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Lay Abstract 
This work explores the potential for machine learning to improve the study of diet and 

disease. In chapter 2, opportunities are identified for big data to make diet easier to 

measure. Also, we highlight how machine learning could find new, complex relationships 

between diet and disease. In chapter 3, we apply a machine learning algorithm, called 

conditional inference forests, to a unique Canadian dataset to predict whether people 

developed strokes or heart attacks. This dataset included responses to a health survey 

conducted in 2004, where participants’ responses have been linked to administrative 

databases that record when people go to hospital or die up until 2017. Using these 

techniques, we identified aspects of nutrition that predicted disease, including caffeine, 

alcohol, and supplement-use. This work suggests that machine learning may be helpful in 

our attempts to understand the relationships between diet and health. 
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Abstract 

The use of big data and machine learning may help to address some challenges in 

nutritional epidemiology. The first objective of this thesis was to explore the use of 

machine learning prediction models in a hypothesis-generating approach to evaluate how 

detailed dietary features contribute to CVD risk prediction. The second objective was to 

assess the predictive performance of the models. A population-based retrospective cohort 

study was conducted using linked Canadian data from 2004 – 2018. Study participants 

were adults age 20 and older  (n=12 130 ) who completed the 2004 Canadian Community 

Health Survey, Cycle 2.2, Nutrition (CCHS 2.2). Statistics Canada has linked the CCHS 

2.2 data to the Discharge Abstracts Database and the Canadian Vital Statistics Death 

database, which were used to determine cardiovascular outcomes (stroke or ischemic 

heart disease events or deaths). Conditional inference forests were used to develop 

models. Then, permutation feature importance (PFI) and accumulated local effects 

(ALEs) were calculated to explore contributions of nutrients to predicted disease. 

Supplement-use (median PFI (M)=4.09 x 10-4, IQR=8.25 x 10-7 – 1.11 x 10-3) and 

caffeine (M=2.79 x 10-4, IQR= -9.11 x 10-5 – 5.86 x 10-4) had the highest median PFIs for 

nutrition-related features. Supplement-use was associated with decreased predicted risk of 

CVD (accumulated local effects range (ALER)= -3.02 x 10-4 – 2.76 x 10-4) and caffeine 

was associated with increased predicted risk (ALER= -9.96 x 10-4 – 0.035). The best-

performing model had a logarithmic loss of 0.248. Overall, many non-linear relationships 

were observed, including threshold, j-shaped, and u-shaped. The results of this 

exploratory study suggest that applying machine learning to the nutritional epidemiology 
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of CVD, particularly using big datasets, may help elucidate risks and improve predictive 

models. Given the limited application thus far, work such as this could lead to 

improvements in public health recommendations and policy related to dietary behaviours.  
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reviewed and edited the included work. 

 

 

 

 

 

 

 

 

 



ix 
 

Table of Contents 

Lay Abstract ...................................................................................................................................... iii 

Abstract ............................................................................................................................................ iv 

Acknowledgements .......................................................................................................................... vi 

Preface ........................................................................................................................................... viii 

List of Figures and Tables ................................................................................................................. xi 

List of all Abbreviations and Symbols ............................................................................................ xiii 

Declaration of Academic Achievement ........................................................................................... xv 

CHAPTER 1: Introduction and Objectives ........................................................................................ 1 

CHAPTER 2: Manuscript – Perspective: Big Data and Machine Learning Could Help to Advance 
Nutritional Epidemiology ................................................................................................................. 6 

2.1 Abstract .................................................................................................................................. 7 

2.2 Introduction ........................................................................................................................... 8 

2.2.1 Elaboration of Issues in Nutritional Epidemiology .......................................................... 8 

2.2.2 Big Data and Machine Learning .................................................................................... 12 

2.3 Current and Potential Applications of Big Data and Machine Learning in Nutritional 
Epidemiology .............................................................................................................................. 15 

2.3.1 New Measurement Methods ........................................................................................ 15 

2.3.2 Tools to Model the Complexity of Diet in Relation to Disease ..................................... 17 

2.3.3 New Means of Controlling for Confounding Variables ................................................. 19 

2.3.4 Improving Disease Prediction ....................................................................................... 21 

2.3.5 Informing Causal Studies............................................................................................... 24 

2.4 Conclusion ............................................................................................................................ 26 

CHAPTER 3: Manuscript - Development of Machine Learning Prediction Models to Explore 
Nutrients Predictive of Cardiovascular Disease Using Canadian Linked Population-Based Data .. 28 

3.1 Abstract ................................................................................................................................ 29 

3.2 Introduction ......................................................................................................................... 31 

3.3 Methods ............................................................................................................................... 32 

3.3.1 Study Design and Data Sources ..................................................................................... 32 

3.3.2 Ethics and consent ........................................................................................................ 33 

3.3.3 Outcome........................................................................................................................ 34 



x 
 

3.3.4 Features ........................................................................................................................ 34 

3.3.5 Data Pre-processing ...................................................................................................... 35 

3.3.6 Statistical Analysis ......................................................................................................... 36 

3.4 Results .................................................................................................................................. 38 

3.4.1 Descriptive Statistics ..................................................................................................... 38 

3.4.2 Hyperparameter Tuning ................................................................................................ 43 

3.4.3 Permutation feature Importance .................................................................................. 44 

3.4.4 Accumulated Local Effects ............................................................................................ 46 

3.4.4.1 Supplements and Substances ................................................................................ 46 

3.4.4.2 Vitamins from Food Sources .................................................................................. 49 

3.4.4.3 Macronutrients and Moisture................................................................................ 51 

3.4.4.4 Food Categories ..................................................................................................... 53 

3.4.4.5 Minerals ................................................................................................................. 54 

3.4.4.6 Non-nutrition-related Features ............................................................................. 54 

3.4.5 Prediction Performance ................................................................................................ 55 

3.5 Discussion ............................................................................................................................. 55 

3.5.1 Strengths ....................................................................................................................... 61 

3.5.2 Limitations ..................................................................................................................... 62 

3.6 Conclusions .......................................................................................................................... 62 

3.7 Acknowledgements .............................................................................................................. 63 

3.9 Supplementary Figures ........................................................................................................ 65 

CHAPTER 4: Conclusion .................................................................................................................. 93 

4.1 References ........................................................................................................................... 96 

 

 

 

 



xi 
 

List of Figures and Tables 
Table 1: Descriptive statistics (p. 39 – 43)  

Figure 1: Permutation feature importance of nutrition-related variables that had a 

permutation feature importance greater than zero (p. 45) 

Figure 2: Accumulated local effects of the supplements and substances with a 

permutation feature importance greater than zero (p. 48) 

Figure 3: Accumulated local effects of the vitamins from food with a permutation feature 

importance greater than zero (p. 50) 

Figure 4: Accumulated local effects of the macronutrients with a permutation feature 

importance greater than zero (p. 52) 

Supplementary figure 1: Study design (p. 65) 

Supplementary figure 2: Prediction performance of the hyperparameter sets tested during 

cross-validation (p. 66) 

Supplementary figure 3: Permutation feature importance of the features not related to 

nutrition (p. 67) 

Supplementary figure 4: Accumulated local effects of zinc and vitamin B6 from food 

sources (p. 68) 

Supplementary figure 5: Accumulated local effects of caffeine and percent of daily 

energy from alcohol (p. 69) 

Supplementary figure 6: Accumulated local effects of frequency of drinking alcohol (p. 

70) 



xii 
 

Supplementary figure 7: Accumulated local effects of vitamin D and vitamin B12 

supplementation (p. 71) 

Supplementary figure 8: Accumulated local effects of the food categories with a 

permutation feature importance greater than zero (p. 72) 

Supplementary figure 9: Accumulated local effects of the minerals from food with a 

permutation feature importance greater than zero (p. 73) 

Supplementary figure 10: Accumulated local effects of sodium and phosphorous 

supplementation (p. 74) 

Supplementary figure 11: Accumulated local effects of age (p. 75) 

Supplemental figure 12: Accumulated local effects of features not related to nutrition with 

the highest permutation feature importance after age (p. 76) 

Supplemental figure 13: Receiver operator curve plot (p. 77) 

Supplemental figure 14: Calibration Plot (p. 78) 

Supplementary table 1: All features included in models with descriptions (p. 79) 

Supplementary table 2: Percent of observations with missing values for each feature 

included in models (p. 89) 

Supplementary table 3: Hyperparameter tuning results  

Supplemental table 4: All permutation feature importance values  

Supplementary table 5: Accumulated local effects of all included features in all models 

 

 



xiii 
 

List of all Abbreviations and Symbols 
 

95% CI 95% Confidence Interval 

a Year 

ASA24 Automated Self-Administered 24-hour 

ALE Accumulated Local Effects 

ALER Accumulated Local Effects Range 

AUROC Area Under the Receiver Operator Curve 

CCHS 2.2 2004 Canadian Community Health Survey, Cycle 2.2, Nutrition 

CVD Cardiovascular Disease 

FAMD Factorial Analysis of Mixed Data 

g Gram 

h Hour 

ICD-9 International Classification of Diseases 9 

ICD-10 International Classification of Diseases 10 

IQR Interquartile Range 

IU International Units 

kcal Kilocalories 

kg Kilogram 

LASSO Least Absolute Shrinkage and Selection Operator 

LOESS Locally Estimated Scatterplot Smoothing 

M Median 

mg milligrams 

PCA Principal Components Analysis 

PFI Permutation Feature Importance 

PUFA Polyunsaturated Fatty Acids 

RAE Retinol Activity Equivalents 

RCT Randomized Controlled Trial 



xiv 
 

TMLE Targeted Maximum Likelihood Estimation 

µg micrograms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



xv 
 

Declaration of Academic Achievement 

I declare this work to be my own. Specifically, I led the development of the 

research question, perspectives, study design, and analysis plan for the thesis, including 

both manuscripts. I conducted the analysis, wrote the first draft, and reviewed/edited the 

thesis and both included manuscripts. My supervisor, Dr. Laura N. Anderson, contributed 

to the development of the research question, perspectives, study design, and analysis plan; 

supervised the analysis and writing; and reviewed/edited all included work. Dr. Laura 

Rosella and Dr. Andrew Costa also contributed to the conceptualization of both 

manuscripts. All co-authors reviewed and edited the included work. 

 

 

 

 

 

 

 

 

 



Master’s Thesis – J.D. Morgenstern; McMaster University – Public Health 
 

1 
 

CHAPTER 1: Introduction and Objectives  
Suboptimal diet recently surpassed smoking as the leading risk factor for non-

communicable disease morbidity and mortality in the Global Burden of Disease Study.1 

One of the major drivers of this diet-related burden is cardiovascular disease (CVD), 

which accounts for one third of deaths worldwide.2 While nutritional risk factors for CVD 

have been identified, many aspects of the role of diet in CVD remain poorly understood.3 

There is some disagreement among experts about nutritional factors such as 

carbohydrates,4,5 eggs,6,7 and red meat.8,9  

There are many reasons for this ongoing debate. Recent commentaries have 

highlighted the complexity of dietary exposures, difficulty in accurately measuring food 

consumption, and long latency until disease onset as contributing factors.10,11 Also, it has 

been argued that tiny effect sizes, multicollinearity, residual confounding, and 

measurement error are major issues for observational studies, which form the bulk of 

research in nutritional epidemiology.12,13 Furthermore, the common use of single micro- 

and macronutrients, or even simple food groups and dietary pattern scores, fails to 

consider the full richness of diet. Finally, the lack of transparency in analysis and 

reporting of these observational studies has been emphasized as a further issue leading to 

the lack of reproducibility in nutritional epidemiology.12–14 These challenges have led 

some scientists to go so far as to suggest that much of current nutrition knowledge may be 

a reflection of cumulative biases rather than scientific facts.15 

A machine learning approach may help to mitigate some of these concerns. 

Specifically, it may help to better incorporate non-linear and non-additive relationships; 
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incorporate more complex dietary exposures, and account for multicollinearity. Given the 

current controversy surrounding domain knowledge in nutritional epidemiology, it may 

be helpful to use empirical analytic approaches that traditionally have not been applied in 

the field. Feature selection methods in machine learning can explore the totality of diet to 

find factors most predictive of disease.16 Additionally, some algorithms like random 

forests or conditional inference forests incorporate variable importance rankings into the 

modelling process and are relatively resistant to multicollinearity.17 Furthermore, these 

methods could analyze multiple levels of nutrition characterization, such as micro- and 

macronutrients, individual foods, and food groups, simultaneously for their relationship to 

predicted disease. An additional benefit of looking at diet as a whole may be a lessened 

risk of analytical bias, as all factors could be included, in some types of studies. Machine 

learning models are also generally more adept than statistical methods at incorporating 

non-linear and non-additive relationships, of which many are already known in nutritional 

epidemiology, and many likely remain to be discovered.4,18,19 Finally, the machine 

learning practice of using resampling techniques for validation may help elucidate the 

most locally relevant dietary drivers of disease. Overall, these approaches may suggest 

novel avenues of investigation and improve prediction models by making better use of 

dietary factors. 

Thus far there has been limited application of machine learning in nutritional 

epidemiology, but initial studies appear promising.20,21  In the first manuscript presented 

in this thesis, “Perspective: Big Data and Machine Learning Could Help to Advance 

Nutritional Epidemiology” we outline the full rationale for applying big data and machine 
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learning in nutritional epidemiology. In the second manuscript, we apply conditional 

inference forests, a machine learning method, to make predictive models for 

cardiovascular disease (CVD) using a Canadian health survey that has been linked to 

administrative health databases. Conditional inference forests are a variant of random 

forests, which is a supervised machine learning technique that incorporates a form of 

variable selection into the model-building process, making it well suited to situations with 

many covariates. Additionally, random forests require little pre-processing of included 

features, easily incorporating features with different units and both categorical and 

continuous features.16 They have frequently been used to identify gene-disease 

associations.22 More recently, epidemiologists have begun using random forests to both 

predict health outcomes of interest and identify potentially important risk factors.23,24 

Random forests have proven highly adaptable, flexible in modelling non-linear 

relationships, able to identify complex interactions between variables, and useful for 

ranking variable importance.25 They have previously been successfully used to model the 

relationship between dietary patterns and cardiac risk factors;26,27 however, they have not 

frequently been used to predict CVD directly. Additionally, no relevant previous studies 

were conducted in Canada. 

