
Lyapunov-based Control of Nonlinear
Processes Systems: Handling Input

Constraints and Stochastic Uncertainty

Maaz Mahmood, B.Eng., B.Sc., M.Sc.

August 2020

Submitted in partial fulfillment of the requirements
for the degree of Doctor of Philosophy

to the

Department of Chemical Engineering
Faculty of Engineering

McMaster University c© Copyright by: Maaz Mahmood, August 2020

http://researchgroup.university.com


ii

McMaster University Hamilton, ON, Canada

Title:
Lyapunov-based Control of Nonlinear Processes Systems:

Handling Input Constraints and Stochastic Uncertainty
Author: Maaz Mahmood, B.Eng., B.Sc., M.Sc.

McMaster University, Hamilton, ON, Canada
Degree (year): Doctor of Philosophy (2020)

Department: Chemical Engineering
Supervisor: Dr. Prashant Mhaskar

Number of pages: 105



iii

Abstract
This thesis develops Lyapunov-based control techniques for nonlinear process

systems subject to input constraints and stochastic uncertainty. The problems con-
sidered include those which focus on the null-controllable region (NCR) for unstable
systems. The NCR is the set of states in the state-space from where controllability
to desired equilibrium point is possible. For unstable systems, the presence of in-
put constraints induces bounds on the NCR and thereby limits the ability of any
controller to steer the system at will. Common approaches for applying control to
such systems utilize Control Lyapunov Functions (CLFs) . Such functions can be
used for both designing controllers and also preforming closed–loop stability anal-
ysis. Existing CLF-based controllers result in closed–loop stability regions that are
subsets of the NCR and do not guarantee closed–loop stability from the entire NCR.
In effort to mitigate this shortcoming, we introduce a special type of CLF known as
a Constrained Control Lyapunov Function (CCLF) which accounts for the presence
of input constraints in its definition. CCLFs result in closed–loop stability regions
which correspond to the NCR. We demonstrate how CCLFs can be constructed us-
ing a function defined by the NCR boundary trajectories for varying values of the
available control capacity. We first consider linear systems and utilize available ex-
plicit characterization of the NCR to construct CCLFs. We then develop a Model
Predictive Control (MPC) design which utilizes this CCLF to achieve stability from
the entire NCR for linear anti-stable systems. We then consider the problem of non-
linear systems where explicit characterizations of the NCR boundary are not avail-
able. To do so, the problem of boundary construction is considered and an algorithm
which is computationally tractable is developed and results in the construction of the
boundary trajectories. This algorithm utilizes properties of the boundary pertaining
to control equilibrium points to initialize the controllability minimum principle. We
then turn to the problem of closed–loop stabilization from the entire NCR for nonlin-
ear systems. Following a similar development as the CCLF construction for linear
systems, we establish the validity of the use of the NCR as a CCLF for nonlinear
systems. This development involves relaxing the conditions which define a classical
CLF and results in CCLF-based control achieving stability to an to an equilibrium
manifold. To achieve stabilization from the entire NCR, the CCLF-based control de-
sign is coupled with a classical CLF-based controller in a hybrid control framework.
In the final part of this thesis, we consider nonlinear systems subject to stochastic
uncertainty. Here we design a Lyapunov-based model predictive controller (LMPC)
which provides an explicitly characterized region from where stability can be prob-
abilistically obtained. The design exploits the constraint-handling ability of model
predictive controllers in order to inherent the stabilization in probability character-
ization of a Lyapunov-based feedback controller. All the proposed control designs
along with the NCR boundary computation are illustrated using simulation results.
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Chapter 1

Introduction

The demand for more effective process control systems has increased over last decade.
This is mainly driven by the requirement for industrial processes to become more
economically efficient, safer and more reliable. This has motivated considerable re-
search effort which has focused on developing both the theoretical foundations and
the practical applications of control systems. The developments in this body of work
address a plethora of challenges and problems which arise in real world process con-
trol systems. Among these problems, there does exist those which are application
specific and others which are generic and apply to almost process control systems.
Such generic issues include the need for the control system to provide adequate
performance in the presence of complex process dynamics characterized by nonlin-
earity, constraints and uncertainty. The failure to appropriately account for these
process characteristics in the control design can lead to poor control performance
and even closed-loop instability.

The presence of nonlinear dynamics such has oscillations, steady state multiplic-
ity is common in chemical process systems. The use of linear models can be applied
in a vicinity of an operating point under certain assumptions, however the afore-
mentioned challenges can only be adequately addressed using nonlinear models.
This realization has motivated the development of nonlinear process control tech-
niques. Such techniques build on the well established study of nonlinear dynamical
systems. A common phenomena of nonlinear systems is the occurrence of multi-
ple equilibria. Often, some of the equilibrium points are unstable and also are the
desired operating points due to economic considerations. In general, the control
problem is more difficult in the presence of open–loop instability [1].

In addition to process nonlinearites, the control and operation of chemical pro-
cesses contains physical limitations due to the inherent physical limitation of all con-
trol actuators. Such constraints are hard in the sense they are always enforced and
are in additional layer of complexity that control designs need to account for. The
application of control schemes which ignore the presence of input constraints can
result in input saturation which can have undesirable effects on both performance
and stability of the closed–loop system. For open-loop unstable systems, saturation
can cause the unstable modes to push the state away from the region from where
any controller is able to steer the state back to the desired equilibrium point. This
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region is known as the null-controllable region (NCR) and is independent of what
controller is used.

These considerations have motivated the development of several control designs
strategies which account for nonlinearites and input constraints while also provid-
ing a region from where closed–loop stability can be achieved.

The resulting closed–loop stability regions are dependent on the control design
and thus would be subsets of the NCR. Such control design predominately use
Lyapunov-based techniques as this approach provides a common framework to per-
form both control design and stability analysis.

The classical direct method of Lyapunov uses the idea of a scalar energy function.
Specifically, if this energy function along paths governed by a dynamical system
is decreasing, then the system must be approaching equilibrium point. With this
energy function one is able to analyze the stability of the system without solving
the differential equations which define the dynamical system. This is incredibly
helpful as analytical solutions to the dynamical system are seldom available. The
challenge with Lyapunov-based techniques lies in being able to construct such an
energy function which is satisfies condition on the time derivative.

In the context of control, the energy function is called a Control Lyapunov Func-
tion (CLF) and can be used to perform both control design and stability analysis. The
classical definition of a CLF does not explicitly consider the presence of input con-
straints and only requires the time derivative be negative locally around an equilib-
rium point. This lack of consideration for input constraints can degrade CLF based
control designs. This is especially important for unstable systems as the NCR is a
finite subset of the state–space. In this context, the CLF would not capture to en-
ergy of the system close to the boundary of the NCR where the control action is
critical to maintain stability. This gives rise to the problem of designing a controller
where the closed–loop domain of attraction is equal or as close as possible to the
NCR can be considered. A key contribution of this work is extend this energy func-
tion to limits of the controllability boundary to be able achieve stabilization from
all states possible. To this end, we extend the definition of a CLF to consider input
constraints and introduce the notion of a Constrained Control Lyapunov Function
(CCLF). These functions explicitly account for the presence of input constraints by
maximizing the estimate of the NCR over the set of all possible CLFs. The problem
of CCLF construction is considered. The key idea in the proposed CCLF construc-
tion is to utilize the boundary of the NCR for varying values of the available control
capacity to define an energy function. We show how this construction results in a
meaningful CCLF and thus enables stabilization from the entire NCR. Moreover we
provide explicit control designs which can be implemented to achieve stabilization
from the entire NCR. This approach necessitates the availability of the characteri-
zation of the NCR. We first consider linear systems where explicit characterization
of the NCR are available and utilized directly within the CCLF construction. We
then utilize this construction Lyapunov-based model predictive controller coupled
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with an auxiliary control design to achieve stabilization from all initial conditions
in the NCR. In general for nonlinear systems, explicit characterization of the NCR
for nonlinear systems are not available. In this work we consider the problem of
devising a computationally tractable procedure to generate the NCR for unstable
nonlinear systems. Our approach extends the well-known Controllability Minimum
Principle to generate the trajectories which form the boundary of the NCR. We then
show use such boundary trajectories can be used to define a CCLF for general non-
linear systems. This development involves relaxing the conditions which define a
classical CLF and results in CCLF-based control achieving stability to an to an equi-
librium manifold. Stabilization from the entire NCR is then shown to be achieved
using a hybrid control scheme which couples a classical CLF-based control design
with a CLF based control design. Following this, we then utilize the NCR boundary
characterizations to design a controller to enable stabilization from the entire NCR.

In addition to handling complex process dynamics characterized by nonlinearity
and input constraints, its important to consider model uncertainty within the control
design. The model uncertainty can be the result of unknown process parameters and
exogenous disturbances and can cause poor control performance and even closed–
loop instability. Therefore the design of robust controllers which account for such
uncertainty has been the topic of considerable research effort ([2], [3]). The use of
Lyapunov-based MPC (LMPC) designs [4], [5] has been a popular choice to address
this problem as the design handles the presence of uncertainty, constraints and opti-
mality considerations. Moreover, LMPC provides explicit characterizations of states
from where stability can be achieved. Existing approaching on LMPC handle the un-
certainty under the assumption of bounded disturbances resulting in conservative
control action. In the context of unbounded stochastic uncertainty, the concept of sta-
bility must be understand in a probabilistic sense. That is, stability can be obtained
with an associated probability. Lyapunov techniques for stochastic systems are well
developed and can be used to derive regions in the state–space from where stability
with an associated probability can be attained. In this work, we utilize such proba-
bility measures in a Lyapunov-based stochastic MPC design to obtain stabilization
(in probability) of nonlinear stochastic systems with unbounded disturbances and
allow for the characterization from where stability in probability can be obtained.

1.1 Thesis Outline

Motivated by the discussion above, in this thesis, we are considering the problem of
designing Lyapunov-based control designs for nonlinear systems in the presence of
input constraints and model stochastic uncertainity. The rest of this thesis is orga-
nized as follows:

Chapter 1: The problem of control of linear systems with input constraints is con-
sidered. The notion of control Lyapunov functions (CCLFs) is first generalized and
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relaxed to define a constrained control Lyapunov function (CCLF) and a constructive
procedure for CCLF is subsequently presented.

Chapter 2: The construction of constrained control Lyapunov functions (CCLF)
is utilized within a Lyapunov-based model predictive controller coupled with an
auxiliary control design to achieve stabilization from all initial conditions in the
null-controllable region. Illustrative simulation results as well as an application to a
nonlinear chemical process example is presented to demonstrate the efficacy of the
results.

Chapter 3: Here we focus on the problem of designing a constructive procedure
for constructing the NCR of general nonlinear systems. To this end, a controllability
minimum principle based computationally tractable approach for constructing the
null controllable region is presented. Simulation results are used to illustrate the
computation of the NCR for several examples.

Chapter 4: Using the NCR boundary constructive procedure for nonlinear sys-
tems in Chapter 3, we address the problem of designing a controller to enable stabi-
lization from the entire NCR. First the validity of the use of the NCR as a constrained
control Lyapunov function is established. The analysis reveals the ability of a CCLF
based control design to drive the system to an equilibrium manifold. The CCLF
based control design is then utilized within a hybrid control framework that guar-
antees the ability to stabilize to the origin. Simulation results are used to illustrate
the implementation of the control design

Chapter 5: We design a Lyapunov-based model predictive controller (LMPC) for
nonlinear systems subject to stochastic uncertainty. The LMPC design provides an
explicitly characterized region from where stability can be probabilistically obtained.
The key idea is to use stochastic Lyapunov-based feedback controllers, with well charac-
terized stabilization in probability to design constraints in the LMPC that allows the
inheritance of the stability properties by the LMPC. The application of the proposed
LMPC method is illustrated using a nonlinear chemical process system example.

Chapter 6: The contributions of the research are summarized and directions of
future work are presented. .

1.2 References
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Chapter 2

Constrained Control Lyapunov
Functions for Linear Systems

The results in this chapter have been published in:

Journal Articles

[1] M. Mahmood and P. Mhaskar, “On constructing constrained control lyapunov
functions for linear systems”, IEEE Transactions on Automatic Control, vol. 56,
no. 5, pp. 1136–1140, 2011.

2.1 Introduction

Input constraints are ubiquitous in control and operation of all control systems.
These constraints usually arise due to the physical limitation of control actuators
such as pumps or valves. It is well established that neglecting these constraints
while designing controllers can lead to significant performance deterioration and
even closed–loop instability. This has motivated considerable research effort to-
wards the problem of designing controllers in the presence of input constraints (see
e.g. [2], [3] and references therein). Traditionally, Lyapunov theory has served as
a powerful tool for stability analysis and control system design. The idea of a Lya-
punov function was extended [4], [5] in the context of control design to yield control
Lyapunov functions (CLF). For continuous-time linear time-invariant systems, there
exist a well known method to construct CLFs, which essentially involves finding a
positive definite solution of a Riccati equation. More recently, a universal construc-
tion procedure which involves solving a linear Lyapunov equation was derived [6].
However, both procedures are derived under the assumption of unconstrained con-
trol action.

When considering linear open-loop unstable systems, one measure of the suit-
ability of a given CLF is how well stability regions estimate for a given CLF com-
pares with the set of initial conditions from where the system can be stabilized in the
presence of constraints (the so-called null controllability region). Currently, there
exists no systematic framework to choose parameters when designing the control
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Lyapunov functions to explicitly account for the presence of constraints to maximize
the closed–loop stability region estimate. The topic of global [7]–[10] and semi-global
[11] stabilization of LTI systems with bounded controls has been extensively studied
under the assumption that the open-loop system is asymptotically null controllable
with bounded controls (ANCBC). i.e., the system has to be stabilizable in the usual
linear systems sense. It is established that for open–loop unstable systems, global
and semi-global stability is generally not possible with constrained controls. That
is, the presence of constraints limits the set of initial conditions from where a pro-
cess can be stabilized at a desired equilibrium point irrespective of the type of input
manipulation used. Thus, feedback controllers must be designed with the goal of
achieving a closed–loop domain of attraction which is equal or as close as possible
to the null-controllable region.

There exist several results regarding the design of linear feedback controllers
which provide stability estimates using quadratic Lyapunov functions (e.g [12]–
[14]). In the direction of constrained stabilization for unstable LTI systems, the con-
cept of invariant sets has played a significant role (see e.g. [15]). Such sets are used
to estimate the domain of attraction under linear feedback control. Recently [16] the
problem of estimating the domain of attraction using invariant ellipsoids has been
considered where a sufficient condition is derived in terms of an auxiliary feedback
matrix for determining if a given ellipsoid is contractively invariant under saturated
linear state feedback. This condition is used to formulate an optimization problem
to find a maximal invariant ellipsoid set and also to simultaneously design the cor-
responding linear feedback gain. The quadratic functions which yield the invariant
sets are simple to use, however, the ellipsoid estimates they provide are inherently
conservative. This conservativeness can be partially alleviated by constructing com-
posite Lyapunov functions based on a set of quadratic functions to provide better
estimates of the closed–loop domain of attraction [17]. In addition, polyhedral sets
have been employed to construct invariant sets [15], [18], [19]. Such sets are inher-
ently more flexible as they can form any convex shape with the complex representa-
tion being the tradeoff.

In the direction of characterization of the null-controllable region for unstable
constrained LTI systems, recent results [20] have provided a closed form expression
for generating the null-controllable region. The problem of stabilization from the en-
tire null-controllable region (for planar-unstable systems) has also been considered
[21] where a saturated linear state feedback is designed that results in a closed-loop
system having a domain of attraction that is arbitrarily close to the null controllable
region. An important contribution of the characterization of the null controllable
region [20] is that of providing a natural objective in the design of CCLF’s- that of
designing a CCLF that can be used to construct a control law to stabilize from all
states in the null controllable region. In summary, a review of the existing literature
yields several results on (essentially unconstrained) CLF construction that enable
control designs with stability regions that approximate the null controllable region,
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there exist no results on the definition and construction of a constrained CLF for lin-
ear systems, which naturally yields the null-controllable region as the set of states
from where stabilization is achievable.

Motivated by the above considerations, this work considers the problem of defin-
ing and developing a constructive procedure for constrained CLFs for unstable LTI
systems. To this end, first in Section 3.2, we outline the class of systems and the
required definitions needed. In Section 2.3 we then show how the boundary of the
null-controllable region can be used to construct a constrained CLF.

2.2 Preliminaries

We consider continuous-time LTI systems with input constraints, described by:

ẋ = Ax(t) + Bu(t), u ∈ U (2.1)

where A ∈ IRn×n, B ∈ IRn×m, x ∈ IRn denotes the vector of state variables, u ∈ IRm

denotes the vector of manipulated input taking values in a nonempty convex sub-
set U of IRm, where U = {u ∈ IRm : ‖u‖∞ ≤ umax}, and umax ∈ IR+ denotes the
upper bound on the magnitude of each manipulated input ui. Without loss of gen-
erality, we assume that the input constraints for each manipulated input is identical.
If this were not the case, the B matrix can be ’adjusted’ to absorb the true (sym-
metric) input constraint. For a vector x ∈ IRn we denote by ‖x‖∞ = max

i
‖xi‖ the

infinity norm. The matrix norm induced by the Euclidean vector norm of a matrix
P ∈ Rn×m is given by ‖P‖ =

√
σmax, where σmax is the largest eigenvalue of the

matrix PTP (also known as the largest singular-value of P). We denote by λmin(P)
and σmin(P) as the minimum eigenvalue and minimum singular-value of a matrix P
respectively. We denote the trace of a matrix P by tr(P). The notation ‖ · ‖Q refers to
the weighted norm, defined by ‖x‖2

Q = xTQx for all vectors x ∈ IRn, where Q is a
positive definite symmetric matrix and xT denotes the transpose of the vector x. We
consider systems where A is anti-stable (all eigenvalues of A are in open right-half
plane), and that (A, B) is a controllable pair. A state x0 is said to be null control-
lable if there exists a T ∈ [0, ∞) and an admissible control u(t) ∈ U such that the
state trajectory x(t) of the system of Eq.3.1 satisfies x(0) = x0 and x(T) = 0, and
the set of all null controllable states is called the null controllable region. We denote
the null controllable region of the system of Eq.3.1 with input constraint umax by
Cumax . A state xue

e is said to be an equilibrium point with input ue if Axue
e + Bue = 0.

The set of all equilibrium points which are contained in Cumax are denoted by E . It
follows that E = {A−1Bue : ue ∈ Rm}. Similarly, we denote the set of all equi-
librium points with input values contained in the set U , by EU . It also follows that
EU = {A−1Bue : ue ∈ U}. A set T∗ is said to be positively controlled invariant if for
all x(0) ∈ T∗, there exists an input trajectory u(t), such that the state trajectory x(t)
of the system of Eq.3.1 satisfies x(t) ∈ T∗, for all t ≥ 0. A supporting hyperplane of
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a convex set C is a plane such that C lies entirely on one side of the plane, and C con-
tains at least one point on the hyperplane. The Minkowski sum of two convex sets C
and D is defined as C⊕D = {c + d : c ∈ C, d ∈ D} (the resultant set is known to be
convex). The boundary points of C⊕D can be computed from points on the bound-
aries of C and D where the outward unit normal vectors are equal. For convex sets
with non-smooth boundaries, the notion of normal vectors must be generalized us-
ing supporting hyperplanes. Specifically, a vector is called a normal vector at a point
x if it is normal to a hyperplane at x. We denote the interior, closure and boundary of
a set X by 8X, X and bd(X) respectively. The notation X\Y, where X and Y are sets,
refers to the relative complement, defined by X\Y = {x ∈ X : x /∈ Y}. A compact
and convex set S ⊂ IRn with the origin in the interior of the set is called a C-set. For
any x ∈ S the Minkowski functional or gauge functional is given by

ϕS(x) = inf{λ > 0 : x ∈ λS} (2.2)

The level sets of ϕs are essentially the set S linearly scaled. This function satisfies the
following properties [22]:

Proposition 2.1. [22] The Minkowski gauge function has the following properties:

1. Positive definiteness: 0 ≤ ϕS(x) ≤ ∞ and ϕS(x) > 0 for x 6= 0

2. Positive homogeneous: ϕS(λx) = λϕS(x) for λ ≥ 1

3. Sub-additivity: ϕS(x1 + x2) ≤ ϕS(x1) + ϕS(x2)

4. Lipschitz continuity

5. Convexity

To accommodate non-smooth Lyapunov functions we recall the following gen-
eralized derivative, and subgradient:

Definition 2.1. [23] For a locally Lipschitz function V : Rn → R, the upper-right Dini
directional derivative of V with respect to Eq.3.1 at x is

D+
Ax+BuV(x) = lim sup

h→0+

V(x + h(Ax + Bu))−V(x)
h

(2.3)

and we denote D+
Ax+BuV(x) = D+V(x).

Definition 2.2. [23] For a locally Lipschitz function V : Rn → R, the vector z ∈ Rn is a
subgradient of V at x if

V(y)−V(x) ≥ zT(y− x), ∀y ∈ Rn (2.4)

Furthermore, the subdifferential ∂V(x) is the set of all the subgradients at x.
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If V is differentiable at x, then D+V(x) reduces to the usual directional derivative
∇V(x)T(Ax + Bu). Moreover, if V is convex (and possibly nondifferentiable), then
D+V(x) can be computed as [23]:

D+V(x) = sup
z∈∂V(x)

zT(Ax + Bu) (2.5)

The following condition is proposed for use in subsequent definitions (to enable
the use of a relaxed version of LaSelle’s invariance principle):

Condition 2.1. Given a continuous, positive definite, and radially unbounded function V :
Rn → R, let E be the set of all points where D+

AxV(x) = inf
u∈Rm

D+
BuV(x) = inf

u∈Rm
D+

Ax+BuV(x) =

0. For all x0 ∈ E\0, there exists an input trajectory u(t) under which the state trajectory
x(t) escapes E\0 for all t ≥ 0 and satisfies D+V(x)|u(t) ≤ 0.

We now state a generalized version of the classical definition of a control Lya-
punov function (CLF) for the system in Eq.3.1.

Definition 2.3. A continuous, convex, positive definite, and radially unbounded function
V : Rn → R such that

inf
u∈IRm

D+V(x) ≤ 0 (2.6)

for all x ∈ U ⊆ Rn, where U is compact, and Condition 1 is satisfied is a CLF for the system
in Eq.3.1.

Note that the infimum in Eq.3.3 is not taken over a bounded constrained input
variable set U but rather over all values in IRm. That is, we present a generalized
definition of a CLF (where the input constraints are not accounted for) in prepara-
tion to our definition of a constrained CLF. Finally, using Condition 1 together with
Lasalles invariance principle, the requirement of strict negative definiteness of time
derivative of a CLF is relaxed. Condition 1 ensures that for all points within the set
where the time derivative of the function V can at best be made zero, there exists
an input trajectory which can make the states escape this set while maintaining the
inequality of Eq.3.3.

Consider Ω defined as the set induced by the level sets of V,

Ω(V, c) = {x ∈ Rn : V(x) ≤ c} (2.7)

and Π as the region of the state space where the time derivative can be made nega-
tive semi-definite,

Π(V) = {x ∈ Rn : inf
u∈U

D+V(x) ≤ 0} (2.8)

It follows that Ω(V, c) is an estimate of the stabilizable region of the origin (using
the CLF V) if Ω(V, c) ⊆ Π(V). Moreover, for a given Lyapunov function V, the
maximal estimate of the stabilizable region can be determined with the largest level
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set of V which is completely contained within Π(V). We will denote this maximum
level set by cmax(V):

cmax(V) = sup{c ∈ IR : Ω(V, c) ⊆ Π(V)} (2.9)

Let γ(V, c) denote the volume function of Ω(V, c) given by:

γ(V, c) =
∫
· · ·

∫
Ω(V,c)

dx1dx2 . . . dxn (2.10)

For c ≤ cmax(V), γ(V, c) is the volume of the estimate of the stabilizable region.
We are now ready to postulate the definition of a constrained control Lyapunov func-
tion (CCLF).

Definition 2.4. Let V denote the set of all locally Lipschitz CLFs. A locally Lipschitz CLF
Vc : Rn → R such that

γ(Vc, cmax(Vc)) = max
V∈V

γ(V, cmax(V)), (2.11)

is a CCLF for the system in Eq.3.1.

Remark 2.1. The generalized definition of a CLF presented above is adapted from an earlier
definition [24]. The definition in the present work differs from the traditional definition of
a CLF in that the differentiability requirement is relaxed with the use of the Dini derivative
[23] and the strict negative definiteness is also relaxed by imposing conditions analogous to
the LaSalle Invariance Principle (in a control design, this would necessitate utilizing an aux-
iliary controller to handles states in this set where strict negative definiteness of the CCLF is
not achievable in conjunction with a controller designed to cause a decay in the CCLF). Since
a CCLF is by definition a CLF which maximizes the volume of the estimate of the stability
region, the generalized definition of a CLF widens the search space for this maximization.
As will be shown in Section 2.3, these relaxed requirements are key for the construction of
CCLFs that result in the stabilization from the entire null-controllable region. Note also that
while there exists construction procedures for CLFs, there is a lack of results on the construc-
tion of CCLFs, and simply ‘saturating’ the control action in a control design that uses an
‘unconstrained’ CLF does not yield the largest possible stability region.

2.3 Using the null-controllable region to construct CCLFs

In this section, we present a construction procedure for CCLFs (based on null-controllable
region characterizations) that can be used to design controllers that possess a stabil-
ity region equal to the null controllable region. The key idea is to define a gauge func-
tion using the null-controllable set. The time derivative of this function is shown to
achieve negative semi-definiteness over the entire null controllable region, as well as
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coincide with the ‘level sets’ of the function. As a result, the estimate of the control-
lable region generated by this function coincides with the null-controllable region
and hence is maximal, making this function a CCLF.

We consider the system of Eq.3.1 with input constraint umax = 1, and for ease of
notation we let C1 = C. The set C is characterized as (see [20]):

C =
⋃

T∈[0,∞)

{x = −
∫ T

0
e−AτBu(τ)dτ : u(τ) ∈ U} (2.12)

If A is anti-stable, it can be shown that this set is bounded, strictly convex, and
open with the origin in the interior of the set. Furthermore, it can be shown [20] that
the null controllable region of the multi-input system of Eq.3.1 is the Minkowski sum
of the null controllable regions of the single input subsystems

ẋ(t) = Ax(t) + biui(t), |ui(t)| ≤ 1 (2.13)

where B = [b1 b2 . . . bm] and ui denotes the ith component of the vector u. Specifi-
cally, let Ci denote the null controllable region of the subsystem of Eq.2.13 then

C = C1 ⊕ C2 ⊕ · · · ⊕ Cm

= {x1 + x2 + · · ·+ xm : xi ∈ Ci, i = 1, . . . , m}
(2.14)

Hence the convexity of the null-controllable region for multi-input systems is pre-
served from the null-controllable region of the single input subsystems.

