure. Therefore, when demand exceeds the reduced capacity, traffic can easily 

become congested, forming a queue upstream of the work zone. Such congestion can 

further diminish the work zone capacity. This capacity drop phenomenon not only 

worsens traffic conditions but also leads to a discontinuous and nonlinear fundamental 

diagram around the work zone area [30], [31]. Due to the nonlinearity, it becomes a 

challenging problem to control the traffic flow around the work zone bottleneck [32]. To 

address this problem and to prevent the occurrence of capacity drop, variable speed limit 

(VSL) control, one of the intelligent transportation system technologies, has been widely 
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studied. A VSL strategy can dynamically change the speed limit upstream of the work 

zone bottleneck, whereby the traffic mainline inflow is restricted [33] or the traffic 

homogenization is improved [34]. For the last two decades, many different approaches 

have been studied to develop the VSL scheme. 

To avoid capacity drop and improve traffic conditions, a number of studies have 

developed various local feedback VSL strategies with the creation of some distance as an 

acceleration zone upstream of the bottleneck. In [7], a local proportional-integral (PI) 

feedback VSL controller was proposed to regulate traffic flow. The acceleration area was 

created for vehicles to accelerate from the congestion area thereby avoiding capacity drop. 

Another local feedback controller whose second loop was replaced by a lookup table was 

developed in [35]. The VSL feedback controller integrated with a delay balancing 

algorithm was extended to the multiple bottlenecks scenario [8]. This PI local feedback 

controller was also studied in the microscopic simulation [36]. From previous studies, the 

local feedback controllers were designed via the linearization around the critical density 

in the fundamental diagram. However, the effectiveness of this linearization could be 

affected because of the discontinuity of the fundamental diagram caused by capacity drop. 

This discontinuity around the critical density can easily occur when the capacity drop 

leads to flow disruption [37]. Thus without consideration of the nonlinearity induced by 

capacity drop, the performance of the local feedback VSL controllers may be affected. 

Since potential improvements could be made by exploiting abundant information from 

traffic flow theory, many researchers have sought to utilize kinematic wave theory to 

design VSL controllers. A theoretical framework based on kinematic wave theory for a 
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VSL strategy was developed in [38], where the maximum flow rate was sustained by 

transferring the capacity flow from congested states to uncongested states via an 

acceleration zone immediately upstream of the bottleneck. In [39], a VSL controller using 

kinematic wave theory was also developed, where an acceleration zone was incorporated 

to improve traffic stability. A link queue model with a PI controller was developed to 

take capacity drop phenomena into account [40]. A bang-bang controller was introduced 

to calculate speed limits using calibrated relations between traffic speed, density, and 

flow [41]. However, the aforementioned studies on kinematic wave theory to develop 

VSL control heavily relied on deterministic characteristics of traffic flow. Since critical 

parameters of the fundamental diagram could vary frequently [42], it may influence the 

effectiveness of VSL control due to the stochastic nature of traffic flow. Furthermore, the 

impact of an acceleration zone was not fully investigated. Our study shows that 

inappropriate settings of the length of an acceleration zone still lead to capacity drop. 

This will be further discussed in the following sections of this paper.  

Traffic prediction methods were also studied to design a VSL strategy to mitigate 

traffic congestion. Model predictive control (MPC) was used to design a VSL controller 

to suppress the shockwave effects [43]. After traffic states were predicted, the objective 

function was optimized to generate the VSL scheme. The fundamental diagram was used 

to modify traffic prediction models in favor of online computation [44]. Later, the 

discrete first-order MPC and mode dependent cell transmission model on MPC were 

developed in [14] and [45] respectively to further improve the performance of VSL 

controllers. A Kalman filter was also adopted into the MPC method to improve state 
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prediction [46]. Instead of using macroscopic models, microscopic models were utilized 

to optimize speed limits using MPC by predicting the states of each vehicle [15], [47]. 

However, using MPC methods to develop VSL control requires sufficient accuracy of 

traffic state prediction which makes it a challenging problem when the nonlinearity 

induced by capacity drop is encountered. In addition, the complexity has greatly 

increased in the optimization process to derive the speed limits solution. This may make 

it difficult to implement MPC-based VSL control in a real-world environment. 

To reduce the complexity and improve traffic conditions, rule-based methods and 

lane change control were studied to develop a speed limits strategy. The rule-based 

decision tree in [11] was used to design speed limits to improve safety. The estimations 

of delays and crash costs were utilized as rules to calculate speed limits through 

minimizing the cost estimation. On the other hand, lane change control combined with 

speed limits was adopted in [48] to eliminate capacity drop at a bottleneck. Although the 

rule-based VSL control largely reduces computational complexity, the stochastic nature 

of traffic flow may influence the controller performance. With respect to lane change 

control, extensive experiments are needed to develop an appropriate lane change scheme 

under different speed limits. 

From extensive previous studies, it can be seen that VSL control can effectively 

mitigate traffic congestion. However, the following limitations exist: 

1) Neglect of the discontinuity and nonlinearity caused by capacity drop phenomena. 

The discontinuity of the fundamental diagram occurs at work zone areas when traffic is 

under congested states. However, this discontinuity and nonlinearity were not considered 
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in the design of local PI feedback VSL controllers. 

2) Absence of consideration of stochastic characteristics and disturbances inherent in 

traffic flow. The VSL strategy derived based on the kinematic wave theory or rule-based 

method overlooks the actual traffic disturbance, particularly at an acceleration zone. 

3) High complexity in predictive control. The complexity is attributed to the 

prediction and optimization process. In the prediction, multiple time steps of traffic states 

are calculated and predicted. Meanwhile, high computation load is involved in the 

optimization process.  

To overcome the aforementioned issues, this study proposes the VSL controller for a 

freeway work zone area using the discrete-time sliding mode control. Given the capacity 

drop phenomenon, the traffic flow model is first developed at the work zone bottleneck 

based on the cell transmission model. The discontinuity induced by the capacity drop is 

incorporated into the nonlinear discrete-time traffic flow model. To take the stochastic 

nature of traffic into account, the discrete-time sliding mode controller with different 

convergence rates, which has strong robustness and simple design, is developed to 

generate the VSL scheme using the built traffic flow model. Thus the sophisticated 

prediction and optimization are avoided in the controller. The effectiveness of the 

proposed VSL control system, with respect to improvements on traffic mobility, safety 

and environmental sustainability, was assessed in the traffic microscopic simulator 

SUMO [26]. 

The remainder of this paper is organized as follows: the nonlinear traffic flow model 

is built considering the capacity drop at the work zone area; following that, the discrete-
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time sliding model control is developed using the discrete-time traffic flow model; with 

the performance indicators introduced, the proposed system is implemented and 

evaluated with analytical results; finally limitations, future work and conclusions of this 

paper are presented. 

2.3 System Model 

Freeway work zones are set up due to lane expansion, pavement repair or other 

construction operations. Consequently, partial lane(s) will be closed and lead to capacity 

loss. As shown in Fig. 2.1, only 2 lanes are open at the work zone area with construction 

warning signs placed along the 3-lane freeway.  

 

 

Fig. 2.1.  Traffic network with a work zone 

 

When traffic demand exceeds the work zone capacity, a queue can form at the 

beginning of the lane-dropped area and propagate upstream at a certain speed. Three 

aspects of detrimental effects emerge when the congestion happens: 1) traffic throughput 

decreases and more delays occur due to capacity drop; 2) it aggravates the potential crash 

risks as there are more sudden brakes when vehicles with high speeds encounter the back-

propagation queue wave; 3) environmental emissions and fuel consumption increase due 
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to more frequent accelerations and decelerations upstream of the work zone area.  

To develop effective control to alleviate the congestion near work zone areas, it is 

essential to first understand the traffic dynamics at the work zone area. Therefore, in this 

section, the general traffic flow model will be discussed, followed by the model for the 

work zone bottleneck. 

2.3.1 General Traffic Flow Model 

In the modified cell transmission model, traffic density as the state variable is used to 

reproduce traffic dynamics [49]. As shown in Fig. 2.2, the freeway is partitioned into n+3 

segments including the VSL control zone, the acceleration zone and the work zone.  

 

 

Fig. 2.2.  Freeway layout with multiple segments (not to scale) 

 

The length, average speed and density in each segment are represented as iL , iv  and 

i respectively. VSLs are imposed at the VSL control zone with a speed limit sign 

installed at the beginning of the VSL control zone and another speed limit sign installed 

at the beginning of the acceleration zone, which allows vehicles to accelerate or keep 

maximum free speed to get through the work zone area. This study considers only one 

freeway work zone, for which the effects of traffic states inside and downstream of the 
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work zone segment are not considered. Multiple work zones and the effects of other 

downstream bottlenecks will be studied in the future work.  

According to the conservation law [50], traffic density can be updated as: 

 1( 1) ( ) [ ( ) ( )], 1, 2, , 2s
i i i i

i

T
k k q k q k i n

L
  


        (2.1) 

where ( )iq k  is the total traffic flow from segment i to segment i+1 during the sample 

time interval [ , 1)sT k k  . The length iL satisfies the condition that ,i free i sL v T   where 

,free iv  is the free flow speed at the segment i. To calculate the traffic inflow ( )iq k in Eq. 

(2.1), we assume the triangular fundamental diagram [51], then 
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  (2.2) 

where 1( )iS k is the maximum traffic flow capable of supplying from segment i-1 to 

segment i, and ( )iR k is the maximum traffic flow capable of receiving by segment i. 

and j are the backward propagating wave speed and jam density respectively in the 

fundamental diagram. max,iq is the maximum flow, i.e. the capacity at segment i. 

It can be seen that traffic dynamics along the freeway can be derived using the Eq. 

(2.1) and Eq. (2.2). However, imposed speed limits and capacity drop phenomena at the 

work zone have a great impact on the traffic flow 2 ( )nq k and 3( )nq k which needs further 

discussions on the density evolution at the acceleration zone in the following subsection. 
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2.3.2 Model for Work Zone Bottleneck 

Under the assumption of triangular fundamental diagram, the model parameters are 

depicted in Fig. 2.3.  

 

 

Fig. 2.3.  Fundamental diagram with capacity drop 

 

The capacityC of the 3-lane freeway can be calculated as free cC v  where freev and 

c are the free flow speed and critical density respectively. Accordingly, the capacity bC

of the work zone bottleneck is derived as 2 3b b
free cC v C  in the case of the 3-lane 

freeway with one lane closure at the work zone. b
c is the critical density corresponding to 

the capacity bC . 

The impact of capacity drop can be described in the fundamental diagram, as it makes 

the bottleneck capacity bC decrease to bC where  (0,1) is the drop factor [32], [37], 

[52]. When traffic demand increases and the density 2 ( )n k   is larger than the critical 

density b
c  at the bottleneck, the traffic flow 3 ( )nq k  will exceed the work zone capacity

bC . This results in a queue forming upstream of the work zone and moving backward 
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with the wave speed . Then the work zone capacity bC  drops to be the capacity bC . 

Therefore the traffic flow 3( )nq k can be expressed as: 

 2 2 2
3

2

( ) ( ) , ( )

, ( )

b
n n n c

n b b
n c

v k k k
q

C k

  
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  (2.3) 

In the VSL control zone, the speed limit 1 ( )nu k  is imposed to restrict the traffic flow. 

Therefore the impact of the speed limit can be reflected through the variation of max, 2nq   

which is calculated as max, 2 1 1( ) [ ( ) ]n j n nq u k u k     . Thus the traffic flow 2 ( )nq k

can be derived as 
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  (2.4) 

By substituting the Eq. (2.3) and Eq. (2.4) into the general traffic flow model Eq. 

(2.1), the evolution of the density 2 ( )n k   at the acceleration zone can be derived and 

formulated as the Eq. (2.5) which shows the dynamics of traffic state 2 ( )n k   given the 

speed limit control at the kth time step. 

 2 2 1( 1) ( ( ), ( ))n n nk f k u k       (2.5) 

The objective of the VSL scheme is to stabilize the density 2 ( )n k  at the critical 

density b
c  of the bottleneck such that the capacity drop could be avoided and the 

maximum flow rate is achieved. Accordingly, the travel delay, the sudden brakes, and 

extra emissions will reduce. However, the Eq. (2.5) is a nonlinear state equation. Thus the 
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discrete-time sliding mode control, which is capable of stabilizing the nonlinear state 

equation Eq. (2.5) by driving the density state towards the equilibrium point with 

different convergence rates, will be discussed in the next section. 

2.4 Sliding Mode Control Design 

Sliding mode control is a nonlinear control method which can achieve the global 

stability compared with the local feedback controller. By creating the equilibrium state on 

a designed sliding surface, the controller can generate the switching control signal 

thereby driving the system to reach the sliding surface with finite time [53]. Since the 

switching control signal can be simple and not precise, sliding model control with strong 

robustness is not sensitive to parameter variation such as noisy traffic demand and traffic 

disturbance. Therefore sliding mode control has the strength of simple design, global 

stability and good robustness.  

In this section, the traffic flow model is further simplified and discussed given the 

existence of speed limits; and the controller is proposed with its stability discussed 

afterwards. In practice, the measurement of traffic states and control of speed limits are 

conducted in discrete time steps. Therefore, the discretization of both work zone model 

and sliding mode control are studied. Meanwhile, the speed limit constraints are also 

considered. As shown in Fig. 2.4, by using the detected traffic data, the discrete-time 

work zone model can provide traffic states evolution to the controller. Then, the discrete-

time sliding mode controller with the saturation function will generate the speed limits 



Ph.D. Thesis - Shuming Du; McMaster University - Civil Engineering 

25 

schemes to regulate the traffic flow upstream of the work zone. Under the speed limit 

constraints, the VSLs will be imposed in the calibrated traffic network. 

 

Fig. 2.4.  VSL control framework 

 

2.4.1 Discrete-time Work Zone Model 

In the Section 2.3, the work zone model was formulated as Eq. (2.5). This model is 

simplified in this subsection so as to develop the sliding mode controller. In Eq. (2.4), the 

calculation of the traffic flow 2 ( )nq k also relies on the density 2 ( )n k  at the acceleration 

zone. Thus traffic demand which is correlated with the traffic density is discussed. 

When traffic demand is light and lower than the work zone capacity bC , there is no 

need to restrict the traffic flow with speed limits. On the other hand, when the traffic 

demand exceeds the work zone capacity bC , the VSL is employed and results in the 

following relation: 



Ph.D. Thesis - Shuming Du; McMaster University - Civil Engineering 

26 

 1
1 1

1

( )
( ) ( )

( )
j n

n n
n

u k
v k k

u k







 





  (2.6) 

Consequently, the traffic flow 2 ( )nq k can be rearranged as Eq. (2.7) with the speed 

limit. 
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With regard to the condition 2 ( )n ck   in Eq. (2.7), the relation: 
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is satisfied and constrained by the stability of the discrete-time sliding mode control 

discussed in the following stability theorem. Therefore, by combining the Eq. (2.1), Eq. 

(2.3), Eq. (2.7) and Eq. (2.8), the simplification of discrete-time the work zone model can 

be expressed as: 
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where ( )k can be computed by 
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The Eq. (2.9) is the simplified form of the state equation Eq. (2.5) for the controller 

design. However, the nonlinearity and discontinuity of the work zone model still exist. 
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2.4.2 Discrete-time Sliding Mode Controller Design 

To avoid the capacity drop and achieve the maximum flow rate, the objective of the 

discrete-time sliding mode controller is to generate the speed limits scheme to stabilize 

the traffic density 2 ( )n k   at the critical density b
c . On the other hand, the VSL controller 

based on kinematic wave theory controls the speed limit at the speed hv , which is the 

speed corresponding to the congested state h at capacity flow shown in Fig. 2.3, to avoid 

the capacity drop. However, traffic disturbances may affect the effectiveness of the VSL 

controller based on kinematic wave theory. The impacts will be further discussed in the 

simulation and results section. 

To drive the system to the equilibrium state, the sliding surface is designed as: 

 2 2( ) [ ( )]e
n ns k c k      (2.11) 

where c is a constant non-zero parameter and 2
e
n  represents the time invariant 

equilibrium state, i.e. the critical density b
c . From the sliding surface, it can be seen that 

when the system trajectory has reached the sliding surface and stayed on the surface, the 

control objective is achieved.  

To force the system trajectory to reach the surface, the discrete-time sliding mode 

control is developed based on the reaching process [53]. The reaching law is designed as 

Eq. (2.12) to drive the system from the initial state to reach and stay confined to the 

surface Eq. (2.11): 

 ( 1) ( ) sgn( ( )) ( )s ss k s k T s k T qs k      (2.12) 
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where  and q are positive constant parameters and sgn( ( ))s k  is the signum function. In 

Eq. (2.12), the component ( )sT qs k makes the traffic density trajectory move 

asymptotically towards the surface at an exponential convergence rate. However, it 

cannot guarantee the finite-time reaching process. Hence, the component sgn( ( ))sT s k

is added to avoid the zero-reaching rate and force the traffic density to converge to the 

equilibrium state within finite time. 

Under the sliding mode control, the traffic density 2 ( 1)n k   can be derived by 

combining the reach law Eq. (2.12) with the sliding surface ( 1)s k  , as 

 2 2

1
( 1) [ ( ) sgn( ( )) ( )]e

n n s sk s k T s k T qs k
c

          (2.13) 

Using the above Eq. (2.13), the evolution of traffic density 2 ( 1)n k   is derived from 

the aspect of sliding mode control design. Meanwhile, the dynamics of the density

2 ( 1)n k   can also be obtained using the work zone model Eq. (2.9) driven by the speed 

limit 1 ( )nu k . Therefore, by substituting Eq. (2.13) into Eq. (2.9), the simplification of 

speed limit 1 ( )nu k is derived as: 

 1 2( ) ( ( ), ( ), ( ))n nu k g k s k k     (2.14) 

The stability of the VSL control system can be analyzed using the following theorem. 