There are, however, some limitations associated with applying machine learning 

to nutritional epidemiology. For example, the theoretical properties of these models are 

unlike traditional advanced or causal epidemiology methods, which makes it more 

difficult to control for traditional sources of bias (such as confounding).28 Additionally, 

although machine learning models may better incorporate non-linearity and non-
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additivity, this added flexibility also makes them more vulnerable to overfitting (i.e. 

modelling non-generlizable noise in the training data).16 This problem can be mitigated 

through the use of resampling-based validation, but it is unknown whether the added 

model complexity will provide sufficient predictive benefits to warrant the risks of 

overfitting. As such, in this thesis we investigate the prevalence of non-linear 

relationships to help ascertain any value of flexible modelling when using complex 

dietary exposures to predict cardiovascular disease. We also compare our results to 

existing literature. Another disadvantage of machine learning is the loss of model 

interpretability, which further obfuscates attempts to make inferences and limits model 

usability.29 Generally, simpler models are preferred when they have equivalent predictive 

performance. This disadvantage is partly mitigated through application of interpretable 

machine learning methods.29 These approaches may help to further delineate any 

advantage of the complex modelling methods.  

In summary, there are several reasons why research applying machine learning to 

predict CVD with nutrition is necessary and novel. Despite decades of intensive research, 

there remains considerable debate/disagreement regarding dietary recommendations for 

CVD. This is significant as CVD remains the second leading cause of death in Canada 

after cancer, having caused 66 922 deaths in 2017.30 Also, historical progress in reducing 

incidence of the disease may have stalled.31 There remains some debate among experts on 

the nutritional causes of CVD, which may be due in part to complexities that are not 

adequately captured by traditional nutrient categories, dietary patterns, and statistical 

techniques. Therefore, the flexibility of ML approaches may offer novel insights. These 
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methods may also facilitate better predictive models. Notwithstanding its potential, there 

has been very little application of ML to understanding diet and CVD, adding further 

value to this investigation.  Thus, the objectives of this thesis were: 

 

Primary Research Objective 

 To explore the use of machine learning prediction models in a hypothesis-

generating approach to evaluate how detailed dietary features contribute to CVD 

risk prediction with interpretable machine learning methods 

Secondary Research Objective 

 To evaluate the predictive performance of the machine learning models 

incorporating detailed dietary variables. 

 

.  
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2.1 Abstract 
The field of nutritional epidemiology has faced exceptional challenges in 

establishing consistent and uncontested conclusions regarding the effects of diet on 

disease. Two major issues that have slowed progress are foods’ inherent complexity and 

difficulties in measuring diet precisely and accurately. Diet’s complexity leads to 

difficulties in defining exposures, controlling for confounding, and modelling non-linear 

and non-additive relationships. Most findings in nutrition research are currently based on 

observational studies, so wider use of randomized controlled trials (RCTs) have been 

advocated as a means of achieving clarity. However, adequate RCTs would be cost-

prohibitive for most questions in nutritional epidemiology and would still entail concerns 

regarding generalizability and intervention definitions. We propose that judicious 

application of big data and machine learning in nutrition science could help to enhance 

observational studies by offering new means of dietary measurement, more tools to model 

the complexity of diet and its relationships with disease, and additional potential ways of 

addressing confounding. These developments could help to improve the reliability of 

findings in nutritional epidemiology.  
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2.2 Introduction 
Conservatively, it is estimated that 250 000 different foods are consumed globally 

with many differing compositions and trillions of resulting combinations.13 Given this 

degree of complexity, it is often unclear how best to assess relationships between 

nutrition and disease. Nutritional epidemiologists are faced with a diversity of exposures 

rivaling the genome, while also being equipped with less accurate and precise means of 

measurement.32 Moreover, diet is not a constant, compounding measurement error at one 

timepoint with changes over the life course. Among other issues, the complexity of diet 

and exceptional obstacles to measurement have likely contributed to observed 

inconsistencies in the nutritional epidemiologic literature.13,14,32 Many of these issues 

stem from a strong reliance on observational studies and could be partially addressed by 

greater reliance on randomized controlled trials (RCTs). However, significant obstacles to 

applying trials in nutrition science will probably restrict exploration of most research 

questions to observational study designs.32–34 As such, uncertainty stemming from the 

complexity of diet and high levels of measurement error must continue to be addressed. 

We propose that judicious application of big datasets and machine learning may mitigate 

some issues stymieing progress in nutritional epidemiology by enabling better use of 

observational data. 

 

2.2.1 Elaboration of Issues in Nutritional Epidemiology 
Suboptimal diet recently surpassed smoking as the leading risk factor for non-

communicable disease morbidity and mortality in the Global Burden of Disease Study.1 

This indicates that developing a detailed understanding of diet’s effects on health must be 
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a top priority in efforts to improve public health. Unfortunately, diet and nutritional 

factors may be among the least understood risk factors.35 After successful early years 

tackling micronutrient deficiencies, nutritional epidemiology largely shifted focus to 

understanding dietary risk factors for chronic diseases of aging.36 A key focus of this 

endeavour has been the elaboration of the nutritional determinants of coronary artery 

disease, such as saturated fat. However, even on this long-studied topic, there remains 

some debate.4,37–39 For example, numerous systematic reviews of the RCT evidence for 

saturated fats’ effect have reached differing conclusions despite relying on the same 

evidence base.37,38,40–45 Moreover, ongoing uncertainties range far beyond saturated fat 

and heart disease, such as the effects of carbohydrates,4,5 eggs,6,7 and red meat on all-

cause mortality and/or cancer.8,9 For instance, the International Agency for Research on 

Cancer classified red meat as “probably carcinogenic to humans” in 2015,9 while a more 

recent systematic review recommended not reducing red meat consumption.8 Despite 

decades of intensive study, substantial ambiguity remains regarding important health 

effects of many common nutrients and foods. 

As revealed by these ongoing uncertainties, nutritional epidemiology has proven 

to be one of the most challenging areas of health research. A source of this uncertainty 

that has recently been criticized is a reliance on observational studies, wherein it is 

difficult to reconcile diet’s complexity and the impacts of high levels of measurement 

error.10,11 Given the vast space of potential dietary exposures and their combinations, it is 

difficult to know how to properly specify models. Frequently, only a subset of foods, food 

groups, or single nutrients are included. Even the growing practice of incorporating 
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dietary pattern scores fails to approach the full richness of diet. Moreover, changes in diet 

over the life course are often ignored.46 Additional issues related to this complexity 

include strong correlations between diverse nutrients and also between dietary factors and 

other important determinants of health.32 Together, these strong interdependencies can 

result in unstable coefficients in statistical models and residual confounding. A further 

result of the complexity of the exposures in nutritional epidemiology is the enablement of 

selective analyses, multiplicity issues in frequentist analyses, and biased reporting.12–14 

All of the issues related to dietary complexity are only exacerbated by difficulties in 

precisely and accurately measuring dietary intake.12,13 Nondifferential measurement error 

can lead to both exaggeration and diminution of nutrients’ effects, particularly in 

individual studies.47,48 This problem has been highlighted as a contributor to 

reproducibility crises in scientific areas outside of nutritional epidemiology.48 

Furthermore, nondifferential measurement error makes it difficult to detect the small 

effect sizes that may be typical of individual nutrients.13,32 It also exacerbates problems 

with multicollinearity and residual confounding.47,49 Meanwhile, differential 

measurement error, when it exists, could compromise the internal validity of studies and 

further contribute to reproducibility issues. Overall, the challenging tasks of overcoming 

dietary complexity and measurement error in observational studies are probably major 

causes of inconsistency in nutritional epidemiology. 

Proposed solutions to improve nutritional epidemiology include greater use of 

large RCTs,12 improved dietary measurement with biomarkers,50 and the use of 

Mendelian randomization.51 It is true that large, long, and well-conducted RCTs may be 
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able to elucidate several well-characterized problems. However, there will be ongoing 

issues with blinding, ensuring adherence, and the long latency until disease onset.34 It is 

likely possible to address these issues at great expense, but the cost will be prohibitive for 

most questions that are not considered of highest priority. Additionally, enduring 

questions about generalizability and the exact characterization of dietary interventions 

will remain. Therefore, observational studies are likely to remain the dominant, and 

perhaps even preferable, study design for many questions in nutritional epidemiology. 

The use of biomarkers to confirm and better characterize nutrition exposures is a 

promising method for reducing measurement error. However, there remain concerns 

regarding the specificity of such markers.52 Additionally, these methods are unlikely to 

fully address issues stemming from dietary complexity. Mendelian randomization, which 

uses genetic polymorphisms as instrumental variables to infer causal effect estimates, is 

another promising avenue.53 In addition to mimicking randomized interventions, 

Mendelian randomization studies assess lifelong exposures. As an example, they have 

provided further evidence that LDL is likely to be a causal factor in coronary heart 

disease.54 However, it is difficult to find genetic factors for nutritional exposures that 

meet the necessary criteria to be an instrumental variable for Mendelian randomization 

studies. There have been attempts to use genes associated with cruciferous vegetable and 

dairy consumption,55 but concerns have been raised about pleiotropy and population 

stratification. Mendelian randomization studies may well be a useful tool for advancing 

nutrition research methodology; however, they will likely not be able to address all 

questions.  
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Nutritional epidemiology has relied heavily on observational studies, which 

currently entails grappling with dietary complexity and high levels of measurement error. 

These issues notwithstanding, observational studies are likely to remain the dominant 

research modality in nutritional epidemiology given the barriers and fundamental issues 

involved in more widespread application of RCTs. Innovations in the use of dietary 

biomarkers and Mendelian randomization offer substantial promise but will probably 

have limited applicability. In the context of high dietary complexity and measurement 

error with no easy solutions, greater consideration of big data and machine learning could 

enhance the use of observational data to advance nutritional epidemiology. 

 

2.2.2 Big Data and Machine Learning 
“Big data” refers to datasets that usually include both many observations and 

variables, making the use of traditional software and statistical tools difficult.56 As a 

result, there is often a need for more flexible modelling than provided for in classical 

statistical analysis. The specific size of datasets required to constitute big data varies 

depending on the context. Generally, it has been characterized by the ‘three V’s’, which 

include the data’s volume, velocity, and variety.57 Big datasets are also often less 

structured than traditionally collected data, and may be a byproduct of something, rather 

than an intentionally collected sample.58 Use and availability of big data has risen 

alongside exponential improvement and expansion of computing devices, data storage 

capacity, and the internet of things. The internet of things refers to networks of 

computerized objects that record and share data among themselves with no human 
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intervention.59 In addition to many effluent data sources relevant to health (e.g. electronic 

health records and social media), researchers have recently begun to contend with big 

data arising from the investigation of complex biological systems such as the genome and 

microbiome.60 While diet has usually been studied using simplified constructs, its 

complexity could become another source of big data. More recently, it has become 

possible to imagine capturing both the complexity in food itself, which would entail many 

variables, and to make many more observations than we have in traditional investigator-

generated datasets. 

Machine learning is a subfield of artificial intelligence, which encompasses a wide 

range of approaches that seek to provide computers with the ability to learn tasks without 

being explicitly programmed.61 These approaches rely on algorithms that derive patterns 

from data with little human input.62 This contrasts with statistical techniques that rely 

more on human knowledge for verification of model assumptions and variable selection.63 

Statistical techniques also emphasize a theoretical approach to hypothesis testing and 

uncertainty estimation, which is not common in machine learning. Finally, machine 

learning approaches tend to make greater use of cross-validation than statistical 

regression methodologies, although cross-validation can be used in both approaches. 

Cross-validation refers to randomly splitting a dataset into mutually exclusive 

components followed by iterative training and testing of a model on the different 

components to generate an average estimate of performance, which is more likely to 

apply out-of-sample. Machine learning is often applied to big data, where it is sometimes 

difficult to apply conventional statistical approaches. 
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Machine learning can be broadly classified into supervised and unsupervised 

approaches.64 For supervised approaches, an example dataset, including complete label or 

outcome information, is used by a learning algorithm to identify patterns in the 

explanatory variables. The trained model is then applied to make predictions on new data. 

Common examples of supervised algorithms include neural networks, random forests, 

and support vector machines. In contrast, for unsupervised approaches, there are no 

human-supplied examples for the observations in a dataset and the algorithm searches for 

latent patterns or groupings.65 Examples of unsupervised approaches include 

dimensionality reduction, such as principal components analysis (PCA) and autoencoders; 

and clustering approaches, such as k-means and k-medoids.64 An additional subfield of 

machine learning is feature selection, which aims to remove variables that are irrelevant 

to the outcome in supervised problems,66 thereby overcoming the curse of dimensionality. 

The curse of dimensionality refers to a phenomenon whereby prediction accuracy 

decreases if too many irrelevant variables are added to an analysis, especially in the 

context of a limited sample size.67 Typical examples of feature selection algorithms are 

least absolute shrinkage and selection operator (LASSO), genetic algorithms, and 

recursive feature elimination. In health research, machine learning has been applied to the 

analysis of genome- and microbiome-derived data, where conventional analyses are 

limited by the curse of dimensionality66 and there is limited mechanistic understanding or 

theory to guide analysis. Several comprehensive review articles relating big data and 

machine learning to epidemiology and public health provide greater detail on both topics, 

but nutritional epidemiology has not yet been discussed in detail.68,69 
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2.3 Current and Potential Applications of Big Data and Machine Learning in 
Nutritional Epidemiology 

The objective of this perspective article is to highlight some of the ways that 

developments in big data and machine learning can address issues in the use of 

observational data in nutritional epidemiology. Their application could reduce 

measurement error with new tools, improve modelling of nutrition’s non-linear and non-

additive relationships with disease, and allow better characterization of the complexity of 

diet and its confounders. Such developments could improve predictive models for chronic 

diseases and enhance inferences about the relationship between diet and disease. 

