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Abstract

Realistic star cluster simulations that dynamically evolve embedded star clusters

require an accurate treatment of the stars, gas and their interaction. We present

and validate a novel technique which creates an initial gas density distribution

based on observational gas column density data. We consider two approaches to

this technique where the first is based on randomly sampling from the original gas

density distribution and the second assigns one particle to represent the gas in each

observed image pixel. To create a three-dimensional distribution, we consider two

estimates of cloud depth where one is a constant value and the second involves vari-

able depths calculated using image processing techniques based on density features

seen in the plane of the sky. We apply these methods to evolve the Carina region

using initial stellar positions derived from the MYSTiX catalogue and gas data

from the Herschel Hi-GAL survey. We evolve the stars using an N-body code and

the gas using a smoothed-particle hydrodynamics code which are coupled through

the AMUSE framework. We analyzed our results using dendrograms to describe

the gas distribution over time and the DBSCAN clustering algorithm to track the

clustering of stars over time. We model the gas using an adiabatic ideal gas equa-

tion of state and find that increasing the initial gas velocity dispersion prevents gas

from accumulating and therefore could hinder future star formation. We also find

that the stars, initially in subclusters spatially (not necessarily bound), tend to

merge together to form one large cluster regardless of the initial conditions of the

gas. It is only after the subclusters have merged that the initial conditions of the

gas start to have a noticeable effect on the structure of the star cluster. Of the two

approaches to our novel technique, the second approach leads to more accurate
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and realistic results. The second approach also has a significant effect on the stars

as the subclusters merge together approximately 1 Myr earlier compared to the

first approach. Therefore the choice of initial gas conditions affects the dynamical

evolution of star cluster systems and being able to incorporate observational gas

data leads to the increasingly accurate dynamical evolution of such systems.
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Chapter 1

Introduction

The oldest star clusters are known as globular clusters which are spherical, devoid

of gas and invaluable tools for tracing the formation history of galaxies. These

clusters have evolved from young gas-rich star clusters, the studies of which may

provide insight as to the early stages of globular clusters. Stars are formed in

dense regions embedded in molecular clouds with only approximately 10% of stars

remaining in bound clusters after 10 Myr (Lada and Lada 2003). Several ques-

tions remain about the evolution of these clusters in terms of the loss of stellar

substructure (clumps of stars) and gas over time. It is expected that relatively

young clusters would show stellar substructure as opposed to those that are rela-

tively old and have had time to relax. Young clusters (1 Myr) have been observed

with centrally concentrated stellar distributions (e.g the Orion Nebula Complex,

Hillenbrand and Hartmann 1998) suggesting the erasure of substructure on short

timescales and simulations have confirmed this can occur on timescales of 1-2 Myr

(Scally and Clarke 2002; Goodwin and Whitworth 2003; Allison et al. 2010a).

However, observations show that substructure is present in some clusters that are
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roughly 30 Myr (Cartwright and Whitworth 2004). Therefore, there does not

seem to be a clear relationship between the ages of star clusters and the loss of

stellar substructure. As well, the interaction between the stars and gas in these

clusters is an important factor to consider in the evolution of these systems. It

is thought that star clusters end up being destroyed (or unbound) within tens of

millions of years due to gas expulsion where the gas is lost due to various stellar

feedback processes and that the degree to which clusters end up unbound is depen-

dent on the star formation efficiency which is the fraction of gas that is converted

into stars (Hills 1980; De Grijs and Goodwin 2008; Baumgardt and Kroupa 2007;

Dinnbier and Kroupa 2020 and references therein). Therefore, the evolution of

young clusters is complex and we wish to study this process in more detail by

simulating the dynamics of the stars, gas and their interactions. To this end, it is

imperative to incorporate both stars and gas into simulations in a meaningful and

accurate manner. We aim to simulate realistic star-forming regions using initial

conditions based on observational data with a focus on specifically incorporating

observational gas data. Our approach allows for a wide range in initial gas density

distributions which can include complex morphologies like clumps or filamentary

structures depending on the observational data.

