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Lay abstract 

Robots are expected to become a significant part of our society in the future. They 

will need to interact and collaborate with people at home and at work. This will require 

them to rapidly adapt to dynamic situations. This thesis is concerned with solving this 

problem for a robot arm working close to a person. A depth camera measures colour 

and depth of the area around the robot. A software algorithm is presented to model the 

person using this colour and depth information. Two software algorithms are presented 

to control the robot arm. They try to move the end of the robot arm towards a target 

location while simultaneously avoiding it colliding with the person. They are tested 

using a simulated industrial robot arm. The results show that the algorithms working 

together can prevent collisions between the person and robot, while simultaneously 

moving the robot towards its target location. 
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Abstract 

To fully exploit the advantages of human-robot collaboration the robot must be 

allowed to move when the human is close to it or even in contact with it. This thesis 

presents the development of a collision avoidance system which addresses the safety 

problem for the case of one person sharing a workspace with a robot manipulator. The 

system consists of a depth camera that measures both the colour and depth of the scene 

near to the robot, a laptop computer and several software algorithms. A human modeling 

algorithm generates a plane model and union of spheres model from the point cloud. 

Sphere-swept lines are used to geometrically model each link of the robot. Their 

position and orientation in space are calculated using the robot’s joint position 

measurements and its kinematic model. Two collision avoidance algorithms are 

presented for controlling the robot’s trajectory based on the geometric models for the 

human and robot, and the robot’s desired task. The first collision avoidance algorithm 

solves the inverse kinematics problem and avoids collisions using an expanded version 

of the manipulator Jacobian matrix. A second collision avoidance algorithm using 

nonlinear model predictive control is developed as an alternative approach. The 

algorithms have been implemented in a simulated environment which includes a human 

working in the shared workspace with a simple planar robot and with an Elfin 5 

industrial robot. A variety of scenarios are simulated and the results are compared. The 

simulation results showed that the first collision avoidance algorithm may be computed 

fast enough to be applied in real-time and worked well for static or slowly moving 

obstacles. The second collision avoidance algorithm had superior performance when 

the obstacle was moving and when the simulated robot had a realistic time delay. 

However, its computation time was too long to be used in real-time. 

  



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

v 

 

Acknowledgment 

 

First and foremost, I would like to express my sincere gratitude to my research 

supervisor, Dr. Gary M. Bone, for his valuable guidance and support. He has walked 

me through all of the stages of this research. Without him, this thesis could never have 

been finished. My graduate studies have allowed me to learn a lot and gain skills across 

a wide variety of topics 

I also thank my colleagues: Abdelrahman Zaghloul and Behrad Rouzbeh for their 

advice and encouragement. And I like to express my thanks to all my friends for their 

support and encouragement. 

Finally, thanks to my family who have been nothing but supportive. 

  



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

vi 

 

Contents 

List of Figures ........................................................................................................ x 

List of Tables ....................................................................................................... xv 

 Abbreviations .................................................................................................... xvi 

 Nomenclature .................................................................................................. xviii 

Chapter 1. Introduction .......................................................................................... 1 

1.1  Preface ................................................................................................... 1 

1.2  Objective and Organization .................................................................. 3 

 Chapter 2. Literature review ................................................................................ 5 

2.1  Introduction ........................................................................................... 5 

2.2  Robot Geometric Modelling for Human-Robot Collaboration ............. 5 

2.3  Human Sensing and Geometric Models for Human-Robot 

Collaboration .......................................................................................................... 6 

2.4  Robot Manipulator Collision Avoidance Algorithms............................ 8 

2.4.1 Motion planning-based algorithms ............................................... 8 

2.4.2 Prediction-based algorithms ........................................................ 10 

2.4.3 Non-predictive Control-based Algorithms .................................. 12 

2.4.4 Model Predictive Control-based Algorithms .............................. 14 



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

vii 

 

2.5  Summary ............................................................................................. 16 

Chapter 3. Human and Robot Modelling ............................................................. 18 

 Introductions ........................................................................................ 18 

3.2  Human Modelling Algorithm .............................................................. 18 

3.2.1 Algorithm Description ................................................................ 18 

3.3  Robot Modeling .................................................................................. 30 

3.3.1 Kinematic Model ........................................................................ 30 

3.3.2 Geometric Model ........................................................................ 35 

3.3.3 Time Domain Model ................................................................... 36 

3.4  Summary ............................................................................................. 38 

Chapter 4 Collision Avoidance Algorithms ......................................................... 40 

4.1  Introduction ......................................................................................... 40 

4.2  Inverse kinematics calculation ............................................................ 40 

4.3  Inclusion of Constraints ...................................................................... 43 

4.3.1 Sphere obstacle collision avoidance constraint ........................... 43 

4.3.2 Varied weight method ................................................................. 48 

4.3.3 Multiple sphere obstacles collision avoidance constraint ........... 49 

4.3.4 Joints angle limits constraint ....................................................... 49 



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

viii 

 

4.3.5 Plane collision avoidance constraint ........................................... 51 

4.4 Closed-loop inverse kinematics implementation ................................... 53 

4.4.1 Main task only ............................................................................. 53 

4.4.2 Additional constraint tasks .......................................................... 54 

4.4.3 Closed-loop inverse kinematic control law ................................. 55 

4.4.4 Closed-loop Kinematic Control Law Exploiting Functional 

Redundancy ................................................................................ 56 

4.5 Nonlinear Model Predictive Control ...................................................... 59 

Chapter 5 Simulations .......................................................................................... 62 

5.1 Introduction ............................................................................................ 62 

5.2 Simulation Procedure ............................................................................. 62 

5.3 Testing of the human modelling algorithm ............................................ 63 

5.4 Three-link planar robot simulation ........................................................ 66 

5.4.1 Three-link planar robot simulation settings ................................ 66 

5.4.2 Three-link planar robot simulation results .................................. 68 

5.5 Elfin simulation ...................................................................................... 84 

5.5.1 Simulation settings ...................................................................... 84 

5.5.2 Static human limb collision avoidance ....................................... 86 

5.5.3 Human torso collision avoidance ................................................ 91 



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

ix 

 

5.5.4 Dynamic human limb collision avoidance .................................. 94 

5.5.5 NMPC collision avoidance for Elfin ........................................... 99 

5.6 Summary of Results ............................................................................. 101 

 Chapter 6 Conclusions and Recommendations ................................................ 104 

6.1 Summary and Conclusions .................................................................. 104 

6.2 Recommendations for future research ................................................. 105 

 References ........................................................................................................ 107 

 

  



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

x 

 

List of Figures 

Figure 3.1: Depth camera model (Darwish et al., 2019).....……………………….19 

Figure 3.2: Imaging plane coordinate system……………………………………..19 

Figure 3.3: Region growing process (Rabbani et al., 2006)………………………..22 

Figure 3.4: Voxel cell………………………………………………………………26 

Figure 3.5: Point cloud resampling using voxel cells………………………………27 

Figure 3.6: The Elfin 5 robot made by Han’s Robot………………………………..31 

Figure 3.7: The kinematic skeleton of the Elfin 5 robot……………………………36 

Figure 3.8: SSLs model of the moving links of the Elfin 5 robot………………….36 

Figure 3.9:  Joint 1 delay measurement experimental results for the Elfin 5 robot 

(zoomed-in to show the delay d )………………………………………………….38 

Figure 4.1: Distance between a SSL
1b  and a sphere 2b (Krämer et al., 2020)……44 

Figure 4.2: Geometry of a planar manipulator showing the point nearest to the 

obstacle…..…………………………………………………………………………45 

Figure 4.3: Relationship between the distance to critical point || d ||  and the weight 

factor w  when sd =100 mm……………………………………………………...49 

Figure 4.4: The point ( , , )x y zp  and its projection onto the plane ( ', ', ')x y zp' ….51 



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

xi 

 

Figure 5.1: Skin color detection result. (a) Test image. (b) Output image…………64 

Figure 5.2: Region growing test. (a) Original point cloud. (b) Human point cloud..64 

Figure 5.3: Voxelization result. (a) Original point cloud (b) Point cloud after 

voxelization………………..……………………………………………………….65 

Figure 5.4: Human modeling (a) Top view (b) Side view………………………….66 

Figure 5.5: Three-link planar robot and a static sphere obstacle simulation scenario 

with the robot at its start position…………………………………………………..68 

Figure 5.6: Snapshots of the simulation for the planar robot controlled by the 

CLIKFR algorithm avoiding a static sphere obstacle……………………………….70 

Figure 5.7: Closest distance between the robot surface and the surface of the static 

obstacle for the planar robot controlled by the CLIKFR algorithm………………..71 

Figure 5.8: Actual joint angles, velocities and accelerations versus time for the planar 

robot avoiding the static obstacle using the CLIKFR algorithm……………………72 

Figure 5.9: Three-link planar robot and a static plane obstacle simulation scenario 

with robot at its start position……………………………………………………….73 

Figure 5.10: Snapshots of the simulation for the planar robot controlled by the 

CLIKFR algorithm avoiding a plane obstacle………………………………………74 

Figure 5.11: Closest distance between the robot surface and the plane for the planar 

robot controlled by the CLIKFR algorithm…………………………………………75 

Figure 5.12: Three-link planar robot wrist singularity avoidance simulation 

setting………………………………………………………………………………76 



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

xii 

 

Figure 5.13: Joint angle and velocity versus time for the planar robot when 0 =  

in the CLIKFR algorithm…………………………………………………………..77 

Figure 5.14: Joint angle and velocity versus time for the planar robot when 100 =  

in the CLIKFR algorithm………………………………………………………….78 

Figure 5.15: Three-link planar robot and a dynamic sphere obstacle simulation 

scenario with the robot and obstacle at their start positions………………………..79 

Figure 5.16: Snapshots of the simulation for the planar robot controlled by the 

LIKFR algorithm avoiding a dynamic sphere obstacle……………………………..80 

Figure 5.17: Closest distance between the robot surface and the surface of the 

dynamic obstacle for the planar robot controlled by the CLIKFR algorithm………81 

Figure 5.18: Joint angle, velocity and acceleration versus time for the planar robot 

avoiding the dynamic obstacle using the CLIK algorithm………………………….82 

Figure 5.19: Snapshots of the simulation for the planar robot controlled by the NMPC 

algorithm avoiding a dynamic sphere obstacle……………………………………..83 

Figure 5.20: Closest distance between the robot surface and the surface of the 

dynamic obstacle for the planar robot controlled by the NMPC algorithm………..84 

Figure 5.21: Joint angle, velocity and acceleration versus time for the planar robot 

avoiding the dynamic obstacle using the NMPC algorithm………………………..85 

Figure 5.22: Elfin 5 robot and a static human limb simulation scenario of the 

CLIKFR algorithm…………………………………………………………………88 

Figure 5.23: Snapshots of the simulation for Elfin 5 controlled by the CLIKFR 

algorithm avoiding a static human limb…………………………………………….90 



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

xiii 

 

Figure 5.24: (a) The plane and spheres human model. (b) Closest distance between 

the robot surface and the static human’s limb for Elfin 5 robot controlled by the 

CLIKFR algorithm…………………………………………………………………91 

Figure 5.25: Joint angle, velocity and acceleration versus time for Elfin 5 avoiding 

the static human’s limb using the CLIKFR algorithm………………………………92 

Figure 5.26: Elfin 5 robot and a human torso obstacle simulation scenario used with 

the CLIKFR algorithm……………………………………………………………..93 

Figure 5.27: Snapshots of the simulation for Elfin 5 controlled by the CLIKFR 

algorithm avoiding a human torso……………………………………………….…94 

Figure 5.28: (a) Final pose of the robot and the human torso plane model (b) Closest 

distance between the robot surface and the human torso plane for Elfin 5 robot 

controlled by the CLIKFR algorithm………………………………………………95 

Figure 5.29: Elfin 5 robot and a dynamic obstacle simulation scenario for the 

CLIKFR algorithm…………………………………………………………………96 

Figure 5.30: Closest distance between the robot surface and the surface of the 

dynamic sphere obstacle with different velocities controlled by of the CLIKFR 

algorithm…...………………………………………………………………………97 

Figure 5.31: Joint accelerations versus time for Elfin 5 avoiding a dynamic obstacle 

using the CLIKFR algorithm with 

0d = ………………………………………….98 

Figure 5.32: Joint accelerations versus time for Elfin 5 avoiding a dynamic obstacle 

using the CLIKFR algorithm with 

2d = ………………………………………….98 



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

xiv 

 

Figure 5.33: Closest distance between the robot surface and the dynamic obstacle for 

Elfin 5 robot controlled by the NMPC algorithm………………………………….100 

Figure 5.34: Joint angle, velocity and acceleration versus time for Elfin 5 avoiding 

the dynamic obstacle using NMPC algorithm……………………………………..101 

 

 

  



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

xv 

 

List of Tables 

Table 3.1: D-H parameters of the Elfin 5 robot…………………………………….31 

Table 5.1: D-H parameters of the three-link planar robot…………………………..67 

Table 5.2: Joints limits of the three-link planar robot………………………………67 

Table 5.3: Joint limits of the Elfin 5 robot………………………………………….87 

Table 5.4 Input parameter values used in static human limb collision avoidance 

simulations of the CLIKFR algorithm…………………………………………..…88 

Table 5.5: The smallest value of distance as a function of obstacle velocity with the 

CLIKFR algorithm…………………………………………………………………97 

Table 5.5: Collection of CLIKFR and NMPC simulation results…….…………..104 

  



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

xvi 

 

Abbreviations 

CLIKFR: Closed-loop inverse kinematics control algorithm exploiting 

functional redundancy 

COVID-19: Coronavirus disease of 2019 

D-H: Denavit-Hartenberg 

DOF: Degrees-of-freedom 

GMMS: Gaussian mixture models 

GMRs: Gaussian mixture regressions 

HRC: Human-robot collaboration 

IMUs: Inertial measurement units 

RGB-D: Red, green, blue and depth 

SSL: sphere-swept line 

SSLs: sphere-swept lines 

LED: Light Emitting Diode 

MLESAC: Maximum Likelihood Estimator SAmple Consensus 

MPC: Model predictive control 

NPC: Non-predictive control 



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

xvii 

 

NMPC: Nonlinear model predictive control 

PCA: Principal component analysis 

RANSAC: RANdom SAmple Consensus  

RGB: Red, green and blue 

SFs: Saliency features 

SVD: Singular value decomposition 

T-RRT: Transition-based rapidly exploring random tree 

YCbCr: Luminance; Chroma: blue; Chroma: red 

 

  



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

xviii 

 

Nomenclature 

ia : Link length.  

1A , 2A , 3A , 4A : Expanded Jacobian matrix. 

1b , 2b : Spheres in the SSLs model. 

1b , 2b , 3b , 4b : Expanded target matrix. 

c : Moving speed of the obstacle. 

oc : Centre of the obstacle. 

C : Covariance matrix of each point in the point cloud. 

1
C , 2C , 3C , 4C : Joint angle constraints, joint velocity constraints, joint acceleration 

constraints and collision avoidance constraints. 

d : Depth value of a pixel in the depth image. 

xd , yd : Resolution of the image in the x and y directions. 

id : Joint offset. 

1 2( , )d b b : Separation distance. 

1 2( , )pd b b : Euclidean distance between a point and a line segment. 

planed : Distance from a point to the plane. 

q
d : Threshold joint angle distance. 

sd : Desired distance between the robot centerline and obstacle centre. 



