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Abstract 

 

Event-Related Potential (ERP) measures derived from the electroencephalogram (EEG) 

have been widely used in outcome prediction of brain disorders. Recently,  the ERPs that 

are transient (EEG) responses to auditory, visual, or tactile stimuli, have been introduced 

as useful predictors of a positive coma outcome (i.e, emergence from coma).  

In this study, machine learning techniques were applied for detecting the Mismatch 

Negativity (MMN) component, which is a transient EEG response to auditory stimuli and 

its existence has a high correlation with coma awakening, through analyzing ERPs signals 

recorded from healthy control brain signals. To this end, two different dimensionality 

reduction methods, Localized Feature Selection (LFS) and minimum-redundancy 

maximum-relevance (mRMR) were employed, where a localized classifier and the support 

vector machine (SVM) with radial basis function (RBF) kernel are used as classifiers. We 

trained both LFS and mRMR algorithms using signals of healthy brains and evaluated their 

performance for MMN detection on both healthy subjects and coma patients. The 

evaluation on healthy subjects, using leave-one-subject-out cross-validation technique, 

shows the detection accuracy performance of 86.6% (using LFS) and 86.5% (using 

mRMR). 

In addition to analyzing brain signals for MMN detection, we also implemented a machine 

learning algorithm for discriminating healthy subjects from those who have experienced 

TBI. The EEG signals used in the TBI study were recorded using an ERP paradigm. 
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However, we treated the recorded signals as resting state signals. To this end, we used the 

mRMR feature selection method and fed the selected features into the SVM classifier that 

outputs the estimated class labels. This method gives us a poor performance compared to 

the methods that directly used ERP components (without considering them as resting 

signals.). We conclude that our hypothesis of treating ERP data as resting data is not valid 

for TBI detection.  
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Notation and abbreviation 

 

 

BDI II Beck Depression Inventory II  

DAI Diffuse Axonal Injury 

DoC Disordes of Consciousness  

DRL Driven Right-Leg  

EEG Electroencephalography  

EOG Electrooculogram 

ERP Event Related Potential 

EP Evoked Potential  

GCS Glasgow Coma Scale 

HI-REB Hamilton Integrated Research Ethics Board 

ImPACT Immediate Post-Concussion Assessment and Cognitive Test  

ICA Independent Component Analysis  

ISI Inter-Stimulus Interval  

KNN K Nearest Neighbor  

LOO Leave One-subject Out  

LDA Linear Discriminant Analysis  

LFS Locolized Feature Selection 

ML Machine Learning 
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mRMR minimum Redundancy Maximum Relevant 

MMN Mismatch Negativity  

PLV Phase-Locking Value  

PCSS Post-Concussion Symptom Scale 

PSD Power Spectral Density  

PCA Principal Component Analysis  

RBF Radial Basis Function  

rCFL retired Canadian Football League  

SF-36 Short Form Health Survey  

SON Subject’s Own Name 

SVM Support Vector Machine 

TBI Traumatic Brain Injury  

YLD Years Lived with Disability 
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Chapter 1 

1 Introduction 

Coma is a state of prolonged unconsciousness that has a variety of etiologies, e.g. traumatic 

brain injury, stroke, brain tumor, drug or alcohol intoxication (Young, Ropper, and Bolton 

1997). Clinicians will often use neuroimaging techniques such as MRI or CT to fully 

evaluate the extent of the patient’s injuries. Prognostication in these cases requires the 

ongoing review of these tests but is highly subjective and dependent on the individual 

clinician performing the assessment. In more recent years, there has been a strong push to 

move away from these highly subjective tests and towards more objective measures 

(Armanfard et al. 2016).  

 

Coma state usually lasts for a few weeks up to one month, and transitions into either 

unresponsive wakefulness syndrome (also known as vegetative state) or minimally 

conscious state, and is generally the result of bihemispheric lesions of the cortex or white 

matter, focal lesions of the paramedian tegmentum, or bilateral thalamic damage (Connolly 

et al. 2019). 

The limited availability of intensive-care treatment, the requirements of planning 

individual patient management, and the need for counseling family members with realistic 
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expectations, make result prediction valuable for patients, their family and attendant 

medical staff. Online assessment of comatose patients is very important because it provides 

us the potential to detect short rises in the level of consciousness, thus improving both 

outcome prediction and the rehabilitation process (Kane, Nicholas M and Butler, Stuart R 

and Simpson 2000; N Armanfard, Reilly, and Komeili 2018; Armanfard et al. 2019). 

Traumatic brain injury (TBI) is a nondegenerative, noncongenital insult to the brain from 

an external mechanical impact (Freire et al. 2011). The mechanical impact possibly leads 

to permanent or temporary impairment of cognitive, physical, and psychosocial functions, 

with an associated diminished or altered state of consciousness (Syed et al. 2007). 

Moderate to severe traumatic brain injury may result in prolonged or permanent changes 

in a person's state of consciousness, awareness, or responsiveness (Purbhoo 2018). the 

current methodology for TBI detection is based on verbal questions, requires considerable 

training and expertise to administer, and is also highly subjective (Prince and Bruhns 2017). 

Brain injury has become a significant issue at the local, provincial, national, and 

international levels (Perel et al. 2008). Among all types of injuries in the world, injuries to 

the brain are among the most probable causes of death or permanent disability (Dennis et 

al. 2017).  Therefore, early detection of TBI can help prevent serious impairment while 

simultaneously improving the efficacy of the health care system. 

The proposed Machine Learning (ML) process requires a training set, which consists of 

EEG data from healthy subjects as well as data from TBI patients.  Each data record is 

labeled as either healthy or TBI.  The objective of our ML process is to discriminate 
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between these two classes.   If this proves possible, then we can implicitly detect the 

presence of TBI.  The training data is provided by Prof. John Connolly, the Master’s co-

supervisor of the applicant. 

The potential impact of the TBI project is the development of an objective method to detect 

the existence of TBI using EEG signals. As previously mentioned, early detection of TBI 

is vital to saving human lives and in mitigating permanent impairment to the brain.  Such 

objective measure offers an inexpensive brain scanning tool that can significantly decrease 

the economic burden on the healthcare system and to individual families. 

1.1 Motivation 

Mental disorders have been considered as the highest burden among global health 

problems, contributing about 32.4% years lived with disability (YLDs) and a cost of 2.5 

trillion US dollars including both the direct and indirect costs(Trautmann, Rehm, and 

Wittchen 2016; Vigo, Thornicroft, and Atun 2016; Whiteford et al. 2013) which is 

expected to double by 2030(Cao and Reilly 2019). 

We wish to diagnose or identify various disorders of consciousness (DoC) by comparing a 

patient’s brain responses to those of healthy controls.  To do so we elicit event-related 

potentials (ERPs) from both the patient and controls and compare their responses using 

machine learning techniques.  Any abnormal difference in the patient’s response is an 

indication of a potential brain deficit or disorder, which may have arisen e.g., from a brain 

injury or some congenital condition. 
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1.2 Thesis Organization 

The following is an overview of the contents of each chapter in this thesis. This study has 

four main parts: first, an introduction to the required background and related works. 

