
Relational Data Curation by Deduplication,

Anonymization, and Diversification

RELATIONAL DATA CURATION BY DEDUPLICATION,

ANONYMIZATION, AND DIVERSIFICATION

BY

YU HUANG, Ph.D

c© Copyright by Yu Huang, August 2020

All Rights Reserved

Ph.D (2020) McMaster University

(Computer Science) Hamilton, Ontario, Canada

TITLE: Relational Data Curation by Deduplication, Anonymiza-

tion, and Diversification

AUTHOR: Yu Huang

Doctoral, (Computer Science)

SUPERVISOR: Professor Fei Chiang

NUMBER OF PAGES: xiii, 165

ii

Dedicated to my family and friends.

Abstract

Enterprises acquire large amounts of data from a variety of sources with the goal of

extracting valuable insights and enabling informed analysis. Unfortunately, organi-

zations continue to be hindered by poor data quality as they wrangle with their data

to extract value since most real datasets are rarely error-free. Poor data quality is

a pervasive problem that spans across all industries causing unreliable data analysis,

and costing billions of dollars [1, 2]. The large body of datasets, the pace of data

acquisition, and the heterogeneity of data sources pose challenges towards achieving

high quality data. These challenges are further exacerbated with data privacy and

data diversity requirements. In this thesis, we study and propose solutions to address

data duplication, managing the trade-off between data cleaning and data privacy, and

computing diverse data instances.

In the first part of this thesis, we address the data duplication problem. We

propose a duplication detection framework, which combines word-embeddings with

constraints among attributes to improve the accuracy of deduplication. We propose a

set of constraint-based statistical features to capture the semantic relationship among

attributes. We showed that our techniques achieve comparative accuracy on real

datasets. In the second part of this thesis, we study the problem of data privacy and

data cleaning, and we present a Privacy-Aware data Cleaning-As-a-Service (PACAS)

iv

framework to protect privacy during the cleaning process. Our evaluation shows that

PACAS safeguards semantically related sensitive values, and provides lower repair

errors compared to existing privacy-aware cleaning techniques. In the third part of

this thesis, we study the problem of finding a diverse anonymized data instance where

diversity is measured via a set of diversity constraints, and propose an algorithm

to seek a k-anonymous relation with value suppression as well as satisfying given

diversity constraints. We conduct extensive experiments using real and synthetic data

showing the effectiveness of our techniques, and improvement over existing baselines.

v

Acknowledgements

I would first like to thank my supervisor, Professor Fei Chiang, for her invaluable

guidance and patience in helping me with my research all these years. Her insight-

ful advice helps me sharpen my critical thinking and make me a better researcher.

Without her support and wise advice, I would not have been able to accomplish this

thesis.

Besides my supervisor, I would like to express my appreciation to my thesis com-

mittee members, Professor Frantisek Franek, Professor Wenbo He and Professor Reza

Samavi, for their insightful comments and encouragement on this thesis. Your feed-

back widen my research from various perspectives. I would like to thank Professor

Farhana Zulkernine, for serving as my external reviewer and for reading my thesis

and providing valuable feedback.

I would like to thank all group members in our Data Science Lab: Zheng Zheng,

Morteza Langouri, Dhruv Gairola, Qu Zhi, Levin Noronha, Harika Gorla and many

others, for the helpful discussions in my research. Thank you to Mostafa Milani, I

learned a lot from the collaboration and discussion with you.

Finally, to my wife, Yu Sun, thank you for your understanding and support over

the years. To my parents, thank you for everything.

vi

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Data Deduplication . 4

1.2 Data Privacy . 6

1.3 Data Diversity . 9

1.4 Contributions . 11

2 Preliminaries 13

2.1 Relations and Functional Dependencies 13

2.2 k-Anonymity . 15

3 Semantic-Aware Deduplication 17

3.1 Introduction . 17

3.2 Related Work . 21

3.2.1 Entity Matching Frameworks 21

3.2.2 Semantic-based Entity Resolution 22

vii

3.2.3 Machine Learning Approaches 23

3.3 Preliminaries . 24

3.3.1 Metric Functional Dependencies 25

3.3.2 Word-Embeddings . 26

3.4 Framework Overview . 27

3.4.1 Problem Statement . 27

3.4.2 Solution Overview . 28

3.5 Non-constraint Attributes Feature Generation 33

3.5.1 Edit Distance . 34

3.5.2 q-grams Similarity . 35

3.5.3 Term Differentiation . 36

3.5.4 Weighted Frequency Similarity 37

3.6 Constraint Attributes Feature Generation 38

3.6.1 Constraint Properties . 39

3.6.2 The Number of Satisfied Constraints 39

3.6.3 Matching Constraint Attributes 40

3.6.4 Proportion of Exact Matching Attributes 40

3.6.5 MFD Tolerance Parameter . 41

3.7 Duplication Metric . 42

3.7.1 Duplication of an Attribute Value 42

3.7.2 Duplication across an Attribute Domain 43

3.8 Limitations . 44

3.9 Evaluation . 48

3.9.1 Experimental Setup . 49

viii

3.9.2 Comparative Accuracy: Term Differentiation and Similarity

Functions . 52

3.9.3 Weighted Term Frequency Efficiency 54

3.9.4 Utility of Constraint Features 55

3.9.5 Varying the Size of Training Data. 55

3.9.6 Statistical Feature Analysis 56

3.9.7 Sensitivity to ∆ . 58

3.9.8 Accuracy of Duplication Scores 59

3.9.9 Comparative Baseline Evaluation 60

3.9.10 Runtime Evaluation . 62

3.10 Conclusion . 63

4 Privacy-Preserving Data Cleaning 65

4.1 Introduction . 65

4.2 Related Work . 74

4.3 Preliminaries . 76

4.3.1 Matching Dependencies . 77

4.3.2 (X,Y)-Anonymity . 77

4.3.3 Generalization . 79

4.3.4 Data Pricing . 80

4.4 Generalized Relations . 81

4.4.1 Measuring Semantic Distance 82

4.4.2 Consistency in Generalized Relations 84

4.5 PACAS Overview . 85

4.5.1 Problem Statement . 85

ix

4.5.2 Solution Overview . 86

4.6 Limiting Disclosure of Sensitive Data 87

4.6.1 Record Matching and Query Generation 88

4.6.2 Enforcing Privacy via Data Pricing 89

4.6.3 Query Answering . 95

4.7 Data Cleaning with Generalized Values 95

4.7.1 Overview . 96

4.7.2 Generating Equivalence Classes 99

4.7.3 Selecting Equivalence Classes for Repair 100

4.7.4 Data Request Generation . 101

4.7.5 Purchase Data and Repair . 102

4.7.6 Complexity Analysis . 103

4.8 Experiments . 103

4.8.1 Experimental Setup . 104

4.8.2 Generalized Values . 108

4.8.3 SafePrice Efficiency and Effectiveness 110

4.8.4 SafePrice Parameter Sensitivity 111

4.9 Conclusions . 114

5 Diversifying Anonymized Data with Diversity Constraints 116

5.1 Introduction . 116

5.2 Related Work . 122

5.3 Preliminaries . 124

5.3.1 Diversity Constraints . 124

5.4 The DIVA Algorithm . 125

x

5.4.1 Diverse Clustering . 127

5.5 Selection Strategies . 133

5.6 Experiments . 134

5.6.1 Experimental Setup . 135

5.6.2 Metrics and Parameters . 139

5.6.3 Accuracy . 140

5.6.4 Performance . 143

5.6.5 Overhead of Diversity Constraints 143

5.7 Conclusion . 145

6 Conclusion and Future Work 146

6.1 Data Deduplication . 146

6.2 Data Privacy and Data Cleaning . 147

6.3 Data Diversity . 148

xi

List of Figures

1.1 Three properties of data quality . 2

1.2 Integrated data quality pipeline . 2

3.1 Deduplication Framework Overview. 27

3.2 Similarity graph for an attribute value. 42

3.3 Similarity graph for an attribute domain. 44

3.4 Comparative precision. 53

3.5 Comparative recall. 53

3.6 Comparative precision. 53

3.7 Comparative recall. 53

3.8 Term diff: precision. 54

3.9 Term diff: recall. 54

3.10 Constraints: precision. 54

3.11 Constraint: recall. 54

3.12 Precision (DBLP-Scholar). 56

3.13 Recall (DBLP-Scholar). 56

3.14 Precision (Amazon-Google) . 57

3.15 Recall (Amazon-Google) . 57

3.16 Feature weights . 58

xii

3.17 ∆ Sensitivity . 58

3.18 Dup. scores (Restaurant) . 58

3.19 Dup. scores (Abt-Buy) . 59

3.20 Dup. scores (DBLP-ACM) . 59

3.21 Comparative Precision . 60

3.22 Comparative Recall . 60

4.1 (a) DGHmed and (b) VGHmed. 66

4.2 (a) DGHage and (b) VGHage. 66

4.3 Framework overview. 86

4.4 Possible relations I, conflict set CQ and admissible relations IQ for query

Q. 91

4.5 Evaluation on gen. values . 109

4.6 Repair error vs. |S|. 110

4.7 SafePrice Parameter Sensitivity . 111

4.8 Comparative repair error. 113

4.9 Comparative runtime. 113

5.1 Diverse clustering as graph coloring. 132

5.2 Varying Σ, k, cf. 140

5.3 DIVA effectiveness and efficiency. 142

5.4 Comparative evaluation. 144

xiii

Chapter 1

Introduction

Organizations have found it increasingly difficult to extract insights from their data

due to increasing data volume and heterogeneity. Many data processing tasks assume

the data conforms to standard formats and data types, which is rare in real data.

Data acquired from the imprecision of extractors may contain missing values, data

integrated from heterogeneous sources may introduce duplicate tuples, and human

typos in data entry may violate declared constraints. Data quality is a pervasive

problem that spans across all industries. Recent studies report that the financial

impact of poor data quality is approximated at $600B per year on US businesses

[3]. A large number of companies indicating that managing data quality remains

their number one issue. As data grows in complexity and size, the data quality issues

become essential to gain accurate and useful information. However, dealing with these

data quality issues is not a trivial problem as data errors could come from various

sources and in different formats.

In this thesis, we focus on three aspects of data quality as Figure 1.1 shows: (i)

data deduplication, (ii) privacy-aware data cleaning; (iii) data diversity.

1

Doctoral Thesis - Yu Huang McMaster - Computer Science

Figure 1.1: Three properties of data quality

Data deduplication Privacy-aware data
cleaning Data diversity

Data

Service
provider

client Constraints

+

Figure 1.2: Integrated data quality pipeline

2

Doctoral Thesis - Yu Huang McMaster - Computer Science

These three properties of data quality are essential for data analysis and data

mining. Since data could come from multiple sources across different platforms or

organizations, data deduplication is an essential step when we integrate data from

different sources before analysis. Besides deduplication, we also need to ensure that

data is error-free through data cleaning and protect data privacy during the pro-

cess. To protect data privacy, a widely use privacy model is k-anonymity, which uses

generalization and suppression to protect sensitive values. The data anonymization

technique may lead to biased data by masking or excluding minority groups, so we

have to consider data diversity during the anonymization process as well.

In this thesis, we present techniques to resolve three properties of data quality.

Figure 1.2 shows an overview of our data pipeline. A relational dataset with pre-

defined integrity constraints provided by the client is used as an input of the data

pipeline. The integrity constraints are a set of rules that describe the semantic re-

lationship among attributes of the relational dataset, which are formally defined in

Section 2. The dataset may contain errors (such as duplicates, inconsistent values),

which need to be fixed. The first component of this pipeline is the data deduplication

module, which uses the given constraints to identify and remove duplicates. The

output of the data deduplication component is a data instance without duplicates.

Since deduplication cannot fix inconsistent values in the data, we propose the second

component of the pipeline, the privacy-aware data cleaning component. This compo-

nent sends query requests to a service provider (who owns accurate and correct data)

asking for correct data to fix the inconsistent values. However, the service provider

is not publicly accessible because of privacy restrictions. The communication be-

tween the service provider and the client should use a privacy-preserving protocol,

3

Doctoral Thesis - Yu Huang McMaster - Computer Science

and we propose a privacy-preserving data cleaning technique to handle it. Although

the privacy-aware data cleaning component can deal with inconsistent errors, it does

not maintain the diversity property of the data, which causes underlying bias in sub-

sequent data analysis. Hence, we design the data diversity component as the third

component of our pipeline to ensure the integrated data is unbiased and diverse.

Our framework can be extended as an end-to-end data pipeline to deal with data

quality issues as well. The input of the pipeline is a dataset with predefined constraints

(such as integrity constraints and diversity constraints). The integrity constraints

will be used in the data deduplication component and privacy-aware data cleaning

component, and the diversity constraints will be used in the data diversity component.

The output of data deduplication, a data instance without duplicates, will be used as

input for the data cleaning component. The output of the data cleaning component is

a consistent data instance. This consistent data instance with the predefined diversity

constraints can be used as the input for the data diversity component to ensure data

diversity property.

1.1 Data Deduplication

id Symbol Name IPOyear Sector Industry

t1 MMM 3M Corporation 2003 Technology Electrical Products

t2 DDD 3D Corporation 2013 Technology Electrical Products

t3 ABB ABB Corporation 1992 Consumer Durables Industrial, Machinery

t4 ABM ABM Industries Ltd 2001 Consumer Durables Industrial, Machinery

t5 AFL Aflac Incorporated 2011 Finance Health Insurance

Table 1.1: Duplicate tuples.

4

Doctoral Thesis - Yu Huang McMaster - Computer Science

Data duplication occurs when a real-world entity has two or more different repre-

sentations within or across databases. Ideally, in an error-free system with perfectly

clean data, each tuple in a database has a unique identifier. Unfortunately, in most

practical cases, this does not occur, and the data often lacks a unique, global identi-

fier. This especially occurs in data integration when data is integrated from multiple

sources across different departments or organizations. In such cases, it is inevitable to

introduce duplicates due to differences in tuple format, standardizations, schema and

typos. Hence, identifying duplicates in the data is a critical step towards ensuring

reliable and trusted data.

Data deduplication is a costly and tedious task that involves identifying duplicate

tuples in a dataset. High duplication rates lead to poor data quality, where data

ambiguity occurs as to whether two tuples refer to the same entity. The process of

tuple deduplication, also known as tuple linkage, is the process of reconciling tuples

that refer to the same entity. However, identifying duplicates is not a trivial problem.

Different tuple semantics, syntax, even the frequency of terms may affect the accuracy

of identified duplicates. One solution is to calculate the string similarity score between

two tuples and compare the score to a given threshold to identify duplicates [4]. String

similarity metrics consider all values as strings, and typically measure the number of

edits needed to transform one string to the other. This process is far from perfect.

For example, in Table 1.1 if we compared the company name of 3D Corporation and

3M Corporation in t1 and t2 through string similarity, we intuitively identify these

two are duplicates because there is only one character difference. However, these two

tuples are distinct companies by focusing on the differentiating terms 3D and 3M,

rather than the terms Company or Corporation, which also occur frequently in other

5

Doctoral Thesis - Yu Huang McMaster - Computer Science

tuples.

To address this challenge, we propose a deduplication framework that differen-

tiates terms during the similarity matching step, and is agnostic to the ordering of

values within a tuple. We propose a set of constraint features to capture the seman-

tic relationship among attributes. Our framework combines constraint features with

non-constraint features to detect duplicates. We propose a duplication metric that

quantifies the level of duplication for an attribute value, and within an attribute.

This metric can be used by analysts to understand the distribution and similarity of

values during the data cleaning process.

1.2 Data Privacy

Given the proliferation of sensitive, confidential user information, data privacy con-

cerns have largely remained unexplored in data cleaning techniques. As increasing

amounts of personal and sensitive information are collected online by social media

sites and by organizations, there is growing concern about how to perform automated

data cleaning tasks while ensuring sensitive and confidential information remains

protected. Data privacy has become increasingly important, and new techniques for

improving data quality while ensuring minimal data disclosure are strongly needed.

Developing automated techniques to provide data privacy guarantees during data

cleaning is challenging, as these two tasks have competing goals. In data cleaning,

the objective is to gain as much knowledge about the data as possible to resolve data

errors correctly. In data privacy, the goal is to conceal as much of the data as possible.

In declarative data cleaning, a set of data updates (repairs) are generated based

on transforming the dirty data values to match clean and consistent portions of the

6

Doctoral Thesis - Yu Huang McMaster - Computer Science

ID GEN ETH PRV CTY DIAG MED

t1 Female Caucasian AB Calgary Osteoarthritis Ibuprofen

t2 Female Caucasian AB Calgary Osteoarthritis Addaprin

t3 Male Caucasian AB Calgary Osteoarthritis Naproxen

t4 Male Caucasian MB Winnipeg Ulcer Tylenol

t5 Male African MB Winnipeg Osteoarthritis Naproxen

t6 Male African MB Winnipeg Migraine Dolex

Table 1.2: Client’s table with errors

data. These repairs are generated from an external source, which is assumed to be

trusted and clean. Generating a set of repair recommendations requires accessing and

reporting both the erroneous and clean data values. Current approaches assume that

all data values are equally informative [5], and are fully accessible. In reality, this

is often not the case. Organizations invest significant efforts to protect their propri-

etary data, where a set of attribute values are highly confidential, providing higher

information content than the remaining attribute values. For example, a patient’s

medical tuple describing her diagnosed illness and prescribed medications is more

identifying and informative than his general symptoms, residential city, and gender.

These sensitive values containing confidential information that are not publicly ac-

cessible, but are used as a trusted source for data cleaning. These sensitive values

often have restricted access, either providing limited viewing to a subset of the data,

or obscuring the true value(s) via generalization (e.g., revealing a person’s age group

rather than her actual age). Unfortunately, existing data cleaning approaches do not

consider these restrictions, thereby leading to inadvertent disclosure of private data

7

Doctoral Thesis - Yu Huang McMaster - Computer Science

as part of a repair.

There are two agents in the data cleaning process. One agent is the client with

data errors. Another agent is the service provider, who owns the clean data. We as-

sume both client and service provider have the same schema, and the dataset owned

by the client is a subset of the dataset owned by the service provider. If the client

wishes to clean his data with the service provider’s help, he has to send query re-

quests to the service provider asking for correct data. A set of data repairs will

be generated from the service provider to fix the error in the client’s dataset. For

example, Table 1.2 and Table 1.3 are the client’s table and service the provider’s

table, respectively. In Table 1.2 and Table 1.3 the schema consists of patient gender

(GEN), ethnicity (ETH), province (PRV), city (CTY), diagnosed illness(DIAG), and

prescribed medication (MED). Suppose there is an integrity constraint [GEN,DIAG]

→ [MED] defined over Table 1.2, which states states a person’s gender and diagnosed

condition determine a prescribed medication. It indicates that the values in attributes

GEN and DIAG uniquely determine the value in MED. According to this constraint,

tuples t1 and t2 violate the given constraint, and error cells are highlighted in Table

1.2. To fix the errors in Table 1.2, a set of data repairs need to be generated from

Table 1.3. However, these repairs may reveal sensitive values about diagnosed illness

and medication in Table 1.3. The challenge we address is: “How can we ensure the

communication between client and service provider being under a privacy-preserving

protocol during the data cleaning process?”

In this thesis, we present a privacy-aware, data cleaning framework that aims to

resolve data inconsistencies while minimizing the amount of information disclosed.

This framework aims to balance the tradeoff between data privacy and data utility.

8

Doctoral Thesis - Yu Huang McMaster - Computer Science

ID GEN ETH PRV CTY DIAG MED

m1 Female Caucasian AB Calgary Osteoarthritis Ibuprofen

m2 Female Caucasian AB Calgary Tendinitis Addaprin

m3 Male Caucasian AB Calgary Migraine Naproxen

m4 Male Caucasian MB Winnipeg Ulcer Tylenol

m5 Male African MB Winnipeg Osteoarthritis Ibuprofen

m6 Male African MB Winnipeg Migraine Dolex

Table 1.3: Service provider’s table.

1.3 Data Diversity

ID GEN ETH PRV CTY DIAG MED

t1 * Caucasian AB Calgary Osteoarthritis Ibuprofen

t2 * Caucasian AB Calgary Tendinitis Addaprin

t3 * Caucasian AB Calgary Migraine Naproxen

t4 Male * MB Winnipeg Ulcer Tylenol

t5 Male * MB Winnipeg Osteoarthritis Ibuprofen

t6 Male * MB Winnipeg Migraine Dolex

Table 1.4: Table with anonymization (k = 3).

To protect sensitive values, a widely used privacy model is k-anonymity, which

intends to break the linkage between identifiers and sensitive attributes [6]. In k-

anonymity, quasi-identifier(QI) attributes are the attributes that can be used to iden-

tify an individual. According to k-anonymity, for each tuple in a k-anonymous table

there are at least k tuples with the same quasi attributes. This means the individual

9

Doctoral Thesis - Yu Huang McMaster - Computer Science

represented by the tuple can not be identified, because the attacker cannot distinguish

it from k − 1 other individuals. The k-anonymity model generates a k-anonymous

relation through an anonymization process, such as generalization and suppression

[6]. Real data is sensitive and requires anonymization, but also contains characteristic

details from a variety of individuals. This diversity is desirable in many applications

ranging from Web search to drug and product development. To avoid biased decision

making, incorporating diversity into computational models is essential to prevent and

minimize discrimination against disadvantaged and minority groups. Unfortunately,

data anonymization techniques have largely ignored diversity in its published result,

which causes underlying bias in subsequent data analysis.

For example, Table 1.3 presents patients’ medical tuples with sensitive attribute

diagnosed illness (DIAG). After applying k-anonymity to Table 1.3 with k = 3, we

obtain anonymized Table 1.4, where each group has at least three tuples with the same

quasi attributes to break the linkage between QI attributes and sensitive attributes.

The anonymization progress masks some attribute values, which may exclude

minority groups and cause biased decision making in data analysis. For example, in

Table 1.4 the values of “Female” under attribute GEN has been replaced with “*”. To

avoid bias and ensure diversity in the dataset, existing work has proposed a declarative

method in the form of diversity constraint [7]. Data diversity constraint defines the

expected frequencies for the attribute values in the data, which can ensure these

values not being masked and excluded during anonymization. Diversity constraints

provide a declarative definition of the minimum and maximum frequency bounds

that specific attribute domain values should appear in the table, which can guarantee

the minority group (such as “Female”) will not be totally excluded. An example

10

Doctoral Thesis - Yu Huang McMaster - Computer Science

of a diversity constraint σ1 = (ETH[Female], 2, 4) requires Table 1.4 should contain

a minimum of two “Female” values and no more than four on the attribute ETH.

The challenge is to generate an anonymized table that satisfies the requirements of

k-anonymity and data diversity at the same time.

In this thesis, we couple diversity with k-anonymity. We study the problem of

finding a diverse anonymized data instance where diversity is measured via a set of

diversity constraints.

1.4 Contributions

In this thesis, we aim to provide an end-to-end pipeline to address three pressing

data quality challenges, namely: data duplication, data privacy and data cleaning,

and data diversity. We make the following contributions:

1. We propose a duplication detection framework, which combines word embed-

dings with constraints among attributes to improve the accuracy of deduplica-

tion. We propose a set of constraint-based statistical features to capture the

semantic relationships among attributes. We present a duplication metric that

quantifies the level of duplication to understand the distribution and similar-

ity of values during the data cleaning process. This work was published on

CASCON 2017 [8] and TPDL 2017 [9].

2. To address the data privacy requirements, we propose a new Data Cleaning-as-

a-Service model that allows a client to interact with a data cleaning provider

who hosts curated, and sensitive data. We present PACAS: a Privacy-Aware

data Cleaning-As-a-Service framework that facilitates communication between

11

Doctoral Thesis - Yu Huang McMaster - Computer Science

the client and the service provider via a data pricing scheme where clients issue

queries, and the service provider returns clean answers for a price while protect-

ing her data. We propose a practical privacy model in such interactive settings

called (X,Y,L)-anonymity that extends existing data publishing techniques to

consider the semantics in the data while protecting sensitive values. This work

was published on WISE 2015 [10], IEEE Big Data 2018 [11] and the Journal of

Information Systems [12].

3. To ensure data diversity, we studied the problem of diversifying anonymized

data using diversity constraints. We present a diversity-driven anonymization

algorithm that anonymizes a given data instance, while ensuring a set of di-

versity constraints are satisfied. We conduct an extensive evaluation using real

datasets demonstrating the effectiveness and efficiency of our algorithm and

show the utility of diversity constraints over an existing baseline.

In Chapter 2, we introduce the necessary notations and definitions that are used

throughout this thesis. In Chapter 3, we present our deduplication framework and

perform extensive experiments showing that our model can detect duplicates with

good accuracy. In Chapter 4, we present our privacy-preserving data cleaning frame-

work which provides privacy guarantee during data cleaning. In Chapter 5, we present

our diversity-driven anonymization algorithm which guarantees data privacy and data

diversity at the same time. Finally, we conclude and propose future work in Chapter

6.

12

Chapter 2

Preliminaries

In this chapter, we present the necessary notations and definitions that are used

throughout the thesis. We summarize the notations and definitions in Table 2.1.

Notation and definitions relevant to a unique chapter are introduced in the specific

chapter.

2.1 Relations and Functional Dependencies

A relation (table) R is a finite set of n-ary tuples {t1, t2..., }. A database D is a

finite set of relations. The relational attributes are denoted as A1, A2, ..., and sets of

attributes are denoted as X, Y .

Definition 2.1.1. A functional dependency (FD) ϕ over a relation R is denoted by

ϕ : X → Y , where X and Y set of attributes. For every pair of tuples t and t′, if

t[X] = t′[X] implies t[Y] = t′[Y], we say relation R satisfies ϕ (denoted as R |= ϕ).

The definition of functional dependency states that if two tuples agree on the

X attribute values, then they musl also agree on the Y attribute values [13]. For

13

Doctoral Thesis - Yu Huang McMaster - Computer Science

example, FD ϕ: CITY → PROVINCE holds in Table 2.2. It indicates that given

any two tuples in Table 2.2, if they have identical values on the CITY attribute

t1[CITY] = t2[CITY], then they should have identical values on the PROVINCE

attribute t1[PROV INCE] = t2[PROV INCE].

Symbol Description

R Relation

D Database instance

A1, A2... Relational attributes

X,Y Sets of relational attributes

t A tuple of R

ϕ Functional dependency (FD)

Σ A set of constraints

Table 2.1: Summary of notation and symbols.

We focus on FDs because they are frequently used to enforce data consistency

and are essential in helping to maintain and improve the data quality [14, 15, 16].

Many database management systems follow the relational model and use FDs to

control the quality of the data which is stored in the tables [15, 16, 17, 18, 19].

For example, declarative data cleaning approaches have focused on achieving the

consistency of the given FDs to ensure the data quality, and data values that violate

the FDs are identifed as errors that need to be repaired [15, 16, 20, 21]. There are a

wide range of data cleaning algorithms (based on user/expert feedback [22, 23, 24],

master database [14, 15], knowledge bases or crowdsourcing [25], probabilitic inference

[18, 19]) leverage FDs to identify and fix errors.

14

Doctoral Thesis - Yu Huang McMaster - Computer Science

ID GEN AGE CITY PROVINCE

m1 male 51 Toronto ON

m2 female 45 Toronto ON

m3 female 32 Vancouver BC

m4 female 67 Vancouver BC

m5 male 61 Edmonton AB

m6 male 79 Edmonton AB

Table 2.2: Relational table

2.2 k-Anonymity

A classic privacy-preserving data publishing model is k-anonymity, which prevents

re-identification of an individual in an anonymized data set [6, 26]. Attributes in a

relation are either identifiers such as SSN that uniquely identify an individual, quasi-

identifier (QI) attributes such as ethnicity, address, age that together can identify an

individual, or sensitive attributes that contain personal information.

Definition 2.2.1 (QI-group and k-anonymity). A relation R is k-anonymous if every

QI-group has at least k tuples. A QI-group is a set of tuples with the same values in

the QI attributes.

k-anonymity is known to be prone to attribute linkage attacks where an adversary

can infer sensitive values given QI values. As an example, Table 2.3 is the original

table and Table 2.4 is the k-anonymous table with k = 3. Table 2.4 has two QI-groups,

{g1, g2, g3} and {g4, g5, g6}.

In this chapter, we introduce necessary notations about relation, attributes and

15

Doctoral Thesis - Yu Huang McMaster - Computer Science

ID GEN AGE ZIP DIAG MED

m1 male 51 P0T2T0 osteoarthritis ibuprofen

m2 female 45 P2Y9L8 tendinitis addaprin

m3 female 32 P8R2S8 migraine naproxen

m4 female 67 V8D1S3 ulcer tylenol

m5 male 61 V1A4G1 migraine dolex

m6 male 79 V5H1K9 osteoarthritis ibuprofen

Table 2.3: Original medical records table

ID GEN AGE ZIP DIAG MED

g1 * [31,60] P* osteoarthritis ibuprofen

g2 * [31,60] P* tendinitis addaprin

g3 * [31,60] P* migraine naproxen

g4 * [61,90] V* ulcer tylenol

g5 * [61,90] V* migraine dolex

g6 * [61,90] V* osteoarthritis ibuprofen

Table 2.4: k-anonymous medical records table

functional dependency. We also provide the formal definition of functional depen-

dency and k-anonymity. In the next chapter, we will discuss data deduplication,

which is the first component of our data pipeline.

16

Chapter 3

Semantic-Aware Deduplication

3.1 Introduction

Organizations rely on the results of analyzing data to make business decisions and

develop strategies. The validity of data analysis depends on the quality of the data.

Organizations typically assume data is consistent, accurate and conforms to standard

formats and data types. However, as data is gathered from various sources, it may

contain missing values, duplicates, inconsistencies, mixed formats and human typos

[2]. Data duplication is a critical data quality issue. It occurs when an entity has

two or more different representations within or across databases. Ideally, in an error-

free system with high-quality data, each tuple in a database should include a unique

identifier. Unfortunately, in most practical cases, data often lacks a unique, global

identifier because of their heterogeneous origins. In such cases, duplicate detection

is an essential step towards ensuring reliable high-quality data for a broad range of

significant data analysis tasks, including data fusion and data profiling. The process

of detecting duplicates, which is also known as entity resolution (ER) [27], record

17

Doctoral Thesis - Yu Huang McMaster - Computer Science

linkage [28], or entity matching (EM) [29] is to reconcile tuples that refer to the same

entity [30]. In this chapter, we use the term entity resolution (ER) to describe this

process.

Identifying duplicates is not a trivial task, especially when the tuples contain

similar semantic terms (such as Mobile vs Phone in Table 3.5). Existing approaches

rely on string similarity of attribute values to identify duplicates [4, 31]. String

similarity is commonly used to identify duplicates. It works well when the similarity

score of values in two tuples is high. However, the limitation of string similarity is

that it cannot detect duplicates when two tuples have low string similarity but have

high semantic similarity. By semantic similarity, we refer to how close two terms are

to represent the same entity, independent of their syntactic (string) representation.

For example, Mobile vs Phone are two terms that are semantically similar but their

string similarity score is low. Existing lexical matching approaches such as edit

distance only consider the number of different characters to compute the similarity,

and cannot capture similar words on the semantic level [31]. Incorporating a semantic

similarity measure In this chapter, we use the word-embedding techniques to capture

the semantic similarity between terms.

tuple Product Model Price Category

t1 Apple iPhone ios 8 32GB Cell Phone IPH1706 1307 Mobile

t2 Samsung 1080P LED 40 high-definition smart FPTV SM900L 960 Video

t3 Apple iPhone ios 8th generation 32GB Mobile IPH1706 1367 Phone

t4 Samsung 1080P LED 40 HD Flat-panel Television SM900L 943 Video

Table 3.5: Product Dataset.