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

xix 

 

mind : Closest distance between the obstacle and whole robot arm. 

te : Extended error vector in the task space. 

nI : Identity matrix of dimension n. 

criticalJ : First 3 rows of the Jacobian matrix of critical point. 

criticalPlane
J : Jacobian matrix of the critical point on the arm to a plane. 

fPlane
J : Jacobian matrix of the plane avoidance constraint. 

J(q) : Geometric Jacobian matrix of the manipulator. 

qi
J : Jacobian matrix of joints constraints task. 

oJ : Jacobian matrix relating the joint velocities to the end-effector angular velocity. 

p
J : Jacobian matrix relating the joint velocities to the end-effector linear velocity. 

sJ : Jacobian of sphere collision avoidance task. 

k : Number of nearest neighbours. 

K : Positive-definite proportional gain matrix. 

esK : Gain of sphere obstacle collision avoidance error 

L : Length of the voxel cell. 

sn : Total number of obstacles. 

pN : Prediction horizon. 

( )t
1,1

p , ( )t
1,2

p : Two dynamic endpoints of a line segment of SSL. 



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

xx 

 

criticalp : Critical point for whole arm. 

c1p , 2c
p , 3cp , 4c

p : Closest point to the obstacle on link 1, link 2, link 3 and link 4. 

ed
p : Desired end-effector position. 

joint1
p , 2joint

p , 3joint
p , 4joint

p : The location of joint 1, joint 2, joint 3 and joint 4. 

ep : Position of the end-effector. 

ep : Linear velocity of the end-effector. 

i-1
p : Position of the origin of the ith joint frame. 

q : Joint position variables. 

miniq , maxiq : Minimum and maximum angle of joint i. 

1r , 2r : Radius of robot arm’s SSLs model union of spheres human model. 

3

6R : orientation of the end-effector relative to frame 3. 

1i

i

+ T : Homogeneous transformation matrix. 

0u , 0v : Origin of the x and y axes in the image coordinate system. 

1to 1cv : Vector from joint 1 to the closest point to the obstacle on link 1. 

w : Weight factor that is associated with the collision avoidance task. 

w , W : Weight array and weight matrix. 

x : Position and orientation of the end-effector. 

dx : Desired end-effector position and orientation. 

i-1
z : The -axisz of the ith joint frame. 



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

xxi 

 

i : Link twist. 

a : Actual joint angle. 

c : Commanded joint angle. 

,mincθ , ,maxcθ : Minimum and maximum joint angle limits. 

,mincθ , ,maxcθ : Minimum and maximum joint velocity limits. 

,mincθ , ,maxcθ : Minimum and maximum joint acceleration limit. 

cθ , cθ , cθ : Joint position, velocity and acceleration commands. 

cv,min
θ , cv,max

θ : Minimum and maximum joint velocity commands. 

ca,min
θ , ca,max

θ  Minimum and maximum joint acceleration commands. 

i : Joint angle. 

 : Scalar damping factor. 

1 2 3, , and    : Eigenvalues of the covariance matrix C . 

d : Number of sampling periods of delay. 

eω : Angular velocity of the end-effector. 

  



 

 

 

Chapter 1. Introduction 

1.1  Preface  

Robot manipulators have been widely used in assembly lines for mass production 

for decades. Recently, the demand for industrial robots has accelerated considerably due 

to the ongoing trend towards automation (International Federation of Robotics, 2019). 

The COVID-19 pandemic has also increased the use of robot manipulators in new 

applications such as cooking (Durban and Chea, 2020) .  

To produce more complex products with shorter product life cycles greater human-

robot collaboration (HRC) is necessary. This collaboration combines the adaptability 

and problem-solving skills of humans with the strength, endurance, and precision of 

robots (Ajoudani et al., 2018). Generally speaking, human-robot collaboration can be 

classified into two types according to the existence of intentional physical contact 

between humans and robots. In the type with intentional physical contact, robot 

manipulators assist human operators in moving heavy objects by 

pushing/pulling/holding an object and compensating for the object's inertia and weight. 

On the other hand, for the type without intentional physical contact, robot manipulators 

act like co-workers and cooperate with human workers while avoiding physical contact 

and collisions (Villani et al., 2018). For instance, robot manipulators could provide 

assembly components to human operators during the assembly process (Tan et al., 

2010). Another example from industry is that robot manipulators carry large 

components and finish the non-ergonomic part of the assembly process, and then the 

human workers continue the part which requires adaptability (Universal Robots, 2018). 
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To maintain production efficiency, industrial robot manipulators are typically 

operated at high speed and thus are isolated from humans using fences since high speed 

collisions could cause serious injuries. Traditionally, whenever there is an overlap of 

robot manipulator workspaces and human workspaces, the motions of the robot 

manipulators are ceased, which greatly reduces the production efficiency and limits the 

applicability of human-robot collaboration. To fully exploit the advantages of HRC the 

robot must be allowed to move when the human is close to it or even in contact with it, 

therefore human safety is a critical issue that needs to be considered. 

Many researchers have worked on safety in HRC, and there are a lot of existing 

strategies to avoid personal injuries. Their approaches can be separated into pre- and 

post-collision strategies (De Luca et al., 2006). Pre-collision strategies are implemented 

before human-robot collision occurs. Collision avoidance is the primary goal and 

requires (at least, local) knowledge of the current environment geometry and 

computationally intensive motion planning techniques. Post-collision methods are 

focused on collision detection and reaction. They are designed to quickly detect the 

collision and minimize harm to both humans and robots if unexpected contact occurs.  

Pre-collision strategies require that the robot can re-plan the trajectory in which it 

reaches the target position in a way that avoids the collision with humans in real-time. 

The perception of the human operator is the first crucial step. With the help sensors that 

measure both colour and depth (known as “RGB-D sensors” or “RGB-D cameras” 

where the letters R, G, B and D are abbreviations of red, green, blue and depth, 

respectively), it is possible to acquire sufficient information about the position of the 

human operator for re-planning the robot’s trajectory ( Dal Mutto et al., 2012). This 

type of sensor is popular in robotic applications, not only for its features, but also for its 

low cost. Intel RealSense and Microsoft Kinect are commercial RGB-D sensors which 
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combine a colour video camera with an infrared projector and receiver for measuring 

depth. They have been broadly used in both the academic community and industry for 

human position measurement and gesture recognition (Ye et al., 2013). 

However, only a few HRC applications have established in industrial assembly or 

manufacturing areas at present (Matheson et al., 2019). This is due to the stringent 

demand for safety during autonomous movements of robots in fence-less applications 

and the high cost of the workspace monitoring systems (Fast-Berglund et al., 2016). 

Therefore, with the help of RGB-D sensors, a safe and affordable pre-collision system 

for HRC applications can be developed. 

1.2  Objective and Organization  

The objective of this research is to develop a collision avoidance system suitable 

for industrial robot manipulators in general, and for collaborative robots (also known as 

“cobots”) in particular. The system should be able to generate, in real-time, a trajectory 

for the robot to perform its task while simultaneously avoiding collisions with human 

workers. This will involve developing algorithms for modelling the robot and human(s), 

and for collision avoidance. The collision avoidance algorithms will be evaluated in 

terms of their efficiency (measured by the time required for the robot to complete its 

assigned task), safety (measured by the closest distance between the human(s) and 

robot), and their real-time capability (measured by their execution time).  

The organization of the thesis is as follows. In chapter 2, the relevant publications 

on human geometric modelling, robot geometric modelling and robot manipulator 

collision avoidance algorithms are reviewed. Chapter 3 presents the human and robot 

modeling algorithms. The non-predictive and predictive collision avoidance algorithms 

are described in chapter 4. In chapter 5，collision avoidance simulations are presented. 
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The simulation procedure is described first. After that the simulation results for a 3-

DOF planar robot (where “DOF” stands for “degrees-of-freedom”) and a 6-DOF 

collaborative robot are presented and discussed. Chapter 6 draws the conclusions of the 

research and makes recommendations for future work. 
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Chapter 2. Literature review 

2.1  Introduction  

Safety takes priority over all other matters for HRC. Many researchers have 

worked on safety in HRC, and there are several existing strategies to avoid human 

injuries. They can be classified into two main categories: pre-collision strategies and 

post-collision strategies. Pre-collision strategies are implemented before the human-

robot collision occurs, either by ensuring collision does not happen in the first place or 

by bounding robot parameters such as velocity or energy. If unexpected or 

unpreventable contact occurs, post-collision control methods are designed to quickly 

detect the collision and minimize harm to both the human and the robot. 

Collision avoidance methods belong to the pre-collision category. Geometric 

models of the robot are necessary for applying these methods. To be more effective at 

avoiding human(s) in the shared workspace, collision avoidance algorithms need more 

knowledge than merely knowing the presence or absence of human subjects. Individual 

body parts must be detected and represented as geometric models. The research on robot 

geometric models is reviewed in section 2.2. Human geometric modelling techniques 

are covered in section 2.3. Algorithms for collision avoidance are reviewed in section 

2.4. Finally, section 2.5 presents a summary of the review. 

2.2  Robot Geometric Modelling for Human-Robot Collaboration 

Over the years, several different geometric representations for robot manipulators 

have been proposed. Balan and Bone (2006) represented each robot link by a union of 

spheres. e.g., a PUMA 762 was modeled by 41 spheres. This model can work in real-

time due to the efficiency of the distance computation. Flacco et al. (2012) presented a 
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similar spheres-based model. The disadvantage of this approach is many spheres must 

be used to obtain detailed models.  

Another way to geometrically represent robots is to use a sphere-swept line (SSL) 

to model each link. An SSL is simply the bounding volume created by translating a 

sphere along a line segment. It is geometrically equivalent to a cylinder with 

hemispherical endcaps. Although the distance computation with SSLs is more complex 

than with spheres the use of SSLs is typically more computationally efficient since only 

a few SSLs are required to model the entire manipulator. This robot modelling approach 

was used by Bosscher and Hedman (2011), Corrales et al. (2011) and Krämer et al. 

(2020).  

Gerdts et al. (2012) modelled the robot with polyhedrons and utilized Farkas 

lemma in conjunction with back-face culling to reduce computational complexity. 

However, the algorithm does not run in real-time due to the high complexity of the 

additional constraints and optimization parameters introduced by Farkas lemma. 

2.3  Human Sensing and Geometric Models for Human-Robot Collaboration  

Human geometric modelling is a much more difficult task than robot geometric 

modelling for two main reasons. First, the shapes of the robot’s links are constant and 

known whereas the shape of the human operator is unknown and variable. Second, the 

positions of the robot’s links in space can be determined using the robot’s built in joint 

angle sensors whereas locating the human’s body requires external sensors (such as 

RGB-D sensors) and software to distinguish it from its surroundings.  

Martínez-Salvador et al. (2003) modelled the human by a hierarchy of sphere-

based models. They used a complex heuristic algorithm to compute the sphere positions 

and radii. Balan and Bone (2006) also developed a sphere-based human model 
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customized to fit the dimensions of an average-sized human. However, neither of these 

papers used the models in experiments where sensor(s) must be used to obtain the 

human model in real-time.  

Morato et al. (2014) presented a human-robot collaboration approach that uses 

multiple Microsoft Kinect RGB-D sensor to extract a skeleton model of the human. 

They then cover head, torso and arms of the skeleton model using nine spheres. They 

test their approach for a cooperative assembly task using a small 5-DOF robot. Real-

time performance is achieved (i.e., 30 Hz sampling rate), but the skeleton identification 

can fail if the human is handling some equipment. A further disadvantage is the skeleton 

does not represent the surface of the human’s body so it is not ideally suited for ensuring 

human safety. 

Lasota et al. (2014) developed a safety system for close-proximity interaction with 

standard industrial robots that leverages accurate sensing of a human’s location. A 

PhaseSpace motion capture system was utilized to sense the position of the human 

worker within the workspace. Consequently, the position of the human in the virtual 

workspace was approximated by two concentric cylinders: one cylinder for the forearm 

and one larger-diameter cylinder for the hand. However, the motion capture system 

requires the user to wear LEDs on their arm and hand that are always visible by the 

cameras, so it is not a practical solution for industrial environments. 

An alternative approach is to calculate distances between humans and robots in 

depth space, as described in Flacco et al. (2015). They proposed a method that evaluates 

point-to-object distances working in the depth space of a single Kinect sensor. The depth 

data is not converted to Cartesian space, and the distances are calculated using rays from 

the camera’s focal point. The distances are used to generate repulsive vectors that are 

used to control the robot while executing a generic motion task. The real-time 
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performance of the proposed approach is shown by means of collision avoidance 

experiments. In their experiments the human is standing far away from background 

objects. Since this method uses only depth data it may confuse the human with nearby 

objects which may lead to human-robot collisions.  

Ragaglia et al. (2018) proposed a skeleton plus swept volumes approach to model 

the space occupied by the human worker. Kalman filtering is employed to fuse depth 

data from multiple Kinect sensors. As with Morato et al. (2014) the skeleton 

identification can fail if the human is handling some equipment so this is not a very 

reliable approach. 

 Beckert et al. (2018) enclosed the human upper-body in SSLs to compute their 

reachable occupancies. The SSLs radii are specified such that they enclose all body 

parts. They use six motion-capture cameras that track reflecting marker clusters which 

are affixed to the body. Safeea and Neto (2019) also applied SSLs to represent the 

human in the workspace. The upper body configuration is captured using five inertial 

measurement units (IMUs) that are attached to the upper body parts (chest and arms), 

and a laser scanner that tracks legs. However, these approaches require the user to wear 

markers or IMUs, require special tracking equipment and do not provide sufficiently 

comprehensive environment information for collision avoidance. This makes them 

poorly suited for industrial applications. 

2.4  Robot Manipulator Collision Avoidance Algorithms 

2.4.1 Motion planning-based algorithms 

The purpose of motion planning is to find a continuous, collision-free path from 

the starting pose of the robot to its target pose. The generated collision-free path is 

converted to a reference trajectory and sent to the robot’s controller once (before the 
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robot starts moving), unless replanning is performed. Since the state of the robot within 

a specific time range is determined, its real-time performance cannot be guaranteed. 

A motion planner developed by Mainprice et al. (2011) employs a cost-based, 

random-sampling search to plan safe robot motions within cluttered environments It 

includes the constraints due to human vision field, human-robot separation distance, 

and the robot’s work space. This planner incorporates a transition-based rapidly 

exploring random tree (T-RRT) algorithm and local optimization to generate paths. 

A variety of planners and approaches that modify both the path as well as the time 

parameterization of a trajectory to provide the most flexibility have been developed. 

One approach developed by Yoshida et al. (2010) performs planning and execution 

asynchronously. Upon changes in the environment, a subroutine replans a trajectory 

based on the current initialization and passes it to the execution process. The replanning 

time is 2-3 seconds. Another approach by Kohrt et al. (2013) proposed a grid-based path 

planning method that restricts the search space to Voronoi regions. The trajectory then 

emerges from a time parametrization along the path, for example, based on trapezoidal 

velocity profiles or piecewise polynomial interpolation with imposed velocities and 

accelerations. However, these papers assume the paths and velocities of the obstacles 

are known in advance so they are not well suited for avoiding humans.  