 

2.3.1 New Measurement Methods 
Big data related to nutrition are now generated through multiple means. These 

data may lead to reduced measurement error in nutritional epidemiology through the 

provision of more objective, scalable, and affordable means of data collection. For 

example, web-based tools, such as the Automated Self-Administered 24-hour (ASA24) 

Dietary Assessment Tool, capture 24-hour recalls without the time and expense required 

by trained interviewers;69 however, this does shift the burden of collection to the 

respondent, who may not be willing. Such online self-report modalities are readily 

accessible and could allow the recruitment of larger study populations, with more 

frequent, detailed, and longitudinal characterization of their diets. Less user-burdensome 

methods include the large and detailed grocery purchase habits of populations generated 

by consumer rewards programs, or the eating patterns recorded in smartphone tracking 
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apps, which could be used to develop cohorts with unprecedented dietary detail and 

sample sizes. An example of the latter type of effort is the Harvard Apple Women’s 

Health study, the first long-term research study that aims to use health app data to 

advance the understanding of menstrual cycles and their relationship to various health 

conditions.70 Further, machine learning is being used to find reliable and specific 

biomarkers to characterize dietary exposures,71 which may improve measurement of some 

aspects of diet. 

An additional means of collecting nutritional data for research may come from the 

use of machine learning models to classify pictures of food.72–77 Given the ubiquity of 

smartphones, such techniques may facilitate less onerous and more regular diet records, 

reducing both differential and nondifferential measurement error. They could also enable 

practical, accurate, and detailed measurement of diet trajectories over longer periods of 

time. Additionally, machine learning-based food recognition could incorporate auditory 

and other contextual information to improve the accuracy of measurement. Considering 

the rapid growth of the internet of things industry, it is conceivable that such 

measurements could even be conducted passively. Home security systems, thermostats, 

fridges, voice assistants, and many other appliances are being equipped with cameras, 

microphones, and WIFI functionality. Thus, with the permission of their owners, such 

devices could be recruited for dietary measurement. Another approach is the digestion of 

the data produced on social media and web search platforms, which often includes 

integrated food and health-related information.78 With these new data collection 

modalities, observational studies could be rapidly scaled either passively or through 
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dissemination of relevant apps, increasing study precision and potentially generalizability. 

However, a cautious consideration of the impact of selection bias and systematic 

measurement error in such large and often secondary datasets would require further 

investigation. Additionally, many of these approaches entail major privacy concerns. 

Careful, collaborative work will be needed to ensure research projects involving this data 

are ethical, collect only strictly necessary information, and that security is sufficiently 

robust to ensure that other parties (e.g. insurance companies) cannot access it. 

 

2.3.2 Tools to Model the Complexity of Diet in Relation to Disease 
 Current approaches to modelling the relationship between nutritional exposures 

and disease typically focus on single nutrients or foods, though there has been a growth of 

studies including simplified, low-dimensional representations of overall diet, such as the 

nine-point Mediterranean Diet Score,79 (alternative) Healthy Eating Index,80,81 or DASH 

diet score.82 Machine learning could afford inclusion of more dietary explanatory 

variables and help to identify the most predictive ones empirically.83 Nutritional 

epidemiology may benefit from incorporating rich, a posteriori, dietary exposures with 

machine learning approaches. This is not completely novel, as some clustering, 

dimensionality reduction, and feature selection approaches have been applied to derive 

important aspects of diet. For example, PCA,84 k-means clustering,85 and LASSO86 have 

been used to generate a posteriori dietary patterns and associate them with various 

disease outcomes. However, thus far mostly linear approaches have been used. 

Additionally, there has been no use of similar techniques to analyze multiple levels of 

food classification simultaneously. Machine learning could be used to incorporate these 
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multiple levels, such as micro- and macronutrient content, specific food types, and food 

groups, within the same analysis. As a result, the most important aspects of diet could be 

determined empirically for a given problem, which was called for in a recent 

commentary.10 However, these techniques are not without caution. With no initial expert 

curation of variables and careful validation, important predictors could be missed and 

unimportant predictors incorrectly emphasized.  

In addition to better capturing the richness of nutrition, machine learning can 

model non-linear and non-additive relationships more flexibly, particularly when they are 

unknown. Most existing models in nutritional epidemiology assume monotonic, linear, 

and additive relationships between diet and disease. However, there is emerging evidence 

that non-linear relationships may be more common than previously thought. For example, 

salt,18 carbohydrate,4 and fats19 may all have u- or j-shaped relationships with 

cardiovascular diseases. Additionally, there is support for various interactions in 

nutritional epidemiology. For instance, the impact of salt on hypertension seems to be 

moderated by the potassium and simple carbohydrate content of the diet.87–89 Machine 

learning models could incorporate both known and unknown non-linear and interactive 

relationships in models that include numerous predictors.  

While limited, there are studies that have applied machine learning to incorporate 

greater dietary complexity and to more flexibly model health-related outcomes thus far. 

For example, a stochastic gradient boosting regression algorithm was used to accurately 

predict individual glycemic responses to food with detailed dietary, lifestyle, medical, 

laboratory, anthropometric, and microbiota data.20 The model included thousands of 
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variables and used permutation feature importance and partial dependence plots to 

interpret their contributions to predictions. Unexpectedly, the model placed greater 

emphasis on microbiota-related variables. This study was unique among nutrition studies 

in using a surrogate outcome with low latency and having unusually precise dietary 

measurements. Another more typical nutritional epidemiologic cohort study found a 22% 

increase in the accuracy of cardiometabolic risk factor prediction when comparing 

random forest to linear regression.90 This study incorporated rich dietary independent 

variables and used PCA for dimensionality reduction. Lastly, another recent cohort study 

compared the performance of random survival forests and gradient boosted machines 

using nutritional explanatory variables with a standard Cox proportional hazards model 

lacking nutritional data in predicting cardiovascular mortality.91 The machine learning 

models outperformed the statistical model in both predictive discrimination and 

calibration. Interestingly, addition of nutrition data to the statistical model did not 

improve its predictive discrimination or calibration, but, when added to the machine 

learning models, both measures of prediction performance improved. This lends support 

to the proposition that machine learning models may better leverage the full richness of 

diet in modelling health outcomes. 

 

2.3.3 New Means of Controlling for Confounding Variables 
Incorporating data with both higher numbers of observations and more variables 

into nutritional epidemiologic studies, alongside machine learning analytical techniques, 

could possibly reduce residual confounding. Potential opportunities include a higher 

chance of avoiding unmeasured confounding with higher dimensionality, using machine 



Master’s Thesis – J.D. Morgenstern; McMaster University – Public Health 
 

20 
 

learning to include novel types of unstructured data, leveraging higher dimensionality for 

greater use of negative controls and instrumental variables, and using new machine 

learning approaches to controlling for confounding with high dimensional data when 

applied within causal frameworks. Specifically, big datasets including variables related to 

microbiota, genetics, metabolomics, behavioural factors, environment, and social 

determinants of health could enhance analyses by helping to avoid missing unmeasured 

confounders.92 Furthermore, machine learning can make entirely new types of data 

available for inclusion in models. For example, deep learning has been used to derive 

variables describing the built environment from satellite images.93 Further big data-types 

that could be considered include medical information from free-text clinical notes,94 

physiological data from wearable devices,95 and populations’ demographic, 

socioeconomic, and health records from linked government datasets.96 Another potential 

advantage of incorporating big data is the greater availability of negative controls, which 

can help to ascertain the likelihood of residual confounding; and instrumental variables, 

which can allow observational studies to mimic randomized trials under certain 

assumptions.97–101 Finally, new machine learning methods are being developed that may 

help to reduce residual confounding, including feature selection approaches102,103 and 

methods of combining many weaker proxy variables for stronger but unobserved 

confounders into propensity scores.104 These approaches have often performed 

comparably to or better than expert-based propensity scores.102,104–112 However, they 

should be used with caution due to their early stage of development and their potential for 

worsening model instability.103 Altogether, big data provides an opportunity to improve 
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measurement and representation of factors beyond diet, while machine learning could 

facilitate the analysis of these high-dimensional datasets. 

 

2.3.4 Improving Disease Prediction 
 Prediction models for cardiovascular disease, one of the major focuses of the 

science of diet, have been extensively studied for the past five decades. Risk prediction 

tools, such as the one originally developed from the Framingham study in 1967, are still 

commonly used in clinical practice to determine the need for hypertensive and cholesterol 

medications.113 More recently, population-level models have been developed that can be 

used to guide the implementation of public health preventive interventions, inform 

policymakers about future disease burden, and assess the impact of public health 

actions.114–117 Typically, prediction models have included very few dietary components 

and,113 when included, greatly simplified dietary factors are typically used (e.g. only a 

small number of foods or nutrient ratios114,118). Their absence in prediction models is 

likely related to commonly being omitted from the data sources used to generate 

prediction models, as well as the collection of dietary data being relatively arduous. 

Additionally, oversimplification of dietary variables, when they are included, may result 

in a lack of added predictive performance, further disincentivizing their inclusion by later 

researchers. Inclusion of rich dietary data in predictive models could be an important and 

largely untapped avenue for improved performance. Such data is more likely to be of 

benefit if new data sources permit a reduction in nondifferential measurement error, 

allowing models to take advantage of ensembles of relatively small effect sizes. 

Additionally, prediction applications are where machine learning models have historically 
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excelled. Therefore, the use of better data alongside machine learning models, with their 

ability to incorporate richer dietary variables, more comprehensive covariates, and higher 

complexity of relationships, offers additional opportunities to improve prediction models. 

A recent cohort study supports this idea, as it demonstrated synergistic prediction 

performance improvements for cardiovascular mortality when combining rich dietary 

data with machine learning methods.91 A further advantage of applying the machine 

learning paradigm is that cross-validation makes many algorithms largely resistant to the 

effects of multicollinearity in the context of prediction. Furthermore, this internal 

validation could permit the identification of dietary patterns and factors that are most 

relevant in specific populations for prediction of specific diseases. Overall, both novel 

data sources and machine learning methods offer opportunities to improve chronic 

disease prediction models through incorporation of rich dietary data. 

Notwithstanding the potential positive impacts on predictive modelling, the 

application of big data and machine learning has several potential pitfalls. The impact of 

selection bias and systematic measurement error in novel data sources has already been 

described. If excluded from training datasets, vulnerable populations could be further 

marginalized by predictive algorithms that are inaccurate for them. Additionally, given 

that machine learning methods are usually atheoretical and sometimes inscrutable, they 

are vulnerable should some aspect of the underlying data generating process change. In 

that case they may unexpectedly become inaccurate, so researchers should take steps to 

safeguard against this eventuality. Another important consideration is that complex 

machine learning models do not always improve prediction. They are more flexible than 
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most parametric regression models; however, this makes them more susceptible to 

overfitting.64 Their relative advantage depends on the importance of interactions and non-

linearity for a given problem. Ideally, many machine learning and statistical models 

should be trialed and evaluated using cross-validation for a given prediction problem. 

Non-linear parametric statistical models such as fractional polynomials and restricted 

cubic splines should also be considered.119,120 A related issue with most machine learning 

approaches is that they typically require more observations per variable to make robust 

predictions.64 Therefore, it may often not be appropriate to apply machine learning 

techniques in smaller datasets. Alternatively, the numerous feature selection and 

dimensionality reduction techniques in the machine learning corpus can be used, 

alongside domain knowledge, to reduce the number of included variables. Also, some 

supervised machine learning algorithms, such as random forest, are relatively robust in 

the presence of uninformative variables. In general, statistical techniques will perform 

better and be more generalizable in situations where only a small dataset is available and 

both non-linear and non-additive relationships are not very influential. Finally, it is 

important to note that modelling health outcomes is distinct from the application domains 

in which machine learning was originally developed.121 For example, in most computer 

vision contexts there is a very high signal-to-noise ratio. Meanwhile, in medical domains, 

a significant proportion of prediction error likely comes from unmodifiable stochasticity, 

posing a lower ceiling on possible prediction accuracy. So, in health research, uncertainty 

estimates and probability predictions are more important than they often have been in 

machine learning. While not often done, uncertainty estimates can be derived for machine 



Master’s Thesis – J.D. Morgenstern; McMaster University – Public Health 
 

24 
 

learning analyses using resampling and Bayesian approaches. Finally, in the health 

research context it is important to focus primarily on calibration as a predictive 

performance metric, which entails the concordance between predicted and observed 

absolute probabilities across the full spectrum of risk.122,123 This is in contrast to the more 

frequent use of discriminative performance metrics such as area under the receiver 

operator curve in machine learning research. 

 

2.3.5 Informing Causal Studies 
While most machine learning and big data research has focused on prediction or 

classification, it could also help to inform inferential studies in nutritional epidemiology. 

First, by reducing nondifferential measurement error and increasing sample sizes, big data 

could allow detection of smaller effect sizes and reduce the effects of multicollinearity on 

coefficient stability.32,47 Further, application of machine learning could help with 

hypothesis generation, particularly as methods for interpreting complex algorithms 

improve. Already, current techniques such as permutation feature importance, 

accumulated local effects, partial dependence plots, Shapley values, local interpretable 

model-agnostic explanations, and interaction h-statistics can be used with almost any 

machine learning model to reveal the shape of relationships between predictors and 

outcomes, as well as important interactions.29 Additionally, dimensionality reduction and 

feature selection techniques can be used to derive empirical dietary patterns and 

predictive dietary factors for further study. Given nutrition’s high level of complexity, 

these exploratory approaches may be particularly helpful. Also, an advantage of data-

driven dietary patterns and variable selection is that they may be more reflective of 
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relevant dietary variation in a local population than a priori scores developed 

elsewhere.124 Furthermore, if the totality of dietary exposure data is incorporated into an 

analysis with machine learning techniques, including multiple food/nutrient classification 

levels, there may be less temptation or possible explanations for conducting selective 

analyses. An additional consideration is that big data and machine learning may enable 

more comprehensive and precise incorporation of confounders into analysis, possibly 

reducing residual confounding. Finally, greater availability of big data might allow more 

study of meta-dietary factors such as timing of meals, preparation and cooking methods, 

social aspects of dining, the location of eating, and additional contextual factors (e.g. 

eating while watching TV).  

