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ABSTRACT

Thirty years since the removal of lead from gasoline, lead still poses a health risk.
Children are most at-risk for adverse health outcomes caused by lead toxicity due to both
behavioural (e.g., hand-to-mouth behaviour) and physiological differences (i.e., increased
intake of lead by body weight, higher uptake rate and a higher vulnerability to the effects
of lead) compared to adults (Yeoh et al., 2009). As a result, governments must identify
children that may be at-risk of lead poisoning and develop practical methods to mitigate

lead exposure.

Before a government can develop a policy to help mitigate exposure of lead for
children, we need to understand the spatial distribution of lead within the city. A popular
spatial model used within air pollution research may allow more accurate, and more
localized predictions than the most common interpolation method, kriging. Land use
regression (LUR) is a technique leveraging multiple predictor variables to help estimate
the spatial distribution of the dependent variable. By using historical sources of lead,
LUR can be used to model soil lead levels (SLL) with localized variation. Unfortunately,
spurious relationships can be the basis of a LUR model, which may lead to an overfitted
spatial model resulting in a model with little generalizability and questionable ability to
estimate the dependent variable at unobserved locations. Ultimately, Empirical Bayesian
Kriging may be the best option for soil contamination research due to its ability to
provide a smoothed prediction surface and its dependence on the spatial structure of the
data to provide estimations.
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The benefit to society and the return on investment (ROI) is often the justification
for lead remediation. Gould (2009) estimates a $17 to $221 ROI for every dollar spent on
lead hazard control. One of the main components of this estimate of ROl comes from the
decrease in intelligence quotient (1Q) that a child may experience as a consequence of
lead toxicity. There are three main ways that a decrease in 1Q can negatively impact the
economy, (i) lower potential lifetime earnings, (ii) reduced tax revenues, and (iii) higher
spending on special education (Gould, 2009). Since 1Q has such a significant role in the
ROI estimates, chapter 3 seeks to achieve a greater understanding of the relationship
between blood lead levels (BLLs) and 1Q. The loss of 1Q points for an increase in blood
lead concentration proposed by Lanphear et al. (2005) and referenced by Gould (2009) is
significantly higher than what we found in our meta-analysis. Thus, the projected ROI

proposed by Gould (2009) may be much lower than previously calculated.

In the final chapter, the cost associated with permanent lead abatement is
investigated based on ROI projections as a case study in Hamilton, Ontario. We show
that, in most cases, permanent lead remediation is far too expensive for a municipal
government. Furthermore, the capital initially invested may not be distributed back into
the local economy, as the ROI suggests. We suggest that municipal governments make
decisions based on need, rather than basing remediation decisions on ROI projections.
Furthermore, we recommend the use of hazard quotient maps to help justify lead
remediation as a more accurate representation of potential lead toxicity, instead of only

looking at SLL exceedances across the city.
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PREFACE

This thesis dissertation contains five chapters, which includes: an introduction,
three main chapters, and a conclusion. The first paper (chapter 2) examines a relatively
new interpolation method for heavy metal soil contamination research and discusses the
inherent flaws in using land use regression compared to the traditional method of kriging.
The second paper (chapter 3) is a meta-analysis exploring the relationship between blood
lead levels in children and intelligence quotient (1Q). This paper presents a thorough
investigation into the relationship between BLLs and 1Q using modern meta-analysis
techniques to synthesize unstandardized beta coefficients. Lastly, the third paper (chapter
4) presents a cost-benefit analysis of lead remediation in Hamilton, consisting of soil,
water, and paint abatement. Despite significant return on investment projections, the

paper discusses reasons why a city should reconsider investing in such a large project.

The first chapter is a methodological paper that contributes to a broader research
audience (e.g., air pollution research) that uses land use regression for spatial modelling.
The second chapter contributes to the literature by quantifying the relationship between
blood lead levels in children and intelligence quotient by pooling results from 13 papers.
Finally, the last paper contributes to the literature by examining the feasibility of lead
remediation at a municipal-level and discussing alternatives to permanent lead abatement.
This dissertation seeks to challenge the necessity and benefit of lead remediation in urban

cities by providing a case study in Hamilton, Ontario.
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The first author of each paper reviewed the literature, completed the analysis,
interpreted the results, and wrote the manuscripts. The first author also collected, cleaned,
and prepared a historical data set for the first paper (chapter 2). Dr. Bruce Newbold co-
authored each of the three manuscripts, providing guidance from initial concept
development to analysis, submission and revision. For the first paper, Dr. Niko
Yiannakoulias also guided concept development and analysis. The three chapters

presented in this thesis dissertation are as follows:

Chapter 2:

Mackay, K.P., Yiannakoulias, N., and Newbold, K.B. (2018). A critical assessment of
land use regression for interpolating soil lead (Pb) levels: a case study in Hamilton,

Ontario.

Chapter 3:

Mackay, K.P., and Newbold, K.B. (2019). The relationship between childhood blood

lead levels and Intelligence Quotient: a meta-analysis.
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Chapter 4:

Mackay, K.P., and Newbold, K.B. (2018). A critical assessment of the return on

investment of permanent lead hazard control: a case study in Hamilton, Ontario.
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Chapter 1 Introduction

1.1 Justification of research topic

Despite declining blood lead levels (BLLs) among Canadians (Government of
Canada, 2013; O’Grady et al., 2011), lead (Pb) remains a problem in cities across Canada
(Richardson et al., 2011). The Canadian Health Measures Survey (CHMS) reported a
BLL of 1.34 pg/dL (geometric mean) for Canadians aged 6 to 79 (Health Canada, 2013).
In Hamilton, the geometric mean of blood lead from tested children was 2.18 pg/dL
(converted from 0.11 pmol/L). Although less than 1% of Canadians aged 6 to 79 exceed
the guidance value of 10 pg/dL, BLLs lower than the actionable reference level have been
shown to cause adverse health outcomes (Health Canada, 2013). In 2013, Health Canada
released a risk management strategy for lead that concluded by stating that there are areas
within the literature that require more research to investigate lead toxicity and its impact
on human health and the environment. Additionally, Health Canada stated that there is a
need to characterize sources of exposure, exposure levels for Canadians, and toxicity at

low blood lead levels (Health Canada, 2013).

Lead contamination in urban cities is mostly attributed to three primary sources,
(i) leaded gasoline, (ii) lead-based paint, and (iii) leaded pipes. The introduction of
unleaded gasoline was first introduced in 1972 and phased out by 1990 (Health Canada,
2013), but the combustion of leaded fuel has left lead particulates in the soil. Similarly,

lead-based paint has been regulated in Canada since 1978 and eliminated in 1991
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(Abelsohn et al., 2010), yet it remains in older houses that used lead-based paint for its
durable properties (Gilbert et al., 2006). Lastly, leaded pipes were widely used within
cities until phased out pre-1990s in favour of non-toxic materials (Health Canada, 2013),
but lead pipes remain in many older homes that have not been renovated. In older cities,

these three primary sources of lead may pose a significant risk to the population.

This dissertation focuses on Hamilton, Ontario, Canada as a case study because
Hamilton is a relatively old city with an old housing stock (Richardson et al., 2011) and
has had a long industrial past that may increase exposure to lead within the city. There
have been many businesses located in Hamilton’s downtown core over the past 100 years
that worked with lead products, which may have contaminated the air, water and soil
within the city (see Section 2.2.3). In Chapter 2, we identify seven business categories, in
addition to the road network, that may have resulted in environmental lead contamination
since 1920, (i) automobile garages (n=1,464), (i) automobile painters (n=142), (iii)
battery and service stations (n=142), (iv) gasoline stations (n=1,443), (v) junk and salvage
yards (n=230), (vi) lead manufacturing (n=16), and (vii) paint manufacturing (n=21). This
dissertation builds on a study by Richardson et al. (2011), which explains that the
downtown core is also home to a concentration of disadvantaged individuals with lower
average household income, poorer health status, and lower education levels as compared
to the city’s periphery. Disadvantaged populations are often more exposed to lead
poisoning (Hanchette, 2008), which means governments must develop policies and

programs to help mitigate exposure for these vulnerable groups.
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Lead can enter the body of a child in three main ways, (i) ingestion, (ii) skin
absorption, and (iii) inhalation (Cleveland et al., 2008). Although absorption of lead
through the skin can occur, ingestion of lead-based paint or lead-contaminated soil or
inhalation of lead-contaminated dust is a more significant threat to children since the
gastrointestinal tract is more efficient at absorbing the lead as opposed to the skin
(Cleveland et al., 2008). Additionally, a mother with lead within the body (i.e., lead in the
blood or stored within the bones) can transfer lead to the fetus during gestation or transfer
lead to the child during breastfeeding (Abelsohn et al., 2010; Cleveland et al., 2008;
Laidlaw et al., 2008). At moderate to high concentrations, lead poisoning can have a
significant effect on the body, causing paralysis or encephalopathy at higher
concentrations, and fatigue, headaches, abdominal pain and weight loss at moderate
concentrations (Advisory Committee on Childhood Lead Poisoning Prevention, 2013;
David C Bellinger et al., 2006; Cleveland et al., 2008). These adverse health outcomes are
rare in Canada since the average blood lead level has declined about 70% since the 1970s
(i.e., the percentage of Canadians exceeding 10 pg/dL dropped from 27% in 1978-1979 to
less than 1% in 2007-2009) (Health Canada, 2013). However, an emerging field of
research suggests that even at low blood lead concentrations (i.e., <10 pg/dL), lead
exposure amongst children may result in decreased learning and memory abilities,
lowered 1Q, decreased verbal ability, impaired speech and hearing functions, and early
signs of hyperactivity or attention deficit hyperactivity disorder (Chiodo et al., 2007;

Cleveland et al., 2008; Ragan et al., 2009; World Health Organization, 2011).
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Since lead still poses a threat in many urban cities in Canada (Health Canada,
2013), there is a risk for children to develop an intellectual impairment from low-level
lead poisoning. At a population level, intellectual impairment can have a significant
impact on the economy, with estimates ranging from $1.5 billion to $9.4 billion (2010
Canadian dollars) per year in Canada (Health Canada, 2013). Intellectual impairment
causes economic stress through the loss of potential lifetime wages and tax revenue,
increased need for special education, increased incidence of violent crime, and reduced
school and work performance (Brown, 2002; M. S. Burns et al., 2014; Nevin, 2000).
Gould (2009) argues that “for every dollar spent on controlling lead hazards, $17 to $221
would be returned in health benefits, increased 1Q, higher lifetime earnings, tax revenue,

reduced spending on special education, and reduced criminal activity” (p. 1166).

1.2 Thesis Objectives and Research Questions

The overarching goal of this dissertation is to identify geographic areas in
Hamilton, Ontario, Canada, where children may be at-risk of lead poisoning and
characterize sources of lead that may increase the risk of lead exposure and poisoning.
This dissertation builds on a study developed by Richardson et al. (2011) by determining
the risk of lead poisoning to children by exploring the spatial distribution of lead. In the
report by Richardson et al. (2011), the authors collected most of the data (see Chapter 2,
Section 2.2: Data sets and sources of lead) used within this dissertation, but mainly
focused on a qualitative approach to analysis and public health education for solutions.

Spatial analysis was limited to descriptive statistics, and median values by
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neighbourhood, which are problematic for three main reasons, (i) neighbourhoods are too
large for a continuous variable (i.e., soil lead levels), (ii) boundaries create abrupt changes
in value, and (iii) neighbourhoods vary in shapes and sizes. Soil lead levels are a
continuous variable, which means that they change across space. If a continuous variable
such as soil lead levels is grouped into an areal unit, there will be a loss of information
that can be important when trying to identify children that may be at-risk of lead
poisoning. Additionally, by grouping a continuous variable into areal units, there may be
abrupt changes in values between adjacent neighbourhoods (i.e., an areal unit with high
soil lead levels adjacent to an areal unit with low soil lead levels). Continuous variables
should be grouped with caution because the specific way a variable (e.g., soil lead levels)
changes across space is vital to identify at-risk children and to develop strategies to
mitigate exposure. Lastly, the neighbourhoods in Hamilton are not consistent in shape nor
size, which limits the information that can be extracted from the analysis. Neighbourhood
soil lead ranges are far too broad for a problem that has a continuous distribution. In other
words, lead contamination varies across space, and merely categorizing large swathes of
the city into arbitrary spatial segments (i.e., neighbourhoods) will not capture the threat to
children adequately. Therefore, this dissertation seeks to develop a greater understanding
of the spatial distribution of soil lead levels within the downtown core of Hamilton by

employing better methods of spatial modelling.

More specifically, this dissertation seeks to determine the need for lead

remediation within the city and discuss how feasible permanent lead abatement would be
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for a municipal government. In the study by Richardson et al. (2011), the results mostly
focused on public health education as a method to reduce exposure to lead contamination.
The authors found that about half of participants within the highest risk areas were aware
of the public health campaign offering free water service pipe inspection. However,
awareness of exposure reduction campaigns and the threat of lead exposure in the home
was lower among participants with relatively low household incomes, tenants in rented
dwellings, families that did not speak English or French at home, and parents without a
post-secondary education. Additionally, Richardson et al. (2011) found that most (82%)
of participants were interested and willing to comply with follow-up study components
(e.g., blood lead retesting, medical follow-up, and public health inspections of the home).
The report argues that there is a broad audience for public health campaigns to spread
awareness about lead exposure mitigation, and targeting specific populations may
improve lead exposure reduction (Richardson et al., 2011). As discussed previously, there
are plenty of studies promoting permanent lead abatement strategies (see Burns &
Gerstenberger, 2014; Korfmacher, Ayoob, & Morley, 2012; Schnur & John, 2014),
promising substantial returns on investment for the government and boosts to the overall
economy (Brown, 2002; Gould, 2009; Health Canada, 2013). Despite these encouraging
policy recommendations, this dissertation seeks to understand the real-world feasibility of
lead remediation at the municipal level by (i) understanding the spatial distribution of
lead within the city, (ii) determining the relationship between blood lead levels and 1Q,

(iii) estimating the projected costs and return on investment for lead hazard control in
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Hamilton, Ontario, and (iv) determining the need for lead abatement in Hamilton,

Ontario.

1.3 Dissertation Contents

In order to address some of the issues declared by Health Canada (2013),
chapter 2 investigates Land Use Regression (LUR) as a viable alternative to kriging. If
LUR worked as intended, the spatial model could have both identified historical sources
of lead, in addition to providing localized soil lead estimations. The second chapter
evolved into an essential investigation of LUR methodology, identifying various issues
with the spatial modelling technique, and a recommendation to use kriging in future
studies with heavy metal contamination. We show that LUR can be overfitted based on
spurious relationships and suggest that a parsimonious model with global smoothing (i.e.,
Empirical Bayesian Kriging) is likely a better option for soil contamination research. As a
result of this chapter, we utilize Empirical Bayesian Kriging as the primary interpolation

technique for the spatial modelling found in chapter 4.

In chapter 3, we explore the relationship between blood lead levels and 1Q by
completing a meta-analysis of the literature. The decline of IQ as blood lead levels
increase is a common justification for lead remediation, so it is crucial to explore the
literature to understand this relationship. Furthermore, chapter 4 examines the return on
investment projections suggested by Gould (2009), which are partially dependent on the

relationship between blood lead levels and 1Q. In chapter 3, we show that the loss of 1Q
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points as a result of an elevated blood lead level is much smaller than suggested by
Lanphear et al. (2005) and referenced by Gould (2009). Thus, the ROI projections by

Gould (2009) may be much lower than first calculated.

Building on the findings of chapters 2 and 3, chapter 4 investigates the cost to
remove lead from the natural and built environment permanently, calculates the return on
investment, and discusses the need for lead remediation within the lower city of
Hamilton, Ontario. First, chapter 4 estimates the cost to replace lead-contaminated soil,
leaded pipes from older homes, and screen or remove lead-based paint from homes. As
we discover, the cost to permanently remove lead from the natural and built environment
IS staggering, and the returns on investment are in the millions and billions of dollars. In
order to determine if there is a need for lead remediation within the city, we also use
hazard quotient maps to investigate the threat to children further. Finally, we discuss
alternatives to permanent lead abatement as a means to mitigate lead exposure for

children, while also considering budget constraints for a municipal government.

In chapter 5, we conclude the dissertation by discussing the main contributions
we have made to the literature. The references for this section can be found at the end of

chapter 5.
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Chapter 2 A critical assessment of land use regression for interpolating soil lead

(Pb) levels: a case study in Hamilton, Ontario

2.1 Introduction

Soil lead (Pb) contamination continues to pose a significant risk to children in
many post-industrialized cities (Hanna-Attisha et al., 2016). Given the adverse health
risks associated with lead exposure, soil lead contamination is hazardous in areas where
children play in the soil or close to the ground and consume the leaded soil through
normal hand-to-mouth behaviour (Cleveland et al., 2010; Landrigan et al., 2011). Low
blood lead levels (<10ug/dL) in children have been linked to many adverse health and
social outcomes including cognitive, auditory, and behavioural impairments, as well as
“increased health care costs, increased incidence of violent crime, increased need for
special education services, reduced school and work performance, and reduced lifetime
earning potential” (Burns and Gerstenberger, 2014, p. 27). As a result, knowing soil lead
concentration in the environment is necessary to identify and target areas where
contamination has exceeded regulatory guidelines set by governing bodies. Soil sampling
is often used to measure concentrations of lead that have accumulated in the soil at
specific locations, but spatial modelling is necessary to interpolate lead concentrations

between sampled locations.

For the last several decades, lead interpolation has depended on kriging for

spatial modelling due to its ability to smooth the model when data are sparse. Kriging is a
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general term used to describe a variety of different techniques reliant on the spatial
structure of the data. Research on heavy metal contamination has often relied on two
forms of kriging known as Empirical Bayesian Kriging (see Finzgar, Jez, Voglar, &
Lestan, 2014; Pandey et al., 2015) and Ordinary Kriging (see Amini, Afyuni,
Fathianpour, Khademi, & Fluhler, 2005; Liu, Wu, & Xu, 2006). Although background
levels of lead naturally vary within the environment, anthropogenic sources of lead are
more limited in areas distant from urban and suburban development. As a result, kriging
is an ideal choice for interpolation in rural areas where sources of lead are limited to few
sources, and the spatial distribution of values is more uniform than in urban areas (i.e., the
values of lead change gradually across space). In urban areas where sources of lead are
more common, and the prediction of soil lead levels (SLLs) becomes more complex and
heterogeneous (Cattle et al., 2002), land use regression (LUR) may provide better

predictions.

Land use regression, first introduced by Briggs et al. (1997), is a common
interpolation technique in air pollution research (see Arain et al. 2007; Melymuk et al.
2013; Sahsuvaroglu et al. 2006; Saraswat et al. 2013; Wang et al. 2013), but its use in the
soil sciences has been limited (see, for example, Deschenes, Setton, Demers, & Keller,
2013; Wu, Edwards, He, Liu, & Kleinman, 2010). LUR works by determining how well
various land use variables (also known as predictor variables) can estimate the spatial
variation of the dependent variable by using regression analysis. Theoretically, there are

two main reasons why LUR may be superior to kriging in urban areas. Firstly, LUR

10
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maximizes the amount of information available for spatial modelling. LUR can use a
wide variety of land use predictor variables that are often easily obtained from a
municipal government, whereas kriging is limited to the sampled information. Secondly,
since LUR can use a multitude of explanatory variables that vary at a small scale, it can

predict localized variation more effectively than kriging (Arain et al., 2007).

The use of LUR as an interpolation technique for SLLs is limited. Wu et al.
(2010) explored land use regression as a method to explain SLLs; however, they did not
evaluate the model as an interpolator. The authors exclusively evaluated the ability of
road type to explain SLLs in different types of land use and had mixed results. In
commercial areas, the road network was only able to explain 16% of the variation in
SLLs, whereas residential areas, freeways and major arterials were able to explain 61% of
SLL variation. In a more comprehensive evaluation of land use regression as an
interpolation technique, Deschenes et al. (2013) explained 78% of the variation in SLLs
using four variables: industrial land use within 5km, industrial emissions within 25km,
industrial emissions within 10km and presence of closed mines within 50km. However,
these previous uses of LUR in SLL prediction (see Deschenes et al., 2013; Wu et al.,
2010) have not used historical data as predictor variables. Since modern soil lead
contamination in urban areas was likely caused by the long history of lead used
throughout the last century, in addition to the fact that lead can remain within the soil for
decades (Schnur et al., 2014), historical data are more likely to explain the spatial

variation of SLLs than any modern source. For example, the use of lead for residential

11
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and commercial products has been regulated for nearly thirty years (CMHC, 2005), which
means modern sources of lead are very likely a poor proxy for historical sources of lead.
Furthermore, despite literature indicating that aerosol lead can travel vast distances before
being deposited into the soil (ATSDR, 2007; Mielke et al., 2010), the true explanatory
power of aerosol lead from distant sources for the spatial distribution of SLLs in an urban

area is uncertain.

Based on soil lead levels from Hamilton, Ontario, and the results of Wu et al.
(2010) and Deschenes et al. (2013), this paper will address three objectives. First, it will
examine the relationship between the spatial distribution of SLLs and historical lead-
related businesses in Hamilton, Ontario. Second, it will compare the prediction accuracy
for LUR and two baseline kriging models (OK and EBK). Third, it will consider the
practicality of LUR as a means to address the complexity of interpolating lead in an urban
center. In doing so, this paper will provide a critical review of the use of LUR in general,
and more specifically, for predicting SLLs. This paper will operate under the null
hypothesis that there is no relationship between the number of historical lead-related
businesses and soil lead levels for objective one and that LUR will not provide more

accurate predictions of SLLs than Ordinary Kriging or Empirical Bayesian kriging.

12
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2.2 Data sets and sources of lead

2.2.1 Study area

The study area consists of the lower city of Hamilton, Ontario. This older part of
the city falls between Hamilton Harbour to the north and the Niagara Escarpment, which
bisects the city and runs east to west (see Figure 2.1). The city of Hamilton is known as
‘steel city’ due to the presence of two of the largest steel mills in Canada. Beyond steel,
the city was also home to many other businesses over the last century that handled leaded
products. The ‘lower city’ mostly consists of an older housing stock (Richardson et al.,
2011), which means lead service pipes and deteriorating lead-based paint that continues
to pose a threat for residents. Although lead service pipes, leaded gasoline and lead-based
paint are the most common sources of lead, many other sources may explain the spatial
distribution of SLLs in the city, which will be described below. Hamilton is an optimal
area to explore the spatial distribution of SLLs for three main reasons, (i) Hamilton has a
long history of lead use and the spatial distribution of lead is likely complex, (ii)
understanding which sources can be attributed to soil lead contamination can help
mitigate exposure within the city, and (iii) localized SLL estimations can help target areas

most exposed to soil lead contamination.

