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Abstract 

Climate change and extreme weather events have impacted global forest 

ecosystems’ ability to sequester atmospheric carbon dioxide. In this study, the 

temporal and spatial dynamics of soil CO2 efflux or soil respiration (Rs) was 

measured in a temperate coniferous (TP74) and a deciduous forest (TPD) over a 

six-year period (2014 to 2019). Analysis of Rs trends showed a strong positive 

correlation with soil temperature (Ts) and soil moisture (SM) at TPD and TP74 

causing large pulses of Rs. The average annual temperature sensitivity (Q10) was 

found to be 2.06 for TPD and 1.87 for TP74. Coherence analysis for both sites from 

2017 to 2019 showed that in extreme weather events, TP74’s carbon pool was less 

stable than that of TPD. Dynamics of Rs at both forest sites was further analyzed 

using thirteen different Rs models (e.g. Ts only, SM only, Ts and SM models, 

neural network) to evaluate their performance in simulating observed patterns of 

soil CO2 effluxes. As compared to other models, the Gaussian – Gamma model 

consistently reproduced observed dynamics of Rs where on average 70% of 

variability in Rs was explained.  

This study showed that Ts and SM are key determinants of Rs in both forests. 

Models that incorporate the influence of SM on Rs and were able to better simulate 

Rs dynamics as compared to Ts only models. Results also suggest that coherence 

analysis can be utilized to understand temporal variations in Rs. The knowledge of 

environmental drivers of Rs can be used to determine the impact of climate change 

and extreme weather events on Rs and assist in developing ecosystem models.  
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Chapter 1. Introduction 

1.1 Forests and the Carbon Cycle 

About half the global terrestrial carbon (C) sink is located within forests with the 

majority (60%) of forest carbon residing within soils (Gomez-Guerrero and Doane, 

2018; Canadell et al, 2007; Kindermann et al, 2008). The forest carbon pool 

consists of 691 pentagrams (Pg) in plant biomass with up to 968 Pg in soils, which 

is twice as large than that of the atmosphere carbon pool (i.e. 817 Pg) (Lorenz and 

Lal 2010). Carbon is important for all biological cycles and contributes towards 

many of Earth’s physical processes. Carbon dioxide (CO2) is taken from the 

atmosphere by photosynthesis and is sequestered into plant structures. Energy 

production and biomass storage by plants locks up some carbon while the rest is 

respired and returned to the atmosphere as carbon. Through litterfall and 

decomposition, plant carbon enters the soil. Litterfall carbon is utilized by microbes 

through cellular respiration and CO2 is released to the atmosphere (Brady and Weil, 

2017; Lorenz and Lal, 2010). Forests play a crucial role to regulate carbon fluxes 

because of their ability to store carbon for extended periods of time within woody 

biomass and organic matter (Apps and Price, 1996; Yanai et al, 2003; Ontl et al. 

2020).  

The natural carbon cycle has become unbalanced due to human-induced 

greenhouse gas emissions, primarily from transportation, electricity production, 

and burning of fossil fuels (IPCC, 2019). Deforestation due to logging and 

agriculture has also limited terrestrial carbon sequestration in these ecosystems. 
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Reduced forest cover can influence the carbon budget within soils by causing 

increases in soil temperatures and soil water content and affecting microbial activity 

(MacDougall and Beltrami, 2017). Sequestered carbon within soils can also be 

released for several decades after deforestation from disturbance (Petrenko and 

Friedland, 2015).  

To mitigate the effects of increasing atmospheric CO2 concentrations on climate, 

there have been efforts to restore forest ecosystems and to introduce management 

strategies such as thinning, afforestation, and natural disturbance control (Bastin et 

al, 2019; Gonzalez – Benecke et al, 2010; Jandl et al, 2007). Thinning can increase 

radial growth in remaining trees and decrease litterfall which reduces forest floor 

accumulation (Assmann, 1961; Sobachkin et al, 2005). Afforestation of former 

agricultural sites can increase aboveground biomass and total carbon storage (18%) 

over multiple years (Guo and Gifford, 2002). Natural disturbances primarily fires 

release stored carbon into the atmosphere and decrease the forest carbon pool. 

Large-scale wildfire suppression through prescribed burns can decrease the 

frequency and intensity of fires. These management techniques promote forest 

ecosystem growth, carbon storage, and soil carbon pool stabilization (IPCC 2014).  

1.2 Soil Respiration 

Soil respiration (Rs) is the production of CO2 by microorganisms within the soil. 

Historically, respiration has been used for the development and testing of fertilizers 

by measuring the biological activity of organisms (Russell and Appleyard, 1915; 

Lieth and Ouellette, 1962). Development of the Infrared Gas Analyzer (IGRA) and 
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its use in chambers have allowed scientists to measure soil CO2 emissions, conduct 

experimental studies, and develop empirical relationships between Rs and 

temperature (Wiant, 1967; Kucera and Kirkham, 1971; Monteith et al, 1964; 

Medina and Zelwer, 1972; Gonzalez-Ubierna and Lai, 2019; Yan et al, 2019). 

Rs occurs via two major processes: autotrophic respiration and heterotrophic 

respiration. Autotrophic respiration is the release of carbon from symbiotic 

mycorrhizal fungi within plants and other microorganisms in the rhizosphere, 

heterotrophic respiration is the production of carbon through decomposition of 

organic matter by fungi, animals, and bacteria. (Luo and Zhou, 2006). Direct 

methods of measuring Rs include open and closed soil chambers. Open chambers 

involve periodic sampling of CO2 concentrations and efflux is computed from the 

increase of CO2 concentrations within the chamber. Closed chambers involve the 

circulation of air from the chamber to a gas analyzer to measure the rate of change 

in CO2 concentrations and CO2 efflux (Norman et al, 1997). 

1.3 Contributing Factors of Soil Respiration 

There are two primary sources that affect Rs within forests: abiotic sources and 

biotic. Abiotic sources are non-organic environmental controls that affect Rs such 

as temperature, soil moisture, forest type, forest management, pH, and soil texture. 

Biotic factors result from organic processes such as soil and root microorganism 

activity.  
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1.3.1 Environmental Factors   

Rs is driven by soil temperature and soil moisture. High soil moisture content 

facilitates the transport of nutrients within the soil (Orchard and Cook, 1983). 

Microorganisms utilize water within the soil along with organic material to extract 

nutrients using aerobic respiration. Drought can also influence Rs. Multiple studies 

show a decrease in soil respiration in response to lowered precipitation (Borken et 

al, 2005; Schindlbacher et al, 2012; Knorr et al, 2008; Nikolova et al, 2009). 

Drought can influence the diffusion of CO2, cellular enzyme activities, and 

facilitation of nutrient transport (Selsted et al, 2012; Wang et al, 2014; Sun et al, 

2019).  

The soil temperature of a forest stand can affect Rs by increasing the rate at which 

microorganisms decompose organic matter. However, at temperatures greater than 

35oC, microbial enzymes that facilitate respiration are denatured, which causes 

increased vulnerability to changes in climate of traditionally low respiring forest 

stands such as boreal and alpine forests (Lützow et al, 2009).  

The type of soil can influence the amount of respiration depending on the 

distribution of pore spaces between soil particles. In forests dominated by sandy 

soils, Rs returns to values before a wet/dry event twice as fast compared to those 

composed of silt or clay (Bouma and Bryla, 2000). Soils composed of sand cannot 

maintain water stability compared to soils that are clay-based (Balashov and 

Bazzoffi, 2003). Other factors such as compaction and root infiltration can also 
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influence soil pore space by decreasing the amount of nutrients available to 

microorganisms.  

Rs is affected by changing seasons throughout the year. Warming temperatures 

within the early spring combined with increases in soil moisture from melting snow 

can cause a dramatic increase in respiration (Makita et al, 2018). Increases in 

rainfall and ground infiltration causes CO2 within soil air spaces to be forced out of 

the soil. During dry-rewetting phases in the summer, increases in soil temperature 

may promote respiration due to increased root development and decomposition 

(Ruess et al, 1996; Högberg et al, 2001). Changes in temperature, wind gusts, and 

plant water uptake affect soil volume storage, which result in CO2 forcing from 

differences in pressure potentials (Luo and Zhou, 2006).  

Respiration varies with stand age in temperate forests. As a forest ecosystem 

matures, Rs increases because of succession sequences of plant community 

replacement, which promotes greater productivity (Johnston, 2017). Forest 

management practices such as clear cutting or thinning transfers sizeable amounts 

of organic matter to the soil causing a sharp rise in respiration from decomposition. 

In mid-successional forests, respiration slows because crown closure shades the soil 

surface, which causes decreased soil temperatures and water availability (Li, 1926). 

In old-growth forests, soil respiration increases due to high primary productivity 

and litter production which contributes to the soil carbon pool (Striegl and 

Wickland, 2001). 
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Forest composition is also a determining factor in Rs. A homogenous coniferous or 

deciduous forest can have different litter decomposition rates and lignin and 

nutrient composition compared to coniferous forests (Trofymow et al, 2002). 

Lignin is an organic polymer present in leaves with a rigid carbon structure that is 

difficult for soil microorganisms to decompose (Poerschmann et al, 2005). 

Coniferous needles have a greater amount of lignin, which results in slower 

decomposition and buildup between years (Sahin and Yalcin, 2017; Berg et al, 

1984). Deciduous leaves contain more nutrients in loose bound carbon structures 

formed mostly from cellulose which allows greater rates of decomposition and 

resultant Rs (Dickinson and Pugh, 1974).  

1.3.2 Soil Organic Carbon  

Soil organic carbon (SOC) is the amount of measurable organic matter within the 

soil and can assist in forest productivity through mineralization and decomposition 

(Schnitzer and Khan, 1978). Globally, SOC contains approximately 1,500 

pentagrams of carbon within the top meter of soil which exceeds carbon stored 

within the atmosphere (~800 pentagrams) and terrestrial vegetation (~500 

pentagrams) (FAO and ITPS, 2015).  

The amount of SOC within the soil is dependent on decomposition and respiration 

rates, the erosion and deposition of new soil, and environmental factors such as 

temperature, and water content. SOC stabilizes the soil horizon by increasing 

nutrient retention within the soil and regulates soil water capacity. SOC is divided 

into two pools with different turnover rates: active pools, which have a turnover 
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rate from a few months to years, and passive pools that have turnover up to 

thousands of years (Lefèvre et al, 2017). Anaerobic (without oxygen) conditions or 

soil aggregates can affect turnover times.  

Multiple physical and chemical mechanisms can stabilize carbon that enters the soil 

(Six et al, 2002; Jastrow et al, 2007; Makusa, 2015). Physical stabilization involve 

isolation with micro- and macro-aggregates causing nutrients to be inaccessible to 

microorganisms. Chemical stabilization include absorption into clays from 

formation of chemical bonds. Biogeochemical changes may cause carbon re-

formation into chemically inert and complex structures unable to be decomposed.  

Although climate change can cause an increase in temperature which can influence 

increased plant production and litterfall, it also results in increased decomposition 

of SOC (Keestrea et al, 2016). The frequency of extreme events can be exacerbated 

with climate change. Increased precipitation can interfere with soil formation by 

causing compaction by rainfall, changes in soil temperature, vegetation and the 

availability of micro- and macro-organisms (FAO and ITPS, 2015)   

1.3.3 Climate Change and Human Activity  

Since the industrial revolution in the 18th century, global atmospheric CO2 has 

steadily increased. In response to this increase, ecosystems have experienced 

increased respiration rates. For example, an analysis of 54 sites in multiple 

ecosystems and locations had an average of 12–40.6% respiration increase in 

response to higher atmospheric CO2 (King et al, 2004). Temperature increases in 
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parts of the world by climate change can affect all biogeochemical process within 

an ecosystem. Warming temperatures can extend growing season length 

(Oberbauer et al, 1992; Norby et al, 2003), stimulate plant growth (Wan et al, 2005), 

and increase soil nitrogen while reducing soil water content (Rustad et al, 2001). 

Climate change can also increase wildfire frequency in an ecosystem. Wildfires 

reduces Rs by decreasing soil moisture, surface litter, and vegetation (O’Neill et al, 

2002). Parro et al, (2019) showed that following a forest fire, average respiration in 

burned forest areas is half of that compared to unburnt plots. In colder climates such 

as the Arctic where soil contain sizeable amounts of organic carbon, wildfire causes 

permafrost to thaw. This process causes trapped organic material to release, 

enhancing decomposition and increasing Rs (Shaver et al, 2001).  

Thinning or clear cutting can change the forest’s hydraulic redistribution and 

passive water movement. When dominant trees are removed, there is a decrease in 

water movement from deeper layers to shallow layers of soil (Peichl et al, 2010). 

This movement within soil pores is important for the transference of nutrients and 

organic matter (Hartge and Stewart, 1995). Thinning can also cause increases in 

water evaporation and soil temperature sensitivity by exposing previously shaded 

areas (Campbell et al, 1977). 

1.4 Soil Respiration Measurement Methods  

Automatic soil chambers involving one or multiple chamber systems can be utilized 

to measure soil respiration. Single systems use an automatic chamber installed 
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permanently at the soil surface. The chamber closes when measuring CO2 efflux 

but remains open to allow precipitation. A multi-chamber system utilizes an IGRA 

to measure CO2 efflux. The chamber system can be custom made to suit research 

interests and has reference gas canisters for calibration and to close the chamber 

during measurement. Automatic measuring methods are expensive but has low 

variability due to multiple chambers.  

Errors in chamber soil sampling is primarily caused by wind gusts creating air 

turbulence. This process creates an impossibility to mimic the soil surface before 

installation. Davidson et al, (2000) showed that chamber measurement is usually 

15% or less compared to surrounding CO2 efflux. However, increased amount of 

measurements and curve fitting can decrease data variability.  

Indirect methods used to estimate respiration can be derived from the night – time 

net ecosystem exchange (NEE). An eddy covariance system can measure the net 

CO2 exchanges between the atmosphere and the canopy (Burba, 2013). The system 

can be utilized to measure RE during winter in absence of chamber measurements. 

The Bowen ratio-energy balance method (BREB) can also be used to determine the 

heat, CO2, and water vapor flux in an ecosystem (Dugas et al, 1997). 

1.5 Respiration Modeling and Variable Selection  

Models are commonly used to estimate soil respiration in ecosystems. Early models 

correlated SM to the rate of nitrogen mineralization as a linear function (Stanford 

and Epstein). Other commonly used models such as the Ratkowsky (1982) model 
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incorporates a minimum temperature for microbial growth. However, later 

common models such as Rs Q10 (modified version of the Van’t hoff (1884) 

equation; Davidson et al. 2006; Yuste et al. 2010), the Lloyd and Taylor (1994) 

model, and Arrhenius equation (Rs Ts; 1889) explain Rs as an exponential growth 

with Ts. Later studies such as Tuomi et al. (2008) suggested improvements to the 

Arrhenius model by including an additive parameter as a simple solution. These 

models fail to account for the biological activity of microorganisms at high Ts 

values where Rs declines due to enzyme denaturing by heat stress (Atkin et al. 2000; 

Davidson et al. 2006). This presents the need for a model that is dependent on other 

environmental variables to explain spatial and temporal variability. Models such as 

the Bunnell (1997) model, the Gaussian – Gamma (Khomik et al, 2017) model, and 

Rs Ts SM (Khomik et al, 2010) model addressed the drought effects on Rs by 

incorporating SM. Other models such as the Rs Ts SM GEP model (Huang et al, 

2014) suggested including the effects of plant carbon loss through photorespiration 

by including the ecosystem GEP from the growing season. Neural networks have 

also been utilized to estimate soil respiration based on non-linear environmental 

relationships and the estimation of complex ecosystems (Song et al. 2014; Zhou et 

al. 2013; Melesse and Hanley, 2005).   

Multiple environmental factors can exert influences on Ts and SM. For example, 

net radiation is the difference between the amount of radiation absorbed by the 

earth’s surface and the energy reflected to space. When radiation enters the earth, 

it is partitioned into different fluxes such as sensible and latent heat fluxes. Sensible 
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heat can be absorbed by the soil surface causing an increase in Ts and latent heat 

flux can affect SM by causing evaporation. Both of these fluxes are dependent on 

albedo and vegetation cover (Melesse and Hanley, 2005). Additionally, in earlier 

studies Ts are shown to closely correlated with air temperature and follows the same 

trends throughout the seasons (Parkin and Kaspar, 2003; Zheng et al. 1993). Higher 

air temperature is often accompanied by an increase in precipitation due to 

increased evaporation. This can also influence SM especially during a drought 

where the amount and distribution of precipitation can exert control over the upper 

soil horizon where the majority of biological activity occurs (Yuste et al. 2003). 

Furthermore, temperate ecosystems are most sensitive to precipitation distribution 

during drought due to consistent precipitation received through the year (Borken et 

al. 1999; Longdoz et al. 2000; Lee et al. 2002). 