This is an improvement over other star cluster simulations (e.g Federrath et al.

2010; Sills et al. 2018) that use simplifying assumptions to model the gas distri-

bution which includes using spheres of gas or gas that closely follows the stellar

distribution. This is unrealistic and does not take the specific gas morphology of

a region into account which may include filamentary structures or clumps of gas.

Our work is based on that done in Sills et al. 2018 where they simulated different
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star-forming regions using measured stellar positions and a gas distribution simi-

lar to that of the stars. In this thesis, we present and validate a novel approach

to incorporate observed gas column density data into a star cluster simulation

thereby creating a realistic simulation informed by observations of both stars and

gas. In this way, we open the door to modeling more complex gas morphologies

that are grounded in observations which has not been done before. Although a

method exists where gray-scale images of gas clouds can be processed into initial

conditions for such simulations, it uses the brightness of the pixels as a proxy for

the density (Arth et al. 2019) while our approach makes direct use of the gas col-

umn density data. Our current focus is on simulating the Carina region although

our technique to include observational gas data is general enough to model other

embedded star-forming regions as well.

In this chapter, we begin with an overview of the star formation process, fol-

lowed by an explanation of the MYSTiX project and the Herschel Hi-GAL survey

from which we obtain our initial conditions to model the Carina region.

1.1 Overview of Star Formation

Stars are formed in dense regions embedded in molecular clouds. These clouds are

103 - 107M� in mass and predominantly contain molecular hydrogen (roughly 70%

H2 and 30% He) (Elmegreen and Falgarone 1996). Although H2 is abundant, it is

extremely difficult to observe directly in star-forming regions which are relatively

cool (T = 10K). The lowest radiative transition in H2 is a weak quadrupole tran-

sition that occurs at a temperature of 510K which is much warmer than the cold

3



M.Sc – A.Mathews; McMaster University – Physics & Astronomy

star-forming regions (Krumholz 2015). As a result, different proxies are used to

trace the H2 distribution in these clouds. One tracer is CO which is used because

it is the most abundant molecule in the interstellar medium after H2 and it can

undergo transitions at low temperatures making it observable at the temperatures

in the star-forming regions (Krumholz 2015). Another tracer used is the thermal

radiation emitted from dust grains in the clouds. The intensity of this emission

along with the temperature of the gas can be used to infer column densities of H2

in the observed region which are often recorded as the number of H2 molecules per

cm2 along the line of sight. An example of how the dust properties can be used to

determine column density values is described in section 1.5 where we discuss the

observational gas data that we use in our simulations.

These clouds have fractal morphologies (Elmegreen and Falgarone 1996) and

undergo hierarchical collapse when they become gravitationally unstable. In or-

der for collapse to occur, the gravitational potential energy of the cloud must

be greater than the kinetic energy which supports the cloud from collapse. The

virial parameter characterizes the collapse or expansion of a cloud assuming it is

homogeneous and spherical and this is given by:

α = 5σ2
vR

GM
(1.1)

where σv is the 1D velocity dispersion, R is the cloud radius andM is the cloud

gas mass. α values of less than 1 indicate that a cloud is collapsing while values

greater than 1 indicate expansion of the cloud. α of exactly 1 indicates that the

internal pressure or turbulence of the cloud sufficiently balances out gravity.
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Bertoldi and McKee 1992 show that the virial parameter is also equal to:

α = a2 Ekin
|Epot|

(1.2)

where a is a parameter that takes deviations from spherical symmetry and

different density gradients into account. However, Kauffmann et al. 2013 mention

that this parameter may not be applicable to describe regions that lack symmetry

and are not centrally condensed.

If the gravitational potential energy of the cloud is greater than its kinetic

energy, collapse occurs which amplifies anisotropies present in the cloud creating

filamentary structures (Lin et al. 1965). Dense cores form at the intersections of

these filaments which ultimately form stars (Schneider et al. 2010; Chen et al.