2.2.2 Soil lead samples
This paper will utilize a soil lead level data set, in addition to a rich historical
data set that was collected for this study. As part of a more extensive study conducted by

Hamilton Public Health Services in 2008-2009 (Richardson et al., 2011), the city

13
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collected soil lead samples from sites around the old lower city. The data set comprises
of 187 soil lead samples throughout the downtown core of Hamilton. Sample locations
were chosen based on the home location of a parent or guardian attending a participating
clinic, as well as the age of the housing. The SLL data set was collected and processed by
the Ministry of the Environment during the summer of 2009 (Richardson et al., 2011).
Soil samples were collected using a tube-type soil corer up to a five-centimetre depth
“from a household’s front, back or side yard depending on where the child played most
frequently and/or where there was sufficient conditions to sample” (Richardson et al.
2011). Samples were analyzed using atomic absorption spectrophotometry to determine
lead content with a limit detection of 5ug/g dry weight at the MOE Phytotoxicology

Laboratory in Toronto, Ontario.
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Figure 2.1: Depiction of the study area in Hamilton, Ontario, Canada (see Appendix A)
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2.2.3 Historical independent variables

Historically, lead was used in a wide range of applications, including paint,
plumbing products, batteries, gasoline, and other products. In the last few decades,
researchers have identified lead-contaminated soil as a source of lead poisoning,
particularly amongst young children (Ryan et al., 2004). However, the use of historical
data to understand the spatial distribution of lead has not been explored in previous
research. Historical businesses that manufactured or used lead-based products in
Hamilton were collected as a means to explain the spatial distribution of SLLs in this

study.

Historical data were collected from three sources: (i) Vernon’s Business
Directories, (ii) Bell Canada’s Telephone Book (Yellow Pages), and (iii) a modified
DMTI road network. Vernon’s business directories were searched from 1925 to 1975, at
which time the business directories were no longer printed. Between the years 1980 and
1990, Bell Canada’s Yellow Pages were searched to collect the remaining ten years of
businesses. In order to capture the most detailed data while also accommodating time
limitations, the two business directories were searched at 5-year intervals. The DMTI
road network was compared to a scanned map from 1990 and digitally modified to
accurately represent the historical road network in Hamilton. In total, eleven types of
lead-related variables were collected (i.e., automobile painters, automobile garages and
repair shops, battery service stations, gasoline stations, junk and salvage yards, lead

product manufacturers, paint manufacturers, local roads, major roads, highways, and

15
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expressways), in addition to five business types that are used as controls (i.e., dental
offices, wholesale trade, retail trade, finance, insurance and real estate (FIRE), and public
administration). Dental offices were collected from the same historical sources as above,
and the other controls were collected from the DMTI1 Enhanced Points of Interest
shapefile (i.e., wholesale trade, retail trade, FIRE, and public administration). Data
collected for each business included: opening year, closing year, business type (variable
name), business name, street number (from), street number (to), street name, street
direction, street type and any comments associated with the business. Once the businesses
were collected and transcribed, businesses with the same location and category were
consolidated, and the closing year extended accordingly. Next, the data were geocoded

using a Bing Maps API Key, and any unmatched records were located manually.

The 1925 to 1990 period was chosen for two main reasons. First, this period
reflects the most significant use of lead (i.e., leaded gasoline and lead-based paint) in
Canada. As Mielke (1999) explains, “the amount of lead in gasoline over only the 57
years of its use [in the United States] from 1929 to 1986 roughly equals all of the lead in
paints in 94 years of lead-paint production” (p. 3). Second, the data collection process
was time-intensive. In 1921, the addition of tetraethyl lead to gasoline was discovered as
a method to curb engine knock. In addition to leaded gasoline, lead-based paint followed
a similar trajectory of use in Canada. Lead-based paint had already been in use for
decades by the time lead was added to gasoline, with the addition of lead into paint

popularized by its useful properties, which included: durability, pigment and anti-
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corrosive characteristics (ATSDR, 2007; Levin et al., 2008). Despite the useful properties
of lead, the addition of lead was eliminated from all paint by the Canadian government
after lead-based paint was linked to cases of child lead poisoning in 1991 (Abelsohn et
al., 2010; O’Grady et al., 2011). Due to time constraints, data collection began with 1925,

following the sale of leaded gasoline.

We collected eleven historical predictor variables that capture the potential for
soil contamination, including lead manufacturing, automobile painters, automobile
garages, battery and service stations, junk and salvage yards, paint manufacturing,
gasoline stations, major roads, expressways, local roads and highways. Historically, the
automotive industry has been a significant source of lead exposure, mostly due to the
combustion of leaded gasoline and the use of lead in paint as well as various automotive
components, especially lead-acid batteries (Ohio Environmental Protection Agency,

2010).

As explained above, the sale of leaded gasoline lasted for nearly seventy years,
with the sale of leaded gasoline capturing 90% of all gasoline sales in the US (Gilbert et
al., 2006), having a significant impact on SLLs and BLLs currently seen today. Based on
the recommendation by the United States Environmental Protection Agency, leaded
gasoline was phased out in 1986 and later banned in 1990 (Gilbert et al., 2006). After
removing tetraethyl lead from gasoline, “average childhood blood lead levels in the U.S.

plummeted from approximately 16 pg/dL in 1976 to 3.2 pg/dL in 1994 (Gilbert &
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Weiss, 2006, p. 695). Moreover, Meyer, Brown, & Falk (2008) explain that 80%-90% of
airborne lead pollution can be attributed to the use of leaded gasoline in large, urban
cities. In order to capture the effects of leaded gasoline use, a modified road network was

utilized.

The DMTI road network was modified to reflect the 1990 road network to
ensure traffic flows were represented accurately. The downtown core of Hamilton,
Ontario has not changed significantly in the last century; however, there has been
significant development in the suburban areas surrounding the core, and two new
expressways have been built since 1990. A paper map was scanned and used to manually
edit the road network in order to reflect historic road infrastructure in 1990. The road
network was further divided into road types (categorized by DMTI) to act as a surrogate
for traffic flows and, thus, the total amount of leaded fuel being burned. The road network
contains four road types, which include: expressways, highways, major roads and local

roads.

Another possible source of lead within the environment could be the result of
activity from junk and salvage yards, metal merchants and automobile wreckers.
Historically, automobiles were a significant source of lead from the use of lead-based
paint, lead batteries, lead wheel weights and the combustion of leaded gasoline. Block
(2009) explains that lead has been recovered from scrap yards by scavenging old

automobiles and other materials, leading to lead deposition in the soil. Additionally,
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Genaidy et al. (2008) describe lead as an emission hazard from recycling, municipal
waste and salvage facilities due to automobile wrecking. Moreover, the Occupational
Safety and Health Administration states that "an employee may be exposed to lead [from]
demolition or salvage, new construction, alteration, repair, transportation, disposal,
storage or containment of lead or materials containing lead on the construction site”

(Lampo et al. 2009).

Lead-based paint has been one of the most significant sources of lead
historically and was eventually banned in Canada in 1991 (Abelsohn et al., 2010).
Production of lead-based paint soared during the early 1900s; however, usage declined
after studies began to link lead-based paint with adverse health effects in children. In
addition to lead-based paint being used in residential areas, the automotive industry also
used lead-based paint as a durable option for automobile bodies and thus, airborne lead
could be deposited into the soil surrounding automobile paint shops (Enander et al., 2004;
Wahid et al., 1997). Similarly, home renovations or deteriorating painted surfaces, and
paint manufacturing plants could also result in soil contamination. A study by Gottesfeld
(2015) found that workers in paint manufacturing plants are exposed to dangerous levels

of lead, and often transport lead outside via contaminated dust and clothing.

Another potential source of lead contamination in Hamilton is the historical
manufacturing of lead products. The City of Hamilton has been home to considerable

industrial activity that includes leaded product manufacturing. There have been several
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different lead-based product manufacturing plants in the last century, producing various
leaded products (e.g., leaded glass, antimonial lead alloys, lead diver weights, sheet lead,
lead boat keels and sand castings). During the importing, processing and exporting of

leaded products, there is a potential for soil lead contamination.

2.2.4 Control variables

In order to test the validity of land use regression for use as an interpolation
technique for SLLs, we collected data on five control variables. Dental offices were
chosen as the historical control variable (i.e., 1925-1990) since this business type should
have no causal association with soil lead contamination. Dental offices have also been
present in the study area throughout the past century, which ensured an extensive data set
for a control variable. Additionally, we used four other modern control variables from the
DMTI (2010) Enhanced Points of Interest shapefile, which included: (i) wholesale trade,
(i) retail trade, (iii) finance, insurance, and real estate (FIRE), and (iv) public

administration.

2.3 Methodology

In soil contamination research, kriging is often the choice for interpolating
heavy metals (see Ha et al. 2014; Yang et al. 2015; Zhou et al. 2016), but in recent years,
land use regression has been tested as a method to predict soil lead levels (see Deschenes
et al. 2013). As the name suggests, land use regression uses the environment as a way to

estimate the value of a dependent variable at an unobserved location using regression
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modelling. In LUR modelling, various predictor variables (i.e., automobile garages,
battery and service stations, etc.) are tested and eliminated through the process of forward

selection.

In general, LUR models for different applications are built using the same
methodology, although slight variations have been developed since Briggs et al. (1997)
first developed the technique. Based on the methodology used by Sahsuvaroglu et al.
(2006), the first step was to subset the soil lead samples into a training set (i.e., a subset to
develop the LUR models using R-squared values) and a test set (i.e., a randomly chosen
subset to test the accuracy of the LUR and kriging models using RMSE). Next, the Point
Distance tool in ArcMap 10.3.1 was used to measure the distance between every SLL
sample and every lead-related business. The Point Distance tool output a table that was
imported into R, whereby a script was used to calculate the cumulative sum of businesses,
or length of the road, by category (e.g., automobile painters, automobile garages, etc.) and
distance interval (i.e., 500 distance buffers, ranging from 10 meters to 5,000 meters, at
10-meter intervals). Spearman correlation values were calculated between the cumulative
sums of businesses or summed length of roads by type and distance interval, and the
SLLs. The Spearman correlation values were used to determine at which distance the
cumulative sum of businesses or summed length of roads produced the highest correlation
between each independent variable and the SLL samples. Spearman correlation is a rank-
order correlation coefficient, which is beneficial when using data that are not normally

distributed, and may contain outliers (Mukaka, 2012). As can be seen in Table 2.1, each
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of the sixteen variables correlates highest at a specific distance (e.g., lead manufacturing
correlates with the spatial distribution of SLLs at a distance of 2,010 meters). Based on
these distances, each variable was manually entered into a bivariate regression model to
explain log-transformed SLLs (training set). Once the bivariate model with the highest R-
squared was determined, each of the remaining independent variables were entered using
forward selection. This process of building and entering the remaining independent
variables to improve the regression model was continued until the final model was
constructed. Variables entered into the model must improve the R-square value by at least
1% (Wang et al., 2013), while also retaining a statistical significance of at least 95% and
maintaining a variance of inflation factor of less than 2. As a result, two LUR models
were developed, (i) only lead-related variables (OLV) and (ii) all variables, which
included lead-related variables and control variables (AV) The final LUR model can be

defined mathematically as follows:

7(Xo) = B1+ B2Xn + €

In this model, Z is the predicted value at point Xo, f1 is the y-intercept, B2 is the
slope coefficient of variable X, n is the number of variables, and € represents the error

term.
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In order to compare the different interpolation techniques, the LUR and kriging
models were developed using the training subset of the SLLs. As described by Wang et
al. (2013), HEV is the preferred method to test the accuracy of predictions if the sample is
large enough to split the dependent variable into two groups, (i) the training set, and (ii)
the test set. As the names imply, the training set is used to develop the model, and the test
set is used to determine the accuracy of the predictions. There is no consensus on the size
of the test set, but since this paper utilizes a relatively large sample size of 187 soil
samples, 20% (n=38) of the soil lead samples were randomly selected to achieve a test set

higher than 30 observations.

This paper also includes the results of two popular kriging techniques used in
soil contamination research, known as Empirical Bayesian Kriging (EBK) and Ordinary
Kriging (OK). These models are not included as a comparison to LUR but will act as a
baseline to determine the efficacy of the LUR predictions. Both kriging techniques have
been explained extensively elsewhere (see Krivoruchko, 2012; Verdin, Rajagopalan,
Kleiber, & Funk, 2015), but a brief description will be discussed here. EBK can provide
accurate predictions by compensating for the uncertainty associated with estimating the
semivariogram. EBK creates subsets of the total sample and estimates semivariograms for
each subset, which allows the model to account for local and global trends (Zoellick,
2016). EBK estimates the semivariogram by simulating data, estimating a new
semivariogram based on the previous model and generating weights to compensate for

uncertainties (Krivoruchko, 2012).
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The result of this process has been shown to predict heavy metal concentrations
with a high degree of accuracy in past soil contamination studies (Aelion et al., 2009;
Finzgar et al., 2014; Pandey et al., 2015). Next, OK relies on the spatial structure of the
data and can utilize detrended data. The residuals output by the detrending function can
then be used to develop weights based on a variogram (Anderson et al., 2005). In this
case, a trend analysis determined a third-order trend removal best fits the SLL samples.

The fundamental model for kriging (EBK and OK) can be defined as follows:

I
E{XG] = Z a].r'Z[XfJ
i=1

In this calculation, Z is the predicted value at point Xo, z is the observed value at
the sampled location X, ; is the weight assigned to the sampled location, and n is the

number of sampled points used in the calculation (Li et al., 2014).

2.4 Results

2.4.1 Distance profiles

Spearman correlations were generated between each independent variable and
the soil lead samples at distances from 10 meters to 5,000 meters, at 10-meter intervals.
Next, we determined the distance at which the highest correlation was achieved between

each independent variable and the soil lead samples. In Table 2.1, the independent

24



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth
Sciences

variables are shown in descending order of the Spearman correlation value. All sixteen
variables correlated with the dependent variable significantly (p <0.001 or p <0.05), and
Spearman correlations ranged from -0.231 to 0.601. As a result of a negative and
unexpected correlation with SLLs, the highway variable was not used in the development

of the regression model.

As shown in Table 2.1, lead manufacturing correlated highest with SLLs with a
Spearman correlation value of 0.601 at a distance of 2,010 meters. Interestingly,
automobile painters, automobile garages and wholesale trade businesses (a control
variable) had the second, third, and fourth highest correlations with SLLs, with Spearman
correlation values of 0.587, 0.548 and 0.541, respectively. Similarly, dental offices (a
control variable) and gasoline stations correlate nearly identically with SLLs, achieving
Spearman correlation values of 0.466 and 0.465 at 1700 and 1,780 meters, respectively.
Lastly, the remaining three road network variables correlated the lowest with Spearman
correlation values of 0.286 (major roads at 170m), 0.267 (expressways at 1,090m), and

0.182 (local roads at 30m).
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Table 2.1: Relationship between independent variables and soil lead levels by distance

Independent variables Year(s) of | Distance of Spearman p-value
data highest correlation

correlation value

(meters)
Lead manufacturing 1925-1990 | 2,010 0.601 <0.001
Automobile painters 1925-1990 | 1,380 0.587 <0.001
Automobile garages 1925-1990 | 2,260 0.548 <0.001
Wholesale trade* 2010 1,360 0.541 <0.001
Battery and service 1925-1990 | 2,270 0.535 <0.001
stations
Junk and salvage yards 1925-1990 | 4,380 0.532 <0.001
Paint manufacturing 1925-1990 | 1,990 0.514 <0.001
Dental offices* 1925-1990 | 1,700 0.466 <0.001
Gasoline stations 1925-1990 | 1,780 0.465 <0.001
Retail trade* 2010 1,440 0.460 <0.001
Finance, insurance and 2010 590 0.457 <0.001
real estate (FIRE)*
Public administration* 2010 470 0.341 <0.001
Major roads 1990 170 0.286 <0.001
Expressways 1990 1,090 0.267 <0.001
Local roads 1990 30 0.182 0.026
Highways 1990 3,220 -0.231 0.005

Note: * indicates which variables are controls

Distance profiles displaying the Spearman correlation at different distances for

each independent variable are illustrated in Figure 2.2 and Figure 2.3. Figure 2.2 shows

the distance profiles for the lead-related variables, whereas Figure 2.3 shows the distance

profiles for the control variables. The information presented in Table 2.1 corresponds to

the distances with the highest correlation, but these peaks are not as apparent when

observed graphically. Nearly all distance profiles, except local and major roads, have a

similarly shaped curve, in which the correlation values plateau after a relatively short

distance (typically less than 1,000 meters). Additionally, the distance and strength of the
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correlations are closely related in the thirteen distance profiles, and the distance at which
the highest correlation value is achieved often occurs at a relatively large distance in the
profile. Major roads has a similarly shaped distance profile but plateaus at a lower and
insignificant correlation value after an initial correlation peak at around 150m. Local
roads present a unique distance profile among the fifteen others. Local roads peaks
initially at 30m, correlating at the 95% confidence level, but later correlates negatively

and more significantly (p = 0.001) at around 2,250m.
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Figure 2.2: Distance profiles for the relationship between the cumulative sum of each

independent, lead-related variable and SLLs (see Appendix B)
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Figure 2.3: Distance profiles for the relationship between the cumulative sum of each

independent control variable and SLLs (see Appendix C)

2.4.2 Interpolation models
We also developed a LUR model in order to understand how it may perform

using control variables, as well as variables with spurious relationships with the
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dependent variable. In order to fully understand how the use of uncertain predictor
variables can influence the prediction accuracy of a LUR model, two models were
created: (i) a LUR model with only lead-related variables (OLV), and (ii) a LUR model
with all variables (AV) (i.e., both the lead-related predictor variables, in addition to the
control variables). The final OLV model included lead manufacturing, expressways, local
roads and automobile painters, and achieved an adjusted R-squared value of 0.24 and
acceptable variance of inflation factors of 1.8, 1.0, 1.0 and 1.8, respectively. The AV
model was constructed second and included lead manufacturing, wholesale trade
buildings, local roads and public administration buildings. The AV model achieved an
adjusted R-squared value of 0.26 and acceptable variance of inflation factors of 1.3, 1.5,

1.0 and 1.2, respectively.

In the case of the four SLL spatial models (see Figure 2.4), an RMSE value was
calculated using the prediction errors to compare the accuracy of each interpolator. The
OK, EBK, OLV and AV models received an RMSE value of 76.7, 82.6, 209.0 and 182.1,
and average errors of -7.1, -0.6, -141.8 and -113.2, respectively. The RMSE values
suggest that we cannot reject the null hypothesis that LUR does not provide more
accurate predictions of SLLs than OK or EBK. Furthermore, the distance profiles suggest
some model over-fitting, since the best LUR model also includes some covariates without

a plausible causal influence on SLL.
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Figure 2.4: SLL predictions for LUR AV, LUR OLV, EBK and OK, and standard error

for EBK and OK (see Appendix D)

2.5 Discussion

By visually comparing the graphs for each lead-related variable and the control
variables, the results are not consistent with the hypothesis that there is a relationship

between the number of historical lead-related variables and soil lead levels. The shape of
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the distance profiles is very similar across the vast majority of the variables, which
indicates that there does not seem to be a relationship between the number of cumulative
lead-related businesses or the summed length of roads, and the spatial distribution of
SLLs in Hamilton, Ontario. The distance at which the independent variable correlates
highest with SLLs suggests a spurious relationship. In other words, the distance profiles
do not illustrate an expected relationship between the independent and dependent
variables. For example, paint manufacturing seems to plateau around 1,000 meters, but
the variable correlates highest at 1,990 meters, before quickly returning to the original
plateaued correlation value at about 2,200 meters. Similarly, battery and service stations
peaks at approximately 900 meters but does not achieve the highest correlation value until
2,270 meters. All of the variables (i.e., historical lead-related businesses, the historical
control and the modern controls) illustrate distance profiles that do not seem consistent

with the literature.

In the process of exploring a comparatively new method to address the
complexity of interpolating lead in an urban center, this paper has uncovered some
challenges with using land use regression more generally. Estimating accurate SLL
concentrations in urban areas will often be a concern for municipal governments that have
limited resources to explore and abate lead contamination. Resource management at a
municipal level is an important consideration that will ultimately limit the time and
money that can be invested in accurately predicting soil lead contamination for urban

areas. As a result, there are three main critiques of LUR in general and specifically for

32



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth
Sciences

SLL prediction in an urban area, which include (i) the resource-intensiveness of data

collection, (ii) the risk of confounding factors, and (iii) the risk of spurious relationships.

First, historical data collection was a particularly time-intensive task for this
study and would not be reasonable for most municipal governments that lack historical
digital business information. The process of transcribing businesses from microfilm
business directories and cleaning the database took approximately 500 hours. As
technology improves, Optical Character Recognition (OCR) could be utilized to digitize
the analog business directories and avoid the transcribing process entirely. However,
these technologies still have digitizing error rates of 5% for modern sources and much

higher error rates for historical sources (Singh, 2013).

Second, this study shows that conceptually unrelated variables can have a
statistically significant correlation with the dependent variable, in addition to increasing
the perceived explanatory power and decreasing the RMSE of LUR models. This is not
surprising given the process used in LUR models for including variables; a large number
of possible distance thresholds are explored, with the one that is most highly correlated
being favoured for use in the model. This amounts to a form of data mining in which a
nearly exhaustive search of possible distance thresholds will find a 'highest' correlation
with little substantive importance in explaining the real pattern of lead dispersal in the
environment. The use of several such spurious variables may cause an over-fitting

problem in LUR, improving the apparent performance of the model, but at the expense of
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generalizability and parsimony. Since it is difficult to be sure about the genuine
relationship between each independent variable and the dependent variable, simpler
models may be preferable. Creating parsimonious models are essential for contamination
research because one of the main goals of developing an accurate spatial model is for
remediation efforts. A model that explains less spatial variation of the contaminant, but
contains only a few predictor variables will be much more useful for targeting the
contaminants efficiently with remediation plans than an over-fitted model with a

marginally higher degree of explanatory power.

Third, the results of the Spearman correlations suggest that relationships
between all predictor variables and SLLs should be interpreted with caution. To the
knowledge of the authors, the distance profiles used to illustrate the correlations between
SLLs and the cumulative counts of businesses (or summed length of roads) have not been
visualized in past LUR studies. In regards to soil lead contamination, the area most
directly surrounding the source seems likely to have the highest concentrations of lead,
with decaying SLLs as the distance from the source increases (Clark et al., 2014). Based
on this idea, the distance profiles should have the highest correlations at the shortest
distances and decrease as the buffer size increases. However, in this study, the distance
profiles reveal weak correlations at the shortest distances and highest correlations at
relatively large (but somewhat arbitrary) distances from the sources. Displaying these
distance profiles is critical to understand if the relationship between the contaminant and

predictor variables are consistent with the known or suspected diffusion pattern, and
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could be an essential tool for critically assessing the appropriateness of LUR in other
research. Indeed, the distance profiles for the control variables and the predictor variables
are similar enough to suggest that there is a weak relationship between the historical

sources of lead and the spatial distribution of SLLs.

Kriging has been criticized for its inability to detect localized variation of the
dependent variable (Arain et al., 2007; Kerckhoffs et al., 2015), but producing a smooth
model is one of its best qualities. Kriging can reduce noise and avoid over-fitting a model
based on the vagaries of a data set, which is vital for generalizability. Furthermore,
kriging has the benefit of estimating error, which can be used to determine the accuracy
of estimations at unobserved locations. Additionally, kriging offers a quick and intuitive
process for developing an OK or EBK model. In ArcMap 10.3.1, a user can quickly
develop an OK or EBK model using the geostatistical wizard and test the predictions
using HEV with relative ease. In regards to resource-intensity, there was no comparison

between the two methods—OK and EBK was significantly more efficient.

