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ABSTRACT 

Thirty years since the removal of lead from gasoline, lead still poses a health risk. 

Children are most at-risk for adverse health outcomes caused by lead toxicity due to both 

behavioural (e.g., hand-to-mouth behaviour) and physiological differences (i.e., increased 

intake of lead by body weight, higher uptake rate and a higher vulnerability to the effects 

of lead) compared to adults (Yeoh et al., 2009). As a result, governments must identify 

children that may be at-risk of lead poisoning and develop practical methods to mitigate 

lead exposure. 

Before a government can develop a policy to help mitigate exposure of lead for 

children, we need to understand the spatial distribution of lead within the city. A popular 

spatial model used within air pollution research may allow more accurate, and more 

localized predictions than the most common interpolation method, kriging. Land use 

regression (LUR) is a technique leveraging multiple predictor variables to help estimate 

the spatial distribution of the dependent variable. By using historical sources of lead, 

LUR can be used to model soil lead levels (SLL) with localized variation. Unfortunately, 

spurious relationships can be the basis of a LUR model, which may lead to an overfitted 

spatial model resulting in a model with little generalizability and questionable ability to 

estimate the dependent variable at unobserved locations. Ultimately, Empirical Bayesian 

Kriging may be the best option for soil contamination research due to its ability to 

provide a smoothed prediction surface and its dependence on the spatial structure of the 

data to provide estimations. 
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The benefit to society and the return on investment (ROI) is often the justification 

for lead remediation. Gould (2009) estimates a $17 to $221 ROI for every dollar spent on 

lead hazard control. One of the main components of this estimate of ROI comes from the 

decrease in intelligence quotient (IQ) that a child may experience as a consequence of 

lead toxicity. There are three main ways that a decrease in IQ can negatively impact the 

economy, (i) lower potential lifetime earnings, (ii) reduced tax revenues, and (iii) higher 

spending on special education (Gould, 2009). Since IQ has such a significant role in the 

ROI estimates, chapter 3 seeks to achieve a greater understanding of the relationship 

between blood lead levels (BLLs) and IQ. The loss of IQ points for an increase in blood 

lead concentration proposed by Lanphear et al. (2005) and referenced by Gould (2009) is 

significantly higher than what we found in our meta-analysis. Thus, the projected ROI 

proposed by Gould (2009) may be much lower than previously calculated.  

In the final chapter, the cost associated with permanent lead abatement is 

investigated based on ROI projections as a case study in Hamilton, Ontario. We show 

that, in most cases, permanent lead remediation is far too expensive for a municipal 

government. Furthermore, the capital initially invested may not be distributed back into 

the local economy, as the ROI suggests. We suggest that municipal governments make 

decisions based on need, rather than basing remediation decisions on ROI projections. 

Furthermore, we recommend the use of hazard quotient maps to help justify lead 

remediation as a more accurate representation of potential lead toxicity, instead of only 

looking at SLL exceedances across the city.   
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PREFACE 

This thesis dissertation contains five chapters, which includes: an introduction, 

three main chapters, and a conclusion. The first paper (chapter 2) examines a relatively 

new interpolation method for heavy metal soil contamination research and discusses the 

inherent flaws in using land use regression compared to the traditional method of kriging. 

The second paper (chapter 3) is a meta-analysis exploring the relationship between blood 

lead levels in children and intelligence quotient (IQ). This paper presents a thorough 

investigation into the relationship between BLLs and IQ using modern meta-analysis 

techniques to synthesize unstandardized beta coefficients. Lastly, the third paper (chapter 

4) presents a cost-benefit analysis of lead remediation in Hamilton, consisting of soil, 

water, and paint abatement. Despite significant return on investment projections, the 

paper discusses reasons why a city should reconsider investing in such a large project.  

The first chapter is a methodological paper that contributes to a broader research 

audience (e.g., air pollution research) that uses land use regression for spatial modelling. 

The second chapter contributes to the literature by quantifying the relationship between 

blood lead levels in children and intelligence quotient by pooling results from 13 papers. 

Finally, the last paper contributes to the literature by examining the feasibility of lead 

remediation at a municipal-level and discussing alternatives to permanent lead abatement. 

This dissertation seeks to challenge the necessity and benefit of lead remediation in urban 

cities by providing a case study in Hamilton, Ontario.  
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The first author of each paper reviewed the literature, completed the analysis, 

interpreted the results, and wrote the manuscripts. The first author also collected, cleaned, 

and prepared a historical data set for the first paper (chapter 2). Dr. Bruce Newbold co-

authored each of the three manuscripts, providing guidance from initial concept 

development to analysis, submission and revision. For the first paper, Dr. Niko 

Yiannakoulias also guided concept development and analysis. The three chapters 

presented in this thesis dissertation are as follows: 

Chapter 2: 

Mackay, K.P., Yiannakoulias, N., and Newbold, K.B. (2018). A critical assessment of 

land use regression for interpolating soil lead (Pb) levels: a case study in Hamilton, 

Ontario. 

Chapter 3: 

Mackay, K.P., and Newbold, K.B. (2019). The relationship between childhood blood 

lead levels and Intelligence Quotient: a meta-analysis. 
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Chapter 4: 

Mackay, K.P., and Newbold, K.B. (2018). A critical assessment of the return on 

investment of permanent lead hazard control: a case study in Hamilton, Ontario.  

  



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

x 
 

TABLE OF CONTENTS 

CHAPTER 1 INTRODUCTION ....................................................................................................................1 

1.1 JUSTIFICATION OF RESEARCH TOPIC .........................................................................................................1 

1.2 THESIS OBJECTIVES AND RESEARCH QUESTIONS .........................................................................................4 

1.3 DISSERTATION CONTENTS .....................................................................................................................7 

CHAPTER 2 A CRITICAL ASSESSMENT OF LAND USE REGRESSION FOR INTERPOLATING SOIL LEAD (PB) 

LEVELS: A CASE STUDY IN HAMILTON, ONTARIO ........................................................................................9 

2.1 INTRODUCTION ..................................................................................................................................9 

2.2 DATA SETS AND SOURCES OF LEAD ........................................................................................................13 

2.2.1 Study area ..........................................................................................................................13 

2.2.2 Soil lead samples ................................................................................................................13 

2.2.3 Historical independent variables .........................................................................................15 

2.2.4 Control variables.................................................................................................................20 

2.3 METHODOLOGY ...............................................................................................................................20 

2.4 RESULTS .........................................................................................................................................24 

2.4.1 Distance profiles .................................................................................................................24 

2.4.2 Interpolation models...........................................................................................................29 

2.5 DISCUSSION ....................................................................................................................................31 

2.6 CONCLUSION ...................................................................................................................................35 

2.7 REFERENCES ....................................................................................................................................38 

CHAPTER 3 THE RELATIONSHIP BETWEEN CHILDHOOD BLOOD LEAD LEVELS AND INTELLIGENCE 

QUOTIENT: A META-ANALYSIS ..................................................................................................................45 

3.1 INTRODUCTION ................................................................................................................................45 



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

xi 
 

3.1.1 Measuring intelligence quotient .........................................................................................46 

3.1.2 Social outcomes ..................................................................................................................47 

3.1.3 Past meta-analyses .............................................................................................................48 

3.1.4 Objectives ...........................................................................................................................54 

3.2 METHODS .......................................................................................................................................55 

3.2.1 Data sources and search strategy .......................................................................................55 

3.2.2 Data extraction ...................................................................................................................57 

3.2.3 Pooling beta coefficients .....................................................................................................57 

3.2.4 Between study heterogeneity .............................................................................................61 

3.2.5 Publication bias ..................................................................................................................65 

3.3 RESULTS .........................................................................................................................................68 

3.3.1 Descriptive statistics ...........................................................................................................68 

3.3.2 Pooled unstandardized beta coefficients .............................................................................70 

3.3.3 Influence, heterogeneity, and outlier detection ...................................................................71 

3.3.3.1 Baujat plots ..................................................................................................................................... 72 

3.3.3.2 Influence Characteristics ................................................................................................................ 72 

3.3.3.3 GOSH plots ...................................................................................................................................... 75 

3.3.4 Subgroup analysis ...............................................................................................................76 

3.3.5 Publication bias ..................................................................................................................80 

3.3.5.1 Funnel plots ..................................................................................................................................... 80 

3.3.5.2 P-curve analysis ............................................................................................................................... 82 

3.3.5.3 Risk of bias summary ...................................................................................................................... 83 

3.4 DISCUSSION ....................................................................................................................................84 

3.5 LIMITATIONS ...................................................................................................................................94 

3.6 CONCLUSION ...................................................................................................................................96 

3.7 REFERENCES ....................................................................................................................................97 



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

xii 
 

CHAPTER 4 A CRITICAL ASSESSMENT OF THE RETURN ON INVESTMENT OF PERMANENT LEAD 

HAZARD CONTROL: A CASE STUDY IN HAMILTON, ONTARIO ................................................................. 102 

4.1 INTRODUCTION .............................................................................................................................. 102 

4.1.1 Mitigating lead exposure .................................................................................................. 103 

4.1.2 Cost of lead remediation and social benefits ..................................................................... 104 

4.2 DATASETS ..................................................................................................................................... 107 

4.2.1 Study area ........................................................................................................................ 107 

4.2.2 Target land uses for lead abatement ................................................................................ 107 

4.2.3 Soil samples ...................................................................................................................... 108 

4.3 METHODOLOGY ............................................................................................................................. 109 

4.3.1 Predicting cost of lead abatement .................................................................................... 109 

4.3.1.1 Sod and soil replacement ............................................................................................................. 111 

4.3.1.2 Paint abatement............................................................................................................................ 111 

4.3.1.3 Lead-pipe abatement .................................................................................................................... 112 

4.3.2 Calculating return on investment ...................................................................................... 113 

4.3.3 Understanding the threat to children ................................................................................ 115 

4.4 RESULTS ....................................................................................................................................... 116 

4.4.1 Cost of permanent lead abatement .................................................................................. 116 

4.4.2 Return on investment (ROI) ............................................................................................... 118 

4.4.3 Hazard quotient ................................................................................................................ 119 

4.5 DISCUSSION .................................................................................................................................. 121 

4.6 CONCLUSION ................................................................................................................................. 128 

4.7 REFERENCES .................................................................................................................................. 129 

CHAPTER 5 CONCLUSIONS AND FUTURE RESEARCH .......................................................................... 133 

5.1 CONTRIBUTIONS ............................................................................................................................. 133 



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

xiii 
 

5.2 LIMITATIONS ................................................................................................................................. 141 

5.3 FUTURE WORK ............................................................................................................................... 144 

5.4 REFERENCES .................................................................................................................................. 148 

CHAPTER 6 APPENDIX......................................................................................................................... 151 

6.1 APPENDIX A: DEPICTION OF THE STUDY AREA IN HAMILTON, ONTARIO, CANADA........................................... 151 

6.2 APPENDIX B: DISTANCE PROFILES FOR THE RELATIONSHIP BETWEEN THE CUMULATIVE SUM OF EACH INDEPENDENT, 

LEAD-RELATED VARIABLE AND SLLS .............................................................................................................. 152 

6.3 APPENDIX C: DISTANCE PROFILES FOR THE RELATIONSHIP BETWEEN THE CUMULATIVE SUM OF EACH INDEPENDENT 

CONTROL VARIABLE AND SLLS ..................................................................................................................... 158 

6.4 APPENDIX D: SLL PREDICTIONS FOR LUR AV, LUR OLV, EBK AND OK, AND STANDARD ERROR FOR EBK AND OK .... 

  .................................................................................................................................................. 163 

6.5 APPENDIX E: FOREST PLOTS .............................................................................................................. 169 

6.5.1 Non-linear ........................................................................................................................ 169 

6.5.2 Linear ............................................................................................................................... 170 

6.6 APPENDIX F: FOREST PLOTS AFTER SIMPLE OUTLIER DETECTION AND REMOVAL .............................................. 171 

6.6.1 Non-linear ........................................................................................................................ 171 

6.6.2 Linear ............................................................................................................................... 172 

6.7 APPENDIX G: BAUJAT PLOTS.............................................................................................................. 173 

6.7.1 Non-linear ........................................................................................................................ 173 

6.7.2 Linear ............................................................................................................................... 173 

6.8 APPENDIX H: INFLUENCE CHARACTERISTIC GRAPHS ................................................................................. 174 

6.8.1 Non-linear ........................................................................................................................ 174 

6.8.2 Linear ............................................................................................................................... 175 

6.9 APPENDIX I: FOREST PLOTS FOR LEAVE-ONE-OUT ANALYSIS, SORTED BY POOLED RESULT AND I2 ......................... 176 

6.9.1 Non-linear ........................................................................................................................ 176 



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

xiv 
 

6.9.2 Linear ............................................................................................................................... 178 

6.10 APPENDIX J: GOSH PLOTS ........................................................................................................... 180 

6.10.1 Non-linear .................................................................................................................... 180 

6.10.2 Linear ........................................................................................................................... 181 

6.11 APPENDIX K: FUNNEL PLOTS WITH P-VALUE AND TRIM-AND-FILL POINTS ................................................. 182 

6.11.1 Non-linear .................................................................................................................... 182 

6.11.2 Linear ........................................................................................................................... 183 

6.12 APPENDIX L: P-CURVE ANALYSIS .................................................................................................... 184 

6.12.1 Non-linear .................................................................................................................... 184 

6.12.2 Linear ........................................................................................................................... 185 

6.13 APPENDIX M: RISK OF BIAS SUMMARY ............................................................................................ 187 

6.14 APPENDIX N: HAZARD QUOTIENT CALCULATION ................................................................................ 188 

6.14.1 Functions and assumptions .......................................................................................... 188 

6.14.2 Example hazard quotient calculation for a toddler without winter soil exposure .......... 189 

6.15 APPENDIX O: HAZARD QUOTIENT MAPS WITH 52 WEEKS OF EXPOSURE AND TDI RELATING TO 5 µG/DL ......... 190 

6.16 APPENDIX P: HAZARD QUOTIENT MAP FOR A TODDLER WITH 40 WEEKS OF EXPOSURE AND A TDI RELATING TO 5 

µG/DL .............................................................................................................................................. 193 

 

 

  



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

xv 
 

LIST OF TABLES 

Table 2.1: Relationship between independent variables and soil lead levels by distance . 26 

Table 3.1: Descriptive statistics for papers included in this meta-analysis ....................... 69 

Table 3.2: Pooled results for non-linear and linear groups, including heterogeneity 

measures ............................................................................................................................. 71 

Table 3.3: Pooled results omitting outliers using simple detection method, including 

heterogeneity measures ...................................................................................................... 72 

Table 3.4: Pooled results omitting additional outliers identified through influence 

analysis, including heterogeneity measures ....................................................................... 75 

Table 3.5: Pooled results for the subgroup analysis of UBCs by unadjusted and adjusted 

regression models, including heterogeneity measures ....................................................... 77 

Table 3.6: Pooled results for the subgroup analysis of UBCs by child age at blood lead 

sampling, including heterogeneity measures ..................................................................... 78 

Table 3.7: Pooled results for the subgroup analysis of UBCs by publishing year, including 

heterogeneity measures ...................................................................................................... 79 

Table 3.8: Pooled results for the subgroup analysis of UBCs by G7 membership, 

including heterogeneity measures ...................................................................................... 80 

Table 3.9: Egger’s test of symmetry and publication bias ................................................. 81 

Table 3.10: Pooled results using Duval & Tweedie’s trim-and-fill procedure, including 

heterogeneity measures ...................................................................................................... 82 

Table 3.11: P-curve analysis of linear and non-linear UBC groups .................................. 83 



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

xvi 
 

Table 4.1: Cost of lead abatement and cost per child ...................................................... 117 

Table 4.2: Discounted rates of lead abatement cost and ROI of permanent lead abatement

.......................................................................................................................................... 119 

Table 4.3: Hazard Quotient for different age groups, based on weeks of exposure and a 

tolerable daily intake of 0.0015 mg/kg bw/day in Hamilton, Ontario ............................. 121 

 

  



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

xvii 
 

LIST OF FIGURES 

Figure 2.1: Depiction of the study area in Hamilton, Ontario, Canada (see Appendix A) 14 

Figure 2.2: Distance profiles for the relationship between the cumulative sum of each 

independent, lead-related variable and SLLs (see Appendix B) ........................................ 28 

Figure 2.3: Distance profiles for the relationship between the cumulative sum of each 

independent control variable and SLLs (see Appendix C) ................................................ 29 

Figure 2.4: SLL predictions for LUR AV, LUR OLV, EBK and OK, and standard error 

for EBK and OK (see Appendix D) ................................................................................... 31 

  



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

xviii 
 

LIST OF APPENDICES 

6.1 Appendix A: Depiction of the study area in Hamilton, Ontario, Canada ............ 151 

6.2 Appendix B: Distance profiles for the relationship between the cumulative sum of 

each independent, lead-related variable and SLLs .......................................................... 152 

6.3 Appendix C: Distance profiles for the relationship between the cumulative sum of 

each independent control variable and SLLs ................................................................... 158 

6.4 Appendix D: SLL predictions for LUR AV, LUR OLV, EBK and OK, and 

standard error for EBK and OK ....................................................................................... 163 

6.5 Appendix E: Forest plots ..................................................................................... 169 

6.6 Appendix F: Forest plots after simple outlier detection and removal .................. 171 

6.7 Appendix G: Baujat plots..................................................................................... 173 

6.8 Appendix H: Influence characteristic graphs ....................................................... 174 

6.9 Appendix I: Forest plots for leave-one-out analysis, sorted by pooled result and I2 ..... 

 .................................................................................................................................. 176 

6.10 Appendix J: GOSH plots ..................................................................................... 180 

6.11 Appendix K: Funnel plots with p-value and trim-and-fill points ........................ 182 

6.12 Appendix L: P-curve analysis .............................................................................. 184 

6.13 Appendix M: Risk of bias summary .................................................................... 187 

6.14 Appendix N: Hazard quotient calculation............................................................ 188 

6.15 Appendix O: Hazard quotient maps with 52 weeks of exposure and TDI relating 

to 5 µg/dL......................................................................................................................... 190 



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

xix 
 

6.16 Appendix P: Hazard quotient map for a toddler with 40 weeks of exposure and a 

TDI relating to 5 µg/dL .................................................................................................... 193 

  



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

xx 
 

LIST OF ABBREVIATIONS 

95% CI 95% Confidence interval 

AV  All variables 

BLL Blood lead level 

CDC  Centers for Disease Control and Prevention 

DR Discount rate 

EBK Empirical Bayesian Kriging 

EBL Elevated blood lead level 

FIRE  Finance, insurance and real estate 

HEV  Hold-out evaluation 

HOME  Home Observation for Measurement of the Environment Inventory 

HQ  Hazard quotient 

HWDSB  Hamilton-Wentworth District School Board 

IQ  Intelligence Quotient 

LUR Land Use Regression 

OCR  Optical Character Recognition 

OK Ordinary Kriging 

OLV  Only lead-related variables 

Pb  Lead 

RMSE  Root mean square error 



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

xxi 
 

ROI  Return on investment 

SES  Socio-economic Status 

SLL Soil lead level 

UBC Unstandardized beta coefficient 

 

 

 



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

1 

Chapter 1 Introduction 

1.1 Justification of research topic 

Despite declining blood lead levels (BLLs) among Canadians (Government of 

Canada, 2013; O’Grady et al., 2011), lead (Pb) remains a problem in cities across Canada 

(Richardson et al., 2011). The Canadian Health Measures Survey (CHMS) reported a 

BLL of 1.34 µg/dL (geometric mean) for Canadians aged 6 to 79 (Health Canada, 2013). 

In Hamilton, the geometric mean of blood lead from tested children was 2.18 µg/dL 

(converted from 0.11 µmol/L). Although less than 1% of Canadians aged 6 to 79 exceed 

the guidance value of 10 µg/dL, BLLs lower than the actionable reference level have been 

shown to cause adverse health outcomes (Health Canada, 2013). In 2013, Health Canada 

released a risk management strategy for lead that concluded by stating that there are areas 

within the literature that require more research to investigate lead toxicity and its impact 

on human health and the environment. Additionally, Health Canada stated that there is a 

need to characterize sources of exposure, exposure levels for Canadians, and toxicity at 

low blood lead levels (Health Canada, 2013).  

Lead contamination in urban cities is mostly attributed to three primary sources, 

(i) leaded gasoline, (ii) lead-based paint, and (iii) leaded pipes. The introduction of 

unleaded gasoline was first introduced in 1972 and phased out by 1990 (Health Canada, 

2013), but the combustion of leaded fuel has left lead particulates in the soil. Similarly, 

lead-based paint has been regulated in Canada since 1978 and eliminated in 1991 
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(Abelsohn et al., 2010), yet it remains in older houses that used lead-based paint for its 

durable properties (Gilbert et al., 2006). Lastly, leaded pipes were widely used within 

cities until phased out pre-1990s in favour of non-toxic materials (Health Canada, 2013), 

but lead pipes remain in many older homes that have not been renovated. In older cities, 

these three primary sources of lead may pose a significant risk to the population.  

This dissertation focuses on Hamilton, Ontario, Canada as a case study because 

Hamilton is a relatively old city with an old housing stock (Richardson et al., 2011) and 

has had a long industrial past that may increase exposure to lead within the city. There 

have been many businesses located in Hamilton’s downtown core over the past 100 years 

that worked with lead products, which may have contaminated the air, water and soil 

within the city (see Section 2.2.3). In Chapter 2, we identify seven business categories, in 

addition to the road network, that may have resulted in environmental lead contamination 

since 1920, (i) automobile garages (n=1,464), (ii) automobile painters (n=142), (iii) 

battery and service stations (n=142), (iv) gasoline stations (n=1,443), (v) junk and salvage 

yards (n=230), (vi) lead manufacturing (n=16), and (vii) paint manufacturing (n=21). This 

dissertation builds on a study by Richardson et al. (2011), which explains that the 

downtown core is also home to a concentration of disadvantaged individuals with lower 

average household income, poorer health status, and lower education levels as compared 

to the city’s periphery. Disadvantaged populations are often more exposed to lead 

poisoning (Hanchette, 2008), which means governments must develop policies and 

programs to help mitigate exposure for these vulnerable groups.  
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Lead can enter the body of a child in three main ways, (i) ingestion, (ii) skin 

absorption, and (iii) inhalation (Cleveland et al., 2008). Although absorption of lead 

through the skin can occur, ingestion of lead-based paint or lead-contaminated soil or 

inhalation of lead-contaminated dust is a more significant threat to children since the 

gastrointestinal tract is more efficient at absorbing the lead as opposed to the skin 

(Cleveland et al., 2008). Additionally, a mother with lead within the body (i.e., lead in the 

blood or stored within the bones) can transfer lead to the fetus during gestation or transfer 

lead to the child during breastfeeding (Abelsohn et al., 2010; Cleveland et al., 2008; 

Laidlaw et al., 2008). At moderate to high concentrations, lead poisoning can have a 

significant effect on the body, causing paralysis or encephalopathy at higher 

concentrations, and fatigue, headaches, abdominal pain and weight loss at moderate 

concentrations (Advisory Committee on Childhood Lead Poisoning Prevention, 2013; 

David C Bellinger et al., 2006; Cleveland et al., 2008). These adverse health outcomes are 

rare in Canada since the average blood lead level has declined about 70% since the 1970s 

(i.e., the percentage of Canadians exceeding 10 µg/dL dropped from 27% in 1978-1979 to 

less than 1% in 2007-2009) (Health Canada, 2013). However, an emerging field of 

research suggests that even at low blood lead concentrations (i.e., <10 µg/dL), lead 

exposure amongst children may result in decreased learning and memory abilities, 

lowered IQ, decreased verbal ability, impaired speech and hearing functions, and early 

signs of hyperactivity or attention deficit hyperactivity disorder (Chiodo et al., 2007; 

Cleveland et al., 2008; Ragan et al., 2009; World Health Organization, 2011).  
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Since lead still poses a threat in many urban cities in Canada (Health Canada, 

2013), there is a risk for children to develop an intellectual impairment from low-level 

lead poisoning. At a population level, intellectual impairment can have a significant 

impact on the economy, with estimates ranging from $1.5 billion to $9.4 billion (2010 

Canadian dollars) per year in Canada (Health Canada, 2013). Intellectual impairment 

causes economic stress through the loss of potential lifetime wages and tax revenue, 

increased need for special education, increased incidence of violent crime, and reduced 

school and work performance (Brown, 2002; M. S. Burns et al., 2014; Nevin, 2000). 

Gould (2009) argues that “for every dollar spent on controlling lead hazards, $17 to $221 

would be returned in health benefits, increased IQ, higher lifetime earnings, tax revenue, 

reduced spending on special education, and reduced criminal activity” (p. 1166). 

1.2 Thesis Objectives and Research Questions 

The overarching goal of this dissertation is to identify geographic areas in 

Hamilton, Ontario, Canada, where children may be at-risk of lead poisoning and 

characterize sources of lead that may increase the risk of lead exposure and poisoning. 

This dissertation builds on a study developed by Richardson et al. (2011) by determining 

the risk of lead poisoning to children by exploring the spatial distribution of lead. In the 

report by Richardson et al. (2011), the authors collected most of the data (see Chapter 2, 

Section 2.2: Data sets and sources of lead) used within this dissertation, but mainly 

focused on a qualitative approach to analysis and public health education for solutions. 