2019). Due to the fragmentation of the initial cloud, collapse can occur in several

regions at once giving rise to star formation that occurs in groups which includes

clusters and associations (Lada and Lada 2003; Kruijssen 2012). The fraction

of gas that is converted to stars, or star-formation efficiency, per free-fall time is

observed to be roughly 1% in giant molecular clouds (Krumholz et al. 2019b).

Stars in the early stages of formation, referred to as protostars, are embedded

in gas and dust which is optically thick in the visible to near IR wavelengths. As

a result, direct observations of the stellar emissions are not possible as they are

absorbed by the gas and dust in the surrounding area. Instead, the energy from

the protostars is re-radiated by the surrounding dust at longer IR wavelengths.

As well, young stars without surrounding dust or disks can be observed in the
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X-ray wavelengths. Combining observations of young embedded clusters in dif-

ferent wavelengths allows for a more complete census to be obtained which is the

motivation behind the MYSTiX project (Feigelson et al. 2013) and we use stellar

positions derived from this (specifically of the Carina region) in our simulations to

create a realistic initial stellar distribution.

1.2 Modelling Cluster Evolution

Star formation models usually begin with the collapse of a sphere of gas that

creates filaments where stars are formed in dense regions (e.g Federrath et al.

2010). To track the dynamical evolution of the stars, N-body codes are often used

which take the gravitational effects between the stars into account (e.g Fujii and

Portegies Zwart 2016). However, in order to understand cluster evolution, it is im-

perative to model both the stars and gas in a self-consistent and accurate manner.

This means incorporating gas dynamics, N-body dynamics and the gravitational

effects between the stars and gas. Our simulations are constructed with this type

of setup and are based on the work done in Sills et al. 2018. Our current focus is

modelling the evolution of the Carina region and we use realistic initial conditions

for both the stars and gas. As mentioned, similar models usually employ a spher-

ical distribution of gas which is not realistic to model a young embedded stellar

system considering the many feedback processes that shape the gas distribution.

Examples of feedback processes include proto-stellar outflows, photoionization and

supernovae explosions. Proto-stellar outflows eject material into the surrounding

region and have been observed in several star-forming regions (Frank et al. 2014).
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Photoionization feedback refers to UV photons emitted from young massive stars

that ionize the surrounding neutral gas. This creates bubbles of ionized hydrogen

(HII) which can reach temperatures of approximately 104 K (Sales et al. 2014,

Krumholz et al. 2019a). The temperature difference between the HII regions and

the surrounding regions creates a pressure difference which results in the movement

of the gas towards the lower pressure areas (Shu 1992). Supernovae explosions oc-

cur when a massive star undergoes core-collapse during the late stages of its life

as iron forms in the core from fusion processes or when a white dwarf in a binary

system accretes enough material to pass the Chandrasekhar limit (which defines

the mass of a stable white dwarf) and can no longer resist gravitational collapse.

These feedback processes shape the gas in star-forming regions and our aim is

to model this complex gas distribution. We present a novel approach to include

observational gas data which can be seen in Chapter 3. In our simulations, we do

not include stellar feedback processes as our stars are low-mass and we consider

the evolution of the cluster on short timescales (up to 10 Myr) before supernovae

feedback begins to be significant. To model the Carina region, we use stellar po-

sitions derived from the MYSTiX project and gas column density data from the

Herschel Hi-GAL survey which are detailed in the following sections.

1.3 The MYSTiX Project

The MYSTiX project (Feigelson et al. 2013) aims to further our understanding

of star formation in massive star-forming regions (MSFRs). Particular questions

for this survey include those that pertain to the conditions required in molecular
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clouds for rich cluster formation, massive OB star-formation as well as how mass-

segregation (massive stars tending to be found near the center) develops in clusters.