1.6 Study Significance 

An understanding of Rs is of acute interest to climate change science due to 

considerable uncertainty in how Rs will respond to extreme environmental 

conditions from climate change (Warner et al, 2019). Extreme weather patterns can 

cause shifts in both temperature and precipitation, which affects forest productivity 

and carbon loss. With improper management, forests can become carbon sources 

instead of carbon sinks. Modeling and prediction using empirical soil carbon flux 

data is difficult because of high variability, general inaccessibility to soil carbon 

measurements in the winter, and lack of long – term data (Bond–Lamberty et al, 

2010).  
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Analysis and understanding of Rs is traditionally performed by empirically derived 

models and correlation with soil temperature (Ts). However, there are many studies 

that show multiple other factors such as soil moisture (SM) can have an influence 

on Rs (Bunnell et al, 1977; Stanford and Epstein 1974; Khomik et al, 2009; Jia et 

al, 2013). To improve model prediction, there is a need to understand how 

environmental variables affect Rs at various temporal scales.  

1.7 Study Objectives  

The objective of this study is to measure the dynamics of Rs within managed 

conifer and deciduous forests in Southern Ontario, Canada and determine the 

effects of key environmental variables such as Ts and SM as well as extreme 

weather impacts on Rs. Other objectives include the comparison of thirteen 

different Rs models with varying complexity to determine the best model fit to 

observed patterns of Rs and associated uncertainties due to variations in Rs between 

chambers and measurements. Forest sites include a white pine (Pinus strobus) 

coniferous stand planted in 1974 (TP74) and naturally regenerated managed 90 – 

year – old white oak (Quercus alba) dominated deciduous stand (TPD). The soil in 

both sites are classified as Brunisolic Gray Brown Luvisol consisting more than of 

90% sand.  

In this study, thirteen different models of Rs were used to simulate observed 

patterns of Rs at both sites. A neural network was constructed and compared with 

multiple models to determine fit and estimation in TPD from 2014 to 2018. Neural 

networks are algorithms designed to recognize patterns using neurons and back 
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propagation. Automated neural networks have been used to model fluxes within 

forests and potentially utilize eddy covariance data to simulate a spatial pattern of 

carbon fluxes within an ecosystem (Van Wijk and Bouten, 1999; Van Wijk et al, 

2002; Papale and Valentini, 2003; Melesse and Hanley, 2005; Song et al, 2014; 

Ebrahimi et al, 2019).  

In addition, wavelet coherence was applied for TP74 and TPD from 2017 to 2019 

which included a year of extreme weather, to analyze for environmental variable 

effects. Continuous wavelet transform (CWT) is a mathematical method of 

analyzing stationary and non-stationary time series (Mallat, 2009). Wavelet 

coherence is based on CTW and plots two time series at the same time scale to 

determine cross correlations and can be utilized within forests to determine the 

sensitivity of Rs to environmental influences (Grinsted et al, 2004; Wood et al, 

2013; Vargas et al, 2011; Jia et al, 2018).  

Specific objectives of this study are to: 

1) Measure soil CO2 efflux over the extended growing season (April – 

October) in a coniferous (TP74) and deciduous (TPD) forest ecosystem 

using automatic chamber systems.   

2) Determine the impacts of environmental variables and extreme weather 

events on Rs in both forests.  

3) Examine the validity of different Rs models in simulating observed dynamic 

of Rs at both sites and its uncertainty.  
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With respect to the organization of this thesis, introduction and background is given 

in Chapter 1, study results are presented in Chapters 2 and 3 in the form of two 

journal articles, and conclusions are summarized in chapter 4. References are self 

– contained within each chapter because this dissertation is composed of two 

manuscripts where there is overlap in the introduction, site details, and 

methodology.  
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Chapter 2: 

Evaluating environmental controls on soil respiration in a 

deciduous forest in the Great Lakes region using various 

modeling approaches 

 

2.1 Abstract 

Soil Respiration (Rs) is a major component of the carbon cycle, where carbon 

dioxide (CO2) is released into the atmosphere though heterotrophic and autotrophic 

processes dependent on soil type, depth, and time of production. Understanding of 

these soil CO2 emission processes and the development of an appropriate Rs model 

can help in the assessment of environmental controls and climate change impacts 

on forest ecosystems. In this study, half-hourly CO2 data was measured in a 90-

year deciduous forest in the Great Lakes region using an automated CO2 efflux 

chamber system and a closed – path eddy covariance system from July 2014 to 

December 2018. Mean Rs varied from a maximum value of 7.50 µmol C m-2 s-1 in 

July to a minimum value of 1.11 µmol C m-2 s-1 in December and demonstrated a 

clear seasonal trend that was driven by soil temperature and availability of water 

content. These data were used to evaluate the performance of seven different Rs 

models in predicting the soil CO2 emission from the forest. The models included 

are: 1) Gaussian – Gamma model, derived from a Gaussian function with Rs and 

temperature combined with a Gamma function combining Rs and soil water content 

using an exponential and power function, 2) Rs Q10, which accounts for increase in 

Rs per 10oC increase in temperature, 3) Rs Ts SM, which is the Q10 response of Rs 
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is constrained using a logistic soil water content function, 4) Rs Ts, which is a 

general exponential regression model of Rs, 5) Bunnell Model, which is a 

generalized Rs model account for temperature and soil water content effects, 6) Rs 

Ts SM GEP, which is a model that simulates Rs during the growing season and 

accounts for photosynthesis activity or gross ecosystem productivity (GEP), and 7) 

NARX, which is a nonlinear autoregressive neural network function with 

exogenous inputs. Comparison of these seven different models showed that the 

Gaussian – Gamma model performed the best by capturing the seasonal variations 

of Rs quite well and having an annual model testing average coefficient of 

determination (R2) of 0.71. Performance of the Bunnell model and NARX was also 

adequate with an annual average testing R2 of 0.70 and 0.69, respectively. This 

study highlights the challenges and significance of environmental controls such as 

temperature and soil water content on the simulation of Rs in forest ecosystems.  

2.2 Introduction  

The earth’s surface area contains 3.7 billion hectares of forests which cover around 

31% of its land surface. Forests provide vital services such as wood production, 

clean water and air, and play a major role in biogeochemical cycling of carbon 

dioxide (CO2) (Apps and Price, 2013; Matsumono et al, 2008).  

Knowledge of atmospheric CO2 movement or exchanges is imperative for greater 

understanding of carbon sources and sinks. Net carbon within a forest stand is 

characterized by uptake from photosynthesis and release by respiration. CO2 is 

absorbed from the atmosphere and through photosynthesis, reacts with water to 
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produce oxygen and carbohydrates which is stored. Some carbon is released as CO2 

through respiration of living plant components (autotrophic respiration) and is 

returned to the atmosphere. The remaining carbon is allocated to different plant 

pools such as leaves, stem, and roots which is eventually decomposed to release 

CO2 back into the atmosphere (heterotrophic respiration) (Brady and Weil, 2008; 

Lorenz and La, 2010). Therefore, forests are considered climate regulators due to 

their ability to sequester atmospheric carbon, holding it in large pools for long 

periods of time and then releasing it back (Apps and Price, 2013).  

Soil respiration (Rs) is the release of CO2 through both heterotrophic and 

autotrophic activity and accounts for 30 – 80% of net CO2 release within forests 

(Davidson et al, 2006; Luo and Zhou, 2006). Within the carbon cycle, 10% of the 

atmospheric CO2 is passed through the soil each year primarily through organic 

matter decay (Raich and Potter, 1995). Variability of Rs is influenced by diurnal 

processes such as photosynthetic activity, shade from trees, and proximity to tree 

trunks (Khomik, 2004). When compared to the atmosphere and biotic sinks the soil 

carbon sink is 3.2 and 4 times larger, respectively (Lorenz et al, 2010). Therefore, 

due to improper management techniques such as clear cutting and extreme weather 

events from climate change causing shifts in temperature and precipitation, a small 

release in Rs can result in a large release of CO2 into the atmosphere (Peng et al, 

2008).  

Rs is comprised of heterotrophic respiration; the microbial decomposition of 

organic matter and autotrophic respiration; the growth and maintenance of plant 
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roots and associated mycorrhizae. Rs is primarily affected by abiotic and biotic 

sources. Biotic sources include soil and root microorganism activity and deposit of 

organic material from litterfall. Abiotic sources such as energy heat flux, 

temperature (soil and air), precipitation, and soil moisture can influence Rs by 

affecting the facilitation of nutrient transport and microorganism activity. By 

mapping, modeling, and monitoring flux movement, forest management techniques 

such as thinning can be utilized to decrease the amount of CO2 released into the 

atmosphere (Reichstein and Beer, 2008; Peng et al, 2008). Changes in Rs rates can 

indicate activities that may have caused disturbance to the ecosystem (Schlesinger 

and Andrews, 2000).  Multiple studies have indicated that autotrophic and 

heterotrophic respiration show similar seasonal trends though heterotrophic 

respiration increases slightly earlier in the growing season (Hogberg et al, 2001; 

Hanson et al, 2000).  

The introduction of eddy covariance techniques can determine flux exchange 

throughout an entire ecosystem by calculating vertical fluxes from wind that 

contains rotating eddies of different sizes (Running et al, 1999; Geider et al, 2001). 

Total CO2 uptake and release can be calculated from the technique and can be 

integrated into soil CO2 emissions or Rs to estimate the effects of respiration under 

changing climate conditions (Burba, 2013). In empirical models, Rs is a function 

of temperature and scales with secondary environmental factors such as soil 

moisture. Previous studies have utilized models to fit measured respiration data in 
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individual sites (Janssens and Pilegaard, 2003; Del Grosso et al, 2005; Richardson 

and Hollinger, 2005). 

Rs models can be classified into two types: empirical and mechanistic. Empirical 

models typically use regression analysis of Rs with temperature and soil moisture 

which is derived from observed data. Mechanistic models are processes based and 

created using environmental and biological factors that contribute to Rs. These 

models can be categorized into two parts: the CO2 production model; which 

consider factors that produce CO2, and the CO2 production-transport models; which 

considers CO2 production along with its transport to the soil surface. 

Early Rs models utilized the relationship between enzyme activity of 

microorganisms and temperature as an exponential equation (Van’t Hoff, 1884). 

However, the equation underestimates Rs at low temperatures and overestimates it 

a high temperature (Lloyd and Taylor, 1994). Moreover, it is impossible for Rs to 

continuously increase exponentially as temperature increases. Eventually, Rs starts 

declining when the temperature reaches beyond the optimum temperature due to 

microorganism death. Lloyd and Taylor created another Rs equation that 

represented Rs within a wide range of ecosystems and across different temperature 

ranges (Thierron and Laudelout, 1996; Savage and Davidson, 2001; Hollinger and 

Richardson, 2005). Davidson et al, (2006) discovered that Rs is highly correlated 

with temperature and radiation during the growing season along with multiple 

abiotic and biotic interactions and factors. Skopp et al, (1990) conducted a 

laboratory experiment that showed Rs increases with soil water content up to 0.7 



 

41 
 

then declines. They showed that the response of Rs is caused from an increase in 

diffusion facilitating the transport of nutrients at lower soil moisture. However, at 

higher soil moisture levels Rs starts to decrease due to the limitation of oxygen 

diffusion. 

Neural networks are composed of artificial neurons that stimulate a biological 

neural system (Hebb, 1949). Automated neural networks (ANN) utilize machine 

learning for recognition, prediction, and classifying patterns. Weights are assigned 

to input values to “train” the network into recognizing similar values (Rosenblatt, 

1958). Some ANN utilize hidden layers that consists of one output layer sending 

its input to many hidden layers. The hidden layers then pass their output to another 

hidden layer or an output layer. Hidden layers are described as such because only 

their output is seen and allows the network to find features within the data. These 

layers allow following layers to operate with these features and splits individual 

tasks within different layer. Within machine learning techniques, data is commonly 

split using feature extraction where a different useful feature is extracted to 

facilitate learning.  

ANN techniques may use supervised or unsupervised methods for recognition of 

parameters and hence predictions (Russell et al, 2010). The Nonlinear 

autoregressive model with exogenous inputs (NARX) is a variant of a recurrent 

network that has been utilized in time series prediction problems (Lin et al, 1996; 

Gao and Meng, 2005). Neural networks have the benefit of providing an alternative 

to conventional models that are limited by linearity, variable dependencies, etc. 
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ANN can allow users to model complex relationships and phenomena quickly and 

easily that may be otherwise impossible to predict (Sinanoğlu, 2004).  

The specific objectives of this study are to (1) obtain an understanding of spatial 

and temporal dynamics of Rs, (2) determine how Rs responds to its main 

controlling variables (i.e. soil temperature and soil moisture), (3) assess the impact 

of extreme weather events on Rs, (4) to compare several different models with 

varying complexity using a wide range of parameters, and (5) to determine which 

model produces the best fit and Rs estimation according to coefficient of 

determination (R2), slope, and y-intercept.  

2.3 Materials and Methods 

2.3.1 Site Description 

This study is conducted in a 90 – year – old mature deciduous forest northwest of 

Long Point Provincial Park in Southern Ontario established in the 1930s (TPD; 

42.64oN, 80.56oW). The naturally – regenerated forest resides on sandy (Brusonic 

Gray Brown Luvisol) soil. Parts of forested land were previously agricultural fields 

that were converted to forest. Predominant tree species include white oak (Quercus 

alba), sugar and red maple (Acer saccharum, A. rubarum), American beech (Facus 

grandifolia), red oak (Q. veluntia, Q. rubra), and white ash (Fraxinus Americana). 

The understory species include young deciduous trees as well as Canadian 

mayflower (Maianthemum canadense), putty root (Aplectrum hymale), yellow 

mandarin (Disporum lanuginosum), red trillium (Trillium erectum), and horsetail 

(Equistrum). Average tree height is 25.7 cm with a stand density of 504 ± 18 trees 
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per hectare. Average tree diameter at breast height is 22.3 cm. Soil drainage is rapid 

to well – drained and has a bulk density of 1.15 g m-3. Further details are provided 

in Beamesderfer et al, (2020).  

The climate in the region is humid continental with warm summers and cool winters. 

The 30 – year (1981 to 2010) mean annual air temperature and total precipitation 

measured at a weather station in Delhi, Ontario (~25 km north of the site) is 8.0oC 

and 997 mm, respectively. Precipitation is evenly distributed over the year, with 

13% falling as snow (Environment and Climate Change Canada).  

2.3.2 Soil and Ecosystem Flux Measurements  

Continuous half – hourly Rs measurements were recorded using an automated CO2 

flux measurement system on top of permanent collars from July 2014 to November 

2018 for the snow free growing season. Measurement equipment is comprised of 

three main components: the gas analyzer (LI – 8100A), long – term measurement 

chambers (LI 8100 – 104), a multiplexer for multiple chamber measurements (LI – 

8150). Each chamber is located 15 m from the measurement equipment and is 

equipped with a soil temperature and soil moisture probe (LI – 8150 – 203 and GS 

– 1, respectively) that were installed outside the collar at a depth of 5 cm. Two 

measurement chambers were deployed from July to December 2014 and the other 

tree since April 2015 (five total). The soil collars are comprised of PVC with a 

diameter of 20 cm, a thickness of 1 cm, and height of 11.5 cm. The collars are 

inserted 7 – 8 cm within the soil surface with 3 cm remaining above. Throughout 



 

44 
 

the growing season, any vegetation growth is removed from inside the collar to 

eliminate photosynthesis effects. Further details are provided in Daly (2016).  

Ecosystem CO2 fluxes were measured using a closed – path eddy covariance system 

(CPEC) which consisted of a sonic anemometer (CSAT3, Campbell Scientific Inc. 

(CSI)), an infrared gas analyzer (LI – 7200, Li – COR Inc.), and an automatic 

weather station (CSI). Instruments were installed above the canopy at 36 m on top 

of a scaffolding tower. A mid – canopy infrared gas analyzer (IGRA; LI – 820, Li 

– COR Inc.) was used to measure mid – canopy CO2 at 16 m above ground. Half – 

hourly eddy covariance flux measurements were recorded at 20 Hz. Metrological 

data was sampled every 5 seconds and averaged half – hourly using a data logger 

(CR3000, CSI). Air temperature and relative humidity (HMP155A, Campbell 

Scientific Inc. (CSI)) and net radiation using four dome net radiometers (CNR4, 

Kipp and Zonen) is also measured. Soil heat flux is obtained suing four soil heat 

flux plates (HFT3, Campbell Scientific Inc. (CSI)) buried 3 cm below the soil 

surface at two different locations.  