18

Doctoral Thesis - Yu Huang McMaster - Computer Science

Term Frequency. Existing deduplication techniques assume that the relative im-

portance of the terms is equal when calculating the string similarities and ignore to

consider the relative weights of each term within attribute values [4, 30, 31]. For ex-

ample, given two attribute values ABB company and IBM company, if we treat each

term with equal weight, the similarity score of these two values will be 0.8 (since only

two characters out of ten are different). These two values will be considered as dupli-

cates. However, if we consider the weight of each term, we could intuitively identify

these two are different companies by putting more weight on the differentiating terms

ABB and IBM, rather than the common term company. In this chapter, we consider

the relative importance of each term within attribute values and propose a weighted

mechanism based on term frequency when we calculate the similarity score.

Data integrity constraints provide useful information of expected attribute rela-

tionships to identify duplicates. If such constraints are available, they provide addi-

tional context beyond traditional attribute similarity scores. For example, an exten-

sion of functional dependencies (FDs) are Metric Functional Dependencies (MFDs),

which allow small differences to occur in the consequent values of the constraint within

a tolerance parameter ∆ [32]. For an MFD ω : X
∆−→ Y , if two tuples t[X] = t′[X] then

d(t[Y]−t′[Y]) ≤ ∆, for a metric distance function d over numeric values in Y . For ex-

ample, in Table 3.5 assume we have a MFD that states [Model, Category]
50−→ [Price],

which indicates that the price of a product should be within a certain variance (50)

given the model number and category. By using an MFD, we know that if two tu-

ples have the same value on attribute Model and Category, then minor differences in

Price are acceptable. The metric parameter ∆ is defined as part of ω and normally

set by users according to application requirements and allowed tolerance levels. A

19

Doctoral Thesis - Yu Huang McMaster - Computer Science

relation R may have many dependencies defined, including FDs (denoted as ϕ) and

MFDs (denoted as ω). We call this set of constraints Σ, and say that R |= Σ if for

all ϕ, ω ∈ Σ, R |= ϕ and R |= ω. We assume that Σ is given and defined by data

architects according to the domain semantics.

In this chapter, we develop a deduplication framework that leverages integrity con-

straints, and consider entity resolution as a binary classification problem. We propose

a semantic-aware framework to train a classifier to classify unlabeled tuple pairs as

duplicates. In this chapter, we consider the commonly used FDs and MFDs, and

provide a methodology to extract features from these constraints towards identifying

duplicates. This chapter makes the following contributions:

1. We present a unified framework for identifying duplicates that leverages in-

tegrity constraints and word-embeddings to improve the accuracy of identifying

duplicates.

2. We propose a set of statistical features that can measure the semantic relation-

ships among attributes through FDs and MFDs for learning.

3. We propose a weighting scheme that differentiates terms (in a tuple) based on

their frequency of occurrence. This helps to place greater emphasis on terms

that are better indicators of duplicates, and discounting commonly occurring

terms that do not serve as good differentiators.

4. We present a new duplication score that quantifies the degree of duplication for

values in an attribute domain. This metric allows users to measure the duplicate

score between attribute values as well as the level of data duplication between

columns. This metric can be used by analysts to understand the distribution

20

Doctoral Thesis - Yu Huang McMaster - Computer Science

and similarity of values during the data cleaning process.

5. We conduct a comprehensive experimental evaluation of our techniques with

respect to accuracy and performance. We also show that our duplication scores

are intuitive, and capture observed duplication patterns in the data.

This chapter is organized as follows. We introduce related work in Section 3.2,

and describe necessary preliminaries in Section 3.3. In Section 3.4, we formalize

the problem statement, present a solution overview, and introduce the modules of

our framework. In Section 3.5 we discuss how to generate non-constraint attribute

features, including similarity functions and term differentiation. In Section 3.6, we

describe how constraint-based attribute features are computed. We then define a

set of metrics to measure the level duplication in an attribute domain in Section

3.7. In Section 3.8, we discuss the limitations of our model and provide some possible

solutions. In Section 3.9, we present our experimental results, and conclude in Section

3.10.

3.2 Related Work

3.2.1 Entity Matching Frameworks

Cohen presents a system named WHIRL which uses tf-idf weights with cosine similar-

ity to calculate string similarity [33]. WHIRL divides a tuple into a set of terms, and

for each term, the term frequency (TF) to inverse document frequency (IDF) score

is used to represent the term. TF is the number of times that word appears in the

string, which is TF = f(w,d). IDF is the inverse document frequency IDF = |D|/N ,

21

Doctoral Thesis - Yu Huang McMaster - Computer Science

where N is the number of records in the database D that contain the word w, and

|D| is the total number of documents in D. The TF-IDF value is computed as

(TF · IDF) = log(TF + 1) ∗ log(IDF). The idea behind the TF-IDF score is that if

a term appears many times in one tuple (large TF), but relatively few times in the

table (large IDF), then TF-IDF measures its relative significance.

The Stanford Entity Resolution Framework (SERF) identifies duplicates via a

matching phase followed by a merging phase [34, 35]. In the matching phase, they

use a matching function to calculate the similarity scores of attribute values. If the

similarity scores are above a given threshold, a boolean function returns true indicat-

ing a duplicate has been identified. This process repeats across all attributes, and a

pair of tuples are considered as duplicates if the logical AND across the attributes is

true. In the merging phase, they use a merging function to merge two tuples into a

consolidated tuple representing a unique entity.

Gustavo et al. propose a blocking scheme, which is based on an inverted index

structure to cluster entities in blocks [36]. This method can handle duplicate pairs

in each block rather than comparing the entire data instance. Wang et al. present a

blocking framework based on locality-sensitive hashing (LSH) function to reduce the

number of tuple comparisons [37].

3.2.2 Semantic-based Entity Resolution

Salima et al. propose an ontology-based approach to alleviate the ambiguity of en-

tities from various sources [38]. They use the ontology information of the dataset to

manually express the semantic connections between concepts. They assume the same

22

Doctoral Thesis - Yu Huang McMaster - Computer Science

entities belong to the same family of concepts in the ontology and use the given ontol-

ogy tree to detect all possible connections between entities. However, their approach

heavily relies on the pre-defined ontology hierarchies, which are not always easy to

obtain. Building these ontology hierarchies requires manual and costly effort from

domain experts as well.

3.2.3 Machine Learning Approaches

The proliferation of machine learning techniques has naturally been applied to dupli-

cation detection problems. Muhammad et al. propose a learning-based framework,

where they obtain distributed representations of words, and build a classifier to iden-

tify duplicates [39]. To capture the semantic meaning of the words in the entity, they

use distributed representations, such as word2vec, to map an entity into a vector,

then calculate the similarity among the vectors to check for similar entities.

Magellan is an end-to-end deduplication framework [40]. It treats the deduplica-

tion as a binary classification task, by converting tuple attributes to features to train

the classifier [40]. Although Magellan performs well on clean, structured records, it

is not robust enough on tuples with many synonyms. The extracted features use

attribute string similarity which fails to identify the closeness of synonyms. Another

limitation of Magellan is that it does not consider the relationships among attribute,

and it evaluates each attribute independently to generate feature vectors. Our frame-

work combines word-embeddings and constraints to generate features.

Sidharth et al. apply embedding approaches and define aggregation functions to

summarize terms within attributes [41]. They explore a series of current deep learn-

ing solutions for entity matching tasks, including SIF, RNN, Attention and Hybrid

23

Doctoral Thesis - Yu Huang McMaster - Computer Science

Symbol Description

R Relation

A1, A2... Relational attributes

X,Y Sets of relational attributes

t A tuple of R

|A| Total number of attributes

〈t, t′〉 A pair of tuples

s Term

w Term weight

f1, f2... Constraint features

x Feature vector

ϕ Functional dependency (FD)

ω Metric Functional dependency (MFD)

∆ Tolerance parameter for MFD

Σ A set of constraints

Table 3.6: Summary of notation and symbols.

approaches [41]. They evaluate the performance of these solutions on various entity

matching (EM) problems, such as structured EM, textual EM and dirty EM [41].

However, a limitation of their approach is the extensive training time due to the

complexity of the neural networks.

3.3 Preliminaries

We present preliminary definitions and notations used in this chapter.

24

Doctoral Thesis - Yu Huang McMaster - Computer Science

3.3.1 Metric Functional Dependencies

Definition 3.3.1. A metric functional dependency (MFD) ω : X
∆−→ Y holds if two

tuples t[X] = t′[X] then d(t[Y], t′[Y]) ≤ ∆, for a metric distance function d over

numeric values in Y .

For a relation R, MFD defines a relationship between X and Y , where X and

Y are sets of attributes in R [32]. MFD allowed difference between two tuples in

Y should be within the given tolerance parameter ∆. The metric parameter ∆ is

defined as part of ω and normally set by users. Compared to FDs, MFDs relax the

equality condition on the consequent Y attributes by allowing small differences. We

can define the “closeness” of these values by a metric distance function d. Specifically,

the metric of d satisfies four properties: (a) symmetry, which means d(x, y) = d(y, x);

(b) non-negativity, d(x, y) ≥ 0; (c) identity of indiscernible, d(x, y) = 0⇔ x = y; (d)

triangle inequality, d(x, z) ≤ d(x, y) + d(y, z) [32].

Another type of constraint, matching dependencies(MDs), extend FDs by relaxing

the strictly matching to similarity measures [42]. In MDs, if two tuples are similar

on attributes X (t[X] ≈ t′[X]), then they should have equal value on attributes Y

(t[Y] = t′[Y]) . The similarity measures in MDs need to calculate a similarity score in

the range of [0, 1], and compare this score to a given threshold. MDs state that only

if the similarity score is greater than or equal to the threshold, then two tuples are

considered as matching in attributes X (t[X] ≈ t′[X]). However, the challenge here

is to find a proper similarity threshold. This threshold parameter varies for different

datasets, which makes it even harder to specify. Our model does not rely on any

specific similarity threshold. Our model does not compare the similarity scores to the

given threshold. Instead, our model converts the similarity scores to a feature vector

25

Doctoral Thesis - Yu Huang McMaster - Computer Science

and uses this feature vector to train a classifier to identify duplicates.

3.3.2 Word-Embeddings

The Word-embedding approach can map words or phrases to a low-dimensional, real-

valued vector for similarity calculation [43]. Each dimension of the embedding repre-

sents a feature of the word, which can capture useful syntactic and semantic proper-

ties. Unlike TF-IDF model, which tries to vectorize the word based on its frequency

in the document and corpus, the word-embedding method tries to quantify and cat-

egorize semantic similarities between terms based on their context in the dataset.

Intuitively, if two words have similar “context”, they should be similar as well. A

widely used word-embedding model is skip-gram, which leverages the neighbouring

words in the context of the target word to capture its semantics. To obtain the

neighbouring words, skip-gram first partitions the given string into content pairs

through a sliding context window and trains a neural network with these context pairs

[44]. To obtain the accurate word vectors, the input context pairs should contain

enough adjacent words for the neural network training process. In duplicate detection

over relational attributes, attribute values do not always contain enough terms for a

skip-gram partition, and some attribute even contains only a single term. To address

this challenge, past work breaks the attribute boundaries and consider each tuple as a

long string to apply word-embedding approaches [39, 41]. However, breaking attribute

boundaries will lead to attribute and schema information loss in relational data, as

the attribute associations are lost. We use the attribute relationships provided by

integrity constraints to address this short text issue. Instead of assuming attributes

are independent, integrity constraints allow us to leverage relationships among the

26

Doctoral Thesis - Yu Huang McMaster - Computer Science

attributes.

3.4 Framework Overview

In this section, we formally define our problem, and then give an overview of our

framework.

,

,

Feature
Integration

Non-
constraint
Feature

Generator

Constraint
Feature

Generator

Attribute
Classifier

Duplication
Classifier

Quantify
Duplication

Constraints
 (FD, MFD)

Pre-trained
Word-

Embeddings
Tuple

Tuple

End

Duplicates?

No

Yes

Data

Record
Blocking

Tuple Pair

Figure 3.1: Deduplication Framework Overview.

3.4.1 Problem Statement

Our task is to identify all tuples that refer to the same entity in a relation R. Specif-

ically, given two tuples t, t′ ∈ R, they can form a pair of tuples 〈t, t′〉, and we need

to determine whether 〈t, t′〉 is “matched” or “unmatched”. We model this task as

a binary classification problem, where we use labelled 〈t, t′〉 to train a classifier for

deduplication. Since we cannot directly use a pair of tuples 〈t, t′〉 as input to the

classifier, the challenge is how to construct a feature vector x to represent 〈t, t′〉. The

problem can be formalized in the Equation 3.1.

27

Doctoral Thesis - Yu Huang McMaster - Computer Science

classify(〈t, t′〉) = classify(x) =

 matched

unmatched
(3.1)

3.4.2 Solution Overview

Figure 3.1 shows an overview of our deduplication framework. Given a dataset and

a set of pre-defined constraints Σ, we first input the dataset into the record blocking

module where tuples are partitioned into blocks to reduce runtime and overhead.

We take a pair of tuples 〈t, t′〉 from a block, and categorize their attributes into

two categories, constraint attributes or non-constraint attributes according to the

given constraints Σ. Constraint attributes are the attributes that participate in any

constraint, such as FDs and MFDs. Non-constraint attributes do not participate

in any constraint. For non-constraint attributes, our framework converts attribute

values to word-embedding vectors and automatically adjusts the weight of each word

based on their frequency information to generate non-constraint features that we

will describe in Section 3.5. For constraint attributes, our framework extracts the

semantic information of the constraints to generate constraint features, which we will

describe in Section 3.6. Finally, constraint features and non-constraint features will

be integrated into a unified feature vector x to represent 〈t, t′〉, and it will be used as

an input to the classifier.

Record Blocking

To identify duplicates of a given relation R with N tuples, existing approaches, which

are based on the string similarity [4, 31, 33, 34, 35], have to calculate the similarity

scores of tuples pairwise. The number of comparisons will be O(N(N−1)
2

). This is

28

Doctoral Thesis - Yu Huang McMaster - Computer Science

Algorithm 1: Record Blocking

Input : a set of tuples D

Output: A set of clusters C

1 (s1, s2, ...sk)← SelectRandomSeeds(D)

2 C ← {}

3 for si ∈ (s1, s2, ...sk) do

4 ci ← {si}

5 vi ← CalculateTF − IDF (si)

6 for tj ∈ D do

7 vj ← CalculateTF − IDF (tj)

8 if i← argmin||vi − vj||2 then ci ← ci ∪ tj;

9 end

10 C ← ci ∪ C

11 end

12 return C

because the string similarity calculation is a binary operation, which only takes two

strings as input and outputs one similarity score each time. Therefore, all of tuples in

R have to compare with each other, which leads to O(N(N−1)
2

) operations. To avoid

a prohibitively expensive comparison for large datasets, we first partition tuples into

disjoint blocks and compare tuples pairwise within each block only to reduce the

overall number of comparisons. If we can partition N tuples into K blocks, then each

block only contains N
K

tuples on average. The number of comparisons in each block

will reduces to O(N(N−K)
2K2). We can use a hash function to project similar tuples into

blocks.

29

Doctoral Thesis - Yu Huang McMaster - Computer Science

For example, Soundex [45] is a hash function which assigns tuples to phonetically

similar groups based on the consonants. Another example is the weak hash function,

but it is only suitable for a small dataset containing large files [46]. In our case, the

tuples are small files which could lead to hash collisions in a large dataset. In our

framework, we take the k-means [47] unsupervised learning algorithm to cluster the

tuples into blocks. The k-means does not require labelled data nor any assumptions

about the distribution of data. To cluster the tuples, we consider each tuple as a short

document, and calculate the tf-idf score for each term that appears in the tuple. Each

tuple t ∈ R can be converted to a tf-idf vector.

The k-means algorithm partitions these vectors into k blocks to minimize these

vectors’ intra-cluster variance. As line 1-2 of Algorithm 1 shows, we first randomly

select k tuples from D as the initial seeds (s1, s2, ...sk), and initialize C as the set

of clusters. In line 3-4, We initialize k clusters for each seed si ∈ (s1, s2, ...sk), and

compute their TF-IDF vectors. In line 5-8, we compute the TF-IDF for each tuple

tj ∈ D, and try to find the minimal intra-cluster variance between the vector of tj and

the vector of seed si to determine which cluster that tj should be in. Once all tuples

in D are partitioned into clusters, our algorithm will return the set of clusters. The

intention is to reduce the complexity by reducing the number of tuple comparisons

by grouping similar tuples together (per block). Before record blocking, there are N

tuples in D, and the number of comparisons is O(N(N−1)
2

). Algorithm 1 partitions N

tuples into K blocks, then each block only contains N
K

tuples on average. The number

of comparisons in each block will reduces to O(N(N−K)
2K2).

30

Doctoral Thesis - Yu Huang McMaster - Computer Science

Algorithm 2: Attribute Classify

Input : A pair of tuples 〈t, t′〉, a constraint ϕ

Output: A set of non-constraint attributes P and a set of constraint

attributes U

1 A← 〈t, t′〉

2 P← ∅

3 U← ∅

4 for Ai ∈ A do

5 if Ai ∈ ϕ then U← U∪ Ai ;

6 else P← P∪ Ai ;

7 end

8 return U, P;

Attribute Classifier

Existing approaches break the boundaries of attributes and treat tuples as long string

to calculate the string similarity scores for deduplication [34, 35]. However, they do

not consider the relationships among attributes, which may contain useful informa-

tion that can be used for deduplication. We use the pre-defined constraints to capture

the semantic relationships among attributes, and propose a set of statistical features

to model these relationships. Since not all attributes participate in the pre-defined

constraints, we use word-embeddings and similarity functions to generate features for

the attributes that do not participate in any constraints. We partition the attributes

into two categories and propose different approaches to generate their features. Given

31

Doctoral Thesis - Yu Huang McMaster - Computer Science

a constraints ϕ, we divide the attributes A1, A2, ... of the relation R into two cate-

gories: non-constraint attributes set P and constraint attributes set U. From line 1

to line 3 of the Algorithm , we obtain all attributes A from 〈t, t′〉, and initialize the

non-constraint attributes set P and the constraint attributes set U. In line 4-7, we

partition the attributes based on the given constraint ϕ. For an attribute A ∈ A,

if A participates in the given constraint ϕ, A will be partitioned into the set of con-

straint attributes U; otherwise, A will be partitioned into the set of non-constraint

attributes U. The constraint features use constraints to measure the semantic re-

lationship among attributes and the non-constraint features leverage the similarity

functions to compute the similarity scores on the matching attributes. They model

two tuples from different perspectives to extract the representation features of 〈t, t′〉.

Hence, we combine them into a unique feature vector to train the deduplication clas-

sifier.

Feature Generation

In this component, we use different feature generators to extract the features from

the set of non-constraint attributes and the set of constraint attributes. The non-

constraint attributes set P and constraint attributes set U will be used as input

for this component. For the set of non-constraint attributes, we use three different

approaches (edit distance, q-grams and word-embeddings) to generate features. For

a set of constraint attributes, we use the constraint among attributes to generate

constraint features. We will discuss non-constraint and constraint feature generation

in Section 3.5 and 3.6, respectively.

32

Doctoral Thesis - Yu Huang McMaster - Computer Science

Feature Integration

Algorithm 3: Feature Integration

Input : A non-constraint feature vector x′ and a constraint feature vector x

Output: A integrated feature vector z

1 z ← ∅

2 z ← x′ ⊕ x

3 return z;

The feature integration module will integrate the non-constraint features and the

constraint features into a unified feature vector to represent the pair of tuples 〈t, t′〉.

Since the order of features has no impact on the classification result, we can integrate

these two feature vectors by concatenating them. Assume vector x = [x1, x2, ...xh]

represents the non-constraint feature vector of 〈t, t′〉, and x′ = [x′1, x
′
2, ...x

′
l] represents

the constraint feature vector of 〈t, t′〉. Symbol ⊕ represents the feature integration

operator, thus x ⊕ x′ = [x1, x2, ...xh, x
′
1, x
′
2, ...x

′
l]. This integrated feature vector will

be used as the input of the classifier.

3.5 Non-constraint Attributes Feature Generation

Identifying duplicates includes two tasks: (i) extract the features of tuples; (ii) classify

the tuples to “match” or “unmatched” category. In this section, we discuss how

to extract features from non-constraint attributes. We first present two distance

functions for similarity computation, and then present a frequency-based approach

for term differentiation.

33

Doctoral Thesis - Yu Huang McMaster - Computer Science

3.5.1 Edit Distance

Edit distance computes the minimum cost of transforming one string to another string

based on counting the number of necessary edits [31]. The edit distance between two

terms s and s′ is the minimum number of edit operations (of single characters) needed

to transform s into s′. To obtain the similarity score, we have to normalize the edit

distance into the range [0.0, 1.0]. These similarity scores will not be used to compare

against a given threshold to determine duplicates. Instead, these similarity scores

will be used as feature vectors and integrated with the constraint feature vectors to

train the classifier. Our model does not rely on any specific similarity threshold to

compare against, which makes our model more flexible than existing string similarity

approaches [34, 35].

We define normalized similarity score between terms (s, s′) as:

sim(s, s′) = 1− editDist(s, s′)

max(|s|, |s′|)
(3.2)

editDist(s, s′) denotes the edit distance of (s, s′), and max(|s|, |s′|) represents the

maximal length between s and s′.

Example 3.5.1. Given two attribute values representing company names, AllianzGI

Convertible Income Ltd and AllianzGI Convert Income Corp, we can split them

into terms to obtain [(AllianzGI,AllianzGI) (Convertible,Convert) (Income,Income)

(Ltd,Corp)]. The edit distances of these term pairs are [0, 4, 0, 4], which can be nor-

malized as [1−0, 1−4/11, 1−0, 1−4/4] = [1, 7/11, 1, 0]. These normalized values will

be used as a feature vector x = [1, 7/11, 1, 0] to integrated with the constraint feature

34

Doctoral Thesis - Yu Huang McMaster - Computer Science

vector x′ = [2/3, 1/2, 1, 0] through the integration operator ⊕. In this way, we can ob-

tain the integrated feature vector x⊕ x′ = [1, 7/11, 1, 0, 2/3, 1/2, 1, 0]. This integrated

feature vector along with the given label data will be used to train the classifier.

3.5.2 q-grams Similarity

In q-grams similarity [48], each attribute value will be converted to a set of q-grams,

and the comparison between two tuples is based on their q-grams sets. The intuition

is that if two strings are similar, they should share a large number of q-grams. To

generate a q-grams set, we consider a sliding window of size q over term s, and use

the sequence of characters within the window as a token. In this thesis, we use q = 2

to generate bigram tokens.

Example 3.5.2. Consider the three terms s1 = patent, s2 = part, s3 = apaten, with

the following bigram sets:

bigrams of s1 = {pa, at, te, en, nt}

bigrams of s2 = {pa, ar, rt}

bigrams of s3 = {ap, pa, at, te, en}

To calculate the bi-gram, we use a bitmap, such as Table 3.7. Bitmaps allow us to

efficiently compare tuples, and calculate the similarity score. For two bitmaps, we use

the bitwise AND and OR operation to compare bits, to determine whether a bigram

appears in a tuple. We then use Jaccard similarity [48] to calculate the similarity

score between the bitmap representations of s and s′, namely, bs and bs′ , respectively.

35

Doctoral Thesis - Yu Huang McMaster - Computer Science

pa at te en nt ar rt ap

patent 1 1 1 1 1 0 0 0

part 1 0 0 0 0 1 1 0

apaten 1 1 1 1 0 0 0 1

Table 3.7: bigrams bitmap

sim(s, s′) =
bs ∩ bs′
bs ∪ bs′

(3.3)

where bs is the bitmap representation of s, and ∩ denotes bitwise AND operation,

and ∪ denotes the bitwise OR operation. Similarly, the similarity scores will be used

as feature vectors to train the classifier as the edit distance we discussed above.

3.5.3 Term Differentiation

Existing techniques [34, 35] have primarily assumed that all the terms have equal

weight but ignore the difference between infrequent terms and frequent terms during

the comparison. For example, given two values IBM Corp and ABB Corporation,

terms IBM and ABB occur less frequently but more distinguishable than Corporation

and Corp. Therefore, we should consider their contributions to the similarity score

differently. In our framework, we distinguish these less frequent terms during the

aggregation process by placing more emphasis on the infrequent terms (such as IBM

and ABB) since they serve as a more accurate indicator of similarity than commonly

occurring terms in the data. Intuitively, if tuples have a high similarity score on the

common and insignificant term such as Corporation they will offset the difference

between their core term ABB and IBM.

36

Doctoral Thesis - Yu Huang McMaster - Computer Science

We use w to denote the weight of term pair (s, s′), which can be calculated through

their term frequency w = − log freq(s)+freq(s′)
2

. The intuition is that the weights of

terms with high frequencies should be lower than the terms with low frequencies. In

the next section, we will discuss how to use these weights to refine our similarity

function.

3.5.4 Weighted Frequency Similarity

We combine the similarity scores with term differentiation weights to refine the non-

constraint attribute features. We assume the terms in each attribute are aligned, and

we can couple the similarity score of each term sim(si, s
′
i) with their corresponding

weight wi to obtain the similarity score of 〈t, t′〉 on the attribute A (denoted as

sim(t[A], t′[A])). Similarly, we can apply this approach to other attributes of 〈t, t′〉 and

obtain the similarity scores of other attributes. All of these attribute similarity scores

will be considered as features and integrated into a unique feature vector through the

⊕ operator such as sim(t[A1], t′[A1])⊕ sim(t[A2], t′[A2])....

sim(t[A], t′[A]) =
∑
i∈n

wi · sim(si, s
′
i)

=
∑
i∈n

(− log
freq(si) + freq(s′i)

2
) · sim(si, s

′
i)

We can apply this wi to the adapted Edit Distance similarity function and obtain

the Weighted Frequency Edit Distance (WFED) similarity score:

37

Doctoral Thesis - Yu Huang McMaster - Computer Science

WFEDsim(t[A], t′[A]) =
∑
i∈n

wi · sim(si, s
′
i)

=
∑
i∈n

wi · (1−
editDist((si, s

′
i)

max(|si|, |s′i|)
)

where wi = − log
freq(si)+freq(s

′
i)

2
.

Similarly, we define the Weighted Frequency Bigrams (WFB) similarity score by

coupling wi to the bigrams similarity function:

WFBsim(t[A], t′[A]) =
∑
i∈n

wi · sim(si, s
′
i)

=
∑
i∈n

wi ·
bsi ∩ bs′i
bsi ∪ bs′i

where wi = − log
freq(si)+freq(s

′
i)

2
.

3.6 Constraint Attributes Feature Generation

Given a set of pre-defined FDs and MFDs, we leverage them to compare the values

among attributes participating in the constraint. We begin by extracting a set of

features {f1, f2, f3, f4} that capture statistics about the attributes and consistency of

the constraints over the data.

38

Doctoral Thesis - Yu Huang McMaster - Computer Science

3.6.1 Constraint Properties

Not all FDs and MFDs work well in the deduplication task. In this chapter, we adopt

a different notion of constraint satisfaction where the FDs (denoted as ϕ) and MFDs

(denoted as ω) are evaluated on a pair of tuples 〈t, t′〉, i.e., 〈t, t′〉 |= ϕ, 〈t, t′〉 |= ω. Our

framework uses constraints as a proxy of attribute relationships that should hold over

the tuples and we check a pair of tuples 〈t, t′〉 at a time. FDs are hard constraints

which requires t and t′ to match on X and Y . MFDs generalize FDs with a tolerance

parameter ∆, which allows them to be more flexible than FDs, but they are still

hard constraints such that the difference of t and t′ on the Y must lie within ∆. To

ensure that we can check as many attributes over 〈t, t′〉 as possible, we seek FDs and

MFDs with the following properties: (a) where the antecedent (LHS) attributes of

ϕ and ω, all these attributes together are a maximal number (with the maximum

being the number of attributes in R). (b) constraints containing pseudo-identifiers

that are close to keys (identifiers) because these pseudo-identifiers help to uniquely

identify entities. If the pseudo-identifiers of two tuples are exact matching, these two

tuples are duplicates with high likelihood. (c) constraints containing few overlapping

attributes because the classifier may overestimate the overlapping attributes.

3.6.2 The Number of Satisfied Constraints

Let Σ be a set of constraints that are either FDs (ϕ) or MFDs (ω). For ease of

presentation, we use ϕ here, but all features apply to ω as well. Let S = {ϕ ∈

Σ|〈t, t′〉 |= ϕ} be the set of all constraints that are either FDs or MFDs, whereby t, t′

satisfy ϕ. We define feature f1 as the number of satisfied constraints i.e., |S|, since

it provides an indicator of the overall similarity between t and t′. Therefore, we

39

Doctoral Thesis - Yu Huang McMaster - Computer Science

represent f1 as below:

f1 =
|S|
|Σ|

(3.4)

3.6.3 Matching Constraint Attributes

For 〈t, t′〉, the number of attributes that matches a constraint provides a measure of

equality (in the case of ϕ), or similarity (in the case of the consequent attributes in

ω). The number of attributes that are considered equivalent is a useful indicator of

whether t and t′ are duplicates. Hence, we define a feature, f2, which counts the

number of attributes participating in the constraints by 〈t, t′〉, and normalize it with

the total number of attributes in R. For ϕ : X → Y or ω : X
∆−→ Y , where 〈t, t′〉 |= ϕ

or 〈t, t′〉 |= ω, let |XY | represent the number of attributes in ϕ, ω and |A| represent

the total number of attributes, then the f2 feature can be denoted as:

f2 =
|XY |
|A|

(3.5)

3.6.4 Proportion of Exact Matching Attributes

The proportion of exact matching attributes can be used as a good indicator of

whether t and t′ are in duplicates. Since both FDs and MFDs require exact matching

on X, the more attributes on X indicate high proportion of exact matching attributes

between t and t′. For example, if two tuples have exact values on X attribute it

indicates that two tuples are probably duplicates. We define a feature f3 to capture

the proportion of exact matching attributes in X relative to |XY | in the constraints.

Intuitively, we are trying to quantify the proportion of exact matching attributes in

40

Doctoral Thesis - Yu Huang McMaster - Computer Science

X, but we do not currently enforce the dependency semantics to check for equality

(or similarity in the case of MFDs) in Y . We compute the ratio of |X| over |XY | for

all satisfied ϕ, ω ∈ Σ. Specifically, for ϕ : X → Y , (similarly for ω), if 〈t, t′〉 satisfies

{ϕ, ω|〈t, t′〉 |= ϕ ∨ 〈t, t′〉 |= ω}, we defined f3 as:

f3 =
|X|
|XY |

(3.6)

Since both FDs and MFDs require exactly matching on the X, |X| indicates the

number of exactly matching attribute values between the two tuples, which is an

indicator of their likelihood to be duplicated.

3.6.5 MFD Tolerance Parameter

An MFD ω : X
∆−→ Y allows minor difference in Y by specifying a tolerance parameter

∆, and ∆ serves as an upper bound of the allowed difference in Y . Given 〈t, t′〉, if

〈t, t′〉 |= ω, then the actual difference of 〈t, t′〉 on Y (denoted as Θ = |t[Y] − t′[Y]|)

should be less than or equal to the given upper bound ∆. The value of Θ indicates

the closeness of 〈t, t′〉 on the Y . Hence, we define f4 to compute the actual difference

Θ and normalize it with ∆. Since there could be multiple pre-defined MFDs with

different ∆i and Θi, we sum these values in f4:

f4 =
∑
i

Θi

∆i

(3.7)

41

Doctoral Thesis - Yu Huang McMaster - Computer Science

3.7 Duplication Metric

In this section, we define duplication metrics to quantify the level of duplication for

a single attribute value, and the duplication level across an attribute domain. These

metrics can help users to better understand the distribution of similarity values and

guide the data cleaning process.