This project was created to advance our knowledge in this area by forming a high-

quality dataset of stellar populations in massive star-forming regions. It consists

of 31,754 MYSTiX probable complex members in 20 nearby (distances less than

approximately 4 kpc) MSFRs that have been compiled based on archival data from

the Chandra X-ray Observatory, the United Kingdom Infrared Telescope (UKIRT),

the Two Micron All Sky Survey (2MASS) and NASA’s Spitzer Space Telescope.

Examples of these massive star-forming regions include the Orion Nebula, DR21

and the Carina Nebula.

The combination of observations in the different wavelengths allows for a more

complete census of cluster members. Determining stellar membership in massive

clusters is difficult as issues can arise if observations are limited to the optical or IR

wavelengths. Specifically, variable nebular line emission from heated gas or dust in

HII regions, obscuration of molecular clouds and contamination from Galactic field

stars can limit the resulting observations to OB stars that are not heavily obscured

and young stars with proto-planetary disks. Datasets based solely on optical or IR

observations therefore do not include the young, disk-free, lower mass stars known

to be predominant in young clusters (Feigelson et al. 2013). X-rays observations

of stars, specifically with NASA’s Chandra X-ray Observatory, can be obtained

despite heavy obscuration (Feigelson 2010), can identify the source of emissions

(e.g pre-main sequence stars producing flares) and can reduce field contamination.

As well, X-rays observations are well suited for identifying disk-free stars (stars

with disks can be identified as well but to a lesser degree) (Getman et al. 2009;
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Stelzer et al. 2012). Thus, combining the archival data is advantageous to creating

a more complete census of young stellar populations which includes OB stars,

pre-main sequence stars and young stars with and without proto-planetary disks.

The MYSTiX catalogue provides positions for these stars that have masses greater

than approximately 0.83 M�.

To identify sub-clusters within the observed regions, Kuhn et al. 2014 processed

the MYSTiX data using isothermal ellipsoid fits. They then grouped the stellar

positions based on the cluster identification. Our current focus is on simulating

the Carina region and we use the stellar data that has been processed in this way

for our initial conditions.

1.4 Sub-cluster Identification

Kuhn et al. 2014 identified sub-clusters of stars using finite mixture models (McLach-

lan and Peel 2000) and isothermal ellipsoids. Their model includes an approxi-

mately constant core density that then drops off as a power law which they find to

be generally representative of young stellar clusters. They begin with an isothermal

sphere surface density profile given by:

Σ(r) = Σ0

1 + (r/rc)2 (1.3)

where Σ is the stellar surface density at a distance r from the cluster center, Σ0

is the central stellar surface density and rc is the core radius.
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This density profile was then stretched to form an elliptical model which is more

general and can represent young clusters which have been observed to have ellipti-

cal surface density profiles (e.g the Orion Nebula Complex described in Hillenbrand

and Hartmann 1998).

The stretched profile is:

Σelliptical = Σ0


1 +

∣∣∣∣∣∣∣∣
(1− ε)−1/2 0

0 (1− ε)−1/2

 R̂(φ)(r− r0)

∣∣∣∣∣∣∣∣
2

r2
c



−1

(1.4)

where r − r0 = (x − x0, y − y0), x0 and y0 are the central right ascension and

declination, respectively, φ is the ellipse orientation, ε is the ellipticity and R̂(φ)

rotates r− r0 by φ.

The finite mixture model includes an ellipsoid model for each cluster along with

a flat density profile to characterize the unclustered stars. The best-fit model is

determined using a maximum-likelihood estimation process to determine the best

number of clusters to characterize a region, the details of which can be found in

Kuhn et al. 2014.

The sub-clusters identified were further classified into one of four morphologies:

long chains, clumpy structures, isolated clusters with a core-halo structure and

isolated clusters well fit with a single isothermal ellipsoid. The Carina region in
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particular contains 20 sub-clusters most of which have a chain structure while

two have a core-halo structure. It should be noted that the sub-clusters that are

found do not necessarily correspond precisely to known clusters. For example,

the Trumpler 14 cluster is classified into two sub-clusters (B and C) (Kuhn et al.