Soil temperature and soil moisture is measured year – round at two locations at 2, 

5, 10, 20, 50, 100 cm depths near the eddy covariance flux tower and CO2 chamber 

locations. GEP calculations are derived from modeled ecosystem respiration (RE) 

and net ecosystem exchange (NEE). The NEE is calculated as the sum of CO2 flux 

and the rate of CO2 storage change. RE is estimated from Ts at 5 cm with SM from 

measurements made at 5, 10, 20, and 50 cm. GEP gaps are filled using predicted 

values derived from Ts, SM, photosynthetically active radiation (PAR), vapor 
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pressure deficit (VPD), photosynthetic flux per quanta, and light saturated rate of 

CO2 fixation. Further details of flux, meteorological, and soil data measurements 

are provided in Beamesderfer et al, (2020). 

2.3.3 Data Analysis  

Soil CO2 emissions data was processed using Soil Flux Pro software (4.0.1; Li – 

COR Inc.). The rate of increase in CO2 concentration during chamber closure was 

analyzed. An exponential curve was fitted and the resulting plot was fit with a non 

– linear regression equation that solved for C∞, to, and α where Co is the starting 

measured CO2 concentration. The CO2 flux based on the slope of the regression 

equation was reported as the exponential flux.  

𝐶(𝑡) = 𝐶∞ + (𝐶𝑜 − 𝐶∞)𝑒−𝛼(𝑡−𝑡0) 

Measurements that reported a high exponential iteration (>10) were processed 

further by changing the start time until the exponential iteration is less than 10. 

Measurements from one chamber were excluded from 2014 to 2017 due to a hidden 

wasp nest in the nearby ground that resulted in unusually increased CO2 emissions.   

2.3.4 Rs Models  

Linear and non – linear analysis was performed on daily measured Rs. Seven 

models were derived to determine the correlation between Rs and its environmental 

controls. The first model was a simple, exponential regression between Rs and Ts 

(Rs Ts; Van’t Hoff, 1884). The second is the Q10 model (Rs Q10; Yuste et al, 2005), 

the third is a modified Q10 model that incorporates soil moisture (Khomik et al, 
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2009), the fourth is a model for a temperate deciduous forest that accounts for plant 

photosynthesis (Rs Ts SM GEP), the fifth is the Bunnell model (Bunnell et al, 1977), 

the sixth is a Gaussian – Gamma model that was based on Ts and a gaussian 

function whose dependence on soil moisture was represented by a gamma function 

(Khomik et al, 2010), the seventh was a NARX neural network model that 

incorporated latent heat flux (LE), sensible heat flux (H), net radiation (Rn), air 

temperature above the canopy (Ta) at 36 m, Ts and SM at 5 cm depths and daily 

precipitation (PPT) and was derived from Melesse and Hanley (2005). This model 

was trained using a scaled conjugate gradient algorithm.  

The models were evaluated using 70% of observed measurements for training and 

30% for testing based on studies performed by Gholamy et al (2018). The NARX 

neural network was created with the neural network time series toolbox from 

Matlab (2018a) which uses 70% of data for training, 15% for validation, and 15% 

for testing. Two hidden layers were used within the network with eight hidden 

neurons and an input and output delay of 2. Further model analysis was performed 

using the coefficient of determination (R2), sum of squares (SSE), standard 

deviation (STD), relative error (RE), slope intercept relating to normal linear model 

(Y = x), and yearly fit to observed daily Rs. Model equations are shown in Table 

2.1.  
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2.4 Results  

2.4.1 Meteorological Measurements  

Annual and monthly values of meteorological and soil variables are shown in 

Figure 2.1. Monthly average temperature (Ta; Figure 2.1a) ranged from -4.37 and 

0.21oC in the winter seasons to 19.36 and 21.39oC in the summer. Mean annual Ta 

values were 7.93, 9.04, 10.64, 9.93, and 9.22oC from 2014 to 2018, respectively. 

Ta increased above 0oC in April, peaked in August, and declined for the remainder 

of the year. Photosynthetically active radiation (PAR; Figure 2.1a) and soil 

temperature (Ts; Figure 2.1b) followed closely to Ta trend with the exception of 

late winter (January to March) where Ts remained consistently near 0oC. Monthly 

average values of Ts ranged from -0.03 to 20.61oC for all years.  

Maximum values for incoming PAR (Figure 2.1a), Ta, and Ts occurred in the 

summer. PAR values reached maximum levels in June for 2014, 2016, and 2017, 

July for 2015, and late May for 2018.  

Total annual PPT (Figure 2.1c) was 1429, 810, 777, 1153, and 1644 mm from 2014 

to 2018 respectively. SM (Figure 2.2) peaked in early spring with a maximum value 

of 0.23 (April 2014), 0.22 (January 2015), 0.20 (March 2016 and May 2017), and 

0.24 m3 m-3 (February 2018). SM in subsequent years had high values in the 

beginning of the year (January to April) before decreasing in July for 2016 and 

2017 and June in 2018. SM in the summer months reached a minimum value of 

0.031 (July 2014), 0.026 (September 2015), 0.021 (August 2016), and 0.022 m3 m-

3(July 2018). There was a second SM peak (0.14 m3 m-3) in late 2014 October and 
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in November from 2015 to 2018 (0.17, 0.13, 0.18, 0.20 m3 m-3 respectively). 

Average SM values are 0.12, 0.10, 0.09, 0.11, and 0.11 m3 m-3 from 2014 to 2018.  

2.4.2 Annual and Seasonal Trends in Rs 

Daily Rs measurements made during this study are shown in Figure 2.3. Rs 

seasonality followed closely with Ta and Ts, peaking in the summer and declining 

throughout the rest of the year. The maximum mean daily Rs was 13.15 µmol CO2 

m-2 s-1 on August 5, 2014, 10.02 µmol CO2 m
-2 s-1 on June 15, 2015, 8.68 µmol 

CO2 m
-2 s-1 on August 17, 2016, 10.96 µmol CO2 m

-2 s-1 on October 10, 2017, and 

11.86 µmol CO2 m
-2 s-1 on September 5, 2018. Minimum mean daily Rs was 0.86 

µmol CO2 m
-2 s-1 on November 28, 2014, 1.27 µmol CO2 m

-2 s-1 on November 20, 

2015, 0.95 µmol CO2 m
-2 s-1 on May 7, 2016, 1.74 µmol CO2 m

-2 s-1 on May 8 2017, 

and 1.01 µmol CO2 m
-2 s-1 on April 29, 2018.  

Increases in Rs corresponded to all precipitation events, which caused an increase 

in SM. For example, on October 9, 2017 there was a 11.7 mm precipitation pulse 

where SM increased from 0.1 to 0.39 m3 m-3, causing a 78% increase in Rs (5.97 

vs 10.63 µmol CO2 m
-2 s-1). Pre – precipitation Rs levels were not reached until 20 

days after the rain event (Figure 2.4). Additionally, large fluctuations in Rs was 

occured after long periods without precipitation. Figure 2.9 shows that after 

September 2017 (a period of 19 days; figure 2d), a precipitation event caused a 

spike in Rs greater than those seen in early to mid – summer. Total Rs coverage at 

the site is 36.71%, 55.07%, 55.07%, 50.68%, and 55.62% from 2014 to 2018.  
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A strong exponential relationship was displayed between Rs and Ts during 5 years 

of study (Figure 2.5). Analysis showed that the temperature sensitivity (Q10) from 

2014 to 2018 was 2.06, 1.76, 1.70, 1.67, and 2.36. The basal rate of respiration at 

10oC (R10) was found to be 4.73, 3.14, 2.84, 4.36, and 3.51 from 2014 to 2018. The 

difference in R10 and Q10 values between 2014 and 2015 could be related to the 

high percentage (46%) of missing data in 2014 resulting in a loss of early growing 

season data. The removal of one chamber due to high reported CO2 can cause low 

sample size (one chamber used instead of two) which also affected the overall Rs. 

The increase in temperature sensitivity in 2018 could be caused by the addition of 

another chamber (four to five). The Coefficient of Variation (CV) was found to be 

45%, 43%, 42%, 32%, and 43% from 2014 to 2018.  

2.4.3 Comparison of Rs Models  

Seven models were utilized to fit Rs data from 2014 to 2018. A comparison of 

observed and modeled daily mean Rs is shown in Figure 2.6. Modeled vs observed 

regression analysis with the coefficient of determination (R2) is shown in Table 2.2. 

Model relative error is shown in Figure 2.7. Model statistical analysis is outlined in 

Table 2.5.  

In 2014, the model that best fit the data was found to be the Gaussian – Gamma 

model producing the highest correlation with measured values (R2 = 0.76) and 

produced the lowest SSE (111.1; Table 2.4). Comparison of testing linear equations 

using observed and predicted Rs show that the Gaussian – Gamma model produced 

a slope closest to 1 and a low intercept (Table 2.3a). The Rs Ts SM model and the 
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Bunnell model produced a similar testing equation to the Gaussian – Gamma model 

and a lower intercept with a lower STD (2.63 and 2.62 respectively) with a similar 

SSE (111.2 and 112.0; Table 2.4). The NARX Neural Network was the worst fitting 

model with a low coefficient of determination (0.37), low testing slope and 

intercept (Table 2.3a) with high SSE (134.2). However, STD values (1.46) are 

lower than the three models mentioned previously and closest with the STD values 

of the observed data (1.84, Table 2.4).  

In 2015, where more complete measured Rs data was available, the model that 

produced the best fit was the Rs Ts SM model with a high correlation (R2 = 0.83) 

and low SSE (54.52) and STD (1.63). The Bunnell model produced a similar testing 

equation (Table 2.3a) with the same correlation and STD and a lower SSE (53.69). 

The NARX Neural network testing equation (Table 2.3a) produced a very close 

slope to 1 and a low intercept with a correlation similar to the previously discussed 

models. However, the model had a higher SSE (138.7) and STD (2.12). The Rs Ts 

SM GEP model produced the worst fit with extremely low coefficient of 

determination (R2 = 0.056) and slope and intercept (Table 2.3a). However, the 

equation produced the lowest SSE and STD (15.19 and 0.25 respectively). The 

model that produced the closest STD to observed data (1.41) was the Rs Q10 and 

Rs Ts models (~1.25; Table 2.4). 

In 2016, where temperatures are higher and low overall SM and PPT throughout 

the year (Figure 2.2c), the model that produced the best fit was the NARX Neural 

Network. The network produces a low SSE (75.38), high coefficient of 
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determination (R2 = 0.79), low STD (1.47), with low intercept on the testing 

equation. However, the slope of the testing equation is not as close to 1 as the 

Gaussian – Gamma model which produces similar STD (1.44) and slightly higher 

SSE (77.83). The Rs Ts SM GEP model produced the worst fit similar to that of 

2015 with an extremely low correlation (R2 = 0.016), a negative slope within the 

testing function, and a high SSE (174.80). The Rs Ts SM model produced a STD 

(1.24) closest to observed STD (1.33; Table 2.4).  

In 2017 temperatures stabilized with one high precipitation event (Figure 2.2d). The 

model that produced the best fit was the Gaussian – Gamma model with a relatively 

high coefficient of determination (R2 = 0.55) and testing slope matching 1 with low 

intercept (Table 2.3b). However, the SSE and STD were higher when compared to 

other models (92.62 and 2.14 respectively). The NARX neural network was also a 

viable model with a higher correlation (R2 = 0.63) and closer testing slope to 1 with 

a low intercept. However, the model produces the highest SSE (248.0) and STD 

(2.83) from the rest of the models. The Rs Q10 and Rs Ts models both produce the 

worst results with the lowest correlation (R2 = 0.41) along with similar low testing 

slope and high intercept (Table 2.3b). The models’ SSE and STD are relatively 

similar as well (~57.08~ and 1.56). The Rs Q10 model produced the closest STD 

(1.55) to the observed STD (1.46; Table 2.4).  

In 2018, with the additional chamber added, the model that produced the best fit 

was the NARX Neural Network with a correlation of 0.83, high slope and low 

intercept. The network created a relatively low SSE (167.6) and STD (2.44). When 



 

52 
 

compared to the Gaussian – Gamma model, the model created a slightly lower 

correlation (0.82) and slightly lower testing slope with slightly higher intercept 

(Table 2.3b). The model produces slightly higher SSE and STD (181.80, 2.66 

respectively). The Rs Q10 and Rs Ts models both produced the worst result with a 

low testing model and intercept and correlation (R2 = 0.72). Both models produced 

similar SSE (~233.5) and the same STD (2.63). The closest STD to the observed 

STD (1.89) is the Rs Ts SM GEP model (1.51; Table 2.4). 

Overall, the Gaussian – Gamma model had the best fit explaining an average of 

56.50%, 81.50%, 70.50%, 59.00%, and 82.50% of the Rs variability from 2014 to 

2018. The Gaussian – Gamma model obtained an R2 of 0.76 while the NARX 

neural network obtained an R2 of 0.37 in 2014. This is probably due to insufficient 

data coverage for network training. In 2015 (with an additional 3 chambers) and in 

2018 (with 1 chamber re-incorporated) the R2 of both models were similar with a 

difference of 0.01. In 2016 and 2017, a year with multiple droughts and high 

precipitation, the neural network (R2 = 0.79 and 0.63) was able to surpass the 

Gaussian – Gamma model (R2 = 0.62 and 0.55) indicating factors such as latent 

heat, relative humidity, net radiation has an impact on Rs.  

Model relative error is shown in figure 2.7. Models for all years showed positive 

relative error in the summer (June, July, and August) representing Rs 

underestimation. In April/May and at the end of August, a negative relative error 

was produced indicating overestimation. Large relative error at the end of 2014, 

beginning of 2015, and at 2016 and 2018 could be the result of instrumentation 
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problems causing a loss of data producing gaps that inhibit accurate Rs prediction. 

Of the seven models, the Gaussian – Gamma and neural network have the lowest 

relative error.  

Daily relative error as a function of temperature is shown in Figure 2.9. The 

Gaussian – Gamma model showed a uniform relative error across all Ts ranges (0 

to 23oC). From 2014 to 2016 and 2018, the Rs TS SM GEP model showed largely 

positive relative error at low Ts and positive error at higher Ts. The 6 other models 

produced negative relative errors at low Ts which slowly increased to positive error 

at high Ts. 

Seasonal and growing season Rs emissions were analyzed with each model which 

are summarized in Table 2.6. Across all years, spring 2016 had the lowest carbon 

emissions (113 to 232 µmol CO2 m
-2 s-1) and summer 2018 had the highest (634 to 

680 µmol CO2 m
-2 s-1). All models estimated above 1200 µmol CO2 m

-2 s-1 with the 

exception of 2015 and 2016. The lowest carbon emissions estimated by the 

Gaussian – Gamma and neural network was in 2015 (~1084 µmol CO2 m
-2 s-1).  

2.5 Discussion  

2.5.1 Temporal Rs Patterns 

Seasonal Rs variation at the site showed increases in the spring that coincided with 

PAR, Rn, Ta, and Ts. Declines in Rs in the autumn closely followed that of Ts 

similar to that measured in other temperate forests such as in Taylor et al (2015) 
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and Shabaga et al (2015) which suggests influence of temperature on Rs production 

(Davidson et al, 2006).  

Rs can be quantified using the soil basal respiration rate at 10oC (R10) and 

temperature sensitivity (Q10) from the Q10 model. R10 is the emission of carbon 

dioxide caused by microorganism activity within the soil. Q10 is the temperature 

sensitivity of Rs, which is the increase in Rs for a 10oC increase in temperature (Jia 

et al, 2003). Q10 obtained at the site ranged from 1.70 to 2.36 and R10 ranged from 

2.84 to 4.73 (Table 2.2b). These values followed seasonal trends and are within 

ranges reported in literature (Tang et al, 2014; Greco and Baldocchi, 1996; Goulden 

et al, 1996; Xu and Baldocchi, 2004).  

R10 values increased with Ts values while Q10 decreased similar to previous 

temperate forest studies (Yuste et al, 2004; Gaumont – Guay et al, 2006; Jia et al, 

2013). A greater sensitivity to temperature (Q10) at lower Ts can be explained by 

the increased sensitivity of biological activity (microbiota and roots) from 

temperature fluctuations (Jia et al, 2013). Photosynthesis is the main driver of 

autotrophic respiration, but sensitivity to environmental factors such as light and 

temperature can cause change in root biomass influencing autotrophic respiration 

(Hogberg et al, 2001; Mo et al, 2005; Wei et al, 2010). Additionally, Q10 varied 

between the years probably due to fluctuating seasonal changes, processes, and 

plant activity (Yuste et al. 2004). It is possible that variations in SM can affect the 

Q10 values due to dry and wet years (Ignace, 2019). In years with multiple drought 

periods Q10 values are shown to be low and higher in years with multiple wet 
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periods (Craine et al. 2010). Furthermore, the amount of accumulated biomass can 

also affect Q10 by influencing the amount of water available in the soil (Ignace, 

2019). The R10 and Q10 value for the site is 3.27 and 2.41 respectively for all years. 

The R10 value is similar to the yearly average and the Q10 value is a closer to that 

of 2018 which indicates a greater influence of SM on temperature sensitivity at the 

site.  