Second, in Chapter 2 the methodology and the related datasets for both TBI and coma 

research will be discussed. Third, Chapter 3 presents the experimental results and gives a 

brief discussion for each research topic. Fourth, in Chapter 4 we conclude our findings for 

this study and present suggestions for future work. 

1.3 Electroencephalography and the Event Related Potential 

Electroencephalography (EEG) allows reading brain signals which can be measured non-

invasively from the scalp, with a higher temporal resolution on the order of milliseconds 

rather than seconds by applying smart signal processing techniques (Anwar, Batool, and 

Majid 2019). EEG measures the electrical activity of large postsynaptic potentials in the 

brain with electrodes placed on the scalp (Light et al. 2010). 

Event-related potentials (ERPs) are EEG brain responses evoked to specific types of 

stimuli. Since these signals are usually hard to detect in continuous EEG recordings, it is 

common to average windows of preprocessed EEG data (trials or segments) across 

individual occurrences of a type of stimulus in question (Sculthorpe-Petley et al. 2015). 

Some of the early potentials are elicited or emitted due to direct sensory, cognitive or motor 

input (exogenous) and are mostly referred to as evoked potentials (EPs) (Sculthorpe-Petley 

et al. 2015).  
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One of the most frequent paradigms used in the literature investigates “pre-attentive” 

processing - that is, neural processing at a lower level of conscious awareness in the 

individual, yet returns selective processing of a stimulus by its deviance from a settled 

sequence of stimulation. This paradigm is known as the oddball paradigm and basically 

includes two types of auditory stimuli: standard tones and deviant tones, where repetitive 

standard tones are interspersed with slightly deviant stimuli. This useful paradigm elicits 

two different long-latency ERP components: the N1(N100) and the Mismatch Negativity 

(MMN) (Armanfard et al. 2019; Duncan et al. 2009; Armanfard et al. 2016). Examples of 

ERPs and EPs used in the present thesis are discussed below. 

1.3.1 The N1 and the MMN ( from Armanfard, 2019) 

“The oddball paradigm elicits two different long latency ERP components: the N1 and the 

Mismatch Negativity (MMN). The presence of N1 and MMN (elicited at respectively about 

100 and 150 millisecond post-stimulus) provides evidence of basic brain function at a level 

reflecting cortical function. The N1 is an obligatory sensory response evoked by each tone 

(i.e. both standard and deviant) and highlights the encoding of acoustic input in the 

auditory cortex. The MMN is an automatic response to auditory stimuli that deviate from 

the ongoing context of identical auditory stimuli. It reflects automatic sensory memory 

processes (R Näätänen et al. 2007; R Näätänen, Gaillard, and Mäntysalo 1978). Although 

the MMN is often referred to as a “pre-attentive” response, the evidence from sleep and 

anesthesia research indicates that a state of consciousness is required for the response to 

occur.”(Armanfard et al. 2019) 
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The Mismatch Negativity is an ERP component that appears when a passive odd-ball 

auditory stimulus sequence is applied (Armanfard et al. 2019, 2016). This component is 

elicited from a deviant stimulus from an established pattern. It is a negative deflection, 

peaking around 150–250 ms after the onset of the deviant stimulus (Beres 2017; Todd et 

al. 2008). The MMN has been shown to arise due to several types of deviant stimuli (Todd 

et al. 2008). Even though the temporal aspect of the MMN is similar to that of the N100, 

studies have shown that the MMN is dissociated from the N100 in its function. The MMN 

has been argued to be a manifestation of a part of the underlying mechanism for auditory 

awareness (Risto Näätänen, Jacobsen, and Winkler 2005; Risto Näätänen 2001). 

Generally, using 5–10 active electrodes to record MMN is sufficient, which should consist 

of at least Fz, Cz, C3, C4, and mastoid locations. The preferred reference is the nose 

(Duncan et al. 2009). The MMN is normally extracted from a difference waveform 

achieved by subtracting the averaged standard  ERP waveform from the averaged ERP 

response to the deviant stimulus (Duncan et al. 2009). 
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Figure 1-1: Average of de-artifacted epochs corresponding to standard (red) and deviant (blue) stimuli of 

one of the healthy subjects at channel Fz. 

 

In Figure 1-1, two averaged signals for a typical training subject (at channel Fz) are shown. 

The standard signal has only the N1 component and the deviant signal has both the N1 and 

MMN components Figure 1-1: Average of de-artifacted epochs corresponding to standard 

(red) and deviant (blue) stimuli of one of the healthy subjects at channel Fz.  

If a patient’s response to a deviant stimulus appears similar to the response from a standard 

stimulus, that indicates potential for a possible brain disorder.  It is therefore a major 
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objective of this study to use machine learning methods to discriminate between standard 

and deviant responses in healthy subjects and in DoC subjects, so that anomalous responses 

may be identified. More specifically, work by ((Fischer et al. 1999; Morlet and Fischer 

2014) has shown that if the MMN appears in comatose patients, then it is highly likely the 

patient will emerge (i.e. the presence of the MMN has a high positive predictive value).   

But only about 30% of patients who had regained consciousness showed MMN (i.e. a low 

sensitivity). This is an indication that the MMN may be present but difficult to detect in 

many cases. We, therefore intend to investigate whether machine learning methods may 

improve the detectability of the MMN and therefore lead to an improved test for coma 

emergence. This is equivalent to being able to distinguish the difference between standard 

responses and deviant responses in coma patients. 

 

1.4 Machine Learning Background  

 

Machine Learning (ML) is a field of technology that allows machines to extract knowledge 

from data and self-improve as new data becomes available. The ML field has been one of 

the most ubiquitous methods encountered in different aspects of our modern life. 

The machine learning paradigm is a promising new technique for analysis of the EEG for 

applications in neuroscience. The brain is far too complicated an organism to enable 

modeling by classical means, a process that would typically involve the use of 
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mathematical and physical models of brain structure and function to predict brain behavior 

in some way (Cao and Reilly 2019). 

To give an example of how ML works, imagine your machine’s goal is to use a given 

dataset of e.g. images (called the training set) to learn to distinguish the class of each certain 

image. The class label should be already defined, e.g. vehicle or text. Since the machine 

has no a priori knowledge about the classes, it creates a large pool of measurements 

(candidate features) from each image sample. Candidate features could be any type of 

parameter that ideally changes value between the classes. Most of the time, the number of 

candidate features is far too large. To reduce the number of features to a more manageable 

level, the features are fed into a feature selection algorithm. The selected features are the 

candidate features that are the most effective in class discrimination. Afterward, a designed 

classifier uses the selected features to separate the two classes of the training set, as far as 

possible, into separate regions in a Cartesian co-ordinate space, whose axes are the selected 

features. This is referred to as the feature space. Each region corresponds to a class. In this 

step, the final machine learning model has been identified. However, we might wish to 

apply a cross-validation procedure to calculate the accuracy of the model to avoid 

misclassification as much as possible (Cao and Reilly 2019). 