Using the null-controllable region C in conjunction with gauge functionals, we
define the following candidate CCLF:

VC(x) = ϕC(x) = inf{λ > 0 : x ∈ λC} (2.15)

The continuity, positiveness definiteness, and radially unboundedness of VC follow
from Proposition 2.1. It is established [20] that the boundary of the null-controllable
region for single input systems is covered by extremal trajectories of the respective
time reversed system. The magnitude of the input variable for such extremal trajec-
tories is shown to be equal to the magnitude of the input constraint. Hence, differ-
entiability of the function VC should be expected. However, this is not the case as the
boundary of C can contain corner points, as shown by the following argument. Note
(as shown in [20], Theorem 3.1) that the boundary of the set Ci can be determined by
a function Φ : Sn → Rn which maps the surface of a unit ball Sn to the boundary of
Ci. This mapping is given by

Φ(η) =
∫ 0

−∞
eAτbisign(ηeAτbi)dτ (2.16)

The function Φ maps Sn continuously but not one-to-one (in general) onto the bound-
ary of Ci. It can be shown that each x̄ = Φ(η̄) which is on the boundary of Ci has an
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outward unit normal vector equal to η̄. Since the mapping may not be one-to-one,
the boundary of Ci can contain points which have a non-unique normal. Since the
Minkowski sum will not “smooth-out” such points, the function VC(x) is in general
non-differentiable.

It follows that the level set VC(x) = α defines the boundary of the null-controllable
region with input constraint umax = α, which is also the boundary of Cα.

Ω(VC , c) = {x ∈ Rn : VC(x) ≤ c} = Cc (2.17)

Theorem 2.1 below states that the set Π(VC) for the function VC contains completely
the set Ω(VC , umax), and that Condition 1 is satisfied for the function VC .

Theorem 2.1. For the system of Eq.3.1 with input constraint umax, for every x in 8Ω(VC , umax),
there exists a u ∈ U for which the time derivative of VC achieves negative semi-definiteness.
That is,

8Ω(VC , umax) ⊆ Π(VC) (2.18)

Furthermore, the function VC satisfies Condition 1.

Proof. The proof of this Theorem is divided in two parts. In the first part we show that
8Ω(VC , umax) ⊆ Π(VC). In the second part we show that the function VC satisfies Condition
1.
Part 1: Let x ∈ 8Ω(VC , umax). Since the set 8Ω(VC , umax) = Cumax , it follows that x ∈ Cumax .
We must show that infu∈U D+VC(x) ≤ 0. Since x is in the interior of the set Cumax , it follows
that there exists a u∗max < umax, such that x ∈ bd(Cu∗max). Since Cu∗max is the Minkowski
sum of the sets Cu∗max

i for i = 1, . . . , m, we can decompose x as the sum of m points, each
of which lies on the boundary of Cu∗max

i : x = x1 + · · · + xm, where xi ∈ bd(Cu∗max
i ), i =

1, . . . , m. Recall that the boundary of the Minkowski sum of the sets Cu∗max
i is computed from

points on the boundaries of Cu∗max
i where the outward unit normal vectors are equal. Hence,

x along with each xi have outward normal vectors which are parallel. Here the notion of
a normal vector at a point is the generalized normal to the hyperplane at a point. Since
the boundary of each Cu∗max

i is covered by a extremal trajectory, and is convex, it follows
that sup

z∈∂VC (x)
zT(Axi + biu∗maxi

) = 0, for some u∗maxi
such that |u∗maxi

| = u∗max. Let ui =



2.3. Using the null-controllable region to construct CCLFs 15

u∗maxi
+ u′i, then u′i ∈ [−umax − u∗maxi

, umax − u∗maxi
] = U′ 3 0. Using Eq.2.5, we obtain

D+VC(x) = sup
z∈∂VC (x)

zT(Ax(t) + Bu(t))

= sup
z∈∂VC (x)

zT

(
m

∑
i=1

(Axi + biui(t))

)

= sup
z∈∂VC (x)

zT

(
m

∑
i=1

(
Axi + bi(u∗maxi

+ u′i)
))

= sup
z∈∂VC (x)

zT

(
m

∑
i=1

(
Axi + biu∗maxi

)
+

m

∑
i=1

biu′i

)
= sup

z∈∂VC (x)
zT

m

∑
i=1

biu′i

(2.19)

We have established an upper-bound for the directional Dini derivative. We must show that
the infimum over the constrained control set is negative semi-definite (essentially achieved
by setting u′ = 0 in the expression for the Dini-derivative):

inf
u∈U

D+VC(x) ≤ inf
u′∈U ′

sup
z∈∂VC (x)

zT
m

∑
i=1

biu′i

≤ 0
(2.20)

Thus, x ∈ Π(VC), and hence 8Ω(VC , umax) ⊆ Π(VC).
Part 2: Let E be the set of all points where D+

AxVC(x) = inf
u∈Rm

D+
BuVC(x) = inf

u∈Rm
D+

Ax+BuVC(x) =

0. For every x0 ∈ E\0, we must show there exists an input trajectory u(t), such that
the closed–loop trajectory x(t) fails to remain within E\0 for all t ≥ 0 while satisfying
D+VC(x)|u(t) ≤ 0. By definition, since x0 is in the null-controllable region, there exists
at least one admissible input trajectory which drives the system to the origin. Hence the
trajectory under the input cannot remain in E for all times, as the Lyapunov function value
must eventually decay. It remains to show that a stabilizing input trajectory can always be
found while maintaining D+VC(x)|u(t) ≤ 0 for all times. We proceed to show this in general
true for all states in Cumax by contradiction, i.e., we assume that for a given x0 ∈ Cu∗max , all
stabilizing input trajectories u(t) result in D+VC(x(t))|u(t) > 0 and we denote the earliest
time that this happens as T with xT being the state (i.e., D+VC(x(t))|u(t) > 0). Since the
input is stabilizing, we know that xT is in the null-controllable region, and hence there exists
a u∗max < umax, such that xT lies on the boundary of the null-controllable region with input
constraint u∗max. That is, xT ∈ bd(Cu∗max). Let uT denote the set of all admissible input
trajectory which stabilize xT. Out of all possible trajectories in uT let

u∗1 = min
|u(t)|∞≤umax

max
t

VC(xu(t)) (2.21)

where xu(t) denotes the state profile corresponding to an input profile of u(t). Thus u∗1
represents the minimum (over all possible stabilizing trajectories) of the maximum (over
time) that the function VC(·) takes. It follows that the closed–loop trajectory must stay
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within the interior of the set Cumax . Hence,

u∗1 < umax (2.22)

Let u∗1 = u∗max + γ < umax with γ > 0. Since xT ∈ bd(Cu∗max), it follows that xT ∈
Cu∗max+γ/2. Denoting

u∗2 = min
|u(t)|∞≤u∗max+γ/2

max
t, x(0)=x0

VC(xu2(t)) (2.23)

and similar to Eq.2.22, it follows that u∗2 < u∗max + γ/2. Furthermore, noting that the
minimizations of Eq.2.21 and Eq.2.23 are exactly the same, albeit with a larger constraint in
Eq.2.21 compared to Eq.2.23, we get that u∗1 = u∗max + γ ≤ u∗2 < u∗max + γ/2, which is a
contradiction, implying γ cannot be a positive real number. Thus we have that for all states
within Cumax , an input trajectory exists which drives the state to the origin while maintaining
D+VC(x)|u(t) ≤ 0 for all times. This completes the proof of Theorem 2.1.

A consequence of Theorem 2.1, is that a control law that uses VC (and ensures
negative semi-definiteness of the CCLF derivative) could possess a stability region
which is equal to the null-controllable region and thus is maximal. This is formalized
in Corollary 3.1 below.

Corollary 2.1. For the system of Eq.3.1 with input constraints umax, the function VC is a
CCLF.

Proof. The maximal level set of VC is cmax(VC) = umax (Theorem 2.1). Since VC = umax

defines the closure of the null-controllable region, this set indeed has the maximum volume
for all possible control Lyapunov functions.

Remark 2.2. The boundary of the null-controllable region as the level sets of a Lyapunov
function has been used [25] to show that a saturated linear feedback law cannot stabilize
from the entire null-controllable region. Note that the existing results [25] do not use the
null-controllable region to construct control Lyapunov functions, or to develop a stabilizing
control law, but only as an analysis tool within the proof of the main result. The results [25],
however, further motivate the need of defining and constructing a CCLF that can eventually
be used to stabilize from the entire null-controllable region.

Remark 2.3. The use of polyhedral functions as control Lyapunov functions has recently re-
ceived more attention [15], [18], [19]. Specifically, polyhedral Lyapunov functions [18], [19]
have been generated which approximate with arbitrary precision the largest closed–loop con-
tractively invariant region. However, comparisons of this region with the null-controllable
region are not made. It follows from the analysis in this section that the null-controllable
set, albeit invariant, is not contractively invariant. Therefore, the closed–loop contractively
invariant region given by the polyhedral Lyapunov functions [15], [18], [19] are only subsets
of the null-controllable region.
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2.4 Conclusions

This works considered linear systems with input constraints and defined and pre-
sented a constructive procedure for constrained control Lyapunov functions (CCLFs).
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Chapter 3

Constrained Control Lyapunov
Function Based Model Predictive
Control Design

The results in this chapter have been published in:

Journal Articles

[1] M. Mahmood and P. Mhaskar, “Constrained control lyapunov function based
model predictive control design”, International Journal of Robust and Nonlinear
Control, vol. 24, no. 2, pp. 374–388, 2014.

3.1 Introduction

The presence of input constraints is ubiquitous in all applications of control sys-
tems. These constraints often represent the physical limitations of control actuators
(e.g., pumps, valves). Failure to account for such constraints within the controller
design can lead to significant performance deterioration and even closed–loop in-
stability. While possible for a system of integrators [2], [3], it is well established that
global and semi-global stability is generally not possible with constrained controls
for continuous linear time-invariant systems which are open–loop unstable. That is,
the presence of constraints limits the set of initial conditions from where a process
can be stabilized at a desired equilibrium point irrespective of the type of input ma-
nipulation used. This set is known as the null-controllable region. The desire to make
most use of the available control effort has motivated considerable research effort to-
wards the problem of designing controllers with the goal of achieving a closed–loop
domain of attraction which is equal or as close as possible to the null-controllable
region.

In particular, the problem of stabilization from the entire null-controllable region
has been considered [4] where a saturated linear state feedback controller is designed
that results in a closed-loop system having a domain of attraction that is arbitrarily
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close to the null controllable region. The result [4], however, only considers planar-
unstable systems. There exist several results regarding the design of linear feedback
controllers which provide stability estimates using quadratic Lyapunov functions
(e.g., [5]–[7]). One direction of work make use of the concept of invariant sets (see
e.g., [8]) which are used to estimate the domain of attraction under linear feedback
control. The most common form of invariant sets used are ellipsoidal since they
result from the level sets of quadratic Lyapunov functions.

Recently [9] the problem of estimating the domain of attraction using ellipsoid
sets has been considered. In [9] a sufficient condition is derived in terms of an aux-
iliary feedback matrix for determining if a given ellipsoid is contractively invariant
under saturated linear state feedback. This condition is used to formulate an op-
timization problem to find a maximal invariant ellipsoid set and also to simultane-
ously design the corresponding linear feedback gain. The quadratic functions which
yield the invariant sets are simple to use, however, the ellipsoid estimates they pro-
vide are inherently conservative. This has motivated the use of different forms of
Lyapunov functions. In particular, the work in [10] constructs composite Lyapunov
functions based on a set of quadratic functions. This composite Lyapunov function
is shown to provide better estimates of the closed–loop domain of attraction. In ad-
dition, polyhedral sets have been employed to construct invariant sets [8], [11], [12],
providing inherently more flexibility as they can approximate any convex shape at
the cost of increasing the complexity of the representation.

Another control design which has been used for this problem is that of model
predictive control schemes with the use of Lyapunov-based stability constraints [13],
[14]. Such designs allow explicit characterization of the stability region, via mimick-
ing the stability properties of Lyapunov-based bounded controllers, without assum-
ing initial feasibility of the optimization problem. More recently, a model predictive
controller was designed [15] which better utilizes the constraint handling capabili-
ties of model predictive controllers and thereby enhances the set of initial conditions
from where stability is achieved. Recently [16], the idea of a CLF was extended to
account for input constraints; resulting in the concept of constrained CLFs (CCLFs),
which explicitly accounts for presence of input constraints by maximizing the esti-
mate of the null-controllable region over the set of all possible CLFs. The results [16],
however, do not demonstrate the use of the CCLF within a control design, and the
need to couple it with an auxiliary controller to establish closed–loop stability from
all initial conditions in the null controllable region.

Motivated by the above considerations, this work considers unstable LTI systems
and presents a control design utilizing CCLFs to enable stabilizing the system from
all initial conditions within the null-controllable region. The rest of the manuscript
is organized as follows: First, in Section 3.2, we outline the class of systems and the
required definitions needed. In addition, in this section we review the recent results
from [16] where the boundary of the null-controllable region is used to construct a
constrained CLF. In Section 3.3, a control design which uses the CCLF to stabilize the
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entire null-controllable region is presented. Following this, in Section 3.3.2, an aux-
iliary control design is presented and subsequently illustrated through simulation
examples in Section 3.3.3. In Section 3.4, application to a nonlinear CSTR example is
presented and in Section 3.5, the results are summarized.

3.2 Preliminaries

We consider continuous-time LTI systems with input constraints, described by:

ẋ(t) = Ax(t) + Bu(t)

u ∈ U
(3.1)

where A ∈ IRn×n, B ∈ IRn×m, x ∈ IRn denotes the vector of state variables, u ∈ IRm

denotes the vector of manipulated input taking values in a nonempty convex subset
U of IRm, where U = {u ∈ IRm : ‖u‖∞ ≤ umax}, and umax ∈ IR+ denotes the upper
bound on the magnitude of each manipulated input ui. Without loss of generality,
we assume that the input constraints for each manipulated input is identical. If this
were not the case, the B matrix can be ’adjusted’ to absorb the true (symmetric)
input constraint. For a vector x ∈ IRn we will denote by ‖x‖ the Euclidean vector
norm, and by ‖x‖∞ = max

i
‖xi‖ the infinity norm. The matrix norm induced by the

Euclidean vector norm of a matrix P ∈ Rn×m is given by ‖P‖ = √σmax, where σmax

is the largest eigenvalue of the matrix PTP (also known as the largest singular-value
of P). The notation ‖ · ‖Q refers to the weighted norm, defined by ‖x‖2

Q = xTQx for
all vectors x ∈ IRn, where Q is a positive definite symmetric matrix and xT denotes
the transpose of the vector x. We denote the closure of a set X by X. The notation
X\Y, where X and Y are sets, refers to the relative complement, defined by X\Y =

{x ∈ X : x /∈ Y}. We consider systems where A is anti-stable (all eigenvalues of
A are in open right-half plane), and that (A, B) is a controllable pair. A state x0 is
said to be null controllable if there exists a T ∈ [0, ∞) and an admissible control
u(t) ∈ U such that the state trajectory x(t) of the system of Eq.3.1 satisfies x(0) = x0

and x(T) = 0, and the set of all null controllable states is called the null controllable
region. We will denote the null controllable region of the system of Eq.3.1 with
input constraint umax by Cumax . A state xue

e is said to be an equilibrium point with
input ue if Axue

e + Bue = 0. The set of all equilibrium points which are contained
in Cumax and have corresponding input values contained in the set U are denoted
by EU . It follows that EU = {xe : ue ∈ U , xe ∈ Cumax}. Within the simulation
examples, numerical integration is performed using the MATLAB solver ODE15s and
the optimization problems are solved using the MATLAB subroutine FMINCON.

To accommodate non-smooth Lyapunov functions we recall the following gen-
eralized derivative:
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Definition 3.1. [17] For a locally Lipschitz function V : Rn → R, the upper-right Dini
directional derivative of V with respect to Eq.3.1 at x is

D+
Ax+BuV(x) = lim sup

h→0+

V(x + h(Ax + Bu))−V(x)
h

(3.2)

and we denote D+
Ax+BuV(x) = D+V(x).

The following condition enables the use of a relaxed version of LaSalle’s invari-
ance principle:

Condition 3.1. [16] Given a continuous, positive definite, and radially unbounded func-
tion V : Rn → R, let E be the set of all points where D+

AxV(x) = inf
u∈Rm

D+
BuV(x) =

inf
u∈Rm

D+V(x) = 0. For all x0 ∈ E\0, there exists an input trajectory u(t), such that the

closed–loop trajectory is not invariant in the set E\0 and satisfies D+V(x)|u(t) ≤ 0.

We now state a generalized version of the classical definition of a control Lya-
punov function (CLF) for the system in Eq.3.1.

Definition 3.2. [16] A continuous, convex, positive definite, and radially unbounded func-
tion V : Rn → R such that

inf
u∈IRm

D+V(x) ≤ 0 (3.3)

for all x ∈ Rn and Condition 1 is satisfied is a CLF for the system in Eq.3.1.

Consider Ω defined as the set induced by the level sets of V,

Ω(V, c) = {x ∈ Rn : V(x) ≤ c} (3.4)

and Π as the region of the state space where the time derivative can be made nega-
tive semi-definite,

Π(V) = {x ∈ Rn : inf
u∈U

D+V(x) ≤ 0} (3.5)

It follows that Ω(V, c) is an estimate of the stabilizable region of the origin (using
the CLF V) if Ω(V, c) ⊆ Π(V). Moreover, for a given Lyapunov function V, the
maximal estimate of the stabilizable region can be determined with the largest level
set of V which is completely contained within Π(V). We will denote this maximum
level set by cmax(V):

cmax(V) = sup{c ∈ IR : Ω(V, c) ⊆ Π(V)} (3.6)

Let γ(V, c) denote the volume function of Ω(V, c) given by:

γ(V, c) =
∫
· · ·

∫
Ω(V,c)

dx1dx2 . . . dxn (3.7)
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For c ≤ cmax(V), γ(V, c) is the volume of the estimate of the stabilizable region. We
are now ready to postulate the definition of a constrained control Lyapunov function
(CCLF).

Definition 3.3. [16] Let V denote the set of all locally Lipschitz CLFs. A locally Lipschitz
CLF Vc : Rn → R such that

γ(Vc, cmax(Vc)) = max
V∈V

γ(V, cmax(V)), (3.8)

is a CCLF for the system in Eq.3.1.

Consider the system of Eq.3.1 with input constraint umax = 1, and for ease of
notation let C1 = C. The set C is characterized as (see [18]):

C =
⋃

T∈[0,∞)

{x = −
∫ T

0
e−AτBu(τ)dτ : u(τ) ∈ U} (3.9)

Using the null-controllable region C in conjunction with gauge functionals, we
define the following candidate CCLF:

VC(x) = ϕC(x) = inf{λ > 0 : x ∈ λC} (3.10)

The continuity, positiveness definiteness, and radial unboundedness of VC follow
from Proposition 3.12 in [17].

It follows that the level set VC(x) = α defines the boundary of the null-controllable
region with input constraint umax = α, which is also the boundary of Cα. Note it also
follows that Cα = αC.

Ω(VC , c) = {x ∈ Rn : VC(x) ≤ c} = Cc (3.11)

Theorem 3.1. [16] For the system of Eq.3.1 with input constraints umax, the function VC is
a CCLF.

3.3 CCLF-based control design

After the result of [19], there has been an abundance of results on the design of
stabilizing CLF-based feedback schemes. However, none have been able to achieve
stabilization from the entire null-controllable region (due to the designs being based
on CLF’s that inherently do not take constraints into account). The CCLF defined
in Eq.3.10 was shown to achieve negative semi-definiteness of the time derivative
over the entire null-controllable region, and hence can be used within a CLF-based
feedback scheme to achieve stabilization. In this section we present a predictive
control design (a discrete version of which was presented in [15], shown to achieve
practical stability) which is able to achieve stability from the entire null-controllable
region and also incorporate optimality considerations.
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3.3.1 Model Predictive Control Formulation

The predictive controller that guarantees stabilization from all initial conditions in
Cumax takes the form:

uMPC = argmin{J(x, t, u(·))|u(·) ∈ U} (3.12)

s.t. ẋ = Ax + Bu (3.13)

D+VC(x(τ)) ≤ 0, ∀ τ ∈ [t, t + T) (3.14)

x(τ) 6= x(t) ∀ τ ∈ (t, t + T] (3.15)

Eq.3.13 is the linear model describing the time evolution of the state x. The per-
formance index is given by

J(x, t, u(·)) =
∫ t+T

t

[
‖xu(s; x, t)‖2

Q + ‖u(s)‖2
R
]

ds + ρVC(x(T)) (3.16)

where ρ > 0, Q is a positive semi-definite symmetric matrix and R is a strictly posi-
tive definite symmetric matrix. xu(s; x, t) denotes the solution of Eq.3.1, due to con-
trol u, with initial state x at time t. The computed minimizing control trajectory u0(·)
over a specified time horizon T is applied to the plant at time t and the procedure is
repeated indefinitely.

The result in Theorem 3.2 below states how under the continuous implemen-
tation of the above predictive controller, stabilization of the system in Eq.3.1 and
feasibility of the optimization problem can be achieved for all initial conditions in
the null-controllable region.

Theorem 3.2. Consider the system of Eq.3.1 with input constraint umax under the MPC law
of Eqs.3.12–3.16. Then, given any x0 ∈ Cumax , the optimization problem of Eqs.3.12–3.16 is
feasible for all times, and lim

t→∞
x(t) = 0.

Proof. We divide the proof into two parts: In part 1 we show feasibility of the optimization
problem, and in part 2, we show the implementation of the optimal solution results in closed–
loop stability.
Part 1: Since x0 ∈ Cumax , it follows from Theorem 3.1 that there exists some input trajectory
such that the constraints in Eqs.3.14–3.15 are satisfied. Note in particular that the satisfac-
tion of the constraint in Eq.3.15 follows via Condition 1. Hence the optimization problem of
Eqs.3.12–3.16 is feasible for all times.
Part 2: Having established the feasibility of the optimization problem in Part 1 above, we
proceed to show closed–loop stability. The satisfaction of the constraints in Eqs.3.14–3.15
ensures that the value of the Lyapunov function is non-increasing along the closed–loop
trajectory. By condition 1, the closed–loop trajectory will not be invariant for all states in the
set E\0. Therefore, using an extension of the Lasalles invariance principle implies that the
closed–loop system is asymptotically stable. That is, lim

t→∞
x(t) = 0. This completes the proof

of Theorem 3.2.
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Remark 3.1. Note that the use of the CCLF renders the ‘contractive’ constraint different
from standard MPC based control designs. In particular, the constraint of Eq.3.14 requires
the generalized derivative, instead of the standard derivative of the Lyapunov function to
be negative semi-definite (instead of negative definite). Furthermore, as opposed to typical
‘contractive’ MPC designs, feasibility of the optimization problem is guaranteed (not as-
sumed) from all initial conditions in a well characterized set, and not just a subset of the
null-controllable region, but from all initial conditions in the null controllable region. Note
also that while the results of Theorem 3.2 are derived under the assumption of continuous
implementation of the control action, in practice the results can be implemented with an
‘implement and hold’ approach. This, and other practical issues are addressed in Section
3.3.2.

Remark 3.2. Using the idea that the value of the CCLF at a given state x̄ represents the
value of the input constraint u∗max which renders that state x̄ on the boundary of the null-
controllable region Cu∗max , an alternate interpretation of the control design can be developed.
In particular, the value of the CCLF at a given state represents the minimum control action
required to achieve stabilization. Thus, the predictive control design computes a control
action which drives the process in a direction where the minimum control action required to
achieve stabilization decreases.

Remark 3.3. While extensive results exist on the stabilization of linear systems, for anti-
stable systems most control laws only provide stability guarantees for subsets of the null-
controllable region. In particular, the work in [20] provides stability guarantees for subsets
(which can get arbitrarily close to the null controllable region) of the null controllable region,
and the control design becomes practically impossible to implement as larger stability regions
are sought. Moreover, in model predictive control approaches, the idea used is to estimate the
time that it would take for all initial conditions in the ‘desired’ stability region to reach the
origin and to incorporate this information via large or variable horizon, leading to compu-
tationally expensive optimization problems. In all of these approaches, the idea remains the
same: require the state to go to the origin (or some neighborhood of the origin) by some
time (the horizon) and pick a large enough horizon to ensure feasibility of the optimization
problem. When the horizon is variable, the optimization problem is in general difficult to
solve since the number of decision variables in the optimization problem itself keep changing.
When the horizon is fixed, the number of decision variables that have to be retained grows
as larger and larger subsets of the null controllable region are desired as the stability region.
Note that in our result, feasibility from the null controllable region is achieved via the appro-
priate choice of the control Lyapunov function. In contrast, existing predictive controllers,
which assume initial feasibility of the optimization problem, are not guaranteed to be feasible
from all initial conditions in the null controllable region. The existing predictive controllers,
however, can very well be used in conjunction with the proposed controller within a hybrid
predictive control framework (along the lines of [21], [22]) to enable stabilization from the
null-controllable region.
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Remark 3.4. The use of the boundary of the null-controllable region as the level sets of a
Lyapunov function was also used within [23] where it was shown that a saturated linear
feedback law cannot in general stabilize from the entire null-controllable region. The result
in [23] considered three-dimensional LTI systems with three unstable modes to illustrate the
point. Note that [23] does not use the null-controllable region based Lyapunov function to
construct control Lyapunov functions, or to develop a stabilizing control law, but only as
an analysis tool within the proof of the main result. The results of [23], however, further
motivate the need of defining and constructing a CCLF that can eventually be used to sta-
bilize from the entire null-controllable region (we illustrate stabilization from the entire null
controlable region for the example of [23] in Section 3.3.3).

Remark 3.5. The constraint in Eq.3.15 ensures that if the state at a given time is an equilib-
rium point with an admissible input value ue, that is, it is contained within the set of equi-
librium points EU , then the computed control action which satisfies the constraint in Eq.3.14
must be different than ue (to prevent the closed–loop system getting ‘stuck’ at this value of
the state). This is achieved by ensuring that the state during the next time step does not
become equal to the value of the state at the time of the control calculation (Eq.3.15). Again,
in contrast to existing MPC designs, Eq.3.15 is an additional constraint that is required to
be enforced and is instrumental in yielding the null controllable region as the closed–loop
stability region (i.e., it prevents the state getting stuck at some internal point). The feasi-
bility of this constraint follows from the fact that VC satisfies Condition 1. We note that for
single-input systems the set EU must be contained within the set E as defined in Condition
1. This follows from the fact that the vectors Ax and B are parallel on the set EU , and hence
the system can only transverse in a single direction regardless of the magnitude of the control
action applied. This restriction to a single direction under the continuous implementation of
the predictive controller can necessitate instantaneous switching of the control action, and
hence make practical implementation a problem. When such a situation exists, an auxiliary
continuous control law presented in section 3.3.2 can be utilized to stabilize from all initial
conditions within the set EU .

3.3.2 Auxiliary control design

Although the predictive control design in Eqs.3.12–3.16 is able to stabilize from all
initial conditions in the null-controllable region, implementing the control action in
a discrete fashion could result in chattering [24] of the control action. In this sec-
tion we present an auxiliary continuous control design that augments the predictive
controller in Eqs.3.12–3.16 to stabilize all states in the set EU without requiring in-
stantaneous switching of the control action by switching (one time) the control law
instead. In particular, the auxiliary controller is implemented when the state lands
within the set EU . The key idea in the design of the auxiliary controller is to track
a moving equilibrium value. Since all states within EU are equilibrium points with
admissible control values, we construct a linear feedback control law with the goal



3.3. CCLF-based control design 27

of stabilization at a moving equilibrium point. We show that an admissible feed-
back can always be found which makes the closed-loop system stay arbitrarily close
to the moving equilibrium. By making the equilibrium decay to the origin, closed–
loop stability of the origin follows.