Seasonal differences were observed between mean Ts, R10, and Q10. For example, 

May and October 2015 had similar mean Ts (12oC) but R10 and Q10 were lower in 

May. Studies in literature show that high R10 values are reported in the autumn 

regardless of Ts due to summer warming of deeper soil layers and accumulation of 

fresh litter causing increased microbial activity (Jia et al, 2013; Mo et al, 2005). 

Seasonal variations in Rs can be accounted by Ts, but other inconsistencies such as 

increase in Rs following decreases in Ts can be explained by other environmental 

factors such as soil moisture (Davidson et al, 1998; Xu and Qi, 2001; Pumpanen et 

al, 2008; Van der Molen et al, 2011). An example is from Rs increase following 

large rainfall events (Figure 2.4) which is consistent with other reports (Lee et al, 

2004; Gaumont – Guay et al, 2006; Yan et al, 2014). Following a rain event, CO2 

within soil pores are replaced with rainwater causing displacement of soil gasses 

such as CO2. Lingering rainwater afterwards facilitates the transport of nutrients 

and causes an increase in microbial population and activity. Decomposition of 

carbon compounds within the organic soil horizon utilizes aerobic respiration 
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consuming oxygen and producing a surge in CO2 efflux (Yan et al, 2014; Orchard 

and Cook, 1983).  

 

 

Few studies have quantified the effects of Rs pulses following PPT events. Lee et 

al, (2002) reported a 16 – 21% increase in Rs following rain events in a temperate 

deciduous forest in Japan. Borken et al, 2005 found that excluding a throughfall of 

168 and 344 mm in a mixed deciduous forest caused a significant decrease of 10 – 

30% in mean annual Rs. Furthermore, dry periods caused by drought can also 

influence Rs. Liu et al, (2016) reported an increase in both soil and heterotrophic 

respiration in response to precipitation events following a spring drought. The study 

concluded that longer drought periods resulted in larger increases in Rs.  

The site experienced a significant increase in Rs after PPT events compared to those 

reported for temperate deciduous forests in literature (~60 mm vs 168 and 344 mm 

in Borken et al, 2006), which could be the result of the site’s sandy soil composition 

and climatic conditions. TPD also receives half the amount of PPT compared to the 

study performed by Lee et al, (2002) suggesting that a combination of low SM (0.23 

m3 m-3) and good drainage can result in a Rs pulse following a PPT event greater 

than those typically seen in areas susceptible to frequent drying and rewetting. In a 

drought, a portion of soil microorganisms die and are decomposed during rewetting 

from precipitation (Van Gestel et al, 1991; Jeong et al, 2018). Additionally, the 
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availability of trapped organic matter can also contribute to increased Rs (Borken 

et al, 1999). In temperate forests where precipitation occurs consistently throughout 

the year, low SM values may contribute to labile organic matter accumulation. 

When precipitation occurs, this can cause dissolved organic matter to percolate 

rapidly into the soil in well drained plots leading to large and rapid Rs pulses.  

The variability of Rs in response to change in SM is discussed within literature (Xu 

et al, 2004; Khomik et al, 2006; Raich et al, 2002; Ohashi and Gyokusen, 2007; 

Thorne et al, 2020). Analysis indicates that SM accounts for 20% of Rs variability 

and could be a control in the early growing season during normal climatic periods. 

This suggests that Ts accounts for approximately 60 – 70% of variability while SM 

is a secondary control. However, during periods of long drought or high PPT, other 

factors such as energy balance (e.g. Rn, LH, and H) and Ta may explain further 13% 

of variability.  

2.5.2 Spatial Variability 

There are advantages and disadvantages with automated chamber use when dealing 

with Rs variability. Automated chambers provide temporal measurements but 

capture less spatial variability compared to manual chambers. For ecosystem – wide 

scaling from automated chambers, spatial variations must be considered (Wang et 

al, 2006). There can differences in measured values from a couple of meters apart 

even within a homogenous area due to differences in shading, soil biomass 

accumulation, and other factors (Davidson et al, 2002). One indicator of the spatial 

variability within chambers is the coefficient of variation (CV). The CV was found 
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to be comparable to other studies. For example, Shi and Jin (2016) reported a CV 

of 20 – 52% in temperate northeastern forests in China and Ngao et al, (2012) 

reported a CV of 9 – 62% in a European temperate beech forest. Spatial variation 

of Rs and its driving factors is under – researched, due to financial difficulties 

(multiple chamber requirements) and methodology and variability in factors such 

as soil organic matter content, pH, root distribution, and soil moisture (Bowden et 

al, 2004; Luan et al, 2014; Shin and Jin, 2016). However, high CV values obtained 

in this study as well as in literature indicate that spatial variability should be of 

concern.  

2.6 Modeled Rs  

2.6.1 Comparison of Model Results 

The models that produced the best fit are the Gaussian – Gamma and the NARX 

neural network, providing better performance than the other five models (Rs Ts, Rs 

Q10, Rs Ts SM, Rs Ts SM, GEP, Bunnell Model).  

In 2014, models produced a poor yearly fit and coefficient of determination mainly 

because of three factors: the lack of data coverage from measurement later in the 

season, the removal of one chamber due to high CO2 measurement from a wasp 

nest, and the smaller number of chambers (3 in 2014 compared to 5 in 2015). This 

caused a decrease in the amount of data available for training and testing producing 

a worse fit with observed data. More complex models (Bunnell Model, Gaussian – 

Gamma, NARX neural network, Rs Ts SM) followed two spikes in Rs during 

October 17th and the 24th whereas models such as Rs Ts and Rs Q10 produced a 
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constant increase and decrease throughout the year. This is likely due to seasonal 

bias such as sharp increases in precipitation and temperature causing models to 

underestimate indicating that in years with no extreme events or anomalies, a 

simpler model is suitable for estimation.  

In 2015, models on average produced a higher coefficient of determination with the 

exception of Rs Ts SM GEP model with the addition of more chambers. The Rs Ts 

SM GEP model produced a worse yearly fit due to uncertainties related to GEP. 

Similar to 2014, the NARX neural network produced a noisy Rs before and after 

the growing season whereas the Gaussian – Gamma model produced consistent 

values. The fluctuations in estimated Rs from the neural network may be due to an 

assumption of plant growth and respiration during periods where there is little to 

none. In areas where there is a gap in Rs following a decline, the NARX neural 

network creates a more pronounced decline than the rest of the models (with the 

exception of Rs Ts SM GEP). This is probably due to the inclusion of other factors 

such as Ta and PPT creating an influence on Rs which is reflected due to a decline 

in Ta and a period of drought because of the positive correlation between the 

variables (Raich et al, 1992). Afterwards, a sharp increase in Rs is measured which 

all of the models predict. However, the Rs Q10 and Rs Ts model produced a much 

lower increase indicating that the Q10 model may not show true temperature 

sensitivity since other seasonal factors such as precipitation, root size, litterfall, and 

photosynthesis can interfere (Yuste et al, 2004; Gaumont – Guay et al, 2006). When 

incorporating SM, the models produced a better yearly fit. SM is an important factor 
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that can influence Rs and ecosystem growth. Lower Rs can be influenced due to 

decreased temperature sensitivity and lower SM (Xu and Qi, 2001; Davidson & 

Janssens, 2006; Van der Molen et al, 2011). A higher SM can impact soil oxygen 

diffusion for heterotrophic respiration (Pumpanen et al, 2008).  

In 2016, models produced on average a low fit because of low precipitation and 

subsequently low SM. Additionally, higher yearly temperatures created relatively 

low Rs compared to previous years causing models dependence on soil temperature 

and moisture to underestimate. The Rs Ts SM GEP model had large 

underestimation of Rs throughout the year when combined with low soil 

temperature and moisture. The NARX neural network and Gaussian – Gamma 

models both performed well in this year with the neural network following the 

trends of increasing and decreasing Rs during the summer and the Gaussian – 

Gamma model underestimating (especially during fall). This is probably due to a 

series of precipitation events including a period of high precipitation followed by a 

drought and another, slightly lower precipitation event. The neural network 

accounts for the spike in Rs after the event, causing a closer yearly fit (6.61 µmol 

CO2 m
-2s-1 modeled vs 6.59 µmol CO2 m

-2s-1 observed) while the rest of the models 

produce a significantly lower Rs (~4.50 µmol CO2 m
-2s-1). This could be due to the 

inclusion of multiple variables that may influence Rs while other models 

incorporated Ts and SM.  

In 2017, models produced a slightly better fit compared to 2016, however because 

of an extremely high precipitation event, the overall fit is comparably less than 2014 
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and 2015. All models have a close relationship with Ts and follows the Ts curve 

accordingly each year. However, because of the high amount of Ts early within the 

season due to a high precipitation event (57.39 mm), the models based on only Ts 

overestimated Rs early within the growing season (Rs Ts, Rs Q10). This event was 

closely followed with another, slightly lower precipitation event (39.70 mm) which 

caused Rs to rapidly increase and models to underestimate (except Rs Ts SM GEP 

and NARX neural network). In October 9th, there was an extreme precipitation 

event of 81.44 mm causing Rs to spike to 11.86 µmol CO2 m
-2s-1. However, because 

the soil moisture did not increase as high due to excess saturation of the ground and 

runoff, models dependent on both soil temperature and soil moisture 

underestimated Rs (Rs Ts SM, Bunnell model, Gaussian – Gamma model). The Rs 

Ts SM GEP model fit the initial precipitation event well, however the model 

underestimated Rs during the October rainfall event. This is probably due to GEP 

or photosynthesis being affected by precipitation. An increase in precipitation 

causes a decrease in PAR resulting in lower photosynthesis occurring within the 

forest stand. With the addition of PPT within the model, the NARX neural network 

is able to accurately follow measured Rs during the early growing season and 

during the October precipitation event, however the model still underestimates Rs 

(10.96 86 µmol CO2 m-2s-1 observed vs. 6.15 86 µmol CO2 m-2s-1 modeled). 

However, the inclusion may account for large and intense PPT events because the 

model reflects a larger increase in Rs for the October 9th precipitation event 

compared to other models.  
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In 2018, models were able to produce a better yearly fit because of a one 

measurement chamber being re-introduced increasing the amount of training data. 

The year showed relatively similar soil temperature and moisture to 2014 and 2015 

with no extreme precipitation events. There were two spikes in Rs in July and 

September corresponding to two precipitation events the first of which (July) 

caused underestimation in models using only Ts and SM (with the exception of 

Gaussian – Gamma model). The second spike in Rs (September) was able to be 

accurately predicted by all models involving soil moisture. The Rs Ts SM GEP 

model was able to accurately predict Rs for 81% of the observed data. However, 

like in 2017 the first precipitation event caused the model to underestimate likely 

due to the same factors. There was a 6-day gap in observed Rs data from (August 

8 – 13) which was filled by all models. The models that incorporate SM produced 

an increase in Rs while the NARX neural network produced decline. The increase 

in Rs is more plausible when considering soil moisture and precipitation (rainfall 

of 28.76 mm on August 8). The decline produced by the NARX neural network is 

probably related to a decline on August 11th of Ta (22.28 to 20.40oC), LH (87.16 

to 56.41 W m-2), or PPT (28.76 to 2.17 mm). 

Overall, the NARX neural network produced a noisier dataset during periods of 

non-measurement while the Gaussian – Gamma model produced a consistent Rs. 

This indicates that neural network prediction outside of the measurement period is 

inaccurate due to low consistent respiration occurring in the winter (Thorne et al, 

2020). The Rs Ts SM GEP model has limitations restricting Rs estimation to the 
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growing season because of the model’s reliance on GEP. Further research is needed 

to verify this conclusion on the role of model prediction using Rs measurements 

obtained before and after the growing season.  

2.6.2 Comparison of Rs with Ecosystem Respiration 

In order to estimate the growing season CO2 emissions, a yearly model had to be 

implemented to account for gaps in measured data, in particular in the winter where 

measurements are commonly not performed. Calculated Rs values using 7 models 

were compared against ecosystem respiration (RE) measured using an eddy 

covariance system since RE is measured year-round. Additionally, during the 

winter where photosynthesis does not occur, primary respiration is assumed to be 

from the soil. Previous studies have reported Rs values of 800 to 1400 g C m-2 in 

temperate forests (Raich and Schlesinger, 1992; Kishimoto – Mo et al, 2015; Keidel 

et al, 2015; Liu et al, 2016). Our calculated Rs values from 2014 to 2018 were 

within this range with an average Rs of 1207.8 g C m-2. Most studies do not include 

winter measurements because of difficulty in chamber maintenance from snowfall 

and low contribution compared to total annual Rs. Liu et al, (2016) found winter 

Rs in a temperate coniferous forest to be 5% of annual emissions but other studies 

have reported 10 – 50% with around 60 – 90% of total Rs contributing to RE 

(Davidson et al, 2002; Yuste et al, 2005; Khomik et al, 2006; Schindlbacher et al, 

2007; Wei et al, 2010). Our chamber measurements yielded more missing data in 

the early spring (average 69.35%) than in the summer (10.37%) and autumn 

(18.90%) (Table 2.6).  
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In this study, the Gaussian – Gamma model yielded an average of 90.8% of growing 

season RE and the neural network provided 65.1% (Table 2.7). All models 

displayed a seasonal bias with overestimation in the summer and underestimation 

in the winter (Figure 2.7). Errors resulting in overestimation can be caused by 

methodology such as disturbance of soil pressure gradient caused by chamber 

closure (Davidson et al, 1998; Koskinen et al, 2014). The absence of data for the 

first half of 2014 growing season combined with a removal of one chamber from 

2014 to 2017 could have led to estimation errors.  

This study has provided an important insight into the Rs modeling using different 

models and the temporal dynamics of Rs. The addition of environmental factors 

such as SM have shown to increase the accuracy of traditional models such as Rs 

Ts and the Q10 model. Many climate change models have predicted a shift in 

weather patterns causing shifts in temperature and precipitation (IPCC, 2014). An 

understanding of Rs in response to this shift can assist in the development of more 

accurate global carbon cycle models. Future work can include the development of 

a more robust model by incorporating multiple chambers measuring the spatial 

variability and contribution from additional environmental variables to total annual 

Rs in temperate deciduous forests.  

2.7 Conclusion 

The assessment of Rs in a temperate deciduous forest was performed using an 

automated chamber system over a five-year period (2014 to 2018). Our analysis 

indicated that factors other than Ts such as SM can exert significant control on Rs. 
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A pulse of Rs during major rainfall events was observed, which increased Rs by 

78% in 2017. The average Q10 value was 1.91 and R10 increased while Q10 

decreased in response to increasing Ts. Models such as Rs Ts and Q10 were found 

to improve by incorporating soil moisture. The Gaussian – Gamma provided the 

highest accuracy when estimating Rs with average yearly R2 values of 0.60 

compared to the Rs Ts and Rs Q10 models (R2 = 0.55 for both). Application of both 

models indicated that Rs accounted for 65 – 90% of ecosystem respiration for the 

growing season as measured by the eddy covariance system.  

This study provided understanding of the temporal dynamics of Rs in a temperate 

deciduous forest as well as the functioning of the various Rs models in simulating 

Rs dynamics. Findings highlight the importance of multiple environmental factors 

such as precipitation, temperature, soil moisture on Rs. Observed and modeled 

results suggest that extreme weather events could have major implications on Rs in 

the future.  
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Table 2.1. Soil respiration (Rs) models used for modeling and analysis  

 

 

 

  

Model Formula Reference 

Rs Ts 𝑅𝑠 = 𝑎𝑒𝑇𝑠 Van’t Hoff (1884);  

Lloyd and Taylor 

(1994) 

Rs Q10 
𝑅𝑠 = 𝑅10𝑄10

𝑇𝑠−10
10  

Yuste et al. (2004)  

Rs Ts SM 
𝑅𝑠 = 𝑅10𝑄10

𝑇𝑠−10
10 ∗ (

1

1 + 𝑒𝑎+𝑏∗𝑆𝑀
) 

Peichl et al. (2010) 

Rs Ts SM GEP 𝑅𝑠 = 𝐵0𝑒𝐵1𝑇𝑠𝑒𝑏2𝑆𝑀+𝐵3𝑆𝑀2
+ 𝐵4𝐺𝐸𝑃 + 𝐵5 Huang et al. (2014) 

Bunnell Model 
𝑅𝑠 = (

𝑆𝑀

𝑎 + 𝑆𝑀
) (

𝑏

𝑏 + 𝑆𝑀
) 𝑐𝑑

𝑇𝑠−10
10  

Bunnell et al. (1977)  

Gaussian – Gamma Model 𝑦𝑖 = 𝑒𝛽0+𝛽11𝑇𝑖+𝛽12𝑇𝑖
2+𝛽21𝑀𝑖+𝛽22 ln(𝑀𝑖) Khomik et al. (2009)  

 

NARX Neural Network 

𝑦(𝑡) = 𝑓(𝑥(𝑡 − 1), 𝑥(𝑡 − 2) … 𝑥(𝑡 − 𝐷),  

𝑦(𝑡 − 1), 𝑦(𝑡 − 2) … 𝑦(𝑡 − 𝐷) 

 

Melesse et al. (2005) 
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Table 2.2. Training results and coefficient of determination (R2) for the Rs models 

from 2014 to 2018.  

