

COLLISION AVOIDANCE SYSTEM FOR

HUMAN-ROBOT COLLABORATION

COLLISION AVOIDANCE SYSTEM FOR

HUMAN-ROBOT COLLABORATION

By Peige Guo, B.Eng

A Thesis

Submitted to the School of Graduate Studies

In Partial Fulfillment of the Requirements

For the Degree

Master of Applied Science

McMaster University

©Copyright by Peige Guo, October 2020

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

ii

MASTER OF APPLIED SCIENCE (2020)

McMaster University

(Mechanical Engineering)

Hamilton, Ontario

TITLE: Collision Avoidance System for Human-Robot Collaboration

AUTHOR: Peige Guo, B.Eng

SUPERVISOR: Dr. Gary M. Bone, Professor

NUMBER OF PAGES: xxi, 114

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

iii

Lay abstract

Robots are expected to become a significant part of our society in the future. They

will need to interact and collaborate with people at home and at work. This will require

them to rapidly adapt to dynamic situations. This thesis is concerned with solving this

problem for a robot arm working close to a person. A depth camera measures colour

and depth of the area around the robot. A software algorithm is presented to model the

person using this colour and depth information. Two software algorithms are presented

to control the robot arm. They try to move the end of the robot arm towards a target

location while simultaneously avoiding it colliding with the person. They are tested

using a simulated industrial robot arm. The results show that the algorithms working

together can prevent collisions between the person and robot, while simultaneously

moving the robot towards its target location.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

iv

Abstract

To fully exploit the advantages of human-robot collaboration the robot must be

allowed to move when the human is close to it or even in contact with it. This thesis

presents the development of a collision avoidance system which addresses the safety

problem for the case of one person sharing a workspace with a robot manipulator. The

system consists of a depth camera that measures both the colour and depth of the scene

near to the robot, a laptop computer and several software algorithms. A human modeling

algorithm generates a plane model and union of spheres model from the point cloud.

Sphere-swept lines are used to geometrically model each link of the robot. Their

position and orientation in space are calculated using the robot’s joint position

measurements and its kinematic model. Two collision avoidance algorithms are

presented for controlling the robot’s trajectory based on the geometric models for the

human and robot, and the robot’s desired task. The first collision avoidance algorithm

solves the inverse kinematics problem and avoids collisions using an expanded version

of the manipulator Jacobian matrix. A second collision avoidance algorithm using

nonlinear model predictive control is developed as an alternative approach. The

algorithms have been implemented in a simulated environment which includes a human

working in the shared workspace with a simple planar robot and with an Elfin 5

industrial robot. A variety of scenarios are simulated and the results are compared. The

simulation results showed that the first collision avoidance algorithm may be computed

fast enough to be applied in real-time and worked well for static or slowly moving

obstacles. The second collision avoidance algorithm had superior performance when

the obstacle was moving and when the simulated robot had a realistic time delay.

However, its computation time was too long to be used in real-time.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

v

Acknowledgment

First and foremost, I would like to express my sincere gratitude to my research

supervisor, Dr. Gary M. Bone, for his valuable guidance and support. He has walked

me through all of the stages of this research. Without him, this thesis could never have

been finished. My graduate studies have allowed me to learn a lot and gain skills across

a wide variety of topics

I also thank my colleagues: Abdelrahman Zaghloul and Behrad Rouzbeh for their

advice and encouragement. And I like to express my thanks to all my friends for their

support and encouragement.

Finally, thanks to my family who have been nothing but supportive.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

vi

Contents

List of Figures .. x

List of Tables ... xv

 Abbreviations .. xvi

 Nomenclature .. xviii

Chapter 1. Introduction .. 1

1.1 Preface ... 1

1.2 Objective and Organization .. 3

 Chapter 2. Literature review .. 5

2.1 Introduction ... 5

2.2 Robot Geometric Modelling for Human-Robot Collaboration 5

2.3 Human Sensing and Geometric Models for Human-Robot

Collaboration .. 6

2.4 Robot Manipulator Collision Avoidance Algorithms............................ 8

2.4.1 Motion planning-based algorithms ... 8

2.4.2 Prediction-based algorithms .. 10

2.4.3 Non-predictive Control-based Algorithms 12

2.4.4 Model Predictive Control-based Algorithms 14

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

vii

2.5 Summary ... 16

Chapter 3. Human and Robot Modelling ... 18

 Introductions .. 18

3.2 Human Modelling Algorithm .. 18

3.2.1 Algorithm Description .. 18

3.3 Robot Modeling .. 30

3.3.1 Kinematic Model .. 30

3.3.2 Geometric Model .. 35

3.3.3 Time Domain Model ... 36

3.4 Summary ... 38

Chapter 4 Collision Avoidance Algorithms ... 40

4.1 Introduction ... 40

4.2 Inverse kinematics calculation .. 40

4.3 Inclusion of Constraints .. 43

4.3.1 Sphere obstacle collision avoidance constraint 43

4.3.2 Varied weight method ... 48

4.3.3 Multiple sphere obstacles collision avoidance constraint 49

4.3.4 Joints angle limits constraint ... 49

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

viii

4.3.5 Plane collision avoidance constraint ... 51

4.4 Closed-loop inverse kinematics implementation 53

4.4.1 Main task only ... 53

4.4.2 Additional constraint tasks .. 54

4.4.3 Closed-loop inverse kinematic control law 55

4.4.4 Closed-loop Kinematic Control Law Exploiting Functional

Redundancy .. 56

4.5 Nonlinear Model Predictive Control .. 59

Chapter 5 Simulations .. 62

5.1 Introduction .. 62

5.2 Simulation Procedure ... 62

5.3 Testing of the human modelling algorithm .. 63

5.4 Three-link planar robot simulation .. 66

5.4.1 Three-link planar robot simulation settings 66

5.4.2 Three-link planar robot simulation results 68

5.5 Elfin simulation .. 84

5.5.1 Simulation settings .. 84

5.5.2 Static human limb collision avoidance 86

5.5.3 Human torso collision avoidance .. 91

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

ix

5.5.4 Dynamic human limb collision avoidance 94

5.5.5 NMPC collision avoidance for Elfin ... 99

5.6 Summary of Results ... 101

 Chapter 6 Conclusions and Recommendations .. 104

6.1 Summary and Conclusions .. 104

6.2 Recommendations for future research ... 105

 References .. 107

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

x

List of Figures

Figure 3.1: Depth camera model (Darwish et al., 2019).....……………………….19

Figure 3.2: Imaging plane coordinate system……………………………………..19

Figure 3.3: Region growing process (Rabbani et al., 2006)………………………..22

Figure 3.4: Voxel cell………………………………………………………………26

Figure 3.5: Point cloud resampling using voxel cells………………………………27

Figure 3.6: The Elfin 5 robot made by Han’s Robot………………………………..31

Figure 3.7: The kinematic skeleton of the Elfin 5 robot……………………………36

Figure 3.8: SSLs model of the moving links of the Elfin 5 robot………………….36

Figure 3.9: Joint 1 delay measurement experimental results for the Elfin 5 robot

(zoomed-in to show the delay d)………………………………………………….38

Figure 4.1: Distance between a SSL
1b and a sphere 2b (Krämer et al., 2020)……44

Figure 4.2: Geometry of a planar manipulator showing the point nearest to the

obstacle…..…………………………………………………………………………45

Figure 4.3: Relationship between the distance to critical point || d || and the weight

factor w when sd =100 mm……………………………………………………...49

Figure 4.4: The point (, ,)x y zp and its projection onto the plane (', ', ')x y zp' ….51

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

xi

Figure 5.1: Skin color detection result. (a) Test image. (b) Output image…………64

Figure 5.2: Region growing test. (a) Original point cloud. (b) Human point cloud..64

Figure 5.3: Voxelization result. (a) Original point cloud (b) Point cloud after

voxelization………………..……………………………………………………….65

Figure 5.4: Human modeling (a) Top view (b) Side view………………………….66

Figure 5.5: Three-link planar robot and a static sphere obstacle simulation scenario

with the robot at its start position…………………………………………………..68

Figure 5.6: Snapshots of the simulation for the planar robot controlled by the

CLIKFR algorithm avoiding a static sphere obstacle……………………………….70

Figure 5.7: Closest distance between the robot surface and the surface of the static

obstacle for the planar robot controlled by the CLIKFR algorithm………………..71

Figure 5.8: Actual joint angles, velocities and accelerations versus time for the planar

robot avoiding the static obstacle using the CLIKFR algorithm……………………72

Figure 5.9: Three-link planar robot and a static plane obstacle simulation scenario

with robot at its start position……………………………………………………….73

Figure 5.10: Snapshots of the simulation for the planar robot controlled by the

CLIKFR algorithm avoiding a plane obstacle………………………………………74

Figure 5.11: Closest distance between the robot surface and the plane for the planar

robot controlled by the CLIKFR algorithm…………………………………………75

Figure 5.12: Three-link planar robot wrist singularity avoidance simulation

setting………………………………………………………………………………76

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

xii

Figure 5.13: Joint angle and velocity versus time for the planar robot when 0 =

in the CLIKFR algorithm…………………………………………………………..77

Figure 5.14: Joint angle and velocity versus time for the planar robot when 100 =

in the CLIKFR algorithm………………………………………………………….78

Figure 5.15: Three-link planar robot and a dynamic sphere obstacle simulation

scenario with the robot and obstacle at their start positions………………………..79

Figure 5.16: Snapshots of the simulation for the planar robot controlled by the

LIKFR algorithm avoiding a dynamic sphere obstacle……………………………..80

Figure 5.17: Closest distance between the robot surface and the surface of the

dynamic obstacle for the planar robot controlled by the CLIKFR algorithm………81

Figure 5.18: Joint angle, velocity and acceleration versus time for the planar robot

avoiding the dynamic obstacle using the CLIK algorithm………………………….82

Figure 5.19: Snapshots of the simulation for the planar robot controlled by the NMPC

algorithm avoiding a dynamic sphere obstacle……………………………………..83

Figure 5.20: Closest distance between the robot surface and the surface of the

dynamic obstacle for the planar robot controlled by the NMPC algorithm………..84

Figure 5.21: Joint angle, velocity and acceleration versus time for the planar robot

avoiding the dynamic obstacle using the NMPC algorithm………………………..85

Figure 5.22: Elfin 5 robot and a static human limb simulation scenario of the

CLIKFR algorithm…………………………………………………………………88

Figure 5.23: Snapshots of the simulation for Elfin 5 controlled by the CLIKFR

algorithm avoiding a static human limb…………………………………………….90

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

xiii

Figure 5.24: (a) The plane and spheres human model. (b) Closest distance between

the robot surface and the static human’s limb for Elfin 5 robot controlled by the

CLIKFR algorithm…………………………………………………………………91

Figure 5.25: Joint angle, velocity and acceleration versus time for Elfin 5 avoiding

the static human’s limb using the CLIKFR algorithm………………………………92

Figure 5.26: Elfin 5 robot and a human torso obstacle simulation scenario used with

the CLIKFR algorithm……………………………………………………………..93

Figure 5.27: Snapshots of the simulation for Elfin 5 controlled by the CLIKFR

algorithm avoiding a human torso……………………………………………….…94

Figure 5.28: (a) Final pose of the robot and the human torso plane model (b) Closest

distance between the robot surface and the human torso plane for Elfin 5 robot

controlled by the CLIKFR algorithm………………………………………………95

Figure 5.29: Elfin 5 robot and a dynamic obstacle simulation scenario for the

CLIKFR algorithm…………………………………………………………………96

Figure 5.30: Closest distance between the robot surface and the surface of the

dynamic sphere obstacle with different velocities controlled by of the CLIKFR

algorithm…...………………………………………………………………………97

Figure 5.31: Joint accelerations versus time for Elfin 5 avoiding a dynamic obstacle

using the CLIKFR algorithm with

0d = ………………………………………….98

Figure 5.32: Joint accelerations versus time for Elfin 5 avoiding a dynamic obstacle

using the CLIKFR algorithm with

2d = ………………………………………….98

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

xiv

Figure 5.33: Closest distance between the robot surface and the dynamic obstacle for

Elfin 5 robot controlled by the NMPC algorithm………………………………….100

Figure 5.34: Joint angle, velocity and acceleration versus time for Elfin 5 avoiding

the dynamic obstacle using NMPC algorithm……………………………………..101

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

xv

List of Tables

Table 3.1: D-H parameters of the Elfin 5 robot…………………………………….31

Table 5.1: D-H parameters of the three-link planar robot…………………………..67

Table 5.2: Joints limits of the three-link planar robot………………………………67

Table 5.3: Joint limits of the Elfin 5 robot………………………………………….87

Table 5.4 Input parameter values used in static human limb collision avoidance

simulations of the CLIKFR algorithm…………………………………………..…88

Table 5.5: The smallest value of distance as a function of obstacle velocity with the

CLIKFR algorithm…………………………………………………………………97

Table 5.5: Collection of CLIKFR and NMPC simulation results…….…………..104

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

xvi

Abbreviations

CLIKFR: Closed-loop inverse kinematics control algorithm exploiting

functional redundancy

COVID-19: Coronavirus disease of 2019

D-H: Denavit-Hartenberg

DOF: Degrees-of-freedom

GMMS: Gaussian mixture models

GMRs: Gaussian mixture regressions

HRC: Human-robot collaboration

IMUs: Inertial measurement units

RGB-D: Red, green, blue and depth

SSL: sphere-swept line

SSLs: sphere-swept lines

LED: Light Emitting Diode

MLESAC: Maximum Likelihood Estimator SAmple Consensus

MPC: Model predictive control

NPC: Non-predictive control

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

xvii

NMPC: Nonlinear model predictive control

PCA: Principal component analysis

RANSAC: RANdom SAmple Consensus

RGB: Red, green and blue

SFs: Saliency features

SVD: Singular value decomposition

T-RRT: Transition-based rapidly exploring random tree

YCbCr: Luminance; Chroma: blue; Chroma: red

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

xviii

Nomenclature

ia : Link length.

1A , 2A , 3A , 4A : Expanded Jacobian matrix.

1b , 2b : Spheres in the SSLs model.

1b , 2b , 3b , 4b : Expanded target matrix.

c : Moving speed of the obstacle.

oc : Centre of the obstacle.

C : Covariance matrix of each point in the point cloud.

1
C , 2C , 3C , 4C : Joint angle constraints, joint velocity constraints, joint acceleration

constraints and collision avoidance constraints.

d : Depth value of a pixel in the depth image.

xd , yd : Resolution of the image in the x and y directions.

id : Joint offset.

1 2(,)d b b : Separation distance.

1 2(,)pd b b : Euclidean distance between a point and a line segment.

planed : Distance from a point to the plane.

q
d : Threshold joint angle distance.

sd : Desired distance between the robot centerline and obstacle centre.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

xix

mind : Closest distance between the obstacle and whole robot arm.

te : Extended error vector in the task space.

nI : Identity matrix of dimension n.

criticalJ : First 3 rows of the Jacobian matrix of critical point.

criticalPlane
J : Jacobian matrix of the critical point on the arm to a plane.

fPlane
J : Jacobian matrix of the plane avoidance constraint.

J(q) : Geometric Jacobian matrix of the manipulator.

qi
J : Jacobian matrix of joints constraints task.

oJ : Jacobian matrix relating the joint velocities to the end-effector angular velocity.

p
J : Jacobian matrix relating the joint velocities to the end-effector linear velocity.

sJ : Jacobian of sphere collision avoidance task.

k : Number of nearest neighbours.

K : Positive-definite proportional gain matrix.

esK : Gain of sphere obstacle collision avoidance error

L : Length of the voxel cell.

sn : Total number of obstacles.

pN : Prediction horizon.

()t
1,1

p , ()t
1,2

p : Two dynamic endpoints of a line segment of SSL.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

xx

criticalp : Critical point for whole arm.

c1p , 2c
p , 3cp , 4c

p : Closest point to the obstacle on link 1, link 2, link 3 and link 4.

ed
p : Desired end-effector position.

joint1
p , 2joint

p , 3joint
p , 4joint

p : The location of joint 1, joint 2, joint 3 and joint 4.

ep : Position of the end-effector.

ep : Linear velocity of the end-effector.

i-1
p : Position of the origin of the ith joint frame.

q : Joint position variables.

miniq , maxiq : Minimum and maximum angle of joint i.

1r , 2r : Radius of robot arm’s SSLs model union of spheres human model.

3

6R : orientation of the end-effector relative to frame 3.

1i

i

+ T : Homogeneous transformation matrix.

0u , 0v : Origin of the x and y axes in the image coordinate system.