Spatial analysis was limited to descriptive statistics, and median values by 
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neighbourhood, which are problematic for three main reasons, (i) neighbourhoods are too 

large for a continuous variable (i.e., soil lead levels), (ii) boundaries create abrupt changes 

in value, and (iii) neighbourhoods vary in shapes and sizes. Soil lead levels are a 

continuous variable, which means that they change across space. If a continuous variable 

such as soil lead levels is grouped into an areal unit, there will be a loss of information 

that can be important when trying to identify children that may be at-risk of lead 

poisoning. Additionally, by grouping a continuous variable into areal units, there may be 

abrupt changes in values between adjacent neighbourhoods (i.e., an areal unit with high 

soil lead levels adjacent to an areal unit with low soil lead levels). Continuous variables 

should be grouped with caution because the specific way a variable (e.g., soil lead levels) 

changes across space is vital to identify at-risk children and to develop strategies to 

mitigate exposure. Lastly, the neighbourhoods in Hamilton are not consistent in shape nor 

size, which limits the information that can be extracted from the analysis. Neighbourhood 

soil lead ranges are far too broad for a problem that has a continuous distribution. In other 

words, lead contamination varies across space, and merely categorizing large swathes of 

the city into arbitrary spatial segments (i.e., neighbourhoods) will not capture the threat to 

children adequately. Therefore, this dissertation seeks to develop a greater understanding 

of the spatial distribution of soil lead levels within the downtown core of Hamilton by 

employing better methods of spatial modelling.  

More specifically, this dissertation seeks to determine the need for lead 

remediation within the city and discuss how feasible permanent lead abatement would be 
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for a municipal government. In the study by Richardson et al. (2011), the results mostly 

focused on public health education as a method to reduce exposure to lead contamination. 

The authors found that about half of participants within the highest risk areas were aware 

of the public health campaign offering free water service pipe inspection. However, 

awareness of exposure reduction campaigns and the threat of lead exposure in the home 

was lower among participants with relatively low household incomes, tenants in rented 

dwellings, families that did not speak English or French at home, and parents without a 

post-secondary education. Additionally, Richardson et al. (2011) found that most (82%) 

of participants were interested and willing to comply with follow-up study components 

(e.g., blood lead retesting, medical follow-up, and public health inspections of the home). 

The report argues that there is a broad audience for public health campaigns to spread 

awareness about lead exposure mitigation, and targeting specific populations may 

improve lead exposure reduction (Richardson et al., 2011). As discussed previously, there 

are plenty of studies promoting permanent lead abatement strategies (see Burns & 

Gerstenberger, 2014; Korfmacher, Ayoob, & Morley, 2012; Schnur & John, 2014), 

promising substantial returns on investment for the government and boosts to the overall 

economy (Brown, 2002; Gould, 2009; Health Canada, 2013). Despite these encouraging 

policy recommendations, this dissertation seeks to understand the real-world feasibility of 

lead remediation at the municipal level by (i) understanding the spatial distribution of 

lead within the city, (ii) determining the relationship between blood lead levels and IQ, 

(iii) estimating the projected costs and return on investment for lead hazard control in 
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Hamilton, Ontario, and (iv) determining the need for lead abatement in Hamilton, 

Ontario.   

1.3 Dissertation Contents 

In order to address some of the issues declared by Health Canada (2013), 

chapter 2 investigates Land Use Regression (LUR) as a viable alternative to kriging. If 

LUR worked as intended, the spatial model could have both identified historical sources 

of lead, in addition to providing localized soil lead estimations. The second chapter 

evolved into an essential investigation of LUR methodology, identifying various issues 

with the spatial modelling technique, and a recommendation to use kriging in future 

studies with heavy metal contamination. We show that LUR can be overfitted based on 

spurious relationships and suggest that a parsimonious model with global smoothing (i.e., 

Empirical Bayesian Kriging) is likely a better option for soil contamination research. As a 

result of this chapter, we utilize Empirical Bayesian Kriging as the primary interpolation 

technique for the spatial modelling found in chapter 4.  

In chapter 3, we explore the relationship between blood lead levels and IQ by 

completing a meta-analysis of the literature. The decline of IQ as blood lead levels 

increase is a common justification for lead remediation, so it is crucial to explore the 

literature to understand this relationship. Furthermore, chapter 4 examines the return on 

investment projections suggested by Gould (2009), which are partially dependent on the 

relationship between blood lead levels and IQ. In chapter 3, we show that the loss of IQ 
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points as a result of an elevated blood lead level is much smaller than suggested by 

Lanphear et al. (2005) and referenced by Gould (2009). Thus, the ROI projections by 

Gould (2009) may be much lower than first calculated.  

Building on the findings of chapters 2 and 3, chapter 4 investigates the cost to 

remove lead from the natural and built environment permanently, calculates the return on 

investment, and discusses the need for lead remediation within the lower city of 

Hamilton, Ontario. First, chapter 4 estimates the cost to replace lead-contaminated soil, 

leaded pipes from older homes, and screen or remove lead-based paint from homes. As 

we discover, the cost to permanently remove lead from the natural and built environment 

is staggering, and the returns on investment are in the millions and billions of dollars. In 

order to determine if there is a need for lead remediation within the city, we also use 

hazard quotient maps to investigate the threat to children further. Finally, we discuss 

alternatives to permanent lead abatement as a means to mitigate lead exposure for 

children, while also considering budget constraints for a municipal government.  

In chapter 5, we conclude the dissertation by discussing the main contributions 

we have made to the literature. The references for this section can be found at the end of 

chapter 5.   
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Chapter 2 A critical assessment of land use regression for interpolating soil lead 

(Pb) levels: a case study in Hamilton, Ontario 

2.1 Introduction 

Soil lead (Pb) contamination continues to pose a significant risk to children in 

many post-industrialized cities (Hanna-Attisha et al., 2016).  Given the adverse health 

risks associated with lead exposure, soil lead contamination is hazardous in areas where 

children play in the soil or close to the ground and consume the leaded soil through 

normal hand-to-mouth behaviour (Cleveland et al., 2010; Landrigan et al., 2011). Low 

blood lead levels (<10µg/dL) in children have been linked to many adverse health and 

social outcomes including cognitive, auditory, and behavioural impairments, as well as 

“increased health care costs, increased incidence of violent crime, increased need for 

special education services, reduced school and work performance, and reduced lifetime 

earning potential” (Burns and Gerstenberger, 2014, p. 27). As a result, knowing soil lead 

concentration in the environment is necessary to identify and target areas where 

contamination has exceeded regulatory guidelines set by governing bodies. Soil sampling 

is often used to measure concentrations of lead that have accumulated in the soil at 

specific locations, but spatial modelling is necessary to interpolate lead concentrations 

between sampled locations.  

For the last several decades, lead interpolation has depended on kriging for 

spatial modelling due to its ability to smooth the model when data are sparse. Kriging is a 
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general term used to describe a variety of different techniques reliant on the spatial 

structure of the data. Research on heavy metal contamination has often relied on two 

forms of kriging known as Empirical Bayesian Kriging (see Finzgar, Jez, Voglar, & 

Lestan, 2014; Pandey et al., 2015) and Ordinary Kriging (see Amini, Afyuni, 

Fathianpour, Khademi, & Flühler, 2005; Liu, Wu, & Xu, 2006). Although background 

levels of lead naturally vary within the environment, anthropogenic sources of lead are 

more limited in areas distant from urban and suburban development. As a result, kriging 

is an ideal choice for interpolation in rural areas where sources of lead are limited to few 

sources, and the spatial distribution of values is more uniform than in urban areas (i.e., the 

values of lead change gradually across space). In urban areas where sources of lead are 

more common, and the prediction of soil lead levels (SLLs) becomes more complex and 

heterogeneous (Cattle et al., 2002), land use regression (LUR) may provide better 

predictions. 

Land use regression, first introduced by Briggs et al. (1997), is a common 

interpolation technique in air pollution research (see Arain et al. 2007; Melymuk et al. 

2013; Sahsuvaroglu et al. 2006; Saraswat et al. 2013; Wang et al. 2013), but its use in the 

soil sciences has been limited (see, for example, Deschenes, Setton, Demers, & Keller, 

2013; Wu, Edwards, He, Liu, & Kleinman, 2010). LUR works by determining how well 

various land use variables (also known as predictor variables) can estimate the spatial 

variation of the dependent variable by using regression analysis. Theoretically, there are 

two main reasons why LUR may be superior to kriging in urban areas. Firstly, LUR 
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maximizes the amount of information available for spatial modelling. LUR can use a 

wide variety of land use predictor variables that are often easily obtained from a 

municipal government, whereas kriging is limited to the sampled information. Secondly, 

since LUR can use a multitude of explanatory variables that vary at a small scale, it can 

predict localized variation more effectively than kriging (Arain et al., 2007).  

The use of LUR as an interpolation technique for SLLs is limited. Wu et al. 

(2010) explored land use regression as a method to explain SLLs; however, they did not 

evaluate the model as an interpolator. The authors exclusively evaluated the ability of 

road type to explain SLLs in different types of land use and had mixed results. In 

commercial areas, the road network was only able to explain 16% of the variation in 

SLLs, whereas residential areas, freeways and major arterials were able to explain 61% of 

SLL variation. In a more comprehensive evaluation of land use regression as an 

interpolation technique, Deschenes et al. (2013) explained 78% of the variation in SLLs 

using four variables: industrial land use within 5km, industrial emissions within 25km, 

industrial emissions within 10km and presence of closed mines within 50km. However, 

these previous uses of LUR in SLL prediction (see Deschenes et al., 2013; Wu et al., 

2010) have not used historical data as predictor variables. Since modern soil lead 

contamination in urban areas was likely caused by the long history of lead used 

throughout the last century, in addition to the fact that lead can remain within the soil for 

decades (Schnur et al., 2014), historical data are more likely to explain the spatial 

variation of SLLs than any modern source. For example, the use of lead for residential 
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and commercial products has been regulated for nearly thirty years (CMHC, 2005), which 

means modern sources of lead are very likely a poor proxy for historical sources of lead. 

Furthermore, despite literature indicating that aerosol lead can travel vast distances before 

being deposited into the soil (ATSDR, 2007; Mielke et al., 2010), the true explanatory 

power of aerosol lead from distant sources for the spatial distribution of SLLs in an urban 

area is uncertain.  

Based on soil lead levels from Hamilton, Ontario, and the results of Wu et al. 

(2010) and Deschenes et al. (2013), this paper will address three objectives. First, it will 

examine the relationship between the spatial distribution of SLLs and historical lead-

related businesses in Hamilton, Ontario. Second, it will compare the prediction accuracy 

for LUR and two baseline kriging models (OK and EBK). Third, it will consider the 

practicality of LUR as a means to address the complexity of interpolating lead in an urban 

center. In doing so, this paper will provide a critical review of the use of LUR in general, 

and more specifically, for predicting SLLs. This paper will operate under the null 

hypothesis that there is no relationship between the number of historical lead-related 

businesses and soil lead levels for objective one and that LUR will not provide more 

accurate predictions of SLLs than Ordinary Kriging or Empirical Bayesian kriging.  
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2.2 Data sets and sources of lead 

2.2.1 Study area 

The study area consists of the lower city of Hamilton, Ontario. This older part of 

the city falls between Hamilton Harbour to the north and the Niagara Escarpment, which 

bisects the city and runs east to west (see Figure 2.1). The city of Hamilton is known as 

‘steel city’ due to the presence of two of the largest steel mills in Canada. Beyond steel, 

the city was also home to many other businesses over the last century that handled leaded 

products. The ‘lower city’ mostly consists of an older housing stock (Richardson et al., 

2011), which means lead service pipes and deteriorating lead-based paint that continues 

to pose a threat for residents. Although lead service pipes, leaded gasoline and lead-based 

paint are the most common sources of lead, many other sources may explain the spatial 

distribution of SLLs in the city, which will be described below. Hamilton is an optimal 

area to explore the spatial distribution of SLLs for three main reasons, (i) Hamilton has a 

long history of lead use and the spatial distribution of lead is likely complex, (ii) 

understanding which sources can be attributed to soil lead contamination can help 

mitigate exposure within the city, and (iii) localized SLL estimations can help target areas 

most exposed to soil lead contamination. 

2.2.2 Soil lead samples 

This paper will utilize a soil lead level data set, in addition to a rich historical 

data set that was collected for this study. As part of a more extensive study conducted by 

Hamilton Public Health Services in 2008-2009 (Richardson et al., 2011), the city 
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collected soil lead samples from sites around the old lower city.  The data set comprises 

of 187 soil lead samples throughout the downtown core of Hamilton. Sample locations 

were chosen based on the home location of a parent or guardian attending a participating 

clinic, as well as the age of the housing. The SLL data set was collected and processed by 

the Ministry of the Environment during the summer of 2009 (Richardson et al., 2011). 

Soil samples were collected using a tube-type soil corer up to a five-centimetre depth 

“from a household’s front, back or side yard depending on where the child played most 

frequently and/or where there was sufficient conditions to sample” (Richardson et al. 

2011). Samples were analyzed using atomic absorption spectrophotometry to determine 

lead content with a limit detection of 5µg/g dry weight at the MOE Phytotoxicology 

Laboratory in Toronto, Ontario.   

 

Figure 2.1: Depiction of the study area in Hamilton, Ontario, Canada (see Appendix A) 
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2.2.3 Historical independent variables 

Historically, lead was used in a wide range of applications, including paint, 

plumbing products, batteries, gasoline, and other products. In the last few decades, 

researchers have identified lead-contaminated soil as a source of lead poisoning, 

particularly amongst young children (Ryan et al., 2004). However, the use of historical 

data to understand the spatial distribution of lead has not been explored in previous 

research. Historical businesses that manufactured or used lead-based products in 

Hamilton were collected as a means to explain the spatial distribution of SLLs in this 

study.  

Historical data were collected from three sources: (i) Vernon’s Business 

Directories, (ii) Bell Canada’s Telephone Book (Yellow Pages), and (iii) a modified 

DMTI road network. Vernon’s business directories were searched from 1925 to 1975, at 

which time the business directories were no longer printed. Between the years 1980 and 

1990, Bell Canada’s Yellow Pages were searched to collect the remaining ten years of 

businesses. In order to capture the most detailed data while also accommodating time 

limitations, the two business directories were searched at 5-year intervals. The DMTI 

road network was compared to a scanned map from 1990 and digitally modified to 

accurately represent the historical road network in Hamilton. In total, eleven types of 

lead-related variables were collected (i.e., automobile painters, automobile garages and 

repair shops, battery service stations, gasoline stations, junk and salvage yards, lead 

product manufacturers, paint manufacturers, local roads, major roads, highways, and 
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expressways), in addition to five business types that are used as controls (i.e., dental 

offices, wholesale trade, retail trade, finance, insurance and real estate (FIRE), and public 

administration). Dental offices were collected from the same historical sources as above, 

and the other controls were collected from the DMTI Enhanced Points of Interest 

shapefile (i.e., wholesale trade, retail trade, FIRE, and public administration). Data 

collected for each business included: opening year, closing year, business type (variable 

name), business name, street number (from), street number (to), street name, street 

direction, street type and any comments associated with the business. Once the businesses 

were collected and transcribed, businesses with the same location and category were 

consolidated, and the closing year extended accordingly. Next, the data were geocoded 

using a Bing Maps API Key, and any unmatched records were located manually.  

The 1925 to 1990 period was chosen for two main reasons. First, this period 

reflects the most significant use of lead (i.e., leaded gasoline and lead-based paint) in 

Canada. As Mielke (1999) explains, “the amount of lead in gasoline over only the 57 

years of its use [in the United States] from 1929 to 1986 roughly equals all of the lead in 

paints in 94 years of lead-paint production” (p. 3). Second, the data collection process 

was time-intensive. In 1921, the addition of tetraethyl lead to gasoline was discovered as 

a method to curb engine knock. In addition to leaded gasoline, lead-based paint followed 

a similar trajectory of use in Canada. Lead-based paint had already been in use for 

decades by the time lead was added to gasoline, with the addition of lead into paint 

popularized by its useful properties, which included: durability, pigment and anti-
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corrosive characteristics (ATSDR, 2007; Levin et al., 2008). Despite the useful properties 

of lead, the addition of lead was eliminated from all paint by the Canadian government 

after lead-based paint was linked to cases of child lead poisoning in 1991 (Abelsohn et 

al., 2010; O’Grady et al., 2011). Due to time constraints, data collection began with 1925, 

following the sale of leaded gasoline.  

We collected eleven historical predictor variables that capture the potential for 

soil contamination, including lead manufacturing, automobile painters, automobile 

garages, battery and service stations, junk and salvage yards, paint manufacturing, 

gasoline stations, major roads, expressways, local roads and highways. Historically, the 

automotive industry has been a significant source of lead exposure, mostly due to the 

combustion of leaded gasoline and the use of lead in paint as well as various automotive 

components, especially lead-acid batteries (Ohio Environmental Protection Agency, 

2010).  

As explained above, the sale of leaded gasoline lasted for nearly seventy years, 

with the sale of leaded gasoline capturing 90% of all gasoline sales in the US (Gilbert et 

al., 2006), having a significant impact on SLLs and BLLs currently seen today. Based on 

the recommendation by the United States Environmental Protection Agency, leaded 

gasoline was phased out in 1986 and later banned in 1990 (Gilbert et al., 2006). After 

removing tetraethyl lead from gasoline, “average childhood blood lead levels in the U.S. 

plummeted from approximately 16 µg/dL in 1976 to 3.2 µg/dL in 1994” (Gilbert & 
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Weiss, 2006, p. 695). Moreover, Meyer, Brown, & Falk (2008) explain that 80%-90% of 

airborne lead pollution can be attributed to the use of leaded gasoline in large, urban 

cities. In order to capture the effects of leaded gasoline use, a modified road network was 

utilized.   

The DMTI road network was modified to reflect the 1990 road network to 

ensure traffic flows were represented accurately. The downtown core of Hamilton, 

Ontario has not changed significantly in the last century; however, there has been 

significant development in the suburban areas surrounding the core, and two new 

expressways have been built since 1990. A paper map was scanned and used to manually 

edit the road network in order to reflect historic road infrastructure in 1990. The road 

network was further divided into road types (categorized by DMTI) to act as a surrogate 

for traffic flows and, thus, the total amount of leaded fuel being burned. The road network 

contains four road types, which include: expressways, highways, major roads and local 

roads.  

Another possible source of lead within the environment could be the result of 

activity from junk and salvage yards, metal merchants and automobile wreckers. 

Historically, automobiles were a significant source of lead from the use of lead-based 

paint, lead batteries, lead wheel weights and the combustion of leaded gasoline. Block 

(2009) explains that lead has been recovered from scrap yards by scavenging old 

automobiles and other materials, leading to lead deposition in the soil. Additionally, 
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Genaidy et al. (2008) describe lead as an emission hazard from recycling, municipal 

waste and salvage facilities due to automobile wrecking. Moreover, the Occupational 

Safety and Health Administration states that "an employee may be exposed to lead [from] 

demolition or salvage, new construction, alteration, repair, transportation, disposal, 

storage or containment of lead or materials containing lead on the construction site” 

(Lampo et al. 2009).  

Lead-based paint has been one of the most significant sources of lead 

historically and was eventually banned in Canada in 1991 (Abelsohn et al., 2010). 

Production of lead-based paint soared during the early 1900s; however, usage declined 

after studies began to link lead-based paint with adverse health effects in children. In 

addition to lead-based paint being used in residential areas, the automotive industry also 

used lead-based paint as a durable option for automobile bodies and thus, airborne lead 

could be deposited into the soil surrounding automobile paint shops (Enander et al., 2004; 

Wahid et al., 1997). Similarly, home renovations or deteriorating painted surfaces, and 

paint manufacturing plants could also result in soil contamination. A study by Gottesfeld 

(2015) found that workers in paint manufacturing plants are exposed to dangerous levels 

of lead, and often transport lead outside via contaminated dust and clothing. 

Another potential source of lead contamination in Hamilton is the historical 

manufacturing of lead products. The City of Hamilton has been home to considerable 

industrial activity that includes leaded product manufacturing. There have been several 
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different lead-based product manufacturing plants in the last century, producing various 

leaded products (e.g., leaded glass, antimonial lead alloys, lead diver weights, sheet lead, 

lead boat keels and sand castings). During the importing, processing and exporting of 

leaded products, there is a potential for soil lead contamination. 

2.2.4 Control variables 

In order to test the validity of land use regression for use as an interpolation 

technique for SLLs, we collected data on five control variables. Dental offices were 

chosen as the historical control variable (i.e., 1925-1990) since this business type should 

have no causal association with soil lead contamination. Dental offices have also been 

present in the study area throughout the past century, which ensured an extensive data set 

for a control variable. Additionally, we used four other modern control variables from the 

DMTI (2010) Enhanced Points of Interest shapefile, which included: (i) wholesale trade, 

(ii) retail trade, (iii) finance, insurance, and real estate (FIRE), and (iv) public 

administration.  

2.3 Methodology 

In soil contamination research, kriging is often the choice for interpolating 

heavy metals (see Ha et al. 2014; Yang et al. 2015; Zhou et al. 2016), but in recent years, 

land use regression has been tested as a method to predict soil lead levels (see Deschenes 

et al. 2013). As the name suggests, land use regression uses the environment as a way to 

estimate the value of a dependent variable at an unobserved location using regression 
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modelling. In LUR modelling, various predictor variables (i.e., automobile garages, 

battery and service stations, etc.) are tested and eliminated through the process of forward 

selection.  

In general, LUR models for different applications are built using the same 

methodology, although slight variations have been developed since Briggs et al. (1997) 

first developed the technique. Based on the methodology used by Sahsuvaroglu et al. 

(2006), the first step was to subset the soil lead samples into a training set (i.e., a subset to 

develop the LUR models using R-squared values) and a test set (i.e., a randomly chosen 

subset to test the accuracy of the LUR and kriging models using RMSE). Next, the Point 

Distance tool in ArcMap 10.3.1 was used to measure the distance between every SLL 

sample and every lead-related business. The Point Distance tool output a table that was 

imported into R, whereby a script was used to calculate the cumulative sum of businesses, 

or length of the road, by category (e.g., automobile painters, automobile garages, etc.) and 

distance interval (i.e., 500 distance buffers, ranging from 10 meters to 5,000 meters, at 

10-meter intervals). Spearman correlation values were calculated between the cumulative 

sums of businesses or summed length of roads by type and distance interval, and the 

SLLs. The Spearman correlation values were used to determine at which distance the 

cumulative sum of businesses or summed length of roads produced the highest correlation 

between each independent variable and the SLL samples. Spearman correlation is a rank-

order correlation coefficient, which is beneficial when using data that are not normally 

distributed, and may contain outliers (Mukaka, 2012). As can be seen in Table 2.1, each 
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of the sixteen variables correlates highest at a specific distance (e.g., lead manufacturing 

correlates with the spatial distribution of SLLs at a distance of 2,010 meters). Based on 

these distances, each variable was manually entered into a bivariate regression model to 

explain log-transformed SLLs (training set). Once the bivariate model with the highest R-

squared was determined, each of the remaining independent variables were entered using 

forward selection. This process of building and entering the remaining independent 

variables to improve the regression model was continued until the final model was 

constructed. Variables entered into the model must improve the R-square value by at least 

1% (Wang et al., 2013), while also retaining a statistical significance of at least 95% and 

maintaining a variance of inflation factor of less than 2. As a result, two LUR models 

were developed, (i) only lead-related variables (OLV) and (ii) all variables, which 

included lead-related variables and control variables (AV) The final LUR model can be 

defined mathematically as follows: 

Ẑ(X0) = β1 + β2Xn + Ɛ 

In this model, Ẑ is the predicted value at point X0, β1 is the y-intercept, β2 is the 

slope coefficient of variable X, n is the number of variables, and Ɛ represents the error 

term.  
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In order to compare the different interpolation techniques, the LUR and kriging 

models were developed using the training subset of the SLLs. As described by Wang et 

al. (2013), HEV is the preferred method to test the accuracy of predictions if the sample is 

large enough to split the dependent variable into two groups, (i) the training set, and (ii) 

the test set. As the names imply, the training set is used to develop the model, and the test 

set is used to determine the accuracy of the predictions. There is no consensus on the size 

of the test set, but since this paper utilizes a relatively large sample size of 187 soil 

samples, 20% (n=38) of the soil lead samples were randomly selected to achieve a test set 

higher than 30 observations.  

This paper also includes the results of two popular kriging techniques used in 

soil contamination research, known as Empirical Bayesian Kriging (EBK) and Ordinary 

Kriging (OK). These models are not included as a comparison to LUR but will act as a 

baseline to determine the efficacy of the LUR predictions. Both kriging techniques have 

been explained extensively elsewhere (see Krivoruchko, 2012; Verdin, Rajagopalan, 

Kleiber, & Funk, 2015), but a brief description will be discussed here. EBK can provide 

accurate predictions by compensating for the uncertainty associated with estimating the 

semivariogram. EBK creates subsets of the total sample and estimates semivariograms for 

each subset, which allows the model to account for local and global trends (Zoellick, 

2016). EBK estimates the semivariogram by simulating data, estimating a new 

semivariogram based on the previous model and generating weights to compensate for 

uncertainties (Krivoruchko, 2012).  
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The result of this process has been shown to predict heavy metal concentrations 

with a high degree of accuracy in past soil contamination studies (Aelion et al., 2009; 

Finzgar et al., 2014; Pandey et al., 2015). Next, OK relies on the spatial structure of the 

data and can utilize detrended data. The residuals output by the detrending function can 

then be used to develop weights based on a variogram (Anderson et al., 2005). In this 

case, a trend analysis determined a third-order trend removal best fits the SLL samples. 

The fundamental model for kriging (EBK and OK) can be defined as follows: 

 

In this calculation, Ẑ is the predicted value at point X0, z is the observed value at 

the sampled location Xi, λi is the weight assigned to the sampled location, and n is the 

number of sampled points used in the calculation (Li et al., 2014).  

2.4 Results 

2.4.1 Distance profiles 

Spearman correlations were generated between each independent variable and 

the soil lead samples at distances from 10 meters to 5,000 meters, at 10-meter intervals. 

Next, we determined the distance at which the highest correlation was achieved between 

each independent variable and the soil lead samples. In Table 2.1, the independent 
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variables are shown in descending order of the Spearman correlation value. All sixteen 

variables correlated with the dependent variable significantly (p <0.001 or p <0.05), and 

Spearman correlations ranged from -0.231 to 0.601. As a result of a negative and 

unexpected correlation with SLLs, the highway variable was not used in the development 

of the regression model. 