We begin with some preparatory definitions. Let xs ∈ EU denote an equilibrium
point for the system in Eq.3.1 and us ∈ U the unique corresponding admissible
equilibrium input value. It follows that xs = −A−1Bus. We design the control law
as follows: Let xs, and hence also us, be a continuously differentiable function of
time, i.e., xs(t) = −A−1Bus(t). us(t) is designed to decay exponentially as

u̇s(t) = −kus(t) (3.17)

where k > 0 is a design parameter. It follows that,

ẋs(t) = −A−1Bu̇s(t)
= A−1Bkus(t)
= A−1Bke−ktus(0)

(3.18)

We denote the deviation of the state from the (instantaneous) equilibrium state
xs(t) as x̃(t) = x(t)− xs(t). The theorem presented below states that for all initial
conditions within the set EU , a decay rate k and a gain matrix K (defined below) can
be found such that a linear state feedback control law generates admissible control
values and the closed–loop state x(t) remains arbitrarily close to the moving equi-
librium xs(t). Furthermore, as the (desired) equilibrium point decays to the origin,
the state x(t) follows, resulting in closed–loop stability.

Theorem 3.3. Given any ε > 0, and x(0) ∈ EU , there exists a constant k, and gain matrix
K, such that the feedback control law u(t) = Kx̃(t) + us(t) remains admissible, that is
u(t) ∈ U and ‖x̃(t)‖ < ε, for all times t ≥ 0. Furthermore, as xs(t) → 0, we have
x(t)→ 0.

Proof. For an x(0) ∈ EU , we denote the unique corresponding admissible equilibrium input
value us(0). Pick K so that A + BK has eigenvalues within the open left complex-plane
and determine an ε∗ such that ‖K‖ ≤ umax−‖us(0)‖∞

ε∗ . Given any ε > 0, denote ε∗∗ =

min{ε, ε∗}. We first show that for such a choice of K, under the feedback u(t) = Kx̃(t) +
us(t), the norm of the deviation variable x̃(t) remains less than ε for all times.

x̃ = x− xs

˙̃x = ẋ− ẋs

= Ax + Bu− A−1Bke−ktus(0)
= Ax̃ + BKx̃ + Axs + Bus − A−1Bke−ktus(0)
= (A + BK)x̃− A−1Bke−ktus(0)

(3.19)
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Let AC = A+ BK. It follows that the solution of the non-autonomous linear system is given
by,

x̃ = eACt x̃(0)−
∫ t

0
eAC(t−τ)A−1Bke−kτus(0)dτ

= 0−
∫ t

0
eAC(t−τ)A−1Bke−kτus(0)dτ (since x̃(0) = 0)

(3.20)

We take the norm of the above expression.

‖x̃‖ = ‖
∫ t

0
eAC(t−τ)A−1Bke−kτus(0)dτ‖

≤
∫ t

0
‖eAC(t−τ)A−1Bke−kτus(0)‖dτ

≤
∫ t

0
‖A−1Bke−kτus(0)‖‖eAC(t−τ)‖dτ

≤ k‖A−1Bus(0)‖
∫ t

0
‖eAC(t−τ)‖dτ

(3.21)

Since Ac is stable, we know that there exists α > 0, and β > 0 such that ‖eAct‖ ≤ αe−βt.
Hence

‖x̃‖ ≤ k‖A−1Bus(0)‖
∫ t

0
‖eβ(t−τ)‖dτ

= α
β (1− e−βt)k‖A−1Bus(0)‖

≤ α‖A−1Bus(0)‖
β k

(3.22)

We choose the constant k, such that k < βε∗∗

α‖A−1Bus(0)‖ so that we get

‖x̃‖ ≤ ε (3.23)

This holds for any K which places the eigenvalues of AC in the open left-plane. It remains to
show that the feedback law u(t) = Kx̃(t) + us(t) remains admissible.

‖u(t)‖∞ = ‖Kx̃(t) + us(t)‖∞

≤ ‖Kx̃(t)‖∞ + ‖e−ktus(0)‖∞

≤ ‖K‖‖x̃(t)‖+ ‖e−kt‖‖us(0)‖∞

< ‖K‖ε∗∗ + ‖us(0)‖
≤ umax−‖us(0)‖∞

ε∗ ε∗∗ + ‖us(0)‖∞

≤ umax

(3.24)

Therefore the control law remain admissible. Since ‖x̃‖ < ε for all times, and x̃(t) → 0, as
well as xs(t)→ 0 as t→ ∞, x(t)→ 0. This completes the proof of Theorem 3.3.

Remark 3.6. Note that the intent and function of the auxiliary controller is inherently
different from the ‘terminal’ set (see, e.g., [25]) and ‘terminal’ controller used in existing
MPC designs, as well as from the idea of sliding mode controllers. In particular, the set upon
reaching which the ‘auxiliary’ controller is activated is not a set close to the origin (as in
the MPC designs with a terminal set); it could very well be a hyper plane cutting across the
entire null-controllable region. The second key difference is that the MPC is not intended
to drive the system states towards this set (as is done in existing MPC designs, or the idea
behind sliding mode controllers). The auxiliary control design is only in place so that if the
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system state happens to enter this set, instead of possibly being driven in and out of this
set by the MPC (resulting in chattering), the system is smoothly driven to the origin. We
finally note also that since the MPC presented is a continuous time formulation and uses
the null-controllability region as the CCLF, it requires suitable modifications (as with most
other MPC designs) for the purpose of online implementation (see the simulation example
for details).

3.3.3 Simulation examples

To ease implementation of the control design, we make use of the polyhedral ap-
proximations of the null controllable regions derived in [18]. In particular, using
the polyhedral set notation used in [17], the polyhedral approximation of the null-
controllable region C is given by

C̃ = {x : ‖Fx‖∞ ≤ 1} (3.25)

where F is a proper Rr×n full column rank matrix. The rows of the matrix F represent
faces or sectors of the polytope C̃ which approximates C. The rows can be formed by
using the analytic characterization given in [18] to generate points which are on the
boundary of the null-controllable region. By using such points as vertices and taking
the convex hull, linear sectors can be generated which join together to approximate
the boundary of the null-controllable region. The the polytope has a total of r sectors,
with each sector containing n vertices.

Similar to Eq.3.10, we define the gauge functional of the set C̃ as the approximate
CCLF VC̃ , which is given by

VC̃(x) = ‖Fx‖∞ (3.26)

We note that the quality of the approximation of the set C̃ is directly related to the
number of rows of the matrix F, which in turns grows significantly with the dimen-
sion n. Therefore there exists a tradeoff between the quality of approximation and
the computational burden of dealing with a large number of sectors for the poly-
tope. Nevertheless, the polyhedral representation renders the CCLF approximation
in a functional form which can easily be implemented within the control design
presented in Section 3.3. Furthermore, the constraint of Eq.3.14 is implemented as
VC(x(t + ∆)) ≤ VC(x(t)) with ∆ = 0.05.

To construct the matrix F (for both the examples in this section), points on the
null-controllable regions of each single-input subsystem are first generated using
the expressions given in [18]. The Minkowski sum of all the boundaries of the null-
controllable regions for each of the single-input subsystems is then computed. By
taking the convex hull of this Minkowski sum, the approximate boundary of the
null-controllable region is computed. In addition, this convex hull yields the faces
of the polytope which define the rows of the matrix F in Eq.3.26. The first example
illustrates the use of the Minkowski sum to generate and use the CCLF, while the



30
Chapter 3. Constrained Control Lyapunov Function Based Model Predictive

Control Design

second example illustrates the need to use the auxiliary controller (and demonstrate
stabilization of the example in [23]).

Example 3.1. Consider a linear system of the form of Eq.3.1 with A =

 0.8 0 0
0 0.8 −2.0
0 2 0.8

,

B =

 1 2
1 −1
1 −1

 and umax = 1. The matrix A is exponentially unstable with the eigen-

values: 0.8, 0.8± 2i. We demonstrate the ability of the predictive controller to stabilize by
using a couple of initial conditions. In designing the predictive controller, the weights are
chosen as Q = 0.001I, R = 0.1I, and ρ = 10. We first pick an initial condition x0 =

[3.1737, −0.3450, 0.5322], where VC(x0) = 0.97 and try to stabilize it using the proposed
predictive controller. As can be seen from the solid line in Fig.3.1, closed–loop stability is
achieved. Similarly, we also consider the initial condition x0 = [−1.284, 1.7559, −1.1127],
where VC(x0) = 0.97. To demonstrate the effect of the choice of the objective function, for
this initial condition we use: Q = 0, R = 0, and ρ = 1, which essentially requires the
optimization problem to compute a control action that causes as fast a decay of the CCLF
as possible. As expected (shown by the dashed line in Fig.3.1), the trajectory first travels
along the path of sharpest decay (and results in a bang-bang control action) up-until the
point where the extreme values of the control actions do not result in the sharpest decay of
the CCLF. Closed–loop stability is again achieved. Fig.3.1 also shows the evolution of the
Lyapunov function for these two scenarios (solid and dashed lines respectively).

Example 3.2. Next consider a linear system of the form of Eq.3.1 with A =

 0.2 1 0
0 0.2 0
0 0 0.4

,

B =

 1
1
1

 and umax = 1. The system A is exponentially unstable with the eigenvalues

of A being: 0.2, 0.2, and 0.4. In this example we use: Q = 0, R = 0, and ρ = 1 (that is
we again minimize the value of the CCLF at every time step), and demonstrate the need for
the use of the auxiliary controller. To demonstrate the stabilization properties of the proposed
predictive controller, we pick two initial conditions x0 = [2.4570, −2.6762, −2.0325],
where VC(x0) = 0.98 and x0 = [3.6679, −3.6736, −2.3106], where VC(x0) = 0.95. As
can be seen from the solid and bold solid lines in Fig.3.2, closed–loop stability is achieved in
both cases. Fig.3.2 also shows the evolution of the Lyapunov function for these two scenarios
(solid and dashed lines respectively). Note that at time t = 257 for the first initial condition,
and t = 235 for the second initial condition, the state reaches the set EU and hence the con-
trol law is switched from the predictive controller to the auxiliary control design from Section
3.3.2. The gain matrix K is chosen as K = [−0.7200 − 7.3800 10.0000], which places the
closed–loop eigenvalues at −0.1, −0.4, and −0.6. The constant k is chosen to ensure the
deviation variable x̃(t) remains less than ε = 0.01. As can be seen from the state–space
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evolution in Fig.3.2, the state is able to track the moving steady–state and closed–loop sta-
bility is achieved. Note that under the predictive controller, the CCLF value does not strictly
decrease. In fact, just prior to the switch to the auxiliary controller, the Lyapunov function
value remains constant, that is the state transverses on a level set of the Lyapunov function,
underscoring the need for the design and use of the auxiliary controller.

Remark 3.7. One recognizes that it is not possible to practically implement the continuous-
time MPC law given by Eqs.3.12–3.16, thus a discretized version of the constraint in Eq.3.14
is used and the MPC formulation is implemented with an ‘implement and hold’ approach.
Using a sufficiently small time step for the control implementation, in conjunction with the
switched auxiliary control law of section 3.3.2, results in a implementable control scheme
that would yield practical stability.

Remark 3.8. The use of polyhedral functions as control Lyapunov functions has recently re-
ceived more attention [8], [11], [12]. Specifically, the work in [11], [12] generates polyhedral
Lyapunov functions which approximates with arbitrary precision the largest closed–loop con-
tractively invariant region. However, comparisons of this region with the null-controllable
region are not made. It follows from the analysis in this section that the null-controllable set,
albeit invariant, is not contractively invariant. Therefore, the closed–loop contractively in-
variant region given by the polyhedral Lyapunov functions in [8], [11], [12] are only subsets
of the null-controllable region.

3.4 Application to nonlinear CSTR example

In the previous section, we showed the construction of CCLF’s based on the knowl-
edge of the null controllable region for linear systems. In this section we demon-
strate an application of the idea to nonlinear systems and to this end, present an
MPC design with the CCLF restricted to a quadratic form, albeit determining the
‘best’ quadratic form of the CCLF.

To this end, consider a continuous stirred tank reactor where an irreversible, first-
order exothermic reaction of the form A k→ B takes place. The mathematical model
for the process takes the form:

ĊA =
F
V
(CA0 − CA)− k0e

−E
RTR CA

ṪR =
F
V
(TA0 − TR) +

(−∆H)

ρcp
k0e

−E
RTR CA +

Q
ρcpV

(3.27)

where CA denotes the concentration of the species A, TR denotes the temperature of
the reactor, Q is the heat added to the reactor, V is the volume of the reactor, k0, E, ∆H
are the pre-exponential constant, the activation energy, and the enthalpy of the reac-
tion and cp and ρ are the heat capacity and fluid density in the reactor. The values of
all process parameters can be found in Table 3.1. The control objective is to stabilize
the reactor at the unstable equilibrium point (Cs

A, Ts
R) = (9.83 Kmol/m3, 344.23 K)
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using the rate of heat input, Q as the manipulated input with the following con-
straint: |Q| ≤ 32 KJ/s.

We consider quadratic CCLFs of the form V(x) = xTPx, where P is a symmetric
positive definite matrix. The choice of the Lyapunov function is therefore equivalent
to choosing the matrix P. This construction procedure for CCLFs can be interpreted
as consisting of two components. The first being the satisfaction of a local CLF, and
the second being the maximization of the stability region estimate. The condition of a
candidate P matrix being a local CLF is checked using the linearized system matrices
of Eq.5.38. The second condition of maximization of the level set is implemented
using the nonlinear equations. In particular, the boundaries of the set Π are mapped
as nonlinear equations. Then the maximization of a given matrix P to find the largest
level set within the Π region is computed using a nonlinear program. This results in
the following dual layer optimization problem.

J(P) = max
P

max
c

√
c2

det(P)
s.t. p1 > 0

p12 > 0
p1 − p2

12 > 0
Ω(P, c) ⊆ Π(P)

(3.28)

where P =

[
p1 p12

p12 1

]
, Ω(P, c) is the set induced by the level-set xTPx = c, and

Π(P) is the region of the state space where the time derivative can be made negative
semi-definite. Note that the boundaries of the set Π(P) can be found by setting the
time derivative of V to zero and taking extremal control values. The objective func-
tion in the above optimization problem is the area of the estimate of the closed–loop
stability region given by the quadratic CCLF xTPx. The first three constraints ensure
the matrix P is a local CLF (i.e. it is a CLF for the linearized system). These condi-
tions are necessary and sufficient conditions for quadratic CLFs [26]. Finally, the last
constraint forces the level-set is contained within the region Π. The optimization
searches over the space of quadratic CCLFs which are maximal.

For the purpose of comparison, we first construct a quadratic Lyapunov function
by solving the Riccati inequality with the linearized system matrices Alin,Blin and

Qriccati =

(
1 0
0 0.0001

)
. This results in the following matrix:

P =

(
1 −0.0032

−0.0032 0.0013

)

where AT
linP+ PAlin− PBlinBT

linP+ Qriccati = 0. The estimate of the region of control-
lability can be seen in Fig.3.3 and is denoted by Ωriccati. The enclosed area is 546.2.
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The solution to the optimization problem results in the matrix:

P =

(
1 0.3779

0.3779 0.1428

)

The estimate of the region of controllability can also be seen in Fig.3.3 and is denoted
by ΩCCLF. The enclosed area is 1.3853× 106, depicting a stability region clearly larger
than the one obtained by solving the Riccati inequality.

To illustrate the enhancement in the set of initial conditions from where closed–
loop stability can be achieved using the constructed CCLF, we pick an initial con-
dition CA(0) = 22 kmol/m3, TR(0) = 386.23 K outside Ωriccati but inside ΩCCLF.
A Lyapunov-based predictive controller that requires the value of the Lyapunov
function to decrease is implemented. A standard objective function comprising of a
penalties on the state and input trajectories is used. The parameters in the objective
function are chosen as Q = qI, with q = 0.1, and R = 0.1. A control and predic-
tion horizon of 1 min is used, along with a sampling time of 0.01 min. Using the
quadratic Lyapunov function generated using the Riccati inequality, we see that the
Lyapunov function cannot be made to decay from this initial condition, and the state
trajectory is unable to reach the desired steady–state. This can be seen as the dashed
line in Fig.3.3. In contrast, using the quadratic CCLF, the CCLF value can be made
to decay, and the system eventually reaches the desired steady–state (as shown by
the solid line in Fig.3.3).

3.5 Conclusions

This works considered linear systems with input constraints with the objective of
designing a controller that guarantees stability from all initial conditions in the null
controllable region (the set of initial conditions from where the system can be stabi-
lized). To this end, a recently developed procedure for construction of constrained
control Lyapunov functions (CCLF) was utilized within a Lyapunov-based model
predictive controller coupled with an auxiliary control design to achieve stabiliza-
tion from all initial conditions in the null-controllable region. Illustrative simulation
examples were presented and implementation to nonlinear systems was demon-
strated via a chemical reactor example.
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TABLE 3.1: Chemical reactor parameters and steady–state values.

V = 0.1 m3

R = 8.314 KJ/Kmol · K
CA0s = 10.0 Kmol/m3

TA0s = 310.0 K
Qs = 0.0 KJ/min
∆H = −4.78× 104 KJ/Kmol
k0 = 72× 109 min−1

E = 8.314× 104 KJ/Kmol
cp = 0.239 KJ/kg · K
ρ = 1000.0 kg/m3

F = 100× 10−3 m3/min
TRs = 395.33 K
CAs = 0.57 Kmol/m3
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FIGURE 3.1: State–space trajectories and profiles of the in-
puts u1, u2 and the Lyapunov function for Example 1. The
figure demonstrates stabilization from two initial conditions:
x0 = [3.1737, −0.3450, 0.5322] (solid line), and x0 =

[−1.284, 1.7559, −1.1127] (dashed line).
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FIGURE 3.2: State–space trajectories, input profile and the Lya-
punov function evolution for Example 2. Initial conditions:
x0 = [2.4570, −2.6762, −2.0325] (solid lines), and x0 =
[3.6679, −3.6736, −2.3106] (bold solid line depicting the state trajec-
tory and dashed line depicting the input profile and Lyapunov func-
tion). The simulation example demonstrates the need for the auxil-

iary controller.
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FIGURE 3.3: CCLF constructed for nonlinear CSTR. Estimates of con-
trollable region given by proposed optimization (Ωopt), and by solv-
ing Riccati inequality (Ωriccati). The dotted lines show the implemen-
tation of an existing contractive MPC design resulting in instability
while the solid lines show the implementation of the proposed CCLF
based MPC design from the same initial condition leading to stabi-

lization.)
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Chapter 4

Controllability Minimum Principle
Based Construction of the Null
Controllable Region for Nonlinear
Systems

The results in this chapter have been submitted for publication to the following:

Journal Articles

[1] M. Mahmood, T. Homer, and P. Mhaskar, “Controllability minimum princi-
ple based construction of the null controllable region for nonlinear systems”,
Submitted., 2020.

4.1 Introduction

In order to achieve improved control performance and closed–loop stability, the
complexity of the system dynamics must be considered. This complexity can man-
ifest itself in many forms, one such form being nonlinear dynamics. Such behavior
often arises in chemical processes due to radiative heat transfer phenomena, com-
plex reaction mechanisms, and Arrhenius temperature dependence of reaction rates.
Nonlinear systems often exhibit multiple equilibria, of which few can be unstable.
Such unstable equilibria can be desired operating points due to economic consid-
erations. Thus the stabilization of the system to unstable equilibrium points is an
important control problem. Moreover, the presence of input constraints makes this
task more demanding. Accounting for input constraints has considerable practical
implications as all actuators have physical limitations. Coupling the presence of in-
put constraints with unstable equilibrium can give rise to the scenario where the
input constraints limit the set of states which can be stabilized to the origin. This set
has been termed the null controllable region (NCR) [2].

The realization of the existence of an (finite) NCR naturally gives rise to the prob-
lem of designing a controller where the closed–loop domain of attraction is equal or
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as close as possible to the NCR. Solution approaches to this problem have been dom-
inated by Lyapunov-based techniques. The use of Lyapunov functions, although
rooted in the topic of stability analysis of dynamical systems, has since extended
to the domain of control analysis and design through the idea of control Lyapunov
function (CLF) ([3], [4]). CLFs are generalized Lyapunov functions which are used
to construct stabilizing control laws while also providing estimates of the controlla-
bility region. Although construction procedures for CLFs do exists, such procedures
focus on unconstrained CLF construction. That is, the construction of the CLF does
not recognize the presence of input constraints, but the analysis of the controllability
region accounts for the presence of input constraints after the fact.

The results in [5] extended the idea of a CLF to account for input constraints,
resulting in the concept of constrained control Lyapunov functions (CCLF). These
functions explicitly account for the presence of input constraints by maximizing the
estimate of the NCR over the set of all possible CLFs. Such functions also enable
control designs with optimal stability regions which are equal to the NCR. Most ex-
isting results, however, have focused on linear systems [6]. Some recent results have
considered nonlinear systems and provided some practical control designs which
utilize CCLFs within a predictive control framework [7], [8]. However, the formal
development of stabilization using CCLFs for nonlinear systems along with explicit
control design is still lacking. More recently, the work in [9] presented some com-
putational techniques for NCR construction. This work utilizes a simulation-based
approach resulting in high computational cost both for NCR construction and uti-
lization in the control design.

In summary, a general, computationally tractable procedure to generate the NCR
for nonlinear systems remains an open problem. In this work we consider this prob-
lem for unstable nonlinear systems where constraints on the control action induce a
NCR boundary. Our approach provides a boundary condition for the well-known
Controllability Minimum Principle resulting in computationally tractable procedure
to generate the trajectories which form the boundary of the NCR. The rest of the
manuscript is organized as follows: first, in Section 5.2, we outline the class of sys-
tems and the required notion, definitions, and assumptions. In addition, we formu-
late the problem statement and review results on characterizing the NCR. In Section
4.3, a construction procedure to generate the NCR bounded trajectories is presented.
In Section 5.4, several examples are presented to demonstrate the NCR construction
procedure. Finally, in Section 6.6 we summarize our results.

4.2 Preliminaries

4.2.1 Notation

If X is a set X◦,X and ∂X denotes the interior of X, the closure of X, and the boundary
of X respectively. The Euclidian norm on Rn is denoted by ‖ · ‖.
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4.2.2 Problem Formulation

Consider single-input nonlinear systems that are affine in the control

ẋ(t) = f (x(t)) + g(x(t))u(t) (4.1)

where x(t) ∈ M ⊂ Rn, M being an open connected set, denotes the state vector
and u(t) ∈ U (A) denotes the scalar control input where U (A) = {u : R → A ⊂
R, locally integrable} are the admissible controls. We assume f , g : Rn → Rn are
smooth analytic vector fields defined over a smooth domain M which contains the
origin in its interior with f (0) = 0. We assume the input constraint range is symmet-
ric Uµ = [−µ, µ], µ > 0 and we refer to the system in Eq.5.1 with control constraint
set U (Uµ) as Σ. We also consider the unforced system ẋ(t) = f (x(t)) + g(x(t))u0

obtained from Eq.5.1 using a constant input value of u0 ∈ U (Uµ) and the nominal
system obtained using the nominal input value of u = 0. A solution of the system
in Eq.5.1 from initial condition x0 and an admissible control u at time t is called
the controlled solution and is denoted by ϕ(t, x0, u(t)). A point xeq is an equilib-
rium point of the system if there is a constant control action u(t) = u0, such that
f (xeq) + g(xeq)u0 = 0. Without loss of generality, it is assumed that the origin is an
isolated equilibrium point of the nominal system (i.e. f (0) = 0). An equilibrium
point xeq is said to be hyperbolic if none of the eigenvalues of the Jacobian for the
linearized system (linearized at xeq) have zero real parts. For a given equilibrium
point, if all the eigenvalues of Jacobian have nonzero imaginary parts then we call
this equilibrium point purely periodic. Also, a hyperbolic equilibrium point is said
to be unstable if at least one eigenvalue has a positive real part and stable otherwise.
For a hyperbolic equilibrium point xeq, we can decompose the tangent space Txeq(M)

as the direct sum of stable Es(xeq) and unstable Eu(xeq) subspaces. The subspaces
are denoted as Es(xeq) = {v1, v2, · · · , vns}, Eu(xeq) = {w1, w2, · · · , wns}. The vectors
v1, v2, · · · , vns and w1, w2, · · · , wns are generalized eigenvectors whose eigenvalues
are stable (negative) and unstable (positive). Note that ns + nu = n. A dynamical
system is said to be structurally stable if perturbations to the system preserve the qual-
itative characteristics of the dynamics. That is, there exists a homeomorphism which
maps orbits of the original system to orbits of the perturbed system while also pre-
serving the direction of time. We say that y is an ω-limit point of x associated with the
controlled solution ϕ(t, x0, u(t)) if there exists a sequence {ti} with limi→∞ ti = ∞
such that limi→∞ ϕ(ti, x, u(ti)) = y. The set of all ω-limit points of x associated with
ϕ(t, x0, u(t)) is called the ω-limit set of x, denoted by ω(x, u). Let the multiplicity of
the equilibrium points (for a given input value) be k (note that due to the assump-
tion of the structural stability below, the multiplicity is independent of the value of
u). The equilibrium set Êi(A) ⊂ M ×R of the system Σ and its projection into M,
Ei(A) are defined by

Êi(A) = {(xi, u0) ∈ M×R| f (xi) + g(xi)u0 = 0, u0 ∈ A} (4.2)
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where i indexes the multiplicity of the equilibrium points. Further,

Ei(A) = {xi ∈ M |(xi, u0) ∈ Êi(A)} (4.3)

Finally let Ê(A) =
⋃k−1

i=0 Êi(A), and E(A) =
⋃k−1

i=0 Ei(A). We use the subscript 0
to denote the subset which contains the origin (i.e 0 ∈ E0(A)). As stated in the
assumptions below the origin is assumed to be an unstable equilibrium point.

The system Σ is called controllable from x1 to x2 in finite time T if there exists an
admissible control trajectory u(t) ∈ U (Uµ), t ≤ T such that the solution trajectory
satisfies ϕ(T, x1, u) = x2. The set of all points x where y is controllable from in time
T for the system Σ using admissible inputs from U (Uµ) is the time T controllable set
and is denoted by CUµ(y, T). We also write CUµ(y) =

⋃
0≤t CUµ(y, t) and refer to this

as the controllable set. The system Σ is called small-time locally controllable (STLC) at
an equilibrium point xeq if CUµ(xeq, T) contains a neighborhood of xeq for all T > 0.
We also say the system Σ is STLC with small controls at an equilibrium point xeq if
CUµ(xeq, T) contains a neighborhood of xeq for all T > 0. The system Σ is called large-
time locally controllable (LTLC) at an equilibrium point xeq if there exists a time T > 0
such that CUµ(xeq, T) contains a neighborhood of xeq. In this paper the focus is on the
null-controllable region (NCR) CUµ(0) which will be abbreviated by Cµ. We recall that
the boundary of the NCR ∂Cµ is semi-permeable (if x(t) starts in the exterior of Cµ,
it can never reach ∂Cµ) and comprised of solution trajectories.

Consider the system Σ under the following assumptions:

1. The nominal system is structurally stable for all u ∈ R.

2. The origin of the system is unstable (i.e. the set E(Uµ) is nonempty and con-
tains the origin). Moreover, the linearized system around each (xeq, ueq) ∈
Ê(Uµ) is controllable, not purely periodic and hyperbolic.