(a) Rs Ts Model  

Year A B R2 

2014 2.29 0.072 0.71 

2015 1.79 0.056 0.54 

2016 1.67 0.053 0.44 

2017 2.61 0.052 0.48 

2018 1.49 0.085 0.74 

All 2.25 0.054 0.38 

 

(b) Rs Q10 Model 

Year R10 Q10 R2 

2014 4.73 2.06 0.71 

2015 3.14 1.76 0.54 

2016 2.84 1.70 0.44 

2017 4.36 1.67 0.48 

2018 3.51 2.36 0.75 

All 3.87 1.72 0.38 

 

(c) Rs Ts SM Model 

Year R10 Q10 A B R2 

2014 6.07 2.51 1.17 -17.67 0.82 

2015 3.87 2.32 0.89 -17.55 0.76 

2016 2.77 2.03 1.46 -87.91 0.54 

2017 4.30 1.89 0.90 -63.23 0.64 

2018 3.97 2.76 0.029 -18.65 0.85 

All 4.12 2.14 0.49 -26.90 0.52 

 

(d) Rs Ts SM GEP 

Year B0 B1 B2 Be B4 B5 R2 

2014 -11.05 -0.041 0.42 -27.26 0.46 7.95 0.83 

2015 -2.44*10-4 34.68 34.67 -228.38 0.12 4.36 0.055 

2016 -3.34*10-4 0.33 2.26 233.43 0.047 4.67 0.24 

2017 -3.59 -0.051 31.99 -1264.79 0.42 3.51 0.59 

2018 1.33 0.077 5.67 -10.20 0.16 -1.90 0.87 

All -8.76 -0.026 8.73 20.83 0.43 5.94 0.59 
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(e) Bunnell Model  

Year A B C D R2 

2014 0.146 2.07*104 1.55 2.50 0.81 

2015 -0.695 0.039 -10.58 2.33 0.77 

2016 0.132 0.038 7.71 1.79 0.55 

2017 0.044 0.240 2.48 1.89 0.64 

2018 -0.891 0.011 -37.8 2.67 0.86 

All -1.984 0.026 -72.29 2.14 0.52 

 

(f) Gaussian – Gamma Model 

Year 𝛽0 𝛽11 𝛽12 𝛽21 𝛽22 R2 

2014 1.80 0.154 2.15*10-3 -1.52 0.69 0.82 

2015 3.34 0.087 1.56*10-4 -6.73 1.07 0.74 

2016 5.93 0.036 -4.34*10-4 -21.39 1.35 0.62 

2017 3.24 0.126 1.94*10-3 -9.43 0.83 0.65 

2018 3.00 0.088 -1.88*10-6 -7.51 0.77 0.83 

All 3.00 0.135 2.02*10-3 -7.67 0.88 0.53 
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Table 2.3. Testing slope and intercept results and coefficient of determination (R2) for seven models: Rs Ts, Rs Q10, Rs Ts SM, 

Rs Ts SM GEP, Bunnell Model, Gaussian – Gamma model, and NARX Neural Network from:  

(a) 2014 to 2016.  

Year 2014 2015 2016 

Model Testing Equation R2 Testing Equation R2 Testing Equation R2 

Rs Ts Y = 0.68x + 2.59 0.63 Y = 0.49x + 2.09 0.62 Y = 0.37x + 2.68 0.40 

Rs Q10 Y = 0.68x + 2.59 0.63 Y = 0.49x + 2.09 0.62 Y = 0.37x + 2.67 0.40 

Rs Ts SM Y = 0.77x + 1.73 0.74 Y = 0.86x + 0.62 0.83 Y = 0.53x + 2.13 0.48 

Rs Ts SM GEP Y = 0.67x + 3.13 0.57 Y = 0.065x + 4.46 0.056 Y = -0.068x + 4.54 0.016 

Bunnell Model Y = 0.78x + 1.69 0.75 Y = 0.87x + 0.61 0.83 Y = 0.47x + 2.37 0.52 

Gaussian – Gamma Y = 0.77x + 1.81 0.76 Y = 0.84x + 0.68 0.81 Y = 0.86x + 1.83 0.62 

NARX Neural Network Y = 0.25x + 2.62 0.37 Y = 0.94x + 0.13 0.82 Y = 0.65x + 1.40 0.79 

 

 

(b) 2017 to 2018.  

Year 2017 2018 

Model Testing Equation R2 Testing Equation R2 

Rs Ts Y = 0.43x + 3.66 0.41 Y = 0.64x + 1.90 0.72 

Rs Q10 Y = 0.47x + 3.66 0.41 Y = 0.64x + 1.90 0.72 

Rs Ts SM Y = 0.56x + 2.67 0.53 Y = 0.73x + 1.27 0.85 

Rs Ts SM GEP Y = 0.56x + 2.85 0.54 Y = 0.74x + 1.27 0.81 

Bunnell Model Y = 0.57x + 2.63 0.53 Y = 0.71x + 1.41 0.86 

Gaussian – Gamma Y = 0.63x + 2.14 0.55 Y = 0.71x + 1.38 0.82 

NARX Neural Network Y = 0.73x + 1.74 0.63 Y = 0.79x + 1.18 0.83 
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Table 2.4. Statistics for applied Rs models. Error sum of squares (SSE) and 

standard deviation (STD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Model 2014 2015 2016 2017 2018 

 SSE STD SSE STD SSE STD SSE STD SSE STD 

Rs Ts 86.86 2.49 72.15 1.26 41.32 1.10 57.18 1.56 233.6 2.63 

Rs Q10 86.91 2.50 72.23 1.25 41.35 1.10 57.08 1.55 233.4 2.63 

Rs Ts SM 111.2 2.63 54.52 1.63 42.16 1.24 56.83 1.68 152.7 2.73 

Rs Ts SM GEP 138.4 1.33 15.19 0.25 174.8 0.71 188.5 1.17 133.2 1.51 

Bunnell Model 112.0 2.62 53.69 1.63 31.46 1.21 58.27 1.69 138.7 2.68 

Gaussian – Gamma 111.1 2.93 69.69 1.66 77.83 1.44 92.62 2.14 181.8 2.66 

NARX Neural 

Network 

134.2 1.46 138.7 2.12 75.38 1.47 248.0 2.83 167.6 2.44 

Observed Rs STD 1.84 1.41 1.33 1.46 1.89 
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Table 2.5. Estimated seasonal and total Rs (g C m-2 year-1) over the growing season 

using seven Rs models 

 

Year 2015 

Model Gaussian  

Gamma 

Rs Ts SM Bunnell Rs Q10 Rs Ts Rs Ts SM GEP NARX  

Neural  

Network 

Winter 55±0.63 101±0.71 100±0.70 149±0.48 149±0.48 32±1.03 107±0.60 

Spring 187±2.01 226±1.67 226±1.65 236±1.36 236±1.36 184±2.09 167±1.20 

Summer 687±1.22 670±1.30 671±1.28 592±1.00 591±1.00 684±1.21 556±0.98 

Autumn 363±1.64 374±1.39 373±1.41 405±1.69 404±1.69 353±1.50 255±1.18 

Total 1292±2.94 1370±2.62 1371±2.62 1382±2.20 1381±2.20 1254±3.02 1084±2.13 

 

Year 2016 

Model Gaussian  

Gamma 

Rs Ts SM Bunnell Rs Q10 Rs Ts Rs Ts SM GEP NARX  

Neural 

 Network 

Winter 42±0.32 95±0.31 94±0.30 146±0.25 146±0.25 45±0.41 230±1.05 

Spring 204±1.44 249±1.13 249±1.12 255±1.04 255±1.04 218±1.37 207±0.83 

Summer 526±1.53 533±1.79 533±1.86 652±1.43 651±1.43 541±1.60 439±1.19 

Autumn 371±1.90 380±1.65 382±1.68 422±1.80 422±1.79 360±1.77 350±1.21 

Total 1143±2.38 1257±2.13 1258±2.16 1475±2.43 1475±2.43 1164±2.37 1226±1.47 

 

 

 

 

 

 

 

 

 

 

Year 2014 

Model Gaussian  

Gamma 

Rs Ts SM Bunnell Rs Q10 Rs Ts Rs Ts SM GEP NARX 

 Neural  

Network 

Winter 42±0.26 103±0.33 103±0.33 135±0.22 135±0.22 30±0.52 315±0.41 

Spring 177±1.99 219±1.64 221±1.66 222±1.25 222±1.25 172±2.01 252±0.86 

Summer 632±1.41 613±1.47 614±1.43 585±0.83 585±0.83 635±1.44 544±1.30 

Autumn 376±2.47 393±2.18 393±2.17 362±1.66 362±1.66 379±2.32 321±0.53 

Total 1225±2.97 1328±2.60 1330±2.60 1304±2.16 1303±2.15 1216±3.01 1432±1.47 
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Year 2017 

Model Gaussian  

Gamma 

Rs Ts SM Bunnell Rs Q10 Rs Ts Rs Ts SM GEP NARX  

Neural  

Network 

Winter 54±0.30 120±0.31 118±0.31 146±0.25 146±0.25 56±0.43 132±0.59 

Spring 222±1.68 261±1.35 260±1.35 259±1.07 259±1.07 231±1.67 214±2.00 

Summer 591±1.21 578±1.25 577±1.27 604±0.88 604±0.88 599±1.18 698±1.09 

Autumn 362±1.85 369±1.50 367±1.51 402±1.58 402±1.58 355±1.68 391±2.16 

Total 1228±2.55 1329±2.17 1323±2.17 1411±2.13 1410±2.13 1241±2.53 1435±2.84 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year 2018 

Model Gaussian  

Gamma 

Rs Ts SM Bunnell Rs Q10 Rs Ts Rs Ts SM GEP NARX  

Neural  

Network 

Winter 48±0.22 114±0.26 114±0.27 139±0.19 139±0.19 47±0.39 194±0.25 

Spring 187±1.99 232±1.60 232±1.60 236±1.36 236±1.36 195±1.94 273±1.50 

Summer 595±1.67 598±1.90 597±1.93 647±1.14 647±1.14 599±1.69 634±1.66 

Autumn 407±2.95 434±2.84 434±2.82 409±2.25 409±2.25 404±2.79 448±2.40 

Total 1236±3.00 1377±2.76 1377±2.76 1431±2.54 1430±2.53 1244±2.96 1549±2.45 
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Table 2.6. Mean seasonal and growing seasonal of ecosystem respiration (RE) and 

measured soil respiration (Rs) values, in µmol CO2 m
-2 s-1, total observed data, and 

the percentage of missing Rs measurements from RE during the study period.  

Year 2014 

Season RE  

(µmol CO2 m
-2 s-1) 

Rs Measured  

(µmol CO2 m
-2 s-1) 

Missing Data 

from RE 

 (%) 

Spring 1.81±1.24 NaN 100% 

Summer 5.56±1.20 9.48±1.74 41.30% 

Autumn 3.42±1.80 5.02±2.21 14.29% 

Total Measured Data 1070.62±2.17 906.19±3.04 63.29% 

 

Year 2015 

Season RE  

(µmol CO2 m
-2 s-1) 

Rs Measured  

(µmol CO2 m
-2 s-1) 

Missing Data 

from RE 

 (%) 

Spring 2.14±1.59 2.64±1.27 69.57% 

Summer 6.69±1.21 6.08±1.30 4.35% 

Autumn 3.71±1.62 3.36±1.12 6.59% 

Total Measured Data 1237.87±2.51 894.61±1.90 44.93% 

 

Year 2016 

Season RE  

(µmol CO2 m
-2 s-1) 

Rs Measured  

(µmol CO2 m
-2 s-1) 

Missing Data 

from RE 

(%) 

Spring 2.10±1.11 2.11±0.74 51.09% 

Summer 5.94±1.80 4.96±1.4 0.00% 

Autumn 4.18±1.89 4.68±1.29 29.67% 

Total Measured Data 1214.86±2.37 850.55±1.79 44.93% 

 

Year 2017 

Season RE  

(µmol CO2 m
-2 s-1) 

Rs Measured  

(µmol CO2 m
-2 s-1) 

Missing Data 

from RE 

(%) 

Spring 2.31±1.37 4.21±1.82 68.48% 

Summer 6.65±1.34 7.57±1.33 0.00% 

Autumn 3.94±1.80 5.39±1.74 29.67% 

Total Measured Data 1270.04±2.49 1162.87±2.05 49.32% 
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Year 2018 

Season RE  

(µmol CO2 m
-2 s-1) 

Rs Measured 

 (µmol CO2 m
-2 s-1) 

Missing Data 

from RE 

(%) 

Spring 1.85±1.28 3.99±1.89 58.70% 

Summer 5.57±1.51 7.35±184 6.52% 

Autumn 3.71±2.36 5.38±2.63 13.19% 

Total Measured Data 1103.59±2.36 1208.94±2.53 44.38% 

 

 

Table 2.7. Estimated ecosystem respiration (RE) by the Gaussian – Gamma model 

and NARX Neural Network. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Year 2014 2015 2016 2017 2018 

Gaussian – Gamma 91.17 87.49 85.77 92.46 97.14 

NARX neural network 32.77 63.98 65.56 80.49 82.85 
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a) 

 
 

 

Figure 2.1. Climatic comparison from 2014 to 2018. (a) Monthly average air temperature (Ta), monthly average soil 

temperature (Ts), and photosynthetically active radiation (PAR); (b) monthly average soil moisture (SM) at 5 cm depth and 

cumulative monthly precipitation (PPT). Monthly averages are calculated from half-hourly measurements. 

b) 
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Figure 2.2. Comparison of daily mean soil moisture (SM) at 5 cm depth in m3m-3 

and cumulative daily average precipitation (PPT) in mm during (a) 2014, (b) 2015, 

(c) 2016, (d) 2017, and (e) 2018. 

(a) 

(b) 

(c) 

(d) 

(e) 



 

88 
 

 

Figure 2.3. Daily average soil respiration (Rs) in µmol CO2 m
-2 s-1 measured by 

automated soil CO2 chamber systems from 2014 to 2018.  
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Figure 2.4. (a) Half hourly soil respiration (Rs) and precipitation (PPT) and (b) half 

hourly soil temperature (Ts) and soil moisture (SM) at 5 cm depth, before, during, 

and following a 11.7 mm precipitation event on October 9, 2017. 
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Figure 2.5. The empirical relationship between daily soil respiration (Rs) and soil 

temperature (Ts) measured with the automated chamber temperature probes at 5 cm 

depth during the 5-year (2014 to 2018) study period. Rs for each season is also 

shown (spring – blue dots, summer green dots, and fall – yellow dots). The fitted 

Rs Ts equations and R2 are shown in Table 2.3a and 2.3b.  

2014 2015 

2016 2017 

2018 
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Figure 2.6. Annual observed Rs values compared with predicted values using seven different models (Rs Ts, Rs Q10, Rs Ts SM, Rs Ts SM GEP, Bunnell 

Model, Gaussian – Gamma Model, and NARX Neural Network) from 2014 to 2018. 

Figure 2.7. Stacked bar plot showing the daily relative error of each of the seven fitted models (Rs Ts, Rs Q10, Rs Ts SM, GEP, Bunnell Model, Gaussian – 

Gamma Model, and NARX Neural Network) over the 2014 to 2018 measurement period.  
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Figure 2.8. The daily relative error of each of the seven fitted models (Rs Ts, Rs Q10, Rs Ts SM, Rs Ts SM GEP, Bunnell Model, 

Gaussian – Gamma model, and NARX Neural Network) plotted against temperature (oC) for the growing seasons from 2014 to 2018. 
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Figure 2.9. Precipitation event (mm) and Rs (µmol CO2 m
-2 s-1) from October 5 to 13 in 2017 following a drought of 19 days. 
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Chapter 3: 

Comparing temporal variability of soil CO2 flux within a 

temperate coniferous and deciduous forest ecosystem 

 

3.1 Abstract 

The forest soil carbon pool accounts for 80% of the carbon within terrestrial 

ecosystems and contains three times as much carbon compared to the atmosphere 

(Davidson et al, 2006; Luo and Zhou, 2006). A small change in soil respiration (i.e. 

soil CO2 efflux) may either mitigate or increase carbon fluxes into the atmosphere 

from this soil pool. In this study, temporal dynamics of soil respiration (Rs) and its 

key environmental controls such as soil temperature (Ts) and soil moisture (SM) 

was examined in two different species of temperate forests in the Great Lakes 

region in southern Canada. Automated soil chambers were utilized to continuously 

monitor soil respiration fluxes (Rs) in a 45-year-old temperate conifer forest (TP74), 

and a 90-year-old deciduous forest (TPD) in southern Ontario, Canada from 2017 

to 2019. Coherence analysis of observed fluxes showed that prolonged periods of 

drought in the summer had reduced Rs. Large precipitation events and the resulting 

increase in soil moisture increased Rs. Periods of lag in coherence analysis was 

observed in the fall season which was primarily caused by soil moisture increases 

due to large precipitation events which are common in this region. The performance 

of multiple empirical Rs models (e.g. Rs Ts, Rs Ts SM, Rs Q10, Null Model, 

Ratkowsky, Stanford and Epstein, Myers, Bunnell, Lloyd and Taylor, Tuomi, and 

Gaussian – Gamma) showed that the Gaussian – Gamma model produced the best 
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results with the lowest corrected Akaike Information Criterion (AICc) values and 

fit with an R2 of 0.83 and 0.76 for TP74 and TPD forests respectively. Rs was in 

higher coherence with temperature in the coniferous forest compared to the 

deciduous forest. Findings indicate that the fluxes of plantation forests may be less 

resilient to increasing temperatures.  