Machine learning could also enhance formal causal inference studies in nutritional 

epidemiology within a potential outcomes framework. New ways of using machine 

learning to automatically generate propensity scores and select confounders from high 

dimensional data have already been described.102,103 Additionally, targeted maximum 

likelihood estimation (TMLE) can serve as an alternative to propensity score- and G-

computation-based causal effect estimation while incorporating ensemble machine 

learning methods, such as Super Learner.125 In concert with Super Learner, TMLE has 

demonstrated less biased estimation of causal effects than traditional approaches. The 

advantage seems to stem from using the machine learning ensemble during a secondary 

targeting phase to better balance the bias-variance tradeoff in estimation of causal 

effects.125 
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While big data and machine learning may be helpful for informing causal studies 

through both hypothesis generation and application within causal inference frameworks, 

they are not enough for causal inference on their own. For any experimental data, many 

causal models typically exist that could explain observed relationships.126 Therefore, 

experts’ domain knowledge is essential for informing a priori causal models, interpreting 

results generated by algorithms, and putting findings into the wider context of evidence. 

In particular, while big data may provide additional opportunities to control for 

unmeasured confounders, use negative controls, and find instrumental variables; without 

adequate forethought it also poses a higher risk of biasing effect estimates and masking 

direct effects through unintended inclusion of collider and mediator variables in 

models.103 Further issues when using big data and machine learning to inform causal 

studies are selection bias and systematic measurement error. Both must be better 

understood to ensure valid and generalizable results. Lastly, feature selection techniques 

should be used in this context with caution. If these techniques are used to specify a final 

model, particularly if the outcome variable was used during feature selection, there is a 

high risk of inaccurate inferences.  

 

2.4 Conclusion 
Overall, greater use of big data and machine learning could improve the reliability 

and validity of nutritional epidemiologic findings, while still using primarily 

observational evidence. Specifically, the incorporation of big data and machine learning 

into epidemiologic analyses could enable reduced measurement error, better 

representation of the complexity of diet and its confounders, and improved consideration 
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of intricate relationships between diet and disease. In turn, such improvements could help 

to improve both predictions and inferences regarding the relationships between diet and 

disease. With increased use of big data and machine learning, many of the challenges and 

criticisms of nutritional epidemiology could potentially be addressed.  
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3.1 Abstract 
Importance: Machine learning may improve use of observational data to understand the 

nutritional epidemiology of cardiovascular diseases (CVD) through better modelling of 

non-linearity, non-additivity, and dietary complexity.  

Objective: To develop machine learning prediction models for exploring how detailed 

dietary features are related to CVD risk prediction and evaluating their predictive 

performance.  

Design: A retrospective cohort study from 2004 – 2018 with a maximum follow-up of 14 

years. 

Setting: A Canadian population-based study. 

Participants: A total of 35 107 adults who completed the 2004 Canadian Community 

Health Survey, Cycle 2.2, Nutrition (CCHS 2.2) were considered for inclusion. This is a 

national, population-based survey with prospective linkage to administrative data until 

2018. The Survey is representative of 98% of the population and had a 76.5% 

participation rate.  Individuals who were less than 20 years old, lived in Quebec, were 

pregnant, did not provide a dietary recall, or who had a known history of CVD were 

excluded. 

Exposures: Sixty-one nutrition-related features measured from the 24-hour dietary recall 

and general health components of the CCHS 2.2. 

Main Outcome and Measure: Ischemic heart disease or stroke event or death defined as 

International Classification of Diseases (ICD)-9 codes 410-414 and 430-438 or ICD-10 

codes I20-25 and I60-69 used in linked administrative databases of hospital discharges 

and national deaths. 
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Results: 12 130 individuals were included in our study with a median age of 50.0 

(IQR=34.0 – 65.0) and 6850 were female (56.5%). 1120 (9.2%) individuals developed 

ischemic heart disease or stroke. Twenty-three (37.7%) nutrition features had a positive 

median permutation feature importance (PFI). Supplement-use (median PFI (M)=4.09 x 

10-4, IQR=8.25 x 10-7 – 1.11 x 10-3), caffeine (M=2.79 x 10-4, IQR= -9.11 x 10-5 – 5.86 x 

10-4), and alcohol (M=1.52 x 10-4, IQR=1.99 x 10-5 – 5.02 x 10-4) had the highest median 

PFIs for nutrition-related features. Supplement-use was related to decreased predicted risk 

of CVD (accumulated local effects range (ALER)= -3.02 x 10-4 – 2.76 x 10-4), caffeine 

was related to increased predicted risk (ALER= -9.96 x 10-4 – 0.035), and frequency of 

alcohol-use had a u-shaped relationship with predicted risk (ALER= -8.38 x 10-4 – 0.002) 

. A diverse mixture of non-linear dose-response curves was observed, such as threshold, j-

shaped, and u-shaped relationships. The model with the best prediction performance 

during training had a test logarithmic loss of 0.248. 

Conclusions and Relevance: Our study is one of the first to apply machine learning 

techniques to the prediction of CVD using detailed population-based dietary data and 

showed competitive prediction performance. Machine learning models identified 

numerous nutrition features important for prediction of CVD risk in exploratory analyses, 

which demonstrated a mix of linear and non-linear relationships. More research applying 

machine learning to the nutritional epidemiology of CVD, particularly using big datasets, 

may help elucidate risks and improve predictive models. 
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3.2 Introduction 
Suboptimal diet is the leading risk factor for deaths globally.1 Cardiovascular 

diseases (CVD), which cause one-third of deaths worldwide, are responsible for much of 

the morbidity and mortality stemming from suboptimal diet. Age-standardized mortality 

from CVD decreased from 1990 to 2015 in high-income countries, but this trend may 

now be slowing or reversing.127,128 Randomized controlled trial (RCT) evidence supports 

a protective effect of Mediterranean dietary patterns, and observational evidence 

implicates multiple dietary factors such as vegetables, fruits, and trans-fat in CVD.38 

However, there remain significant inconsistencies in the evidence and recommendations 

regarding the impacts of common nutrients and foods on CVD, such as red meat,8,9 

carbohydrates,4,5 and eggs.6,7 The lack of randomized controlled trials, challenges 

addressing measurement error, long latencies until disease onset, multicollinearity, and 

the complexity of foods/diets are some of the factors that make the dietary determinants 

of CVD difficult to study.10,11  

Machine learning methods may address some issues in the study of dietary risks 

for CVD through the incorporation of non-linear effects, interactions, and high-

dimensional sets of covariates. Many potential non-linear, including u- or j-shaped, and 

non-additive relationships between dietary risk factors and CVD have been 

identified.18,19,87–89,129 Additionally, at least 250 000 distinct foods are consumed globally, 

making consideration of large numbers of covariates important.15  Therefore, more 

complex modelling approaches may be advantageous when studying the nutritional 

epidemiology of CVD. There has been some use of machine learning to assess the 

relationship between dietary factors and cardiometabolic risk or glycemic responses, but 
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none have studied CVD directly.20,21 Finally, few existing CVD predictive models 

incorporate dietary features.113 

 The primary objective of this study was to develop machine learning prediction 

models to explore how detailed dietary features are related to CVD risk prediction with 

interpretable machine learning methods in a Canadian population-based cohort. The 

secondary objective was to evaluate the predictive performance of the models. 

 

3.3 Methods 
3.3.1 Study Design and Data Sources 
 We conducted a retrospective cohort study and developed a prediction model for 

cardiovascular disease with detailed dietary data. Transparent reporting of a multivariable 

prediction model for individual prognosis or diagnosis (TRIPOD) reporting guidelines 

were followed where relevant.130 The study sample was comprised of participants in the 

Canadian Community Health Survey, Cycle 2.2, Nutrition (CCHS 2.2), which was 

administered from 2004 – 2005 by Statistics Canada.131 This survey had a multistage, 

stratified cluster design representative of 98% of Canadians of any age. The survey had a 

response rate of 76.5% and a sample size of 35 107. For our study, we excluded 

individuals if they were younger than 20 years of age, resided in the province of Quebec 

(because linked outcome data was not available for these residents), were pregnant at the 

baseline survey interview, did not provide a dietary recall, or had pre-existing CVD. Pre-

existing CVD was identified if participants reported heart disease in the CCHS 2.2 

general health component or had a CVD-related hospital discharge recorded in linked 
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administrative databases anytime from April 1st, 1999 (the earliest available linked date) 

until one year after completing the survey. 

 Individual-level data from the CCHS 2.2 was linked to the Discharge Abstracts 

Database and the Canadian Vital Statistics Death Database by Statistics Canada. The 

Discharge Abstracts Database is maintained by the Canadian Institute for Health 

Information and includes International Classification of Diseases-9 and -10 (ICD-9 and -

10) codes for diagnoses relating to all hospital discharges of Canadian citizens in every 

province except for Quebec.132 The Discharge Abstracts Database has been linked to the 

CCHS 2.2 from April 1st, 1999 to March 31st, 2018. The Canadian Vital Statistics Death 

Database is a census of all deaths occurring in Canada, including the related ICD-9 and -

10 codes. This database was linked to CCHS 2.2 from January 1st, 2000 until December 

31st, 2018 (see supplementary figure 1 for a graphical representation of the study design, 

including exclusion criteria). Both linked datasets are de-identified and stored in the 

Statistics Canada Research Data Centres, which are secure facilities restricted to vetted 

employees.  

 

3.3.2 Ethics and consent 
The data linkage used for this study was approved by Statistics Canada’s 

Executive Management Board, and access to the data is governed by Statistics Canada’s 

directive on record linkage.133 Under applicable ethical standards, this governance 

structure allows analyses to occur without research ethics board approval.134 
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3.3.3 Outcome 
 We defined the incidence of CVD as hospital discharges or deaths where the 

primary associated diagnosis was ischemic heart disease or stroke, as identified in the 

Discharge Abstracts Database and Canadian Vital Statistics Death Database. We used 

ICD-9 codes 410-414 or 430-438 and ICD-10 codes I20-25 or I60-69 to identify ischemic 

heart disease or stroke.135,136 We categorized the outcome as a binary feature (yes/no). 

Available data allowed relevant hospital discharges to be detected anytime from the 

completion of the CCHS 2.2 survey in 2004 or 2005 until March 31st, 2018, while deaths 

could be detected up until December 31st, 2018. Therefore, there was a follow-up time of 

up to 14 years.  

 

3.3.4 Features 
 All features included in the models were measured during participants’ baseline 

survey interviews from 2004-2005. Participants in the CCHS 2.2 completed at least one 

24-hour dietary recall conducted by trained interviewers using a computer-based 

application called the Automated Multiple-Pass Method.131 The general health component 

of the survey was collected using a standardized questionnaire. Most interviews for both 

the 24-hour dietary recall and general health component were conducted in-person. When 

this was not possible, they were conducted over the telephone.  

All features included in the models for this study originated from the “General 

Health, vitamin and mineral supplements and 24-Hour Dietary Recall - HS.txt” file, 

which contains a combination of answers to the general health questionnaire and 

nutrition-related features derived from responses to the 24-hour recall component of the 
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CCHS 2.2.131 This file included the intake of macro- and micronutrients derived from the 

24-hour dietary recall using the Canadian Nutrient File as a reference.131 We included 

most nutrients derived from the 24-hour dietary recall as features in our models. 

Macronutrients were provided as both absolute grams consumed and percent of daily 

energy intake. We only included the percent of daily energy intake features in our models. 

Several different derivations of folate/folic acid were available. We only included one 

feature for both natural folate and added folic acid. We included fruit and vegetable 

consumption (average number of times eaten daily over the previous 30 days), frequency 

of alcohol-use, and supplement-use from the general health component of the CCHS 2.2. 

Overall, sixty-one nutrition-related features were included (see supplementary table 1 for 

more details about each feature). We also included fourteen socioeconomic, demographic, 

psychological, and behavioural features from the general health component that are well-

established predictors of CVD (see supplementary table 1). Examples include age, sex, 

marital status, stress, physical activity, household income, and smoking status. Given our 

interest in exploring the total direct contribution of nutrition features to predicted CVD 

risk, metabolic risk factors that may be on the causal path between nutrition and CVD 

outcomes were not included (e.g. body mass index, hypertension, diabetes). 

 

3.3.5 Data Pre-processing 
 After applying the exclusion criteria and creating a binary feature for the primary 

outcome, we examined summary statistics. We avoided including categorical feature 

levels with less than 20 participants to avoid the perfect separation problem.137 As a 

result, one dichotomous feature was dropped (fibre supplement-use). Additionally, some 
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of the levels of two other categorical features were combined (cultural or racial origin and 

household income; see supplementary table 1). A feature for the percent of life lived in 

Canada was derived from participants’ immigrant status, age, and years since 

immigration. Additionally, a more detailed smoking feature (see table 1) was derived 

from smoking status, the number of cigarettes smoked among daily smokers, and the 

number of years since quitting among former smokers. 

9.32% percent of participants had missing data for at least one feature. The 

median percent missing data per feature was 0.02% (IQR=0.06%). See supplementary 

table 2 for the number of missing values for each feature included in the models. We 

conducted single imputation using factorial analysis of mixed data (FAMD), a principal 

components analysis method, with the “missMDA” R package.138 First, we estimated the 

number of dimensions using 100-fold cross-validation by minimizing the mean squared 

error of predictions, considering one to five dimensions. Then, we computed FAMD with 

the best performing number of dimensions to estimate missing values. 

 

3.3.6 Statistical Analysis 
 Descriptive statistics stratified by outcome were evaluated. We then developed 

conditional inference forest models25 to predict CVD-status using the R package “mlr.”139 

Conditional inference forests are like random forests but use a non-parametric 

significance test to reduce bias in feature importance calculations and lessen overfitting.25 

 We randomly assigned training and testing datasets with 70% and 30% of the total 

observations, respectively, stratified by the outcome.140 Hyperparameters of the 

conditional inference forests, including the number of features randomly sampled for each 
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node of the base trees (mtry) and the minimum significance-level needed to perform splits 

in the base trees (mincriterion), were tuned on the training dataset with 10-fold cross-

validation.16 See supplementary table 3 for the full grid of hyperparameters constructed 

for testing and their associated performance values. We considered tuning the number of 

base trees used for each model, maximum depth, minimum number of observations at a 

split, and minimum number of observations at terminal nodes, but these had no impact on 

testing performance or overfitting tendency in initial tests; thus, they were not tuned or 

restricted. Regarding the number of base trees used for each model, it should be noted 

that only 750 and 1000 base trees were considered. Given that there was no identified 

performance difference, 750 trees were used in all models to reduce computational 

burden. Median logarithmic loss on out-of-fold data was used to select models, based on 

minimizing prediction error.  