A different approach is to use a fixed preplanned path and only modify the time 

parametrization of the corresponding trajectory. Recent research applying this approach 

was proposed by Beckert et al. (2018). By scaling the time parametrization, the robot 

responds to a dynamic environment by either slowing down or speeding up its motion, 

enabling a time-shared collaboration. The robot’s velocity, acceleration, and jerk limits 

are included in their solution. The controller verifies a given nominal trajectory, 

ensuring safety with formally verified path-consistent fail-safe maneuvers. The 
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positions of both the manipulator and the operator over time are predicted by computing 

their reachable occupancies. The simulation shows that the robot will take 1.6 seconds 

to stop before impact. However, the robot will freeze and delay production if a human 

is blocking the predefined path. 

Motion planning-based methods allow for a more proactive approach to ensuring 

safety. They can search for the optimal path that meets certain constraints, such as 

minimum distance and shortest time, etc. However, this approach is not appropriate for 

maintaining safety with more dynamic environments. Besides, there are practical limits 

to constantly replanning based solely on the current configuration of a rapidly changing 

environment. 

2.4.2 Prediction-based algorithms 

If humans and robots are working close to one another, the ability to anticipate the 

actions and movements of members of a human-robot team is critically important for 

providing safety within dynamic HRC. Typically, the state of the robot is known, and 

the state of humans can be obtained through vision or other motion capture sensors. If 

the person’s movements conform to a particular probability model, the state of the 

person at the next moment can be predicted. By providing this information to the upper-

level planner, or the lower-level control strategy, actions and paths that will result in 

safe and efficient interaction can be determined. 

Mainprice and Berenson (2013) introduced a method that applies labeled 

demonstrations of reaching motions to generate models for prediction of workspace 

occupancy. In this approach, separate Gaussian mixture models (GMMs) are trained for 

each goal position for a particular task, and Gaussian mixture regressions (GMRs) are 

used to generate representative reaching motions. Then, based on observation of the 
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initial segment of a new reaching motion and the computed GMMs and GMRs, the 

approach calculates the likelihood of occupancy of each voxel within a simulated shared 

workspace. The robot then selects actions and paths that minimize incursion into the 

regions of the workspace expected to be occupied by humans. However, neither the 

prediction nor the motion planning processing time achieved sufficient real-time 

performance to be used online for a real application, and the average correct 

classification at the early stages of the trajectory was still very low, with 50% correct 

classification achieved after processing 43% of the motion trajectory. 

Perez-D'Arpino and Shah (2015) also focused on predicting reaching locations 

based on human demonstrations, but with a time-series analysis that utilizes 

multivariate Gaussian distributions over the tracked degrees of freedom of the human 

arm defined for each time step of the motion. The system uses the learned models to 

perform Bayesian classification on the initial stages of motion to predict where a person 

will reach toward and to select robot actions that minimize interference. The models 

take the sequence of points along the motion trajectory into consideration, allowing for 

better discriminability and higher classification confidence very early in the process of 

the human’s motion. This approach assumes a known dynamics model of the world and 

a known goal representation. However, these assumptions constrain the adaptability and 

generality of the system for many real-world tasks. 

Ragaglia et al. (2018) proposed a novel trajectory generation algorithm which 

incorporates the safety requirements for an industrial robot involved in HRC. Their 

trajectory generation algorithm modifies a pre-programmed trajectory to prevent 

collisions between the robot and the worker modelled as a set of swept volumes. 

However, this algorithm has difficulties with occlusions, which are one of the 

significant problems with HRC scenarios. Indeed, when occlusions occur, the 
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information about the position of some human anatomical parts is no longer available. 

This can result in unnecessary limitations on the trajectories that the robot is allowed to 

follow. 

With prediction-based algorithms, a robot can produce safe movements proactively 

by including predictions of the human’s actions and motions, instead of relying on 

frequent replanning. This is especially useful for highly dynamic situations where 

replanning each time the environment changes is impractical. While prediction is 

helpful in ensuring safe HRC, it is essential to note that the efficacy of this approach is 

directly related to the accuracy of the chosen prediction algorithm. In other words, a 

poor choice of prediction algorithm will reduce the safety of the HRC.  

2.4.3 Non-predictive Control-based Algorithms 

Another common method for achieving safety during human-robot interaction is 

through non-predictive control (NPC) of robot motion. This type of safety provision is 

often the simplest method for enabling safe HRC, as it does not require complex 

prediction models or planners. Various techniques and methods designed to perform 

collision avoidance through non-predictive control will be reviewed in this section. 

One popular approach for collision prevention via robot control is the calculation 

of danger criteria and fields, such as the potential field approach developed by Khatib 

(1985). This method can produce more sophisticated safety behaviors by defining a field 

of repulsive vectors that guide the robot’s motion, modifying its trajectory in response 

to dynamically changing environmental factors. One work that integrated the potential 

field approach with other factors was developed by Kulić and Croft (2005). They 

incorporated a safety control module that considers safety factors such as separation 

distance and velocity to generate a danger index to be used by a potential field controller. 
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The estimated emotional state of the user, inferred from skin conductance and heart rate 

measurement, was also integrated into this danger index. Haddadin et al. (2010) 

similarly developed a collision avoidance technique based on the potential field method. 

Their approach accommodates not only the virtual forces caused by proximity to the 

robot, but also actual physical contact. The algorithm, designed to have sufficiently low 

complexity to run in real-time, is based on local reactive motion planning along with 

velocity scaling, a function not only of distance but also the direction of approach. The 

resulting system can produce smooth paths that avoid sudden accelerations and are thus 

more physically interpretable by humans. However, these papers assume that the 

information about the environment needed to avoid obstacles is already available, 

ignoring the need for sensors. Also, the efficacy of these methods is directly linked to 

the strategy used to construct the potential field. 

Bosscher and Hedman (2011) presented a collision avoidance algorithm based on 

speed control. The algorithm searches for a joint velocity that most closely matches the 

desired one, in the sense of the quadratic Euclidean norm, subject to constraints on the 

relative speed between approaching bodies. Collision avoidance can be achieved by 

preprocessing joint velocity references inside of the tracking controller. The robot can 

avoid collisions with an obstacle moving at a maximum speed of approximately 0.5 m/s. 

However, since this only modifies the execution of motions, but not the planning, the 

robot reacts to the environment in a way that is not covered by the plan. Furthermore, 

as in Beckert et al. (2018), the robot will freeze and delay production if a human is 

blocking the predefined path.  

Zanchettin et al. (2016) introduced a velocity scaling approach that takes 

advantage of redundant degrees of freedom, to maintain safety while retaining 

productivity. In this work, a safety region is calculated based on the robot’s velocity and 
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braking distance, as well as a clearance parameter that takes uncertainties in 

measurement and modeling into account. The collision avoidance algorithm is 

calculated at the joint space level to allow for real-time deployment. It uses redundant 

degrees of freedom to move the robot’s joints away from the human while still 

maintaining the right end effector position. This enables the robot to continue to perform 

its task while maintaining both a greater distance of separation from the human and a 

higher speed. 

Liu and Tomizuka (2016) developed a method aimed at achieving real-time safety 

with formal guarantees employing set invariance theory and reachability analysis. In 

their work, the robot motion planning and control problem is posed as a constrained 

optimal control problem. A safety index, which depends on the relative distance among 

humans and robots, is evaluated using the ellipsoid coordinates attached to the robot 

links that represent the distance between the robot arm and the worker. The safety index 

is used as a constraint in the optimization problem so that a collision-free trajectory 

within a finite time horizon is generated on-line iteratively for the robot to move towards 

the desired position. To reduce the computational load for real-time implementation, the 

formulated optimization problem is further approximated by a quadratic program. The 

sampling time is 5.5 ms when the human and robot are modelled by ten SSLs and three 

SSLs, respectively. This method has the disadvantage of requiring a human tracking 

system. Furthermore, only the safety is considered, and not the robot’s productivity. 

2.4.4 Model Predictive Control-based Algorithms 

Model predictive control (MPC) is another control-based method for HRC. MPC 

establishes a look ahead tracking controller by repeatedly solving an optimal control 

problem over a finite time horizon, and then applies the first element to the plant, which 

is the robot in this thesis. One advantage of MPC is that it can explicitly consider the 
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dynamics of low-level joint motion controllers in its prediction model. Like prediction-

based methods, MPC algorithms predict the future motions of the human and robot. In 

general, MPC algorithms use simpler human prediction models and shorter prediction 

horizons. This allows them to recompute the optimal control solution based on current 

sensor information more frequently than with the re-planning approach. This makes 

them better suited to situations where the obstacle motions are less predictable. 

Balan and Bone (2006) presented an MPC-like planning algorithm for HRC. Their 

algorithm solves an optimization problem to select the end-effector path direction from 

a finite set that balances between the robot rapidly approaching its target configuration 

and the robot maximizing its distance to the human over the prediction horizon. The 

robot’s motion was predicted using a transfer function model of its time response at the 

joint level. The human’s motion was predicted at the sphere level using the weighted 

mean of past velocities. As a test scenario, the authors developed a simulation of a 

human walking toward a moving Puma robot arm. The planning algorithm used a 

sampling period of 33.3 ms and a prediction horizon of 0.333 s. Captured human motion 

data was used to simulate the human’s movements. They used Monte Carlo simulations, 

consisting of 1000 random human walking paths passing through the robot workspace, 

to validate their approach. Note that no experiments with a real robot were conducted. 

Zube (2015) presented a collision avoidance strategy based on nonlinear MPC 

(NMPC) that is applicable to both fixed-base and mobile manipulators (i.e., a 

manipulator mounted on a mobile robot). NMPC is applied to solve the inverse 

kinematics of a redundant manipulator and control the end-effector pose in Cartesian 

space. It has the advantages that the nonlinear kinematics are not approximated by a 

linear model and hard constraints (e.g., joint limits) are included. A sampling period of 

100 ms and a prediction horizon of 1 s were used with the NMPC. In terms of 
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disadvantages, this paper only presents simulation results that ignore modelling 

uncertainty, sensor noise and the robot’s deadtime. No simulations of moving obstacles 

like humans were included either. 

Another recent paper that uses NMPC for online trajectory optimization was 

presented by Krämer et al. (2020). The NMPC problem is solved by direct collocation 

based on a hypergraph structure which allows it to efficiently adapt to structural changes 

in the optimization problem caused by moving obstacles. The proposed algorithm has 

the further advantage that it incorporates constraints on joint velocities into the motion 

planning. It has the disadvantage that is assumes the obstacles are stationary over the 

prediction horizon. Simulation results for “imitated robotic pick-and-place experiments” 

are included. A sampling period of 100 ms and a 2.5 s prediction horizon were used. 

The results show that the MPC controller allows the robot to successfully approach a 

moving target configuration without prior knowledge of the reference motion. The 

simulated obstacles consisted of a single moving sphere and a static human modelled 

by seven SSLs. Their simulations ignore the difficulties caused by modelling 

uncertainty and sensor noise. 

2.5  Summary  

This chapter began with a review of the different geometric representations of the 

robot and human used in the literature. The complexity of the geometric representations 

is related to the accuracy of the models and computational costs directly. For real-time 

applications such as robot collision avoidance, the computational efficiency of the 

geometric model must be regarded as the first priority.  

The state-of-the-art literature on collision avoidance algorithms was also reviewed. 

Motion planning-based methods provide a proactive approach to ensuring safety. 
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However, in HRC applications these planners are challenged by having to rapidly re-

plan new paths and motions due to the dynamic nature of any environment occupied by 

people. Prediction-based motion planning methods are especially useful for highly 

dynamic situations, but their effectiveness is directly related to the accuracy of the 

obstacle prediction algorithms. The performance of collision avoidance algorithms 

employing NPC and MPC benefits from their more frequent use of sensor feedback 

compared to motion planning-based methods. This makes them more effective for 

applications where the obstacle motions are less predictable, such as HRC. 
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Chapter 3. Human and Robot Modelling 

 3.1  Introductions 

Geometric models of the human and the robot manipulator are necessary to 

implement the collision avoidance algorithms. In this thesis, three geometric primitives 

are used to represent objects. The front of the human’s torso is represented by a plane. 

A plane is also used to represent the table the robot is mounted on. The human’s arm(s) 

(and head if their neck is bending forwards) that protrude in front of the torso plane are 

modeled as by unions of spheres. The links of robotic manipulator is represented by 

SSLs. These representations have been chosen because they produce simple models that 

can be used to quickly calculate the distance between any two objects. 

 3.2  Human Modelling Algorithm 

3.2.1 Algorithm Description 

In this work, a point cloud approach for human detection is applied. We employ an 

Intel RealSense D415 RGB-D sensor to acquire the point cloud. This sensor produces 

two images: a RGB colour image (captured by a colour camera) and a depth image 

(from a depth camera). The depth image is a two-dimensional image with integer valued 

pixels that measure the depth of that point in space (in millimeters measured along the 

camera’s optical axis). The depth camera can be modelled by the pinhole camera model 

(Darwish et al., 2019) as shown in Fig. 3.1.  
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Figure 3.1: Depth camera model (Darwish et al., 2019) 

The two-dimensional depth image information must be converted into the three-

dimensional point cloud, where each pixel of the depth image has a corresponding point 

in the point cloud. 

 

Figure 3.2: Imaging plane coordinate system 

As shown in Fig. 3.2, ( , )u v  is the image coordinate system expressed in pixels, 

while ( , )x y  represents the camera’s Cartesian coordinate system expressed in 
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millimeters. Then the relationship between two coordinate systems is as follows (Chu 

et al., 2019): 
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 (3.1) 

where 0u  is the origin of the x-axis in the image coordinate system, 0v  is the 

origin of the y-axis in the image coordinate system, xd  is the resolution in the x-axis 

direction, 
yd  is the resolution in the y-axis direction. The equation for converting each 

point in the depth image data to point cloud data is then (Chu et al., 2019): 
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 (3.2) 

where d is the depth value of the point (ux, vy) from the depth image. In this thesis, 

the depth image resolution used is 640 480 . So
0 320u =  and 0 240v =  in the above 

equations.  

In order to segment out the point cloud that belongs to the human, a method 

combining human skin colour detection and point cloud clustering is used. Each point 

has six channels. Three channels store x, y, and z location information while the other 

three store red, green, and blue colour information. The processes of human skin colour 

detection and points cloud clustering are explained below. 

The objective of human skin detection is to find the skin regions in an image, which 

requires separating the skin and non-skin points (Shaik et al., 2015). Colour space is a 

mathematical model that represents colour information as different colour components. 
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A variety of colour spaces are available for skin detection, including: RGB colour space, 

Hue-based colour space, Luminance-based colour space, and perceptually uniform 

colour space. RGB colour space is not preferred for colour-based object detection and 

colour analysis because of the mixing of the colour (chrominance) and intensity 

(luminance) information and its nonuniform characteristics (Zarit et al., 1999). 

Luminance-based approaches discriminate colour and intensity information even under 

uneven illumination conditions. We apply the Luminance-based colour space named 

YCbCr to perform skin colour detection and segmentation. The transformations 

between YCbCr colour space and RGB colour space are given by:  
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Skin detection based on YCbCr colour space can be done using by thresholding 

the three colour components. When an RGB colour image is transformed into the 

YCbCr colour image, the resultant image is comprised of an intensity component (Y) 

and chrominance components (Cb and Cr). In this thesis, thresholds are only applied to 

the chrominance components as shown by the following pseudocode:  

 

if  (77 Cb 230) and (140 Cr 165) then

  Point is skin colour

else

  Point is not skin colour

end

   

 (3.5) 
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We apply human skin colour detection to monitor the volume of interest, which is 

the workspace of the robot. In the next step, the first point in the human skin colour area 

will be used as the first seed point to form the cluster of points belonging to the human 

body by applying a region growing method. 