As shown in Table 2.1, lead manufacturing correlated highest with SLLs with a 

Spearman correlation value of 0.601 at a distance of 2,010 meters. Interestingly, 

automobile painters, automobile garages and wholesale trade businesses (a control 

variable) had the second, third, and fourth highest correlations with SLLs, with Spearman 

correlation values of 0.587, 0.548 and 0.541, respectively. Similarly, dental offices (a 

control variable) and gasoline stations correlate nearly identically with SLLs, achieving 

Spearman correlation values of 0.466 and 0.465 at 1700 and 1,780 meters, respectively. 

Lastly, the remaining three road network variables correlated the lowest with Spearman 

correlation values of 0.286 (major roads at 170m), 0.267 (expressways at 1,090m), and 

0.182 (local roads at 30m).   
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Table 2.1: Relationship between independent variables and soil lead levels by distance 

Independent variables Year(s) of 

data 

Distance of 

highest 

correlation 

(meters) 

Spearman 

correlation 

value 

p-value 

Lead manufacturing 1925-1990 2,010 0.601 <0.001 

Automobile painters 1925-1990 1,380 0.587 <0.001 

Automobile garages 1925-1990 2,260 0.548 <0.001 

Wholesale trade* 2010 1,360 0.541 <0.001 

Battery and service 

stations 

1925-1990 2,270 0.535 <0.001 

Junk and salvage yards 1925-1990 4,380 0.532 <0.001 

Paint manufacturing 1925-1990 1,990 0.514 <0.001 

Dental offices* 1925-1990 1,700 0.466 <0.001 

Gasoline stations 1925-1990 1,780 0.465 <0.001 

Retail trade* 2010 1,440 0.460 <0.001 

Finance, insurance and 

real estate (FIRE)* 

2010 590 0.457 <0.001 

Public administration* 2010 470 0.341 <0.001 

Major roads 1990 170 0.286 <0.001 

Expressways 1990 1,090 0.267 <0.001 

Local roads 1990 30 0.182 0.026 

Highways 1990 3,220 -0.231 0.005 

Note: * indicates which variables are controls 

Distance profiles displaying the Spearman correlation at different distances for 

each independent variable are illustrated in Figure 2.2 and Figure 2.3. Figure 2.2 shows 

the distance profiles for the lead-related variables, whereas Figure 2.3 shows the distance 

profiles for the control variables. The information presented in Table 2.1 corresponds to 

the distances with the highest correlation, but these peaks are not as apparent when 

observed graphically. Nearly all distance profiles, except local and major roads, have a 

similarly shaped curve, in which the correlation values plateau after a relatively short 

distance (typically less than 1,000 meters). Additionally, the distance and strength of the 
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correlations are closely related in the thirteen distance profiles, and the distance at which 

the highest correlation value is achieved often occurs at a relatively large distance in the 

profile. Major roads has a similarly shaped distance profile but plateaus at a lower and 

insignificant correlation value after an initial correlation peak at around 150m. Local 

roads present a unique distance profile among the fifteen others. Local roads peaks 

initially at 30m, correlating at the 95% confidence level, but later correlates negatively 

and more significantly (p = 0.001) at around 2,250m. 
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Figure 2.2: Distance profiles for the relationship between the cumulative sum of each 

independent, lead-related variable and SLLs (see Appendix B) 
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Figure 2.3: Distance profiles for the relationship between the cumulative sum of each 

independent control variable and SLLs (see Appendix C) 

2.4.2 Interpolation models 

We also developed a LUR model in order to understand how it may perform 

using control variables, as well as variables with spurious relationships with the 
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dependent variable. In order to fully understand how the use of uncertain predictor 

variables can influence the prediction accuracy of a LUR model, two models were 

created: (i) a LUR model with only lead-related variables (OLV), and (ii) a LUR model 

with all variables (AV) (i.e., both the lead-related predictor variables, in addition to the 

control variables). The final OLV model included lead manufacturing, expressways, local 

roads and automobile painters, and achieved an adjusted R-squared value of 0.24 and 

acceptable variance of inflation factors of 1.8, 1.0, 1.0 and 1.8, respectively. The AV 

model was constructed second and included lead manufacturing, wholesale trade 

buildings, local roads and public administration buildings. The AV model achieved an 

adjusted R-squared value of 0.26 and acceptable variance of inflation factors of 1.3, 1.5, 

1.0 and 1.2, respectively.  

In the case of the four SLL spatial models (see Figure 2.4), an RMSE value was 

calculated using the prediction errors to compare the accuracy of each interpolator. The 

OK, EBK, OLV and AV models received an RMSE value of 76.7, 82.6, 209.0 and 182.1, 

and average errors of -7.1, -0.6, -141.8 and -113.2, respectively. The RMSE values 

suggest that we cannot reject the null hypothesis that LUR does not provide more 

accurate predictions of SLLs than OK or EBK. Furthermore, the distance profiles suggest 

some model over-fitting, since the best LUR model also includes some covariates without 

a plausible causal influence on SLL. 
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Figure 2.4: SLL predictions for LUR AV, LUR OLV, EBK and OK, and standard error 

for EBK and OK (see Appendix D) 

2.5 Discussion 

By visually comparing the graphs for each lead-related variable and the control 

variables, the results are not consistent with the hypothesis that there is a relationship 

between the number of historical lead-related variables and soil lead levels. The shape of 
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the distance profiles is very similar across the vast majority of the variables, which 

indicates that there does not seem to be a relationship between the number of cumulative 

lead-related businesses or the summed length of roads, and the spatial distribution of 

SLLs in Hamilton, Ontario. The distance at which the independent variable correlates 

highest with SLLs suggests a spurious relationship. In other words, the distance profiles 

do not illustrate an expected relationship between the independent and dependent 

variables. For example, paint manufacturing seems to plateau around 1,000 meters, but 

the variable correlates highest at 1,990 meters, before quickly returning to the original 

plateaued correlation value at about 2,200 meters. Similarly, battery and service stations 

peaks at approximately 900 meters but does not achieve the highest correlation value until 

2,270 meters. All of the variables (i.e., historical lead-related businesses, the historical 

control and the modern controls) illustrate distance profiles that do not seem consistent 

with the literature. 

In the process of exploring a comparatively new method to address the 

complexity of interpolating lead in an urban center, this paper has uncovered some 

challenges with using land use regression more generally. Estimating accurate SLL 

concentrations in urban areas will often be a concern for municipal governments that have 

limited resources to explore and abate lead contamination. Resource management at a 

municipal level is an important consideration that will ultimately limit the time and 

money that can be invested in accurately predicting soil lead contamination for urban 

areas. As a result, there are three main critiques of LUR in general and specifically for 
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SLL prediction in an urban area, which include (i) the resource-intensiveness of data 

collection, (ii) the risk of confounding factors, and (iii) the risk of spurious relationships. 

First, historical data collection was a particularly time-intensive task for this 

study and would not be reasonable for most municipal governments that lack historical 

digital business information. The process of transcribing businesses from microfilm 

business directories and cleaning the database took approximately 500 hours. As 

technology improves, Optical Character Recognition (OCR) could be utilized to digitize 

the analog business directories and avoid the transcribing process entirely. However, 

these technologies still have digitizing error rates of 5% for modern sources and much 

higher error rates for historical sources (Singh, 2013).   

Second, this study shows that conceptually unrelated variables can have a 

statistically significant correlation with the dependent variable, in addition to increasing 

the perceived explanatory power and decreasing the RMSE of LUR models. This is not 

surprising given the process used in LUR models for including variables; a large number 

of possible distance thresholds are explored, with the one that is most highly correlated 

being favoured for use in the model. This amounts to a form of data mining in which a 

nearly exhaustive search of possible distance thresholds will find a 'highest' correlation 

with little substantive importance in explaining the real pattern of lead dispersal in the 

environment. The use of several such spurious variables may cause an over-fitting 

problem in LUR, improving the apparent performance of the model, but at the expense of 
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generalizability and parsimony. Since it is difficult to be sure about the genuine 

relationship between each independent variable and the dependent variable, simpler 

models may be preferable. Creating parsimonious models are essential for contamination 

research because one of the main goals of developing an accurate spatial model is for 

remediation efforts. A model that explains less spatial variation of the contaminant, but 

contains only a few predictor variables will be much more useful for targeting the 

contaminants efficiently with remediation plans than an over-fitted model with a 

marginally higher degree of explanatory power. 

Third, the results of the Spearman correlations suggest that relationships 

between all predictor variables and SLLs should be interpreted with caution. To the 

knowledge of the authors, the distance profiles used to illustrate the correlations between 

SLLs and the cumulative counts of businesses (or summed length of roads) have not been 

visualized in past LUR studies. In regards to soil lead contamination, the area most 

directly surrounding the source seems likely to have the highest concentrations of lead, 

with decaying SLLs as the distance from the source increases (Clark et al., 2014). Based 

on this idea, the distance profiles should have the highest correlations at the shortest 

distances and decrease as the buffer size increases. However, in this study, the distance 

profiles reveal weak correlations at the shortest distances and highest correlations at 

relatively large (but somewhat arbitrary) distances from the sources. Displaying these 

distance profiles is critical to understand if the relationship between the contaminant and 

predictor variables are consistent with the known or suspected diffusion pattern, and 
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could be an essential tool for critically assessing the appropriateness of LUR in other 

research. Indeed, the distance profiles for the control variables and the predictor variables 

are similar enough to suggest that there is a weak relationship between the historical 

sources of lead and the spatial distribution of SLLs.  

Kriging has been criticized for its inability to detect localized variation of the 

dependent variable (Arain et al., 2007; Kerckhoffs et al., 2015), but producing a smooth 

model is one of its best qualities. Kriging can reduce noise and avoid over-fitting a model 

based on the vagaries of a data set, which is vital for generalizability. Furthermore, 

kriging has the benefit of estimating error, which can be used to determine the accuracy 

of estimations at unobserved locations. Additionally, kriging offers a quick and intuitive 

process for developing an OK or EBK model. In ArcMap 10.3.1, a user can quickly 

develop an OK or EBK model using the geostatistical wizard and test the predictions 

using HEV with relative ease. In regards to resource-intensity, there was no comparison 

between the two methods—OK and EBK was significantly more efficient. 

2.6 Conclusion 

Since the introduction of land use regression by Briggs et al. (1997), air 

pollution researchers have been modelling air pollutants in cities all over the world, 

including through the use of LUR. LUR has been used extensively in air pollution 

research to predict NOx and NO2 concentrations (see Lee et al., 2014; Su et al., 2009), 

PM2.5 concentrations (see Beckerman et al., 2013; Olvera et al., 2012), SO2 
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concentrations (see Chen et al., 2012) and many more air pollutants. More recently, LUR 

has been used in soil contamination research.  

Although LUR is praised for its ability to detect localized variation in urban 

settings (see Arain et al., 2007; Hoek et al., 2008; Sahsuvaroglu et al., 2006), this paper 

has uncovered two potential problems with LUR that can harm the value of the LUR 

model. First, predictor variables that have no plausible relationship with the independent 

variable (i.e., the control variables) may cause over-fitting. In practice, this means that 

novel variables (i.e., variables tested for the first time or not seen in the literature) can be 

falsely identified as contributors to the spatial distribution of a contaminant. For 

policymakers, false identification of contaminant sources can waste valuable resources, 

especially at the municipal level, where budgets for abatement efforts are much smaller. 

Second, this paper has shown that graphing distance profiles should be an integral part of 

future LUR studies to ensure that model selection is based on reasonable science rather 

than data mining. This paper has shown that using Spearman correlations alone can result 

in the selection of unintuitive predictor variables. Distance profiles will help researchers 

determine whether or not the relationship between predictor variables and the dependent 

variable exhibit expected relationships in regards to distance, helping to identify spurious 

relationships and reduce the chance of confounding factors.  

Based on the work by Deschenes et al. (2013), this study attempted to use LUR 

as a method to accurately predict SLLs in the urban core of Hamilton, Ontario. This paper 
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explored three main objectives to, (i) examine the relationship between the number of 

historic lead-related variables and the spatial distribution of soil lead contamination, (ii) 

compare two baseline kriging models (OK and EBK) and LUR in terms of prediction 

accuracy, and (iii) consider the practicality of using LUR as a means to predict SLLs in 

an urban area. In both cases, the null hypotheses were not able to be rejected, which 

suggests there is no relationship between SLLs and historical sources of lead and that 

LUR will not provide more accurate soil lead estimates than OK or EBK in Hamilton, 

Ontario.  

As a result of this study, several issues associated with LUR were identified. 

Despite every attempt to explain the spatial distribution of SLLs using historical sources 

of lead, the results of this paper suggest that OK or EBK could be a better choice to 

predict SLLs in an urban area than LUR.  
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Chapter 3 The relationship between childhood blood lead levels and Intelligence 

Quotient: a meta-analysis 

3.1 Introduction 

Since anthropogenic sources of lead were first linked to lead poisoning, research 

began to associate lead poisoning with various physical and mental outcomes among 

children (Riva et al., 2012). Once lead enters the body through inhalation, oral 

consumption, skin absorption, or through a mother’s breastmilk or umbilical cord, it can 

cause a myriad of adverse health outcomes. At first, doctors and researchers were only 

able to identify health outcomes caused by significant acute and chronic exposures to 

lead. In children, acute exposure to lead can cause “vomiting, diarrhea, convulsions, coma 

and death” (Richardson et al., 2011, p. 61). In contrast, chronic exposure was initially 

associated with physical symptoms related to the renal system, peripheral nervous system, 

central nervous system, hematologic system, and gastrointestinal system (Cleveland et al., 

2008). As time progressed, ambient levels of lead within the environment began to fall as 

leaded-gasoline and lead-based paint were phased out, causing average blood lead levels 

(BLLs) to decline (Schnur et al., 2014). Although the physical symptoms of lead 

poisoning in children began to diminish, researchers discovered adverse health outcomes 

relating to the brain at low (i.e., <10 µg/dL) BLLs. One of the most researched effects of 

low-level blood lead concentration in children has been the decrease in intelligence. 
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3.1.1 Measuring intelligence quotient 

Childhood intelligence can be measured using several different tests that 

evaluate a child’s cognition of specific tasks (see below), which are combined to create a 

full-scale Intelligence Quotient (IQ) score. A full-scale IQ score is the combination of 

smaller subsets of the IQ test, measuring various forms of cognition (e.g., performance, 

verbal, patterns, etc.). The combination of subsets is dependent on the type of IQ test, as 

well as the language of the test. Some IQ tests do not require the use of language, which 

can be useful for children without language skills, or in countries where multiple 

languages may be common (Oller et al., 2000). Each IQ test reviewed in this paper is 

standardized to a normal distribution with a mean score of 100 within a population. 

Different IQ tests have been developed over the years; however, these IQ tests have been 

standardized to ensure comparability across the various tests (Wasserman et al., 2000).  

Since the discovery that lead poisoning may cause negative cognition in 

children, researchers have maintained the notion that elevated BLLs lower IQ in children. 

For example, in the paper by Menezes-Filho et al. (2018), the authors found that an 

increase in BLLs from 0.5 µg/dL to 5.0 µg/dL caused a decline in IQ by 8.6 points for 

children. In other cases, studies have found a less significant loss of 0.5 IQ points per 1 

µg/dL in four-year-old children (Crump et al., 2013). In some research, a distinction is 

made at different levels of BLLs. In the paper by Canfield et al. (2013), researchers found 

the children lost 7.4 IQ points as average lifetime blood lead levels increased from 1 
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µg/dL to 10 µg/dL, whereas children with a blood lead level increase from 10 µg/dL to 30 

µg/dL exhibited an IQ loss of 2.5 points. 

3.1.2 Social outcomes 

Researchers have continued to demonstrate a link between BLLs and a decline in 

IQ in children. At first, a decrease in IQ was associated with high BLLs in children 

(Ernhart et al., 1988; Schilling et al., 1988; Schroeder et al., 1985), but as time 

progressed, researchers found that even children with low BLLs exhibited a decline in IQ 

(Alvarez-Ortega et al., 2017; Schnaas et al., 2006; Taylor et al., 2017). The decline of IQ 

from lead poisoning is often small—only amounting to a loss of a few points in many 

cases (Hornung et al., 2009; Min et al., 2009), but the loss of IQ has been linked to an 

increase of many adverse social outcomes, including violent crime, healthcare costs, need 

for special education, and a loss of potential lifetime earnings and tax revenue (Brown, 

2002; Gould, 2009; Health Canada, 2013; Nevin, 2000).  

According to an analysis by Health Canada (2013), the negative social 

consequences of lead poisoning and IQ loss has a significant impact on the economy. In 

Canada, it is estimated that decreasing the average BLL from 1.5 µg/dL to 0 µg/dL would 

save the economy $35 billion per cohort from changes in lifetime earnings per child (i.e., 

based on the July 1, 2009, to June 30, 2010 cohort). At an 8% discount rate, Canadians 

can expect to save $1.5 billion, and up to $9.4 billion with a 3% discount rate (Health 

Canada, 2013). The loss of lifetime earnings has been calculated based on two 
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assumptions, (i) an increase of 1 µg/dL in blood lead levels is associated with a 1 IQ point 

deficit, and (ii) a one IQ point deficit is associated with a 1.66% decline in potential 

lifetime earnings (Health Canada, 2013). Considering the projected impact on the 

economy, the two assumptions to calculate potential savings are vital to produce an 

accurate prediction. Thus, the relationship between BLLs and IQ is necessary to 

accurately quantify the negative impact of lead poisoning on the economy. In order to 

help researchers accurately quantify the impact on the economy, this paper seeks to 

synthesize the literature relating BLLs and IQ with a meta-analysis of all UBCs available 

within the literature, in addition to exploring smaller populations with subgroup analysis.  

3.1.3 Past meta-analyses 

To the knowledge of the authors, there have only been three meta-analyses 

investigating the relationship between BLLs in children and IQ. We will investigate the 

past three meta-analyses before discussing how this meta-analysis will build on and 

develop a more robust approach to measuring the relationship. Needleman et al., (1990) 

completed one study, one by Schwartz (1994), and another most recently by Wu et al. 

(2018). Each of these three meta-analyses have summarized the relationship using 

different methodologies, and aggregating various types of information (i.e., correlations, 

and regression coefficients). In the paper by Needleman et al. (1990), tooth (n=5) and 

blood (n=7) lead levels were separately compared to IQ. First, blood and tooth lead 

studies were divided into two respective groups to achieve homogeneity among the 

pooled studies. Homogeneity was further investigated within the two groups using the 
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Rosenthal method of comparing p values, “which is based on the sum of the squared 

deviations of the t values for lead from the group mean” (Needleman et al., 1990, p. 674). 

Next, the authors created separate weights for the two groups based on the sample size of 

each study using two techniques developed by Fisher, and Mostellar and Bush 

(Needleman et al., 1990). The effect size for studies was then calculated by converting the 

t value to z scores using Fisher’s transformation and compared with the ꭓ2 statistic. Partial 

correlation coefficients were then explored in order to see if one study was having an 

influential effect on the pooled effect size using the method described in a paper by 

Gatsonis et al. (1989), and the definition of a small effect from Cohen (i.e., partial r = 

0.14). Needleman et al. (1990) found that the pooled effect sizes were homogenous, 

meaning that the sampled children among included studies had baseline characteristics 

that were similar enough to not significantly influence the result (Rücker et al., 2008). For 

example, differences caused by the country of origin did not significantly affect the 

pooled result. The pooled effect of partial r was -0.15 ± 0.05 for the blood lead group, and 

-0.08 ± 0.05 for the tooth lead group. Furthermore, the authors performed a leave-one-out 

sensitivity analysis. However, they did not find any studies that had a significant overall 

effect on the pooled result, nor did the authors find any significant bias from excluding 12 

studies from the pooled result, which were eliminated for various reasons (Needleman et 

al., 1990).  

Schwartz (1994) included eight studies in a meta-analysis of loss of IQ points 

when BLLs increased from 10 µg/dL to 20 µg/dL. Additionally, the meta-analysis 
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investigated the threshold of BLLs and the effect on IQ. By estimating a linear regression 

function with different ranges of blood lead data, the authors were able to estimate the 

threshold at which the relationship between BLLs and IQ no longer exists. Additionally, 

this process was further explored using a prospective lead study with the lowest mean 

BLL within the available studies in order to investigate the possibility of a toxicity 

threshold for lead poisoning. The residuals from two regression models were used to 

construct a third model showing the adjusted relationship between IQ and BLLs. In the 

first regression model, full-scale IQ was regressed against a set of confounding variables 

(e.g., age, race, child stress score, HOME score, maternal IQ, etc.), and the second 

regression model regressed blood lead at 24 months against the same set of confounding 

variables from the first regression model. Seven studies were synthesized in the baseline 

meta-analysis showing a decrease in IQ of 2.57 ± 0.41 points for an increase in BLLs 

between 10 µg/dL to 20 µg/dL. After a sensitivity analysis was completed (i.e., removing 

the study with the largest effect size, and removing the study with the most significant 

finding), the authors did not see a significant effect on the pooled result. A further 

sensitivity analysis was included in which the authors included eight studies with a non-

result that decreased the estimated loss in IQ points by half, but the pooled result 

remained statistically significant. Next, Schwartz (1994) added studies that did not meet 

the initial criteria for study selection, including studies with different ages of children, in 

addition to a study with children living solely in disadvantaged areas. Even with these 

additional studies included in the pooled effect, the authors did not find a significantly 

different result. Lastly, the authors found that the slope between BLLs and IQ was steeper 
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at lower levels of blood lead (i.e., 3.23 ± 1.26 IQ points below 15 µg/dL) than at higher 

levels of blood lead (i.e., 2.32 ± 0.40 IQ points greater than 15 µg/dL). Additionally, the 

author found that a relationship between IQ and BLLs still exists at BLLs lower than 5 

µg/dL (Schwartz, 1994).  

The most recent meta-analysis discussing the relationship between IQ and BLLs 

was published in 2018 using much more up-to-date methods to pool the results of studies. 

Wu et al. (2018) used a variety of inclusion criteria, some of which included only using 

studies that used the Wechsler intelligence scale, which is a full-scale IQ test measuring 

cognitive abilities in five categories: verbal comprehension, visual/spatial, fluid 

reasoning, working memory, and processing speed (Wechsler, 2014). Additionally,  

inclusion criteria also dictated that the study must be either a prevalence (i.e., the total 

number of cases during a specific time) or case-control study, as well as excluding studies 

with a low sample size (n < 10). Researchers used RevMan 5.2 and Stata 12.0 software to 

pool and estimate the relationship between BLLs and IQ for case-control studies using a 

significance cut-off of p =< 0.05. Cochran’s Q and Higgins & Thompson’s I2 statistics 

provided a measurement of evaluating heterogeneity within the pooled results, which 

allows researchers to determine if the population under examination is the same (i.e., the 

population cannot be divided into smaller subgroups by various characteristics of the 

individuals). The weighted mean difference was used to pool the results, including 95% 

confidence intervals. A sensitivity analysis was used to test the robustness of the pooled 

result, in addition to the use of funnel plots to investigate publication bias. There were a 
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total of 22 case-control studies, and seven prevalence studies included in the meta-

analysis that were analyzed using a systematic review. Wu et al. (2018) found significant 

heterogeneity within the 22 studies (i.e., I2 = 85.8%), and explain that the heterogeneity 

was likely not a result of differences in the year, study site, sample size, or age, so a 

random-effects model was chosen for the meta-analysis. After pooling the 22 studies with 

a random-effects model, the weighted mean difference was -6.60 (95% CI: -9.01 to -4.20, 

p < 0.0001) for every one µg/L of blood lead (-0.66, 95% CI -0.90 to -0.42 for every one 

µg/dL of blood lead), which was significantly lower than the children within the control 

group. The leave-one-out sensitivity analysis showed that the pooled result did not change 

significantly, but the heterogeneity remained high. Researchers also found that 

publication bias was not present within the pooled results through the use of a Bgger [sic] 

(i.e., Egger) test and funnel plots (Wu et al., 2018). 

Past meta-analyses have achieved a reasonable understanding of the relationship 

between BLLs and IQ; however, this paper will address their shortcomings. First, in the 

paper by Needleman et al. (1990), pooled partial r values suggest a relationship may exist, 

but the relationship was not quantified using regression coefficients. Next, the meta-

analysis by Schwartz (1994) uses relatively simple regression analysis to pool effect sizes 

of the current body of literature. The result showed that at higher blood lead levels, lead 

had a lower impact on a child’s IQ than at lower blood lead levels. In the most recent 

meta-analysis by Wu et al. (2018), researchers used a much more modern approach to 

synthesizing the data using the RevMan software.  
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Building on the paper by Wu et al. (2018), this meta-analysis will address three 

main limitations of past meta-analyses by: (i) using R software, (ii) using a much larger 

pool of beta coefficients, and (iii) including a general and subgroup analysis. One of the 

limitations of the RevMan software is that the only estimator for pooled effect sizes is the 

DerSimonian-Laird estimator, which is less robust than other estimators, such as the 

Hartung-Knapp-Sidik-Jonkman method. More specifically, the DerSimonian-Laird 

estimator is more likely to create false-positives as a result of a small number of studies, 

and when there is substantial heterogeneity present within the pool (Harrer et al., 2019). 