2015). The ellipse fits can be seen in Figure 1.1.

In addition to the measured stellar positions, the ellipse parameters that char-

acterize each of the sub-clusters are used to generate the initial stellar positions in

our simulations. The right ascension and declination of the observed stars in each

subcluster belonging to the Carina region in the MYSTiX catalogue are trans-

formed into Cartesian X and Y coordinates. The Z coordinates (along the line

of sight) of the stars are then drawn from a range equivalent to the length of the

minor axis of the ellipse fits. We follow the same process outlined in Sills et al.

2018 to create the initial stellar conditions which includes a population of low mass

stars (estimated from the number of observed stars) and a background population

for which the Z coordinate range is the extent of all the sub-clusters in the XY

plane.

In Sills et al. 2018, the DR21, M17 and NGC 6357 star-forming regions were

simulated using stellar positions derived from the MYSTiX catalogue and gas

distributions that were made to closely follow the stellar distribution. Here, we

aim to include increasingly realistic initial gas conditions by developing a new

method to incorporate observational gas specifically applying this to observations

of the Carina region obtained with the Herschel Hi-GAL Survey.
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Figure 1.1: Ellipse fits to Carina region detailed in Kuhn et al.
2014 with colored stars indicating sub-cluster assignments (20 dif-
ferent clusters indicated with ellipses). Non-clustered stars are light
blue and unassigned stars are gray. (© AAS. Reproduced with per-
mission.)
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1.5 The Herschel Hi-GAL Survey

The Herschel Hi-GAL Survey (Molinari et al. 2010) was initially conducted to

detect the earliest phases of molecular cloud formation and the formation of high

mass stars. Far infrared radiation, produced by large grains (15 - 110 µm), that

traces the interstellar medium was observed in order to derive dust temperature

measurements and create dust continuum maps of the entire Galactic plane in the

wavelength range of 70-500 µm.

These maps are useful to describe and characterize molecular clouds containing

young clusters which are often still embedded. Stellar feedback processes including

stellar winds and supernovae act to disperse gas from the cluster and disrupt the

surrounding cloud. For this reason, it is thought that molecular clouds themselves

are transient structures which are likely dispersed after approximately 107 years

(Larson 2003). As molecular clouds undergo gravitational collapse, filaments form

which are elongated structures of gas in the interstellar medium. Initially observed

in the far-IR with the IRAS survey (Low et al. 1984), filaments have also been

observed in HI (McClure-Griffiths et al. 2006) and CO (Bally et al. 1987; Goldsmith

et al. 2008).

The Herschel Space Observatory provided increased sensitivity and spatial res-

olution in galactic imaging surveys which not only showed more observational

evidence for filaments but that they are ubiquitous in cold regions of the inter-

stellar medium and are present in star forming regions (André et al. 2010). As

will be seen in Chapter 3, we explore ways of capturing this filamentary nature of

molecular clouds as we incorporate the observational gas data.
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Our simulations use the Herschel Hi-Gal maps of the Carina region that were

processed using the PPMAP algorithm (Marsh et al. 2017) which was designed

to create accurate column density maps with a high spatial resolution of 12 arc-

sec. The standard method for obtaining molecular gas column densities and dust

temperatures involves fitting spectral energy distributions to the raw IR emission

data which has been done with Herschel Hi-Gal images before. For example, Re-

bolledo et al. 2016 first degraded Herschel images of the Carina Nebula to the 500

µm image which corresponds to a 36.5 arcsec resolution. They then fit a grey-

body function (Burton et al. 2004) given by equation 1.5 to each pixel with the

dust temperature (Tdust) and mass column density ndust (units of g cm−2, may be

referred to as Σdust elsewhere) as free parameters where:

Fν = ΩBν(Tdust)κ0( ν
ν0

)βndust (1.5)

where F is the flux, Bν is Planck’s law of black-body radiation, Ω is the angular

size of the observed region, β is the dust emissivity index and κ0 is the dust opacity

at a reference frequency of ν0 and the gas column density is given by:

NH2(dust) = ndust
µH2mHRdg

(1.6)

where µH2 is the mean molecular weight in units of the hydrogen atom mass

(2.72), mH is the mass of hydrogen and Rdg is the dust-to-gas ratio (0.01) assuming

that the all the gas traced by the dust is in molecular form (see Rebolledo et al.