The basic idea of region growing is to group points with similar properties to form 

regions. Specifically, first, we find a seed pixel for each region that needs to be 

segmented as the starting point for growing. Then we merge the points in the 

neighborhood around the seed point that have the same or similar properties, determined 

according to a certain predetermined growing or similarity criterion, as the seed point 

into the area where the seed point is located. Use these new points as new seed points 

and continue the above process until no more points that meet the conditions can be 

included. In this way, the growing of the region is complete (Adams and Bischof, 1994).  

Principal component analysis (PCA) has been widely used to estimate local 

saliency features (SFs) that are used in the region growing (Rabbani et al., 2006). In this 

work, PCA is used to estimate the normal and curvature of points. The region growing 

process consists of four basic tasks, as shown in Figure 3.3. 

 

Figure 3.3: Region growing process (Rabbani et al., 2006). 
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Neighborhood selection is an important task for accurate SFs estimation. There are 

three common methods for neighborhood selection: 1) -NNk  ; 2) fixed-distance 

neighborhood; and 3) neighborhood within a voxel. For (2) and (3), the numbers of 

points in a neighborhood are different due to uneven sampling. We apply -NNk to get 

k  points of a local neighborhood for an interesting point based on the -Dk   search 

algorithm (Xiao and Wenming, 2009). This approach can deal well with uneven point 

densities, which is common in points cloud data. By manual tuning, we found that

10k =  works well for estimating the surface normal. For the second task – SFs 

estimation, the normal and curvature are estimated for all the points in the data using 

principal components analysis (PCA). The 3 3 covariance matrix C  of each point 

ip  is calculated by the following equation (Khaloo and Lattanzi, 2017):  

 
1

1
( ) ( )

n
T

j i j i

jk =

= − −C p p p p  (3.6) 

where k   is the number of nearest neighbours and jp  are the k   nearest 

neighbours of ip . 

Next, by performing Singular Value Decomposition (SVD) on the covariance 

matrix (Golub and Reinsch, 1970), it is possible to compute the eigenvectors 

and
3 2 1

v , v v  and the corresponding eigenvalues 
1 2 3, , and     of the covariance 

matrix C . The eigenvalues are sorted in the order: 3 2 1    . With this approach 

1v  approximates the normal vector at point ip . The curvature is given by: 

 1
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 (3.7) 
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The first point that is recognized in the human skin area is selected as the first 

seed point. A region is grown incrementally based on the spatial connectivity 

among the points starting from the seed point. We define two points as spatially 

connected based on their normal vectors and curvatures. The region growing 

algorithm for finding the “human body point cloud” is then: 

  

Algorithm 3.1 The complete region growing method to cluster 

human body cloud 

Inputs: Point cloud  P , User-defined neighborhood size k , 

angular threshold = threshold  and curvature threshold= thresholdc . 

Output: Human body point cloud  H .  

1. Initialize: current region  cR , and cloud of current seeds  cS ; 

2. Find NNk −  for all points in P using the Matlab command: 

knnsearch( , )k=
p

N P,P ; 

3. PCA-based normal and curvature estimation for all points in  P : 

for 1i =  to size  P  do 

   Denote NN of 
thi  point as 

ip
N ; 
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   Calculate the covariance matrix C  using 
ip

N and (3.6); 

   Calculate eigenvectors and
3 2 1

V (v , v v ) and their corresponding 

eigenvalues 3 2 1( )      of C :  , ( )eig =V C ; 

   Normal vector: 1i =n v ; 

   Curvature ic  is calculated by Equation (3.7); 

end 

4. while  P  is not empty, do 

5.   Select the first point in human skin area 1h as initial seed       

→
1 i

h p ; 

6.      i c cp insert R & S  

7.    ip remove P  

8.   for 1m =  to k  do 

9. Calculate angle from mn  to the seed point normal vector
ipn : 

arccosm =
im pn n ; 

10.      if m threshold   do 

11.         m cinsertp R  
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12.         m removep P  

13.        if ( )
m ip p thresholdabs c c c−   do 

14.            m cinsertp S  

15.        end  

16.      end 

17.    end 

18.    Add current region to human body point cloud: 

   c insertR H  

19.  end 

 

With point clouds, the computation time increases with the number of points. To 

reduce the number of points the human body point cloud is resampled using a process 

called voxelization. A voxel is a cube with a predefined edge length. This edge length 

defines the resolution of the voxelized cloud. Figure 3.4 is an illustration of a voxel cell, 

where L  is the edge length of the voxel cell. 
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Figure 3.4: Voxel cell. 

The voxelization step is shown in Figure 3.5. First, the bounding box is calculated 

for original point cloud. Second, using the predefined voxel cell size, the bounding box 

of the point cloud is divided into cubic cells. Third, the cloud points are assigned to the 

cells they are inside. Note that many of the clouds will be unoccupied. Finally, the new 

resampled point cloud is given the centroids of the occupied voxel cells. Since several 

of the original points may lie inside each voxel cell (as shown in Figure 3.5) the 

resampled cloud typically includes much fewer points than the original cloud.  

 

Figure 3.5: Point cloud resampling using voxel cells. 

After resampling the human body point cloud, we fit a plane to the front of the 

torso and fit spheres to human’s arm(s) (and head if their neck is bending forwards). We 

apply the built-in MATLAB function “pcfitplane” to fit a plane to the point cloud. To 

use this function, the maximum allowable distance from an inlier point to the plane must 

be specified. This function is motivated by the Maximum Likelihood Estimator SAmple 

Consensus (MLESAC) algorithm, which is a variant of the RANdom SAmple 

Consensus (RANSAC) algorithm. The MLESAC algorithm is a generalization of 

RANSAC, which adopts the same sampling strategy but attempts to maximize the 
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likelihood of the solution, as opposed to the number of inliers (Torr and Zisserman, 

2000). MLESAC is useful in situations where most of the data samples belong to the 

model, and a fast outlier rejection algorithm is needed. We use this function to return 

the equation for the plane, the linear indices to the inlier and outlier points in the point 

cloud input. In our purpose, the inlier points are the torso (and head if the neck is not 

bending forwards), while the outlier points belong to the protruding human arm(s) (and 

head if the neck is bending forwards). The algorithm for fitting the union of spheres to 

the outlier points is:  

 

Algorithm 3.2 Union of spheres fitting algorithm  

Inputs: Outlier point cloud  oP from pcfitplane, user-defined 

sphere radius sR , plane safety tolerance pstd  and minimum points 

number minN ;  

Output: Centroids matrix of fitting spheres 
s

C ; 

1. initialization Max distance 6

max ( ) 10pstd abs d −= + , centroids 

matrix sc  and centroid input inc ; 

2. while max ( )pstd abs d  do 

3.    Calculate distances between  oP  and the torso plane       

toplane
D ; 

4.    Max distance max max( )d =
toplane

D ; 
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5.    if max ( )pstd abs d  do 

6.      break; 

7.    end 

8.    Find the point has with max distance maxp ; 

9.    
maxinc p= ; 

10.    Previous number of points in sphere 0previousn = ; 

11.    Current number of points in sphere 1currentn = ; 

12.    while

  min maxsize & ( ) & 0c in s previous currentP N norm p c R n n −  −   do 

13.      previous currentn n= ; 

14. Find neighbors of inc : 

   findNeighborsInRadius( , , )nr o in sP P c R= ; 

15.       current nrn size P= ; 

16.      Find current cloud in sphere:    is nrP P= ; 

17.      { }in isc mean P= ; 

18.    end; 

19.    if mincurrentn N  do 

20.      
inc insert

s
C ; 

21.    end 

22.    if mincurrentn N  do 

23.      break; 

24.    end; 

25. end 
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 3.3  Robot Modeling  

3.3.1  Kinematic Model 

A serial robotic manipulator can be represented as a chain of links (rigid bodies) 

connected to each other by moveable joints. A kinematic model is used to define the 

relationship between the positions and orientations of the links and the values of the 

joint angles. In this research, a collaborative robot, Elfin 5 (Figure 3.6) made by Han’s 

Robot, will be used for simulating the collision avoidance algorithms. Elfin is a 6-DOF 

robotic manipulator with six rotational joints (also known as revolute joints). The robot 

has a maximum payload of 5 kg. 

 

Figure 3.6: The Elfin 5 robot made by Han’s Robot.  

Kinematics is the study of the movements without considering the causes that give 

rise to them, so it only involves distances, angles, velocities and accelerations (Todd, 

1986). The position and orientation of each link in space is defined by a Cartesian 

coordinate frame attached to it. Although there are several ways to define one coordinate 

frame relative to another, the Denavit-Hartenberg (D-H) representation has become the 

standard in robotics (Hartenberg and Denavit, 1964). Its parameters are the joint angle
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i , joint offset id , link length ia  and link twist .i  This representation simplifies the 

kinematic model by imposing limits on the definitions of the coordinate frames, as 

described in on page 31 of (Spong et al., 2006). The corresponding D-H parameters of 

the Elfin 5 robot can be found in Table 3.1. Note that a 100 mm offset for a gripper is 

taken into consideration. 

Table 3.1: D-H parameters of the Elfin 5 robot 

Link i   [rad]i   [ ]id mm   [ ]ia mm   [rad]i  

1 1  220 0 / 2  

2 2  100 380   

3 3  -100 0 / 2  

4 4  420 0 / 2−  

5 5  100 0 / 2  

6 6  280 0 0 

There are two branches of manipulator kinematics, namely: forward kinematics, 

and inverse kinematics. The first one is used for calculating the Cartesian positions and 

orientations of the end-effector or intermediate links/joints and from a given values of 

the joint angles.  

The forward kinematics of the Elfin 5 robot will be described first. A 4 × 4 
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homogeneous transformation matrix may be used to define the position and orientation 

changes between a pair of coordinate frames. It is composed of a rotation matrix R and 

a position vector p as follows: 

 
0 0 0 1

0 0 0 1

x x x x

y y y y

z z z z

n o a p

R p n o a p
F

n o a p

 
 

   = =    
 
 

 (3.8) 

The D-H parameters can be used to a derive a set of six transformation matrices, 

one for each of the robot’s joints. The transformation matrices defining the change from 

the coordinate frame for link i  to the coordinate frame for link 1i + , is written: 
1i

iT+
. 

It is obtained using (3.9), where 1iC + and 1iS +  stand for 
1cos i +
and 1sin i + . 

 

1 1 1 1 1 1 1

1 1 1 1 1 1 11

1 1 10

0 0 0 1

i i i i i i i

i i i i i i ii

i

i i i

C S C S S a C

S C C C S a S
T

S C d

     

     

 

+ + + + + + +

+ + + + + + ++

+ + +

− 
 

−
 =
 
 
 

 (3.9) 

The concatenation of the multiple links can be done by multiplying the individual 

transformation matrices, resulting in one compound transformation matrix. For example, 

computing the location and orientation of the end-effector with respect to the robot base 

frame can be done by multiplying every link transformation of the robotic arm as in 

(3.10). This results in a homogeneous transformation matrix where the positions vector 

describes the position of the tool and the rotation matrix the orientation of the tool with 

respect to the base coordinate system. For a 6-DOF robot like Elfin, the total 

transformation matrix representing the forward kinematics equals:  

 
0 0 1 3 3 4 5

6 6 2 3 4 5 6T T T T T T T=  (3.10) 
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The goal of inverse kinematics is to find the joint angles from the given desired 

position and orientation of the end-effector. There are two main strategies for solving 

the inverse kinematics of a manipulator: closed-form solutions and numerical solutions. 

Closed-form solutions use an analytical approach and can be based on geometrical 

properties. Numerical solutions use iterative techniques to find the desired joint angles 

but require more computational time (Craig, 2004). Because it is desired to keep the 

calculation time as low as possible in real-time interactions, it was chosen to formulate 

a closed-form solution for the Elfin 5. This solution is based on section 4.4 of (Craig, 

2004). 

To begin the solution, the desired position and orientation of the end-effector is 

specified using the transformation matrix for coordinate frame 6 as defined by:   

 

6 6 6 6

6 6 6 60

6

6 6 6 6

0 0 0 1

x x x x

y y y y

z z z z

n o a p

n o a p
T

n o a p

 
 
 =
 
 
 

 (3.11) 

First, we can determine 
5p   by moving a distance 6d   along the z-axis of 

coordinate system 6. The direction of this z-axis is indicated by the third column of the 

rotation matrix portion of 
0

6T  . This gives: 

 

5 6

5 5 6 6 6

5 6

x x

y y

z z

p a

p p p d a

p a

   
   

= = −
   
      

 (3.12) 

After 
5p  has been calculated, it is possible to calculate 1 , 2 and 3  with the 

following equations: 
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 1 5 5atan2( , )y xp p = −  (3.13) 

 

2 2 2 2 2

5 5 5 1 2 4

3

2 4

( )
cos

2

x y zp p p d a d
U

a d


+ + − − −
= =  (3.14) 

and  

 2

3 atan2( 1 , )U U =  −  (3.15) 

where the positive square root gives the elbow down solution and the negative 

square root gives the elbow up solution. The corresponding solutions for angle 2  are 

given by: 

 

2 2

5 55 1
2

2 2 2 2 2 2

5 5 5 1 5 5 5 1

4 3 2 4 3

2 2 2 2 2 2

5 5 5 1 5 5 5 1

atan2 ,
( ) ( )

sin cos
atan2 ,

( ) ( )

x yz

x y z x y z

x y z x y z

p pp d

p p p d p p p d

d a d

p p p d p p p d



 

+−
=

+ + − + + −

+
−

+ + − + + −

 
 
 
 

 
 
 
 

 (3.16) 

The equations for the inverse orientation kinematics may be used to calculate the 

values of the wrist's joint angles (i.e., the minor axes). The method begins by first 

calculating the orientation of the end-effector relative to frame 3 as follows: 

 

11 12 13

3 0 1 0

6 3 3 21 22 23

31 32 33

RT

u u u

R R R R u u u

u u u

−

 
 

= = =
 
  

 (3.17) 

where
0

3R  can be calculated using forward kinematics and the joint variables we 

found using the inverse position kinematics equations. The Elfin 5 is equipped with a 

Euler wrist, as is common with industrial robots. For a Euler wrist, the rotation matrix 
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is:  

 

4 5 6 4 6 4 5 6 4 6 4 5

3

6 4 5 6 4 6 4 5 6 4 6 4 5

5 6 5 6 5

C C C S S C C S S C C S

R S C C C S S C S C C S S

S C S C C

           

           

    

− − − 
 

= + − +
 
 − 

 (3.18) 

Equating (3.17) and (3.18) gives the matrix equation 

 

4 5 6 4 6 4 5 6 4 6 4 5 11 12 13

4 5 6 4 6 4 5 6 4 6 4 5 21 22 23

5 6 5 6 5 31 32 33

=

C C C S S C C S S C C S u u u

S C C C S S C S C C S S u u u

S C S C C u u u

           

           

    

− − −   
   

+ − +
   
   −   

 (3.19) 

The remainder of the method involves solving for angles 4 5,   and 6  using the 

known u  values. 