1to 1cv : Vector from joint 1 to the closest point to the obstacle on link 1.

w : Weight factor that is associated with the collision avoidance task.

w , W : Weight array and weight matrix.

x : Position and orientation of the end-effector.

dx : Desired end-effector position and orientation.

i-1
z : The -axisz of the ith joint frame.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

xxi

i : Link twist.

a : Actual joint angle.

c : Commanded joint angle.

,mincθ , ,maxcθ : Minimum and maximum joint angle limits.

,mincθ , ,maxcθ : Minimum and maximum joint velocity limits.

,mincθ , ,maxcθ : Minimum and maximum joint acceleration limit.

cθ , cθ , cθ : Joint position, velocity and acceleration commands.

cv,min
θ , cv,max

θ : Minimum and maximum joint velocity commands.

ca,min
θ , ca,max

θ Minimum and maximum joint acceleration commands.

i : Joint angle.

 : Scalar damping factor.

1 2 3, , and : Eigenvalues of the covariance matrix C .

d : Number of sampling periods of delay.

eω : Angular velocity of the end-effector.

Chapter 1. Introduction

1.1 Preface

Robot manipulators have been widely used in assembly lines for mass production

for decades. Recently, the demand for industrial robots has accelerated considerably due

to the ongoing trend towards automation (International Federation of Robotics, 2019).

The COVID-19 pandemic has also increased the use of robot manipulators in new

applications such as cooking (Durban and Chea, 2020) .

To produce more complex products with shorter product life cycles greater human-

robot collaboration (HRC) is necessary. This collaboration combines the adaptability

and problem-solving skills of humans with the strength, endurance, and precision of

robots (Ajoudani et al., 2018). Generally speaking, human-robot collaboration can be

classified into two types according to the existence of intentional physical contact

between humans and robots. In the type with intentional physical contact, robot

manipulators assist human operators in moving heavy objects by

pushing/pulling/holding an object and compensating for the object's inertia and weight.

On the other hand, for the type without intentional physical contact, robot manipulators

act like co-workers and cooperate with human workers while avoiding physical contact

and collisions (Villani et al., 2018). For instance, robot manipulators could provide

assembly components to human operators during the assembly process (Tan et al.,

2010). Another example from industry is that robot manipulators carry large

components and finish the non-ergonomic part of the assembly process, and then the

human workers continue the part which requires adaptability (Universal Robots, 2018).

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

2

To maintain production efficiency, industrial robot manipulators are typically

operated at high speed and thus are isolated from humans using fences since high speed

collisions could cause serious injuries. Traditionally, whenever there is an overlap of

robot manipulator workspaces and human workspaces, the motions of the robot

manipulators are ceased, which greatly reduces the production efficiency and limits the

applicability of human-robot collaboration. To fully exploit the advantages of HRC the

robot must be allowed to move when the human is close to it or even in contact with it,

therefore human safety is a critical issue that needs to be considered.

Many researchers have worked on safety in HRC, and there are a lot of existing

strategies to avoid personal injuries. Their approaches can be separated into pre- and

post-collision strategies (De Luca et al., 2006). Pre-collision strategies are implemented

before human-robot collision occurs. Collision avoidance is the primary goal and

requires (at least, local) knowledge of the current environment geometry and

computationally intensive motion planning techniques. Post-collision methods are

focused on collision detection and reaction. They are designed to quickly detect the

collision and minimize harm to both humans and robots if unexpected contact occurs.

Pre-collision strategies require that the robot can re-plan the trajectory in which it

reaches the target position in a way that avoids the collision with humans in real-time.

The perception of the human operator is the first crucial step. With the help sensors that

measure both colour and depth (known as “RGB-D sensors” or “RGB-D cameras”

where the letters R, G, B and D are abbreviations of red, green, blue and depth,

respectively), it is possible to acquire sufficient information about the position of the

human operator for re-planning the robot’s trajectory (Dal Mutto et al., 2012). This

type of sensor is popular in robotic applications, not only for its features, but also for its

low cost. Intel RealSense and Microsoft Kinect are commercial RGB-D sensors which

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

3

combine a colour video camera with an infrared projector and receiver for measuring

depth. They have been broadly used in both the academic community and industry for

human position measurement and gesture recognition (Ye et al., 2013).

However, only a few HRC applications have established in industrial assembly or

manufacturing areas at present (Matheson et al., 2019). This is due to the stringent

demand for safety during autonomous movements of robots in fence-less applications

and the high cost of the workspace monitoring systems (Fast-Berglund et al., 2016).

Therefore, with the help of RGB-D sensors, a safe and affordable pre-collision system

for HRC applications can be developed.

1.2 Objective and Organization

The objective of this research is to develop a collision avoidance system suitable

for industrial robot manipulators in general, and for collaborative robots (also known as

“cobots”) in particular. The system should be able to generate, in real-time, a trajectory

for the robot to perform its task while simultaneously avoiding collisions with human

workers. This will involve developing algorithms for modelling the robot and human(s),

and for collision avoidance. The collision avoidance algorithms will be evaluated in

terms of their efficiency (measured by the time required for the robot to complete its

assigned task), safety (measured by the closest distance between the human(s) and

robot), and their real-time capability (measured by their execution time).

The organization of the thesis is as follows. In chapter 2, the relevant publications

on human geometric modelling, robot geometric modelling and robot manipulator

collision avoidance algorithms are reviewed. Chapter 3 presents the human and robot

modeling algorithms. The non-predictive and predictive collision avoidance algorithms

are described in chapter 4. In chapter 5，collision avoidance simulations are presented.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

4

The simulation procedure is described first. After that the simulation results for a 3-

DOF planar robot (where “DOF” stands for “degrees-of-freedom”) and a 6-DOF

collaborative robot are presented and discussed. Chapter 6 draws the conclusions of the

research and makes recommendations for future work.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

5

Chapter 2. Literature review

2.1 Introduction

Safety takes priority over all other matters for HRC. Many researchers have

worked on safety in HRC, and there are several existing strategies to avoid human

injuries. They can be classified into two main categories: pre-collision strategies and

post-collision strategies. Pre-collision strategies are implemented before the human-

robot collision occurs, either by ensuring collision does not happen in the first place or

by bounding robot parameters such as velocity or energy. If unexpected or

unpreventable contact occurs, post-collision control methods are designed to quickly

detect the collision and minimize harm to both the human and the robot.

Collision avoidance methods belong to the pre-collision category. Geometric

models of the robot are necessary for applying these methods. To be more effective at

avoiding human(s) in the shared workspace, collision avoidance algorithms need more

knowledge than merely knowing the presence or absence of human subjects. Individual

body parts must be detected and represented as geometric models. The research on robot

geometric models is reviewed in section 2.2. Human geometric modelling techniques

are covered in section 2.3. Algorithms for collision avoidance are reviewed in section

2.4. Finally, section 2.5 presents a summary of the review.

2.2 Robot Geometric Modelling for Human-Robot Collaboration

Over the years, several different geometric representations for robot manipulators

have been proposed. Balan and Bone (2006) represented each robot link by a union of

spheres. e.g., a PUMA 762 was modeled by 41 spheres. This model can work in real-

time due to the efficiency of the distance computation. Flacco et al. (2012) presented a

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

6

similar spheres-based model. The disadvantage of this approach is many spheres must

be used to obtain detailed models.

Another way to geometrically represent robots is to use a sphere-swept line (SSL)

to model each link. An SSL is simply the bounding volume created by translating a

sphere along a line segment. It is geometrically equivalent to a cylinder with

hemispherical endcaps. Although the distance computation with SSLs is more complex

than with spheres the use of SSLs is typically more computationally efficient since only

a few SSLs are required to model the entire manipulator. This robot modelling approach

was used by Bosscher and Hedman (2011), Corrales et al. (2011) and Krämer et al.

(2020).

Gerdts et al. (2012) modelled the robot with polyhedrons and utilized Farkas

lemma in conjunction with back-face culling to reduce computational complexity.

However, the algorithm does not run in real-time due to the high complexity of the

additional constraints and optimization parameters introduced by Farkas lemma.

2.3 Human Sensing and Geometric Models for Human-Robot Collaboration

Human geometric modelling is a much more difficult task than robot geometric

modelling for two main reasons. First, the shapes of the robot’s links are constant and

known whereas the shape of the human operator is unknown and variable. Second, the

positions of the robot’s links in space can be determined using the robot’s built in joint

angle sensors whereas locating the human’s body requires external sensors (such as

RGB-D sensors) and software to distinguish it from its surroundings.

Martínez-Salvador et al. (2003) modelled the human by a hierarchy of sphere-

based models. They used a complex heuristic algorithm to compute the sphere positions

and radii. Balan and Bone (2006) also developed a sphere-based human model

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

7

customized to fit the dimensions of an average-sized human. However, neither of these

papers used the models in experiments where sensor(s) must be used to obtain the

human model in real-time.

Morato et al. (2014) presented a human-robot collaboration approach that uses

multiple Microsoft Kinect RGB-D sensor to extract a skeleton model of the human.

They then cover head, torso and arms of the skeleton model using nine spheres. They

test their approach for a cooperative assembly task using a small 5-DOF robot. Real-

time performance is achieved (i.e., 30 Hz sampling rate), but the skeleton identification

can fail if the human is handling some equipment. A further disadvantage is the skeleton

does not represent the surface of the human’s body so it is not ideally suited for ensuring

human safety.

Lasota et al. (2014) developed a safety system for close-proximity interaction with

standard industrial robots that leverages accurate sensing of a human’s location. A

PhaseSpace motion capture system was utilized to sense the position of the human

worker within the workspace. Consequently, the position of the human in the virtual

workspace was approximated by two concentric cylinders: one cylinder for the forearm

and one larger-diameter cylinder for the hand. However, the motion capture system

requires the user to wear LEDs on their arm and hand that are always visible by the

cameras, so it is not a practical solution for industrial environments.

An alternative approach is to calculate distances between humans and robots in

depth space, as described in Flacco et al. (2015). They proposed a method that evaluates

point-to-object distances working in the depth space of a single Kinect sensor. The depth

data is not converted to Cartesian space, and the distances are calculated using rays from

the camera’s focal point. The distances are used to generate repulsive vectors that are

used to control the robot while executing a generic motion task. The real-time

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

8

performance of the proposed approach is shown by means of collision avoidance

experiments. In their experiments the human is standing far away from background

objects. Since this method uses only depth data it may confuse the human with nearby

objects which may lead to human-robot collisions.

Ragaglia et al. (2018) proposed a skeleton plus swept volumes approach to model

the space occupied by the human worker. Kalman filtering is employed to fuse depth

data from multiple Kinect sensors. As with Morato et al. (2014) the skeleton

identification can fail if the human is handling some equipment so this is not a very

reliable approach.

 Beckert et al. (2018) enclosed the human upper-body in SSLs to compute their

reachable occupancies. The SSLs radii are specified such that they enclose all body

parts. They use six motion-capture cameras that track reflecting marker clusters which

are affixed to the body. Safeea and Neto (2019) also applied SSLs to represent the

human in the workspace. The upper body configuration is captured using five inertial

measurement units (IMUs) that are attached to the upper body parts (chest and arms),

and a laser scanner that tracks legs. However, these approaches require the user to wear

markers or IMUs, require special tracking equipment and do not provide sufficiently

comprehensive environment information for collision avoidance. This makes them

poorly suited for industrial applications.

2.4 Robot Manipulator Collision Avoidance Algorithms

2.4.1 Motion planning-based algorithms

The purpose of motion planning is to find a continuous, collision-free path from

the starting pose of the robot to its target pose. The generated collision-free path is

converted to a reference trajectory and sent to the robot’s controller once (before the

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

9

robot starts moving), unless replanning is performed. Since the state of the robot within

a specific time range is determined, its real-time performance cannot be guaranteed.

A motion planner developed by Mainprice et al. (2011) employs a cost-based,

random-sampling search to plan safe robot motions within cluttered environments It

includes the constraints due to human vision field, human-robot separation distance,

and the robot’s work space. This planner incorporates a transition-based rapidly

exploring random tree (T-RRT) algorithm and local optimization to generate paths.

A variety of planners and approaches that modify both the path as well as the time

parameterization of a trajectory to provide the most flexibility have been developed.

One approach developed by Yoshida et al. (2010) performs planning and execution

asynchronously. Upon changes in the environment, a subroutine replans a trajectory

based on the current initialization and passes it to the execution process. The replanning

time is 2-3 seconds. Another approach by Kohrt et al. (2013) proposed a grid-based path

planning method that restricts the search space to Voronoi regions. The trajectory then

emerges from a time parametrization along the path, for example, based on trapezoidal

velocity profiles or piecewise polynomial interpolation with imposed velocities and

accelerations. However, these papers assume the paths and velocities of the obstacles

are known in advance so they are not well suited for avoiding humans.

A different approach is to use a fixed preplanned path and only modify the time

parametrization of the corresponding trajectory. Recent research applying this approach

was proposed by Beckert et al. (2018). By scaling the time parametrization, the robot

responds to a dynamic environment by either slowing down or speeding up its motion,

enabling a time-shared collaboration. The robot’s velocity, acceleration, and jerk limits

are included in their solution. The controller verifies a given nominal trajectory,

ensuring safety with formally verified path-consistent fail-safe maneuvers. The

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

10

positions of both the manipulator and the operator over time are predicted by computing

their reachable occupancies. The simulation shows that the robot will take 1.6 seconds

to stop before impact. However, the robot will freeze and delay production if a human

is blocking the predefined path.

Motion planning-based methods allow for a more proactive approach to ensuring

safety. They can search for the optimal path that meets certain constraints, such as

minimum distance and shortest time, etc. However, this approach is not appropriate for

maintaining safety with more dynamic environments. Besides, there are practical limits

to constantly replanning based solely on the current configuration of a rapidly changing

environment.

2.4.2 Prediction-based algorithms

If humans and robots are working close to one another, the ability to anticipate the

actions and movements of members of a human-robot team is critically important for

providing safety within dynamic HRC. Typically, the state of the robot is known, and

the state of humans can be obtained through vision or other motion capture sensors. If

the person’s movements conform to a particular probability model, the state of the

person at the next moment can be predicted. By providing this information to the upper-

level planner, or the lower-level control strategy, actions and paths that will result in

safe and efficient interaction can be determined.

Mainprice and Berenson (2013) introduced a method that applies labeled

demonstrations of reaching motions to generate models for prediction of workspace

occupancy. In this approach, separate Gaussian mixture models (GMMs) are trained for

each goal position for a particular task, and Gaussian mixture regressions (GMRs) are

used to generate representative reaching motions. Then, based on observation of the

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

11

initial segment of a new reaching motion and the computed GMMs and GMRs, the

approach calculates the likelihood of occupancy of each voxel within a simulated shared

workspace. The robot then selects actions and paths that minimize incursion into the

regions of the workspace expected to be occupied by humans. However, neither the

prediction nor the motion planning processing time achieved sufficient real-time

performance to be used online for a real application, and the average correct

classification at the early stages of the trajectory was still very low, with 50% correct

classification achieved after processing 43% of the motion trajectory.

Perez-D'Arpino and Shah (2015) also focused on predicting reaching locations

based on human demonstrations, but with a time-series analysis that utilizes

multivariate Gaussian distributions over the tracked degrees of freedom of the human

arm defined for each time step of the motion. The system uses the learned models to

perform Bayesian classification on the initial stages of motion to predict where a person

will reach toward and to select robot actions that minimize interference. The models

take the sequence of points along the motion trajectory into consideration, allowing for

better discriminability and higher classification confidence very early in the process of

the human’s motion. This approach assumes a known dynamics model of the world and

a known goal representation. However, these assumptions constrain the adaptability and

generality of the system for many real-world tasks.

Ragaglia et al. (2018) proposed a novel trajectory generation algorithm which

incorporates the safety requirements for an industrial robot involved in HRC. Their

trajectory generation algorithm modifies a pre-programmed trajectory to prevent

collisions between the robot and the worker modelled as a set of swept volumes.

However, this algorithm has difficulties with occlusions, which are one of the

significant problems with HRC scenarios. Indeed, when occlusions occur, the

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

12

information about the position of some human anatomical parts is no longer available.

This can result in unnecessary limitations on the trajectories that the robot is allowed to

follow.

With prediction-based algorithms, a robot can produce safe movements proactively

by including predictions of the human’s actions and motions, instead of relying on

frequent replanning. This is especially useful for highly dynamic situations where

replanning each time the environment changes is impractical. While prediction is

helpful in ensuring safe HRC, it is essential to note that the efficacy of this approach is

directly related to the accuracy of the chosen prediction algorithm. In other words, a

poor choice of prediction algorithm will reduce the safety of the HRC.