3. The system Σ around each (xeq, ueq) ∈ Ê(Uµ) is LTLC with Uµ only if its STLC
with Uµ.

4. The set Cµ is open, connected and diffomorphic to Rn.

5. The sets Ei(Uµ), i 6= 0 are outside of Cµ.

6. There exists a smooth function ueq : E0(Uµ) → R such that for each xeq ∈
E0(Uµ), f (xeq) + g(xeq)ueq(xeq) = 0 and E0(Uµ) ⊂ M.

7. Let ϕ(t, x?, u?) denote a controlled solution which forms part of the boundary
∂Cµ. The limit set ω(x?, u?) is nonempty and contains only equilibrium points.

This setup leads to the following two problems:

1. Characterizing the boundary trajectories which define the set Cµ.

2. Designing a stabilizing control action for the system Σ from all initial condi-
tions in Cµ. This problem is address in Chapter 4 of this Thesis.
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Remark 4.1. In general, the equilibrium points induced by different input values can bi-
furcate and also change properties such as controllability [10]. The structural stability of
the system ensures that equilibrium points do not bifurcate and simplifies the development
which follows. Our analysis can be extended to handle the situation where the equilibrium
points bifurcate by carefully considering which branch of the bifurcation needs to be analyzed
further. In the interest of focusing on the key result in this paper, we leave this analysis to
future work.

Remark 4.2. The set E0(Uµ) defines a continuum of equilibrium points which contains the
origin and is obtained by varying the input in the unforced system smoothly over U. The
function ueq : E0(Uµ)→ R which maps each control equilibrium value to the corresponding
equilibrium point is assumed to be smooth. A sufficient condition for this assumption to hold
is given in [11] and uses the dimension of function g and the boundedness of the function
ueq. Moreover, a geometric condition on f and g was derived in [12] to verify the set E0(Uµ)

lies in the interior of Cµ. Under Assumption 5, we consider the problem where there is only
a single equilibrium manifold E0 within Cµ and other branches arises due to multiplicity of
the equilibria lie outside of the NCR.

Remark 4.3. Assumption 2 refers to the classic Kalman-Rank-Condition and is a sufficient
condition for the system Σ to be STLC with small controls at xeq. Note that the unstable
nature of the unforced system along with the constraints on the control input render the
system only locally controllable. This ensures the boundary trajectories exists and makes the
problem at hand well defined.

Remark 4.4. Using results from linear control theory [13], one can show that the equilib-
rium manifold Ei corresponding to a set of purely periodic equilibrium points will be con-
tained within the interior of the NCR. In this work, we focus on systems with non-purely
periodic equilibria and show that the equilibrium points corresponding to extremal values of
the control input lie on the boundary of the NCR. This fact will then be used to generate the
boundary trajectories of the NCR. Note that the periodic nature of the equilibrium can be
easily verified by analyzing the linearized system.

Remark 4.5. Under Assumption 3 we preclude systems which are LTLC with strictly pos-
itive (or negative) controls. In Lemma 4.3 we show that STLC of the linearized system with
strictly positive (or negative) controls is a sufficient condition for STLC of the nonlinear
system with strictly positive (or negative) controls. This result is key in being able to show
that control equilibrium points with extremal values of the control are on the boundary of the
NCR.

Remark 4.6. In general, the possible dynamical behavior of nonlinear system of the form
in Eq.5.1 is very rich. These system’s can exhibit highly complex behavior such as bounded
orbits which are non-periodic. Assumption 7 restricts the class of systems to a simplified sub-
class where the long-term behavior as t → ∞ of the NCR boundary trajectories approaches
an equilibrium state. Empirical evidence suggests that many unstable systems satisfy this
criteria, and there also exists a sufficient condition to verify this assumption [14].
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Remark 4.7. Under Assumptions 1-5 we consider a particular case of small-time local con-
trollability where presence of input constraints causes the size of the controllability region
to be limited. This corresponds to the situation where the available input control set is uni-
formly related to the size of the NCR: Cµ1 ⊂ Cµ2 for any two control subsets Uµ1 , Uµ2 of
the input constraint set Uµ where 0 ∈ U◦µ1

and Uµ1 ⊂ Uµ2 ⊆ Uµ. That is, the presence of
input constraints induces a limit on the controllability. Another way to express this is that
with larger control action magnitude, it should be possible to stabilize a (strictly) larger set
of initial conditions. Situations where this would not happen are when larger control action
magnitude expands the NCR to the point where the region would absorb other nominally
stable equilibrium points. This situation is demonstrated in Example 4.1. Note that in this
situation since these newly included equilibrium points are stable, increasing the capacity of
the control input may not change the boundary of the NCR. From a control standpoint, the
problem at hand is more challenging for systems which exhibit this property.

Example 4.1. Consider the simple scalar example ẋ = −0.5x3 + 1.5x + u where, x ∈ R,
|u| ≤ umax. If umax ≤ 1, then E0 = [−umax, umax] and the NCR is simply given by the
set x ∈ (−umax, umax). However, if umax > 1, then the NCR is R as it contains the stable
equilibrium manifold branches E1 and E2 which does not satisfy Assumption 5.

4.2.3 Characterizing the Null-Controllable Region

The problem of characterizing the NCR experiences a sharp jump in complexity
when transitioning from scalar to multi-dimensional systems. To understand this
better, consider the following example:

Example 4.2. Consider the simple scalar example ẋ = f (x) + g(x)u where, x ∈ R

|u| ≤ 1, satisfying Assumptions 1-7. In this case the NCR is simply given by the set
x ∈ (xmin, xmax), where 0 = f (xmax) + g(xmax) and 0 = f (xmin) − g(xmin), where for
the sake of simplicity, we assume xmin < xmax and there exist a single unique solution to
the above equation. That is, the NCR is simply the (open) set of the equilibrium points as
the input is varied over the allowable range. The simplicity of the analysis completely breaks
down as the dimension of the state space increases from one.

The problem of characterizing the NCR has been tackled in modern control the-
ory and can be broadly classified into two approaches: 1) Direct approaches 2)
Simulation-based approaches. In general, explicit characterizations of the boundary
of the NCR are not available. However, there does exist a direct approach for gen-
erating the boundaries of the NCR using optimal control techniques. This approach
is known as the controllability minimum principle and resembles the well-known Pon-
tryagin minimum principle [15]. This result is often referred to as the abnormal form
of the Pontryagin minimum principle since the adjoint variable associated to the cost
function is zero.

Theorem 4.1 (Controllability Minimum Principle, [15]). Let u∗(t) be an admissible con-
trol trajectory which generates a boundary trajectory x∗(t) ∈ ∂Cµ for all t ∈ [0, t1]. Then
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there exists a non-zero continuous solution λ(t) to the adjoint equations λ̇T = − ∂H(x,λ,u)
∂x ,

t ∈ [0, t1], where H(x∗, λ, u∗) = min|u|≤µ H(x∗, λ, u) = 0, and H(x, λ, u) = λT( f (x) +
g(x)u)

Specifically, this theorem provides a necessary condition for trajectories which
move along the boundary ∂Cµ, where the adjoint variable can be understood as or-
thogonal to the NCR. Note that H is simply a scalar product of the tangent vector to
the solution trajectory and the costate vector λ. The solution trajectories that satisfy
the conditions of Theorem 5.3 result in H = 0, thus ensuring that λ is orthogonal to
the solution trajectories.

Remark 4.8. The conditions laid out in Theorem 5.3 are in general for any nonlinear system.
In the present manuscript, they are written for a nonlinear control affine system, and for the
system Σ, it can be further shown that the admissible control trajectory must be of the form of
a time–optimal control law (bang–bang) u(t) = −sgn(λT(t)g(x(t))) (we utilize this fact
later in the proposed algorithm).

Remark 4.9. Note that Theorem 5.3 is not prescriptive, in the sense that it is not directly
suited to compute the control law. This is because no boundary conditions are defined for x
and λ except H = 0. This lack of appropriate boundary conditions makes the application of
Theorem 5.3 to determine a control law very difficult. In particular, we require the knowledge
of a point on ∂Cµ in order to make the solution well defined. In the present manuscript, we
show that the boundary ∂Cµ will contain equilibrium points which can be used to initialize
the above problem. While the idea of using equilibrium points to initialize the problem in
Theorem 5.3 to determine the control law has been mentioned in [16], one of the key con-
tributions in the present work is to show that these equilibrium points also reside on the
boundary of the NCR, and thus we utilize this fact to compute the NCR.

Remark 4.10. In general, explicit characterizations of the NCR are not available owning to
the fact that general nonlinear dynamical systems do not always have explicit solutions. For
linear systems, there does exist explicit characterizations of the NCR [2] and Theorem 5.3 for
such systems becomes a necessary and sufficient condition, and this has been utilized [2] to
provide explicit expressions which can be used draw out the boundary of the NCR for various
linear systems of interest. The work in [17] does explore the problem of characterization of
the NCR for nonlinear systems in terms of basins of attraction of the equilibrium points but
does not utilize the controllability minimum principle. In the next section, we show how
Theorem 5.3 can be applied in a computationally tractable procedure to obtain a non-explicit
characterization of the NCR.

4.3 Generating the Boundary Trajectories of the NCR

In this section we focus on the problem of generating the boundary trajectories of
the NCR. The general approach is to use control-equilibrium points corresponding
to extremal values of the input control range as boundary conditions in the controlla-
bility minimum principle. Towards this end, we first establish some properties of the
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NCR in relation to the equilibrium manifold E0. Subsequently, we use these proper-
ties to derive boundary conditions in the controllability minimum principle. Finally,
we outline two algorithms which apply the controllability minimum principle with
the new boundary conditions to generate the NCR boundary trajectories.

4.3.1 Control Equilibrium Points and the Null-Controllable Region

In this subsection, we will derive properties of the NCR relating to control equilib-
rium set E0. We first show controllability region for each equilibrium point in the
open set E0(U◦µ) will be same and that the equilibrium manifold E0(Uµ) is contained
within the closure of the NCR.

Lemma 4.1. Let xeq, yeq be two equilibrium points in E0(U◦µ). Then CUµ(xeq) = CUµ(yeq)

and E0(Uµ) ⊆ Cµ.

Proof. Consider the set of equilibrium points E0(Uµ). Since the system is structurally
stable, this set is a connected (n− 1)-dimensional manifold which contains 0. It follows from
Assumption 2 that each point in the subset E0(U◦µ) is STLC using an admissible control
action in Uµ. That is, the set CUµ(xeq) contains a neighborhood of xeq for every xeq ∈
E0(U◦µ). Since this manifold is connected it follows that the system can transverse from one
point xeq in the manifold to another yeq (or vice versa). That is, CUµ(xeq) = CUµ(yeq). This
also implies E0(U◦µ) ⊆ Cµ. It follows that E0(Uµ) ⊆ Cµ.

We now consider linear systems and derive an important property regarding
equilibrium points corresponding to extremal values of the scalar input range and
the trajectories which form the boundaries around these equilibrium points. Con-
sider linear systems of the form

ẋ(t) = Ax(t) + Bu(t) (4.4)

where A ∈ Rn×n, B ∈ Rn.

Lemma 4.2. Consider the linearized system of Σ in the form of Eq.4.4 with non-negative
inputs u(t) ∈ U ([0, µ]). Then there exists a trajectory x∗(t) on ∂C[0,µ](0) such that x∗(0) 6=
0 and x∗(t1) = 0, u∗(t1) = µ for some t1 > 0.

Proof. Recall by Assumption 2, the linearized system around xeq ∈ E0 is not purely periodic
and controllable. Using non-negative control input u(t) ∈ U ([0, µ]), one can show using
similar arguments as Lemma 3.1 in [13] that with such a control input range and non-
purely periodic equilibrium points, the origin will be on the boundary of the NCR C[0,µ](0)
for the linear system. Let λ1, . . . , λn denote the eigenvalues of A. These would also be
the eigenvalues of AT. For each λi there is a corresponding eigenvector vi ∈ Rn, vi 6= 0
such that ATvi = λiv1. Let B⊥ be a vector with is orthogonal to B. Since the system is
controllable the vector B⊥ can be expressed as a linear combination of eigenvectors B⊥ =

c1v1 + . . . + cnvn, ci ∈ R. We may assume all the scalars ci are one (ci = 1) and replace
each vi by civi if necessary. B⊥ = v1 + . . . + vn. Let x(t) be the solution to the reverse-time
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system in Eq.5.36 for t ≤ 0 with x(0) = 0 and u(t) ∈ U ([0, µ]). Let η(t) = BT
⊥x(t), and

ρi(t) = vT
i x(t) then η(t) = (v1 + . . . + vn)Tx(t) = ρ1(t) + . . . + ρn(t). As shown in

Lemma 3.1 from [13] the functions ρi will satisfy the dynamic equation

ρ̇(t) = λiρ(t) + (vT
i B)u(t) (4.5)

It follows that η(t) ≥ 0. That is the x(t) must reside in the half-space {x ∈ Rn : BT
⊥x(t) ≥

0} for t ≤ 0. Therefore the NCR C[0,µ](0) must be bounded by the plane with normal BT
⊥

and which defines this half space. Since ẋ = Bµ with u = µ, it follows that starting from
x(0) = 0 the reverse time system will transverse tagentially on the hyperplane BT

⊥x(t) = 0
and thus the trajectory starting at x(0) = 0 using u(0) = µ must be in the boundary of the
NCR. Therefore there exists a trajectory x∗(t) on ∂C[0,µ](0) such that x(t1) = 0, u(t1) = µ

for some t1 > 0.

Lemma 4.2 provides a property of a trajectory on the NCR boundary for linear
systems. Specifically, the Lemma states that the boundary of the controllability re-
gion ∂C[0,µ](0) will contain the origin and always have a trajectory which approaches
the origin. For the nonlinear system Σ, we are able to use this result from the lin-
earized system to show that the equilibrium points corresponding to extremal values
of the scalar input range also reside on the boundary of the NCR.

Lemma 4.3. Consider xeq ∈ E0(∂Uµ) then xeq ∈ ∂Cµ.

Proof. Note that the effective input constraint range for the equilibrium point xeq ∈ E0(∂U)

will have zero as an end point. Using Lemma 4.2, we know that with strictly positive (or
negative) control input range and non-purely periodic equilibrium points, the equilibrium
xeq corresponding to extremal values of the input range will be on the boundary of the NCR
for the linearized system. The controllability of the linearized system around xeq implies the
existence of a locally diffomorphic map ψ → x(T, ψ) where ψ = [ψ1, ψ2, . . . , ψn] ∈ Bε,
ψ near 0. Suppose xeq is STLC using the control range Uµ. This implies there exists an
input function defined on [0, T] which can steer the system from xeq to points which form
a span of Rn. Since the map ψ is difformorphic, a neighbourhood of the nonlinear system
must be mapped to a neighbourhood of the linear system. This implies the linear system is
controllable. It follows from Lemma 4.2 that this is a contradiction. Therefore xeq is not
STLC. Under Assumption 3, this implies xeq is also not LTLC. Therefore there is no control
trajectory that will drive xeq to the origin. Using Lemma 4.1 along with the fact that E0(Uµ)

is connected, it follows that every neighborhood of xeq will contain points in Cµ. Therefore
xeq must be on the boundary of the NCR, xeq ∈ ∂Cµ.

In addition to showing the extremal equilibrium points reside on the boundary of
the NCR, in the next Lemma we show that the boundary of the controllable region
∂CUµ(xeq) for any extremal equilibrium xeq ∈ E0(∂Uµ) contains a trajectory which
reaches this equilibrium point in finite time.
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Lemma 4.4. Consider the system of Σ. Then for each (xeq, ueq) ∈ Ê0(∂Uµ) there exists a
trajectory x∗(t) on ∂CUµ(xeq) such that x∗(0) 6= xeq and x∗(t1) = xeq, u∗(t1) = −ueq for
some t1 > 0.

Proof. Let (xeq, ueq) ∈ Ê0(∂Uµ). Using Lemma 4.2 and a similar argument as Lemma 4.3,
it follows that each xeq ∈ ∂CUµ(xeq). Using the difformorphic map ψ, all control trajecto-
ries of the linearized system in a neighbourhood of xeq with the input range [−µ, µ] can be
mapped to corresponding control trajectories of the nonlinear system using the same input
range [−µ, µ]. That is, this map will preserve the boundary trajectories which form the set
∂CUµ(xeq). Since the boundary of the linearized system will contain a trajectory x∗(t) on
∂CUµ(xeq) such that x∗(0) 6= xeq and x∗(t1) = xeq, u∗(t1) = −ueq for some t1 > 0, it
follows that the nonlinear system will also contain such a trajectory.

Remark 4.11. Lemma 4.1 states that the controllability region for any two equilibrium
points in the interior of the set E0(Uµ) will be equal and that the entire equilibrium manifold
E0(Uµ) is contained within the closure of the NCR. The main idea in the proof of this Lemma
is that since each equilibrium xeq ∈ E0(U◦µ) is STLC, there exists an admissible input tra-
jectory which can drive the state to glide along the equilibrium manifold E0. Therefore every
point on the manifold E0(U◦µ) is controllable to any other point in E0(U◦µ). Lemma 4.1 is
used in Lemma 4.2 where we derive an important property regarding the boundary trajec-
tory for linear systems with only positive control inputs. This property is used in Lemma
4.3 to show that for the nonlinear system Σ the extremal points of the set E0(∂Uµ) are on
the boundary of the NCR. It is also used in Lemma 4.4 to show that the boundary of the
controllability region for xeq, ∂CUµ(xeq) will contain trajectories which reach the extremal
equilibrium point in finite time. The key idea in the proofs for Lemmas 4.3 and 4.4 is to use
the qualitative equivalence of the local behavior around the equilibrium between the nonlin-
ear system and the linearized system. Both these properties are used in Section 4.3.2 to devise
an algorithm to generate the boundary trajectories of the NCR ∂Cµ.

4.3.2 Generating the Boundary Trajectories Using Controllability Mini-
mum Principle

In this section we focus on using the derived properties to initialize the Controllabil-
ity Minimum Principle in order to enable the application of the minimum principle
to construct the boundary trajectories of the NCR. We divide the problem based on
the nature of the instability of the origin. We first focus on anti-stable systems where
the NCR is bounded. In such systems the boundaries are shown to always emanate
from the extremal control equilibrium points and thus the equilibrium point can be
used directly as an initial condition with the minimum principle. Following this, we
look at semi-stable systems where the NCR is smooth. In such systems, the bound-
ary of the NCR is shown to be comprised of trajectories which approach the stable
modes of the equilibrium points. In this case, the Controllability Minimum Principle
is initialized using states within the stable manifold of the control equilibrium point.
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Anti-Stable Systems

By exploiting the derived properties of the NCR, we are able to devise a procedure
to solve for the time-optimal trajectories which generate the boundary of the NCR
∂Cµ. We first focus on systems where the origin is anti-stable (i.e at all eigenvalues
are positive) and where the NCR is bounded.

In Lemma 4.4 we showed that the boundary of the controllability region for ex-
tremal equilibrium points will contain trajectories which reach the extremal equi-
librium point in finite time. Here we show that the boundary of the NCR for a
general nonlinear system Σ which is anti-stable has a similar property. Specifically,
the boundary will always have a trajectory which reaches the extremal control equi-
librium point in finite time. This property is used to design an algorithm to generate
the boundary trajectories.

Lemma 4.5. Consider the system Σ where x = 0 is an anti-stable equilibrium point of the
nominal system and the NCR Cµ is bounded. Let (xeq, ueq) ∈ Ê0(∂Uµ) be an equilibrium
pair. There exists a trajectory x∗(t) on the boundary ∂Cµ such that x∗(0) 6= xeq , x∗(t1) =

xeq, and u∗(t1) = −ueq for some t1 > 0.

Proof. By Lemma 4.4, the boundary of the set ∂CUµ(xeq) will contain a trajectory x∗(t) such
that x∗(0) 6= xeq , x∗(t1) = xeq, and u∗(t1) = −ueq for some t1 > 0. We now show that
for the system Σ where x = 0 is anti-stable the set CUµ(xeq) is invariant for any equilibrium
point in the manifold E0(Uµ). It has already been shown in Lemma 4.1 that if xeq, yeq

are two equilibrium points in E0(U◦µ). Then CUµ(xeq) = CUµ(yeq). Let zeq ∈ E0(∂Uµ)

and xzeq ∈ CUµ(zeq). It remains to show that CUµ(zeq) = CUµ(xeq). Since zeq is on the
boundary of the NCR ∂CUµ(xeq) and this boundary is semi-permeable, the state xzeq can only
reach zeq starting from within the NCR CUµ(xeq) or starting from the boundary ∂CUµ(xeq).
That is xzeq ∈ CUµ(xeq). Let xxeq ∈ CUµ(xeq). Since the system is anti-stable, starting
at zeq we can reach any equilibrium point in reverse time. That is each equilibrium point
is reachable from zeq, therefore each equilibrium point is controllable to zeq. Since all other
points CUµ(xeq) are controllable to every equilibrium point, it follows that xxeq ∈ CUµ(zeq).
Thus, CUµ(zeq) = CUµ(xeq) and using Lemma 4.4 we get that there exists a trajectory x∗(t)
on the boundary ∂Cµ such that x∗(0) 6= xeq , x∗(t1) = xeq, and u∗(t1) = −ueq for some
t1 > 0.

In the following Theorem, we use the property in Lemma 4.5 to be able to use the
control equilibrium points as boundary conditions within the Controllability Mini-
mum Principle.

Theorem 4.2. Consider the system Σ where x = 0 is an anti-stable equilibrium point of
the nominal system and the NCR Cµ is bounded. Let (xeq, ueq) ∈ Ê0(∂Uµ) be an equilib-
rium pair. Then there exists a trajectory x∗(t) on the boundary of the NCR ∂C(Uµ) such
that for all t ∈ [−t1, 0] there exists a non-zero continuous solution λ(t) to the adjoint equa-
tions λ̇T = − ∂H(x,λ,u)

∂x , t ∈ [−t1, 0], where H(x∗, λ, u∗) = min|u|≤µ H(x∗, λ, u) = 0,
H(x, λ, u) = λT( f (x) + g(x)u), and x∗(0) = xeq, u∗(0) = − sgn(ueq)µ.
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Proof. It follows from Lemma 4.5 that the boundary of the NCR will have a trajectory which
starts at x∗(0) = xeq with u∗(0) = − sgn(ueq)µ and transverses in reverse time. Since
the Controllability Minimum Principle is a necessary condition, this trajectory must also
satisfy λ̇T = − ∂H(x,λ,u)

∂x , t ∈ [−t1, 0], where H(x∗, λ, u∗) = min|u|≤µ H(x∗, λ, u) = 0,
H(x, λ, u) = λT( f (x) + g(x)u).

We now apply this theorem to derive the following algorithm to generate the
boundary of the NCR for anti-stable systems.

1. Find all the equilibrium points in the set E0(∂Uµ)

2. For each equilibrium point x∗ ∈ E0(∂Uµ) with corresponding equilibrium
control u∗, and choose an initial costate vector λ(0) which is orthogonal to
f (x∗)− g(x∗)u∗ and satisfies sgn(g(x∗)λ(0)) = −u∗

3. Using the equations from Theorem 4.2 with initial state being x∗,
u∗(0) = −u∗, λ(0) simulate the system in reverse-time for time −t1, where
t! > 0

4. If H(x(−t1)) is not zero, then restart with a different costate vector λ(0)

5. If H(x(−t1)) is zero and x(−t1) is in ε-ball of any equilibrium point
x∗ ∈ E0(∂Uµ) then the resulting trajectory will be on the boundary of the NCR

6. If x(−t1) is still not close any equilibrium point x∗ ∈ E0(∂Uµ) then go back to
step 5 with t2 = 2t1

Algorithm 1: To determine the boundary trajectories of ∂Cµ for anti-stable sys-
tems

Remark 4.12. The key idea in proof for Lemma 4.5 is to show the equivalence of any two
controllability regions. This uses the fact that the region is bounded and the equilibrium
points are anti-stable. Note that for semi-stable systems this property is in general not true.
This can be easily demonstrated using a linear system.

Remark 4.13. Algorithm 1 provides a systematic procedure to generate boundary trajecto-
ries of the NCR for anti-stable systems. The procedure applies the controllability minimum
principle with the initial state being a control equilibrium point and the initial control value
being the negative of the corresponding equilibrium control. The optimal control problem is
solved from this initial condition in reverse time until the state reaches close to an equilib-
rium point. Since the region is assumed to be bounded the criteria of reaching close to an
equilibrium point can be used. Note that the boundary trajectories include ones which em-
anate from an equilibrium point and converge back to the same starting equilibrium point.
Any example of such behavior can be seen in three dimensional systems.

Semi-Stable Systems

In this section we continue to study properties of the boundary of the NCR by con-
sidering systems which are semi-stable (i.e at least one eigenvalue is positive and at
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least one is negative) and where the boundary of the NCR is smooth. By assuming
the existence of a feedback controller which can stabilize all initial conditions in the
NCR the problem of NCR characterization is cast into the problem of characterizing
the closed–loop stability region. The problem of characterizing and computing sta-
bility regions for nonlinear dynamical system has received considerable attention.
One key result is that of [14] which shows how the boundary of the stability region
consists of the stable manifolds of all the equilibrium points (and/or closed orbits)
on the stability boundary. In the previous section we showed how if the origin is not
purely periodic then the extremal control equilibrium points will be on the boundary
of the NCR. In this section, we draw a connection with the stability region results by
showing the stable manifolds which form the boundary in this setting correspond to
the extremal control equilibrium points. This implies that the boundary trajectories
will be tangential to the stable manifold at the extremal equilibrium points. This
property is used to design an algorithm to construct the boundary of the NCR for
this subclass of nonlinear systems.

Suppose there exists a state–feedback stabilizing law k(x) : Rn → U (Uµ) for the
system Σ such that the right-hand side of closed–loop system

ẋ(t) = f (x(t)) + g(x(t))k(x(t)) (4.6)

is C1 for x(t) ∈ M ⊂ Rn and the origin is asymptotically stable for all x ∈ Cµ.
We also assume that k(xeq) = ueq, where (xeq, ueq) ∈ Ê0(∂Uµ). The closed–loop
stability region under the control action k(x) is denoted by Sk. Since the control
law k(x) stabilizes all initial conditions in the NCR, it follows that Sk = Cµ. For an
equilibrium point y the setW s(y, u(t)) denotes the stable manifold defined by

W s(y, u(t)) = {x ∈ M : ϕ(t, x, u(t))→ y as t→ ∞} (4.7)

This main results from [14] are adapted to our setting of control systems and are
stated below.

Theorem 4.3 ([14]). Consider the system Σ with u(t) = k(x(t)). Suppose that x = 0 is an
asymptotically stable equilibrium point in the closed–loop and that the following conditions
hold

1. All equilibrium points on the stability boundary ∂Sk are hyperbolic

2. The stable and unstable manifolds of the equilibrium points on the stability boundary
∂Sk satisfy the transversality condition

3. Every trajectory on the stability boundary ∂Sk approaches one of the equilibrium
points as t→ ∞
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Let xi, i = 1, 2, . . . be the equilibrium points on the stability boundary ∂Sk. Then, the
boundary can be characterized as:

∂Sk =
⋃

i

W s(xi, k(x)) (4.8)

Under the assumptions of Theorem 4.3 with the control law u = k(x) the closed–
loop stability region can be characterized using the stable manifolds of the equilib-
rium points on the boundary. In the previous section we showed how the boundary
will contain the extremal control equilibrium points. Since the controller is assumed
to have the property k(xeq) = ueq, such extremal control equilibrium points will be
on the boundary of the closed–loop stability region. Since the explicit description of
k(x) is not available we cannot directly apply Theorem 4.3 to generate the bound-
ary trajectories. However, since the trajectories form the stable manifold of these
equilibrium points, some information about the direction of the tangent vector at
the equilibrium point is known. Specifically, the tangent vector will be within stable
eigenspace of the extremal control equilibrium point. This property is formalized in
Lemma 4.6.