In order to address the second and third limitations, we will use all available 

unstandardized beta coefficients, in addition to doing a subgroup analysis to explore the 

presence of differences between smaller populations with varying characteristics. In the 

past three meta-analyses on this topic, researchers have only used the final, adjusted 

model to include in the meta-analysis. Thus, past meta-analyses have generated pooled 

results based on a small number of UBCs, and lack a subgroup analysis. By utilizing 

every UBC reported in each paper included in this meta-analysis, we are able to generate 

more accurate pooled results, in addition to including a thorough subgroup analysis. In 

the past, meta-analyses have collected data according to subgroups based on certain 

criteria (e.g., only using the final adjusted model, or only using studies that used the 

WISC IQ test). In this meta-analysis, we will use all UBCs available to create a 

comprehensive pooled result, and explore any subgroups that may exist within the 

population. 
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3.1.4 Objectives 

Over the last several decades, researchers have tried to measure the link between 

BLLs in children and intelligence. The relationship between BLLs and IQ has been 

essential to policymakers because IQ can be further linked to potential lifetime wages of 

an individual, the need for special education, the likelihood a child will graduate from 

high school and post-graduate education, and increases in violent crime. In the context of 

lead poisoning research, a decrease of one IQ point has been associated with a specific 

value of potential lifetime wage loss within a population (Gould, 2009), which can be 

used to justify the substantial capital investment of permanent lead abatement. The 

relationship between BLLs and IQ in children is vital to develop cost-effective policies, 

in addition to developing programs that target children with low BLLs. This paper aims to 

identify the relationship between BLLs and IQ among children more robustly by 

leveraging all available data from past studies. Specifically, this paper has three main 

objectives, (i) more accurately quantify the relationship between full-scale intelligence 

quotient and blood lead levels in children in a general context, (ii) identify the 

heterogeneity of the relationship between full-scale intelligence quotient and blood lead 

levels in children within the literature, and (iii) identify and explore the existence of 

subgroups that may influence the relationship between intelligence quotient and blood 

lead levels in children.  
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3.2 Methods 

3.2.1 Data sources and search strategy 

In November 2018, the PubMed database was searched for English-language 

studies relating to the association between BLLs and IQ. The PubMed database was 

chosen because the repository catalogues journal articles from Medline, PubMed Central 

(PMC), and the National Center for Biotechnology Information (NCBI). Furthermore, 

PubMed is managed by the U.S. National Library of Medicine, which is also responsible 

for running the Medline database. Additionally, PubMed has been shown to produce the 

most search results for the same search query among five Medline platforms (i.e., 

PubMed, ProQuest, EBSCOhost, Web of Science, and Ovid). Although Ovid was shown 

to produce similar results to PubMed most consistently, the Ovid platform still returned 

fewer results than PubMed when the results differed (Burns et al., 2019). The following 

search terms for titles and abstracts published during any year were included: blood lead, 

blood Pb, lead poisoning, Pb poisoning, IQ, intelligence quotient, child, children, toddler, 

youth, adolescent, teenager, infant. The full search term can be seen below: 

"(\"blood lead\" [Title/Abstract] OR \"blood pb\" [Title/Abstract] OR \"lead poisoning\" 

[Title/Abstract] OR \"pb poisoning\" [Title/Abstract]) AND (iq [Title/Abstract] OR 

\"intelligence quotient\" [Title/Abstract]) AND (child [Title/Abstract] OR children 

[Title/Abstract] OR toddler [Title/Abstract] OR youth [Title/Abstract] OR adolescent 

[Title/Abstract] OR teenager [Title/Abstract] OR infant [Title/Abstract])" 

The “RISmed” package for R was used to search the PubMed database API 

(application programming interface). Initially, 180 papers were identified using the search 
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query listed above. First, titles and abstracts were read and categorized into three groups, 

(i) ‘yes’: papers that discuss the relationship between IQ and lead poisoning, (ii) ‘maybe’: 

papers that might discuss the relationship between IQ and lead poisoning, and (iii) ‘no’: 

papers that do not discuss IQ and lead poisoning. After the initial screening process of 

reading titles and abstracts, 84 papers were categorized into the ‘yes’ group, 48 papers 

were categorized into the ‘maybe’ group, and 48 papers were categorized into the ‘no’ 

group. Papers that were categorized as ‘yes’ or ‘maybe’ totalled 132 and were selected to 

download and read carefully. During the download process, an additional 12 papers were 

eliminated because they were not accessible (i.e., available to McMaster University), and 

nine papers were eliminated because they were not written in the English language (i.e., 

111 papers remained). During the final phase of elimination, the 111 papers were read 

carefully to extract data and eliminate any other papers that did not meet the inclusion 

criteria. After the final screening process, 98 papers were removed because they did not 

meet the inclusionary requirements. Thirteen papers were identified for inclusion and met 

the following requirements, (i) English-language, (ii) peer-reviewed, (iii) contains an 

unstandardized beta coefficient (UBC) to describe the relationship between blood lead 

levels and intelligence quotient, (iv) uses full-scale IQ score measured on a normal 

distribution with a mean score of 100 within a population, (v) children are younger than 

18 years of age, (vi) blood samples were taken using venous puncture, (vii) blood lead 

levels were either not transformed, log-transformed or natural log-transformed, (viii) 

reported 95% confidence intervals or standard error, and (ix) contains primary or 

secondary research. 
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3.2.2 Data extraction 

After collecting the 13 papers for review, we tabulated the following information: 

study location, type of study (i.e., cohort, or case-control), study years, number of 

children in the final sample, age of children, type of blood sample, units of measure for 

blood lead concentration, type of full-scale IQ test(s), mean of blood lead level, mean of 

full-scale IQ, statistical tests (i.e., regression, or crude correlation), transformation, 

regression type, confounding variables controlled for in model(s), blood lead level 

categories, correlation and regression coefficient, 95% confidence intervals, standard 

error, and p-value. See Table 3.1 for descriptive statistics of the papers included in this 

meta-analysis. 

3.2.3 Pooling beta coefficients 

In order to leverage all UBCs available within the literature, in addition to 

developing a robust pooled estimate, we will use a two-group approach in this meta-

analysis. First, we will use all untransformed UBCs to formulate the main group (i.e., the 

linear group). The results of the linear group will be the true estimates since they have a 

one-to-one relationship between BLLs and full-scale IQ in children. Second, we will 

standardize all available (i.e., log, natural log, and untransformed) UBCs to one unit of 

measure (i.e., the non-linear group) that we can use to verify the results and trends we see 

within the linear group. We standardized the coefficients transformed with log, natural 

log, in addition to untransformed UBCs to ensure the coefficients are on the same scale. 

A paper by Rodríguez-Barranco et al. (2017) describes a method to standardize UBCs 
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from a regression model using log10, natural log and untransformed variables to prepare 

the coefficients for meta-analysis. In the context of this paper, a UBC where BLLs have 

been log-transformed is converted using LOG10(1.5) * UBC, and LN(1.5) * UBC when 

the BLLs have been natural log-transformed, where 1.5 is used to convert to a 50% scale. 

Standardized UBCs using this method can be interpreted as a 50% increase in BLLs will 

cause a loss (if negative) of IQ points equal to the standardized beta coefficient. For 

models where BLLs have not been transformed, we are still required to standardize the 

beta coefficients. In a linear model, we can use 0.5 * n * UBC, where 0.5 is to convert to 

a 50% scale, and n represents the sample size of the regression model. In cases where the 

BLLs were not transformed), the sample size of the regression model is required. Not all 

UBCs collected for this meta-analysis include sample size, so any UBCs without a 

reported sample size were dropped from the pooled result (n=12).  

Rodríguez-Barranco et al. (2017) report that by testing the conversion calculation 

for linear models using simulated data, the accuracy of the untransformed beta 

coefficients depends on the symmetry of the independent and dependent variables (i.e., 

BLLs and IQ). The normality of each variable distribution is not known; however, BLLs 

are often left-skewed, and IQ is often normally distributed. Warne et al. (2013) show 

through the analysis of IQ results from a wide range of countries and tests, consisting of 

adults and children, that the distribution of IQ among a population is most commonly 

normal. In contrast, BLLs have been consistently asymmetrically left-skewed (i.e., most 

children are in the lowest blood lead groups) in the United States for many years (CDC, 
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2019). Many other countries around the world exhibit this same left-skewed distribution 

of BLLs among children (see Colombia: Alvarez-Ortega, Caballero-Gallardo, & Olivero-

Verbel, 2017; Iran: Nakhaee et al., 2019; Sweden: Skerfving, Lofmark, Lundh, Mikoczy, 

& Stromberg, 2015), which leads us to believe the BLLs in this meta-analysis will also 

exhibit a left-skewed distribution. As a result of normally distributed IQ (dependent 

variable) and asymmetrically distributed BLLs (independent variable), we can expect a 

variance of 0.52 to 0.63% between the true UBC and the UBC calculated with the 

formula proposed by Rodríguez-Barranco et al. (2017). Additionally, for models where 

BLLs have been transformed using log or natural log, variances between true and 

converted UBCs are predicted to be between 0.24 and 0.34% (Rodríguez-Barranco et al., 

2017). In order to use all UBCs available in the literature, we will use the calculations 

proposed by Rodríguez-Barranco et al. (2017) to convert all UBCs to one standardized 

form that can generate a more robust pooled result. In past meta-analyses, only one UBC 

has been used per included study, which limits the predictive power of the pooled result. 

Using the method outlined by Rodríguez-Barranco et al. (2017), we will be able to 

leverage all UBCs presented within each study. As a result of using this technique, we 

will be able to generate accurate trends and relative differences among pooled results that 

can be used to compare with the results of the linear group.  

The remainder of the analysis within this paper will employ the methods outlined 

by Harrer et al. (2019), which explains the most modern approaches to meta-analyses. In 

order to pool the beta coefficients, we are first required to decide between using a fixed-
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effects model or a random-effects model. A fixed-effects model is used when the study 

populations across pooled papers are the same, whereas a random-effects model is used 

when the study population cannot be assumed to be the same (Harrer et al., 2019). In this 

paper, we employ the random-effects model for two reasons, (i) study populations are 

derived from countries around the world, and (ii) blood lead samples come from children 

of different ages. The random-effects model we employ is stated as follows: 

θk = μ + ϵk + ζk 

In the random-effects model, θk is the beta coefficient for study k, μ is the average of all 

beta coefficients, ϵk is the error associated with sampling, and ζk is the study-specific 

random effect (i.e., the difference between the beta coefficient for study k and the average 

of all beta coefficients). The ζk term is derived using τ2, which can be calculated using 

different estimators that calculate between-study variance using slightly different 

approaches. There are eight different methods to calculate τ2 in the R package that we 

will use for this paper, which includes (i) DerSimonian-Laird, (ii) Paule-Mandel, (iii) 

Restricted Maximum-Likelihood, (iv) Maximum-likelihood, (v) Hunter-Schmidt, Sidik-

Jonkman, (vi) Hedges, (vii) Empirical Bayes, and (viii) Hartung-Knapp-Sidik-Jonkman. 

The DerSimonian-Laird method is often used in meta-analyses performed using the 

RevMan software; however, the Hartung-Knapp-Sidik-Jonkman (HKSJ) estimator has 

been shown to outperform DerSimonian-Laird (DS) in most cases (Harrer et al., 2019). 

The method of calculating τ2 using the HKSJ and DS approaches were described in detail 
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in a paper by (Mathes et al., 2018). In meta-analyses with heterogeneity, the average error 

rates were consistently higher with DS than with the HKSJ estimator (Inthout et al., 

2014). As a result, we will utilize the HKSJ estimator since our meta-analysis is expected 

to have heterogeneity, as discussed above. Additionally, pooling the UBCs requires a 

weight to reflect the strength of each relationship (i.e., the robustness of the sample to 

determine a relationship capable of being generalized to a population). Weighting was 

generated using the standard error for each UBC, which is a value derived using the 

standard deviation and size of the population associated with each UBC.  

3.2.4 Between study heterogeneity 

Heterogeneity is an essential aspect of a meta-analysis because it informs us of 

the differences between studies within the initial pooled results. If the heterogeneity 

within the pooled results is high, there are likely subgroups that may explain variation 

that was missed, or extreme values are present within the pooled result. For example, high 

heterogeneity within the pooled results may mean that a child with high prenatal BLLs 

has a different effect on IQ than a child with high BLLs at five years old. There are three 

main ways to calculate heterogeneity within pooled results, which include: (i) Cochran’s 

Q, (ii) Higgins & Thompson’s I2, and (iii) Deeks, Higgins & Altman’s τ2. Cochran’s Q is 

ideal when there is a large number of studies, and the sample size of studies is large. As a 

result, Cochran’s Q is influenced by statistical power, which is not ideal to rely on for a 

meta-analysis solely. Similarly, Higgins and Thompson’s I2 also depends on the statistical 

power of studies but is more favourable because I2 includes a ‘rule of thumb’ to interpret 
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the amount of heterogeneity within the results (i.e., I2 = 25%: low heterogeneity, I2 = 

50%: moderate heterogeneity, I2 = 75%: high heterogeneity). Lastly, Deeks, Higgins & 

Altman’s τ2 is better than Cochran’s Q and Higgins & Thompson’s I2 in that the 

heterogeneity measure is not dependent on the number of studies or statistical power; 

however, τ2 can be more difficult to interpret since the measure uses a prediction interval 

(Harrer et al., 2019). For example, if the prediction interval includes zero, or a positive 

value, it would be difficult to conclude that BLLs influence IQ.  

Outliers may also cause high heterogeneity in the data, or that the pooled result is 

being heavily influenced by one study. In order to detect outliers in the pooled result, we 

will search for studies with confidence intervals that do not overlap the pooled confidence 

interval (Harrer et al., 2019). If a UBC has an upper confidence interval that is lower than 

the low-end of the prediction interval, the UBC is considered an outlier. Similarly, if the 

lower confidence interval of the UBC is higher than the high-end of the prediction 

interval, the UBC is considered an outlier. Once outliers have been removed, we will 

conduct a sensitivity analysis to examine how the pooled result changes. Another 

essential type of sensitivity analysis is detecting influential studies within the pooled 

result. The significance of a pooled result may be influenced by one study, that when 

removed, can drastically alter the outcome of the pooled result. In order to conduct a 

more rigorous sensitivity analysis, we will use the leave-one-out method to consecutively 

calculate the pooled result after removing one study at a time until all studies have been 

removed once.  
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The Baujat plots are the first method to investigate the influence of UBCs in the 

overall pooled result. On the y-axis, influence is shown, whereas the x-axis shows the 

overall heterogeneity contribution. Therefore, UBCs shown in the upper-right corner 

could be considered potential outliers since they have a strong influence and high 

heterogeneity contribution to the pooled result.  

After investigating influence with the Baujat plots, we will use a set of influence 

characteristic graphs to identify potential outliers within the pool. Each point on the 

graphs represents a pooled result when the corresponding UBC has been omitted from the 

pooled result (i.e., leave-one-out analysis). Red points represent the UBC(s) that have 

been identified as influential studies (i.e., outliers) based on exceedance of two 

thresholds, (i) DFFITS, and (ii) hat. In the calculations below, k represents the number of 

UBCs within the pooled result.  

| DFFITS | > 3×√(1 / (k – 1) 

hat > 3× (1 / k) 

DFFITS and hat are calculated each time a study has been omitted during the leave-one-

out analysis. When a pooled result (omitting one paper) has exceeded the threshold of 

either DFFITS or hat, the paper that has been eliminated will be identified on the 

influence analysis graphs as red. The DFFITS graph describes the change in the predicted 
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pooled UBCs when omitting each study (measured in standard deviations). Similar to the 

standard residuals graph, DFFITS shows the significant changes in the predicted pooled 

UBCs when the two outliers are removed (Harrer et al., 2019). 

The graph showing standardized residuals (of heterogeneity) shows the amount 

of heterogeneity caused by each study. Next, Cook’s Distance is a measure to quantify 

the influence a particular data point has on the pooled result. In the graph showing 

covariance ratio, UBCs with a covariance ratio less than one could be removed to 

generate a more precise estimate of the model coefficients, and data points exhibiting a 

covariance ratio significantly less than one may be seen as outliers within the data 

(Viechtbauer et al., 2010). The graphs showing hat and weight on the y-axis show the 

leverage (i.e., the weight) of each unstandardized beta coefficient within the pooled 

coefficients. The graph with τ2 on the y-axis shows the value of τ2 for a pooled result 

when each study has been omitted individually. Similarly, the graph with Q on the y-axis 

shows the change in Cochran’s Q if each unstandardized beta coefficient was removed 

from the pooled result. 

Lastly, we will use a Graphic Display of Heterogeneity (GOSH) plot to explore 

the heterogeneity within the pooled result further. A GOSH plot allows us to examine the 

pooled result on the x-axis and the heterogeneity along the y-axis. Through the use of the 

GOSH plots, we will identify potential patterns that may exist within the pooled result. If 

the GOSH plot shows more than one cluster, this will indicate that the pooled result may 
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be describing more than one subpopulation (Harrer et al., 2019). In order to ensure a 

thorough analysis, we will perform a subgroup analysis regardless of the results of the 

GOSH plot to explore common subgroups identified within the literature.  

Subgroup analysis is used to determine how the pooled result changes when 

studies are grouped by different characteristics (e.g., study design, time of blood sample, 

etc.). Similar to the original pooled beta coefficients, we will use the random-effects 

model to pool the beta coefficients for each subgroup. Next, Harrer et al. (2019) explain 

that we will be required to calculate the significance of the differences between each 

subgroup by computing the Standard Error of the differences between pooled results. The 

result of this calculation will inform us if the differences between subgroups are 

significant. Cochran’s Q can determine a statistically significant difference between 

subgroups among each group (i.e., non-linear and linear). A significant Q means that the 

differences in pooled UBCs are statistically significant, suggesting that the subgroups are 

influencing the results. 

3.2.5 Publication bias 

In the last step of the analysis, we will investigate the possibility of publication 

bias, which can happen when journals or researchers do not publish non-results (e.g., non-

significant results, or results with a neutral or unexpected regression coefficient). 

Avoiding the publication of non-results is also known as the file-drawer problem, which 

states that studies with better results are more likely to be published than studies with a 



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

66 

less significant result (Harrer et al., 2019). Thus, in a meta-analysis, it is important to 

investigate possible publication bias to identify limitations that may be present in the pool 

of literature. One method to investigate the possibility of publication bias is through the 

use of a funnel plot. A funnel plot is used to explore the symmetry of the UBCs by 

plotting standard error on the y-axis and effect size on the x-axis. If publication bias is not 

present, we expect to see points plotted in a symmetrical pattern (i.e., points with high, 

medium and low standard error). The Egger’s test will be used to further investigate the 

potential asymmetry of the UBCs in the pooled result by determining if any asymmetry in 

the funnel plot is statistically significant. If statistically significant asymmetry is found 

using the funnel plots and Egger’s test, we will proceed to a Duval & Tweedie’s trim-

and-fill procedure to add ‘missing’ UBCs to the funnel and recalculate the pooled result. 

Asymmetry in a funnel plot is indicative of a pooled result missing unpublished results 

(i.e., non-results). Thus, using the trim-and-fill procedure, the pooled result includes 

simulated UBCs that act as a proxy for unpublished results (Harrer et al., 2019).  

One issue with the trim-and-fill procedure is that the result is only valid for 

publication bias as a result of effect size discrimination, but not non-significance 

(Simonsohn et al., 2014a). In addition to the trim-and-fill procedure, we will use a p-

curve analysis to provide another pooled result to mitigate the potential of p-hacking. The 

practice of p-hacking is most likely to occur when researchers have not determined the 

exact methodology before analysis begins (i.e., decisions about outlier removal, measures 

to analyze, covariates to use, etc.), which may lead to self-serving decisions that increase 
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publishing odds. As a result of p-hacking, a statistically significant outcome may be 

indicative of selective reporting, rather than a genuine relationship (Simonsohn et al., 

2014a). A p-curve analysis will allow us to analyze the presence of publication bias by 

measuring the distribution of p-values included in the pooled result in two ways, (i) right-

skewedness, and (ii) flatness. If a pooled result contains evidential value (i.e., the 

collective pooled result has meaning), the p-curve will exhibit a significantly right-

skewed and non-flat curve. If a p-curve is not right-skewed, it may suggest that the 

pooled result is noisy, imprecise, or lacking certainty. Second, the p-curve of the pooled 

UBCs will be compared to a curve with 33% power (i.e., 2 out of 3 studies fail). If the p-

curve of the pooled UBCs are significantly flatter than a curve with 33% power, we will 

conclude that the pooled result lacks evidential value. As a result of these two 

measurements, the p-curve analysis will determine if an evidential value exists within the 

pooled UBCs (Simonsohn et al., 2014a). Furthermore, the p-curve analysis will also be 

used to estimate the true effect size. In this meta-analysis, estimating true effect size using 

the p-curve method will attempt to correct for inflated UBCs as a result of p-hacking by 

only relying on the statistically significant UBCs (Simonsohn et al., 2014b).  

The last method to identify any publication bias within the pooled literature is a 

risk of bias summary. This meta-analysis will look at the following factors to determine if 

any of the included papers exhibit a risk of bias, (i) selective outcome reporting, (ii) 

population sampling, (iii) measurement of confounders, (iv) IQ testing, (v) incomplete 

outcome data, (vi) blood lead collection, and (vii) blood lead analysis. In each of the 
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seven factors, we will flag a paper with a low, medium, or high risk of failing to explain 

each factor adequately, or enacting appropriate methodologies. 

3.3 Results 

3.3.1 Descriptive statistics 

In the initial tests, we will include two pooled results, (i) all UBCs with a non-

linear transformation (non-linear), (ii) only untransformed UBCs (linear). By presenting 

the results of the meta-analysis with these two groups, we will be able to robustly explain 

the relationship between blood lead levels and IQ within a linear and non-linear pooled 

result. The purpose of including a non-linear result is to incorporate all current literature 

relating blood lead levels and IQ in children.   

This meta-analysis will draw from 13 studies published between 1992 and 2018, 

which can be seen in Table 3.1. The 13 studies presented in this study have collected data 

from a wide range of countries, including Australia, the United States, South Korea, 

Chile, Italy, Brazil, China, the United Kingdom, and Yugoslavia. Similarly, the ages of 

children during blood sampling ranges widely from prenatal to 16 years old, and BLLs 

range from 0.4 µg/dL up to an average of 17.1 µg/dL. Mean IQ ranges from 75.4 to 116; 

however, one study does not report an average. In Table 3.1, the pooled result groups and 

the number of UBCs that each paper has contributed is shown. Some papers contribute 

multiple UBCs to each pooled result since many papers analyze the relationship between 

BLLs and IQ among different subgroups (e.g., age groups, unadjusted and adjusted 
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models, etc.). Lastly, all papers explored in this meta-analysis use linear regression; 

however, in the paper by Min et al. (2009), nonlinear models were used to test the 

relationship between IQ and BLLs. The authors did not find that a nonlinear relationship 

existed and proceeded to use linear regression models to estimate the relationship 

between IQ and BLLs.  

Table 3.1: Descriptive statistics for papers included in this meta-analysis 

Authors & 

publishing 

year 

Type of 

Study 

Total 

UBCs 
Country 

Age of 

children 

(years) 

Mean 

blood lead 

levels 

(µg/dL) 

Mean 

IQ 

Original 

unit of 

BLLs 

Transformation 

of blood lead 

levels 

Regression 

type 

(Bellinger et 

al., 1992) 
Cohort 32 US 

6 months 

to 10 
3 to 7.8 116 µg/dL None Linear 

(Canfield et 

al., 2013) 
Cohort 48 US 3 to 5 0.7 89.8 µg/L None Linear 

(Dietrich et 

al., 1993) 
Cohort 18 US 6.5 5 to 17.1 86.9 µg/dL None Linear 

(Hong et al., 

2015) 
Cohort 4 

South 

Korea 
8 to 11 

1.8 

(geometric) 
110.1 µg/dL Log Linear 

(Iglesias et 

al., 2011) 
Cohort 4 Chile 7 to 16 3.5 to 10.8 104.1 µg/dL None Linear 

(Lucchini et 

al., 2012) 
Cohort 1 Italy 11 to 14 1.7 106.3 µg/dL Natural log Linear 

(Menezes-

Filho et al., 

2018) 

Cohort 2 Brazil 7 to 12 1.6 75.5 µg/dL Log Linear 

(Min et al., 

2009)  
Cohort 6 US 4 to 11 7 81 to 86 µg/dL None 

Linear, and 

nonlinear 

(testing) 

(Pan et al., 

2018) 

Case-

Control 
2 China 9 to 11 

0.7 

(geometric) 
103.4 µg/L None Linear 

(Taylor et al., 

2017) 
Cohort 6 UK 

Prenatal 

to 8 
3.7 

103.1 to 

104.8 
µg/dL None Linear 

(Tong et al., 

1996) 
Cohort 20 Australia 11 to 13 0.4 to 1.0 100 µmol/L Natural log Linear 

(Wasserman 

et al., 2000) 
Cohort 5 Yugoslavia 

Prenatal 

to 7 
1.0 to 1.3 

Not 

reported 
µg/dL Log Linear 

(Wasserman 

et al., 2003) 
Cohort 3 Yugoslavia 10 to 12 0.8 to 1.5 

75.4 to 

75.9 
µg/dL Log Linear 

*Note: Mean blood lead levels have been converted to a one-unit increase in µg/dL where 

necessary, although, the original unit of measure shown 
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3.3.2 Pooled unstandardized beta coefficients 

In the context of this paper (see Table 3.2 for pooled UBCs), UBCs in the non-

linear group describes the IQ point loss (if negative) for a 50% increase in BLLs. For 

example, a UBC of -0.40 would mean that for a 50% increase in BLLs, we expect a loss 

of 0.40 IQ points. On the other hand, UBCs in the linear group describes an IQ loss (if 

negative) for a one-unit increase in BLLs. In the same example, a UBC of -0.40 would 

mean that for an increase of one unit in BLLs (e.g., 1 µg/dL to 2 µg/dL), we expect a loss 

of 0.40 IQ points. Indeed, a linear pooled result is much easier to interpret, nor is it 

sensitive to different BLL ranges; however, the non-linear pooled result will allow the 

inclusion of significantly more literature (i.e., of the 13 papers included in this meta-

analysis, six papers exhibit transformations, whereas seven papers do not include a 

transformation).  