There are roughly three types of Machine Learning algorithms. Supervised, Unsupervised, 

and Semi-Supervised Learning. In supervised learning, a labeled dataset would be provided 

to train the model in the so-called training phase. It requires a training set of labeled 

documents and returns a function that maps data samples to the predefined class labels 
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(Arzucan ozgür 2002). In unsupervised learning methods, the machine is given a set of 

unlabeled data and is tasked with finding various forms of information to distinguish the 

data into meaningful groups (D’Urso and De Giovanni 2018). Lastly, in semi-supervised 

learning, the machine trains in the presence of both labeled and unlabeled data. The goal 

of semi-supervised learning is to find an algorithm that takes advantage of a combination 

of labeled and unlabeled data (Zhu, Xiaojin and Goldberg 2009). 

The odd-ball ERP paradigm (as described in the following sub-section) is applied to each 

subject as described in Sect. 1.3  Since it is known beforehand whether the respective trial 

is standard or deviant, our class labels are available, and therefore in the present study, we 

consider only supervised learning methods. 

1.4.1 Feature Selection 

Candidate feature counts in typical applications in neuroscience, psychiatry, and generally 

in a lot of medical applications, have a tendency to be large; however, there are limited 

available training samples. Generally, feature selection methods aim to recognize those 

features whose level of statistical dependency with the class label is high. Therefore, the 

value of the selected features changes substantially with the class. A well-designed feature 

selection algorithm must analyze every potential combination of every existing N candidate 

features for relevance. Since feature selection is a well studied topic, there are quite large 

number of feature selection algorithms in the literature. Armanfard, Reilly, and Komeili 

(2018) provides several feature selection methods. The minimum redundancy maximum 

relevance (mRMR) method is a feature selection method that has been demonstrated to 
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work effectively for applications in brain research. In the mRMR method, mutual 

information is used as a measure of statistical dependency. This method is an iterative 

greedy approach. In this approach, a single feature which has the maximum mutual 

information with the class labels (relevance) is chosen in the first iteration. Then in 

subsequent iterations, the selected features must have a combination of minimum mutual 

information (redundancy) with the features selected in the previous iterations (redundancy) 

and maximum relevance with respect to the class labels  (Cao and Reilly 2019). 

Other feature selection approaches such as Principal Component Analysis (PCA) (Al-

Kandari and Jolliffe 2005), Linear Discriminant Analysis (LDA) (Duda, Hart, and Stork 

2001) and Independent Component Analysis (ICA) (Hyvärinen and Oja 2000), facilitate 

dimensionally reduction by merging original features to acquire a new set of features. 

Resulting features from this approach usually lose their physical interpretation in terms of 

the original features. Dimensionality reduction, with no transformation, by choosing a 

subset of the original features is the basis for the feature selection approaches. Therefore, 

feature selection approaches keep the physical interpretability property in terms of the 

selected features. For this research study, we use feature selection methods (Armanfard, 

2017).  

Batch methods and online algorithms are two categories of feature selection algorithms. In 

batch methods, the process of feature selection task is conducted offline where features of 

training instances are available. However, for online feature selection algorithms, the full 

feature space is considered unknown in advance. The applications of online methods are 
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where the training samples or features arrive in a sequential manner (Wang et al. 2014; Wu 

et al. 2013; Yu et al. 2014). For this study, the batch algorithms are used (Armanfard, 

2017). 

 

 

1.4.2 Classification 

Classification is a very mature topic and subsequently, there are many types of 

classification methods. Following feature selection, the samples from each class in the 

training set divide (i.e. cluster) as well as possible into two separate regions in the feature 

space (Cao and Reilly 2019). Typical feature selection methods choose an optimal global 

feature subset that is applied over all regions of the sample space (Armanfard, 2017). The 

classifier determines the most likely cluster that a test point belongs to.  Note that points 

that fall into an overlap region between clusters may not classify correctly (Cao and Reilly 

2019).  

There are various types of classifier.  The support vector machine (SVM)(Hastie, Trevor 

and Tibshirani, Robert and Friedman 2009; Haykin 2009) is one of the most well-

established classification methods that has shown reasonable performance in 

neuropsychiatric applications. Rather than SVM, we can also mention K Nearest Neighbor 

(KNN), the Linear Discriminant Analyzer (LDA) and, decision trees. These methods are 

all described in detail in (Hastie, Trevor and Tibshirani, Robert and Friedman 2009; 

Rumelhart, Hinton, and Williams 1986). The first such approach which has proven useful 
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in brain studies is the mRMR feature selection scheme in conjunction with an SVM 

classifier (Cao and Reilly 2019). 

The LFS method selects a feature subset such that, within a localized region, within-class 

and between-class distances are respectively minimized and maximized. This allows the 

feature set to optimally adapt to local variations of the sample space. The process of 

computing a specific feature subset for each region is independent of those of other regions 

and hence can be performed in parallel; it is also an appropriate approach for the case where 

the data are distributed on a non-linear and/or a disjoint manifold. The method selects only 

relevant features, so the LFS method is not overly sensitive to the overfitting problem 

(Armanfard, 2017). The LFS method is suitable to the “data poor” case where the number 

of candidate features far exceeds the number of training samples, and is also resistant to 

the overfitting problem. The LFS method has proven to be successful in predicting 

emergence in coma patients ( Armanfard et al., 2016). 

 

1.4.3 Validation 

A very important component of machine learning model is validation. The usual form of 

validation is cross-validation, where the available training set is split into two parts,  where 

one part is larger than the other. The larger is referred to as a validation set, and the other 

the test set.  The machine learning model only uses the validation set to train (Cao and 

Reilly 2019) and uses the smaller test set for the testing step. In the following, we introduce 

two important cross-validation methods;  K-fold and Leave One Out (LOO). 
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  K-Fold: in this method, the entire training set divides into K contiguous folds. For a 

trustful evaluation, we shuffle the dataset before dividing. Then, for training, the model 

uses one fold for the testing set and the remaining folds feed into the model as the training 

set. This process iterates K times, where each fold is held out exactly once. Therefore in 

the end, we have K accuracy results,  which are averaged over the folds and reported as the 

final result (Cao and Reilly 2019). 

Leave One Out (LOO): This method basically acts like K-Fold but with a slight difference. 

For a dataset with N instances, we leave out one instance as a test set, and the remaining 

data are used as the training set, and repeat over all instances so that each instance is left 

out once. In the end, we have N results which we average and report the final result 

( Armanfard et al., 2016; Linden, 2019). 
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Chapter 2 

 

2 Methodology 

2.1 Introduction 

In this chapter, First, the basics of machine learning and various machine learning methods 

are explained. In this research different ML algorithms are applied to the datasets. In this 

study, as explained in Sect.2.2 below, two datasets have been used so that a broader range 

of applications of EEG/ERP signals may be explored. The coma dataset includes 26 healthy 

controls and 2 coma patients. The traumatic brain injury (TBI) dataset includes fourty-three 

subjects, twenty of which were retired football players who had experienced concussion. 