We selected the four hyperparameter sets with the best prediction performance to 

generate four different models on both the training and testing datasets for computation of 

permutation-based feature importance (PFI) and accumulated local effects (ALEs). 

Therefore, eight models in total were used to compute eight sets of PFIs and ALEs for 

each feature (four on the training dataset and four on the testing dataset). This was done 

to sample some of the variability in these estimates from several models with similarly 

high predictive performance. Prediction performance overall was evaluated using only the 

single best-performing hyperparameter set. 

 PFIs were generated using the “party” R package.29,141 We used logarithmic loss 

to evaluate importance. Median PFI and interquartile ranges (IQRs) across all selected 
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models were calculated. Median PFIs can be interpreted as the median increase in 

logarithmic loss of model predictions after randomly permuting a specific feature. 

 We computed ALE plots across a grid of at most 20 values for each feature using 

the “iml” R package.142 The number and position of the feature-levels at which 

accumulated local effects were calculated depended on the feature itself (i.e. whether 

ordinal or continuous) and density of the distribution of participants along the feature. 

Locally estimated scatterplot smoothing (LOESS) was used to fit lines to each model’s 

ALEs trajectory in the plots. ALEs can be interpreted as the average main effects of a 

given feature-level on the risk of the outcome relative to average risk across all 

observations, independent of other features.20,29 

 Lastly, we predicted the probability of developing CVD. Prediction performance 

was evaluated by applying the selected model to the held-out test dataset. Predictive 

performance was determined using calibration plots, logarithmic loss, and area under the 

receiver operator curve (AUROC) with AUROC 95% confidence intervals (95% CIs) 

computed using 1000 bootstrapped samples. AUROCs and CIs were evaluated using the 

“pROC” package in R.143 

 

3.4 Results 
3.4.1 Descriptive Statistics 
 12 130 individuals were included in the final analyses (table 1). There were 6850 

females and 5280 males included. 1120 instances of the primary outcome were observed 

(9.2%). 560 (8.2%) females and 560 (10.6%) males had a cardiovascular event or death. 
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The median age of participants was 50.0 (IQR=34.0-65.0). Median carbohydrate 

consumption was 49.3% of total calories (IQR=41.6 – 56.8%), median fat consumption 

was 31.5% of total calories (IQR=25.1-37.8%), median protein consumption was 15.7% 

of total calories (IQR=12.5 – 19.6%), and median reported calories were 1805 kCal 

(IQR=1318-2442 kCal).  

 

Table 1. Descriptive statistics at baseline of selected features included in model. 

Featurea Overall n = 12 

130 

Developed CVD n 

= 1120 

Did Not Develop 

CVD n = 11 010 

Age, median (IQR), y 50.0 (34.0 - 65.0) 71.0 (59.0 - 79.0) 48.0 (33.0 - 62.0) 

Sex, n (%) 

     Female 

     Male 

 

5280 (43.5) 

6850 (56.5) 

 

560 (50.0) 

560 (50.0) 

 

4720 (42.9) 

6290 (57.1) 

Marital Status, n (%) 

     Married 

     Common-law 

     Widowed 

     Separated 

     Divorced 

     Single, Never Married 

 

5555 (45.8) 

865 (7.1) 

1490 (12.3) 

435 (3.6) 

945 (7.8) 

2835 (23.4) 

 

535 (47.8) 

35 (3.1) 

340 (30.4) 

40 (3.6) 

90 (8.0) 

85 (7.6) 

 

5020 (45.6) 

835 (7.6) 

1150 (10.4) 

400 (3.6) 

855 (7.8) 

2750 (25.0) 

Educational Attainment, n (%) 

     Grade 8 or lower 

 

1210 (10.0) 

 

245 (21.9) 

 

970 (8.8) 
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     Grade 9 – 10 

     Grade 11 – 13 

     Secondary school, no post-secondary 

     Some post-secondary 

     Trades certificate or diploma 

     Diploma/certificate – college 

     University certificate below bachelor’s 

     Bachelor’s degree 

     University degree above bachelor’s 

1060 (8.7) 

635 (5.2) 

2250 (18.5) 

1135 (9.4) 

1525 (12.6) 

2090 (17.2) 

270 (2.2) 

1350 (11.1) 

600 (4.9) 

40 (3.6) 

185 (16.5) 

65 (5.8) 

165 (14.7) 

65 (5.8) 

135 (12.1) 

145 (12.9) 

25 (2.2) 

55 (4.9) 

880 (8.0) 

570 (5.2) 

2085 (18.9) 

1065 (9.7) 

1395 (2.7) 

1950 (17.7) 

240 (2.2) 

1295 (11.8) 

565 (5.1) 

Household Income, n (%)b 

     0 to $9000 

     $10 000 to $14 999 

     $15 000 to $19 999 

     $20 000 to $29 999 

     $30 000 to $39 999 

     $40 000 to $49 999 

     $50 000 to $59 999 

     $60 000 to $79 999 

     $80 000 or more 

 

455 (3.8) 

805 (6.6) 

770 (6.3) 

2035 (16.8) 

1495 (12.3) 

1190 (9.8) 

1120 (9.2) 

1600 (13.2) 

2660 (21.9) 

 

40 (3.6) 

130 (11.6) 

120 (10.7) 

300 (26.8) 

150 (13.4) 

100 (8.9) 

70 (6.3) 

95 (8.5) 

115 (10.3) 

 

415 (3.8) 

675 (6.1) 

650 (5.9) 

1740 (15.8) 

1345 (12.2) 

1095 (9.9) 

1045 (9.5) 

1505 (13.7) 

2545 (23.1) 

Smoking Status, n (%) 

     Daily smoker, more than 20 cigarettes 

     Daily smoker, 16 to 20 cigarettes 

 

605 (5.0) 

465 (3.8) 

 

80 (7.1) 

50 (4.5) 

 

530 (4.8) 

415 (3.8) 
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     Daily smoker, 11 to 15 cigarettes    

     Daily smoker, 6 to 10 cigarettes   

     Daily smoker, 5 or less cigarettes 

     Occasional smoker 

     Former daily smoker, quit less than 1 

year ago 

     Former daily smoker, quit 1 to 3 years 

ago 

     Former daily smoker, quit 3 or more 

years ago 

     Former occasional smoker 

     Never smoked 

675 (5.6) 

630 (5.2) 

305 (2.5) 

450 (3.7) 

250 (2.1) 

360 (3.0) 

2705 (22.3) 

290 (2.4) 

5395 (44.5) 

45 (4.0) 

35 (3.1) 

20 (1.8) 

20 (1.8) 

15 (1.3) 

25 (2.2) 

350 (31.3) 

35 (3.1) 

435 (38.8) 

625 (5.7) 

595 (5.4) 

280 (2.5) 

430 (3.9) 

235 (2.1) 

335 (3.0) 

2350 (21.3) 

255 (2.3) 

4960 (45.0) 

Frequency of Alcohol Consumption, n (%) 

     None 

     Less than once a month 

     Once a month 

     2 to 3 times a month 

     Once a week 

     2 to 3 times a week 

     4 to 6 times a week 

     Every day 

 

2560 (21.1) 

2405 (19.8) 

1020 (8.4) 

1430 (11.8) 

1570 (12.9) 

1745 (14.4) 

530 (4.4) 

870 (7.2) 

 

365 (32.6) 

240 (21.4) 

70 (6.3) 

80 (7.1) 

90 (8.0) 

100 (8.9) 

50 (4.5) 

125 (11.2) 

 

2200 (20.0) 

2165 (19.7) 

945 (8.6) 

1345 (12.2) 

1480 (13.4) 

1650 (15.0) 

480 (4.4) 

740 (6.7) 

Physical activity, median (IQR), kcal/kg/h  2.2 (1.4 - 3.5) 1.9 (1.2 - 3.2) 2.2 (1.4 - 3.5) 
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Caffeine, median (IQR), g 168.7 (52.9 - 

326.7) 

177.9 (76.6 - 

322.1) 

167.4 (51.6 - 327.5) 

Energy intake, median (IQR), kCal 1805 (1318 - 

2442) 

1674 (1237 - 

2250) 

1825 (1329 - 2459) 

Carbohydrate, median (IQR), % of calories 49.3 (41.6 - 56.8) 49.6 (41.9 - 56.7) 49.2 (41.6 - 56.8) 

Fat, median (IQR), % of calories 31.47 (25.1 - 37.8) 31.5 (25.5 - 37.1) 31.5 (25.0 - 37.8) 

Protein, median (IQR), % of calories 15.7 (12.5 - 19.6) 16.0 (12.9 - 19.8) 15.6 (12.5 - 19.6) 

Saturated fat, median (IQR), % of calories 9.6 (7.2 - 12.5) 9.6 (7.4 - 12.7) 9.6 (7.2 - 12.5) 

Monounsaturated fat, median (IQR), % of 

calories 

12. 3 (9.4 - 15.4) 12.2 (9.4 - 15.1) 12.3 (9.4 - 15.5) 

Polyunsaturated fat, median (IQR), % of 

calories 

5.2 (3.8 - 7.0) 5.3 (3.8 - 7.0) 5.2 (3.8 - 7.0) 

Total sugars, median (IQR), g 84.7 (52.8 - 129.6) 78.0 (48.8 - 119.8) 85.5 (53.1 - 130.9) 

Total fibre, median (IQR) g 14.6 (9.7 - 21.2) 14.6 (10.1 - 21.1) 14.6 (9.6 - 21.2) 

Daily fruit, median (IQR), number of times 

eaten per day 

1.0 (0.4 - 2.0) 0.6 (0.1 - 1.0) 1.0 (0.4 - 2.0) 

Daily other vegetables, median (IQR), 

number of times eaten per day 

1.0 (0.4 - 1.0) 1.0 (0.4 - 1.0) 1.0 (0.4 - 1.0) 

Folic acid, median (IQR), µg 76.2 (37.8 - 133.9) 67.8 (36.5 - 113.3) 77.3 (38.0 - 135.7) 

Folate, median (IQR), µg 188.4 (127.8 - 

274.5) 

182.2 (134.2 - 

252.4) 

189.5 (127.1 - 

276.8) 
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Vitamin B12, median (IQR), µg 3.0 (1.7 - 5.0) 3.0 (1.8 - 5.0) 3.0 (1.7 - 5.0) 

Vitamin D, median (IQR), µg 4.0 (2.1 - 6.8) 4.3 (2.3 - 7.0) 4.0 (2.1 - 6.8) 

Sodium, median (IQR), µg 2634 (1793 - 

3750) 

2566.88 (1796.13 - 

3558.71) 

2644 (1793 - 3773) 

Potassium, median (IQR), µg 2819 (2011 - 

3777) 

2800 (2021 - 

3647) 

2821 (2010 - 3792) 

Takes Supplements, n (%) 

     Yes 

     No 

 

5850 (48.2) 

6275 (51.7) 

 

600 (53.6) 

520 (46.4) 

 

5255 (47.7) 

5755 (52.3) 

 
CVD: cardiovascular disease; MET: metabolic equivalent of task. 
aDescriptive statistics are unweighted. Counts are rounded to the nearest 5. Medians are rounded to the 
nearest 0.1. Cells containing less than 15 participants were combined. 
bMeasured in Canadian dollars 
 

3.4.2 Hyperparameter Tuning 
 During cross-validation, the model with the lowest logarithmic loss for predictions 

on out-of-fold data had a median prediction error of 0.261. This model had an mtry value 

of 69 and a mincriterion value of 0.999. The three models with the next best performance 

had median prediction errors on out-of-fold data of 0.261, 0.261, and 0.261; mtry values 

of 39, 74, and 74 respectively; and mincriterion values of 0.95, 0.99, and 0.999 

respectively. The range of median prediction error among all models tested was 0.261 – 

0.285. See supplementary table 3 and supplementary figure 2 for more details regarding 

hyperparameter tuning. Overall, prediction error during cross-validation was highest with 

models using low mtry values. In models with a high mincriterion, prediction error was 
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lowest with high mtry values, while in models with a lower mincriterion, prediction error 

was lowest with a mid-range mtry values. 

 

3.4.3 Permutation feature Importance 
 Overall, 23 nutrition features (figure 1 includes the 20 highest) (median PFI 

(M)=2.95 x 10-5, IQR=2.00 x 10-5 – 6.21 x 10-5) and 10 non-nutrition-related features 

(supplementary figure 3) had a positive median PFI. Age (M=0.213, IQR=0.154 - 0.296), 

sex (M=0.014, IQR=6.98 x 10-3 – 0.024), and smoking status (M=7.98 x 10-4, IQR=3.24 x 

10-4 – 1.87 x 10-3) had the highest median PFIs among all included features (see 

supplementary table 5 for all PFIs). Vitamin or mineral supplement-use (M=4.09 x 10-4, 

IQR=8.25 x 10-7 – 1.11 x 10-3), caffeine intake (M=2.79 x 10-4, IQR= -9.11 x 10-5 – 5.86 

x 10-4), and frequency of drinking alcohol (M=1.52 x 10-4, IQR= 1.99 x 10-5 – 5.02 x 10-4) 

were the nutrition-related features with the highest median PFIs. 
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Figure 1. The 20 nutrition-related features with the highest median permutation feature importance. The blue, red, and black diamonds are the median training, 
testing, and overall importance levels, respectively. Each circle is the permutation feature importance of an individual model developed using either the training 
or testing data. The vertical dashed line is zero. 
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3.4.4 Accumulated Local Effects 
 We evaluated the ALE plots of the twenty nutrition-related features and four non-

nutrition features with the highest median PFIs. ALEs for all features can be found in 

supplementary table 5. 

 

3.4.4.1 Supplements and Substances 
The ALEs plots of any vitamin or mineral supplement-use in the last month (which had 

the highest PFI among nutrition-related features) and all other supplements with a positive 

median PFI are included in figure 2. The use of any supplement in the last month was related to 

decreased predicted risk in both training and testing dataset models (accumulated local effects 

range (ALER)= -4.21 x 10-4 – 3.84 x 10-4). Zinc supplement-use (ALER= -5.97 x 10-4 – 0.002) 

was related to increased predicted risk in both training and testing models. As this result was 

consistent between training and testing datasets, the ALEs of zinc from food (ALER= -0.004 – 

0.007) were also examined (see supplementary figure 4). Zinc from food appeared to have a 

threshold relationship with predicted risk, which started to increase near 10 – 15 mg of intake. 