Lemma 4.6. Consider the system Σ where x = 0 is a semi-stable equilibrium point of the
nominal system, under the smooth stabilizing feedback law u(t) = k(x(t)). Suppose the
conditions in Theorem 4.3 hold. Let xeq ∈ E0(∂Uµ) be an extremal control equilibrium
point. Then the tangent space of boundary curve ∂Cµ at xeq is contained within Es(xeq).

Proof. Consider the closed–loop system Σ with u(t) = k(x(t)). By assumption, the con-
troller is able to stabilize all initial conditions within the NCR thus the closed–loop stability
region coincides with the NCR. It follows from Theorem 4.3 that the boundary of the NCR
contains the stable manifolds of the equilibirum points on the boundary. From Lemma 4.3
it follows that the boundary of the NCR will contain extremal control equilibrium points
xeq ∈ E0(∂Uµ). By assumption k(xeq) = ueq, thus the stable manifold of the extremal con-
trol equilibrium point will be within the boundary of the NCR. It follows that the tangent
space of the boundary curve ∂Cµ at xeq is contained within Es(xeq).

In the following Theorem, we use the property in Lemma 4.6 to be able to use
the control equilibrium points and the direction of the tangent space of the boundary
trajectories as boundary conditions within the Controllability Minimum Principle.

Theorem 4.4. Consider the system Σ where x = 0 is an semi-stable equilibrium point of
the nominal system. Let (xeq, ueq) ∈ Ê0(∂Uµ) be an equilibrium pair. Then there exists
a trajectory x∗(t) on the boundary of the NCR ∂Cµ such that for all t ≥ 0 there exists
a non-zero continuous solution λ(t) to the adjoint equations λ̇T = − ∂H(x,λ,u)

∂x , t ≥ 0,
where H(x∗, λ, u∗) = min|u|≤µ H(x∗, λ, u) = 0, H(x, λ, u) = λT( f (x) + g(x)u), and
x∗(t)→ xeq ∈ E0(∂Uµ), u∗(t)→ ueq ∈ ∂Uµ

Proof. It follows from Lemma 4.6 that the boundary of the NCR will be composed of the
stable manifold of extremal equilibrium points. That is, x∗(t) → xeq ∈ E0(∂Uµ), u∗(t) →
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ueq ∈ ∂Uµ. Since the Controllability Minimum Principle is a necessary condition, this tra-
jectory must also satisfy λ̇T = − ∂H(x,λ,u)

∂x , t ≥ 0, where H(x∗, λ, u∗) = min|u|≤µ H(x∗, λ, u) =
0, H(x, λ, u) = λT( f (x) + g(x)u).

The property presented in Theorem 4.4 is used as a boundary condition to con-
struct the trajectories in the NCR.

1. Find all the equilibrium points in the set E0(∂Uµ)

2. For each equilibrium point x∗ ∈ E0(∂Uµ) with corresponding equilibrium
control u∗ find a normalized stable eigenvector y of the Jacobian

3. Find the point of intersection x∗∗ of this stable eigenvector with the boundary
of an ε-ball of the equilibrium point x∗ and choose an initial costate vector
λ(0) which is orthogonal to f (x∗∗) + g(x∗∗)u∗ and satisfies
sgn(g(x∗∗)λ(0)) = u∗

4. Using the equations from Theorem 4.4 with initial state being the intersection
point x∗∗, u∗(0) = u∗, and λ(0) solve the optimal control problem in reverse
time for some time −t1

5. If H(x(−t1)) is not zero, then restart with a different costate vector λ(0)

6. If H(x(−t1)) is zero and x(−t1) is not contained in the NCR (determined by
checking the feasibility of the boundary value problem) then the resulting
trajectory will be on the boundary of the NCR

7. If x(−t1) is not contained in the NCR then repeat the simulation for time
t2 = 1

2 t1

Algorithm 2: To determine the boundary trajectories of ∂Cµ for semi-stable sys-
tems

Remark 4.14. The development in this section assumes the existence of the stabilizing feed-
back control law u = k(x) and does not require the explicit availability of this controller.
Determining condition for which such stabilizing feedback control law exist is the topic of
large body of work (e.g. [18]–[20]). In general nonlinear systems which are controllable
require discontinuous feedback. However, in the current work the existence of a stabilizing
feedback follows from Assumption 2 [21]. Note also that Lemma 4.6 states that the tangent
vectors of the boundary trajectories of the NCR for semi-stable systems at the extremal con-
trol equilibrium points will be contained within the stable subpace of the linearized system
at the extremal control equilibrium point. This property is used to construct the boundary of
the NCR.

Remark 4.15. The property presented in Lemma 4.6 is under the conditions given in The-
orem 4.3. Condition 1 holds under Assumption 2. In [14], it was shown that Condition 3
holds for many dynamical systems arising in physical system models. Moreover they provide
a sufficient condition for this assumption.
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Remark 4.16. Algorithm 2 provides a systematic procedure to generate boundary trajecto-
ries of the NCR for semi-stable systems. The procedure applies the controllability minimum
principle with the initial state being close to a control equilibrium point in the direction of
the stable manifold and the initial control value corresponding to the extremal control equi-
librium point. The optimal control problem is solved from this initial condition in reverse
time.

Remark 4.17. In general, explicit descriptions of the boundary of the NCR do not exist
for nonlinear systems, mostly due to the fact that nonlinear systems do not necessaritly
have closed–form solution as opposed to linear systems For classes of systems where closed–
form solutions do exist, explicit descriptions of the NCR can be derived. The simulation
example presented in Section 4.4.1 demonstrates how the proposed procedure recovers the
same explicit description available for linear systems. For all other classes of systems where
closed–form solutions do not exist, one must resort to numerical procedures to construct the
boundary of the NCR, in which case the distinguishing feature of a computing scheme is
the computational complexity involved. The proposed algorithms are more computationally
tractable than possible brute-force solutions. In particular, a possible brute- force solution
would discretize the state-space and attempt to determine the feasibility of an (practically)
infinite-horizon optimal control problem at each point in the state-space. For example, if
each dimension is discretized into nd nodes then the procedure would require nn

d optimiza-
tion problems to be solved and thus suffer from the curve of dimensionality. In our proposed
procedure only the equilibrium manifold E0 needs to be discretized and thus only nd opti-
mization problems are required to be solved.

4.4 Simulation Examples

In this section we demonstrate the proposed procedure to construct the boundary
of the NCR to stabilize all initial conditions in the NCR using several simulation
examples. The simulations also show the implementation of existing control design
and one based on utilizing the NCR construction that leads to stabilization. Details
on the control design are outside the scope of the present manuscript.

4.4.1 Linear Systems

We start with linear systems of the form

ẋ(t) = Ax(t) + Bu(t), |u(t)| ≤ 1 (4.9)

where A ∈ Rn×n, B ∈ Rn.
The work in [2] derives explicit descriptions of the boundary for linear systems

which are anti-stable using extremal trajectories of the time reversed system. Here
we show how the proposed approach recovers the results from [2]. Recall that for
linear systems the time-optimal control condition give in the Controllability Min-
imum Principle is both necessary and sufficient. Hence the algorithms presented
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in the last section simplify to allow the time-optimal controls which are used to
form the boundary trajectories to be explicitly determined. Specifically, the time-
optimal controls given by the Controllability Minimum Principle have the following
form (bang–bang) u(t) = −sgn(λT(t)B) = sgn(c′e−AtB), c 6= 0. If A has only real
eigenvalues, it can be shown that the term c′e−AtB has at most n − 1 zeros. For
anti-stable systems with real eigenvalues, since the extremal equilibrium points on
the boundary trajectories will be reached in finite time (as shown in Lemma 4.4),
the optimal control trajectory which solves the Controllability Minimum Principle
will have a switch point upon reaching the extremal equilibrium point. Therefore
prior to reaching this extremal equilibrium point the control can have at most n− 2
switches. Therefore the trajectories which form the boundary of the NCR consist
of those which start at the extremal equilibrium points ±A−1B and use the set of
bang-bang controls with n − 2 or less switches. This results in a simplification of
Algorithm 1: Simply start at the equilibrium points ±A−1B and simulate the time-
reverse system for all possible bang-bang controls with n− 2 or less switches until
the trajectory reaches another equilibrium point or returns back to the starting equi-
librium point. For nonlinear systems which are topologically equivalent to linear
systems, this procedure can also be utilized.

Example 4.3. Consider a second-order anti-stable linear system from [2] where A =

[
0 −0.5
1 1.5

]
,

B =

[
0
−1

]
. The eigenvalues of the system are 0.5, 1. To generate the boundary of the NCR,

we use Algorithm 1 by starting at the equilibrium point x0 = xeq = −A−1b = [1, 0]T and
apply the time-optimal control u = −1 in reverse time to generate the boundary trajectory
corresponding to this equilibrium point and satisfying the Controllability Minimum Princi-
ple. Similarly we start at x0 = xeq = A−1B = [−1, 0]T and apply u = 1 in reverse time to
generate the other trajectory which forms the boundary.
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FIGURE 4.1: Phase plane of the anti-stable planar linear system given
in Example 4.3.
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4.4.2 Nonlinear Systems

Example 4.4. Consider the 3d nonlinear system

ẋ1 = 0.5x1 + x2 + x3
2

ẋ2 = x2 + x3

ẋ3 = 2x3 + x3
3 + u

where |u(t)| ≤ 1. The nominal system has a single equilibrium point at the origin and the
linearized system around the origin is anti-stable with eigenvalues 0.5, 1, 2. To generate the
boundary of the NCR, we again use Algorithm 1. The algorithm starts with the initial condi-
tions being the extremal equilibrium points which are x0 = xeq = ±[1.0932, −0.4534, 0.4534]T

and solves for the time-optimal control trajectories that satisfy the Controllability Minimum
Principle. Since this system is topologically equivalent to the linearized system, the family of
trajectories which form the boundary are formed using set of bang-bang controls with n− 2
or less switches.
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FIGURE 4.2: Phase plane (x1, x2) of the 3d nonlinear system given in
Example 5.2.

Example 4.5. Consider a continuous stirred tank reactor where an irreversible, first-order
exothermic reaction of the form A k→ B takes place. We use simplified mathematical model
for the process which was presented in [22] and takes the form:

ẋ1 = −φx1κ(x2) + q(x1 f − x1) (4.10)

ẋ2 = βφx1κ(x2)− (q + δ)x2 + qx2 f + δu (4.11)
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FIGURE 4.3: Phase plane (x1, x3) of the 3d nonlinear system given in
Example 5.2.
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FIGURE 4.4: Phase plane (x2, x3) of the 3d nonlinear system given in
Example 5.2.

where x = [x1 x2]T, x1 is the dimensionless concentration, and x2 is the dimensionless
temperature. The dimensionless cooling jacket temperature u is the control input. The system
has three equilibrium points: 1) xs1 = [0.8560, 0.8859]T, 2) xs2 = [0.5528, 2.7517]T, 3)
xs3 = [0.2354, 4.7050]T. The equilibrium points xs1, and xs3 are stable, whereas xs2 is
unstable with one stable and one unstable mode. The control objective is to stabilize the
reactor at the unstable equilibrium point xs2. We let x̂ = x − xs2 denote the deviation
variable.

Similar to the previous examples, the results in Figure 5.5 show the phase-plane of the
closed–loop system. Also depicted in Figure 5.5 is boundary of the NCR (solid line) con-
structed using developed procedure in algorithm 2 and set E0 (the dashed line).

4.5 Conclusions

In this work, we considered the problem of developing a construction procedure for
CCLFs for general unstable nonlinear systems where constraints on the controller



58
Chapter 4. Controllability Minimum Principle Based Construction of the Null

Controllable Region for Nonlinear Systems

x̂1

-0.6 -0.4 -0.2 0 0.2 0.4

x̂
2

-2.5

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

2.5

FIGURE 4.5: Phase plane of the planar nonlinear system given in Ex-
ample 5.3.

induces a NCR boundary. We first presented a procedure to allow the computa-
tion of the boundary trajectories by using a boundary condition for the well-known
Controllability Minimum Principle. Following this, we show how CCLFs can be
constructed using this boundary characterization.
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Chapter 5

Constrained Control Lyapunov
Function Based Bounded Control
Design

The results in this chapter have been submitted for publication to the following:

Journal Articles

[1] M. Mahmood, T. Homer, and P. Mhaskar, “Constrained control Lyapunov
function based bounded control design”, Submitted., 2020.

5.1 Introduction

The control and operation of process systems needs to grapple with several chal-
lenges, including nonlinearity and constraints. One of the limitations imposed by
the presence of input constraints is to limit the set of initial conditions from where
the system can be stabilized. This set has been termed the null controllable region
(NCR) [2]. The recognition of the NCR also provides a natural benchmark for con-
trol design- in terms of whether on not they are able to stabilize from the entire
null controllable region. Control designs tackling this objective have often taken
a Lyaupunov- based approach. In particular, the notion of Lyapunov functions has
been generalized to the problem of control analysis and design in the form of control
Lyapunov function (CLF) ([3], [4]), enabling estimating the controllability/stability
region. While constructive procedures for CLF’s exist, most of the procedures inher-
ently do not recognize the presence of input constraints.

Some efforts that exploit the system structure include quadratic functions for
feedback linearizable systems and back-stepping techniques for systems in strict
feedback form [5]–[7]. The work in [8] provides a CLF-based controller which re-
spects input saturations while in other approaches CLFs are utilized for the control
design and stability regions are computed [9]–[11]. The resulting estimates of the
NCR from all such CLF-based control designs do not necessarily capture the entire
NCR.
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The results in [12] extended the idea of a CLF to account for input constraints,
resulting in the concept of constrained control Lyapunov functions (CCLF) for linear
systems. These functions explicitly account for the presence of input constraints by
maximizing the estimate of the NCR over the set of all possible CLFs. Such func-
tions also enable control designs with optimal stability regions which are equal to
the NCR. Most existing results, however, have focused on linear systems [13]. Some
recent results have considered nonlinear systems and provided some practical con-
trol designs which utilize CCLFs within a predictive control framework [14], [15].
However, the formal development of stabilization using CCLFs for nonlinear sys-
tems along with explicit control design is still lacking. More recently, the work in
[16] presented some computational techniques for NCR construction. This work
utilizes a simulation-based approach resulting in high computational cost both for
NCR construction and utilization in the control design.

In this work, we consider the problem of developing a CCLF construction proce-
dure for general nonlinear systems. We assume the ability to construct the boundary
of the NCR using a computationally tractable approach and focus on the problem of
constructing CCLFs using the available boundary characterization. We show that a
functional defined such that the levels sets correspond to the boundaries of the NCR
for different input constraints does not satisfy the classical definition of a CLF. To
alleviate this, we present a new general definition of a CLF albeit with the trade-off
that the CLF only enables stabilization to some (potentially non-zero) equilibrium
point. Under this general definition, the boundary of the NCR is able to be used
as a CCLF. An explicit CCLF-based control design is then presented which results
in stabilization to the equilibrium manifold. To achieve stabilization to the origin,
a bounded controller which maneuvers the state along the equilibrium manifold to
drive it to the origin is presented. This controller is coupled with CCLF-based con-
troller to form a hybrid control scheme which achieves stabilization for all initial
conditions in the NCR. The rest of the manuscript is organized as follows: first, in
Section 5.2, we outline the class of systems and the required notion, definitions, and
assumptions. In addition, we formulate the problem statement and review results
on characterizing the NCR. In Section 5.3.2 we show how to construct CCLFs and
design a hybrid control scheme which is able to stabilize all initial conditions within
the NCR. In Section 5.4, several examples are presented to demonstrate the CCLF-
based control design. Finally, in Section 6.6 we summarize our results.

5.2 Preliminaries

5.2.1 Notation

If X and Y are sets X◦,X, ∂X, and Y \X denotes the interior of X, the closure of X, the
boundary of X, and the relative complement of X with respect to a set Y respectively.
The Euclidian norm on Rn is denoted by ‖ · ‖.
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To accommodate non-differentiable Lyapunov functions and discontinuous con-
trollers we need to introduce the notion of generalized derivatives and gradients. In
this work we utilize Clarke generalized derivatives and gradients [17]. For a locally
Lipschitz scalar function V : Rn → R the generalized gradient of V at x is given by

∂V(x) = co {ξ ∈ Rn : ∃xi ∈ DV , xi → x,∇V(xi)→ ξ}

where co denotes the convex hull of a set where DV denotes the set of points at
which the gradient ∇V exists. The Lie derivative of V with respect to a vector field
f : Rn → Rn at x is defined by

L f V(x) = max
ξ∈∂V(x)

ξ · f (x)

A function κ : [0, a) → [0, ∞) is a class-K function if it is continuous, strictly increas-
ing and κ(0) = 0. A scalar function W : Rn → R is called proper if it is radially
unbounded, i.e. lim‖x‖→∞ W(x) = +∞.

5.2.2 Problem Formulation

Consider single-input nonlinear systems that are affine in the control

ẋ(t) = f (x(t)) + g(x(t))u(t) (5.1)

where x(t) ∈ M ⊂ Rn, M being an open connected set, denotes the state vector
and u(t) ∈ U (A) denotes the scalar control input where U (A) = {u : R → A ⊂
R, locally integrable} are the admissible controls. We assume f , g : Rn → Rn are
smooth analytic vector fields defined over a smooth domain M which contains the
origin in its interior with f (0) = 0. We assume the input constraint range is symmet-
ric Uµ = [−µ, µ], µ > 0 and we refer to the system in Eq.5.1 with control constraint
set U (Uµ) as Σ. We also consider the unforced system ẋ(t) = f (x(t)) + g(x(t))u0

obtained from Eq.5.1 using a constant input value of u0 ∈ U (Uµ) and the nominal
system obtained using the nominal input value of u = 0. A solution of the sys-
tem in Eq.5.1 from initial condition x0 and an admissible control u at time t ≥ 0
is called the controlled solution and is denoted by ϕ(t, x0, u(t)). This solution ϕ is
piecewise differentiable and u(t) is piecewise continuous for all t ∈ R+. The region
R(U (Uµ)) ⊂ M is positively invariant if for all x0 ∈ R, there exists a control law
u(t) such that ϕ(t, x0, u(t)) ⊂ R, and u(t) ∈ U (Uµ) for all t ≥ 0. A point xeq is an
equilibrium point of the system if there is a constant control action u(t) = u0, such
that f (xeq) + g(xeq)u0 = 0. Without loss of generality, it is assumed that the origin is
an isolated equilibrium point of the nominal system (i.e. f (0) = 0). An equilibrium
point xeq is said to be hyperbolic if none of the eigenvalues of the Jacobian for the
linearized system (linearized at xeq) have zero real parts. For a given equilibrium
point, if all the eigenvalues of Jacobian have nonzero imaginary parts then we call
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this equilibrium point purely periodic. Also, a hyperbolic equilibrium point is said
to be unstable if at least one eigenvalue has a positive real part and stable otherwise.
For a hyperbolic equilibrium point xeq, we can decompose the tangent space Txeq(M)

as the direct sum of stable Es(xeq) and unstable Eu(xeq) subspaces. The subspaces
are denoted as Es(xeq) = {v1, v2, · · · , vns}, Eu(xeq) = {w1, w2, · · · , wns}. The vectors
v1, v2, · · · , vns and w1, w2, · · · , wns are generalized eigenvectors whose eigenvalues
are stable (negative) and unstable (positive). Note that ns + nu = n. A dynamical
system is said to be structurally stable if perturbations to the system preserve the qual-
itative characteristics of the dynamics. That is, there exists a homeomorphism which
maps orbits of the original system to orbits of the perturbed system while also pre-
serving the direction of time. We say that y is an ω-limit point of x associated with the
controlled solution ϕ(t, x0, u(t)) if there exists a sequence {ti} with limi→∞ ti = ∞
such that limi→∞ ϕ(ti, x, u(ti)) = y. The set of all ω-limit points of x associated with
ϕ(t, x0, u(t)) is called the ω-limit set of x, denoted by ω(x, u). Let the multiplicity of
the equilibrium points (for a given input value) be k (note that due to the assump-
tion of the structural stability below, the multiplicity is independent of the value of
u). The equilibrium set Êi(A) ⊂ M ×R of the system Σ and its projection into M,
Ei(A) are defined by

Êi(A) = {(xi, u0) ∈ M×R| f (xi) + g(xi)u0 = 0, u0 ∈ A} (5.2)

where i indexes the multiplicity of the equilibrium points. Further,

Ei(A) = {xi ∈ M |(xi, u0) ∈ Êi(A)} (5.3)

Finally let Ê(A) =
⋃k−1

i=0 Êi(A), and E(A) =
⋃k−1

i=0 Ei(A). We use the subscript 0
to denote the subset which contains the origin (i.e 0 ∈ E0(A)). As stated in the
assumptions below the origin is assumed to be an unstable equilibrium point.

The system Σ is called controllable from x1 to x2 in finite time T if there exists an
admissible control trajectory u(t) ∈ U (Uµ), t ≤ T such that the solution trajectory
satisfies ϕ(T, x1, u) = x2. The set of all points x where y is controllable from in time
T for the system Σ using admissible inputs from U (Uµ) is the time T controllable set
and is denoted by CUµ(y, T). We also write CUµ(y) =

⋃
0≤t CUµ(y, t) and refer to this

as the controllable set. The system Σ is called small-time locally controllable (STLC) at
an equilibrium point xeq if CUµ(xeq, T) contains a neighborhood of xeq for all T > 0.
We also say the system Σ is STLC with small controls at an equilibrium point xeq if
CUµ(xeq, T) contains a neighborhood of xeq for all T > 0. The system Σ is called large-
time locally controllable (LTLC) at an equilibrium point xeq if there exists a time T > 0
such that CUµ(xeq, T) contains a neighborhood of xeq. In this paper the focus is on the
null-controllable region (NCR) CUµ(0) which will be abbreviated by Cµ. We recall that
the boundary of the NCR ∂Cµ is semi-permeable (if x(t) starts in the exterior of Cµ,
it can never reach ∂Cµ) and comprised of solution trajectories.

Consider the system Σ under the following assumptions:
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1. The nominal system is structurally stable for all u ∈ R.

2. The origin of the system is unstable (i.e. the set E(Uµ) is nonempty and con-
tains the origin). Moreover, the linearized system around each (xeq, ueq) ∈
Ê(Uµ) is controllable, not purely periodic and hyperbolic.

3. The system Σ around each (xeq, ueq) ∈ Ê(Uµ) is LTLC with Uµ only if its STLC
with Uµ.

4. The set Cµ is open, connected and diffomorphic to Rn.

5. The sets Ei(Uµ), i 6= 0 are outside of Cµ.

6. There exists a smooth function ueq : E0(Uµ) → R such that for each xeq ∈
E0(Uµ), f (xeq) + g(xeq)ueq(xeq) = 0 and E0(Uµ) ⊂ M.

7. Let ϕ(t, x?, u?) denote a controlled solution which forms part of the boundary
∂Cµ. The limit set ω(x?, u?) is nonempty and contains only equilibrium points.

This setup leads to the following two problems:

1. Characterizing the boundary trajectories which define the set Cµ. This problem
was addressed in Chapter 3. The present chapter assumes the existence of a
CCLF to address the next objective.

2. Designing a stabilizing control action for the system Σ from all initial condi-
tions in Cµ.

Remark 5.1. Assumption 6 ensures the set E0(Uµ) defines a continuum of equilibrium
points which contains the origin and is obtained by varying the input in the unforced system
smoothly over U. This along with Assumption 2 preclude systems with equilibrium points
xeq such that g(xeq) = 0. Moreover, under Assumption 5, we consider the problem where
there is only a single equilibrium manifold E0 within Cµ and other branches arises due to
multiplicity of the equilibria lie outside of the NCR.

5.3 Stabilization of the NCR

In this section we focus on the problem of stabilization of the entire NCR. The objec-
tive is to synthesize a Lyapunov-based state feedback controller that enforces closed–
loop stability in the presence of input constraints. Moreover, the synthesized con-
troller must guarantee closed–loop stability of the origin for all initial states in the
NCR.

In the current context, the equilibrium manifold E0 is a connected set which con-
tains the origin. It has been shown that one can steer the system starting from any
equilibrium point in E0 to any other equilibrium point in E0 using an admissible
control action [18]. Thus the problem achieving stabilization to the origin can be
reduced to that of first driving the state to any equilibrium point in E0.
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Thus, in our approach this problem is split into two independent stabilization
sub-problems: One is that of driving any initial condition with the NCR to the equi-
librium manifold and the other is the problem of sliding along the equilibrium man-
ifold to reach the origin.

To tackle the problem of stabilizing all initial conditions within the NCR to the
equilibrium manifold we introduce a new type of Control Lyapunov Function (CLF)
[4] which generalizes the classical notion of a CLF. Specifically this new notion re-
laxes the condition of definiteness on the Lyapunov function and derivative of the
Lyapunov function. This relaxation is critical to the use of the boundary of the NCR
appropriately as a CLF, and in turn, enable stabilization from the entire NCR.

Recall that the classical definition of a control Lyapunov function (CLF) is a smooth
positive-definite proper function V : M→ R such that

inf
u∈Uµ

L f+guV < 0, x ∈ D (5.4)

Where D is a neighbourhood of the origin. Consider Ω defined as the set induced
by the level sets of V,

Ω(V, c) = {x ∈ Rn : V(x) ≤ c} (5.5)

It follows that Ω(V, c) is an estimate of the NCR Cµ (using the CLF V) if Ω(V, c) ⊆ D.
We denote the largest value of level set contained within D as cmax.

cmax = arg max
c

Ω(V, c) ⊆ D (5.6)

5.3.1 Generalized Control Lyapunov Functions

We now present a new type of CLF known as an generalized control Lyapunov func-
tion (g-CLF) which is a generalization of the classical CLF. In particular, the g-CLF
does not require the definiteness of the Lyapunov function and derivative of the
Lyapunov function.

Definition 5.1. Let D be a neighbourhood containing the origin. For the system Σ
a generalized control Lyapunov function (g-CLF) is a continuous function V : M → R

such that

1. V(0) = 0, V(x) ≥ 0.

2. inf
u∈Uµ

L f+guV ≤ 0, x ∈ D.

3. ω(x∗, u∗) ∈ E0 for all x∗ ∈ Γ∗V

where

ΓV = {x ∈ D| inf
u∈Uµ

L f+guV = 0} (5.7)
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and Γ∗V be the largest invariant set in ΓV and u∗ is the control input corresponding to
each controlled invariant solution ϕ(t, x∗, u∗(t)) ∈ Γ∗V .

We now formulate the next result which is a generalization of the well-known
LaSalle’s Invariance Theorem [19] in the setting of control systems. Specifically, the
results show that given a g-CLF, one can design a feedback controller which results
in the decay of g-CLF and thus resulting in stabilization to some point in the equi-
librium manifold E0.