3.7.1 Duplication of an Attribute Value

During tuple comparisons, we store the similarity scores between terms. For a term

s, we can model the related terms (satisfying a given similarity threshold) as a graph,

where the set of vertices V represent terms and edges E represent the similarity score

between two terms.

Figure 3.2: Similarity graph for an attribute value.

Given a vertex v, let Ev denote its edge set and |Ev| denote the size of E . Let edge

edgevw ∈ Ev represent the similarity score between terms represented by nodes v and

w.

42

Doctoral Thesis - Yu Huang McMaster - Computer Science

dup(v) =

∑
w evw
|Ev|

(3.8)

The duplication score, dup(v), represents the average similarity of v to its neigh-

bouring values. Higher dup scores indicate a larger number of similar values (dupli-

cates) to v, on average. In contrast, lower dup scores indicate less similar (distinct)

neighbouring values to v. Figure 3.2 shows the similarity graph for company name

‘Bell’.

3.7.2 Duplication across an Attribute Domain

Figure 3.3 shows the similarity graph for a sample of domain values in an attribute

‘company name’. At an attribute (column) level, we consider all values in the domain,

and cluster values that likely refer to the same entity. From the similarity graph graph,

we identify all articulation points in graph, which separate nodes into clusters based

on the bi-connected components. An articulation point in a graph is the vertex that

its removal makes the graph disconnected. Intuitively, we can think of articulation

points as “connector” nodes that link two or more clusters, each representing a distinct

entity. For each articulation point a, we compute a duplication score dup(c) for each

cluster c that a is connected to, as the average of the edge weights between a and

other nodes in the cluster c.

dup(c) =

∑
v∈c eav

deg(a)
(3.9)

where deg(a) is the degree of node a. The score dup(c) measures the closeness

between values (represented by nodes) in the cluster c, and the value (represented

43

Doctoral Thesis - Yu Huang McMaster - Computer Science

Figure 3.3: Similarity graph for an attribute domain.

by node) a. To compute the duplication score for an attribute A, we compute the

average dup(c) score across all clusters c ∈ C.

dup(A) =

∑
c dup(C)

|C|
(3.10)

Example 3.7.1. In Figure 3.3, consider articulation points ‘Bell Ltd’, and ‘Bell

Corp’. We have four clusters, as shown by the coloured edges. Consider the cluster

marked by edges in green. We compute dup(u1) = (4
8

+ 4
14

+ 3
14

)/3 = 0.33. Similarly,

we get dup(u2) = 0.6, dup(u3) = 6
13

, dup(u4) = avg(8
14

+ 7
14

), and obtain dup(A) =

avg(0.33 + 0.6 + 0.46 + 0.53) = 0.48.

3.8 Limitations

In this section, we discuss the limitations of our framework, and provide potential

solutions to be explored as future work.

Handling False Positives and False Negatives.

Our model cannot achieve 100% accuracy, which means some identified duplicates

are non-duplicate (false positives). False positives may occur when two tuples satisfy

44

Doctoral Thesis - Yu Huang McMaster - Computer Science

the pre-defined constraints but they refer to different entities. False negatives occur

when two tuples are duplicates, but our model did not identify them as duplicates.

This may occur when two tuples did not satisfy any pre-defined constraints and our

model cannot extract any constraint features from them.

False positive and false negatives can occur due to limitations in the learning

model which require extracting abstract features from the data and constraints. Ob-

viously, this feature extraction abstraction may have some information loss, which

could lead to false positive and false negative in the results. The f1 feature mea-

sures the ratio between the number of satisfied constraints |S| and the number of

constraints |Σ|. However, satisfying the pre-defined constraints only indicates that

two tuples are matching on the attributes participating in the constraints, and it does

not mean they are matching on all attributes of R. Therefore, even two tuples satisfy

all pre-defined constraints, it does not indicate they are duplicates since they may

not match on the non-constraint attributes. The f2 feature measures the number of

attributes participating in the constraints. It is possible that two tuples satisfy mul-

tiple constraints, and these constraints contain overlapping attributes. In this case,

the f2 feature will provide a stronger signal due to overlapping attributes, thereby

providing an overestimation that the two tuples are duplicate. One way to correct

this is to avoid double counting the overlapping attributes. An alternative is to pro-

vide a priority mechanism via weights to favour particular attributes participating in

the constraint.

The f3 and f4 features measure the proportion of exact matching attributes and

the ratio between actual difference and the tolerance parameter, respectively. The f3

feature relies on the number of attributes participating in the constraints as well. If

45

Doctoral Thesis - Yu Huang McMaster - Computer Science

the exact matching attributes (X) was only a small portion of all attributes, it only

indicates two tuples matching on a few attributes, which cannot determine whether

they are duplicates. The f4 feature relies on the value of tolerance parameter ∆. Our

framework prefers MFDs with small ∆ values, otherwise our framework may produce

inaccurate results. For example, if users specify an improper large ∆, the f4 feature

may misidentify two tuples with large difference as duplicate.

One potential solution to address the limitations in our constraint features, f1−f4

is to include the power of the crowd [49]. This provides a more accurate but expensive

way to bring human experts into the deduplication process. In our case, we can define

a two-stage machine-human hybrid workflow to identify duplicates. The first stage

is a machine-based approach, which still leverages the machine learning algorithm to

identify duplicates. Instead of making the final classification decision, the machine

learning algorithm will provide confidence scores for tuples to indicate the likelihood

of duplication. In the second stage, only those tuples with low confidence scores

will be sent to human experts for examination and verification. In this way, we can

dramatically improve accuracy.

Constraint Quality

All of these constraint features provide signals to detect duplicates, if the quality of

the given constraints is low, it could lead to false positive results. Since the accuracy

of our model relies on the quality of pre-defined constraints, one way to address this

issue is to mine the constraints from the given dataset instead of relying on the pre-

defined constraints. There are many constraints mining techniques to discover good

FDs from the given dataset. For example, FDMine is a constraint mining technique

46

Doctoral Thesis - Yu Huang McMaster - Computer Science

which uses Armstrong’s Axioms to mine constraints from data [50]. Another solution

is to assign a penalty to the constraint features that have negative impact to the

results. If some features cause too many false positives, we can decrease the weight

of that feature to reduce the impact of “bad” FD on the deduplication results.

Adversarial Samples

Adversarial samples are data points with malicious, incorrect labels in the train-

ing dataset, and they aim to deceive and mislead the learning model to make a false

prediction. As our framework uses the supervised machine learning model to de-

tect duplicates, our model is also vulnerable to adversarial attacks. Attackers can

inject malicious samples into our training dataset by providing incorrect labels. For

example, they can deliberately mark true duplicates as “unmatched” but mark irrel-

evant tuples as “matched” to mislead our classifier. In the machine learning domain,

one common approach to address adversarial samples is to perform adversarial train-

ing [51].

In adversarial training, many adversarial samples are intentionally generated and

injected into the training data, and used to train a more robust model. In our frame-

work, we may consider injecting tuples with incorrect labels, and impose penalties via

parameter re-weighting to rectify these samples in the next learning iteration. The

goal is to train a robust model that is not sensitive to adversarial samples.

Runtime Improvement

Our framework needs to compute the similarity between tuples pairwise which

leads to O(N2) runtime in worst case. A potential solution for improving the runtime

is to use blocking or clustering techniques to group similar tuples [52]. Similar tuples

are clustered into blocks and pair-wise comparisons are executed only within each

47

Doctoral Thesis - Yu Huang McMaster - Computer Science

block. For example, we can apply weak hash or K-means algorithm to group the

similar tuples, which can reduce the number of comparisons in each block. Another

potential solution is to run pairwise comparison parallelly. We can deploy our frame-

work in a distributed environment such that the comparison in each block can run

simultaneously.

3.9 Evaluation

We turn to the evaluation of our techniques, and conduct an extensive set of ex-

periments to compare the accuracy and performance of our techniques with existing

techniques. Our evaluation focuses on these objectives:

1. The effectiveness of our term frequency weighting, and the inclusion of data

integrity constraints as part of the deduplication task.

2. The comparative accuracy of our model by coupling our term frequency weight-

ing with three different similarity functions (edit distance, bi-gram similarity,

and word-embeddings).

3. Evaluating the efficiency and effectiveness of our model as we scale a set of

parameters.

4. The comparative accuracy of our model over existing ER solutions, including

traditional solutions WHIRL [33], SERF (Stanford Entity Resolution Project)

[35] , and state-of-art learning-based techniques such as Magellan [40], and

Hybrid [41].

48

Doctoral Thesis - Yu Huang McMaster - Computer Science

3.9.1 Experimental Setup

We implement our framework in Python 3.6, and test on a server with Intel Xeon 2.2

GHz processor and 64GB of RAM on Linux system. We split all of the datasets into

three parts 70%:10%:20% for training, validation and testing, respectively. In our

experiments, we apply four different machine learning models (SVM, Logistic Regres-

sion, Random Forest, Naive Bayes) to the datasets and report the average precision

and recall of these techniques. For constraint attribute values, we use the statistical

features proposed in Section 3.6 to capture the relationship between attributes. For

non-constraint attribute values, we use our Weighted Frequency Bigram (WFB), and

Weighted Frequency Edit-Distance (WFED) approaches, as discussed in Section 3.5.

We also use the pre-trained word-embeddings with our constraint features and call

this method (WE). Note that these three approaches use the same procedure to

calculate the features of constraint attributes, but use different methods to calculate

the features of non-constraint attributes. For the word-embeddings approach (WE),

we use the Google pre-trained word-embedding vectors [53, 54], which includes word

vectors for a vocabulary consisting of three million words from large corpora, such

as Wikipedia, GoogleNews, etc. We use the pre-trained word-embedding as a lookup

table for word vectors: given a word, we can check the word-embedding corpus to

obtain the vector of this word. To compute the similarity score of two words, we first

check their vectors separately in the word-embedding lookup table, then compute

the similarity score between these two vectors. Most common words can be found in

this three million word-embedding corpus. For rare words that are not included in

that corpus, we use edit distance to compute their similarity score directly. In our

framework, since the word-embeddings are pre-trained and ready to use, we do not

49

Doctoral Thesis - Yu Huang McMaster - Computer Science

consider the word-embeddings training time in our runtime results.

Datasets. We use six real datasets in our evaluation. These datasets are bench-

mark datasets, which are widely used for entity resolution.

• Restaurants [55]. This dataset contains California restaurant information such

as names, addresses, and category, etc . We define two FDs on this dataset:

[address, name] → [category] and [address, city] → [phone].

• DBLP-ACM and DBLP-Scholar [56]. Both of them describe bibliographical

information of authors and their publications, such as title, authors, venue and

year. We define one FD on these two datasets, [title, authors, year] → [venue].

• Abt-Buy and Amazon-Google [56]. These two datasets contain product

information, including product name, description, manufacturer information

and price. These two datasets have the same schema, we define one MFD

[product name]
100−−→ [price] on both of them.

• Stocks [57]. This dataset is from the NASDAQ stock exchange, and contains

the stock information such as company name, stock symbol, market capital,

industry, sector, IPO date, etc. We define one FD on it, [company name, sector,

industry] → [stock symbol].

The details of these datasets are given in Table 3.8. # Attr. means the number

of attributes, Size means the number of tuples, and Matched means the number of

duplicate tuples in each dataset.

Comparative Baselines. We compare our model with existing ER solutions,

which includes traditional solutions as well as the state-of-art learning-based tech-

niques.

50

Doctoral Thesis - Yu Huang McMaster - Computer Science

Name # Attr. Size Matched

Restaurants 5 864 112

DBLP-ACM 4 12,363 2,220

DBLP-Scholar 4 28,707 5,347

Abt-Buy 4 9,575 1,028

Amazon-Google 4 11,460 1,167

Stocks 12 14,744 1,382

Table 3.8: Experiment datasets

Method Precision Recall

ConstraintDedup [8] 0.82 0.78

SERF [35] 0.65 0.67

WHIRL [33] 0.62 0.57

Magellan [40] 0.73 0.70

Hybrid [41] 0.86 0.80

Table 3.9: Comparison Summary

51

Doctoral Thesis - Yu Huang McMaster - Computer Science

WHIRL [33]. It uses TF-IDF weights with cosine similarity to calculate string

similarity for identifying duplicates. It divides a string into a set of terms, and

calculate TF-IDF for each term. Given this term representation, the tuple is modelled

as a vector containing TF-IDF scores for each term. The cosine similarity is computed

based on the TF-IDF vector to determine duplicates.

SERF [35].The Stanford Entity Resolution Framework (SERF) identifies dupli-

cates via a matching phase followed by a merging phase. They use a matching func-

tion to calculate the similarity score of attribute values, and compare it with a given

threshold. If the score is greater than the threshold, they merge these two tuples into

a consolidated tuple representing a unique entity.

Magellan [40].Magellan is another learning-based framework that builds a pipeline

to deal with duplicates. Magellan also treats deduplication as a binary classification

and converts tuple attributes to features to train the classifier. It treats each attribute

value as an independent string, and use the string similarity as the feature vector.

Hybrid [41].This technique uses word-embedding ad aggregation function to sum-

marize terms within attributes. It applies deep learning techniques to the entity

matching process. They categorize the entity matching (EM) problems into struc-

tured EM, textual EM and dirty EM, and define a design space for each category.

3.9.2 Comparative Accuracy: Term Differentiation and Sim-

ilarity Functions

We evaluate the accuracy of WFB, WFED, and WE over six datasets. Figure 3.6

and Figure 3.7 show the precision and recall on six datasets. We observe that af-

ter applying weighted frequency, WFB achieves comparative precision and recall on

52

Doctoral Thesis - Yu Huang McMaster - Computer Science

0%

20%

40%

60%

80%

100%

Re
sta
ur
an
ts

DB
LP
-A
CM

DB
LP
-S
ch
ola
r

Ab
t-B
uy

Am
az
on
-G
oo
gle

St
oc
ks

P
re
ci
si
on

WFED WFB WE

Figure 3.4: Comparative precision.

0%

20%

40%

60%

80%

100%

re
sta
ur
an
t

DB
LP
-A
CM

DB
LP
-S
ch
ola
r

Ab
t-B
uy

Am
az
on
-G
oo
gle

St
oc
ks

R
ec
al
l

WFED WFB WE

Figure 3.5: Comparative recall.

0%

20%

40%

60%

80%

100%

Re
sta
ur
an
ts

DB
LP
-A
CM

DB
LP
-S
ch
ola
r

Ab
t-B
uy

Am
az
on
-G
oo
gle

St
oc
ks

P
re
ci
si
on

WFED WFB WE

Figure 3.6: Comparative precision.

0%

20%

40%

60%

80%

100%

re
sta
ur
an
t

DB
LP
-A
CM

DB
LP
-S
ch
ola
r

Ab
t-B
uy

Am
az
on
-G
oo
gle

St
oc
ks

R
ec
al
l

WFED WFB WE

Figure 3.7: Comparative recall.

Restaurant, Stocks, DBLP-ACM and DBLP-Scholar datasets. The precision results

achieve modest gains on Abt-Buy and Amazon-Google datasets because the records in

Abt-Buy and Amazon-Google are commercial products records, which contain many

synonyms such as computer and laptop, mobile and telephone, etc. These synonyms

make it difficult for the distance-based approaches (e.g. WFB and WFED) to iden-

tify duplicates. However, WFB still can achieve comparatively larger precision gains

than WFED due to finer-grained bigram matching for each term. The average gain

of WFB is +5% in precision and +7% in recall. WE achieves improved results (+16%

in precision and +13% in recall), especially on Abt-Buy and Amazon-Google due to

its ability to recognize domain semantics, but requires pre-trained word-embedding

vectors from an external source.

53

Doctoral Thesis - Yu Huang McMaster - Computer Science

0%

20%

40%

60%

80%

100%

re
sta
ur
an
t

DB
LP
-A
CM

DB
LP
-S
ch
ola
r

Ab
t-B
uy

Am
az
on
-G
oo
gle

St
oc
ks

P
re
ci
si
on

WFED ED WFB BI

Figure 3.8: Term diff: precision.

0%

20%

40%

60%

80%

100%

re
sta
ur
an
t

DB
LP
-A
CM

DB
LP
-S
ch
ola
r

Ab
t-B
uy

Am
az
on
-G
oo
gle

St
oc
ks

R
ec
al
l

WFED ED WFB BI

Figure 3.9: Term diff: recall.

0%

20%

40%

60%

80%

100%

re
sta
ur
an
t

DB
LP
-A
CM

DB
LP
-S
ch
ola
r

Ab
t-B
uy

Am
az
on
-G
oo
gle

St
oc
ks

P
re
ci
si
on

ConstraintDedup Without-constraint

Figure 3.10: Constraints: precision.

0%

20%

40%

60%

80%

100%

re
sta
ur
an
t

DB
LP
-A
CM

DB
LP
-S
ch
ola
r

Ab
t-B
uy

Am
az
on
-G
oo
gle

St
oc
ks

R
ec
al
l

ConstraintDedup Without-constraint

Figure 3.11: Constraint: recall.

3.9.3 Weighted Term Frequency Efficiency

To evaluate the efficiency of our weighted term frequency approach on ER, we compare

our weighted frequency edit distance (WFED) with normal edit distance (ED), as well

as weighted frequency bigrams (WFB) with normal bigrams (BI) approach. Figure 3.8

and 3.9 show the precision and recall respectively of applying these four approaches

on six datasets. As we expect, both precision and recall improves under the weighted

term frequency approaches (WFED and WFB). We observe that by using weighted

term frequency in entity resolution, we achieve an average +13% and +16% increase

in precision and recall, respectively.

54

Doctoral Thesis - Yu Huang McMaster - Computer Science

3.9.4 Utility of Constraint Features

To evaluate the utility of our constraint attribute features, we compute the precision

and recall of our approach ConstraintDedup (the word-embedding approach with

constraint features) against the same approach but remove the constraint attribute

features. Figure 3.10 and 3.11 show the precision and recall respectively over the six

datasets. As expected, leveraging semantic relationships among attributes (if known)

allows our technique to achieve an average +12% and +16% gain in precision and

recall, respectively.

3.9.5 Varying the Size of Training Data.

A good learning-based approach should be robust to identify duplicates with as small

training size as possible. To investigate the effectiveness of our framework, we

vary the size of the training samples to evaluate its impact on accuracy. We choose

two datasets: structured DBLP-Scholar dataset and semi-structured Amazon-Google

dataset. To avoid over-fitting, we take random samples from the given datasets as

the training data. Every time we vary the size of the training dataset, we re-train our

classifier based on new samples. Figure 3.12 and Figure 3.13 show the precision and

recall as we vary the training size on the DBLP-Scholar dataset. Figure 3.14 and 3.15

show the precision and recall on Amazon-Google. As we expect, both precision and

recall improves as the number of training samples increases. The WE method gets

better precision and recall than the other two approaches due to its stronger semantic

representation. WFB and WFED can provide a competitive performance against WE

on the structured DBLP-Scholar dataset. When the training samples increases to

55

Doctoral Thesis - Yu Huang McMaster - Computer Science

20%

40%

60%

80%

20% 30% 40% 50% 60% 70% 80%

P
re

ci
si

on

Size of Training Data

WFED
WFB

WE

Figure 3.12: Precision (DBLP-Scholar).

20%

40%

60%

80%

20% 30% 40% 50% 60% 70% 80%

R
ec

al
l

Size of Training Data

WFED
WFB
WE

Figure 3.13: Recall (DBLP-Scholar).

80%, all three approaches obtain close to 81% precision and 78% recall on DBLP-

Scholar dataset because the tuples in this dataset are more structured than the other

dataset. The gain of WE is 20% more than the other two approaches on average on

Amazon-Google dataset because of its strong semantic representation on synonyms

for the Amazon-Google dataset. As the size of the training samples decreases, the

accuracy of our model decreases as well. For example, with 40% training samples,

our model only obtains 54% precision and 50% recall. Since our model is based

on supervised learning techniques, and it relies on the training dataset to learn the

features. If the size of the training dataset is small, our model cannot learn enough

features to deal with unseen data, which leads to low accuracy. In the next step,

we plan to study the learning techniques with few samples, such as transfer learning

and reinforcement learning [58, 59] , and extend our framework to include these

techniques.

3.9.6 Statistical Feature Analysis

To investigate the impact of our proposed statistical features on the accuracy, we

analyze the weights learned by a logistic regression (LR) classifier. In the LR learning

56

Doctoral Thesis - Yu Huang McMaster - Computer Science

20%

40%

60%

80%

20% 30% 40% 50% 60% 70% 80%

P
re

ci
si

on

Size of Training Data

WFED
WFB

WE

Figure 3.14: Precision (Amazon-Google)

20%

40%

60%

80%

20% 30% 40% 50% 60% 70% 80%

R
ec

al
l

Size of Training Data

WFED
WFB
WE

Figure 3.15: Recall (Amazon-Google)

process, each feature will be assigned an initial weight. During the training process,

these weights are re-calculated to minimize the loss function, which is the difference

between the predicted value and actual value through gradient descent optimization.

When the optimization converges, the weight of each feature indicates its relative

contribution towards predictive accuracy. Figure 3.16a and 3.16b show the relative

weights of the features over the Abt-Buy and Amazon-Google datasets, respectively.

The magnitude of the weights indicates the strength of the relationship between the

statistical feature and its relevance to the prediction results. We can see that f3 has

the greatest weight, and hence, the greatest contribution towards accuracy, across all

datasets. This indicates 0roportion of exact matching attributes has a strong impact

on the duplications results. The large value of f2 indicates that the number of

matching constraint attributes is also a strong signal to predict the duplicate tuples.

It is because both FDs and MFDs have strictly matching requirement on the left

hand side (LHS) of constraint attributes, if the LHS attribute values of two tuples

are identical, these two tuples are probably duplicate.

57

Doctoral Thesis - Yu Huang McMaster - Computer Science

 0

 0.1

 0.2

 0.3

 0.4

f1 f2 f3 f4

W
ei

gh
t

(a) Feature weights (Abt - Buy)

 0

 0.1

 0.2

 0.3

 0.4

f1 f2 f3 f4

W
ei

gh
t

(b) Feature weights (Amazon-Google)

Figure 3.16: Feature weights

20%

40%

60%

80%

 50 100 150 200

F
1

δ

Abt-Buy
Amazon-Google

Figure 3.17: ∆ Sensitivity

 0

 0.2

 0.4

 0.6

 0.8

 1

name address city category

D
up

lic
at

io
n

sc
or

e

Figure 3.18: Dup. scores (Restaurant)

3.9.7 Sensitivity to ∆

We vary the MFD tolerance parameter ∆ to evaluate its sensitivity on Abt-Buy and

Amazon-Google datasets. Figure 3.17 shows the accuracy F1 as we vary ∆ in MFD

[product name]
∆−→ [price]. The results show that as ∆ increases, F1 values slowly

decrease on both datasets. The ∆ parameter influences f4 directly and is considered

in f3. The decrease in F1 accuracy is due to the increased number of false positive

tuples that are included due to larger ∆ values. Despite this decrease, our framework

relies on the remaining features to compensate for this F1 loss.

58

Doctoral Thesis - Yu Huang McMaster - Computer Science

 0

 0.2

 0.4

 0.6

name description price

D
up

lic
at

io
n

sc
or

e

Figure 3.19: Dup. scores (Abt-Buy)

 0

 0.2

 0.4

 0.6

 0.8

 1

title authors venue year

D
up

lic
at

io
n

sc
or

e

Figure 3.20: Dup. scores (DBLP-ACM)

3.9.8 Accuracy of Duplication Scores

We empirically evaluate the accuracy of our proposed duplication score using the

Restaurants, Abt-Buy and DBLP-ACM datasets, by computing dup(A) for each col-

umn in these datasets separately. Figure 3.18 shows the results for each column of

Restaurant dataset, namely, name, address, city, category. We observe that the scores

for name and address are lower, indicating the presence of more distinct values in these

columns. Upon observation, we recognize that restaurant names are primarily unique,

and their addresses are also distinct but share common terms such as street name

(e.g., 2450 Broadway St, 550 Broadway St). In contrast, we obtain larger duplication

scores for attributes city and category, as these are duplicated across restaurants. For

example, multiple restaurants belong to a city, and the category describes regional

cuisine, such as Chinese, American, or Italian, where multiple restaurants also share

the same value.

Similarly, Figure 3.19 and Figure 3.20 shows the duplication scores for each column

of Abt-Buy and DBLP-ACM respectively. Since the tuples collected from Abt.com

do not contain the manufacturer column, we only include the other three attributes

in Figure 3.19. We observe that scores of all three attributes in the Abt-Buy dataset

59

Doctoral Thesis - Yu Huang McMaster - Computer Science

0%

20%

40%

60%

80%

100%

DBLP-ACM Amazon-Google

SERF
WHIRL

ConstraintDedup

Hybrid
Magellan

Figure 3.21: Comparative Precision

0%

20%

40%

60%

80%

100%

DBLP-ACM Amazon-Google

SERF
WHIRL

ConstraintDedup

Hybrid
Magellan

Figure 3.22: Comparative Recall

are relatively low, especially the score of description is only 0.23. This is caused

by long sentences that exist in the description attribute, resulting in lower accuracy.

In contrast, we obtain large duplication scores for attributes title and year in the

DBLP-ACM dataset.

3.9.9 Comparative Baseline Evaluation

We compare our approach, ConstraintDeDup against traditional (non-learning) ap-

proaches WHIRL[33] and SERF [35], and recent ER learning approaches Magellan

[40] and Hybrid [41].

Figure 3.21 and Figure 3.22 show the comparative precision and recall, respec-

tively, of ConstraintDedup against the four baseline techniques (WHIRL, SERF, Hy-

brid and Magellan) using the DBLP-ACM and Amazon-Google datasets. We observe

that all approaches have relative low precision and recall on the Amazon-Google

product dataset due to its unstructured string values in the product attribute.

Magellan generates the string similarity-based features from tuple attributes, and

leverages traditional machine learning algorithms to train these features. Magellan

relies on string similarity to capture the features, which is not suitable for synonyms

60

Doctoral Thesis - Yu Huang McMaster - Computer Science

with small string similarity. Our work uses word-embeddings to represent the word

vector and leverages constraints to capture the relationship between attributes, and

model the matching process as a classification problem. The Hybrid approach also

treats the ER as a classification problem, which is in the same spirit as ours. The

difference is that the Hybrid approach treats a tuple as a long string, and uses a Bidi-

rectional Recurrent neural network (Bi-RNN) with the attention model to represent

the embedding vectors. Therefore, Hybrid needs much more training time than our

model due to the complexity of neural networks although it can obtain better results.

On average, ConstraintDedup achieves 18% gain on precision and 21% gain on

recall over traditional approaches WHIRL and SERF. As our approach considers

both the semantic meaning of attribute values (through word-embeddings) and the

relations among the attributes (through constraint-based features), it outperforms

the string similarity-based approaches WHIRL and SERF.

Our approach performs comparably with Magellan, but the gains are quite dif-

ferent on two datasets. We can see that the gains achieved by our approach on

DBLP-ACM (4%) are relatively smaller than the gain on Amazon-Google (23%).

This is because the product tuples in the Amazon-Google dataset contain many syn-

onyms, which are semantically similar with large string distances. Magellan relies on

the string similarities among attribute values to generate features for classification,

and does not consider semantic similarity among strings, thereby leading to lower

accuracy values over synonyms.

61

Doctoral Thesis - Yu Huang McMaster - Computer Science

3.9.10 Runtime Evaluation

We evaluate the runtime of our approach against existing techniques. The runtime is

the total overhead of each module in our framework, which includes record blocking,

feature extraction, integration, training and classification. Since we use the pre-

trained word-embeddings from [53, 54] , our runtime does not include the training

time of the word-embeddings. Table 3.10 shows the runtime of each approach on

DBLP-ACM and Amazon-Google datasets. The runtime of Magellan is the lowest

among all approaches. The runtime of ConstraintDedup is only 0.12h more than

Magellan (on average), but achieves 16% higher precision and recall than Magellan

on the DBLP-ACM and Amazon-Google datasets.

The Hybrid approach gains +7% in precision and +8.5% in recall than our Con-

straintDedup, but our ConstraintDedup takes much less runtime than Hybrid, as

shown in Table 3.10. Specifically, ConstraintDedup achieves -8% on accuracy but

leads to an average -60% runtime decrease against Hybrid. This is because the Hybrid

model relies on the complex structure of neural networks and the attention mecha-

nism to explore the implicit semantic features of the dataset to achieve high accuracy,

which also requires a high time complexity due to its complex network structure. The

feature vectors defined in our approach ConstraintDedup are easy to compute since

most of the features are based on frequency and number of tuples. Moreover, the

learning model we used in our framework are basic machine learning models (such as

SVM, Logistic Regression, Random Forest, Naive Bayes), so the training time of our

model is far less than Hybrid.

62

Doctoral Thesis - Yu Huang McMaster - Computer Science

SERF WHIRL ConstraintDedup Hybrid Magellan

DBLP-ACM 1.31h 1.45h 0.58h 2.30h 0.45h

Amazon-Google 1.18h 1.26h 0.45h 2.13h 0.32h

Table 3.10: Runtime comparison

3.10 Conclusion

In this chapter, we treat ER as a classification problem and present a framework

that combines constraint and non-constraint attribute features to identify duplicates.

In order to capture the relationship between attributes, we leverage data integrity

constraints defined in a relation, and propose a set of statistical features to capture

attribute and constraint properties to use as input to a classifier. These features

provide summaries for researchers and engineers as input feature vectors in machine

learning techniques. We also propose a weighted frequency metric, which differen-

tiates the relative weight of terms in a record during the matching process. This

weighted frequency approach can easily extend to distance-based similarity methods

to help them to place greater emphasis on terms that are better indicators of dupli-

cates, and discounting commonly occurring terms in the data that do not serve as

good differentiators. We also proposed metrics that measure the level of duplication

for a specific attribute value, and for an attribute domain. We conduct an extensive

evaluation of our comparative accuracy against four existing baseline solutions. We

showed that our techniques achieve improved runtime performance against existing

learning-based models, while achieving comparative accuracy. As next steps, we will

experiment with more use cases to refine our duplication metrics to handle greater

heterogeneity of data types, and extend our features to include a broader set of data

63

Doctoral Thesis - Yu Huang McMaster - Computer Science

integrity constraints. We will also investigate how to extend our framework to mini-

mize training effort for similar datasets. The challenge is how to determine whether

two datasets are similar. Initially, if two datasets have the same schema, the same

predefined constraints and the distribution of their attribute values are close to each

other, then we may consider they are similar datasets, and train our model on one

dataset and apply it to the other one. If two datasets are partially similar, we can

train a basic model on the common attributes to save training time. Specifically, we

can build upon this basic model by incrementally applying the constraint features

that are unique to each dataset while still leveraging their shared properties to save

computation.

In the next chapter, we now turn our attention to the problem of data privacy

and data cleaning. This problem is important due to the rise of concern about

data privacy, and the need to protect sensitive information and minimize information

disclosure. There has been limited work coupling data privacy and data cleaning, and

we introduce our framework to bridge these two data management challenges in the

next chapter.