As can be seen in Table 3.2, the pooled result for the non-linear group was -0.40 

(95% CI: -0.54 to -0.27) with a prediction interval of -1.96 to 1.16. Heterogeneity 

measures were 0.62 (τ2), 92.4% (I2), and 1,809 (Q). In the linear group, the pooled result 

was -0.20 (95% CI: -0.26 to -0.15), with a prediction interval of -0.71 to 0.30. 

Heterogeneity measures in the linear group were 0.06 (τ2), 47.7% (I2), and 220 (Q). A 

forest plot has been generated for both groups to visually represent the pooled result, 

which can be found in Appendix E. 
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Table 3.2: Pooled results for non-linear and linear groups, including heterogeneity 

measures 

Group 
Pooled 

result 

95% confidence interval Prediction interval 
τ2 I2 

Q 

Lower Upper p Lower Upper  p 

Non-linear 

Papers: 13 

UBCs: 139 

-0.40 -0.54 -0.27 < 0.0001 -1.96 1.16 0.62 92.4% 1,809 < 0.0001 

Linear 

Papers: 7 

UBCs: 116 

-0.20 -0.26 -0.15 < 0.0001 -0.71 0.30 0.06 47.7% 220 < 0.0001 

3.3.3 Influence, heterogeneity, and outlier detection 

Next, we will look more closely at heterogeneity and influence by detecting 

potential outliers within the data sets. The first outlier detection method identified 49 

UBCs from six papers in the non-linear group, ranging from -0.19 to 1.16, which can be 

seen in Table 3.3. Once the 49 outliers were removed, 90 UBCs remained from 11 papers. 

The pooled result decreased to -0.73 (95% CI: -0.94 to -0.53) with a prediction interval of 

-2.53 to 1.06. Heterogeneity measures have changed to 0.81, 93.8% and 1,428 for τ2, I2 

and Q, respectively. In the linear group, three UBCs were identified as outliers from two 

papers, resulting in a pool of 113 UBCs from 6 papers. The pooled result from the linear 

group was -0.22 (95% CI: -0.27 to -0.17), and a prediction interval of -0.70 to -0.27. The 

heterogeneity measures were 0.06 (τ2), 30.2% (I2), and 160 (Q). Results of the first outlier 

detection method will be discussed below, and the forest plots produced omitting outliers 

can be seen in Appendix F.  
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Table 3.3: Pooled results omitting outliers using simple detection method, including 

heterogeneity measures 

Group 
Pooled 

result 

95% confidence interval Prediction interval 
τ2 I2 

Q 

Lower Upper p Lower Upper  p 

Non-linear 

Papers: 11 

UBCs: 90 

-0.73 -0.94 -0.53 < 0.0001 -2.53 1.06 0.81 93.8% 1,428 < 0.0001 

Linear 

Papers: 6 

UBCs: 113 

-0.22 -0.27 -0.17 < 0.0001 -0.70 0.27 0.06 30.2% 160 < 0.01 

 

3.3.3.1 Baujat plots 

The Baujat plot for the non-linear group (see Appendix G), shows two UBCs 

(ID: 294 and 295) within the upper-right quadrant, both from the paper by Wasserman et 

al. (2000). Three more UBCs (ID: 268, 269, and 270) from the paper by Tong et al. 

(1996) can be seen distant from the main group with relatively high influence, but low 

heterogeneity contribution. In contrast, the Baujat plot for the linear group illustrates a 

more gradual dispersion of UBCs from the primary grouping in the bottom-left quadrant. 

There are twelve UBCs (ID: 107, 91, 142, 156, 10, 179, 211, 210, 9, 141, 8 and 209) that 

are relatively distant from the main group, and the two UBCs that are furthest into the 

top-right quadrant with high influence and heterogeneity have IDs: 141 and 209. 

3.3.3.2 Influence Characteristics 

First, we will explore the influence characteristics for the non-linear group, 

which identifies the two UBCs (ID: 294 and 295) from the Wasserman et al. (2000) paper 

as potential outliers. All eight graphs for the three groups can be seen in Appendix H. As 
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shown in the first graph, the two red points have high, negative standard residuals relative 

to the rest of the UBCs. Cook’s distance depicts the strong influence that the two red 

points have on the pooled result. Similarly, when these two red points are individually 

omitted from the pooled result, the τ2 value is reduced significantly. Other UBCs will also 

reduce the τ2 (shown as negative peaks on the graph); however, they do not have as much 

weight within the pooled result, which will be discussed below. In the graph showing 

Cochran’s Q on the y-axis, the two red points are the only UBCs that significantly reduce 

the value of Q once removed from the pooled effect in the leave-one-out analysis. The 

graph with DFFITS shows the two red points as relatively distant from the rest of the 

UBCs and depicts a similar shape as the graph illustrating the covariance ratio. Although 

difficult to see on the graph, covariance ratios range from 0.94 to 1.03, and the two red 

points have a covariance of 0.95 and 0.96 for ID numbers 294 and 295, respectively. 

Lastly, and perhaps most importantly, the hat and weight groups illustrate the weight each 

UBC has within the pooled result. The weights are based on the standard error, which is 

generated using the sample size used to generate each UBC. The larger the sample size, 

the smaller the standard error. Thus, studies with high weight will have more influence on 

the pooled result, and the two UBCs shown in red are shown to have high weight within 

the pooled result. Indeed, UBCs identified by threshold exceedance (shown in red) is not 

a guarantee that they are outliers, but careful analysis of each graph in combination can 

be used to identify outliers successfully. In the non-linear group, the two UBCs identified 

using the threshold exceedance do seem to be outliers within this pool, showing high 

heterogeneity and high influence on the result. Other UBCs depict strong influence or 
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high heterogeneity, but none as consistently as the two UBCs shown in red on the graphs. 

Additionally, two forest plots (see Appendix I) were generated to investigate further the 

influence of each UBC within the pooled result. First, the graph showing the pooled result 

when each UBC has been omitted depicts a significant difference when the two UBCs 

(ID: 294 and 295) from the Wasserman et al. (2000) paper have been removed. Similarly, 

the I2 value decreases significantly when these two UBCs have been omitted from the 

pooled result. As a result of the influence analysis, we believe the outliers have been 

correctly identified, and they will be removed from the pooled result.  

Interestingly, the influence characteristics for the linear group has not identified 

any outliers within the pool of UBCs. The hat threshold for the linear group was 

calculated as 0.03; however, the range of hat values was between 0.00 and 0.02. 

Similarly, the DFFITS threshold was ±0.28, whereas the range of DFFITS values in the 

linear group was -0.26 and 0.13. The graph showing standard residuals depicts multiple 

UBCs causing heterogeneity, but there does not seem to be any UBCs that are influencing 

the heterogeneity more than others. In the linear group, multiple UBCs are lower than 

one, but the lowest covariance ratio value is only 0.93. Although nineteen UBCs are 

lower than one, the values are not significantly lower. On the τ2 and Q graphs, there are 

multiple, negative peaks, but there is not a significant difference when observing the 

change in τ2 and Q. After analyzing all graphs in conjunction, we can see that there are 

UBCs that contribute to heterogeneity; however, these UBCs have little influence on the 

pooled result. Thus, we agree with the influence characteristics that have not identified 
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any additional outliers within the pooled result. The final pooled result of the UBCs can 

be seen in Table 3.4 below.  

Table 3.4: Pooled results omitting additional outliers identified through influence 

analysis, including heterogeneity measures 

Group 
Pooled 

result 

95% confidence interval Prediction interval 
τ2 I2 

Q 

Lower Upper p Lower Upper  p 

Non-linear 

Papers: 11 

UBCs: 88 

Removed: 2 

-0.64 -0.82 -0.45 < 0.0001 -2.29 1.02 0.68 70.7% 297 < 0.0001 

Linear 

Papers: 6 

UBCs: 113 

Removed: 0 

-0.22 -0.27 -0.17 < 0.0001 -0.70 0.27 0.06 30.2% 160 < 0.01 

 

3.3.3.3 GOSH plots 

The final method to identify heterogeneity within the pooled result is the use of a 

Graphic Display of Heterogeneity (GOSH) plot. The GOSH plot is a means to detect 

patterns within the data and determine if there is more than one ‘population’ group. The 

GOSH plot informs the subgroup analysis by identifying the number of potential 

subgroups. The GOSH plots generated for the two groups can be seen in Appendix J. The 

GOSH plot for the non-linear group shows one large grouping, but on the left side of the 

mass, there is a slight indentation in the group, which may represent two subgroups in the 

pooled result. In contrast, the GOSH plot for the linear group distinctly shows one 

primary grouping. Although the linear group plot seems to suggest that the pooled result 

is the product of one population, the literature suggests multiple subgroups that affect the 
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relationship between BLLs and IQ. The next section of this paper will explore the 

relationship based on the subgroups identified in the literature.  

3.3.4 Subgroup analysis 

After exploring the pooled result from both groups (i.e., non-linear and linear), 

we will now investigate any differences that may exist between subgroups. From the 

GOSH plot, we have identified two potential subgroups for the non-linear group, whereas 

the linear group did not suggest the presence of subgroups; however, we will still explore 

both groups in the subgroup analysis for a thorough investigation of the UBCs.   

In Table 3.5, we can see the pooled results for the UBCs with and without 

adjustment for confounders. Although the pooled results for the non-linear group seems 

to suggest a large difference, the p-value for subgroup differences between unadjusted 

and adjusted pooled results are not significant, but the differences between subgroups for 

the linear group was significant. When the linear UBCs were adjusted for confounders, 

we can see that the pooled result was -0.14 (95% CI: -0.20 to -0.08), whereas the pooled 

result for the unadjusted UBCs was -0.31 (95% CI: -0.39 to -0.22). In the unadjusted 

subgroup for the linear UBCs, heterogeneity was moderate with 0.07 (τ2), 41.8% (I2), and 

91 (Q). Interestingly, the adjusted subgroup for the linear UBCs has no heterogeneity 

with values of 0.04 (τ2), 0.0% (I2), and 54 (Q).   
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Table 3.5: Pooled results for the subgroup analysis of UBCs by unadjusted and adjusted 

regression models, including heterogeneity measures 

Group Subgroup 
Pooled 

result 

95% confidence interval 
τ2 I2 Q 

Subgroup differences 

Lower Upper Q p 

N
o
n

-l
in

e
a
r
 Unadjusted 

Papers: 6 

UBCs: 39 

-0.80 -1.13 -0.47 0.81 63.6% 104 

2.16 0.14 
Adjusted 

Papers: 10 

UBCs: 49 

-0.52 -0.73 -0.30 0.53 73.3% 180 

L
in

e
a
r
 

Unadjusted 

Papers: 5 

UBCs: 54 
-0.31 -0.39 -0.22 0.07 41.8% 91 

11.10 < 0.01 
Adjusted 

Papers: 6 

UBCs: 59 

-0.14 -0.20 -0.08 0.04 0.0% 54 

 

 In Table 3.6, we have created subgroups for infants (prenatal to 6 months), 

toddlers (7 months to 47 months), and children (48 months to 204 months) to reflect the 

age groupings (i.e., defined by Health Canada, 2013) when the individual’s BLLs were 

measured. As can be seen in Table 3.6, the differences between infant, toddler, and child 

are significantly different within the non-linear group with pooled results of -0.22, -0.59, 

and -0.83, respectively. Additionally, we have a τ2 of 0.55, an I2 of 0.0% and a Q of 22 

for the infant subgroup, a τ2 of 0.63, an I2 of 57.5% and a Q of 73 for the toddler 

subgroup, and a τ2 of 0.63, an I2 of 82.7% and a Q of 185 for the child subgroup. In the 

linear group, the pooled result for infants, toddlers, and children was -0.03, -0.19, and -

0.29, respectively, τ2 values of 0.07, 0.03, and 0.07, I2 values of 0.0%, 12.3%, and 50.2%, 

and Q values of 8, 49, and 94, respectively. The differences between age groups for the 

linear UBCs were statistically significant. Interestingly, the heterogeneity measures for 
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both the non-linear and linear groups increase as the age of the child at blood lead testing 

increases. 

 Table 3.6: Pooled results for the subgroup analysis of UBCs by child age at blood lead 

sampling, including heterogeneity measures 

Group Subgroup 
Pooled 

result 

95% confidence interval 
τ2 I2 Q 

Subgroup differences 

Lower Upper Q p 

N
o
n

-l
in

e
a
r
 

Infant 

Papers: 4 

UBCs: 23 

-0.22 -0.49 0.04 0.55 0.0% 22 

9.50 < 0.01 

Toddler 

Papers: 4 

UBCs: 32 

-0.59 -0.90 -0.27 0.63 57.5% 73 

Child 

Papers: 10 

UBCs: 33 

-0.83 -1.15 -0.52 0.63 82.7% 185 

L
in

e
a
r
 

Infant 

Papers: 3 

UBCs: 21 

-0.03 -0.13 0.08 0.07 0.0% 8 

15.91 < 0.01 

Toddler 

Papers: 3 

UBCs: 44 

-0.19 -0.26 -0.12 0.03 12.3% 49 

Child 

Papers: 5 

UBCs: 48 

-0.29 -0.38 -0.20 0.07 50.2% 94 

  

In Table 3.7, we show the pooled results for two publishing year subgroups, 

which include, (i) 2009-2019, and (ii) pre-2009. This subgroup analysis has shown 

significant differences for both main groups (i.e., non-linear and linear). In the non-linear 

group, there is a pooled result of -0.29 (95% CI: -0.51 to -0.07), and -1.00 (95% CI: -1.26 

and -0.74) for the 2009-2019, and pre-2009 subgroups. Also, we have a τ2 of 0.39, an I2 

of 45.0% and a Q of 67.33 for the 2009-2019 subgroup, and 0.70, 77.1%, and 213.86, for 

the τ2, I2, and Q, respectively. In the linear group, the pooled results were -0.15 (95% CI: 
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-0.51 to -0.07) and -0.29 (-1.26 to -0.74) for the 2009-2019, and pre-2009 subgroups and 

the subgroup differences were statistically significant. Additionally, the heterogeneity 

measures for 2009-2019 and pre-2009 were 0.03 and 0.08 (τ2), 12.0% and 39.1% (I2), and 

70 and 81 (Q), respectively.   

Table 3.7: Pooled results for the subgroup analysis of UBCs by publishing year, including 

heterogeneity measures 

Group Subgroup 
Pooled 

result 

95% confidence interval 
τ2 I2 Q 

Subgroup 

differences 

Lower Upper Q p 

N
o
n

-l
in

e
a
r
 2009-2019 

Papers: 6 

UBCs: 38 

-0.29 -0.51 -0.07 0.39 45.0% 67.33 

17.48 < 0.0001 
Pre-2009 

Papers: 5 

UBCs: 50 

-1.00 -1.26 -0.74 0.70 77.1% 213.86 

L
in

e
a
r
 

2009-2019 

Papers: 4 

UBCs: 63 

-0.15 -0.21 -0.09 0.03 12.0% 70 

7.31 < 0.01 
Pre-2009 

Papers: 2 

UBCs: 50 

-0.29 -0.38 -0.21 0.08 39.1% 81 

 

 Lastly, we used a subgroup analysis to investigate possible differences between 

countries (see Table 3.8). Unfortunately, there were not enough papers for each country, 

so as a means to overcome this issue, we have grouped the countries by G7 membership 

(i.e., G7 countries, and non-G7 countries). The Group of Seven (G7) encompasses the 

seven most economically dominant countries worldwide, which include Canada, France, 

Germany, Italy, Japan, the United Kingdom, the United States, and the European Union. 

The G7 forum is a chance for leaders, ministers and policymakers to discuss both 
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international and domestic issues (Government of Canada, 2020). In both the non-linear 

and linear groups, we do not find a statistically significant difference between the G7 and 

non-G7 subgroups.  

Table 3.8: Pooled results for the subgroup analysis of UBCs by G7 membership, 

including heterogeneity measures 

Group Subgroup 
Pooled 

result 

95% confidence interval 
τ2 I2 Q 

Subgroup 

differences 

Lower Upper Q p 

N
o
n

-l
in

e
a
r
 G7 

Papers: 6 

UBCs: 74 

-0.58 -0.79 -0.36 0.76 50.9% 148.68 

2.11 0.15 
Others 

Papers: 5 

UBCs: 14 

-0.86 -1.21 -0.51 0.25 90.9% 142.40 

L
in

e
a
r
 

G7 

Papers: 6 

UBCs: 109 

-0.21 -0.26 -0.16 0.05 28.4% 150.87 

1.34 0.25 
Others 

Papers: 1 

UBCs: 4 

-0.50 -1.28 0.29 0.18 64.8% 8.53 

 

3.3.5 Publication bias 

3.3.5.1 Funnel plots 

The funnel plots included in this paper (see Appendix K) also depict the points 

from the trim-and-fill procedure, which are shown as clear circles, and the original UBCs 

are shown in dark grey. The funnel plot for the non-linear group (including UBCs 

identified as outliers) shows a large group of UBCs at the top of the pyramid, with most 

points shown as negative values. Four UBCs are shown in the centre of the funnel plot, 

and four more are shown in the bottom-left of the plot. This funnel plot illustrates a 
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significant number of UBCs within the upper segment of the pyramid, in addition to 

lateral asymmetry, suggesting the possibility of publication bias. Similarly, the funnel 

plot for the linear group depicts a large cluster of UBCs in the top-most portion of the 

plot, with a secondary grouping along the dotted line. At the bottom of the plot, there is a 

dispersed grouping of UBCs.  

In addition to the visual analysis of the funnel plots, we used the Egger’s test of 

symmetry to determine if publication bias exists. As can be seen in Table 3.9, asymmetry 

is present in both (i.e., non-linear and linear groups) funnel plots. The intercept for the 

non-linear group was -1.33 (90% CI: -2.11 to -0.54, p < 0.01), and -0.87 (90% CI: -1.27 

to -0.48, p = 0) for the linear group. The Egger’s test suggests that there is statistically 

significant asymmetry in both groups, which means that publication bias might be present 

within the pooled results.  

Table 3.9: Egger’s test of symmetry and publication bias 

Group Intercept 
90% Confidence Interval 

t p 
Lower Upper 

Non-linear -1.33 -2.11 -0.54 -3.29 < 0.01 

Linear -0.87 -1.27 -0.48 -5.67 0 

 After identifying that publication bias might be present within the pooled results, 

we used the trim-and-fill procedure to add the ‘missing’ UBCs that may influence the 

pooled result. A visual representation of the ‘missing’ UBCs that have been added can be 

seen in Appendix K, where the clear circles represent added UBCs from the trim-and-fill 
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procedure, and the dark grey circles represent the original UBCs. In the non-linear funnel 

plot, UBCs have been added as a small cluster in the uppermost segment of the pyramid, 

one in the middle section, and four in the bottom segment. Similar to the non-linear 

group, UBCs were added to the upper and lower quadrants. As a result of adding 29 

‘missing’ UBCs to the non-linear group, and 47 UBCs to the linear group, the pooled 

results became statistically non-significant. Pooled results and heterogeneity measures for 

the trim-and-fill procedure can be seen in Table 3.10 below.  

Table 3.10: Pooled results using Duval & Tweedie’s trim-and-fill procedure, including 

heterogeneity measures 

Group 
Pooled 

result 

95% confidence interval Prediction interval 
τ2 I2 

Q 

Lower Upper p Lower Upper  p 

Non-linear 

Papers: 13 

UBCs: 168 

Added: 29 

-0.13 -0.31 0.05 0.16 -2.41 2.15 1.32 95.1% 3,433 0 

Linear 

Papers: 7 

UBCs: 163 

Added: 47 

-0.04 -0.11 0.02 0.20 -0.80 0.71 0.14 65.1% 465 < 0.0001 

3.3.5.2 P-curve analysis 

As a final method to explore the risk of publication bias in the pooled results, we 

can use a p-curve analysis. Table 3.11 shows the results of the p-curve analysis, and 

Appendix L contains the p-curve plots. In the non-linear group, the p-curve plot shows 

that 62% of UBCs have a p-value of 0.01, 16% at 0.02, 9% at 0.03, and 7% at 0.04 and 

0.05, in addition to 94 UBCs excluded with a p-value > 0.05. The non-linear group 

generated a power of 95% and a pooled result of -0.61. In the linear group, the plot shows 
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that 64% of UBCs have a p-value at 0.01, 16% at 0.02, 8% at 0.03, 12% at 0.04, and 0% 

at 0.05%, with 91 UBCs with a p > 0.05. The p-curve for the linear group had a power of 

71%, and a pooled result of -0.67.   

Table 3.11: P-curve analysis of linear and non-linear UBC groups 

Group 

Total number of UBCs 

included in the analysis 

Power estimate Evidential value 

p-curve 

estimate 
Power 

estimate 

95% CI Evidential 

value 

present 

Evidential value 

absent and/or 

inadequate 
p<0.05 p<0.025 Lower Upper 

Non-linear 

p < 0.05: 45 

p > 0.05: 94 

45 

(34.4%) 

36 

(25.9%) 
95% 91.1% 97.6% Yes No -0.61 

Linear 

p < 0.05: 25 

p > 0.05: 91 

25 

(21.55%) 

21 

(18.1%) 
71% 52% 84.3% Yes No -0.67 

3.3.5.3 Risk of bias summary 

The last step in the meta-analysis is summarizing the risk of bias for papers 

included in the study. A visual representation of the risk of bias summary can be found in 

Appendix M. Seven types of bias were reported in this meta-analysis, including, (i) 

selective outcome reporting, (ii) population sampling, (iii) measurement of confounders, 

(iv) IQ testing, (v) incomplete outcome data, (vi) blood lead collection, and (vii) blood 

lead analysis. None of the 13 papers included in this study exhibit any signs of selective 

outcome reporting, or population sampling issues. Hong et al. (2015) and Menezes-Filho 

et al. (2018) did not fully explain the process of collecting confounding variables, which 

were identified as ‘unclear’ in the risk of bias summary. The papers by Wasserman et al. 

(2003) and Min et al. (2009) only briefly describe the process of administering IQ testing, 

so the risk of bias in these papers is ‘unclear’. Three of the thirteen papers were identified 
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as ‘high’ for incomplete outcome data for not reporting some necessary data.  Bellinger et 

al. (1992) did not report the mean BLL for children at ten years old, Dietrich et al. (1993) 

did not report mean BLL for children at age 6, nor did the authors report mean BLLs for 

children between 0 and 6 years old, and Min et al. (2009) did not report mean BLL for 

children at 9 and 11 years old. Reporting the specific steps for blood lead collection was 

mostly an issue in older papers (see Bellinger et al., 1992; Dietrich et al., 1993; Tong et 

al., 1996), but Canfield et al. (2013) also neglected to specify how blood lead samples 

were collected. Lastly, Dietrich et al. (1993) and Tong et al. (1996) were marked as 

‘unclear’ for blood lead analysis bias because these two papers did not detail the process 

of analysis.   

3.4 Discussion 

In this meta-analysis, we have created two groups to generate a robust analysis of 

the available literature by incorporating as many UBCs from the literature as possible 

with the non-linear and linear groups. First, the non-linear group will incorporate all 139 

UBCs from 13 papers, whereas the linear group will provide a smaller pool of UBCs (i.e., 

116 UBCs from 7 papers) that are easy to interpret. The non-linear group benefits from 

incorporating all data into the meta-analysis, by utilizing a relatively new method to 

standardize UBCs that were generated from transformed (e.g., log, natural log, etc.) 

BLLs. In contrast, the linear group only incorporates UBCs that have not been generated 

using transformed BLLs to keep a consistent linear relationship between full-scale IQ and 

blood lead levels in children.  
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As mentioned above, the non-linear group poses a fairly significant limitation of 

generating a result that is difficult to interpret. The pooled results from the non-linear 

group means that for every 50% increase in blood lead levels, we can expect an IQ loss 

(if negative) equal to the UBC. The main problem with this method of standardizing 

UBCs is that the pooled results will be susceptible to the blood lead range chosen to 

present the IQ loss in a practical example. In other words, the absolute change in blood 

lead levels can vary widely while still presenting a 50% change, which is problematic to 

quantifying IQ loss. For example, the following three blood lead ranges all present a 50% 

change, but vary drastically in absolute change: (i) 0.10 µg/dL to 0.15 µg/dL, (ii) 1 µg/dL 

to 1.5 µg/dL, and (iii) 10 µg/dL to 15 µg/dL. In the three examples, the absolute change is 

0.05 µg/dL, 0.5 µg/dL, and 5 µg/dL, respectively. Thus, using the non-linear pooled 

results is difficult, but it serves as a meaningful sensitivity analysis to provide confidence 

to the linear pooled results. Since the non-linear group contains more UBCs from a wider 

range of literature, the trends seen in the subgroup analysis and the p-values associated 

with each pooled result will help to verify the legitimacy of the linear results. As a result, 

the two groups provide a more robust result than using either the non-linear or linear 

group alone. For the remainder of the discussion, we will use the results of the non-linear 

group as a method to provide confidence to the pooled results from the linear group.  

In the initial pooled results, both the non-linear and linear groups achieved 

statistical significance. The pooled result for the linear group was -0.20 (95% CI: -0.26 to 

-0.15) with a moderate level of heterogeneity. After using a simple outlier detection 



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

86 

method using confidence intervals, the pooled result decreased marginally to -0.22 (95% 

CI: -0.27 to -0.17). The omission of the 3 UBCs identified by the simple outlier method 

also decreased the I2 value to 30.2% (from 47.7%). In addition to the simple method of 

outlier detection using confidence intervals, we also employed a more rigorous method to 

remove outliers from the pooled results. The Baujat plots and influence characteristics 

were used to investigate extreme values that may have considerable influence over the 

result. These methods employ visual representation, along with statistical tests, to help 

identify potential outliers. After the influence analysis, no outliers were detected in the 

linear group, so the pooled result remained the same. In the non-linear group, the pooled 

result was -0.40, -0.73, and -0.64 for the original, simple outlier detection, and influence 

analysis, respectively. In relative terms, the change was 182% between -0.40 and -0.73, 

and 160% between -0.40 and -0.64. Thus, based on these relative changes in the pooled 

result for the non-linear group, we might see pooled results slightly higher, if more 

literature was available in the linear group; however, these values would still be well 

within the lower and upper bounds of the prediction interval of -0.70 to 0.27 for the linear 

group. 