3.2 Introduction 

Soil respiration (Rs) is a major component of the carbon cycle, with climate change 

there are uncertainties that can be caused with extreme climate events. About half 

the terrestrial carbon sink is located within forests with most carbon residing within 

forest soils (Canadell et al, 2007; Kinderman et al, 2008). The forest soil carbon 

pool consists of 691 pentagrams (Pg) in plant biomass and up to 968 Pg in soils 

which is about 3 times larger than that of the atmosphere (817 Pg) (Lorenz and Lal 

2010). Understanding how Rs responds to climate change and extreme weather 

events is particularly important in southern Canadian forests because most of 

forests in the region are afforested on plantation stands. Shifts in temperature and 

soil moisture caused by climate change can negatively affect these plantation stands 

causing release of Rs. With improper management such as clear cutting, these 

forests can become carbon sources instead of carbon sinks.  

Forest species, canopy cover and structure, age, and soil characteristics can affect 

Rs. Many temperate coniferous forests, in particular white pine, specialize in 

growing in nutrient limited soils and can retain their needles for multiple years 

(Burgess-Conforti et al, 2019). Studies have also shown that higher soil pH from 
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the needles contributed to overall low Rs (Alban 1982; Binkley and Valentine 

1991). Temperate deciduous forests typically drop their leaves in the fall 

(senescence) and regrow them in the spring. Leaf composition of these broad leaves 

contain more nutrients than coniferous foliage leading to overall higher Rs (Hanson 

and Wullschleger, 2003). Canopy cover also affects Rs by affecting the amount of 

sunlight able to reach the soil and shaded plots have significantly reduced Rs rates 

in response to decreased Ts (Hartley et al, 2007; Saiz et al, 2006). It is important to 

understand the differences in Rs dynamics and its controls in different species and 

characteristic temperate forests in order to explore their responses and long – term 

survival in the face of climate change.  

The main objectives of this study are to: (1) compare temporal dynamics of Rs in a 

temperate conifer and deciduous forest growing in similar environmental 

conditions in the Great Lakes region from 2017 to 2019 (2) determine main 

controlling factors on Rs and how they might differ in these two stands and (3) 

examine how Rs models may help in simulating Rs and quantify the contribution 

of major controls and associated uncertainties. This study will help improve our 

understanding of Rs processes in different temperate forests in Eastern North 

America.  

3.3 Methods 

3.3.1 Study Site 

The two sites used in this study were a unevenly aged (70 – 110 years old) naturally 

grown but managed deciduous forest (TPD, 42°38’7.18’’N, 80°33’27.83’W) and a 
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46-year-old coniferous forest afforested in 1974 (TP74, 42°42’24.52’’N, 

80°20’53.93’’W). These forest sites are part of the Global Water Future (GWF) 

Program’s Turkey Point Observatory and has been associated with AmeriFlux and 

global Fluxnet initiatives, where they are also known as CA-TPD (Arain, 2012) and 

CA-TP74 (Arain, 2002).  

TPD is dominated by White Oak (Quercus Alba) with scattered native Carolinian 

species such as Sugar Maple (Acer Saccharum), Red Maple (Acer Rubrum), 

American Beech (Fagus Grandifolia), Black and Red Oak (Quercus Velutina, 

Quercus Rubra), and White Ash (Fraxinus Americana). Eastern White Pine (Pinus 

Strobus) and Red Pine (Pinus Resinosa) compose 5% of the canopy. Average tree 

height is 25.7 cm with a stand density of 504 ± 18 trees per hectare. Average tree 

diameter at breast height is 22.3 cm. The understory species include young 

deciduous trees as well as Canadian mayflower (Maianthemum canadense), putty 

root (Aplectrum hymale), yellow mandarin (Disporum lanuginosum), red trillium 

(Trillium erectum), and horsetail (Equistum). Part of this land was on abandoned 

agricultural land that was previously used for agriculture (Richart and Hewitt, 

2008). Previous management practices occurred in 1984 and 1986 that included the 

removal of 440 and 39.97 m3 of wood respectively. Harvesting of various pine and 

dead oak occurred from 1989 to 1994 (Long Point Region Conservation Authority 

records; Beamesderfer et al, 2020). No management activity has occurred after 

1994. Soil layers of consists of over 90% sand and is well drained with low moisture 
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holding capacity (0.10 cm/cm3) with less than 2% organic matter. Further details 

are given in Beamesderfer et al, (2020).  

TP74 is a closed canopy forest which was planted in a previously cleared oak 

savannah land to stabilize local soils. The dominant species is Eastern White Pine 

(Pinus Strobus) with occasional Jack Pine (Pinus Banksiana) and Oak (Quercus 

Velutina) trees. Average tree height is 13.5 m with a stand density of 1633 ± 166 

trees per hectare. Average tree diameter at breast height is 18.3 cm. Due to high 

shading in this site, the understory is limited to a few bryophytes and grasses. Soils 

are 98% sand, 1% silt, and <1% clay and well drained (Peichl et al, 2010). 

The climate in the region is humid continental with warm summers and cool winters. 

The 30-year (1981 to 2010) mean annual air temperature and total precipitation 

measured at a weather station at Delhi, Ontario (~25 km north of site) is 8.0°C and 

997 mm, respectively. Precipitation is evenly distributed over the year, with 13% 

falling as snow (Environment and Climate Change Canada). 

3.3.2 Soil Respiration Flux Measurements 

Continuous half-hourly soil respiration (Rs) measurements were recorded using 

long term LI-COR LI-8100A chamber system. Two measurement chambers were 

deployed at TPD from July to December 2014 and extended to five in April 2015. 

TP74 measurements started on May 2017 with four chambers. Each chamber at the 

sites extended approximately 15 m from the central analyzer control unit and 

multiplexer and were equipped with a LI-8150-203 soil temperature probe and GS-
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1 soil moisture probe. The probes were buried approximately 5 cm outside 

permanent collars installed in the ground. The collars are comprised of PVC pipe 

with an internal diameter of 20 cm, a height of 11.5 cm, and a thickness of 1 cm. 

Each collar is inserted approximately 7 – 8 cm into the soil surface with 3 cm 

remaining above. During the growing season, the measurement chamber was 

placed directly above the collars remaining open while not actively taking 

measurements. Any vegetation growth was removed from inside the collars to 

eliminate any interference from above-ground autotrophic respiration. The 

chambers were removed during the winter and stored for use the next growing 

season.  

3.3.3 Data Analysis and Processing  

Soil CO2 emissions data were processed using Soil Flux Pro (4.2.1) from Li-COR 

Biosciences, Inc. by analyzing the exponential flux and iteration obtained every 3 

to 4 min within the measurement period. An exponential curve was fitted and the 

resulting plot was fit with a non-linear regression equation that solved for C∞, t0, 

and a where Co is the starting measured CO2 concentration. The CO2 flux based on 

the slope of the regression equation was reported as the exponential flux.  

𝐶(𝑡) = 𝐶∞ + (𝐶0 − 𝐶∞)𝑒−𝑎(𝑡−𝑡0) 

 

(1) 

Measurements that reported a higher exponential iteration (>10) were processed 

further by changing the start time affecting the overall t value until the exponential 
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iteration is less than 10. Measurements from one chamber was removed from 2014 

to 2017 due to a wasp nest causing and unusual increase in CO2 emissions in TPD.  

Wavelet coherence analysis can be used for real-time analysis by providing 

multiple resolutions to analyze complex data (Oh et al, 2019). A wavelet is a 

mathematical function used to divide continuous data into different scales (Grinsted 

et al, 2004). In this analysis, a single wavelet is created, dilated or compressed, then 

shifted along a time scale axis to create multiple smaller wavelets. The small 

wavelets are expressed with two parameters: scale (s) and time position (n). A 

larger scale allows more detail to be captured with a wavelet and larger sections of 

the time series can be analyzed for low-frequency events. A smaller scale captures 

lower details and can detect low period (high-frequency) events. When a signal 

wavelet is multiplied by these smaller wavelets, a coefficient is obtained for that 

frequency. A larger coefficient means that the signal is similar to the wavelet and 

vice versa. This was repeated for all the smaller wavelets to obtain a set of 

coefficients or a wavelet transform (Jevrejeva et al, 2003).   

Wavelet transforms are separated into continuous or discrete groups (Yates et al, 

2006). A discrete wavelet transform restricts the number of dilations and 

translations so that the number of transforms is the same as the number of samples 

within the input time series. A continuous wavelet transform allows overlapping of 

one small wavelet with another so that the similarity between signals can be 

analyzed (Yates et al, 2006). The equation for the continuous or cross wavelet 

transform Wn
X(s) is: 
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𝑊𝑛
𝑋(𝑠) =  √

𝛿𝑡

𝑆
∑ 𝑥𝑛′𝜓0 [(𝑛′ − 𝑛)

𝛿𝑡

𝑠
 ]

𝑁

𝑛′=1

 

       (2) 

 

where s is the scale on a discrete time series (xn’) of length N with uniform steps 𝛿𝑡 

and the scaled and translated wavelet function 𝜓0 (Grinsted et al, 2004).  

The models used in this study are the Rs Ts model (Van’t Hoff, 1884), Rs Q10 

(Yuste et al, 2005), Rs Ts SM (Khomik et al, 2009), Null, Ratkowsky (1982), 

Stanford and Epstein (1974), Myers (1982), Bunnell (1977), Lloyd and Taylor 

(1994), Tuomi (2008), and the Gaussian – Gamma (Khomik et al, 2010). Model 

equations are shown Table 3.1.  

For small sample sizes, the Akaike Information Criterion is corrected so that a 

penalty is assigned to the number of predicted variables in a model such that there 

is not a bias towards more complex models (Hurvich and Tsai, 1989; Liu et al, 

2018). Here AICc was used as a method of comparing the differences between 

TP74 and TPD from model predictions. The Akaike Information Corrected 

Criterion (AICc) equation is defined as:  

𝐴𝐼𝐶𝑐 = 2𝑘 − 2𝑙𝑖𝑛 (∑
(𝑜𝑖 − 𝑝𝑖)

2

𝑛

𝑛

𝑖=1

) +
2𝑘2 + 2𝑘

𝑛 − 𝑘 − 1
 

     (3) 

 

where k is the number of parameters within an equation, n is the sample size, o is 

the observed values, and p is predicted values.  
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3.3.4 Dry and Wet Periods  

Throughout the world there is no universally accepted definition of drought or 

excessive precipitation because of differing sites and climate conditions. Based on 

historical site analysis, precipitation in both sites are evenly distributed throughout 

the year (Beamesderfer et al, 2020; Barr et al. 2013). Drought periods are related to 

deficits in precipitation which impose plant stress due to decreased SM (Wolf et al. 

2013). To assess dry and wet periods throughout the year, the relative extractable 

water (REW) was utilized (Black, 1979; Breda et al. 1995). REW is the amount of 

SM available for plant use, it relates to the pores within the soils and suction that 

plants utilize to extract water from the soil. As water is depleted from larger pores, 

more suction force is required. When REW drops below 0.4, large pores are 

considered empty and water is only contained in micropores which require more 

suction force causing both gross primary productivity and transpiration to decrease 

in response to stomatic closure (Ciais et al. 2005; Grainer et al. 1999; Reichstein et 

al. 2003). REW values above 0.72 were categorized as wet periods. REW is 

calculated as: 

𝑅𝐸𝑊 =
𝜃 − 𝜃𝑤𝑝

𝜃𝑓𝑐 − 𝜃𝑤𝑝
 

Where Θ is the actual soil water content for the root zone from 0 – 20 cm. Θfc is the 

soil water content at field capacity and is estimated from periods when soil water 

content was at its maximum daily mean value after the remove of freely drained 

water. Θfp is the soil water content at wilting point and is estimated from the 
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minimum value observed during a natural drought (McKay et al. 2012). The wilting 

point and field capacity values were estimated from a long – term soil moisture 

study performed by Peichl et al. (2010) and are 0.01 – 0.04 and 0.16 respectively. 

The lower end of the wilting point is utilized since in this study, well – drained 

sandy soils the wilting point can reach soil hydrophobic values (McKay et al. 2012). 

For the purpose of this study, Ts and SM was utilized from a nearby pit buried 5 

cm below the surface near the chambers. Pit data was selected since it has 

undergone validation, acclimation to the site over multiple years, is measured 

throughout the year, and is shown to be similar to chamber data.  

3.4 Results 

3.4.1 Observed Rs Fluxes  

Observed daily values of Rs, Ts, and SM from 2017 to 2019 for both TP74 and 

TPD are shown in Figure 3.1 and Figure 3.2. Rs was found to follow closely to that 

of Ts in TPD and displayed similar patterns in TP74. SM was also found to increase 

after precipitation events in both sites. TPD displayed greater fluctuations 

compared to TP74 during the spring and summer. Data coverage for TP74 is 

44.38%, 53.15%, and 56.71% from 2017 to 2019. Coverage for TPD is 50.68%, 

55.62%, and 62.47% from 2017 to 2019.  

In 2017, TP74 and TPD showed differences in dry and wet periods during the spring, 

with a total of 18 wet days at TP74 as compared to a total of 20 wet days at TPD 

(Figure 3.1a and 3.1b). Both sites experienced four extended dry periods in the 
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summer and fall comprising a total of 82 and 74 days for TP74 and TPD 

respectively. TPD received additional wet periods (20 days) in the summer and fall. 

Observed daily SM and PPT values are shown in Figure 3.2a and 3.2b. Overall, SM 

values at 5 cm depth at TP74 showed much lower amplitudes as compared to TPD. 

Accordingly, Rs at TP74 also did not show a large increase in response to rainfall 

events such as an 81.44 mm event on October 9th at both sites. Seasonal dynamics 

between both sites showed that TPD had more wet periods (40 vs 18 days) than 

TP74. Observations for TPD showed sporadic wet periods occurring throughout the 

year with a 11-day wet period occurring in the fall.  

In 2018, there were 12 wet (high SM) days in the spring at TP74 and 31 days at 

TPD. Observed SM and PPT values for 2018 showed a 60 mm event on August 

17th that caused SM at TP74 to increase by 0.03 m3 m-3 over three days and 0.05 

m3 m-3 at TPD at the same time period. A later precipitation event of 40 mm caused 

an increase of 0.02 m3 m-3 in TP74 and 0.08 m3 m-3 at TPD over three days as well. 

The first PPT event caused an increase of 2.45 µmol CO2 m
-2 s-1 and 2.08 µmol 

CO2 m
-2 s-1 in Rs at TP74 and TPD after this event. Dry events at both sites occurred 

in the summer (24 and 72 days for TP74 and TPD respectively; Figure 3.1c and 

3.1d). Ts at TP74 remained relatively similar at 24.30oC, but TPD experienced a 

decline from 20.03oC to 18.85oC. The second PPT event caused similar results. Rs 

increased by 1.32 µmol CO2 m
-2 s-1 at TP74 and 1.08 µmol CO2 m

-2 s-1 at TPD after 

this event. Ts at both sites increased similarly by 0.36oC (Figure 3.2c and 3.2d). 

Seasonal dynamics for both sites experienced long wet periods in the fall (33 and 
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43 days). TPD received long dry periods (63 days) in the summer while TP74 

received sparse (24 days) dry periods (Figure 3.3c and 3.3d). 