Theorem 5.1. If there exists a proper g-CLF V as defined in Definition 5.1 then there exists
a control law such that the closed–loop system for all x ∈ Ω(V, cmax) will approach an
equilibrium point in E0. That is, x(t)→ xλ ∈ E0 as t→ ∞.

Proof. By Definition 5.1, for every x ∈ Ω(V, cmax) there is a control action u0 which
results in the generalized directional derivative L f+gu0V to be non-positive. It follows from
generalized Artstien theorem ([20], [21]) that there is a feedback law u(x) (in a sample-
and-hold sense) which results in the closed–loop trajectory to evolve in the direction where
the function V(x) is non-increasing over time. Since V(x) is proper, it follows that Ω is
compact and thus using similar arguments as the classical Lasalle’s invariance Theorem, one
can show that x(t) will approach the largest invariant set Γ∗V as t → ∞. Since all x∗ ∈ Γ∗V
will approach the limit set ω(x∗, u∗) ∈ E0 it follows that the closed–loop system for all
x ∈ Ω(V, cmax) will approach E0. That is, x(t)→ xλ ∈ E0.

We now consider functions which are not proper and show that stabilization to
the set where V = 0 can be achieved provided the Lyapunov function derivative is
strongly bounded away from zero. Let Γ0

V be the set of states in the state space where
V = 0.

Γ0
V = {x ∈ D|V(x) = 0} (5.8)

Theorem 5.2. Suppose there exists a g-CLF V as defined in Definition 5.1 such that given
cd < cmax, infu∈Uµ L f+guV(x) ≤ −cV(x)α for some α ∈ (0, 1], c > 0 for all x ∈ Ω(V, cd).
Then for all cd < cmax, there exists a control law such that the closed–loop system for all
x ∈ Ω(V, cd) will approach an equilibrium point in E0. That is, x(t)→ xλ ∈ E0 as t→ ∞.

Proof. If the set Ω(V, cmax) is compact then the result follows from Theorem 5.1. If the
set Ω(V, cmax) is not compact then by assumption for some cd < cmax0 infu∈Uµ L f+guV ≤
−cV(x)α for some α ∈ (0, 1] and c > 0 for all x ∈ Ω(V, cd). It follows from the comparison
lemma that the closed–loop trajectory will reach the set Γ0

V = {x ∈ D|V(x) = 0} in finite
time. Since Γ0

V ⊆ Γ∗V , we can use a similar argument as the proof of Theorem 5.1 leads to
x(t)→ xλ ∈ E0.

Remark 5.2. The above definition generalizes the classical definition of a CLF in three di-
rections: 1) The definition allows the function V(x) to be positive semi-definite and the
derivative to be negative semi-derivative. This is similar to the definition of a weak CLF pro-
vided in [21] and is used in Theorem 5.1 to state a version of Lasalle’s invariance Theorem
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in the context of control. 2) As the function V(x) decays, the state approaches a point on the
equilibrium manifold E0 (not necessarily the origin). 3) The function V(x) is permitted to
be radially bounded (i.e. the set Ω(V, cmax need not be compact) provided the decay of the
function is strongly bounded away from zero. By relaxing the conditions on the Lyapunov
function, the class of functions which can be used to analyze the system controllability and
design control laws is enlarged. This is critical for being able to define the notion of CCLF.
An example of function which is a g-CLFs but does not meet the criteria of a classical CLFs
is provided in Example 5.1.

Remark 5.3. Theorem 5.1 shows that with a g-CLF V, there is a controller which can be used
to drive the closed–loop system to an equilibrium point in the equilibrium manifold E0. Since
g-CLFs are a generalization of the classic CLFs, the existence of g-CLFs follows from Lya-
punov converse theorems. Note that the results in this section are presented generically for
any control law which satisfies the conditions laid out in Definition 5.1. Using a g-CLF, one
can easily design a control law which satisfies these conditions. Perhaps the easiest control
designs to adopt for g-CLF based controllers is one which uses optimal control techniques.
In such control designs the conditions in Definition 5.1 can be specified as constraints in the
optimization problem. In subsection 5.3.3 we present an explicit feedback law which is able
to stabilize all initial conditions within the NCR.

5.3.2 Constrained Control Lyapunov Functions

In working towards the goal of stabilizing all initial conditions within the NCR we
devise a special type of g-CLF where the guaranteed stability region to the equilib-
rium manifold Ω(V, cmax) coincides with the boundary of the NCR. This g-CLF will
be known as a constrained control Lyapunov function (CCLF) and is defined as follows:

Definition 5.2. For the system Σ a constrained control Lyapunov function (CCLF) is a
g-CLF V(x) such that

V(x)→ cmax as x → ∂Cµ (5.9)

Let uV be a CCLF-based controller. It follows that this controller will result in
the stability region of closed–loop system being the same as the NCR. We now show
how to construct CCLFs for the system Σ using the boundary trajectories of the NCR.
In preparation for this construction we introduce the concept of an input capacity map:

Definition 5.3. The input capacity map is a function γ : Rn → R that provides the
input constraint umax required to make a state vector x be on the boundary of the
NCR Cµ

γ(x) = {θ ∈ R : x ∈ ∂Cθ} (5.10)

The level sets of the function γ provide the boundary of the NCR for different
input constraints.
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In preparation for the remainder of the results in this section we recall the con-
trollability minimum principle. The theorem provides a necessary condition for tra-
jectories which move along the boundary ∂Cµ, where the adjoint variable can be
understood as orthogonal to the NCR and thus a normal vector.

Theorem 5.3 (Controllability Minimum Principle, [22]). Let u∗(t) be an admissible con-
trol trajectory which generates a boundary trajectory x∗(t) ∈ ∂Cµ for all t ∈ [0, t1]. Then
there exists a non-zero continuous solution λ(t) to the adjoint equations λ̇T = − ∂H(x,λ,u)

∂x ,
t ∈ [0, t1], where H(x∗, λ, u∗) = min|u|≤µ H(x∗, λ, u) = 0, and H(x, λ, u) = λT( f (x) +
g(x)u)

In effort to utilize the function γ to construct a CCLF, we now show some prop-
erties of the function γ using the above principle. Specifically, we first show that
the time derivative of the function γ along the trajectories of the system is non-
increasing for some admissible control input value. Following this we show that
for the set of state from where γ is not differentiable is a subset of the set of states
from where decrease of the function γ is not possible. Finally we show that the limit
set ω(x∗, u∗) is contained in the equilibrium manifold E0 for x∗ ∈ Γ∗γ.

Lemma 5.1. inf
u∈Uµ

L f+guγ(x) ≤ 0 for all x ∈ Cµ

Proof. Let x ∈ Cµ and γ(x) = u∗max. Since the boundary of the NCR is comprised of solu-
tion trajectories there will always be a control action u∗ which can keep the trajectory on the
boundary. That is, there is a u∗ such that |u∗| = u∗max and L f+gu∗γ = 0. We now show that
if the boundary of the NCR at x is differentiable then the evolution of γ(x) over time can
be made to be non-increasing. From the controllability minimum principle there is a non-
zero continuous solution λ(t) to the adjoint equations λ̇T = − ∂H(x,λ,u)

∂x , t ∈ [0, t1], where
H(x∗, λ, u∗) = min|u|≤|u∗| H(x∗, λ, u) = 0, and H(x, λ, u) = λT( f (x) + g(x)u). The
vector λ(t) provides a normal to the boundary of this NCR ∂Cu? . If the boundary is differ-
entiable at x then the direction of this normal vector λ will be unique. Since H(x∗, λ, u∗) =
min|u|≤u? H(x∗, λ, u) = λT( f (x∗) + g(x∗)u∗) = 0, one is able to find an admissible con-
trol action u∗∗ such that |u∗∗| ≥ |u∗|which makes H(x∗, λ, u∗∗) ≤ 0. This trajectory would
never point to the exterior of the boundary of the NCR and thus the value of γ(ϕ(s, x0, u∗(s))
would be non-increasing in time. That is, inf

u∈Uµ

L f+guγ ≤ L f+gu∗∗γ ≤ 0.

We now derive a property relating to the points on γ(x) which are not differen-
tiable. This result follows from Theorem 5.3.

Lemma 5.2. Let x ∈ Cµ \ E0 and suppose γ(x) is not differentiable. Then inf
u∈Uµ

L f+guγ(x) =

0

Proof. Since we know by Lemma 5.1 that inf
u∈Uµ

L f+guγ(x) ≤ 0 we suppose inf
u∈Uµ

L f+guγ(x) <

0. Since γ(x) is not differentiable, there is at least two normal vectors ξ1, ξ2 within ∂γ(x)
such that ξ1 6= ξ2 and inf

u∈Uµ

ξ2( f (x) + g(x)u) < 0 and inf
u∈Uµ

ξ2( f (x) + g(x)u) < 0.
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Since f and g are continuous functions of x, it follows that there is some uξ1 and uξ2 within
Uµ such that ξ1( f (x) + g(x)uξ1) = 0 and ξ2( f (x) + g(x)uξ2) = 0. Since x /∈ E0,
f (x) + g(x)uξ1 6= 0 and f (x) + g(x)uξ2 6= 0. Also since both ξ1, ξ2 are within ∂γ(x), and
the function γ(x) is defined using the boundary of the NCR for different input constraint
values the trajectories defined by f (x) + g(x)uξ1 and f (x) + g(x)uξ2 must both transverse
on the boundary. Therefore both these trajectories must satisfy the controllability minimum
principle which implies the continuity of the normal vector, ξ1 = ξ2 resulting in a contra-
diction. Therefore the inf

u∈Uµ

L f+guγ(x) = 0.

We now show that the limit set ω(x∗, u∗) of all states x∗ ∈ Γ∗γ must be within the
equilibrium manifold E0.

Lemma 5.3. ω(x∗, u∗) ∈ E0 for all x∗ ∈ Γ∗γ.

Proof. All trajectories in the set x∗ ∈ Γ∗γ must transverse the boundary of the NCR Cu0 for
some u0. Under Assumption 7 the limit set ω(x∗, u∗) of all trajectories on the boundary of
the NCR must approach an equilibrium point. Therefore ω(x∗, u∗) ∈ E0.

We now show that the input capacity function γ satisfies the criteria in Definition
5.2 and thus is a CCLF.

Theorem 5.4. Let κ be a class K function. Then the function κ(γ(x)) is a CCLF for the
system Σ.

Proof. Clearly, κ(γ(x)) ≥ 0 for all x and κ(γ(0)) = 0. It follows from Lemma 5.1 that
inf

u∈Uµ

L f+guκ(γ(x)) ≤ 0 for all x ∈ Cµ. Therefore the function κ(γ(x)) is a g-CLF as

per Definition 5.1. By definition of γ(x), the level sets of κ(γ(x)) will correspond to the
boundary of the NCR. That is, V(x) = κ(γ(x))→ cmax as x → ∂Cµ.

Remark 5.4. Note that this formulation does not require the availability of a closed-form
expression for the function γ. In general, such closed-form expressions are not available
as the level sets of the function γ are solution trajectories which define the boundary of the
NCR and explicit characterizations of these boundary trajectories are not available in general.
Any method which can provide a discrete numerical representation can be utilized. Other
possible solutions include those which rely on brute-force computation to obtain the NCR by
discretizing the state-space and solving an optimal control to determine if each point can be
stabilized by some admissible control action. These methods are computationally expensive
and suffer from the curse of dimensionality. Another approach is that which was presented
in the companion manuscript and provides a computationally tractable numerical procedure
by using available properties of the NCR and can be scaled to higher dimensions. The use of
such a representation would involve sampling the boundary data and employing numerical
methods such has finite difference schemes and interpolation to obtain the value and the first
derivatives of the CCLF which are required for the proposed control designs.

Remark 5.5. The notion of a CCLF for nonlinear constrained systems was presented in [23]
using a predefined subset of the state–space. This differs from the above definition which
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defines the Lyapunov function such that the maximal level set from where the function can
be made to decrease corresponds to the NCR.

Remark 5.6. Using the input capacity map as a CLF is an intuitive idea however, as
shown in the examples in section 5.4 this function does not meet the criteria of a classical
CLF. In particular, for anti-stable systems this function can not be made to be decreasing for
points in E0. Also for semi-stable systems this function is radially bounded. However, as
shown in Theorem 5.4 this function does satisfy the criteria of a CCLF and can be used to
stabilize all initial conditions in the NCR to the equilibrium manifold E0.

Remark 5.7. The set Cµ need not be compact and thus the function γ(x) may not be proper.
For such cases, the resulting CCLF must additionally satisfy the criteria where the time-
derivative is strongly bounded in the neighborhood of the set Γ0

γ to ensure the state reaches
this set in finite time. Since this set is a subset of Γ∗γ it follows from Definition 5.1 that the
trajectory will approach an equilibrium point on the equilibrium manifold E0. This can be
observed for semi-stable systems such as the one presented in Example 5.1. Here the set Γ0

γ

are the stable manifolds of the origin.

Remark 5.8. For the system of Eq.5.1, the traditional use of CLFs are in a sense only ap-
plicable locally (for a sufficiently small neighborhood of the origin), and do not account for
the fundamental limitations arising due to input constraints. This property diminishes the
value of CLF-based approaches as local stabilization can often be achieved using linear state-
feedback designed based on the linearizing the nonlinear system around an equilibrium point.
The definition of a CCLF, however, incorporates input constraints by ensuring the resulting
region of closed–loop stability coincides with that of the boundary of the NCR. Note also that
while there exists construction procedures for CLFs, there is a lack of results on the construc-
tion of g-CLFs and CCLFs. By using a traditional CLF-based control design and simply
saturating the control action would result in a stability region which is a subset of the NCR
and thus is sub-optimal.

5.3.3 CCLF-based Controller

In this subsection we present an explicit CCLF-based control law which is able to
stabilize all initial conditions within the NCR to the equilibrium manifold. This
control law will drive any initial condition within the NCR to lower level sets of
the CCLF until the state reaches an equilibrium point on the manifold E0 thereby
achieving stability to an equilibrium point which may not be the origin. Let V(x)
be a CCLF constructed using the input capacity function given in Section 5.3.2,
V(x) = γ(x). In the case where V(x) is not proper, we assume that for every sub-
set Ω(V, cd) ⊆ Ω(V, cmax) the time derivative of V is strongly bounded away from
zero for all x ∈ Ω(V, cd), i.e. infuL f+guV ≤ −cV(x)α. The proposed control de-
sign is based on the bounded control law in [9] and is adapted for generalized CLFs.
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Consider the static state feedback law uBC(x):

=


− L f V+

√
(L f V)2+(µLgV)4

(LgV)2
(

1+
√

1+(µLgV)2
)LgV, infuL f+guV < 0

u∗, infuL f+guV = 0
(5.11)

where u∗ is the optimal control input which causes x(t) to transverse on the bound-
ary ∂Cγ(x).

Theorem 5.5. Consider the constrained nonlinear system Σ under the CCLF-based feedback
control law given in Eq.5.11. Then the closed–loop system is asymptotically stable to an
equilibrium point xλ ∈ E0 for all x ∈ Cµ.

Proof. We first show that the controller satisfies the input constraints within the NCR.
Then using a Lyapunov argument we show that the state-feedback controller is stabilizing
to an equilibrium point for all initial conditions in the NCR. If minuL f+guV = 0, then
uBC = u∗ which will always be less than uµ for all x ∈ Cµ. If minuL f+guV < 0, the
expression in Eq.5.11 can be shown to be less than uµ using similar arguments as made in
[10]. Therefore the control law given in Eq.5.11 will always satisfy the input constraint
uBC(x) ≤ µ. Since V(x) is a CCLF it will satisfy infu L f+gu?V ≤ 0. Consider x such that
infu L f+gu = 0, the control action is simply u = u∗ and the state will stay on the boundary
of the NCR. Now consider x such that infu L f+guV < 0. It follows from Lemma 5.2 that
V(x) is differentiable at x and control law reduces to the bounded control law given in [10]
and can be shown to result in L f+guBC V = L f V + LgVuBC ≤ 0. Therefore the nonlinear
system Σ under the CCLF-based feedback control law given in Eq.5.11 results in the closed–
loop system satisfying L f+guBC V ≤ 0 for all x ∈ Cµ. Using Theorem 5.1 and Lemma 5.3 it
follows that the closed–loop system is asymptotically stable to an equilibrium point xλ ∈ E0

for all x ∈ Cµ.

Remark 5.9. Recall that when V(·) is differentiable, the minimum value of L f V + LgVu is
given by u = − sgn(LgV). In the present scenario, where the function γ(x) ≡ V(x) may
not be differentiable everywhere the minimum value of L f+guV may not be attained when
u = − sgn(LgV), and therefore needs to be computed using the generalized derivative.

Remark 5.10. Theorem 5.5 shows that the explicit controller formula in Eq.5.11 is able to
stabilize all initial conditions in the NCR to the equilibrium manifold E0. This control law
differs from the bounded control law in [9] in that it used the generalized CLF which can be
non-differentiable and not strictly decreasing along the state trajectory. For the states where
the NCR is not differentiable, Lemma 5.2 shows that the decrease in the Lyapunov function
is not possible thus the control law in Eq.5.11 simply applies the control action u∗ corre-
sponding the NCR with input constraint given by the input capacity function γ(x). This
will result in the trajectory remaining on the boundary of the NCR. The existence of mani-
folds where the decrease in the Lyapunov function is not possible can be easily observed by
looking at linear anti-stable systems with dimension greater than two. Such manifolds often
coincide with switching surfaces and highlight the importance of handling such a scenario in
the control law.
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5.3.4 Local Stabilization Around the Equilibrium Manifold

In the previous section we developed a CCLF-based control scheme which achieved
stabilization to some equilibrium point on the manifold E0. In this section we de-
velop a nonlinear Lyapunov-based controller which drives all initial conditions in a
neighbourhood of the equilibrium manifold E0 to origin. This control design uses a
classical CLF parameterized over a set of moving equilibrium points. Specifically, by
setting the dynamics of the target equilibrium points we are able to design a control
law which maneuvers the closed–loop state along the equilibrium manifold result-
ing in stability of nonlinear system to the origin while also providing an explicit
region of guaranteed stability. This control design allows for the stabilization locally
around the equilibrium manifold and will be referred to as the localized bounded con-
troller. In the subsequent section we combine this localized bounded controller with
the CCLF-based controller under a hybrid control scheme to be able to stabilize all
initial conditions within the NCR.

The set of equilibrium points can be paramterized using the corresponding equi-
librium control action. That is, there is a mapping λ : R→ Rn such that

f (xλ(λ)) + g(xλ(λ))λ = 0, for all λ ∈ U (5.12)

This mapping takes the equilibrium control action u = λ to the corresponding equi-
librium point xλ ∈ E0.

Suppose the target equilibrium point xλ evolves according to the following dy-
namic:

ẋλ = κx(xλ) (5.13)

This dynamic implies a corresponding dynamic for the control input λ:

λ̇ = κλ(λ) (5.14)

These dynamics are designed to be sufficiently smooth and also globally exponen-
tially stable to the unique zero solution (xλ = 0, λ = 0).

We define z and ν as the deviation of the state x from the target equilibrium point
xλ and control u from the corresponding equilibrium control uλ:

z(t) = x(t)− xλ(t) (5.15)

ν(t) = u(t)− uλ(t) (5.16)
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The dynamics of this deviation variable can be derived as follows

ż(t) = ẋ(t)− ẋλ(t) (5.17)

= f (x(t)) + g(x(t))u(t)− κ(xλ(t)) (5.18)

= f (z(t) + xλ(t)) + g(z(t) + xλ(t))(ν(t) + uλ(t))

− κ(xλ(t))
(5.19)

We define the augmented state as ξ = [z xλ]
T ∈ R2n. We combine the dynamics of

the deviation variable z and the target equilibrium point xλ to give the dynamics of
the augmented system

ξ̇(t) = fξ(ξ) + gξ(ξ)ν(t) (5.20)

where

fξ = [ f (z(t) + xλ(t)) + g(z(t) + xλ(t))uλ(t)

− κ(xλ(t)) κ(xλ(t))]T
(5.21)

gξ = [g(z(t) + xλ(t)) 0]T (5.22)

Consider the classical CLF for the z-subsystem Vz(z). Given an initial state x we set
the initialization of the target equilibrium xλ state to be one which minimizes the
distance to the set E0:

x0
λ(x) = arg min

x0

‖x0 − x‖, x0 ∈ E0 (5.23)

Let λ0 denote the corresponding equilibrium control input to x0
λ. Note that in gen-

eral, there could be more than one equilibrium point that results in the same mini-
mum distance. We simply pick one of those equilibrium points. Let νλ0

max = µ− |λ0|
and Φλ0

ξ be the set defined as Φλ0

ξ ={
ξ ∈ R2n : L fξ

Vz(z) + ρzVz(z) ≤ νλ0

max|Lgξ
Vz(z)|, ρz > 0

}
(5.24)

Assume that the set Φλ0

ξ contains the origin and a neighborhood of the origin.
Let Ωξ be defined as a level set of Vξ completely contained in Φλ0

ξ for some cξ > 0.

Ωξ(cξ) = {ξ ∈ R2n : Vξ(ξ) ≤ cξ} (5.25)

We construct the following localized bounded control law:

ν(ξ) =

{
−k(ξ)Lgξ

Vz(z) , Lgξ
Vz(z) 6= 0

0 , Lgξ
Vz(z) = 0

(5.26)
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where

k(ξ) = −
L fξ

Vz +
√
(L fξ

Vz)2 + (νλ0
maxLgξ

Vz)4

(Lgξ
Vz)2

(
1 +

√
1 + (νλ0

maxLgξ
Vz)2

) (5.27)

Eq.5.27 is an explicit state-feedback controller based on the bounded controller
in [9]. Theorem 5.6 that follows shows that stability of the origin is guaranteed for
all initial conditions in Ωξ(cξ). The key idea in the proposed controller design is that
the state x converges to the target equilibrium point xλ which evolves over time to
reach the origin.

Theorem 5.6. Consider the constrained nonlinear system Σ with initial condition x0 ∈ Cµ.
Suppose the initialization of the target equilibrium state xλ is determined using Eq.5.23 and
the corresponding augmented state initial conditon satisfies ξ0 ∈ Ωξ(cξ). Then the origin
of closed–loop system under the state feedback control law given in Eq.5.26 is asymptotically
stable.

Proof. Consider the constrained nonlinear system Σ under the state feedback control law
given in Eq.5.26. Using similar arguments as the proof of Theorem 1 from [10] we can show
that

|ν| ≤ νλ0

max (5.28)

Since νλ0

max = µ − |λ0|, it follows that |ν| ≤ µ. Now consider the representation of the
constrained nonlinear system using the augmented state ξ given in Eq.5.20 under the state
feedback control law given in Eq.5.26. Clearly if the augmented state converges to the origin
so does the state x, i.e. ξ → 0 implies x → 0. Thus we proceed to establish the asymptotic
stability of the origin for the augmented system. To this end, consider the control Lyapunov
function Vz for the z-subsystem in Eq.5.20. Using similar arguments as the proof of The-
orem 1 from [10] results in the time-derivative of Vz along the closed–loop trajectories of ξ

satisfying

V̇z ≤ −ρzVz (5.29)

for all x0 ∈ Ωξ(cξ). Since the xλ-subsystem is globally exponentially stable it follows by
converse Lyapunov theorems that there is a continuously differentiable Lyapunov function
Vλ(xλ) such that

V̇λ ≤ −ρλVλ (5.30)

for some ρλ > 0. Consider the composite CLF Vξ(ξ) = Vξ(z, xλ) = Vz(z) + Vλ(xλ).
Therefore the time-derivative of Vξ along the closed–loop tajectories of ξ satisfy

V̇ξ ≤ −ρzVz − ρλVλ (5.31)

= ρξVξ (5.32)
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for some ρξ > 0. Hence the origin of the nonlinear system Σ is asymptotically stable.

Remark 5.11. The implementation of this state-feedback controller requires the initial target
equilibrium point x0

λ to be initialized using Eq.5.23. This initial target equilibrium point is
used to determine the corresponding target equilibrium control λ0 which in turns determines
the input constraint νλ0

max used directly in the control design. This initial target equilibrium
point affects the size of input constraint and ultimately the size of the guaranteed stability
region. Practically this controller is to be used when the initial state x0 is close to the equi-
librium manifold E0. Following the initialization, the target equilibrium point xλ evolves
according to the dynamics given in Eq.5.13. Since the dynamics are globally asymptotically
stable, the target equilibrium point converges to the origin. The state x(t) under the feedback
controller 5.27 evolves to track this moving equilibrium point. The set Ωξ(cξ) defines the
region of the state-space where the state x(t) is guaranteed to converge to the moving equi-
librium point. Note that the dynamics of xλ are a design variable which affect the size of the
stability region Ωξ(cξ) and can be chosen such that Ωξ(cξ) contains the entire equilibrium
manifold E0.

Remark 5.12. Theorem 5.6 provides an explicit state-feedback control law which is able to
stabilize all initial conditions within an explicitly characterized region of the state-space of
the augmented state ξ. The projection of this region from the augmented state ξ to the state
x is a region around the equilibrium manifold E0. That is, this controller stabilizes initial
conditions near the equilibrium manifold to the origin.

5.3.5 Uniting CCLF-based Control with the Localized Bounded Controller

The CCLF-based controller is able to drive all initial conditions within the NCR to
the equilibrium manifold and the localized bounded controller is able to drive all
initial conditions near the equilibrium manifold in a manner which slides along the
equilibrium manifold and eventually reaches the origin.

In this subsection we present a hybrid control design which unites the CCLF-
based controller with the localized bounded controller to achieve stabilization to the
origin from all initial conditions with the NCR.

Consider the nonlinear system Σ for which the CCLF-based controller and a lo-
calized bounded controller of Eq.5.26 have been designed. We now formulate a set
of switching laws to orchestrate the transition between the CCLF-based controller
and a localized bounded controller to result in closed–loop stability of the origin
from all initial conditions within the NCR. Consider the system Σ cast as a switched
system of the form:

ẋ(t) = f (x(t)) + g(x(t))ui(t)(t) (5.33)

i(t) ∈ {1, 2} (5.34)

where i : [0, ∞) → {1, 2} is a switching signal that indexes the control input u(·)
which is assumed to be CCLF-based controller if i = 1 and the localized bounded
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controller if i = 2. This signal is assumed to be a piece-wise continuous (from the
right) function of time. This signal implies that on a finite interval of time a finite
number of switches between the CCLF-based controller and the localized bounded
controller. We consider the problem of designing a switching law that provides a
switching time to ensure the transition between the controller will result in closed–
loop stability of the origin. Below we present a switching scheme which addresses
the above problem.

Theorem 5.7. Consider the constrained nonlinear system of Eq.5.33 with any initial con-
dition within the NCR, x0 ∈ Cµ. Let Tswitch be the earliest time for which the augmented
state ξ with the initialization of the target equilibrium state using Eq.5.23 is within the set
Ωξ(cξ) where Ωξ(cξ) was defined in Eq.5.25. Then, the switching rule given by

i(t) =

1, 0 ≤ t < Tswitch

2, t ≥ Tswitch

(5.35)

results in the origin of the switched closed–loop system being asymptotically stable.