2.2 Datasets 

2.2.1 Coma data 

The study recruited two coma patients. Patient 1: age = 29, Gender: male, Glasgow Coma 

Scale (GCS): 5, Etiology: traumatic.  EEG recording was conducted 13 days post-injury. 

Patient 2: age = 21, Gender: male, GCS: 4, Etiology: motor vehicle accident - diffuse 

axonal injury (DAI) and hypoxic ischemia. EEG recording was conducted for 27 days post-

injury. 
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Twenty-six control subjects who had no history of concussion or any other type of 

neurological disorder and were recruited through the local newspaper, personal contacts, 

and McMaster University. 

In this study, the N1 and MMN components were elicited using an alteration of a classic 

auditory oddball paradigm, as described in part in (Fischer, Dailler, and Morlet 2008). 

Stimuli consisted of deviant tones (14%), the subject’s own name (SON), which was 

spoken by a native female English speaker with a neutral voice (3%), the novel sound of 

dog bark recorded digitally (3%), and standard tones (80%). These stimuli were randomly 

presented; however, each deviant was preceded by at least two standard tones. It used a 

duration deviant, which is known to be one of the stronger types of “deviant” features, both 

for evoking the MMN but also for producing one of the more stable MMN waveforms over 

time (Escera et al. 2000). 

Both healthy and coma subjects were examined with the passive oddball paradigm, 

comprised of deviant and standard tones of 800 Hz with a duration of 30 ms and 75 ms, 

respectively (Armanfard et al. 2019).  In this process, 2000 stimuli were presented in total 

-- 1600 standard tones, 280 deviants, 60 SON, and 60 novels (dog bark). The stimuli were 

pseudorandomized so that no two deviant/novels were presented consecutively; there were 

at least two standards in between each deviant or novel. The total duration of the EEG 

recording was approximately 25 minutes. 

With regard to healthy/controls participants, the EEG was recorded from a 64-channel 

BioSemi ActiceTwo system and a 0.01– 100 Hz bandpass that was digitally sampled at 
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512 Hz. Five Ag/AgCl external electrodes configured in a 10-20 montage were placed on 

the subject’s nose, left and right mastoids, and above and over the outer canthus of the left 

eye. For coma patients (depending on the patient), the EEG has recorded bedside in the 

ICU from either a 32 or 8 channel BioSemi ActiceTwo system as described earlier.  

Electrodes were placed on the scalp according to the standard 10/20 positioning using a 

32-electrode cap. Vertical and horizontal electrooculogram signals were monitored by 

electrodes placed above and over the outer canthus of the left eye. References were 

recorded bilaterally from the mastoids and at the nose for offline rereferencing. In the case 

of a skull fracture or any obstruction to the placement of a regular cap, a customized cap 

was used with a reduced number of electrodes. Similarly, data from healthy controls were 

recorded using a 64-channel EEG cap. 

Initially, we collected data at the Hamilton General Hospital from comatose patients with 

a new protocol as described in detail in Connolly et al. (2019). However, due to the 

COVID-19 pandemic, both patient and healthy control recording was stopped.  In the 

following, we present a brief summary of the protocol which was originally intended for 

this study. 

Data is to be collected from 50 coma patients. EEG/ERP data will be recorded for 24 

consecutive hours at a maximum of five times points covering 30 days from the date of 

recruitment to track participants’ progression. The study employs paradigms designed to 

elicit brainstem potentials, middle-latency responses, mismatch negativity, P300, N100, 

and N400. In the case of patient emergence, data are recorded on that occasion to form an 
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additional basis for comparison. A relevant healthy controls data set will be collected from 

the testing of 20 participants, each extends over a 15-hour recording period to formulate a 

baseline. (Connolly et al. 2019) 

 

2.2.2 TBI data 

The study, approved by the Hamilton Integrated Research Ethics Board (HI-REB), 

Hamilton, Ontario, Canada, recruited twenty retired Canadian Football League (CFL) 

athletes (rCFL) with histories of concussions (mean age = 57.6, range = 45–66 years) and 

twenty-three healthy age-matched control subjects (mean age = 53.7, range 45–61). 

Control subjects had no history of concussion or any other type of neurological disorder 

and were recruited through the local newspaper, personal contacts, and McMaster 

University. All participants (who were native English speakers and self-reported as having 

no hearing issues) provided informed consent, in accordance with the ethical standards of 

the Declaration of Helsinki, prior to participation in the experiment. Participants were 

assessed using the Immediate Post-Concussion Assessment and Cognitive Test (ImPACT), 

Beck Depression Inventory II (BDI II), Short Form Health Survey (SF-36), and the Post-

Concussion Symptom Scale (PCSS) (Ruiter et al. 2019). 

Two different protocols were used to examine two distinct cognitive processes. The first 

protocol, adapted from Todd et al. (2008), was a P300 auditory oddball task that consisted 

of one Standard tone (ST, 1000 Hz, 80 dB SPL [sound pressure level], 50 ms duration) and 

three deviant tones differing from ST in Frequency (FT, 1200 Hz, 80 dB SPL, 50 ms), 
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Intensity (IT, 1000 Hz, 90 dB SPL, 50 ms), and Duration (DT, 1000 Hz, 80 dB SPL, 100 

ms). The protocol employed an inter-stimulus interval (ISI) of 1000 ms. Each deviant tone 

was presented 36 times representing 6% of the stimulus set while the ST was presented 

492 times representing 82% of the stimulus set. Participants were asked to left-click to 

every ST and right-click to all deviant tones to be sure they were responding to stimuli; 

this procedure was counterbalanced within-subjects halfway through the protocol. The 

response requirement in this task was designed to engage active attentional processes and 

invoke the P3b (Ruiter et al. 2019). 

The second protocol, developed by Todd et al. (2008), was an extended version of the same 

auditory oddball task used in the first protocol, but with different procedures to enable the 

examination of pre-attentive processes as manifested by the MMN. A total of 2400 tones, 

with a 500 ms ISI, were used in this experiment with each deviant tone being presented 

144 times representing 6% of the stimulus set, while the ST was presented 1968 times 

representing 82% of the stimulus set. Instead of attending to the stimuli, participants were 

informed that the tones were of no relevance to the study and instructed that they need to 

only watch a nature movie. The film was an edited version of a nature program with the 

auditory track removed and only visually neutral scenes shown (Ruiter et al. 2019). 

Finally, protocols 1 and 2 were presented in that order but were separated by an additional 

experiment requiring participants to judge the grammaticality of spoken sentences and 

make a ‘‘correct/ incorrect” manual response to each sentence. This task created a 

distraction break of 10–15 minutes between the two oddball tasks (Ruiter et al. 2019). 
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EEG was recorded from 64 Ag/AgCl electrodes (International 10–20 system) using a 

BioSemi ActiveTwo system and a 0.01– 100 Hz bandpass (with a 60 Hz notch filter 

employed) that was digitally sampled at 512 Hz. Five Ag/AgCl external electrodes were 

placed on the subject’s nose, left and right mastoids, and above and over the outer canthus 

of the left eye. The EOG (electrooculogram) was recorded (using the same bandpass and 

sampling rate) from the external electrodes placed above and over the outer canthus of the 

left eye. EEG acquisition was referenced to the driven right-leg (DRL) and re-referenced 

offline to the average of the mastoids. 