Theorem 1: For the discrete-time system of Eq. (2.9), if the sliding surface is designed 

as Eq. (2.12) with 0  , 0q  , 2 0sT q    and small sample time interval sT , the 

discrete-time control law of Eq. (2.14) can guarantee the asymptotical stability of sliding 

surface Eq. (2.11) such that the system of Eq.(2.9) can reach the equilibrium state and 
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achieve desired density. 

Proof: The Lyapunov analysis method is utilized to prove theorem 1. The Lyapunov 

function is constructed as 

 2( ) ( )V k s k   (2.15) 

To achieve the system stability, it should satisfy the following equation: 

 2 2( ) ( 1) ( ) ( 1) ( ) 0V k V k V k s k s k          (2.16) 

Then the equivalent equation of Eq. (2.16) can be formulated as [54]: 

 
[ ( 1) ( )]sgn( ( )) 0

[ ( 1) ( )]sgn( ( )) 0

s k s k s k

s k s k s k

  
   

  (2.17) 

By substituting the sliding surface Eq. (2.12) into Eq. (2.17), 

 
( ) 0

2 ( ) ( ) 0

s s

s s

T T q s k

s k T T q s k





  


   
  (2.18) 

The Eq. (2.18) is satisfied when the conditions that 0  , 0q  , 2 0sT q   and 

small sample time interval are met. Thus the asymptotical stability is guaranteed via the 

Eq. (2.19): 

 
2( ) ( ) 0

( ) 0

V k s k

V k

  

 

  (2.19) 

Though the stability of designed controller is illustrated as Theorem 1, the signum 

function in Eq. (2.13) can easily lead to the chattering phenomenon due to the hard 

switching control signal. To eliminate the adverse effects of the chatting on speed limits, 

the linear saturation function Eq. (2.20) where 0c   is utilized to replace the signum 

function such that smooth control can be achieved. 
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1 , ( )

( ( )) ( ) ( ) , ( )

1 , ( )

s k c

Sat s k s k c s k c

s k c

 
   
    

  (2.20) 

In Section 2.4.1, Eq. (2.8) is satisfied because of the stability of the discrete-time 

sliding mode control. It can be seen that the traffic flow 2 ( )nq k cannot be restricted by 

the speed limit at VSL control zone if Eq. (2.8) is not satisfied. Then the density 2 ( )n k 

would exceed the critical density b
c and cause congestion at the work zone area. However, 

this phenomenon conflicts with the stability of the designed control shown in Theorem 1. 

Therefore Eq. (2.8) is satisfied. 

Apart from the control stability, the appropriate parameters  , q and c are needed to 

develop an efficient controller.  is correlated with the system robustness. Higher value 

of  can help to reject the external disturbance. The parameter q has the impact on the 

reaching rate. The system trajectory reaching the sliding surface can be faster when q is a 

larger value. Also, a larger c can improve the system transient response. However, too 

large values of  , q and c will generate a large control signal and lead to the chattering 

problem. Hence, the trade-off among the transient response, robustness and overshoot 

issue should be considered to design these three parameters.  

In this study, two sets of parameters are selected. When the traffic is in congested 

states, too low speed limits should be avoided to prevent the prolonged delays [42]. 

However, in the transition phase from free flow states to congested states, a quick 

response is needed as a queue can form fast and easily under high traffic demand [52]. 

Therefore, the overshoot issue is the main concern under congested states while the 
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transient response is the primary consideration with uncongested states. To satisfy 

different levels of demand, two sets of parameters, one for uncongested states and the 

other for congested states, are designed. Thus the designed control can have different 

convergence rates to the sliding surface. 

2.4.3 Speed Limit Constraints 

The following speed limits constraints should be considered to impose the speed 

limits control. 

1) Speed limit range: In practical implementation, only discrete speed limits are 

displayed as it is hard for human drivers to follow continuous speed limits. Therefore, 

the possible VSLs range belongs to the set that has speed limits from minimum speed 

limit 16 km/h (10 mi/h) to maximum legitimate limit 113 km/h (70 mi/h) with the 

increment speed of 8 km/h (5 mi/h).   

2) Discretization: The continuous speed limit is rounded up to be its closest integral 

multiple of the increment speed which also satisfies the speed limit range constraint. 

Meanwhile, the VSL control time interval is selected to be integral multiple of the 

sample time interval to maintain the system performance and avoid too frequent 

speed limit change.  

3) Speed limit variation: To avoid sudden speed changes and reduce potential safety 

risks, the speed limit difference between two consecutive control time steps satisfies 

variation threshold v  . 
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2.5 Simulation and Results 

2.5.1 Simulation Setup 

The proposed VSL control system was evaluated on a 9 km (5.6 mi) southbound 

segment of Interstate 15, which has the maximum legitimate 113 km/h (70 mi/h) speed 

limit, in San Bernardino County, California, United States. Construction work zones for 

freeway barriers were set up along this segment on July 22 and August 2, 2016. Both 

work zones started at the same position and resulted in one of the three lanes closure. As 

shown in Fig. 2.5, the blue (thick) line indicates the freeway network while the red (thin) 

line shows a work zone starts from the position State PM (postmile) 40.2 and extends 4.2 

km (2.6 mi) along the I-15S freeway. 

 

 

Fig. 2.5.  Traffic simulation network with work zone (Map data © 2018 Google) 
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To evaluate the proposed VSL control, the traffic simulation network with the work 

zone was calibrated and validated using the real traffic measurement provided by 

California PeMS (Freeway Performance Measurement System) database [18]. PeMS 

database archives freeway traffic data such as flow rate, speed, occupancy from detectors 

over the traffic network in California. In this study, the traffic network in Fig. 2.5 was 

first built in the traffic simulator SUMO. Then one loop detector located upstream of the 

work zone and the other at the merge point to the work zone (i.e. the beginning of the 

work zone) were utilized to calibrate and validate the microscopic model. The work zone 

traffic data were selected during the congested states between 13:30 and 14:00 on August 

2, 2016 to calibrate the car following model and lane changing model. Then the 

calibrated microscopic model was validated using the traffic data between 12:00 and 

12:30 on July 22, 2016. The calibrated and validated results are shown in Table 2.1.  

 
Table 2.1  Comparison Between PeMS Data and Simulation Data 

Traffic Condition 

August 2, 2016 July 22, 2016 

PeMS Simulation 
Percentage 

Error % 
PeMS Simulation 

Percentage 

Error % 

Upstream 

Flow Rate (veh/h) 
3082 3001 2.6 2917 3065 5.1 

Upstream 

Speed (km/h) 
47.1 46.0 2.3 46.5 44.6 4.1 

Work Zone 

Throughput (veh/h) 
2707 2901 7.2 2652 2702 1.9 

Merge Speed 

(km/h) 
19.0 16.7 12.1 21.2 18.5 12.7 
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It can be seen that the errors of calibrated and validated results are less than 10% in 

the upstream flow rate, upstream speed and work zone throughput. The errors of speeds 

which are around 20 km/h at the merge point are slightly larger than 10% compared with 

other measurements. Overall, the calibrated and validated results show that the calibrated 

microscopic model can provide sufficient accuracy to replicate the realistic work zone 

traffic conditions. 

With the calibrated and validated traffic network, the configuration of the upstream of 

work zone was designed. For the upstream of work zone, it was divided into n+2 

segments including the VSL control zone and acceleration zone. Two types of 

acceleration zones with the length of 0.5 km (0.3 mi) and 0.8 km (0.5 mi) were designed 

respectively to assess the impacts of the acceleration zone and robustness of the proposed 

system. Without the loss of generality, for the other n+1 upstream segments, their lengths 

were set to be the same as the acceleration zone. Therefore, ten segments and six 

segments upstream of the work zone were designed for 0.5 km (0.3 mi) and 0.8 km (0.5 

mi) acceleration zone respectively. Two speed limit signs were installed at the two ends 

of the VSL control zone. The loop detectors were installed at the start of freeway, the 

boundaries of acceleration zone and the end of work zone. 

For the calibration, the triangular fundamental diagram was calibrated using the 

traffic flow, speed, density generated from SUMO simulation. Specifically, vehicles were 

generated and travelled along a closed circular route. Then traffic density increased 

gradually to cover the desired range with both free flow states and congested states. The 

flow, speed and density were aggregated during 30 s time interval. The estimation for a 
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3-lane freeway with respect to the capacity C , critical density c , jam density j , free 

flow speed freev  were 4800 veh/h, 44 veh/km, 270 veh/km and 108 km/h respectively. The 

details about the calibration are explained in the SUMO documentation [55]. 

The Krauss car-following model and LC2013 lane-changing model with vehicle 

parameters were utilized [55]. For the calibrated vehicle parameters, the length of 

vehicles and the minimum gap were set to be 4.3 m and 4.0 m respectively. The 

maximum acceleration and deceleration ability of vehicles were set as 2.7 m/s2 and 4.5 

m/s2 respectively. The factor of the eagerness for performing lane changing to gain speed 

was set as 50. The speed deviation was set as 0.1 to allow for 10% speed variation of the 

posted speed limit. The driver imperfection factor was 0.5 to represent the imperfection 

to adapt to the posted speed limit. 

For the sliding mode controller, the parameters 1 2c   , 1 6  , 1 10q   and 2 10c  ,

2 50  , 2 120q  were selected for uncongested states and congested states respectively. 

Because one lane is closed at the work zone area, the work zone capacity bC can be 

calculated as 2 3C around 3200 veh/h. The capacity drop factor  was 0.94 with the 

dropped capacity 3000 veh/h and in the saturation function was 15 veh/km. Ideally, the 

critical density b
c at work zone would be 30 veh/km calculated by /b

freeC v . However, the 

average speed inside acceleration zone normally drops by 10 km/h to 15 km/h with the 

present of speed limit upstream [56]. Therefore the critical density b
c was calibrated to be 

35 veh/km. The speed hv  was calculated as 32 km/h (20 mi/h). The 15 s sample and 30 s 

control time interval were selected to maintain the controller performance as well as 
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avoid frequent speed limit changes. The speed limit variation 8 km/h (5 mi/h) was 

selected as the threshold v . 

To evaluate the effectiveness and robustness of the proposed system, different 

scenarios are considered. Noisy traffic demand and different lengths of acceleration zone 

are used to demonstrate the robustness of the developed control system. Since KWT 

based control (kinematic wave theory based control) heavily relies on the deterministic 

characteristics of traffic flow, KWT based control is selected for comparison. The 

summary of simulated scenarios is shown in Table 2.2.  

 

Table 2.2  Scenario Summary 

Scenario 
Acceleration Zone No-

Control 

Discrete-time 

SMC 

KWT Based 

Control 0.8 km 0.5 km 

1 X  X   

2 X   X  

3 X    X 

4  X X   

5  X  X  

6  X   X 

 

The 0.8 km acceleration zone with no-control, discrete-time SMC (sliding mode 

control) and KWT based control is evaluated in scenario 1, 2 and 3 respectively. The 

similar comparisons of the methods are also assessed in scenario 4, 5 and 6 with the 0.5 

km acceleration zone configuration. The KWT based control has the same speed limit 

constraints as the proposed control. Also, the time, when the speed hv in KWT based 

control is active and in control, is the same as the time when the restricted speed limits 
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are active under the proposed control. The restricted speed limits are speed limits lower 

than the maximum legitimate speed limit. The short length 0.5 km was selected due to the 

minimum length constraint of the cell transmission model while the long length 0.8 km 

was selected to be long enough to provide consistent and reliable results. 

The simulation was run for 10 replications with different random seeds. As the warm-

up period, low traffic demand of 1000 veh/h was generated for 10 minutes. This 10 

minute simulation data was discarded. Then noisy demand, which has random fluctuation 

added on the mean value of traffic flow, was generated for 1 h shown in Fig. 2.6.  

 

 

Fig. 2.6.  Noisy traffic demand for 1 h 

 

The average traffic demand is 1500 veh/h for the first 300 s then the average high 

traffic demand of 3600 veh/h is introduced which lasts for 1500 s, followed by the 

average low demand of 1500 veh/h from the time 1800 s to 3600 s. The noisy traffic 

demand is utilized for all the scenarios. 
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2.5.2 Simulation of the 0.8 km Acceleration Zone 

For the configuration of 0.8 km acceleration zone, the no-control, discrete-time 

sliding mode control and KWT based control are implemented respectively.   

The work zone throughputs under different control scenarios are illustrated in Fig. 2.7.  

 

 

(a)                                                                      (b) 

 

    (c) 

Fig. 2.7.  Work zone throughput in (a) scenario 1; (b) scenario 2; and (c) scenario 3 

 

The dashed line shows the actual throughput sampled every 15 s while the solid line 

shows the throughput trend using the moving average technique. It can be seen from Fig. 
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2.7(b) that the discrete-time sliding mode control maintains higher traffic throughput 

around 3200 veh/h during the high demand time and no significant drop of the throughput 

is observed. During the transition phase 600 s to 900 s when the low demand increases to 

the high demand, there is a consistent high throughput under the discrete-time sliding 

model control while the throughputs decrease in the no-control and KWT based control 

scenarios. Meanwhile, the capacity drop phenomenon occurs in scenario 1. In Fig. 2.7(a), 

the throughput is stabilized around 3000 veh/h due to the capacity drop from the time 900 

s to 2300 s. Under the KWT based control, although the traffic throughput is kept around 

the work zone capacity between the time 900 s and 1800 s as shown in Fig. 2.7(c), the 

capacity drop phenomenon still arises at the time 1800 s and lasts for about 9 minutes. 

When the accumulated queue is fully dissolved around the time 2300 s, the traffic 

throughput in scenario 3 reduces to around 1500 veh/h with the low traffic demand.  

The effectiveness and robustness of the proposed control system are illustrated from 

Fig. 2.7. The proposed control has the ability to avoid the capacity drop phenomenon. 

Compared with no-control scenario, the traffic throughput in scenario 2 is maintained 

around the work zone capacity during the high demand period. Meanwhile, the proposed 

control is not sensitive to the noisy demand. In both scenario 1 and 3, the traffic 

throughput drops at the transition phase. Since the noisy demand is highly unstable, 

particularly at the transition phase, the frequent lane changing behaviour causes this 

throughput drop phenomenon. Also, the static equilibrium speed limit hv  derived from 

KWT based control method may still restrict the traffic flow when a relatively low 

demand appears. However, the similar throughput decrease is not shown under the 
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proposed control. In contrast, the proposed system can maintain the high throughput and 

have a good robustness to the noisy demand. Furthermore, the proposed control is robust 

to the traffic disturbances, particularly at the acceleration zone. Though the traffic 

throughput maintains around the work zone capacity for about 15 minutes under the 

KWT based control, the capacity drop still happens and leads to a lower traffic 

throughput. This capacity drop occurs when a queue forms due to the potential traffic 

disturbances such as inappropriate accelerations, decelerations. However, the work zone 

throughput in scenario 2 is kept at the work zone capacity which shows the robustness of   

 
                                  (a)                                                                         (b) 

 

                                                                        (c) 

Fig. 2.8.  Traffic speed profile in (a) scenario 1; (b) scenario 2; and (c) scenario 3 
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proposed system to the potential traffic disturbances. 

Fig. 2.8 describes the spatio-temporal evolution of the speed 3.2 km (2 mi) upstream 

of the work zone area. As presented, vehicles travel with much lower speed in scenario 1 

than the speeds in scenario 2 and 3. Consequently, more travel delay is involved in the 

scenario 1. The capacity drop effects under KWT based control discussed in Fig. 2.7(c) 

are also shown in Fig. 2.8(c). It can be seen that vehicles have slower speed than the 

speed under discrete-time sliding mode control from the time step 1800 s to 2300 s at the 

acceleration zone. This slower speed indicates the queue forms at the work zone area and 

more vehicles join the tail of queue with slow speeds. Compared with the no-control 

scenario, the proposed control solves the congestion about 5 minutes earlier. Also, under 

the discrete-time sliding mode control, the length of the freeway affected by the 

congestion is much shorter than the affected freeway without any control.  

The VSL command which is the speed limits generated by the proposed system is 

shown in Fig. 2.9(a) and the density at the acceleration zone is illustrated in Fig. 2.9(b). 

As we can see, the VSL command is generated under the speed limit constraints and has 

restricted speed limits during the high traffic demand period. With respect to the density 

at the acceleration zone, it is controlled around the 35 veh/km under the high traffic 

demand using the proposed control. However, in no-control scenario, the density 

increases rapidly and reaches the maximum density around 160 veh/km. Though the 

density under KWT based control is similar to the proposed control at first, the high 

density is still created between the time 1800 s and 2300 s as the queue forms at the work 

zone area and more vehicles are fed into the acceleration zone. 
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                                 (a)                                                                               (b) 
Fig. 2.9.  (a) VSL command; and (b) density at the acceleration zone 

 

The performance measurements shown in Table 2.3 are also utilized to demonstrate 

the effectiveness of the proposed system with improvements in traffic mobility, safety 

and environmental sustainability.  

 

Table 2.3. Performance Measurement for 0.8 km Acceleration Zone 

Parameter 
No- 

Control 
Discrete-time 

SMC 
Improvement

 % 
KWT Based 

Control 
Improvement

 % 
Average Travel 
Time Ttotal (min) 

2.82 2.38 -15.6 2.63 -6.74 

Time-to-collision 
p (%) 

7.81 0.231 -97.0 2.41 -69.1 

NOx (kg) 0.614 0.567 -7.65 0.586 -4.56 

CO2 (t) 1.51 1.41 -6.62 1.46 -3.31 

Fuel Consumption 
(L) 

651 609 -6.45 628 -3.53 

 

The average travel time is computed using the link-based method [57]: 
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  (2.21) 

where
i

j
LT is the average travel time for segment iL ; N is the total number of the sampled 

travel time, i.e. the travel time is estimated every 3600 N  time interval. 