2.6 Conclusion

Since the introduction of land use regression by Briggs et al. (1997), air
pollution researchers have been modelling air pollutants in cities all over the world,
including through the use of LUR. LUR has been used extensively in air pollution
research to predict NOx and NO2 concentrations (see Lee et al., 2014; Su et al., 2009),

PM2.5 concentrations (see Beckerman et al., 2013; Olvera et al., 2012), SO>
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concentrations (see Chen et al., 2012) and many more air pollutants. More recently, LUR

has been used in soil contamination research.

Although LUR is praised for its ability to detect localized variation in urban
settings (see Arain et al., 2007; Hoek et al., 2008; Sahsuvaroglu et al., 2006), this paper
has uncovered two potential problems with LUR that can harm the value of the LUR
model. First, predictor variables that have no plausible relationship with the independent
variable (i.e., the control variables) may cause over-fitting. In practice, this means that
novel variables (i.e., variables tested for the first time or not seen in the literature) can be
falsely identified as contributors to the spatial distribution of a contaminant. For
policymakers, false identification of contaminant sources can waste valuable resources,
especially at the municipal level, where budgets for abatement efforts are much smaller.
Second, this paper has shown that graphing distance profiles should be an integral part of
future LUR studies to ensure that model selection is based on reasonable science rather
than data mining. This paper has shown that using Spearman correlations alone can result
in the selection of unintuitive predictor variables. Distance profiles will help researchers
determine whether or not the relationship between predictor variables and the dependent
variable exhibit expected relationships in regards to distance, helping to identify spurious

relationships and reduce the chance of confounding factors.

Based on the work by Deschenes et al. (2013), this study attempted to use LUR

as a method to accurately predict SLLs in the urban core of Hamilton, Ontario. This paper
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explored three main objectives to, (i) examine the relationship between the number of
historic lead-related variables and the spatial distribution of soil lead contamination, (ii)
compare two baseline kriging models (OK and EBK) and LUR in terms of prediction
accuracy, and (iii) consider the practicality of using LUR as a means to predict SLLs in
an urban area. In both cases, the null hypotheses were not able to be rejected, which
suggests there is no relationship between SLLs and historical sources of lead and that
LUR will not provide more accurate soil lead estimates than OK or EBK in Hamilton,

Ontario.

As a result of this study, several issues associated with LUR were identified.
Despite every attempt to explain the spatial distribution of SLLs using historical sources
of lead, the results of this paper suggest that OK or EBK could be a better choice to

predict SLLs in an urban area than LUR.
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Chapter 3 The relationship between childhood blood lead levels and Intelligence

Quotient: a meta-analysis

3.1 Introduction

Since anthropogenic sources of lead were first linked to lead poisoning, research
began to associate lead poisoning with various physical and mental outcomes among
children (Riva et al., 2012). Once lead enters the body through inhalation, oral
consumption, skin absorption, or through a mother’s breastmilk or umbilical cord, it can
cause a myriad of adverse health outcomes. At first, doctors and researchers were only
able to identify health outcomes caused by significant acute and chronic exposures to
lead. In children, acute exposure to lead can cause “vomiting, diarrhea, convulsions, coma
and death” (Richardson et al., 2011, p. 61). In contrast, chronic exposure was initially
associated with physical symptoms related to the renal system, peripheral nervous system,
central nervous system, hematologic system, and gastrointestinal system (Cleveland et al.,
2008). As time progressed, ambient levels of lead within the environment began to fall as
leaded-gasoline and lead-based paint were phased out, causing average blood lead levels
(BLLSs) to decline (Schnur et al., 2014). Although the physical symptoms of lead
poisoning in children began to diminish, researchers discovered adverse health outcomes
relating to the brain at low (i.e., <10 pg/dL) BLLs. One of the most researched effects of

low-level blood lead concentration in children has been the decrease in intelligence.
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3.1.1 Measuring intelligence quotient

Childhood intelligence can be measured using several different tests that
evaluate a child’s cognition of specific tasks (see below), which are combined to create a
full-scale Intelligence Quotient (1Q) score. A full-scale 1Q score is the combination of
smaller subsets of the 1Q test, measuring various forms of cognition (e.g., performance,
verbal, patterns, etc.). The combination of subsets is dependent on the type of 1Q test, as
well as the language of the test. Some IQ tests do not require the use of language, which
can be useful for children without language skills, or in countries where multiple
languages may be common (Oller et al., 2000). Each 1Q test reviewed in this paper is
standardized to a normal distribution with a mean score of 100 within a population.
Different 1Q tests have been developed over the years; however, these 1Q tests have been

standardized to ensure comparability across the various tests (Wasserman et al., 2000).

Since the discovery that lead poisoning may cause negative cognition in
children, researchers have maintained the notion that elevated BLLs lower IQ in children.
For example, in the paper by Menezes-Filho et al. (2018), the authors found that an
increase in BLLs from 0.5 pg/dL to 5.0 pg/dL caused a decline in 1Q by 8.6 points for
children. In other cases, studies have found a less significant loss of 0.5 1Q points per 1
pg/dL in four-year-old children (Crump et al., 2013). In some research, a distinction is
made at different levels of BLLs. In the paper by Canfield et al. (2013), researchers found

the children lost 7.4 1Q points as average lifetime blood lead levels increased from 1
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pg/dL to 10 pg/dL, whereas children with a blood lead level increase from 10 pg/dL to 30

pg/dL exhibited an 1Q loss of 2.5 points.

3.1.2 Social outcomes

Researchers have continued to demonstrate a link between BLLs and a decline in
IQ in children. At first, a decrease in 1Q was associated with high BLLs in children
(Ernhart et al., 1988; Schilling et al., 1988; Schroeder et al., 1985), but as time
progressed, researchers found that even children with low BLLs exhibited a decline in 1Q
(Alvarez-Ortega et al., 2017; Schnaas et al., 2006; Taylor et al., 2017). The decline of 1Q
from lead poisoning is often small—only amounting to a loss of a few points in many
cases (Hornung et al., 2009; Min et al., 2009), but the loss of 1Q has been linked to an
increase of many adverse social outcomes, including violent crime, healthcare costs, need
for special education, and a loss of potential lifetime earnings and tax revenue (Brown,

2002; Gould, 2009; Health Canada, 2013; Nevin, 2000).

According to an analysis by Health Canada (2013), the negative social
consequences of lead poisoning and 1Q loss has a significant impact on the economy. In
Canada, it is estimated that decreasing the average BLL from 1.5 pg/dL to O pg/dL would
save the economy $35 billion per cohort from changes in lifetime earnings per child (i.e.,
based on the July 1, 2009, to June 30, 2010 cohort). At an 8% discount rate, Canadians
can expect to save $1.5 billion, and up to $9.4 billion with a 3% discount rate (Health

Canada, 2013). The loss of lifetime earnings has been calculated based on two
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assumptions, (i) an increase of 1 pg/dL in blood lead levels is associated with a 1 1Q point
deficit, and (ii) a one 1Q point deficit is associated with a 1.66% decline in potential
lifetime earnings (Health Canada, 2013). Considering the projected impact on the
economy, the two assumptions to calculate potential savings are vital to produce an
accurate prediction. Thus, the relationship between BLLs and 1Q is necessary to
accurately quantify the negative impact of lead poisoning on the economy. In order to
help researchers accurately quantify the impact on the economy, this paper seeks to
synthesize the literature relating BLLs and 1Q with a meta-analysis of all UBCs available

within the literature, in addition to exploring smaller populations with subgroup analysis.

3.1.3 Past meta-analyses

To the knowledge of the authors, there have only been three meta-analyses
investigating the relationship between BLLs in children and 1Q. We will investigate the
past three meta-analyses before discussing how this meta-analysis will build on and
develop a more robust approach to measuring the relationship. Needleman et al., (1990)
completed one study, one by Schwartz (1994), and another most recently by Wu et al.
(2018). Each of these three meta-analyses have summarized the relationship using
different methodologies, and aggregating various types of information (i.e., correlations,
and regression coefficients). In the paper by Needleman et al. (1990), tooth (n=5) and
blood (n=7) lead levels were separately compared to 1Q. First, blood and tooth lead
studies were divided into two respective groups to achieve homogeneity among the

pooled studies. Homogeneity was further investigated within the two groups using the
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Rosenthal method of comparing p values, “which is based on the sum of the squared
deviations of the t values for lead from the group mean” (Needleman et al., 1990, p. 674).
Next, the authors created separate weights for the two groups based on the sample size of
each study using two techniques developed by Fisher, and Mostellar and Bush
(Needleman et al., 1990). The effect size for studies was then calculated by converting the
t value to z scores using Fisher’s transformation and compared with the ¥ statistic. Partial
correlation coefficients were then explored in order to see if one study was having an
influential effect on the pooled effect size using the method described in a paper by
Gatsonis et al. (1989), and the definition of a small effect from Cohen (i.e., partial r =
0.14). Needleman et al. (1990) found that the pooled effect sizes were homogenous,
meaning that the sampled children among included studies had baseline characteristics
that were similar enough to not significantly influence the result (Ricker et al., 2008). For
example, differences caused by the country of origin did not significantly affect the
pooled result. The pooled effect of partial r was -0.15 £ 0.05 for the blood lead group, and
-0.08 + 0.05 for the tooth lead group. Furthermore, the authors performed a leave-one-out
sensitivity analysis. However, they did not find any studies that had a significant overall
effect on the pooled result, nor did the authors find any significant bias from excluding 12
studies from the pooled result, which were eliminated for various reasons (Needleman et

al., 1990).

Schwartz (1994) included eight studies in a meta-analysis of loss of 1Q points

when BLLs increased from 10 pg/dL to 20 pg/dL. Additionally, the meta-analysis
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investigated the threshold of BLLs and the effect on 1Q. By estimating a linear regression
function with different ranges of blood lead data, the authors were able to estimate the
threshold at which the relationship between BLLs and I1Q no longer exists. Additionally,
this process was further explored using a prospective lead study with the lowest mean
BLL within the available studies in order to investigate the possibility of a toxicity
threshold for lead poisoning. The residuals from two regression models were used to
construct a third model showing the adjusted relationship between I1Q and BLLs. In the
first regression model, full-scale 1Q was regressed against a set of confounding variables
(e.g., age, race, child stress score, HOME score, maternal 1Q, etc.), and the second
regression model regressed blood lead at 24 months against the same set of confounding
variables from the first regression model. Seven studies were synthesized in the baseline
meta-analysis showing a decrease in 1Q of 2.57 £ 0.41 points for an increase in BLLS
between 10 pg/dL to 20 pg/dL. After a sensitivity analysis was completed (i.e., removing
the study with the largest effect size, and removing the study with the most significant
finding), the authors did not see a significant effect on the pooled result. A further
sensitivity analysis was included in which the authors included eight studies with a non-
result that decreased the estimated loss in 1Q points by half, but the pooled result
remained statistically significant. Next, Schwartz (1994) added studies that did not meet
the initial criteria for study selection, including studies with different ages of children, in
addition to a study with children living solely in disadvantaged areas. Even with these
additional studies included in the pooled effect, the authors did not find a significantly

different result. Lastly, the authors found that the slope between BLLs and 1Q was steeper
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at lower levels of blood lead (i.e., 3.23 £ 1.26 1Q points below 15 pg/dL) than at higher
levels of blood lead (i.e., 2.32 + 0.40 IQ points greater than 15 pg/dL). Additionally, the
author found that a relationship between 1Q and BLLs still exists at BLLs lower than 5

po/dL (Schwartz, 1994).

The most recent meta-analysis discussing the relationship between 1Q and BLLs
was published in 2018 using much more up-to-date methods to pool the results of studies.
Wu et al. (2018) used a variety of inclusion criteria, some of which included only using
studies that used the Wechsler intelligence scale, which is a full-scale 1Q test measuring
cognitive abilities in five categories: verbal comprehension, visual/spatial, fluid
reasoning, working memory, and processing speed (Wechsler, 2014). Additionally,
inclusion criteria also dictated that the study must be either a prevalence (i.e., the total
number of cases during a specific time) or case-control study, as well as excluding studies
with a low sample size (n < 10). Researchers used RevMan 5.2 and Stata 12.0 software to
pool and estimate the relationship between BLLs and 1Q for case-control studies using a
significance cut-off of p =< 0.05. Cochran’s Q and Higgins & Thompson’s I? statistics
provided a measurement of evaluating heterogeneity within the pooled results, which
allows researchers to determine if the population under examination is the same (i.e., the
population cannot be divided into smaller subgroups by various characteristics of the
individuals). The weighted mean difference was used to pool the results, including 95%
confidence intervals. A sensitivity analysis was used to test the robustness of the pooled

result, in addition to the use of funnel plots to investigate publication bias. There were a
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total of 22 case-control studies, and seven prevalence studies included in the meta-
analysis that were analyzed using a systematic review. Wu et al. (2018) found significant
heterogeneity within the 22 studies (i.e., 1> = 85.8%), and explain that the heterogeneity
was likely not a result of differences in the year, study site, sample size, or age, so a
random-effects model was chosen for the meta-analysis. After pooling the 22 studies with
a random-effects model, the weighted mean difference was -6.60 (95% CI: -9.01 to -4.20,
p < 0.0001) for every one pg/L of blood lead (-0.66, 95% CI -0.90 to -0.42 for every one
po/dL of blood lead), which was significantly lower than the children within the control
group. The leave-one-out sensitivity analysis showed that the pooled result did not change
significantly, but the heterogeneity remained high. Researchers also found that
publication bias was not present within the pooled results through the use of a Bgger [sic]

(i.e., Egger) test and funnel plots (Wu et al., 2018).

Past meta-analyses have achieved a reasonable understanding of the relationship
between BLLs and 1Q; however, this paper will address their shortcomings. First, in the
paper by Needleman et al. (1990), pooled partial r values suggest a relationship may exist,
but the relationship was not quantified using regression coefficients. Next, the meta-
analysis by Schwartz (1994) uses relatively simple regression analysis to pool effect sizes
of the current body of literature. The result showed that at higher blood lead levels, lead
had a lower impact on a child’s 1Q than at lower blood lead levels. In the most recent
meta-analysis by Wu et al. (2018), researchers used a much more modern approach to

synthesizing the data using the RevMan software.
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Building on the paper by Wu et al. (2018), this meta-analysis will address three
main limitations of past meta-analyses by: (i) using R software, (ii) using a much larger
pool of beta coefficients, and (iii) including a general and subgroup analysis. One of the
limitations of the RevMan software is that the only estimator for pooled effect sizes is the
DerSimonian-Laird estimator, which is less robust than other estimators, such as the
Hartung-Knapp-Sidik-Jonkman method. More specifically, the DerSimonian-Laird
estimator is more likely to create false-positives as a result of a small number of studies,
and when there is substantial heterogeneity present within the pool (Harrer et al., 2019).
In order to address the second and third limitations, we will use all available
unstandardized beta coefficients, in addition to doing a subgroup analysis to explore the
presence of differences between smaller populations with varying characteristics. In the
past three meta-analyses on this topic, researchers have only used the final, adjusted
model to include in the meta-analysis. Thus, past meta-analyses have generated pooled
results based on a small number of UBCs, and lack a subgroup analysis. By utilizing
every UBC reported in each paper included in this meta-analysis, we are able to generate
more accurate pooled results, in addition to including a thorough subgroup analysis. In
the past, meta-analyses have collected data according to subgroups based on certain
criteria (e.g., only using the final adjusted model, or only using studies that used the
WISC 1Q test). In this meta-analysis, we will use all UBCs available to create a
comprehensive pooled result, and explore any subgroups that may exist within the

population.
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3.1.4 Objectives

Over the last several decades, researchers have tried to measure the link between
BLLs in children and intelligence. The relationship between BLLs and IQ has been
essential to policymakers because 1Q can be further linked to potential lifetime wages of
an individual, the need for special education, the likelihood a child will graduate from
high school and post-graduate education, and increases in violent crime. In the context of
lead poisoning research, a decrease of one 1Q point has been associated with a specific
value of potential lifetime wage loss within a population (Gould, 2009), which can be
used to justify the substantial capital investment of permanent lead abatement. The
relationship between BLLs and IQ in children is vital to develop cost-effective policies,
in addition to developing programs that target children with low BLLs. This paper aims to
identify the relationship between BLLs and 1Q among children more robustly by
leveraging all available data from past studies. Specifically, this paper has three main
objectives, (i) more accurately quantify the relationship between full-scale intelligence
quotient and blood lead levels in children in a general context, (ii) identify the
heterogeneity of the relationship between full-scale intelligence quotient and blood lead
levels in children within the literature, and (iii) identify and explore the existence of
subgroups that may influence the relationship between intelligence quotient and blood

lead levels in children.
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3.2 Methods

3.2.1 Data sources and search strategy

In November 2018, the PubMed database was searched for English-language
studies relating to the association between BLLs and 1Q. The PubMed database was
chosen because the repository catalogues journal articles from Medline, PubMed Central
(PMC), and the National Center for Biotechnology Information (NCBI). Furthermore,
PubMed is managed by the U.S. National Library of Medicine, which is also responsible
for running the Medline database. Additionally, PubMed has been shown to produce the
most search results for the same search query among five Medline platforms (i.e.,
PubMed, ProQuest, EBSCOhost, Web of Science, and Ovid). Although Ovid was shown
to produce similar results to PubMed most consistently, the Ovid platform still returned
fewer results than PubMed when the results differed (Burns et al., 2019). The following
search terms for titles and abstracts published during any year were included: blood lead,
blood Pb, lead poisoning, Pb poisoning, 1Q, intelligence quotient, child, children, toddler,

youth, adolescent, teenager, infant. The full search term can be seen below:

"(\"blood lead\" [Title/Abstract] OR \"blood pb\" [Title/Abstract] OR \"lead poisoning\"
[Title/Abstract] OR \"pb poisoning\" [Title/Abstract]) AND (iq [Title/Abstract] OR
\"intelligence quotient\" [Title/Abstract]) AND (child [Title/Abstract] OR children
[Title/Abstract] OR toddler [Title/Abstract] OR youth [Title/Abstract] OR adolescent
[Title/Abstract] OR teenager [Title/Abstract] OR infant [Title/Abstract])"

The “RISmed” package for R was used to search the PubMed database API

(application programming interface). Initially, 180 papers were identified using the search
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query listed above. First, titles and abstracts were read and categorized into three groups,
(1) ‘yes’: papers that discuss the relationship between 1Q and lead poisoning, (ii) ‘maybe’:
papers that might discuss the relationship between 1Q and lead poisoning, and (iii) ‘no’:
papers that do not discuss 1Q and lead poisoning. After the initial screening process of
reading titles and abstracts, 84 papers were categorized into the ‘yes’ group, 48 papers
were categorized into the ‘maybe’ group, and 48 papers were categorized into the ‘no’
group. Papers that were categorized as ‘yes’ or ‘maybe’ totalled 132 and were selected to
download and read carefully. During the download process, an additional 12 papers were
eliminated because they were not accessible (i.e., available to McMaster University), and
nine papers were eliminated because they were not written in the English language (i.e.,
111 papers remained). During the final phase of elimination, the 111 papers were read
carefully to extract data and eliminate any other papers that did not meet the inclusion
criteria. After the final screening process, 98 papers were removed because they did not
meet the inclusionary requirements. Thirteen papers were identified for inclusion and met
the following requirements, (i) English-language, (ii) peer-reviewed, (iii) contains an
unstandardized beta coefficient (UBC) to describe the relationship between blood lead
levels and intelligence quotient, (iv) uses full-scale 1Q score measured on a normal
distribution with a mean score of 100 within a population, (v) children are younger than
18 years of age, (vi) blood samples were taken using venous puncture, (vii) blood lead
levels were either not transformed, log-transformed or natural log-transformed, (viii)
reported 95% confidence intervals or standard error, and (ix) contains primary or

secondary research.
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3.2.2 Data extraction

After collecting the 13 papers for review, we tabulated the following information:
study location, type of study (i.e., cohort, or case-control), study years, number of
children in the final sample, age of children, type of blood sample, units of measure for
blood lead concentration, type of full-scale 1Q test(s), mean of blood lead level, mean of
full-scale 1Q, statistical tests (i.e., regression, or crude correlation), transformation,
regression type, confounding variables controlled for in model(s), blood lead level
categories, correlation and regression coefficient, 95% confidence intervals, standard
error, and p-value. See Table 3.1 for descriptive statistics of the papers included in this

meta-analysis.

3.2.3 Pooling beta coefficients

In order to leverage all UBCs available within the literature, in addition to
developing a robust pooled estimate, we will use a two-group approach in this meta-
analysis. First, we will use all untransformed UBCs to formulate the main group (i.e., the
linear group). The results of the linear group will be the true estimates since they have a
one-to-one relationship between BLLs and full-scale 1Q in children. Second, we will
standardize all available (i.e., log, natural log, and untransformed) UBCs to one unit of
measure (i.e., the non-linear group) that we can use to verify the results and trends we see
within the linear group. We standardized the coefficients transformed with log, natural
log, in addition to untransformed UBCs to ensure the coefficients are on the same scale.

A paper by Rodriguez-Barranco et al. (2017) describes a method to standardize UBCs
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from a regression model using logio, natural log and untransformed variables to prepare
the coefficients for meta-analysis. In the context of this paper, a UBC where BLLs have
been log-transformed is converted using LOG10(1.5) * UBC, and LN(1.5) * UBC when
the BLLs have been natural log-transformed, where 1.5 is used to convert to a 50% scale.
Standardized UBCs using this method can be interpreted as a 50% increase in BLLs will
cause a loss (if negative) of 1Q points equal to the standardized beta coefficient. For
models where BLLs have not been transformed, we are still required to standardize the
beta coefficients. In a linear model, we can use 0.5 * n * UBC, where 0.5 is to convert to
a 50% scale, and n represents the sample size of the regression model. In cases where the
BLLs were not transformed), the sample size of the regression model is required. Not all
UBCs collected for this meta-analysis include sample size, so any UBCs without a

reported sample size were dropped from the pooled result (n=12).

Rodriguez-Barranco et al. (2017) report that by testing the conversion calculation
for linear models using simulated data, the accuracy of the untransformed beta
coefficients depends on the symmetry of the independent and dependent variables (i.e.,
BLLs and 1Q). The normality of each variable distribution is not known; however, BLLsS
are often left-skewed, and 1Q is often normally distributed. Warne et al. (2013) show
through the analysis of 1Q results from a wide range of countries and tests, consisting of
adults and children, that the distribution of 1Q among a population is most commonly
normal. In contrast, BLLs have been consistently asymmetrically left-skewed (i.e., most

children are in the lowest blood lead groups) in the United States for many years (CDC,
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2019). Many other countries around the world exhibit this same left-skewed distribution
of BLLs among children (see Colombia: Alvarez-Ortega, Caballero-Gallardo, & Olivero-
Verbel, 2017; Iran: Nakhaee et al., 2019; Sweden: Skerfving, Lofmark, Lundh, Mikoczy,
& Stromberg, 2015), which leads us to believe the BLLs in this meta-analysis will also
exhibit a left-skewed distribution. As a result of normally distributed 1Q (dependent
variable) and asymmetrically distributed BLLs (independent variable), we can expect a
variance of 0.52 to 0.63% between the true UBC and the UBC calculated with the
formula proposed by Rodriguez-Barranco et al. (2017). Additionally, for models where
BLLs have been transformed using log or natural log, variances between true and
converted UBCs are predicted to be between 0.24 and 0.34% (Rodriguez-Barranco et al.,
2017). In order to use all UBCs available in the literature, we will use the calculations
proposed by Rodriguez-Barranco et al. (2017) to convert all UBCs to one standardized
form that can generate a more robust pooled result. In past meta-analyses, only one UBC
has been used per included study, which limits the predictive power of the pooled result.
Using the method outlined by Rodriguez-Barranco et al. (2017), we will be able to
leverage all UBCs presented within each study. As a result of using this technique, we
will be able to generate accurate trends and relative differences among pooled results that

can be used to compare with the results of the linear group.