2.4.3 Non-predictive Control-based Algorithms

Another common method for achieving safety during human-robot interaction is

through non-predictive control (NPC) of robot motion. This type of safety provision is

often the simplest method for enabling safe HRC, as it does not require complex

prediction models or planners. Various techniques and methods designed to perform

collision avoidance through non-predictive control will be reviewed in this section.

One popular approach for collision prevention via robot control is the calculation

of danger criteria and fields, such as the potential field approach developed by Khatib

(1985). This method can produce more sophisticated safety behaviors by defining a field

of repulsive vectors that guide the robot’s motion, modifying its trajectory in response

to dynamically changing environmental factors. One work that integrated the potential

field approach with other factors was developed by Kulić and Croft (2005). They

incorporated a safety control module that considers safety factors such as separation

distance and velocity to generate a danger index to be used by a potential field controller.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

13

The estimated emotional state of the user, inferred from skin conductance and heart rate

measurement, was also integrated into this danger index. Haddadin et al. (2010)

similarly developed a collision avoidance technique based on the potential field method.

Their approach accommodates not only the virtual forces caused by proximity to the

robot, but also actual physical contact. The algorithm, designed to have sufficiently low

complexity to run in real-time, is based on local reactive motion planning along with

velocity scaling, a function not only of distance but also the direction of approach. The

resulting system can produce smooth paths that avoid sudden accelerations and are thus

more physically interpretable by humans. However, these papers assume that the

information about the environment needed to avoid obstacles is already available,

ignoring the need for sensors. Also, the efficacy of these methods is directly linked to

the strategy used to construct the potential field.

Bosscher and Hedman (2011) presented a collision avoidance algorithm based on

speed control. The algorithm searches for a joint velocity that most closely matches the

desired one, in the sense of the quadratic Euclidean norm, subject to constraints on the

relative speed between approaching bodies. Collision avoidance can be achieved by

preprocessing joint velocity references inside of the tracking controller. The robot can

avoid collisions with an obstacle moving at a maximum speed of approximately 0.5 m/s.

However, since this only modifies the execution of motions, but not the planning, the

robot reacts to the environment in a way that is not covered by the plan. Furthermore,

as in Beckert et al. (2018), the robot will freeze and delay production if a human is

blocking the predefined path.

Zanchettin et al. (2016) introduced a velocity scaling approach that takes

advantage of redundant degrees of freedom, to maintain safety while retaining

productivity. In this work, a safety region is calculated based on the robot’s velocity and

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

14

braking distance, as well as a clearance parameter that takes uncertainties in

measurement and modeling into account. The collision avoidance algorithm is

calculated at the joint space level to allow for real-time deployment. It uses redundant

degrees of freedom to move the robot’s joints away from the human while still

maintaining the right end effector position. This enables the robot to continue to perform

its task while maintaining both a greater distance of separation from the human and a

higher speed.

Liu and Tomizuka (2016) developed a method aimed at achieving real-time safety

with formal guarantees employing set invariance theory and reachability analysis. In

their work, the robot motion planning and control problem is posed as a constrained

optimal control problem. A safety index, which depends on the relative distance among

humans and robots, is evaluated using the ellipsoid coordinates attached to the robot

links that represent the distance between the robot arm and the worker. The safety index

is used as a constraint in the optimization problem so that a collision-free trajectory

within a finite time horizon is generated on-line iteratively for the robot to move towards

the desired position. To reduce the computational load for real-time implementation, the

formulated optimization problem is further approximated by a quadratic program. The

sampling time is 5.5 ms when the human and robot are modelled by ten SSLs and three

SSLs, respectively. This method has the disadvantage of requiring a human tracking

system. Furthermore, only the safety is considered, and not the robot’s productivity.

2.4.4 Model Predictive Control-based Algorithms

Model predictive control (MPC) is another control-based method for HRC. MPC

establishes a look ahead tracking controller by repeatedly solving an optimal control

problem over a finite time horizon, and then applies the first element to the plant, which

is the robot in this thesis. One advantage of MPC is that it can explicitly consider the

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

15

dynamics of low-level joint motion controllers in its prediction model. Like prediction-

based methods, MPC algorithms predict the future motions of the human and robot. In

general, MPC algorithms use simpler human prediction models and shorter prediction

horizons. This allows them to recompute the optimal control solution based on current

sensor information more frequently than with the re-planning approach. This makes

them better suited to situations where the obstacle motions are less predictable.

Balan and Bone (2006) presented an MPC-like planning algorithm for HRC. Their

algorithm solves an optimization problem to select the end-effector path direction from

a finite set that balances between the robot rapidly approaching its target configuration

and the robot maximizing its distance to the human over the prediction horizon. The

robot’s motion was predicted using a transfer function model of its time response at the

joint level. The human’s motion was predicted at the sphere level using the weighted

mean of past velocities. As a test scenario, the authors developed a simulation of a

human walking toward a moving Puma robot arm. The planning algorithm used a

sampling period of 33.3 ms and a prediction horizon of 0.333 s. Captured human motion

data was used to simulate the human’s movements. They used Monte Carlo simulations,

consisting of 1000 random human walking paths passing through the robot workspace,

to validate their approach. Note that no experiments with a real robot were conducted.

Zube (2015) presented a collision avoidance strategy based on nonlinear MPC

(NMPC) that is applicable to both fixed-base and mobile manipulators (i.e., a

manipulator mounted on a mobile robot). NMPC is applied to solve the inverse

kinematics of a redundant manipulator and control the end-effector pose in Cartesian

space. It has the advantages that the nonlinear kinematics are not approximated by a

linear model and hard constraints (e.g., joint limits) are included. A sampling period of

100 ms and a prediction horizon of 1 s were used with the NMPC. In terms of

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

16

disadvantages, this paper only presents simulation results that ignore modelling

uncertainty, sensor noise and the robot’s deadtime. No simulations of moving obstacles

like humans were included either.

Another recent paper that uses NMPC for online trajectory optimization was

presented by Krämer et al. (2020). The NMPC problem is solved by direct collocation

based on a hypergraph structure which allows it to efficiently adapt to structural changes

in the optimization problem caused by moving obstacles. The proposed algorithm has

the further advantage that it incorporates constraints on joint velocities into the motion

planning. It has the disadvantage that is assumes the obstacles are stationary over the

prediction horizon. Simulation results for “imitated robotic pick-and-place experiments”

are included. A sampling period of 100 ms and a 2.5 s prediction horizon were used.

The results show that the MPC controller allows the robot to successfully approach a

moving target configuration without prior knowledge of the reference motion. The

simulated obstacles consisted of a single moving sphere and a static human modelled

by seven SSLs. Their simulations ignore the difficulties caused by modelling

uncertainty and sensor noise.

2.5 Summary

This chapter began with a review of the different geometric representations of the

robot and human used in the literature. The complexity of the geometric representations

is related to the accuracy of the models and computational costs directly. For real-time

applications such as robot collision avoidance, the computational efficiency of the

geometric model must be regarded as the first priority.

The state-of-the-art literature on collision avoidance algorithms was also reviewed.

Motion planning-based methods provide a proactive approach to ensuring safety.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

17

However, in HRC applications these planners are challenged by having to rapidly re-

plan new paths and motions due to the dynamic nature of any environment occupied by

people. Prediction-based motion planning methods are especially useful for highly

dynamic situations, but their effectiveness is directly related to the accuracy of the

obstacle prediction algorithms. The performance of collision avoidance algorithms

employing NPC and MPC benefits from their more frequent use of sensor feedback

compared to motion planning-based methods. This makes them more effective for

applications where the obstacle motions are less predictable, such as HRC.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

18

Chapter 3. Human and Robot Modelling

 3.1 Introductions

Geometric models of the human and the robot manipulator are necessary to

implement the collision avoidance algorithms. In this thesis, three geometric primitives

are used to represent objects. The front of the human’s torso is represented by a plane.

A plane is also used to represent the table the robot is mounted on. The human’s arm(s)

(and head if their neck is bending forwards) that protrude in front of the torso plane are

modeled as by unions of spheres. The links of robotic manipulator is represented by

SSLs. These representations have been chosen because they produce simple models that

can be used to quickly calculate the distance between any two objects.

 3.2 Human Modelling Algorithm

3.2.1 Algorithm Description

In this work, a point cloud approach for human detection is applied. We employ an

Intel RealSense D415 RGB-D sensor to acquire the point cloud. This sensor produces

two images: a RGB colour image (captured by a colour camera) and a depth image

(from a depth camera). The depth image is a two-dimensional image with integer valued

pixels that measure the depth of that point in space (in millimeters measured along the

camera’s optical axis). The depth camera can be modelled by the pinhole camera model

(Darwish et al., 2019) as shown in Fig. 3.1.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

19

Figure 3.1: Depth camera model (Darwish et al., 2019)

The two-dimensional depth image information must be converted into the three-

dimensional point cloud, where each pixel of the depth image has a corresponding point

in the point cloud.

Figure 3.2: Imaging plane coordinate system

As shown in Fig. 3.2, (,)u v is the image coordinate system expressed in pixels,

while (,)x y represents the camera’s Cartesian coordinate system expressed in

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

20

millimeters. Then the relationship between two coordinate systems is as follows (Chu

et al., 2019):

0

0

1/ 0

0 1/

1 0 0 1 1

x

y

u d u x

v d v y

=

 (3.1)

where 0u is the origin of the x-axis in the image coordinate system, 0v is the

origin of the y-axis in the image coordinate system, xd is the resolution in the x-axis

direction,
yd is the resolution in the y-axis direction. The equation for converting each

point in the depth image data to point cloud data is then (Chu et al., 2019):

 0

0

() /

() /

x x

y y

x d

y u u d d

z v v d d

= −
 −

 (3.2)

where d is the depth value of the point (ux, vy) from the depth image. In this thesis,

the depth image resolution used is 640 480 . So
0 320u = and 0 240v = in the above

equations.

In order to segment out the point cloud that belongs to the human, a method

combining human skin colour detection and point cloud clustering is used. Each point

has six channels. Three channels store x, y, and z location information while the other

three store red, green, and blue colour information. The processes of human skin colour

detection and points cloud clustering are explained below.

The objective of human skin detection is to find the skin regions in an image, which

requires separating the skin and non-skin points (Shaik et al., 2015). Colour space is a

mathematical model that represents colour information as different colour components.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

21

A variety of colour spaces are available for skin detection, including: RGB colour space,

Hue-based colour space, Luminance-based colour space, and perceptually uniform

colour space. RGB colour space is not preferred for colour-based object detection and

colour analysis because of the mixing of the colour (chrominance) and intensity

(luminance) information and its nonuniform characteristics (Zarit et al., 1999).

Luminance-based approaches discriminate colour and intensity information even under

uneven illumination conditions. We apply the Luminance-based colour space named

YCbCr to perform skin colour detection and segmentation. The transformations

between YCbCr colour space and RGB colour space are given by:

0 0.299 0.587 0.114

128 0.169 0.331 0.500

128 0.500 0.419 0.081

Y R

Cb G

Cr B

= + − −

 − −

 (3.3)

1 0 1.4

1 0.343 0.711 128

1 1.765 0 128

R Y

G Cb

B Cr

= − − −

 −

 (3.4)

Skin detection based on YCbCr colour space can be done using by thresholding

the three colour components. When an RGB colour image is transformed into the

YCbCr colour image, the resultant image is comprised of an intensity component (Y)

and chrominance components (Cb and Cr). In this thesis, thresholds are only applied to

the chrominance components as shown by the following pseudocode:

if (77 Cb 230) and (140 Cr 165) then

 Point is skin colour

else

 Point is not skin colour

end

 (3.5)

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

22

We apply human skin colour detection to monitor the volume of interest, which is

the workspace of the robot. In the next step, the first point in the human skin colour area

will be used as the first seed point to form the cluster of points belonging to the human

body by applying a region growing method.

The basic idea of region growing is to group points with similar properties to form

regions. Specifically, first, we find a seed pixel for each region that needs to be

segmented as the starting point for growing. Then we merge the points in the

neighborhood around the seed point that have the same or similar properties, determined

according to a certain predetermined growing or similarity criterion, as the seed point

into the area where the seed point is located. Use these new points as new seed points

and continue the above process until no more points that meet the conditions can be

included. In this way, the growing of the region is complete (Adams and Bischof, 1994).

Principal component analysis (PCA) has been widely used to estimate local

saliency features (SFs) that are used in the region growing (Rabbani et al., 2006). In this

work, PCA is used to estimate the normal and curvature of points. The region growing

process consists of four basic tasks, as shown in Figure 3.3.

Figure 3.3: Region growing process (Rabbani et al., 2006).

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

23

Neighborhood selection is an important task for accurate SFs estimation. There are

three common methods for neighborhood selection: 1) -NNk ; 2) fixed-distance

neighborhood; and 3) neighborhood within a voxel. For (2) and (3), the numbers of

points in a neighborhood are different due to uneven sampling. We apply -NNk to get

k points of a local neighborhood for an interesting point based on the -Dk search

algorithm (Xiao and Wenming, 2009). This approach can deal well with uneven point

densities, which is common in points cloud data. By manual tuning, we found that

10k = works well for estimating the surface normal. For the second task – SFs

estimation, the normal and curvature are estimated for all the points in the data using

principal components analysis (PCA). The 3 3 covariance matrix C of each point

ip is calculated by the following equation (Khaloo and Lattanzi, 2017):

1

1
() ()

n
T

j i j i

jk =

= − −C p p p p (3.6)

where k is the number of nearest neighbours and jp are the k nearest

neighbours of ip .

Next, by performing Singular Value Decomposition (SVD) on the covariance

matrix (Golub and Reinsch, 1970), it is possible to compute the eigenvectors

and
3 2 1

v , v v and the corresponding eigenvalues
1 2 3, , and of the covariance

matrix C . The eigenvalues are sorted in the order: 3 2 1 . With this approach

1v approximates the normal vector at point ip . The curvature is given by:

 1
3 2 1

1 2 3

,c

=
+ +

 (3.7)

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

24

The first point that is recognized in the human skin area is selected as the first

seed point. A region is grown incrementally based on the spatial connectivity

among the points starting from the seed point. We define two points as spatially

connected based on their normal vectors and curvatures. The region growing

algorithm for finding the “human body point cloud” is then:

Algorithm 3.1 The complete region growing method to cluster

human body cloud

Inputs: Point cloud P , User-defined neighborhood size k ,

angular threshold = threshold and curvature threshold= thresholdc .

Output: Human body point cloud H .

1. Initialize: current region cR , and cloud of current seeds cS ;

2. Find NNk − for all points in P using the Matlab command:

knnsearch(,)k=
p

N P,P ;

3. PCA-based normal and curvature estimation for all points in P :

for 1i = to size P do

 Denote NN of
thi point as

ip
N ;

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

25

 Calculate the covariance matrix C using
ip

N and (3.6);

 Calculate eigenvectors and
3 2 1

V (v , v v) and their corresponding

eigenvalues 3 2 1() of C : , ()eig =V C ;

 Normal vector: 1i =n v ;

 Curvature ic is calculated by Equation (3.7);

end

4. while P is not empty, do

5. Select the first point in human skin area 1h as initial seed

→
1 i

h p ;

6. i c cp insert R & S

7. ip remove P

8. for 1m = to k do

9. Calculate angle from mn to the seed point normal vector
ipn :

arccosm =
im pn n ;

10. if m threshold do

11. m cinsertp R

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

26

12. m removep P

13. if ()
m ip p thresholdabs c c c− do

14. m cinsertp S

15. end

16. end

17. end

18. Add current region to human body point cloud:

 c insertR H

19. end

With point clouds, the computation time increases with the number of points. To

reduce the number of points the human body point cloud is resampled using a process

called voxelization. A voxel is a cube with a predefined edge length. This edge length

defines the resolution of the voxelized cloud. Figure 3.4 is an illustration of a voxel cell,

where L is the edge length of the voxel cell.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

27

Figure 3.4: Voxel cell.

The voxelization step is shown in Figure 3.5. First, the bounding box is calculated

for original point cloud. Second, using the predefined voxel cell size, the bounding box

of the point cloud is divided into cubic cells. Third, the cloud points are assigned to the

cells they are inside. Note that many of the clouds will be unoccupied. Finally, the new

resampled point cloud is given the centroids of the occupied voxel cells. Since several

of the original points may lie inside each voxel cell (as shown in Figure 3.5) the

resampled cloud typically includes much fewer points than the original cloud.

Figure 3.5: Point cloud resampling using voxel cells.