In 2019, there were 54 wet days in the spring and summer for TP74 and 103 days 

at TPD. Dry periods occurred in the summer (22 and 24 days) and fall (4 and 31 

days) for TP74 and TPD, respectively (Figure 3.1e and 3.1f). A 45 mm PPT event 

occurred on October 27th at both sites that caused SM to increase by 0.02 m3 m-3 in 

TP74 and 0.06 m3 m-3 in TPD within a day. Rs decreased at TP74 from 2.86 µmol 

CO2 m
-2 s-1 to 2.69 µmol CO2 m

-2 s-1, while TPD experienced an increase from 3.07 

µmol CO2 m
-2 s-1 to 4.52 µmol CO2 m

-2 s-1. Ts at both sites increased by 2oC and 

0.78oC at TP74 and TPD, respectively (Figure 3.2e and 3.2f). Overall, Rs in all 

years at TP74 is shown to be less than that of TPD. Similarly, Rs closely followed 

Ts for all years at both TP74 and TPD. Seasonal dynamics showed that TPD 

received a long continuous wet period in the spring followed with two dry periods 

in the fall. TP74 received a continuous wet period in the spring but sparse dry 

periods in the summer and fall (Figure 3.3e and 3.3f).  

Coherence between Rs and Ts from 2017 to 2019 for TP74 and TPD sites are shown 

in Figure 3.3. Arrows within coherence figure panels indicate the phase and lag of 

both time series. Arrows pointing to the right indicate Rs and Ts are in phase with 

no lags. Left pointing arrows indicate anti-phase when Rs is increasing and Ts 

decreases. Arrows pointing up or down represents a lead of 90 degrees for Rs or Ts, 

respectively. Slanted arrows indicate lag where arrows point left to up or right to 

down show Rs is leading and arrows point left to down or right to up show Ts is 
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leading. Areas with high coherence are shown in yellow shading, while areas with 

low coherence are shown in blue. Coherence measurements outside the cone of 

influence where results are distorted is not considered.  

Overall, in 2017, TP74 displayed high coherence between Rs and Ts from the 2 to 

8-day scale (mid-August to September; Figure 3.3a). Arrows within the high 

coherence area primarily point to the bottom right indicating that Rs is leading in 

front of Ts. From the 0 to 4-day scale, arrows are shown pointing down in June 

indicating a lead of 90 degrees for Ts. Arrows from mid-August to October are 

shown to shift from pointing downward to slanted to the bottom right then back 

pointing downward indicating that the temperature sensitivity of Rs is affected in 

these months. TPD displayed high coherence from the 0 to 16-day scale from mid-

June to October (Figure 3.3b). Arrows in the coherence area point right from mid-

June to mid-July and in September at the 4 to 8-day scale. From the 0 to 4-day scale 

arrows primarily point right and shift to the bottom right in the beginning and end 

of August before shifting to pointing to the upper right.  

In 2018, significant coherence between Rs and was observed in at TP74 from the 1 

to 32-day scale (September to November; Figure 3.2c). Arrows within the high 

coherence area point to the bottom right in the beginning of August and October 

for ~8 days which show that Rs is leading in front of Ts. This occurs in the period 

between July and August as well. High coherence hotspots in TPD are shown from 

the end of May and the beginning of June for ~14 days. Downward arrows are 

shown in October for ~8 days and arrows that point right to up are shown as well 
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for ~20 days. From the 0 to 4-day scale arrows primarily point right but shift to 

bottom right pointing in September, October, and November in TP74. TPD 

displayed arrows that point to the bottom right in June and arrows that point left in 

August (anti-phase).  

In 2019, high coherence between Rs and Ts was observed from the 0 to 16-day 

scale from May to June in TP74 (Figure 3.3e). Arrows within the coherence area 

primarily point to the right with a shift to the upper right in June. Coherence 

hotspots occur at the end of June and in July for ~5 and ~16 days. From the 0 to 4-

day scale, arrows are shown pointing to the right before shifting to the upper right 

and back. TPD showed a significant coherence from the 0 to 16-day scale and at 

the 32-day scale (Figure 3.3f). Arrows primarily point right with slanted arrows 

(upper right) occurring in September at the 16-day scale and in June and September 

at the 32-day scale. At the 0 to 4-day scale, arrows point right at the end of May, 

June, September, and October.  

Coherence between Rs and SM from 2017 to 2019 is shown in Figure 3.4. In 2017, 

there was little to no coherence between Rs and SM in TP74 while hotspots from 

the 4 to 8 days occurred in the spring and at the 16-day scale in the fall (Figure 3.4a 

and 3.4b). In 2018, in-phase coherence occurred at the 32-day scale from June to 

August for TP74 and for the entire year in TPD (Figure 3.4c and 3.4d). Numerous 

coherence hotspots occurred in the summer for TPD compared to TP74. In 2019, 

there was little coherence at TP74 except from the 0 to 6-day scale from May to 
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July (Figure 3.4e). Coherence in TPD was similar with a hotspot occurring at the 

16-day scale from July to September (Figure 3.4f). 

Ts and SM coherence from 2017 to 2019 is shown in Figure 3.5. In 2017, anti-

phase coherence occurred from the 16 to 64-day scale for the entire year. Smaller, 

anti-phase hotspots occurred from the 4 to 16-day scale from August to October for 

TP74 (Figure 3.2a). TPD had one anti-coherence hotspot from June to July at the 

~25-day scale and a hotspot from the 4 to 8-day scale in July (Figure 3.5b). In 2018, 

anti-phase occurred from August to September at the 64-day scale in TP74. A minor 

hotspot occurring from the 0 to 4-day scale occurs in late-July with arrows pointing 

left to up (Rs leading; Figure 3.5c). Minor hotspots occur similarly for TPD such 

as from June to July at the 16-day scale showing anti-phase (Figure 3.5d) and in 

August. In 2019, TP74 had multiple minor hotspots scattered throughout the 

summer with an anti-phase hotspot occurring at the 64-day scale in July and a 

hotspot with slanted arrows pointing to the bottom right (Rs leading) from August 

to September (Figure 3.5e). Minor and scattered hotspots occurred from July to 

October for TPD with primarily bottom-right slanted arrows (Rs leading) 

throughout the year (Figure 3.5f).  

Volumetric water content or SM is shown in Figure 3.6. For all six years, TPD’s 

SM is shown to be higher than TP74 in the spring and fall. TPD had higher SM in 

the summer in 2014, 2015, and 2019. Both sites recorded similar SM in 2016, 2017, 

and 2018. A comparison of SM between tower and chamber SM is shown for TPD 
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in 2018 (Figure 3.8). Linear regression shows that the slope and intercept closely 

match that of a 1:1 line.  

3.4.2 Model Inter-Comparison 
 

Eleven different Rs models were used to simulate soil CO2 emissions at both sites 

and their ranking in terms of AICc values is shown in Tables 3.2 to 3.4. The 

Gaussian – Gamma model was the best predictor for TP74 and TPD with the 

exception of 2017. The Bunnell model performed well for TPD and poorly for TP74 

in all years. The Rs Ts SM model ranked highly for both sites in 2018, but ranked 

poorly in 2017 and for TPD in 2019. The Rs Q10 model ranked poorly for all years 

except for TP74 in 2019. The Rs Ts model ranked highly for TP74 in 2017, but 

poorly for all other years. The Lloyd and Taylor model ranked highly for both sites 

in 2017 and 2018, but poorly for TP74 in 2019. The Stanford and Epstein model 

ranked poorly for 2018 and for TPD in 2019. The Ratkowsky model was rated in 

the middle and remained in similar rankings for all years. The Myers model ranked 

low and remained poorly for all years. The Tuomi model ranked low, but performed 

well at TP74 for 2017. The Null model performed poorly in 2018 and for TPD in 

2019, but remained in the middle for 2017 and TP74 in 2019. In summary, Gaussian 

– Gamma model was quite robust in simulating Rs dynamics at both sites.  

Linear regression analysis of simulated Rs with observed Rs was also performed 

from 2017 to 2019 for TP74 and TPD sites (Figure 3.7). Model results showed a 



 

111 
 

coefficient of determination (R2) of 0.54 for 2017, 0.77 for 2018, and 0.59 for 2019. 

Model equations are displayed on the figure for each year.  

3.5 Discussion 

3.5.1 Observed Fluxes  

Environmental factors affecting the soil carbon pool such as air temperature (Ta), 

Ts, precipitation (PPT), and SM exhibited strong seasonal controls within both 

conifer and deciduous forests. In both forests’ Ts increased during the growing 

season, peaked during the summer, and decreased during the fall into the winter 

which is typical for forests located in the temperate regions (Wang et al, 2010; 

Davidson et al, 1998). The relationship between Rs and Ts is exhibited multiple 

times in literature (Davidson and Janssens, 2006; Lloyd & Taylor, 1994; Taylor et 

al, 2015; Shabaga et al, 2015). Sensitivity to temperature change in response to 

global climate change is one of the uncertainties in empirical Rs models (Jones et 

al, 2003). The Q10 value of a site indicates the temperature sensitivity of Rs, where 

a lower value represents low sensitivity while higher values indicate more (Meyer 

et al, 2003). 

Annual Q10 values for TP74 and TPD are shown in Table 3.5. Values for TPD are 

comparable to literature in 2017 and 2018, but all values for TP74 are quite low 

compared to other studies with similar ecosystems (Raich and Schlesinger, 1992; 

Quan et al, 2004; Meyer et al. 2018). Multiple factors that may influence this such 

as substrate disturbance, site specificity, and climate (Davidson et al, 2006). Within 

literature, Rs is reported to be less sensitive to temperature with lower SM with 
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sensitivity increasing to a threshold with higher SM and decreasing afterwards 

(Yuste et al, 2007; Craine and Gelderman, 2011; Illeris et al, 2004; Jassal et al, 

2008). However, analysis with wavelet coherence shows a high coherence 

occurring from August 21, 2018 to the end of the growing season. This is probably 

due to the effects of the three drought events causing the annual Q10 and to decrease 

overall (Q10 outside coherence = 2.02). As SM increased due to precipitation events, 

a higher threshold was reached causing a higher Q10 value (Q10 = 2.29) that is more 

comparable with literature (Table 3.6c). This is reflected within the coherence chart 

with Ta as well, during the 3 drought periods there was no observed coherence 

whereas afterwards following a high PPT event (60.13 mm), there was coherence 

until the rest of the growing season (Figure 3.4). The Q10 value in 2019 for TPD is 

higher compared to literature indicating a greater sensitivity to Ts. This is probably 

the result of dry periods occurring in the summer (July, August, September). 

Analysis with the coherence chart reinforces this where both Rs and Ts are in phase. 

Temperature sensitivity is also represented by the 0 to 4-day scale on coherence 

graphs. In 2018, temperature sensitivity from the 0 to 4-day scale is abnormal for 

TP74 compared to TPD. Dry/wet period analysis shows a high coherence occurring 

from September to the November indicating temperature sensitivity not that does 

not coincide with dry periods. Analysis of Rs showed a similar trend early within 

the growing season. However, as the year progressed, there were more fluctuations 

from Rs throughout the summer that were not consistent with observed Ts values 

notably in TPD. This can be accounted by other environmental controls such as SM 
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and in many studies in literature (Davidson et al, 1998; Xu and Qi, 2001; Pumpanen 

et al, 2008; Van der Molen et al, 2011). High SM content can limit the diffusion of 

oxygen into the soil reducing Rs (Alexander, 1977). As soils dry due to higher 

temperatures, Rs decreases from microbial death. Following rewetting events there 

is an increase in Rs (Orchard and Cook, 1983). This process is primarily exhibited 

within between July and August for both sites. During the second dry period, Rs 

decreased to 1.93 and 4.98 µmol CO2 m
-2 s-1, following a PPT event of 7.54 mm, 

Rs rapidly increased to 5.94 and 9.80 µmol CO2 m
-2 s-1 within 3 days for TP74 and 

TPD respectively. Afterwards, there was a sharp decline back to previous Rs levels 

in 4 days. A second, much greater PPT event occurred (38.02 mm) at the end of the 

second dry period causing Rs increase back to levels from the first PPT event for 

TPD. There was a second increase following a PPT event of 22.2 mm at TP74. 

 

Temperature sensitivity in 2019 at TP74 in the 0 to 4-day scale functions similarly 

to that of 2018, where Rs is shown to be sensitive to temperature in a wet period 

instead of a dry period. This could be the result of environmental factors from the 

previous year influencing Rs and its sensitivity to Ts. TPD’s temperature sensitivity 

in the 0 to 4-day scale is shown to occur in May, September, and October. 

Sensitivity in September and October coincides with dry periods but May does not. 

This could be the result of understory vegetation development causing an increase 

in heterotrophic respiration coinciding with increases in Ts. In TP74, because of 

the presence of a closed canopy and lack of nutrition, the understory consists of 

lichen and small shrubs causing low Rs. TPD’s rich understory consists of many 
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deciduous woody species which facilitate Rs increase as the year progresses These 

impacts would be indirect through more root biomass in the soil because any 

vegetation growing inside the chamber colors was removed. These findings are 

similar a study produced by Yuste et al (2014) which suggests that Q10 is influenced 

by seasonal plant growth in both a coniferous and deciduous forest.  

SM comparison for both sites showed that TPD consistently measured higher SM 

in the spring and winter. This is probably due to canopy and understory differences 

between both sites. During the summer, both sites’ vegetation is well developed 

and are show similar coverage affecting the amount of precipitation that percolates 

within the soil. During the spring and winter, the deciduous understory and canopy 

in TPD are greatly reduced during senescence in the fall. This causes TPD to 

become an open canopy instead of a closed canopy which allows more precipitation 

to permeate the soil.  

3.5.2 Chamber Uncertainty 

Automatic soil chambers can have both uncertainty and variability associated with 

Rs measurements. One of the downsides of automated chambers is poor spatial 

resolution causing higher variability (Khomik, 2014; Wei-Yu et al. 2015). In a 

comprehensive study performed by Khomik, 2014, 50 collars were utilized in a 

square grid design and were installed along a 2 m transect at a 60-year-old 

coniferous stand located 20 km away from both sites.  It was determined that 

chambers located near tree trunks (~50 cm) consistently produced higher Rs 

compared to the rest of the chambers. Furthermore, measurements performed ~2.5 
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m from tree trunks reported increased Rs which was most likely caused due to 

increased density of fine roots. Several other factors have also been identified to 

contribute to variability in the study such as tree root density, litter thickness, and 

availability of soil nutrients. Uncertainty for automatic chambers can be caused by 

microclimates, differences in gas pressures inside and outside the bell, site carbon 

capacity and specificity (Livingston and Hutchinson, 1995; Welles et al. 2001; Hou 

et al. 2013)  

The standard deviation for both sites’ mean chamber Rs is 2.51 and 1.62 for TPD 

and TP74, respectively. Differences between both sites can be caused by understory, 

shade, and chamber locations. TPD’s understory is dominated by deciduous shrubs 

while TP74 has little understory except for moss and lichen. Chambers within TP74 

are located close to plantation tree trunks that receive occasional lighting while 

TPD chambers are located at the bottom of a slope surrounded by shrubs inhibiting 

the amount of sunlight received daily.  

3.5.3 Wavelet Coherence 

Wavelet coherence performed on accumulated long-term Rs measurements can 

provide opportunities to analyze time lags and the effects of Ts and SM spatially 

and temporally (Vargas et al, 2010; Oh et al, 2019). There are a few wavelet 

coherence studies done between Rs, Ts, and SM. Vargas et al (2010) examined a 

mixed conifer-oak forest and reported high correlation for Rs and SM between 2 

and 32 days with high correlation between summer rainfalls. For TP74, all years 

showed non-similar results to Vargas et al (2010) mainly because the soil structure 
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within both sites are formed from Glaciolacustrine sand deposits (Brunisolic Gray 

Brown Luvisol). Savage et al (2009) reported a significant coherence between Rs 

and Ts within a 70-year-old deciduous forest at the diel frequency. 

Coherence in 2017 between Rs and Ts occurred primarily during fall for TP74 and 

summer to fall in TPD from the 0 to 8-day period. This shows that Rs in TPD is 

sensitive to Ts in the summer and that Rs in both sites are sensitive to Ts in the fall 

during this period. However, further analysis of SM at a depth of 5 cm shows that 

SM did not increase significantly due to large precipitation events at TP74 site. This 

is probably the result of the soil type causing PPT to drain rapidly such that the 

moisture probe could not maintain contact or the result of litterfall obstructing the 

sensor. Deeper SM measurements (20 cm) show higher response to PPT. In both 

plots at the 16-day period, coherence is shown to lag which indicates SM influence 

on Rs. In 2018, there were three abnormally long dry periods throughout the 

growing season. Coherence for Rs and SM in TPD showed a high phase for 32 days 

for the whole measurement period. TP74 displayed similar results between June 

and August, but disappeared during the same period for Rs and Ts coherence. This 

is probably due to the differences in canopy between both sites affecting the amount 

of PPT that the soil receives.  