The remainder of the analysis within this paper will employ the methods outlined
by Harrer et al. (2019), which explains the most modern approaches to meta-analyses. In

order to pool the beta coefficients, we are first required to decide between using a fixed-
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effects model or a random-effects model. A fixed-effects model is used when the study
populations across pooled papers are the same, whereas a random-effects model is used
when the study population cannot be assumed to be the same (Harrer et al., 2019). In this
paper, we employ the random-effects model for two reasons, (i) study populations are
derived from countries around the world, and (ii) blood lead samples come from children

of different ages. The random-effects model we employ is stated as follows:

Gk:ﬂ+€k+ck

In the random-effects model, 6k is the beta coefficient for study k, x« is the average of all
beta coefficients, ex is the error associated with sampling, and Ck is the study-specific
random effect (i.e., the difference between the beta coefficient for study k and the average
of all beta coefficients). The {xterm is derived using t2, which can be calculated using
different estimators that calculate between-study variance using slightly different
approaches. There are eight different methods to calculate 12 in the R package that we
will use for this paper, which includes (i) DerSimonian-Laird, (ii) Paule-Mandel, (iii)
Restricted Maximum-Likelihood, (iv) Maximum-likelihood, (v) Hunter-Schmidt, Sidik-
Jonkman, (vi) Hedges, (vii) Empirical Bayes, and (viii) Hartung-Knapp-Sidik-Jonkman.
The DerSimonian-Laird method is often used in meta-analyses performed using the
RevMan software; however, the Hartung-Knapp-Sidik-Jonkman (HKSJ) estimator has
been shown to outperform DerSimonian-Laird (DS) in most cases (Harrer et al., 2019).

The method of calculating t2 using the HKSJ and DS approaches were described in detail
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in a paper by (Mathes et al., 2018). In meta-analyses with heterogeneity, the average error
rates were consistently higher with DS than with the HKSJ estimator (Inthout et al.,
2014). As a result, we will utilize the HKSJ estimator since our meta-analysis is expected
to have heterogeneity, as discussed above. Additionally, pooling the UBCs requires a
weight to reflect the strength of each relationship (i.e., the robustness of the sample to
determine a relationship capable of being generalized to a population). Weighting was
generated using the standard error for each UBC, which is a value derived using the

standard deviation and size of the population associated with each UBC.

3.2.4 Between study heterogeneity

Heterogeneity is an essential aspect of a meta-analysis because it informs us of
the differences between studies within the initial pooled results. If the heterogeneity
within the pooled results is high, there are likely subgroups that may explain variation
that was missed, or extreme values are present within the pooled result. For example, high
heterogeneity within the pooled results may mean that a child with high prenatal BLLs
has a different effect on 1Q than a child with high BLLs at five years old. There are three
main ways to calculate heterogeneity within pooled results, which include: (i) Cochran’s
Q, (ii) Higgins & Thompson’s 12, and (iii) Deeks, Higgins & Altman’s t°. Cochran’s Q is
ideal when there is a large number of studies, and the sample size of studies is large. As a
result, Cochran’s Q is influenced by statistical power, which is not ideal to rely on for a
meta-analysis solely. Similarly, Higgins and Thompson’s 12 also depends on the statistical

power of studies but is more favourable because I? includes a ‘rule of thumb’ to interpret
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the amount of heterogeneity within the results (i.e., 1>= 25%: low heterogeneity, 1% =
50%: moderate heterogeneity, 1 = 75%: high heterogeneity). Lastly, Deeks, Higgins &
Altman’s 7°is better than Cochran’s Q and Higgins & Thompson’s |2 in that the
heterogeneity measure is not dependent on the number of studies or statistical power;
however, 12 can be more difficult to interpret since the measure uses a prediction interval
(Harrer et al., 2019). For example, if the prediction interval includes zero, or a positive

value, it would be difficult to conclude that BLLs influence 1Q.

Outliers may also cause high heterogeneity in the data, or that the pooled result is
being heavily influenced by one study. In order to detect outliers in the pooled result, we
will search for studies with confidence intervals that do not overlap the pooled confidence
interval (Harrer et al., 2019). If a UBC has an upper confidence interval that is lower than
the low-end of the prediction interval, the UBC is considered an outlier. Similarly, if the
lower confidence interval of the UBC is higher than the high-end of the prediction
interval, the UBC is considered an outlier. Once outliers have been removed, we will
conduct a sensitivity analysis to examine how the pooled result changes. Another
essential type of sensitivity analysis is detecting influential studies within the pooled
result. The significance of a pooled result may be influenced by one study, that when
removed, can drastically alter the outcome of the pooled result. In order to conduct a
more rigorous sensitivity analysis, we will use the leave-one-out method to consecutively
calculate the pooled result after removing one study at a time until all studies have been

removed once.
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The Baujat plots are the first method to investigate the influence of UBCs in the
overall pooled result. On the y-axis, influence is shown, whereas the x-axis shows the
overall heterogeneity contribution. Therefore, UBCs shown in the upper-right corner
could be considered potential outliers since they have a strong influence and high

heterogeneity contribution to the pooled result.

After investigating influence with the Baujat plots, we will use a set of influence
characteristic graphs to identify potential outliers within the pool. Each point on the
graphs represents a pooled result when the corresponding UBC has been omitted from the
pooled result (i.e., leave-one-out analysis). Red points represent the UBC(s) that have
been identified as influential studies (i.e., outliers) based on exceedance of two
thresholds, (i) DFFITS, and (ii) hat. In the calculations below, k represents the number of

UBCs within the pooled result.

| DEFITS | > 3x\(1 / (k- 1)

hat > 3x (1/k)

DFFITS and hat are calculated each time a study has been omitted during the leave-one-
out analysis. When a pooled result (omitting one paper) has exceeded the threshold of
either DFFITS or hat, the paper that has been eliminated will be identified on the

influence analysis graphs as red. The DFFITS graph describes the change in the predicted
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pooled UBCs when omitting each study (measured in standard deviations). Similar to the
standard residuals graph, DFFITS shows the significant changes in the predicted pooled

UBCs when the two outliers are removed (Harrer et al., 2019).

The graph showing standardized residuals (of heterogeneity) shows the amount
of heterogeneity caused by each study. Next, Cook’s Distance is a measure to quantify
the influence a particular data point has on the pooled result. In the graph showing
covariance ratio, UBCs with a covariance ratio less than one could be removed to
generate a more precise estimate of the model coefficients, and data points exhibiting a
covariance ratio significantly less than one may be seen as outliers within the data
(Viechtbauer et al., 2010). The graphs showing hat and weight on the y-axis show the
leverage (i.e., the weight) of each unstandardized beta coefficient within the pooled
coefficients. The graph with 12 on the y-axis shows the value of t2 for a pooled result
when each study has been omitted individually. Similarly, the graph with Q on the y-axis
shows the change in Cochran’s Q if each unstandardized beta coefficient was removed

from the pooled result.

Lastly, we will use a Graphic Display of Heterogeneity (GOSH) plot to explore
the heterogeneity within the pooled result further. A GOSH plot allows us to examine the
pooled result on the x-axis and the heterogeneity along the y-axis. Through the use of the
GOSH plots, we will identify potential patterns that may exist within the pooled result. If

the GOSH plot shows more than one cluster, this will indicate that the pooled result may
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be describing more than one subpopulation (Harrer et al., 2019). In order to ensure a
thorough analysis, we will perform a subgroup analysis regardless of the results of the

GOSH plot to explore common subgroups identified within the literature.

Subgroup analysis is used to determine how the pooled result changes when
studies are grouped by different characteristics (e.g., study design, time of blood sample,
etc.). Similar to the original pooled beta coefficients, we will use the random-effects
model to pool the beta coefficients for each subgroup. Next, Harrer et al. (2019) explain
that we will be required to calculate the significance of the differences between each
subgroup by computing the Standard Error of the differences between pooled results. The
result of this calculation will inform us if the differences between subgroups are
significant. Cochran’s Q can determine a statistically significant difference between
subgroups among each group (i.e., non-linear and linear). A significant Q means that the
differences in pooled UBCs are statistically significant, suggesting that the subgroups are

influencing the results.

3.2.5 Publication bias

In the last step of the analysis, we will investigate the possibility of publication
bias, which can happen when journals or researchers do not publish non-results (e.g., non-
significant results, or results with a neutral or unexpected regression coefficient).
Avoiding the publication of non-results is also known as the file-drawer problem, which

states that studies with better results are more likely to be published than studies with a
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less significant result (Harrer et al., 2019). Thus, in a meta-analysis, it is important to
investigate possible publication bias to identify limitations that may be present in the pool
of literature. One method to investigate the possibility of publication bias is through the
use of a funnel plot. A funnel plot is used to explore the symmetry of the UBCs by
plotting standard error on the y-axis and effect size on the x-axis. If publication bias is not
present, we expect to see points plotted in a symmetrical pattern (i.e., points with high,
medium and low standard error). The Egger’s test will be used to further investigate the
potential asymmetry of the UBCs in the pooled result by determining if any asymmetry in
the funnel plot is statistically significant. If statistically significant asymmetry is found
using the funnel plots and Egger’s test, we will proceed to a Duval & Tweedie’s trim-
and-fill procedure to add ‘missing’ UBCs to the funnel and recalculate the pooled result.
Asymmetry in a funnel plot is indicative of a pooled result missing unpublished results
(i.e., non-results). Thus, using the trim-and-fill procedure, the pooled result includes

simulated UBCs that act as a proxy for unpublished results (Harrer et al., 2019).

One issue with the trim-and-fill procedure is that the result is only valid for
publication bias as a result of effect size discrimination, but not non-significance
(Simonsohn et al., 2014a). In addition to the trim-and-fill procedure, we will use a p-
curve analysis to provide another pooled result to mitigate the potential of p-hacking. The
practice of p-hacking is most likely to occur when researchers have not determined the
exact methodology before analysis begins (i.e., decisions about outlier removal, measures

to analyze, covariates to use, etc.), which may lead to self-serving decisions that increase
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publishing odds. As a result of p-hacking, a statistically significant outcome may be
indicative of selective reporting, rather than a genuine relationship (Simonsohn et al.,
2014a). A p-curve analysis will allow us to analyze the presence of publication bias by
measuring the distribution of p-values included in the pooled result in two ways, (i) right-
skewedness, and (ii) flatness. If a pooled result contains evidential value (i.e., the
collective pooled result has meaning), the p-curve will exhibit a significantly right-
skewed and non-flat curve. If a p-curve is not right-skewed, it may suggest that the
pooled result is noisy, imprecise, or lacking certainty. Second, the p-curve of the pooled
UBCs will be compared to a curve with 33% power (i.e., 2 out of 3 studies fail). If the p-
curve of the pooled UBCs are significantly flatter than a curve with 33% power, we will
conclude that the pooled result lacks evidential value. As a result of these two
measurements, the p-curve analysis will determine if an evidential value exists within the
pooled UBCs (Simonsohn et al., 2014a). Furthermore, the p-curve analysis will also be
used to estimate the true effect size. In this meta-analysis, estimating true effect size using
the p-curve method will attempt to correct for inflated UBCs as a result of p-hacking by

only relying on the statistically significant UBCs (Simonsohn et al., 2014b).

The last method to identify any publication bias within the pooled literature is a
risk of bias summary. This meta-analysis will look at the following factors to determine if
any of the included papers exhibit a risk of bias, (i) selective outcome reporting, (ii)
population sampling, (iii) measurement of confounders, (iv) I1Q testing, (v) incomplete

outcome data, (vi) blood lead collection, and (vii) blood lead analysis. In each of the
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seven factors, we will flag a paper with a low, medium, or high risk of failing to explain

each factor adequately, or enacting appropriate methodologies.

3.3 Results

3.3.1 Descriptive statistics

In the initial tests, we will include two pooled results, (i) all UBCs with a non-
linear transformation (non-linear), (ii) only untransformed UBCs (linear). By presenting
the results of the meta-analysis with these two groups, we will be able to robustly explain
the relationship between blood lead levels and 1Q within a linear and non-linear pooled
result. The purpose of including a non-linear result is to incorporate all current literature

relating blood lead levels and 1Q in children.

This meta-analysis will draw from 13 studies published between 1992 and 2018,
which can be seen in Table 3.1. The 13 studies presented in this study have collected data
from a wide range of countries, including Australia, the United States, South Korea,
Chile, Italy, Brazil, China, the United Kingdom, and Yugoslavia. Similarly, the ages of
children during blood sampling ranges widely from prenatal to 16 years old, and BLLs
range from 0.4 pg/dL up to an average of 17.1 pg/dL. Mean IQ ranges from 75.4 to 116;
however, one study does not report an average. In Table 3.1, the pooled result groups and
the number of UBCs that each paper has contributed is shown. Some papers contribute
multiple UBCs to each pooled result since many papers analyze the relationship between

BLLs and 1Q among different subgroups (e.g., age groups, unadjusted and adjusted
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models, etc.). Lastly, all papers explored in this meta-analysis use linear regression;

however, in the paper by Min et al. (2009), nonlinear models were used to test the

relationship between 1Q and BLLs. The authors did not find that a nonlinear relationship

existed and proceeded to use linear regression models to estimate the relationship

between 1Q and BLLs.

Table 3.1: Descriptive statistics for papers included in this meta-analysis

Mean L .
Auth_org & Type of Total A_ge of blood lead Mean Orlglnal Transformation Regression
publishing Country children unit of of blood lead
ear Study UBCs (years) levels 1Q BLLs levels type
Y y (Mg/dL)
(Bellinger et 6 months .
al., 1992) Cohort 32 us t0 10 3t07.8 116 pg/dL None Linear
z(i(l:aggig et Cohort 48 us 3t05 0.7 89.8 po/L None Linear
(Dietrichet | o 18 us 65 51017.1 86.9 fdL N Li
al., 1993) ohort . to 17. . Mg one inear
(Hong et al., South 1.8 .
2015) Cohort 4 Korea 8to 11 (geometric) 110.1 pg/dL Log Linear
g'lg";%'ﬁ)et Cohort 4 Chile 71016 | 3510108 | 1041 | pg/dL None Linear
(Lucchini et h 1 Ital 11t0 14 17 1 /L Natural | Li
al,, 2012) Cohort taly to . 06.3 ug atural log inear
(Menezes-
Filho et al., Cohort 2 Brazil 7to12 1.6 75.5 pg/dL Log Linear
2018)
. Linear, and
g\él(;g)et al, Cohort 6 us 4t011 7 810 86 pg/dL None nonlinear
(testing)
(Panetal., Case- . 0.7 .
2018) Control 2 China 9to 11 (geometric) 103.4 po/L None Linear
(Taylor et al., Prenatal 103.1to .
2017) Cohort 6 UK 08 3.7 104.8 pg/dL None Linear
(112;32? etal, Cohort 20 Australia 11to 13 041t01.0 100 pmol/L Natural log Linear
(Wasserman . Prenatal Not .
etal., 2000) Cohort 5 Yugoslavia 07 10to 1.3 reported pg/dL Log Linear
(Wasserman . 75.4to .
etal., 2003) Cohort 3 Yugoslavia 10to 12 0.8t015 75.9 pg/dL Log Linear

*Note: Mean blood lead levels have been converted to a one-unit increase in pg/dL where

necessary, although, the original unit of measure shown
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3.3.2 Pooled unstandardized beta coefficients

In the context of this paper (see Table 3.2 for pooled UBCs), UBCs in the non-
linear group describes the 1Q point loss (if negative) for a 50% increase in BLLs. For
example, a UBC of -0.40 would mean that for a 50% increase in BLLS, we expect a loss
of 0.40 1Q points. On the other hand, UBCs in the linear group describes an 1Q loss (if
negative) for a one-unit increase in BLLS. In the same example, a UBC of -0.40 would
mean that for an increase of one unit in BLLs (e.g., 1 pg/dL to 2 pg/dL), we expect a loss
of 0.40 1Q points. Indeed, a linear pooled result is much easier to interpret, nor is it
sensitive to different BLL ranges; however, the non-linear pooled result will allow the
inclusion of significantly more literature (i.e., of the 13 papers included in this meta-
analysis, six papers exhibit transformations, whereas seven papers do not include a

transformation).

As can be seen in Table 3.2, the pooled result for the non-linear group was -0.40
(95% CI: -0.54 to -0.27) with a prediction interval of -1.96 to 1.16. Heterogeneity
measures were 0.62 (t2), 92.4% (12), and 1,809 (Q). In the linear group, the pooled result
was -0.20 (95% CI: -0.26 to -0.15), with a prediction interval of -0.71 to 0.30.
Heterogeneity measures in the linear group were 0.06 (t2), 47.7% (12), and 220 (Q). A
forest plot has been generated for both groups to visually represent the pooled result,

which can be found in Appendix E.
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Table 3.2: Pooled results for non-linear and linear groups, including heterogeneity

measures
Pooled 95% confidence interval Prediction interval ) 2
Group T |
result Lower Upper p Lower Upper p
Non-linear
Papers: 13 -0.40 -0.54 -0.27 <0.0001 -1.96 116 0.62 92.4% 1,809 <0.0001
UBCs: 139
Linear
Papers: 7 -0.20 -0.26 -0.15 <0.0001 -0.71 0.30 0.06 47.7% 220 <0.0001
UBCs: 116
3.3.3 Influence, heterogeneity, and outlier detection

Next, we will look more closely at heterogeneity and influence by detecting

potential outliers within the data sets. The first outlier detection method identified 49

UBCs from six papers in the non-linear group, ranging from -0.19 to 1.16, which can be

seen in Table 3.3. Once the 49 outliers were removed, 90 UBCs remained from 11 papers.

The pooled result decreased to -0.73 (95% CI: -0.94 to -0.53) with a prediction interval of

-2.53 to 1.06. Heterogeneity measures have changed to 0.81, 93.8% and 1,428 for 12, I2
and Q, respectively. In the linear group, three UBCs were identified as outliers from two
papers, resulting in a pool of 113 UBCs from 6 papers. The pooled result from the linear

group was -0.22 (95% CI: -0.27 to -0.17), and a prediction interval of -0.70 to -0.27. The

heterogeneity measures were 0.06 (t2), 30.2% (12), and 160 (Q). Results of the first outlier

detection method will be discussed below, and the forest plots produced omitting outliers

can be seen in Appendix F.
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Table 3.3: Pooled results omitting outliers using simple detection method, including

heterogeneity measures

Pooled 95% confidence interval Prediction interval ) )
Group T |

result Lower Upper p Lower Upper p
Non-linear
Papers: 11 -0.73 -0.94 -0.53 <0.0001 -2.53 1.06 0.81 93.8% 1,428 <0.0001
UBCs: 90
Linear
Papers: 6 -0.22 -0.27 -0.17 <0.0001 -0.70 0.27 0.06 30.2% 160 <0.01
UBCs: 113

3.3.3.1 Baujat plots

The Baujat plot for the non-linear group (see Appendix G), shows two UBCs

(ID: 294 and 295) within the upper-right quadrant, both from the paper by Wasserman et

al. (2000). Three more UBCs (ID: 268, 269, and 270) from the paper by Tong et al.

(1996) can be seen distant from the main group with relatively high influence, but low

heterogeneity contribution. In contrast, the Baujat plot for the linear group illustrates a

more gradual dispersion of UBCs from the primary grouping in the bottom-left quadrant.

There are twelve UBCs (ID: 107, 91, 142, 156, 10, 179, 211, 210, 9, 141, 8 and 209) that

are relatively distant from the main group, and the two UBCs that are furthest into the

top-right quadrant with high influence and heterogeneity have IDs: 141 and 209.

3.3.3.2

Influence Characteristics

First, we will explore the influence characteristics for the non-linear group,

which identifies the two UBCs (ID: 294 and 295) from the Wasserman et al. (2000) paper

as potential outliers. All eight graphs for the three groups can be seen in Appendix H. As
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shown in the first graph, the two red points have high, negative standard residuals relative
to the rest of the UBCs. Cook’s distance depicts the strong influence that the two red
points have on the pooled result. Similarly, when these two red points are individually
omitted from the pooled result, the 1 value is reduced significantly. Other UBCs will also
reduce the 12 (shown as negative peaks on the graph); however, they do not have as much
weight within the pooled result, which will be discussed below. In the graph showing
Cochran’s Q on the y-axis, the two red points are the only UBCs that significantly reduce
the value of Q once removed from the pooled effect in the leave-one-out analysis. The
graph with DFFITS shows the two red points as relatively distant from the rest of the
UBCs and depicts a similar shape as the graph illustrating the covariance ratio. Although
difficult to see on the graph, covariance ratios range from 0.94 to 1.03, and the two red
points have a covariance of 0.95 and 0.96 for ID numbers 294 and 295, respectively.
Lastly, and perhaps most importantly, the hat and weight groups illustrate the weight each
UBC has within the pooled result. The weights are based on the standard error, which is
generated using the sample size used to generate each UBC. The larger the sample size,
the smaller the standard error. Thus, studies with high weight will have more influence on
the pooled result, and the two UBCs shown in red are shown to have high weight within
the pooled result. Indeed, UBCs identified by threshold exceedance (shown in red) is not
a guarantee that they are outliers, but careful analysis of each graph in combination can
be used to identify outliers successfully. In the non-linear group, the two UBCs identified
using the threshold exceedance do seem to be outliers within this pool, showing high

heterogeneity and high influence on the result. Other UBCs depict strong influence or
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high heterogeneity, but none as consistently as the two UBCs shown in red on the graphs.
Additionally, two forest plots (see Appendix 1) were generated to investigate further the
influence of each UBC within the pooled result. First, the graph showing the pooled result
when each UBC has been omitted depicts a significant difference when the two UBCs
(ID: 294 and 295) from the Wasserman et al. (2000) paper have been removed. Similarly,
the 1% value decreases significantly when these two UBCs have been omitted from the
pooled result. As a result of the influence analysis, we believe the outliers have been

correctly identified, and they will be removed from the pooled result.

Interestingly, the influence characteristics for the linear group has not identified
any outliers within the pool of UBCs. The hat threshold for the linear group was
calculated as 0.03; however, the range of hat values was between 0.00 and 0.02.
Similarly, the DFFITS threshold was +0.28, whereas the range of DFFITS values in the
linear group was -0.26 and 0.13. The graph showing standard residuals depicts multiple
UBCs causing heterogeneity, but there does not seem to be any UBCs that are influencing
the heterogeneity more than others. In the linear group, multiple UBCs are lower than
one, but the lowest covariance ratio value is only 0.93. Although nineteen UBCs are
lower than one, the values are not significantly lower. On the 12 and Q graphs, there are
multiple, negative peaks, but there is not a significant difference when observing the
change in 72 and Q. After analyzing all graphs in conjunction, we can see that there are
UBCs that contribute to heterogeneity; however, these UBCs have little influence on the

pooled result. Thus, we agree with the influence characteristics that have not identified
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any additional outliers within the pooled result. The final pooled result of the UBCs can

be seen in Table 3.4 below.