After resampling the human body point cloud, we fit a plane to the front of the

torso and fit spheres to human’s arm(s) (and head if their neck is bending forwards). We

apply the built-in MATLAB function “pcfitplane” to fit a plane to the point cloud. To

use this function, the maximum allowable distance from an inlier point to the plane must

be specified. This function is motivated by the Maximum Likelihood Estimator SAmple

Consensus (MLESAC) algorithm, which is a variant of the RANdom SAmple

Consensus (RANSAC) algorithm. The MLESAC algorithm is a generalization of

RANSAC, which adopts the same sampling strategy but attempts to maximize the

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

28

likelihood of the solution, as opposed to the number of inliers (Torr and Zisserman,

2000). MLESAC is useful in situations where most of the data samples belong to the

model, and a fast outlier rejection algorithm is needed. We use this function to return

the equation for the plane, the linear indices to the inlier and outlier points in the point

cloud input. In our purpose, the inlier points are the torso (and head if the neck is not

bending forwards), while the outlier points belong to the protruding human arm(s) (and

head if the neck is bending forwards). The algorithm for fitting the union of spheres to

the outlier points is:

Algorithm 3.2 Union of spheres fitting algorithm

Inputs: Outlier point cloud oP from pcfitplane, user-defined

sphere radius sR , plane safety tolerance pstd and minimum points

number minN ;

Output: Centroids matrix of fitting spheres
s

C ;

1. initialization Max distance 6

max () 10pstd abs d −= + , centroids

matrix sc and centroid input inc ;

2. while max ()pstd abs d do

3. Calculate distances between oP and the torso plane

toplane
D ;

4. Max distance max max()d =
toplane

D ;

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

29

5. if max ()pstd abs d do

6. break;

7. end

8. Find the point has with max distance maxp ;

9.
maxinc p= ;

10. Previous number of points in sphere 0previousn = ;

11. Current number of points in sphere 1currentn = ;

12. while

 min maxsize & () & 0c in s previous currentP N norm p c R n n − − do

13. previous currentn n= ;

14. Find neighbors of inc :

 findNeighborsInRadius(, ,)nr o in sP P c R= ;

15. current nrn size P= ;

16. Find current cloud in sphere: is nrP P= ;

17. { }in isc mean P= ;

18. end;

19. if mincurrentn N do

20.
inc insert

s
C ;

21. end

22. if mincurrentn N do

23. break;

24. end;

25. end

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

30

 3.3 Robot Modeling

3.3.1 Kinematic Model

A serial robotic manipulator can be represented as a chain of links (rigid bodies)

connected to each other by moveable joints. A kinematic model is used to define the

relationship between the positions and orientations of the links and the values of the

joint angles. In this research, a collaborative robot, Elfin 5 (Figure 3.6) made by Han’s

Robot, will be used for simulating the collision avoidance algorithms. Elfin is a 6-DOF

robotic manipulator with six rotational joints (also known as revolute joints). The robot

has a maximum payload of 5 kg.

Figure 3.6: The Elfin 5 robot made by Han’s Robot.

Kinematics is the study of the movements without considering the causes that give

rise to them, so it only involves distances, angles, velocities and accelerations (Todd,

1986). The position and orientation of each link in space is defined by a Cartesian

coordinate frame attached to it. Although there are several ways to define one coordinate

frame relative to another, the Denavit-Hartenberg (D-H) representation has become the

standard in robotics (Hartenberg and Denavit, 1964). Its parameters are the joint angle

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

31

i , joint offset id , link length ia and link twist .i This representation simplifies the

kinematic model by imposing limits on the definitions of the coordinate frames, as

described in on page 31 of (Spong et al., 2006). The corresponding D-H parameters of

the Elfin 5 robot can be found in Table 3.1. Note that a 100 mm offset for a gripper is

taken into consideration.

Table 3.1: D-H parameters of the Elfin 5 robot

Link i [rad]i []id mm []ia mm [rad]i

1 1 220 0 / 2

2 2 100 380

3 3 -100 0 / 2

4 4 420 0 / 2−

5 5 100 0 / 2

6 6 280 0 0

There are two branches of manipulator kinematics, namely: forward kinematics,

and inverse kinematics. The first one is used for calculating the Cartesian positions and

orientations of the end-effector or intermediate links/joints and from a given values of

the joint angles.

The forward kinematics of the Elfin 5 robot will be described first. A 4 × 4

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

32

homogeneous transformation matrix may be used to define the position and orientation

changes between a pair of coordinate frames. It is composed of a rotation matrix R and

a position vector p as follows:

0 0 0 1

0 0 0 1

x x x x

y y y y

z z z z

n o a p

R p n o a p
F

n o a p

 = =

 (3.8)

The D-H parameters can be used to a derive a set of six transformation matrices,

one for each of the robot’s joints. The transformation matrices defining the change from

the coordinate frame for link i to the coordinate frame for link 1i + , is written:
1i

iT+
.

It is obtained using (3.9), where 1iC + and 1iS + stand for
1cos i +
and 1sin i + .

1 1 1 1 1 1 1

1 1 1 1 1 1 11

1 1 10

0 0 0 1

i i i i i i i

i i i i i i ii

i

i i i

C S C S S a C

S C C C S a S
T

S C d

+ + + + + + +

+ + + + + + ++

+ + +

−

−
 =

 (3.9)

The concatenation of the multiple links can be done by multiplying the individual

transformation matrices, resulting in one compound transformation matrix. For example,

computing the location and orientation of the end-effector with respect to the robot base

frame can be done by multiplying every link transformation of the robotic arm as in

(3.10). This results in a homogeneous transformation matrix where the positions vector

describes the position of the tool and the rotation matrix the orientation of the tool with

respect to the base coordinate system. For a 6-DOF robot like Elfin, the total

transformation matrix representing the forward kinematics equals:

0 0 1 3 3 4 5

6 6 2 3 4 5 6T T T T T T T= (3.10)

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

33

The goal of inverse kinematics is to find the joint angles from the given desired

position and orientation of the end-effector. There are two main strategies for solving

the inverse kinematics of a manipulator: closed-form solutions and numerical solutions.

Closed-form solutions use an analytical approach and can be based on geometrical

properties. Numerical solutions use iterative techniques to find the desired joint angles

but require more computational time (Craig, 2004). Because it is desired to keep the

calculation time as low as possible in real-time interactions, it was chosen to formulate

a closed-form solution for the Elfin 5. This solution is based on section 4.4 of (Craig,

2004).

To begin the solution, the desired position and orientation of the end-effector is

specified using the transformation matrix for coordinate frame 6 as defined by:

6 6 6 6

6 6 6 60

6

6 6 6 6

0 0 0 1

x x x x

y y y y

z z z z

n o a p

n o a p
T

n o a p

 =

 (3.11)

First, we can determine
5p by moving a distance 6d along the z-axis of

coordinate system 6. The direction of this z-axis is indicated by the third column of the

rotation matrix portion of
0

6T . This gives:

5 6

5 5 6 6 6

5 6

x x

y y

z z

p a

p p p d a

p a

= = −

 (3.12)

After
5p has been calculated, it is possible to calculate 1 , 2 and 3 with the

following equations:

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

34

 1 5 5atan2(,)y xp p = − (3.13)

2 2 2 2 2

5 5 5 1 2 4

3

2 4

()
cos

2

x y zp p p d a d
U

a d

+ + − − −
= = (3.14)

and

 2

3 atan2(1 ,)U U = − (3.15)

where the positive square root gives the elbow down solution and the negative

square root gives the elbow up solution. The corresponding solutions for angle 2 are

given by:

2 2

5 55 1
2

2 2 2 2 2 2

5 5 5 1 5 5 5 1

4 3 2 4 3

2 2 2 2 2 2

5 5 5 1 5 5 5 1

atan2 ,
() ()

sin cos
atan2 ,

() ()

x yz

x y z x y z

x y z x y z

p pp d

p p p d p p p d

d a d

p p p d p p p d

+−
=

+ + − + + −

+
−

+ + − + + −

 (3.16)

The equations for the inverse orientation kinematics may be used to calculate the

values of the wrist's joint angles (i.e., the minor axes). The method begins by first

calculating the orientation of the end-effector relative to frame 3 as follows:

11 12 13

3 0 1 0

6 3 3 21 22 23

31 32 33

RT

u u u

R R R R u u u

u u u

−

= = =

 (3.17)

where
0

3R can be calculated using forward kinematics and the joint variables we

found using the inverse position kinematics equations. The Elfin 5 is equipped with a

Euler wrist, as is common with industrial robots. For a Euler wrist, the rotation matrix

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

35

is:

4 5 6 4 6 4 5 6 4 6 4 5

3

6 4 5 6 4 6 4 5 6 4 6 4 5

5 6 5 6 5

C C C S S C C S S C C S

R S C C C S S C S C C S S

S C S C C

− − −

= + − +

 −

 (3.18)

Equating (3.17) and (3.18) gives the matrix equation

4 5 6 4 6 4 5 6 4 6 4 5 11 12 13

4 5 6 4 6 4 5 6 4 6 4 5 21 22 23

5 6 5 6 5 31 32 33

=

C C C S S C C S S C C S u u u

S C C C S S C S C C S S u u u

S C S C C u u u

− − −

+ − +

 −

 (3.19)

The remainder of the method involves solving for angles 4 5, and 6 using the

known u values.

3.3.2 Geometric Model

Based on Elfin 5 robot’s kinematic configuration, only links 2, 4, and 6 are

modeled as SSLs for use in the collision avoidance algorithm. The reasons become clear

by examining Figure 3.7 and Table 3.1. Link 1 is not modelled since it is stationary, and

links 3 and 5 have zero length. As a result, the complete geometric model of the robot,

shown in Figure 3.8, may be obtained from the three SSL line segment endpoints and

their radii. In this thesis, a radius of 40 mm is used for SSLs of link 6 while a radius of

50 mm is for link 4 and link 2.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

36

Figure 3.7: The kinematic skeleton of

the Elfin 5 robot

Figure 3.8: SSLs model of the moving

links of the Elfin 5 robot

3.3.3 Time Domain Model

In practice, all robots have some delay in their response due to the dynamics of

their electrical and mechanical components. The joint position command sent at discrete

time t will not be executed by the robot at discrete time t since the robot cannot

reach commanded locations instantly. The delay required for the robot to execute a

command results in the following equation:

 (1) (1)a c dt t + = + − (3.20)

where c is the commanded joint angle, a is the actual joint angle, and d is

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

37

the number of sampling periods of delay. Equation (3.20) applies to a single joint only,

but can be extended to model the entire robot by considering a and c as column

vectors, of length equal to the number of the robot joints.

The delay d of the Elfin 5 robot was obtained experimentally. Each joint was

tested separately. The set of commands sent to the robot are moving one joint 45 degrees

and then back to the initial position. The commands and corresponding actual joint

positions are recorded. Figure 3.9 is a zoomed-in plot of the joint 1 test results.

Figure 3.9: Joint 1 delay measurement experimental results for the Elfin 5

robot (zoomed-in to show the delay d).

From these experiments, the inherent delay from the time the robot is ordered to

take actions until it begins to execute the order is 63 ms, 55 ms, 54 ms, 63 ms, 54 ms

and 63 ms for joint 1, joint 2, joint 3, joint 4, joint 5 and joint 6 respectively. In this

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

38

thesis a sampling period of 33.3 ms is used to match the 30 Hz sampling frequency of

the Intel RealSense RGB-D sensor. To be conservative the maximum experimentally

measured delay of 63 ms is approximated as a delay of two sampling periods (i.e., 66.6

ms) in our simulations.

In addition to the delay, the position, velocity and acceleration limits also must be

taken into consideration. The following inequalities should be satisfied:

,min ,maxc c c (3.21)

 ,min ,maxc c c (3.22)

 ,min ,maxc c c (3.23)

where
,minc is the minimum joint angle limit,

,maxc is the maximum joint angle

limit, ,minc is the minimum joint velocity limit, ,maxc is the maximum joint velocity

limit, ,minc is the minimum joint acceleration limit and ,maxc is the maximum joint

acceleration limit.

 3.4 Summary

This chapter presented the human modeling and robot modeling approaches used

in this research. The algorithms that generate the human plane and union of spheres

model from RGB-D data were described. Bounding SSL models for the robot links can

be calculated from the presented kinematic equations, the sensed joint angles, and the

SSL radii. The SSL link models, and the plane and spheres human model, will be used

to conservatively estimate the human-robot closest distance by calculating the closest

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

39

distance between those geometric objects in chapters 4 and 5. To properly simulate the

robot’s time response in chapter 5, a time domain model that includes the delay time

was found using experimental data.

Chapter 4 Collision Avoidance Algorithms

 4.1 Introduction

In this chapter, the collision avoidance algorithms are presented in detail. The first

algorithm solves the inverse kinematics problem and avoid collisions using an expanded

version of the manipulator Jacobian matrix. A damped least-squares inverse of the

Jacobian is applied to compute the commanded joint velocities from given end-effector

velocities. The Cartesian task space error is corrected by adopting a closed-loop inverse

kinematics algorithm. Collision avoidance tasks produce constraints that are

systematically incorporated into this algorithm. A second collision avoidance algorithm

using NMPC is designed as an alternative approach.

 4.2 Inverse kinematics calculation

For a 6 DOF robot, the direct kinematics equation of a robot manipulator with an

open kinematic chain can be written in the form:

 ()f=x q (4.1)

where q is the (6×1) vector of joint position variables, x is the (6×1) vector of

end-effector variables (including position variables and orientation variables), and

()f denotes the nonlinear direct kinematics function.

The Jacobian matrix gives the relationship between the joint velocities and the

corresponding end-effector linear and angular velocities. The calculations for the

Jacobian matrix presented in this section are mainly based on pages 105-113 of

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

41

(Siciliano, 2009). It is desired to express the end-effector linear velocity ep and

angular velocity eω as a function of the joint velocities q , i.e.,

 ()=
e p

p J q q (4.2)

 ()=
e o

ω J q q (4.3)

In (4.2),
p

J is the (3×6) matrix relating the contribution of the joint velocities q

to the end-effector linear velocity
ep , while in (4.3)

oJ is the (3×6) matrix relating

the contribution of the joint velocities q to the end-effector angular velocity
eω .

p
J

and
oJ can be partitioned into the (3×1) column vectors

pi
J and

oiJ as follows:

 = p p1 pi p6J J J J (4.4)

 =o o1 oi o6J J J J (4.5)

In compact form, (4.2) and (4.3) can be rewritten as:

e

e

p
x = = J(q)q

ω
 (4.6)

where J(q) is the (6×6) manipulator geometric Jacobian matrix. In expanded

form it is:

=

p p1 pi p6

o o1 oi o6

J (q) J J J
J(q) =

J (q) J J J
 (4.7)

A simple and systematic way to calculate J(q) using direct kinematics relations

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

42

is shown in the following equation:

 for a prismatic joint

 for a revolute joint

=

i-1

pi

oi i-1 e i-1

i-1

z

0J

J z (p - p)

z

 (4.8)

where
i-1

z is the -axisz of the thi joint frame,
i-1

p is the position of the origin

of the thi joint frame, and
ep is the position of the end-effector.

In (4.8), vectors
i-1

z ,
ep , and

i-1
p are all functions of the joint variables. In

particular:

i-1
z is given by the third column of the rotation matrix 0

i-1R , i.e.,

 ...0 i-2

i-1 1 1 i-1 i-1 0z = R (q) R (q)z (4.9)

where [0 0 1]T=0z allows the selection of the third column.

ep is given by the first three elements of the fourth column of the transformation

matrix 0

eT , i.e., by expressing
ep in the (4 × 1) homogeneous form:

 ...0 5

e 1 6 0p = T T p (4.10)

where 0 0 0 1
T

=0p allows the selection of the fourth column.

i-1
p is given by the first three elements of the fourth column of the transformation

matrix 0

i-1T , i.e., it can be extracted from:

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

43

 ...0 i-2

i-1 1 i-1 0p = T T p (4.11)

The above relation in (4.6) can be inverted to provide the so-called Jacobian

control method for manipulators:

 -1

cq = J (q)x (4.12)

where the “c” subscript refers to the commanded value rather than the actual value.

The pseudoinverse method (see (Whitney, 1969)) for the least-squares minimum-norm

gives the following solution:

 * T T -1

cq = J x = J (JJ) x (4.13)

Equation (4.13) is preferable to be used as the control law if the Jacobian matrix

has full row rank. However, there always are some configurations at which the Jacobian

is either rank deficient or ill-conditioned. Singularity will occur at these configurations.

This problem will be overcome using the following damped least-squares method (see

(Wampler and Leifer, 1988)):

 T -1 T

c nq = (J J + I) J x (4.14)

where
nI is the n dimension identity matrix (with n equal to the number of

columns of J), and 0 is a scalar damping factor.