2.3 Methods  

2.3.1 Coma project 

The goal of this project was to apply a supervised machine learning algorithm to detect 

Mismatch Negativity on comatose patients. In this section, we propose a supervised 

machine learning-based algorithm for automatic and continuous assessment of a subject. 

We had twenty-six subjects from which two of them were comatose patients and the 

remaining subjects are healthy controls. More details about subjects and how ERP stimuli( 

standard and deviant) are generated are explained in section 2.2.1.  

A large quantity of EEG data, recorded under an auditory oddball paradigm, was available. 

A previous study (Armanfard et al. 2019) used this data to detect Mismatch Negativity 

components evoked from an oddball paradigm using the Local Feature Selection (LFS) 

method. Specifically, in this present project, we wish to extend the previous study with 

different methods to compare to the LFS algorithm. 
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The supervised Machine Learning approach has two phases: phase 1, which is the training 

phase, and phase 2, which is the test phase. The machine learning process consists of these 

stages: 1) pre-processing 2) feature extraction and 3) feature selection, 4) classification, 

and 5) validation. 

A. Learning phase  

The ML algorithm has two classes. The first class D corresponds to the presence of N1 + 

MMN components of deviant tones and the second class S correspond to the presence of 

N1 component of standard tones. The required training points for both classes D and S are 

recorded from healthy brain responses to both deviant tones (providing N1 plus MMN) and 

standard tones (providing N1) respectively (Armanfard 2017). 

In the training phase, we only use healthy control dataset. The pre-processing step is to 

eliminate artifacts and filter the signals. Data preprocessing was conducted using the 

BrainVision Analyzer 2 platform. To eliminate as much noise (eye blinks and muscle 

artifacts) as possible, we filtered the raw EEG signals by a band-pass FIR filter from 2Hz 

to 30Hz with a filter order of 40 (Morlet and Fischer; N Armanfard, Komeili, Reilly, and 

Pino 2016; Armanfard, Komeili, Reilly, Mah, et al. 2016). Each subject has three 

corresponding files. The .dat file contains the EEG data itself, .vhdr is the history file that 

contains the preprocessing analyses, and the .vmrk contains the event marker information. 

The most important markers (i.e., stimuli) for this study are the S11 (standard) and S16  

(duration deviant). Also there are the S1 ( subject’s Own Name) and S6 (dog bark) markers. 
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The filtered data feeds into the EEGlab package to extract relevant components 

corresponding to the Standard and Deviant responses. EEGlab is an open-source MATLAB 

toolbox for processing different formats of data (Delorme and Makeig 2004; Brunner, 

Delorme, and Makeig 2013). In this step, we first load each control data segment in vhdr 

format, then specify the S16 and S11 stimulus intervals, and then extracting an analysis 

time window extending from 0 to 300 ms after each stimulus onset, from the entire ERP 

interval which extends from -100 to 1000 msec. (This is done because the data outside the 

smaller window is not relevant for our purposes).  Since the test data only has 32 channels, 

we select the same channels from the training data to match the two datasets. 

Furthermore, to provide reliable and stable training samples, we average the deartifacted 

epochs corresponding to each class, for each healthy training subject. So in the end, we 

have 2*26 32-channel training samples available.  (There are 26 healthy subjects, each 

providing a standard and deviant averaged response on each of 32 channels.) Figure 2-1 

demonstrates a comparison of both Standard and Deviant averaged epochs for a healthy 

control participant at channel Fz. 
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Figure 2-1: Average of de-artifacted epochs corresponding to standard (red) and deviant (blue) stimuli of 

one of the healthy subjects at channel Fz. 

 

As expected, it is shown in Figure 2-1, in class D we have epochs that contain MMN and 

N1 components and Class S contains only the N1 component. 

In the feature extraction step, a large number (M) of candidate features are created that 

represent each training point obtained from the pre-processing section. The candidate 

feature set in this study contains a variety of statistical quantities at each channel. The 

features fed into the machine learning algorithm are wavelet coefficients, kurtosis, 
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variance, maximum, minimum, skewness,  and power in eight different frequency bands: 

Alpha-band (8Hz to 13Hz), Beta1-band (13Hz to 20 Hz), Delta-band (1Hz to 4Hz), Lower-

band (1Hz to 8Hz), Total-band (1Hz to 30 Hz), Beta-band (13Hz to 30 Hz), Beta2-band 

(20Hz to 30Hz) and Theta-band (4Hz to 8Hz). The wavelet ‘rbio6.8’ (available in 

MATLAB) at level 3 is used for the wavelet decomposition. Wavelets have proven 

effective for previous EEG (Armanfard et al. 2019). The set of candidate features were 

chosen based on the fact that they have been effective in previous studies (Khodayari-

Rostamabad et al. 2013; Ravan et al. 2012; Orme-Johnson and Haynes 1981; Torsvall and 

Akerstedt 1987). 

Subsequently, we concatenate all of the extracted features M= 268 from each channel 

together for each subject. Then we make a matrix for each subject data from its extracted 

features. So after concatenating the features, for each subject there is M=32*268 features. 

In the end, for each subject, there are two feature sets which are extracted from deviant and 

standard epochs respectively. The labels assigned to the deviant and standard stimuli are 0 

and 1 respectively. 

Afterward, there is feature selection step. Since M is large and the number of training 

samples small, we need to reduce the number of candidate features for efficient 

classification. By using feature selection methods, only the discriminative features will be 

selected and the irrelative ones will be ignored. In this research, both mRMR and LFS are 

used for feature selection. 
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mRMR: The greedy, iterative feature selection method mRMR (minimum Redundancy, 

Maximum Relevance)(Hanchuan Peng, Fuhui Long, and Ding 2005) has been used. This 

algorithm selects the most relevant features according to a maximal statistical dependency 

criterion based on mutual information. The mRMR method ranks each feature to maximize 

its relevance with the target class y and simultaneously minimizes redundancy with features 

selected in previous iterations. The better a feature is deemed to be, the higher the rank it 

is assigned.  

Finally, the reduced set of features obtained from the previous step is then fed into a 

classifier that outputs the estimated class of an input data sample. For the purpose of this 

project, we use a support vector machine (SVM) classifier (Haykin 2009; Hastie, Trevor 

and Tibshirani, Robert and Friedman 2009). SVM is a discriminative classifier formally 

defined by a separating hyper-plane. In other words, given labeled training data (supervised 

learning), the algorithm outputs an optimal hyper-plane which optimally separates the two 

classes in the feature space. In two-dimensional space, this hyper-plane is a line dividing 

the feature space into two parts where each class lies on either side. 