3.3.2 Geometric Model 

Based on Elfin 5 robot’s kinematic configuration, only links 2, 4, and 6 are 

modeled as SSLs for use in the collision avoidance algorithm. The reasons become clear 

by examining Figure 3.7 and Table 3.1. Link 1 is not modelled since it is stationary, and 

links 3 and 5 have zero length. As a result, the complete geometric model of the robot, 

shown in Figure 3.8, may be obtained from the three SSL line segment endpoints and 

their radii. In this thesis, a radius of 40 mm is used for SSLs of link 6 while a radius of 

50 mm is for link 4 and link 2. 
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Figure 3.7: The kinematic skeleton of 

the Elfin 5 robot 

Figure 3.8: SSLs model of the moving 

links of the Elfin 5 robot 

 

 

3.3.3 Time Domain Model 

In practice, all robots have some delay in their response due to the dynamics of 

their electrical and mechanical components. The joint position command sent at discrete 

time t  will not be executed by the robot at discrete time t  since the robot cannot 

reach commanded locations instantly. The delay required for the robot to execute a 

command results in the following equation: 

 ( 1) ( 1 )a c dt t  + = + −  (3.20) 

where c  is the commanded joint angle, a  is the actual joint angle, and d  is 
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the number of sampling periods of delay. Equation (3.20) applies to a single joint only, 

but can be extended to model the entire robot by considering a  and c  as column 

vectors, of length equal to the number of the robot joints. 

The delay d  of the Elfin 5 robot was obtained experimentally. Each joint was 

tested separately. The set of commands sent to the robot are moving one joint 45 degrees 

and then back to the initial position. The commands and corresponding actual joint 

positions are recorded. Figure 3.9 is a zoomed-in plot of the joint 1 test results. 

 

Figure 3.9:  Joint 1 delay measurement experimental results for the Elfin 5 

robot (zoomed-in to show the delay d ). 

 

From these experiments, the inherent delay from the time the robot is ordered to 

take actions until it begins to execute the order is 63 ms, 55 ms, 54 ms, 63 ms, 54 ms 

and 63 ms for joint 1, joint 2, joint 3, joint 4, joint 5 and joint 6 respectively. In this 
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thesis a sampling period of 33.3 ms is used to match the 30 Hz sampling frequency of 

the Intel RealSense RGB-D sensor. To be conservative the maximum experimentally 

measured delay of 63 ms is approximated as a delay of two sampling periods (i.e., 66.6 

ms) in our simulations. 

In addition to the delay, the position, velocity and acceleration limits also must be 

taken into consideration. The following inequalities should be satisfied: 

 
,min ,maxc c c     (3.21) 

 ,min ,maxc c c     (3.22) 

 ,min ,maxc c c     (3.23) 

where 
,minc  is the minimum joint angle limit, 

,maxc is the maximum joint angle 

limit, ,minc  is the minimum joint velocity limit, ,maxc is the maximum joint velocity 

limit, ,minc  is the minimum joint acceleration limit and ,maxc is the maximum joint 

acceleration limit. 

  

 3.4  Summary   

This chapter presented the human modeling and robot modeling approaches used 

in this research. The algorithms that generate the human plane and union of spheres 

model from RGB-D data were described. Bounding SSL models for the robot links can 

be calculated from the presented kinematic equations, the sensed joint angles, and the 

SSL radii. The SSL link models, and the plane and spheres human model, will be used 

to conservatively estimate the human-robot closest distance by calculating the closest 
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distance between those geometric objects in chapters 4 and 5. To properly simulate the 

robot’s time response in chapter 5, a time domain model that includes the delay time 

was found using experimental data. 

  



 

 

 

Chapter 4 Collision Avoidance Algorithms 

 4.1  Introduction 

In this chapter, the collision avoidance algorithms are presented in detail. The first 

algorithm solves the inverse kinematics problem and avoid collisions using an expanded 

version of the manipulator Jacobian matrix. A damped least-squares inverse of the 

Jacobian is applied to compute the commanded joint velocities from given end-effector 

velocities. The Cartesian task space error is corrected by adopting a closed-loop inverse 

kinematics algorithm. Collision avoidance tasks produce constraints that are 

systematically incorporated into this algorithm. A second collision avoidance algorithm 

using NMPC is designed as an alternative approach. 

 4.2  Inverse kinematics calculation 

For a 6 DOF robot, the direct kinematics equation of a robot manipulator with an 

open kinematic chain can be written in the form: 

 ( )f=x q  (4.1) 

where q  is the (6×1) vector of joint position variables, x is the (6×1) vector of 

end-effector variables (including position variables and orientation variables), and 

( )f   denotes the nonlinear direct kinematics function. 

The Jacobian matrix gives the relationship between the joint velocities and the 

corresponding end-effector linear and angular velocities. The calculations for the 

Jacobian matrix presented in this section are mainly based on pages 105-113 of 
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(Siciliano, 2009). It is desired to express the end-effector linear velocity ep   and 

angular velocity eω  as a function of the joint velocities q , i.e., 

 ( )=
e p

p J q q  (4.2) 

 ( )=
e o

ω J q q  (4.3) 

In (4.2), 
p

J  is the (3×6) matrix relating the contribution of the joint velocities q  

to the end-effector linear velocity 
ep , while in (4.3) 

oJ  is the (3×6) matrix relating 

the contribution of the joint velocities q  to the end-effector angular velocity 
eω . 

p
J  

and 
oJ  can be partitioned into the (3×1) column vectors 

pi
J  and 

oiJ  as follows: 

  =  p p1 pi p6J J J J  (4.4) 

  =o o1 oi o6J J J J  (4.5) 

In compact form, (4.2) and (4.3) can be rewritten as:  

 
 
 
 

e

e

p
x = = J(q)q

ω
 (4.6) 

where J(q)   is the (6×6) manipulator geometric Jacobian matrix. In expanded 

form it is: 

 
   

=   
   

p p1 pi p6

o o1 oi o6

J (q) J J J
J(q) =

J (q) J J J
 (4.7) 

A simple and systematic way to calculate J(q)  using direct kinematics relations 
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is shown in the following equation: 

 

                         for a prismatic joint

      for a revolute joint

 
 

   
=  

   
 
 

i-1

pi

oi i-1 e i-1

i-1

z
  

0J

J z (p - p )
  

z

 (4.8) 

where 
i-1

z  is the -axisz of the thi joint frame, 
i-1

p  is the position of the origin 

of the thi joint frame, and 
ep  is the position of the end-effector.  

In (4.8), vectors 
i-1

z  , 
ep  , and 

i-1
p   are all functions of the joint variables. In 

particular: 

i-1
z  is given by the third column of the rotation matrix 0

i-1R , i.e.,     

 ...0 i-2

i-1 1 1 i-1 i-1 0z = R (q ) R (q )z  (4.9) 

where [0 0 1]T=0z allows the selection of the third column. 

ep  is given by the first three elements of the fourth column of the transformation 

matrix 0

eT , i.e., by expressing
ep  in the (4 × 1) homogeneous form: 

 ...0 5

e 1 6 0p = T T p  (4.10) 

where  0 0 0 1
T

=0p allows the selection of the fourth column. 

i-1
p  is given by the first three elements of the fourth column of the transformation 

matrix 0

i-1T , i.e., it can be extracted from: 
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 ...0 i-2

i-1 1 i-1 0p = T T p  (4.11) 

The above relation in (4.6) can be inverted to provide the so-called Jacobian 

control method for manipulators: 

 -1

cq = J (q)x  (4.12) 

where the “c” subscript refers to the commanded value rather than the actual value. 

The pseudoinverse method (see (Whitney, 1969)) for the least-squares minimum-norm 

gives the following solution: 

 * T T -1

cq = J x = J (JJ ) x  (4.13) 

Equation (4.13) is preferable to be used as the control law if the Jacobian matrix 

has full row rank. However, there always are some configurations at which the Jacobian 

is either rank deficient or ill-conditioned. Singularity will occur at these configurations. 

This problem will be overcome using the following damped least-squares method (see 

(Wampler and Leifer, 1988)): 

 T -1 T

c nq = (J J + I ) J x  (4.14) 

where 
nI   is the n  dimension identity matrix (with n   equal to the number of 

columns of J ), and 0   is a scalar damping factor. 

4.3  Inclusion of Constraints 

4.3.1 Sphere obstacle collision avoidance constraint  

In real applications, many constraints (e.g. the finite torque of joint) can stop the 

realization of the basic inverse kinematics law (4.14). In this thesis, we assume the 
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constraints on the manipulator are unilateral and can be represented as strict inequalities, 

namely 

 0, 1,...,i sf i n =  (4.15) 

where if  denotes the function of ith constraint, and sn  is the total number of obstacles. 

 

 

Figure 4.1: Distance between a SSL 
1b  and a sphere 2b (Krämer et al., 

2020) 

 

The robot is modeled as SSLs. The distance between a sphere and SSL is shown 

in Figure 4.1. A SSL is composed of a line segment defined by the two dynamic 

endpoints ( )t
1,1

p  and ( )t
1,2

p . We define 1r  as the radius of robot link’s SSL models 

and 2r  as the radius of the spheres in the union of spheres human model.  

 Let sd be the desired centre-to-centre distance between the robot centreline and 
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obstacle centre. For a collision to be avoided: 1 2sd r r + .  

 

Figure 4.2: Geometry of a planar manipulator showing the point nearest to the 

obstacle 

See Figure 4.2 for a planar example. Where oc is the centre of the obstacle, mind

the closest distance between the obstacle and whole robot arm, criticalp  is the critical 

point for whole arm, 
joint1

p is the location of joint 1， 2joint
p is the location of joint 2，

3joint
p is the location of joint 3，

ep is the location of end-effector , c1p  is the closest 

point to the obstacle on link 1,  2c
p  is the closest point to the obstacle on link 2, and 

3cp  is the closest point to the obstacle on link 3. Taking link 1 as an example, the way 

to calculate the closest point to the obstacle on the link is as follows: 

 
( )

( )

T

1to 1c

− − −

−

o joint1 joint2 joint1 joint2 joint1

2

joint2 joint1

(c p ) (p p ) (p p )
v =

p p

 (4.16) 
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( )

T

par1l
− −

=
−

o joint1 joint2 joint1

2

joint2 joint1

(c p ) (p p )

p p

 (4.17) 

 

1

1

1to 1

if 0

if 1

otherwise

par

par

c

l

l

 






c1 joint1

c1 joint2

c1 joint1

p = p

p = p

p = p + v

 (4.18) 

where 1to 1cv   is the vector from joint 1 to c1p   and 
par1l   is a parameter that 

determines whether c1p   located at 
joint1

p  , 2joint
p   or a position between 

joint1
p   and 

2joint
p . Then mind  can be determined using: 

 ( )min 2 3min , , , ed = − − − −c1 c c c c c cp o p o p o p o  (4.19) 

The critical point is then given by: 

 

min

2 min 2

3 min 3

min

if

if

if

ife e

d

d

d

d

 = = −


= = −


= = −
 = = −

critical c1 c1 c

critical c c c

critical c c c

critical c

p p p o

p p p o

p p p o

p p p o

 (4.20) 

We define:  

 ( ) ( )2 2 2

1 0.5 || || 0.5 0s sf d d= − = − T
d d d  (4.21) 

where ocriticald = p - c .This expression of 1f  has same function as 1 sf d= −|| d || , 

but simplifies the equation for 1f  (see (Sciavicco and Siciliano, 1988)). 

Differentiating (4.21) with respect to time gives 

 1 s sf d d= −T

fd c + J q  (4.22) 
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with 
T

f criticalJ = d J , where criticalJ  is a (3 × 6) matrix, and c is the moving speed 

of the obstacle. criticalJ  is equal to the first 3 rows of the Jacobian matrix of the critical 

point, which can be calculated based on (4.8). 

In this way, if 0f  , the joints determining the position of the critical point are 

prevented from moving it closer to the obstacle. As a matter of fact, a link which is a 

candidate for a collision is forced to move tangentially around the imaginary sphere 

centred at the obstacle and of radius sd . It should be noted that in (4.22) the case of 

moving obstacle ( c 0 ) has been considered 

The kinematic control of a manipulator with a collision avoidance constraint for 

an obstacle may be written as follows 

 
fb





c d

f c

Jq = x

J q =
 (4.23) 

where fb = − Td c  

Let 
1 A f

A = [J ;J ]  be the expanded Jacobian matrix and fb
1 d

b = [x , ]   be the 

expanded target matrix to give the compact form 

 1 c 1A q = b  (4.24) 

From (4.14), the solution to (4.24) is  

 T -1 T

c 1 1 n 1 1q = (A A + I ) A b  (4.25) 

where nI  is the n  dimension identity matrix, with n  equal to the number of 
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columns of 1A . 

4.3.2 Varied weight method 

We adopt the varied weight method proposed by (Xiang et al., 2012). Let w  be 

the weight factor that is associated with the collision avoidance task. Define the weight 

array [1; 1; 1; ]w=w  and weight matrix ( )diag=W w . Incorporating W  into (4.25) 

gives: 

 1 1 1 1T -1

cq = (A WA + I) A Wb  (4.26) 

The weight factor w   is related to the distance between the obstacle and the 

critical point on the robot. 0w =   refers to the collision avoidance constraint is not 

activated, and 0w    means it is activated. To smooth the activation process, the 

following equation is used to calculate the weight factor: 

 (|| |/ 1)

1

1 sd
w

e
−

=
+

d|  (4.27) 

where || d ||  is the distance between the obstacle centre and the critical point; and 

 determines the smoothness of the curve. In this research we found setting 
2.5

sd
 =  

to be an effective choice. For example, when sd =100 mm, the relationship between 

w  and || d || is shown in Figure 4.3.  
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Figure 4.3: Relationship between the distance to critical point || d ||  and the 

weight factor w  when sd =100 mm. 

4.3.3 Multiple sphere obstacles collision avoidance constraint  

To deal with multiple obstacles, the expanded matrices should be: 

; ...
2 A f1 f2

A = [J ; J ; J ]   and ...
2 d f1 f2

b = [x ,b ,b , ] . The weight array will be: 

1 2[1; 1; 1; ; ;...]w w=
2

w , ( )diag=2 2W w .Then (4.21) will become: 

 T -1

c 2 2 2 2 2 2q = (A W A + I) A W b  (4.28) 

 

4.3.4 Joints angle limits constraint 

Assume that a joint angle is constrained between values miniq and maxiq ,The joint 

limits can be represented by: 

 min maxi i iq q q   (4.29) 
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A threshold distance  q
d  can be defined with the intent that if the distance of the 

current iq , from either of the two limits becomes less than q
d , joints constraints task 

should be activated. Define the error: 

 
iq q qi

e = d -d  (4.30) 

where qi imax i
d = q -q

 or qi i imin
d = q -q

. 

Define the joints constraints task Jacobian 
qi

J (1 × 6): 

 
[0 0 ...1... 0],

[0 0 ... 1... 0],


= 

−

qi i

qi

qi i

e = q
J

e = -q
 (4.31) 

In 
qi

J  only the thi  factor is nonzero, and the left are 0. 

The joints limits constraint weight factor is as follows: 

 
( )

( )

1 if or

0 otherwise

j i

j i

w

w

=


=

imax i q i imin qq -q < d q -q < d
 (4.32) 

The overall sphere obstacle collision avoidance and joints constraints expanded 

Jacobian is:  

 T -1

c 3 3 3 3 3 3q = (A W A + I) A W b  (4.33) 

where 
... ...

3 A f1 f2 q1 qi
A = [J ;J ;J ; ;J ; J ]

 , 1 2 1[1;1;1; ; ;... ;... ]j jiw w w w=
3

w
 , 

( )diag=3 3W w , 1 2 int[ , , ,..., ]f f fJo sb b b=
3 d

b x
. 
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4.3.5 Plane collision avoidance constraint  

We assume that the plane surface being avoided is larger than the robot’s reach so 

it is equivalent to the problem of avoiding an infinite plane. Based on this assumption, 

the critical point on the robot arm will always one of joints or the end-effector. 