Vitamin B6 supplement-use (ALER= -2.18 x 10-4 – 1.00 x 10-4) was associated with decreased 

predicted risk in both training and testing models. Vitamin B6 intake from food (ALER= -3.39 x 

10-4 – 6.71 x 10-4) demonstrated a j-shaped relationship with predicted risk of CVD in both 

testing training models (when it had a non-zero impact on predictions) (see supplementary figure 

4). The LOESS curves are not visible for all eight models, as in some models this feature had no 

impact on predictions; in this case the curves run along the x-axis. Predicted risk was lowest near 

1.2 – 2.2 mg of vitamin B6 intake from food. Riboflavin (ALER= -1.92 x 10-4 – 2.35 x 10-6) and 

folic acid (ALER= -1.14 x 10-4 -  6.31 x 10-5) supplement-use had no impact on predicted risk 

among training models and were both associated with decreased predicted risk in testing models. 
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Vitamin E supplement-use (ALER= -4.73 x 10-4 – 9.27 x 10-4) was related to decreased predicted 

risk in training models and increased predicted risk in testing models. Iron supplement-use 

(ALER= -3.07 x 10-4 – 7.65 x 10-4) also had inconsistent ALEs between datasets, with increased 

predicted risk in training models and decreased predicted risk in testing models.  

The ALE plots of caffeine intake from food/drink and percent of energy intake from 

alcohol are included in supplementary figure 5.  Caffeine intake (ALER= -0.002 x 10-4 – 0.035) 

had a threshold dose-response curve in most training and testing models, with predicted risk 

beginning to increase near 400 – 700 mg of daily intake. Percent of energy intake from alcohol 

(ALER= -4.54 x 10-4 – 0.008) was related to increasing predicted risk across training and testing 

models. Some models demonstrated a threshold dose-response, with predicted risk increasing 

after 15% of energy intake, while others had a j-shaped dose response curve, with predicted risk 

near its lowest at 5% of energy intake. The ALE plot of frequency of alcohol consumption 

(ALER= -0.002 x 10-4 – 0.004) (supplementary figure 6) was also examined. This feature reflects 

how often alcohol was consumed, but does not reflect the amount that was consumed on these 

occasions. There was a mostly u-shaped relationship with predicted risk in both training and 

testing models, with there being relatively low predicted risk associated with drinking anywhere 

from once a month to 2-3 times per week. Never drinking and drinking 4-6 times per week or 

daily were all associated with relatively higher predicted risk. 
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Figure 2. Accumulated local effects of the supplement features with the highest median PFI. Accumulated local effects, representing the average influences of 
specific feature levels on predicted risks of CVD relative to average predicted risk, are shown on the x-axis. Zero (or average predicted risk) is represented by a 
dashed line. Error bars demonstrate the interquartile range of estimates within testing and training datasets. 
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Blue: Training Data 
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Took Supplement 
Containing Folic Acid in 

Last Month 
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3.4.4.2 Vitamins from Food Sources 
Vitamin B12 from food sources (ALER= -6.29 x 10-4 – 0.005), which had the fourth-

highest PFI among nutrition-related features, was related to increasing predicted risk in both 

training and testing models (figure 3). Vitamin B12 supplementation (ALER= -4.04 x 10-5 – 9.27 

x 10-5) was also related to increased predicted risk in both training and testing models 

(supplementary figure 7). Vitamin D from food sources (ALER= -8.11 x 10-4 – 0.003) had a 

threshold dose-response relationship with predicted risk in the training and testing models that 

showed effects, with predicted rates of CVD increasing after approximately 2.9 – 6.2 µg (or 116 

– 248 international units (IU)) of intake. Vitamin D supplementation (ALER= -3.73 x 10-4 – 2.11 

x 10-4), in turn, was associated with decreased predicted risk in both training and testing models 

(see supplementary figure 7). 
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Figure 3. Accumulated local effects of vitamins from food sources with the greatest median PFI. The y-axis is accumulated local effects, representing the 
average influence of a given feature level on predicted risk of CVD relative to average predicted risk.   
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3.4.4.3 Macronutrients and Moisture 
 Percent of energy from polyunsaturated fatty acids (PUFAs) (ALER= -0.001 – 0.009) 

showed both threshold and j-shaped relationships with predicted risk in testing models, and little 

connection to predicted risk among training models (see figure 4). In the models demonstrating a 

j-shaped dose-response curve, risk was lowest at 3.4 – 5.9 % of energy intake from PUFAs. In 

the models with a threshold-type relationship, predicted risk increased after approximately 8.2% 

of energy from PUFAs. Moisture intake from food and beverages (ALER= -0.001 – 0.006) had 

threshold and j-shaped dose-response curves, with predicted risk increasing after approximately 

2400 – 2800 g in threshold models and predicted risk being lowest at approximately 2800 g in 

the j-shaped model. Finally, percent of energy intake from protein (ALER= -0.001 – 0.004) 

mostly showed a j-shaped relationship with predicted risk in both testing and training models. 

Predicted risk was lowest when protein comprised 13.7 – 17.1% of energy intake.  
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Figure 4. Accumulated local effects of the macronutrients with the greatest median PFI. The y-axis is accumulated local effects, representing the average 
influence of a given feature level on predicted risk of CVD relative to average predicted risk. 
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3.4.4.4 Food Categories 
 The ALEs for daily consumption of fruit (ALER= -8.70 x 10-4 – 7.12 x 10-4), 

which had the sixth highest PFI among nutrition-related features, are presented in 

supplementary figure 8. The daily fruit consumption feature, and all the other food 

category features, refer to the average number of times that the food was consumed per 

day over the previous 30 days (it does not reflect the specific quantity). Some testing 

models showed a u-shaped relationship between predicted risk and fruit consumption, 

while other training and testing models showed decreasing predicted risk with increasing 

fruit consumption. The u-shaped models had the lowest predicted risk when consuming 

fruit an average of 0.9 times per day. The models demonstrating decreasing predicted risk 

achieved most of this predicted risk reduction when consuming fruit approximately 1.25 – 

2.5 times per day. Daily consumption of green salad (ALER= -0.002 – 0.002) was 

associated with decreasing predicted risk in testing models and had a u-shaped 

relationship with predicted risk in one of the training models. In the testing models low 

predicted risk was achieved when consuming green salad on average approximately 1 

time daily and in the u-shaped model lowest predicted risk was seen with eating green 

salad on average 0.7 times per day. Lastly, daily consumption of carrots (ALER= -6.77 x 

10-4 – 0.003) did not show consistent relationships with predicted risk among models. The 

two models with the largest variation in predicted risk (training models 2/3 and testing 

model 2) had monotonically increasing predicted risk and an inverted j-shaped 

relationship with predicted risk. The model with increasing predicted risk achieved the 

highest predicted risk-level when consuming carrots one time daily on average and the u-
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shaped model had the lowest predicted risk when eating carrots approximately 0.6 times 

daily. 

 

3.4.4.5 Minerals 
 The ALEs for intake of sodium from food (ALER: -0.003 – 0.007), which had the 

eighth highest median PFI among nutrition-related features, are displayed in 

supplementary figure 9. Most models had a threshold relationship with predicted risk and 

one testing model had a j-shaped relationship with predicted risk. The threshold models 

had increasing predicted risk after approximately 2500 – 4000 mg of sodium intake and 

the j-shaped model had the lowest predicted risk at 2000 mg of intake. Sodium 

supplementation (ALER= -2.06 x 10-4 – 0.005) was also related to increased predicted 

risk in training and testing models (see supplementary figure 10). Phosphorous intake 

from food (ALER= -2.37 x 10-4 – 3.71 x 10-4) had a u-shaped relationship with predicted 

risk in testing models, with the lowest risk seen at 667 – 1550 mg of intake. Threshold 

relationships were observed in the training models, which also had much less variation in 

predicted risk associated with phosphorous intake. These models showed increasing 

predicted risk after approximately 1100 mg of consumption. Phosphorous 

supplementation (ALER= -3.54 x 10-4 – 4.88 x 10-4) had inconsistent ALEs between 

training and testing models.  

 

3.4.4.6 Non-nutrition-related Features 
 Age (ALER= -0.083 – 0.240) had the highest median PFI overall (see 

supplementary figure 11). In all models, age displayed a threshold relationship with 
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predicted risk, with predicted risk starting to increase at approximately 35 years of age. 

Women had a lower predicted risk of CVD than men (ALER of sex= -0.014 – 0.018) in 

all models (see supplementary figure 12 for sex and all other remaining ALEs). Overall, 

smoking status (ALER= -0.002 – 0.023) was related to increasing predicted risk with 

higher frequency and recency across models. This relationship was most apparent in 

training models, whereas in testing models there was more variation in the influence on 

predicted risk. Among training models, predicted risk was similarly low among people 

who never smoked, former occasional smokers, and former daily smokers who had quit 

more than three years prior. Predicted risk was highest across models in those who 

smoked 16 or more cigarettes per day. Lastly, greater household food security (ALER= -

0.001 – 0.035) was associated with less predicted risk in both training and testing models. 

 

3.4.5 Prediction Performance 
 The model with the best prediction performance during training had a test dataset 

logarithmic loss of 0.248 and an AUROC of 0.821 (95% CI: 0.801 – 0.842) (see 

supplementary figure 13 for ROC plot).  Absolute risk of CVD was modestly 

underpredicted from 0.000 – 0.300 predicted risk and correctly predicted in the 0.300 – 

0.350 predicted risk decile (see supplementary figure 14 for calibration plot). 

  

3.5 Discussion 
 We used conditional inference forests, a machine learning method, to build 

predictive models for CVD using 61 nutrition-related features and 14 socioeconomic, 

behavioural, psychological, and demographic covariates from a Canadian population-
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based health survey linked to administrative health databases. Permutation feature 

importance and accumulated local effects were used to determine the contribution of 

features to predicted risk of CVD in the predictive models. We found many nutrition-

related features with positive median PFIs. Accumulated local effects plots demonstrated 

a diverse mixture of linear, threshold, u-shaped, j-shaped, and other non-linear 

relationships. 

 Many of the nutrition-related features that we identified with the highest PFIs 

have been linked to CVD in the past, including alcohol, sodium, fruits, vegetables, 

supplement-use, caffeine, B vitamins, protein,  PUFAs, and zinc.38 Interestingly, many of 

the nutrition-related features with the highest PFIs were related to supplementation, 

substances, or food categories. These features were developed from survey questions 

about average consumption over the previous month, which may have reduced 

measurement error relative to other nutrients derived from the 24-hour dietary recall and 

therefore increased the strength of observed relationships. Additionally, food categories 

combine diverse mixtures of many nutrients and therefore, may have stronger impacts on 

risk of CVD than individual, isolated nutrients. 

The nature of identified relationships between important nutrition-related features 

and predicted CVD risk were often broadly consistent with previous epidemiologic 

literature, as in the case of alcohol, sodium, fruit, and salad. We found a u-shaped 

relationship between frequency of drinking alcohol and CVD, which is similar to other 

available evidence.144 Our results were less consistent regarding percent of energy of 

from alcohol; however, in some models we did observe a j-shaped dose-response curve. It 
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may be that the relationship stemming from percent of energy from alcohol was less 

precise, as it was derived from the 24-hour dietary recall rather than a question regarding 

average consumption. We also found that high levels of sodium were associated with 

higher predicted risk, which is consistent with the literature.145–149 However, we found a 

threshold or j-shaped relationship, and there is not consensus on this in the literature.35  

Predicted risk in our models increased after 2000 – 4000 mg of intake, which at the lower 

end would be consistent with recommendations for sodium targets. Some systematic 

reviews of observational studies have not found evidence for non-linear relationships145–

147 while other studies and reviews have supported u- or threshold effects.148,149 Fruits had 

u-shaped and decreasing relationships with predicted risk in our study. Overall, the 

literature suggests that fruits are protective; however, these systematic reviews have also 

found evidence of non-linear relationships.150–153 Green salad also had mostly decreasing 

relationships with predicted risk, which is consistent with the general literature on 

vegetable intake and CVD.150–153  

Other identified important features have less consistent relationships with CVD in 

previous literature or have demonstrated associations that differ from our findings, 

including those for supplement-use, vitamin B6, vitamin B12, caffeine, PUFAs, and 

protein. We found a link between use of any supplement and reduced predicted risk of 

CVD, while systematic reviews on this topic have concluded that there is not a 

relationship.154,155 One review did find an initial protective effect against coronary heart 

disease incidence,155 but this dissipated during a subgroup analysis restricted to 

randomized controlled trials.  Overall, our results for supplementation and predicted risk 
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should not be interpreted independently as it is the context of other features in the model. 

We make no assumption regarding unmeasured features. We also found a relationship 

between vitamin B6 supplementation and lower predicted risk, as well as a j-shaped 

relationship between dietary vitamin B6 and predicted risk. Systematic reviews and recent 

studies have also found a protective effect of dietary/supplementary vitamin B6, but did 

not find evidence of non-linearity.154,156–158 Our results showed an association between 

vitamin B12 intake from food/supplementation and increasing predicted risk. In contrast, 

reviews have found no relationship between vitamin B12 and CVD. Again, our results 

with vitamin B12  and predicted risk should not be interpreted independently as it is the 

context of other features in the model. We make no assumption regarding unmeasured 

features, such as meat consumption. An additional finding was that caffeine was related 

to increasing predicted risk of CVD, while most recent meta-analyses have found that 

moderate coffee or caffeine consumption is neutral or protective.159–161 Again, our results 

for caffeine and its relationship to predicted risk may emerge due to unmeasured features 

associated with both caffeine and CVD, which we make no assumptions about.  