Kernelized SVM is used for classes that cannot be divided linearly. It maps the data to a 

higher dimension using a kernel function, where the classes can be separated linearly. In 

this project, a linear kernel is used. 

Fitcsvm and the predict are predefined MATLAB commands and both are used in this 

program. For cross-validation, one subject’s deviant and standard epochs are kept separate 

for testing, and the remaining ones are used to train the model (Leave One out). The average 

error rate is returned as the final average error for a given number of features (K best 
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features). In this study, different values for K ranging from 1 to 20 are examined.  This 

whole process (feature selection, classification, and cross-validation) was averaged over 

the 26 available subjects to provide an aggregated measure of performance. 

LFS: Almost all of the previous feature selection methods select a global common feature 

subset for all regions of the sample space. These methods may not be appropriate for 

complex classification problems (such as classification of biological signals) (Armanfard 

et al. 2019). The LFS method selects a feature subset such that, within a localized region, 

within-class and between-class distances are respectively minimized and maximized. This 

allows the feature set to optimally adapt to local variations of the sample space. The process 

of computing a specific feature subset for each region is independent of those of other 

regions and hence can be performed in parallel. It is also an appropriate approach for the 

case where the data are distributed on a non-linear and/or a disjoint manifold. The method 

selects only relevant features, so the LFS method is not overly sensitive to the overfitting 

problem (Armanfard 2017). The LFS method is suitable to the “data poor” case where the 

number of candidate features far exceeds the number of training samples, and is also 

resistant to the overfitting problem.  

In this step, all the created features are fed to LFS algorithm. Again the Leave One Out 

(LOO) cross-validation process was applied here. Default values for the parameters 

associated with the LFS algorithm are used, except for the parameter α,  which is suggested 

to be set at the value 19 (Armanfard 2017). Finally, overall performance is obtained by 

averaging over the 26 subjects. 
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The training process for the LFS algorithm identifies a distinct set of features for each 

available training sample. The features are selected so that locally, in the region 

surrounding the training sample under consideration, other training samples of the same 

class cluster as closely as possible to the considered training point, and other training 

samples of the opposite class as removed as far as possible from the considered point.   The 

training process involves identifying the unique set of features associated with each 

training sample. 

B. Testing phase 

In this phase, only coma data was used as testing data. EEG data from a test subject is 

preprocessed in the same way as described in the training phase. Preprocessed data is fed 

into EEGlab to extract relevant components corresponding only to deviant stimuli since 

MMN only appears on deviant tones. This process is the same as that explained in the 

previous section; however, in the training phase, we extracted standard epochs as well. 

Then, we average over deviant trials.  With previous methods, we average over all available 

data of the same stimulus type, where the recording interval could extend over a few days. 

In this study, we instead create short 2-minute windows with a minute overlap for each 

patient’s EEG data. In this manner, we can monitor the patient's responses over every 

window, thus providing a finer time scale of patient behavior, relative to the averages taken 

over days. The use of a shorter window also allows us to track changes in the patient’s 

response over the recording interval, that may reflect a waxing and waning in the level of 

the patient’s consciousness. 
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For each test sample, we extract the same features that were used in the training phase.  For 

patient 1, we have  M=32*268 = 8576 candidate features in each of 310 windows. For 

patient 2, we have M=8576 features over 210 windows.  

We use two methods for feature selection --  these are the LFS and the mRMR methods.  

The testing procedure for LFS proceeds as follows. We associate a hypersphere of a 

specified radius, centered on the training sample, in the coordinate space specified by the 

features identified in the training phase for the respective training sample.  The hypersphere 

adopts the class of the corresponding training sample. We then test how many hyperspheres 

of each class contain the test sample, and assign the class of the test sample by a majority 

vote.     

A useful property of the LFS method is that we can establish a similarity measure (between 

0 and 1) of a test point to each class. This is achieved by taking the ratio of the number of 

hyperspheres containing the test point for a particular class, to the total number of training 

samples of that class. 

For the mRMR method, we identify a global set of features using the entire training set.  

Using the selected features, we can specify an SVM classifier, and then apply a cross-

validation technique to assess accuracy. 
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2.3.2 TBI project 

This study was done under MacData fellowship with cooperation from Fatemeh 

Yasdanpanah, an undergrad student in the Electrical and Management program at 

McMaster who participated in this project as an undergraduate thesis project.  The goal of 

this project is to apply supervised machine learning techniques to detect prior concussion 

in individuals, among a pool of test subjects. We had forty-three subjects, 20 of which were 

retired football players who had experienced concussion, and the remaining subjects are 

healthy controls. A large quantity of EEG data, recorded under an auditory odd-ball 

paradigm, was available.  A previous study (Ruiter et al. 2019) used this data to indicate 

that MMN and P300 components evoked from an oddball paradigm are significantly 

altered in retired Canadian Football League athletes, even though they had been retired for 

up to a few decades.  Specifically in this project, we wish to test whether a supervised 

machine learning algorithm can discriminate brain injury in the retired athletes, under the 

hypothesis that this EEG data (which was recorded as ERPs, i.e., under an odd-ball 

paradigm, synchronized with a stimulus train) can be treated as resting EEG data, as if the 

stimulus were not present.   In other words, the synchrony of the recorded ERP data with 

the stimulus presentation was ignored when processing the data for this study. If this 

hypothesis approves, the diagnose of TBI would be faster and easier.  

The supervised Machine Learning approach has two phases: phase 1) the training phase 

and phase 2) the test phase. In the training phase, which is offline, we build a Machine 

Learning model using training data. In the testing phase which is online, we test a new 
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unseen object to detect if the athlete suffers from TBI. The proposed traumatic brain injury 

scheme in the training phase consists of five successive stages: 1) pre-processing, 2) feature 

extraction, 3) feature selection, 4) classification, and 5) cross-validation. 

 

 The pre-processing step is to characterize EEG signals corresponding to the traumatic 

brain injury state. First, we use recorded EEG signals from healthy and TBI participants. 

Then, to eliminate as much noise as possible, we bandpass filter the raw EEG signals from 

2Hz to 30Hz. These signals are then divided into two groups: 1) training set- a subset to 

train a model  and 2) test set- a subset to test the trained model. The training set is large 

enough to yield a statistically meaningful representation of the underlying data. The test 

set is representative of the data set as a whole. In other words, we attempt to select a test 

set with similar characteristics to the training set. 

 

 In the feature extraction step, a large number of candidate features are extracted. The 

features fed into the machine learning algorithm are Power Spectral Density (PSD), 

Coherence, Fractal dimension, and Phase-Locking Value (PLV). Not every feature in the 

candidate feature set is equally relevant to the TBI state. Features may not be independent 

of each other. Having irrelevant or dependent features may degrade the accuracy and 

efficiency of the ML prediction and lead to overfitting. Therefore, to improve the 

discrimination performance between the TBI vs. healthy states, and to avoid the overfitting 

issue, the candidate feature set extracted in the feature extraction step is reduced to a set of 
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𝑀 ̂most relevant features (�̂� ≪ M) using a feature selection process that selects only those 

features which are most statistically indicative of the TBI vs. healthy classes. 