Table 3.4: Pooled results omitting additional outliers identified through influence

analysis, including heterogeneity measures

Pooled 95% confidence interval Prediction interval

Group result Lower Upper p Lower Upper

p

Non-linear
Papers: 11
UBCs: 88
Removed: 2

-0.64 -0.82 -0.45 <0.0001 -2.29 1.02 0.68 70.7% 297

<0.0001

Linear
Papers: 6
UBCs: 113
Removed: 0

-0.22 -0.27 -0.17 < 0.0001 -0.70 0.27 0.06 30.2% 160

<0.01

3.3.3.3 GOSH plots

The final method to identify heterogeneity within the pooled result is the use of a
Graphic Display of Heterogeneity (GOSH) plot. The GOSH plot is a means to detect
patterns within the data and determine if there is more than one ‘population” group. The
GOSH plot informs the subgroup analysis by identifying the number of potential
subgroups. The GOSH plots generated for the two groups can be seen in Appendix J. The
GOSH plot for the non-linear group shows one large grouping, but on the left side of the
mass, there is a slight indentation in the group, which may represent two subgroups in the
pooled result. In contrast, the GOSH plot for the linear group distinctly shows one
primary grouping. Although the linear group plot seems to suggest that the pooled result

is the product of one population, the literature suggests multiple subgroups that affect the
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relationship between BLLs and 1Q. The next section of this paper will explore the

relationship based on the subgroups identified in the literature.

3.3.4 Subgroup analysis

After exploring the pooled result from both groups (i.e., non-linear and linear),
we will now investigate any differences that may exist between subgroups. From the
GOSH plot, we have identified two potential subgroups for the non-linear group, whereas
the linear group did not suggest the presence of subgroups; however, we will still explore

both groups in the subgroup analysis for a thorough investigation of the UBCs.

In Table 3.5, we can see the pooled results for the UBCs with and without
adjustment for confounders. Although the pooled results for the non-linear group seems
to suggest a large difference, the p-value for subgroup differences between unadjusted
and adjusted pooled results are not significant, but the differences between subgroups for
the linear group was significant. When the linear UBCs were adjusted for confounders,
we can see that the pooled result was -0.14 (95% CI: -0.20 to -0.08), whereas the pooled
result for the unadjusted UBCs was -0.31 (95% CI: -0.39 to -0.22). In the unadjusted
subgroup for the linear UBCs, heterogeneity was moderate with 0.07 (t2), 41.8% (12), and
91 (Q). Interestingly, the adjusted subgroup for the linear UBCs has no heterogeneity

with values of 0.04 (1), 0.0% (12), and 54 (Q).
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Table 3.5: Pooled results for the subgroup analysis of UBCs by unadjusted and adjusted

regression models, including heterogeneity measures

Pooled 95% confidence interval ) 12 Subgroup differences

Group Subgroup result Lower Upper !

Q p

Unadjusted
Papers: 6 -0.80 -1.13 -0.47 0.81 63.6% 104
UBCs: 39
Adjusted
Papers: 10 -0.52 -0.73 -0.30 0.53 73.3% 180
UBCs: 49

2.16 0.14

Non-linear

Unadjusted

Papers: 5 -0.31 -0.39 -0.22 0.07 41.8% 91
UBCs: 54

Adjusted
Papers: 6 -0.14 -0.20 -0.08 0.04 0.0% 54
UBCs: 59

11.10 <0.01

Linear

In Table 3.6, we have created subgroups for infants (prenatal to 6 months),
toddlers (7 months to 47 months), and children (48 months to 204 months) to reflect the
age groupings (i.e., defined by Health Canada, 2013) when the individual’s BLLs were
measured. As can be seen in Table 3.6, the differences between infant, toddler, and child
are significantly different within the non-linear group with pooled results of -0.22, -0.59,
and -0.83, respectively. Additionally, we have a 2 of 0.55, an 1? of 0.0% and a Q of 22
for the infant subgroup, a 1 of 0.63, an 12 of 57.5% and a Q of 73 for the toddler
subgroup, and a % of 0.63, an 1? of 82.7% and a Q of 185 for the child subgroup. In the
linear group, the pooled result for infants, toddlers, and children was -0.03, -0.19, and -
0.29, respectively, 12 values of 0.07, 0.03, and 0.07, 12 values of 0.0%, 12.3%, and 50.2%,
and Q values of 8, 49, and 94, respectively. The differences between age groups for the

linear UBCs were statistically significant. Interestingly, the heterogeneity measures for
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both the non-linear and linear groups increase as the age of the child at blood lead testing

increases.

Table 3.6: Pooled results for the subgroup analysis of UBCs by child age at blood lead

sampling, including heterogeneity measures

Subgroup differences

Pooled 95% confidence interval ) 2

Group Subgroup result Lower Upper

Q p

Infant
Papers: 4 -0.22 -0.49 0.04 0.55 0.0% 22
UBCs: 23
Toddler
Papers: 4 -0.59 -0.90 -0.27 0.63 57.5% 73 9.50 <0.01
UBCs: 32
Child
Papers: 10 -0.83 -1.15 -0.52 0.63 82.7% 185
UBCs: 33

Non-linear

Infant
Papers: 3 -0.03 -0.13 0.08 0.07 0.0% 8
UBCs: 21
Toddler
Papers: 3 -0.19 -0.26 -0.12 0.03 12.3% 49 15.91 <0.01
UBCs: 44
Child
Papers: 5 -0.29 -0.38 -0.20 0.07 50.2% 94
UBCs: 48

Linear

In Table 3.7, we show the pooled results for two publishing year subgroups,
which include, (i) 2009-2019, and (ii) pre-2009. This subgroup analysis has shown
significant differences for both main groups (i.e., non-linear and linear). In the non-linear
group, there is a pooled result of -0.29 (95% CI: -0.51 to -0.07), and -1.00 (95% CI: -1.26
and -0.74) for the 2009-2019, and pre-2009 subgroups. Also, we have a t% of 0.39, an 12
of 45.0% and a Q of 67.33 for the 2009-2019 subgroup, and 0.70, 77.1%, and 213.86, for

the 72, 12, and Q, respectively. In the linear group, the pooled results were -0.15 (95% ClI:
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-0.51t0 -0.07) and -0.29 (-1.26 to -0.74) for the 2009-2019, and pre-2009 subgroups and

the subgroup differences were statistically significant. Additionally, the heterogeneity

measures for 2009-2019 and pre-2009 were 0.03 and 0.08 (t2), 12.0% and 39.1% (12), and

70 and 81 (Q), respectively.

Table 3.7: Pooled results for the subgroup analysis of UBCs by publishing year, including

heterogeneity measures

Group Subgroup Pooled 95% confidence interval 2 2 Q ;#;?g?]léss
result
Lower Upper Q p
2009-2019
§ Papers: 6 -0.29 -0.51 -0.07 0.39 45.0% 67.33
= UBCs: 38
z Pre-2009 17.48 <0.0001
z Papers: 5 -1.00 -1.26 -0.74 0.70 77.1% | 213.86
UBCs: 50
2009-2019
o Papers: 4 -0.15 -0.21 -0.09 0.03 12.0% 70
B UBCs: 63
S [Pre2009 731 <00
Papers: 2 -0.29 -0.38 -0.21 0.08 39.1% 81
UBCs: 50

Lastly, we used a subgroup analysis to investigate possible differences between

countries (see Table 3.8). Unfortunately, there were not enough papers for each country,

S0 as a means to overcome this issue, we have grouped the countries by G7 membership

(i.e., G7 countries, and non-G7 countries). The Group of Seven (G7) encompasses the

seven most economically dominant countries worldwide, which include Canada, France,

Germany, Italy, Japan, the United Kingdom, the United States, and the European Union.

The G7 forum is a chance for leaders, ministers and policymakers to discuss both
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international and domestic issues (Government of Canada, 2020). In both the non-linear
and linear groups, we do not find a statistically significant difference between the G7 and

non-G7 subgroups.

Table 3.8: Pooled results for the subgroup analysis of UBCs by G7 membership,

including heterogeneity measures

Group Subgroup Pooled 95% confidence interval 2 2 Q ;#ﬁgﬂg&
result
Lower Upper Q p
G7
§ Papers: 6 -0.58 -0.79 -0.36 0.76 50.9% | 148.68
£ UBCs: 74
= Others 211 0.15
S Papers: 5 -0.86 -1.21 -0.51 0.25 | 90.9% | 142.40
UBCs: 14
G7
o Papers: 6 -0.21 -0.26 -0.16 0.05 28.4% 150.87
s UBCs: 109
_5 Others 1.34 0.25
Papers: 1 -0.50 -1.28 0.29 0.18 64.8% 8.53
UBCs: 4

3.3.5 Publication bias
3.3.5.1 Funnel plots

The funnel plots included in this paper (see Appendix K) also depict the points
from the trim-and-fill procedure, which are shown as clear circles, and the original UBCs
are shown in dark grey. The funnel plot for the non-linear group (including UBCs
identified as outliers) shows a large group of UBCs at the top of the pyramid, with most
points shown as negative values. Four UBCs are shown in the centre of the funnel plot,

and four more are shown in the bottom-left of the plot. This funnel plot illustrates a
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significant number of UBCs within the upper segment of the pyramid, in addition to
lateral asymmetry, suggesting the possibility of publication bias. Similarly, the funnel
plot for the linear group depicts a large cluster of UBCs in the top-most portion of the
plot, with a secondary grouping along the dotted line. At the bottom of the plot, there is a

dispersed grouping of UBCs.

In addition to the visual analysis of the funnel plots, we used the Egger’s test of
symmetry to determine if publication bias exists. As can be seen in Table 3.9, asymmetry
IS present in both (i.e., non-linear and linear groups) funnel plots. The intercept for the
non-linear group was -1.33 (90% ClI: -2.11 to -0.54, p < 0.01), and -0.87 (90% ClI: -1.27
to -0.48, p = 0) for the linear group. The Egger’s test suggests that there is statistically
significant asymmetry in both groups, which means that publication bias might be present

within the pooled results.

Table 3.9: Egger’s test of symmetry and publication bias

Group Intercept 90% Confidence Interval t o
Lower Upper

Non-linear -1.33 -2.11 -0.54 -3.29 <0.01

Linear -0.87 -1.27 -0.48 -5.67 0

After identifying that publication bias might be present within the pooled results,
we used the trim-and-fill procedure to add the ‘missing’” UBCs that may influence the
pooled result. A visual representation of the ‘missing’ UBCs that have been added can be

seen in Appendix K, where the clear circles represent added UBCs from the trim-and-fill
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procedure, and the dark grey circles represent the original UBCs. In the non-linear funnel
plot, UBCs have been added as a small cluster in the uppermost segment of the pyramid,
one in the middle section, and four in the bottom segment. Similar to the non-linear
group, UBCs were added to the upper and lower quadrants. As a result of adding 29
‘missing’ UBCs to the non-linear group, and 47 UBCs to the linear group, the pooled
results became statistically non-significant. Pooled results and heterogeneity measures for

the trim-and-fill procedure can be seen in Table 3.10 below.

Table 3.10: Pooled results using Duval & Tweedie’s trim-and-fill procedure, including

heterogeneity measures

Pooled 95% confidence interval Prediction interval 5 12 Q

Group result Lower Upper p Lower Upper p

Non-linear
Papers: 13
UBCs: 168
Added: 29

-0.13 -0.31 0.05 0.16 -241 2.15 132 | 95.1% | 3,433 0

Linear
Papers: 7
UBCs: 163
Added: 47

-0.04 -0.11 0.02 0.20 -0.80 0.71 0.14 | 65.1% 465 <0.0001

3.3.5.2 P-curve analysis

As a final method to explore the risk of publication bias in the pooled results, we
can use a p-curve analysis. Table 3.11 shows the results of the p-curve analysis, and
Appendix L contains the p-curve plots. In the non-linear group, the p-curve plot shows
that 62% of UBCs have a p-value of 0.01, 16% at 0.02, 9% at 0.03, and 7% at 0.04 and
0.05, in addition to 94 UBCs excluded with a p-value > 0.05. The non-linear group

generated a power of 95% and a pooled result of -0.61. In the linear group, the plot shows
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that 64% of UBCs have a p-value at 0.01, 16% at 0.02, 8% at 0.03, 12% at 0.04, and 0%
at 0.05%, with 91 UBCs with a p > 0.05. The p-curve for the linear group had a power of

71%, and a pooled result of -0.67.

Table 3.11: P-curve analysis of linear and non-linear UBC groups

Total number of UBCs Power estimate Evidential value
Group included in the analysis Power 95% ClI Evidential Evidential value p-curve
p<0.05 p<0.025 | estimate | Lower | Upper value at_Jsent and/or estimate
present inadequate

Non-linear

; 45 36 o o 0 )
2:882 4912 (34.4%) (25.9%) 95% 91.1% 97.6% Yes No 0.61
Linear o5 21

. 0, 0, 0, -
Eiggg 3? (21.55%) (18.1%) 71% 52% 84.3% Yes No 0.67

3.3.5.3 Risk of bias summary

The last step in the meta-analysis is summarizing the risk of bias for papers
included in the study. A visual representation of the risk of bias summary can be found in
Appendix M. Seven types of bias were reported in this meta-analysis, including, (i)
selective outcome reporting, (ii) population sampling, (iii) measurement of confounders,
(iv) 1Q testing, (v) incomplete outcome data, (vi) blood lead collection, and (vii) blood
lead analysis. None of the 13 papers included in this study exhibit any signs of selective
outcome reporting, or population sampling issues. Hong et al. (2015) and Menezes-Filho
et al. (2018) did not fully explain the process of collecting confounding variables, which
were identified as ‘unclear’ in the risk of bias summary. The papers by Wasserman et al.
(2003) and Min et al. (2009) only briefly describe the process of administering 1Q testing,

so the risk of bias in these papers is ‘unclear’. Three of the thirteen papers were identified
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as ‘high’ for incomplete outcome data for not reporting some necessary data. Bellinger et
al. (1992) did not report the mean BLL for children at ten years old, Dietrich et al. (1993)
did not report mean BLL for children at age 6, nor did the authors report mean BLLs for
children between 0 and 6 years old, and Min et al. (2009) did not report mean BLL for
children at 9 and 11 years old. Reporting the specific steps for blood lead collection was
mostly an issue in older papers (see Bellinger et al., 1992; Dietrich et al., 1993; Tong et
al., 1996), but Canfield et al. (2013) also neglected to specify how blood lead samples
were collected. Lastly, Dietrich et al. (1993) and Tong et al. (1996) were marked as
‘unclear’ for blood lead analysis bias because these two papers did not detail the process

of analysis.

3.4 Discussion

In this meta-analysis, we have created two groups to generate a robust analysis of
the available literature by incorporating as many UBCs from the literature as possible
with the non-linear and linear groups. First, the non-linear group will incorporate all 139
UBCs from 13 papers, whereas the linear group will provide a smaller pool of UBCs (i.e.,
116 UBCs from 7 papers) that are easy to interpret. The non-linear group benefits from
incorporating all data into the meta-analysis, by utilizing a relatively new method to
standardize UBCs that were generated from transformed (e.g., log, natural log, etc.)
BLLs. In contrast, the linear group only incorporates UBCs that have not been generated
using transformed BLLs to keep a consistent linear relationship between full-scale 1Q and

blood lead levels in children.
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As mentioned above, the non-linear group poses a fairly significant limitation of
generating a result that is difficult to interpret. The pooled results from the non-linear
group means that for every 50% increase in blood lead levels, we can expect an 1Q loss
(if negative) equal to the UBC. The main problem with this method of standardizing
UBC:s is that the pooled results will be susceptible to the blood lead range chosen to
present the 1Q loss in a practical example. In other words, the absolute change in blood
lead levels can vary widely while still presenting a 50% change, which is problematic to
quantifying 1Q loss. For example, the following three blood lead ranges all present a 50%
change, but vary drastically in absolute change: (i) 0.10 pg/dL to 0.15 pg/dL, (ii) 1 pg/dL
to 1.5 pg/dL, and (iii) 10 pg/dL to 15 pg/dL. In the three examples, the absolute change is
0.05 pg/dL, 0.5 pg/dL, and 5 pg/dL, respectively. Thus, using the non-linear pooled
results is difficult, but it serves as a meaningful sensitivity analysis to provide confidence
to the linear pooled results. Since the non-linear group contains more UBCs from a wider
range of literature, the trends seen in the subgroup analysis and the p-values associated
with each pooled result will help to verify the legitimacy of the linear results. As a result,
the two groups provide a more robust result than using either the non-linear or linear
group alone. For the remainder of the discussion, we will use the results of the non-linear

group as a method to provide confidence to the pooled results from the linear group.

In the initial pooled results, both the non-linear and linear groups achieved
statistical significance. The pooled result for the linear group was -0.20 (95% CI: -0.26 to

-0.15) with a moderate level of heterogeneity. After using a simple outlier detection
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method using confidence intervals, the pooled result decreased marginally to -0.22 (95%
Cl: -0.27 to -0.17). The omission of the 3 UBCs identified by the simple outlier method
also decreased the 12 value to 30.2% (from 47.7%). In addition to the simple method of
outlier detection using confidence intervals, we also employed a more rigorous method to
remove outliers from the pooled results. The Baujat plots and influence characteristics
were used to investigate extreme values that may have considerable influence over the
result. These methods employ visual representation, along with statistical tests, to help
identify potential outliers. After the influence analysis, no outliers were detected in the
linear group, so the pooled result remained the same. In the non-linear group, the pooled
result was -0.40, -0.73, and -0.64 for the original, simple outlier detection, and influence
analysis, respectively. In relative terms, the change was 182% between -0.40 and -0.73,
and 160% between -0.40 and -0.64. Thus, based on these relative changes in the pooled
result for the non-linear group, we might see pooled results slightly higher, if more
literature was available in the linear group; however, these values would still be well

within the lower and upper bounds of the prediction interval of -0.70 to 0.27 for the linear

group.

Next, we investigated the heterogeneity with GOSH plots to explore the
possibility of subgroups present in the pooled results. The literature suggests that
subgroups exist for differences in BLLs, and thus, there will likely be subgroups present
within a pool of UBCs relating BLLs to 1Q. If BLLs are influenced by specific

characteristics like child age, publication year, study origin, or presence of confounding
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variables, we expect to see a scatterplot with visually distinct clusters of points. In the
non-linear plot, we can see that there is potentially the presence of two subgroups within
the data. In contrast, the linear group does not visually show the presence of subgroups
within the UBCs; however, the additional UBCs present in the non-linear group may
suggest that if more literature were present in the linear group, we would see a second
cluster emerge. The literature also suggests that subgroups exist for the relationship
between BLLs and 1Q. For example, a large number of studies use age as a method to
subdivide the population (see Iglesias et al., 2011; Taylor et al., 2017; Tong et al., 1996).
Although the GOSH plots depict a weak clustering, we proceeded to a subgroup analysis

to gather further insight.

Based on the literature and the information available for each study, we
investigated four potential subgroups, (i) adjustment for confounding variables in the
regression model, (ii) age of the child at blood lead measurement, (iii) year of publication,
and (iv) data collected in countries with and without G7 membership. Interestingly, the
differences between adjusted and unadjusted regression models are not significant for the
non-linear group, yet statistically significant for the linear group, which suggests that if
more literature was available for the linear group, we might see a non-significant pooled
result. Furthermore, the unadjusted pooled result decreases to -0.31 with more
heterogeneity, but the adjusted pooled result increases to -0.14 with virtually no
heterogeneity. The relative difference between the subgroups between the non-linear and

linear groups is close, so we expect to see similar pooled results if more literature was
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added to the linear group. In this case, it is difficult to suggest the confounding variables
(e.g., age, HOME score, maternal 1Q, etc.) are influencing the pooled results since the
subgroup differences are not significant for the non-linear group, despite being significant
for the linear group. We suggest more research to make a robust conclusion about the

influence of confounders on the relationship between full-scale 1Q and blood lead levels.

In the subgroup analysis for the age of the child at blood testing, we can see a
statistically significant difference for age among both the non-linear and linear groups.
The pooled results decrease following the relationship suggested by the literature (see
Chen et al., 2005; Hornung et al., 2009). In other words, as a child increases in age, a
child’s 1Q is more negatively influenced by BLLs. Interestingly, the heterogeneity
measures also increase with age, suggesting that older children may have more divergent
influences confounding their full-scale 1Q scores. The pooled results in the linear group
changed from -0.03, to -0.19, to -0.29, when a child’s age group changes between infant,
toddler, and child, respectively. The relative change between the infant and toddler (i.e.,
633%) or child (i.e., 967%) subgroup is quite significant, but if we look at the relative
change between the toddler and child subgroups, the difference is similar between the
non-linear (41%) and linear (53%) groups. Thus, we expect the pooled result for the
infant subgroup to be marginally higher to reflect the relative change between the infant
and toddler subgroups depicted in the non-linear group (i.e., a 268% increase) if there was

more literature to add to the linear group.
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Next, the subgroup analysis for the publishing year illustrates that the pooled
result has lowered since studies published in pre-2009. The linear group generated a
pooled result of -0.29 in pre-2009 studies and -0.15 in studies published between 2009
and 2019. Also, the 2009 and 2019 subgroup had less heterogeneity than the pre-2009
subgroup. Similarly, the same trend can be seen in the non-linear group, but the relative
difference between the newer and older studies is significantly higher (345%) than in the
linear group (193%). If more literature was available in the linear group, we might see a
more negative value for the pre-2009 pooled result, which may suggest that the
relationship between BLLs and 1Q is smaller than once thought since methods to measure

BLLs and 1Q have improved within the last few decades.

As a final subgroup analysis, we examined the differences in pooled results for
countries with and without G7 membership. In both the non-linear and linear groups, we
did not find a statistically significant difference between G7 and non-G7 countries.
Although the pooled results are not significantly different, we can see that the number of
studies with data collected from countries without G7 membership is much lower than
countries with G7 membership. We suggest more research to be conducted in countries
that do not have G7 membership to generate a clearer understanding of how the

relationship between full-scale 1Q and blood lead levels may vary by country.

As discussed above, publication bias can occur when smaller studies without a

large enough sample size (i.e., lower statistical power), or studies with non-results are not
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published. The next set of statistical methods is used to both identify the presence of
publication bias, in addition to controlling for the lack of smaller studies and non-results.
The results of Egger’s test of symmetry seems to suggest that publication bias may be
plausible as an outcome of the ‘file drawer’ problem; however, the trim-and-fill
procedure was not statistically significant for either group (i.e., non-linear or linear).
Egger’s test of symmetry can be indicative of the ‘file drawer’ problem, but it may also
suggest that the pool of UBC values is homogenously negative. The notion that most
UBCs are negative (i.e., elevated blood lead levels negatively influence full-scale 1Q) is
not unreasonable. In the original pool of 116 UBCs in the linear group, nine UBCs were
greater than zero, and in the trim-and-fill procedure, 47 additional UBCs were added.
Based on the outcome of Egger’s test of symmetry and Duval & Tweedie’s trim-and-fill
procedure, we have no reason to believe that the ‘file drawer’ problem has influenced the

pooled result.