4.3 Inclusion of Constraints

4.3.1 Sphere obstacle collision avoidance constraint

In real applications, many constraints (e.g. the finite torque of joint) can stop the

realization of the basic inverse kinematics law (4.14). In this thesis, we assume the

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

44

constraints on the manipulator are unilateral and can be represented as strict inequalities,

namely

 0, 1,...,i sf i n = (4.15)

where if denotes the function of ith constraint, and sn is the total number of obstacles.

Figure 4.1: Distance between a SSL
1b and a sphere 2b (Krämer et al.,

2020)

The robot is modeled as SSLs. The distance between a sphere and SSL is shown

in Figure 4.1. A SSL is composed of a line segment defined by the two dynamic

endpoints ()t
1,1

p and ()t
1,2

p . We define 1r as the radius of robot link’s SSL models

and 2r as the radius of the spheres in the union of spheres human model.

 Let sd be the desired centre-to-centre distance between the robot centreline and

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

45

obstacle centre. For a collision to be avoided: 1 2sd r r + .

Figure 4.2: Geometry of a planar manipulator showing the point nearest to the

obstacle

See Figure 4.2 for a planar example. Where oc is the centre of the obstacle, mind

the closest distance between the obstacle and whole robot arm, criticalp is the critical

point for whole arm,
joint1

p is the location of joint 1， 2joint
p is the location of joint 2，

3joint
p is the location of joint 3，

ep is the location of end-effector , c1p is the closest

point to the obstacle on link 1, 2c
p is the closest point to the obstacle on link 2, and

3cp is the closest point to the obstacle on link 3. Taking link 1 as an example, the way

to calculate the closest point to the obstacle on the link is as follows:

()

()

T

1to 1c

− − −

−

o joint1 joint2 joint1 joint2 joint1

2

joint2 joint1

(c p) (p p) (p p)
v =

p p

 (4.16)

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

46

()

T

par1l
− −

=
−

o joint1 joint2 joint1

2

joint2 joint1

(c p) (p p)

p p

 (4.17)

1

1

1to 1

if 0

if 1

otherwise

par

par

c

l

l

c1 joint1

c1 joint2

c1 joint1

p = p

p = p

p = p + v

 (4.18)

where 1to 1cv is the vector from joint 1 to c1p and
par1l is a parameter that

determines whether c1p located at
joint1

p , 2joint
p or a position between

joint1
p and

2joint
p . Then mind can be determined using:

 ()min 2 3min , , , ed = − − − −c1 c c c c c cp o p o p o p o (4.19)

The critical point is then given by:

min

2 min 2

3 min 3

min

if

if

if

ife e

d

d

d

d

 = = −

= = −

= = −
 = = −

critical c1 c1 c

critical c c c

critical c c c

critical c

p p p o

p p p o

p p p o

p p p o

 (4.20)

We define:

 () ()2 2 2

1 0.5 || || 0.5 0s sf d d= − = − T
d d d (4.21)

where ocriticald = p - c .This expression of 1f has same function as 1 sf d= −|| d || ,

but simplifies the equation for 1f (see (Sciavicco and Siciliano, 1988)).

Differentiating (4.21) with respect to time gives

 1 s sf d d= −T

fd c + J q (4.22)

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

47

with
T

f criticalJ = d J , where criticalJ is a (3 × 6) matrix, and c is the moving speed

of the obstacle. criticalJ is equal to the first 3 rows of the Jacobian matrix of the critical

point, which can be calculated based on (4.8).

In this way, if 0f , the joints determining the position of the critical point are

prevented from moving it closer to the obstacle. As a matter of fact, a link which is a

candidate for a collision is forced to move tangentially around the imaginary sphere

centred at the obstacle and of radius sd . It should be noted that in (4.22) the case of

moving obstacle (c 0) has been considered

The kinematic control of a manipulator with a collision avoidance constraint for

an obstacle may be written as follows

fb

c d

f c

Jq = x

J q =
 (4.23)

where fb = − Td c

Let
1 A f

A = [J ;J] be the expanded Jacobian matrix and fb
1 d

b = [x ,] be the

expanded target matrix to give the compact form

 1 c 1A q = b (4.24)

From (4.14), the solution to (4.24) is

 T -1 T

c 1 1 n 1 1q = (A A + I) A b (4.25)

where nI is the n dimension identity matrix, with n equal to the number of

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

48

columns of 1A .

4.3.2 Varied weight method

We adopt the varied weight method proposed by (Xiang et al., 2012). Let w be

the weight factor that is associated with the collision avoidance task. Define the weight

array [1; 1; 1;]w=w and weight matrix ()diag=W w . Incorporating W into (4.25)

gives:

 1 1 1 1T -1

cq = (A WA + I) A Wb (4.26)

The weight factor w is related to the distance between the obstacle and the

critical point on the robot. 0w = refers to the collision avoidance constraint is not

activated, and 0w means it is activated. To smooth the activation process, the

following equation is used to calculate the weight factor:

 (|| |/ 1)

1

1 sd
w

e
−

=
+

d| (4.27)

where || d || is the distance between the obstacle centre and the critical point; and

 determines the smoothness of the curve. In this research we found setting
2.5

sd
 =

to be an effective choice. For example, when sd =100 mm, the relationship between

w and || d || is shown in Figure 4.3.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

49

Figure 4.3: Relationship between the distance to critical point || d || and the

weight factor w when sd =100 mm.

4.3.3 Multiple sphere obstacles collision avoidance constraint

To deal with multiple obstacles, the expanded matrices should be:

; ...
2 A f1 f2

A = [J ; J ; J] and ...
2 d f1 f2

b = [x ,b ,b ,] . The weight array will be:

1 2[1; 1; 1; ; ;...]w w=
2

w , ()diag=2 2W w .Then (4.21) will become:

 T -1

c 2 2 2 2 2 2q = (A W A + I) A W b (4.28)

4.3.4 Joints angle limits constraint

Assume that a joint angle is constrained between values miniq and maxiq ,The joint

limits can be represented by:

 min maxi i iq q q (4.29)

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

50

A threshold distance q
d can be defined with the intent that if the distance of the

current iq , from either of the two limits becomes less than q
d , joints constraints task

should be activated. Define the error:

iq q qi

e = d -d (4.30)

where qi imax i
d = q -q

 or qi i imin
d = q -q

.

Define the joints constraints task Jacobian
qi

J (1 × 6):

[0 0 ...1... 0],

[0 0 ... 1... 0],

=

−

qi i

qi

qi i

e = q
J

e = -q
 (4.31)

In
qi

J only the thi factor is nonzero, and the left are 0.

The joints limits constraint weight factor is as follows:

()

()

1 if or

0 otherwise

j i

j i

w

w

=

=

imax i q i imin qq -q < d q -q < d
 (4.32)

The overall sphere obstacle collision avoidance and joints constraints expanded

Jacobian is:

 T -1

c 3 3 3 3 3 3q = (A W A + I) A W b (4.33)

where
... ...

3 A f1 f2 q1 qi
A = [J ;J ;J ; ;J ; J]

 , 1 2 1[1;1;1; ; ;... ;...]j jiw w w w=
3

w
 ,

()diag=3 3W w , 1 2 int[, , ,...,]f f fJo sb b b=
3 d

b x
.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

51

4.3.5 Plane collision avoidance constraint

We assume that the plane surface being avoided is larger than the robot’s reach so

it is equivalent to the problem of avoiding an infinite plane. Based on this assumption,

the critical point on the robot arm will always one of joints or the end-effector.

Figure 4.4: The point (, ,)x y zp and its projection onto the plane

(', ', ')x y zp' .

A plane can be represented by:

 0Ax By Cz D+ + + = (4.34)

To calculate the closest distance between the point and the plane, planed , the point

(, ,)x y zp is projected onto the plane as shown in Fig. 4.4. Then the distance

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

52

planed =|| p -p' || is given by:

2 2 2

2 2 2

2 2 2

2 2 2

'

'

'

plane

Ax By Cz D
d

A B C

Ax By Cz D
x x

A B C

Ax By Cz D
y y

A B C

Ax By Cz D
z z

A B C

+ + +
=

+ +

+ + +
= −

+ +

+ + +
= −

+ +

+ + +
= −

+ +

 (4.35)

For a collision to be avoided: plane pd d and 1pd r .

Next, similar to the sphere obstacle collision avoidance,
T

fPlane plane criticalPlaneJ = d J

and fPlaneb is 0 or an arbitrary negative scalar.
fPlane

J is (1 × 6) Jacobian matrix of the

plane avoidance constraint. criticalPlane
J is (3 × 6) Jacobian matrix of the critical point

on the arm to a plane. For a typical 6 DOF robot arm, criticalPlane
J will be first 3 rows

of the Jacobian matrix at joint 3, joint 5, and the end-effector.

The weight factor is:

(1)

1

1 plane P
plane d d

w
e

−
=

+
 (4.36)

A robot manipulator is typically mounted on a horizontal flat table with the robot’s

Z axis normal to the table. Therefore, if the robot’s origin and table’s origin both lie in

the XY plane, the distance from a critical point on the robot to the table plane is simply:

1plane criticald z r−= where criticalz is the Z coordinate of criticalp .

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

53

The overall sphere obstacle collision avoidance, joints constraints and plane

avoidance expanded Jacobian is:

 T -1

c 4 4 4 4 4 4q = (A W A + I) A W b (4.37)

where 4 A f1 f2 fJoint fPlane
A = [J ;J ;J ;...;J ;J]

 , 1 2 1 6[1;1;1; ; ;... ;... ;]j j planew w w w w=
4

w ,

4 4W = diag(w)
 and 1 2 int[, , ,..., ,]f f fJo s fPlaneb b b b=

4 d
b x .

4.4 Closed-loop inverse kinematics implementation

4.4.1 Main task only

In practice, cq must be numerically integrated to get the vector of desired or

commanded joint angles to send to the robot controller. This numerical integration will

drift over time causing errors in the end-effector pose. Obtaining the joint velocities

using (4.14) and integration is analogous to open-loop control since the end-effector

pose is not used in the calculation. In this section a closed-loop inverse kinematics

method intended to reduce the end-effector pose errors will be presented (see (Sciavicco

and Siciliano, 1988)).

Let dx (6 × 1) be the desired end-effector pose. The pose error vector e (6 × 1)

can be defined as:

 d
e = x - x (4.38)

Differentiating (4.38) with respect to time gives:

 d d
e = x - x = x - Jq (4.39)

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

54

As in (4.13), the result using the open-loop pseudoinverse method is:

 * T T -1

c d dq = J x = J (JJ) x (4.40)

Adding a feedback term, Ke , produces the closed-loop pseudoinverse method:

 T T -1

c dq = J (JJ) (Ke + x) (4.41)

where K is a positive-definite proportional gain matrix. Its elements affect the error

convergence rate.

Finally, employing the damped least-squares method, as was done in (4.14), gives:

 λT -1 T

c 6 dq = (J J + I) J (Ke + x) (4.42)

4.4.2 Additional constraint tasks

1) Sphere collision avoidance task

With reference to Figure 4.1, define the error:

 s s spheree d d= − (4.43)

where sphered = d .

Define the sphere collision avoidance task Jacobian sJ (3 × 6):

T

s criticalJ = d J (4.44)

2) Joints angle constraints task

Joints angle constraints task error can be calculated from (4.30) and the joints

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

55

constraints task Jacobian is the same as (4.31).

3) Plane collision avoidance task

In analogy to the sphere obstacle avoidance task, define

 p p planee d d= − (4.45)

Define the plane avoidance task Jacobian
p

J (3 × 6)

T

p criticalPlaneJ = (p - p') J (4.46)

4.4.3 Closed-loop inverse kinematic control law

The extended error vector te in the task space includes the end-effector error

vector e from (4.38), along with errors defined in (4.30), (4.43) and (4.45) as follows:

es s f

qi fJoints

p fPlane

K e b

e b

e b

+

 +

+

d

t

Ke + x

e = (4.47)

The closed-loop control law is:

 T -1 T

c c c 6 c tq = (J J + I) J e (4.48)

where

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

56

s

c

qi

p

J

J
J =

J

J

 (4.49)

Finally, the varied weight version of (4.48) is:

 T -1 T

c c 4 c 6 c 4 tq = (J W J + I) J W e (4.50)

4.4.4 Closed-loop Kinematic Control Law Exploiting Functional Redundancy

Kinematic redundancy is related to the number n of DOFs of the structure, the

number m of operational space variables, and the number r of operational space

variables necessary to specify a given task. Equation (4.52) may be interpreted as the

differential kinematics mapping relating the n components of the joint velocity vector

to the r m components of the velocity vector x of concern for the specific task. In

the case of a 6 DOF robot, that is not intrinsically redundant when considering both the

3 position variables and 3 orientation variables we have: 6n m r= = = .

The Jacobian matrix J can be written in terms of two submatrices as in (4.7). If

we decide that the end-effector drops orientation tracking and performs position

tracking only, then we have chosen to ignore the eω portion of x . This makes the

arm functionally redundant with 3r = and allows us to replace J with 3J in the

kinematic control law (4.50). The new control law is

 T -1 T

c cr 4 cr 6 cr 4 rq = (J W J + I) J W e (4.51)

where

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

57

3

s

cr

qi

p

J

J
J =

J

J

 (4.52)

and

s f

qi fJoints

p fPlane

e b

e b

e b

+

 +

+

pe dpe

r

Ke + x

e = (4.53)

with
pe e ed

e = p -p , where ed
p (3× 1) desired end-effector position.

 Under the control of (4.52), the end-effector can track a desired trajectory, and

the three redundant DOF’s are used to perform subtasks, which include obstacle

avoidance, joints angle constraints and plane avoidance. For example, let’s say we have

three subtasks with r values of 1r , 2r and 3r , respectively. As long as 1 2 3 3r r r+ +

both the main task and subtasks will not fail. If 1 2 3 3r r r+ + , failure may occur in one

or more of those tasks. If we want to guarantee the success of all tasks, a proper strategy

to decide which subtask will be activated is crucial. The weight matrix
4W can be used

for this purpose. The weight factor of the main task is always 1. Each subtask’s weight

factor is changing from 0, meaning the subtask is not activated, to 1, meaning the

subtask is fully activated.

For a specific robot application where the end-effector’s position and orientation

are crucial only at the start and end points (e.g. bin picking), it is reasonable to drop the

orientation tracking requirement to guarantee the success of safety related subtasks

when one of them is activated.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

58

Based on the above, we propose the following closed-loop inverse kinematics

control algorithm exploiting functional redundancy (CLIKFR) for collision avoidance:

Algorithm 4.1

1. Set the values of startx ,
goal

x , sd ,
qd , and

pd . Also, define the

sampling period, sT , and final error tolerance, te . Set the iteration steps,

n, equal to 1.

2. Generate the dx and dx trajectories using the linear segments

with parabolic blends (LSPB) algorithm (e.g., page 184 of (Siciliano,

2009)).

3. Set 1 1
d

x() = x () and (1) =q 0 .

4. Compute 1 6 1 6 andj j planew w w w w for the thn iteration

5. If 1 1f plane tw w w w+ + , deploy control law (4.50) to

generate (1)n +q ; else, deploy control law (4.51) to generate (1)n +q .

6. Calculate (1)n +q by Euler integration of (1)n +q .

7. Calculate (1)n +x from (1)n +q using (4.1).

8. Calculate the comprehensive error n n+1−goale() = x x()

9. If ()n te e , set 1n n= + and go to step 4.

Stop.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

59

4.5 Nonlinear Model Predictive Control

An NMPC algorithm for manipulator collision avoidance is designed in this

section. Robot tasks are considered that are defined in the Cartesian space by a desired

reference position and orientation of the end-effector. The goal is to minimize the

deviation of the end-effector position and orientation from their reference values, which

is described by the pose error vector e in Equation (4.39). Based on this purpose, the

following cost function is proposed:

 ()*

1

cost () ()
pN

i

k i k i
=

= + − + dQ x x (4.54)

where pN is the prediction horizon; Q is a weighting matrix for the position and

orientation errors; k is the current sampling instant; ()k i+
d

x is the future desired end-

effector pose; and
*()k i+x is the predicted end-effector pose. This cost function

equals the sum of the weighted pose error prediction norms. The following optimization

problem is then solved every sampling instant k :

 () arg min cost i 1,2, , p
k

k i N+ = cq (4.55)

Subject to:

 (()) 0k i+
c

C q (4.56)

where ()k i+
c

q is the predicted vector of joint position commands,

T

5= 1 2 3 4C C C C C C contains joint angle constraints 1
C , joint velocity constraints

2C , joint acceleration constraints 3C , sphere collision avoidance constraints 4C , and

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

60

plane collision avoidance constraints 5C .