 

  The greedy, iterative feature selection method mRMR (minimum Redundancy, Maximum 

Relevance)(Hanchuan Peng, Fuhui Long, and Ding 2005) has been used. This algorithm 

selects the most relevant features according to a maximal statistical dependency criterion 

based on mutual information. The mRMR method ranks each feature to maximize its 

relevance with the target class y and simultaneously minimizes redundancy with features 

selected in previous iterations. The better a feature is deemed to be, the higher the rank it 

is assigned. 

 

 Finally, the reduced set of features obtained from the previous step is then fed into a 

classifier that outputs the estimated alertness class. For the purpose of this project, we use 

a support vector machine (SVM) classifier (Haykin 2009; Hastie, Trevor and Tibshirani, 

Robert and Friedman 2009). SVM is a discriminative classifier formally defined by a 

separating hyper-plane. In other words, given labeled training data (supervised learning), 

the algorithm outputs an optimal hyper-plane which optimally separates the two classes in 

the feature space. In two-dimensional space, this hyper-plane is a line dividing the feature 

space into two parts where each class lies on either side. 

Kernelized SVM is used for classes that cannot be divided linearly. It maps the data to a 

higher dimension using a kernel function, where the classes can be separated linearly. In 

this project, a linear kernel is used. 
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Svmtrain and svmclassify are predefined MATLAB commands and both are used in this 

program. The code is divided into five scripts. The following diagram shows the 

relationship between the scripts, in sequential order of execution.  
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Figure 2-2: Users of this program only need to run the script “TBI_main”. “TBI_main” first runs 

“TBI_FeatureCalc” and then runs “ErrorRateT” which calls “TBI_SVMTrainData” and “sequentialFS”. 
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The script “TBI_FeatureCalc.m” takes the raw data files one subject at a time, and 

calculates features (PSD, Coherence, Fractal, and PLV). The calculated features are 

appended into one file, ready to get fed into the SVM program. 

 In the script “TBI_SVMTrainData.m”, 25% of subjects are kept separate for testing, and 

the remaining 75% is used to train the model. Note that selection of subjects is random 

since the subject index matrix gets shuffled before every run. TBI_SVMTrainData calls 

the script “sequentialFS.m”. This script contains the same logic for training and 

classification. Through the call of sequentialFs.m from within the TBI_SVMTrain, every 

run of the program selects features, trains, and classifies 100 times, and selects the best K-

many features which result in an error rate less than sixty-four percent. Computation of the 

error rate is done in the script “ErrorRateT.m”. Note that the development of the training 

model in each loop of the sequentialFS is done only using the previously selected 75% of 

the data. This means that the initially separated 25% of the data in TBI_SVMTrain is 

isolated and not involved in the training. Once the 100th loop is done, the K-many most 

frequently occurred features are returned to “TBI_SVMTrainData.m”, where a final train 

and classification is done against the initially separated 25% subjects, using only those K-

many features. The file “TBI_SVMTrainData.m” is called in a loop 100 times, from the 

script “ErrorRateT.m”. The average error rate for every 100 runs is returned as the final 

average error for a given K. The script “ErrorRateT.mat” contains an additional loop, in 

case if the user wants to run the entire program for multiple values of K. For example, the 
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user might want to run the program for K=5, 15, 25 that is to get the average error rate 

when the corresponding features are selected by the mRMR feature selection algorithm. 

 In summary, the 100 runs in the script “sequentialFS” are done so that the most frequently-

occurring features while resulting in an error rate of less than sixty-four percent, are 

identified. Then, in “TBI_SVMTrainData” those “best” features are used to train the 

initially separated 75% subjects and test it against the 25%. In order to get an average of 

error, this whole process has been run 100 times from the script “ErrorRateT.mat”. The 

flow diagram below provides a visual demonstration of the logic explained above: 

 

Figure 2-3: Process of choosing the best K-many features. 
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Four different features were calculated; PSD, Coherence, PLV, and Fractal dimension. In 

all cases, the number of features was significantly larger than the number of subjects. 

Therefore, to reduce the number of features, only 35 electrodes were chosen to be used, 

rather than all 64 electrodes. For Example, when PSD, Coherence, and fractal are 

calculated over all the electrodes, it results in a total of 35424 features per subject. This 

number reduces to 10745 per subject when 29 of the 64 electrodes are ignored. When 

features are Coherence and PSD only, and over the 35 electrodes, the total number of 

features is 10080 per subject. When PLV is calculated and used instead of the Coherence, 

and over the 35 electrodes, it results in 1155 features per subject. 
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Chapter 3 

3 Results and Discussion 

 

3.1 Coma project: Using conventional ERP analysis 

In the training phase, we trained the two different methods for feature selection, which are 

mRMR and LFS, where SVM is used as a classifier in conjunction with mRMR. LFS has 

an associated localized classifier which allows incorporating multiple feature subsets when 

performing classification. We trained the method on normal subjects using Leave One Out 

(LOO) cross-validation technique. We also applied the ML models trained on normal 

subjects to two coma patients to examine the model's performance on prediction coma 

outcome. 

3.1.1 Performance of mRMR 

We trained the mRMR feature selection method using LOO cross-validation. mRMR 

selects the most relevant features. Classification is performed in the feature sub-space 

defined by mRMR where we used the support vector machine (SVM) with RBF kernel as 

our classifier. The parameters of the SVM (with RBF) are set to their default value in 

MATLAB.  



 

 

Master Thesis – Fatemeh Arman Fard                    McMaster – Electrical & Computer 

Engineering  

 

38 

 

The accuracy scheme corresponding to this experiment is shown in  Figure 3-1. This figure 

shows the high performance of our ML model for classification of deviant vs. standard 

samples. After multiple runs and closely watching the results, it was found that the 

combination of mRMR and SVM has the highest accuracy. Using only the best single 

feature, which is extracted from mRMR, an accuracy of 86.5% was obtained.  

 

Figure 3-1: Accuracy of the ML model using different number of features that picked as best features 

by mRMR. 

 

In testing phase, SVM predicted both patients as Class D. In other words, the method 

claims that both test data belongs to the Deviant class. The mRMR feature selection method 
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selected the 1238th feature (wavelet decomposition) as the most discriminative feature 

among all the feature set. Using other less important features decreases the accuracy and 

harms the performance of the model. 

 

3.1.2 Performance of LFS 

On the other hand, using the LFS method combined with LOO cross-validation shows a 

noteworthy accuracy of 86.6% in the training phase. In another words, the trained model 

can predict the class of unknown labeled test data with a probability of 86.5%. 

Furthermore, in the testing phase, we only use the deviant component of the coma patients' 

data as test input.  