Coherence within TPD in 2019 showed a similar result from that of Savage et al 

(2009) at the diel frequency in spring but deviated to the 5 to 16-day scale in the 

summer. This is probably due to the differences in precipitation causing dry periods 

to occur which caused a close relationship between Rs and Ts. Longer impacts of 
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Ts on Rs is also reflected within longer periods of coherence such as from the 32 

scale for the entire year which could be caused by diminished PPT. Coherence 

analysis for Ts and SM across all years for both sites showed little to no correlation 

between Ts and SM except for 2017 in TP74 where a high anti-phase coherence 

was observed. This is to be expected since higher temperatures result in greater 

evapotranspiration and thus diminished SM.  

3.5.4 Rs Modelling Analysis  

To further analyze the relationship between Rs, Ts, and SM various empirical 

models were compared and the AICc calculated. In 2017, models that utilized Ts 

produced a higher fit than those SM models for TP74 (Table 3.2). In TPD the 

Bunnell model produced the highest fit and the Gaussian – Gamma model had a 

worse fit. The differences between these years can be explained by the reaction of 

the SM sensor within both sites. During the year, the SM at 5 cm did not respond 

to high PPT events at TP74 compared to TPD. This phenomenon throughout the 

year caused models that primarily utilized Ts to predict Rs to become more accurate 

at Rs prediction compared to models that utilized SM. TPD’s Bunnell model ranked 

higher than the rest of the models is primarily because the SM exerted more 

influence on Rs while Ts was not a dominate factor. This is explained by the large 

differences between Bunnell model, a model that favors SM but incorporates Ts, 

and other models that rely heavily on Ts or SM.  

In 2018, models that utilized primarily Ts were able to produce a higher fit than 

those that utilized only SM which further emphasizes the importance of Ts on Rs 
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at TP74 (Table 3.3). Similarly, models that incorporated primarily SM produced a 

higher fit than those that used Ts in TPD. Models that had both Ts and SM were 

higher than those that utilized only a single variable in TPD suggesting that 

throughout the year multiple influences of these variables. As expected, TP74 

models produced similar results for Rs Ts SM and the Gaussian – Gamma model 

similarly to previous studies (Vargas and Allen, 2008; Khomik et al, 2009; Lellei – 

Kovács et al, 2011). However, the Bunnell model produced a significant difference 

(184.81 vs 23.21 for TP74 and TPD respectively). This is probably due to how the 

Bunnell model is structured leaning heavily on the influence of SM on Rs. 

In 2019, much like the previous year, models that utilized primarily Ts displayed a 

lower difference and AICc compared to models that utilized SM in TP74. Models 

for TPD increased dramatically to models utilizing SM (Table 3.4). This change is 

also reflected within the coherence plot for this year where Ts is shown to have a 

greater impact on Rs from July to October. Coherence changes can be explained by 

the dry periods present within the year which coincide with increases in Ts and 

consequently Rs. For all years, the Gaussian – Gamma model is shown to closely 

model Rs for both sites following dry/wet years.  

Linear regression of Rs between TP74 and TPD for all three years showed a 

consistent relationship between TP74 and TPD in 2017. This shows that Rs displays 

a similar pattern for both sites which is expected since AICc model ranking are 

similar showing comparable reactions to changes in environmental variables. In 

2018, equation analysis shows that at lower Rs (<8 µmol CO2 m
-3 s-2), TP74 is more 
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affected and at higher Rs, TPD is more affected. This can be explained by Rs 

responses to extreme weather events during this year. In dry periods in the summer, 

Rs lowers dramatically causing fluctuations due to increases in PPT and SM. In a 

study performed by Carlyle and Bathan (1988) where Rs is shown to be more 

sensitive at higher Ts (10 – 20oC) and SM. Throughout the year, there are consistent 

PPT events which caused SM to periodically increase. Since TP74 has a higher Ts 

than TPD (mean of 16.88oC vs 14.69oC), and Rs values for TP74 does not increase 

beyond 8 µmol CO2 m-3 s-2, This can explain why TP74 is seen to have more 

extreme fluctuations and more sensitivity to changes in Ts. TPD also had more 

fluctuations in Rs at higher measurements due to differences in stand type and 

increases in SM in the summer which can explain why TPD is more affected by Rs 

at higher levels (>8 µmol CO2 m-3 s-2). In 2019, equation analysis shows the 

opposite from that of 2018, where at lower Rs (~3.2 µmol CO2 m
-3 s-2) TPD is more 

affected and at higher Rs, TP74 is affected. This can be explained by differences in 

Rs, TPD has consistently high Rs due to accelerated rates of decomposition and 

greater fluctuations of SM in the summer where Rs is the largest. Rs variations for 

TP74 are consistent in the spring and until July for TP74 due to differences in 

canopy and consistent Ts.  

With extreme weather patterns such as in 2018, TP74’s soil carbon pool is 

influenced more by temperature than with SM and that TPD’s soil carbon pool 

seems more resilient. Carbon fluxes from soils are closely related to plant growth 

(Raich and Schlesinger, 1992). With addition of organic carbon from litterfall, the 
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rate of Rs increases with largest increases observed underground (Hogberg and 

Ekblad, 1996; Rogers et al, 1994). Additionally, about 30 – 50% of Rs is derived 

from root respiration and the remainder from microorganisms (Bowden et al, 1993; 

Andrews et al, 1999). Based on a study in North Carolina in a 15-year-old loblolly 

pine forest stand there was an increase in pore space and Rs of ~30% following 

elevated CO2 for three years (Schlesinger and Andrews, 2000). Plant growth at 

higher CO2 and temperature levels can add additional carbon to the soil where most 

of it can return to the atmosphere. A comparison for both sites from 2017 to 2019 

shows that TP74 is more wet in 2018 compared to TPD (Figure 3.2). If additional 

moisture along with increased temperature changes were to occur at TP74 with 

climate change, there can be a potentially large increase in Rs because of stand 

instability.   

3.6 Conclusion 

This study demonstrates the influence of Ts on Rs within two forest stands from 

2017 to 2019. Extreme weather events were observed in 2018. Study results showed 

that by applying spectral analysis to measured Rs data for multiple years, variations 

in Rs in 2018 were shown to be closely linked to Ts at diel timescales in TP74 and 

in at both sites in 2019. SM fluctuated with increases in PPT in both sites and 

corresponded with wet periods in the spring and fall. Increases in SM in the summer 

caused Rs oscillations. Furthermore, by comparing multiple models with their AICc, 

the Gaussian – Gamma model was able to rank consistently high for all years (with 

the exception of TPD in 2017) which reinforces the importance of Ts and SM 
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within both conifer and deciduous forests. Findings indicate that the soil CO2 

emissions in plantation conifer forests may be less resilient to increasing 

temperatures in extreme weather events. Future studies should examine the 

relationship between Ts, SM, and Rs during extreme weather years in managed 

forest ecosystems.  
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Table 3.1. Soil respiration (Rs) prediction models used for AICc analysis where lower alphabetical variables (a, b, etc.) are 

estimated values, Ts is soil temperature, and SM is soil moisture. 

  

Model Estimated 

Parameters 

Formula Reference 

Rs Ts 2 𝑅𝑠 = 𝑎𝑒𝑏𝑇𝑠 Van’t Hoff (1884) 

Rs Q10 2 
𝑅𝑠 = 𝑎 ∗ 𝑏

𝑇𝑠−10
10  

Yuste et al (2005) 

Rs Ts SM 4 
𝑅𝑠 = 𝑎 ∗ 𝑏

𝑇𝑠−10
10 ∗ (

1

1 + 𝑒𝑐+𝑑∗𝑆𝑀
) 

Khomik et al (2009) 

Null 0 𝑅𝑠 = 𝑚𝑒𝑎𝑛(𝑅𝑠) None 

Ratkowsky 1 𝑅𝑠 = 𝑎 ∗ [𝑇𝑠 − min(𝑇𝑠)]2 Ratkowsky (1982) 

Stanford and Epstein 2 𝑅𝑠 = 𝑎 ∗ 𝑆𝑀 + 𝑏 Stanford and Epstein (1974) 

Myers 3 
𝑅𝑠 =

𝑆𝑀 − 𝑎

𝑆𝑀 + 𝑏
 

Myers et al (1982) 

Bunnell 5 
𝑅𝑠 = (

𝑆𝑀

𝑎 + 𝑆𝑀
) (

𝑏

𝑏 + 𝑆𝑀
) 𝑐𝑑

𝑇𝑠−10
10  

Bunnell et al (1977) 

Lloyd and Taylor 3 
𝑅𝑠 = 𝑎 ∗ 𝑒

𝑏
𝑐+𝑇𝑠 

Lloyd and Taylor (1994) 

Tuomi 3 𝑅𝑠 = 𝑎 ∗ 𝑒𝑏∗𝑇𝑠 + 𝑐 Tuomi et al (2008)  

Gaussian – Gamma 5 𝑅𝑠 = 𝑒𝑎+𝑏∗𝑇𝑠+𝑐∗𝑇𝑠2+𝑑∗𝑆𝑀+𝑒∗ln(𝑆𝑀) Khomik et al (2010)  
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Table 3.2. Sample – corrected Akaike Information Criterion (AICc) for TP74 and TPD in 2017 

with ranking.  

2017 
TP74  TPD 

Model AICc Difference  Model AICc Difference 

Gaussian - Gamma  70.28 0  Bunnell -14.68 0 

Lloyd and Taylor 96.82 26.54  Lloyd and Taylor 98.76 113.45 

Rs Ts  99.2 28.91  Rs Q10 112.69 127.38 

Tuomi 99.57 29.29  Rs Ts  112.69 127.38 

Stanford and Epstein 115.14 44.86  Stanford and Epstein 263.76 278.44 

NULL 123.07 52.78  NULL 266.66 281.34 

Ratkowsky 218.11 147.82  Ratkowsky 321.58 336.26 

Bunnell 250.97 180.69  Rs Ts SM  608.97 623.66 

Rs Q10 462.97 392.69  Gaussian - Gamma  705.43 720.12 

Myers 479.17 408.89  Myers 709.68 724.36 

Rs Ts SM  479.38 409.09  Tuomi 1837.03 1851.72 
 

 

 

 

 

Table 3.3. Sample – corrected Akaike Information Criterion (AICc) for TP74 and TPD in 2018 

with ranking.  

2018 
TP74  TPD 

Model AICc Difference  Model AICc Difference 

Gaussian - Gamma -78.39 0  Gaussian - Gamma 92.77 0 

Rs Ts SM -72.47 5.92  Rs Ts SM 113.38 20.61 

Lloyd and Taylor 77.45 155.84  Bunnell 115.98 23.21 

Tuomi 78.59 156.98  Lloyd and Taylor 169.63 76.86 

Rs Ts 85.57 164.26  Tuomi 170.63 77.86 

Rs Q10 85.57 164.26  Rs Q10 174.17 81.4 

Bunnell 106.42 184.81  Rs Ts 174.17 81.4 

Ratkowsky 180.36 258.75  Ratkowsky 300.89 208.12 

Stanford and Epstein 211.84 290.23  Stanford and Epstein 355.95 263.18 

Myers 217.14 295.53  NULL 378.99 286.22 

NULL 237.73 316.12  Myers 386.02 293.25 
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Table 3.4. Sample – corrected Akaike Information Criterion (AICc) for TP74 and TPD in 2019 

with ranking.  

2019 
TP74  TPD 

Model AICc Difference  Model AICc Difference 

Gaussian - Gamma -131.16 0  Gaussian - Gamma -134.69 0 

Rs Ts SM -128.39 2.76  Bunnell -96.33 38.35 

Rs Q10 -118.5 12.65  Lloyd and Taylor 14.74 149.43 

Rs Ts -118.5 12.65  Rs Q10 15.12 149.81 

Stanford and Epstein -28.11 103.04  Rs Ts  15.12 149.81 

Ratkowsky 105.82 236.98  Rs Ts SM 19.24 153.93 

NULL 121.12 252.28  Ratkowsky 71.03 205.72 

Lloyd and Taylor 124.71 255.87  Tuomi 415.21 549.9 

Tuomi 352.86 484.02  Stanford and Epstein 418.72 553.41 

Myers 565.32 696.48  NULL 453.03 587.72 

Bunnell 866.61 997.77  Myers 815.55 950.24 
 

 

 

Table 3.5. Q10 values at TP74 and TPD forest site from 2017 to 2019.  

 

 

 

 

 

 

 

 

 

 

Year TP74 Q10 Value TPD Q10 Value 

2017 1.87 2.40 

2018 1.88 2.12 

2019 1.86 2.88 

Mean 1.87 2.47 
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Figure 3.1. Observed daily soil respiration (Rs) and soil temperature values with dry (orange) and wet (blue) periods for TP74 (left) and 

TPD (right) from 2017 to 2019. Dry periods were calculated from the standard deviation below the mean soil moisture (SM) and wet 

periods were calculated from the standard deviation above the mean SM.  
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Figure 3.2. Observed soil moisture (SM) at 5 cm along with precipitation for TP74 (left) and TPD (right) from 2017 to 2019. Dry 

periods are highlighted in orange, while wet periods are highlighted in blue. Dry periods were calculated from the standard deviation 

below the mean soil moisture (SM) and wet periods were calculated from the standard deviation above the mean SM 
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Figure 3.3. Cross – wavelet coherence between soil respiration (Rs) and soil temperature (Ts) for TP74 (left) and TPD (right) in from 

2017 to 2019. Areas of yellow indicate high coherence while areas in blue indicate no coherence. Arrows indicate the phase and lag 

between the time series.  
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Figure 3.4. Cross – wavelet coherence between soil respiration (Rs) and soil moisture (SM) for TP74 (left) and TPD (right) from 2017 

to 2019.  
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Figure 3.5. Cross – wavelet coherence between soil temperature (Ts) and soil moisture (SM) for TP74 (left) and TPD (right) from 2017 

to 2019. 
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Figure 3.6. Volumetric soil water content or soil moisture (SM) at 5 cm depth in m3 m-3 for TPD and TP74 from 2014 to 2019.   
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Figure 3.7. Linear regression between daily mean values of soil respiration (Rs) at TP74 and TPD forest sites from 2017 (blue), 2018 

(red), 2019 (green), and Y = x (black).  
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Chapter 4: Conclusions  

 

4.1 Major Findings  

 

This dissertation evaluated the response of soil respiration to environmental 

controls such as soil temperature (Ts) and soil moisture (SM) in a temperate 

coniferous and deciduous forests in southern Ontario, Canada using measurements, 

modeling and spectral analysis. Study results revealed that Ts was the main driving 

factor for soil respiration. Variations in Ts in June, July, and August were found to 

be a significant controlling factor for the annual carbon budget of soil respiration. 

Empirical model testing using the corrected Akaike Information Criterion (AICc) 

showed that the Gaussian – Gamma model which incorporated both Ts and SM 

displayed the lowest value with the highest coefficient of determination. This study 

found that the conifer plantation forest (TP74) was much more sensitive to 

temperature compared to the deciduous stand (TPD), in particular during years that 

experienced extreme weather events such as in 2018. This implies that with 

increasing temperatures from climate change, that conifer plantation forests may be 

less resilient in this region. The reason for this is likely due to soil structure, canopy 

composition, and sensitivity of conifer species to warmer temperatures as compared 

to mixed deciduous stands. In both forest stands, the soil structure consists of over 

90% sand causing precipitation to rapidly percolate. However, differences in 

canopy composition and water use by coniferous and deciduous species impacted 

SM.  
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Study results at TPD from 2014 to 2018 using eight different models showed that 

the Gaussian – Gamma model produced the best coefficient of determination, slope 

and y-intercept. Overall, models that incorporated SM predicted a better fit to 

observed data compared to Ts-only models suggesting that apart from Ts, SM and 

possibly other environmental variables was a major driving factor of soil respiration 

in these forest stands. The study showed that annual soil respiration accounted for 

65 – 90% of observed eddy covariance ecosystem respiration for the growing 

season in the deciduous forest. Examining multiple Rs models can assist in 

understanding uncertainties associated with environmental variables and improve 

ecosystem models.  

4.2 Future Considerations 

In this study, multiple models were utilized to predict soil respiration and evaluate 

their performance. These models are utilized to gap fill missing data, in particular 

during winter periods when measurements are sparse or not measured. However, 

other studies report a wide variation (10 – 50%) of winter soil respiration 

contribution towards annual ecosystem respiration (Schindlbacher et al, 2017; 

Brooks et al, 2011; Contosta et al, 2016; Khomik, 2004). More future winter soil 

respiration measurements within the conifer and deciduous forest stands could be 

performed to determine winter contributions.  

It is difficult to determine the source and depth of where soil respiration occurs in 

a soil column (Fang and Moncrieff, 2005; Kellman et al, 2015). Therefore, it is not 

possible to differentiate recalcitrant and labile carbon production because of 
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different depths of litter decomposition and time of CO2 movement to the surface 

(Ryan and Law, 2005). Chamber measurements can be combined with soil organic 

matter content analysis and isotopic tracing to determine the source of carbon 

production in both sites (Pett-Ridge and Firestone, 2017). 
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