The probability of time-to-collision (TTC) indicator is utilized as the surrogate safety 

measure. To calculate the probability, the TTC is first calculated by: 

 , ,
, , , ,

, ,

, ,l i f i
i f i l i l i f i

f i l i

x x
TTC v v x x

v v


  


  (2.22) 

where ,l ix and ,l iv are the position and velocity of the leading vehicle at time step i; ,f ix and

,f iv are the position and velocity of the following vehicle at time step i. 

3 seconds (approximate 100 m with free flow speed) are considered as safe following 

distance in the freeway [58]. Hence, only when the distance between the leading vehicle 

and following vehicle is less than 100 m, the TTC will be considered and calculated using 

Eq. (2.22). The threshold 1.5 second is selected as minimum perception and reaction time 

to avoid the crash [59]. Therefore, the probability of TTC is computed by: 

 
Total Number of Number of ( 1.5s)

Total Number of  Considered Total Number of  Considered
crash iTTC TTC

p
TTC TTC


    (2.23) 

The default emission model based on HBEFA3 model is utilized to calculate the NOx, 

CO2 emissions and fuel consumption. The calculation mainly considers the acceleration 

and speed of each vehicle. Details about the HBEFA3 model for the different emission 

classes and parameter fitting process can be found in [60]. 
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It can be seen that both the discrete-time sliding mode control and KWT based 

control have improvements from the aspects of traffic mobility, safety and environmental 

emissions compared with the no-control scenario. However, the proposed control 

presents more improvements. The largest improvement lies in safety measurement. The 

probability of time-to-collision is decreased by over 90%. It greatly improves the freeway 

driving safety. This improvement attributes to the reduction of sudden accelerations and 

decelerations using the proposed VSL control. Vehicles are able to gradually reduce their 

speeds and therefore the overall speed variation is reduced. Furthermore, the results show 

about 15% of saving in the travel time. Because of the avoidance of capacity drop, the 

work zone throughput is maintained at the bottleneck capacity which improves freeway 

mobility. Since the travel time is reduced and the throughput is maintained at a high value, 

fewer vehicles are in congested states and less accelerations and decelerations are 

generated. This helps to reduce the emissions and fuel consumption by 7% on average 

and improve environmental sustainability. 

2.5.3 Simulation of the 0.5 km Acceleration Zone 

The no-control, discrete-time sliding mode control and KWT based control are 

implemented for the configuration of 0.5 km acceleration zone through scenarios 4, 5 and 

6 respectively. 

The work zone throughput and spatiotemporal evolution of the speed in these three 

scenarios are presented in Fig. 2.10 and Fig. 2.11 respectively.  

In Fig. 2.10(a), the capacity drop phenomenon occurs and the throughput fluctuates 

around 3000 veh/h between 1000 s and 2400 s. Under the KWT based control, due to the 
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noisy demand and the static speed limit, the throughput decreases around the time 800 s. 

Neither Fig. 2.10(b) nor Fig. 2.10(c) shows apparent capacity drop. Also, the queue is 

dissipated around the same time step 2300 s in scenario 5 and 6. The similar performance 

 

 

                                         (a)                                                                        (b) 

 

                                                                               (c) 

Fig. 2.10.  Work zone throughput in (a) scenario 4; (b) scenario 5; and (c) scenario 6 

 

in work zone throughput between the proposed control and KWT based control can be 

attributed to: (1) 0.5 km is not long enough for vehicles to fully accelerate and the traffic 

flow rate cannot recover from the VSL control zone. Therefore, the limited length of the 
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acceleration zone will naturally constrain the traffic flow rate. As a result, a queue will 

not form and capacity drop phenomena will not occur; (2) intuitively the shorter length of 

acceleration zone with smaller number of vehicles will have less traffic disturbances. 

 

 

                                  (a)                                                                           (b) 

 

                                                                        (c) 

Fig. 2.11.  Traffic speed profile in (a) scenario 4; (b) scenario 5; and (c) scenario 6   

 

The similarity of the performance between the proposed control and KWT based 

control is also shown in Fig. 2.11(b) and Fig. 2.11(c). Both have the similar shape of slow 
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speed area. For the no-control scenario, Fig. 2.11(a) illustrates a longer queue forms and 

longer recovery time is required.  

Fig. 2.12(a) and Fig. 2.12(b) show the VSL command generated by discrete-time 

sliding mode control and the density at the acceleration zone respectively.  

 

 

                                    (a)                                                                             (b) 

Fig. 2.12.  (a) VSL command; and (b) density at the acceleration zone 

 

The VSL command follows the speed limit constraints and has the restricted speed 

limits during the high demand period. Accordingly, densities in the discrete-time sliding 

mode control and KWT based control are stabilized around 35 veh/km under the high 

demand. Thus there is no congestion occurring immediate upstream of the work zone 

area. However, in the no-control scenario, the density exceeds the critical density and 

increases up to about 180 veh/km. Since the flow exceeds the work zone capacity, the 

queue forms at the beginning of work zone, followed by the capacity drop phenomenon.  

The following performance measurements in Table 2.4 are utilized to evaluate the 

effectiveness of the proposed control compared with the no-control and KWT based 
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control scenarios. As presented in Table 2.4, both discrete-time sliding mode control and 

KWT based control outperform the no-control scenario from the aspects of traffic 

mobility, safety and environmental sustainability. In addition to the similar work zone 

throughput, speed profiles and density trends between the proposed control and KWT 

based control, the similar improvements in Table 2.4 are achieved between scenario 5 

and 6. Still, the largest improvement lies in safety followed by improvements of average 

travel time, environmental emissions and fuel consumption. 

 

Table 2.4.  Performance Measurement for 0.5 km Acceleration Zone 

Parameter 
No- 

Control 
Discrete-time 

SMC 
Improvement

 % 
KWT Based 

Control 
Improvement

 % 
Average Travel 
Time Ttotal (min) 

2.85 2.33 -18.2 2.32 -18.6 

Time-to-collision 
p (%) 

7.77 0.625 -92.0 0.781 -89.9 

NOx (kg) 0.613 0.581 -5.22 0.580 -5.38 

CO2 (t) 1.51 1.44 -4.64 1.44 -4.64 

Fuel Consumption 
(L) 

651 620 -4.76 620 -4.76 

 

Through the analysis of the performance for no-control, discrete-time sliding mode 

control and KWT based control under different freeway layouts, the proposed control 

system shows the following strengths:  

1) The developed discrete-time traffic flow model has the ability to model the 

capacity drop and provide sufficient accuracy for the designed controller. The nonlinear 

traffic flow model is able to take the discontinuity and nonlinearity induced by capacity 

drop into consideration.  
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2) The proposed discrete-time sliding mode control is not sensitive to different 

lengths of acceleration zones and has a good robustness to traffic disturbances and the 

noisy demand. Compared with the KWT based control, the proposed control is able to 

avoid the capacity drop and show consistent improvements under different lengths of 

acceleration zones. The traffic flow has inherent stochastic characteristics and potential 

disturbances. Nevertheless, consistent improvements are achieved in both scenario 2 and 

5. Compared with the KWT based control with 0.8 km acceleration zone, the proposed 

system is robust to the potential disturbance, particularly at the acceleration zone, such 

that queue formation is prevented and the capacity drop is avoided. Meanwhile, the 

developed discrete-time sliding mode control can adapt to the fluctuant demand and 

generate effective speed limits. Consistent improvements of the proposed system show 

the developed controller is not sensitive to the noisy demand.  

3) The proposed system has simple design and efficient calculation. Compared with 

MPC methods, the prediction of multiple time steps and multiple traffic states are 

avoided and only one step of the density state at the acceleration zone is calculated and 

predicted. The sophisticated optimization process is also not needed in the proposed 

control system and the speed limits scheme is generated only by using the actual detected 

traffic states. This improves the computation efficiency and makes it easy to implement.  

4) The features of discrete time and discontinuous control inherent in discrete-time 

sliding mode control enable the natural implementation in VSL control. 



Ph.D. Thesis - Shuming Du; McMaster University - Civil Engineering 

50 

2.6 Limitations and Future Work 

At the current stage, the developed VSL control system is evaluated using the 

calibrated and validated freeway with work zone area. The factors of work zone 

configuration such as lateral clearance and presence of activity are not taken into account 

in this paper. The more detailed work zone configuration will be considered. Also, other 

control methods such as model predictive control, PI feedback control will be 

investigated as comparison strategies to assess the proposed control system. 

In this study, the speed of vehicles is controlled in one VSL control zone. The VSL 

strategy for multiple control zones upstream of the bottleneck needs to be studied in the 

future. Multiple control zones will have longer control areas. Thus the deployment of 

multiple control zones can potentially improve system performance. The coordination for 

multiple control zones will be studied as future work. Meanwhile, the identification of 

optimal speed variation threshold, sample interval and control interval will be integrated 

into the control design in the future. 

Two different lengths of control zone and acceleration zone are considered and 

assessed in this study. By incorporating the impacts of different lengths on the dynamics 

of traffic flow, the identification of the optimal setting of the length will be studies to 

further alleviate the congestion happened around work zone areas. 

2.7 Conclusions 

In this paper, a VSL control strategy for freeway with the work zone area is proposed 

using the developed discrete-time nonlinear work zone model and discrete-time sliding 
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mode control. The work zone model incorporates the capacity drop and impacts of speed 

limits to provide the sufficient accuracy to the controller. The discrete-time sliding mode 

control drives the traffic states to achieve the desired equilibrium state with different 

convergence rates. The inherently discrete time and discontinuous control of the 

controller makes it simple and efficient to achieve VSL control. The effectiveness of the 

proposed system is evaluated under a calibrated simulation environment. Compared with 

the KWT based control, the strong robustness of the designed controller is demonstrated 

by the performance under noisy traffic demand and different layouts of the freeway. 

Meanwhile, the proposed system shows the ability to consistently improve traffic 

mobility, safety and environmental sustainability near work zone areas. 
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3 Fault-Tolerant Control of Variable Speed Limits for 

Freeway Work Zone Using Likelihood Estimation 

Traffic sensor faults can greatly affect the effectiveness of VSL control. However, 

most existing studies did not consider sensor faults in the design of VSL control. This 

chapter presents a fault-tolerant VSL controller for a freeway work zone with permanent 

sensor faults. Likelihood estimations are used to detect and identify faults of stationary 

mainline and ramp sensors. An observer-based method is developed to provide accurate 

traffic state estimations when sensor faults occur by exploiting analytical redundancy. 

The developed system demonstrates reliable sensor fault diagnosis and consistent 

improvements of traffic conditions near work zone areas. The following journal article is 

included in this chapter. 

 

 S. Du and S. Razavi, “Fault-tolerant control of variable speed limits for freeway 

work zone using likelihood estimation,” Advanced Engineering Informatics, vol. 

45, p.101133, 2020. 

 

The co-author’s contributions include: 

 Provide supervision and technical advice 

 Review and edit the manuscript 

 Financially support the research work 
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3.1 Abstract 

Freeway work zones with lane closures can lead to disruption to local traffic and 

cause significant impacts on mobility, safety, and environmental sustainability. To 

mitigate traffic congestion near work zone areas, many variable speed limits (VSL) 

control approaches have been developed. However, VSL control systems, as safety-

critical transportation management systems, are prone to the occurrence of traffic sensor 

faults. Faulty sensors can cause great deviations of traffic measurements and system 

degradation. Therefore, this study aims to develop a fault-tolerant VSL control strategy 

for freeway work zones with consideration of mainline and ramp sensor faults. To 

analyze the traffic dynamics near work zone areas, a traffic flow model is built. Then a 

sliding mode controller in the previous study is utilized for VSL control. In addition to 

the traffic states estimated by a Kalman filter, two observers are developed to provide 

analytical redundancy of traffic state estimations. By comparing the logarithm of the 

likelihood estimations from the Kalman filter and two observers, a fault diagnosis scheme 

is designed to detect and identify the faults of mainline and ramp sensors. Then the VSL 

controller can be reconfigured accordingly in the case of sensor faults. The proposed 

system is implemented and evaluated under realistic freeway work zone conditions using 

the traffic simulator SUMO. The results show that the developed system can accurately 

detect and identify sensor faults in real time. Consistent improvements in mobility, safety 

and sustainability are also achieved under fault-free and sensor faults scenarios. 
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3.2 Introduction 

Freeway work zones play an important role in maintaining and improving road 

infrastructure. With the increasing demand for highway expansion and maintenance, a 

growing number of work zones are set up to conduct road construction activities such as 

road pavement, resurfacing and rehabilitation. However, traffic congestion can easily 

form near work zone areas and cause longer travel time, higher safety risk, more 

emissions and fuel consumption. According to the urban mobility report [4], additional 

8.8 billion hours and 3.3 billion gallons of fuel were wasted by urban Americans in 2017 

due to traffic congestion. Nearly 10 percent of the overall congestion is caused by work 

zones [5]. More than 800 work zone fatalities occurred in 2017 [6]. To mitigate the 

impacts caused by work zones, variable speed limits (VSL) control systems have been 

widely studied. With the knowledge of traffic states near a work zone, VSL control can 

impose dynamic speed limits upstream of the work zone so as to restrict or homogenize 

traffic flow before entering the work zone [33], [34]. Accordingly, traffic conditions near 

the work zone area can be improved. 

Many methods have been proposed in previous studies to design VSL control systems. 

A rule-based controller was developed to impose dynamic speed limits based on the 

densities near a traffic bottleneck [61]. The model predictive control was employed to 

optimize the VSL scheme to improve the bottleneck throughput [13], [15]. VSL control 

was also proposed to regulate the traffic flow in a network with multiple bottlenecks 

using a proportional-integral feedback controller [8]. With the development of connected 

vehicle technology, the effectiveness of dynamic speed limits control was evaluated 



Ph.D. Thesis - Shuming Du; McMaster University - Civil Engineering 

55 

under connected environments [62]. Consistent improvements in traffic mobility and 

safety were shown from the aforementioned studies using different types of controllers 

and the controller with the presence of connected vehicles. However, the effectiveness of 

these developed VSL controllers relied on the assumption that reliable traffic state 

estimations from stationary traffic sensors are available. In practice, stationary traffic 

sensors such as radar sensors, loop detectors, and cameras are prone to various sensor 

faults including sensor malfunction and transmission failure. In 2018, more than 30 

percent of stationary traffic sensors cannot provide reliable traffic measurements on a 

typical day in California due to sensor faults [18]. Since a large amount of missing traffic 

data can easily lead to VSL controller degradation, it is essential to address the adverse 

effects caused by stationary traffic sensor faults. 

To deal with traffic sensor faults, system redundancy is exploited to generate 

redundant traffic state estimations to replace faulty measurements in the case of sensor 

faults. Two types of system redundancies, physical redundancy and analytical 

redundancy, are mainly adopted [63]. Physical redundancy requires an extra set of traffic 

sensors to be installed, which becomes impractical to implement in a large scale system 

like freeway network due to hardly affordable cost. In contrast, cost-effective analytical 

redundancy generates redundant traffic state estimation from a mathematical system 

model. Therefore, analytical redundancy is mainly introduced and discussed in this study. 

A variety of approaches have taken advantage of the spatiotemporal feature of traffic 

flow to produce analytical redundancy and recover missing traffic data. A Bayesian 

tensor decomposition model was proposed to learn the spatiotemporal patterns in traffic 
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flow to impute the missing traffic data [21]. Two cokriging methods were developed to 

study the spatiotemporal dependency of traffic data in order to recover corrupted traffic 

data [64]. A multi-view learning model was trained to estimate the missing data with 

good accuracy from a time series traffic dataset [65]. However, these learning models 

exploited the temporal information from measurements after the missing data point to 

achieve accurate traffic state estimation. The data recovering process was conducted 

offline. Since VSL control systems demand real-time traffic state estimation and online 

data imputation when a sensor fault occurs, it may be difficult to obtain accurate 

estimations with offline learning models and maintain the performance of VSL control 

systems. To address the demand of online imputation for traffic control systems, many 

model-based approaches have been developed. A calibrated regression model was 

developed in [66] to predict the missing traffic data. In [67], a probabilistic principal 

component analysis was utilized to develop an imputation optimization algorithm to 

provide accurate state estimation with missing data. Multiple linear regression models 

were proposed to detect the missing data samples and impute them accordingly [23]. 

Nevertheless, these model-based approaches needed historical traffic measurement data 

near the faulty sensors area to calibrate the imputation models. However, with respect to 

freeway work zones, particularly short-term work zones, historical traffic data may not be 

available. The lack of historical traffic data makes it difficult to calibrate the imputation 

models so as to provide accurate traffic state estimation for a VSL controller. Therefore, a 

sensor fault diagnosis scheme, which can achieve online traffic data imputation without 

the demand of historical traffic measurement data, is needed for a VSL controller. 
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Likelihood estimation based methods have been mainly studied to perform online 

sensor fault diagnosis in engine control area. A likelihood ratio based method was 

proposed to detect the bleed valve fault in gas turbine engine [68]. The residuals 

generated by two virtual sensors were analyzed using maximum-likelihood voting 

algorithm to detect the faulty speed sensor of electric vehicle powertrains [69]. The 

likelihood estimation was used to assess the sensor fault severity of in railway traction 

drive [70].  However, these likelihood estimation methods developed in engine control 

applications can hardly be applied to sensor fault diagnosis for VSL controllers due to 

significant differences of system models. In addition, the likelihood estimation methods 

in [68], [69] have difficulties in addressing faults of multiple sensors like mainline 

sensors and ramp sensors considered in this study. 

To address the impacts of sensor faults, this paper aims to develop a fault-tolerant 

VSL control system for freeway work zones using the likelihood estimation. Three main 

contributions are made including:  

1) Consistently maintain the performance of VSL controller with the presence of 

sensor faults. The VSL controller can be reconfigured according to different types of 

sensor faults. The system performance is evaluated from the aspects of mobility, safety 

and sustainability. 