In the LFS algorithm, we only discuss the similarity value of each coma data interval to 

the deviant class.  Since healthy controls were used for training, the similarity measure, in 

this case, may be interpreted as a pseudo-probability that the coma patient’s deviant 

response is the same as that of a control deviant response. We expect if some of the 

similarity of intervals are high, the brain of the comatose patient will behave as a healthy 

brain in the future; i.e., there is indication that the patient will emerge. 

In Figure 3-2 and Figure 3-3,  we plot the similarity measures of the deviant responses of 

our two coma patients, versus the index of the respective 2-minute recording interval; i.e., 

the horizontal axis may be interpreted as time.  We can see that the similarity measures are 
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quite high in some intervals, giving a positive indication of emergence.  We note these two 

patients did in fact emerge.    

We also note that the similarity measure for both patients waxes and wanes over time.  This 

is an indication that the patient's level of consciousness varies with time.  This is consistent 

with clinical observations of coma patients being partially aware for short periods as they 

progress towards emergence. 

 

Figure 3-2: Similarity for patient 1. This patient showed a very high similarity in most of its intervals. 
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Figure 3-3: Similarity for patient 2. This patient showed a very high similarity in most of its intervals 

 

The SVM classifier also demonstrates a high level of performance using the mRMR 

method.  We note the LFS method can give us a “soft” output in terms of a similarity value 

of a patient to a healthy control, while the SVM/mRMR method only gives a categorical 0 

– 1 output value. 
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3.2 TBI project: Treating ERP data as resting EEG  

Different combinations of the features mentioned in the previous chapter in section 2.3.2, 

were used for feature selection. After multiple runs and closely observing the results, it was 

found that the combination of Coherence and Power Spectral Density (PSD) or a 

combination of Phase Locking Value (PLV) and PSD gives the lowest error rates. 

Coherence and PLV values result in very similar error rates. Fractal features were rarely 

selected by the feature selection algorithm and therefore got eliminated.  
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 ntff=64, cut=16, no fractal, selected 

electrodes only, Coherence and PSD 

k Accuracy (%) 

5 60.6 

15 65.8 

25 63.4 

35 64.6 

45 63.8 

55 63.8 

65 64.8 

75 61 

85 59.4 

95 62.4 

  

Number of features prior to feature selection 43 X 10080 

Figure 3-4: explored over different values of K ( number of best features), from 5 to 95 using only 

Coherence and PSD. 
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 ntff=64, cut=16, no fractal, selected 

electrodes only, PLV and PSD 

k Accuracy (%) 

5 61.3 

15 59.9 

25 62.1 

35 62.2 

45 63 

55 65.3 

65 60.6 

75 63.5 

85 63.3 

95 64.1 

Number of features prior to feature 

selection 

43 X 1155 

Figure 3-5: explored over different values of K ( number of best features), from 5 to 95 using only PLV 

and PSD. 

 

With regard to the low accuracy of the proposed method of 65.8%, and since the accuracy 

of discrimination between controls and athletes in the original study (i.e., which exploits 

the ERP structure in the data) is very high, it appears that our hypothesis of treating ERP 

data as resting data is not valid in this case.  It appears we have lost a significant amount 
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of important information by ignoring the ERP structure and the synchronization with the 

stimulus, making it difficult for the model to distinguish between the classes. 
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Chapter 4 

4 Conclusions 

4.1 Research summary 

The main objective of this research was to apply different machine learning methods on 

brain signals for two EEG/ERP datasets.  In the first (coma) dataset, our objective was to 

discriminate between standard and deviant responses in comatose patients. This is 

equivalent to testing whether or not they will emerge. With the second (TBI) dataset, our 

objective was to discriminate healthy subjects from those who have experienced TBI, while 

treating the data recorded from an ERP paradigm as resting state data. 

 With regard to the coma part of the study, we presented a machine learning approach for 

automatic and continuous assessment of ERPs for identifying the presence of the MMN 

component, which has a good correlation with coma awakening. Experimental results on 

normal and comatose subjects demonstrate the effectiveness of the proposed method. We 

had twenty-six subjects, two of which were comatose patients and the remaining subjects 

were healthy controls. In the training phase, we trained the two different feature selection 

methods,  mRMR, and LFS, where SVM is used as the classifier with mRMR. 



 

 

Master Thesis – Fatemeh Arman Fard                    McMaster – Electrical & Computer 

Engineering  

 

47 

 

We trained the mRMR feature selection method using LOO cross-validation and achieved 

an accuracy of 86.5%.  We used SVM with an RBF kernel as our classifier. In the testing 

phase, our model predicted both coma patient’s class. 

 LFS has an associated localized classifier which allows incorporating multiple feature 

subsets when performing classification. We trained the method on healthy subjects 

evaluated using a Leave One Out (LOO) cross-validation technique and achieved an 

accuracy of 86.6%. We also applied the ML models trained on healthy subjects to two 

coma patients to examine the model's performance on prediction coma outcome. Both 

coma patients predicted emergence, correctly. 

LFS and mRMR methods both represented high performance, but LFS’s prediction is more 

reliable since it gives us a similarity measure of a test sample to each of the classes. Finding 

the similarity gives us a heads up about each patient’s brain signal state compared to a 

healthy brain.   

For the Traumatic Brain Injury study, the main goal was to find an automatic method, using 

supervised Machine Learning analysis of the electroencephalogram (EEG), to detect TBI 

in patients. In this part, ERPs are treated like resting EEG. This objective is hard to achieve 

using traditional methods, such as through responses to questions. For example, patients 

might be afraid, to tell the truth or they might be not sure about their condition and would 

not be able to express their situation accurately. Consequently, the diagnosis would be 

made on an incorrect basis. Since the proposed study is based on EEG analysis, the 

diagnosis is much more trustworthy, in comparison to previous methods which mostly rely 
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on the patient’s verbal responses.  The data was collected from retired football players and 

healthy individuals. Each data record is labeled as either healthy or TBI.  The objective of 

our ML process is to discriminate between these two classes.  

With regard to the low accuracy of the proposed method of 65.8%, and since the accuracy 

of discrimination between controls and athletes in the original study (i.e., which exploits 

the ERP structure in the data) is very high, it appears that our hypothesis of treating ERP 

data as resting data is not valid in this case. It appears we have lost a significant amount of 

important information in the data by ignoring ERPs components, making it difficult for the 

model to distinguish between the classes. 

Moreover, in the coma study, collecting new EEG data from comatose patients has been 

an important and challenging part to extend this study, but due to the pandemic of Covid-

19, we had to stop all the process and use the previous dataset. 

4.2 Future work 

In this thesis, we proposed two different methods for feature selection and classification in 

the present context. One suggestion for future work is to extend our results to include a 

wider variety of machine learning methods. One example is the use of adaptive 

connectivity measures that can track responses throughout an ERP interval. 

The dataset used for this research was small, so as future work we suggest extending the 

database to include significantly more DoC and comatose patients. 
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For the LFS method, we evaluated the similarity of the EEG data empirically. For future 

studies when more data becomes available, determining a suitable threshold, above which 

the patient is deemed to emerge, is a necessary step for the application of the proposed 

method in the clinic. 
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