The actual joint position, velocity and acceleration limits should be satisfied in

(3.21), (3.22) and (3.23). In the controller, the joint position, velocity and acceleration

commands also should be limited by following equations:

c c c,min

c c c,max

q = max(q ,q)

q = min(q ,q)
 (4.57)

v

v

c c c ,min

c c c ,max

q = max(q ,q)

q = min(q ,q)
 (4.58)

c c ca,min

c c ca,max

q = max(q ,q)

q = min(q ,q)
 (4.59)

where cq is the joint position command;
cq is the joint velocity command;

cq

is the joint acceleration command;
c,min

q and
c,max

q are minimum and maximum joint

position command;
cv,min

q and
cv,max

q are minimum and maximum joint velocity

command; and
ca,min

q and
ca,max

q are minimum and maximum joint acceleration

command. Based on (4.57)-(4.59), 1
C , 2C and 3C are defined as follows:

(()) , if ()

(()) , otherwise

k i k i

k i

+ = +

+ =

1 c c,min c c,max

1 c

C q 0 q q q

C q 1
 (4.60)

2

2

(()) , if

(()) , otherwise

k i k i

k i

+ = +

+ =

c cv,min c cv,max

c

C q 0 q q () q

C q 1
 (4.61)

3

3

(()) , if

(()) , else

k

k

=

=

c ca,min c ca,max

c

C q 0 q q (k) q

C q 1
 (4.62)

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

61

The sphere collision avoidance constraints can be defined as follows:

 (()) ()s spherek d d k= −
4 c

C q (4.63)

Finally, the plane collision avoidance constraints are given by:

5(()) ()p planek d d k= −

c
C q (4.64)

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

62

Chapter 5 Simulations

5.1 Introduction

This chapter presents simulation results for the CLIKFR and NMPC collision

avoidance algorithms for a variety of scenarios. The performance of the algorithms in

each scenario will be discussed. All the simulations have been done in MATLAB

R2017b on a Windows 10 laptop with an Intel Core (TM) i5-8250U 1.80 GHz (x64-

based processor) with 8 GB RAM. Experiment results for the human modelling

algorithm are presented in this chapter as well. The chapter is organized in four sections.

In Section 5.2, the procedure used for simulations is described. In Section 5.3, the

human modelling algorithm parameter settings and experimental results are presented.

In Section 5.4, simulations with a three-link planar robot are carried out to evaluate the

collision avoidance algorithms on a relatively simple problem. Simulations of the Elfin

5 robot with real point cloud data of a human in the shared workspace are presented

Section 5.5. A summary is presented in Section 5.6 to conclude the chapter.

5.2 Simulation Procedure

The algorithms will be initially tested on a three-link planar robot to allow the

correctness of the solution to be determined through graphs and animations. Then,

simulations of an Elfin 5 robot with 6 DOF and a human sharing the workspace of the

robot will be presented. The robot will be assigned a task of straight-line motions

between two predefined end-effector locations. Such motions occur in practice when a

robot is performing picking/placing operations, or other similar tasks. The robot should

follow a straight line path with constant orientation between the start and goal location

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

63

if the human’s position in the workspace does not interfere with the robot’s position.

To study the behaviour of the algorithm during each test, important simulation

parameters are monitored, and their values stored. The recorded parameters are later

used to plot graphs and animations. The monitored parameters during the individual

simulations are:

- The closest surface distance mind between human and robot that is used to

identify collisions.

- The actual robot joint angles, velocities and accelerations.

- The normalized time normalizet to reach goal location which is resulting from

actual collision avoidance operation time dividing by the reference time.

- The execution time executiont in MATLAB which indicates the computational

efficiency of the algorithm.

5.3 Testing of the human modelling algorithm

Figure 5.1 shows a result for skin detection using the method presented in section

3.2.1. The region growing process starts from the seed point which is the first point that

is recognized as human skin. This result shows that the skin detection algorithm

performs well with the data from the Intel RealSense D415 sensor.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

64

(a)

(b)

Figure 5.1: Skin color detection result. (a) Test image. (b) Output image

Figure 5.2 shows the experimental result of the region growing with

10.05mthresholdc −= and 10degreesthreshold = . The algorithm is effective at removing

points belonging to the background. The remaining points belong to the human’s body.

Only a few points such as those near the fingertips are lost.

 (a)

 (b)

Figure 5.2: Region growing test. (a) Original point cloud. (b) Human

point cloud.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

65

Experimental results have shown that voxelization can significantly reduce

the number of points. This is desirable since it will speed up the processing of

the remaining steps. For example, the number of points in the human point cloud

will reduce from 61,510 to 2,125 after voxelization using a resolution of 20 mm.

Figure 5.3 shows the human point cloud before and after voxelization. No

important details have been lost. The execution time was reduced to 0.6 s from

0.83 s for after voxelization.

 (a)

 (b)

Figure 5.3: Voxelization result. (a) Original point cloud (b) Point

cloud after voxelization

Figure 5.4 shows a result obtained by fitting the plane model in front of the

human torso and head and the union of spheres model attached to the protruding

human arm. In the union of spheres model, 60mmsR = and 80mmpstd = are

used. In this experiment, six spheres were generated to enclose the human arm,

one sphere was generated to enclose a part of the human head and a plane is

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

66

generated to protect human torso. The result shows that the human’s body is

well covered by this simple model.

 (a)

 (b)

Figure 5.4: Human modeling (a) Top view (b) Side view

5.4 Three-link planar robot simulation

5.4.1 Three-link planar robot simulation settings

The D-H parameters used in the simulations of the three-link planar robot are listed

in Table 5.1. The length of link 1, link 2 and link 3 are 300 mm, 300 mm and 100 mm

respectively. The simulated joints limits are shown in Table 5.2. The assigned task is a

straight-line motion from [200; 400; 0] mm= −
3R_start

P to

[200; 400; 0] mm=
3R_goal

P , and keep the orientation of the end-effector with Roll-

Pitch-Yaw angles equals to 3 0 0 / 2R pi = . The duration of the simulated task is

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

67

set to 3.3 seconds with a sampling frequency of 30 HZ. These values gives a total

number of 100dist = discrete times in the simulation, and a sampling period

33sT ms= . In simulations using CLIKFR algorithm, the sphere collision avoidance

error gain esK is set to 1.

Table 5.1: D-H parameters of the three-link planar robot

Link i [rad]i []id mm []ia mm [rad]i

1 1 0 300 0

2 2 0 300 0

3 3 0 100 0

Table 5.2: Joints limits of the three-link planar robot

Joint Angle (°) Velocity (°/s) Acceleration (°/s2)

1

Max 270 100 500

Min -270 -100 -500

2

Max 180 100 500

Min -180 -100 -500

3

Max 180 100 500

Min -180 -100 -500

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

68

A reference trajectory for the assigned task is generated by mtraj function from the

MATLAB Robotic toolbox. The simulation results of different scenarios will be

presented in the following section.

5.4.2 Three-link planar robot simulation results

5.4.2.1 Static Sphere obstacle

A static sphere obstacle is located at [200; 400; 0] mm= −
3R_obs

P with a radius

of 2 50mmr = . A radius of 1 40mmr = is used for the robot’s SSLs model. Figure 5.5

shows this simulation scenario. In this case, 1 2 90 mmsd r r= + = in equation (4.22).

The control law switch threshold tw in algorithm (4.1) is set to 0.1.

Figure 5.5: Three-link planar robot and a static sphere obstacle simulation scenario

with the robot at its start position.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

69

The simulation output is presented in Figure 5.6. These plots suggest the collision

avoidance path is efficient. The reference operation time is 3.3 s, while the collision

avoidance operation time is 6 s. Then the normalized time is 1.8. The execution time in

MATLAB simulation is 1.1s, which means this method is fast enough for real-time

collision avoidance applications (since 1.1 < 6). The closest distance between the robot

surface and the surface of the static sphere obstacle is plotted vs. time in Figure 5.7.

Since the smallest of this value is 0.43 mm, no obstacle robot collision occurred. The

position error at the goal location is 0.95 mm, while the orientation error at the goal

location is 0.02 degrees. The joint angle, velocity and acceleration are plotted vs. time

in Figure 5.8. The joint space trajectories are smooth, which is desirable for

implementing this approach in practice.

(a) Time: 0 s

(b) Time: 1.65 s

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

70

(c) Time: 3.14 s

(d) Time: 6 s

Figure 5.6: Snapshots of the simulation for the planar robot controlled by the

CLIKFR algorithm avoiding a static sphere obstacle

Figure 5.7: Closest distance between the robot surface and the surface of the static

obstacle for the planar robot controlled by the CLIKFR algorithm

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

71

Figure 5.8: Actual joint angles, velocities and accelerations versus time for the

planar robot avoiding the static obstacle using the CLIKFR algorithm

5.4.2.2 Plane avoidance

In this case, a plane located at 200mmx = and parallel to the YZ plane acts as

the obstacle. A radius of 1 40mmr = is still used for the robot’s SSLs model. We set

1 40mmpd r= = and the control law switch threshold 0.1tw = in algorithm (4.1).

Figure 5.5 shows this simulation scenario with the robot at its start position. The goal

position and orientation of the end-effector is set to

 200 200 0 0 0 / 2
T

pi= −goalx .

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

72

 Figure 5.9: Three-link planar robot and a static plane obstacle simulation scenario

with robot at its start position

The simulation output is presented in Figure 5.10. These plots suggests that the

CLIKFR algorithm can control the robot to perform collision with a plane obstacle and

move the end-effector close to the goal position at the same time.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

73

(a) Time: 0 s

(b) Time: 1.65 s

(c) Time: 2.64 s

(d) Time: 6.6 s

Figure 5.10: Snapshots of the simulation for the planar robot controlled by the

CLIKFR algorithm avoiding a plane obstacle

The closest distance between the robot surface and the plane is plotted vs. time in

Figure 5.11. Since the smallest of this value is 6.4 mm, no robot collision occurred. For

this case, the execution time in MATLAB simulation is 0.9 s, which means this method

is fast enough for real-time collision avoidance applications. The position error at the

final location is 246.5 mm, while the orientation error at the final location is 90 degrees

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

74

Figure 5.11: Closest distance between the robot surface and the plane for the planar

robot controlled by the CLIKFR algorithm

5.4.2.3 Wrist singularity avoidance

Because it includes a damping factor, the CLIKFR controller should be able to

overcome manipulator singularity problems. This simulation is designed to test this

ability. The simulation scenario in presented in Figure 5.12. The initial position and

orientation of the end-effector is set to 0 400 0 0 0 / 2
T

pi=initialx , while the

goal position and orientation of the end-effector is set to

 0 700 0 0 0 / 2
T

pi=goalx . The goal configuration is a singular configuration

for this three-link planar robot.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

75

Figure 5.12: Three-link planar robot wrist singularity avoidance simulation setting

Control law (4.50) is deployed to control the robot moving from the initial

configuration to the goal configuration. Figure 5.13 shows the joint angle and velocity

are plotted vs. time when the damping factor 0 = . In this scenario, the position error

at the goal location is 0.61 mm, while the orientation error at the goal location is 0.75

degrees. After setting the damping factor to 100 = , the resulting joint angle and

velocity are plotted vs. time are presented in Figure 5.14. Comparing the plots in these

two figures shows that the joint space trajectories become smooth after adding the

damping factor. This is desirable for implementing this approach to deal with singular

configurations. In this scenario, the position error at the goal location is 0.8 mm, while

the orientation error at the goal location is 0.54 degrees.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

76

Figure 5.13: Joint angle and velocity versus time for the planar robot when 0 =

in the CLIKFR algorithm

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

77

Figure 5.14: Joint angle and velocity versus time for the planar robot when

100 = in the CLIKFR algorithm

5.4.2.4 Dynamic obstacle collision avoidance

To test the performance of CLIKFR algorithm dealing with a dynamic obstacle, a

sphere obstacle is placed at 0 450 0 mm
T

=3R_obs_initialP with radius of

2 50mmr = and moving velocity is 40 0 0 mm/s
T

= −3R_obsv . A radius of

1 40mmr = is used for the robot’s SSLs model. Figure 5.15 shows this simulation

scenario with the robot and obstacle at their initial locations. In this case,

1 2 90 mmsd r r= + = in equation (4.22).

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

78

Figure 5.15: Three-link planar robot and a dynamic sphere obstacle simulation

scenario with the robot and obstacle at their start positions.

Snapshots of the simulation are presented in Figure 5.16. These plots suggest that

the collision avoidance path generated by the CLIKFR is efficient for this dynamic

obstacle since the robot does not make a large detour. The reference operation time is

3.3 s, while the collision avoidance operation time is 3.6 s. Then the normalized time is

1.09. The execution time of the MATLAB simulation is only 0.55s.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

79

(a) Time: 0 s

(b) Time: 1.32 s

(c) Time: 1.65 s

(d) Time: 1.98 s

(e) Time: 2.31s

(f) Time: 3.6 s

Figure 5.16: Snapshots of the simulation for the planar robot controlled by the

LIKFR algorithm avoiding a dynamic sphere obstacle

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

80

 The closest distance between the robot surface and the surface of the dynamic

sphere obstacle is plotted vs. time in Figure 5.17. Since the smallest of this value is 0.32

mm, no obstacle robot collision occurred. The joint angle, velocity and acceleration are

plotted vs. time in Figure 5.18. The position error at the goal location is 0.86 mm, while

the orientation error at the goal location is 0.24 degrees.

Figure 5.17: Closest distance between the robot surface and the surface of the

dynamic obstacle for the planar robot controlled by the CLIKFR algorithm

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

81

Figure 5.18: Joint angle, velocity and acceleration versus time for the planar robot

avoiding the dynamic obstacle using the CLIK algorithm

5.4.2.5 NMPC collision avoidance method

We use the same simulation settings as in Section 5.4.2.4 to test the NMPC

controller in this section. The prediction horizon 4pN = is used for the cost function

(4.54). The weighting matrix that is for the position and orientation errors is set to

()1 1 100Q diag= . Snapshots of the simulation are presented in Figure 5.19. The

reference operation time is 3.3 s. The NMPC approach can control the operation time

to be the same with reference time. This is an advantage over the CLIKFR algorithm.

Then the normalized time is 1. However the execution time in MATLAB simulation is

70 s so it cannot be implemented in real-time.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

82

(a) Time: 0 s

(b) Time: 0.99 s

(c) Time: 1.32 s

(d) Time: 1.65 s

(e) Time: 1.98 s

(f) Time: 3.3 s

Figure 5.19: Snapshots of the simulation for the planar robot controlled by the

NMPC algorithm avoiding a dynamic sphere obstacle

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

83

Figure 5.20 The closest distance between the robot surface and the surface of the

dynamic sphere obstacle vs. time. Since the smallest value is
45.5 10−− mm there will

be a slight contact between the robot and obstacle. However, this can easily be avoided

by increasing sd
 by a small amount. The position error at the goal location is 0.01

mm, while the orientation error at the goal location is 0.04 degrees. The joint angles,

velocities and accelerations are plotted vs. time in Figure 5.21. The velocities and

accelerations are clearly less smooth than with the CLIKFR algorithm.

Figure 5.20: Closest distance between the robot surface and the surface of the

dynamic obstacle for the planar robot controlled by the NMPC algorithm

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

84

Figure 5.21: Joint angle, velocity and acceleration versus time for the planar robot

avoiding the dynamic obstacle using the NMPC algorithm

5.5 Elfin simulation

5.5.1 Simulation settings

The simulation scenarios will consist of a Elfin 5 robot and a human sharing the

workspace of the robot. The task assigned to the robot will be a straight-line motion

between two predefined end-effector locations. While the robot completes its task, the

human works beside it. When parts of human body become obstructive, the robot must

focus on avoiding collision with the human while still pursuing its current goal location.

The human position in space is continuously monitored by an Intel RealSense D415

sensor and modelled by the union of spheres and plane model, as has been discussed in

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

85

Section 5.4. To make the simulations more realistic, a point cloud of a human and a

worktable covered with various color objects is used.

The simulation parameters and the initial conditions used in the test will be defined

first. The sampling period of the simulation were chosen to agree with D415 sensor’s

updating frequency which is 30 Hz. This value gives a sampling period 33.3 mssT = .

The duration of the reference path is set to 3.33 s. These values give a total number of

100 reference discrete times in the simulation. The effects of the robot delay also will

be investigated by comparing simulation results of 0d = to the results of 2d = .

2d = refers to a delay of two samplings periods, or 66.6 ms.