 

 

Figure 4.4: The point ( , , )x y zp  and its projection onto the plane 

( ', ', ')x y zp' . 

A plane can be represented by: 

 0Ax By Cz D+ + + =  (4.34) 

To calculate the closest distance between the point and the plane, planed , the point 

( , , )x y zp   is projected onto the plane as shown in Fig. 4.4. Then the distance 
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planed =|| p -p' ||  is given by: 

 

2 2 2

2 2 2

2 2 2

2 2 2

'

'

'

plane

Ax By Cz D
d

A B C

Ax By Cz D
x x

A B C

Ax By Cz D
y y

A B C

Ax By Cz D
z z

A B C

+ + +
=

+ +

+ + +
= −

+ +

+ + +
= −

+ +

+ + +
= −

+ +

 (4.35) 

For a collision to be avoided: plane pd d  and 1pd r . 

Next, similar to the sphere obstacle collision avoidance, 
T

fPlane plane criticalPlaneJ = d J  

and fPlaneb is 0 or an arbitrary negative scalar. 
fPlane

J  is (1 × 6) Jacobian matrix of the 

plane avoidance constraint. criticalPlane
J  is (3 × 6) Jacobian matrix of the critical point 

on the arm to a plane. For a typical 6 DOF robot arm,  criticalPlane
J  will be first 3 rows 

of the Jacobian matrix at joint 3, joint 5, and the end-effector. 

The weight factor is: 

 
( 1)

1

1 plane P
plane d d

w
e

−
=

+
        (4.36) 

 

A robot manipulator is typically mounted on a horizontal flat table with the robot’s 

Z axis normal to the table. Therefore, if the robot’s origin and table’s origin both lie in 

the XY plane, the distance from a critical point on the robot to the table plane is simply:  

1plane criticald z r−=  where criticalz  is the Z coordinate of criticalp . 
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The overall sphere obstacle collision avoidance, joints constraints and plane 

avoidance expanded Jacobian is: 

 T -1

c 4 4 4 4 4 4q = (A W A + I) A W b  (4.37) 

where 4 A f1 f2 fJoint fPlane
A = [J ;J ;J ;...;J ;J ]

 , 1 2 1 6[1;1;1; ; ;... ;... ; ]j j planew w w w w=
4

w  , 

4 4W = diag(w )
 and 1 2 int[ , , ,..., , ]f f fJo s fPlaneb b b b=

4 d
b x . 

4.4 Closed-loop inverse kinematics implementation 

4.4.1 Main task only  

In practice, cq   must be numerically integrated to get the vector of desired or 

commanded joint angles to send to the robot controller. This numerical integration will 

drift over time causing errors in the end-effector pose. Obtaining the joint velocities 

using (4.14) and integration is analogous to open-loop control since the end-effector 

pose is not used in the calculation. In this section a closed-loop inverse kinematics 

method intended to reduce the end-effector pose errors will be presented (see (Sciavicco 

and Siciliano, 1988)). 

Let dx  (6 × 1) be the desired end-effector pose. The pose error vector e  (6 × 1) 

can be defined as:  

 d
e = x - x  (4.38) 

Differentiating (4.38) with respect to time gives: 

 d d
e = x - x = x - Jq  (4.39) 
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As in (4.13), the result using the open-loop pseudoinverse method is: 

 * T T -1

c d dq = J x = J (JJ ) x  (4.40) 

Adding a feedback term, Ke , produces the closed-loop pseudoinverse method: 

 T T -1

c dq = J (JJ ) (Ke + x )  (4.41) 

where K  is a positive-definite proportional gain matrix. Its elements affect the error 

convergence rate.  

Finally, employing the damped least-squares method, as was done in (4.14), gives:  

 λT -1 T

c 6 dq = (J J + I ) J (Ke + x )  (4.42) 

4.4.2 Additional constraint tasks 

1) Sphere collision avoidance task 

With reference to Figure 4.1, define the error: 

 s s spheree d d= −  (4.43) 

where sphered = d . 

Define the sphere collision avoidance task Jacobian sJ (3 × 6): 

 
T

s criticalJ = d J  (4.44) 

2) Joints angle constraints task 

Joints angle constraints task error can be calculated from (4.30) and the joints 
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constraints task Jacobian is the same as (4.31). 

3) Plane collision avoidance task 

In analogy to the sphere obstacle avoidance task, define 

 p p planee d d= −  (4.45) 

Define the plane avoidance task Jacobian 
p

J (3 × 6) 

 
T

p criticalPlaneJ = (p - p') J  (4.46) 

 

4.4.3 Closed-loop inverse kinematic control law 

The extended error vector te   in the task space includes the end-effector error 

vector e  from (4.38), along with errors defined in (4.30), (4.43) and (4.45) as follows: 

 
es s f

qi fJoints

p fPlane

K e b

e b

e b

 
 

+
 
 +
 

+  

d

t

Ke + x

e =  (4.47) 

The closed-loop control law is: 

 T -1 T

c c c 6 c tq = (J J + I ) J e       (4.48) 

where 
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 
 
 
 
 
  

s

c

qi

p

J

J
J =

J

J

 (4.49) 

Finally, the varied weight version of (4.48) is: 

 T -1 T

c c 4 c 6 c 4 tq = (J W J + I ) J W e  (4.50) 

4.4.4 Closed-loop Kinematic Control Law Exploiting Functional Redundancy 

Kinematic redundancy is related to the number n  of DOFs of the structure, the 

number m   of operational space variables, and the number r   of operational space 

variables necessary to specify a given task. Equation (4.52) may be interpreted as the 

differential kinematics mapping relating the n  components of the joint velocity vector 

to the r m  components of the velocity vector x  of concern for the specific task. In 

the case of a 6 DOF robot, that is not intrinsically redundant when considering both the 

3 position variables and 3 orientation variables we have: 6n m r= = = .  

The Jacobian matrix J  can be written in terms of two submatrices as in (4.7). If 

we decide that the end-effector drops orientation tracking and performs position 

tracking only, then we have chosen to ignore the eω  portion of x . This makes the 

arm functionally redundant with 3r =   and allows us to replace J  with 3J   in the 

kinematic control law (4.50). The new control law is  

 T -1 T

c cr 4 cr 6 cr 4 rq = (J W J + I ) J W e  (4.51) 

where 
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 
 
 
 
 
  

3

s

cr

qi

p

J

J
J =

J

J

 (4.52) 

and 

 
s f

qi fJoints

p fPlane

e b

e b

e b

 
 

+
 
 +
 

+  

pe dpe

r

Ke + x

e =  (4.53) 

with 
pe e ed

e = p -p , where ed
p (3× 1) desired end-effector position. 

 Under the control of (4.52), the end-effector can track a desired trajectory, and 

the three redundant DOF’s are used to perform subtasks, which include obstacle 

avoidance, joints angle constraints and plane avoidance. For example, let’s say we have 

three subtasks with r values of 1r  , 2r  and 3r  , respectively. As long as 1 2 3 3r r r+ +   

both the main task and subtasks will not fail. If 1 2 3 3r r r+ +  , failure may occur in one 

or more of those tasks. If we want to guarantee the success of all tasks, a proper strategy 

to decide which subtask will be activated is crucial. The weight matrix 
4W can be used 

for this purpose. The weight factor of the main task is always 1. Each subtask’s weight 

factor is changing from 0, meaning the subtask is not activated, to 1, meaning the 

subtask is fully activated.  

For a specific robot application where the end-effector’s position and orientation 

are crucial only at the start and end points (e.g. bin picking), it is reasonable to drop the 

orientation tracking requirement to guarantee the success of safety related subtasks 

when one of them is activated.  
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Based on the above, we propose the following closed-loop inverse kinematics 

control algorithm exploiting functional redundancy (CLIKFR) for collision avoidance: 

Algorithm 4.1 

1. Set the values of startx ,
goal

x , sd , 
qd , and

pd . Also, define the 

sampling period, sT , and final error tolerance, te . Set the iteration steps, 

n, equal to 1. 

2. Generate the dx  and dx  trajectories using the linear segments 

with parabolic blends (LSPB) algorithm (e.g., page 184 of (Siciliano, 

2009)).  

3. Set 1 1
d

x( ) = x ( )  and (1) =q 0 . 

4. Compute 1 6 1 6 andj j planew w w w w  for the thn iteration  

5. If 1 1f plane tw w w w+ +   , deploy control law (4.50) to 

generate ( 1)n +q ; else, deploy control law (4.51) to generate ( 1)n +q . 

6. Calculate ( 1)n +q  by Euler integration of ( 1)n +q . 

7. Calculate ( 1)n +x  from ( 1)n +q  using (4.1). 

8. Calculate the comprehensive error n n+1−goale( ) = x x( )  

9. If ( )n  te e , set 1n n= +  and go to step 4. 

Stop. 
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4.5 Nonlinear Model Predictive Control  

An NMPC algorithm for manipulator collision avoidance is designed in this 

section. Robot tasks are considered that are defined in the Cartesian space by a desired 

reference position and orientation of the end-effector. The goal is to minimize the 

deviation of the end-effector position and orientation from their reference values, which 

is described by the pose error vector e  in Equation (4.39). Based on this purpose, the 

following cost function is proposed:  

 ( )*

1

cost ( ) ( )
pN

i

k i k i
=

= + − + dQ x x  (4.54) 

where pN  is the prediction horizon; Q is a weighting matrix for the position and 

orientation errors; k is the current sampling instant; ( )k i+
d

x is the future desired end-

effector pose; and 
*( )k i+x   is the predicted end-effector pose. This cost function 

equals the sum of the weighted pose error prediction norms. The following optimization 

problem is then solved every sampling instant k : 

  ( ) arg min cost i 1,2, , p
k

k i N+ =  cq  (4.55) 

Subject to: 

 ( ( )) 0k i+ 
c

C q  (4.56) 

where ( )k i+
c

q  is the predicted vector of joint position commands,

 
T

5= 1 2 3 4C C C C C C  contains joint angle constraints 1
C  , joint velocity constraints 

2C , joint acceleration constraints 3C , sphere collision avoidance constraints 4C , and 
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plane collision avoidance constraints 5C . 

The actual joint position, velocity and acceleration limits should be satisfied in 

(3.21), (3.22) and (3.23). In the controller, the joint position, velocity and acceleration 

commands also should be limited by following equations:  

 




c c c,min

c c c,max

q = max(q ,q )

q = min(q ,q )
 (4.57) 

 
v

v





c c c ,min

c c c ,max

q = max(q ,q )

q = min(q ,q )
 (4.58) 

 




c c ca,min

c c ca,max

q = max(q ,q )

q = min(q ,q )
 (4.59) 

where cq  is the joint position command; 
cq  is the joint velocity command; 

cq  

is the joint acceleration command; 
c,min

q  and 
c,max

q  are minimum and maximum joint 

position command; 
cv,min

q   and 
cv,max

q   are minimum and maximum joint velocity 

command; and 
ca,min

q   and 
ca,max

q   are minimum and maximum joint acceleration 

command. Based on (4.57)-(4.59), 1
C , 2C  and 3C  are defined as follows:   

 
( ( )) , if ( )

( ( )) , otherwise

k i k i

k i

+ =  + 


+ =

1 c c,min c c,max

1 c

C q 0 q q q

C q 1
 (4.60)  

 
2

2

( ( )) , if

( ( )) , otherwise

k i k i

k i

+ =  + 


+ =

c cv,min c cv,max

c

C q 0 q q ( ) q

C q 1
 (4.61) 

 
3

3

( ( )) , if

( ( )) , else

k

k

=  


=

c ca,min c ca,max

c

C q 0 q q (k) q

C q 1
 (4.62) 
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The sphere collision avoidance constraints can be defined as follows: 

 ( ( )) ( )s spherek d d k= −
4 c

C q  (4.63) 

Finally, the plane collision avoidance constraints are given by: 

 
5( ( )) ( )p planek d d k= −

c
C q  (4.64) 
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Chapter 5 Simulations 

5.1 Introduction  

This chapter presents simulation results for the CLIKFR and NMPC collision 

avoidance algorithms for a variety of scenarios. The performance of the algorithms in 

each scenario will be discussed. All the simulations have been done in MATLAB 

R2017b on a Windows 10 laptop with an Intel Core (TM) i5-8250U 1.80 GHz (x64-

based processor) with 8 GB RAM. Experiment results for the human modelling 

algorithm are presented in this chapter as well. The chapter is organized in four sections. 

In Section 5.2, the procedure used for simulations is described. In Section 5.3, the 

human modelling algorithm parameter settings and experimental results are presented. 

In Section 5.4, simulations with a three-link planar robot are carried out to evaluate the 

collision avoidance algorithms on a relatively simple problem. Simulations of the Elfin 

5 robot with real point cloud data of a human in the shared workspace are presented 

Section 5.5. A summary is presented in Section 5.6 to conclude the chapter. 

 

5.2 Simulation Procedure 

The algorithms will be initially tested on a three-link planar robot to allow the 

correctness of the solution to be determined through graphs and animations. Then, 

simulations of an Elfin 5 robot with 6 DOF and a human sharing the workspace of the 

robot will be presented. The robot will be assigned a task of straight-line motions 

between two predefined end-effector locations. Such motions occur in practice when a 

robot is performing picking/placing operations, or other similar tasks. The robot should 

follow a straight line path with constant orientation between the start and goal location 
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if the human’s position in the workspace does not interfere with the robot’s position. 

To study the behaviour of the algorithm during each test, important simulation 

parameters are monitored, and their values stored. The recorded parameters are later 

used to plot graphs and animations. The monitored parameters during the individual 

simulations are: 

- The closest surface distance mind  between human and robot that is used to 

identify collisions.  

- The actual robot joint angles, velocities and accelerations. 

- The normalized time normalizet  to reach goal location which is resulting from 

actual collision avoidance operation time dividing by the reference time. 

- The execution time executiont  in MATLAB which indicates the computational 

efficiency of the algorithm. 

5.3 Testing of the human modelling algorithm  

Figure 5.1 shows a result for skin detection using the method presented in section 

3.2.1. The region growing process starts from the seed point which is the first point that 

is recognized as human skin. This result shows that the skin detection algorithm 

performs well with the data from the Intel RealSense D415 sensor. 
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(a) 

 

(b) 

Figure 5.1: Skin color detection result. (a) Test image. (b) Output image 

Figure 5.2 shows the experimental result of the region growing with 

10.05mthresholdc −=  and 10degreesthreshold =  . The algorithm is effective at removing 

points belonging to the background. The remaining points belong to the human’s body. 

Only a few points such as those near the fingertips are lost.  

 

      (a) 

 

       (b) 

Figure 5.2: Region growing test. (a) Original point cloud. (b) Human 

point cloud. 
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Experimental results have shown that voxelization can significantly reduce 

the number of points. This is desirable since it will speed up the processing of 

the remaining steps. For example, the number of points in the human point cloud 

will reduce from 61,510 to 2,125 after voxelization using a resolution of 20 mm. 

Figure 5.3 shows the human point cloud before and after voxelization. No 

important details have been lost. The execution time was reduced to 0.6 s from 

0.83 s for after voxelization. 