2) Reliably detect the stationary traffic sensor faults without the prerequisite of 

historical traffic data. The designed fault diagnosis scheme can detect sensor faults in real 

time when a fault occurs. 

3) Accurately identify the faults of stationary traffic mainline sensors and ramp 
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sensors. Faults of different sensors can be identified via the comparison of the logarithm 

of the likelihood estimations generated from the Kalman filter and two observers.  

The rest of this paper is organized as follows. The system framework is first 

presented. Then the traffic flow model with augmented traffic states is introduced. After 

the discussion of the sliding mode controller for VSL control, the design of traffic state 

estimation based on Kalman filter is presented. Two observers are developed for 

stationary traffic mainline and ramp sensors. Then the fault diagnosis scheme is designed. 

Afterwards, the effectiveness of the developed system is evaluated with analytical results. 

Finally, conclusions and future work are discussed. 

3.3 Methodology 

The framework of the fault-tolerant VSL control system for freeway work zones is 

shown in Figure 3.1. 

 

 

Fig. 3.1.  System framework 

 

The sliding mode controller, which is developed in the previous study of the authors 
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[71], can read the traffic state estimation from the fault diagnosis component to derive the 

speed limit control signal so as to track the traffic state reference. Then the speed limit 

signal can affect the evolution of the traffic flow model to improve traffic conditions near 

work zone areas. To consider the capacity drop phenomenon around work zone areas, the 

capacity drop model in [3], [14] is incorporated in the traffic flow model. Both the 

control signal and traffic measurements are fed to the Kalman filter, observer 1 and 

observer 2 to obtain traffic state estimation and observed traffic states respectively. These 

two observers are designed to provide redundant traffic states in the case of stationary 

traffic sensor faults. After the process of fault diagnosis, the reliable traffic state 

estimation is sent to the controller and reconfiguration signal is generated as well when a 

sensor fault occurs. More details of each component in the system framework can be 

found in the following sections. 

3.3.1 Traffic Flow Model 

The layout of a freeway work zone with a lane closure is presented in Figure 3.2.  

 

 

Fig. 3.2.  Layout of freeway work zone area (not to scale) 
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The freeway network near the work zone area is partitioned into multiple segments: 

the VSL control zone, acceleration zone and work zone. The length of each segment i is 

expressed as iL . The traffic inflow iq , outflow 1iq   , average speed iv  and density i  are 

denoted for each segment i. The design of the fault-tolerant VSL controller can be 

affected by ramp flows at the acceleration zone and work zone. Therefore, the on-ramp 

flow 2oq  , off-ramp flow 2fq  , on-ramp flow 3oq  and off-ramp flow 3fq  are considered in 

Figure 3.2. It should be noted that in practice there may be no on-ramps or off-ramps at 

some freeway segments. 

To detect the traffic states near work zone areas, probe sensors and stationary sensors 

are adopted in this study. Specifically, connected vehicles with the ability to transmit 

their speeds and locations are utilized as the probe sensors. These connected vehicles are 

assumed to have no autonomous driving capability and share the same driver behavior 

with conventional vehicles. With the moving of connected vehicles which are mixed with 

the conventional vehicles, the probe sensors can detect the traffic states at different 

segments during the traveling while the stationary sensors can only monitor the traffic 

states at a fix location or segment. In this study, two stationary mainline sensors are 

installed within the acceleration zone and work zone respectively. Also, stationary ramp 

sensors are installed to monitor the ramp flows at the acceleration zone and work zone. 

Since one lane is closed due to the presence of the work zone in Figure 3.2, traffic 

congestion can easily happen near work zone areas. We assume no traffic congestion 

occurs downstream of the work zone. Two speed limit signs are installed to improve 

traffic conditions. One is installed at the beginning of VSL control zone to control the 
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speed of vehicles inside the VSL control zone. The other is installed at the beginning of 

the acceleration zone to allow vehicles to accelerate to free flow speed to travel through 

the work zone.  

The evolution of traffic density can be derived using the conservation law [50] as: 

 1( 1) ( ) [ ( ) ( ) ( )], 2,3s
i i i i ri

i

T
k k q k q k q k i

L
  


        (3.1) 

where k stands for the kth time step. sT  is the sample time interval and ( )riq k ,which is 

calculated as Eq. (3.2), represents the ramp flows at segment i. 

 ( ) ( ) ( )ri oi fiq k q k q k    (3.2) 

The density 2 ( )k  at the acceleration zone is mainly considered because the objective 

of the VSL controller is to stabilize the density 2 ( )k at the critical density [71]. Also, the 

density 3( )k needs to be obtained to provide redundant traffic states which will be 

discussed in the Section 3.3.4. The traffic flow 2q  , 3q  and 4q  in Eq. (3.1) can be derived 

under the assumption of triangular fundamental diagram [51] as: 

 2 1 1 1 1 2

3 2 2 2

4 3 3

( ) min{ ( ) ( ), ( ) / [ ( ) ], [ ( )]}

( ) min{ ( ) ( ), ( ) }

( ) ( ) ( )

j jq k v k k u k u k k

q k v k k a k b

q k v k k

     

 


  


 
 

  (3.3) 

where  , j  and 1( )u k  are the backward wave speed, jam density and speed limit 

control signal respectively. The constant parameter a and b are obtained from the 

capacity drop model in [3], [14]. The critical density, jam density and maximum dropped 

capacity of the freeway network are used to calculate the parameter a and b. Capacity 

drop occurs when a queue forms upstream of a bottleneck [28], [30], [72]. In Fig. 3.2, the 
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work zone capacity bC  ideally equals to 2/3 the full road capacity C due to one closed 

lane. However, when a queue forms upstream of the work zone, the work zone capacity 

bC  can be further decreased because of the capacity drop phenomenon. Therefore, the 

constant parameter a and b are introduced to consider the dropped work zone capacity. 

It can be seen that the speed limit 1( )u k  can affect the evolution of traffic dynamics 

using the traffic flow 2 1 1( ) ( ) / [ ( ) ]u
jq k u k u k   . When traffic demand is lower than 

the work zone capacity, 1 1( ) ( )v k k is less than 2 ( )uq k and VSL control is not needed to 

restrict the traffic flow because vehicles can travel through the work zone area without 

congestion. On the other hand, when the traffic demand is higher than the work zone 

capacity, the flow 2 2( ) [ ( )]u
jq k k    is constrained by the stability of the sliding 

mode controller which is discussed in the following section. Intuitively, it can be seen 

that when 2 2( ) [ ( )]u
jq k k    , the speed limits cannot restrict the traffic flow and 

traffic congestion is unavoidable at the acceleration zone.  

Since the ramp flow 2( )rq k can also affect the density 2 ( )k which is the control 

objective, augmented traffic states as T
2 3 2( ) [ ( ) ( ) ( )]rk k k q k x  is established. 

Thus, the evolution of the augmented traffic states as the traffic flow model can be 

derived as: 

 ( 1) ( ) ( ) ( ) ( ) ( )k k k k k k   x A x B u    (3.4) 

where ( )ku  is the system input and ( )k is assumed to be white process noise with the 

covariance ( )kQ . ( )kA and ( )kB are system matrices. Specifically, the traffic flow model 
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Eq. (3.4) is obtained under without capacity drop and with capacity drop scenarios as: 

2 2
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3 3 2
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  (3.5) 
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  (3.6) 

where a random walk equation of the ramp flow 2 2 3( 1) ( ) ( )r rq k q k k   is treated as an 

augmented traffic state. 3( )k is selected to accommodate the ramp flow variation. The 

average speed 2 ( )v k  and 3 ( )v k  in Eq. (3.5) and (3.6) are detected by connected vehicles 

at the acceleration zone and work zone [73]. Thus the traffic flow model considering the 

evolution of the augmented traffic states is established. 

3.3.2 Sliding Mode Controller 

Sliding mode control is a variable structure control method for nonlinear systems [74]. 

With multiple control structures, a sliding mode controller can generate switching control 

signals to change the trajectory of a system. To drive the system state to the desired 

equilibrium state, a sliding surface is designed such that the trajectory of the system can 

converge and stay confined to the sliding surface. The main feature of sliding mode 

control is its strong robustness to system uncertainties and external disturbances. Because 
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of the nonlinearity caused by capacity drop phenomena and traffic disturbances near 

work zone areas [37], sliding mode control is utilized to design the VSL controller.  

The objective of the VSL controller is to stabilize the traffic density 2 ( )k  at the 

work zone critical density b
c  so that the capacity drop phenomenon can be avoided. The 

VSL controller based on the sliding mode control method in [71] is employed in this 

study. To develop the VSL controller, a sliding surface is first designed as: 

 2( ) [ ( )]b
cs k c k     (3.7) 

where the nonzero constant parameter c is selected to have a proper convergence rate. 

Then a reaching law, which can drive the states to the designed surface and make the 

states confined on the surface, is designed as [53]: 

 ( 1) ( ) sgn( ( )) ( )s ss k s k T s k T qs k      (3.8) 

where   and q are positive constant parameters and sgn represents a signum function. 

Thanks to the ( )sT qs k part, the trajectory of system states is forced to move to the 

sliding surface Eq. (3.7) with an exponential rate, while the switching signal 

sgn( ( ))sT s k can help to avoid the zero reaching rate and make the states constrained 

to the sliding surface. 

By combining the Eq. (3.7) and (3.8), the evolution of traffic density 2 ( )k can be 

derived from the perspective of sliding mode control. Meanwhile, the evolution of traffic 

density 2 ( )k is also analyzed in Eq. (3.4) from the perspective of traffic flow model. 

The comparison of density 2 ( )k from these two sources can be used to derive the speed 
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limit control signal as a function g: 

 1 2 2( ) ( ( ), ( ), ( ))u k g k v k s k   (3.9) 

which is correlated with the traffic density 2 ( )k , average speed 2 ( )v k at the acceleration 

zone, and the difference between 2 ( )k and the work zone critical density b
c . 

To guarantee the stability of the sliding mode controller, the condition that 0  ,

0q  and 2 0sT q   should be satisfied as proved in the previous study [71]. 

The practical speed limit constraints should also be considered: 1) the speed limits 

should fall in the range of the minimum speed limit minv and the maximum speed limit 

maxv with the incremental speed v ; 2) the continuous speed limit 1( )u k is rounded up to 

the closest integer speed limit which is an integral multiple of the incremental speed v ; 

3) the maximum speed limit difference between two consecutive control time steps is 

constrained by maxv ;4) the speed limit control time interval cT  should be an integral 

multiple of the sample time interval sT  to avoid frequent change of speed limits. 

3.3.3 Kalman Filter for Traffic State Estimation 

Kalman filters are linear state estimators for stochastic systems. By using noisy 

sensor measurements in a stochastic system, the Kalman filter can recursively estimate 

system states.  The recursive filter process consists of the time update and measurement 

update [75]. In the time update step, the Kalman filter can predict the current system state. 

When a new measurement is available, the state prediction can be updated using a 

weighted average in the measurement update step. 
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To estimate the traffic state ( )kx  in Eq. (3.4), the measurement equation should be 

derived. In this study, two stationary mainline sensors are installed to detect the traffic 

outflow 3( )q k  and 4 ( )q k at the acceleration zone and work zone respectively. By 

utilizing the detected average speed 2 ( )v k and 3 ( )v k at the acceleration zone and work 

zone, the traffic density ( )i k  can be measured using 1( ) ( ) / ( )i i ik q k v k  . Since the 

ramp flow is detected by the installed stationary ramp sensors, the measurement equation 

is derived as: 

 (0) (0) (0) (0)( ) ( ) ( ) ( )k k k k y C x    (3.10) 

where (0) T
2 3 2( ) [ ( ) ( ) ( )]rk k k q k y and (0)

3*3( )k C I . (0) ( )k is the measurement 

noise assumed to be Gaussian noise of zero mean with covariance (0) ( )kR . 

By combining Eq. (3.4) with Equation (3.10), the Kalman filter for traffic state 

estimation can be obtained as: 

 
(0) (0) (0) (0)

(0) (0) (0) (0)

ˆ ˆ( 1| 1) ( ) ( | ) ( ) ( ) ( 1) ( 1)

( 1) ( 1) ( 1| 1) ( 1)

k k k k k k k k k

k k k k k

       


      

x A x B u K y

y C x 
  (3.11) 

where (0) ( 1)k K is the gain matrix and (0) ( 1)k y is the innovation vector calculated in 

Eq. (3.12). 

 (0) (0) (0) (0)ˆ( 1) ( 1) ( 1)[ ( ) ( | ) ( ) ( )]k k k k k k k k     y y C A x B u   (3.12) 

Moreover, the innovation covariance matrix (0)( 1)k S  is derived as 

 
T(0) (0) (0) T (0) (0)( 1) ( 1)[ ( ) ( | ) ( ) ( )] ( 1) ( )k k k k k k k k k     S C A P A Q C R   (3.13) 

where (0)( | )k kP  is the state covariance matrix. 
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With the initial traffic states (0)ˆ ( | )k kx and state covariance matrix (0)( | )k kP , the gain 

matrix (0) ( 1)k K can be updated accordingly. When a new measurement is available, the 

innovation vector is calculated to achieve the measurement update and the traffic states

(0)ˆ ( 1| 1)k k x estimation at the next time step. This recursive process is performed to 

estimate the traffic states given a new measurement.  

3.3.4 Observer 

In a control system, an observer can provide the internal system state which can be 

used to develop the system controller. In the cases where the system state cannot be 

determined directly from the sensor measurement, an observer is needed. By using the 

sensor measurement, an observer can estimate the system state based on the evolution of 

the dynamic system. In this study, observers are designed to provide analytical 

redundancy for VSL control systems. It can be seen that in Eq. (3.9), the control strategy 

relies on the accurate traffic estimation of 2 ( )k to generate the reasonable control signal

1( )u k . However, the accuracy of the density estimation 2 ( )k can be greatly affected if 

the measurement Eq. (3.10) fails to provide the reliable mainline traffic measurement 

3( )q k and the ramp flow measurement 2( )rq k . Therefore, it is critical to provide 

redundant state estimation of 2 ( )k and 2( )rq k to avoid VSL control failures and ensure 

the system performance even with sensor faults. 

Two observers are designed for the state estimation of traffic density 2 ( )k and ramp 

flow 2( )rq k respectively. To avoid using faulty sensors, the observer below is designed in 
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the case of mainline sensor faults: 

 
(1) (1) (1) (1)

(1) (1) (1) (1)

ˆ ˆ( 1| 1) ( ) ( | ) ( ) ( ) ( 1) ( 1)

( 1) ( 1) ( 1| 1) ( 1)

k k k k k k k k k

k k k k k

       


      

x A x B u K y

y C x 
  (3.14) 

where (1) T
3 2( ) [ ( ) ( )]rk k q ky and (1) 0 1 0

( )
0 0 1

k
 

  
 

C .  T(1)
2 3( )k   is the 

measurement noise assumed to be Gaussian noise of zero mean with covariance (1) ( )kR . 

It can be seen that Eq. (3.14) does not rely on the measurement 3( )q k to estimate the 

traffic states. Therefore, if the stationary mainline sensor fault occurs at the acceleration 

zone, the observer Eq. (3.14) can still provide reliable state estimations. 

Similarly, in the case of the ramp flow sensor fault, the observer is designed with the 

similar structure 

 
(2) (2) (2) (2)

(2) (2) (2) (2)

ˆ ˆ( 1| 1) ( ) ( | ) ( ) ( ) ( 1) ( 1)

( 1) ( 1) ( 1| 1) ( 1)

k k k k k k k k k

k k k k k

       


      

x A x B u K y

y C x 
  (3.15) 

but with (2) T
2 3( ) [ ( ) ( )]k k k y , (2) 1 0 0

( )
0 1 0

k
 

  
 

C ,  T( 2)
1 2( )k   and ( 2) ( )kR . 

Then the recursive process of traffic state estimation in the Section 3.3.3 can be 

applied to these two observers shown in Eq. (3.14) and Eq. (3.15). 

To make sure the observers can work properly, the observability of these two 

observers is presented. Since the observability matrix can be calculated using Eq. (3.16): 

 

( )

( )

( )

( , 3) ( )

( 1) ( )

i

i

i

k k k

k k

 
    
  

C

O C A

C A A

  (3.16) 

the observability matrices for Eq. (3.4) under with capacity drop and without capacity 
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drop scenarios are derived as follows: 

 2 3
2 3

0 1 0

0 0 1

( ) 1 ( ) 0

* * *

* * *

* * *

s s

no drop

T T
v k v k

L Lrank rank

 
 
 
  

      
 
 
 
  

O   (3.17) 

 3
2 3

0 1 0

0 0 1

1 ( ) 0

* * *

* * *

* * *

s s

drop

T T
a v k

L Lrank rank

 
 
 
  

      
 
 
 
  

O   (3.18) 

Because a is a nonzero constant parameter and the average speed 2 ( )v k is bounded to 

positive speed during the experiment, the rank of both observability matrices equals to 3. 

Therefore, the observer Eq. (3.14) is observable. Similarly, the observer Eq. (3.15) can be 

proved to be observable under with capacity drop and without capacity drop scenarios. 

3.3.5 Fault Diagnosis 

The fault diagnosis scheme can diagnose sensor faults and reconfigure the VSL 

controller when a sensor fault occurs. The probability based method using the likelihood 

estimation is developed to detect and identify the faults of stationary mainline and ramp 

sensors. Likelihood estimation is utilized to calculate the probability of the sensor 

measurement conditioned on a system mode. In this study, the system modes include 
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health sensor mode and sensor fault modes. To determine the system mode, likelihood 

estimation can measure the plausibility provided by the sensor measurement for each 

possible system mode. Detecting zero flow rates with the presence of vehicles is the 

leading sensor fault among loop detectors [76]. This type of fault can be caused by the 

failure of sensor control units, communication lines, etc. Therefore, the stationary sensor 

faults of zero flow rates are mainly considered. In this study, the concurrent sensor faults 

and probe sensors faults are not considered. 