The task assigned to the robot is composed of one trip between two goal locations,

located at approximately 0.99 m apart in 3D space. The kinematics parameters of the

Elfin 5 robot are given in Table 3.1. Frame zero of the D-H kinematics model that is

attached to the fixed base of the robot was located at coordinates 0 mmX = ,

0 mmY = and 0 mmZ = in the work cell. The coordinates of point cloud captured

by D415 sensor have been transformed from the sensor’s frame to the robot’s base frame.

Joint limits of Elfin 5 are shown in Table 5.3.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

86

Table 5.3: Joint limits of the Elfin 5 robot

Joint Angle (°) Velocity (°/s) Acceleration (°/s2)

1

Max 180 85 250

Min -180 -85 -250

2

Max 135 85 250

Min -135 -85 -250

3

Max 156 85 250

Min -156 -85 -250

4

Max 180 85 250

Min -180 -85 -250

5

Max 180 85 250

Min -180 -85 -250

6

Max 180 85 250

Min -180 -85 -250

5.5.2 Static human limb collision avoidance

The scenario simulated in this section is carried out to investigate the behavior of

the CLIKFR algorithm for avoiding part of a static human body, as shown in Figure

5.22. The human’s arm remains stationary and will block the way of the robot if the

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

87

robot follows the reference trajectory. The initial settings for the simulations are

summarized in Table 5.4.

Figure 5.22: Elfin 5 robot and a static human limb simulation scenario of the

CLIKFR algorithm

Table 5.4 Input parameter values used in static human limb collision avoidance

simulations of the CLIKFR algorithm

Parameter Value Parameter Description

 688.7 0 133.7
T

 = − −startx
Start position and orientation of the end-

effector

 100 600 133.7
T

 = − −goalx
Goal position and orientation of the end-

effector

0.0333 ssT = Sampling time

100referenceN =
Reference discrete steps, equal to the

reference duration of 3.33 s

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

88

0d = The number of sampling periods of delay

100 = Damping factor in CLIKFR controller

3

position 1 10k =
Weight factor for end-effector’s position

errors

4

orientation 1 10k =
Weight factor for end-effector’s orientation

errors

1 40, 50 and 50mmr =
Radius of robot’s SSL model for links 6, 4

and 2, respectively

2 50 mmr =
Radius of the spheres in the union of spheres

human model

100 mmsd =
Desired centre-to-centre distance between the

robot centre line and obstacle centre

60mmpd =
Desired distance between the robot centre

line and the plane obstacle

0.1EE thresholde − =
Error threshold to decide whether the end-

effector reach the goal pose

1esK = Gain of sphere collision avoidance error

The outputs of this simulation are presented in Figure 5.23. These plots suggest

that collision avoidance path produced by the CLIKFR algorithm is efficient since the

detour distance is small. The reference operation time is 3.33 s, while the collision

avoidance operation time is 13.7 s. Then the normalized time is 4.16. The execution

time in MATLAB simulation is 2.63 s, so this method is fast enough for real-time

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

89

collision avoidance applications.

(a) Time: 1.32 s (side view)

(b) Time: 1.65 s (side view)

(c) Time: 2.31 s (side view)

(d) Time: 1.32 s (top view)

(e) Time: 1.65 s (top view)

(f) Time: 2.31 s (top view)

(g) Time: 2.64 s (side view)

(h) Time: 2.97 s (side view)

(i) Time: 4.29 s (side view)

(j) Time: 2.64 s (top view)

(k) Time: 2.97 s (top view)

(l) Time: 4.29 s (top view)

Figure 5.23: Snapshots of the simulation for Elfin 5 controlled by the CLIKFR

algorithm avoiding a static human limb

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

90

The plane and spheres human of this scenario is presented in Figure 5.24 (a). The

closest distance between the robot surface and the surface of the static obstacle is plotted

vs. time in Figure 5.24 (b). Since the smallest of this value is 2.3 mm, no obstacle robot

collision occurred in the process. The position error at the goal location is 0.002 mm,

while the orientation error at the goal location is 0.1 degrees. The joint angles, velocities

and accelerations are plotted vs. time in Figure 5.25. The accelerations reach their limits

at some times during the simulation, e.g. when 3.5 s.t

(a)

(b)

Figure 5.24: (a) The plane and spheres human model. (b) Closest distance between

the robot surface and the static human’s limb for Elfin 5 robot controlled by the

CLIKFR algorithm

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

91

Figure 5.25: Joint angle, velocity and acceleration versus time for Elfin 5 avoiding

the static human’s limb using the CLIKFR algorithm

5.5.3 Human torso collision avoidance

The scenario simulated in this section is presented in Figure 5.26. A human

operator in the work cell is picking something up while the robot is performing the

straight-line motion task. The torso of human is blocking the reference end-effector path.

The behavior of CLIKFR algorithm will be simulated. The initial settings for this

simulation are the same as in section 5.5.2 (given in Table 5.4).

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

92

Figure 5.26: Elfin 5 robot and a human torso obstacle simulation scenario used with

the CLIKFR algorithm

Figure 5.27 presents snapshots of the simulation. These plots suggest that the robot

stop moving closer to the human torso after 1.98 s. Since the robot cannot figure out a

path to reach the goal position while avoid collision with the human torso, the

simulation was stopped manually after 13.2 s. The position error at the final location is

828 mm, while the orientation error at the final location is 57.29 degrees.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

93

(a) Time: 0.99 s (side view)

(b) Time: 1.32 s (side view)

(c) Time: 1.65 s(side view)

(d) Time: 0.99 s (top view)

(e) Time: 1.32 s (top view)

(f) Time: 1.65 s (top view)

(g) Time: 1.98 s (side view)

(h) Time: 6.6 s (side view)

(i) Time: 13.2 s (side view)

(j) Time: 1.98 s (top view)

(k) Time: 6.6 s (top view)

(l) Time: 13.2 s (top view)

Figure 5.27: Snapshots of the simulation for Elfin 5 controlled by the CLIKFR

algorithm avoiding a human torso

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

94

(a)

(b)

Figure 5.28: (a) Final pose of the robot and the human torso plane model (b)

Closest distance between the robot surface and the human torso plane for Elfin 5

robot controlled by the CLIKFR algorithm

The final pose of the robot and the plane model of human torso are shown in Figure

5.28 (a), while the closest distance between the robot surface and the torso plane is

plotted vs. time in Figure 5.28 (b). The minimum distance between the robot surface the

human torso plane is approximately 25 mm. This result suggests that the CLIKFR

algorithm can avoid collision with human torso effectively.

5.5.4 Dynamic human limb collision avoidance

The simulation in this section is to investigate the performance of the CLIKFR

algorithm when the obstacle is moving. Since it is very difficult to control the motion

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

95

of human body properly in the real robot’s absence, one artificial sphere obstacle with

a radius of 2 50 mmr = is deployed in this simulation instead of a real point cloud. The

task assigned to the robot is the same as in the previous two sections. The initial position

of the obstacle is located at 138.76 418.36 500
T

= − −obsInitialp mm. The moving

direction of the obstacle is along vector 788.7 600 0
T

= −obsDirectionv . This moving

direction is parallel to the path from the end-effector’s goal location to its start position.

Figure 5.29 shows this simulation scenario. The behavior of the CLIKFR algorithm with

various obstacle moving velocities, as well as the impact of robot delay d , will be

investigated.

(a) Perspective view

(b) Front view

Figure 5.29: Elfin 5 robot and a dynamic obstacle simulation scenario for the

CLIKFR algorithm

The first sets of simulations are carried out with different obstacle velocities and

0d = . The obstacle velocities used are: obstaclev = 10, 20, 40, 60, 80, 100, 150 and

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

96

200 mm/s. The rest of parameter settings are the same with those in Table 5.4. The

closest distance between the robot surface and the surface of the dynamic sphere

obstacle with different velocities is plotted vs. time in Figure 5.30. The closest distance

for each velocity is shown in Table 5.5.

Figure 5.30: Closest distance between the robot surface and the surface of the

dynamic sphere obstacle with different velocities controlled by of the CLIKFR

algorithm

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

97

Table 5.5: The smallest value of distance as a function of obstacle velocity with

the CLIKFR algorithm

Obstacle velocity (mm/s) Separation Distance (mm)

10 15.6

20 12.2

40 6.1

60 1.8

80 -2.6

100 -6.5

150 -15.6

200 -25

Table 5.5 suggests that the separation distance becomes negative if the obstacle

velocity is larger than 60 mm/s, which means the CLIKFR algorithm fails in those cases.

The second sets of simulations are carried out with the velocity of the obstacle

equal to 20 mm/s. Robot delays of 0d = and 2d = are studied. The position error at

the goal location is 0.002 mm, while the orientation error at the goal location is

5.4 degrees if 0d = . The position error at the goal location is 0.01 mm, while the

orientation error at the goal location is 5.7 degrees if 2d = . Figure 5.40 presents the

joint accelerations vs. time when 0d = ,while Figure 5.41 shows the results when

2d = .

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

98

Figure 5.31: Joint accelerations versus time for Elfin 5 avoiding a dynamic obstacle

using the CLIKFR algorithm with 0d =

Figure 5.32: Joint accelerations versus time for Elfin 5 avoiding a dynamic obstacle

using the CLIKFR algorithm with 2d =

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

99

These two plots show that the robot delay will result in chattering of joint

acceleration. This is particularly noticeable during the periods 3.2-6.6 s and 12.5-17.3

s. The collision avoidance operation time increases from 22 s to 32.5 s.

5.5.5 NMPC collision avoidance for Elfin

The same simulation scenario as section 5.5.4 is used to test the NMPC controller

in this section. The prediction horizon 9pN = is used with the cost function (4.54).

The weighting matrix for the position and orientation errors is set to

()1 1 1 50 50 50Q diag= . The velocity of the obstacle is 200 mm/sobstaclev =

with a robot delay 2d = . Figure 5.42 shows the closest distance between the robot

surface and the surface of the dynamic spherical obstacle vs. time. The smallest value

is 5 mm which means that the NMPC controller can guarantee the success of collision

avoidance with a much higher obstacle velocity than the CLIKFR algorithm.

Figure 5.33: Closest distance between the robot surface and the dynamic obstacle

for Elfin 5 robot controlled by the NMPC algorithm

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

100

Figure 5.34: Joint angle, velocity and acceleration versus time for Elfin 5 avoiding

the dynamic obstacle using NMPC algorithm

The joint angle, velocity and acceleration are plotted vs. time in Figure 5.43. The

acceleration is smoother than with CLIKFR with 2d = (recall Figure 5.41). The

reference operation time in this simulation is 3.3 s. The normalized time is 1. The

computation time in MATLAB simulation is 190 s, so it is again too slow for real-time

implementation.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

101

5.6 Summary of Results

In this chapter, the human modelling algorithm introduced in Chapter 3 has been

implemented and tested using experimental point cloud data captured from a scene with

a human and multiple color objects. The human skin detection algorithm was able to

segment points that belong to the human’s skin and generate a correct seed point for the

region growing algorithm. The human point cloud was clustered by region growing and

then voxelized to reduce the number of cloud points. Finally, the plane model for the

human torso and union of spheres model for body parts that protrude in front of the

plane have been generated successfully from the human point cloud. The execution time

was 0.06 s which is fast enough for real-time implementation.

Five distinct scenarios have been simulated for a 3-DOF planar robot to evaluate

the CLIKFR and NMPC algorithms presented in Chapter 4 for a relatively simple

problem. As shown in Section 5.4.2.1, the CLIKFR algorithm can produce an efficient

and smooth collision-free path when there is one static spherical obstacle. Its normalized

time was 1.8. The actual run time in MATLAB was around 1 s for the 3.3 s simulated

reference duration. The simulation outputs of Section 5.4.2.2 show that the CLIKFR

algorithm can control the robot to perform collision with a plane obstacle and move the

end-effector close to the goal position at the same time. The results from the wrist

singularity scenario in Section 5.4.2.3 showed that the damping factor in the CLIKFR

algorithm can overcome the singularity. For the dynamic obstacle scenario in Sections

5.4.2.4 and 5.4.2.5, the NMPC controller produced a smaller normalized time at the cost

of much longer computation time compared to the CLIKFR algorithm.

Finally, four HRC scenarios were simulated for a 6-DOF Elfin 5 robot to study the

behaviour of the collision avoidance system combining the human modelling algorithm

and collision avoidance algorithm (i.e. CLIKFR or NMPC). Simulations in Section

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

102

5.5.2 and Section 5.5.3 demonstrate that the union of spheres model and plane model

can protect the human arm and torso from being hit by the robot. These two simulations

also suggest that the CLIKFR algorithm is computationally efficient enough for real-

time implementation. Results from the dynamic obstacle simulations show the effect of

the obstacle’s velocity on the success or failure of the collision avoidance algorithm. A

velocity of less than 60 mm/s is critical to guarantee a successful collision avoidance

for the CLIKFR algorithm with the Elfin 5 robot. The robot’s delay will also result in

the chattering of joint acceleration with the CLIKFR. The NMPC algorithm simulation

results show that it can handle higher human moving velocities and its normalized time

is always smaller than that of CLIKFR, but its computational burden is much higher.

All simulation results are shown in Table 5.5.

Table 5.5: Collection of CLIKFR and NMPC simulation results

Robot Scenario
Normalized

time

Execution

time

(s)

Minimum

distance

(mm)

Position

error*

(mm)

Orientation

error*

(deg)

Three-link

planar

Static

sphere
1.8 1.1 0.43 0.95 0.02

Static

plane
2 0.99 6.4 246.5 90

Singularity 1.7 1.9 - 0.8 0.54

Dynamic

sphere
1.1 0.55 0.32 0.86 0.24

NMPC 1 70 -5.5×10
-4

 0.01 0.04

Elfin 5

Static

human arm
4.16 2.63 2.3 0.002 0.1

Static 4 2.58 25 328 56.15

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

103

human

torso

Dynamic

sphere

(60 mm/s)

4.4 0.94 1.8 0.003 0.57

NMPC 1 190 5 27.5 0.62

*Position error and orientation error in this table refer to errors at the goal location.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

104

Chapter 6 Conclusions and Recommendations

6.1 Summary and Conclusions

In this thesis, a collision avoidance system with an online trajectory generation

algorithm for robot manipulators in dynamic environments was presented. It combines

a human modelling algorithm with a collision avoidance algorithm. The system’s

objective is to reach the goal position while simultaneously avoiding collisions. In this

system, the proposed human modelling algorithm is used to obtain a union of spheres

and plane model of the human worker from the sensed RGB-D point cloud. The point

cloud is captured at a frame rate of 30 Hz by an Intel RealSense D415 camera. The

human model is computed from the point cloud in 0.06 s using MATLAB code running

on a laptop. The links of the robot manipulator are represented by SSLs. These

geometric models allow the separation distance between the human and the robot to be

calculated quickly.

The CLIKFR algorithm solves the inverse kinematics problem and avoids

collisions using an expanded version of the manipulator Jacobian matrix. The Cartesian

task space error is corrected by adopting a closed-loop inverse kinematics algorithm.

Collision avoidance tasks produce constraints that are systematically incorporated into

this algorithm. This collision avoidance algorithm is applied to compute the

commanded joint velocities from given end-effector velocities. A second collision

avoidance algorithm using NMPC is designed as an alternative approach.

The collision avoidance system and the associated online trajectory generation

algorithm were evaluated using simulations. Five distinct scenarios have been simulated

for a 3-DOF planar robot to evaluate the CLIKFR and NMPC algorithms for a relatively

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

105

simple problem. Four HRC scenarios were simulated for a 6-DOF Elfin 5 robot to study

the behaviour of the collision avoidance system combining the human modelling

algorithm and collision avoidance algorithm.

The simulation results showed that the CLIKFR algorithm is fast enough to be

applied in real-time. For a 6-DOF robot, a computational time of 2.63 seconds for a

reference duration of 3.33 seconds has been achieved using MATLAB running on a

laptop computer. The separation distance between the human and robot is always larger

than zero for a static human operator, which means that no collisions occurred. Also,

the smooth profiles of the joint angles and velocities vs. time can be achieved without

difficulty by the robot. The NMPC algorithm has better performance than the CLIKFR

algorithm when the dynamic obstacle is moving at higher velocities and when the

simulated robot has a realistic time delay.

These simulations also revealed the limitations of the CLIKFR and NMPC

algorithms. The first issue is related to the moving velocity of the obstacle. A velocity

over 60 mm/s will result in the failure of the collision avoidance for the CLIKFR

algorithm. The existence of robot delay will cause vibration for a moving obstacle with

the CLIKFR algorithm. The major limitation of the NMPC algorithm is its computation

time is too long to meet the real-time requirement. Moreover, the trajectory generated

by the NMPC controller is not as smooth in general.

6.2 Recommendations for future research

To improve the overall performance of the system, some feature works are

suggested. The following are recommendations for future research:

1) For this project only one depth sensor was used to oversee the HRC workspace.