Regarding PUFAs, there were j-shaped and threshold relationships found with predicted 

risk. The health effects of PUFAs remain controversial, with some systematic reviews 

finding no relationship153,162 and others a protective effect.45,163,164 Two reviews have 

reported evidence for non-linear relationships.153,163 It has also been argued that omega-6 

fatty acids in particular, may be harmful.37,165 Lastly, the effect of protein intake on CVD 

remains uncertain. We found a u-shaped relationship with predicted risk. Systematic 

reviews have found null or harmful effects of total protein intake on CVD, beneficial 
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effects of plant protein, and harmful effects of animal protein.166,167 Relationships 

between total and animal protein and risk were u- or j-shaped and similar to those found 

in our study.167  

Other identified nutrients which were identified as predictors in our model have 

been less frequently discussed in the CVD literature, including zinc, and moisture intake 

from food and beverages. Both zinc supplementation and intake from food were 

associated with increased predicted risk of CVD. Studies have found null, harmful, and 

beneficial relationships between zinc intake and CVD.168,169 One has reported that zinc 

from meat was associated with increased CVD, while zinc from other sources had no 

association.170 We found that moisture had threshold or j-shaped dose-response curves. 

To our knowledge, no study has evaluated the relationship between moisture intake and 

CVD; however, moisture intake from beverage sources has been linked to increased body 

mass index.171 

Overall, while our results are suggestive of future areas for investigation, they do 

not stem from a causal model and cannot be interpreted as causal effects. It must be 

interpreted in the context of other features in the model and we have not made any 

assumptions regarding unmeasured features. Given the absence of most whole foods in 

our analysis, it is impossible to determine whether associations arise from nutrients 

themselves or other aspects of their major food sources. 

 Age, sex, smoking status, and food security had the highest median PFIs among 

non-nutrition-related features. This is unsurprising considering that all have previously 

been linked to CVD and also would be expected to have less measurement error than the 
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nutrition-related features in our data.172 Furthermore, the increasing predicted risk with 

age, increased predicted risk among males, increased predicted risk with higher levels of 

smoking, and increased predicted risk with greater food insecurity that we found were all 

consistent with what is known.173,174 

 During hyperparameter tuning, we noted that models with a higher mincriterion 

parameter (and therefore a higher required significance value to use features in making 

predictions) performed best with higher mtry values. Meanwhile, models with lower 

mincriterion values performed best with mid-range mtry values. Both types of models 

achieved nearly equivalent prediction performance. This may be significant in health 

research settings when interpretation of the contributions of features to predictions is of 

interest. This is because it has been reported that higher mtry values reduce the PFI of 

irrelevant features that are correlated with truly important features and also make feature 

contributions to model predictions more analogous to regression models.175,176 Therefore, 

models with higher mtry values may be more amenable to interpretation of feature 

effects. Use of the mincriterion parameter, which does not exist in random forests, was 

important to achieve high prediction performance alongside high mtry values. As a result, 

conditional inference forests and attention to mincriterion/mtry during tuning may be 

important when model interpretation is needed. 

 The predictive discrimination and calibration of our models were comparable to or 

better than many existing CVD risk prediction tools.177,178 This is despite the absence of 

any clinical, laboratory, or anthropometric features in our models, which suggests that 

rich nutritional features may add valuable information. Also, the features used in this 
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predictive model could potentially be collected relatively quickly and from home, which 

could be valuable. Lastly, machine learning prediction models have been criticized for 

poor calibration, but our results suggest that this is not always the case.  

 

3.5.1 Strengths 
 Our study is one of the first to apply machine learning techniques to the prediction 

of CVD using detailed population-based dietary data. Furthermore, few existing models 

have used linked, population-based data with prospective follow-up of 14 years. An 

additional advantage of our study is the use of conditional inference forests rather than 

random forests. Given the use of non-parametric significance tests, these algorithms 

reduce feature importance bias in favour of continuous features and may permit more 

generalizable interpretations.179 We applied comprehensive hyperparameter tuning to 

optimize the performance of our models, including mincriterion, which is infrequently 

considered. We are also one of the first groups to apply accumulated local effects to CVD 

epidemiology, which permits better isolation of feature effects in the presence of 

multicollinearity than partial dependence plots. Furthermore, effects were evaluated in 

both training and testing sets, and with multiple different models. Additionally, 

throughout development of our models we used logarithmic loss to measure prediction 

error rather than accuracy. Logarithmic loss is a proper scoring rule, which performs 

better in settings with more stochasticity (such as health research).122 Finally, prediction 

performance was evaluated in terms of both discrimination and calibration, which is 

important in health research settings.180 

 



Master’s Thesis – J.D. Morgenstern; McMaster University – Public Health 

62 
 

3.5.2 Limitations 
 The major limitation of our study is that most nutrition features were gathered 

using a single 24-hour dietary recall. This is likely to introduce significant random 

measurement error, and likely reduced our ability to identify important features, while 

possibly resulting in some spurious findings.172 Also, random measurement error can 

reduce both predictive discrimination and calibration of prediction models.181 

Additionally, many included nutrient features are highly correlated. Therefore, some of 

the features that we identified as important may only have been correlated with other truly 

important features. However, the use of a higher mtry value in most models should have 

mitigated this effect. A further issue is that multicollinearity and the use of higher mtry 

values results in greater PFI variance, which may have also obfuscated truly important 

and unimportant features. In the future, use of a conditional variant of permutation feature 

importance could mitigate some of these issues.179 

 We considered one machine learning model and future research may want to 

evaluate and compare more models to determine optimal modelling complexity. 

Friedman h-statistics will also help to determine the importance and nature of any 

interactions.29 Both approaches will help to better understand whether and when machine 

learning offers advantages over traditional modelling approaches in the nutritional 

epidemiology of CVD.  

 

3.6 Conclusions 
 Using machine learning methods, we were able to identify many nutrients 

important for prediction of CVD, with a mix of non-linear and linear relationships. Using 
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interpretable machine learning methods, we replicated many established relationships 

between nutrition and CVD, while highlighting potential novel areas of inquiry. Methods 

such as permutation feature importance and accumulated local effects challenge the 

common conception that machine learning algorithms are black boxes, offering an 

opportunity to improve the yield and usability of these methods in nutritional 

epidemiology and health research more broadly. Additionally, our models’ predictive 

performances were comparable to existing tools despite lacking any laboratory or 

anthropometric features. Our results suggest that machine learning techniques warrant 

further investigation as an analytic tool in the nutritional epidemiology of CVD. Future 

work is needed to determine if the observed associations are causal. With growing 

recognition of the complexity of nutrition’s relationship with disease, applying machine 

learning may be even more fruitful here than in other fields of health research. Also, 

incorporating both more machine learning algorithms and detailed dietary data into CVD 

predictive models may improve their performance. Finally, application of these methods 

to large cohort studies or other large data sources with repeated dietary recalls or food 

frequency questionnaires is likely to enhance the value of machine learning methods.  
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3.9 Supplementary Figures 
 
Supplementary figure 1: Study design 
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Supplementary figure 2: Prediction performance of the hyperparameter sets tested during cross-validation 
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Supplementary figure 3: Permutation feature importance of the features not related to nutrition 
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Supplementary figure 4: Accumulated local effects of zinc and vitamin B6 from food sources 
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Supplementary figure 5: Accumulated local effects of caffeine and percent of daily energy from alcohol 
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Supplementary figure 6: Accumulated local effects of frequency of drinking alcohol 
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Supplementary figure 7: Accumulated local effects of vitamin D and vitamin B12 supplementation 
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Supplementary figure 8: Accumulated local effects of the food categories with a permutation feature importance greater than zero 
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Supplementary figure 9: Accumulated local effects of the minerals from food with a permutation feature importance greater than zero 
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Supplementary figure 10: Accumulated local effects of sodium and phosphorous supplementation 
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 Supplementary figure 11: Accumulated local effects of age  
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 Supplemental figure 12: Accumulated local effects of features not related to nutrition with the highest permutation feature importance after age 
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Supplemental figure 13: Receiver operator curve plot 
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Supplemental figure 14: Calibration Plot 
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Supplementary table 1: All features included in models with descriptions 
Feature (unit) Description (CCHS 2.2 variable name)182,183 
Age (a) The age of each participant (DHHD_AGE). 
Amount of food compared to usual Reported amount of food consumed compared to 

usual during the period of the 24-hour dietary 
recall: much more than usual; usual; much less 
than usual (R24D_CON). Don’t know and not 
stated considered missing. 

Caffeine intake (mg) Caffeine intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDCAF). Not stated considered missing. 

Calcium intake (mg) Calcium intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDCAL). Not stated considered missing. 

Calcium supplement-use Whether any supplement containing calcium was 
taken in the past month: yes; no (VSDDFCAL). Not 
stated considered missing. 

Carbohydrate supplement-use Whether any supplement containing 
carbohydrate was taken in the past month: yes; 
no (VSDDFCAR). Not stated considered missing. 

Cholesterol intake (mg) Cholesterol intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDCHO). Not stated considered missing. 

Cultural/racial origin The cultural or racial origin reported by 
participants: White; Chinese; Aboriginal Peoples 
of North America; South Asian; Other Racial or 
Cultural Origin; Multiple Racial/Cultural Origins 
(SDCDDRAC). The original CCHS 2.2 feature levels 
“Black,” “Korean,” “Filipino,” “Japanese,” 
Southeast Asian,” “Arab,” “West Asian,” and 
“Latin American” were combined with “Other 
Racial or Cultural Origin” due to containing small 
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numbers of participants. Not stated was 
considered missing. 

Daily carrot consumption The number of times per day that carrots are 
usually consumed (FVCDDCAR). Not stated 
considered missing. 

Daily consumption of other vegetables The number of times per day that other 
vegetables (i.e. anything except for carrots, 
potatoes, and green salad) are usually consumed 
(FVCDDVEG). Not stated considered missing. 

Daily fruit consumption The number of times per day that fruit is usually 
consumed (FVCDDFRU). Not stated considered 
missing. 

Daily fruit juice consumption The number of times per day that fruit juice is 
usually consumed (FVCDDJUI). Not stated 
considered missing. 

Daily green salad consumption The number of times per day that green salad is 
usually consumed (FVCDDSAL). Not stated 
considered missing. 

Daily potato consumption The number of times per day that potatoes 
(excluding French fries, fried potatoes, and 
potato chips) are usually consumed (FVCDDPOT). 
Not stated considered missing. 

Educational level Highest level of education completed:     Grade 8 
or lower; Grade 9 – 10; Grade 11 – 13; Secondary 
school, no post-secondary; Some post-secondary; 
Trades certificate or diploma; Diploma/certificate 
– college; University certificate below bachelor’s; 
Bachelor’s degree; University degree above 
bachelor’s (EDUDDR10). 
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Energy intake (kcal) Energy intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDEKC). Not stated considered missing. 

Folic acid intake (µg) Folic acid intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDFOA). Not stated considered missing. 

Folic acid supplement-use Whether any supplement containing folic acid 
was taken in the past month: yes; no 
(VSDDFFOA). Not stated considered missing. 

Food security level Reported household food security status: food 
secure; food insecure without hunger; food 
insecure with moderate hunger; food insecure 
with severe hunger (FSCDDHFS). Not stated 
considered missing. 

Frequency of drinking alcohol Each participant was asked how often they drank 
alcoholic beverages over the previous year: 
never; less than once a month; once a month; 2 
to 3 times a month; once a week; 2 to 3 times a 
week; 4 to 6 times a week; every day (ALCD_1 
and ALCD_2). Don’t know, refusal, and not stated 
considered missing. 

Household income Total household income reported from all 
sources: less than $5000; $5000 to $9000; $10 
000 to $14 999; $15 000 to $19 999; $20 000 to 
$29 999; $30 000 to $39 999; $40 000 to $49 999; 
$50 000 to $59 999; $60 000 to $79 999; $80 000 
or more (INCDDHH). The original CCHS 2.2 
feature level “no income” was combined with the 
feature “less than $5000” due to containing a 
small number of participants. 
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Immigration status Whether each participant immigrated to Canada 
or was born in Canada: yes; no (SDCD_2). Not 
stated considered missing. 

Iron intake (mg) Iron intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDIRO). Not stated considered missing. 

Iron supplement-use Whether any supplement containing iron was 
taken in the past month: yes; no (VSDDFIRO). Not 
stated considered missing. 

Linoleic fatty acid supplement-use Whether any supplement containing linoleic fatty 
acids was taken in the past month: yes; no 
(VSDDFFAL). Not stated considered missing. 

Linolenic fatty acid supplement-use Whether any supplement containing linolenic 
fatty acids was taken in the past month: yes; no 
(VSDDFFAN). Not stated considered missing. 

Magnesium intake (mg) Magnesium intake derived from all food and 
drink sources reported in the 24-hour dietary 
recall (FSDDDMAG). Not stated considered 
missing. 

Magnesium supplement-use Whether any supplement containing magnesium 
was taken in the past month: yes; no 
(VSDDFMAG). Not stated considered missing. 

Marital status The marital status of each participant: married; 
common-law; widowed; separated; divorced; 
single; never married (DHHD_MS). Don’t know 
and refusal considered missing. 

Moisture intake (g) Water intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDMOI). Not stated considered missing. 

Naturally occurring folate intake (µg) Naturally occurring folate intake derived from all 
food and drink sources reported in the 24-hour 
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dietary recall (FSDDDFON). Not stated considered 
missing. 

Niacin intake (mg) Niacin intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDNIA). Not stated considered missing. 

Niacin supplement-use Whether any supplement containing niacin was 
taken in the past month: yes; no (VSDDFNIA). Not 
stated considered missing. 

Percent of life spent in Canada (%) Percent of the participants life spent in Canada 
(DHHD_AGE, SDCD_3). Don’t know, refusal, and 
not stated considered missing. 

Percent of total energy from alcohol (%) Percent of total energy intake from alcohol, 
derived from all food and drink sources reported 
in the 24-hour dietary recall (FSDDDEAL). Not 
stated considered missing. 

Percent of total energy from carbohydrates Percent of total energy intake from carbohydrate, 
derived from all food and drink sources reported 
in the 24-hour dietary recall (FSDDDECA). Not 
stated considered missing. 

Percent of total energy from fat (%) Percent of total energy intake from fat, derived 
from all food and drink sources reported in the 
24-hour dietary recall (FSDDDELI). Not stated 
considered missing. 