When a new measurement is available, the measurement likelihood is estimated by 

the Kalman filter and two observers. The likelihood can be estimated as: 

 

( ) ( ) ( )

( ) T ( ) 1 ( )

( )

( ( 1)) ( ( 1); , ( 1))

1 1
exp[ ( ( 1)) ( ( 1)) ( 1)]

2(2 ) ( 1)

j j j

j j j

n j

p k N k k

k k k
k



   

    


0y y S

y S y
S

  (3.19) 

where j=0,1,2. By using Eq. (3.19), the Kalman filter and two observers can assess the 

likelihood of a new measurement. When low anomaly likelihood (0)( ( 1))p k y is 

calculated from the Kalman filter, there is a high probability that a sensor fault occurs. To 

detect if there is a sensor fault, a threshold 1 is defined and utilized in Eq. (3.20). 

 (0)
1log( ( ( 1)))p k   y   (3.20) 

If Eq. (3.20) is satisfied, then there is no sensor fault. However, when the Eq. (3.20) is 

violated, a sensor fault is detected. The negative logarithm of the likelihood is utilized in 

Eq. (3.20) instead of the likelihood to better illustrate the likelihood estimation in the 

Section 3.4. 

After a sensor fault is detected, identifying the sensor fault caused by either stationary 
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mainline sensors or stationary ramp sensors is necessary. A threshold 2 for the 

likelihood of the two observers is defined and utilized in Eq. (3.21): 

 ( )
2log( ( ( 1))) , 1,2lp k l   y   (3.21) 

When Eq. (3.21) is violated, the sensor faults can be identified. For example, when

(1)
2log( ( ( 1)))p k   y  , meaning a large negative logarithm of the likelihood is 

estimated by observer 1, this can be caused by abnormal measurements from the ramp 

flow sensors. Thus, the stationary ramp sensor fault is identified. Both threshold 1 and 

2 are selected by considering the model uncertainty and traffic measurement noises. 

Once a sensor fault is detected and identified, the fault diagnosis scheme can 

reconfigure the VSL controller accordingly to provide reliable traffic state estimation and 

ensure the system performance. When there is no sensor fault detected, meaning the 

system operates under health mode, the estimation from the Kalman filter is fed to the 

sliding mode controller to maintain the traffic density 2 ( )k at the critical density. 

However, when a stationary mainline sensor fault is detected and identified, the traffic 

state estimation from the Kalman filter may greatly deviate from the actual traffic 

condition. The fault diagnosis scheme can replace the traffic state estimation from the 

Kalman filter with the observed states from the observer in Eq. (14). Similarly, when a 

stationary ramp sensor fault occurs, the fault diagnosis can reconfigure the controller to 

use the observed traffic states from the observer in Eq. (15). By detecting, identifying the 

sensor faults, and reconfiguring the controller, the fault diagnosis can achieve fault-

tolerant VSL control for freeway work zones. 
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3.4 Experiments and Results 

The fault-tolerant VSL control system was evaluated on a freeway segment with the 

length of 3.2 km (2 mi) on SR99N in California, US as shown in Fig. 3.3.  

 

 

Fig. 3.3.  Freeway network with a work zone (Map data © 2019 Google) 

 

The blue line in Fig. 3.3 represents the selected freeway segment. On May 3rd, 2018, 

a 1 km (0.6 mi) construction work zone was established starting from the State Postmile 

(PM) 19.7. The work zone area is shown in the red line with a construction icon in Fig. 

3.3. The green line with a marker which locates upstream of the work zone represents the 

on-ramp from Fremont Street. One of the three lanes was closed at the construction work 

zone, which resulted in severe traffic congestion upstream of the work zone. Two 

stationary mainline sensors installed at State PM 19.6 and State PM 20.1 were utilized to 

detect the traffic outflows of the acceleration zone and work zone. The ramp sensor at 

State PM 19.4 was installed at the on-ramp from Fremont Street. No other ramps were 

available in the acceleration zone and work zone area. Therefore, the stationary mainline 
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sensor at State PM 19.6 and on-ramp senor at State PM 19.4 were utilized to simulate the 

stationary sensor faults. The selected freeway segment in Fig. 3.3 was built in traffic 

simulator SUMO. The microscopic model was calibrated and validated using the realistic 

traffic data in California freeway management database [18]. 

The fundamental diagram was calibrated. The free flow speed, road capacity, work 

zone critical density b
c , backward wave speed  , capacity drop parameter a and b were 

104 km/h (65 mi/h), 5500 veh/h, 42 veh/km, 21 km/h, -0.95 km/h and 3730 veh/h 

respectively. The lengths of the acceleration zone and work zone were set as 500 m and 

650 m respectively according to the realistic sensor location. Based on the realistic traffic 

data statistics analysis [73], [77], the standard deviations of the measurements from 

traffic sensors were selected as 25 veh/h and 3 veh/km respectively. 10 % of the 

connected vehicle market penetration rate was chosen to simulate the traffic flow. The 

controller parameter c,   and q were chosen as 2, 15 and 40 based on the previous study 

[71]. The speed limits maxv  , minv  , v  and maxv  were selected as 104 km/h (65 mi/h), 16 

km/h (10 mi/h), 8 km/h (5 mi/h) and 8 km/h (5 mi/h) respectively. The sample time 

interval sT and control time interval cT  were chosen as 15 s and 60 s respectively. 

Different values of the threshold 1  and 2 were examined and tested through the 

simulation. To accurately detect the senor faults and avoid false alarms, 1  and 2 were 

selected as 20 and 15 respectively. 

To demonstrate the effectiveness of the fault-tolerant VSL control system, three 

scenarios under fault-tolerant control were considered: 1) health mode without sensor 
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faults; 2) with the stationary mainline sensor fault occurring at 2835 s; 3) with the 

stationary ramp sensor fault occurring at 2835 s. To ensure consistent simulation results, 

10 repeated simulations were conducted with different random seeds. As a warm-up 

period, the first 5 minute simulation data were discarded. Then the simulation was run for 

6000 s. Low mainline traffic demand of 2200 veh/h lasted for the first 1200 s. Then the 

mainline demand increased to 3500 veh/h at 1800 s and maintained at high demand for 

1500 s, followed by the dropped demand of 2500 veh/h at 3900 s. This low demand 

lasted until the end of the simulation. In terms of the on-ramp traffic demand, the low on-

ramp demand of 200 veh/h lasted until 850 s. Then the on-ramp demand increased to 300 

veh/h and lasted for 2200 s. Eventually the on-ramp demand decreased to 200 veh/h at 

4260 s and maintained at that demand until the end of the simulation. 

The traffic density estimation at the acceleration zone, on-ramp flow estimation and 

negative loglikelihood estimation are shown in Fig. 3.4. The health estimations in Fig. 3.4 

are from the Kalman filter while the reference measurements are obtained using the built-

in functionality in the traffic simulator SUMO. Through comparison with the reference 

measurements, accurate density estimation and on-ramp flow estimation are achieved 

under the health mode in Fig. 3.4 (a) and (b). Moreover, Fig. 3.4(a) demonstrates that the 

fault-tolerant VSL controller can stabilize the traffic density at the acceleration zone 

around the critical density 42 veh/km. In addition to the accruate density estimation and 

on-ramp flow estimation, the estimations of negative loglikelihood in Figure 3.4(c), from 

the Kalman filter and two observers, are all below the defined threshold and no false 

alarms are generated. 
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                                        (a)                                                                         (b) 

 

  (c) 

Fig. 3.4.  Under scenario 1: (a) density estimation at the acceleration zone; (b) on-ramp flow 

estimation; (c) negative loglikelihood estimation 

 
In Fig. 3.5, the estimations of traffic density at the acceleration zone, on-ramp flow 

and likelihood are presented under the stationary mainline sensor fault scenario. Due to 

the mainline sensor fault, the density estimation from the Kalman filter, which is used 

under health mode, deviates significantly from the reference measurement in Fig. 3.5(a). 

The unreliable density estimation may cause great impacts on VSL controller. However, 

the observed traffic states from the observer, which is designed for the mainline sensor 
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fault, can immediately come into effect and replace the corrupted state estimation caused 

by the mainline sensor fault at 2835 s. With reliable observed states, the VSL controller 

manages to stabilize the density at the acceleration zone near critical density even after 

the occurrence of the mainline sensor fault as shown in Fig. 3.5(a).  

 

 

                                        (a)                                                                          (b) 

 

(c) 

Fig. 3.5.  Under scenario 2: (a) density estimation at the acceleration zone; (b) on-ramp flow 

estimation; (c) negative loglikelihood estimation 
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Since the on-ramp flow sensor can work properly under scenario 2, both the Kalman 

filter and the observer can accurately estimate the on-ramp flow rate. However, the 

estimation of on-ramp flow is still being replaced by the observed traffic states in Fig. 

3.5(b) to avoid any potential impacts from the Kalman filter. Fig. 3.5(c) demonstrates the 

process of mainline sensor fault detection and identification. When the negative 

loglikelihood estimation from the Kalman filter for the health mode exceeds the 

predefined threshold at 2835 s, a sensor fault is detected. Then the estimation from the 

observer, which is designed for the on-ramp sensor fault, exceeds the threshold as shown 

in Fig. 3.5(c). Thus the mainline sensor fault is identified. Meanwhile the VSL controller 

is reconfigured accordingly to maintain the density in Fig. 3.5(a) near the critical density. 

From Fig. 3.5, it can be seen that accurate sensor fault detection and identification can 

ensure the VSL system performance in the case of sensor faults. 

Fig. 3.6 illustrates the impacts of stationary on-ramp sensor fault on estimations of 

density at the acceleration zone, on-ramp flow and the likelihood. Since the stationary 

mainline sensor is still functional, the density estimations, from the Kalman filter for 

health mode and two observers, are close to the reference measurements in Fig. 3.6(a). 

However, the estimation from the Kalman filter is still replaced by the observed states in 

case of potential estimation deviation. In Fig. 3.6(b), the on-ramp flow estimation from 

the Kalman filter immediately collapses when the on-ramp sensor fault occurs. However, 

the observer, which is designed for the on-ramp sensor fault, can still estimate accurate 

on-ramp flow rate shown in blue cross line.  
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                                    (a)                                                                  (b) 

 

(c) 

Fig. 3.6.  Under scenario 3: (a) density estimation at the acceleration zone; (b) on-ramp flow 

estimation; (c) negative loglikelihood estimation 

 

With the successful sensor fault diagnosis shown in Fig. 3.6(c), accurate on-ramp flow 

estimation is achieved in Fig. 3.6(b) by using the observed traffic states after the sensor 

fault. Fig. 3.6(c) demonstrates that the on-ramp sensor fault can be accurately detected 

and identified. A sensor fault is detected when the negative loglikelihood estimation from 

the Kalman filter exceeds the threshold. Then the abnomal negative loglikelihood 
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estimation from the observer, which is designed in the case of the mainline sensor fault, 

confirms that on-ramp sensor fault occurs. 

From Fig. 3.4, 3.5 and 3.6, it can be seen that fault-tolerant VSL control can 

accurately estimate the traffic density and ramp flow under with and without sensor faults 

scenarios. Moreover, sensor faults can be reliably detected and identified online using the 

real time traffic data.  

To quantitatively assess the accuracy of the estimation of the fault-tolerant VSL 

control system, the RMSE (root mean square error) analysis of the traffic density at the 

acceleration zone and on-ramp flow rate is presented in Table 3.1. 

 

Table 3.1. RMSE for Estimation of Density and On-ramp Flow 

 
Density Estimation  

(veh/km) 

On-ramp Flow Estimation 

(veh/h) 

Scenario 1 6.36 27.4 

Scenario 2 7.33 27.4 

Scenario 3 6.38 38.0 

 
 

It can be seen that small estimation error (around 6 veh/km in density and 30 veh/h in 

on-ramp flow) is achieved under all three scenarios. The mainline sensor fault mainly 

affects the density estimation resulting in a slight RMSE increase and has little impacts 

on the on-ramp flow estimation. In contrast, the on-ramp sensor fault has more impacts 

on the on-ramp flow estimation than the density estimation. 

The effectiveness of the fault-tolerant VSL control is also evaluated through the 

performance measurements in Table 2. The performance without VSL control is utilized 
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as a comparison. The probability of time-to-collision is calculated based on that 

minimum 1.5 s is needed to avoid a collision [78]. The travel time upstream of the work 

zone is considered. The consistent improvements are shown among all three scenarios. 

The largest improvement lies in safety as 98% of the probability of collisions is avoided 

using the fault-tolerant VSL control. Around 10% of travel delays and fuel consumption 

can be saved and less CO2 emission is generated using the VSL control system.  

 

Table 3.2. Performance Measurement under Scenario 1, 2 and 3 

 
No- 

Control 
1 

Improve-

ment (%) 
2 

Improve-

ment (%) 
3 

Improve-

ment (%) 

Time-to-collision 

p (%) 
8.06 0.150 98.1 0.157 98.1 0.150 98.1 

Average Travel 

Time T (min) 
3.45 2.94 14.8 2.99 13.3 2.94 14.8 

Fuel 

Consumption (l) 
1004 913 9.06 932 7.17 914 8.96 

CO2 (t) 2.33 2.12 9.01 2.16 7.30 2.12 9.01 

 
 
Through the analysis of the performance of the developed system under three 

different scenarios, the fault-tolerant VSL control demonstrates the ability to accurately 

estimate traffic states under the health mode without false alarms. The stationary 

mainline and on-ramp sensor fault are detected and identified in real time. With the 

successful fault diagnosis using the likelihood estimation method, the accuracy of the 

estimations for the traffic density and the on-ramp flow is guaranteed. This ensures 

reliable VSL performance with the presence of sensor faults. Consistent performance 
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improvements with respect to mobility, safety and sustainability among all three 

scenarios demonstrate the fault tolerance of the developed system. 

3.5 Conclusions and Future Work 

A fault-tolerant VSL control system for freeway work zone using the likelihood 

estimation method is developed in this study. The Kalman filter using augmented traffic 

states can provide accurate estimations of the traffic density and ramp flow for the VSL 

controller under the health mode. Meanwhile, the observers have the ability to produce 

analytical redundancy for traffic state estimation near work zone areas. By exploiting the 

analytical redundancy, the likelihood estimation method successfully detects and 

identifies the stationary sensor faults online using real time traffic data without the 

requirement for historical traffic data. With the sensor fault detection and identification, 

the fault diagnosis can reconfigure the VSL controller to maintain the system 

performance. The fault-tolerant VSL control system demonstrates the ability to 

consistently improve mobility, safety and sustainability near freeway work zone areas 

even with the occurrence of sensor faults. 

In this study, only stationary sensor faults are considered. The impacts of concurrent 

sensor faults and probe sensor faults will be studied. Meanwhile, more types of sensor 

faults such as abnormal noises and lag transmission may have different sensor fault 

phenomena. The solution to address other types of sensor faults will be considered. 
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4 Fault-Tolerant Control of Variable Speed Limits for 

Freeway Work Zone with Recurrent Sensor Faults 

Recurrent sensor faults exhibit different features compared with permanent sensor 

faults and commonly occur in transportation systems. This chapter presents fault-tolerant 

VSL control for freeway work zones with consideration of recurrent sensor faults. An 

IMMP-based method is proposed to address different types of faults in stationary 

mainline and ramp sensors. An adaptive model set is designed to reduce the 

computational complexity. State covariance adaption and a pseudo-model set are 

developed to compensate for the discrepancies between the model parameters and the 

extent of corresponding sensor failures. The proposed system demonstrates reliable 

sensor fault diagnosis without the prerequisite of a good match between model 

parameters and sensor faults. Consistent improvements in mobility, safety, and 

sustainability are achieved under fault-free and recurrent sensor fault scenarios. The 

following submitted manuscript is included in this chapter. 
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4.1 Abstract 

Congestion associated with freeway work zones can adversely affect mobility, safety, 

and sustainability. Variable speed limits (VSL) control has been widely studied to 

mitigate the congestion caused by lane closures at work zones. However, most VSL 

controllers are designed without consideration of traffic sensor faults, especially recurrent 

sensor faults (RSFs) that commonly exist in freeway transportation systems. Therefore, 

this study proposes an interacting multiple model approach with a pseudo-model set 

(IMMP) to achieve VSL control with fault tolerance to different types of RSFs. With the 

design of a traffic flow model, an adaptive model set is developed using likelihood 

estimation to reduce the associated computational complexity. To ensure reliable RSF 

diagnosis, state covariance adaption is proposed to compensate for potential 

discrepancies caused by improper model parameters. A pseudo-mode set is designed to 

provide accurate traffic state estimations for VSL control without the prerequisite of a 

good match between the model parameters and the extent of corresponding sensor 

failures. The proposed system is evaluated under a realistic work zone environment using 

the traffic simulator SUMO. The results demonstrate that the system can achieve reliable 

RSF diagnosis and consistent improvements in mobility, safety, and sustainability near a 

freeway work zone area despite RSFs. 

4.2 Introduction 

Freeway work zones with lane closures are increasingly employed in roadway 

projects due to aging infrastructure and increasing traffic demand. Despite long-term 
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benefits of such infrastructure projects, temporary freeway work zones can create traffic 

disruptions and cause detrimental effects on mobility, safety, and the environment. In 

2017, congestion caused approximately 8.8 billion hours of traffic delays and an extra 3.3 

billion gallons of fuel in the U.S. urban areas [4]. Nearly 10 percent of U.S. traffic 

congestion expenses are attributed to work zones [5]. During the past decade, more than 

five thousand fatal crashes happened in the U.S. in relation to work zones [6]. With the 

significant impacts of freeway work zones, it is critical to ensure traffic efficiency and 

safety near work zone areas. Variable speed limit (VSL) control has been widely studied 

to mitigate the impacts of work zones. By imposing dynamic speed limits upstream of a 

work zone, VSL control can proactively regulate traffic flow, avoid capacity drop, and 

improve traffic conditions around work zone areas. 