Next, we investigated the heterogeneity with GOSH plots to explore the 

possibility of subgroups present in the pooled results. The literature suggests that 

subgroups exist for differences in BLLs, and thus, there will likely be subgroups present 

within a pool of UBCs relating BLLs to IQ. If BLLs are influenced by specific 

characteristics like child age, publication year, study origin, or presence of confounding 



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

87 

variables, we expect to see a scatterplot with visually distinct clusters of points. In the 

non-linear plot, we can see that there is potentially the presence of two subgroups within 

the data. In contrast, the linear group does not visually show the presence of subgroups 

within the UBCs; however, the additional UBCs present in the non-linear group may 

suggest that if more literature were present in the linear group, we would see a second 

cluster emerge. The literature also suggests that subgroups exist for the relationship 

between BLLs and IQ. For example, a large number of studies use age as a method to 

subdivide the population (see Iglesias et al., 2011; Taylor et al., 2017; Tong et al., 1996). 

Although the GOSH plots depict a weak clustering, we proceeded to a subgroup analysis 

to gather further insight.  

Based on the literature and the information available for each study, we 

investigated four potential subgroups, (i) adjustment for confounding variables in the 

regression model, (ii) age of the child at blood lead measurement, (iii) year of publication, 

and (iv) data collected in countries with and without G7 membership. Interestingly, the 

differences between adjusted and unadjusted regression models are not significant for the 

non-linear group, yet statistically significant for the linear group, which suggests that if 

more literature was available for the linear group, we might see a non-significant pooled 

result. Furthermore, the unadjusted pooled result decreases to -0.31 with more 

heterogeneity, but the adjusted pooled result increases to -0.14 with virtually no 

heterogeneity. The relative difference between the subgroups between the non-linear and 

linear groups is close, so we expect to see similar pooled results if more literature was 
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added to the linear group. In this case, it is difficult to suggest the confounding variables 

(e.g., age, HOME score, maternal IQ, etc.) are influencing the pooled results since the 

subgroup differences are not significant for the non-linear group, despite being significant 

for the linear group. We suggest more research to make a robust conclusion about the 

influence of confounders on the relationship between full-scale IQ and blood lead levels. 

In the subgroup analysis for the age of the child at blood testing, we can see a 

statistically significant difference for age among both the non-linear and linear groups. 

The pooled results decrease following the relationship suggested by the literature (see 

Chen et al., 2005; Hornung et al., 2009). In other words, as a child increases in age, a 

child’s IQ is more negatively influenced by BLLs. Interestingly, the heterogeneity 

measures also increase with age, suggesting that older children may have more divergent 

influences confounding their full-scale IQ scores. The pooled results in the linear group 

changed from -0.03, to -0.19, to -0.29, when a child’s age group changes between infant, 

toddler, and child, respectively. The relative change between the infant and toddler (i.e., 

633%) or child (i.e., 967%) subgroup is quite significant, but if we look at the relative 

change between the toddler and child subgroups, the difference is similar between the 

non-linear (41%) and linear (53%) groups. Thus, we expect the pooled result for the 

infant subgroup to be marginally higher to reflect the relative change between the infant 

and toddler subgroups depicted in the non-linear group (i.e., a 268% increase) if there was 

more literature to add to the linear group.  
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Next, the subgroup analysis for the publishing year illustrates that the pooled 

result has lowered since studies published in pre-2009. The linear group generated a 

pooled result of -0.29 in pre-2009 studies and -0.15 in studies published between 2009 

and 2019. Also, the 2009 and 2019 subgroup had less heterogeneity than the pre-2009 

subgroup. Similarly, the same trend can be seen in the non-linear group, but the relative 

difference between the newer and older studies is significantly higher (345%) than in the 

linear group (193%). If more literature was available in the linear group, we might see a 

more negative value for the pre-2009 pooled result, which may suggest that the 

relationship between BLLs and IQ is smaller than once thought since methods to measure 

BLLs and IQ have improved within the last few decades. 

As a final subgroup analysis, we examined the differences in pooled results for 

countries with and without G7 membership. In both the non-linear and linear groups, we 

did not find a statistically significant difference between G7 and non-G7 countries. 

Although the pooled results are not significantly different, we can see that the number of 

studies with data collected from countries without G7 membership is much lower than 

countries with G7 membership. We suggest more research to be conducted in countries 

that do not have G7 membership to generate a clearer understanding of how the 

relationship between full-scale IQ and blood lead levels may vary by country.  

As discussed above, publication bias can occur when smaller studies without a 

large enough sample size (i.e., lower statistical power), or studies with non-results are not 
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published. The next set of statistical methods is used to both identify the presence of 

publication bias, in addition to controlling for the lack of smaller studies and non-results. 

The results of Egger’s test of symmetry seems to suggest that publication bias may be 

plausible as an outcome of the ‘file drawer’ problem; however, the trim-and-fill 

procedure was not statistically significant for either group (i.e., non-linear or linear). 

Egger’s test of symmetry can be indicative of the ‘file drawer’ problem, but it may also 

suggest that the pool of UBC values is homogenously negative. The notion that most 

UBCs are negative (i.e., elevated blood lead levels negatively influence full-scale IQ) is 

not unreasonable. In the original pool of 116 UBCs in the linear group, nine UBCs were 

greater than zero, and in the trim-and-fill procedure, 47 additional UBCs were added. 

Based on the outcome of Egger’s test of symmetry and Duval & Tweedie’s trim-and-fill 

procedure, we have no reason to believe that the ‘file drawer’ problem has influenced the 

pooled result. 

As a final measure to explore publication bias, we used a p-curve analysis to 

determine if researchers used ‘p-hacking’ to increase the statistical power of their results. 

The graphs showing the p-curve for the non-linear and linear groups suggests that the 

distribution of p-values within each group is natural and expected. In fact, the p-curve for 

the linear group shows that 0% of p-values are within the 0.05 bin, and 91 values exceed 

0.05. Although the p-curve analysis shows that evidential value is present, we do not 

think there is reason to believe p-hacking occurred considering the distribution of p-

values within each group.  
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 Based on other meta-analyses published on this topic in the past, this paper 

encompasses far more UBCs than any other meta-analysis. This paper uses a two-group 

approach to incorporate as many UBCs as possible. First, we created one group of UBCs 

that have not been transformed as the main group, which contained 116 UBCs from 7 

papers. Second, we used a new technique to back-transform UBCs to a standardized 

format, which allowed us to create a non-linear group utilizing all UBCs available within 

the literature. The non-linear group incorporated all 139 UBCs available from 13 papers, 

but the standardizing process of UBCs in this group makes it difficult to interpret results. 

Thus, we leveraged the more robust results of the non-linear group to inform the 

interpretation of pooled results from the linear group. Additionally, we did not select a 

specific subgroup to analyze, allowing us to examine the relationship between BLLs and 

full-scale IQ more robustly. Instead, we narrowed our UBCs within the subgroup analysis 

phase of the meta-analysis to incorporate all UBCs initially, then explored the existence 

of potential subgroups within the original pool of UBCs.  

   Indeed, pooling multiple UBCs per study does differ significantly from past meta-

analyses. Meta-analyses typically use one UBC, or in the case of the paper by Needleman 

et al. (1990), partial r, per study to represent the findings of each paper; however, we have 

utilized all UBCs reported in each paper. Researchers in the past have avoided using all 

UBCs reported within the literature for two main reasons, (i) inability to standardize 

UBCs across papers using different transformations, and (ii) researching a more specific 

subgroup. First, the inability to standardize UBCs derived from data that had been 
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transformed using different methods (e.g., log, natural log, etc.) has been a significant 

factor for researchers not being able to collect a larger sample of UBCs to include in a 

meta-analysis. In this paper, we have utilized a relatively new technique generated by 

Rodríguez-Barranco et al. (2017) that has allowed us to use UBCs reported in studies 

using a wide range of transformations. Second, this paper avoids using a more specific 

subgroup to eliminate UBCs based on certain characteristics (e.g., age at blood drawn, 

presence of confounders, country of data collection, etc.), and uses a subgroup analysis to 

identify the existence of any groups within the main population with similar relationships. 

Additionally, meta-analyses may examine the relationship between BLLs and IQ using 

cross-sectional or cohort studies separately, but a subgroup analysis may suffice. In the 

context of this paper, we did not differentiate between cross-sectional studies and cohort 

studies since individual UBCs reported from cohort studies can still be considered cross-

sectional as independent UBCs. 

 This meta-analysis has incorporated far more UBCs than any other meta-analysis 

about the relationship between BLLs and full-scale IQ for children, resulting in a 

statistically significant pooled result of -0.22 (95% CI: -0.27 to -0.17; prediction interval: 

-0.70 to 0.27). In the introduction of this meta-analysis, we discussed how Health Canada 

(2013) predicts that the Canadian government will save $35 billion per cohort from 

changes in lifetime earnings as a result of decreasing the average BLLs in children from 

1.5 µg/dL to 0 µg/dL. Projected savings were based on the assumption that a one unit 

(i.e., µg/dL) increase in BLLs is associated with a one IQ point deficit in children under 
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six years old, but this meta-analysis suggests that relationship is significantly lower (i.e., 

closer to zero). The pooled result of this meta-analysis suggests a five-fold difference 

between the pooled result found in this meta-analysis and the one used by Health Canada. 

If we use the pooled result (i.e., -0.22) generated in this meta-analysis, the Canadian 

government could only expect $7.7 billion per cohort by decreasing the average BLLs in 

children from 1.5 µg/dL to 0 µg/dL, and the average IQ per child would only increase by 

approximately 0.33 points. At an 8% discount rate, we could only expect a savings of 

$330 million, and at a 3% discount rate, we could expect a savings of about $2.1 billion 

per cohort. If we use the pooled result of the adjusted UBCs in the linear group (i.e., -

0.14), the savings per cohort would decrease to a mere $4.9 billion, or $210 million at an 

8% discount rate and $1.3 billion at a 3% discount rate. Similarly, for the literature that 

has been published between 2009 and 2019, the pooled result was -0.15, which would 

produce nearly identical savings projections. Lastly, if we use the pooled results for 

infants (-0.03), toddlers (-0.19), and children (-0.29), we can calculate the projected 

savings by age group using the percent of the population that each age group contributes 

to the total population under six years old. In the 2016 census, Statistics Canada (2019) 

reported 369,730 children under one-year-old (16.1%), 1,529,060 children one to four 

years old (66.7%), and 394,530 children five years old (17.2%). Unfortunately, the age 

groups do not align directly with the age groups outlined in this meta-analysis; however, 

they will provide a reasonable estimate. If the BLLs of children under six years old 

decreased from 1.5 µg/dL to 0 µg/dL, the projected savings by age group would be 

approximately $169.1 million, $4.4 billion, and $1.7 billion for infants, toddlers, and 
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children, respectively. At an 8% discount rate, we could expect a savings of $7.2 million 

(infants), $190.1 million (toddlers), and $74.8 million (children), and at a 3% discount 

rate, we could expect a savings of $45.4 million (infants), $1.2 billion (toddlers), and 

$468.9 million (children). Based on the findings of this meta-analysis, we can see that the 

projected savings due to the relationship between elevated BLLs and full-scale IQ are 

significantly lower than the projections made by Health Canada (2013). Unfortunately, 

the new savings projections in this meta-analysis may not be enough to justify the large 

capital investment of lead abatement. 

3.5 Limitations 

There are two main limitations specific to this meta-analysis, (i) the relative 

difference between non-linear pooled results may not be comparable to the linear group, 

and (ii) using all UBCs from each paper may dilute findings of smaller studies. The non-

linear group is useful to incorporate more UBCs into the pooled result to show upward 

and downward trends for comparison in the subgroup analysis. However, the relative 

differences (i.e., percent change between pooled results) among the non-linear pooled 

results may not accurately represent the relative changes we would see in the linear group 

with a larger pool of UBCs. Next, using all UBCs reported in each paper may cause 

papers with multiple UBCs to dilute the findings of papers with fewer UBCs. For 

example, if a paper reports 20 UBCs, it may dilute the findings of a paper only reporting 

2 UBCs. Although some studies may report more UBCs than others, the sample size 

between interstudy regression models often changes due to data collection limitations 
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(i.e., variability in subgroup data collection). Thus, the weights of each UBC should limit 

the ability of studies reporting more UBCs from diluting the findings of studies reporting 

fewer UBCs.  

 In addition to the limitations specific to the study, there are more generalized 

criticisms of the meta-analysis process. Firstly, meta-analysis is a product of the data 

included in the analysis. As a means to capture all available literature into the pool of 

research, the search process is a vital process of the meta-analysis. This meta-analysis 

used a pre-determined search term to collect literature from the PubMed database, which 

may have missed literature on the topic. Thus, it is possible that influential studies were 

excluded, which may have changed the result of this meta-analysis. Second, all steps for 

this meta-analysis were completed by one investigator, which means there is a more 

significant chance of human error. Although steps were taken to address the possibility of 

human error (i.e., reviewing processes, double-checking values, etc.), there is still a 

chance that things (e.g., an erroneous value) were overlooked. Meta-analyses also invite a 

higher degree of uncertainty in the sense that uncertainties from individual studies and 

UBCs are added together in a meta-analysis. As a result, there is more uncertainty with 

the results of a pooled outcome. This meta-analysis mitigates uncertainty by providing a 

95% confidence interval and a prediction interval with the pooled results. Another 

concern with meta-analyses is pooling data from different populations, using different 

confounding variables. Pooling data that were derived using different populations (i.e., 

groups of people with different identifying characteristics), in addition to models that 
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have either been unadjusted or adjusted using variable confounders can make it difficult 

to produce reliable comparisons and pooled results. Although these limitations exist, the 

meta-analysis process is still the best way to synthesize the literature to estimate the 

collective relationship between BLLs and full-scale IQ in children. 

3.6 Conclusion 

As shown in this meta-analysis, the impact of BLLs on IQ may not be as strong as 

once thought within the broader literature. Indeed, an elevated BLL for a child can be 

linked to a loss of IQ, but the magnitude of intellectual loss is not as high as suggested by 

other meta-analyses linking BLLs and IQ. By utilizing a recent transformation technique 

to standardize the UBCs, we were able to develop a two-group method to generate more 

robust linear pooled results. Additionally, by using a subgroup analysis, this meta-

analysis was able to synthesize far more information than previously done in past meta-

analyses. The result of this meta-analysis may have a significant impact on future cost-

benefit analyses, and reduce the return on investment projections for lead abatement.  
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Chapter 4 A critical assessment of the return on investment of permanent lead 

hazard control: a case study in Hamilton, Ontario 

4.1 Introduction 

Lead (Pb) abatement and awareness continues to be important in many post-

industrialized societies where lead poisoning remains a problem (Hanna-Attisha et al., 

2016). Lead can be a risk to children through three primary sources, which include lead-

based paint, water contaminated by lead pipes, and lead-contaminated soil. Children are 

at increased risk to lead poisoning since children often play close to the ground and can 

consume contaminated soil through normal hand-to-mouth behaviour (Cleveland et al., 

2010; Landrigan et al., 2011). Low-dose lead poisoning (<10 µg/dL) has been linked to 

several adverse social and economic outcomes, which can place a cost burden on society, 

with Health Canada (2013) estimating that the impact of lead accounts for approximately 

$920.4 million (M) to $5.7 billion (B) (2006 USD) [$1.5B to $9.2B (2018 CAD)] per 

year. As a note to the reader, the currency is in 2006 USD, and currency listed within 

square brackets is in 2018 CAD for the introduction unless otherwise stated (i.e., $1.00 

2006 USD = $1.6190 2018 CAD). Additionally, since this paper will switch to 2018 CAD 

and Gould’s paper is in 2006 USD, the values of return on investment will remain in 2006 

USD to preserve the ratio of investment and return (i.e., we will use 17 times and 221 

times capital investment cost to calculate return on investment). 
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4.1.1 Mitigating lead exposure 

Public health intervention and permanent lead abatement are two options that can 

be considered to reduce lead exposure for children. Public health interventions can be 

used to help mitigate children’s exposure to lead by educating parents of exposure risks, 

how to make crucial behavioural changes, blood lead testing, and professional risk 

assessments within the home. There are many types of behavioural changes families can 

make, and some examples may include: proper hygiene, allowing water taps to run before 

drinking, frequent wet mopping and vacuuming, leaving shoes outside, and giving more 

attention to children as they play. Public health policies and awareness campaigns are 

often less expensive and reach a much wider audience, but their total dependence on 

families to enact these mitigation strategies may result in poor health outcomes. 

Alternatively, permanent remediation strategies, namely soil removal and 

replacement, paint remediation, and the replacement of lead water pipes can be used to 

eradicate lead from the environment, either within a building, on the property of a 

structure, or in an open space. Remediation strategies can be used on public or private 

property, including residential homes, parks, schools, or any other location that children 

may be exposed to contamination. Permanent lead remediation is preferred since the 

chance of lead exposure will be removed entirely, but this strategy can be a source of 

significant economic burden for families or government entities. Capital investment is an 

important consideration when developing a lead abatement strategy. However, the 

literature has shown that lead hazard control can produce a return on investment (ROI) in 
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the form of health care and special education savings, increased lifetime earnings and tax 

revenues, and a reduction in crime (Gould, 2009).  

4.1.2 Cost of lead remediation and social benefits 

The cost and efficacy of permanent lead abatement can vary widely based on the 

type of hazard control and location. Mielke et al. (2011) discuss remediation efforts in 

New Orleans where they replaced lead-contaminated soil at childcare centres across the 

city. Researchers found that the replacement of soil at each childcare centre, in addition to 

an interior environment assessment, would cost less than $100 [$161.90] per child. At a 

total estimated cost of $700,500 [$1.1M], Mielke et al. (2011) explain that over ten years, 

the cost per child will lower to a mere $10 [$16.19]. As a result of the soil replacement, 

soil lead levels decreased significantly from a median of 558 mg/kg (range 14.1-3692 

mg/kg) to an acceptable and safe median of 4.1 mg/kg (range 2.2-26.1 mg/kg) (Mielke et 

al., 2011). A 1998 study estimates the average cost of remediation at $1,700 [$2,752] per 

household with a total of $5M [$8.1M] for the entire study (Yeoh et al., 2009). In 

Rochester, New York, Korfmacher, Ayoob, & Morley (2012) explain that in December 

2005, a law was passed requiring any rental property built before 1978 to be inspected for 

lead risks within the home. Researchers report that the city spends $600,000 [$971,428] 

per year on lead dust wipes, inspectors, and additional administrative needs. Compliance 

with Rochester’s Lead Law imposes additional costs on landlords. Korfmacher et al. 

(2012) report results from a telephone survey of 183 landlords that had to comply with 

the Rochester Lead Law. The average repair cost per unit was approximately $1,726 
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[$2,794], but the median cost was only $300 [$485.71]) and 34% of respondents reported 

they did not have to spend anything. As a result of the Rochester Lead Law, researchers 

found that “94% of units passed visual inspections and that 89% of tested units passed 

dust-wipe inspections during the first 4 years” (Korfmacher et al., 2012, p.315). 

Additionally, Korfmacher et al. (2012) explain the evaluation of the project suggests that 

the new lead laws contributed to a decline in children’s blood lead levels by mitigating 

exposure to lead hazards within the home. In contrast, Farrell, Brophy, Chisolm, Rohde, 

& Strauss (1998) explain that soil was replaced with lead-free soil (less than 50 ppm) and 

re-sodded in either the front yard, back yard, or both if the soil lead level exceeded 500 

ppm. Interestingly, a year after soil replacement, BLLs dropped, but there was no 

significant difference between the BLLs of remediation and control groups (i.e., no soil 

abatement). Furthermore, soil samples showed that after two years, SLLs increased 

significantly (Farrell et al., 1998). In addition to the high capital investment outlined 

within the literature, a meta-analysis by Yeoh et al. (2009) explains that research often 

does not include the costs associated with paying researchers and educators for lead 

remediation programs. 

A consensus within the literature states that the return on investment (ROI) for 

lead hazard control is relatively high compared to other programs such as vaccinations. A 

study by Gould (2009) has reported a return of $17 to $221 [$27.52 to $357.81] for every 

dollar [$1.6190] invested in lead hazard control. The ROI is estimated to save the United 

States about $181B to $269B [$293B to $435B]. Gould (2009) argues that lead-based 
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paint remediation alone has a return of $12 to $155 [$19.43 to $250.95] for every dollar 

[$1.6190] spent and $124B to $188B [$200B to $304B] in net savings. The author 

explains that capital returns are a result of less pressure on the health care system to treat 

lead poisoning, increased Intelligence Quotient (IQ), higher lifetime earnings, tax 

revenues, reduced spending on special education, and reduced criminal activity (Gould, 

2009). Gould (2009) explains that the ROI for lead hazard control is significantly higher 

than vaccination programs to fight the most common childhood diseases ($5.30 to $16.50 

[$8.58 to $26.71] returned for every dollar spent [$1.6190]). Specific to this study, 

permanent lead abatement has been shown to benefit the economy by saving $110B to 

$319B [$178B to $516B] for a single cohort (Taylor et al., 2011). A study by Brown 

(2002) suggests savings of over $46,000 [$74,476] per building, over ten years, with at 

least one child under the age of six years old within the home.  

Permanent lead abatement is undoubtedly the best way to eliminate the risk of a 

child being exposed to lead hazards. This paper will address three main objectives to 

explore lead abatement, return on investment, and discuss any concerns with projected 

ROI estimates. Objective one will explore the cost for permanent lead abatement in 

Hamilton, Ontario, and discuss how reasonable this approach would be for residents and 

the municipal government. Objective two will determine the projected ROI from 

permanent lead abatement in Hamilton based on the estimates presented by Gould (2009), 

and objective three will explore the need for soil lead abatement. 
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4.2 Datasets 

4.2.1 Study area 

The City of Hamilton is a post-industrialized city along the southwestern edge of 

Lake Ontario. The study focuses on the downtown core of Hamilton (see Figure 2.1, 

p.14), surrounded by the escarpment (south), highway 403 (west), Lake Ontario (north) 

and the Red Hill expressway (east). Hamilton has had a long history of steel production, 

in addition to a flourishing manufacturing district, including paint factories, which may 

have attributed to soil contamination within the city. The City of Hamilton was chosen to 

explore permanent lead abatement for three main reasons: (i) Hamilton has an old 

housing stock and may contain leaded pipes, as well as lead-based paint on the interior 

and exterior walls, (ii) Hamilton is a relatively old city with a busy downtown core which 

means soil lead contamination from leaded gasoline combustion is likely high, and (iii) its 

industrial history.  

4.2.2 Target land uses for lead abatement 

In Hamilton, there are four primary land uses that may require lead abatement, 

which includes: residential land parcels, parks, elementary schools, and nursery- and pre-

schools. Residential land parcels will require three types of lead abatement (i.e. soil, 

paint, and lead pipes) to remediate lead fully. Parks were included since children may 

spend time on the ground playing and have a chance to consume soil at these locations. 

Parks were divided into two sub-categories to determine the cost per child, (i) low-

volume parks, and (ii) high-volume parks. Low-volume parks are any community- or 
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neighbourhood-level park that will typically only draw children from the immediate 

proximity, whereas high-volume parks are often larger and draw children from all over 

the city. Both low- and high-volume parks may include general open space, sports 

facilities, and trails. Elementary schools, in addition to nursery- and pre-schools, were 

included since children may spend a significant amount of time at school during the day. 

Unfortunately, data were difficult to obtain for nursery- and pre-schools, so only soil 

abatement cost was included in the analysis.  

4.2.3 Soil samples 

This paper uses a data set collected by Hamilton Public Health Services in 2008-

2009 that contains soil, water and dust samples measuring lead content (Richardson et al., 

2011). These data were collected as part of a more extensive study that also collected 

BLLs, in addition to survey variables. The dataset is comprised of 187 soil lead samples 

that were collected throughout the downtown core of Hamilton. Soil samples were 

collected from the lower city based on the location of the household (i.e., industry-

adjacent zone, middle zone, escarpment-adjacent zone, and old recycling plant zone) and 

the age of the dwelling (i.e., before 1950, and after 1950). The soil samples were 

collected and processed by the Ministry of the Environment during the summer of 2009. 

A tube-type soil corer, at a depth of 5 centimetres, was used to sample the soil “from a 

household’s front, back or side yard depending on where the child played most frequently 

and/or where there was sufficient conditions to sample” (Richardson et al. 2011). 
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Samples were then analyzed using atomic absorption spectrophotometry to determine the 

lead content with a limit detection of 5 µg/g dry weight.  

4.3 Methodology 

4.3.1 Predicting cost of lead abatement 

Objective one will explore the cost associated with permanent lead abatement 

from four central locations where lead is likely to pose a threat to children, which 

includes: residential homes, parks, elementary schools, and nursery- and pre-schools. A 

permanent lead abatement strategy often requires a high capital investment in the short-

term but completely removes lead from the environment. Permanent lead abatement 

strategies are often expensive because they may require special materials, machinery, or 

individuals to remove contaminates.  