 

       (a) 

 

   (b) 

Figure 5.3: Voxelization result. (a) Original point cloud (b) Point 

cloud after voxelization 

 

Figure 5.4 shows a result obtained by fitting the plane model in front of the 

human torso and head and the union of spheres model attached to the protruding 

human arm. In the union of spheres model, 60mmsR = and 80mmpstd = are 

used. In this experiment, six spheres were generated to enclose the human arm, 

one sphere was generated to enclose a part of the human head and a plane is 
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generated to protect human torso. The result shows that the human’s body is 

well covered by this simple model. 

 

     (a) 

 

      (b) 

Figure 5.4: Human modeling (a) Top view (b) Side view 

 

5.4 Three-link planar robot simulation  

5.4.1 Three-link planar robot simulation settings  

The D-H parameters used in the simulations of the three-link planar robot are listed 

in Table 5.1. The length of link 1, link 2 and link 3 are 300 mm, 300 mm and 100 mm 

respectively. The simulated joints limits are shown in Table 5.2. The assigned task is a 

straight-line motion from [ 200; 400; 0] mm= −
3R_start

P   to 

[200; 400; 0] mm=
3R_goal

P  , and keep the orientation of the end-effector with Roll-

Pitch-Yaw angles equals to  3 0 0 / 2R pi = . The duration of the simulated task is 
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set to 3.3 seconds with a sampling frequency of 30 HZ. These values gives a total 

number of 100dist =   discrete times in the simulation, and a sampling period 

33sT ms=  . In simulations using CLIKFR algorithm, the sphere collision avoidance 

error gain esK is set to 1. 

Table 5.1: D-H parameters of the three-link planar robot 

Link i   [rad]i   [ ]id mm   [ ]ia mm   [rad]i  

1 1  0 300 0 

2 2  0 300 0 

3 3  0 100 0 

 

Table 5.2: Joints limits of the three-link planar robot 

Joint Angle (°) Velocity (°/s) Acceleration (°/s2) 

1 

Max 270 100 500 

Min -270 -100 -500 

2 

Max 180 100 500 

Min -180 -100 -500 

3 

Max 180 100 500 

Min -180 -100 -500 
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A reference trajectory for the assigned task is generated by mtraj function from the 

MATLAB Robotic toolbox. The simulation results of different scenarios will be 

presented in the following section. 

5.4.2 Three-link planar robot simulation results 

5.4.2.1 Static Sphere obstacle  

A static sphere obstacle is located at [ 200; 400; 0] mm= −
3R_obs

P  with a radius 

of 2 50mmr = . A radius of 1 40mmr = is used for the robot’s SSLs model. Figure 5.5 

shows this simulation scenario. In this case, 1 2 90 mmsd r r= + =  in equation (4.22). 

The control law switch threshold tw  in algorithm (4.1) is set to 0.1.  

 

Figure 5.5: Three-link planar robot and a static sphere obstacle simulation scenario 

with the robot at its start position.  
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The simulation output is presented in Figure 5.6. These plots suggest the collision 

avoidance path is efficient. The reference operation time is 3.3 s, while the collision 

avoidance operation time is 6 s. Then the normalized time is 1.8. The execution time in 

MATLAB simulation is 1.1s, which means this method is fast enough for real-time 

collision avoidance applications (since 1.1 < 6). The closest distance between the robot 

surface and the surface of the static sphere obstacle is plotted vs. time in Figure 5.7. 

Since the smallest of this value is 0.43 mm, no obstacle robot collision occurred. The 

position error at the goal location is 0.95 mm, while the orientation error at the goal 

location is 0.02 degrees. The joint angle, velocity and acceleration are plotted vs. time 

in Figure 5.8. The joint space trajectories are smooth, which is desirable for 

implementing this approach in practice. 

 

(a) Time: 0 s 

 

(b) Time: 1.65 s 
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(c) Time: 3.14 s 

 

(d) Time: 6 s 

Figure 5.6: Snapshots of the simulation for the planar robot controlled by the 

CLIKFR algorithm avoiding a static sphere obstacle  

 

Figure 5.7: Closest distance between the robot surface and the surface of the static 

obstacle for the planar robot controlled by the CLIKFR algorithm 
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Figure 5.8: Actual joint angles, velocities and accelerations versus time for the 

planar robot avoiding the static obstacle using the CLIKFR algorithm 

 

5.4.2.2 Plane avoidance  

In this case, a plane located at 200mmx = and parallel to the YZ  plane acts as 

the obstacle. A radius of 1 40mmr = is still used for the robot’s SSLs model. We set 

1 40mmpd r= =   and the control law switch threshold 0.1tw =   in algorithm (4.1). 

Figure 5.5 shows this simulation scenario with the robot at its start position. The goal 

position and orientation of the end-effector is set to 

 200 200 0 0 0 / 2
T

pi= −goalx . 
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 Figure 5.9: Three-link planar robot and a static plane obstacle simulation scenario 

with robot at its start position 

 

The simulation output is presented in Figure 5.10. These plots suggests that the 

CLIKFR algorithm can control the robot to perform collision with a plane obstacle and 

move the end-effector close to the goal position at the same time.  
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(a) Time: 0 s 

 

(b) Time: 1.65 s 

 

(c) Time: 2.64 s 

 

(d) Time: 6.6 s 

Figure 5.10: Snapshots of the simulation for the planar robot controlled by the 

CLIKFR algorithm avoiding a plane obstacle  

 

The closest distance between the robot surface and the plane is plotted vs. time in 

Figure 5.11. Since the smallest of this value is 6.4 mm, no robot collision occurred. For 

this case, the execution time in MATLAB simulation is 0.9 s, which means this method 

is fast enough for real-time collision avoidance applications. The position error at the 

final location is 246.5 mm, while the orientation error at the final location is 90 degrees 
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Figure 5.11: Closest distance between the robot surface and the plane for the planar 

robot controlled by the CLIKFR algorithm 

 

5.4.2.3 Wrist singularity avoidance  

Because it includes a damping factor, the CLIKFR controller should be able to 

overcome manipulator singularity problems. This simulation is designed to test this 

ability. The simulation scenario in presented in Figure 5.12. The initial position and 

orientation of the end-effector is set to  0 400 0 0 0 / 2
T

pi=initialx , while the 

goal position and orientation of the end-effector is set to 

 0 700 0 0 0 / 2
T

pi=goalx . The goal configuration is a singular configuration 

for this three-link planar robot.  
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Figure 5.12: Three-link planar robot wrist singularity avoidance simulation setting 

 

Control law (4.50) is deployed to control the robot moving from the initial 

configuration to the goal configuration. Figure 5.13 shows the joint angle and velocity 

are plotted vs. time when the damping factor 0 = . In this scenario, the position error 

at the goal location is 0.61 mm, while the orientation error at the goal location is 0.75 

degrees. After setting the damping factor to 100 =  , the resulting joint angle and 

velocity are plotted vs. time are presented in Figure 5.14. Comparing the plots in these 

two figures shows that the joint space trajectories become smooth after adding the 

damping factor. This is desirable for implementing this approach to deal with singular 

configurations. In this scenario, the position error at the goal location is 0.8 mm, while 

the orientation error at the goal location is 0.54 degrees. 
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Figure 5.13: Joint angle and velocity versus time for the planar robot when 0 =  

in the CLIKFR algorithm 
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Figure 5.14: Joint angle and velocity versus time for the planar robot when 

100 =  in the CLIKFR algorithm 

5.4.2.4 Dynamic obstacle collision avoidance 

To test the performance of CLIKFR algorithm dealing with a dynamic obstacle, a 

sphere obstacle is placed at  0 450 0 mm
T

=3R_obs_initialP   with radius of 

2 50mmr =   and moving velocity is  40 0 0 mm/s
T

= −3R_obsv  . A radius of 

1 40mmr =  is used for the robot’s SSLs model. Figure 5.15 shows this simulation 

scenario with the robot and obstacle at their initial locations. In this case, 

1 2 90 mmsd r r= + =  in equation (4.22). 
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Figure 5.15: Three-link planar robot and a dynamic sphere obstacle simulation 

scenario with the robot and obstacle at their start positions.  

 

Snapshots of the simulation are presented in Figure 5.16. These plots suggest that 

the collision avoidance path generated by the CLIKFR is efficient for this dynamic 

obstacle since the robot does not make a large detour. The reference operation time is 

3.3 s, while the collision avoidance operation time is 3.6 s. Then the normalized time is 

1.09. The execution time of the MATLAB simulation is only 0.55s. 
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(a) Time: 0 s 

 

(b) Time: 1.32 s 

 

(c) Time: 1.65 s 

 

(d) Time: 1.98 s 

 

(e) Time: 2.31s 

 

(f) Time: 3.6 s 

Figure 5.16: Snapshots of the simulation for the planar robot controlled by the  

LIKFR algorithm avoiding a dynamic sphere obstacle  
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 The closest distance between the robot surface and the surface of the dynamic 

sphere obstacle is plotted vs. time in Figure 5.17. Since the smallest of this value is 0.32 

mm, no obstacle robot collision occurred. The joint angle, velocity and acceleration are 

plotted vs. time in Figure 5.18. The position error at the goal location is 0.86 mm, while 

the orientation error at the goal location is 0.24 degrees. 

 

 

Figure 5.17: Closest distance between the robot surface and the surface of the 

dynamic obstacle for the planar robot controlled by the CLIKFR algorithm 
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Figure 5.18: Joint angle, velocity and acceleration versus time for the planar robot 

avoiding the dynamic obstacle using the CLIK algorithm 

 

5.4.2.5 NMPC collision avoidance method 

We use the same simulation settings as in Section 5.4.2.4 to test the NMPC 

controller in this section. The prediction horizon 4pN =  is used for the cost function 

(4.54). The weighting matrix that is for the position and orientation errors is set to 

( )1 1 100Q diag= . Snapshots of the simulation are presented in Figure 5.19. The 

reference operation time is 3.3 s. The NMPC approach can control the operation time 

to be the same with reference time. This is an advantage over the CLIKFR algorithm. 

Then the normalized time is 1. However the execution time in MATLAB simulation is 

70 s so it cannot be implemented in real-time. 
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(a) Time: 0 s 

 

(b) Time: 0.99 s 

 

(c) Time: 1.32 s 

 

(d) Time: 1.65 s 

 

(e) Time: 1.98 s 

 

(f) Time: 3.3 s 

Figure 5.19: Snapshots of the simulation for the planar robot controlled by the 

NMPC algorithm avoiding a dynamic sphere obstacle  
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Figure 5.20 The closest distance between the robot surface and the surface of the 

dynamic sphere obstacle vs. time. Since the smallest value is 
45.5 10−−   mm there will 

be a slight contact between the robot and obstacle. However, this can easily be avoided 

by increasing sd
 by a small amount. The position error at the goal location is 0.01 

mm, while the orientation error at the goal location is 0.04 degrees. The joint angles, 

velocities and accelerations are plotted vs. time in Figure 5.21. The velocities and 

accelerations are clearly less smooth than with the CLIKFR algorithm. 

 

Figure 5.20: Closest distance between the robot surface and the surface of the 

dynamic obstacle for the planar robot controlled by the NMPC algorithm 
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Figure 5.21: Joint angle, velocity and acceleration versus time for the planar robot 

avoiding the dynamic obstacle using the NMPC algorithm 

 

5.5 Elfin simulation  

5.5.1 Simulation settings  

The simulation scenarios will consist of a Elfin 5 robot and a human sharing the 

workspace of the robot. The task assigned to the robot will be a straight-line motion 

between two predefined end-effector locations. While the robot completes its task, the 

human works beside it. When parts of human body become obstructive, the robot must 

focus on avoiding collision with the human while still pursuing its current goal location. 

The human position in space is continuously monitored by an Intel RealSense D415 

sensor and modelled by the union of spheres and plane model, as has been discussed in 
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Section 5.4. To make the simulations more realistic, a point cloud of a human and a 

worktable covered with various color objects is used. 

The simulation parameters and the initial conditions used in the test will be defined 

first. The sampling period of the simulation were chosen to agree with D415 sensor’s 

updating frequency which is 30 Hz. This value gives a sampling period 33.3 mssT = . 

The duration of the reference path is set to 3.33 s. These values give a total number of 

100 reference discrete times in the simulation. The effects of the robot delay also will 

be investigated by comparing simulation results of 0d =   to the results of 2d =  . 

2d =  refers to a delay of two samplings periods, or 66.6 ms. 

The task assigned to the robot is composed of one trip between two goal locations, 

located at approximately 0.99 m apart in 3D space. The kinematics parameters of the 

Elfin 5 robot are given in Table 3.1. Frame zero of the D-H kinematics model that is 

attached to the fixed base of the robot was located at coordinates 0 mmX =  , 

0 mmY =  and 0 mmZ =  in the work cell. The coordinates of point cloud captured 

by D415 sensor have been transformed from the sensor’s frame to the robot’s base frame. 

Joint limits of Elfin 5 are shown in Table 5.3. 
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Table 5.3: Joint limits of the Elfin 5 robot 

Joint Angle (°) Velocity (°/s) Acceleration (°/s2) 

1 

Max 180 85 250 

Min -180 -85 -250 

2 

Max 135 85 250 

Min -135 -85 -250 

3 

Max 156 85 250 

Min -156 -85 -250 

4 

Max 180 85 250 

Min -180 -85 -250 

5 

Max 180 85 250 

Min -180 -85 -250 

6 

Max 180 85 250 

Min -180 -85 -250 

 

5.5.2 Static human limb collision avoidance  

The scenario simulated in this section is carried out to investigate the behavior of 

the CLIKFR algorithm for avoiding part of a static human body, as shown in Figure 

5.22. The human’s arm remains stationary and will block the way of the robot if the 
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robot follows the reference trajectory. The initial settings for the simulations are 

summarized in Table 5.4.  

 

 

Figure 5.22: Elfin 5 robot and a static human limb simulation scenario of the 

CLIKFR algorithm 

Table 5.4 Input parameter values used in static human limb collision avoidance 

simulations of the CLIKFR algorithm 

Parameter Value Parameter Description 

 688.7 0 133.7
T

  = − −startx  
Start position and orientation of the end-

effector  

 100 600 133.7
T

  = − −goalx  
Goal position and orientation of the end-

effector 

0.0333 ssT =  Sampling time 

100referenceN =  
Reference discrete steps, equal to the 

reference duration of 3.33 s 
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0d =  The number of sampling periods of delay 

100 =  Damping factor in CLIKFR controller 

3

position 1 10k =   
Weight factor for end-effector’s position 

errors  

4

orientation 1 10k =   
Weight factor for end-effector’s orientation 

errors 

1 40, 50 and 50mmr =  
Radius of robot’s SSL model for links 6, 4 

and 2, respectively  

2 50 mmr =  
Radius of the spheres in the union of spheres 

human model 

100 mmsd =  
Desired centre-to-centre distance between the 

robot centre line and obstacle centre 

60mmpd =  
Desired distance between the robot centre 

line and the plane obstacle  

0.1EE thresholde − =  
Error threshold to decide whether the end-

effector reach the goal pose 

1esK =  Gain of sphere collision avoidance error 

The outputs of this simulation are presented in Figure 5.23. These plots suggest 

that collision avoidance path produced by the CLIKFR algorithm is efficient since the 

detour distance is small. The reference operation time is 3.33 s, while the collision 

avoidance operation time is 13.7 s. Then the normalized time is 4.16. The execution 

time in MATLAB simulation is 2.63 s, so this method is fast enough for real-time 
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collision avoidance applications.  