64

Chapter 4

Privacy-Preserving Data Cleaning

4.1 Introduction

Data cleaning is a pervasive problem motivated by the fact that real data is rarely

error free. Organizations continue to be hindered by poor data quality as they wrangle

with their data to extract value. Recent studies estimate that up to 80% of the data

analysis pipeline is consumed by data preparation tasks such as data cleaning. A

wealth of data cleaning solutions have been proposed to reduce this effort: constraint

based cleaning that use dependencies as a benchmark to repair data values such

that the data and dependencies are consistent [60], statistical based cleaning, which

propose updates to the data according to expected statistical distributions [61], and

leveraging master data as a source of ground truth [14].

Recent advances in networking and cloud infrastructure have motivated a new

computing paradigm called Database-as-a-Service that lowers the cost and increases

access to a suite of data management services. A service provider provides the nec-

essary hardware and software platforms to support a variety of data management

65

Doctoral Thesis - Yu Huang McMaster - Computer Science

tasks to a client. Companies such as Amazon, Microsoft, and Google each provide

storage platforms, accelerated computational capacity, and advanced data analytics

services. However, the adoption of data cleaning services has been limited due to

privacy restrictions that limit data sharing. Recent data cleaning efforts that use

a curated, master data source share a similar service model to provide high quality

data cleaning services to a client with inconsistent data [14, 15]. However, these

techniques largely assume the master data is widely available, without differentiating

information sensitivity among the attribute values.

*

male female

𝑙1
𝑔𝑒𝑛

𝑙0
𝑔𝑒𝑛

*

anesthetics

vasodilators local anesthetics

𝑙3
𝑚𝑒𝑑

𝑙2
𝑚𝑒𝑑

𝑙1
𝑚𝑒𝑑

𝑙0
𝑚𝑒𝑑

analgesic

v2-receptorinotropes

acetaminophenNSAID

naproxenibuprofen paracetamoltylenol

(b)(a)

addaprin dolex

(𝑏)(𝑎)

Figure 4.1: (a) DGHmed and (b) VGHmed.
(𝑏)

* (not released)

muscular and endocrine

musculoskeletalheadache

𝑙3
𝑑𝑖𝑎𝑔

𝑙2
𝑑𝑖𝑎𝑔

(𝑎)

𝑙1
𝑑𝑖𝑎𝑔

𝑙0
𝑑𝑖𝑎𝑔

digestive and circulatory system

tendinitismigrainesinus

artery diseasestomach disease

pylorospasmulcer hypotensionhypertension osteoarthritis

*𝑙2
𝑎𝑔𝑒

𝑙1
𝑎𝑔𝑒

[1,30] [91,120]

1 30 91 120…𝑙0
𝑎𝑔𝑒 … …

…

(b)(a)

Figure 4.2: (a) DGHage and (b) VGHage.

Example 4.1.1. A data broker gathers longitudinal data from hospital and doctors’

records, prescription and insurance claims. Aggregating and curating these disparate

datasets lead to a valuable commodity that clients are willing to pay for gleaned

insights, and to enrich and clean their individual databases. Table 4.1 shows the

curated data containing patient demographic, diagnosis and medication information.

66

Doctoral Thesis - Yu Huang McMaster - Computer Science

ID GEN AGE ZIP DIAG MED

m1 male 51 P0T2T0 osteoarthritis ibuprofen

m2 female 45 P2Y9L8 tendinitis addaprin

m3 female 32 P8R2S8 migraine naproxen

m4 female 67 V8D1S3 ulcer tylenol

m5 male 61 V1A4G1 migraine dolex

m6 male 79 V5H1K9 osteoarthritis ibuprofen

Table 4.1: Curated medical records (RSP)

The schema consists of patient gender (GEN), age (AGE), zip code (ZIP), diagnosed

illness (DIAG), and prescribed medication (MED).

A client such as a pharmaceutical firm, owns a stale and inconsistent subset of

this data as shown in Table 4.2. For example, given a functional dependency (FD)

ϕ : [GEN,DIAG]→ [MED] on Table 4.2, it states that a person’s gender and diagnosed

condition determine a prescribed medication. That is, for any two tuples in Table 4.2,

if they share equal values in the [GEN, DIAG] attributes, then they should also have

equal values in the MED attribute. We see that tuples t1 - t5 falsify ϕ. Error cells

that violate ϕ are highlighted in light and dark gray, and values in bold are inaccurate

according to Table 4.1.

If the client wishes to clean her data with the help of a data cleaning service

provider (i.e., the data broker and its data), she must first match the inconsistent

records in Table 4.2 against the curated records in Table 4.1. This generates possible

fixes (also known as repairs) to the data in Table 4.2. The preferred repair is to

update t2[MED], t3[MED] to ibuprofen (from m6), and t4[DIAG] = migraine (from

67

Doctoral Thesis - Yu Huang McMaster - Computer Science

ID GEN AGE DIAG MED

t1 male 51 osteoarthritis ibuprofen

t2 male 79 osteoarthritis intropes

t3 male 45 osteoarthritis addaprin

t4 female 32 ulcer naproxen

t5 female 67 ulcer tylenol

t6 male 61 migrane dolex

t7 female 32 pylorospasm appaprtin

t8 male 37 hypertension dolex

Table 4.2: Dirty client records w.r.t. ϕ.

ID GEN AGE ZIP DIAG MED

g1 * [31,60] P* osteoarthritis ibuprofen

g2 * [31,60] P* tendinitis addaprin

g3 * [31,60] P* migraine naproxen

g4 * [61,90] V* ulcer tylenol

g5 * [61,90] V* migraine dolex

g6 * [61,90] V* osteoarthritis ibuprofen

Table 4.3: Public table.

68

Doctoral Thesis - Yu Huang McMaster - Computer Science

m3). However, this repair may disclose sensitive patient information about diagnosed

illness and medication from the service provider. It may be preferable to disclose a

more general value that is semantically similar to the true value to protect individual

privacy. For example, instead of disclosing the medication ibuprofen, the service

provider discloses Non-steroid anti-inflammatory drug (NSAID), which is the family

of drugs containing ibuprofen. In this chapter, we explore how to compute such

generalized repairs in an interactive model between a service provider and a client to

protect sensitive data and to improve accuracy and consistency in client data.

State-of-the-Art. Existing work in data privacy and data cleaning have been

limited to imputation of missing values using decision trees [62], or information-

theoretic techniques [63], and studying trade-offs between privacy bounds and query

accuracy over differentially private relations [64]. In the data cleaning-as-a-service

setting, which we consider in this chapter, using differential privacy poses the following

limitations: (i) differential privacy provides guarantees assuming a limited number

of interactions between the client and service provider; (ii) queries are limited to

aggregation queries; and (iii) data randomization decreases data utility.

Given the above limitations, we explore the use of Privacy Preserving Data Pub-

lishing (PPDP) techniques, that even though do not provide the same provable pri-

vacy guarantees as differential privacy, do restrict the disclosure of sensitive values

without limiting the types of queries nor the number of interactions between the client

and service provider. PPDP models prevent re-identification and break attribute link-

ages in a published dataset by hiding an individual record among a group of other

individuals. This is done by removing identifiers and generalizing quasi-identifier

(QI) attributes (e.g., GEN, AGE, ZIP) that together can re-identify an individual.

69

Doctoral Thesis - Yu Huang McMaster - Computer Science

Well-known PPDP methods such as k-anonymity require the group size to be at least

k such that an individual cannot be identified from k − 1 other individuals [6, 65].

Extensions include (X,Y)-anonymity that break the linkage between the set X of QI

attributes, and the set Y of sensitive attributes by requiring at least k distinct sensi-

tive values for each unique X [66]. For example, Table 4.3 is k-anonymous for k = 3

by generalizing values in the QI attributes. It is also (X,Y)-anonymous for sensitive

attribute MED for k = 3 since there are three distinct medications for each value

in the QI attributes X, e.g., values (∗, [31, 60], P∗) of X co-occur with ibuprofen,

addaprin, and naproxen of Y .

To apply PPDP models in data cleaning, we must also address the highly contex-

tualized nature of data cleaning, where domain expertise is often needed to interpret

the data to achieve correct results. It is vital to incorporate these domain seman-

tics during the cleaning process, and into a privacy model during privacy preserva-

tion. Unfortunately existing PPDP models only consider syntactic forms of privacy

via generalization and suppression of values, largely ignoring the data semantics.

For example, upon closer inspection of Table 4.3, the values in the QI attributes in

records g1−g3 are associated with a single medication, since ibuprofen, addaprin, and

naproxen are all references to the same medication marketed under different brand

names. We prevent this semantic privacy loss by defining an extension of (X,Y)-

anonymity that incorporates a generalization hierarchy, which capture the semantics

of an attribute domain.1 In Table 4.3, the medications in g1 − g3 are modeled as

synonyms in such a hierarchy.

Example 4.1.2. To clean Table 4.2, a client requests the correct value(s) in tuples

1k-anonymity and its extensions such as l-diversity and t-closeness also do not consider the
underlying data semantics.

70

Doctoral Thesis - Yu Huang McMaster - Computer Science

t1−t3 from the data cleaning service provider. The service provider returns ibuprofen

to the client to update t2[MED] and t3[MED] to m6[MED] = ibuprofen. However, if

disclosing the specific ibuprofen medication violates the requirements of the underly-

ing privacy model, then a revised solution to disclose a less informative, generalized

value, such as analgesic is preferred.

Technical Challenges.

1. Data cleaning with functional dependencies (FDs), and record matching (be-

tween the service provider and client) is an NP-complete problem. In addition,

it is approximation-hard, i.e., the problem cannot be approximately solved with

a polynomial-time algorithm and a constant approximation ratio [14]. We ex-

tend this data cleaning problem with privacy restrictions on the service provider,

making it as hard as the initial problem. We analyze the complexity and propose

a solution realizable in practice.

2. Given a generalization hierarchy as shown in Figures 4.1 and 4.2, proposed

repairs from a service provider may contain general values that subsume a set of

specific values at the leaf level. In such cases, we study a new (repair) semantics

for consistency with respect to (w.r.t.) an FD involving general values.

3. There exists a space of possible data instances that can be published by the

service provider to facilitate data cleaning with the client, while protecting

individual entities and sensitive values. Quantifying these possible instances

and developing an interaction model between the service provider and client is

our third challenge.

71

Doctoral Thesis - Yu Huang McMaster - Computer Science

4. Resolving inconsistencies w.r.t. a set of FDs requires traversing the space of

possible fixes (which may now include general values). By proposing generalized

values as repair values, we lose specificity in the client data instance. We study

the trade-off between high confidence, generalized repair values versus lower

confidence, specific repairs.

Our Approach and Contributions. We build upon our earlier work that intro-

duces PACAS, a P rivacy-Aware data Cleaning-As-a-Service framework that facili-

tates data cleaning between a client and a service provider [11]. The interaction is

done via a data pricing scheme where the service provider charges the client for each

disclosed value, according to its adherence to the privacy model. PACAS includes

a new privacy model that extends (X,Y)-anonymity to consider the data semantics,

while providing stronger privacy protection than existing PPDP methods. We present

a data cleaning algorithm that resolves errors (FD violations) by updating them to

values that are semantically equivalent to their true value(s) in the service provider

data. We make the following contributions:

1. We first present PACAS, a privacy-preserving, data cleaning framework that

identifies errors w.r.t. a set of FDs in client data, and allows the client to

purchase clean, curated data from a service provider.

2. We introduce generalized queries to allow a client to request data values from

the service provider at different levels of generalization.

3. We extend the repair semantics of our previous model [11], and introduce gen-

eralized repairs that update values in the client instance to generalized values.

72

Doctoral Thesis - Yu Huang McMaster - Computer Science

We re-define the notion of consistency between a relational instance (with gen-

eralized values) and a set of FDs. We propose an entropy-based measure that

quantifies the semantic distance between two (generalized) values to evaluate

the utility of repair candidates.

4. We introduce (X,Y,L)-anonymity that considers the data semantics for an at-

tribute domain via generalization hierarchies w.r.t. a level L. We apply (X,Y,L)-

anonymity at the service provider to protect sensitive attributes. We present

SafePrice, a data pricing algorithm that allows the service provider to sell data

to the client, while preserving (X,Y,L)-anonymity over sensitive data.

5. We present the SafeClean algorithm that resolves inconsistencies w.r.t. a set

of FDs by using external data purchased from a service provider. SafeClean

proposes repairs to the data by balancing its data privacy requirements against

satisfying query purchase requests for its data at a computed price. Given a

cleaning budget, we present a new budget allocation algorithm that improves

upon previous, fixed allocations [11], to consider allocations according to the

number of errors in which a database value participates. We analyze the runtime

complexity showing the efficiency of its components.

6. We evaluate the effectiveness of SafePrice and SafeClean over real data showing

that they achieve an average +46% in F1 repair accuracy over existing solutions,

and conceal +32% more sensitive values than (X,Y)-anonymity. We also show

that our approach achieves improved repair accuracy across varying budget pa-

rameter and maintains 70-80% repair accuracy for error rates up to 15%.

73

Doctoral Thesis - Yu Huang McMaster - Computer Science

In Section 4.2, we present the related work. In Section 4.3, we provide notation

and preliminaries, followed by definitions for a generalized relation and consistency

of a generalized relation w.r.t. a set of FDs in Section 4.4. We present our problem

definition, and introduce our system PACAS in Section 4.5. We define generalized

queries, and how to price these queries in Section 4.6, and describe our data cleaning

algorithm that considers generalized values in Section 4.7. We present our experi-

mental results in Section 4.8, and conclude in Section 4.9.

4.2 Related Work

Our work finds relation to data privacy, data cleaning, and data pricing.

Data Privacy and Data Cleaning. We extend the PACAS framework introduced

in [11], which focuses on repairs involving ground values. In this work, we extend

the space of repairs to consider generalized values to facilitate anonymization, and

propose a new entropy-based distance metric to quantify the data cleaning utility by

measuring the information loss. We have also presented a new definition of consistency

given generalized repair values, and an extended repair algorithm that preferentially

allocates larger budgets to the dirtiest cells leading to the greatest reduction in the

number of errors. Our experiments show the influence of generalized repairs along

varying parameters towards improved efficiency and repair accuracy.

PrivateClean is a framework for data cleaning and approximate query processing

on locally differentially private relations that combines data cleaning and local differ-

ential privacy [64]. Based on generalized randomized response, PrivateClean presents

user-defined data cleaning operations in the form of extraction, merging, and trans-

formation. While generic user-defined operations are given, PrivateClean relies on

74

Doctoral Thesis - Yu Huang McMaster - Computer Science

the user to provide the specific cleaning semantics. In addition, as shown in our eval-

uation, error detection and cleaning over randomized data is difficult, and decreases

data utility. Apex is another framework which focuses on the accuracy bound of the

differential private queries in data exploration and cleaning [67]. It allows analysts to

directly specify accuracy bounds on the query and converts the query with accuracy

bound to a query with privacy guarantee. It works well on another data cleaning

task(entity resolution), which is different from the data consistency cleaning task in

this chapter. SafeClean provides a dependency based data cleaning solution on data

consistency that can be realized in practice with consideration for sensitive data while

maintaining good accuracy rates.

Dependency Based Cleaning. Declarative approaches to data cleaning (cf. [68]

for a survey) have focused on achieving consistency w.r.t. a set of dependencies such

as FDs and inclusion dependencies and their extensions. Data quality semantics

are declaratively specified with the dependencies, and data values that violate the

dependencies are identified as errors, and repaired [15, 16, 17, 20, 21]. There are a

wide range of cleaning algorithms, based on user/expert feedback [22, 23, 24], master

database [14, 15], knowledge bases or crowdsourcing [25], probabilitic inference [18,

19]. Our repair algorithm builds upon these existing techniques to include data

disclosure requirements of sensitive data and suggesting generalized values as repair

candidates.

Data Privacy. PPDP uses generalization and suppression to limit data disclo-

sure of sensitive values [6, 65]. The generalization problem has been shown to be

intractable, where optimization, and approximation algorithms have been proposed

(cf. [66] for a survey). Extensions have proposed tighter restrictions to the baseline

75

Doctoral Thesis - Yu Huang McMaster - Computer Science

k-anonymity model to protect against similarity and skewness attacks by considering

the distribution of the sensitive attributes in the overall population in the table [66].

Our extensions to (X,Y)-anonymity to include semantics via the VGH can be applied

to existing PPDP techniques to semantically enrich the generalization process such

that semantically equivalent values are not inadvertently disclosed.

In differential privacy, the removal, addition or replacement of a single record in

a database should not significantly impact the outcome of any statistical analysis

over the database [69]. An underlying assumption requires that the service provider

know in advance the set of queries over the released data. This assumption does not

hold for the interactive, service-based data cleaning setting considered in this chapter.

PACAS aims to address this limitation.

Data Pricing. We use the framework by Deep and Koutris that provides a scalable,

arbitrage-free pricing for SQL queries over relational databases [70]. Recent work has

considered pricing functions to include additional properties such as being reasonable

(differentiated query pricing based on differentiated answers), and predictable, non-

disclosive (the inability to infer unpaid query answers from query prices) and regret-

free (asking a sequence of queries during multiple interactions is no more costly than

asking at once) [71]. We are investigating extensions of SafePrice to include some of

these properties.

4.3 Preliminaries

We present necessary notations and definitions.

76

Doctoral Thesis - Yu Huang McMaster - Computer Science

4.3.1 Matching Dependencies

A matching dependency (MD) φ over two relations R and R′ with schemata R =

{A1, A2, ...} and R′ = {A′1, A′2, ...} is an expression of the following form:

∧
i∈[1,n]

R[Xi] ≈ R′[X ′i]→ R[Y] = R′[Y ′], (4.1)

where (Xi, X
′
i) and (Y, Y ′) are comparable pairs of attributes in R and R′. The MD

φ states that for a pair of tuples (t, t′) with t ∈ R and t′ ∈ R′, if t[X ′i] values are

similar to values t′[X ′i] according to the similarity function ≈, the values of t[Y] and

t′[Y ′] are identical [15].

4.3.2 (X,Y)-Anonymity

Definition 4.3.1 ((X,Y)-anonymity). A table R with schemaR and attributes X, Y ⊆

R is (X,Y)-anonymous with value k if for every t ∈ R, there are at least k values in

Qt(R), |Qt(R)| ≥ k, where Qt(R) = ΠY (σX=t[X](R)).

Example 4.3.1. For X = {GEN,AGE,ZIP}, Y = {MED} with k = 3, Table 4.3 is

(X,Y)-anonymous since each gi ∈ R, Qgi(R) is either {ibuprofen, addaprin, naproxen}

or {tylenol, dolex, ibuprofen}. Table 4.3 is not (X,Y)-anonymous with X = {DIAG}

and Y = {MED}, since for g1, Qg1(R) = {ibuprofen} with size 1 ≤ k.

The (X,Y)-anonymity model extends k-anonymity; if Y is a key for R and X, Y

are QI and sensitive attributes, respectively, then (X,Y)-anonymity reduces to k-

anonymity.

77

Doctoral Thesis - Yu Huang McMaster - Computer Science

Symbol Description

DomA, domA domain of attribute A

domA(l) sub-domain of attribute A in level l

DGHA,VGHA domain and value generalization hierarchies

≤ generalization relation for levels

� generalization relation for values and tuples

Q,G Simple query and Generalized query (GQ)

l, L level and sequence of levels

S, CQ support set, and conflict set

B, Bi total and the budget for the i-th iteration

lmax generalization level

Cerr = {e1, e2, ...} set of candidate error cells for repair

c, e a database cell and an error cell

δ distance function for values, tuples, tables

Table 4.4: Summary of notation and symbols.

78

Doctoral Thesis - Yu Huang McMaster - Computer Science

The l-diversity privacy model extends k-anonymity with a stronger restriction

over the X-groups [72]. A relation is considered l-diverse if each X-group contains

at least l “well-represented” values in the sensitive attributes Y . Well-representation

is normally defined according to the application semantics, e.g., entropy l-diversity

requires the entropy of sensitive values in each X-group to satisfy a given thresh-

old [72]. When well-representation requires l sensitive values in each Y attribute,

(X,Y)-anonymity reduces to l-diversity.

4.3.3 Generalization

Generalization replaces values in a private table with less specific, but semantically

consistent values according to a generalization hierarchy. To generalize attribute A,

we assume a set of levels LA = {lA0 , ..., lAh } and a partial order ≤A, called a generaliza-

tion relation on LA. Levels lAi are assigned with disjoint domain-sets dom(lAi). In ≤A,

each level has at most one parent. The domain-set dom(lAn) is the maximal domain

set and it is a singleton, and dom(lA0) is the ground domain set. The definition of ≤A

implies the existence of a totally ordered hierarchy, called the domain generalization

hierarchy, DGHA. The domain set dom(lAi) generalizes dom(lAj) iff lAj ≤ lAi . We use

hA to refer to the number of levels in DGHA. Figures 4.1(a) and 4.2(a) show the DGH

s for the medication and age attributes, resp. A value generalization relationship for

A, is a partial order �A on DomA =
⋃
dom(lAi). It specifies a value generalization

hierarchy, VGHA, that is a tree whose leaves are values of the ground domain-set

dom(lA0) and whose root is the single value in the maximal domain-set dom(lAn) in

DGHA. For two values v and v′ in DomA, v′ �A v means v′ is more specific than v

according to the VGH. We use � rather than �A when the attribute is clear from the

79

Doctoral Thesis - Yu Huang McMaster - Computer Science

context. The VGH for the MED and AGE attributes are shown in Figures 4.1(b) and

4.2(b), respectively. According to VGH of MED, ibuprofen � NSAID.

A value is ground if there is no value more specific than it, and it is general if it is

not ground. In Figure 4.1, ibuprofen is ground and analgesic is general. For a value

v, its base denoted by base(v) is the set of ground values u such that u � v. We use

0 ≤ level(v) ≤ hA to refer to the level of v according to VGHA.

A general relation (table) is a relation with some general values and a ground

relation has only ground values. A general database is a database with some general

relations and a ground database has only ground relations. The generalization re-

lation �A trivially extends to tuples (denoted by v). We give an extension of the

generalization relation to general relations and databases in Section 4.4.

The generalization hierarchies (DGH and VGH) are either created by the data own-

ers with help from domain experts or generated automatically based on data charac-

teristics [73]. The automatic generation of hierarchies for categorical attributes [74]

and numerical attributes [75, 76, 77] apply techniques such as histogram construction,

binning, numeric clustering, and entropy-based discretization [73].

4.3.4 Data Pricing

High quality data is a valuable commodity that has lead to increased purchasing and

selling of data online. Data market services such as AggData [78], Infochimps [79]

and Kaggle [80] have become popular vendors in recent years and query pricing has

been proposed as a fine-grained and user-centric technique to support the exchange

and marketing of data [71].

80

Doctoral Thesis - Yu Huang McMaster - Computer Science

Given a database instance D and query Q, a pricing function returns a non-

negative real number representing the price to answer Q [71]. A pricing function

should have the desirable property of being arbitrage-free [71]. Arbitrage is defined

using the concept of query determinacy [81]. Intuitively, Q determines Q′ if for every

database D, the answers to Q′ over D can be computed from the answers to Q over

D. Arbitrage occurs when the price of Q is less than that of Q′, which means someone

interested in purchasing Q′ can purchase the cheaper Q instead, and compute the an-

swer to Q′ from Q. For example, Q(R) = ΠY (R) determines Q′(R) = ΠY (σY <10(R))

because the user can apply Y < 10 over Q(R) to obtain Q′(R). Arbitrage occurs if

Q is cheaper than Q′ which means a user looking for Q′(R) can buy Q and compute

answers to Q′. An arbitrage-free pricing function denies any form of arbitrage and

returns consistent pricing without inadvertent data leakage [71]. A pricing scheme

should also be history-aware [71]. A user should not be charged multiple times for

the same data purchased through different queries. In such a pricing scheme, the

data seller must track the history of queries purchased by each buyer and price future

queries according to historical data. In Section 4.6.2, we present an arbitrage-free

and history-aware data pricing scheme that extends the pricing model in [70].

4.4 Generalized Relations

Using general values as repair values in data cleaning requires us to re-consider the

definition of consistency between a relational instance and a set of FDs. In this

section, we introduce an entropy-based measure that allows us to quantify the utility

of a generalized value as a repair value, and present a revised definition of consistency

that has not been considered in past work [11].

81

Doctoral Thesis - Yu Huang McMaster - Computer Science

4.4.1 Measuring Semantic Distance

By replacing a value v′ in a relation R with a generalized value v, there is necessarily

some information loss. We present an entropy-based penalty function that quantifies

this loss [82]. We then use this measure as a basis to define a distance function

between two general values.

Definition 4.4.1 (Entropy-based Penalty [82]). Consider an attribute A in a ground

relation R. Let XA be a random variable to randomly select a value from attribute A

in R. Let VGHA be the value generalization hierarchy of the attribute A (the values

of A in R are ground values from VGHA). The entropy-based penalty of a value v in

VGHA denoted by E(v) is defined as follows:

E(v) = P (XA ∈ base(v))×H(XA|XA ∈ base(v)),

where P (XA ∈ base(v)) is the probability that the value of XA is a ground value and

a descendant of v, XA ∈ base(v)). The value H(XA|XA ∈ base(v)) is the entropy of

XA conditional to XA ∈ base(v).

Intuitively, the entropy H(XA|XA ∈ base(v)) measures the uncertainty of using

the general value v. E(v) measures the information loss of replacing values in base(v)

with v. Note that E(v) = 0 if v is ground because H(XA|XA ∈ base(v)) = 0, and

E(v) is maximum if v is the root value ∗ in VGHA. E(v) is monotonic whereby if

v � v′, then E(v) ≤ E(v′). Note that the conditional entropy H(XA|XA ∈ base(v))

is not a monotonic measure [82].

Example 4.4.1. Consider the general value v = g1[AGE] =[31,60] in Table 4.1.

Three ground values 51, 45 and 32 in base(v) appear in Table 4.1, which has total

82

Doctoral Thesis - Yu Huang McMaster - Computer Science

6 records, so P (XAGE ∈ base(v)) = 3
6

= 1
2
. According to Table 4.1, the conditional

entropy is H(XA|XAGE ∈ base(v)) = 3 × (−1
3
× log 1

3
) = 1.58 because 51, 45 and 32

each appear exactly once in the table. Therefore, the entropy-based penalty of v is

E(v) = 1
2
× 1.58 = 0.79.

Definition 4.4.2 (Semantic Distance Function, δ). The semantic distance between

v and v′ in VGHA is defined as follows:

δ(v, v′) =


|E(v′)− E(v)| if v � v′ or v′ � v

δ(v, a) + δ(a, v′) otherwise

in which a = lca(v, v′) is the least common ancestor of v and v′.

Intuitively, if v is a descendant of v′ or vice versa, i.e. v � v′ or v′ � v, their

distance is the the difference between their entropy-based penalties, i.e., |E(v′)−E(v)|.

This is the information loss incurred by replacing a more informative child value v

with its ancestor v′ when v � v′. If v and v′ do not align along the same branch in

the VGH, i.e. v 6� v′ and v′ 6� v, δ(v, v′) is the total distance between v and v′ as we

travel through their least common ancestor a, i.e. δ(v, a) + δ(a, v′).

Example 4.4.2. (Ex. 4.4.1 continued) According to Definition 4.4.2, δ([31, 60], 51) =

|E([31, 60])−E(51)| = |0.79−0| = 0.79 because 51 � [31, 60]. Similarly, δ([31, 60], 45) =

0.79. Also, δ(45, 51) = δ(45, [31, 60]) + δ([31, 60], 51) = 1.58 because 45 and 51 do not

belong to the same branch, and [31, 60] is their least common ancestor.

The δ(v′v) distance captures the semantic closeness between values in the VGH. We

extend the definition of δ to tuples by summing the distances between corresponding

83

Doctoral Thesis - Yu Huang McMaster - Computer Science

values in the two tuples. The δ function naturally extends to sets of tuples and

relations. We use the δ(v′v) distance measure to define repair error in our evaluation

in Section 4.8.

4.4.2 Consistency in Generalized Relations

A (generalized) relation R may contain generalized values that are syntactically equal

but semantically different. For example, g1[AGE] and g2[AGE] in Table 4.3 are syn-

tactically equal (containing [31,60]), but their true values in Table 4.2 are different,

t1[AGE] = 51 and t1[AGE] = 79, respectively. The consistency between traditional

FDs and a relation R is based on syntactic equality between values. We present a

revised definition of consistency with the presence of generalized values in R.

Given a generalized relation R′ with schemaR, and FD ϕ : A→ B with A,B ∈ R,

R′ satisfies ϕ (R′ |= ϕ), if for every pair of tuples t1, t2 ∈ R′, if t1[A] = t2[A] and

t1[A], t2[A] are ground values then t1[B] v t2[B] or t2[B] v t1[B]. Since a general

value v encapsulates a set of distinct ground values in base(v), relying on syntactic

equality between two (general) values, t1[B] and t2[B], is not required to determine

consistency, as they may represent two semantically equivalent entities. Our definition

requires that t1[B] be an ancestor of t2[B] (or vice-versa). This definition extends to

FDs X → Y with X, Y ⊆ R, and reduces to the classical FD consistency when R′

is ground. Assuming VGHs have fixed size, consistency checking in the presence of

generalized values is in quadratic time w.r.t. |R′|.

Example 4.4.3. Given FD ϕ : [GEN,DIAG] → [MED], according to the classic def-

inition of consistency, t1 and t2 in Table 4.2 are inconsistent as t1[GEN,DIAG] =

t2[GEN,DIAG] = {male, osteoarthritis} but t1[MED] = ibuprofen 6=intropes = t2[MED].

84

Doctoral Thesis - Yu Huang McMaster - Computer Science

Under our revised definition of consistency in a generalized relation, if we update

t2[MED] to NSAID, which is the ancestor of ibuprofen, then t1 and t2 are no longer

inconsistent. We have t1[GEN,DIAG] = t2[GEN,DIAG], and t1[MED] = ibuprofen v

NSAID = t2[MED] (cf. Fig 4.1 (b) for the VGH of MED). If we update t2[MED] to

vasodilators, which is not the ancestor of t1[MED] = ibuprofen, then t1 and t2 remain

consistent under the generalized consistency definition.

4.5 PACAS Overview

We formally define our problem, and then give an overview of the PACAS framework.

4.5.1 Problem Statement

Consider a client, CL, and a service provider, SP , with databases DCL, DSP containing

single relations RCL, RSP, respectively. Our discussion easily extends to databases

with multiples relations. We assume a set of FDs Σ defined over RCL that is falsified.

We use FDs as the benchmark for error detection, but our framework is amenable to

other error detection methods. The shared generalization hierarchies are generated

by the service provider (applying the techniques mentioned in Section 4.3.3). The

problem of privacy-preserving data cleaning is twofold, defined separately for CL and

SP . We assume a generalization level lmax, which indicates the maximum level that

values in our repaired database can take from the generalization hierarchy.

Client-side: For every cell c ∈ RCL with value c.value, let c.value∗ be the correspond-

ing accurate value in RSP. A cell c is considered dirty if c.value 6= c.value∗. We assume

the client can initiate a set of requests r1, ..., rn from RSP in which each request ri

85

Doctoral Thesis - Yu Huang McMaster - Computer Science

𝐷𝑆𝑃

Find E-Classes

Select

E-Class

Client (CL) Service Provider (SP)

Record Matching and Query

Generation

Data Pricing and

Validate Privacy

Query

Answering

𝐷𝐶𝐿

(a) (b)

𝑝 ≔ 𝑎𝑠𝑘𝑃𝑟𝑖𝑐𝑒(𝑟𝑖)

𝑝

𝑎𝑛𝑠𝑤𝑒𝑟 ≔ 𝑝𝑎𝑦(𝑝, 𝑟𝑖)

𝑎𝑛𝑠𝑤𝑒𝑟

Purchase

Data

Repair

E-Class

Figure 4.3: Framework overview.

is of the form ri = (t, A, l), that seeks the clean value of database cell t[A] at level

l in RSP. We assume
∑

i(price(ri)) ≤ B for a fixed cleaning budget B. Let R∗CL be

the clean version of RCL where for each cell, c.value = c.value∗. The problem is to

generate a set of requests r1, ..., rn, where the answers are used to compute a relation

R′CL such that: (i) R′CL |= Σ, (ii) dist(R′CL, R
∗
CL) is minimal, and (iii) for each c.value,

its level l ≤ lmax.