Many VSL control methods have been proposed by previous studies. Feedback-based 

methods [7], [8], [48], [71], [79] and kinematic wave theory-based approaches [9], [10] 

were developed for VSL controllers to stabilize traffic states around the critical density 

such that capacity drop phenomena can be avoided. VSL control was also solved as an 

optimization problem to reduce travel delays using optimal control [13], [14] and 

reinforcement learning methods [16], [17]. With emerging automated vehicle 

technologies, VSL control was also designed under a connected vehicle environment [80], 

[81]. However, the aforementioned work assumed reliable traffic measurements were 

available in the design of VSL controllers. Few studies considered the impacts of faulty 

sensors. According to [18], approximately 30 percent of stationary traffic sensors 

suffered from different types of sensor faults on a typical day in California. The large 
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volume of faulty data caused by sensor faults may affect the performance of a safety-

critical system like VSL control and cause system degradation. Therefore, it is essential 

to consistently improve traffic conditions near work zones using VSL control despite the 

probable traffic sensor faults. 

To mitigate the negative impacts of sensor faults, the spatial and temporal 

dependencies of traffic sensor data have been exploited by researchers to address faulty 

data. Previous studies can be broadly categorized into offline and online approaches. 

Offline methods such as tensor decomposition [21], multimodal deep learning [82], and 

generative adversarial networks [83] have been demonstrated to effectively recover 

missing traffic data. Nonetheless, after a faulty sensor returned to health status, 

measurements from this sensor were also incorporated to impute faulty data in [21], [82], 

[83]. Since VSL control needs real-time traffic state estimations, limited access to data 

beyond the sensor failure time makes offline methods infeasible for VSL controller 

design. In contrast, online methods can provide real-time estimations with a sensor 

malfunction. In [84] and [85], a pattern clustering tool and a fuzzy C-mean algorithm 

were proposed respectively to learn traffic data patterns so as to estimate faulty data. In 

[23], multiple linear regressions were used to detect abnormal sensor measurements and 

impute data in real time. In another study [86], a graph Markov network was built to 

predict missing data using neighboring road links. However, large historical traffic data 

were demanded by the previous studies [23], [84], [85], [86] to train and calibrate their 

proposed models. Sensors near freeway work zone areas, especially short-term work 

zones, may not generate enough data to ensure that models are well calibrated to provide 
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accurate estimations for the faulty traffic data. To overcome the limitation of large data 

demand, the previous study of the authors [87] used observer-based likelihood 

estimations for sensor fault diagnosis. However, recurrent sensor faults (RSFs) were not 

considered in any of the above-mentioned studies [23], [84]-[87], which can pose 

challenges to accurate estimation of traffic states. 

RSFs commonly exist in transportation systems [18], [20]. Compared with permanent 

sensor faults (PSFs) which persist indefinitely until the sensors are repaired, RSFs can 

repeatedly appear and disappear without external intervention due to loose connection, 

surrounding interference or aging components. In electronic systems, the occurrence of 

RSFs can be 10 to 30 times more frequent than PSFs [88]. Uncertainties associated with 

faulty time intervals of RSFs may considerably increase maintenance costs caused by 

multiple maintenance site visits, and reduce system reliability. Thus it is of great 

importance to achieve RSF tolerance in traffic state estimations. Estimations of abnormal 

traffic data in the previous studies [23], [84]-[87] were limited to PSFs, which results in 

neglecting potential reliable measurements when a faulty traffic sensor restores to 

working order in RSFs. Besides, estimations are more susceptible to errors as fewer 

sensors are used. Another important consideration is the type of sensor malfunctions. In 

[23], [84]-[87], only one type of sensor faults was investigated. Different types of sensor 

malfunctions can also affect the estimation accuracy as shown in the results of this study. 

Therefore, to ensure the effectiveness of VSL control, a sensor fault diagnosis scheme is 

needed that can reliably detect RSFs with different types of malfunctions, and accurately 

estimate traffic states online. 
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To achieve fault diagnosis of different types of sensor faults, interacting multiple 

model (IMM) methods have been studied in motor control related fields. IMM methods 

use a set of models depicting a sensor health mode and all possible sensor faults. By 

obtaining mode probabilities and estimations of multiple models, IMM approaches can 

identify the type of sensor faults and improve state estimation. In [89], a distributed IMM 

system was designed to cope with different types of sensor faults in a robotic system. 

Variances were adjusted using a compensation parameter to improve IMM performance 

[90]. However, the fixed IMM structure used in [89], [90] may cause high computational 

costs as more models will be added and processed when more types of sensor faults are 

considered. Variable IMM structure [91] and an event-triggered fault diagnosis method 

[92] were proposed to avoid adding new models by estimating the extent of sensor 

failures. Nevertheless, the accuracy of state estimations in [89]-[92] highly relied on the 

degree of a match between the model and the corresponding sensor fault mode. Despite 

accurately identifying the type of sensor faults, a poor state estimation may still happen 

when preselected or adaptive model parameters in IMM cannot represent the extent of 

sensor failures with high accuracy. Given different types of RSFs, an IMM approach is 

needed to adaptively adjust the model set and provide accurate traffic state estimations 

even with an imperfect match between models and the corresponding sensor faults. 

In view of the above-mentioned analysis, this study presents a fault-tolerant VSL 

control system for a freeway work zone with different types of RSFs. The control system 

proposed in this study offers the following three distinct contributions: 

1) It consistently produces good VSL control performance with the occurrence of 
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RSFs. The VSL control performance is evaluated in terms of mobility, safety, emissions, 

and fuel consumption. 

2) It reliably detects and identifies different types of RSFs in stationary mainline and 

ramp traffic sensors. An adaptive model set is designed to process RSFs with low 

computational complexity. State covariance adaption is built to compensate for the 

discrepancies caused by improper model parameters. 

3) It accurately estimates traffic states without the prerequisite of a good match 

between the model parameters and the extent of corresponding sensor failures. An IMM 

approach is augmented by a pseudo-model set (IMMP) to provide traffic state estimations 

for VSL control. 

The remainder of this paper is structured as follows. The traffic flow model is 

proposed in Section 4.3. Section 4.4 presents the IMMP-based fault-tolerant VSL control 

system with consideration of different types of RSFs in stationary mainline and ramp 

sensors. Evaluation of the effectiveness of the proposed system with analytical results is 

provided in Section 4.5. Conclusion is presented in Section 4.6. 

4.3 Traffic Flow Model 

A freeway work zone with lane closures can cause road capacity loss and easily lead 

to congestion near the work zone area. Additionally, a queue forming upstream of the 

work zone can result in more capacity loss due to capacity drop phenomena [3]. To 

reduce congestion near a freeway work zone, a VSL controller can impose dynamic 

speed limits so as to affect the traffic dynamics around the work zone area. Thus it is 
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essential to build a traffic flow model to understand and describe the evolution of traffic 

flow near the work zone. 

The layout of a freeway work zone area is presented in Fig. 4.1. The congestion is 

shown in gradient color. The mixed traffic flow with conventional vehicles and 

connected vehicles traverses the work zone area where one lane is closed. We assume 

these connected vehicles have no self-driving functionalities and only transmit their 

speeds and positions. 

 

 

Fig. 4.1.  Freeway work zone area (not to scale) 

 

As shown in Fig. 4.1, the freeway is partitioned into multiple segments. For each 

segment n, the density n , the average speed nv , the segment length nd , the ramp flow rnq , 

and the traffic outflow nq are denoted. The lengths of segment 2 and 3 are selected such 

that each segment only has on-ramps or off-ramps. It should be noted there may be no 

on-ramps or off-ramps at some freeway segments in the real world. Segment 1, 2, and 3 

are the VSL zone, the acceleration zone, and the work zone respectively. Dynamic speed 

limits are imposed at the VSL zone to control the speed of vehicles. The acceleration 

zone allows vehicles to accelerate to free speed to traverse the work zone area. The work 
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zone segment is the segment in which a lane closure exists due to construction work.  

Probe sensors and stationary sensors are used in this study to measure traffic states. 

Connected vehicles as probe sensors can monitor the traffic states at different segments 

when they traverse the work zone area. Two stationary mainline traffic sensors are 

located at segment 2 and segment 3 to monitor the traffic states at these segments 

respectively. Stationary ramp sensors are installed to measure ramp flows. 

The traffic state vector is defined as T
2, 3, 2,[ ]k k k r kq x  where k represents the 

kth time step. The density 2,k is selected since the objective of VSL control [71] is to 

stabilize 2,k at the critical density c which is determined by the fundamental diagram. 

The ramp flow 2,r kq is also included as it can directly affect the density 2,k . The density

3,k is selected to provide the redundant traffic state which will be discussed in Section 

4.4.1. By using the conservation law [50] and the sensor measurement vector kz , the 

traffic flow model is designed as 

 1 1 1 1 1k k k k k k

k k k k

      
  
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z C x




  (4.1) 

Specifically, 
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 T
1 1, 1 3, 1[ 0]k k r kq q  u   (4.4) 
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 3*3k C I   (4.5) 

 
T

1 1, 1 2, 1 3, 1k k k k           (4.6) 

 
T

1, 2, 3,k k k k        (4.7) 

k and k are the process and measurement noises assumed to be white noises with the 

covariance kQ and kR respectively. T is the sample time interval. The average speed 

, 1n kv   can be detected using probe sensors [73]. The ramp flow ,rn kq  is measured by the 

stationary ramp sensor at the segment n. By using the known relation /q v  , the traffic 

density ,n k  can be obtained using the average speed ,n kv  and the flow measurement from 

the stationary mainline sensor within the segment n. The traffic flow 1, 1kq  is governed by 

the dynamic speed limit u imposed at the VSL zone. By imposing speed limit u and 

regulating the flow 1, 1kq  , a VSL controller in [71] is used to stabilize the density 2,k at the 

critical density c when traffic demand exceeds the work zone capacity. Readers are 

referred to [71] for the derivation of the VSL controller based on sliding mode control.  

Since the objective of VSL control is to stabilize the density 2,k , the estimation 

accuracy of 2,k greatly affects VSL control performance. However, the estimation 

accuracy of 2,k  depends on the reliability of model Eq. (4.1). When a stationary mainline 

or ramp senor fault occurs, the measurement matrix kC is no longer the identity matrix 

and will be determined by the extent of sensor failures. The discrepancies caused by 

sensor faults in model Eq. (4.1) can cause a poor estimation of the density 2,k , resulting 
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in a potential VSL control failure. Thus different types of RSFs are considered in the 

fault-tolerant control design as explained in the following section. 

4.4 IMMP-Based Fault-Tolerant Control Design 

An IMM method is a multiple model approach for hybrid systems. A bank of models, 

where each model represents a fault mode, is processed in parallel using an IMM method. 

With the occurrence of RSFs, the fault mode with the highest possibility is selected at 

each time step as the current system mode and the combined estimation is calculated 

accordingly [75]. The jump-linear hybrid system can be established as 

 1 1 1 1 1( ) ( ) ( )

( ) ( )
k k k k k k k k k

k k k k k k

s s s

s s
      

  

x A x B u

z C x




  (4.8) 

where ks refers to the sensor fault mode at the kth time step. 1( )k ksA , 1( )k ksB , 1( )k ksC ,

1( )k ks , and 1 ( )k ks are mode dependent matrices under the mode ks which is modeled 

as a Markov chain with the transition probability 

 1{ | }j i
ij k kP s s    (4.9) 

where i and j are the mode indexes. The fault mode 1
i
ks  and j

ks are selected from a set S 

which consists of all possible sensor fault modes. 

4.4.1 Sensor Faults 

Ensuring reliability of traffic sensors that are used by VSL control is of critical 

importance. Since the objective of VSL controllers [71] is to stabilize the density 2,k , 
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this study focuses on the faults of the stationary mainline sensors and ramp sensors at 

segment 2 in Fig. 4.1. The faults of probe sensors will be studied in our future work.  

To provide reliable measurements of the density 2,k , redundant traffic data are 

needed. One solution is to provide physical redundancy by installing an extra set of 

stationary traffic sensors at the same location at segment 2. However, the cost of physical 

redundancy will be prohibitive in a large-scale implementation. Thus, this study exploits 

cost-effective analytical redundancy using the density 3,k in state vector kx . 

Stationary traffic sensors suffer from different types of faults. According to [18], [20], 

detecting zero flow rates with the presence of vehicles and outputting abnormally high 

flow rates are the leading stationary sensor faults in transportation systems; these two 

types of faults are mainly considered in this study. Besides, a mainline freeway generally 

has multiple lanes. Given the possibility of lane-based sensors, the partial mainline 

sensors with zero flow rates are also considered. Considering the RSFs, we assume there 

are no transitions from fault to fault. Thus the set of the total sensor fault modes is 

defined as 

 H ML RPS S S S     (4.10) 

Specifically, 
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  (4.11) 

where HS , MLS , and RPS represent the set of the sensor health mode, the mainline sensor 

fault modes, and the ramp sensor fault modes respectively. hs is denoted as the sensor 
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health mode when no faults occur. 1ms , 2ms , and 3ms stand for three different mainline 

sensor faults, i.e. zero flow rates, abnormally high flow rates, and partial mainline sensors 

with zero flow rates. 1rs  and 2rs are denoted for ramp sensor faults of zero flow rates and 

abnormally high flow rates respectively. 

Different sensor fault modes can be depicted by modifying traffic flow models. As 

discussed in Section 4.3, the measurement matrix j
kC , where j refers to any mode js in the 

set S, may not be the identity matrix. For example, when a mainline sensor fault occurs, 

the first row of the measurement matrix j
kC  will be multiplied by a factor   which is 

determined by the extent of the sensor failure. The factor  is larger than 1 when the 

fault is related to abnormally high flow rates. Accordingly,  will be 0-1 and 0 

respectively for a partial mainline sensor failure and a failure with zero flow rates. 

Similarly, when a ramp sensor fault occurs, the third row of the matrix j
kC will be 

multiplied by a factor   which is selected based on the extent of the ramp sensor failure.  

4.4.2 Adaptive Model Set 

An adaptive model set can reduce the computation complexity and improve the 

efficiency of an IMM method. A fixed structure of an IMM method will consume more 

computational resources when more models are added to the model set. In addition, an 

improvement in estimations may not be achieved with the use of more models [91]. In 

Section 4.4.1, a total of six fault modes are considered in Eq. (4.10). However, it is very 

unlikely that a traffic sensor has different types of faults at the same time. Extra 
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computation burdens can be caused when six models are processed all the time. To 

improve the cost effectiveness, an adaptive model set kS is developed as 

 { , , }h m r
k k k kS s s s   (4.12) 

where m
ks and r

ks can be any mode in the set MLS and RPS  respectively at the kth time step.

h
ks  is denoted as the health mode at the kth time step. 

To determine m
ks and r

ks , a predictive model set | 1k kS  is obtained as 

 | 1 1 1 1 1{ | { | } 0, , }j j i i i
k k k k k k k kS s P s s s S            (4.13) 

where 1
i
k  is the mode probability of the mode 1

i
ks   and is selected to avoid using a mode 

with a very low probability for the prediction of possible modes at the kth time step.  

Using the predictive model set | 1k kS  and the predetermined model sets MLS  and RPS , 

we can obtain tentative model sets for the mainline and ramp sensor faults  
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Then the mode m
ks and r

ks can be selected from the tentative model sets ,ML t
kS and ,RP t

kS

using the likelihood estimation as 
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where the likelihood estimation is calculated using the mixed state estimation 1 ,
1| 1

l t
k k x , 

2 ,
1| 1

l t
k k x and state covariance 1 ,

1| 1
l t
k k  , 2 ,

1| 1
l t
k k  . The derivation of the mixed state estimation 
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and state covariance is discussed in Section 4.4.5. 

By using Eq. (4.15), the adaptive model set Eq. (4.12) can be obtained. Note that Eq. 

(4.15) is used when there are multiple modes in the tentative model set ,ML t
kS or ,RP t

kS . 

When there is only one mode in ,ML t
kS or ,RP t

kS , the mode m
ks or r

ks can be determined directly 

without using Eq. (4.15). In the cases where there are no modes in ,ML t
kS or ,RP t

kS meaning 

the probability of mainline sensor faults or ramp sensor faults at the kth time step is close 

to zero or negligible, the mode 1
m
ks  or 1

r
ks  at the last time step is selected. With the 

negligible mode probability, impacts of mode 1
m
ks  or 1

r
ks  on the IMM estimations are 

negligible as well. Thus the adaptive model set is designed for a recursive IMM process. 

4.4.3 State Covariance Adaption 

The model parameter and   related to the extent of sensor failures can affect the 

likelihood estimations in Eq. (4.15). With the selection of and  , the sensor fault modes 

and the corresponding traffic flow models are determined.  Then the likelihood 

estimations in Eq. (4.15) are calculated using the traffic flow models. However,  and 

may not depict the extent of sensor failure accurately, resulting in insignificant likelihood 

estimations of all modes in the tentative model sets. This may cause difficulties in 

selecting the adaptive model set kS .  

 To compensate for the discrepancies between the model parameters and the extent of 

corresponding sensor failures, a mixed state covariance adaption is designed. The 

compensation is activated when the likelihood estimations in Eq. (4.15) satisfy 
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l t ML t RP t
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k k k k k

s S S
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 
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where the mode ,l t
ks  belongs to the union of ,ML t

kS and ,RP t
kS . The mixed traffic state 

estimation ,
1| 1

l t
k k x and state covariance ,

1| 1
l t
k k  are derived under the mode ,l t

ks . is selected 

as the threshold of the minimum likelihood estimation. 

With the condition in Eq. (4.16) satisfied, the mixed state covariance ,
1| 1

l t
k k  can be 

compensated to account for the discrepancies caused by inappropriate model parameters. 