 

(a) Time: 1.32 s (side view) 

 

(b) Time: 1.65 s (side view) 

 

(c) Time: 2.31 s (side view) 

 

(d) Time: 1.32 s (top view) 

 

(e) Time: 1.65 s (top view) 

 

(f) Time: 2.31 s (top view) 

 

(g) Time: 2.64 s (side view) 

 

(h) Time: 2.97 s (side view) 

 

(i) Time: 4.29 s (side view) 

 

(j) Time: 2.64 s (top view) 

 

(k) Time: 2.97 s (top view) 

 

(l) Time: 4.29 s (top view) 

Figure 5.23: Snapshots of the simulation for Elfin 5 controlled by the CLIKFR 

algorithm avoiding a static human limb 
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The plane and spheres human of this scenario is presented in Figure 5.24 (a). The 

closest distance between the robot surface and the surface of the static obstacle is plotted 

vs. time in Figure 5.24 (b). Since the smallest of this value is 2.3 mm, no obstacle robot 

collision occurred in the process. The position error at the goal location is 0.002 mm, 

while the orientation error at the goal location is 0.1 degrees. The joint angles, velocities 

and accelerations are plotted vs. time in Figure 5.25. The accelerations reach their limits 

at some times during the simulation, e.g. when 3.5 s.t    

 

 

(a) 

 

(b) 

Figure 5.24: (a) The plane and spheres human model. (b) Closest distance between 

the robot surface and the static human’s limb for Elfin 5 robot controlled by the 

CLIKFR algorithm 
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Figure 5.25: Joint angle, velocity and acceleration versus time for Elfin 5 avoiding 

the static human’s limb using the CLIKFR algorithm 

 

5.5.3 Human torso collision avoidance 

The scenario simulated in this section is presented in Figure 5.26. A human 

operator in the work cell is picking something up while the robot is performing the 

straight-line motion task. The torso of human is blocking the reference end-effector path. 

The behavior of CLIKFR algorithm will be simulated. The initial settings for this 

simulation are the same as in section 5.5.2 (given in Table 5.4).  
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Figure 5.26: Elfin 5 robot and a human torso obstacle simulation scenario used with 

the CLIKFR algorithm 

 

Figure 5.27 presents snapshots of the simulation. These plots suggest that the robot 

stop moving closer to the human torso after 1.98 s. Since the robot cannot figure out a 

path to reach the goal position while avoid collision with the human torso, the 

simulation was stopped manually after 13.2 s. The position error at the final location is 

828 mm, while the orientation error at the final location is 57.29 degrees. 
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(a) Time: 0.99 s (side view) 

 

(b) Time: 1.32 s (side view) 

 

(c) Time: 1.65 s(side view) 

 

(d) Time: 0.99 s (top view) 

 

(e) Time: 1.32 s (top view) 

 

(f) Time: 1.65 s (top view) 

 

(g) Time: 1.98 s (side view) 

 

(h) Time: 6.6 s (side view) 

 

(i) Time: 13.2 s (side view) 

 

(j) Time: 1.98 s (top view) 

 

(k) Time: 6.6 s (top view) 

 

(l) Time: 13.2 s (top view) 

Figure 5.27: Snapshots of the simulation for Elfin 5 controlled by the CLIKFR 

algorithm avoiding a human torso 
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(a) 

 

(b) 

Figure 5.28: (a) Final pose of the robot and the human torso plane model (b) 

Closest distance between the robot surface and the human torso plane for Elfin 5 

robot controlled by the CLIKFR algorithm 

 

The final pose of the robot and the plane model of human torso are shown in Figure 

5.28 (a), while the closest distance between the robot surface and the torso plane is 

plotted vs. time in Figure 5.28 (b). The minimum distance between the robot surface the 

human torso plane is approximately 25 mm. This result suggests that the CLIKFR 

algorithm can avoid collision with human torso effectively. 

 

5.5.4 Dynamic human limb collision avoidance  

The simulation in this section is to investigate the performance of the CLIKFR 

algorithm when the obstacle is moving. Since it is very difficult to control the motion 
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of human body properly in the real robot’s absence, one artificial sphere obstacle with 

a radius of 2 50 mmr =  is deployed in this simulation instead of a real point cloud. The 

task assigned to the robot is the same as in the previous two sections. The initial position 

of the obstacle is located at  138.76 418.36 500
T

= − −obsInitialp  mm. The moving 

direction of the obstacle is along vector  788.7 600 0
T

= −obsDirectionv . This moving 

direction is parallel to the path from the end-effector’s goal location to its start position. 

Figure 5.29 shows this simulation scenario. The behavior of the CLIKFR algorithm with 

various obstacle moving velocities, as well as the impact of robot delay d , will be 

investigated. 

 

(a) Perspective view 

 

(b) Front view 

Figure 5.29: Elfin 5 robot and a dynamic obstacle simulation scenario for the 

CLIKFR algorithm 

 

The first sets of simulations are carried out with different obstacle velocities and 

0d =  . The obstacle velocities used are: obstaclev  = 10, 20, 40, 60, 80, 100, 150 and 
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200 mm/s. The rest of parameter settings are the same with those in Table 5.4. The 

closest distance between the robot surface and the surface of the dynamic sphere 

obstacle with different velocities is plotted vs. time in Figure 5.30. The closest distance 

for each velocity is shown in Table 5.5. 

 

Figure 5.30: Closest distance between the robot surface and the surface of the 

dynamic sphere obstacle with different velocities controlled by of the CLIKFR 

algorithm 
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Table 5.5: The smallest value of distance as a function of obstacle velocity with 

the CLIKFR algorithm 

Obstacle velocity (mm/s) Separation Distance (mm) 

10 15.6 

20 12.2 

40 6.1 

60 1.8 

80 -2.6 

100 -6.5 

150 -15.6 

200 -25 

Table 5.5 suggests that the separation distance becomes negative if the obstacle 

velocity is larger than 60 mm/s, which means the CLIKFR algorithm fails in those cases. 

The second sets of simulations are carried out with the velocity of the obstacle 

equal to 20 mm/s. Robot delays of 0d =  and 2d =  are studied. The position error at 

the goal location is 0.002 mm, while the orientation error at the goal location is 

5.4 degrees if 0d =  . The position error at the goal location is 0.01 mm, while the 

orientation error at the goal location is 5.7 degrees if 2d = . Figure 5.40 presents the 

joint accelerations vs. time when 0d =  ,while Figure 5.41 shows the results when 

2d = . 
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Figure 5.31: Joint accelerations versus time for Elfin 5 avoiding a dynamic obstacle 

using the CLIKFR algorithm with 0d =  

 

Figure 5.32: Joint accelerations versus time for Elfin 5 avoiding a dynamic obstacle 

using the CLIKFR algorithm with 2d =  
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These two plots show that the robot delay will result in chattering of joint 

acceleration. This is particularly noticeable during the periods 3.2-6.6 s and 12.5-17.3 

s. The collision avoidance operation time increases from 22 s to 32.5 s. 

5.5.5 NMPC collision avoidance for Elfin 

The same simulation scenario as section 5.5.4 is used to test the NMPC controller 

in this section. The prediction horizon 9pN =  is used with the cost function (4.54). 

The weighting matrix for the position and orientation errors is set to 

( )1 1 1 50 50 50Q diag= . The velocity of the obstacle is 200 mm/sobstaclev =  

with a robot delay 2d = . Figure 5.42 shows the closest distance between the robot 

surface and the surface of the dynamic spherical obstacle vs. time. The smallest value 

is 5 mm which means that the NMPC controller can guarantee the success of collision 

avoidance with a much higher obstacle velocity than the CLIKFR algorithm. 

 

Figure 5.33: Closest distance between the robot surface and the dynamic obstacle 

for Elfin 5 robot controlled by the NMPC algorithm 
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Figure 5.34: Joint angle, velocity and acceleration versus time for Elfin 5 avoiding 

the dynamic obstacle using NMPC algorithm 

 

The joint angle, velocity and acceleration are plotted vs. time in Figure 5.43. The 

acceleration is smoother than with CLIKFR with 2d =   (recall Figure 5.41). The 

reference operation time in this simulation is 3.3 s. The normalized time is 1. The 

computation time in MATLAB simulation is 190 s, so it is again too slow for real-time 

implementation. 
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5.6 Summary of Results 

In this chapter, the human modelling algorithm introduced in Chapter 3 has been 

implemented and tested using experimental point cloud data captured from a scene with 

a human and multiple color objects. The human skin detection algorithm was able to 

segment points that belong to the human’s skin and generate a correct seed point for the 

region growing algorithm. The human point cloud was clustered by region growing and 

then voxelized to reduce the number of cloud points. Finally, the plane model for the 

human torso and union of spheres model for body parts that protrude in front of the 

plane have been generated successfully from the human point cloud. The execution time 

was 0.06 s which is fast enough for real-time implementation. 

Five distinct scenarios have been simulated for a 3-DOF planar robot to evaluate 

the CLIKFR and NMPC algorithms presented in Chapter 4 for a relatively simple 

problem. As shown in Section 5.4.2.1, the CLIKFR algorithm can produce an efficient 

and smooth collision-free path when there is one static spherical obstacle. Its normalized 

time was 1.8. The actual run time in MATLAB was around 1 s for the 3.3 s simulated 

reference duration. The simulation outputs of Section 5.4.2.2 show that the CLIKFR 

algorithm can control the robot to perform collision with a plane obstacle and move the 

end-effector close to the goal position at the same time. The results from the wrist 

singularity scenario in Section 5.4.2.3 showed that the damping factor in the CLIKFR 

algorithm can overcome the singularity. For the dynamic obstacle scenario in Sections 

5.4.2.4 and 5.4.2.5, the NMPC controller produced a smaller normalized time at the cost 

of much longer computation time compared to the CLIKFR algorithm. 

Finally, four HRC scenarios were simulated for a 6-DOF Elfin 5 robot to study the 

behaviour of the collision avoidance system combining the human modelling algorithm 

and collision avoidance algorithm (i.e. CLIKFR or NMPC). Simulations in Section 



Master’s Thesis – Peige Guo        McMaster University – Mechanical Engineering 

102 

 

5.5.2 and Section 5.5.3 demonstrate that the union of spheres model and plane model 

can protect the human arm and torso from being hit by the robot. These two simulations 

also suggest that the CLIKFR algorithm is computationally efficient enough for real-

time implementation. Results from the dynamic obstacle simulations show the effect of 

the obstacle’s velocity on the success or failure of the collision avoidance algorithm. A 

velocity of less than 60 mm/s is critical to guarantee a successful collision avoidance 

for the CLIKFR algorithm with the Elfin 5 robot. The robot’s delay will also result in 

the chattering of joint acceleration with the CLIKFR. The NMPC algorithm simulation 

results show that it can handle higher human moving velocities and its normalized time 

is always smaller than that of CLIKFR, but its computational burden is much higher. 

All simulation results are shown in Table 5.5. 

Table 5.5: Collection of CLIKFR and NMPC simulation results 

Robot  Scenario 
Normalized 

time 

Execution 

time    

(s) 

Minimum 

distance 

(mm) 

Position 

error* 

(mm) 

Orientation 

error*  

(deg) 

Three-link 

planar 

Static 

sphere 
1.8 1.1 0.43 0.95 0.02 

Static 

plane 
2 0.99 6.4 246.5 90 

Singularity 1.7 1.9 - 0.8 0.54 

Dynamic 

sphere 
1.1 0.55 0.32 0.86 0.24 

NMPC 1 70 -5.5×10
-4

 0.01 0.04 

Elfin 5 

Static 

human arm 
4.16 2.63 2.3 0.002 0.1 

Static 4 2.58 25 328 56.15 
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human 

torso 

Dynamic 

sphere  

(60 mm/s) 

4.4 0.94 1.8 0.003 0.57 

NMPC 1 190 5 27.5 0.62 

*Position error and orientation error in this table refer to errors at the goal location.  
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Chapter 6 Conclusions and Recommendations 

6.1 Summary and Conclusions  

In this thesis, a collision avoidance system with an online trajectory generation 

algorithm for robot manipulators in dynamic environments was presented. It combines 

a human modelling algorithm with a collision avoidance algorithm. The system’s 

objective is to reach the goal position while simultaneously avoiding collisions. In this 

system, the proposed human modelling algorithm is used to obtain a union of spheres 

and plane model of the human worker from the sensed RGB-D point cloud. The point 

cloud is captured at a frame rate of 30 Hz by an Intel RealSense D415 camera. The 

human model is computed from the point cloud in 0.06 s using MATLAB code running 

on a laptop. The links of the robot manipulator are represented by SSLs. These 

geometric models allow the separation distance between the human and the robot to be 

calculated quickly. 

The CLIKFR algorithm solves the inverse kinematics problem and avoids 

collisions using an expanded version of the manipulator Jacobian matrix. The Cartesian 

task space error is corrected by adopting a closed-loop inverse kinematics algorithm. 

Collision avoidance tasks produce constraints that are systematically incorporated into 

this algorithm. This collision avoidance algorithm is applied to compute the 

commanded joint velocities from given end-effector velocities. A second collision 

avoidance algorithm using NMPC is designed as an alternative approach. 

The collision avoidance system and the associated online trajectory generation 

algorithm were evaluated using simulations. Five distinct scenarios have been simulated 

for a 3-DOF planar robot to evaluate the CLIKFR and NMPC algorithms for a relatively 
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simple problem. Four HRC scenarios were simulated for a 6-DOF Elfin 5 robot to study 

the behaviour of the collision avoidance system combining the human modelling 

algorithm and collision avoidance algorithm. 

The simulation results showed that the CLIKFR algorithm is fast enough to be 

applied in real-time. For a 6-DOF robot, a computational time of 2.63 seconds for a 

reference duration of 3.33 seconds has been achieved using MATLAB running on a 

laptop computer. The separation distance between the human and robot is always larger 

than zero for a static human operator, which means that no collisions occurred. Also, 

the smooth profiles of the joint angles and velocities vs. time can be achieved without 

difficulty by the robot. The NMPC algorithm has better performance than the CLIKFR 

algorithm when the dynamic obstacle is moving at higher velocities and when the 

simulated robot has a realistic time delay. 

These simulations also revealed the limitations of the CLIKFR and NMPC 

algorithms. The first issue is related to the moving velocity of the obstacle. A velocity 

over 60 mm/s will result in the failure of the collision avoidance for the CLIKFR 

algorithm. The existence of robot delay will cause vibration for a moving obstacle with 

the CLIKFR algorithm. The major limitation of the NMPC algorithm is its computation 

time is too long to meet the real-time requirement. Moreover, the trajectory generated 

by the NMPC controller is not as smooth in general. 

6.2 Recommendations for future research 

To improve the overall performance of the system, some feature works are 

suggested. The following are recommendations for future research: 

1) For this project only one depth sensor was used to oversee the HRC workspace. 

It is recommended that multiple sensors are used improve the performance of 
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the human sensing and eliminate dead spots. Experimenting with other 3D 

sensors to evaluate the performance of different camera types for HRC is also 

recommended. 

2) The influence of different weight factors for the constraints tasks and the gain 

of sphere collision avoidance error in the CLIKFR algorithm should be 

investigated.  

3) Due to the COVID-19 shutdown of the campus it was not possible to finish 

the implementation. Experimental validation should be done to verify the 

performance of the collision avoidance system using the CLIKFR algorithm. 

4) Methods for speeding up the computation of the NMPC algorithm should also 

be investigated so it can also be experimentally validated. 
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