In our implementation, we check consistency R′CL |= Σ using the consistency

definition in Section 4.4.2, and measure the distance δ(R′CL, R
∗
CL) using the semantic

distance function δ (Defn. 4.4.2).

Service-side: The problem is to compute a pricing function price(ri) that assigns a

price to each request ri such that RSP preserves (X,Y,L)-anonymity.

4.5.2 Solution Overview

Figure 4.3 shows the PACAS system architecture consisting of two main units that

execute functions for CL and SP . Figure 4.3(a) shows the CL unit containing four

modules. The first module finds equivalence classes in RCL. An equivalence class

86

Doctoral Thesis - Yu Huang McMaster - Computer Science

(eq) is a set of cells in RCL with equal values in order for RCL to satisfy Σ [60]. The

next three modules apply an iterative repair for the eqs. These modules select an

eq, purchase accurate value(s) of dirty cell(s) in the class, and then repair the cells

using the purchased value. If the repairs contain generalized values, the CL unit must

verify consistency of the generalized relation against the defined FDs. The cleaning

iterations continue until B is exhausted or all the eqs are repaired. We preferentially

allocated the budget B to cells in an eq based on the proportion of errors in which the

cells (in an eq) participate. Figure 4.3(b) shows the SP unit. The Record Matching

module receives a request ri = (t, A, l) from CL, identifies a matching tuple t′ in RSP,

and returns t′[A] at the level l according to the VGH. The Data Pricing and Validate

Privacy module computes prices for these requests, and checks whether answering

these requests will violate (X,Y,L)-anonymity in RSP. If so, the request is not safe

to be answered. The Query Answering module accepts payment for requests, and

returns the corresponding answers to CL.

4.6 Limiting Disclosure of Sensitive Data

The SP must carefully control disclosure of its curated and sensitive data to the

CL. In this section, we describe how the SP services an incoming client request for

data, validates whether answering this request is safe (in terms of violating (X,Y,L)-

anonymity), and the data pricing mechanism that facilitates this interaction.

87

Doctoral Thesis - Yu Huang McMaster - Computer Science

4.6.1 Record Matching and Query Generation

Given an incoming CL request ri = (t, A, l), the SP must translate ri to a query that

identifies a matching (clean) tuple t′ in RSP, and returns t′[A] at level l. To answer

each request, the SP charges the CL a price that is determined by the level l of data

disclosure and the adherence of t′[A] to the privacy model. We introduce generalized

queries (GQs) to access values at different levels of the DGH.

Definition 4.6.1 (Generalized Queries). A generalized query (GQ) with schema R

is a pair G = 〈Q,L〉, where Q is an n-ary select-projection-join query over R, and

L = {l1, ..., ln} is a set of levels for each of the n values in Q according to the DGHs

in R. The set of answers to G over R, denoted as G(R), contains n-ary tuples t with

values at levels in li ∈ L, such that ∃t′ ∈ Q(R) and t generalizes t′, i.e. t′ v t.

Intuitively, answering a GQ involves finding the answers of Q(R), and then gen-

eralizing these values to levels that match L. For a fixed size DGH, the complexity of

answering G is the same as answering Q.

Example 4.6.1. Consider GQ with level L = {lGEN0 , lMED
1 } and query Q(RSP) =

ΠGEN,MED(σDIAG=migraine(RSP)) where RSP is Table 4.1. The answers to Q(RSP) is

{(female, naproxen), (male, dolex)}, which is generalized to {(female, NSAID), (male,

acetaminophen)} according to L and Figure 4.1.

To translate a request r to a GQ Gr, we assume a schema mapping exists between

RSP and RCL, with similarity operators ≈ to compare the attribute values. This can

be modeled via matching dependencies (MDs) in SP [15].

Example 4.6.2. To translate r=(t2,MED, lMED
1) into Gr, we compare values in the

QI attributes, GEN and AGE, and define query request as

88

Doctoral Thesis - Yu Huang McMaster - Computer Science

Qr(RSP) = ΠMED(σGEN≈t2[GEN]∧AGE≈t2[AGE](RSP)), Lr = {lMED
1 }. The query is generated

from an assumed MD RCL[GEN] ≈ RSP[GEN]∧RCL[AGE] ≈ RSP[AGE]→ RCL[MED] =

RSP[MED] that says if gender and age of two records in SP and CL are similar, they

refer to the same patient with the same medication.

4.6.2 Enforcing Privacy via Data Pricing

Given a GQ, the SP must determine whether it is safe to answer this query, i.e.,

decide whether disclosing the value requested in ri violates privacy requirements.

We introduce our privacy model (X,Y,L)-anonymity that extends existing PPDP

methods to consider the attribute domain semantics, and define the SafePrice data

pricing algorithm that assigns prices to GQs and guarantees (X,Y,L)-anonymity.

(X,Y,L)-Anonymity. Data randomization used in differential privacy can lead to

large data perturbations that render low data utility for data cleaning applications.

(X,Y,L)-anonymity extends (X,Y)-anonymity to include the data semantics as de-

fined by a generalization hierarchy (e.g., VGH and DGH in Figure 4.1). In (X,Y,L)-

anonymity, the values of attributes in X are associated to at least k values of Y at

levels specified in L (w.r.t. VGHs of Y). For example, Table 4.3 is not (X,Y,L)-

anonymous with X = {GEN,AGE,ZIP}, Y = {MED}, k = 3, and L = {lMED
1 }. The

values (∗, [31, 60], P∗) in X are associated with a single value NSAID at level lMED
1

but it is (X,Y,L)-anonymous if L = {lMED
0 }, e.g. (∗, [31, 60], P∗) is linked to k = 3

values at level lMED
0 : ibuprofen, naproxen and addaprin.

Definition 4.6.2 ((X,Y,L)-anonymity). Consider a table R with schema R and at-

tributes X, Y ⊆ R, and a set of levels L corresponding to attribute DGHs from Y . R

is (X,Y,L)-anonymous with value k if for every t ∈ R, there are at least k values in

89

Doctoral Thesis - Yu Huang McMaster - Computer Science

Gt(R), where Gt = 〈Qt, L〉 is a GQ with Qt(R) = ΠY (σX=t[X](R)).

Intuitively, R is (X,Y,L)-anonymous if tuples in each X-group have at least k

different values of Y at level L. (X,Y,L)-anonymity can apply tighter privacy restric-

tions compared to (X,Y)-anonymity by tuning the value of l (decided by the data

owner) for a higher degree of privacy. Larger values of L make it more difficult to

satisfy the (X,Y,L)-anonymity condition while (X,Y,L)-anonymity reduces to (X,Y)-

anonymity if li = 0 for every li ∈ L. (X,Y,L)-anonymity is a semantic extension of

(X,Y)-anonymity. Similar extensions can be defined for PPDP models such as (X,Y)-

privacy, l-diversity, t-closeness, which all ignore the data semantics in the attribute

DGHs and VGHs [66].

Pricing Generalized Queries. PPDP models have traditionally been used in non-

interactive settings where a privacy-preserving table is published once. We take a

user-centric approach and let users dictate the data they would like published. We

apply PPDP in an interactive setting where values from relation RSP are published

incrementally according to (user) CL requests, while verifying that the disclosed data

satisfies (X,Y,L)-anonymity. We adopt a data pricing scheme that assigns prices to

GQs by extending the baseline data pricing algorithm defined in [70] to guarantee

(X,Y,L)-anonymity.

Baseline Data Pricing. The baseline pricing model computes a price for a query

Q over relation R according to the amount of information revealed about R when

answering Q [70].

Given a query Q over a relation R (a database with single relation R), the baseline

pricing model determines the price of Q based on the amount of information revealed

about R by answering Q. Let I be a set of possible relations that the buyer believes to

90

Doctoral Thesis - Yu Huang McMaster - Computer Science

Figure 4.4: Possible relations I, conflict set CQ and admissible relations IQ for query
Q.

be R, representing his initial knowledge of R. As the buyer receives answers to Q(R),

he gains new knowledge, allowing him to eliminate relations R′ from I, which provide

a different answer Q(R′) 6= Q(R). This set of eliminated instances R′ is called the

conflict set of Q denoted as CQ, and intuitively represents the amount of information

that is revealed by answering Q (Figure 4.4). As more queries are answered, the size

of I is reduced. We can apply a set function that uses CQ to compute a price for

Q. We can use the weighted cover set function with predefined weights assigned to

the relations in I. Query prices are computed by summing the weights for relations

in CQ, which has been shown to give arbitrage-free prices [70]. In practice, the set

I is usually infinite making it infeasible to implement. To circumvent this problem,

a smaller, finite subset S called the support set is used to generate arbitrage-free

prices [70]. The support set is defined as the neighbors of R, generated from R via

tuple updates, insertions, and deletions. The values that are used to generate the

support set are from the same domain of the original relation R.

Several optimizations are applied to the baseline pricing, and its effectiveness is

experimentally justified [70]. Most importantly, the relations in the support set can

91

Doctoral Thesis - Yu Huang McMaster - Computer Science

Algorithm 4: price(Q,D,S, w)

Input : A query Q, a database D, support set S, weight function w

Output: Price to answer Q

1 p← 0;

2 for D′ ∈ S do

3 if Q(D′) 6= Q(D) then p← p+ w(D′) ;

4 end

5 return p;

be modeled by update operations. That is, we generate each relation in S from

R by applying its corresponding update operation and use the resulting relation to

compute the value of the weighted function as the final price. We roll-back the update

to restore R, and continue this process to compute the weighted function w.r.t. other

relations in S. We avoid storing all databases in S to enable more efficient price

computations.

Algorithm 4 provides pseudocode of the baseline algorithm. The algorithm takes

query Q, database D, a support set S, and a weight function w, and computes the

price to answer Q over R. The baseline algorithm is history-aware as input S excludes

databases that were already considered by past queries.

SafePrice Algorithm. We propose SafePrice that enforces (X,Y,L)-anonymity

over R (equivalently RSP in our framework). We first present the definition of a safe

query, i.e., criteria for a GQ to preserve (X,Y,L)-anonymity.

Definition 4.6.3. (Safe Query) Consider a GQ G over a relation R with schema R,

X, Y ⊆ R, and levels L corresponding to attributes in Y . Let IG ⊆ I be the set of

relations R′′ such that G(R) = G(R′′). G is safe (or preserves (X,Y,L)-anonymity

92

Doctoral Thesis - Yu Huang McMaster - Computer Science

of R) with value k, if for every tuple t ∈ R, there are at least k tuples in the set of

answers {t′′ | ∃R′′ ∈ IG, t′′ ∈ Gt(R′′)} where Gt = 〈Qt, L〉 is a GQ with Qt(R′′) =

ΠY (σX=t[X](R
′′)).

In Definition 4.6.3, IG represents the set of relations that the buyer believes R

is drawn from after observing the answer G(R). If there are at least k tuples in

the answer set of Gt over IG, this indicates that the buyer does not have enough

information to associate the values in X to less than k values of Y at level L, thus

preserving (X,Y,L)-anonymity. If the SP determines that a GQ is safe, he will assign

a finite price relative to the amount of disclosed information about R.

Algorithm 5 presents the SafePrice details. The given support set S represents

the user’s knowledge about relation R after receiving the answer to past purchased

queries. We maintain a set SG that represents all admissible relations after answering

G and captures the user’s posterior knowledge about R after answering G. We use

SG to check whether answering G is safe. This is done by checking over instances in

SG whether values in X are associated with at least k values of Y using the query

Gt. The price for a query is computed by summing the weights of the inadmissible

relations in the conflict set CG = S \ SG (Line 4). Similar to the baseline pricing, we

use the support set S and admissible relations SG rather than I and IG, respectively.

We iterate over tuples t ∈ R (Line 5), and check whether values in X are associated

with less than k values in Y over relations in SG. If so, we return an infinite price

reflecting that query G is not safe (Line 8).

If the input GQ is not safe, Algorithm 5 preserves (X,Y,L)-anonymity by returning

an infinite price.

Proof sketch: According to Definition 4.6.3, if G violates (X,Y,L)-anonymity then for

93

Doctoral Thesis - Yu Huang McMaster - Computer Science

t ∈ R, there are less than k answers to Gt over relations in IG. Since SG ⊆ IG, there

will be less than k answers to Gt over relations in SG, meaning Algorithm 5 assigns

infinite price to G in Line 8. We note that if Algorithm 5 returns an infinite price, it

does not imply G is unsafe (this only occurs when S = I).

Algorithm 5: SafePrice(G,R,S, w)

Input : G, R, S, w

Output: Price of G

1 p← 0; SG ← 0;

2 for T ∈ S do

3 if G(T) = G(R) then SG ← SG ∪ {T} ;

4 else p← p+ w(T) ;

5 for t ∈ R do

6 A← ∅;

7 for R′′ ∈ SG do A← A ∪Gt(R′′) ;

8 if |A| < k then return ∞;

9 return p;

Given the interactive setting between the CL and the SP , we must ensure that

all (consecutively) disclosed values guarantee (X,Y,L)-anonymity over R. We ensure

that SafePrice is history-aware by updating the support set S after answering each

GQ. The SP uses the pricing function in Algorithm 5 to update S to reflect the

current relations R′ that have been eliminated by answering the latest GQ. The SP

implements AskPrice(ri, RSP) (cf. Figure 4.3) by translating ri to a GQ, and then

invoking SafePrice.

In this work, we assume that requesting a query price is free. We acknowledge that

94

Doctoral Thesis - Yu Huang McMaster - Computer Science

returning prices might leak information about the data being priced and purchased.

This problem is discussed in the data pricing literature, particularly to incentivize

data owners to return trustful prices when prices reveal information about the data

(cf. [83] for a survey on this issue). We consider this problem as a a direction of future

work.

4.6.3 Query Answering

A CL data request is executed via the Pay(p, ri, RSP) method, where she purchases

the value in ri at price p. The Query Answering module executes Pay(p, ri, RSP) via

SP accepts payment, translates ri to a GQ, and returns the answer over RSP to CL.

Lastly, SP updates the support set S to ensure SafePrice has an accurate history of

disclosed data values.

We note that all communication between CL and SP is done via the AskPrice and

Pay methods (provided by SP). Since our focus in this chapter is to develop a privacy-

aware data cleaning framework, we assume there is a secure communication protocol

between the CL and SP , and that all data transfer is protected and encrypted. Our

current model is limited to a single SP that sells data at non-negotiable prices. We

intend to explore general cases involving multiple SP providers and price negotiation

as future work.

4.7 Data Cleaning with Generalized Values

Existing constraint-based data repair algorithms that propose updates to the data to

satisfy a set of data dependencies assume an open-access data model with no data

95

Doctoral Thesis - Yu Huang McMaster - Computer Science

privacy restrictions [60, 84, 85, 86, 87]. In these repair models, inadvertent data dis-

closure can occur as the space of repair candidates is not filtered nor transformed

to obscure sensitive values. A privacy-aware data repair algorithm must address the

challenge of providing an accurate repair to an error while respecting data general-

izations and perturbations to conceal sensitive values.

We propose SafeClean, a data repair algorithm that resolves errors in a relation

RCL using data purchased from a service provider RSP. The data disclosure in the

service provider is limited by a fixed budget B. The key distinctions of SafeClean

from past work include: (i) SafeClean interacts with the service provider, SP , to

purchase (possibly generalized), trusted values under a constrained budget B. This

eliminates the overhead of traversing a large search space of repair candidates; and

(ii) SafeClean tries to obtain values with highest utility from SP for repairing CL.

We present an overview of our cleaning algorithm and subsequently describe each

component in detail.

4.7.1 Overview

For a fixed number of FDs Σ, the problem of finding minimal-cost data repairs to

RCL such that RCL satisfies Σ is NP-complete [60]. Due to these intractability results,

we necessarily take a greedy approach that cleans cell values in RCL that maximally

reduce the overall number of errors w.r.t. Σ. This is in similar spirit to existing tech-

niques that have used various weighted cost functions [60, 17] or conflict hypergraphs

[86] to model error interactions among data dependencies in Σ.

Given RCL and Σ, we identify a set of error cells that belong to tuples that falsify

some σ ∈ Σ. For an error cell e ∈ E , we define eq(e) as the equivalence class to which

96

Doctoral Thesis - Yu Huang McMaster - Computer Science

e belongs. An equivalence class is a set of database cells with the same value such

that Σ is satisfied [60]. We repair w.r.t. eqs for two reasons: (i) by clustering cells

into eqs, we determine a repair value for a group of cells rather than an individual

cell, thereby improving performance; and (ii) we utilize every cell value within an eq

to find the best repair.

The SafeClean algorithm repairs FD errors by first finding all the eqs in RCL. The

algorithm then iteratively selects an eq, and purchases the true value of a cell, and

updates all dirty cells in the same class to the purchased value. At each iteration, we

repair the eq class with cells that participate in the largest number of FD errors. At

each iteration, SafeClean assigns a portion of the budget B that is proportional to the

number of errors relative to the total number of errors in RCL. SafeClean continues

until all the eqs are repaired, or the budget is exhausted.

SafeClean Algorithm. Algorithm 6 gives details of SafeClean’s overall execution.

The algorithm first generates the set of eqs via GenerateEQs in Line 2. Equivalence

classes containing only one value are removed since there is no need for repair. In

Line 7, SafeClean selects an equivalence class eqi with cells participating in the largest

number of violations for repair (further details in Section 4.7.3). To repair the error

cells in eqi, SafeClean generates a request ri using GenerateRequest that requests a

repair value for a cell in eqi (Line 8). This request is made at the lowest possible level

(less than lmax) at a price allowable within the given budget. The algorithm assigns

a fraction of the remaining budget, i.e. αi × B (B ≤ B is the remaining budget) to

purchase data at each iteration. This fraction depends on the number of violations

in eqi (cf. Section 4.7.4 for details). If such a request can be satisfied, the value(s)

are purchased and applied (Lines 10-13). If there is an insufficient budget remaining

97

Doctoral Thesis - Yu Huang McMaster - Computer Science

Algorithm 6: SafeClean(RCL, RSP,Σ,B)

Input : RCL, RSP, Σ, B

Output: Clean R′CL

1 R′CL ← RCL;

2 EQ← GenerateEQs(R′CL,Σ);

3 B ← B;

4 for eq ∈ EQ do

5 if Resolved(eq) then EQ← EQ \ {eq};

6 while B > 0 and EQ 6= ∅ do

7 eq← Select(EQ);

8 ri ← GenerateRequest(eq, αi ×B,RSP);

9 if ri 6= null then

10 pi ← AskPrice(ri, RSP);

11 ui ← Pay(pi, ri, RSP);

12 B ← B − pi;

13 ApplyRepair(eq, ui);

14 EQ← EQ \ eq;

15 return R′CL

98

Doctoral Thesis - Yu Huang McMaster - Computer Science

to purchase a repair value, then the eq cannot be repaired. In either case, SafeClean

removes eqi from EQ and continues with the next eq (Line 14). SafeClean terminates

when B is exhausted, or there are no eqs are remaining. We present details of eq

generation, selection, request generation, and data purchase/repair in the following

sections.

4.7.2 Generating Equivalence Classes

The equivalence classes are generated by GenerateEQs in Algorithm 7 that takes

as input RCL and Σ, and returns the set of equivalence classes EQ. For every cell

ci ∈ RCL, the procedure initializes the equivalence classes of ci as eq(ci) = {ci}, and

adds it to the set of equivalence classes EQ (Line 2). We then iteratively merge

the equivalence classes of any pair of cells c1 = t1[B], c2 = t2[B] if there is a FD

ϕ : A → B ∈ Σ, t1[A] = t2[A], and both t1[A] and t2[A] are ground. The procedure

stops and returns EQ when no further pair of equivalence classes can be merged.

Algorithm 7: GenerateEQs(RCL,Σ)

Input : RCL, Σ,

Output: The set of equivalence classes EQ

1 EQ← ∅;

2 for ci ∈ RCL do EQ← EQ ∪ {{ci}} ;

3 for every t1, t2 ∈ RCL do

4 eq ← MergeEQ(t1, t2,Σ)

5 EQ← EQ ∪ eq

6 end

7 return EQ;

99

Doctoral Thesis - Yu Huang McMaster - Computer Science

Algorithm 8: MergeEQ

Input : Tuples t1, t2 and Σ

Output: A equivalence class eq

1 eq ← ∅;

2 for and ϕ : A→ B ∈ Σ do

3 if t1[A] = t2[A] then eq ← eq ∪ (t1, t2) ;

4 end

5 return eq;

Example 4.7.1. Given FD ϕ : [GEN,DIAG] → [MED] in Table 4.2, since t1, t2 and

t3 have the same attribute values on GEN and DIAG, we merge t1[MED], t2[MED] and

t3[MED] into the same EQ1. Similarly, we cluster t4 and t5 into the same EQ2.

4.7.3 Selecting Equivalence Classes for Repair

In each iteration of Algorithm 6, we repair the cells in an eq eqi that will resolve

the most errors in RCL w.r.t. Σ. To achieve this goal, we choose eqi as the eq

with cells participating in the largest number of errors. For a cell cj ∈ RCL and

an FD ϕ : A → B ∈ Σ, let E(RCL, ϕ, cj) be the set of errors {t1, t2} w.r.t. ϕ and

cj ∈ {t1[A], t1[B], t2[A], t2[B]}. For an eq eqi, let E(RCL, ϕ, eqi) =
⋃
cj∈eqi

E(RCL, ϕ, cj)

and E(RCL,Σ, eqi) =
⋃
ϕ∈Σ E(RCL, ϕ, eqi). The eq eqi returned by Select in Line 2 of

Algorithm 6 is the eq with the largest number of errors in E(RCL,Σ, eqi). In other

words, this is the number of tuple pairs that every cell in eqi participates, summed

over all FDs in Σ.

Example 4.7.2. Continue with EQ1 and EQ2 in Example 4.7.1. According to our

100

Doctoral Thesis - Yu Huang McMaster - Computer Science

error definition, given FD ϕ : [GEN,DIAG]→ [MED], EQ1 gets involved in three errors

({t1, t2}, {t1, t3} and {t2, t3}), while EQ2 has one error ({t3, t4}), so our algorithm will

select EQ1 to repair first.

4.7.4 Data Request Generation

To repair cells in eqi, we generate a request ri = 〈c, l〉 by GenerateRequest (Algo-

rithm 9) that requests the accurate and trusted value of a cell c ∈ eqi at level l from

RSP. There are two restrictions on this request: (i) its price has to be within the

budget αi×B, and (ii) the level l has to be ≤ lmax. The value αi is defined as follows:

αi =
E(RCL,Σ, eqi)∑

eqj∈EQ
E(RCL,Σ, eqj)

.

In this definition, the allocated budget αi×B to each iteration is proportional to the

number of FD violations in eqi, and also depends on the total number of errors in

RCL. This allocation model improves upon previous work that decrease the budget

allocated to the ith-request by a factor of 1
i
, and does not adjust the allocation to the

number of errors in which a cell participates [11]. Note that if the price paid for ri

(i.e. pi) is less than this allocated budget, the remaining budget carries to the next

iteration through B.

If there is no such request, GenerateRequest returns null, indicating that eqi cannot

be repaired with the allocated budget (Line 10). If there are several requests that

satisfy (i) and (ii), we follow a greedy approach and select the request at the lowest

level with the price to break ties (Line 5). For a cell ci ∈ eqi, LowestAffordableLevel

in Line 3 finds the lowest level in which the value of ci can be purchased from RSP

101

Doctoral Thesis - Yu Huang McMaster - Computer Science

considering the restrictions in (i) and (ii). Our greedy algorithm spends most of the

allocated budget αi × B in the current iteration. An alternative approach can select

requests with the highest acceptable level (lmax) to preserve its budget for future

iterations.

Algorithm 9: GenerateRequest(C, b, RSP)

Input : eq C, budget b and RSP.

Output: Request ri

1 l← lh; p←∞; c← null;

2 for ci ∈ C do

3 li ← LowestAffordableLevel(ci, b, lmax, RSP);

4 pi ← AskPrice(〈ci, li〉, RSP);

5 if li < l or (li == l and pi ≤ p) then

6 c← ci; l← li; p← pi;

7 end

8 end

9 if c 6= null then return 〈c, l〉;

10 return null;

4.7.5 Purchase Data and Repair

To repair the cells in eqi, Algorithm 6 invokes Pay(ri, RSP) to purchase the trusted

value ui and replaces the value of every cell in eqi with ui in ApplyRepair. The

algorithm then removes the eq eqi from EQ and continues to repair the next eq. It

stops when there is no eq to repair or the budget is exhausted.

102

Doctoral Thesis - Yu Huang McMaster - Computer Science

Example 4.7.3. Continuing from Example 4.7.2, since EQ1 has the largest number

of errors, we purchase trusted value from RSP to repair EQ1 first. If the purchased

value is general value NSAID, we update all cells in EQ1, which are t1[MED], t2[MED]

and t3[MED] to NSAID to resolve the inconsistency.

4.7.6 Complexity Analysis

We analyze the complexity of SafeClean’s modules:

• Error identification is based on selecting the dirtiest cell e, and resolved w.r.t. an

equivalence class. In the worst case, this is quadratic in the number of tuples in

RCL.

• For each data request to fix an error, executing SafePrice and pay rely on RSP, the

support set S, and the complexity of GQ answering. We assume the size of S is

linear w.r.t the size of RSP. The complexity of running GQs is the same as running

SQL queries. Thus, all procedures run in polynomial time w.r.t. the size of RSP.

• In the applyRepair grounding process, we must ground each returned value for each

error w.r.t. each FD, taking time on the order of O(|E||A||Σ|) for attribute domain

size |A|. Updating the affected cells in the equivalence class, and their dirty scores

are both bounded by the number of cells in RCL. Hence, Algorithm 6 runs in

polynomial time w.r.t. the size of RSP and RCL.

4.8 Experiments

We now turn to the evaluation of SafePrice and SafeClean using three real datasets.

Our evaluation focuses on the following objectives:

103

Doctoral Thesis - Yu Huang McMaster - Computer Science

1. The efficiency and effectiveness of SafePrice to generate reasonable prices that

allow SafeClean to effectively repair the data.

2. We evaluate the impact of generalized values on the repair error, and the runtime

performance. In addition, we study the proportion of generalized repair values

that are recommended for varying budget levels.

3. We evaluate the repair error and scalability of SafeClean as we vary the param-

eters k, l, e and B to study the repair error to runtime tradeoff.

4. We compare SafeClean against PrivateClean, a framework that explores the

link between differential privacy and data cleaning [64]. We study the repair

error to runtime tradeoff between these two techniques, and show that data

randomization in PrivateClean significantly hinders error detection and data

repair, leading to increased repair errors.

4.8.1 Experimental Setup

We implement PACAS using Python 3.6 on a server with 32 Core Intel Xeon 2.2

GHz processor with 64GB RAM. We describe the datasets, baseline comparative

algorithm, metrics and parameters.

Parameters. We vary the following parameters to evaluate the performance and

scalability of our algorithms: (i) budget B; (ii) the size of the support set |S| in the

pricing function; (iii) l the level of generalization; (v) k that controls the number of

tuples in each X-group; and (vi) the error rate e in RCL. The default parameters are

showed in Table 4.6.

Datasets We use three real datasets. We selected these datasets because they are

104

Doctoral Thesis - Yu Huang McMaster - Computer Science

Clinical Census Food

|RCL| 345,000 300,000 30,000

n 29 40 11

|ΠA(R)| 61/73 17/250 248/70

|VGHA| 5/5 5/6 5/5

Table 4.5: Data characteristics.

Sym. Description Values

B budget 0.2, 0.4, 0.6, 0.8

|S| support set size 6, 8, 10, 12, 14

l generalization level 0, 1, 2, 3, 4

k #tuples in X-group 1, 2, 3, 4, 5

e error rate 0.05, 0.1, 0.15, 0.2, 0.25

Table 4.6: Parameter values (defaults in bold).

widely used in the existing data cleaning work such as [15, 16, 17, 20, 21, 64]. Table 4.5

gives the data characteristics, showing a range of data sizes in the number of tuples

(|RCL|), number of attributes (n), number of unique values in the sensitive attribute

A (|ΠA(R)|), and the height of the attribute VGHA (|VGHA|). We denote sensitive

attributes with an asterisk (*).

Clinical Trials (Clinical). The Linked Clinical Trials database describes patient

demographics, diagnosis, prescribed drugs, symptoms, and treatment [88]. We se-

lect the country, gender, source and age as QI attributes. We use the same FDs as

the the existing work [17]. These two FDs are: (i) ϕ1 : [age, overall status, gender] →

105

Doctoral Thesis - Yu Huang McMaster - Computer Science

[drug name*]; and (ii) ϕ2 : [overall status, timeframe, measure]→ [condition*]. We con-

struct attribute value generalization hierarchies (VGH) with five levels on attributes

drug name and condition, respectively using external ontologies (Bioprotal Medical

Ontology [89], the University of Maryland Disease Ontology [90], and the Libraries

of Ontologies from the University of Michigan [91]). The average number of children

per node in the VGH is eight.

Census. The U.S. Census Bureau provides population characteristics such as edu-

cation level, years of schooling, occupation, income, and age [92]. We select sex, age,

race, and native country as QI attributes. We define two FDs: (i) ϕ3 : [age, education-

num]→ [education*]; and (ii) ϕ4 : [age, industry code, occupation]→ [wage-per-hour*].

We uses these two FDs because normally age and education number can determine the

education level of a person and age, industry, occupation can determine the wage of a

individual per hour. We construct VGH on attributes wage-per-hour and education by

stratifying wage and education levels according to hierarchies from US statistics [93],

and the US Department of Education [94]. The average number of children per node

is five.

Food Inspection (Food). This dataset contains violation citations of inspected

restaurants in New York City describing the address, borough, zipcode, violation code,

violation description, inspection type, score, grade. We define inspection type, borough,

grade as QI attributes. We define two FDs: (i) σ5 : [borough, zipcode] → [address*];

and (ii) σ6 : [violation code, inspection type] → [violation description*]. We use these

two FDs because borough and zipcode can identify an unique address; violation code

and inspection type can determine the violation description uniquely as well. We

construct attribute VGH on address and violation description by classifying streets into

106

Doctoral Thesis - Yu Huang McMaster - Computer Science

neighborhoods, districts, etc, and extracting topic keywords from the description and

classifying the violation according to the Food Service Establishment Inspection Code

[95]. The average number of children per node in the VGH is four.

For each dataset, we manually curate a clean instance RSP according to the defined

FDs, verify with external sources and ontologies, and is used as the ground truth. To

create a dirty instance RCL, we duplicate RSP to obtain RCL, and use BART, an error

generation benchmarking tool for data cleaning applications to inject controlled errors

in the FD attributes [96]. We use BART to generate constraint-induced errors and

random errors, and define error percentages ranging from 5% to 25%, with respect

to the number of tuples in a table. We use BART’s default settings for all other

parameters.