As a final measure to explore publication bias, we used a p-curve analysis to
determine if researchers used ‘p-hacking’ to increase the statistical power of their results.
The graphs showing the p-curve for the non-linear and linear groups suggests that the
distribution of p-values within each group is natural and expected. In fact, the p-curve for
the linear group shows that 0% of p-values are within the 0.05 bin, and 91 values exceed
0.05. Although the p-curve analysis shows that evidential value is present, we do not
think there is reason to believe p-hacking occurred considering the distribution of p-

values within each group.
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Based on other meta-analyses published on this topic in the past, this paper
encompasses far more UBCs than any other meta-analysis. This paper uses a two-group
approach to incorporate as many UBCs as possible. First, we created one group of UBCs
that have not been transformed as the main group, which contained 116 UBCs from 7
papers. Second, we used a new technique to back-transform UBCs to a standardized
format, which allowed us to create a non-linear group utilizing all UBCs available within
the literature. The non-linear group incorporated all 139 UBCs available from 13 papers,
but the standardizing process of UBCs in this group makes it difficult to interpret results.
Thus, we leveraged the more robust results of the non-linear group to inform the
interpretation of pooled results from the linear group. Additionally, we did not select a
specific subgroup to analyze, allowing us to examine the relationship between BLLs and
full-scale 1Q more robustly. Instead, we narrowed our UBCs within the subgroup analysis
phase of the meta-analysis to incorporate all UBCs initially, then explored the existence

of potential subgroups within the original pool of UBCs.

Indeed, pooling multiple UBCs per study does differ significantly from past meta-
analyses. Meta-analyses typically use one UBC, or in the case of the paper by Needleman
et al. (1990), partial r, per study to represent the findings of each paper; however, we have
utilized all UBCs reported in each paper. Researchers in the past have avoided using all
UBCs reported within the literature for two main reasons, (i) inability to standardize
UBCs across papers using different transformations, and (ii) researching a more specific

subgroup. First, the inability to standardize UBCs derived from data that had been
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transformed using different methods (e.g., log, natural log, etc.) has been a significant
factor for researchers not being able to collect a larger sample of UBCs to include in a
meta-analysis. In this paper, we have utilized a relatively new technique generated by
Rodriguez-Barranco et al. (2017) that has allowed us to use UBCs reported in studies
using a wide range of transformations. Second, this paper avoids using a more specific
subgroup to eliminate UBCs based on certain characteristics (e.g., age at blood drawn,
presence of confounders, country of data collection, etc.), and uses a subgroup analysis to
identify the existence of any groups within the main population with similar relationships.
Additionally, meta-analyses may examine the relationship between BLLs and 1Q using
cross-sectional or cohort studies separately, but a subgroup analysis may suffice. In the
context of this paper, we did not differentiate between cross-sectional studies and cohort
studies since individual UBCs reported from cohort studies can still be considered cross-

sectional as independent UBCs.

This meta-analysis has incorporated far more UBCs than any other meta-analysis
about the relationship between BLLs and full-scale 1Q for children, resulting in a
statistically significant pooled result of -0.22 (95% CI: -0.27 to -0.17; prediction interval:
-0.70 to 0.27). In the introduction of this meta-analysis, we discussed how Health Canada
(2013) predicts that the Canadian government will save $35 billion per cohort from
changes in lifetime earnings as a result of decreasing the average BLLSs in children from
1.5 pg/dL to O pg/dL. Projected savings were based on the assumption that a one unit

(i.e., pg/dL) increase in BLLs is associated with a one 1Q point deficit in children under
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six years old, but this meta-analysis suggests that relationship is significantly lower (i.e.,
closer to zero). The pooled result of this meta-analysis suggests a five-fold difference
between the pooled result found in this meta-analysis and the one used by Health Canada.
If we use the pooled result (i.e., -0.22) generated in this meta-analysis, the Canadian
government could only expect $7.7 billion per cohort by decreasing the average BLLs in
children from 1.5 pg/dL to 0 pug/dL, and the average 1Q per child would only increase by
approximately 0.33 points. At an 8% discount rate, we could only expect a savings of
$330 million, and at a 3% discount rate, we could expect a savings of about $2.1 billion
per cohort. If we use the pooled result of the adjusted UBCs in the linear group (i.e., -
0.14), the savings per cohort would decrease to a mere $4.9 billion, or $210 million at an
8% discount rate and $1.3 billion at a 3% discount rate. Similarly, for the literature that
has been published between 2009 and 2019, the pooled result was -0.15, which would
produce nearly identical savings projections. Lastly, if we use the pooled results for
infants (-0.03), toddlers (-0.19), and children (-0.29), we can calculate the projected
savings by age group using the percent of the population that each age group contributes
to the total population under six years old. In the 2016 census, Statistics Canada (2019)
reported 369,730 children under one-year-old (16.1%), 1,529,060 children one to four
years old (66.7%), and 394,530 children five years old (17.2%). Unfortunately, the age
groups do not align directly with the age groups outlined in this meta-analysis; however,
they will provide a reasonable estimate. If the BLLs of children under six years old
decreased from 1.5 pg/dL to O pg/dL, the projected savings by age group would be

approximately $169.1 million, $4.4 billion, and $1.7 billion for infants, toddlers, and
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children, respectively. At an 8% discount rate, we could expect a savings of $7.2 million
(infants), $190.1 million (toddlers), and $74.8 million (children), and at a 3% discount
rate, we could expect a savings of $45.4 million (infants), $1.2 billion (toddlers), and
$468.9 million (children). Based on the findings of this meta-analysis, we can see that the
projected savings due to the relationship between elevated BLLs and full-scale 1Q are
significantly lower than the projections made by Health Canada (2013). Unfortunately,
the new savings projections in this meta-analysis may not be enough to justify the large

capital investment of lead abatement.

3.5 Limitations

There are two main limitations specific to this meta-analysis, (i) the relative
difference between non-linear pooled results may not be comparable to the linear group,
and (ii) using all UBCs from each paper may dilute findings of smaller studies. The non-
linear group is useful to incorporate more UBCs into the pooled result to show upward
and downward trends for comparison in the subgroup analysis. However, the relative
differences (i.e., percent change between pooled results) among the non-linear pooled
results may not accurately represent the relative changes we would see in the linear group
with a larger pool of UBCs. Next, using all UBCs reported in each paper may cause
papers with multiple UBCs to dilute the findings of papers with fewer UBCs. For
example, if a paper reports 20 UBCs, it may dilute the findings of a paper only reporting
2 UBCs. Although some studies may report more UBCs than others, the sample size

between interstudy regression models often changes due to data collection limitations
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(i.e., variability in subgroup data collection). Thus, the weights of each UBC should limit
the ability of studies reporting more UBCs from diluting the findings of studies reporting

fewer UBCs.

In addition to the limitations specific to the study, there are more generalized
criticisms of the meta-analysis process. Firstly, meta-analysis is a product of the data
included in the analysis. As a means to capture all available literature into the pool of
research, the search process is a vital process of the meta-analysis. This meta-analysis
used a pre-determined search term to collect literature from the PubMed database, which
may have missed literature on the topic. Thus, it is possible that influential studies were
excluded, which may have changed the result of this meta-analysis. Second, all steps for
this meta-analysis were completed by one investigator, which means there is a more
significant chance of human error. Although steps were taken to address the possibility of
human error (i.e., reviewing processes, double-checking values, etc.), there is still a
chance that things (e.g., an erroneous value) were overlooked. Meta-analyses also invite a
higher degree of uncertainty in the sense that uncertainties from individual studies and
UBCs are added together in a meta-analysis. As a result, there is more uncertainty with
the results of a pooled outcome. This meta-analysis mitigates uncertainty by providing a
95% confidence interval and a prediction interval with the pooled results. Another
concern with meta-analyses is pooling data from different populations, using different
confounding variables. Pooling data that were derived using different populations (i.e.,

groups of people with different identifying characteristics), in addition to models that
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have either been unadjusted or adjusted using variable confounders can make it difficult
to produce reliable comparisons and pooled results. Although these limitations exist, the
meta-analysis process is still the best way to synthesize the literature to estimate the

collective relationship between BLLs and full-scale 1Q in children.

3.6 Conclusion

As shown in this meta-analysis, the impact of BLLs on IQ may not be as strong as
once thought within the broader literature. Indeed, an elevated BLL for a child can be
linked to a loss of 1Q, but the magnitude of intellectual loss is not as high as suggested by
other meta-analyses linking BLLs and 1Q. By utilizing a recent transformation technique
to standardize the UBCs, we were able to develop a two-group method to generate more
robust linear pooled results. Additionally, by using a subgroup analysis, this meta-
analysis was able to synthesize far more information than previously done in past meta-
analyses. The result of this meta-analysis may have a significant impact on future cost-

benefit analyses, and reduce the return on investment projections for lead abatement.
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Chapter 4 A critical assessment of the return on investment of permanent lead

hazard control: a case study in Hamilton, Ontario

4.1 Introduction

Lead (Pb) abatement and awareness continues to be important in many post-
industrialized societies where lead poisoning remains a problem (Hanna-Attisha et al.,
2016). Lead can be a risk to children through three primary sources, which include lead-
based paint, water contaminated by lead pipes, and lead-contaminated soil. Children are
at increased risk to lead poisoning since children often play close to the ground and can
consume contaminated soil through normal hand-to-mouth behaviour (Cleveland et al.,
2010; Landrigan et al., 2011). Low-dose lead poisoning (<10 pg/dL) has been linked to
several adverse social and economic outcomes, which can place a cost burden on society,
with Health Canada (2013) estimating that the impact of lead accounts for approximately
$920.4 million (M) to $5.7 billion (B) (2006 USD) [$1.5B to $9.2B (2018 CAD)] per
year. As a note to the reader, the currency is in 2006 USD, and currency listed within
square brackets is in 2018 CAD for the introduction unless otherwise stated (i.e., $1.00
2006 USD = $1.6190 2018 CAD). Additionally, since this paper will switch to 2018 CAD
and Gould’s paper is in 2006 USD, the values of return on investment will remain in 2006
USD to preserve the ratio of investment and return (i.e., we will use 17 times and 221

times capital investment cost to calculate return on investment).
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4.1.1 Mitigating lead exposure

Public health intervention and permanent lead abatement are two options that can
be considered to reduce lead exposure for children. Public health interventions can be
used to help mitigate children’s exposure to lead by educating parents of exposure risks,
how to make crucial behavioural changes, blood lead testing, and professional risk
assessments within the home. There are many types of behavioural changes families can
make, and some examples may include: proper hygiene, allowing water taps to run before
drinking, frequent wet mopping and vacuuming, leaving shoes outside, and giving more
attention to children as they play. Public health policies and awareness campaigns are
often less expensive and reach a much wider audience, but their total dependence on

families to enact these mitigation strategies may result in poor health outcomes.

Alternatively, permanent remediation strategies, namely soil removal and
replacement, paint remediation, and the replacement of lead water pipes can be used to
eradicate lead from the environment, either within a building, on the property of a
structure, or in an open space. Remediation strategies can be used on public or private
property, including residential homes, parks, schools, or any other location that children
may be exposed to contamination. Permanent lead remediation is preferred since the
chance of lead exposure will be removed entirely, but this strategy can be a source of
significant economic burden for families or government entities. Capital investment is an
important consideration when developing a lead abatement strategy. However, the

literature has shown that lead hazard control can produce a return on investment (ROI) in
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the form of health care and special education savings, increased lifetime earnings and tax

revenues, and a reduction in crime (Gould, 2009).

4.1.2 Cost of lead remediation and social benefits

The cost and efficacy of permanent lead abatement can vary widely based on the
type of hazard control and location. Mielke et al. (2011) discuss remediation efforts in
New Orleans where they replaced lead-contaminated soil at childcare centres across the
city. Researchers found that the replacement of soil at each childcare centre, in addition to
an interior environment assessment, would cost less than $100 [$161.90] per child. At a
total estimated cost of $700,500 [$1.1M], Mielke et al. (2011) explain that over ten years,
the cost per child will lower to a mere $10 [$16.19]. As a result of the soil replacement,
soil lead levels decreased significantly from a median of 558 mg/kg (range 14.1-3692
mg/kg) to an acceptable and safe median of 4.1 mg/kg (range 2.2-26.1 mg/kg) (Mielke et
al., 2011). A 1998 study estimates the average cost of remediation at $1,700 [$2,752] per
household with a total of $5M [$8.1M] for the entire study (Yeoh et al., 2009). In
Rochester, New York, Korfmacher, Ayoob, & Morley (2012) explain that in December
2005, a law was passed requiring any rental property built before 1978 to be inspected for
lead risks within the home. Researchers report that the city spends $600,000 [$971,428]
per year on lead dust wipes, inspectors, and additional administrative needs. Compliance
with Rochester’s Lead Law imposes additional costs on landlords. Korfmacher et al.
(2012) report results from a telephone survey of 183 landlords that had to comply with

the Rochester Lead Law. The average repair cost per unit was approximately $1,726
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[$2,794], but the median cost was only $300 [$485.71]) and 34% of respondents reported
they did not have to spend anything. As a result of the Rochester Lead Law, researchers
found that “94% of units passed visual inspections and that 89% of tested units passed
dust-wipe inspections during the first 4 years” (Korfmacher et al., 2012, p.315).
Additionally, Korfmacher et al. (2012) explain the evaluation of the project suggests that
the new lead laws contributed to a decline in children’s blood lead levels by mitigating
exposure to lead hazards within the home. In contrast, Farrell, Brophy, Chisolm, Rohde,
& Strauss (1998) explain that soil was replaced with lead-free soil (less than 50 ppm) and
re-sodded in either the front yard, back yard, or both if the soil lead level exceeded 500
ppm. Interestingly, a year after soil replacement, BLLs dropped, but there was no
significant difference between the BLLs of remediation and control groups (i.e., no soil
abatement). Furthermore, soil samples showed that after two years, SLLs increased
significantly (Farrell et al., 1998). In addition to the high capital investment outlined
within the literature, a meta-analysis by Yeoh et al. (2009) explains that research often
does not include the costs associated with paying researchers and educators for lead

remediation programs.

A consensus within the literature states that the return on investment (ROI) for
lead hazard control is relatively high compared to other programs such as vaccinations. A
study by Gould (2009) has reported a return of $17 to $221 [$27.52 to $357.81] for every
dollar [$1.6190] invested in lead hazard control. The ROI is estimated to save the United

States about $181B to $269B [$293B to $435B]. Gould (2009) argues that lead-based
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paint remediation alone has a return of $12 to $155 [$19.43 to $250.95] for every dollar
[$1.6190] spent and $124B to $188B [$200B to $304B] in net savings. The author
explains that capital returns are a result of less pressure on the health care system to treat
lead poisoning, increased Intelligence Quotient (1Q), higher lifetime earnings, tax
revenues, reduced spending on special education, and reduced criminal activity (Gould,
2009). Gould (2009) explains that the ROI for lead hazard control is significantly higher
than vaccination programs to fight the most common childhood diseases ($5.30 to $16.50
[$8.58 to $26.71] returned for every dollar spent [$1.6190]). Specific to this study,
permanent lead abatement has been shown to benefit the economy by saving $110B to
$319B [$178B to $516B] for a single cohort (Taylor et al., 2011). A study by Brown
(2002) suggests savings of over $46,000 [$74,476] per building, over ten years, with at

least one child under the age of six years old within the home.

Permanent lead abatement is undoubtedly the best way to eliminate the risk of a
child being exposed to lead hazards. This paper will address three main objectives to
explore lead abatement, return on investment, and discuss any concerns with projected
ROI estimates. Objective one will explore the cost for permanent lead abatement in
Hamilton, Ontario, and discuss how reasonable this approach would be for residents and
the municipal government. Objective two will determine the projected ROI from
permanent lead abatement in Hamilton based on the estimates presented by Gould (2009),

and objective three will explore the need for soil lead abatement.
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4.2 Datasets

4.2.1 Study area

The City of Hamilton is a post-industrialized city along the southwestern edge of
Lake Ontario. The study focuses on the downtown core of Hamilton (see Figure 2.1,
p.14), surrounded by the escarpment (south), highway 403 (west), Lake Ontario (north)
and the Red Hill expressway (east). Hamilton has had a long history of steel production,
in addition to a flourishing manufacturing district, including paint factories, which may
have attributed to soil contamination within the city. The City of Hamilton was chosen to
explore permanent lead abatement for three main reasons: (i) Hamilton has an old
housing stock and may contain leaded pipes, as well as lead-based paint on the interior
and exterior walls, (ii) Hamilton is a relatively old city with a busy downtown core which
means soil lead contamination from leaded gasoline combustion is likely high, and (iii) its

industrial history.

4.2.2 Target land uses for lead abatement

In Hamilton, there are four primary land uses that may require lead abatement,
which includes: residential land parcels, parks, elementary schools, and nursery- and pre-
schools. Residential land parcels will require three types of lead abatement (i.e. soil,
paint, and lead pipes) to remediate lead fully. Parks were included since children may
spend time on the ground playing and have a chance to consume soil at these locations.
Parks were divided into two sub-categories to determine the cost per child, (i) low-

volume parks, and (ii) high-volume parks. Low-volume parks are any community- or
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neighbourhood-level park that will typically only draw children from the immediate
proximity, whereas high-volume parks are often larger and draw children from all over
the city. Both low- and high-volume parks may include general open space, sports
facilities, and trails. Elementary schools, in addition to nursery- and pre-schools, were
included since children may spend a significant amount of time at school during the day.
Unfortunately, data were difficult to obtain for nursery- and pre-schools, so only soil

abatement cost was included in the analysis.

4.2.3 Soil samples

This paper uses a data set collected by Hamilton Public Health Services in 2008-
2009 that contains soil, water and dust samples measuring lead content (Richardson et al.,
2011). These data were collected as part of a more extensive study that also collected
BLLs, in addition to survey variables. The dataset is comprised of 187 soil lead samples
that were collected throughout the downtown core of Hamilton. Soil samples were
collected from the lower city based on the location of the household (i.e., industry-
adjacent zone, middle zone, escarpment-adjacent zone, and old recycling plant zone) and
the age of the dwelling (i.e., before 1950, and after 1950). The soil samples were
collected and processed by the Ministry of the Environment during the summer of 20009.
A tube-type soil corer, at a depth of 5 centimetres, was used to sample the soil “from a
household’s front, back or side yard depending on where the child played most frequently

and/or where there was sufficient conditions to sample” (Richardson et al. 2011).
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Samples were then analyzed using atomic absorption spectrophotometry to determine the

lead content with a limit detection of 5 pg/g dry weight.

4.3 Methodology

4.3.1 Predicting cost of lead abatement

Objective one will explore the cost associated with permanent lead abatement
from four central locations where lead is likely to pose a threat to children, which
includes: residential homes, parks, elementary schools, and nursery- and pre-schools. A
permanent lead abatement strategy often requires a high capital investment in the short-
term but completely removes lead from the environment. Permanent lead abatement
strategies are often expensive because they may require special materials, machinery, or

individuals to remove contaminates.

In order to estimate SLLs within the lower city, Empirical Bayesian Kriging was
used to understand the spatial distribution of SLLs. Soil and sod remediation has been
calculated for two thresholds, (i) 70 mg/kg, and (ii) 140 mg/kg, which represent the
human health guidelines for agricultural (i.e., soil and food ingestion), and
residential/parkland (i.e., soil ingestion) land uses, respectively (Canadian Council of
Ministers of the Environment, 1999). Lead-based paint is mostly an issue for homes built
before 1960 (Government of Canada, 2017), but since the housing stock in Hamilton is
quite old, the vast majority of homes built in downtown Hamilton may contain lead-based

paint (Richardson et al., 2011). Lastly, lead pipes are most prevalent in homes that were
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built before 1945 (Richardson et al., 2011); however, Hamilton schools were recently
checked for water lead levels, so schools needing lead pipe replacement was known based
on the results of that report (Leitner, 2018). Since this paper is a case study in Hamilton,

Ontario, we will use 2018 Canadian dollars for the analysis, results, and discussion.

In addition to the total projected cost, the cost per child was also calculated to
provide a more contextual projection. Total abatement cost is likely to be quite expensive,
so it is crucial to understand how that cost relates to the children it will help. Cost per
child was calculated simply by dividing the total cost of abatement by the number of
children (in the 2016 age cohort) affected by the abatement (Statistics Canada, 2018). For
residential homes, cost per child was estimated by determining the percent of residential
land parcels per dissemination area that are targeted for lead remediation and multiplying
by the total number of children in the dissemination area. As previously discussed, parks
were divided into two categories (i.e., low-volume and high-volume) to project cost per
child estimates more accurately. Total lead abatement costs for parks were divided by the
total children within Hamilton for high-volume parks and divided by the total children
within the specific dissemination area for low-volume parks. The cost per child for
elementary schools was calculated by dividing total cost by the number of children
enrolled in junior kindergarten and kindergarten (Hamilton Wentworth District School
Board, 2018), which are the most vulnerable age groups to lead poisoning. Lastly, the
cost per child for nursery- and pre-schools was determined by using an estimate of 43%

of children being enrolled in daycare in Ontario (Statistics Canada, 2011).
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4.3.1.1 Sod and soil replacement

For objective one, the replacement cost of sod and soil, paint, and lead pipes was
calculated for at-risk land parcels (i.e., homes, parks, elementary schools, and nursery-
and pre-schools) within the study area. First, at-risk land parcels for soil contamination
were determined by using Empirical Bayesian Kriging and the SLL samples. Land
parcels situated in the soil that exceeded 70 mg/kg and 140 mg/kg were selected for soil
and sod replacement at a depth of six inches (Mielke et al., 2011). Sod and soil costs were
determined by finding the least expensive sod and soil companies within Hamilton and
using the best possible discounted prices. The least expensive price for sod within
Hamilton is $0.26 per square foot (Green Horizons Sod Farms, 2018) and $137.62 per
cubic yard for soil (Big Yellow Bag, 2018). Labour cost to replace the sod and soil was
determined by contacting local landscaping companies. Despite contacting multiple
companies, only one responded with a quote of 0.012 hours per square foot of sod and
soil replacement, at a rate of $68/man-hour (Jerome, 2018). Total abatement costs for

objective one can be seen in Table 4.1.

4.3.1.2 Paint abatement

According to The President’s Task Force on Environmental Health Risks and
Safety Risks to Children (see Gould, 2009), controlling lead-based paint hazards requires
screening structures pre-dating 1960 (Government of Canada, 2017) to determine if
complete lead abatement is necessary. Age of dwelling was not available at the household

level, but we were able to access the median age of dwelling by census tract to predict at-
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risk homes within the study area (City of Hamilton, 2017). Lead-based paint screening is
estimated to cost $1,943 per home, and if further lead abatement is necessary, phase two
will cost up to $17,485 per home (Gould, 2009). The median size of homes referenced in
the study was not disclosed, so we used the median size of homes within the United
States at the time of the study (i.e., 2,057 square feet) (United States Census Bureau,
2010) and the median size of homes in Hamilton in 2018 (i.e., 1,200 square feet)
(Webster, 2018). Based on the difference in square footage, the $1,943 to $17,485 cost
estimates were changed accordingly (i.e., $1,133 to $10,200 per Hamilton home).
Similarly, square footage of elementary schools, by room, were acquired from the
Hamilton-Wentworth District School Board (HWDSB) (Webster, 2018). Square footage
of schools was determined by identifying which rooms are most likely to pose a risk to
children (i.e., boys’ and girls’ washroom, gymnasium, classrooms, learning commons,
kindergarten, kitchen, stage, daycare, foyer, girls and boys changeroom, computer lab,
literacy centre, special education, music room, health room, common area, multi-purpose
room and nutrition room) and the resulting square footage was used to determine the cost

of screening and complete lead-based paint abatement per school.