Proof. The proof of this Theorem uses the fact that if the state of the augmented system ξ

resides in Ωξ(cξ) when the controller is switched, then the localized bounded controller will
drive the augmented system ξ (and thus also the state x(t)) to the origin. We consider two
cases:

• Let x0 ∈ Cµ be such that the initialization of the target equilibrium state using Eq.5.23
results in the augmented state satisfying ξ0 ∈ Ωξ(cξ). Under the switching rule in
Eq.5.35, the controller will immediately switch to i = 2 and use the localized bounded
controller of Eq.5.26. Using Theorem 5.6 the closed–loop system will asymptotically
approach the origin.

• Let x0 ∈ Cµ such that the initialization of the target equilibrium state using Eq.5.23 re-
sults in ξ0 /∈ Ωξ(cξ) thus under the switching rule in Eq.5.35, i = 1 the CCLF-based
controller remains active. Using Theorem 5.5 the closed–loop system is asymptotically
stable to an equilibrium point xλ ∈ E0. Therefore there exists a time Tswitch > 0 such
that the augmented state ξ corresponding to the closed–loop state x(Tswitch) under the
initialization of the target equilibrium state using Eq.5.23 resides in Ωξ(cξ). Under
the switching rule in Eq.5.35, the controller will switch to i = 2 at t = Tswitch and
use the localized bounded controller of Eq.5.26. Using similar arguments as above, the
closed–loop system will asymptotically approach the origin.

Remark 5.13. Theorem 5.7 describes the switching scheme to achieve closed–loop stability
of nonlinear systems with input constraints for all initial conditions within the NCR. The
strategy is comprised of CCLF-based controller, the localized bounded controller and a high-
level supervisor that orchestrates the switching between the controllers. The implementation
procedure of this hybrid control strategy is as follows:
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• Given the nonlinear system Σ and the corresponding NCR characterization, design a
CCLF-based controller.

• Design a localized bounded controller by defining the dynamics of Eq.5.13 and calcu-
late an estimate of the stability region Ωξ(cξ) for the augmented state.

• Given any x0 ∈ Cµ, check if corresponding augmented state is within Ωξ(cξ), and
switch to the localized bounded controller to achieve asymptotically stability of the ori-
gin.

• Otherwise, proceed with the CCLF-based controller until the corresponding augmented
state is within Ωξ(cξ) then switch to the localized bounded controller to achieve asymp-
totically stability of the origin.

Remark 5.14. There exists a lack of results on the stabilization from the entire NCR. Even
for linear systems, the results in [24] shows how saturated linear feedback law cannot sta-
bilize from the entire NCR for systems of dimension greater than two. The proposed CCLF-
based control design is able to stabilze from the entire NCR for general nonlinear systems.
Stabilization of a three dimensional system is demonstrated in Example 5.2 below.

5.4 Simulation Examples

In this section we demonstrate the control design to stabilize all initial conditions in
the NCR using several simulation examples.

5.4.1 Linear Systems

We start with linear systems of the form

ẋ(t) = Ax(t) + Bu(t), |u(t)| ≤ 1 (5.36)

where A ∈ Rn×n, B ∈ Rn.

Example 5.1. Consider a second-order semi-stable linear system with A =

[
0 1
2 1

]
, B =[

0
1

]
. The eigenvalues of the system are -1, 2.

The stable manifold of the system isWs = {x|x1 + x2 = 0}. Let V(x) = 4(x1 + x2)2.
Note that this function does not meet the criteria of a classical CLF since V(x) = 0 for all
x ∈ Ws. However, this function does meet both criteria of a g-CLF: 1) V(0) = 0, and
V(x) ≥ 0, and 2) L f V = 4V(x), LgV = sgn(x1 + x2)

√
16V(x). For all x ∈ Ω = {x :

V(x) < 1}, there is some c > 0 and α ∈ [0, 1) such that minu L f V + LgVu = 4V(x)−√
16V(x) ≤ −cVα(x). To demonstrate the ability of proposed controller to stabilize all
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initial conditions in the NCR we use a phase-plane of the closed–loop system. This is depicted
in Figure 5.1 where the outer solid line represents the boundary of the NCR and the dashed
line connecting the two extremal equilibrium points represents the set E0. The arrows show
the direction of the closed–loop system trajectories under the CCLF-based control law in
Eq.5.11 and demonstrate that all initial conditions in the NCR are driven to the origin.
Several closed–loop simulation runs were performed to demonstrate the stabilization of the
proposed controller, but are not shown here for the sake of brevity.
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FIGURE 5.1: Phase plane of the semi-stable planar linear system given
in Example 5.1.

5.4.2 Nonlinear Systems

Example 5.2. Consider the 3d nonlinear system

ẋ1 = 0.5x1 + x2 + x3
2

ẋ2 = x2 + x3

ẋ3 = 2x3 + x3
3 + u

where |u(t)| ≤ 1. The nominal system has a single equilibrium point at the origin and the
linearized system around the origin is anti-stable with eigenvalues 0.5, 1, 2.

To demonstrate the ability of proposed controller to achieve stability in the NCR we use 2d
phase-planes projections of the closed–loop system. Figure 5.2 is the x1, x2 projection, Figure
5.3 is the x1, x3 projection, and Figure 5.4 is the x2, x3 projection. The solid line in each
figure is the outer projection of the boundary of the NCR. We picked the initial condition
x0 = [−0.6936, 0.0539, 0.3326]T to show the stabilization to the origin using the hybrid
controller given by the switching rule in Eq.5.35. Under this switching rule, the controller
starts with the CCLF-based controller until it reaches the set E0, upon which it switches to
the localized bounded in Eq. 5.26 and drives the state to the origin. This is compared with
a nonlinear Lyapunov-based bounded controller using the Lyapunov function V = xTPx,
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P =
[ 15.05 17.70 3.89

17.70 39.36 10.68
3.89 10.68 7.04

]
. As can be seen from the dashed lines in phase-plot figures, closed–

loop stability from this initial condition is not achieved using the Lyapunov-based bounded
controller.
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FIGURE 5.2: Phase plane (x1, x2) of the 3d nonlinear system given in
Example 5.2.
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FIGURE 5.3: Phase plane (x1, x3) of the 3d nonlinear system given in
Example 5.2.

Example 5.3. Consider a continuous stirred tank reactor where an irreversible, first-order
exothermic reaction of the form A k→ B takes place. We use simplified mathematical model
for the process which was presented in [25] and takes the form:

ẋ1 = −φx1κ(x2) + q(x1 f − x1) (5.37)

ẋ2 = βφx1κ(x2)− (q + δ)x2 + qx2 f + δu (5.38)
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FIGURE 5.4: Phase plane (x2, x3) of the 3d nonlinear system given in
Example 5.2.

where x = [x1 x2]T, x1 is the dimensionless concentration, and x2 is the dimensionless
temperature. The dimensionless cooling jacket temperature u is the control input. The system
has three equilibrium points: 1) xs1 = [0.8560, 0.8859]T, 2) xs2 = [0.5528, 2.7517]T, 3)
xs3 = [0.2354, 4.7050]T. The equilibrium points xs1, and xs3 are stable, whereas xs2 is
unstable with one stable and one unstable mode. The control objective is to stabilize the
reactor at the unstable equilibrium point xs2. We let x̂ = x − xs2 denote the deviation
variable. Similar to the previous examples, the results in Figure 5.5 show the phase-plane of
the closed–loop system under the CCLF-based control law in Eq.5.11 and demonstrates the
ability to stabilize all initial conditions in the NCR. Also depicted in Figure 5.5 is boundary
of the NCR (solid line). Also the figure shows the stabilization from the initial condition
x0 = [0.09222, 0]T using a CCLF-based control law in Eq.5.11. This is compared with
a nonlinear Lyapunov-based bounded controller using the Lyapunov function V = xTPx,
P =

[
2 0
0 1

]
. As can be seen from the dotted-dashed lines in Fig.5.5, closed–loop stability from

this initial condition is not achieved using the Lyapunov-based bounded controller.
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FIGURE 5.5: Phase plane of the planar nonlinear system given in Ex-
ample 5.3.
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5.5 Conclusions

In this work, we considered the problem developing a construction procedure for
CCLFs for general unstable nonlinear systems where constraints on the controller
induces a NCR boundary. Two control designs are presented: 1) A CCLF-based con-
troller which results in stabilization to the equilibrium manifold and 2) a bounded
controller which maneuvers the state along the equilibrium manifold to drive it
to the origin. These two controllers are coupled using a hybrid control scheme to
achieve stabilization for all initial conditions in the NCR. The results are demon-
strated using multiple simulation examples.
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6.1 Introduction

Accounting for the system complexity in the control design is central to achiev-
ing improved performance and closed–loop stability. Such characteristics can in-
clude highly nonlinear behavior, uncertainty (typically in the form of additive dis-
turbances and/or uncertain model parameters), and input constraints. Neglecting
these characteristics at the control design stage can lead to performance degradation
or even closed-loop instability. Owing to the constraint handling ability of nonlinear
model predictive control (NMPC), along with the ability to incorporate an explicit
system model, the NMPC framework has been widely utilized to design robust,
constrained optimization based controllers. In most NMPC approaches, the manip-
ulated input trajectory is computed at each sampling time via solving a dynamic
optimization problem, where a cost function is minimized subject to a nonlinear
dynamic system and input/state constraints. Several research studies dealing with
NMPC have focused on issues such as feasibility, stability, constraint satisfaction,
and uncertainty [2]–[4] including Lyapunov-based NMPC (LMPC) designs [5]–[7]
that provide a priori (i,e, before controller implementation or testing for feasibility),
an explicit characterization of initial conditions from where stability and feasibility
of the closed–loop system is guaranteed in the presence of constraints and bounded
uncertainty.
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All the aforementioned work on NMPC is however, dominated by use of de-
terministic system models with very few results using the stochastic nature of the
process in the control design. In the existing results, stochastic disturbance is han-
dled via inherently ‘worst-case’ robust NMPC schemes (e.g. [8]–[10]) where the un-
certainty term is assumed to be bounded, however, such formulations are typically
very numerically expensive, and as a result can impede on-line implementation.
Moreover, the assumption of bounded disturbance, without the use of statistical in-
formation about the disturbances, can lead to conservative control laws and thus
degrade system performance. A natural alternative is to use stochastic unbounded
system disturbance in the controller design.

This alternative approach has recently been pursued under the framework of
stochastic MPC where the disturbances are modeled as random variables and the
expected value of a cost function is minimized. In this direction, one line of work
has focused on probabilistic input constraints and not hard input constraints. In par-
ticular, the works [11]–[14] consider this problem for linear systems. For nonlinear
systems, this direction has only been pursued for state constraints and not input con-
straints [15], [16]. In [17], the stochastic programming problem is recast as a deter-
ministic problem with bounded disturbance and then solved over a finite horizon.
The performance of the controller on a plant with unbounded disturbance is then
subsequently estimated. Also recently, advancements for the problem of stochastic
MPC for linear systems have been developed [18]–[20]. Specifically, these results
have addressed the problem of developing a tractable receding horizon controller in
the presence of input constraints and stochastic unbounded disturbance for linear
systems. In addition, the results provide conditions to ensure mean-square stability.

Although stochastic MPC circumvents the challenge of determining an a priori
bound on the disturbance and also the conservatism originating from the use of
a worst-case framework, it gives rise to several other challenging issues. Namely,
the optimization problem is generally a stochastic program which induces signif-
icant computational burden. For example, the cost function requires the explicit
calculation of a conditional expectation and/or probability associated with multi-
dimensional random variables. For general nonlinear systems, this is a non-trivial
task, and often requires resorting to probability density approximation techniques
[21].

Another conceptual challenge in the extension of MPC to stochastic systems is
the concept of stability. Developments in probabilistic robust control have shown
that instead of stability guarantees under worst-case realizations of the uncertainty,
control system performance with stochastic uncertainty can be improved by intro-
ducing a well-defined risk of instability. That is, the closed–loop trajectory will be
only be able to reach a desired target region with an associated probability. Yet, such
developments have not been applied within the MPC framework. While Lyapunov
techniques for stability analysis and control design for stochastic nonlinear systems
do exist, the results are not as finely polished as their deterministic counterparts.
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The key hurdle in the use of Lyapunov techniques for stochastic systems is the pres-
ence of an additional Hessian term within the stochastic derivative. Nevertheless,
there do exist stabilizing (in a suitable stochastic sense) control laws using stochastic
Lyapunov techniques that provide explicitly-defined regions of attraction (in a prob-
abilistic sense) for the closed–loop system [22]–[24]. In fact, such results shadow the
deterministic counterpart, and have recently been used to derive regions of attrac-
tion with well defined risk measures [25].

Deterministic Lyapunov-based control designs have been recently united with
predictive control schemes to provide an explicit characterization of the states from
where closed–loop stability is guaranteed in the presence of constraints and bounded
uncertainty via a hybrid structure comprising a Lyapunov-based controller and MPC
controllers [26] as well through the development of Lyapunov-based model predic-
tive controllers [5]–[7]. Such results, however, do not exist for the stochastic coun-
terpart of the problem. Hence, the MPC approach does stand to gain from the theo-
retical development in the area of stochastic Lyapunov-based bounded controllers.
The incorporation of explicit optimality considerations in the control design in the
MPC framework, together with explicit characterizations of states with well defined
risk of instability measures which are derived using stochastic Lyapunov techniques,
therefore becomes a meaningful goal.

Motivated by the above considerations, in this work we propose a stochastic
Lyapunov-based NMPC for nonlinear systems with unbounded disturbances (with
Ito noise and subject to input constraints). In particular, we utilize the information on
the distribution of the uncertain variables (instead of traditionally used worst-case
bounds) to develop model predictive controllers that yield less conservative (albeit
probabilistic, with well characterized probabilities) stability region estimates while
handling uncertainty. The rest of the paper is organized as follows: In Section 6.2, we
outline the notation, describe the class of nonlinear stochastic systems studied, re-
view some preliminary background and introduce a general class of Lyapunov-based
feedback controllers. In Section 6.3, we derive properties of the stochastic Lyapunov-
based feedback controllers subject to sample and hold control action. In Section 6.4,
the proposed SLMPC design is presented and the stability properties inherited from
the Lyapunov-based feedback controller are established. In Section 6.5, the theoreti-
cal results are demonstrated on a continuous stirred tank chemical reactor (CSTR)
example. Finally in Section 6.6, we summarize our results.

6.2 Preliminaries

In this section, we present the notation, provide a system description, and also re-
view pertinent assumptions and existing results.
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6.2.1 Notation

Throughout the paper, Rn denotes the real n-dimensional space and (Ω,F , P) a gen-
eral probability space. The function X : Ω → R is a random variable if for every
Borel subset B of R, {X ∈ B} = {ω ∈ Ω : X(ω) ∈ B} ∈ F . We recall that an event
happens almost surely if it happens with probability one. We use the notation E(·)
and P(·|·) (E(·|·)) to denote the expectation and conditional probability (expecta-
tion) respectively. For a given vector or matrix v, vT denotes its transpose, and Tr{v}
denotes its trace when v is square. The notation ‖ · ‖ is used to denote the Euclidean
norm of a vector, and the notation ‖ · ‖Q refers to the weighted norm, defined by
‖x‖2

Q = xTQx for all x ∈ Rn, where Q is a positive definite symmetric matrix. The
notation Bd and BQ

d are used to denote the open balls around the origin defined by
Bd = {x ∈ Rn : ‖x‖ < d} and Bd = {x ∈ Rn : ‖x‖Q < d} respectively. The no-
tation L f χ denotes the standard Lie derivative of a scalar function χ(·) with respect
to the vector function f (·). The notation X\Y , where X and Y are sets, refers to the
relative complement, defined by X\Y = {x ∈ X : x /∈ Y}. We denote the closure,
interior, and boundary of the set X , by X , X ◦, and ∂X respectively.

6.2.2 System Description

We consider stochastic nonlinear systems with input constraints, characterized by
the following stochastic differential equation (SDE):

dx(t) = f (x(t))dt + g(x(t))u(t)dt + h(x(t))dW(t)

x(t0) = x0, u ∈ U
(6.1)

where x(t) ∈ Rn denotes the vector of stochastic state variables with initial state
x0, u ∈ Rm denotes the vector of manipulated inputs and W(t) denotes a stan-
dard q-dimensional independent Wiener process defined on the probability space
(Ω,F , P). We recall that the system state x(t) is actually a function of two variables
x : [0, ∞) × Ω → R, where x(t, ·) is a random variable for each t ∈ [0, ∞). For
each ω ∈ Ω we call x(·, ω) : [0, ∞) → R a realization, a sample path or a trajectory of
the stochastic process and abbreviate x(t, ω) with xω(t). The input vector u(t) takes
on values in a nonempty convex subset U of Rm, where U = {u ∈ Rm : umin ≤
u ≤ umax}, umin ∈ Rm and umax ∈ Rm denote the lower and upper bounds on the
manipulated input. The functions f : Rn → Rn and g : Rn → Rn×m are vector
fields and the term f (x(t)) + g(x(t))u(t) characterizes the deterministic drift. The
function h : Rn → Rn×q is the diffusion matrix. We assume the processes f (x(t)),
g(x(t)), and h(x(t)) are non-anticipating, so that the corresponding Ito integrals are
well defined and also sufficiently smooth on their domains of definition. To ensure
existence and uniqueness of solutions to Eq.6.1, we assume that for all t ∈ [0, ∞), the
functions f , g, and h are locally Lipschitz continuous. Without loss of generality, it
is assumed that the origin is the equilibrium point of the unforced and undisturbed
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system (i.e. f (0) = 0), that should be stabilized. The first hitting time τX of a com-
pact set X containing x0 is defined as the first time the state trajectory x(t) reaches
the boundary of the set X. Using this we define τX(t) = min{t, τX}.
In preparation of our results, we introduce the following definitions and proposi-
tions.

Definition 6.1. Given a C2 function V : Rn → R, the operator L, known as the infinitesi-
mal generator associated with the system in Eq.6.1 is defined as follows:

LV(x) = L f V(x) + LgV(x)u(t) + 1
2 Tr{h(x)T ∂2V

∂x2 h(x)} (6.2)

where LgV =
[
Lg1V, . . . , Lgm V

]
.

Throughout the manuscript, we assume the terms L f V, LgV and h(x)T ∂2V
∂x2 h(x) are

locally Lipschitz. We recall the following definition from stochastic calculus.

Proposition 6.1. (Ito) [27] Given a C2 function V : Rn → R and the solution x(t) of the
system in Eq.6.1, then

dV(x(t)) = LV(x(t))dt + LhV(x(t))dW(t) (6.3)

We now recall Dynkin’s formula.

Proposition 6.2. (Dynkin) [27] The solution x(t) of the system in Eq.6.1 satisfies on t ∈
[0, T] the following equation,

E(V(x(T))−V(x0) = E

(∫ T

0
LV(x(s))ds

)
(6.4)

Finally, we recall a key property of Brownian Motion concerning hitting times.

Proposition 6.3. [28] The distribution of the first hitting time of the set Bd by a q-dimensional
Brownian process Wt is given by

P(τBd > T) =
∞

∑
r=1

ξq,r exp

(
−

k2
q,r

2d2 T

)
(6.5)

where kq,r are positive roots of the Bessel function Jν(z) with ν = q/2− 1 and

ξq,r =
1

2ν−1Γ(ν + 1)
kν−1

q,r

Jν+1(kq,r)
(6.6)

Remark 6.1. In contrast to the deterministic time derivative of the Lyapunov function, the
infinitesimal generator LV contains an additional second-order derivative term. This is the
main difference in stochastic Lyapunov analysis, and gives rise to several challenges in the
stability analysis.
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6.2.3 Stochastic Lyapunov-Based Controller

We assume that there exists a twice differentiable stochastic control Lyapunov func-
tion (SCLF) V : Rn → R. We first characterize the set Π for which negative definite-
ness of the infinitesimal generator LV can be achieved while satisfying manipulated
input constraints.

Π = {x ∈ Rn : inf
u∈U
LV(x) + ρV(x) ≤ 0} (6.7)

The parameter ρ is to be defined later. The infu∈U can be easily computed by de-
termining the sign of the elements within the LhV and LgV vectors. The set fc is
defined as the set induced by level set V = c. Without loss of generality, we assume
the largest level set of V which is contained within the set Π is V = 1. That is,
f1 = sup

c∈R

{x ∈ Rn : x ∈ Π, V(x) ≤ c}. To this end, we omit the subscript for the set

f1, and denote this maximal level set as f.
We note that the assumption of the existence of a SCLF is equivalent to the exis-

tence of a feedback control law φ : Rn → Rm which result in the closed–loop system
being locally stable in probability [23]. We also assume that this feedback control
law φ(x) will result in the closed–loop system achieving negative definiteness of LV
over f. That is

LV(x(t))|u(t)=φ(x(t)) + ρV(x(t)) ≤ 0, ∀x ∈ f (6.8)

In the remainder, we will refer to φ(x) as the Lyapunov-based controller. The feedback
law φ(x) will be used in the design of the SLMPC controller.

Remark 6.2. The Lyapunov-based controllers define a general class of feedback control
laws which results in the closed–loop system achieving negative definiteness of the drift of
the Lyapunov function derivative over the set f. Note that the set f is defined indepen-
dently of any control law and depends only on the input constraints, Lyapunov function,
and system dynamics. Explicit stabilizing (in probability) control laws that provide explicit
characterization of the closed–loop region of attraction have been developed using stochastic
Lyapunov techniques [23]. However such characterizations will always be subsets of the re-
gion f. Hence the class of aforementioned Lyapunov-based controllers is in some sense a
super set of all feedback controller which are able to achieve negative definiteness of the Lya-
punov function derivative over a compact region. For the purpose of this work, we assume
henceforth the existence of a Lyapunov-based controller that we will first analyze further and
then use to design a stochastic Lyapunov-based MPC in Section 6.4.

6.3 Properties of the Lyapunov-Based Controller

In this section, we derive the properties of the Lyapunov-based controller which
will be subsequently used in Section 6.4 to design a Lyapunov-based MPC scheme.
To this end, first we establish risk margins for the Lyapunov-based controller when
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implemented in a discrete (sample and hold) fashion with a sufficiently small hold
time (∆). Using this result along with the recent work in [25], we then derive risk
margins for the Lyapunov-based controller to achieve stability from an explicitly
defined set (f).

6.3.1 Sample-and-Hold Implementation

We first investigate the properties of the Lyapunov-based controller u = φ(x) when
applied in a sample-and-hold fashion. These properties will be subsequently used in
the design of the proposed MPC scheme. In particular, with discrete-time implemen-
tation of the control action on a continuous-time dynamical system with stochas-
tic unbounded uncertainty, one must consider the impact of the uncertainty on the
closed–loop system intra-sample time. We will derive risk margins for states within
the set f to remain invariant under the discrete (sample and hold) implementation
of the Lyapunov-based controller with a sufficiently small hold time (∆). This is
formalized in Lemma 6.1 below.

Lemma 6.1. Consider the system in Eq.6.1, under the Lyapunov-based controller u = φ(x)
designed using the SCLF V, ρ > 0, and the accompanying set f. Let u(t) = u(0) for all
t ≤ ∆. Then, given any probability λ ∈ [0, 1), there exists positive real numbers ∆∗ :=
∆∗(λ), and δ < δ′ < 1, such that if ∆ ∈ (0, ∆∗], then

P

 sup
t∈[0, τf\f◦

δ
(∆)]
LV(x(t)) < 0

 ≥ 1− λ, x0 ∈ f\f◦δ (6.9)

P

 sup
t∈[0, τf\Ωδ

(∆)]
V(x(t)) ≤ δ′

 ≥ 1− λ, x0 ∈ fδ (6.10)

Proof. We will show that for any given probability λ if ∆ is chosen small enough, discrete
implementation of the control action given by the Lyapunov-based feedback controller φ(x)
will preserve satisfaction of the requirement Eq.6.7 with probability of at least λ for initial
conditions in f\f◦δ . In addition, for initial conditions within the set fδ, if ∆ is chosen small
enough, the state trajectory remains within the set fδ′ with probability of at least λ. Let the
set AB be the set of realizations of the random disturbance Wt over the time interval [0, ∆∗]
which are bounded by B.

AB :=

{
ω : sup

t∈[0, ∆∗]
‖Wt‖ ≤ B

}
(6.11)

It follows from Proposition 6.3, that given any probability λ, one can choose B small enough
so that P(AB) = 1− λ. Using the Holder continuity of each sample path xω(t), that there
exists a K1 := K1(λ) for all ω ∈ AB such that supt∈[0, ∆∗] ‖xω(t)− x0‖ ≤ K1(∆∗)γ for all
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x0 ∈ Π, where γ < 1/2. Hence, it follows that

P

(
sup

t∈[0, ∆∗]
‖x(t)− x0‖ ≤ K1(∆∗)γ

)
≥ 1− λ (6.12)

To this end, we let δ′ = inf
y∈Rn\BQ

d

V(y), where Q is a symmetric positive definite matrix. Note

that since V(·) is a continuous function of the state V(x) ≤ δ′ implies ‖x‖Q ≤ d. Now
consider a “ring” close to the boundary of f, described byM := {x ∈ Rn : δ ≤ V(x) ≤
1} = f\f◦δ , for a 0 < δ ≤ 1, with δ to be determined later. The definition of the set Π in
Eq.6.7 implies that for all x(0) ∈ f,

LV(x(t)) = L f V + LgVu(t) + 1
2 Tr{h(x)T ∂2V

∂x2 h(x)}
≤ −ρV(x)

(6.13)

Furthermore, if the control action is held constant until a time ∆∗, where ∆∗ is a positive real
number (u(t) = u(x0) := u0 ∀ t ∈ [0, ∆∗]) then, ∀ t ∈ [0, τf\f◦δ (∆

∗)],

LV(x(t)) = L f V(x(t)) + LgV(x(t))u0 +
1
2 Tr{h(x(t)T ∂2V(x(t))

∂x(t)2 h(x(t))}
= L f V(x0) + LgV(x0)u0 +

1
2 Tr{h(x0)T ∂2V(x0)

∂x2 h(x0)}
+ (L f V(x(t))− L f V(x0)) + (LgV(x(t))u0 − LgV(x0)u0)

+
(

1
2 Tr{h(x(t))T ∂2V(x(t))

∂x(t)2 h(x(t))} − 1
2 Tr{h(x0)T ∂2V(x0)

∂x2 h(x0)}
)
(6.14)

Since x0 ∈ M ⊆ f, L f V(x0) + LgV(x0)u0 +
1
2 Tr{h(x0)T ∂2V(x0)

∂x2 h(x0)} ≤ −ρV(x0). By
definition, for all x0 ∈ M, V(x0) ≥ δ, therefore

L f V(x0) + LgV(x0)u0 +
1
2

Tr{h(x0)
T ∂2V(x0)

∂x2 h(x0)} ≤ −ρδ

Since the functions L f V(·), LgV(·), h(x(t)T ∂2V(x(t))
∂x(t)2 h(x(t)), and V(·) are locally Lips-

chitz in the state x(t), we have that one can find positive real numbers K2, K3, K4 and K5

such that ‖L f V(x(t)) − L f V(x0)‖ ≤ K3‖x(t) − x0‖, ‖LgV(x(t))u0 − LGV(x0)u0‖ ≤
K2‖x(t)− x0‖, ‖ 1

2 Tr{h(x(t))T ∂2V(x(t))
∂x2 h(x(t))}− 1

2 Tr{h(x0)T ∂2V(x0)
∂x2 h(x0)}‖ ≤ K4‖x(t)−

x0‖, and ‖V(x(t) − V(x0)‖ ≤ K5‖x(t) − x0‖ almost surely. We let ε be a positive real
number such that

ε < ρδ (6.15)

It follows that for all ω such that supt∈(0, ∆∗] ‖xω(t)− x0‖ ≤ K1(∆∗)γ, and a choice of ∆∗

such that, ∆∗ <
(

ρδ− ε

(K1K2 + K1K3 + K1K4)

)1/γ

that we get that LV(xω(t)) ≤ −ε < 0,

for all t ≤ τf\f◦δ (∆
∗). Hence it follows that

P

 sup
t∈[0, τf\f◦

δ
(∆∗)]
LV(x(t)) < 0

 ≥ 1− λ (6.16)
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This implies that, given δ′, if we pick δ such that

δ < δ′ (6.17)

and find a corresponding value of ∆∗ then if the control action is computed for any x ∈ M,
and the ‘hold’ time is less than ∆∗, we get that LV remains negative with a probability
greater than λ during the interval [0, τf\f◦δ (∆

∗)].
Using a similar line of reasoning, for initial conditions within the set fδ, and for all ω such

that supt∈[0, ∆∗] ‖xω(t)− x0‖ ≤ K1(∆∗)γ, and a choice of ∆∗ such that ∆∗ <
(

δ′ − δ

K5

)1/γ

we get that V(xω(t)) ≤ δ′, for all t ≤ τfδ′
(∆′). Hence it follows that

P

(
sup

t∈[0, ∆∗]
V(x(t)) ≤ δ′

)
≥ 1− λ (6.18)

Let ∆∗ ≤ min

{(
ρδ− ε

(K1K2 + K1K3 + K1K4)

)1/γ

,
(

δ′ − δ

K5

)1/γ
}

, then for ∆ ∈ (0, ∆∗],

we get Eqs.6.9–6.10.