In order to estimate SLLs within the lower city, Empirical Bayesian Kriging was 

used to understand the spatial distribution of SLLs. Soil and sod remediation has been 

calculated for two thresholds, (i) 70 mg/kg, and (ii) 140 mg/kg, which represent the 

human health guidelines for agricultural (i.e., soil and food ingestion), and 

residential/parkland (i.e., soil ingestion) land uses, respectively (Canadian Council of 

Ministers of the Environment, 1999). Lead-based paint is mostly an issue for homes built 

before 1960 (Government of Canada, 2017), but since the housing stock in Hamilton is 

quite old, the vast majority of homes built in downtown Hamilton may contain lead-based 

paint (Richardson et al., 2011). Lastly, lead pipes are most prevalent in homes that were 
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built before 1945 (Richardson et al., 2011); however, Hamilton schools were recently 

checked for water lead levels, so schools needing lead pipe replacement was known based 

on the results of that report (Leitner, 2018). Since this paper is a case study in Hamilton, 

Ontario, we will use 2018 Canadian dollars for the analysis, results, and discussion. 

In addition to the total projected cost, the cost per child was also calculated to 

provide a more contextual projection. Total abatement cost is likely to be quite expensive, 

so it is crucial to understand how that cost relates to the children it will help. Cost per 

child was calculated simply by dividing the total cost of abatement by the number of 

children (in the 2016 age cohort) affected by the abatement (Statistics Canada, 2018). For 

residential homes, cost per child was estimated by determining the percent of residential 

land parcels per dissemination area that are targeted for lead remediation and multiplying 

by the total number of children in the dissemination area. As previously discussed, parks 

were divided into two categories (i.e., low-volume and high-volume) to project cost per 

child estimates more accurately. Total lead abatement costs for parks were divided by the 

total children within Hamilton for high-volume parks and divided by the total children 

within the specific dissemination area for low-volume parks. The cost per child for 

elementary schools was calculated by dividing total cost by the number of children 

enrolled in junior kindergarten and kindergarten (Hamilton Wentworth District School 

Board, 2018), which are the most vulnerable age groups to lead poisoning. Lastly, the 

cost per child for nursery- and pre-schools was determined by using an estimate of 43% 

of children being enrolled in daycare in Ontario (Statistics Canada, 2011).  
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4.3.1.1 Sod and soil replacement 

For objective one, the replacement cost of sod and soil, paint, and lead pipes was 

calculated for at-risk land parcels (i.e., homes, parks, elementary schools, and nursery- 

and pre-schools) within the study area. First, at-risk land parcels for soil contamination 

were determined by using Empirical Bayesian Kriging and the SLL samples. Land 

parcels situated in the soil that exceeded 70 mg/kg and 140 mg/kg were selected for soil 

and sod replacement at a depth of six inches (Mielke et al., 2011). Sod and soil costs were 

determined by finding the least expensive sod and soil companies within Hamilton and 

using the best possible discounted prices. The least expensive price for sod within 

Hamilton is $0.26 per square foot (Green Horizons Sod Farms, 2018) and $137.62 per 

cubic yard for soil (Big Yellow Bag, 2018). Labour cost to replace the sod and soil was 

determined by contacting local landscaping companies. Despite contacting multiple 

companies, only one responded with a quote of 0.012 hours per square foot of sod and 

soil replacement, at a rate of $68/man-hour (Jerome, 2018). Total abatement costs for 

objective one can be seen in Table 4.1. 

4.3.1.2 Paint abatement 

According to The President’s Task Force on Environmental Health Risks and 

Safety Risks to Children (see Gould, 2009), controlling lead-based paint hazards requires 

screening structures pre-dating 1960 (Government of Canada, 2017) to determine if 

complete lead abatement is necessary. Age of dwelling was not available at the household 

level, but we were able to access the median age of dwelling by census tract to predict at-



PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

112 

risk homes within the study area (City of Hamilton, 2017). Lead-based paint screening is 

estimated to cost $1,943 per home, and if further lead abatement is necessary, phase two 

will cost up to $17,485 per home (Gould, 2009). The median size of homes referenced in 

the study was not disclosed, so we used the median size of homes within the United 

States at the time of the study (i.e., 2,057 square feet) (United States Census Bureau, 

2010) and the median size of homes in Hamilton in 2018 (i.e., 1,200 square feet) 

(Webster, 2018). Based on the difference in square footage, the $1,943 to $17,485 cost 

estimates were changed accordingly (i.e., $1,133 to $10,200 per Hamilton home). 

Similarly, square footage of elementary schools, by room, were acquired from the 

Hamilton-Wentworth District School Board (HWDSB) (Webster, 2018). Square footage 

of schools was determined by identifying which rooms are most likely to pose a risk to 

children (i.e., boys’ and girls’ washroom, gymnasium, classrooms, learning commons, 

kindergarten, kitchen, stage, daycare, foyer, girls and boys changeroom, computer lab, 

literacy centre, special education, music room, health room, common area, multi-purpose 

room and nutrition room) and the resulting square footage was used to determine the cost 

of screening and complete lead-based paint abatement per school. 

4.3.1.3 Lead-pipe abatement 

The City of Toronto (about an hour east of Hamilton) generated a cost estimate of 

roughly $1,942 to $2,914, depending on the characteristics of the property, to remove and 

replace lead-pipes (City of Toronto, 2018). Residential homes built before 1945 were 

used to calculate the cost to replace lead-pipes within the study area (Richardson et al., 
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2011) and similar to paint abatement, we used median age of dwelling by census tract as a 

proxy to determine at-risk homes (City of Hamilton, 2017). Fortunately, recent lead 

testing of water fountains in Hamilton identified schools that exceeded safe levels of lead 

in drinking water (Leitner, 2018). Schools listed with water lead exceedances were used 

to calculate the total cost for lead-pipe removal in Hamilton; however, the median square 

footage of Toronto homes was not able to be obtained, so the cost of lead pipe 

remediation was based on the median square footage of Hamilton homes. The total cost 

of lead pipe remediation was $1.65 to $2.48 per square foot, which was multiplied by the 

square footage of schools (see above) and summed. 

4.3.2 Calculating return on investment 

Objective two required us to calculate the ROI for lead hazard control. In other 

words, when a dollar is spent on lead hazard control, society saves money from reduced 

spending on health outcomes caused by lead poisoning. Gould (2009) argues that a 

conservative estimate would return $17 (2006 USD), up to an optimistic $221 (2006 

USD). Additionally, Gould (2009) estimates that lead-based paint remediation returns 

$12 (2006 USD) to $155 (2006 USD) for every dollar spent. Unfortunately, the author 

does not outline how soil and lead pipe abatement factors into the ROI evaluation; 

however, a study from the Arizona Department of Health Services breaks down exposure 

pathways causing elevated BLLs (see Levin et al., 2008). The study suggests that 

exposure from soil and paint accounts for 24% and 17% of childhood elevated BLLs, 

respectively. Contaminated water from lead pipes was not identified as a direct exposure 
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pathway by Arizona Department of Health Services, but a category named 

“miscellaneous other sources” was identified with an exposure rate of 19% (see Levin et 

al., 2008). As a means to calculate ROI for all types of remediation, we will use the ROI 

estimated by Gould (2009) and estimate soil and pipe replacement ROI using the study by 

the Arizona Department of Health Services (see Levin et al., 2008). Based on the study 

by Arizona Department of Health Services, we will use $4.08 to $53.04 (2006 USD) 

(24% of $17 to $221) for soil and sod replacement, and $1.02 to $13.26 (2006 USD) 

(remaining 6%) for lead pipe abatement. Based on these values, a conservative and 

optimistic ROI was calculated using the total cost of remediation for each land use and 

abatement type. 

When discussing project costs and return on investment, it is essential to 

consider the present and future values using a discount rate (DR). The discount rate is 

used to determine the value of money accumulating in a bank over a predetermined 

amount of time and interest rate. In order to understand the value of a project, we can use 

this information to compare the discounted costs and ROI to generate an informed 

decision. Different projects require different discount rates and timespans, but Health 

Canada (2013) suggests that a discount rate between 3% and 8% since the outcomes of 

lead abatement are both social and financial. Furthermore, Health Canada (2013) also 

explains that a lifetime for a working child spans from 15 to 67 years old, so we will use 

52 years for the discount rate calculation. Unfortunately, Gould (2009) did not disclose 

the number of years, nor the discount rate used for the ROI projections; however, the 
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author does describe the savings concerning a child’s lifetime. Thus, we assume that the 

number of years used in the discount rate calculation was similar to the 52 years used by 

Health Canada (2013). Since the true values used in the discount rate calculations for the 

ROI projections are not known, we suggest using caution when comparing the discounted 

project costs and the ROI projections.   

4.3.3 Understanding the threat to children 

In addition to soil lead level thresholds regulated by the government, we can also 

calculate hazard quotients to determine the threat to children. A hazard quotient (HQ) is 

the ratio between the potential exposure of a contaminate to the threshold at which no 

adverse health effects are expected (EPA, 2018). The HQ can be calculated as follows, 

where Cs is the concentration of contaminant in soil (mg/kg), IRs is the soil ingestion rate 

(kg/day), RAForal is the relative absorption factor from the gastrointestinal tract, D2 is the 

days per week the child is exposed (divided by 7 days), D3 is the weeks per year the child 

is exposed (divided by 52 weeks), and BW is the bodyweight of the child (Health Canada, 

2010): 

Hazard Quotient = Estimated Exposure (Dose) (mg/kg bw/day) 

Tolerable Daily Intake (TDI) (mg/kg bw/day) 

 

Estimated Exposure (Dose) = 

(mg/kg bw/day) 

Cs * IRs * RAForal * D2 * D3 

BW 
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An in-depth look at the Hazard Quotient and Estimated Exposure calculations can be 

found in Appendix N. This paper will create three hazard quotient maps with a tolerable 

daily intake of 0.0015 mg/kg bw/day, for each age group: (i) infants (0 – 6 mo.), (ii) 

toddlers (7 mo. – 4 yr.), and children (5 – 11 yr.) (see Appendix N). In Canada, the 

current blood lead intervention level is 10 µg/dL (Health Canada, 2013), but the United 

States uses a much lower blood lead intervention level of 5 µg/dL (M. S. Burns et al., 

2014). For this paper, we will use the blood lead intervention level from the United States 

since adverse health effects have been observed in children well below 10 µg/dL (Health 

Canada, 2013). A tolerable daily intake of 0.0015 mg/kg bw/day will result in a blood 

lead level of 5 µg/dL (based on SNC-Lavalin, 2012; World Health Organization, 2011; 

see Appendix N). In combination with ArcMap and a prediction surface, we can use the 

Raster Calculator tool to create a hazard quotient map. An HQ map will allow us to more 

accurately understand the threat to children and determine the need to remediate 

contaminated soil.  

4.4 Results 

4.4.1 Cost of permanent lead abatement 

Objective one required estimation of the cost of permanent lead abatement for four land 

use types, which included (i) residential, (ii) parks, (iii) elementary schools, and (iv) 

nursery- and pre-schools. Two SLL thresholds were used for abatement (i.e., greater than 

70 mg/kg and greater than 140 mg/kg), which can be seen in Table 4.1. At the SLL 

thresholds of >140 mg/kg and >70 mg/kg, soil and sod replacement will cost $112.3M to 
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$174.7M for residential homes ($25,700 to $31,700 per child), $24.2 to $38.1M for high-

volume parks ($853 to $1,300 per child), $12.5M to $18.4M for low-volume parks 

($9,100 to $10,700 per child), $7.6M to $9.9M for elementary schools ($4,500 to $4,700 

per child), and $43,900 for nursery- and pre-schools ($8 per child). Additionally, lead-

based paint abatement will cost $30.6M to $275.6M for residential homes ($4,400 to 

$39,500 per child), and $28,300 to $255,000 for elementary schools ($16 to $147 per 

child). Lastly, lead pipe removal will cost $47.3M to $70.9M for residential homes 

($8,100 to $12,100 per child), and $14,300 to $21,500 for elementary schools ($52 to $78 

per child). 

Table 4.1: Cost of lead abatement and cost per child  

Land use type Type of abatement Total cost Cost per child 

R
es

id
en

ti
a
l 

Soil >70 mg/kg $174,708,760 $31,707 

Soil >140 mg/kg $112,322,261 $25,791 

Paint (Screening vs. removal) 

$30,620,666 

to 

$275,585,988 

$4,389 

to 

$39,510 

Lead pipes (Range estimate) 

$47,261,661 

to 

$70,892,492 

$8,100 

to 

$12,149 

Parks 

(High Volume) 

Soil >70 mg/kg $38,072,010 $1,345 

Soil >140 mg/kg $24,165,812 $853 

Parks 

(Low Volume) 

Soil >70 mg/kg $18,395,300 $10,663 

Soil >140 mg/kg $12,512,398 $9,067 

E
le

m
en

ta
ry

 

sc
h

o
o
ls

 

Soil >70 mg/kg $9,875,431 $4,655 

Soil >140 mg/kg $7,626,521 $4,566 

Paint (Screening vs. removal) 

$28,333 

to 

$255,000 

$16 

to 

$147 

Lead pipes (Range estimate) 

$14,319 

to 

$21,478 

$52 

to 

$78 

Nursery- and 

pre-schools 

Soil >70 mg/kg $43,941 $8 

Soil >140 mg/kg $43,941 $8 
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4.4.2 Return on investment (ROI) 

Based on the cost estimates from objective one, conservative and optimistic ROI 

projections were calculated for the second objective (see Table 4.2). At the 140 and 70 

mg/kg SLL thresholds, soil and sod abatement would return $458.3M to $712.8M 

(conservatively) and $6.0B to $9.3B (optimistically) for residential homes, $98.6M to 

$155.3M (conservatively) and $1.3B to $2.0B (optimistically) for high-volume parks, 

$51.1M to $75.1M (conservatively) and $663.6M to $975.7M (optimistically) for low-

volume parks, $31.1M to $40.3M (conservatively) and $404.5M to $523.8M 

(optimistically) for elementary schools, and $179,300 (conservatively) to $2.3M 

(optimistically) for nursery- and pre-schools. Screening and abatement for lead-based 

paint will return $623.9M to $5.6B (conservatively) and $8.1B to $73.0B (optimistically) 

for residential homes, $337,200 to $3.0M (conservatively) and $4.4M to $39.4M 

(optimistically) for elementary schools. Finally, lead pipe replacement will return $48.2M 

to $72.3M (conservatively) and $626.7M to $940.0M (optimistically) for residential 

homes, and $13,600 to $21,900 (conservatively) and $189,900 to $284,800 

(optimistically) for elementary schools.  

Table 4.2 also shows the discounted project costs at a 3% and 8% discount rate 

(DR). As can be seen, the 3% discounted project costs exceed the conservative ROI 

values for all abatement types, except for paint abatement in residential homes ($142.4M 

to $1.3B) and elementary schools ($131,800 to $1.2M). Indeed, the optimistic ROI values 
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far exceed the total project costs discounted at 3%, but the project costs discounted at an 

8% rate has the same result as the project costs discounted at 3%.  

Table 4.2: Discounted rates of lead abatement cost and ROI of permanent lead abatement 

Land 

use type 

Type of 

abatement 

Total cost 

with a 3% DR 

Total cost with an 

8% DR 

Return on investment 

(per dollar spent) 

Conservative Optimistic  

R
es

id
en

ti
a
l 

Soil >70 mg/kg $812,550,508 $9,557,624,559 $712,811,742 $9,266,552,652 

Soil >140 mg/kg $522,398,019 $6,144,706,197 $458,274,822 $5,957,572,694 

Paint (Screening 

vs. removal) 

$142,413,224 

to 

$1,281,718,985 

$1,675,135,405 

to 

$15,076,218,313 

$623,855,488 

to 

$5,614,699,517 

$8,110,121,336 

to 

$72,991,093,721 

Lead pipes 

(Range estimate) 

$219,808,593 

to 

$329,712,891 

$2,585,498,357 

to 

$3,878,247,562 

$48,206,894 

to 

$72,310,340 

$626,689,622 

to 

$940,034,433 

Parks 

(High 

Volume) 

Soil >70 mg/kg $177,068,574 $2,082,768,934 $155,333,799 $2,019,339,393 

Soil >140 mg/kg $112,392,434 $1,322,015,898 $98,596,513 $1,281,754,662 

Parks 

(Low 

Volume) 

Soil >70 mg/kg $85,554,441 $1,006,334,033 $75,052,827 $975,686,743 

Soil >140 mg/kg $58,193,735 $684,503,756 $51,050,584 $663,657,592 

E
le

m
en

ta
ry

 s
ch

o
o
ls

 Soil >70 mg/kg $45,929,503 $540,245,732 $40,291,758 $523,792,861 

Soil >140 mg/kg $35,470,079 $417,216,769 $31,116,204 $404,510,645 

Paint (Screening 

vs. removal) 

$131,774 

to 

$1,185,976 

$1,549,986 

to 

$13,950,040 

$337,167 

to 

$3,034,506 

$4,383,175 

to 

$39,448,574 

Lead pipes 

(Range estimate) 

$66,596 

to 

$99,892 

$783,336 

to 

$1,174,976 

$13,611 

to 

$21,907 

$189,867 

to 

$284,800 

Nursery- 

and pre-

schools 

Soil >70 mg/kg $204,365 $2,403,838 $179,277 $2,330,609 

Soil >140 mg/kg $204,365 $2,403,838 $179,277 $2,330,609 

 

4.4.3 Hazard quotient 

Three hazard quotient maps were created to show the differences between an 

infant, toddler and child, with 52 weeks of exposure and a tolerable daily intake of 0.0015 
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mg/kg bw/day (based on SNC-Lavalin, 2012; World Health Organization, 2011). 

Additionally, one hazard quotient map was created to show the difference in HQ 

distribution for a toddler with 40 weeks of exposure to represent cold and snow-covered 

winter months. Table 4.3 shows the descriptive statistics of HQ among the three age 

groups (i.e., infant, toddler, and child), and two exposure durations (i.e., 52 weeks, and 40 

weeks) in Hamilton, Ontario. The spatial distribution of hazard quotient for all six age 

groups and exposure combinations yielded maximum hazard quotients lower than 1, 

which means no children, on average, will be at-risk of adverse health effects of soil lead 

exposure in Hamilton. Toddlers are at the highest risk level because they inadvertently 

consume four times more soil per day (i.e., 80 mg/day) than both infants and children 

(i.e., 20 mg/day). The average hazard quotients in Hamilton were 0.195, 0.388, and 0.049, 

with 52 weeks of exposure, and 0.150, 0.299, and 0.037, with 40 weeks of exposure for 

infants, toddlers and children, respectively. The maximum hazard quotients in Hamilton 

were 0.396, 0.786, and 0.099, with 52 weeks of exposure, and 0.304, 0.605, and 0.076 

with 40 weeks of exposure for infants, toddlers and children, respectively. 

Toddlers are the highest-risk age group, and based on the hazard quotient 

calculations; this age group may be at risk of exceeding the blood lead threshold of 5 

µg/dL if further exposed to lead through contaminated water, dust and paint chips. In 

order to remediate homes in this area (n=666), it would cost $3,107,394 to replace soil 

and sod, $754,578 to $6,793,200 to replace paint, and $1,293,372 to $1,940,724 to 
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replace pipes. Although the square footage of apartments is unknown, to replace sod and 

soil for the 80 apartments within the lower city, it would cost $706,030.  

Table 4.3: Hazard Quotient for different age groups, based on weeks of exposure and a 

tolerable daily intake of 0.0015 mg/kg bw/day in Hamilton, Ontario 

Age Group 
Weeks of 

exposure 

Hazard Quotient 

Minimum Maximum Mean 
Standard 

Deviation 

Infant 52 0.043 0.396 0.195 0.078 

Toddler 52 0.086 0.786 0.388 0.156 

Child 52 0.011 0.099 0.049 0.020 

Infant 40 0.033 0.304 0.150 0.060 

Toddler 40 0.066 0.605 0.299 0.120 

Child 40 0.008 0.076 0.037 0.015 

 

4.5 Discussion 

In 2018, Hamilton released its gross capital spending budget for the year, totalling 

$256.3M. More specifically, Hamilton’s budget for waste management initiatives and 

open space development is $4.4M and $7.8M, respectively (City of Hamilton, 2018a). 

Based on these allowances, many of the lead abatement options seen in Table 4.1 are 

unrealistic within current budget constraints. Indeed, some of these expenses could be 

subsidized by the provincial or federal government, but many other urban cities in 

Canada are facing similar levels of lead contamination (Health Canada, 2013).  
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For objective one, we explored the cost of permanent lead remediation in 

Hamilton and found that the cost far exceeds any reasonable solution for the municipal 

government to implement. Aside from nursery- and pre-schools, soil and sod replacement 

is significantly more expensive than any other permanent remediation strategy. 

Elementary schools are the least expensive target for soil and sod replacement, but still 

require a substantial capital investment of $7.6M that exceeds the repairs and minor 

renovations budget of $3.8M for HWDSB during the 2018/2019 school year (Zucker et 

al., 2018). Soil and sod replacement for elementary schools may be possible with federal 

and provincial subsidies, or multi-year investment from HWDSB. Arguably, the cost of 

soil and sod replacement may be reasonable for elementary schools and high-volume 

parks, when considering the cost per child (per age cohort). High-volume parks would 

cost roughly $850 to $1,300 per child to remediate, but the initial investment is 

staggering. Furthermore, soil contamination does not ubiquitously pose a threat to 

children. Dangerous SLLs only pose a threat to children where they are playing (e.g., 

running around, sitting, etc.), so total soil remediation may not be needed. As an 

alternative to complete soil replacement, the city, or parents, could construct designated 

play areas where children can safely play without any exposure to contaminated soil (e.g., 

the ground covered with mulch, a sandbox, or a paved area). Children at-risk of lead 

poisoning (i.e., ages 0 to 4 yr.) will require constant supervision, so designated play areas 

would likely be sufficient to eliminate exposure to contaminated soil.  
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Lead-based paint is one of the most likely pathways of exposure for many 

children, but can also be one of the easiest to mitigate. Hamilton’s downtown has an old 

housing stock, and there are still schools within the study area that pre-date 1960, which 

indicates the potential for lead-based paint exposure. Lead-based paint remediation can 

cost anywhere from $30.6M for initial screening efforts, and up to $275.6M for complete 

removal of lead-based paint in homes; however, in a residential home, permanent lead-

based paint removal cannot be completed at a reduced cost by homeowners since 

construction can cause an increase of lead within the home (O’Grady et al., 2011). 

Elementary schools can be screened and fully remediated for anywhere between $28,300 

and $255,000, which is a reasonable expense given the cost per child is only $16 to $147 

for the current age cohort. Furthermore, the ROI for paint remediation in residential 

homes and elementary schools is higher than the 3%, and 8% discounted project costs for 

conservative and optimistic estimates, respectively. Lead-based paint abatement is the 

only type of remediation with a positive ROI when the project costs have been discounted 

to future value; however, professional screening and lead-based paint remediation is often 

not required because contaminated walls can be painted over with lead-free paint as an 

effective method of mitigating exposure (CMHC, 2005; Korfmacher et al., 2012; Nevin, 

2000).  

Finally, lead pipes pose a risk to any resident living in a home that pre-dates 1945 

(Richardson et al., 2011). Lead pipes can be present as a service line (i.e., the pipe 

connecting the house to the main supply), or as the internal piping within the home. For 
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complete remediation, the capital investment to replace lead pipes for residential homes 

in Hamilton would cost the municipal government between $47.3M to $70.9M, which far 

exceeds a reasonable capital investment for the city. As recently identified by the city, 

there are three elementary schools within the study area that require lead pipe 

replacement with an estimated cost of $14,300 to $21,500. Lead pipe replacement would 

likely be a viable option for these schools; however, it may not be needed after an update 

to the municipal water supply. In late 2018, Hamilton began adding orthophosphate to the 

city water supply, which coats the insides of pipes to reduce lead from leaching into the 

water significantly. Hamilton added the orthophosphate to the water supply after 

implementation in seven other Canadian cities (i.e., Toronto, Winnipeg, Sudbury, St. Foy, 

Dartmouth, Bathurst, and Campbellton) and six U.S. cities (i.e., Washington D.C., New 

York City, Detroit, Chicago, Atlanta, and Nashville), as well as a successful two-year 

pilot study in Hamilton. Implementation of orthophosphate to Hamilton’s water supply 

costs approximately $4.9M and an additional $307,619 per year in operating costs (City 

of Hamilton, 2018b). Hamilton’s decision to add orthophosphate to the water supply to 

mitigate lead exposure is an excellent alternative to the substantial capital investment 

required to replace lead pipes from homes within the study area.  

Objective two determined the projected ROI estimates for permanent lead 

abatement in Hamilton. The ROI estimates for lead hazard control outlined by Gould 

(2009) are complicated and consider many different avenues for possible savings, both 

directly and indirectly, as a result of adverse health outcomes of lead exposure. As can be 
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seen in Table 4.2, the conservative and optimistic ROI estimates are incredibly high for 

nearly all land type and abatement strategies covered in this paper, but the discounted 

project costs match the ROI estimates for all lead abatement categories, aside from lead-

based paint abatement. The ability to profit, break-even, or take a loss from a lead 

abatement project is only half of the information that municipalities must consider when 

approving a remediation project. The second half of the decision is based on the capital 

investment needed to complete the project. Furthermore, the savings returned from lead 

hazard control are not straightforward, and thus, we argue that there are two main reasons 

why using ROI projections are unrealistic to make policy and program decisions at the 

municipal level, (i) capital investment, and (ii) recipient of savings.  

As we have shown with this case study, the capital investment required to abate 

lead exposure in Hamilton permanently is far too expensive for a municipal government. 

Even with federal or provincial subsidies, the costs are high, and the reduction in 

exposure is likely not high enough to justify the investment. As suggested in the study by 

Farrell et al. (1998), contaminated soil replacement did not reduce child BLLs 

significantly between abatement and control groups. Although the return on investment 

will allow the municipal government to either break even, take a small loss or profit on 

the various lead abatement strategies presented in this paper, the capital investment is still 

too high. There are only a few lead abatement options presented in this study that could 

be reasonably achieved by the municipal government. Municipal governments do not 

have the budget to be basing decisions solely on projected future savings. Policy and 
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program initiatives must comply with strict budgets that can even be restrictive for multi-

year projects. 