4.3.1.3 Lead-pipe abatement

The City of Toronto (about an hour east of Hamilton) generated a cost estimate of
roughly $1,942 to $2,914, depending on the characteristics of the property, to remove and
replace lead-pipes (City of Toronto, 2018). Residential homes built before 1945 were

used to calculate the cost to replace lead-pipes within the study area (Richardson et al.,
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2011) and similar to paint abatement, we used median age of dwelling by census tract as a
proxy to determine at-risk homes (City of Hamilton, 2017). Fortunately, recent lead
testing of water fountains in Hamilton identified schools that exceeded safe levels of lead
in drinking water (Leitner, 2018). Schools listed with water lead exceedances were used
to calculate the total cost for lead-pipe removal in Hamilton; however, the median square
footage of Toronto homes was not able to be obtained, so the cost of lead pipe
remediation was based on the median square footage of Hamilton homes. The total cost
of lead pipe remediation was $1.65 to $2.48 per square foot, which was multiplied by the

square footage of schools (see above) and summed.

4.3.2 Calculating return on investment

Objective two required us to calculate the ROI for lead hazard control. In other
words, when a dollar is spent on lead hazard control, society saves money from reduced
spending on health outcomes caused by lead poisoning. Gould (2009) argues that a
conservative estimate would return $17 (2006 USD), up to an optimistic $221 (2006
USD). Additionally, Gould (2009) estimates that lead-based paint remediation returns
$12 (2006 USD) to $155 (2006 USD) for every dollar spent. Unfortunately, the author
does not outline how soil and lead pipe abatement factors into the ROI evaluation;
however, a study from the Arizona Department of Health Services breaks down exposure
pathways causing elevated BLLs (see Levin et al., 2008). The study suggests that
exposure from soil and paint accounts for 24% and 17% of childhood elevated BLLSs,

respectively. Contaminated water from lead pipes was not identified as a direct exposure
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pathway by Arizona Department of Health Services, but a category named
“miscellaneous other sources” was identified with an exposure rate of 19% (see Levin et
al., 2008). As a means to calculate ROI for all types of remediation, we will use the ROI
estimated by Gould (2009) and estimate soil and pipe replacement ROI using the study by
the Arizona Department of Health Services (see Levin et al., 2008). Based on the study
by Arizona Department of Health Services, we will use $4.08 to $53.04 (2006 USD)
(24% of $17 to $221) for soil and sod replacement, and $1.02 to $13.26 (2006 USD)
(remaining 6%) for lead pipe abatement. Based on these values, a conservative and
optimistic ROI was calculated using the total cost of remediation for each land use and

abatement type.

When discussing project costs and return on investment, it is essential to
consider the present and future values using a discount rate (DR). The discount rate is
used to determine the value of money accumulating in a bank over a predetermined
amount of time and interest rate. In order to understand the value of a project, we can use
this information to compare the discounted costs and ROI to generate an informed
decision. Different projects require different discount rates and timespans, but Health
Canada (2013) suggests that a discount rate between 3% and 8% since the outcomes of
lead abatement are both social and financial. Furthermore, Health Canada (2013) also
explains that a lifetime for a working child spans from 15 to 67 years old, so we will use
52 years for the discount rate calculation. Unfortunately, Gould (2009) did not disclose

the number of years, nor the discount rate used for the ROI projections; however, the
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author does describe the savings concerning a child’s lifetime. Thus, we assume that the
number of years used in the discount rate calculation was similar to the 52 years used by
Health Canada (2013). Since the true values used in the discount rate calculations for the
ROI projections are not known, we suggest using caution when comparing the discounted

project costs and the ROI projections.

4.3.3 Understanding the threat to children

In addition to soil lead level thresholds regulated by the government, we can also
calculate hazard quotients to determine the threat to children. A hazard quotient (HQ) is
the ratio between the potential exposure of a contaminate to the threshold at which no
adverse health effects are expected (EPA, 2018). The HQ can be calculated as follows,
where Cs is the concentration of contaminant in soil (mg/kg), IRs is the soil ingestion rate
(kg/day), RAFora is the relative absorption factor from the gastrointestinal tract, D> is the
days per week the child is exposed (divided by 7 days), D3 is the weeks per year the child
is exposed (divided by 52 weeks), and BW is the bodyweight of the child (Health Canada,

2010):

Hazard Quotient = Estimated Exposure (Dose) (mg/kg bw/day)
Tolerable Daily Intake (TDI) (mg/kg bw/day)

Estimated Exposure (Dose) =  Cs * IRs * RAFora * D2 * D3
(mg/kg bw/day) BW
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An in-depth look at the Hazard Quotient and Estimated Exposure calculations can be
found in Appendix N. This paper will create three hazard quotient maps with a tolerable
daily intake of 0.0015 mg/kg bw/day, for each age group: (i) infants (0 — 6 mo.), (ii)
toddlers (7 mo. — 4 yr.), and children (5 — 11 yr.) (see Appendix N). In Canada, the
current blood lead intervention level is 10 pg/dL (Health Canada, 2013), but the United
States uses a much lower blood lead intervention level of 5 pug/dL (M. S. Burns et al.,
2014). For this paper, we will use the blood lead intervention level from the United States
since adverse health effects have been observed in children well below 10 pg/dL (Health
Canada, 2013). A tolerable daily intake of 0.0015 mg/kg bw/day will result in a blood
lead level of 5 pg/dL (based on SNC-Lavalin, 2012; World Health Organization, 2011;
see Appendix N). In combination with ArcMap and a prediction surface, we can use the
Raster Calculator tool to create a hazard quotient map. An HQ map will allow us to more
accurately understand the threat to children and determine the need to remediate

contaminated soil.

4.4  Results

4.4.1 Cost of permanent lead abatement

Obijective one required estimation of the cost of permanent lead abatement for four land
use types, which included (i) residential, (ii) parks, (iii) elementary schools, and (iv)
nursery- and pre-schools. Two SLL thresholds were used for abatement (i.e., greater than
70 mg/kg and greater than 140 mg/kg), which can be seen in Table 4.1. At the SLL

thresholds of >140 mg/kg and >70 mg/kg, soil and sod replacement will cost $112.3M to
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$174.7M for residential homes ($25,700 to $31,700 per child), $24.2 to $38.1M for high-
volume parks ($853 to $1,300 per child), $12.5M to $18.4M for low-volume parks
($9,100 to $10,700 per child), $7.6M to $9.9M for elementary schools ($4,500 to $4,700
per child), and $43,900 for nursery- and pre-schools ($8 per child). Additionally, lead-
based paint abatement will cost $30.6M to $275.6M for residential homes ($4,400 to
$39,500 per child), and $28,300 to $255,000 for elementary schools ($16 to $147 per
child). Lastly, lead pipe removal will cost $47.3M to $70.9M for residential homes
($8,100 to $12,100 per child), and $14,300 to $21,500 for elementary schools ($52 to $78

per child).

Table 4.1: Cost of lead abatement and cost per child

Land use type | Type of abatement Total cost Cost per child
Soil >70 mg/kg $174,708,760 $31,707

Soil >140 mg/kg $112,322,261 $25,791

K $30,620,666 $4,389

S Paint (Screening vs. removal) to to

2 $275,585,988 $39,510

i $47,261,661 $8,100

Lead pipes (Range estimate) to to

$70,892,492 $12,149

Parks Soil >70 mg/kg $38,072,010 $1,345
(High Volume) | Soil >140 mg/kg $24,165,812 $853
Parks Soil >70 mg/kg $18,395,300 $10,663
(Low Volume) | Soil >140 mg/kg $12,512,398 $9,067
Soil >70 mg/kg $9,875,431 $4,655

o Soil >140 mg/kg $7,626,521 $4,566

& » $28,333 $16

§ 8 Paint (Screening vs. removal) to to

=) $255,000 $147

il $14,319 $52

Lead pipes (Range estimate) to to

$21,478 $78

Nursery- and Soil >70 mg/kg $43,941 $8
pre-schools Soil >140 mg/kg $43,941 $8
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4.4.2 Return on investment (ROI)

Based on the cost estimates from objective one, conservative and optimistic ROI
projections were calculated for the second objective (see Table 4.2). At the 140 and 70
mg/kg SLL thresholds, soil and sod abatement would return $458.3M to $712.8M
(conservatively) and $6.0B to $9.3B (optimistically) for residential homes, $98.6M to
$155.3M (conservatively) and $1.3B to $2.0B (optimistically) for high-volume parks,
$51.1M to $75.1M (conservatively) and $663.6M to $975.7M (optimistically) for low-
volume parks, $31.1M to $40.3M (conservatively) and $404.5M to $523.8M
(optimistically) for elementary schools, and $179,300 (conservatively) to $2.3M
(optimistically) for nursery- and pre-schools. Screening and abatement for lead-based
paint will return $623.9M to $5.6B (conservatively) and $8.1B to $73.0B (optimistically)
for residential homes, $337,200 to $3.0M (conservatively) and $4.4M to $39.4M
(optimistically) for elementary schools. Finally, lead pipe replacement will return $48.2M
to $72.3M (conservatively) and $626.7M to $940.0M (optimistically) for residential
homes, and $13,600 to $21,900 (conservatively) and $189,900 to $284,800

(optimistically) for elementary schools.

Table 4.2 also shows the discounted project costs at a 3% and 8% discount rate
(DR). As can be seen, the 3% discounted project costs exceed the conservative ROI
values for all abatement types, except for paint abatement in residential homes ($142.4M

to $1.3B) and elementary schools ($131,800 to $1.2M). Indeed, the optimistic ROl values
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far exceed the total project costs discounted at 3%, but the project costs discounted at an

8% rate has the same result as the project costs discounted at 3%.

Table 4.2: Discounted rates of lead abatement cost and ROI of permanent lead abatement

Land Type of Total cost Total cost with an | Return on investment
use type | abatement with a3% DR | 8% DR (per dollar spent)
Conservative Optimistic
Soil >70 mg/kg $812,550,508 $9,557,624,559 | $712,811,742 | $9,266,552,652
Soil >140 mg/kg | _$522,398,019 $6,144,706,197 | $458,274,822 |  $5,957,572,694
5
£ paint (Sereening $142,413,22£ $1,675,135,4(:2 $623,855,48t§ $8,110,121,33£
[«5]
g | Vs removal) $1,281,718,985 |  $15,076,218,313 | $5,614,699,517 | $72,991,093,721
[¢5]
o
Lead pipes $219,808,5£?[2 $2,585,498,35tz $48,206,85;3 $626,689,62t§
(Range estimate) | ¢354 719 gg1 $3,878,247,562 $72,310,340 $940,034,433
Parks | Soil >70 mg/kg $177,068,574 $2,082,768,934 | $155,333,799 |  $2,019,339,393
%‘I%%e) Soil >140 mg/kg | $112,392,434 $1,322,015,898 $98,596,513 |  $1,281,754,662
Parks | Soil >70 mg/kg $85,554,441 $1,006,334,033 $75,052,827 $975,686,743
i,LOOI‘L’J"m ) | Soil 140 mg/kg $58,193,735 $684,503,756 $51,050,584 $663,657,592
- Soil >70 mg/kg $45,929,503 $540,245 732 $40,291,758 $523,792,861
g Soil >140 mg/kg $35,470,079 $417,216,769 $31,116,204 $404,510,645
S . : $131,774 $1,549,986 $337,167 $4,383,175
2 Paint (Screening
bt vs. removal) 0 to 0 0
g ' $1,185,976 $13,950,040 $3,034,506 $39,448,574
2 Lead pipes $66,59?[g $783,3?£ $13,61ti $189,8&::[Z
w | (Range estimate) $99,892 $1,174,976 $21,907 $284,800
Nursery- | Soil >70 mg/kg $204,365 $2,403,838 $179,277 $2,330,609
:‘:r?oglrse- Soil >140 mg/kg $204,365 $2,403,838 $179,277 $2,330,609

4.4.3 Hazard quotient

Three hazard quotient maps were created to show the differences between an

infant, toddler and child, with 52 weeks of exposure and a tolerable daily intake of 0.0015
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mg/kg bw/day (based on SNC-Lavalin, 2012; World Health Organization, 2011).
Additionally, one hazard quotient map was created to show the difference in HQ
distribution for a toddler with 40 weeks of exposure to represent cold and snow-covered
winter months. Table 4.3 shows the descriptive statistics of HQ among the three age
groups (i.e., infant, toddler, and child), and two exposure durations (i.e., 52 weeks, and 40
weeks) in Hamilton, Ontario. The spatial distribution of hazard quotient for all six age
groups and exposure combinations yielded maximum hazard quotients lower than 1,
which means no children, on average, will be at-risk of adverse health effects of soil lead
exposure in Hamilton. Toddlers are at the highest risk level because they inadvertently
consume four times more soil per day (i.e., 80 mg/day) than both infants and children
(i.e., 20 mg/day). The average hazard quotients in Hamilton were 0.195, 0.388, and 0.049,
with 52 weeks of exposure, and 0.150, 0.299, and 0.037, with 40 weeks of exposure for
infants, toddlers and children, respectively. The maximum hazard quotients in Hamilton
were 0.396, 0.786, and 0.099, with 52 weeks of exposure, and 0.304, 0.605, and 0.076

with 40 weeks of exposure for infants, toddlers and children, respectively.

Toddlers are the highest-risk age group, and based on the hazard quotient
calculations; this age group may be at risk of exceeding the blood lead threshold of 5
po/dL if further exposed to lead through contaminated water, dust and paint chips. In
order to remediate homes in this area (n=666), it would cost $3,107,394 to replace soil

and sod, $754,578 to $6,793,200 to replace paint, and $1,293,372 to $1,940,724 to
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replace pipes. Although the square footage of apartments is unknown, to replace sod and

soil for the 80 apartments within the lower city, it would cost $706,030.

Table 4.3: Hazard Quotient for different age groups, based on weeks of exposure and a

tolerable daily intake of 0.0015 mg/kg bw/day in Hamilton, Ontario

m -
Weeks of azard Quotient
Age Group - . Standard
exposure Minimum Maximum Mean .
Deviation
Infant 52 0.043 0.396 0.195 0.078
Toddler 52 0.086 0.786 0.388 0.156
Child 52 0.011 0.099 0.049 0.020
Infant 40 0.033 0.304 0.150 0.060
Toddler 40 0.066 0.605 0.299 0.120
Child 40 0.008 0.076 0.037 0.015

4.5 Discussion

In 2018, Hamilton released its gross capital spending budget for the year, totalling
$256.3M. More specifically, Hamilton’s budget for waste management initiatives and
open space development is $4.4M and $7.8M, respectively (City of Hamilton, 2018a).
Based on these allowances, many of the lead abatement options seen in Table 4.1 are
unrealistic within current budget constraints. Indeed, some of these expenses could be
subsidized by the provincial or federal government, but many other urban cities in

Canada are facing similar levels of lead contamination (Health Canada, 2013).
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For objective one, we explored the cost of permanent lead remediation in
Hamilton and found that the cost far exceeds any reasonable solution for the municipal
government to implement. Aside from nursery- and pre-schools, soil and sod replacement
is significantly more expensive than any other permanent remediation strategy.
Elementary schools are the least expensive target for soil and sod replacement, but still
require a substantial capital investment of $7.6M that exceeds the repairs and minor
renovations budget of $3.8M for HWDSB during the 2018/2019 school year (Zucker et
al., 2018). Soil and sod replacement for elementary schools may be possible with federal
and provincial subsidies, or multi-year investment from HWDSB. Arguably, the cost of
soil and sod replacement may be reasonable for elementary schools and high-volume
parks, when considering the cost per child (per age cohort). High-volume parks would
cost roughly $850 to $1,300 per child to remediate, but the initial investment is
staggering. Furthermore, soil contamination does not ubiquitously pose a threat to
children. Dangerous SLLs only pose a threat to children where they are playing (e.g.,
running around, sitting, etc.), so total soil remediation may not be needed. As an
alternative to complete soil replacement, the city, or parents, could construct designated
play areas where children can safely play without any exposure to contaminated soil (e.g.,
the ground covered with mulch, a sandbox, or a paved area). Children at-risk of lead
poisoning (i.e., ages 0 to 4 yr.) will require constant supervision, so designated play areas

would likely be sufficient to eliminate exposure to contaminated soil.
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Lead-based paint is one of the most likely pathways of exposure for many
children, but can also be one of the easiest to mitigate. Hamilton’s downtown has an old
housing stock, and there are still schools within the study area that pre-date 1960, which
indicates the potential for lead-based paint exposure. Lead-based paint remediation can
cost anywhere from $30.6M for initial screening efforts, and up to $275.6M for complete
removal of lead-based paint in homes; however, in a residential home, permanent lead-
based paint removal cannot be completed at a reduced cost by homeowners since
construction can cause an increase of lead within the home (O’Grady et al., 2011).
Elementary schools can be screened and fully remediated for anywhere between $28,300
and $255,000, which is a reasonable expense given the cost per child is only $16 to $147
for the current age cohort. Furthermore, the ROI for paint remediation in residential
homes and elementary schools is higher than the 3%, and 8% discounted project costs for
conservative and optimistic estimates, respectively. Lead-based paint abatement is the
only type of remediation with a positive ROl when the project costs have been discounted
to future value; however, professional screening and lead-based paint remediation is often
not required because contaminated walls can be painted over with lead-free paint as an
effective method of mitigating exposure (CMHC, 2005; Korfmacher et al., 2012; Nevin,

2000).

Finally, lead pipes pose a risk to any resident living in a home that pre-dates 1945
(Richardson et al., 2011). Lead pipes can be present as a service line (i.e., the pipe

connecting the house to the main supply), or as the internal piping within the home. For
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complete remediation, the capital investment to replace lead pipes for residential homes
in Hamilton would cost the municipal government between $47.3M to $70.9M, which far
exceeds a reasonable capital investment for the city. As recently identified by the city,
there are three elementary schools within the study area that require lead pipe
replacement with an estimated cost of $14,300 to $21,500. Lead pipe replacement would
likely be a viable option for these schools; however, it may not be needed after an update
to the municipal water supply. In late 2018, Hamilton began adding orthophosphate to the
city water supply, which coats the insides of pipes to reduce lead from leaching into the
water significantly. Hamilton added the orthophosphate to the water supply after
implementation in seven other Canadian cities (i.e., Toronto, Winnipeg, Sudbury, St. Foy,
Dartmouth, Bathurst, and Campbellton) and six U.S. cities (i.e., Washington D.C., New
York City, Detroit, Chicago, Atlanta, and Nashville), as well as a successful two-year
pilot study in Hamilton. Implementation of orthophosphate to Hamilton’s water supply
costs approximately $4.9M and an additional $307,619 per year in operating costs (City
of Hamilton, 2018b). Hamilton’s decision to add orthophosphate to the water supply to
mitigate lead exposure is an excellent alternative to the substantial capital investment

required to replace lead pipes from homes within the study area.

Obijective two determined the projected ROI estimates for permanent lead
abatement in Hamilton. The ROI estimates for lead hazard control outlined by Gould
(2009) are complicated and consider many different avenues for possible savings, both

directly and indirectly, as a result of adverse health outcomes of lead exposure. As can be
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seen in Table 4.2, the conservative and optimistic ROI estimates are incredibly high for
nearly all land type and abatement strategies covered in this paper, but the discounted
project costs match the ROI estimates for all lead abatement categories, aside from lead-
based paint abatement. The ability to profit, break-even, or take a loss from a lead
abatement project is only half of the information that municipalities must consider when
approving a remediation project. The second half of the decision is based on the capital
investment needed to complete the project. Furthermore, the savings returned from lead
hazard control are not straightforward, and thus, we argue that there are two main reasons
why using ROI projections are unrealistic to make policy and program decisions at the

municipal level, (i) capital investment, and (ii) recipient of savings.

As we have shown with this case study, the capital investment required to abate
lead exposure in Hamilton permanently is far too expensive for a municipal government.
Even with federal or provincial subsidies, the costs are high, and the reduction in
exposure is likely not high enough to justify the investment. As suggested in the study by
Farrell et al. (1998), contaminated soil replacement did not reduce child BLLs
significantly between abatement and control groups. Although the return on investment
will allow the municipal government to either break even, take a small loss or profit on
the various lead abatement strategies presented in this paper, the capital investment is still
too high. There are only a few lead abatement options presented in this study that could
be reasonably achieved by the municipal government. Municipal governments do not

have the budget to be basing decisions solely on projected future savings. Policy and
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program initiatives must comply with strict budgets that can even be restrictive for multi-

year projects.

Second, the return on investment does not explain how savings will benefit
stakeholders. As previously discussed, four main factors will result in a return on
investment from lead hazard control, which includes: (i) less pressure on the health care
system, (ii) 1Q increases, (iii) reduced spending on special needs education, and (iv)
reduced criminal activity (Gould, 2009). In Canada, health care and education budgets are
provided by the provincial government (Fedeli, 2019). Therefore, the province of Ontario
will benefit most from a reduction of special needs education and pressure on the health
care system. Furthermore, a reduction in criminal activity will reduce pressure on the
municipal justice system (e.g., prisons and court). However, the cost savings will mostly
transfer to the provincial and federal justice systems with an additional reduction in

violent crime (Burns et al., 2014).

Obijective three explored the need for soil lead abatement by investigating hazard
quotients within the City of Hamilton. Many factors influence a hazard quotient and can
differ based on the characteristics of a child or the environment; however, Health Canada
(2010) has set estimations for each factor, across the three age groups. The two factors
that change in the hazard quotient calculations presented in this paper are the soil lead
level and weeks of exposure. As shown in Table 4.3, Appendix O, and Appendix P, the

soil lead levels across the city and the weeks of exposure can have a significant impact on
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the hazard quotients. The two scenarios (i.e., 52 weeks of exposure, and 40 weeks of
exposure) show that the average child within the city is not at-risk of adverse health
effects from SLLs. Since these calculations are based on averages for child
characteristics, it is still possible that a child who consumes more soil per day or weighs
less than the average may be at-risk for adverse health outcomes. As stated above, this
risk could be mitigated by developing designated play areas to reduce or eliminate

exposure to contaminated soil.

Additionally, the municipality should offer complete soil, paint and service pipe
remediation to the households that exceeded a hazard quotient of 0.5 with 40 weeks of
exposure. The addition of exposure to lead-contaminated paint, water and dust may put
these children at-risk of exceeding a blood lead level of 5 pug/dL. The areas in which
toddlers are at the highest risk also contain a relatively high percentage of households
below the poverty line, ranging from 24.7% to 42.3% of households (Statistics Canada,
2016). Considering a significant portion of households in this area are living under the
poverty line, the government should help this vulnerable population to preserve
environmental equity within the city and eliminate the economic burden on low-income

households.

We propose that governments make lead policy decisions based on need and cost,
rather than savings or returns on investment. ROI projections can help policymakers

decide between different program initiatives, but the estimates can also be misleading.
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There are too many factors and assumptions that are used to calculate a return on

investment and can inflate values to make capital investment seem more cost-effective.