Percent of total energy from linoleic fatty acids 
(%) 

Percent of total energy intake from linoleic fatty 
acids, derived from all food and drink sources 
reported in the 24-hour dietary recall (FSDDDEEI). 
Not stated considered missing. 

Percent of total energy from linolenic fatty acids 
(%) 

Percent of total energy intake from linolenic fatty 
acids, derived from all food and drink sources 
reported in the 24-hour dietary recall 
(FSDDDENI). Not stated considered missing. 
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Percent of total energy from monounsaturated 
fatty acids (%) 

Percent of total energy intake from 
monounsaturated fatty acids, derived from all 
food and drink sources reported in the 24-hour 
dietary recall (FSDDDEMO). Not stated 
considered missing. 

Percent of total energy from polyunsaturated 
fatty acids (%) 

Percent of total energy intake from 
polyunsaturated fatty acids, derived from all food 
and drink sources reported in the 24-hour dietary 
recall (FSDDDEPO). Not stated considered 
missing. 

Percent of total energy from protein (%) Percent of total energy intake from protein, 
derived from all food and drink sources reported 
in the 24-hour dietary recall (FSDDDEPR). Not 
stated considered missing. 

Percent of total energy from saturated fatty acids 
(%) 

Percent of total energy intake from saturated 
fatty acids, derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDESA). Not stated considered missing. 

Phosphorous intake (mg) Phosphorous intake derived from all food and 
drink sources reported in the 24-hour dietary 
recall (FSDDDPHO). Not stated considered 
missing. 

Phosphorous supplement-use Whether any supplement containing 
phosphorous was taken in the past month: yes; 
no (VSDDFPHO). Not stated considered missing. 

Physical activity level (kcal/kg/h) Average daily energy expenditure of the 
participant in the last 3 months (PACDDEE). Not 
stated considered missing. 

Potassium intake (mg) Potassium intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDPOT). Not stated considered missing. 
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Potassium supplement-use Whether any supplement containing potassium 
was taken in the past month: yes; no 
(VSDDFPOT). Not stated considered missing. 

Residence location type Whether participants reported a rural or urban 
residence, based on reported postal code and 
2001 Census geography: urban; rural 
(GEODDUR2). 

Riboflavin intake (mg) Riboflavin intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDRIB). Not stated considered missing. 

Riboflavin supplement-use Whether any supplement containing riboflavin 
was taken in the past month: yes; no (VSDDFRIB). 
Not stated considered missing. 

Sense of belonging Reported sense of belonging to local community: 
very strong; somewhat strong; somewhat weak; 
and very weak (GEND_10). Don’t know, refusal, 
and not stated considered missing. 

Sex The reported sex of each participant: male; 
female (DHHD_SEX).  

Smoking status  Amount, frequency, and recency of smoking 
cigarettes: Daily Smoker, More Than 20 
Cigarettes; Occasional Smoker (Former Daily); 
Always an Occasional Smoker; Former Daily 
Smoker, Quit 3 or More Years Ago; Former 
Occasional Smoker; Never Smoked; Former Daily 
Smoker, Quit Less Than 1 Year Ago; Former Daily 
Smoker, Quit 1 to 2 Years Ago; Former Daily 
Smoker, Quit 2 to 3 Years Ago; Daily Smoker, 5 or 
Less Cigarettes; Daily Smoker, 6 to 10 Cigarettes; 
Daily Smoker, 11 to 15 Cigarettes; Daily Smoker, 
16 to 20 Cigarettes (SMKD_202, SMKD_204, 
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SMKD_05D, SMKDDSTY, SMKDDSTP). Don’t 
know, refusal, and not stated considered missing. 

Sodium intake (mg) Sodium intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDSOD). Not stated considered missing. 

Sodium supplement-use Whether any supplement containing sodium was 
taken in the past month: yes; no (VSDDFSOD). 
Not stated considered missing. 

Stress level Reported self-perceived stress: not at all 
stressful; not very stressful; a bit stressful; quite a 
bit stressful; and extremely stressful (GEND_07). 
Don’t know, refusal, and not stated considered 
missing. 

Thiamin intake (mg) Thiamin intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDTHI). Not stated considered missing. 

Thiamin supplement-use Whether any supplement containing thiamin was 
taken in the past month: yes; no (VSDDFTHI). Not 
stated considered missing. 

Total dietary fibre intake (g) Dietary fibre intake derived from all food and 
drink sources reported in the 24-hour dietary 
recall (FSDDDFI). Not stated considered missing. 

Total sugar intake (g) Total sugar intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDSUG). Not stated considered missing. 

Vitamin A intake (µg RAE) Vitamin A intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDRAE). Not stated considered missing. 

Vitamin A supplement-use Whether any supplement containing vitamin A 
was taken in the past month: yes; no (VSDDFA). 
Not stated considered missing. 
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Vitamin B12 intake (µg) Vitamin B12 intake derived from all food and 
drink sources reported in the 24-hour dietary 
recall (FSDDDB12). Not stated considered 
missing. 

Vitamin B12 supplement-use Whether any supplement containing vitamin B12 
was taken in the past month: yes; no 
(VSDDFB12). Not stated considered missing. 

Vitamin B6 intake (mg) Vitamin B6 intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDB6). Not stated considered missing. 

Vitamin B6 supplement-use Whether any supplement containing vitamin B6 
was taken in the past month: yes; no (VSDDFB6). 
Not stated considered missing. 

Vitamin C intake (mg) Vitamin C intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDC). Not stated considered missing. 

Vitamin C supplement-use Whether any supplement containing vitamin C 
was taken in the past month: yes; no (VSDDFC). 
Not stated considered missing. 

Vitamin D intake (µg) Vitamin D intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDDMG). Not stated considered missing. 

Vitamin D supplement-use Whether any supplement containing vitamin D 
was taken in the past month: yes; no 
(VSDDFDMG). Not stated considered missing. 

Vitamin E supplement-use Whether any supplement containing vitamin E 
was taken in the past month: yes; no 
(VSDDFATE). Not stated considered missing. 

Vitamin or mineral supplement-use Whether any vitamin or mineral supplement was 
taken in the past month: yes; no (VSDD_01). 
Don’t know and refusal considered missing. 
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Zinc intake (mg) Zinc intake derived from all food and drink 
sources reported in the 24-hour dietary recall 
(FSDDDZIN). Not stated considered missing. 

Zinc supplement-use Whether any supplement containing zinc was 
taken in the past month: yes; no (VSDDFZIN). Not 
stated considered missing. 
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Supplementary table 2: Percent of observations with missing values for each feature included in models 
Feature Percent with Missing Data (%) 

Any 9.3 

Age 0.0 

Sex 0.0 

Marital_Status 0.1 

Urban_or_Rural 0.0 

Stress 0.1 

Sense_of_Belonging 0.3 

Smoking_Status 0.1 

Food_Security 0.4 

Immigrant_Status 0.1 

Race 0.0 

Percent_Life_Canada 0.1 

Education 0.8 

Household_Income 7.8 

Takes_Supplements 0.0 

Daily_consumption_fruit_juice 0.1 

Daily_consumption_fruit 0.0 

Daily_consumption_green_salad 0.1 

Daily_consumption_potatoes 0.0 

Daily_consumption_carrots 0.1 

Daily_consumption_other_vegetables 0.2 

Energy_intake_from_food_kcal 0.0 

Total_dietary_fibre_from_food_g 0.0 

Total_sugars_intake_from_food_g 0.0 

Cholesterol_intake_from_food_mg 0.0 

Percent_total_energy_from_carbohydrates 0.0 

Percent_total_energy_from_fat 0.0 



Master’s Thesis – J.D. Morgenstern; McMaster University – Public Health 

90 
 

Percent_total_energy_satur_Fatty_acids 0.0 

Percent_total_energy_mono_Fatty_acids 0.0 

Percent_total_energy_poly_Fatty_acids 0.0 

Percent_total_energy_linoleic_fatty_acid 0.0 

Percent_total_energy_from_linolenic_acid 0.0 

Percent_total_energy_from_proteins 0.0 

Percent_total_energy_from_alcohol 0.0 

Vit_A_from_food_sources_RAE_mcg 0.0 

Vitamin_D_intake_from_food_mcg 0.0 

Vitamin_C_intake_from_food_mg 0.0 

Thiamin_intake_from_food_mg 0.0 

Riboflavin_intake_from_food_mg 0.0 

Niacin_intake_from_food_NE_mg 0.0 

Vitamin_B6_intake_from_food_mg 0.0 

Vitamin_B12_intake_from_food_mcg 0.0 

Naturally_occurring_folate_mcg 0.0 

Folic_acid_intake_from_food_mcg 0.0 

Calcium_intake_from_food_mg 0.0 

Phosphorus_intake_from_food_mg 0.0 

Magnesium_intake_from_food_mg 0.0 

Iron_intake_from_food_sources_mg 0.0 

Zinc_intake_from_food_mg 0.0 

Sodium_intake_from_food_mg 0.0 

Potassium_intake_from_food_mg 0.0 

Caffeine_intake_from_food_mg 0.0 

Moisture_intake_from_food_g 0.0 

Took_supplement_with_carbohydrate 0.0 

Took_supplement_with_calcium 0.1 
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Took_supplement_with_iron 0.0 

Took_supplement_with_magnesium 0.0 

Took_supplement_with_phosphorus 0.0 

Took_supplement_with_potassium 0.0 

Took_supplement_with_sodium 0.0 

Took_supplement_with_zinc 0.0 

Took_suppl_With_vit_D_mcg 0.0 

Took_supplement_with_vit_C 0.1 

Took_supplement_with_thiamin 0.1 

Took_supplement_with_riboflavin 0.1 

Took_supplement_with_niacin 0.1 

Took_supplement_with_vit_B6 0.1 

Took_supplement_with_vit_B12 0.1 

Took_suppl_With_folic_acid 0.1 

Took_suppl_With_linoleic_acid 0.0 

Took_suppl_Linolenic_acid 0.0 

Supplement_with_alpha_tocoph 0.0 

Took_supplement_with_vit_A 0.0 

METS_per_Day 0.0 

Frequency_of_Drinking_EtOH 0.1 

Amount_food_consumed_compared_to_usual 0.1 
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Supplementary table 3: Hyperparameter tuning results 
Available upon request 
 
 
Supplemental table 4: All feature importance values for all features in all models 
Available upon request 
 
 
Supplementary table 5: Accumulated local effects of all included features in all models 
Available upon request 
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CHAPTER 4: Conclusion 
 The major potential benefits of big data and machine learning applied to 

nutritional epidemiology have been discussed. These include new ways of measuring diet 

that may help mitigate measurement error; better modelling of non-linearity, non-

additivity, and the complexity of diet; new ways of controlling for confounders; and 

applications to both predictive and causal models. Then, we applied conditional inference 

forests, a machine learning method, to a linked Canadian population-based survey to 

predict CVD. Interpretable machine learning methods, permutation feature importance 

and accumulated local effects, were applied to our models to determine the nutrients that 

were most predictive of CVD and also to ascertain the nature of those relationships. Some 

of the predictive nutrients identified were alcohol, sodium, fruits, vegetables, supplement-

use, caffeine, B vitamins, protein, moisture, PUFAs, and zinc. Accumulated local effects 

plots revealed a mixture of threshold-linear, j-shaped, and u-shaped relationships between 

dietary factors and CVD. Some of these relationships had previously been reported in the 

literature, while others were counter to findings in the broad literature or had not been 

described previously. Our model also achieved a competitive level of predictive 

discrimination and calibration, despite lacking access to many of the biomedical features 

that prediction models typically include. 

 How machine learning has been applied in the current work mainly addresses our 

identified opportunity to better model non-linearity, non-additivity, and the complexity of 

diet in relation to health outcomes. Our findings of many non-linear relationships among 

many different nutrition-related variables lends support to the proposition that non-
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linearity and addressing more of the richness of diet may be important in nutritional 

epidemiology. However, without comparison to a traditional parametric model such as 

logistic regression, it is impossible to know how much this added model complexity 

improved prediction performance, if at all. An important next step is to perform this 

comparison, and also to assess the performance of more machine learning algorithms (e.g. 

boosted trees) that may achieve better predictivity. Additional avenues identified in 

chapter 2 that we did not explore in our analysis in chapter 3, but may be useful for future 

nutritional epidemiology studies, include use of big data, the importance of interactions, 

new ways of controlling for high-dimensional confounders, and causal inference 

applications. With a larger dataset and repeated measures of diet or food frequency 

questionnaires, we anticipate that we could better leverage the advantages of machine 

learning towards detection of smaller, non-linear, and non-additive relationships between 

diet and disease. Having access to only a single 24-hour dietary recall was a potential 

limitation of this work, as substantial measurement error may be present. For a subset of 

the CCHS population a second dietary recall is available, however, for this exploratory 

machine learning work we did not further explore methods to incorporate the second 

recall to adjust for intra- and inter-individual variations as have been described 

previously.184 Furthermore, when available, we are interested in developing models that 

also include the foods consumed, rather than just the derived nutrients. This would help to 

determine if some of the observed effects stemmed from meat, for example, rather than 

individual nutrients. The application of H-statistics29 is something we intend to pursue in 

the future for identifying important interactions incorporated into machine learning 
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models. Furthermore, the use of unsupervised machine learning methods could help 

identify important a posteriori dietary patterns that could further improve model 

predictions and interpretability. Finally, in the future, linking this data to higher-

dimensional sets of covariates and the use of machine learning for causal inference are 

other promising opportunities. 

 A unique aspect of this work is the use of conditional inference forests, which 

have uncommonly been applied in health research. As we identified in our second 

manuscript, this algorithm reduces bias in permutation feature importance results and 

allows higher predictive performance in the context of high mtry parameters, through 

adjustment of the mincriterion parameter. This may be important in health research when 

interpretability is important. 

 Nutritional epidemiology continues to be a challenging area of research with 

substantial impacts on public health, in which machine learning may enable better use of 

observational data. Our work is an initial step, showing the plausibility and potential 

importance of modelling greater dietary complexity and non-linear relationships between 

diet and disease, that deserves further study. Additionally, our work highlights important 

developments in interpretable machine learning methods, that will be instrumental in 

applying these methods to public health more broadly, when understanding how 

predictions are made is of utmost importance.  
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