It is recommended that multiple sensors are used improve the performance of

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

106

the human sensing and eliminate dead spots. Experimenting with other 3D

sensors to evaluate the performance of different camera types for HRC is also

recommended.

2) The influence of different weight factors for the constraints tasks and the gain

of sphere collision avoidance error in the CLIKFR algorithm should be

investigated.

3) Due to the COVID-19 shutdown of the campus it was not possible to finish

the implementation. Experimental validation should be done to verify the

performance of the collision avoidance system using the CLIKFR algorithm.

4) Methods for speeding up the computation of the NMPC algorithm should also

be investigated so it can also be experimentally validated.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

107

References

Adams, R. and Bischof, L. (1994) ‘Seeded Region Growing’, IEEE Transactions

on Pattern Analysis and Machine Intelligence, 16(6), pp. 641–647. doi:

10.1109/34.295913.

Ajoudani, A. et al. (2018) ‘Progress and prospects of the human–robot

collaboration’, Autonomous Robots. Springer US, 42(5), pp. 957–975. doi:

10.1007/s10514-017-9677-2.

Balan, L. and Bone, G. M. (2006) ‘Real-time 3D collision avoidance method for

safe human and robot coexistence’, IEEE International Conference on Intelligent

Robots and Systems, (October), pp. 276–282. doi: 10.1109/IROS.2006.282068.

Beckert, D., Pereira, A. and Althoff, M. (2018) ‘Online verification of multiple

safety criteria for a robot trajectory’, 2017 IEEE 56th Annual Conference on Decision

and Control, CDC 2017, 2018-Janua(Cdc), pp. 6454–6461. doi:

10.1109/CDC.2017.8264632.

Bosscher, P. and Hedman, D. (2011) ‘Real-time collision avoidance algorithm

for robotic manipulators’, Industrial Robot, 38(2), pp. 186–197. doi:

10.1108/01439911111106390.

Chu, P. M., Sung, Y. and Cho, K. (2019) ‘Generative Adversarial Network-

Based Method for Transforming Single RGB Image into 3D Point Cloud’, IEEE

Access. IEEE, 7, pp. 1021–1029. doi: 10.1109/ACCESS.2018.2886213.

Corrales, J. A., Candelas, F. A. and Torres, F. (2011) ‘Safe human-robot

interaction based on dynamic sphere-swept line bounding volumes’, Robotics and

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

108

Computer-Integrated Manufacturing. Elsevier, 27(1), pp. 177–185. doi:

10.1016/j.rcim.2010.07.005.

Cortelazzo, C. D. M. P. Z. G. M. (2012) Time-of-flight cameras and Microsoft

Kinect. 1st ed. New York: SpringerBriefs in Electrical and Computer Engineering.

Craig, J. J. (2004) Introduction to Robotics: Mechanics and Control 3rd. Prentice

Hall.

Darwish, W. et al. (2019) ‘A Robust Calibration Method for Consumer Grade

RGB-D Sensors for Precise Indoor Reconstruction’, IEEE Access, 7, pp. 8824–8833.

doi: 10.1109/ACCESS.2018.2890713.

Demand for robot cooks rises as kitchens combat COVID-19 (2020)

https://abcnews.go.com/Technology/wireStory/demand-robot-cooks-rises-kitchens-

combat-covid-19-71768876.

Executive Summary World Robotics 2019 Industrial Robots (2019)

https://ifr.org/downloads/press2018/Executive%20Summary%20WR%202019%20Ind

ustrial%20Robots.pdf.

Fast-Berglund, Å. et al. (2016) ‘Evaluating Cobots for Final Assembly’,

Procedia CIRP. Elsevier B.V., 44, pp. 175–180. doi: 10.1016/j.procir.2016.02.114.

Flacco, F. et al. (2012) ‘A depth space approach to human-robot collision

avoidance’, Proceedings - IEEE International Conference on Robotics and

Automation, pp. 338–345. doi: 10.1109/ICRA.2012.6225245.

Flacco, F. et al. (2015) ‘A Depth Space Approach for Evaluating Distance to

Objects: with Application to Human-Robot Collision Avoidance’, Journal of

Intelligent and Robotic Systems: Theory and Applications, 80, pp. 7–22. doi:

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

109

10.1007/s10846-014-0146-2.

Gerdts, M. et al. (2012) ‘Path planning and collision avoidance for robots’,

Numerical Algebra, Control and Optimization, 2(3), pp. 437–463. doi:

10.3934/naco.2012.2.437.

Golub, G. H. and Reinsch, C. (1970) ‘Singular Value Decomposition and Least

Squares Solutions’, Numer. Math. 14, 403–420.

Haddadin, S. et al. (2010) ‘Real-time reactive motion generation based on

variable attractor dynamics and shaped velocities’, IEEE/RSJ 2010 International

Conference on Intelligent Robots and Systems, IROS 2010 - Conference Proceedings,

pp. 3109–3116. doi: 10.1109/IROS.2010.5650246.

Hartenberg, J. and Denavit, R. (1964) Kinematic Synthesis of Linkages. New

York: McGraw-Hill,.

Khaloo, A. and Lattanzi, D. (2017) ‘Robust normal estimation and region

growing segmentation of infrastructure 3D point cloud models’, Advanced

Engineering Informatics. Elsevier Ltd, 34, pp. 1–16. doi: 10.1016/j.aei.2017.07.002.

Khatib, O. (1985) ‘Real-time obstacle avoidance for manipulators and mobile

robots’, Proceedings - IEEE International Conference on Robotics and Automation,

pp. 500–505. doi: 10.1109/ROBOT.1985.1087247.

Kohrt, C. et al. (2013) ‘An online robot trajectory planning and programming

support system for industrial use’, Robotics and Computer-Integrated Manufacturing.

Elsevier, 29(1), pp. 71–79. doi: 10.1016/j.rcim.2012.07.010.

Krämer, M. et al. (2020) ‘Model predictive control of a collaborative manipulator

considering dynamic obstacles’, Optimal Control Applications and Methods,

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

110

(December 2018), pp. 1211–1232. doi: 10.1002/oca.2599.

Kulić, D. and Croft, E. A. (2005) ‘Safe planning for human-robot interaction’,

Journal of Robotic Systems, 22(7), pp. 383–396. doi: 10.1002/rob.20073.

Lasota, P. A., Rossano, G. F. and Shah, J. A. (2014) ‘Toward safe close-

proximity human-robot interaction with standard industrial robots’, IEEE

International Conference on Automation Science and Engineering. IEEE, 2014-Janua,

pp. 339–344. doi: 10.1109/CoASE.2014.6899348.

Liu, C. and Tomizuka, M. (2016) ‘Algorithmic safety measures for intelligent

industrial co-robots’, Proceedings - IEEE International Conference on Robotics and

Automation. IEEE, 2016-June(i), pp. 3095–3102. doi: 10.1109/ICRA.2016.7487476.

De Luca, A. et al. (2006) ‘Collision detection and safe reaction with the DLR-III

lightweight manipulator arm’, IEEE International Conference on Intelligent Robots

and Systems, pp. 1623–1630. doi: 10.1109/IROS.2006.282053.

Mainprice, J. et al. (2011) ‘Planning human-aware motions using a sampling-

based costmap planner’, Proceedings - IEEE International Conference on Robotics

and Automation, pp. 5012–5017. doi: 10.1109/ICRA.2011.5980048.

Mainprice, J. and Berenson, D. (2013) ‘Human-robot collaborative manipulation

planning using early prediction of human motion’, IEEE International Conference on

Intelligent Robots and Systems. IEEE, pp. 299–306. doi:

10.1109/IROS.2013.6696368.

Martínez-Salvador, B., Pérez-Francisco, M. and Del Pobil, A. P. (2003)

‘Collision Detection between Robot Arms and People’, Journal of Intelligent and

Robotic Systems: Theory and Applications, 38(1), pp. 105–119. doi:

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

111

10.1023/A:1026252228930.

Matheson, E. et al. (2019) ‘Human-robot collaboration in manufacturing

applications: A review’, Robotics, 8(4), pp. 1–25. doi: 10.3390/robotics8040100.

Morato, C. et al. (2014) ‘Toward safe human robot collaboration by using

multiple kinects based real-time human tracking’, Journal of Computing and

Information Science in Engineering, 14(1), pp. 1–9. doi: 10.1115/1.4025810.

Perez-D’Arpino, C. and Shah, J. A. (2015) ‘Fast target prediction of human

reaching motion for cooperative human-robot manipulation tasks using time series

classification’, Proceedings - IEEE International Conference on Robotics and

Automation, 2015-June(June), pp. 6175–6182. doi: 10.1109/ICRA.2015.7140066.

Rabbani, T., van den Wildenberg, F. and Vosselman, G. (2006) ‘Segmentation of

point clouds using smoothness constraint’, International archives of photogrammetry,

remote sensing and spatial information sciences, 36(5), pp. 248–253.

Ragaglia, M., Zanchettin, A. M. and Rocco, P. (2018) ‘Trajectory generation

algorithm for safe human-robot collaboration based on multiple depth sensor

measurements’, Mechatronics. Elsevier, 55(May 2017), pp. 267–281. doi:

10.1016/j.mechatronics.2017.12.009.

Safeea, M. and Neto, P. (2019) ‘Minimum distance calculation using laser

scanner and IMUs for safe human-robot interaction’, Robotics and Computer-

Integrated Manufacturing. Elsevier Ltd, 58(February), pp. 33–42. doi:

10.1016/j.rcim.2019.01.008.

Sciavicco, L. and Siciliano, B. (1988) ‘A Solution Algorithm to the Inverse

Kinematic Problem for Redundant Manipulators’, IEEE Journal on Robotics and

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

112

Automation, 4(4), pp. 403–410. doi: 10.1109/56.804.

Shaik, K. B. et al. (2015) ‘Comparative Study of Skin Color Detection and

Segmentation in HSV and YCbCr Color Space’, Procedia Computer Science. Elsevier

Masson SAS, 57, pp. 41–48. doi: 10.1016/j.procs.2015.07.362.

Siciliano, B. (2009) Robotics: Modeling, Planning, and Control, IEEE Robotics

and Automation Magazine. doi: 10.1109/MRA.2009.934833.

Spong, M. W., Hutchinson, S. and Vidyasagar, M. (2006) ‘Robot modeling and

control’, pp 65-103.

Tan, J. T. C. et al. (2010) ‘Safety strategy for human-robot collaboration: Design

and development in cellular manufacturing’, Advanced Robotics, 24(5–6), pp. 839–

860. doi: 10.1163/016918610X493633.

Todd, D. J. (1986) Fundamentals of robot technology: An introduction to

industrial robots, teleoperators and robot vehicles. 1st edn.

Torr, P. H. S. and Zisserman, A. (2000) ‘MLESAC: A new robust estimator with

application to estimating image geometry’, Computer Vision and Image

Understanding, 78(1), pp. 138–156. doi: 10.1006/cviu.1999.0832.

Universal Robots (2018) Cobot-application on the engine assembly line.

Available at: https://www.universal-robots.com/case-stories/opel/[Online; accessed 8-

October-2018].

Villani, V. et al. (2018) ‘Survey on human–robot collaboration in industrial

settings: Safety, intuitive interfaces and applications’, Mechatronics. Elsevier,

55(February), pp. 248–266. doi: 10.1016/j.mechatronics.2018.02.009.

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

113

Wampler, C. W. and Leifer, L. J. (1988) ‘Applications of damped least-squares

methods to resolved-rate and resolved-acceleration control of manipulators’, Journal

of Dynamic Systems, Measurement and Control, Transactions of the ASME, 110(1),

pp. 31–38. doi: 10.1115/1.3152644.

Whitney, D. E. (1969) ‘Resolved Motion Rate Control of Manipulators and

Human Prostheses’, IEEE Transactions on Man-Machine Systems, 10(2), pp. 47–53.

doi: 10.1109/TMMS.1969.299896.

Xiang, J., Zhong, C. and Wei, W. (2012) ‘A varied weights method for the

kinematic control of redundant manipulators with multiple constraints’, IEEE

Transactions on Robotics. IEEE, 28(2), pp. 330–340. doi:

10.1109/TRO.2011.2173834.

Xiao, Z. and Wenming, H. (2009) ‘Kd-tree Based Nonuniform Simplification of

3D Point Cloud’, in. 2009 Third International Conference on Genetic and

Evolutionary Computing.

Ye, M. et al. (2013) ‘A Survey on Human Motion Analysis’, Time-of-Flight and

Depth Imaging. Sensors, Algorithms, and Applications, 8200, pp. 149–187. doi:

10.1007/978-3-642-44964-2_8.

Yoshida, E., Yokoi, K. and Gergondet, P. (2010) ‘Online replanning for reactive

robot motion: Practical aspects’, IEEE/RSJ 2010 International Conference on

Intelligent Robots and Systems, IROS 2010 - Conference Proceedings. IEEE, pp.

5927–5933. doi: 10.1109/IROS.2010.5649645.

Zanchettin, A. M. et al. (2016) ‘Safety in Human-Robot Collaborative

Manufacturing Environments: Metrics and Control’, IEEE Transactions on

Master’s Thesis – Peige Guo McMaster University – Mechanical Engineering

114

Automation Science and Engineering, 13(2), pp. 882–893. doi:

10.1109/TASE.2015.2412256.

Zarit, B. D., Super, B. J. and Quek, F. K. H. (1999) ‘Comparison of five color

models in skin pixel classification’, Proceedings - International Workshop on

Recognition, Analysis, and Tracking of Faces and Gestures in Real-Time Systems,

RATFG-RTS 1999, pp. 58–63. doi: 10.1109/RATFG.1999.799224.

Zube, A. (2015) ‘Cartesian nonlinear model predictive control of redundant

manipulators considering obstacles’, Proceedings of the IEEE International

Conference on Industrial Technology. IEEE, 2015-June(June), pp. 137–142. doi:

10.1109/ICIT.2015.7125089.

	Lay abstract
	Abstract
	Acknowledgment
	Contents
	List of Figures
	List of Tables
	Nomenclature
	Chapter 1. Introduction
	1.1 Preface
	1.2 Objective and Organization

	Chapter 2. Literature review
	2.1 Introduction
	2.2 Robot Geometric Modelling for Human-Robot Collaboration
	2.3 Human Sensing and Geometric Models for Human-Robot Collaboration
	2.4 Robot Manipulator Collision Avoidance Algorithms
	2.4.1 Motion planning-based algorithms
	2.4.2 Prediction-based algorithms
	2.4.3 Non-predictive Control-based Algorithms
	2.4.4 Model Predictive Control-based Algorithms

	2.5 Summary

	Chapter 3. Human and Robot Modelling
	3.1 Introductions
	3.2 Human Modelling Algorithm
	3.2.1 Algorithm Description

	3.3 Robot Modeling
	3.3.1 Kinematic Model
	3.3.2 Geometric Model
	3.3.3 Time Domain Model

	3.4 Summary

	Chapter 4 Collision Avoidance Algorithms
	4.1 Introduction
	4.2 Inverse kinematics calculation
	4.3 Inclusion of Constraints
	4.3.1 Sphere obstacle collision avoidance constraint
	4.3.2 Varied weight method
	4.3.3 Multiple sphere obstacles collision avoidance constraint
	4.3.4 Joints angle limits constraint
	4.3.5 Plane collision avoidance constraint

	4.4 Closed-loop inverse kinematics implementation
	4.4.1 Main task only
	4.4.2 Additional constraint tasks
	4.4.3 Closed-loop inverse kinematic control law
	4.4.4 Closed-loop Kinematic Control Law Exploiting Functional Redundancy

	4.5 Nonlinear Model Predictive Control

	Chapter 5 Simulations
	5.1 Introduction
	5.2 Simulation Procedure
	5.3 Testing of the human modelling algorithm
	5.4 Three-link planar robot simulation
	5.4.1 Three-link planar robot simulation settings
	5.4.2 Three-link planar robot simulation results
	5.4.2.1 Static Sphere obstacle
	5.4.2.2 Plane avoidance
	5.4.2.3 Wrist singularity avoidance
	5.4.2.4 Dynamic obstacle collision avoidance
	5.4.2.5 NMPC collision avoidance method

	5.5 Elfin simulation
	5.5.1 Simulation settings
	5.5.2 Static human limb collision avoidance
	5.5.3 Human torso collision avoidance
	5.5.4 Dynamic human limb collision avoidance
	5.5.5 NMPC collision avoidance for Elfin

	5.6 Summary of Results

	Chapter 6 Conclusions and Recommendations
	6.1 Summary and Conclusions
	6.2 Recommendations for future research

	References