4.6 Conclusion

As Hamilton’s housing stock continues to age, many of the older buildings will
eventually be gentrified or demolished and replaced with new structures. By
implementing construction policies that require permits for safe lead removal, this
process will eventually eradicate the threat of lead-based paint and leaded pipes from
Hamilton. However, there are many less expensive alternatives to permanent lead
remediation that municipal governments and residents can use to reduce exposure for
children. Designated play areas can be constructed in backyards of homes, parks and
schools to eliminate the threat of exposure for supervised children. Second, lead-based
paint can be contained using inexpensive methods such as painting over old lead-based
paint and lastly, lead pipe removal may not be necessary after the addition of

orthophosphate to the water supply (City of Hamilton, 2018b).
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Chapter 5  Conclusions and future research

This dissertation sought to understand the spatial distribution of soil lead levels in
an urban area better, identify the necessity for lead abatement and challenge the current
recommendations for lead remediation in urban cities. The purpose of this thesis is to help
policymakers make informed decisions at the municipal level by investigating current
challenges, rather than focusing on projections developed by cost-saving models. The
literature recommends lead remediation in urban cities on the basis that the return on
investment is high, but permanent abatement poses significant challenges for
municipalities and residents. Presented as a case study in Hamilton, Ontario, this
dissertation challenges standard methodologies, relationships and predictions within the
literature, and illustrates that remediation may not always be feasible or necessary for
municipal governments. Chapter five of this dissertation seeks to identify the main

contributions of this thesis within the literature.

5.1 Contributions
As a result of the three manuscripts presented in this dissertation, the contributions

to the literature are as follows:
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1. Predictive models should remain parsimonious

A key component of lead remediation is identifying areas that exceed
contamination thresholds. Since soil testing can be expensive, we are required to estimate
the lead levels between sampled points across space. In heavy metal contamination
research, the standard approach is to use an interpolation method called kriging, which
relies on the spatial structure of the sampled data set to make estimations at unobserved
locations. One of the perceived downfalls of kriging is that estimations are globally
smoothed (Arain et al., 2007), which means local variation is lost. In chapter 2, the paper
attempts to utilize a different approach to interpolation that focuses on localized
prediction for soil lead levels. This approach, called Land Use Regression (LUR), is a
commonly used interpolator within the air pollution literature (see Arain et al. 2007;
Melymuk et al. 2013; Sahsuvaroglu et al. 2006; Saraswat et al. 2013; Wang et al. 2013),
and uses pollution sources as predictor variables in a regression model to estimate the
contaminate in unobserved locations. Chapter 2 provides the results of both LUR and
kriging, in addition to uncovering three flaws with land use regression as an interpolation

technique.

As discussed in chapter 2, a LUR model may include predictor variables that do
not have a real relationship with the dependent variable. The method of selecting
predictor variables is inherently flawed since correlations between predictor and

dependent variables are selected based on the highest correlation coefficient without
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considering the physical relationship between the contamination source and the
dependent variable. As a result of this variable selection method, the LUR model can
overfit the data and lead to a model that cannot be generalized over space or time. A LUR
model with multiple predictor variables also poses a problem for remediation efforts.
Predictor variables that explain the spatial distribution of the contaminate may be targeted
by governments for remediation, policy, or program initiatives, despite having no real
relationship with the dependent variable. Remediation and program initiatives that target
a variable that does not relate to the contaminate can pose a serious concern within cities
where the municipal government has limited resources. Additionally, policies may falsely
limit commercial businesses or industries that are not contributing to the contaminate. At
the local scale, predictor variables that are overfitted to the data can have a significant
financial impact on the residents, businesses, industry, and government, and the solution

may not reduce exposure to the contaminate.

In the case of interpolation, we found that kriging is a better solution for
remediation efforts because kriging focuses on the spatial structure of the data. As
Tobler’s first law dictates, near things are more related than distant things, which is an
integral component of kriging. Kriging uses a semivariogram to understand the spatial
relationship between observed points within the data set. This method does not require
external predictor variables to estimate the level of contamination at unobserved
locations, and thus, the predicted surface is more trustworthy than estimations made by

LUR. Specifically for lead (Pb) remediation, the contamination is typically from
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historical sources of lead (e.g., combustion of leaded fuel, and lead-based paint), so
understanding where the contamination came from is less important to a government
entity. One of the most important aspects of spatial modelling for a government is the
ability to understand the spatial distribution of the contaminate across space. Areas within
a city that pose a significant threat to the public can be remediated, or secondary soil
testing can be done within the area of concern to understand the distribution of the

contaminate better.

2. Any uncertainties will be exaggerated in a model

In contamination research, a key component of developing a remediation plan is
to understand the spatial distribution of the contaminate across space and determine
whether an abatement project is worth the financial investment. In chapter 2, we saw that
LUR could rely on relationships with spurious and uncertain relationships. An
interpolation model that relies on relationships that may not directly exist can have a
significant effect on the remediation efforts and policy decisions developed to mitigate
exposure to the contaminate. In chapter 2, we showed that a more simplistic model (i.e.,
kriging) might be preferred since the model depends on the spatial structure of the data,
rather than a dependence on uncertain relationships. One of the problems outlined in
chapter 2 is that many of the relationships between predictor variables and the dependent
variable are spurious and unintuitive; thus, the model becomes overfitted to the specific

data set. As a result, the LUR model has little value to a municipal government that may
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require new predictions over time or may waste resources targeting sources that have no

direct influence on the contaminate.

In chapter 3, we examined the relationship between blood lead levels in children,
and its influence on full-scale 1Q. We found that the relationship between BLLs and full-
scale 1Q is lower than previously suggested, but explain that the meta-analysis method
may present some limitations that are important to consider. One of these limitations
discusses how the meta-analysis process then exaggerates the uncertainties present in
each study. In other words, any variability that cannot be explained by the regression
models in individual studies are still present in the unstandardized beta coefficients
(UBCs) that are pooled in the meta-analysis. Thus, the pooled results have more
uncertainty than each UBC on its own. Similarly, there is uncertainty when pooling UBCs
from different populations (i.e., children with different characteristics) and regression
models that have been constructed with a different set of confounders. In a meta-analysis,
heterogeneity measures can help determine if pooled UBCs have similar characteristics
(e.g., sample size, UBC value, confidence intervals, etc.); however, the underlying
uncertainties embedded in the UBCs (e.g., demographic variation in the population, the
process of 1Q testing, confounding variables used, etc.) may influence the results.
Additionally, publication bias may also add uncertainty into the pooled result, but

fortunately, some tests can help identify and correct for publication bias.
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Additionally, in chapter 4, the inherent uncertainties within the Gould (2009) ROI
model are illustrated with the vast discrepancies between the conservative and optimistic
ROI predictions. The ROI projections presented by Gould (2009) were based on the
National Health and Nutritional Examination Survey (NHANES) administered by the
CDC to children (n = 194,000) living in the United States. Despite a large sample size,
many factors can affect lead exposure, which will vary based on the characteristics of a
population and the environmental variances across space. Population size and density,
and the number of children living within the city will affect the ROI a municipality can
expect from lead abatement efforts. In other words, a city with a high density of children
living in a lead-contaminated area can expect a higher ROI than a city with a lower
density of children living in a lead-contaminated area. Additionally, cities with a higher
density of low-income households may benefit more from lead abatement intervention by
the government, since lower-income individuals have less financial autonomy to
implement lead mitigation efforts (e.g., painting over lead-based paint or replacing lead
service pipes). Furthermore, there are environmental factors that can affect the potential
exposure to lead for a child. First, cities in warmer climates are at higher risk of lead
exposure due to “greater exposures to soil lead, dispersion of dust when lead-painted
windows are opened and shut, and remobilization of lead on interior surfaces as air moves
through open windows and doors” (Levin et al., 2008, p. 1290). Warmer climates also
encourage children to play outdoors for longer, increasing exposure to soil and airborne
lead exposure, and variations in Vitamin D throughout the year (i.e., from sun exposure)

can cause variations in susceptibility to lead poisoning in children (Levin et al., 2008).
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Lastly, fallen leaves during autumn and snow during the winter can cause physical
barriers to lead exposure for children, and rain can also help reduce exposure to lead-

laden dust within a city.

3. The best approach is not always the most feasible approach

In an ideal world, we would always take the best possible approach to every
problem; however, governments have financial limitations and require solutions that
provide a balance between capital investment and efficacy. Regarding lead remediation,
often, it is not possible to permanently remove lead from the environment because the

capital investment is far too substantial for a government budget.

In chapter 1, we recommended kriging for interpolation, rather than using LUR. In
addition to more accurate predictions, kriging is also significantly faster and easier to use
when compared to LUR. At the municipal level, a government may not have the
resources to collect data, maintain a database, develop a regression model, and use
mapping software to create a prediction surface. In contrast, a kriging model can be
developed quickly and easily using the Geostatistical Wizard in ArcGIS, which requires a

rudimentary level of understanding to create the prediction surface.
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In chapter 4, we showed that a significant portion of the downtown core in
Hamilton exceeds the 70 and 140 mg/kg thresholds set by the federal government
(Canadian Council of Ministers of the Environment, 1999). Despite enormous return on
investment projections for lead remediation in Hamilton, we discussed how the
government would not be able to afford such significant capital investment in most cases.
Permanent solutions are the best way to mitigate lead exposure for children, but in an
urban setting with large areas contaminated by lead, the capital investment is just too
large for a government with limited resources. Multi-year investment plans are also
possible for governments to pay for lead remediation, but the ROI associated with most
lead abatement strategies in Hamilton did not overcome the future discounted project
costs. Moreover, the cost savings associated with lead abatement do not necessarily
transfer to the municipal government. Thus, it may be more advisable for a city to
promote cheaper alternatives that mitigate exposure either spatially or temporally. For
example, a city could spatially mitigate lead exposure by replacing contaminated soil only
for playgrounds, rather than replacing soil for the entire park. A temporal example may
be forcing landlords to apply a fresh coat of paint to older homes every few years to cover
old lead-based paint. These examples provide an adequate level of lead exposure
mitigation and cost a significantly lower amount of money to implement. In addition to
smaller, city-wide approaches to reduce lead exposure, we also recommend eliminating
lead contamination in the highest risk areas in the city to reduce adverse health outcomes
and preserve environmental equity. Chapter 4 also suggests that in some cases, permanent

lead abatement is recommended if the remediation project benefits a relatively large

140



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth
Sciences

number of children. For example, we showed that the daycare centres in Hamilton would
be a relatively small capital investment and would benefit a significant number of
children. Lastly, soil lead level thresholds set by the government are typically ten times
lower than the actual safe threshold to account for differences in populations (U.S. Food
& Drug, 2019). Hazard quotient calculations showed that, on average, children are not at-
risk of adverse health effects in Hamilton, Ontario. Despite having large swathes of soil
exceeding the regulatory threshold for lead, hazard quotient maps can help policymakers
decide whether or not lead remediation is necessary to reduce the risk of lead poisoning

for children.

5.2 Limitations

In Chapter 2, we used the soil lead levels to estimate contamination levels at
unobserved locations with some success, but the sampling method left large areas without
soil samples. The method of data sampling provided measured soil lead levels for
participating residents, which means broad, business-dense areas of the downtown core
do not have soil lead levels. As a result, spatial modelling techniques will have more
difficulty determining the relationship between observed data locations and the
environment. For example, Empirical Bayesian Kriging uses the spatial structure of the
data set to determine the relationship of distance between observed locations, so having a
more grid-like data set is ideal for developing a better predictive model. Similarly, land
use regression would also benefit from more grid-like data set to determine the

relationship between predictor variables and observed locations. Ideally, the original data
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collection would have included grid-like soil sampling for residential, commercial and
industrial properties across the lower city of Hamilton. Furthermore, better predictive
models may have been possible using a more powerful workstation to develop and use
the land use regression model. Developing and using a land use regression model at a
high resolution (i.e., <100-meter cell size) was not possible using the computer available
for analysis. A higher-end workstation may have allowed a more predictive land use
regression model. Lastly, time was a major constraint in this chapter because data
collection was primarily done manually by searching historical business directories and
inputting the data into a database. Manually collecting data limited the number of
business directories that could be searched (i.e., we searched business directories at 5-
year intervals: 1925, 1930, 1935, etc.) to include in the database. More time could afford
a more representative data set (i.e., searching business directories at a 1-year interval) and
we could have also included other historical predictive variables such as land use and
zoning, weather and wind patterns, and road networks that changed at the same year

interval as the business directories.

In Chapter 3, we were limited by access to particular journal articles based on two
main factors. First, we were not able to read journal articles that were not written in
English, which may have eliminated important studies from the meta-analysis. Second,
some journal articles were not available through McMaster’s journal database, which
further limited the pool of journals available for analysis. In addition to accessibility

limitations, we were also limited by the fact that not all papers reported a UBC with an
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untransformed independent variable (i.e., BLLS), so we were not able to pool as much
literature for the two groups. Furthermore, not all papers reported other key information,
such as an unstandardized beta coefficient, sample size per regression model, or the

methods of data collection.

In Chapter 4, we were not able to access household-level information regarding
the age of dwelling, which could have been used as a proxy for both lead-based paint and
lead-pipe presence within the home. The highest resolution we could access was the
median dwelling age by census tract. Additionally, homes within the study area could
have been renovated, eliminating lead-based paint and lead pipes. Access to construction
permits could have allowed us to develop more accurate projections for abatement costs
and return on investment estimates. Next, in chapter 4, we did not have the square footage
of homes in Toronto, even though the cost was based on a Toronto home, so the cost to
remove lead pipes from a residency was not converted to account for the difference in
square footage between Toronto and Hamilton houses. Lastly, in the hazard quotient
calculations, we did not have the data necessary to estimate full exposure to lead (i.e., we
did not have lead-contaminated water or lead-based paint data for all homes to predict
hazard quotients better). Furthermore, we did not know the travel patterns of children to
estimate exposure. For example, we did not know if a child spent time in the backyard,

and more time at a local park during an average day.
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5.3 Future work

As a result of this dissertation, we encourage researchers to explore distance
profiles for current air pollution research that utilizes land use regression as a spatial
modelling technique and to recommend better solutions to municipal governments for
mitigating lead exposure with consideration for capital investment, rather than return on
investment. Second, we recommend a comprehensive set of public health initiatives to
spread awareness, encourage the use of preventative measures for mitigating lead

exposure, and generate crowd-sourced data for better soil lead predictions.

As discussed in chapter 2, we recommend the use of distance profiles to
understand the relationship between the dependent and independent variables at each
buffer distance. We found that the distance profiles are imperative to a land use
regression model to verify that each relationship is intuitive and the distance profile
decays appropriately. We encourage air pollution researchers to integrate distance profiles
into the initial selection process for predictor variables and eliminate predictor variables

that do not exhibit an expected distance profile.

Second, we encourage researchers to focus on reasonable solutions for lead
poisoning mitigation efforts for municipalities without fixating too heavily on return on
investment predictions. Ideally, we would remove all sources of anthropogenic lead from
the environment, but as we have shown in chapter 4, the cost of abatement may be too

high for a municipal government. We encourage researchers to investigate the need for
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lead abatement on a case-by-case basis to determine whether or not children are at-risk of
developing lead poisoning before recommending costly mitigation strategies. By utilizing
the hazard quotient, researchers can assess the risk of lead contamination to children in
different populations and cities before recommending mitigation strategies or full

abatement initiatives.

Next, we encourage municipalities with large-scale lead contamination to develop
two main public health initiatives to spread awareness, promote preventative measures,
and to help collect more data. First, a web app to access lead poisoning information and
available resources for lead mitigation. In Hamilton, Ontario, Statistics Canada (2019)
reported that 81.8% of residents used the internet in 2009, which increased from 71.2% in
2005. Although the next Internet use study has not been released, the CRTC (2019)
reports that in 2017 99.1% of Ontario residents had broadband internet, and 99.8% of
Ontario residents had a mobile data plan. Additionally, residents of Hamilton have free
access to the internet at any public library, which is likely a service provided by most
municipalities in Canada and the US. A web app (i.e., a website using a map as a starting
point to disseminate information to a targeted audience) would make the information
more accessible for residents. A web app could be used in three main ways: (i) view
maps, (ii) provide education, and (iii) request services. First, maps of soil lead levels,
hazard quotient, and age of structures and lead pipes could be viewed by parcel (if
available). Online maps should include error rates by land parcel with a brief explanation

to help parents interpret the information. Additionally, online maps could also include a
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hazard quotient calculator to allow parents to input specific measures for their child (e.g.,
body weight and soil lead level, or additional sources of exposure including lead-
contaminated water or dust) to view more accurate hazard quotient estimates by land
parcel. Based on this information, the municipality may promote specific preventative
measures dependent on the level of risk to a child (e.g., exceeding a soil lead or hazard
quotient threshold). Preventative measures may include creating a designated play area
for their child, repainting with latex paint, wet mopping, flushing taps, and child hygiene
(i.e., washing hands and taking off shoes before entering the house). Additionally, a web
app could offer a streamlined approach to requesting services and crowd-sourcing data
for better predictive power. The City of Hamilton and likely many other municipalities
offer free or inexpensive services to identify or reduce lead exposure for residents. A web
mapping interface would allow residents to view specific information about their land
parcel and request relevant services that may be required. For example, viewing
information about a land parcel with a dwelling age predating 1945 could prompt the user
to request a lead-pipe service check by the city. Other services may include a home check
to identify potential sources of lead-based paint or soil lead and water lead testing.
Ideally, municipalities could use this system to collect subsidized data to improve soil
lead predictions, in addition to lead-based paint and lead pipe information. Municipalities
could offer subsidized, professional soil, paint and water testing to residents, which would
reduce the cost of testing for both residents and the municipality. As the city collects
more data, predictions will become more accurate, and targeting high-risk areas will

become easier.
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Next, we encourage municipalities to canvass high-risk areas to disseminate
information and bring awareness of potential sources of contamination, in addition to
resources and methods to reduce exposure to lead. Once a web app has been built, the
municipality must create awareness, which will require an advertisement campaign. In
Hamilton, the study by Richardson et al. (2011) reported that half of the participating
residents in the highest risk areas were aware of the free services provided by Hamilton.
In order to spread awareness of a web app designed to help residents reduce their
exposure to lead, municipalities should canvass the highest risk areas to promote the web
app and disseminate information about lead poisoning risks and methods to mitigate

exposure.
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Chapter 6  Appendix

6.1 Appendix A: Depiction of the study area in Hamilton, Ontario, Canada
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6.2 Appendix B: Distance profiles for the relationship between the cumulative sum

of each independent, lead-related variable and SLLs
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6.3 Appendix C: Distance profiles for the relationship between the cumulative sum

of each independent control variable and SLLs
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6.4 Appendix D: SLL predictions for LUR AV, LUR OLV, EBK and OK, and

standard error for EBK and OK
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6.5 Appendix E: Forest plots

6.5.1 Non-linear
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6.5.2 Linear

Standardised Mean
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6.6 Appendix F: Forest plots after simple outlier detection and removal
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6.6.2 Linear

Standardised Mean
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6.7 Appendix G: Baujat plots
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6.8 Appendix H: Influence characteristic graphs

6.8.1 Non-linear

Stand. Residual

Cook's Distance

/'/,+-7‘_._M_H\\‘/ ‘7\/“1} “.‘:/ \‘_\‘;

T
=
»
E
w
w
a
........................... 7 IS
S RS
o e N \\ 7 ‘.
= A e | I
T RS 5 \I‘
g |l e .
[ = ! |
53 i e
5 i Vo
£ i )
5 (W |/
g ‘l\ ‘7,’
3 t |
© {
S s el ST s
B Il - A e L
e e ui)
g
7
=
o

5 it : =

:o 4, / \.41‘ r_. bt 4 s b . H_"a, |/ \L fy*—wl If

= @ . \/ =TT

3 / i I i i 1

e ./ i & i [}

S ) [ \ 1]

3 i 1, W |

Z 1 II / i l‘ |

L i i 14

8 { . L
Ao (el

174




PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth

Sciences

6.8.2 Linear
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6.9

|2

6.9.1 Non-linear

Sciences

Appendix I: Forest plots for leave-one-out analysis, sorted by pooled result and
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6.9.2 Linear

Sorted by Effect Size
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Sorted by I-squared
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6.10 Appendix J: GOSH plots

6.10.1 Non-linear
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6.10.2 Linear
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6.11 Appendix K: Funnel plots with p-value and trim-and-fill points

6.11.1 Non-linear
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6.11.2 Linear
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6.12 Appendix L: P-curve analysis

6.12.1 Non-linear
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6.12.2 Linear
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6.13 Appendix M: Risk of bias summary
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6.14 Appendix N: Hazard quotient calculation

6.14.1 Functions and assumptions

Hazard Quotient = Estimated Exposure (Dose) (mg/kg bw/day)

Tolerable Daily Intake (TDI) (mg/kg bw/day)

Estimated Exposure (Dose) =  Cs * IRs * RAFora * D2 * D3
(mg/kg bw/day) BW

Where (Health Canada, 2010):

Cs = Concentration in soil (mg/kg)

IRs = Soil ingestion rate (kg/day)

RAF.ra = Relative absorption factor from the gastrointestinal tract
D> = Days per week exposed (divided by 7 days)

D3 = Weeks per year exposed (divided by 52 weeks)

BW = Body weight (kg)

Tolerable Daily Intake (TDI):

TDI relating to a blood lead level of 2 pg/dL = 0.0006 mg/kg bw/day (SNC-Lavalin,
2012)

Conversion factor for 5 pug/dL =5 pg/dL / 2 pg/dL = 2.5

TDI relating to a blood lead level of 5 pug/dL = 0.0006 * 2.5 = 0.0015 mg/kg bw/day

Assumptions (Health Canada, 2010):

Characteristic | Infant Toddler Child

Age 0 -6 mo. 7 mo.—4yr. 5-11yr.

Cs (mg/kg) SLL varies across SLL varies across SLL varies across
space space space

IRs (kg/day) | 0.00002 0.00008 0.00002

RAForal 1.0 1.0 1.0

BW (kg) 8.2 16.5 32.9
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6.14.2 Example hazard quotient calculation for a toddler without winter soil
exposure

Given:

Cs = 250 mg/kg

IRs = 0.00008 kg/day

RAFoai =1

Dr=7days/7days=1

D3 = 40 weeks / 52 weeks = 0.769

BW =16.5 kg

TDI relating to a blood lead level of 5 pug/dL = 0.0015 mg/kg bw/day

. 250 *0.00008 *1*1*
Estimated Exposure (Dose) (40/52) ~ 0.00093240093
= (mg/kg bw/day) 16.5 '
Hazard Quotient 0'00890302f50093 =0.62160062

Therefore, the Hazard Quotient for a toddler without winter exposure is 0.62. In this
example, the toddler will not likely be at-risk of developing adverse health effects
associated with a blood lead level of 5 pg/dL or greater from soil exposure.
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6.15 Appendix O: Hazard quotient maps with 52 weeks of exposure and TDI
relating to 5 pg/dL
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6.16 Appendix P: Hazard quotient map for a toddler with 40 weeks of exposure and

a TDI relating to 5 pg/dL
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Esri, HERE, Garmin, © OpenStreetMap contributors, and the GIS user community
Hazard Quotient (HQ) Hazard Quotient Soil lead level
Toddler with 40 weeks of exposure _,w\_n.mn_wnn_umw (mg/kg)
- _ in: 0.
TDI Limit to reach 5 pg/dL = 0.0015 mg/kg bw/day Max: 0.605 O <77.00
D < 0.50 (Very unlikely to cause adverse health effects) Mean: 0.299 O =150.00
Std dev.: 0.120
I 0.51 - < 1.00 (Unlikely to cause adverse health effects) @ <240.00
I 1.01 - 1.50 (May cause adverse health effects) @® =<370.00
@® <790.00
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