Comparative Baseline. The closest comparative baseline is PrivateClean, a frame-

work that explores the link between differential privacy and data cleaning [64]. Pri-

vateClean provides a mechanism to generate ε-differentially private datasets on nu-

merical and discrete values from which a data analyst can apply data cleaning op-

erations. PrivateClean proposes randomization techniques for discrete and numeric

values, called Generalized Randomized Response (GRR), and applies this across all

attributes. To guarantee a privatized dataset with discrete attributes is ε-differentially

private at confidence (1−α), a sufficient number of distinct records is needed. In our

comparison evaluation, we set α = 0.05, and the degree of privacy p = 0.5 (applied

uniformly across the attributes and equivalent to ε for discrete attributes [64]). Since

PrivateClean does not directly propose a data cleaning algorithm, but rather data

cleaning operators, we apply the well-known Greedy-Repair [60] FD repair algorithm

to generate a series of updates to correct the FD violations. We use the transform()

107

Doctoral Thesis - Yu Huang McMaster - Computer Science

Method δ

PrivateClean [64] 342k

SafeClean [12] 183k

Table 4.7: Comparison Summary

operation to represent each of these updates in PrivateClean, and use the source

code provided by the authors in our implementation. We choose the Greedy-Repair

algorithm for its similarity to our repair approach; namely, to repair cells on an equiv-

alence class basis, and to minimize a cost function that considers the number of data

updates and the distance between the source and target values.

Metrics. We compute the average runtime over four executions. To measure the

quality of the recommended repairs, we define the repair error of a cell as the distance

between a cell’s true value and its repair value. We use the semantic distance measure,

δ(v, v′), in Section 4.4.1, that quantifies the distance between two values v (suppose

a true value), and v′ (a repair value) in the attribute value generalization hierarchy,

and considers the distribution of v and v′ in the relation. We assume a cell’s value,

and its repair are both in the generalization hierarchy. The repair error of a relational

instance is computed as the sum of the repair errors across all cells in the relation. We

use the absolute value of the repair error in our experiments (denoted as δ). Similar

to other error metrics (such as mean squared error), lower error values are preferred.

4.8.2 Generalized Values

We measure the proportion of generalized values that are returned for varying levels

of the budget B. Since a repair value may be returned at any level of the VGH, we

108

Doctoral Thesis - Yu Huang McMaster - Computer Science

 0

 20

 40

 60

 80

 100

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

%
 o

f t
ot

al

budget B
[0-0.25]

[0.25-0.5]
[0.5-0.75]

[0.75-1]

(a) Ratio of gen. values.

100 k

150 k

200 k

250 k

300 k

350 k

400 k

 5 10 15 20 25

δ

% of generalized values

(b) Error vs. gen. values.

 50

 60

 70

 80

 90

 100

 110

 120

 5 10 15 20 25

m
in

ut
es

% of generalized values

(c) Runtime vs. gen. values.

Figure 4.5: Evaluation on gen. values

compute the semantic distance between the generalized value v and the corresponding

ground value v′ in the CL. We normalize the distance between (v, v′) into four ranges:

[0-0.25], [0.25-0.5], [0.5-0.75], [0.75-1], where a distance of zero indicates v and v′ are

both ground values.

Figure 4.5a shows the relative proportions for varying B values over the clinical

dataset. As expected, the results show that the proportion of generalized values at

the highest levels of the VGH occur for low B values since we can only afford (cheaper)

generalized values under a constrained budget. In contrast, for B values close to

0.9, close to 85% of the repair values are specific, ground values with a distance range

of [0, 0.25], while the remaining 15% are generalized values at the next level. We

observe that for B > 0.6 approximately 70% of the total repair values are very close

to the ground value (where distance is at [0-0.25]), indicating higher quality repairs.

We evaluate the impact on the runtime to repair error tradeoff when an increasing

number of generalized values occur in the repaired relation. We control the number

of generalized values indirectly via the number of error cells under a constrained

budget B = 0.1 where it is expected that close to all repair recommendations will

be general values. Figure 4.5b and Figure 4.5c show the repair error and runtime

curves over the clinical data, respectively. As expected, we observe for an increasing

109

Doctoral Thesis - Yu Huang McMaster - Computer Science

number of generalized values, the repair error increases as the constrained budget

leads to more values returned at the highest * generalized value, thereby increasing

the distance between ground-truth relation and repaired relation. In contrast, the

increased number of generalized values leads to lower runtimes due to the increased

number of unsatisfied query requests.

4.8.3 SafePrice Efficiency and Effectiveness

0

50 k
100 k

150 k
200 k

250 k
300 k

350 k
400 k

 6 7 8 9 10 11 12 13 14
δ

|S|

Clinical
Census
Food

Figure 4.6: Repair error vs. |S|.

The SafePrice algorithm relies on a support set

S to determine query prices by summing the

weights of discarded instances from the conflict

set C. These discarded instances represent the

knowledge gained by CL. We vary the size of the

initial S to determine its influence on the repair

error (δ), and the overall runtime. Figure 4.6 shows a steady decrease in the repair

error for increasing |S|. As |S| grows, the SP is less restrictive to answer GQs and

fewer requests are declined at lower levels. As more requests are answered at these

lower levels, the repair error decreases. Figure 4.7a shows that the SafePrice runtime

scales linearly with increasing |S|, making it feasible to implement in practice. From

Figures 4.6 and 4.7a, we determine that SafePrice achieves an average 6% reduction

in the repair error at a cost of 16m runtime. This is expected due to the additional

time needed to evaluate the larger space of instances to answer GQs. Comparing

across the three datasets, the data sizes affect runtimes as a larger number of records

must be evaluated during query pricing. This is reflected in longer runtimes for the

larger clinical and census datasets.

110

Doctoral Thesis - Yu Huang McMaster - Computer Science

 30

 60

 90

 120

 150

 6 8 10 12 14

m
in

ut
es

|S|

Clinical
Census
Food

(a) Runtime vs. |S|.

0

50 k

100 k

150 k

200 k

250 k

300 k

350 k

400 k

 1 2 3 4 5

δ

k

Clinical
Census

Food

(b) Repair error vs. k.

 20

 40

 60

 80

 100

 120

 1 2 3 4 5

m
in

ut
es

k

Clinical
Census

Food

(c) Runtime vs. k.

0
50 k

100 k
150 k
200 k
250 k
300 k
350 k
400 k
450 k
500 k
550 k

 0 1 2 3 4

δ

level l

Clinical
Census

Food

(d) Repair error vs. l.

 20

 40

 60

 80

 100

 120

 140

 160

 0 1 2 3 4

m
in

ut
es

level l

Clinical
Census

Food

(e) Runtime vs. l.

0
50 k

100 k
150 k
200 k
250 k
300 k
350 k
400 k

 0.05 0.1 0.15 0.2 0.25

δ

e

Clinical
Census

Food

(f) Repair error vs. e.

 20

 40

 60

 80

 100

 120

 140

 160

 0.05 0.1 0.15 0.2 0.25

m
in

ut
es

e

Clinical
Census

Food

(g) Runtime vs. e.

0
50 k

100 k
150 k
200 k
250 k
300 k
350 k
400 k
450 k
500 k

 0.2 0.4 0.6 0.8

δ

budget B

Clinical
Census

Food

(h) Repair error vs. B.

 20

 40

 60

 80

 100

 120

 140

 0.2 0.4 0.6 0.8
m

in
ut

es

budget B

Clinical
Census

Food

(i) Runtime vs. B.

Figure 4.7: SafePrice Parameter Sensitivity

4.8.4 SafePrice Parameter Sensitivity

We vary the parameters k, GQ level l, error rate e, budget B, and measure their

influence on SafeClean repair error and runtime over all three datasets. We expect

that enforcing more stringent privacy requirements through larger k and l values will

result in larger repair errors. Figures 4.7b to 4.7e do indeed reflect this intuition.

In Figure 4.7b, SafeClean experiences larger repair errors for increasing k as gener-

alizations to conceal sensitive values become increasingly dependent on the attribute

domain and its VGH i.e., (X,Y,L)-anonymity indicates there must be at least k val-

ues at a given level l in the VGH. Otherwise, the data request is denied. Figure 4.7c

shows that for increasing k, runtimes decrease linearly as query requests to satisfy

111

Doctoral Thesis - Yu Huang McMaster - Computer Science

more stringent k become more difficult. On average, we observe that an approximate

10% improvement in runtime leads to a 7% increase in the repair error for each in-

crement of k. Figures 4.7d and 4.7e show the repair error and runtime, respectively,

as we vary the query level parameter l. The repair error increases, particularly af-

ter l = 3 as more stringent privacy requirements are enforced, i.e., l distinct values

are required at each generalization level. This makes satisfying query requests more

difficult, leading to unrepaired values and lower runtimes, as shown in Figure 4.7e.

Figure 4.7f shows the repair error δ increases as we scale the error rate e. For a

fixed budget, increasing the number of FD errors leads to a decreasing budget for each

FD error. This makes some repairs unaffordable for the CL, leading to unrepaired

values and an increased number of generalized repair values. This situation can

be mitigated if we increase the budget B. As expected, Figure 4.7g shows that

the SafeClean runtime increases for an increasing number of FD violations, due to

the larger overhead to compute more equivalance classes, compute prices to answer

queries, and to check consistency in the CL.

Figures 4.7h and 4.7i show the repair error and runtime, respectively, as we vary

the budget B. For increasing budget allocations, we expect the SP to recommend

more ground (repair) values, and lower repair error values, as shown in Figure 4.7h.

Given the larger budget allocations, the SP is able to answer a larger number of

query requests, and must compute their query prices, thereby increasing algorithm

runtime. We observe that an average 14% reduction in the repair error leads to an

approximate 7% increase in runtime.

We compare SafeClean to PrivateClean, a framework for data cleaning on locally

differentially private relations [64]. Section 4.8.1 describes the baseline algorithm

112

Doctoral Thesis - Yu Huang McMaster - Computer Science

100 k
150 k
200 k
250 k
300 k
350 k
400 k
450 k
500 k
550 k
600 k

 0.05 0.1 0.15 0.2 0.25

δ

e

SafeClean
PrivateClean

Figure 4.8: Comparative repair error.

 20

 40

 60

 80

 100

 120

 140

 160

 0.05 0.1 0.15 0.2 0.25

m
in

ut
es

e

PrivateClean
SafeClean

Figure 4.9: Comparative runtime.

parameter settings and configuration. Despite the differing privacy models, our eval-

uation aims to explore the influence of increasing error rates on the repair error δ, and

algorithm runtimes using the Clinical dataset. We hope these results are useful for

practitioners to understand qualitative and performance trade-offs between the two

privacy models. For SafeClean, we measure total time of the end-to-end process from

error detection to applying as many repairs as the budget allows. In PrivateClean,

we measure the time to privatize the RCL, error detection, running the Greedy-Repair

FD repair algorithm [60], and applying the updates via the Transform operation.

For PrivateClean, we measure the repair error δ(v, v′) for source value v and target

(clean) value v′, as recommended by Greedy-Repair, where both v, v′ are ground values.

Figure 4.8 shows the comparative repair error between SafeClean and Private-

Clean as we vary the error rate e. SafeClean achieves an average −41% lower repair

error than PrivateClean. This poor performance by PrivateClean is explained by

the underlying data randomization used in differential privacy, which provides strong

privacy guarantees, but poor data utility, especially in data cleaning applications. As

acknowledged by the authors, identifying and reasoning about errors over random-

ized response data is hard [64]. This randomization may update rare values to be

113

Doctoral Thesis - Yu Huang McMaster - Computer Science

more frequent, and similarly, common values to be more rare. This leads to more

uniform distributions (where stronger privacy guarantees can be provided), but neg-

atively impact error detection and cardinality-minimal data repair techniques that

rely on attribute value frequencies to determine repair values [60]. We envision that

SafeClean is a compromise towards providing an (X,Y,L)-anonymous instance while

preserving data utility.

SafeClean’s lower repair error comes at a runtime cost, as shown in Figure 4.9.

As we scale the error rate, SafeClean’s runtime scales linearly due to the increased

overhead of data pricing. Recall the pricing mechanism in Section 4.6.2, the price

of query Q is determined by the query answer over the relation D and its neighbors

D′ in the support set S. In contrast, PrivateClean does not incur such an over-

head due to its inherent data randomization. There are opportunities to explore

optimizations to lower SafeClean’s overhead to answer query requests and compute

prices to answer each query. In practice, optimizations can be applied to improve

overall performance, including decreasing the parameter k according to application

requirements, and considering distributed (parallel) executions of query processing

over partitions of the data. SafeClean aims to provide a balanced approach towards

achieving data utility for data cleaning applications while protecting sensitive values

via data pricing and (X,Y,L)-anonymity.

4.9 Conclusions

We present PACAS, a data cleaning-as-a-service framework that preserves (X,Y,L)-

anonymity in a service provider with sensitive data, while resolving errors in a client

data instance.

114

Doctoral Thesis - Yu Huang McMaster - Computer Science

PACAS anonymizes sensitive data values by implementing a data pricing scheme

that assigns prices to requested data values while satisfying a given budget. We

propose generalized repair values as a mechanism to obfuscate sensitive data values,

and present a new definition of consistency with respect to functional dependencies

over a relation. To adapt to the changing number of errors in the database during

data cleaning, we propose a new budget allocation scheme that adjusts to the current

number of unresolved errors. We believe that PACAS provides a new approach to

privacy-aware cleaning that protects sensitive data while offering high data cleaning

utility, as data markets become increasingly popular. As next steps, we are inves-

tigating: (i) optimizations to improve the performance of the data pricing modules;

and (ii) extensions to include price negotiation among multiple service providers and

clients.

In this chapter, we introduce a privacy-preserving data cleaning framework that

considers data privacy together with data cleaning through the anonymization ap-

proach. However, the anonymization approach fails to provide any data diversity

guarantee, which is desirable in many applications. In the next chapter, we study the

problem of finding a diverse anonymized data instance which ensures data diversity

during the anonymization process.

115

Chapter 5

Diversifying Anonymized Data

with Diversity Constraints

5.1 Introduction

Organizations often share user information with third parties to analyze collective

user behaviour and for targeted marketing. For example, in the pharmaceutical in-

dustry, hospital and medical records are shared and sold to data brokers who aggregate

longitudinal data from patient records, insurance claims and lab tests to derive collec-

tive insights for research and drug development. Protecting user privacy is critical to

safeguard personal and sensitive data. The European Union General Data Protection

Regulation (GDPR), and variants such as the California Consumer Protection Act

(CCPA) aim to control how organizations manage user data. For example, a major

tenet in GDPR is data minimization that states companies should collect and share

only a minimal amount of personal data sufficient for their purpose. CCPA takes this

one step further requiring companies to document and track onward transfer of data

116

Doctoral Thesis - Yu Huang McMaster - Computer Science

to third parties. Given the impossibility of knowing how a published data instance

will be used in the future, determining a minimal amount of personal data to share

is a challenge.

One solution is to apply differential privacy techniques to the entire data instance

that provide provable guarantees. These guarantees often rely on aggregation queries

over sufficiently large samples such that the output is not influenced by the presence

(or absence) of any single record [69]. Unfortunately, applications often experience

poor data utility and accuracy due to the necessary data randomization in differen-

tial privacy. Privacy-preserving data publishing (PPDP) provides a middle-ground

to safeguard individual privacy while ensuring the published data remains practically

useful for subsequent analysis. One of the benefits of PPDP is the focus on publish-

ing actual data, rather than statistical summaries and relationships about the data.

Anonymization is the most common form of PPDP, where quasi-identifiers and/or

sensitive values are obfuscated via suppression or generalization [66].

As anonymized instances are shared with third parties for decision making and

analysis, there is growing interest to ensure that data (and the algorithms that gen-

erate and use the data) are diverse and fair. Diversity is a rather established notion

in data analytics that refers to the property of a selected set of individuals. Diversity

requires the selected set to have a minimum representation from each group of indi-

viduals [97, 7] while determining the minimum bound for each group is often domain

and user dependent.

To avoid biased decision making, incorporating diversity into computational mod-

els is essential to prevent and minimize discrimination against disadvantaged and

minority groups. In this chapter, we focus on diversity, and study how diversity

117

Doctoral Thesis - Yu Huang McMaster - Computer Science

ID GEN ETH AGE PRV CTY DIAG

t1 Female Caucasian 80 AB Calgary Hypertension

t2 Female Caucasian 32 AB Calgary Tuberculosis

t3 Male Caucasian 59 AB Calgary Osteoarthritis

t4 Male Caucasian 46 MB Winnipeg Migraine

t5 Male African 31 MB Winnipeg Hypertension

t6 Male African 43 BC Vancouver Seizure

t7 Male Caucasian 29 BC Vancouver Hypertension

t8 Female Asian 58 BC Vancouver Seizure

t9 Female Asian 47 MB Winnipeg Influenza

t10 Female Asian 71 BC Vancouver Migraine

Table 5.1: Medical records relation (R)

requirements can be modeled and satisfied in PPDP. In PPDP, non-diverse data

instances that exclude minority group give an inaccurate representation of the popula-

tion in subsequent data analysis. Unfortunately, early PPDP work [98, 99, 66, 6, 26],

and recent work on PPDP for linked data and graphs [100, 101] have not studied

techniques to include diversity in published data instances. Consider the following

example demonstrating the challenges of applying diversity in PPDP.

Example 5.1.1. Table 5.1 shows relation R containing patients medical records de-

scribing gender (GEN), ethnicity (ETH), age (AGE), province (PRV), city (CTY), and

diagnosed disease (DIAG). Third-parties such as pharmaceuticals, insurance firms are

interested in an anonymized R containing patients from diverse geographies, gender,

and ethnicities. Let GEN, ETH, AGE, CTY, PRV, be quasi-identifier (QI) attributes,

118

Doctoral Thesis - Yu Huang McMaster - Computer Science

ID GEN ETH AGE PRV CTY DIAG

r1 ? Caucasian ? AB Calgary Hypertension

r2 ? Caucasian ? AB Calgary Tuberculosis

r3 ? Caucasian ? AB Calgary Osteoarthritis

r4 Male ? ? ? ? Migraine

r5 Male ? ? ? ? Hypertension

r6 Male ? ? ? ? Seizure

r7 Male ? ? ? ? Hypertension

r8 Female Asian ? ? ? Seizure

r9 Female Asian ? ? ? Influenza

r10 Female Asian ? ? ? Migraine

Table 5.2: Anonymized relation with k = 3

and let DIAG be a sensitive attribute. Existing PPDP methods such as k-anonymity

prevent re-identification of an individual along the QI attributes from k − 1 other

tuples. Table 5.2 shows a k-anonymized instance for k = 3 where tuples are clustered

along the QI attributes via value suppression [6, 26].

The k-anonymization problem is to generate a k-anonymous relation through an

anonymization process, such as generalization and suppression, while incurring min-

imum information loss. Suppression replaces some QI attribute values with ?s to

achieve k-anonymity. There are several measures of information loss in PPDP [66],

e.g., counting the number of ?s. Existing k-anonymization techniques do not pre-

serve diversity in R since these information loss measures do not capture diversity

semantics. �

119

Doctoral Thesis - Yu Huang McMaster - Computer Science

ID GEN ETH AGE PRV CTY DIAG

s1 Female Caucasian ? AB Calgary Hypertension

s2 Female Caucasian ? AB Calgary Tuberculosis

s3 Male Caucasian ? ? ? Osteoarthritis

s4 Male Caucasian ? ? ? Migraine

s5 Male African ? ? ? Hypertension

s6 Male African ? ? ? Seizure

s7 ? ? ? BC Vancouver Hypertension

s8 ? ? ? BC Vancouver Seizure

s9 Female Asian ? ? ? Influenza

s10 Female Asian ? ? ? Migraine

Table 5.3: Anonymized relation with k = 2.

Unfortunately, existing methods fail to provide any diversity guarantees in pub-

lished, privatized data instances. This leads to inaccurate and biased decision mak-

ing in downstream data analysis. For example, in health care, anonymized patient

records that exclude minority groups or fail to preserve the ratios of patients across

different diseases misrepresent the true patient population, causing insufficient re-

source allocations.

To model diversity, existing work have proposed declarative methods in the form

of diversity constraints [7], which define the expected frequencies that sensitive values

in the data must satisfy. Using k-anonymity as our privacy definition, and given a

relation R, constant k, and a set of diversity constraints Σ, we study the problem

of publishing a k-anonymized and diverse instance R∗. An example of a diversity

120

Doctoral Thesis - Yu Huang McMaster - Computer Science

constraint σ1 = (ETH[Asian], 2, 5) requires an anonymized instance to contain a

minimum of two Asian individuals and no more than five, which is satisfied by Ta-

ble 5.1 and in Table 5.2. Diversity constraints provide a declarative definition of

the minimum and maximum frequency bounds that specific attribute domain values

should appear in R∗ [7].

In this chapter, we define the (k,Σ)-anonymization problem, which seeks an

optimal k-anonymous instance R∗ that satisfies a set of diversity constraints, such

as σ1 ∈ Σ. Note that Σ denotes a set of diversity constraints in this chapter. We

study the (k,Σ)-anonymization decision problem, that is, whether there exists a k-

anonymous instance R∗ that satisfies Σ. In Example 5.1.1, there is no 3-anonymized

version of R that satisfies σ2 = (ETH[African], 1, 3) because there are only two African

patients in R.

We propose the DIVA algorithm to compute a DIVerse and Anonymized R∗.

DIVA integrates anonymization with diversity by applying value suppression to find

a k-anonymous instance satisfying a set of diversity constraints.

Contributions. We make the following contributions:

1. We define the (k,Σ)-anonymization problem that seeks a k-anonymous relation

with value suppression that satisfies Σ. We introduce DIVA, a clustering-based

algorithm that solves the (k,Σ)-anonymization problem with minimal suppression.

2. We present two selection strategies to improve the DIVA algorithm performance

by selectively ordering candidate constraints and clusterings to minimize conflict

and save computation.

3. We conduct an extensive evaluation using real data collections demonstrating the

effectiveness and efficiency of our selection strategies over the naive version of

121

Doctoral Thesis - Yu Huang McMaster - Computer Science

DIVA and show the utility of diversity constraints over an existing baseline.

Organization. In Section 5.2, we introduce the related work. In Section 5.3, we

present necessary definitions and notation. We introduce our algorithm in Section 5.4.

We discuss selection strategies for diversity clustering in Section 5.5. We present our

evaluation results in Section 5.6, and conclude in Section 5.7.

5.2 Related Work

Privacy Preserving Data Publishing. Extensions of k-anonymity include l-

diversity, t-closeness, (X,Y)-privacy, and (X,Y)-anonymity with tighter privacy guar-

antees [66]. DIVA is extensible to re-define the clustering criteria according to these

privacy semantics. Differential privacy (DP) provides a higher level of protection

for individuals where the existence (or not) of a single record should not impact the

outcome of any statistical analysis [69]. Cuenca et. al, study PPDP in linked data

by formalizing the anonymization problem and its complexity for RDF graphs [100].

Hay et. al., present a data publishing algorithm that guarantee anonymity over social

network data [101]. In generalization, data values are replaced with less specific,

but semantically consistent values according to a generalization hierarchy [66]. While

our algorithm currently considers suppression (a special case of generalization), we

are exploring distance metrics to include generalization.

Fairness and Diversity. Achieving fair and equal treatment of groups and indi-

viduals is difficult in data-driven decision making [102]. Despite a strong need for

algorithmic fairness and data diversity, such principles are rarely applied in prac-

tice [103]. Data sharing of private data has been studied along two primary lines.

122

Doctoral Thesis - Yu Huang McMaster - Computer Science

First, causality reasoning aims to recognize discrimination to achieve algorithmic

transparency and fairness. Recent techniques have proposed influence measures to

identify correlated attributes [104], statistical reasoning about discrimination [105],

and reasoning between causality and fairness to generate bias-free, differentially pri-

vate synthetic data [106]. Secondly, recent work have studied variants of DP to

release synthetic data with similar statistical properties to the input data [107], pub-

lishing differentially private histograms [108], and studying the impact of differentially

private algorithms on equitable resource allocation, especially for strict privacy-loss

budgets [109]. Our work is complementary to these efforts, with a different goal; to

publish diverse and anonymized versions of the original data with minimal informa-

tion loss for applications where statistical summaries, synthetic data, and aggregate

queries are inadequate. Recent work by Stoyanovich et. al., study diversity in the set

selection problem and introduce diversity constraints to guarantee representation for

each category in the selected set [110, 7]. We build upon this work, and are the first to

formalize diversity constraints and study their foundations. We propose algorithms

to couple diversity with data anonymization, a problem not considered in existing

work.

Diverse Clustering. Incorporating diversity into clustering has been limited to

producing more diverse results. Nguyen et. al., start with an initial clustering and

then generate additional clusterings that minimize error from the initial set [111].

Phillips et. al., argue that there is limited success by being too reliant on the initial

clustering, and propose a sampling approach to select a diverse, large sample of non-

redundant clusters while maximizing a quality metric [112]. The only work we are

aware of that combines clustering with anonymization is by Li et. al., that study a

123

Doctoral Thesis - Yu Huang McMaster - Computer Science

Symbol Description

R,R relation and relational schema

X,Y, Z sets of relational attributes

v, ? suppression relation, symbol for a suppressed value

σ,Σ single and set of diversity constraints

C, C cluster and clustering (set of clusters)

Table 5.4: Summary of notation and symbols.

2-approximation algorithm for l-diversity, an extension of k-anonymity, where each

cluster is of size at least l, and each point is a different color (i.e., sensitive value) [113].

However, while our work shares a similar spirit, Li et. al., show that a solution may not

be possible depending on the color distribution, and record deletion may be necessary.

our algorithm does not consider tuple deletion, and we use graph coloring to model

tuple overlap between constraints, focusing instead on a declarative specification of

diversity that is realizable in practice.

5.3 Preliminaries

5.3.1 Diversity Constraints

Diversity constraints are originally proposed for the set selection problem defined as

follows [7]. Given a set of N items, each associated with a sensitive attribute and a

utility score, the set selection problem is to select M items to maximize a utility score

subject to diversity constraints. The utility score is the sum of scores of each selected

item. Let there be d distinct values of the sensitive attribute and mi with i ∈ [1, d]

124

Doctoral Thesis - Yu Huang McMaster - Computer Science

be the number of selected items with each distinct value such that mi ∈ [0,M] and∑
i(mi) = M . A diversity constraint σ of the form floori ≤ mi ≤ ceilingi specifies

upper and lower bounds on mi, i.e. the number of items with the i-th sensitive value.

These constraints ensure representation from each category known as coverage-based

diversity. To avoid tokenism, where there is only a single representative from each

category, we can increase the lower bound, e.g., mi > 1. Given a set of diversity

constraints Σ of the form σ ∈ Σ, we define our initial problem statement.

Definition 5.3.1 (Problem Statement ((k,Σ)-anonymization)). Consider a relation

R of schemaR, a constant k, a set of diversity constraints Σ. The (k,Σ)-anonymization

problem is to find a relation R∗ where: (1) R v R∗, (2) R∗ is k-anonymous, (3)

R∗ |= Σ, and (4) R∗ has minimal information loss, i.e., a minimum number of ?’s.

5.4 The DIVA Algorithm

We present the DIVersity and Anonymization algorithm (DIVA) that solves the (k,Σ)-

anonymization problem. DIVA takes as input a relation R, a minimal and satisfiable

set of diversity constraints Σ, constant k, and returns a k-anonymous and diverse

relation R′ that satisfies Σ. DIVA is a clustering-based anonymization algorithm that

works in two phases: (i) clustering, by partitioning R into disjoint clusters of size ≥ k;

and (ii) suppression, by suppressing a minimal number of QI values in each cluster

such that they have the same QI values, and form a QI-group of size ≥ k. The result

is a k-anonymous relation, as every QI-group is of size ≥ k.

Algorithm 10 presents the DIVA algorithm details. In the clustering phase in

Line 1, DIVA uses the DiverseClustering procedure to generate a set of diverse clusters

CΣ. These clusters guarantee that the diversity constraints in Σ will be satisfied by

125

Doctoral Thesis - Yu Huang McMaster - Computer Science

Algorithm 10: DIVA (R,Σ, k)

Output: k-anonymous and diverse relation.

1 CΣ := DiverseClustering(R,Σ, k);

2 if CΣ = ∅ then return unsatisfiable;

3 RΣ := Suppress(CΣ);

4 foreach Ci ∈ CΣ do R := R \ Ci;

5 Rk := Anonymize(R, k);

6 return Integrate(RΣ, Rk);

RΣ after the suppression phase in Line 3. If there is no k-anonymous relation R′ that

satisfies Σ, there is no such clustering, and DIVA returns CΣ := ∅. We provide details

of DiverseClustering in Section 5.4.1.

In the suppression phase, DIVA suppresses values according to the clusters in

CΣ. The Suppress procedure iterates over tuples in each cluster of C, and suppresses

Ai attribute values if there is more than one value for Ai in the same cluster. As-

suming each cluster in C contains at least k tuples, the result of Suppress in R is a

k-anonymous relation.

Returning to Algorithm 10, DIVA anonymizes the remaining tuples of R that

are not in CΣ (Line 4) by applying an existing k-anonymization algorithm (Line 5).

DIVA is amenable to any k-anonymization algorithm. In Line 6, Integrate returns

R′ = RΣ ∪ Rk if R′ |= Σ. Otherwise, R′ falsifies the upper bounds of some of the

constraints in Σ because of Rk, and Integrate resolves this by suppressing minimal

values in R′ to satisfy Σ.

Example 5.4.1. Consider relation R in Table 5.1, k = 2, and Σ = {σ1, σ2, σ3}, where

σ1 = (ETH[Asian], 2, 5), σ2 = (ETH[African], 1, 3) and σ3 = (CTY[Vancouver], 2, 4).

126

Doctoral Thesis - Yu Huang McMaster - Computer Science

DiverseClustering returns a clustering CΣ = {C1, C2, C3} where C1 = {t9, t10}, C2 =

{t5, t6}, and C3 = {t7, t8}. Tuples t9, t10 contain the same value ETH = Asian, and to-

gether with C1 guarantee that the lower bound in σ1 will be satisfied. C2 and C3 satisfy

the lower bounds of σ2 and σ3 for ETH = African and CTY = Vancouver, respectively.

Note that other clusterings, which satisfy Σ, are possible, such as {C2, {t8, t10}}. In

Section 5.4.1, we describe how we select one of these clusterings.

DiverseClustering returns an empty set if there is no clustering that satisfies Σ.

For example, if k = 3 there is no possible anonymization that satisfies σ1, σ3. In

particular, there are no clusters of size 3 that preserve both Vancouver and Asian.

For k = 2, DIVA continues with the Suppress procedure that transforms the tuples in

CΣ to RΣ = {g5, ..., g10} as shown in Table 5.3. DIVA anonymizes the remaining tuples

R \ CΣ = {t1, t2, t3, t4} using an existing k-anonymization algorithm that minimizes

the number of ?s. In this case, the optimal result is Rk = {g1, g2, g3, g4} in Table 5.3.

The Integrate procedure returns RΣ ∪Rk, which satisfies Σ.

Integrate resolves any inconsistency caused by adding Rk. For example, if Σ =

{σ1, ..., σ4} in which σ4 = (GEN[Male], 1, 3), RΣ ∪Rk 6|= σ4 because there are 4 males

in RΣ ∪Rk. Integrate suppresses GEN in g5, g6 or g3, g4 to satisfy σ4. �

5.4.1 Diverse Clustering

We now describe the DiverseClustering routine in the DIVA algorithm, and define a

clustering that satisfies a diversity constraint.

Definition 5.4.1. Given a diversity constraint σ over a relation R and a clustering

C with clusters of tuples in R, C satisfies σ, denoted as C |= σ if Suppress(C) |= σ.