A compensation factor k  is introduced to compensate for ,
1| 1

l t
k k  as 

 , ,
1| 1 1| 1:l t l t

k k k k k       (4.17) 

By comparing the residual vectors of the models in tentative model sets ,ML t
kS and ,RP t

kS

with a base residual vector, the factor k is calculated as 
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Specifically, 
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1
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j
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N
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s SmN 
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where  denotes the Euclidean norm. ,l t
ky  and j

k my are the residual vectors under the 

mode ,l t
ks and j

k ms  respectively. The derivation of ,l t
ky  and j

k my is discussed in Section 4.4.5.

base
ky is calculated using a moving window with the size of N.  

The minimum Euclidean norm is used in Eq. (4.18) and Eq. (4.19) to avoid 

overcompensation. The model matching the actual extent of sensor failure should have a 



Ph.D. Thesis - Shuming Du; McMaster University - Civil Engineering 

98 

smaller Euclidean norm of the residual vector than other models’. Therefore, the 

minimum Euclidean norms of ,l t
ky  and j

k my are used to ensure a smaller compensation 

factor is obtained. Thus the mixed state covariance adaption is built to compensate for the 

discrepancies between the predetermined model parameters and the actual extent of 

sensor failures. 

4.4.4 Pseudo-mode Set Design 

The accuracy of IMM estimations relies on the selection of model parameters. In 

Section 4.4.3, the mixed state covariance adaption is developed in Eq. (4.17) given the 

discrepancies caused by model parameters. The reliability of traffic sensor fault detection 

and identification can be improved by using Eq. (4.17). However, an IMM method will 

still use these model parameters to estimate traffic states. Without a good match between 

the model parameters and the extent of sensor failures, the estimation accuracy of the 

traffic state vector kx can be affected. To overcome the dependence of the estimation 

accuracy on the selection of model parameters and  , the IMMP approach is developed 

using a pseudo-model set pS as 

 , , ,{ , , }p h p m p r pS s s s   (4.20) 

where ,h ps , ,m ps , and ,r ps are the pseudo health mode, the pseudo mainline sensor fault 

mode, and the pseudo ramp sensor fault mode respectively. 

Compared with the adaptive model set kS in Eq. (4.12), the pseudo-model set pS is 

time-invariant whereas the model set kS needs to be calculated at each time step. 
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Specifically, the traffic flow model under any mode ,j ps in the model set pS can be 

expressed as 

 
, , , , ,

1 1 1 1 1

, , , ,

j p j p j p j p j p
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j p j p j p j p
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
  (4.21) 

The matrix ,
1

j p
kA , ,

1
j p

kB , 1ku , and ,
1

j p
k in Eq. (4.21) can be obtained by using Eq. (4.2)-

(4.4), (4.6) under the respective modes. With respect to ,j p
kC and ,j p

k , Eq. (4.5) and Eq. 

(4.7) can be used under the pseudo health mode ,h ps whereas Eq. (4.22) and Eq. (4.23) are 

used under the pseudo mainline sensor fault mode ,m ps and the pseudo ramp sensor fault 

mode ,r ps respectively. 
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Accordingly, , T
3, 2,[ ]m p

k k r kqz and , T
2, 3,[ ]r p

k k k z can be obtained. The 

observabilities of the model Eq. (4.21) under respective modes are proved in [87]. 

By taking advantage of the mode probabilities of the adaptive model set kS , the 

IMMP method can estimate traffic state estimations without the impacts of the model 

parameters. For example, the traffic flow model under the pseudo mainline sensor fault 

mode in Eq. (4.21), (4.22) does not rely on the measurements from mainline sensors. 

Thus the model parameters, which depict the extent of mainline sensor failures, will not 

affect the estimations of traffic states. Nevertheless, when we only use the pseudo model 
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set pS in a traditional IMM method to provide state estimations, the mode probabilities 

cannot be calculated correctly as different measurements are used by the models in pS . 

Since both kS and pS have three modes including the health mode, the mainline sensor 

fault mode, and the ramp sensor fault mode, the mode probabilities calculated for kS can 

be shared with the mode probabilities for pS . Thus the strength of estimating traffic states 

with the pseudo-mode set can be kept with the shared mode probabilities from the 

adaptive model set. 

4.4.5 IMMP-Based Fault-tolerant Control Scheme 

The IMMP-based fault-tolerant control system consists of the VSL controller, the 

traffic flow model, and the RSF diagnosis as shown in Fig. 4.2. The reliable density 

estimation from the RSF diagnosis component is fed to the VSL controller. Then the 

speed limit control signal is generated to affect the evolution of traffic states near a work 

zone area. The RSF diagnosis is designed by using the IMM algorithm with the pseudo-

mode set and the adaptive model set. The steps of RSF diagnosis are presented as follows. 

Note that , 0,1,2i j   with 0, 1, and 2 referring to the health mode, the mainline sensor 

fault mode, and the ramp sensor fault mode respectively. 

1) Tentative model set selection (TS). The tentative model set ,ML t
kS and ,RP t

kS are 

selected in Eq. (4.14) using the mode probability 1
i
k  , the mainline sensor fault model set

MLS , and the ramp sensor fault model set RPS . 

2) Mixing. The mixed state estimation and covariance in Eq. (4.15) and Eq. (4.16) can  
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Fig. 4.2.  Diagram of the IMMP-based fault-tolerant control. TS: tentative set. SCA: state 
covariance adaption. ML: mainline. RP: ramp. PH: pseudo health. PML: pseudo mainline. PRP: 
pseudo ramp. 
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step under the mode 1
i
ks  as 

 
1 1

, | ,

1| 1 1| 1
ˆj j

i
k k

l t i l t i
k k k k

s S


 

   


 x x   (4.24) 

 
1 1

, | , , , T
1| 1 1| 1 1| 1 1| 1 1| 1 1| 1

ˆ ˆ( )( ) ]j j j j

i
k k

l t i l t l t l ti i i
k k k k k k k k k k k k

s S


 

           


    x x x x    (4.25) 

where the conditional probability | ,ji l t is calculated as 

 | , ,

1 ( , ) 1/j j

j

i l t l ti
k i l t k       (4.26) 

Specifically, 
 

1 1

,

1 1 ( , )
j

j
i
k k

l t i
k k i l t

s S

  
 

 


    (4.27) 

where ( , )ji l t is the mode transition probability from 1
i
ks  to ,jl t

ks . 1
i
k   is the mode 

probability of the mode 1
i
ks  . 

3) State covariance adaption (SCA). The measurement kz is used for the mixed state 

covariance adaption. When Eq. (4.16) is not satisfied, ,

1| 1
jl t

k k  will not be adjusted. 

However, when Eq. (4.16) is satisfied, the compensation factor k  is obtained in Eq. 

(4.18) using Eq. (4.28) 

 
, , , , ,

1 1| 1 1 1( )j j j j jl t l t l t l t l t

k k k k k k k k      y z C A x B u   (4.28) 

Then we can adjust the mixed state covariance ,

1| 1
jl t

k k  in Eq. (4.17) accordingly. Note that 

the residual vector j
k my in Eq. (4.19) is used to update the base

ky and will be discussed in 

the step 6 filtering. 

4) Mainline and ramp sensor fault mode selection (ML-, RP-Selection). With the 
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calculation of the mixed state estimation ,

1| 1
jl t

k k x and state covariance ,

1| 1
jl t

k k  , Eq. (4.15) can 

be used to select the mainline and ramp sensor fault modes when there are multiple 

modes in the model set ,ML t
kS or ,RP t

kS . More details can be found in Section 4.4.2 for the 

cases where the number of modes in ,ML t
kS or ,RP t

kS equals to one or zero.  

It should be noted that when the mainline and ramp sensor fault modes are determined, 

the mode ,jl t
ks will be modified as the mode j

ks  in the following steps. All the mode-related 

matrices will be modified accordingly as well. 

5) Pseudo-mixing (PH-, PML-, PRP-, filtering). With the selection of the mainline 

and ramp sensor fault modes, the conditional mode probability |i j can be determined and 

shared with the pseudo-model set. Thus the mixed state estimation ,
1| 1

j p
k k x  and state 

covariance ,
1| 1

j p
k k  can be obtained as  

 
,

1

, | ,
1| 1 1| 1

ˆ
i p p
k

j p i j i p
k k k k

s S




   


 x x   (4.29) 
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, | , , , , , T
1| 1 1| 1 1| 1 1| 1 1| 1 1| 1

ˆ ˆ( )( ) ]
i p p
k

j p i j i p i p j p i p j p
k k k k k k k k k k k k

s S




           


    x x x x    (4.30) 

where the mode ,
1

i p
ks   refers to the ith mode in the pseudo-model set at the last time step. 

6) Filtering (Health-, ML-, RP-, PH-, PML-, PRP-, filtering). With the mixed state 

estimation 1| 1
j

k k x  and covariance 1| 1
j
k k  at the last time step, three Kalman filters (KFs) 

for the models in the adaptive model set can be employed to obtain the state estimation

|ˆ j
k kx and covariance |

j
k k at the current kth time step. Readers can refer to [75] for the 

recursive KF algorithm. Similarly, three KFs for the models in the pseudo-model set can 
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be used to obtain the state estimation ,
|ˆ j p

k kx and covariance ,
|

j p
k k at the kth time step using

,
1| 1

j p
k k x and ,

1| 1
j p
k k  . 

The likelihood estimation j
kL  in Fig. 4.2 can be obtained as 

 1| 1 1| 1( | , )j j j
k k k k k kL p     z x    (4.31) 

The residual vector j
ky in Eq. (4.32) can be added to update base

ky in Eq. (4.19) for the 

usage at the next time step. 

 1 1| 1 1 1( )j j j j j
k k k k k k k k      y z C A x B u   (4.32) 

7) Update. The posterior mode probability j
k at current kth time step can be calculated 

using the prior probability in Eq. (4.27) and the likelihood estimation in Eq. (4.31) as 

 1
j j j

k k kL     (4.33) 

8) Diagnosis. Different types of RSFs are detected and identified in the diagnosis step. 

Specifically, the mode probability 0
k , 1

k , and 2
k  of the health mode, the mainline sensor 

fault mode, and the ramp sensor fault mode respectively are used. With 1,2f  , a sensor 

fault can be detected using 

 max f th
k

f
    (4.34) 

where th  is the predetermined threshold. When Eq. (4.34) is satisfied, a sensor fault is 

detected. A mainline sensor fault occurs when 1 2
k k   whereas a ramp sensor fault 

occurs when 1 2
k k  . The specific type of the mainline or ramp sensor fault is determined 

by the adaptive model set kS  in mainline and ramp sensor fault mode selection step. In 
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contrast, when Eq. (4.34) is not satisfied, no sensor faults occur. 

9) Weighted sum. The combined estimation from the pseudo-model set is calculated 

using the mode probabilities of the models in the adaptive mode set as 

 
2

,
| |

0

ˆ ˆj j p
k k k k k

j




x x   (4.35) 

Then the density estimation 2,
ˆ

k in the probabilistically weighted sum |
ˆ

k kx is fed back 

for VSL control. 

With traffic sensor measurements, the RSF diagnosis can perform these nine steps 

recursively to achieve sensor fault diagnosis and provide reliable traffic state estimations 

for the VSL controller. 

4.5 Experiment and Results 

To demonstrate the fault-tolerance of the VSL control system to different types of 

RSFs, we evaluated the system on a 4.2 km (2.6 mi) section of the northbound SR99 in 

California, U.S. as shown in Fig. 4.3. The blue line, which starts at A and ends at B, 

shows the mainline freeway of the section. The position A and B correspond to the State 

Postmile (PM) 17.5 and 20.1 respectively. The thick red line with a worker icon stands 

for a construction work zone with one of three lanes closed in May 2018. This work zone 

with the length of 1 km started at the State PM 19.7. The on-ramp at East Fremont Street 

is shown in the yellow line with an arrow upstream of the work zone in Fig. 4.3. 

Two stationary mainline sensors are installed at the State PM 19.6 and 20.1 

respectively. The ramp sensor is installed at the State PM 19.4. With consideration of the 

realistic locations of the sensors and the work zone, the lengths of the VSL zone, the  
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Fig. 4.3.  Section of the freeway SR99 with a work zone (Map data © 2020 Google) 

 

acceleration zone and the work zone were selected as 800 m, 500 m, and 650 m 

respectively. It should be noted that the VSL controller is not sensitive to the lengths of 

the divided zones [71]; various lengths can be selected if mobile sensors such as wheeled 

sensor stations are available. Thus, the stationary mainline sensors at the State PM 19.6 

and 20.1 can measure the traffic outflows of the acceleration zone and the work zone 

respectively. The ramp sensor at the State PM 19.4 can detect the on-ramp flow to the 

acceleration zone. There are no other ramps in the acceleration zone and the work zone. 

Accordingly, different types of RSFs of the mainline sensor at the State PM 19.6 and the 

ramp sensor at the State PM 19.4 are considered. 

The section of the freeway SR99 was built in the traffic simulator SUMO. The 

microscopic models such as car- following and lane changing models were calibrated and 

validated using the realistic traffic measurements from [18]. 

Dynamic traffic demand is used to assess the effectiveness of the IMMP-based fault 

diagnosis with different types of RSFs. During the warm-up for the simulation, low 

traffic demand was first generated for 5 minutes in the freeway section. With the warm-

up simulation data discarded, the simulation was run for 7200 s with varying traffic 
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demand. For the mainline freeway, the low traffic demand of 2200 veh/h was generated 

for the first 700 s. Then the demand started increasing and reached the high demand of 

3400 veh/h at 1300 s. This high demand of 3400 veh/h lasted until 4700 s. Afterwards, 

the demand started decreasing and reduced to 2200 veh/h at 5300 s. Then the demand 

maintained at 2200 veh/h for the rest of the simulation. For the ramp, the traffic demand 

of 150 veh/h was introduced for the first 300 s. Then the demand rose to 270 veh/h at 

1100 s. The demand of 270 veh/h lasted for 4100 s, followed by the demand reducing to 

150 veh/h at 5610 s. The demand maintained at 150 veh/h until the end of the simulation. 

Five different types of RSFs are considered. The partial mainline sensor fault occurs 

when the sensor of the rightmost lane of the mainline freeway fails. Given the sensor 

faults analysis in [18], [20], 3000 veh/h and 9000 veh/h were selected as the abnormally 

high flow rates detected by the sensors for the ramp flow and the mainline flow 

respectively. The sequence of sensor fault modes will be discussed in the following 

figures. In the following analysis, H, F1, F2, F3, F4, and F5 represent the sensor health 

mode, the mainline sensor fault with zero flow rates, the ramp sensor fault with zero flow 

rates, the mainline sensor fault with abnormally high flow rates, the ramp sensor fault 

with abnormally high flow rates, and the partial mainline sensor fault respectively. 

The model parameter was selected as 0, 0.5, and 2 respectively for the fault F1, F5, 

and F3 whereas the model parameter   was chosen as 0 and 2 respectively for the fault 

F2 and F4. The impacts of the predetermined and  will be discussed in the following 

figures. The following parameters were used: 0.01  , 5010  , 0.5th  . was selected 

to avoid using the modes with negligible mode probabilities for the model set prediction. 
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 was chosen based on the range of the likelihood estimations in [87] to detect faults 

timely and avoid too many false alarms. th  was used to ensure the dominant mode was 

selected as the system mode. The probability of staying at the same mode was selected as 

0.6. The probability from the health mode to any fault was 0.08 whereas the probability 

from any fault to the health mode was 0.4. We also tested various probabilities of staying 

at the same mode. Varying the probability from 0.6 to 0.8 has limited impacts on the 

results in this study. With the realistic traffic measurements analysis in [73], the standard 

deviations of the process noise for the density and the ramp flow were selected as 3 

veh/km and 25 veh/h respectively whereas the standard deviations of the measurement 

noise for the density and the ramp flow were chosen as 10 veh/km and 25 veh/h. The 

sample time interval was 15 s and the control time interval was 60 s. The market 

penetration rate of connected vehicles was chosen as 10 %. The window size N was 

selected as 3 via empirical testing. 

Three scenarios are considered to assess the effectiveness of the components in 

Section 4.4.2-4.4.4 in the fault-tolerant VSL control: 1) only the adaptive model set is 

used; 2) both the adaptive model set and the state covariance adaption are used; 3) all 

three components including the adaptive model set, the state covariance adaption, and the 

pseudo-model set are used. To ensure consistent results, the simulation was run for 10 

times with different random seeds. The same RSFs sequence in Fig. 4.4, 4.5, and 4.6 was 

used for all three scenarios. 

The system modes which are the RSF diagnosis results are shown in Fig. 4.4(a), 

4.5(a), and 4.6(a) whereas the mode probabilities for each mode are shown in Fig. 4.4(b), 
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4.5(b), and 4.6(b). It can be seen that different types of RSFs occur throughout the 

simulation. It should be noted that faults of zero flow rates and partial sensor failures are 

only considered under high demand as these faults have limited impacts on VSL control 

when traffic demand is low. 

 
 

    
                                      (a)                                                                  (b) 

Fig. 4.4.  RSF diagnosis in scenario 1: (a) system modes; (b) mode probabilities 

 

    
                                      (a)                                                                  (b) 

Fig. 4.5.  RSF diagnosis in scenario 2: (a) system modes; (b) mode probabilities 
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                                  (a)                                                               (b) 

Fig. 4.6.  RSF diagnosis in scenario 3: (a) system modes; (b) mode probabilities 

 

Comparison with the actual sensor fault modes shows that the RSF diagnosis 

generally detects different types of RSFs accurately for all three scenarios. However, the 

actual fault F4 is identified as F5 around the time step 3600 s in scenario 1 in Fig. 4.4(a). 

The reason is that the improper selection of the model parameter for the F4 model leads 

to too small likelihood estimations for all models when F4 occurs. Consequently, no 

faults are detected at first and faulty measurements are used to estimate traffic states. This 

causes a large error in state estimations and leads to incorrect fault identification 

afterwards. In contrast, the reliable identification of F4 is shown in scenario 2 in Fig. 