Remark 6.3. For continuous-time systems under continuous implementation of the control
action, sufficient Lyapunov conditions for stochastic stability (analogous to the deterministic
conditions) can be derived by ensuring negative definiteness of the infinitesimal generator
L on the outer boundary of a set. For systems with continuous-time dynamics and discrete
implementation of the control action, one cannot use this condition as the infinitesimal gener-
ator may become positive during the sampling period or escape a desired target region before
a new sample is obtained. The risk of such events is quantified in Lemma 6.1. In particular,
Lemma 6.1 states that for any desired probability λ, and initial conditions within f\fδ,
the control law φ(x), when implemented in a sample-and-hold fashion will result in the in-
finitesimal generator L maintaining negative definiteness over the sampling period with a
probability of at least 1− λ provided that the sampling time is sufficiently small. Likewise,
for initial conditions within fδ, the probability that the state trajectory will remain within
the set fδ′ before a new sample is obtained is also at least 1− λ.

6.3.2 Characterizing Stability in Probability Regions

Having established the risk margins associated with implementing the Lyapunov-
based controller in a sample and hold fashion, we now establish the closed–loop sta-
bility (in probability) regions. That is, we show that for all initial conditions within
the set f stability can be achieved with an associated well-defined probability. The
notion of stability used here is from the recent work [25] and is formalized in Theo-
rem 6.1 below.

Theorem 6.1. Consider the system in Eq.6.1, under the Lyapunov-based controller u =

φ(x) designed using the SCLF V, ρ > 0, and the accompanying set f. Let u(t) = u(j∆t)
for all j∆t ≤ t ≤ (j + 1)∆, and u(j∆) = φ(x(j∆)), j = 0, . . . , ∞. Then, given any positive
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real number d, and probability λ ∈ [0, 1), there exists positive real numbers ∆∗ := ∆∗(λ),
δ < α and probabilities α, β ∈ [0, 1) such that if ∆ ∈ (0, ∆∗], then the following will hold
for the closed–loop system:

(i) P

(
sup
t≥0
‖x(t)‖Q ≤ d

)
≥ (1− β)(1− λ), x0 ∈ fδ

(ii) P

(
sup
t≥0

V(x(t)) < 1, sup
t≥0
‖x(t + τRn\f◦δ )‖Q < d, τRn\f◦δ < ∞

)
≥ (1− α)(1− β)(1− λ)2,

x0 ∈ fα\f◦δ

Proof. Using the result from Lemma 6.1 we have that for any probability λ there exists a
hold time small enough such that under the discrete implementation of the control action
LV remains negative definite on f\f◦δ and will remain within the set fδ′ for x0 ∈ fδ with
probability of at least 1− λ. We now proceed to show that there exists probabilities α and β,
such that conditions i) and ii) stated above hold. In the remainder of the proof, we abbreviate
all probabilities and expectations conditional on the event in Eq.6.12 with the superscript ∗.
This part follows very similar lines as the proof of Theorem 1 in [25].
We begin with part i). Note that it suffices to show the complementary event with x0 ∈ ∂fδ.
Using Lemma 6.1, it follows from Proposition 6.2 and the discrete implementation of the
φ(x), that

E∗(V(x(τf\f◦
δ′
))) < V(x0) (6.19)

for all x0 ∈ f\f◦δ . One can prove using similar arguments as in [25], that

P∗ (‖x(t)‖Q > d for some t > 0) ≤ V(x0)

inf
y∈Rn\BQ

d

V(y) (6.20)

for all x0 ∈ ∂fδ′ . Recall from the proof of Lemma 6.1 that

δ′ = inf
y∈Rn\BQ

d

V(y) (6.21)

Using Eq.6.17, there exists a β < 1 such that δ
δ′ ≤ β, and hence,

sup
x0∈∂fδ

P∗ (‖x(t)‖Q > d for some t > 0) ≤ sup
x0∈∂fδ′

P∗ (‖x(t)‖Q > d for some t > 0) ≤ β

(6.22)
By passing to the complementary events, we get part i). To prove part ii) we assume x0 ∈
fα\f◦δ , for some positive α < 1. Again following a similar argument as Theorem 1 in [25],
it can be shown that

P∗
(

τf\f◦δ < ∞
)

= 1 (6.23)

We now show,
inf

x0∈fα\f◦δ
P∗
(

τRn\f◦δ < τf

)
≥ 1− α (6.24)

Using the fact that
{

τRn\f◦δ > τf

}
⊆
{

V(x(τf\f◦δ )) ≥ 1
}

, along with the Chebyshev’s
inequality, it follows that
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P∗
(

τRn\f◦δ > τf

)
≤ P∗

(
V(x(τf\f◦δ )) ≥ 1

)
≤ E∗

(
V(x(τf\f◦δ )

)
< V(x0)

sup
x0∈fα\f◦δ

P∗
(

τRn\f◦δ > τf

)
< sup

x0∈fα\f◦δ
V(x0)

< α

(6.25)

By the continuity of the x(t) and since fδ ⊂ f, it follows that

P∗
(

τRn\f◦δ = τf

)
= 0 (6.26)

Using Eqs.6.25, 6.26 with the complementary events implies Eq.6.24. The remainder of proof
again follows the same lines as the proof of Theorem 1 in [25], where the complementary
events in conjunction with Bayes formula is used to show part ii).

Remark 6.4. Theorem 6.1 establishes that the practical stochastic stabilization of the Lyapunov-
based feedback controllers can be achieved from the region fα with the upper bound on the
probability being a function of the initial state, the desired target region, and the sampling
time. Each component represents a risk factor which multiplies to give the overall risk of
resulting in instability. Since the region f is control law independent, it follows that the de-
rived risk margins are also independent of any control law and only depend on the Lyapunov
function, system dynamics, constraints, and sample and hold time.

The results presented in this section establish the stability risk margins associ-
ated with the Lyapunov-based controller when implemented in a sample-and-hold
fashion. Lemma 6.1 derived lower bounds on the probability of the infinitesimal
generator maintaining negative definiteness over a sampling period and the state
trajectory escaping a target region before a new sample is obtained. Conditional
on these events, Theorem 6.1 further derived the risks of the escaping the region
f before reaching a subset of the target region. These properties will be inherited
by the proposed LMPC design, which simultaneously incorporates optimality con-
siderations which improve closed-loop performance. This result is presented in the
upcoming section.

6.4 Lyapunov-Based MPC Design

Existing LMPC designs only consider uncertainty with finite support and are un-
able to handle stochastic unbounded disturbance. These controller provide explicit
characterizations of regions from where the stability of the closed–loop system and
feasibility of the optimization problem is guaranteed. In the presence of stochastic
unbounded disturbance, such results no longer hold. In this section, we propose
a new robust model predictive control design which provides a systematic way of
handling stochastic disturbance which is unbounded. This design takes into account
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the probabilistic information of the disturbance and provides an explicitly charac-
terized region from where stabilization in probability can be achieved. With the use
of appropriate constraints within the optimization problem, we show that the pro-
posed receding horizon controller is an implicit form of a Lyapunov-based feedback
controller. Hence, this predictive control scheme inherits all the stability and ro-
bustness properties of the Lyapunov-based feedback controller when it is applied in a
sample-and-hold fashion, while also incorporating optimality considerations. Con-
sider now the receding horizon implementation of the control action computed by
solving an optimization problem of the form:

uMPC(x̂) := arg min{J(x̂, t, u(·))|u(·) ∈ S} (6.27)

s.t.
dx̂
dt̃

= f (x̂(t̃)) + g(x̂(t̃))u(t̃) (6.28)

x̂(t) = x(t) (6.29)

LV(x̂(t)) + ρV(x̂(t)) ≤ 0 (6.30)

where S = S(t, t + T) is the family of piecewise continuous functions (functions
continuous from the right), with period ∆, mapping [t, t + T] into U. Note in this
formulation the model in Eq.6.28 is defined in continuous time and the control input
is a piecewise constant function, which results in the closed-loop system being a
nonlinear sample-data system with sampling time ∆. x̂(·) denotes the predicted
trajectory of the nominal stochastic system for the input trajectory computed by the
SLMPC. Note that the model in Eq.6.28 is a deterministic approximate nonlinear
model describing the time evolution of the state x̂(·) without any disturbance. Hence
the predicted values need not and in general will not be the same as the actual system
values. Note also that the system model used to predict the future dynamics of
the system is initialized by the actual state of the system. A control u(·) in S is
characterized by the sequence {u[j]} where u[j] := u(j∆) and satisfies u(t) = u[j]
for all t ∈ [j∆, (j + 1)∆). The performance index is given by

J(x̂, t, u(·)) =
∫ t+T

t

[
‖x̂u(t̃; x̂, t)‖2

Qw
+ ‖u(t̃)‖2

Rw

]
dt̃ (6.31)

where Qw and Rw are positive semi-definite, and strictly positive definite, symmetric
matrices, respectively, and x̂u(t̃; x̂, t) denotes the solution of Eq.6.28, due to control
u, with initial state x̂ at time t and T is the specified horizon. The minimizing control
u0

MPC(·) ∈ S is then applied to the plant over the interval [t, t + ∆) and the proce-
dure is repeated indefinitely. Feasibility of the optimization problem and stability
properties of the closed–loop system under the predictive controller are formalized
in Theorem 6.2 below.

Theorem 6.2. Consider the constrained system of Eq.6.1 under the MPC law of Eqs.6.27–
6.30. Then, given any positive real number d and probability λ ∈ [0, 1), there exists prob-
abilities α, β ∈ [0, 1), and positive real numbers ∆∗ := ∆∗(λ), and δ < α, such that if
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∆ ∈ (0, ∆∗] and x0 ∈ fα, then the optimization problem of Eqs.6.27-6.30 will be initially
feasible and the following will hold for the closed–loop system:

(i) P

(
sup
t≥0
‖x(t)‖Q ≤ d

)
≥ (1− β)(1− λ), x0 ∈ fδ

(ii) P

(
sup
t≥0

V(x(t)) < 1, sup
t≥0
‖x(t + τRn\f◦δ )‖Q < d, τRn\f◦δ < ∞

)
≥ (1− α)(1− β)(1− λ)2,

x0 ∈ fα\f◦δ

Proof. The proof of the theorem comprises of two parts. In part 1, we show that for all
x ∈ f ⊃ fα, where α < 1, the optimization problem of Eqs.6.27–6.30 is guaranteed to
be initially feasible. In part 2, we prove the closed–loop system under the receding horizon
discrete implementation of the MPC law of Eqs.6.27–6.30 will result in 1) convergence of
the state trajectory to a desired neighborhood of the origin, and 2) remaining within this
neighborhood therein after.
Part 1: Consider some x0 ∈ f ⊃ fs, where s < 1, under receding horizon implementation
of the predictive controller of Eqs.6.27–6.30, with a prediction horizon T = N∆, where ∆
is the hold time and 1 ≤ N < ∞ is the number of the prediction steps. We first analyze
the constraint of Eq.6.30 for feasibility. Since f ∈ Π and x0 ∈ f, this implies that there
exists a u∗ ∈ S such that LV(x(t)) + ρV(x(t)) ≤ 0. Therefore, for all x0 ∈ f, the
solution comprising of u∗ as the first element followed by N − 1 zeros is a feasible solution
to constraint of Eq.6.30.
Part 2: It follows from the initial feasibility of the optimization problem for all states within
f in Part 1, that the proposed MPC controller is an implicit representation of a Lyapunov-
based controller. Therefore the implementation of the MPC controller inherits the stability
properties of the Lyapunov-based controller established in Section 6.3.

Remark 6.5. Note that the use of the nominal system without the stochastic term for the
dynamics of the prediction state x̂ is just one possible choice. A natural alternative would
be to use the average dynamics of the state x(t). For the case of linear systems, the average
dynamics actually reduces to the aforementioned dynamics without the stochastic term (by
the martingale property of the Ito integral). However, for the general nonlinear case, com-
putation of the average dynamics requires the state transition density which is usually not
available in closed–form and hence requires approximation. The recent work in [21] develops
a framework where the prediction state uses axis-aligned Gaussian mixtures to approximate
transition densities. Nevertheless, regardless of the choice of the model dynamics, the es-
tablished stability results still hold. It is only the optimality of the control law which is
influenced by the choice of model dynamics.

Remark 6.6. Theorem 6.2 above establishes that for all x0 ∈ fα initial feasibility of the
optimization problem in Eqs.6.27–6.30, along with closed–loop stability in a probabilistic
sense. Similar notions of stability can be found in [25] and [29], where the state trajectory
is required to reach a target subset of the region f in finite time and then remain within a
target set BQ

d therein after. The difference between the definition in the present work and
that from [25] is that this definition uses compact sets which are not indexed (or remain
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static), as opposed to using sequences of compact sets. As described in [25], the numbers α

and β are risk margins which quantify the risk of escaping the set f and remaining close
to the target respectively. Owing to the stochastic non-vanishing disturbance along with
the discrete-time implementation of the controller, this notion of stability is a more practical
representation of achievable closed–loop dynamics. In the case of the limit as ∆ and σ go to
zero, the Lyapunov-based feedback controller enforces asymptotic stability.

Remark 6.7. In many practical applications, distributional information about the distur-
bance term can be quantified. Most existing robust MPC approaches ignore such distri-
butional information (by invoking worst-case bounds within the control design over realized
disturbances), which can lead to conservative estimates of the stability region and also unnec-
essarily aggressive control action. In contrast, in the proposed robust MPC control design,
the probabilistic nature of the disturbance is explicitly used within the predictive control
formulation and also used to characterize regions of stability.

Remark 6.8. The proposed Lyapunov-based MPC design is novel in that it is the first to
unify Lyapunov-based stochastic control results within a predictive control framework to be
able to account for stochastic unbounded disturbance. This direction has been pursued in
the deterministic setting, but has yet to be explored in the stochastic setting. Moreover, this
design provides a systematic way to assess the risk of ending up with instability.

Remark 6.9. The proposed design differs from existing Lyapunov-based robust designs [30],
[31] in being able to explicitly account for unbounded disturbances. In particular, the con-
straint in Eq.6.14 includes an additional Hessian term which arises with the use of Ito calcu-
lus. In contrast, the aforementioned robust Lyapunov-based designs assume the disturbance
has finite support. Such designs use a constraint within the MPC formulation so that the
worst case effect of the disturbances on the Lyapunov function derivative is countered to
ensure closed–loop stability. In the presence of disturbances with infinite support, the re-
sults on guaranteed stability and recursive feasibility of the MPC scheme collapse. While
results with absolute guarantees are not possible in the stochastic setting, the proposed
SLMPC scheme provides measures (which are not achievable with the previous schemes)
of being able to achieve stability. Moreover, enforcing the infinitesimal generator L to be
negative definite renders the closed–loop system process x(t) a super-martingale. That is
E (V(x(t))) ≤ V(x(0)) for all t ≥ 0 and x(0) ∈ f. If one were to implement a Lyapunov-
based robust MPC design which can counter the disturbance under the assumption that it
will take only values from a predefined bounded set, then the super-martingale property will
in general not hold. Note that the robust Lyapunov-based MPC schemes [30], [31] use an
additional term in the Lyapunov function derivative of the form

LσVwmax =
∂V
∂x

σwmax

where wmax denotes the assumed bound on the disturbance. Depending on the choice of
V and system parameter σ, the use of this term over the Hessian term in the Lyapunov
constraint may not imply negative definiteness of the infinitesimal generator L. Addition-
ally, under the assumption of convexity of the Lyapunov function, the additional Hessian
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term will be positive semi-definite. Hence, in addition to being a key link in establishing
the probabilistic stability properties of the closed–loop stochastic system, this term provides
a robustness property to the controller by countering the effect of the uncertainty on the
Lyapunov-function derivative.

6.5 Simulation Results

Consider a continuous stirred tank reactor where a reaction of the form A k→ B takes
place, described by:

dCA =

 F
VR

(CA0 − CA)− k0e

−E
RTR CA

 dt

+ σCA (CA − Cs
A) dwCA(t)

dTR =

 F
VR

(TA0 − TR) +
(−∆H)

ρdcp
k0e

−E
RTR CA

+
QR

ρdcpVR

)
dt + σTR (TR − Ts

R) dwTR(t)

(6.32)

where CA0, TR0 and CA, TR denote the concentration of species A, and temperature in
the inlet stream and reactor respectively. The variable QR is the heat added to the re-
actor. The model considers stochastic uncertainty due to errors in the process param-
eters and process noise in the inlet flow rate F and inlet temperature TR0. The terms
wCA(t) and wTR(t) are independent standard Brownian motions with σCA = 0.1 and
σTR = 0.2. The values of the process parameters can be found in Table 6.1 (for more
details, see [6]). The SDE in Eq.6.32 is simulated using the MATLAB SDE toolbox∗ with
an integration step-size of 0.0001. The control objective is to stabilize the reactor
at the unstable equilibrium point (Cs

A, Ts
R) subject to constraints: |QR| ≤ 90 kJ/s

and CA0 ≤ 2 kmol/m3. We consider a quadratic control Lyapunov function of the

form V(x) = xTPx, where x = (CA − Cs
A, TR − Ts

R) with P =

(
0.3333 0.0215
0.0215 0.0024

)
.

We demonstrate the theoretically derived probability bounds in Theorem 6.2 us-
ing probabilities obtained/observed via monte-carlo simulations. To this end, we
focus on the complementary sub-events Aα = {τRn\f◦δ > τf, x0 ∈ fα\f◦δ} and
Aδ = {∃t, ‖x(t)‖ > d, x0 ∈ ∂fδ}. Note these sub-events imply the events given
in Theorem 6.2 using Bayes Theorem (as in the proof of Theorem 6.1). That is, we
will estimate the risk of 1) starting outside the target region and reaching the target
region before hitting the boundary of stability region f (α) and 2) starting within
the target region and remaining there (β). This is done by first discretizing the set

∗http://sdetoolbox.sourceforge.net



100
Chapter 6. Lyapunov-based Model Predictive Control of Stochastic Nonlinear

Systems

of points on the level curves fα and fδ and then performing 1000 closed–loop sim-
ulations from each one of these points under the implementation of proposed pre-
dictive controller with a prediction horizon of T = 2∆ over a time interval [0, Tf ].
The probability estimates are then computed from each of these points, which in
turn are used to determine an estimate of the upper bound on the probability over

the entire set. A discretization time of ∆ = 0.02 min is used with Qw =

(
1 0
0 10

)
,

Rw =

(
0.1 0
0 0.01

)
and ρ = 0.001. The optimization problem is solved using MATLABs

subroutine fmincon. All simulations are preformed with Tf = 2 min, and each
boundary of the set fα is discretized into 25 points. The estimated probabilities
are always less than the respective values of α, and β (summarized in Tables ??)
supporting the theoretically derived upper bounds on the probabilities in Theorem
6.2.

TABLE 6.1: Chemical reactor parameters and steady–state values.

Parameter Units
VR = 0.1 m3

R = 8.314 KJ/Kmol · K
CA0 = 1.0 Kmol/m3

TA0 = 350.0 K
Qs

R = 0.0 KJ/min
∆H = −4.78× 104 KJ/Kmol
k0 = 72× 109 min−1

E = 8.314× 104 KJ/Kmol
cp = 0.239 KJ/kg · K
ρ = 1000.0 kg/m3

F = 100× 10−3 m3/min
Ts

R = 388.48 K
Cs

A = 0.8076 Kmol/m3

σCA = 0.1
σTR = 0.2

TABLE 6.2: Probability estimates for different values of β and α.

β sup
x0∈∂fδ

P (Aδ) α sup
x0∈fα\f◦δ

P (Aα)

0.5 0.388 0.5 0.005
0.6 0.510 0.6 0.103
0.7 0.620 0.7 0.222
0.8 0.750 0.8 0.429
0.9 0.870 0.9 0.825
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6.6 Conclusions

In this work, a predictive control design was proposed for the constrained stabiliza-
tion (in probability) of nonlinear stochastic systems with unbounded disturbance.
First, a general class of Lyapunov-based feedback controllers was studied. Using stochas-
tic Lyapunov-based techniques, key properties regarding the discrete implementa-
tion and closed–loop stability (in probability) region for this class of controllers was
derived. The results were then united with a predictive control framework to derive
the proposed Lyapunov-based stochastic MPC. The key idea in the proposed control
design was to use stochastic Lyapunov techniques to derive constraints which are
enforced within the optimization problem of the receding horizon controller. Upon
feasibility of the optimization problem, the MPC scheme inherits the stability prop-
erties of the Lyapunov-based controllers. Moreover, the Lyapunov techniques were
used to establish risk margins for achieving stability from a well characterized set
of initial conditions. In particular, it was shown that the value of the Lyapunov
function provides an upper bound on the probability of the state trajectory becom-
ing unstable. The theoretically derived bounds on this probability were empirically
demonstrated via simulation on an unstable CSTR example.

6.7 References

]
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Chapter 7

Conclusions and Future Work

In this chapter, we summarize the main contributions of this work and discuss future
research directions.

7.1 Conclusions

In this work, we addressed the problem of control of nonlinear systems in the pres-
ence of input constraints and stochastic uncertainty. Specifically, the work focused
on achieving stabilization via control from all initial conditions from where control
is possible (i.e. the NCR). The problem scope focuses on unstable systems where the
presence of input constraints results in the NCR being a subset of the state space.
This makes the use of control more important as instability can result from poor
control design.

In Chapters 2 and 3 we first consider linear systems and present a construc-
tive procedure for constrained control Lyapunov functions (CCLFs). In addition
we consider the objective of designing a controller that guarantees stability from
all initial conditions in the NCR. The aforementioned procedure for construction of
CCLFs was utilized within a Lyapunov-based model predictive controller coupled
with an auxiliary control design to achieve stabilization from all initial conditions
in the NCR. Illustrative simulation examples were presented and implementation to
nonlinear systems was demonstrated via a chemical reactor example.

In Chapter 4 we considered the problem developing a construction procedure
for CCLFs for general unstable nonlinear systems. A procedure was developed
which allows for the computation of the boundary trajectories by using a boundary
condition for the well-known Controllability Minimum Principle. Following this,
we show how CCLFs can be constructed using this boundary characterization. In
Chapter 5, we turned to the problem of stabilization of the entire NCR for general
nonlinear systems. Two control designs are presented: 1) A CCLF-based controller
which results in stabilization to the equilibrium manifold and 2) a bounded con-
troller which maneuvers the state along the equilibrium manifold to drive it to the
origin. These two controllers are coupled using a hybrid control scheme to achieve
stabilization for all initial conditions in the NCR. The results are demonstrated using
multiple simulation examples.
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In Chapter 6, we consider the problem of control for nonlinear stochastic systems
with unbounded disturbance. A predictive control design was proposed to achieve
constrained stabilization (in probability). The results build on a general class of
Lyapunov-based feedback controllers and utilize stochastic Lyapunov-based techniques.
Specifically, several key properties regarding the discrete implementation and closed–
loop stability (in probability) region for this class of controllers were first derived.
Following this, the results were united with a predictive control framework to de-
rive the proposed Lyapunov-based stochastic MPC. The main idea in the proposed
control design was to derive appropriate constraints which are enforced within the
optimization problem of the receding horizon controller and which use established
stochastic Lyapunov properties. The MPC scheme inherits the stability properties
of the Lyapunov-based controllers, upon feasibility of the optimization problem. Fi-
nally, the Lyapunov techniques were used to derive risk margins for achieving sta-
bility from a well characterized set of initial conditions. In particular, it was shown
that the value of the Lyapunov function provides an upper bound on the probabil-
ity of the state trajectory becoming unstable. The theoretically derived bounds on
this probability were empirically demonstrated via simulation on an unstable CSTR
example.

7.2 Future Work

We suggest the following topics for future research. The general theme for these
suggestions is to generalize the results to wider class of systems.

• The development of CCLF construction procedures along with control designs
for both linear (Chapter 2 and 3) and nonlinear (Chapter 4 and 5) are done
in the context of process systems which does not account for the presence of
parametric uncertainty and disturbances. Extending the notion of the CCLF to
achieve stabilization in the presence of input constraints along with robustness
against parametric uncertainty and disturbances is a natural direction. By as-
suming the uncertainty and disturbances are another input into the plant and
remains bounded, the results for characterizing the NCR could be extended to
define the set of states within the state–space from where stabilization is possi-
ble under such an uncertainty input. This would then result in a robust CCLF
which can be used to design control laws resulting guarantees stabilization
from the entire NCR. This direction can be further extended to address the un-
availability of some of the states for measurement (output-feedback problem).
Specifically, the robust CCLF control design could be re-purposed to handle
estimation errors in the state feedback controller and combining the control
design with a nonlinear observer.

• The work in Chapters 4 and 5 focus on nonlinear systems with a single control
input. A topic of future research is to extend the NCR construction and the
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CCLF-based control design for nonlinear systems with multiple inputs. A key
challenge in the construction of the CCLF in this context is the NCR charac-
terization. For linear systems, the NCR for multi-input systems can be decom-
posed as the super-set of the NCR’s for each single-input subsystem. This de-
composition does not hold for general nonlinear systems. However, one could
explore if there is a class of nonlinear systems where such a decomposition
does hold resulting in a natural generalization of the presented CCLF-based
control designs. Extending the nonlinear single-input construction procedure
to multi-input systems would involve using a manifold of equilibrium points
in place of single control equilibrium points as a boundary condition which
would increase the computational complexity of the procedure.

• The work in Chapters 4 and 5 also focus on nonlinear systems under the as-
sumption that the target equilibrium point is structurally stable. A topic of
future research is to extend the problem to relax this assumption. For such
systems, the equilibrium point can bifurcate for varying values of the control
action and thus would impact the construction procedure of the NCR. The pro-
posed procedure would need to be modified to account for new equilibrium
branches.
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