Second, the return on investment does not explain how savings will benefit 

stakeholders. As previously discussed, four main factors will result in a return on 

investment from lead hazard control, which includes: (i) less pressure on the health care 

system, (ii) IQ increases, (iii) reduced spending on special needs education, and (iv) 

reduced criminal activity (Gould, 2009). In Canada, health care and education budgets are 

provided by the provincial government (Fedeli, 2019). Therefore, the province of Ontario 

will benefit most from a reduction of special needs education and pressure on the health 

care system. Furthermore, a reduction in criminal activity will reduce pressure on the 

municipal justice system (e.g., prisons and court). However, the cost savings will mostly 

transfer to the provincial and federal justice systems with an additional reduction in 

violent crime (Burns et al., 2014).  

Objective three explored the need for soil lead abatement by investigating hazard 

quotients within the City of Hamilton. Many factors influence a hazard quotient and can 

differ based on the characteristics of a child or the environment; however, Health Canada 

(2010) has set estimations for each factor, across the three age groups. The two factors 

that change in the hazard quotient calculations presented in this paper are the soil lead 

level and weeks of exposure. As shown in Table 4.3, Appendix O, and Appendix P, the 

soil lead levels across the city and the weeks of exposure can have a significant impact on 
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the hazard quotients. The two scenarios (i.e., 52 weeks of exposure, and 40 weeks of 

exposure) show that the average child within the city is not at-risk of adverse health 

effects from SLLs. Since these calculations are based on averages for child 

characteristics, it is still possible that a child who consumes more soil per day or weighs 

less than the average may be at-risk for adverse health outcomes. As stated above, this 

risk could be mitigated by developing designated play areas to reduce or eliminate 

exposure to contaminated soil.  

Additionally, the municipality should offer complete soil, paint and service pipe 

remediation to the households that exceeded a hazard quotient of 0.5 with 40 weeks of 

exposure. The addition of exposure to lead-contaminated paint, water and dust may put 

these children at-risk of exceeding a blood lead level of 5 µg/dL. The areas in which 

toddlers are at the highest risk also contain a relatively high percentage of households 

below the poverty line, ranging from 24.7% to 42.3% of households (Statistics Canada, 

2016). Considering a significant portion of households in this area are living under the 

poverty line, the government should help this vulnerable population to preserve 

environmental equity within the city and eliminate the economic burden on low-income 

households.  

We propose that governments make lead policy decisions based on need and cost, 

rather than savings or returns on investment. ROI projections can help policymakers 

decide between different program initiatives, but the estimates can also be misleading. 
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There are too many factors and assumptions that are used to calculate a return on 

investment and can inflate values to make capital investment seem more cost-effective.  

4.6 Conclusion 

As Hamilton’s housing stock continues to age, many of the older buildings will 

eventually be gentrified or demolished and replaced with new structures. By 

implementing construction policies that require permits for safe lead removal, this 

process will eventually eradicate the threat of lead-based paint and leaded pipes from 

Hamilton. However, there are many less expensive alternatives to permanent lead 

remediation that municipal governments and residents can use to reduce exposure for 

children. Designated play areas can be constructed in backyards of homes, parks and 

schools to eliminate the threat of exposure for supervised children. Second, lead-based 

paint can be contained using inexpensive methods such as painting over old lead-based 

paint and lastly, lead pipe removal may not be necessary after the addition of 

orthophosphate to the water supply (City of Hamilton, 2018b).   
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Chapter 5 Conclusions and future research 

This dissertation sought to understand the spatial distribution of soil lead levels in 

an urban area better, identify the necessity for lead abatement and challenge the current 

recommendations for lead remediation in urban cities. The purpose of this thesis is to help 

policymakers make informed decisions at the municipal level by investigating current 

challenges, rather than focusing on projections developed by cost-saving models. The 

literature recommends lead remediation in urban cities on the basis that the return on 

investment is high, but permanent abatement poses significant challenges for 

municipalities and residents. Presented as a case study in Hamilton, Ontario, this 

dissertation challenges standard methodologies, relationships and predictions within the 

literature, and illustrates that remediation may not always be feasible or necessary for 

municipal governments. Chapter five of this dissertation seeks to identify the main 

contributions of this thesis within the literature. 

5.1 Contributions 

As a result of the three manuscripts presented in this dissertation, the contributions 

to the literature are as follows: 
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1. Predictive models should remain parsimonious 

A key component of lead remediation is identifying areas that exceed 

contamination thresholds. Since soil testing can be expensive, we are required to estimate 

the lead levels between sampled points across space. In heavy metal contamination 

research, the standard approach is to use an interpolation method called kriging, which 

relies on the spatial structure of the sampled data set to make estimations at unobserved 

locations. One of the perceived downfalls of kriging is that estimations are globally 

smoothed (Arain et al., 2007), which means local variation is lost. In chapter 2, the paper 

attempts to utilize a different approach to interpolation that focuses on localized 

prediction for soil lead levels. This approach, called Land Use Regression (LUR), is a 

commonly used interpolator within the air pollution literature (see Arain et al. 2007; 

Melymuk et al. 2013; Sahsuvaroglu et al. 2006; Saraswat et al. 2013; Wang et al. 2013), 

and uses pollution sources as predictor variables in a regression model to estimate the 

contaminate in unobserved locations. Chapter 2 provides the results of both LUR and 

kriging, in addition to uncovering three flaws with land use regression as an interpolation 

technique.  

As discussed in chapter 2, a LUR model may include predictor variables that do 

not have a real relationship with the dependent variable. The method of selecting 

predictor variables is inherently flawed since correlations between predictor and 

dependent variables are selected based on the highest correlation coefficient without 
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considering the physical relationship between the contamination source and the 

dependent variable. As a result of this variable selection method, the LUR model can 

overfit the data and lead to a model that cannot be generalized over space or time. A LUR 

model with multiple predictor variables also poses a problem for remediation efforts. 

Predictor variables that explain the spatial distribution of the contaminate may be targeted 

by governments for remediation, policy, or program initiatives, despite having no real 

relationship with the dependent variable. Remediation and program initiatives that target 

a variable that does not relate to the contaminate can pose a serious concern within cities 

where the municipal government has limited resources. Additionally, policies may falsely 

limit commercial businesses or industries that are not contributing to the contaminate. At 

the local scale, predictor variables that are overfitted to the data can have a significant 

financial impact on the residents, businesses, industry, and government, and the solution 

may not reduce exposure to the contaminate.  

In the case of interpolation, we found that kriging is a better solution for 

remediation efforts because kriging focuses on the spatial structure of the data. As 

Tobler’s first law dictates, near things are more related than distant things, which is an 

integral component of kriging. Kriging uses a semivariogram to understand the spatial 

relationship between observed points within the data set. This method does not require 

external predictor variables to estimate the level of contamination at unobserved 

locations, and thus, the predicted surface is more trustworthy than estimations made by 

LUR. Specifically for lead (Pb) remediation, the contamination is typically from 
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historical sources of lead (e.g., combustion of leaded fuel, and lead-based paint), so 

understanding where the contamination came from is less important to a government 

entity. One of the most important aspects of spatial modelling for a government is the 

ability to understand the spatial distribution of the contaminate across space. Areas within 

a city that pose a significant threat to the public can be remediated, or secondary soil 

testing can be done within the area of concern to understand the distribution of the 

contaminate better.  

2. Any uncertainties will be exaggerated in a model  

In contamination research, a key component of developing a remediation plan is 

to understand the spatial distribution of the contaminate across space and determine 

whether an abatement project is worth the financial investment. In chapter 2, we saw that 

LUR could rely on relationships with spurious and uncertain relationships. An 

interpolation model that relies on relationships that may not directly exist can have a 

significant effect on the remediation efforts and policy decisions developed to mitigate 

exposure to the contaminate. In chapter 2, we showed that a more simplistic model (i.e., 

kriging) might be preferred since the model depends on the spatial structure of the data, 

rather than a dependence on uncertain relationships. One of the problems outlined in 

chapter 2 is that many of the relationships between predictor variables and the dependent 

variable are spurious and unintuitive; thus, the model becomes overfitted to the specific 

data set. As a result, the LUR model has little value to a municipal government that may 
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require new predictions over time or may waste resources targeting sources that have no 

direct influence on the contaminate.  

In chapter 3, we examined the relationship between blood lead levels in children, 

and its influence on full-scale IQ. We found that the relationship between BLLs and full-

scale IQ is lower than previously suggested, but explain that the meta-analysis method 

may present some limitations that are important to consider. One of these limitations 

discusses how the meta-analysis process then exaggerates the uncertainties present in 

each study. In other words, any variability that cannot be explained by the regression 

models in individual studies are still present in the unstandardized beta coefficients 

(UBCs) that are pooled in the meta-analysis. Thus, the pooled results have more 

uncertainty than each UBC on its own. Similarly, there is uncertainty when pooling UBCs 

from different populations (i.e., children with different characteristics) and regression 

models that have been constructed with a different set of confounders. In a meta-analysis, 

heterogeneity measures can help determine if pooled UBCs have similar characteristics 

(e.g., sample size, UBC value, confidence intervals, etc.); however, the underlying 

uncertainties embedded in the UBCs (e.g., demographic variation in the population, the 

process of IQ testing, confounding variables used, etc.) may influence the results. 

Additionally, publication bias may also add uncertainty into the pooled result, but 

fortunately, some tests can help identify and correct for publication bias.  
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Additionally, in chapter 4, the inherent uncertainties within the Gould (2009) ROI 

model are illustrated with the vast discrepancies between the conservative and optimistic 

ROI predictions. The ROI projections presented by Gould (2009) were based on the 

National Health and Nutritional Examination Survey (NHANES) administered by the 

CDC to children (n = 194,000) living in the United States. Despite a large sample size, 

many factors can affect lead exposure, which will vary based on the characteristics of a 

population and the environmental variances across space. Population size and density, 

and the number of children living within the city will affect the ROI a municipality can 

expect from lead abatement efforts. In other words, a city with a high density of children 

living in a lead-contaminated area can expect a higher ROI than a city with a lower 

density of children living in a lead-contaminated area. Additionally, cities with a higher 

density of low-income households may benefit more from lead abatement intervention by 

the government, since lower-income individuals have less financial autonomy to 

implement lead mitigation efforts (e.g., painting over lead-based paint or replacing lead 

service pipes). Furthermore, there are environmental factors that can affect the potential 

exposure to lead for a child. First, cities in warmer climates are at higher risk of lead 

exposure due to “greater exposures to soil lead, dispersion of dust when lead-painted 

windows are opened and shut, and remobilization of lead on interior surfaces as air moves 

through open windows and doors” (Levin et al., 2008, p. 1290). Warmer climates also 

encourage children to play outdoors for longer, increasing exposure to soil and airborne 

lead exposure, and variations in Vitamin D throughout the year (i.e., from sun exposure) 

can cause variations in susceptibility to lead poisoning in children (Levin et al., 2008). 
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Lastly, fallen leaves during autumn and snow during the winter can cause physical 

barriers to lead exposure for children, and rain can also help reduce exposure to lead-

laden dust within a city.   

3. The best approach is not always the most feasible approach 

In an ideal world, we would always take the best possible approach to every 

problem; however, governments have financial limitations and require solutions that 

provide a balance between capital investment and efficacy. Regarding lead remediation, 

often, it is not possible to permanently remove lead from the environment because the 

capital investment is far too substantial for a government budget.  

In chapter 1, we recommended kriging for interpolation, rather than using LUR. In 

addition to more accurate predictions, kriging is also significantly faster and easier to use 

when compared to LUR. At the municipal level, a government may not have the 

resources to collect data, maintain a database, develop a regression model, and use 

mapping software to create a prediction surface. In contrast, a kriging model can be 

developed quickly and easily using the Geostatistical Wizard in ArcGIS, which requires a 

rudimentary level of understanding to create the prediction surface.  
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In chapter 4, we showed that a significant portion of the downtown core in 

Hamilton exceeds the 70 and 140 mg/kg thresholds set by the federal government 

(Canadian Council of Ministers of the Environment, 1999). Despite enormous return on 

investment projections for lead remediation in Hamilton, we discussed how the 

government would not be able to afford such significant capital investment in most cases. 

Permanent solutions are the best way to mitigate lead exposure for children, but in an 

urban setting with large areas contaminated by lead, the capital investment is just too 

large for a government with limited resources. Multi-year investment plans are also 

possible for governments to pay for lead remediation, but the ROI associated with most 

lead abatement strategies in Hamilton did not overcome the future discounted project 

costs. Moreover, the cost savings associated with lead abatement do not necessarily 

transfer to the municipal government. Thus, it may be more advisable for a city to 

promote cheaper alternatives that mitigate exposure either spatially or temporally. For 

example, a city could spatially mitigate lead exposure by replacing contaminated soil only 

for playgrounds, rather than replacing soil for the entire park. A temporal example may 

be forcing landlords to apply a fresh coat of paint to older homes every few years to cover 

old lead-based paint. These examples provide an adequate level of lead exposure 

mitigation and cost a significantly lower amount of money to implement. In addition to 

smaller, city-wide approaches to reduce lead exposure, we also recommend eliminating 

lead contamination in the highest risk areas in the city to reduce adverse health outcomes 

and preserve environmental equity. Chapter 4 also suggests that in some cases, permanent 

lead abatement is recommended if the remediation project benefits a relatively large 
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number of children. For example, we showed that the daycare centres in Hamilton would 

be a relatively small capital investment and would benefit a significant number of 

children. Lastly, soil lead level thresholds set by the government are typically ten times 

lower than the actual safe threshold to account for differences in populations (U.S. Food 

& Drug, 2019). Hazard quotient calculations showed that, on average, children are not at-

risk of adverse health effects in Hamilton, Ontario. Despite having large swathes of soil 

exceeding the regulatory threshold for lead, hazard quotient maps can help policymakers 

decide whether or not lead remediation is necessary to reduce the risk of lead poisoning 

for children.  

5.2 Limitations 

In Chapter 2, we used the soil lead levels to estimate contamination levels at 

unobserved locations with some success, but the sampling method left large areas without 

soil samples. The method of data sampling provided measured soil lead levels for 

participating residents, which means broad, business-dense areas of the downtown core 

do not have soil lead levels. As a result, spatial modelling techniques will have more 

difficulty determining the relationship between observed data locations and the 

environment. For example, Empirical Bayesian Kriging uses the spatial structure of the 

data set to determine the relationship of distance between observed locations, so having a 

more grid-like data set is ideal for developing a better predictive model. Similarly, land 

use regression would also benefit from more grid-like data set to determine the 

relationship between predictor variables and observed locations. Ideally, the original data 
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collection would have included grid-like soil sampling for residential, commercial and 

industrial properties across the lower city of Hamilton. Furthermore, better predictive 

models may have been possible using a more powerful workstation to develop and use 

the land use regression model. Developing and using a land use regression model at a 

high resolution (i.e., <100-meter cell size) was not possible using the computer available 

for analysis. A higher-end workstation may have allowed a more predictive land use 

regression model. Lastly, time was a major constraint in this chapter because data 

collection was primarily done manually by searching historical business directories and 

inputting the data into a database. Manually collecting data limited the number of 

business directories that could be searched (i.e., we searched business directories at 5-

year intervals: 1925, 1930, 1935, etc.) to include in the database. More time could afford 

a more representative data set (i.e., searching business directories at a 1-year interval) and 

we could have also included other historical predictive variables such as land use and 

zoning, weather and wind patterns, and road networks that changed at the same year 

interval as the business directories.  

In Chapter 3, we were limited by access to particular journal articles based on two 

main factors. First, we were not able to read journal articles that were not written in 

English, which may have eliminated important studies from the meta-analysis. Second, 

some journal articles were not available through McMaster’s journal database, which 

further limited the pool of journals available for analysis. In addition to accessibility 

limitations, we were also limited by the fact that not all papers reported a UBC with an 
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untransformed independent variable (i.e., BLLs), so we were not able to pool as much 

literature for the two groups. Furthermore, not all papers reported other key information, 

such as an unstandardized beta coefficient, sample size per regression model, or the 

methods of data collection. 

In Chapter 4, we were not able to access household-level information regarding 

the age of dwelling, which could have been used as a proxy for both lead-based paint and 

lead-pipe presence within the home. The highest resolution we could access was the 

median dwelling age by census tract. Additionally, homes within the study area could 

have been renovated, eliminating lead-based paint and lead pipes. Access to construction 

permits could have allowed us to develop more accurate projections for abatement costs 

and return on investment estimates. Next, in chapter 4, we did not have the square footage 

of homes in Toronto, even though the cost was based on a Toronto home, so the cost to 

remove lead pipes from a residency was not converted to account for the difference in 

square footage between Toronto and Hamilton houses. Lastly, in the hazard quotient 

calculations, we did not have the data necessary to estimate full exposure to lead (i.e., we 

did not have lead-contaminated water or lead-based paint data for all homes to predict 

hazard quotients better). Furthermore, we did not know the travel patterns of children to 

estimate exposure. For example, we did not know if a child spent time in the backyard, 

and more time at a local park during an average day.   
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5.3 Future work 

As a result of this dissertation, we encourage researchers to explore distance 

profiles for current air pollution research that utilizes land use regression as a spatial 

modelling technique and to recommend better solutions to municipal governments for 

mitigating lead exposure with consideration for capital investment, rather than return on 

investment. Second, we recommend a comprehensive set of public health initiatives to 

spread awareness, encourage the use of preventative measures for mitigating lead 

exposure, and generate crowd-sourced data for better soil lead predictions.  

As discussed in chapter 2, we recommend the use of distance profiles to 

understand the relationship between the dependent and independent variables at each 

buffer distance. We found that the distance profiles are imperative to a land use 

regression model to verify that each relationship is intuitive and the distance profile 

decays appropriately. We encourage air pollution researchers to integrate distance profiles 

into the initial selection process for predictor variables and eliminate predictor variables 

that do not exhibit an expected distance profile.  

Second, we encourage researchers to focus on reasonable solutions for lead 

poisoning mitigation efforts for municipalities without fixating too heavily on return on 

investment predictions. Ideally, we would remove all sources of anthropogenic lead from 

the environment, but as we have shown in chapter 4, the cost of abatement may be too 

high for a municipal government. We encourage researchers to investigate the need for 
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lead abatement on a case-by-case basis to determine whether or not children are at-risk of 

developing lead poisoning before recommending costly mitigation strategies. By utilizing 

the hazard quotient, researchers can assess the risk of lead contamination to children in 

different populations and cities before recommending mitigation strategies or full 

abatement initiatives.  

Next, we encourage municipalities with large-scale lead contamination to develop 

two main public health initiatives to spread awareness, promote preventative measures, 

and to help collect more data. First, a web app to access lead poisoning information and 

available resources for lead mitigation. In Hamilton, Ontario, Statistics Canada (2019) 

reported that 81.8% of residents used the internet in 2009, which increased from 71.2% in 

2005. Although the next Internet use study has not been released, the CRTC (2019) 

reports that in 2017 99.1% of Ontario residents had broadband internet, and 99.8% of 

Ontario residents had a mobile data plan. Additionally, residents of Hamilton have free 

access to the internet at any public library, which is likely a service provided by most 

municipalities in Canada and the US. A web app (i.e., a website using a map as a starting 

point to disseminate information to a targeted audience) would make the information 

more accessible for residents. A web app could be used in three main ways: (i) view 

maps, (ii) provide education, and (iii) request services. First, maps of soil lead levels, 

hazard quotient, and age of structures and lead pipes could be viewed by parcel (if 

available). Online maps should include error rates by land parcel with a brief explanation 

to help parents interpret the information. Additionally, online maps could also include a 
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hazard quotient calculator to allow parents to input specific measures for their child (e.g., 

body weight and soil lead level, or additional sources of exposure including lead-

contaminated water or dust) to view more accurate hazard quotient estimates by land 

parcel. Based on this information, the municipality may promote specific preventative 

measures dependent on the level of risk to a child (e.g., exceeding a soil lead or hazard 

quotient threshold). Preventative measures may include creating a designated play area 

for their child, repainting with latex paint, wet mopping, flushing taps, and child hygiene 

(i.e., washing hands and taking off shoes before entering the house). Additionally, a web 

app could offer a streamlined approach to requesting services and crowd-sourcing data 

for better predictive power. The City of Hamilton and likely many other municipalities 

offer free or inexpensive services to identify or reduce lead exposure for residents. A web 

mapping interface would allow residents to view specific information about their land 

parcel and request relevant services that may be required. For example, viewing 

information about a land parcel with a dwelling age predating 1945 could prompt the user 

to request a lead-pipe service check by the city. Other services may include a home check 

to identify potential sources of lead-based paint or soil lead and water lead testing. 

Ideally, municipalities could use this system to collect subsidized data to improve soil 

lead predictions, in addition to lead-based paint and lead pipe information. Municipalities 

could offer subsidized, professional soil, paint and water testing to residents, which would 

reduce the cost of testing for both residents and the municipality. As the city collects 

more data, predictions will become more accurate, and targeting high-risk areas will 

become easier.  
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Next, we encourage municipalities to canvass high-risk areas to disseminate 

information and bring awareness of potential sources of contamination, in addition to 

resources and methods to reduce exposure to lead. Once a web app has been built, the 

municipality must create awareness, which will require an advertisement campaign. In 

Hamilton, the study by Richardson et al. (2011) reported that half of the participating 

residents in the highest risk areas were aware of the free services provided by Hamilton. 

In order to spread awareness of a web app designed to help residents reduce their 

exposure to lead, municipalities should canvass the highest risk areas to promote the web 

app and disseminate information about lead poisoning risks and methods to mitigate 

exposure.  
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Chapter 6 Appendix 

6.1 Appendix A: Depiction of the study area in Hamilton, Ontario, Canada 
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6.2 Appendix B: Distance profiles for the relationship between the cumulative sum 

of each independent, lead-related variable and SLLs 
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6.3 Appendix C: Distance profiles for the relationship between the cumulative sum 

of each independent control variable and SLLs 
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6.4 Appendix D: SLL predictions for LUR AV, LUR OLV, EBK and OK, and 

standard error for EBK and OK 
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6.5 Appendix E: Forest plots 

6.5.1 Non-linear 
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6.5.2 Linear 
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6.6 Appendix F: Forest plots after simple outlier detection and removal 

6.6.1 Non-linear 
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6.6.2 Linear 
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6.7 Appendix G: Baujat plots 

6.7.1 Non-linear 

 

6.7.2 Linear 
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6.8 Appendix H: Influence characteristic graphs 

6.8.1 Non-linear 
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6.8.2 Linear 
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6.9 Appendix I: Forest plots for leave-one-out analysis, sorted by pooled result and 

I2 

6.9.1 Non-linear 
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6.9.2 Linear 
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PhD Thesis; Kevin P. Mackay; McMaster University; School of Geography & Earth 

Sciences 

180 

6.10 Appendix J: GOSH plots 

6.10.1 Non-linear 
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6.10.2 Linear 
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6.11 Appendix K: Funnel plots with p-value and trim-and-fill points 

6.11.1 Non-linear 
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6.11.2 Linear 
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6.12 Appendix L: P-curve analysis 

6.12.1 Non-linear 
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6.12.2 Linear 
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6.13 Appendix M: Risk of bias summary 
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6.14 Appendix N: Hazard quotient calculation 

6.14.1 Functions and assumptions 

Hazard Quotient = Estimated Exposure (Dose) (mg/kg bw/day) 

Tolerable Daily Intake (TDI) (mg/kg bw/day) 

 

Estimated Exposure (Dose) = 

(mg/kg bw/day) 

Cs * IRs * RAForal * D2 * D3 

BW 

 

Where (Health Canada, 2010):  

Cs = Concentration in soil (mg/kg) 

IRs = Soil ingestion rate (kg/day) 

RAForal = Relative absorption factor from the gastrointestinal tract 

D2 = Days per week exposed (divided by 7 days) 

D3 = Weeks per year exposed (divided by 52 weeks) 

BW = Body weight (kg) 

 

Tolerable Daily Intake (TDI):  

TDI relating to a blood lead level of 2 µg/dL = 0.0006 mg/kg bw/day (SNC-Lavalin, 

2012) 

 

Conversion factor for 5 µg/dL = 5 µg/dL / 2 µg/dL = 2.5 

 

TDI relating to a blood lead level of 5 µg/dL = 0.0006 * 2.5 = 0.0015 mg/kg bw/day 

 

Assumptions (Health Canada, 2010): 

Characteristic Infant Toddler Child 

Age 0 – 6 mo. 7 mo. – 4 yr. 5 – 11 yr. 

Cs (mg/kg) SLL varies across 

space 

SLL varies across 

space 

SLL varies across 

space 

IRs (kg/day) 0.00002 0.00008 0.00002 

RAForal  1.0 1.0 1.0 

BW (kg) 8.2 16.5 32.9 
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6.14.2 Example hazard quotient calculation for a toddler without winter soil 

exposure 

Given: 

Cs = 250 mg/kg 

IRs = 0.00008 kg/day 

RAForal = 1 

D2 = 7 days / 7 days = 1 

D3 = 40 weeks / 52 weeks = 0.769 

BW = 16.5 kg 

TDI relating to a blood lead level of 5 µg/dL = 0.0015 mg/kg bw/day 

 

 

Estimated Exposure (Dose) 

= (mg/kg bw/day) 

250 * 0.00008 * 1 * 1 * 

(40/52) = 0.00093240093 

16.5 

 

Hazard Quotient 
0.00093240093 

= 0.62160062 
0.0015 

 

Therefore, the Hazard Quotient for a toddler without winter exposure is 0.62. In this 

example, the toddler will not likely be at-risk of developing adverse health effects 

associated with a blood lead level of 5 µg/dL or greater from soil exposure.   
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6.15 Appendix O: Hazard quotient maps with 52 weeks of exposure and TDI 

relating to 5 µg/dL 
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6.16 Appendix P: Hazard quotient map for a toddler with 40 weeks of exposure and 

a TDI relating to 5 µg/dL 

 