The clustering C satisfies a set of constraints Σ, if C |= σi for every σi ∈ Σ.

127

Doctoral Thesis - Yu Huang McMaster - Computer Science

In Example 5.4.1, C = {C1} satisfies σ1 since Suppress(C) = {g9, g10} (cf. Ta-

ble 5.3) satisfies σ1. The objective of DiverseClustering is to find CΣ that satisfies Σ.

This works by computing clustering Cσi that satisfy diversity constraints σi ∈ Σ, and

then computing CΣ by merging the clusterings Cσi . The main challenge is to ensure

the clustering for each σi is consistent with clusterings for the other constraints in Σ.

If so, this allows us to merge the Cσi to obtain CΣ.

Definition 5.4.2 (Consistent clusterings). Consider diversity constraints σi and σj

over relation R. Two clusterings Cσi and Cσj are consistent if and only if Cσi |= σi and

Cσj |= σj implies Merge(Cσi , Cσj) |= {σi, σj}.

Merge in Defn. 5.4.2 merges clusters if they overlap, otherwise their union is com-

puted, e.g., Merge({{t5, t6}}, {{t6, t7}}) = {{t5, t6, t7}}, and Merge({{t5, t6}}, {{t7, t8}}) =

{{t5, t6}, {t7, t8}}. We can check the consistency of two clusterings using Merge and

Suppress.

Example 5.4.2. In Example 5.4.1, C2 = {{t5, t6}} and C3 = {{t6, t7}} are not

consistent w.r.t σ2 and σ3, because C2 |= σ2 and C3 |= σ3, but Merge(C2, C3) =

{{t5, t6, t7}} 6|= {σ2, σ3}. This occurs since t6 appears in two different clusters {t5, t6}

and {t6, t7} in C2 and C3, respectively. Consequently, the value Vancouver will be

suppressed in the clustering Merge(C2, C3) because t6[CTY] 6= t5[CTY], and hence, σ3

will not be satisfied. �

It is straightforward to show that if Cσi |= σi for every σi ∈ Σ, and every pair of

Cσi , Cσj are consistent, we can generate CΣ |= Σ by merging all clusterings Cσi . Note

that it is not necessary to check consistency of every pair of clusterings Cσi , Cσj , as we

only need to check if σi, σj apply to some tuples that are common to both constraints.

128

Doctoral Thesis - Yu Huang McMaster - Computer Science

We use this intuition to transform our problem of computing all Cσi to the problem

of graph coloring.

We model the problem of searching for the clusterings Cσi as a graph coloring

problem. Given an undirected graph G = (Γ, E), where Γ and E denote the set of

vertices and edges, respectively, and m distinct colors, the graph coloring problem

is to color all vertices subject to certain constraints. In its simplest form, no two

adjacent vertices can have the same color.

For relation R and diversity constraints Σ, we model each diversity constraint

σi ∈ Σ as a vertex vi ∈ Γ. We use vi.constraint to refer to σi. We define the relevant

tuples of σi, denoted Iσi ⊆ R, as tuples containing the target values of σi. We record

the relevant tuples of σi in vertex vi. An edge eij ∈ E, eij = (vi, vj), exists between

vertices vi and vj if there is at least one tuple in the intersection of their relevant tuple

sets, i.e., (Iσi ∩ Iσj) 6= ∅. In Example 5.4.1, G contains three vertices corresponding

to σ1, σ2, σ3 (cf. Figure 5.1), and two edges E = {(v1, v3), (v2, v3}}. The relevant

sets Iσ1 = {t8, t9, t10}, Iσ3 = {t6, t7, t8, t10}, have a non-empty intersection of {t8, t10}.

Similarly, for Iσ2 = {t5, t6}, Iσ2 ∩ Iσ3 = {t6}. We note that Iσ1 ∩ Iσ2 = ∅. Choosing

a color ci for vertex vi is analogous to finding a clustering Cσi for σi. In our setting,

to color two adjacent vi, vj, we must check that their clusterings Cσi and Cσj are

consistent. We define ci.clustering to refer to clustering corresponding to color ci.

Algorithm 11 presents the details of DiverseClustering. We build the graph G for

Σ and R (Line 1). We then initialize the clustering CΣ and a mapping V that stores

the color (assigned clustering) for each vertex (Line 2), and checks if a coloring exists

via Coloring.

Algorithm 12 presents the recursive function, Coloring, that takes a graph G, the

129

Doctoral Thesis - Yu Huang McMaster - Computer Science

Algorithm 11: DiverseClustering(R,Σ, k)

Output: Clustering CΣ.

1 G := BuildGraph(R,Σ);

2 V := ∅; CΣ := ∅;

3 if Coloring(G, V,R) then

4 foreach 〈vi, ci〉 ∈ V do CΣ := Merge(CΣ, ci.clustering);

5 return CΣ;

mapping V (specifying the colored vertices), relation R, and returns true if the re-

maining vertices of G can be colored; otherwise it returns false. In the naive version,

Coloring randomly selects an uncolored vertex (Line 2) to color using NextVertex.

In Section 5.5, we present two strategies for selecting candidate vertices. Given a

vertex v, we try to color v by checking whether the candidate clustering of v and its

adjacent vertices are inconsistent (Lines 3-12). The routine Clusterings returns can-

didate clusterings C that satisfy v.constraint (Suppress(C) |= v.constraint). For exam-

ple, in Example 5.4.1, Clusterings(σ1, R) contains four different clusterings {{t8, t9}},

{{t8, t10}}, {{t9, t10}}, {{t8, t9, t10}}, while Clusterings(σ2, R) contains only one clus-

tering {{t5, t6}}. In the naive algorithm, we assume Clusterings returns clusterings

in random order. We present strategies in Section 5.5 to order the clusterings to

minimize inconsistencies. In Lines 4-12, we check whether C has inconsistency with

the clustering of any constraint modeled by an adjacent vertex v′ to v. If they are

consistent, we generate a new color c assigned to the clustering C, and we temporar-

ily color v with c by adding 〈v, c〉 to V . We then recursively call Coloring to check

whether the remaining vertices in G can be colored. If the color c does not work, i.e.

Coloring returns false in Line 11, we remove 〈v, c〉 from V , and try another color.

130

Doctoral Thesis - Yu Huang McMaster - Computer Science

Algorithm 12: Coloring(G, V,R)

Output: true if there exists a coloring of G, otherwise false.

1 if V contains all vertices of G then return true;

2 v := NextVertex(G, V);

3 foreach C ∈ Clusterings(v.constraint, R) do

4 consistent := true;

5 foreach 〈v′, c′〉 ∈ V s.t. v′ is adjacent to v do

6 if C and c′.clustering are inconsistent then

7 consistent := false; break;

8 if consistent then

9 c := new color with clustering C;

10 V := V ∪ {〈v, c〉};

11 if Coloring(G, V,R) then return true ;

12 V := V \ {〈v, c〉};

13 return false

If all clusterings are inconsistent, i.e., there is no successful coloring of v, we return

false in Line 13, to backtrack and evaluate a different vertex.

Example 5.4.3. Consider an execution of Alg. 12 Coloring on the graph G in Fig-

ure 5.1, with vertices {v1, v2, v3} representing constraints {σ1, σ2, σ3}, respectively.

The candidate clusterings that satisfy each constraint (i.e., the output of the routine

Clusterings) are shown beside each vertex. Consider vertex v1 first (Line 2), and we

select Sσ1 = {t9, t10}, which is consistent with any other clustering. We then try to

color vertices v2 and v3 by recursively calling Coloring in Line 11. If vertex v2 is

131

Doctoral Thesis - Yu Huang McMaster - Computer Science

Clusterings(σ1,𝑅)
{{𝑡8, 𝑡9}}
{{𝑡8, 𝑡10}}
{{𝑡9, 𝑡10}}

{{𝑡8, 𝑡9, 𝑡10}}

Clusterings(σ2,𝑅)
{{𝑡5, 𝑡6}}

Clusterings(σ3,𝑅)
{{𝑡6, 𝑡7}}
{{𝑡7, 𝑡8}}
{{𝑡6, 𝑡10}}
…

{{𝑡6, 𝑡7, 𝑡10}}
…

{{𝑡6, 𝑡7} 𝑡8, 𝑡10 }
…

𝐼𝜎1 ∩ 𝐼𝜎3
= {𝑡8, 𝑡10}

𝐼𝜎2 ∩ 𝐼𝜎3
= {𝑡6}

𝑣1

𝑣2

𝑣3

Figure 5.1: Diverse clustering as graph coloring.

selected, the only clustering is Cσ2 = {{t5, t6}} that is consistent with Cσ1 . Consid-

ering the last vertex v3, we iterate over the clusterings for σ3, and determine that

the only consistent clustering (w.r.t. Cσ1 and Cσ2) is {{t7, t8}}, which we assign to

Cσ3 . Since we have found a clustering satisfying all constraints (i.e., a coloring of all

vertices), the Coloring routine returns true with V containing the vertices and their

colors (i.e., clusterings). The calling routine DiverseClustering uses V to compute

the final clustering as CΣ = {{t5, t6}, {t7, t8}, {t9, t10}}. �

Runtime Analysis. DIVA runs in polynomial time w.r.t. the number of con-

straints since DiverseClustering, Anonymize, and Suppress run in polynomial time.

In particular, the size of these clusters is in [k, 2k − 1] (where k is a parameter from

k-anonymity) and there are polynomially many clusters of each size. Note that there

is no cluster of size ≥ 2k because we can split them into clusters of size ≥ k. DIVA

runs in polynomial time w.r.t. the size of |R| (the number of tuples). This run-

time depends on Coloring where we consider O(N2k−1) clusters of size in [k, 2k − 1]

as k-choose-N , (k+1)-choose-N , ..., and (2k-1)-choose-N are all in O(N2k−1). In

the next section, we present strategies to improve the performance of Coloring while

132

Doctoral Thesis - Yu Huang McMaster - Computer Science

evaluating the space of possible assignments.

5.5 Selection Strategies

In the naive version of DIVA, we randomly select a constraint and a clustering to

evaluate. These choices impact algorithm performance as poor initial selections can

lead to increased backtracking operations downstream. We selectively order the con-

straints (vertices) and clusterings (colors) that most likely lead to a graph coloring

while minimizing the need to backtrack. We start evaluating constraints (vertices)

that are the most difficult to satisfy. By postponing these candidates, we may en-

counter fewer or no possible consistent clusterings as we assign clusterings to less

restrictive constraints. We apply this intuition to propose the following two strate-

gies.

DIVA-MinChoice: Our preference is to select constraints with the fewest candi-

date clusterings, as we start with the most restrictive constraints first, i.e., those with

the fewest choices, ensuring that these constraints are first satisfied. In the routine

NextVertex, we initially select a vertex v with a minimum value |Clusterings(v.constraint, R)|.

As we visit vertices and assign (colors) clusterings, we update the candidate cluster-

ings for their neighbors.

DIVA-MaxFanOut: In this strategy, we target constraints that overlap with the

highest number of other constraints. This is modeled in the graph G as vertices with

the maximum number of unvisited edges. We preferentially select these constraints

due to their high number of interactions with other constraints, which lead to an

increased number of target attributes, and bounds that the relevant tuples must sat-

isfy. This heuristic strategy aims to satisfy “maximum overlap” constraints first, and

133

Doctoral Thesis - Yu Huang McMaster - Computer Science

perform early pruning of unsatisfiable clusterings to reduce the number of clustering

evaluations downstream. The vertex selection in this strategy is similar to incidence

degree ordering in graph coloring [114].

In both strategies, Clusterings returns a list of clusterings in ascending order of

the number of overlapping tuples. For instance, for a clustering C and a neighboring

vertex v (constraint σ), overlapping tuples are in the target Iσ and in a cluster in C.

In Section 5.6.4, we show these strategies improve runtime by an average 24%.

Example 5.5.1. In Fig. 5.1, the DIVA-MinChoice strategy first selects vertex v2 (σ2),

since |Clusterings(σ1, R)| = 4, |Clusterings(σ2, R)| = 1, |Clusterings(σ3, R)| = 12.

After assigning cluster {{t5, t6}} to v2, we update the clusterings, and vertices v1, v3

will each have 4 clusterings; we break ties randomly. In DIVA-MaxFanOut, we first

select vertex v3 (σ3) containing two unvisited edges. Clusterings then computes clus-

ter {{t7, t8}} has 2 overlapping tuples (t8, t10 are in Iσ1). Similarly, cluster {{t7, t8}}

has 1 overlapping tuple t8 in Iσ1 . Hence, clustering {{t7, t8}} is ranked first assuming

it wins the tie against clustering {{t7, t10}}. We randomly select between v1 and v2

given their equal number of unvisited edges. �

5.6 Experiments

Our evaluation has the following objectives: (1) We evaluate DIVA’s accuracy using

three types of diversity constraints as we vary k, and the conflict rate among tuples.

(2) We evaluate the accuracy and performance of all DIVA variants as we vary k, |Σ|,

the conflict rate, and the target attribute(s) data distribution. (3) We compare against

an existing k-anonymization baseline algorithm to evaluate the cost of introducing

diversity constraints into data anonymization.

134

Doctoral Thesis - Yu Huang McMaster - Computer Science

Pantheon Census Credit Population (Syn)

|R| 11,341 299,285 1000 100,000

n 17 40 20 7

|ΠQI(R)| 5,636 12,405 60 24,630

|Σ| 24 21 18 10

Table 5.5: Data characteristics.

5.6.1 Experimental Setup

We implement DIVA using Python 3.6 on a server with 32 Core Intel Xeon 2.2

GHz processor with 32GB RAM. We describe the datasets, diversity constraints, and

baseline comparative algorithm.

Datasets. We use three real data collections and one synthetic dataset. Table 5.5

gives the data characteristics, showing a range of data sizes w.r.t. the number of

tuples (|R|), number of attributes (n), number of unique values in the QI attributes

(|ΠQI(R)|), and the total number of defined diversity constraints (|Σ|).

Pantheon [115]. This dataset describes individuals based on the popularity of

their biographical page in Wikipedia. Attributes include name, sex, city, country,

continent. We select sex, city, country and continent as QI attributes, and define

diversity constraints on sex and continent, where the attribute domain is two and six,

respectively. We use this dataset to evaluate algorithm accuracy.

Census [116]. The U.S. Census Bureau describes population data for 1970, 1980

and 1990. We select sex, workclass, marital status, family relationship, race, and

native country as QI attributes. We define (single and multi-attribute) diversity

constraints on the sex and race attribute domains with size two and five, respectively.

135

Doctoral Thesis - Yu Huang McMaster - Computer Science

We evaluate accuracy, runtime, and comparative performance with this dataset.

German Credit [116]. This dataset classifies persons as good or bad credit risk

according to attributes such as credit history, credit amount, sex, job, housing, marital

status, and stratified savings account balances. We select sex, job, housing, saving

account as QI attributes, and define diversity constraints on sex and job containing

two and four values, respectively. We comparatively evaluate against an existing

k-anonymization baseline with this dataset.

Synthetic Population Data (Pop-Syn). We use the Synner.io tool to generate

realistic synthetic data by declaratively specifying the desirable distribution properties

in the target attributes [117]. We generate a synthetic dataset describing population

characteristics (age, education, race, gender, income, marital status, occupation).

We select a subset of these attributes as target attributes, and vary their statistical

distributions (uniform, Gaussian, Zipfian) to study the impact on DIVA’s accuracy.

Diversity Constraints. We implement different notions of diversity such as mini-

mum frequency, average and proportional representation from the attribute domain.

We use the diversity definitions presented by Stoyanovich et. al. that define three

classes of diversity constraints as described below [7]. We generate a set of satisfiable

diversity constraints Σi for each class, i = {1, 2, 3}, for each dataset.

In the original definition, Stoyanovich et. al., define these diversity constraint

classes w.r.t. the number of selected elements from a set [7]. In our setting, we

consider an equivalent notion as the number U of published (non-suppressed) tuples

in R′. To estimate U , recall the tuples in the QI attributes are suppressed to achieve

the indistinguishability of a tuple among (k − 1) other tuples in a cluster group.

We can estimate U by computing the cardinality of the QI attribute(s) domain, and

136

Doctoral Thesis - Yu Huang McMaster - Computer Science

subtracting this value from the size of R. Let ΠQI(R) represent the projection of

relation R on the QI attributes, i.e., the set of unique tuples w.r.t. the QI attributes.

These unique values will need to be suppressed among an average of |R|
k

groups to

achieve k-anonymity. Hence, we estimate U = |R| − |ΠQI(R)| as the number of

tuples that are published (unsuppressed) tuples in R′. We now describe each class

of diversity constraints. Let d = |dom(A)|, i.e., the number of unique values in the

target attribute(s) A domain. The full set of diversity constraints, datasets and our

code are available at [118].

• Minimum: Cover as many values in the attribute(s) domain as possible. If U > d,

set λl = λr = 1 for all d (value) constraints. Then, compute w = U − d. If w > 0,

then assign these values to a random constraint σ′j by setting its λ′r = λ′r+w. Select

σ′j randomly where freq(a) ≥ λ′r + w.

If U < d, set λl = λr = 1 to a random set of U out of d constraints, and set

λl = λr = 0 to the remaining d− U constraints.

• Average: Select equal numbers for each value in the attribute domain. If U ≥ d,

set λl = min(bU/dc, freq(a)), λr = min(dU/de, freq(a)), where freq(a) represents

the frequency of value(s) a in attribute(s) A in R. Next, compute w =
∑d

i=1 λri . If

w < U , then assign these values to a random σ′j by setting λ′r = λ′r + w. Select σ′j

randomly where freq(a) ≥ λ′r + w. If U < d, define as in minimum class.

• Proportion: Select equal proportions for each value in dom(A). If U ≥ d, set

λl = bU ∗ freq(a)/|R|c, λr = dU ∗ freq(a)/|R|e. If U < d, set constraints as in

minimum class above.

Comparative Baseline. DIVA runs in polynomial time w.r.t. |R| since Diver-

seClustering, Anonymize, and Suppress run in polynomial time. DiverseClustering

137

Doctoral Thesis - Yu Huang McMaster - Computer Science

Symbol Description Values

|R| #tuples 60k, 120k, 180k, 240k, 300k

|Σ| #constraints 4, 8, 12, 16, 20

cf(Σ) conflict rate 0, 0.2, 0.4, 0.6, 0.8, 1

k minimum cluster size 10, 20, 30, 40, 50

Table 5.6: Parameter values (defaults in bold)

Method norm disc

MinChoice [118] 0.62

MaxFanOut [118] 0.51

k-member [119] 0.34

Table 5.7: Comparison Summary

and its recursive procedure Coloring run in polynomial time w.r.t. |R| since the num-

ber of candidate clusterings for each constraint is polynomial w.r.t. |R|. In particular,

the size of these clusters is in [k, 2k − 1] and there are polynomially many clusters of

each size. Note that there is no cluster of size ≥ 2k because we can split them into

clusters of size ≥ k. DiverseClustering and DIVA run in exponential time w.r.t. |Σ|

since we can assign O(|R|) different clusterings to each constraint. In the next sec-

tion, we present strategies to improve the performance of Coloring while evaluating

the space of possible assignments.

138

Doctoral Thesis - Yu Huang McMaster - Computer Science

5.6.2 Metrics and Parameters

Metrics. We compute the average runtime over five executions. To quantify accu-

racy, we use an intuitive measure to model desirable anonymizations that minimize

a cost function. Existing anonymization algorithms use cost functions that minimize

information loss from suppression [66]. The resulting anonymized relation R′ can

be considered as imposing a penalty on each tuple that reflects its information loss

due to suppression. The discernibility metric, disc(R′, k), quantifies the differenta-

tion between tuples for a given k value, by assigning a penalty to each tuple based

on the number of tuples that are indistinguishable from it in R′ [120]. If an un-

suppressed tuple lies in a cluster of size j, it is assigned a penalty of j. If a tuple

is suppressed, it is assigned a penalty of |R′| since the tuple cannot be differenti-

ated from other tuples in R′ [120]. We define the normalized discernibility score as

d̂isc(R′, k) = disc(R′,k)
|R′2| . To quantify accuracy, we compare disc(R′, k) for R′ computed

by DIVA against disc(R′′, k) for the best R′′ computed by sampling among all the

possible clusters and selecting the best clustering. We compute accuracy as the ratio

of the normalized discernibility scores d̂isc(R′′,k)

d̂isc(R′,k)
. In our comparative evaluation, we

measure accuracy using d̂isc(R′, k) to quantify the penalty to enforce diversity in R′.

Parameters. Unless otherwise stated, Table 5.6 shows the range of parameter val-

ues we use, with default values in bold. We measure the conflict rate between the

diversity constraints by measuring the number of overlapping relevant tuples between

a pair of diversity constraints. We use Jaccard similarity to quantify the similarity

between two sets, computed as the size of the intersection divided by the size of the

union of the sets. Similarly, we define the conflict rate cf(σi, σj) =
|Iσi∩Iσj |
|Iσi∪Iσj |

between

constraints σi, σj, and Iσi refers to the relevant tuples of σi. For all σi ∈ Σ, we

139

Doctoral Thesis - Yu Huang McMaster - Computer Science

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 10 20 30 40 50

ac
cu

ra
cy

k

MaxFanOut--Min
MaxFanOut--Avg

MaxFanOut--Prop

MinChoice--Min
MinChoice--Avg

MinChoice--Prop

Naive--Min
Naive--Avg

Naive--Prop

(a) Varying Σ, k (Census)

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

conflict rate

MinChoice--Min
MinChoice--Avg

MinChoice--Prop

MaxFanOut--Min
MaxFanOut--Avg

MaxFanOut--Prop

Naive--Min
Naive--Avg

Naive--Prop

(b) Varying Σ, cf (Census)

Figure 5.2: Varying Σ, k, cf.

compute cf(Σ) =
Σ

|Σ|
i=1cf(σi,σi+1)

(|Σ|
2)

, i.e., the average of all conflict scores for every pair of

diversity constraints. Values of cf(Σ) range from [0, 1], where 0 indicates no over-

lapping relevant tuples, and 1 indicates full overlap (exact similarity) of the relevant

tuples among the constraints.

5.6.3 Accuracy

We evaluate accuracy using three classes of constraints, and then vary |Σ|, cf , and

the data distribution in the target attribute values.

Exp-1: Vary Σ and k. Figure 5.2a gives the DIVA accuracy for the three variations

of DIVA as we vary k using the Census dataset, across the three diversity constraint

classes. Accuracy increases for larger k values as more values are suppressed to achieve

anonymization. As expected, DIVA-Naive leads to the lowest accuracy due to its

random selections. DIVA-MaxFanOut outperforms DIVA-MinChoice by an average

+9%, since by ordering clusterings in ascending order according to the number of

overlapping tuples, we select clusterings that satisfy a maximal number of dependent

140

Doctoral Thesis - Yu Huang McMaster - Computer Science

constraints. In contrast, DIVA-MinChoice does not consider this constraint interac-

tion. The proportion class of constraints achieves the best tradeoff between accuracy

and adapting to the relative frequency of values in the data. Although the minimum

class of constraints achieves higher accuracy in some cases (given the minimal lower

bound values), this can lead to tokenization in R′.

Exp-2: Vary Σ and Conflict Rate. Figure 5.2b shows DIVA accuracy as we vary

the conflict rate (cf) across the three constraint classes. Accuracy declines for increas-

ing cf as it is more difficult to find a clustering. Again, DIVA-Naive achieves the lowest

accuracy, whereas DIVA-MaxFanOut performs best by first selecting clusterings that

satisfy neighboring vertices (constraints). The proportion class of constraints capture

the relative distribution in the attribute domain (with less sensitivity than average),

and avoids tokenization (a drawback of minimum constraints). Henceforth, we run

subsequent experiments using the proportion class constraints.

Exp-3: Vary |Σ|. Figure 5.3a and Figure 5.3b show the DIVA accuracy as we vary

the number of (proportion) constraints |Σ| using the Pantheon and Census dataset,

respectively. DIVA-MaxFanOut outperforms DIVA-Naive and DIVA-MinChoice by

+27% and +9%, respectively, (Pantheon), and +30% and +7% (Census). As |Σ|

increases, we see accuracy decline but at a relatively slow linear rate. As a new

constraint σ 6∈ Σ is added, we observe new relevant tuples w.r.t. σ join existing

clusters of relevant tuples from Σ leading to a smaller decline in accuracy. This occurs

with multi-attribute constraints that share target attributes with single attribute

constraints. The alignment of QI and target attribute values between new and existing

tuples influence the accuracy rate of decline.

Exp-4: Vary Conflict Rate. Figure 5.3c shows the DIVA accuracy as we vary

141

Doctoral Thesis - Yu Huang McMaster - Computer Science

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20

ac
cu

ra
cy

|Σ|

MinChoice MaxFanOut Naive

(a) Accuracy vs. |Σ|

(Pantheon)

 0

 0.2

 0.4

 0.6

 0.8

 1

 4 8 12 16 20

ac
cu

ra
cy

|Σ|

MinChoice MaxFanOut Naive

(b) Accuracy vs. |Σ|

(Census)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

ac
cu

ra
cy

conflict rate

MinChoice MaxFanOut Naive

(c) Accuracy vs. cf

(Pantheon)

 0

 0.2

 0.4

 0.6

 0.8

 1

Zipf
ian

Unif
or

m

Gau
ss

ian

ac
cu

ra
cy

MinChoice MaxFanOut Naive

(d) Accuracy vs. distrib.

(Pop-Syn)

 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 4 8 12 16 20

T
im

e(
m

in
s)

|Σ|

MinChoice MaxFanOut Naive

(e) Runtime vs. |Σ|

(Census)

 50
 100
 150
 200
 250
 300
 350
 400
 450
 500
 550

 0 0.2 0.4 0.6 0.8 1

tim
e(

m
in

s)

conflict rate

MinChoice MaxFanOut Naive

(f) Runtime vs. cf (Census)

Figure 5.3: DIVA effectiveness and efficiency.

the conflict rate (cf). As expected, accuracy declines for increasing cf, with DIVA-

MaxFanOut and DIVA-MinChoice outperforming DIVA-Naive by +17% and +9%, re-

spectively. DIVA-MaxFanOut shows improved accuracy over DIVA-MinChoice since

targeting constraints with a high number of interactions (with other constraints) first

allows it to eliminate unsatisfying clusterings sooner, while also satisfying dependent

diversity constraints.

Exp-5: Vary Data Distribution. We generate target attribute values according

to the Zipfian, uniform, and Gaussian distributions in the Pop-Syn dataset with |R| =

100k and |Σ| = 8. Figure 5.3d shows that DIVA-MaxFanOut performs best across all

distributions by 8% and 17% over DIVA-MinChoice and DIVA-Naive, respectively.

The target uniform distribution performs best as domain values are spread evenly

142

Doctoral Thesis - Yu Huang McMaster - Computer Science

across the tuples, avoiding contention among a small set of tuples. This conflict

occurs more often in the Zipfian case than the Gaussian, leading to lower accuracy.

5.6.4 Performance

Exp-6: Scale |Σ|. Figure 5.3e shows the DIVA runtime as we vary the number of

constraints over the Census dataset. As expected, DIVA-Naive shows exponential

growth for increasing |Σ| since we can assign O(|R|) different clusterings to each

constraint. Our selection strategies to restrict clusterings and perform early pruning

in DIVA-MinChoice and DIVA-MaxFanOut show linear scale-up with a 29% and 18%,

respectively, reduction in runtime over the naive version.

Exp-7: Vary Conflict Rate. Figure 5.3f shows runtimes as we vary the conflict

rate. DIVA-MinChoice outperforms DIVA-MaxFanOut and DIVA-Naive by 16% and

23%, respectively. We observe that when conflicts occurs among a set of tuples,

leaving residual tuples that are unique and the only ones that can satisfy a constraint,

e.g., vertex v2 (σ2) in Figure 5.1, DIVA-MinChoice performs well. By selecting these

special constraints first (with fewer clustering choices), we reduce the number of

clusterings to evaluate.

5.6.5 Overhead of Diversity Constraints

Exp-8: Vary k. Figure 5.4a and Figure 5.4b show the comparative discernibility

scores and runtimes between DIVA and k-member [119]. DIVA-MinChoice and DIVA-

MaxFanOut incur an average 32% and 44% higher runtime, respectively, than k-

member, reflecting the cost of computing a diverse data instance. As k increases,

we expect more tuples to be suppressed leading to higher penalty costs, and higher

143

Doctoral Thesis - Yu Huang McMaster - Computer Science

 0

 0.2

 0.4

 0.6

 0.8

 1

 10 20 30 40 50

no
rm

 d
is

c

k

MinChoice MaxFanOut k-member

(a) d̂isc vs. k (Credit)

 0

 5

 10

 15

 20

 25

 30

 35

 40

 10 20 30 40 50

T
im

e(
m

in
s)

k

MinChoice MaxFanOut k-member

(b) Runtime vs. k (Credit)

 0

 0.2

 0.4

 0.6

 0.8

 1

60k 120k 180k 240k 300k

no
rm

 d
is

c

|R|

MinChoice MaxFanOut k-member

(c) d̂isc vs. |R| (Census)

 0

 50

 100

 150

 200

 250

 300

60k 120k 180k 240k 300k

T
im

e(
m

in
s)

|R|

MinChoice MaxFanOut k-member

(d) Runtime vs. |R| (Census)

Figure 5.4: Comparative evaluation.

d̂isc(R′, k) scores. For DIVA-MaxFanOut and DIVA-MinChoice, a 10% reduction in

d̂isc(R′, k) costs 13m and 9m, respectively, whereas for k-member, the cost is 4m. We

believe that the overhead and trade-off are still acceptable in practice since constraint

validation and anonymization is often done offline. As next steps, we are exploring

techniques to reduce the overhead via parallel processing of the Coloring routine on

subgraphs of G.

Exp-9: Vary |R|. Figure 5.4c shows that as |R| increases, d̂isc(R′, k) scores slightly

improve as QI and target attribute values from the new tuples align with existing

tuples, and do not incur additional suppression (penalty). In contrast, when new

attribute values are suppressed to satisfy diversity constraints (at |R| = 240K), we

144

Doctoral Thesis - Yu Huang McMaster - Computer Science

incur increased penalty costs. Figure 5.4d shows that DIVA runtimes increase

linearly w.r.t |R| with an average overhead of 36% over the baseline, as new tuples

and clusterings need to be evaluated.

5.7 Conclusion

In this Chapter, we studied the (k,Σ)-anonymization problem and introduce DIVA, a

DIVersity-driven Anonymization algorithm that computes a privatized data instance

guaranteed to satisfy a set of diversity constraints. We evaluated the efficiency and

effectiveness of our algorithm with real datasets. The results of evaluation showed

that our algorithm can guarantee the data diversity in the anonymization with accept-

able overhead. As future work, we intend to study more expressive statistical-based

diversity constraints, and privacy extensions beyond k-anonymity. We are also in-

vestigating a distributed version of the coloring algorithm in DiverseClustering for

improved scalability.

145

Chapter 6

Conclusion and Future Work

In this thesis, we aim to address the challenges of data duplication, data privacy and

cleaning, and data diversity. We summarize our contributions and propose directions

for future work.

6.1 Data Deduplication

In our first contribution, we present a semantic-aware data deduplication framework,

which combines constraint and non-constraint attribute features to identify dupli-

cates. We propose a set of statistical features to capture attribute and constraint

properties. We also propose a weighted frequency metric, which can assign greater

weight on terms that are better indicators of duplicates. We evaluate our techniques

on real datasets and the results show that our techniques achieve improved runtime

performance against existing learning-based models, while achieving comparative ac-

curacy.