4.5(a) with the state covariance adaption. By adjusting the state covariance, the likelihood 

estimations are increased to allow for improper model parameters. Thus F4 can be 

reliably detected. The major difference of mode probabilities between scenario 1 and 2 is 

also illustrated with dash circles in Fig. 4.4(b) and 4.5(b). The mode probabilities of F5 

are close to one in scenario 1 around 3600 s whereas the mode probabilities of F4 are 

close to one with the state covariance adaption in scenario 2. Compared with scenario 1 
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and 2, Fig. 4.6 shows improvements in both system modes and mode probabilities with 

the pseudo-mode set. The modes are detected more reliably in Fig. 4.6(a) and the 

probabilities of actual modes dominate most of the simulation time in Fig. 4.6(b). The 

performance sensor fault diagnosis is improved as more accurate traffic states are 

estimated using the pseudo-model set. 

The estimations of density and ramp flow are shown in Fig. 4.7, 4.8, and 4.9 for the 

respective scenarios.  

 

   
                                  (a)                                                                      (b) 

Fig. 4.7.  State estimations in scenario 1: (a) density; (b) ramp flow 

   
                                  (a)                                                                      (b) 

Fig. 4.8.  State estimations in scenario 2: (a) density; (b) ramp flow 
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                                  (a)                                                                      (b) 

Fig. 4.9.  State estimations in scenario 3: (a) density; (b) ramp flow 

 

In Fig. 4.7, 4.8, and 4.9, the measurements are generated from traffic sensors whereas 

the built-in functions in SUMO are used to generate the true density and ramp flow for 

reference. Fig. 4.7 (a) and (b) illustrate that the estimations of the density and ramp flow 

deviate greatly from the true density and ramp flow during the fault F3 and F4 due to the 

improper model parameters. As shown in Fig. 4.8 (a) and (b), with the correct 

identification of the fault F4 in scenario 2 using the state covariance adaption, less 

deviation in the estimations is achieved around 3600 s. Although reliable sensor fault 

diagnosis is shown in scenario 2, the improper model parameters still cause a large error 

in the estimations during the fault F3 and F4. In contrast, the density and ramp flow are 

consistently estimated with good accuracy under different types of sensor faults in 

scenario 3 shown in Fig. 4.9 (a) and (b). Since the estimations with the pseudo-model set 

do not rely on the model parameters, accurate state estimation can still be provided for 

VSL control without a good match between the model parameters and the extent of 

sensor failures. 
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The accuracy of estimations of the density and ramp flow is assessed quantitatively 

using RMSE (root mean square error) analysis in Table 4.1 for all three scenarios. 

The estimations are analyzed for each fault mode. Due to the incorrect identification 

of the fault F4 in scenario 1, a large error of estimations of the density and ramp flow is 

caused during the fault F4. Moreover, the estimation of the ramp flow under the health 

mode in scenario 1 is also affected as faulty sensor data are used to estimate traffic states. 

Slightly better estimations are achieved in scenario 2 with the state covariance adaption 

when the fault diagnosis can reliably detect RSFs. Meanwhile, scenario 3 shows more 

accurate estimations with the pseudo-model set under different fault modes. 

 

Table 4.1. RMSE for Estimation of the Density and Ramp Flow 

Fault 

Mode 

Density (veh/km)  Ramp Flow (veh/km) 

1 2 3  1 2 3 

H 7.9 7.5 4.6  134.4 34.4 16.4 

F1 8.4 8.4 6.9  21.5 21.5 21.5 

F2 5.7 5.7 5.7  48.1 48.1 48.0 

F3 13.4 13.3 3.5  16.7 16.6 16.5 

F4 26.8 10.1 3.2  2444.3 1287.6 13.1 

F5 4.7 4.7 4.8  11.2 11.2 11.1 

 

The performance of sensor fault diagnosis in all three scenarios is also analyzed 

quantitatively in Table 4.2. Precision, recall, and F1-score are used as the quantitative 

measures of effectiveness. For a specific fault mode such as F1, precision is calculated by 

dividing the true positive cases (the identified F1 mode matches the true F1 mode) by the 
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sum of true positive cases and false positive cases (the identified F1 mode does not match 

the true F1 mode) whereas recall is calculated by dividing the true positive cases by the 

sum of true positive cases and false negative cases (the true F1 mode is identified as other 

modes rather than F1). F1-score provides the combined measure of precision and recall. 

Scenarios 2 and 3 achieve high precision scores, recall scores, and F1-scores for different 

types of sensor faults. It can be seen that the state covariance adaption and the pseudo-

model set can greatly improve the reliability of RSF diagnosis. In contrast, in scenario 1, 

a low recall score is obtained for F4 as scenario 1 cannot reliably identify the fault F4. 

Meanwhile, incorrectly identifying the actual fault F4 as F5 causes the low precision for 

the fault F5. Thus, low F1-scores are obtained for both F4 and F5 in scenario 1. 

 

Table 4.2. RMSE for Estimation of the Density and Ramp Flow 

Fault 

Mode 

1  2  3 

Precision Recall 
F1-

score 
 Precision Recall 

F1-

score 
 Precision Recall 

F1-

score 

H 97.1 98.9 98.0  98.6 98.6 98.6  98.5 99.1 98.8 

F1 95.9 100 97.8  100 100 100  100 99.2 99.6 

F2 100 98.5 99.2  100 98.5 99.2  100 98.5 99.2 

F3 96.5 99.2 97.8  96.5 99.2 97.8  97.5 99.2 98.4 

F4 100 24.2 32.7  100 100 100  100 100 100 

F5 41.0 92.4 56.4  96.9 92.4 94.6  98.4 92.4 95.3 

aUnit:% 

To evaluate the VSL control performance, the spatial and temporal evolution of the 

speed in the freeway section is presented in Fig. 4.10. Compared with the no control 
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scenario in Fig. 4.10 (a), scenario 1 and 2 show no significant improvements in terms of 

the congestion mitigation. In Fig. 4.10 (b) and (c), light congestion is created around 

4300 s at the beginning of the work zone. This congestion is caused by inappropriate 

VSL control signals due to inaccurate density estimations in scenario 1 and 2. Similar 

lengths and duration of congestion are created in Fig. 4.10 (a), (b), and (c). However, the 

congestion is created with a shorter length and resolved earlier in Fig. 4.10 (d) under the 

IMMP-based fault-tolerant VSL control in scenario 3. It can be seen that accurate traffic 

state estimations are essential to ensure the effectiveness of VSL control. 

 

    
                                    (a)                                                                         (b) 

    
                                    (c)                                                                         (d) 

Fig. 4.10.  Speed profile in the SR99 freeway section under (a) no control; (b) scenario 1; (c) 

scenario 2; (d) scenario 3 
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The VSL performance is also analyzed quantitatively in Table 4.3. Average travel 

time, time-to-collision [71], CO2 emission, and fuel consumption are selected as the 

measures of effectiveness.  

 
Table 4.3. Performance Measurement of Fault-tolerant VSL Control 

 
No- 

Control 
1 

Improve-

ment (%) 
2 

Improve-

ment (%) 
3 

Improve-

ment (%) 

Average Travel 

Time (min) 
4.7 5.4 -14.9% 5.3 -12.8% 4.2 +10.6% 

Time-to-collision 

(%) 
8.2 2.6 +68.3% 2.5 +69.5% 0.65 +92.1% 

CO2 Emission(t) 5.1 5.5 -7.8% 5.4 -5.9% 4.8 +5.9% 

Fuel 

Consumption (l) 
2184.9 2332.0 -6.7% 2321.3 -6.2% 2086.2 +4.5% 

 
 
Compared with the no control scenario, scenario 1 and 2 make the congestion worse 

in terms of travel time, CO2 emission, and fuel consumption. However, large 

improvements in safety are achieved under scenario 1 and 2. In contrast, IMMP-based 

fault-tolerant VSL control in scenario 3 shows consistent improvements from the aspects 

of mobility, safety, emissions, and fuel consumption. Thus with reliable RSF diagnosis 

using the state covariance adaption and accurate state estimations using the pseudo-model 

set, the VSL control performance can be consistently improved. 

4.6 Conclusion 

An IMMP-based fault-tolerant VSL control approach is proposed to achieve fault 

tolerance to different types of RSFs in stationary mainline and ramp traffic sensors. With 
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the design of the traffic flow model, the adaptive model set can reduce the computational 

complexity with fewer models and improve the efficiency of the IMM recursive 

algorithm. The state covariance adaption can adaptively compensate for the discrepancies 

caused by the improper model parameters. Using the adaptive model set and the state 

covariance adaption, the RSF diagnosis can reliably detect and identify different types of 

RSFs. Moreover, the design of the pseudo-model set can provide accurate traffic state 

estimations for VSL control without the prerequisite of a good match between the model 

parameters and the extent of the corresponding sensor failures. The IMMP-based fault-

tolerant VSL control shows consistent improvements in mobility, safety and 

sustainability for freeway work zones with the occurrence of different types of RSFs. 
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5 Conclusion 

Mitigation of the negative impacts of freeway work zones is of great importance in 

modern societies with aging infrastructure and increasing traffic demand. This research 

successfully developed fault-tolerant VSL control for freeway work zones with consistent 

improvements in mobility, safety, and sustainability. 

The VSL controller presented in this research can generate VSLs to proactively 

regulate traffic flow in response to real-time traffic measurements from sensors. Since 

sensor faults commonly occur in transportation system, sensor fault diagnosis of this 

system detects and identifies different types of sensor faults. In addition, reliable traffic 

states are estimated by the sensor fault diagnosis component to ensure the effectiveness 

of VSL control. Thus, fault tolerance of VSL control to permanent and recurrent sensor 

faults is achieved with consistent improvements in mobility, safety, and sustainability. 

5.1 Contributions 

In view of negative impacts of freeway work zones, limitations of VSL control, and 

limited VSL control studies considering sensor faults, the main academic contributions of 

this thesis are presented as follows. 

 Simple yet robust VSL Controller: 

The efficient and robust VSL controller was developed in this research. Existing VSL 

control methods demand high computational costs such as multiple steps of traffic 

prediction in the optimization process [13], [14] and extensive model parameters 

calibrations [16], [17]. Thus the simple VSL control was developed based on sliding 
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mode control to efficiently generate VSLs for traffic flow management. Compared with 

the kinematic wave theory based methods [9], [10], the VSL controller also shows the 

strength of insensitivity to traffic disturbance owing to variable control structures. To 

avoid the potential impacts of linearization near the critical density in [7], [8], the 

nonlinear traffic flow model was developed to explicitly incorporate the discontinuity of 

the fundamental diagram caused by capacity drop. Under realistic freeway work zone 

conditions, the VSL controller demonstrates strong robustness under noisy traffic demand 

and different layouts of freeway. Improvements in travel time, time-to-collision, 

emissions and fuel consumptions are accomplished using the VSL controller. 

 Observer-based fault tolerance for VSL control: 

The observer-based method was developed for sensor fault diagnosis in the VSL 

control system. Most existing studies on VSL control have a major limitation that is the 

assumption of reliable traffic measurements. Therefore, two observers were designed to 

provide reliable traffic state estimations in the case of permanent sensor faults. Moreover, 

the demand of large historical data in the traffic data imputation methods [23], [24], [25] 

is avoided using these two observers. Likelihood estimations were obtained to diagnose 

senor faults and reconfigure the VSL controller accordingly. Results show that consistent 

performance of VSL control is achieved despite permanent sensor faults. 

 IMMP-based fault tolerance for VSL control: 

The VSL control is further extended with fault tolerance to recurrent sensor faults 

using the IMMP-based method. The main contributions of the developed IMMP-based 

method for VSL control are made with respect to computational complexity and model 
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parameters compensation. With the fixed structure of IMM methods [89], [90], more 

models will be added and processed when more types of faults are considered. To reduce 

computational complexity, the adaptive model set was developed with variable structure 

of model set such that fewer models were running in parallel with consideration of 

different types of recurrent sensor faults. Another limitation from the existing studies 

[89]-[92] is that the accuracy of state estimations depends on the degree of a match 

between the model parameters and the extent of corresponding sensor failures. Therefore, 

the state covariance adaption and the pseudo-model set were developed to fairly 

compensate the discrepancies caused by improper model parameters. The fault-tolerant 

VSL system demonstrates consistent improvements of traffic conditions with VSL 

control near work zone areas in the case of different types of recurrent sensor faults. 

This research also offers broader impacts and contributes to practical traffic systems 

and other congestion-related transportation problems. Since sensor faults commonly 

occur in transportation system in real world, the fault-tolerant VSL control in this thesis 

guides traffic engineers with practical VSL implementations. In addition, the framework 

of the fault-tolerant VSL control can easily be extended to other freeway traffic 

management systems such as ramp metering. Although this study mainly focuses on 

bottlenecks caused by freeway work zones, fault-tolerant VSL control can also be applied 

to mitigate the negative impacts of recurrent bottlenecks caused by other sources of 

congestion, such as congestion formation during rush hours. With aging infrastructure, 

increasing demand, and common sensors failures, the fault-tolerant VSL control in this 
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research contributes to an effective traffic management system with consistent 

improvements in mobility, safety, and sustainability. 

5.2 Limitations and Future Work 

The fault-tolerant VSL control was investigated in this thesis to mitigate the negative 

impacts of freeway work zones and address sensor faults. VSL control for work zones 

and fault tolerance are the main focuses of this research. Therefore, future work can be 

conducted to address limitations associated with VSL control and faults tolerance. 

With respect to VSL control, speed limit schemes can be introduced by developing 

VSL control at network level. In this research, only one freeway work zone is considered. 

When multiple work zones exist, a queue forming near a work zone may propagate to 

another work zone upstream. Multiple work zones may have different traffic patterns 

than one isolated work zone. Centralized or decentralized VSL control should be 

considered to improve traffic conditions for multiple work zones. In addition, drivers may 

choose a different route when longer travel time is needed to traverse work zone area. 

Combining a route guidance algorithm with VSL control may contribute to traffic 

management of not only freeways but also arterial roads and local roads.  

Impacts of configurations of work zones needs to be further studied in the design of 

VSL control. In this thesis, the number of lane closure is considered to obtain work zone 

capacity. However, work zone capacity can also be affected by factors such as activities 

inside work zones, locations of work zones, widths of work zones and lengths of work 

zones [93], [94]. The previous study of the authors [15] demonstrates less travel time can 
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be achieved using VSL control when connected work zones share road work information 

with travellers before they reach work zone bottlenecks. Potential improvements of VSL 

control may be obtained by taking advantage of abundant information about 

configurations of work zones. 

The optimal locations of VSL signs remains an open problem, especially with the 

emerging of automated vehicles. Although the VSL control in this research shows 

robustness under different freeway layouts, the optimal VSL signs deployment is not 

studied. Conventional vehicles follow speed limits posted at fixed locations such as 

gantries or roadside equipment. Placing speed limit signs optimally can potentially make 

VSL control more effective. Besides, automated vehicles can change their speeds 

anywhere as long as they receive speed limit command. The flexibility of VSL 

deployment offered by automated vehicles may potentially alleviate congestion as 

automated vehicles can adjust their speeds timely without encountering the physical 

speed limit signs. However, it can be challenging to control the speeds of automated 

vehicles in mixed traffic flow. For example, when automated vehicles want to decelerate 

and follow a new lower speed limit command, the deceleration can be highly dangerous 

when conventional vehicles are still travelling according to a higher speed limit. 

Developing a VSL controller with consideration of VSL sign deployment in mixed traffic 

flow can be studied to achieve more effective traffic management. 

The impacts of compliance rates, trucks and rubbernecking need to be further studied 

for practical implementations. This study assumes full compliance, for which strict and 

perhaps automated enforcement is required. Without a high compliance rate, the 
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performance of VSL control will likely be affected. Therefore, an efficient VSL 

controller under stochastic compliance needs to be studied in the future.  

Another area for advancing this study is adding other types of vehicles such as heavy 

duty trucks, light duty trucks and motorcycles to the simulation environment of the study. 

In its current form, only passenger cars are used in the simulations. . With the presence of 

different types of microscopic models for different types of vehicles, a traffic flow model 

needs to be developed for VSL control that can accurately reproduce the traffic dynamics 

near work zone areas. The rubbernecking near work zone areas is also one of the factors 

causing traffic congestion. An effective control strategy needs to be designed to alleviate 

the impacts of work zone areas on the traffic flow in the opposite direction. 

For future real-world implementation of the developed VSL control system, it is 

essential to ensure a safe and efficient VSL control strategy in practical applications. 

Thus, the pre-selected parameters associated with posted speed limits such as the 

minimum and maximum speed limits, speed limit increments, and minimum duration of 

the speed limit need to be further investigated  in collaboration with traffic control 

departments. Since factors such as the severity of congestions, safety risks, and the 

attributes of work zones are highly related to the effectiveness of implementing VSL 

control, a decision support tool with consideration of these factors can be developed to 

guide decision makers in the deployment of VSL Control systems.  

To advance the proposed fault tolerance method, actuator faults and probe sensor 

faults can also be investigated in future work. Specifically, actuator faults refers to faulty 

VSL signs whereas probe sensor faults refers to failures related to connected vehicles or 
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automated vehicles. In the case of faulty VSL signs caused by factors such as a power 

outage, the restriction of traffic flow would not be effective. Consequently, a queue can 

still form upstream a work zone and lead to capacity drop. Maintaining the performance 

of VSL control with the occurrence of faulty VSL signs needs to be studied. In addition, 

probe sensor faults occur when connected vehicles cannot send their speeds and/or 

locations accurately. Inaccurate measurements can be attributed to various factors such as 

large communication delay in probe sensors that can lead to a mismatch between 

measurements and actual traffic conditions. Faulty measurements from probe sensors can 

cause great deviations in traffic state estimations and potentially lead to VSL control 

failure. Addressing probe sensor faults also needs to be considered in future studies. 
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