146

Doctoral Thesis - Yu Huang McMaster - Computer Science

Future Work. As next steps, we intend to improve the robustness of our frame-

work against missing values by developing imputation methods that impute the miss-

ing values. We will experiment with more use cases to refine our duplication metrics

to handle greater heterogeneity of data types, and defining duplication scores at the

record level. We plan to explore improved matching accuracy by relaxing the strict

equality conditions on numeric values to allow matching to include a permitted tol-

erance window between two values.

6.2 Data Privacy and Data Cleaning

In our second contribution, we presented a privacy-aware data cleaning framework,

which preserves (X,Y,L)-anonymity in sensitive data during data cleaning. We intro-

duce generalized databases and queries, along with an extended data pricing scheme

that allows the client to securely query the service provider. We propose SafePrice,

a data pricing algorithm that enforces (X,Y,L)-anonymity in our framework that re-

solves inconsistencies in the client and uses the notion of generalized repair values to

protect the privacy of the service provider.

Future Work. We plan to extend our framework to include multiple service

providers and allow price negotiation between client and service providers. The cur-

rent framework only allows the client to query and purchase from one service provider,

and there is no room for bargaining. When multiple providers participate, they may

compete with each other through price strategies. Since there are multiple choices,

the client can optimize his budget by purchasing data from different service providers

to reduce the cost.

147

Doctoral Thesis - Yu Huang McMaster - Computer Science

Another direction is to include multiple clients in our framework. Once multi-

ple clients are involved, the challenge is to design a mechanism to protect privacy

when the clients may exchange the purchased data with each other. An initial idea

is to maintain a privacy-revealing table inside the service provider. This privacy-

revealing table will keep track of the revealed values from the service provider. Once

the privacy-revealing table detects the revealed information has reached the service

provider’s privacy budget, the service provider will stop answering further queries.

We also plan to extend our framework to other privacy models such as l-diversity

for a stronger privacy guarantee. The current privacy model in our framework is

based on k-anonymity. It requires that the number of tuples in each QI group should

be no less than k to break the linkage between QI attributes and sensitive attributes.

If the sensitive values in the same QI group are all equal, then this model will not

work. To achieve l-diversity, we need to extend our model to ensure there are at least

l different values in the sensitive attributes for each QI group. Since the privacy is

determined by two factors: the number of tuples in each QI group and the number

of distinct values, we need to adjust our pricing mechanism as well. In that case, our

pricing mechanism should consider the impact of the distribution of revealed values as

well as the distribution of the remaining values during the query answering process.

6.3 Data Diversity

Finally, we studied the problem of diversifying anonymized data using diversity con-

straints. We present a diversity-driven anonymization algorithm that anonymizes a

given data instance, while ensuring a set of diversity constraints are satisfied.

Future Work. We plan to include data fairness into our framework. The goal

148

Doctoral Thesis - Yu Huang McMaster - Computer Science

of data fairness is to ensure the results obtained using computerized processing are

unbiased by nature. There are two types of data fairness: individual fairness and

group fairness [121]. Individual fairness states that two individuals who are similar

w.r.t. a particular classification task should be classified similarly. Group fairness

states that the proportion of members in a specific group who are classified positively

should be statistically indistinguishable from the proportion of members of the overall

population. The challenge is to model data fairness and include it into our framework.

We also intend to extend the privacy model in our framework. We plan to include

differential privacy(DP) into our framework and study how to satisfy both DP and

a set of diversity constraints. The challenge is to quantify the randomization that is

introduced by DP and adjust the lower and upper bound of our diversity constraint

to adapt to this randomization. A key challenge to exploring DP with diversity

constraints, will be to study models that can capture the diversity requirements as

part of aggregate queries.

Lastly, we will investigate a distributed version of the diversity clustering algo-

rithm for improved scalability. We will modify our graph colouring algorithm to run

in parallel by partitioning the graph into subgraphs. The colouring algorithm will run

on these subgraphs in parallel to find the clusterings. Once the colouring algorithm

is completed in each subgraph, we can merge the clusterings.

149

Bibliography

[1] T. C. Redman, “The impact of poor data quality on the typical enterprise,”

Communications of the ACM, vol. 41, no. 2, pp. 79–82, 1998.

[2] I. F. Ilyas, “Effective Data Cleaning with Continuous Evaluation,” in IEEE

Data Engineering Bulletin, vol. 39, pp. 38–46, 2016.

[3] P. Howard, “The business case for data quality,” in Bloor Research, White

Paper, 2012.

[4] A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record detec-

tion: A survey,” in IEEE Transactions on Knowledge and Data Engineering,

2007.

[5] A. Chalamalla, I. F. Ilyas, M. Ouzzani, and P. Papotti, “Descriptive and pre-

scriptive data cleaning,” in Proceedings of the ACM SIGMOD International

Conference on Management of Data, pp. 445–456, 2014.

[6] L. Sweeney, “K-anonymity: A model for protecting privacy,” International

Journal of Uncertainty, Fuzziness and Knowledge-Based Systems, vol. 10, no. 5,

pp. 557–570, 2002.

150

Doctoral Thesis - Yu Huang McMaster - Computer Science

[7] J. Stoyanovich, K. Yang, and H. Jagadish, “Online set selection with fairness

and diversity constraints,” in International Conference on Extending Database

Technology, pp. 241–252, 2018.

[8] Y. Huang, F. Chiang, A. Maier, M. Petitclerc, Y. Saillet, D. Spisic, and

C. Zuzarte, “Quantifying duplication to improve data quality,” in Proceedings

of the 27th Annual International Conference on Computer Science and Software

Engineering, pp. 272–278, 2017.

[9] Y. Huang and F. Chiang, “Refining duplicate detection for improved data qual-

ity.,” in International Conference on Theory and Practice of Digital Libraries,

2017.

[10] Y. Huang and F. Chiang, “Towards a unified framework for data cleaning and

data privacy,” in International Conference on Web Information Systems Engi-

neering, pp. 359–365, Springer, 2015.

[11] Y. Huang, M. Milani, and F. Chiang, “Pacas: Privacy-aware, data cleaning-

as-a-service,” in IEEE International Conference on Big Data, pp. 1023–1030,

2018.

[12] Y. Huang, M. Milani, and F. Chiang, “Privacy-aware data cleaning-as-a-

service,” vol. 94, 2020.

[13] H. Yao and H. J. Hamilton, “Mining functional dependencies from data,” Data

Mining and Knowledge Discovery, vol. 16, no. 2, pp. 197–219, 2008.

[14] W. Fan, J. Li, S. Ma, N. Tang, and W. Yu, “Towards certain fixes with editing

rules and master data,” The VLDB Journal, vol. 21, no. 2, pp. 213–238, 2012.

151

Doctoral Thesis - Yu Huang McMaster - Computer Science

[15] W. Fan, X. Jia, J. Li, and S. Ma, “Reasoning About Record Matching Rules,”

in Proceedings of the VLDB Endowment, vol. 2, pp. 407–418, 2009.

[16] F. Chiang and R. J. Miller, “A unified model for data and constraint repair,”

in IEEE International Conference on Data Engineering, pp. 446–457, 2011.

[17] M. Volkovs, F. Chiang, J. Szlichta, and R. J. Miller, “Continuous data cleaning,”

in IEEE International Conference on Data Engineering, pp. 244–255, 2014.

[18] T. Rekatsinas, X. Chu, I. F. Ilyas, and C. Ré, “Holoclean: Holistic data repairs

with probabilistic inference,” Proceedings of the VLDB Endowment, vol. 10,

no. 11, pp. 1190–1201, 2017.

[19] Z. Yu and X. Chu, “Piclean: A probabilistic and interactive data cleaning

system,” in Proceedings of the ACM SIGMOD International Conference on

Management of Data, pp. 2021–2024, 2019.

[20] S. Kolahi and L. Lakshmanan, “On approximating optimum repairs for func-

tional dependency violations,” in International Conference on Database Theory,

pp. 53–62, 2009.

[21] I. F. Ilyas, X. Chu, et al., “Trends in cleaning relational data: Consistency and

deduplication,” Foundations and Trends in Databases, vol. 5, no. 4, pp. 281–393,

2015.

[22] C. Gokhale, S. Das, A. Doan, J. F. Naughton, N. Rampalli, J. Shavlik, and

X. Zhu, “Corleone: Hands-off crowdsourcing for entity matching,” in Proceed-

ings of the ACM SIGMOD International Conference on Management of Data,

pp. 601–612, 2014.

152

Doctoral Thesis - Yu Huang McMaster - Computer Science

[23] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “Crowder: Crowdsourc-

ing entity resolution,” Proceedings of the VLDB Endowment, vol. 5, no. 11,

pp. 1483–1494, 2012.

[24] M. Yakout, Elmagarmid, Neville, Ouzzani, and Ilyas, “Guided data repair,”

Proceedings of the VLDB Endowment, vol. 4, no. 5, pp. 279–289, 2011.

[25] X. Chu, Morcos, Ilyas, Ouzzani, Papotti, Tang, and Ye, “KATARA: A data

cleaning system powered by knowledge bases and crowdsourcing,” in Proceed-

ings of the ACM SIGMOD International Conference on Management of Data,

pp. 1247–1261, 2015.

[26] P. Samarati, “Protecting respondents identities in microdata release,” IEEE

Transactions on Knowledge and Data Engineering, vol. 13, no. 6, pp. 1010–

1027, 2001.

[27] I. Bhattacharya and L. Getoor, “Collective entity resolution in relational data,”

in IEEE Transactions on Knowledge and Data Engineering, vol. 1, p. 5, 2007.

[28] W. E. Winkler, “The state of record linkage and current research problems,” in

Statistical Research Division, US Census Bureau, 1999.

[29] A. Arasu, M. Götz, and R. Kaushik, “On active learning of record matching

packages,” in Proceedings of the ACM SIGMOD International Conference on

Management of Data, pp. 783–794, 2010.

[30] W. E. Winkler, “Overview of record linkage and current research directions,” in

Bureau of the Census, 2006.

153

Doctoral Thesis - Yu Huang McMaster - Computer Science

[31] E. S. Ristad and P. N. Yianilos, “Learning string-edit distance,” in IEEE Trans-

actions on Pattern Analysis and Machine Intelligence, vol. 20, pp. 522–532,

1998.

[32] N. Koudas, A. Saha, D. Srivastava, and S. Venkatasubramanian, “Metric func-

tional dependencies,” in IEEE International Conference on Data Engineering,

pp. 1275–1278, 2009.

[33] W. W. Cohen, “Integration of heterogeneous databases without common do-

mains using queries based on textual similarity,” in Proceedings of the ACM

SIGMOD International Conference on Management of Data, vol. 27, pp. 201–

212, 1998.

[34] O. Benjelloun, H. Garcia-Molina, H. Kawai, T. E. Larson, D. Menestrina, Q. Su,

S. Thavisomboon, and J. Widom, “Generic Entity Resolution in the SERF

Project,” in IEEE Data Engineering Bulletin, 2006.

[35] O. Benjelloun, H. Garcia-Molina, D. Menestrina, Q. Su, S. E. Whang, and

J. Widom, “Swoosh: a generic approach to entity resolution,” in Proceedings of

the VLDB Endowment, pp. 255–276, 2009.

[36] G. de Assis Costa and J. M. P. de Oliveira, “A blocking scheme for entity resolu-

tion in the semantic web,” in IEEE 30th international conference on Advanced

Information networking and applications, pp. 1138–1145, 2016.

[37] Q. Wang, M. Cui, and H. Liang, “Semantic-aware blocking for entity reso-

lution,” in IEEE Transactions on Knowledge and Data Engineering, vol. 28,

pp. 166–180, 2016.

154

Doctoral Thesis - Yu Huang McMaster - Computer Science

[38] S. Benbernou, X. Huang, and M. Ouziri, “Semantic-based and Entity-Resolution

Fusion to Enhance Quality of Big RDF Data,” in IEEE Transactions on Big

Data, 2017.

[39] M. Ebraheem, S. Thirumuruganathan, S. Joty, M. Ouzzani, and N. Tang,

“DeepER–Deep Entity Resolution,” in arXiv preprint arXiv:1710.00597, 2017.

[40] S. D. Pradap Konda, P. S. GC, A. Doan, A. Ardalan, J. R. Ballard, H. Li,

F. Panahi, H. Zhang, J. Naughton, S. Prasad, et al., “Magellan: Toward Build-

ing Entity Matching Management Systems,” in Proceedings of the VLDB En-

dowment, vol. 9, 2016.

[41] S. Mudgal, H. Li, T. Rekatsinas, A. Doan, Y. Park, G. Krishnan, R. Deep,

E. Arcaute, and V. Raghavendra, “Deep Learning for Entity Matching: A De-

sign Space Exploration,” in Proceedings of the ACM SIGMOD International

Conference on Management of Data, pp. 19–34, 2018.

[42] J. Gardezi, L. Bertossi, and I. Kiringa, “Matching dependencies: semantics and

query answering,” Frontiers of Computer Science, vol. 6, no. 3, pp. 278–292,

2012.

[43] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, “A neural probabilistic

language model,” in Machine Learning Research, vol. 3, pp. 1137–1155, 2003.

[44] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of word

representations in vector space,” in International Conference on Learning Rep-

resentations, 2013.

155

Doctoral Thesis - Yu Huang McMaster - Computer Science

[45] D. Holmes and M. C. McCabe, “Improving precision and recall for soundex

retrieval,” in International Symposium on Information Technology, pp. 22–26,

2002.

[46] Y. Fu, H. Jiang, N. Xiao, L. Tian, and F. Liu, “Aa-dedupe: An application-

aware source deduplication approach for cloud backup services in the personal

computing environment,” in IEEE International Conference on Cluster Com-

puting, pp. 112–120, 2011.

[47] K. Wagstaff, C. Cardie, S. Rogers, and S. Schroedl, “Constrained K-means Clus-

tering with Background Knowledge,” in International Conference on Machine

Learning, pp. 577–584, 2001.

[48] E. Ukkonen, “Approximate string-matching with q-grams and maximal

matches,” in Theoretical computer science, vol. 92, pp. 191–211, Elsevier, 1992.

[49] J. Wang, T. Kraska, M. J. Franklin, and J. Feng, “Crowder: Crowdsourcing

entity resolution,” in Proceedings of the VLDB Endowment, vol. 5, pp. 1483–

1494, 2012.

[50] H. Yao and H. J. Hamilton, “Mining functional dependencies from data,” Data

Mining and Knowledge Discovery, vol. 16, no. 2, pp. 197–219, 2008.

[51] F. Tramer, A. Kurakin, N. Papernot, I. Goodfellow, D. Boneh, and P. D. Mc-

Daniel, “Ensemble adversarial training: Attacks and defenses,” in International

Conference on Learning Representations, 2018.

156

Doctoral Thesis - Yu Huang McMaster - Computer Science

[52] G. Papadakis, J. Svirsky, A. Gal, and T. Palpanas, “Comparative analysis

of approximate blocking techniques for entity resolution,” Proceedings of the

VLDB Endowment, vol. 9, no. 9, pp. 684–695, 2016.

[53] T. Mikolov, I. Sutskever, K. Chen, G. S. Corrado, and J. Dean, “xDistributed

representations of words and phrases and their compositionality,” in Conference

on Neural Information Processing Systems, pp. 3111–3119, 2013.

[54] “Google pre-trained word and phrase vectors.” https://code.google.com/

archive/p/word2vec/, 2013. [Online; accessed 20-November-2018].

[55] “Restaurant dataset.” https://www.cs.utexas.edu/users/ml/riddle/

data.html, 2003. [Online; accessed 19-May-2017].

[56] “Benchmark datasets for entity resolution.” http://dbs.uni-leipzig.de/

en/research/projects/object_matching/fever/benchmark_datasets_

for_entity_resolution, 2010. [Online; accessed 20-November-2016].

[57] “stock dataset.” http://www.nasdaq.com/, 2015. [Online; accessed 20-

November-2016].

[58] S. J. Pan and Q. Yang, “A survey on transfer learning,” IEEE Transactions on

knowledge and data engineering, vol. 22, no. 10, pp. 1345–1359, 2009.

[59] L. P. Kaelbling, M. L. Littman, and A. W. Moore, “Reinforcement learning: A

survey,” Journal of artificial intelligence research, vol. 4, pp. 237–285, 1996.

157

https://code.google.com/archive/p/word2vec/
https://code.google.com/archive/p/word2vec/
https://www.cs.utexas.edu/users/ml/riddle/data.html
https://www.cs.utexas.edu/users/ml/riddle/data.html
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
http://dbs.uni-leipzig.de/en/research/projects/object_matching/fever/benchmark_datasets_for_entity_resolution
http://www.nasdaq.com/

Doctoral Thesis - Yu Huang McMaster - Computer Science

[60] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi, “A cost-based model and

effective heuristic for repairing constraints by value modification,” in Proceed-

ings of the ACM SIGMOD International Conference on Management of Data,

pp. 143–154, 2005.

[61] T. Dasu and M. Loh, “Statistical distortion: Consequences of data cleaning,”

Proceedings of the VLDB Endowment, vol. 5, no. 11, pp. 1674–1683, 2012.

[62] G. Jagannathan and R. Wright, “Privacy-preserving imputation of missing

data,” IEEE Transactions on Knowledge and Data Engineering, vol. 65, no. 1,

pp. 40–56, 2008.

[63] F. Chiang and D. Gairola, “Infoclean: Protecting sensitive information in data

cleaning,” Journal of Data and Information Quality, vol. 9, no. 4, pp. 1–26,

2018.

[64] S. Krishnan, J. Wang, M. J. Franklin, K. Goldberg, and T. Kraska, “Private-

Clean: Data cleaning and differential privacy,” in Proceedings of the ACM SIG-

MOD International Conference on Management of Data, pp. 937–951, 2016.

[65] P. Samarati, “Protecting respondents’ identities in microdata release,” IEEE

Transactions on Knowledge and Data Engineering, vol. 13, no. 6, pp. 1010–

1027, 2001.

[66] B. C. M. Fung, K. Wang, R. Chen, and P. S. Yu, “Privacy-preserving data pub-

lishing: A survey of recent developments,” ACM Computing Surveys, vol. 42,

no. 4, pp. 14:1–14:53, 2010.

158

Doctoral Thesis - Yu Huang McMaster - Computer Science

[67] C. Ge, X. He, I. F. Ilyas, and A. Machanavajjhala, “Apex: Accuracy-aware

differentially private data exploration,” in Proceedings of the ACM SIGMOD

International Conference on Management of Data, pp. 177–194, 2019.

[68] L. Bertossi and L. Bravo, Generic and Declarative Approaches to Data Quality

Management, pp. 181–211. Springer Berlin Heidelberg, 2013.

[69] C. Dwork, “Differential privacy,” in International Colloquium on Automata,

Languages and Programming, pp. 1–12, 2006.

[70] S. Deep and P. Koutris, “QIRANA: A framework for scalable query pricing,”

in Proceedings of the ACM SIGMOD International Conference on Management

of Data, pp. 699–713, 2017.

[71] M. Balazinska, B. Howe, and D. Suciu, “Data markets in the cloud: An op-

portunity for the database community,” Proceedings of the VLDB Endowment,

vol. 4, no. 12, pp. 1482–1485, 2011.

[72] A. Machanavajjhala, D. Kifer, J. Gehrke, and M. Venkitasubramaniam, “l-

diversity: Privacy beyond k-anonymity,” ACM Transactions on Knowledge Dis-

covery from Data, vol. 1, no. 1, pp. 1–52, 2007.

[73] J. Han, M. Kamber, and J. Pei, Data Mining: Concepts and Techniques. Morgan

Kaufmann Publishers Inc., 3rd ed., 2011.

[74] S. Lee, S. Huh, and R. D. McNiel, “Automatic generation of concept hierarchies

using wordnet,” Expert Systems with Applications, vol. 35, no. 3, pp. 1132–1144,

2008.

159

Doctoral Thesis - Yu Huang McMaster - Computer Science

[75] I. K. Fayyad, U.M., “Multi-interval discretization of continuous-valued at-

tributes for classification learning,” in International Joint Conference on Arti-

ficial Intelligence, p. 1022–1027, 1993.

[76] R. Kerber, “Chimerge: Discretization of numeric attributes,” in Proceedings of

the National Conference on Artificial Intelligence, pp. 123–128, 1992.

[77] H. Liu and R. Setiono, “Feature selection via discretization,” IEEE Transactions

on Knowledge and Data Engineering, vol. 9, no. 4, pp. 642–645, 1997.

[78] AggData-LLC, “AggData locational data.” https://www.aggdata.com/, 2009.

[79] Infochimps, “Infochimps big data business.” http://www.infochimps.com/,

2018.

[80] Kaggle, “Kaggle datasets.” https://www.kaggle.com, 2017.

[81] A. Nash, L. Segoufin, and V. Vianu, “Views and queries: Determinacy and

rewriting,” ACM Transactions on Database Systems, vol. 35, no. 3, pp. 1–41,

2010.

[82] A. Gionis and T. Tassa, “k-anonymization with minimal loss of information,”

IEEE Transactions on Knowledge and Data Engineering, vol. 21, no. 2, pp. 206–

219, 2009.

[83] A. Roth, “Buying private data at auction: The sensitive surveyor’s problem,”

ACM SIGecom Exchanges, vol. 11, no. 1, pp. 1–8, 2012.

[84] F. Chiang and R. J. Miller, “Active repair of data quality rules,” in Proceedings

of the International Conference on Information Quality, pp. 174–188, 2011.

160

https://www.aggdata.com/
http://www.infochimps.com/
https://www.kaggle.com

Doctoral Thesis - Yu Huang McMaster - Computer Science

[85] G. Beskales, I. F. Ilyas, and L. Golab, “Sampling the repairs of functional

dependency violations under hard constraints,” in Proceedings of the VLDB

Endowment, pp. 197–207, 2010.

[86] L. Golab, I. F. Ilyas, G. Beskales, and A. Galiullin, “On the relative trust

between inconsistent data and inaccurate constraints,” in IEEE International

Conference on Data Engineering, pp. 541–552, 2013.

[87] M. Dallachiesa, A. Ebaid, A. Eldawy, A. Elmagarmid, I. F. Ilyas, M. Ouzzani,

and N. Tang, “Nadeef: a commodity data cleaning system,” in Proceedings of

the ACM SIGMOD International Conference on Management of Data, pp. 541–

552, 2013.

[88] O. Hassanzadeh, A. Kementsietsidis, L. Lim, R. J. Miller, and M. Wang,

“Linkedct: A linked data space for clinical trials,” preprint arXiv:0908.0567,

2009.

[89] “Bioportal medical ontology.” https://bioportal.bioontology.org/

ontologies, 2018.

[90] “Disease ontology.” http://disease-ontology.org/, 2018.

[91] U. of Michigan Library, “Libraries of ontologies.” https://guides.lib.umich.

edu/ontology/ontologies, 2017.

[92] “Census-income database.” https://archive.ics.uci.edu/ml/

machine-learning-databases/census-income-mld/census-income.html,

2017.

161

https://bioportal.bioontology.org/ontologies
https://bioportal.bioontology.org/ontologies
http://disease-ontology.org/
https://guides.lib.umich.edu/ontology/ontologies
https://guides.lib.umich.edu/ontology/ontologies
https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income.html
https://archive.ics.uci.edu/ml/machine-learning-databases/census-income-mld/census-income.html

Doctoral Thesis - Yu Huang McMaster - Computer Science

[93] “Data and statistics about the U.S..” https://www.usa.gov/statistics,

2018.

[94] “Structure of the U.S. education.” https://www.ed.gov/, 2017.

[95] “New york state food service establishment inspection.” https://www.health.

ny.gov, 2017.

[96] P. Arocena, Glavic, Mecca, Miller, Papotti, and Santoro, “Messing up with

bart: error generation for evaluating data-cleaning algorithms,” Proceedings of

the VLDB Endowment, vol. 9, no. 2, pp. 36–47, 2015.

[97] M. Drosou, H. Jagadish, E. Pitoura, and J. Stoyanovich, “Diversity in big data:

A review,” Big Data, vol. 5, no. 2, pp. 73–84, 2017.

[98] G. Aggarwal, Feder, Kenthapadi, Motwani, Panigrahy, Thomas, and Zhu,

“Anonymizing tables,” in International Conference on Database Theory,

pp. 246–258, 2005.

[99] A. Meyerson and R. Williams, “On the complexity of optimal k-anonymity,” in

Symposium on Principles of Database Systems, pp. 223–228, 2004.

[100] B. Grau and E. Kostylev, “Logical foundations of privacy-preserving publishing

of linked data,” in Proceedings of the National Conference on Artificial Intelli-

gence, pp. 943–949, 2016.

[101] M. Hay, G. Miklau, D. Jensen, D. Towsley, and C. Li, “Resisting structural

reidentification in anonymized social networks,” The VLDB Journal, vol. 19,

no. 6, pp. 797–823, 2010.

162

https://www.usa.gov/statistics
https://www.ed.gov/
https://www.health.ny.gov
https://www.health.ny.gov

Doctoral Thesis - Yu Huang McMaster - Computer Science

[102] S. Barocas and A. Selbst, “Big data’s disparate impact,” California Law Review,

vol. 104, no. 671, pp. 671–732, 2016.

[103] L. Sweeney, “Discrimination in online ad delivery,” Communications of the

ACM, vol. 56, 2013.

[104] A. Datta, S. Sen, and Y. Zick, “Algorithmic transparency via quantitative in-

put influence: Theory and experiments with learning systems,” in 2016 IEEE

Symposium on Security and Privacy, pp. 598–617, 2016.

[105] R. Nabi and I. Shpitser, “Fair inference on outcomes,” in Proceedings of the

National Conference on Artificial Intelligence, pp. 1931–1940, 2018.

[106] M. Young, L. Rodriguez, E. Keller, F. Sun, B. Sa, J. Whittington, and B. Howe,

“Beyond open vs. closed: Balancing individual privacy and public account-

ability in data sharing,” in ACM Conference on Fairness, Accountability, and

Transparency, p. 191–200, 2019.

[107] V. Bindschaedler, R. Shokri, and C. Gunter, “Plausible deniability for privacy-

preserving data synthesis,” Proceedings of the VLDB Endowment, vol. 10, no. 5,

p. 481–492, 2017.

[108] J. Xu, Z. Zhang, X. Xiao, Y. Yang, G. Yu, and M. Winslett, “Differentially

private histogram publication,” The VLDB Journal, vol. 22, no. 6, p. 797–822,

2013.

[109] D. Pujol, R. McKenna, S. Kuppam, M. Hay, A. Machanavajjhala, and G. Mik-

lau, “Fair decision making using privacy-protected data,” in ACM Conference

on Fairness, Accountability, and Transparency, p. 189–199, 2020.

163

Doctoral Thesis - Yu Huang McMaster - Computer Science

[110] K. Yang and J. Stoyanovich, “Measuring fairness in ranked outputs,” in Interna-

tional Conference on Scientific and Statistical Database Management, pp. 22:1–

22:6, 2017.

[111] R. Caruana, M. Elhawary, N. Nguyen, and C. Smith, “Meta clustering,” Inter-

national Conference on Data Mining, pp. 107–118, 2006.

[112] J. M. Phillips, P. Raman, and S. Venkatasubramanian, “Generating a diverse

set of high-quality clusterings,” in Proceedings of the International Conference

on Discovering, Summarizing and Using Multiple Clusterings, pp. 80–91, 2011.

[113] J. Li, K. Yi, and Q. Zhang, “Clustering with diversity,” in Automata, Languages

and Programming, pp. 188–200, 2010.

[114] T. Coleman and J. Moré, “Estimation of sparse jacobian matrices and graph col-

oring problems,” SIAM Journal on Numerical Analysis, vol. 20, no. 1, pp. 187–

209, 1983.

[115] “Pantheon dataset.” https://pantheon.world/, 2014.

[116] “Uci machine learning repository.” https://archive.ics.uci.edu/ml/

datasets/, 2020.

[117] M. Mannino and A. Abouzied, “Is this real? generating synthetic data that

looks real,” in Proceedings of the 32nd Annual ACM Symposium on User In-

terface Software and Technology, p. 549–561, 2019.

[118] “Diva: Extended evaluation details.” https://diva1234567.github.io/

DIVA/, 2020.

164

https://pantheon.world/
https://archive.ics.uci.edu/ml/datasets/
https://archive.ics.uci.edu/ml/datasets/
https://diva1234567.github.io/DIVA/
https://diva1234567.github.io/DIVA/

Doctoral Thesis - Yu Huang McMaster - Computer Science

[119] J. Byun, A. Kamra, E. Bertino, and N. Li, “Efficient k-anonymization using

clustering techniques,” in Database Systems for Advanced Applications, pp. 188–

200, 2007.

[120] R. Bayardo and R. Agrawal, “Data privacy through optimal k-anonymization,”

in IEEE International Conference on Data Engineering, p. 217–228, 2005.

[121] J. Stoyanovich, S. Abiteboul, and G. Miklau, “Data, responsibly: Fairness,

neutrality and transparency in data analysis,” in International Conference on

Extending Database Technology, 2016.

165

	Abstract
	Acknowledgements
	Introduction
	Data Deduplication
	Data Privacy
	Data Diversity
	Contributions

	Preliminaries
	Relations and Functional Dependencies
	k-Anonymity

	Semantic-Aware Deduplication
	Introduction
	Related Work
	Entity Matching Frameworks
	Semantic-based Entity Resolution
	Machine Learning Approaches

	Preliminaries
	Metric Functional Dependencies
	Word-Embeddings

	Framework Overview
	Problem Statement
	Solution Overview

	Non-constraint Attributes Feature Generation
	Edit Distance
	q-grams Similarity
	Term Differentiation
	Weighted Frequency Similarity

	Constraint Attributes Feature Generation
	Constraint Properties
	The Number of Satisfied Constraints
	 Matching Constraint Attributes
	Proportion of Exact Matching Attributes
	MFD Tolerance Parameter

	Duplication Metric
	Duplication of an Attribute Value
	Duplication across an Attribute Domain

	Limitations
	Evaluation
	Experimental Setup
	Comparative Accuracy: Term Differentiation and Similarity Functions
	Weighted Term Frequency Efficiency
	Utility of Constraint Features
	Varying the Size of Training Data.
	Statistical Feature Analysis
	Sensitivity to
	Accuracy of Duplication Scores
	Comparative Baseline Evaluation
	Runtime Evaluation

	Conclusion

	Privacy-Preserving Data Cleaning
	Introduction
	Related Work
	Preliminaries
	Matching Dependencies
	(X,Y)-Anonymity
	Generalization
	Data Pricing

	Generalized Relations
	Measuring Semantic Distance
	Consistency in Generalized Relations

	PACAS Overview
	Problem Statement
	Solution Overview

	Limiting Disclosure of Sensitive Data
	Record Matching and Query Generation
	Enforcing Privacy via Data Pricing
	Query Answering

	Data Cleaning with Generalized Values
	Overview
	Generating Equivalence Classes
	Selecting Equivalence Classes for Repair
	Data Request Generation
	Purchase Data and Repair
	Complexity Analysis

	Experiments
	Experimental Setup
	Generalized Values
	SafePrice Efficiency and Effectiveness
	SafePrice Parameter Sensitivity

	Conclusions

	Diversifying Anonymized Data with Diversity Constraints
	Introduction
	Related Work
	Preliminaries
	Diversity Constraints

	The DIVA Algorithm
	Diverse Clustering

	Selection Strategies
	Experiments
	Experimental Setup
	Metrics and Parameters
	Accuracy
	Performance
	Overhead of Diversity Constraints

	Conclusion

	Conclusion and Future Work
	Data Deduplication
	Data Privacy and Data Cleaning
	Data Diversity