2016 for more details).
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The restrictions of this fitting method include the loss of resolution as all the

images are degraded to the 500 µm image and the assumption of a uniform dust

temperature along the line of sight which may not be accurate.

In contrast, the PPMAP (point process mapping) algorithm does not require the

images to be smoothed as it is able to take the point spread functions (describes

the intensity of a point-like object that will appear extended due to diffraction

by the telescope aperture) of the telescopes into account. After processing, a

higher spatial resolution of 12 arcsec is obtained which can resolve structures in

the gas between 0.06 and 0.6 pc in size at distances between 1 and 10 kpc in the

Herschel Hi-GAL survey. In addition, this method does not assume a uniform dust

temperature along the line of sight which allows temperature-differential column

densities to be obtained.

The PPMAP algorithm first represents an astrophysical structure (e.g fila-

ment or molecular cloud) as a set of components each of unit column density

and parametrized by two spatial coordinates (x, y) and a dust temperature which

can be represented as a point in a three-dimensional state space. This state space

is divided into a grid of Nst cells corresponding to the number of states and the

column densities (as a function of (x, y) and Tdust) end up being the occupation

numbers of these cells. The column densities (or state of the system) is defined

as Γ which is estimated given the data d. The relationship between the two is as

follows:

d = AΓ + µ (1.7)
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where µ is the measurement noise and A is the system response matrix. A is a

function of the point spread functions, the Planck function, the solid angle of the

observed area and a dust opacity law defined as:

κ(λ) = 0.1cm2g−1( λ

300µm)−2 (1.8)

To estimate the state of the system, the average Γ is obtained which is given

by:

ρ(zn|d) =
∑
Γ

ΓnP (Γ|d) (1.9)

where zn is a vector of the (x, y, Tdust) coordinates of the nth cell. ρ is essentially

the differential column density which is solved for (details in Marsh et al. 2015)

and then mapped back into the (x, y, Tdust) coordinates.

PPMAP takes as input a set of dust continuum images, their associated point

spread functions, an assumed dust opacity law and a grid of temperatures at which

the differential column density will be estimated. 12 temperatures are used which

are equally spaced between logged values ranging from 8-50 K which is the expected

range based on the spectral energy distributions. The output from this algorithm

is an image cube of the temperature differential column density of gas and dust in

units of 1020 H2 molecules per cm2 per Kelvin which can then be used to obtain a

2D mean line of sight dust temperature map and a column density map integrated

in temperature. The temperature integrated map was then divided by a value of

20 pc in order to obtain a number density map in units of H2 per cm3. This value
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of 20 pc was selected by our collaborators Dr. Klaassen and Dr. Reiter as an

appropriate value in between a filament width of 0.1 pc and a low density cloud

of 100 pc. Depths of clouds can be determined using stellar reddening relations

along the line of sight (Lallement et al. 2014). However at this time, we do not

have such measurements. As a result, the Z depth of the cloud is an estimate.

The PPMAP technique was applied to all 163 tiles (each tile corresponds to 2.4◦

× 2.4◦ field of view) of the Herschel Hi-Gal survey (Marsh et al. 2017) and the

resulting maps can be found on the publicly available ViaLactea (an EU funded

project) database (ViaLactea n.d.). We use maps of the Carina region (specifically

the number density map and the 2D mean line of sight dust temperature map)

that have been processed with PPMAP as input in our simulations to create a

realistic initial gas distribution.

1.5.1 The Carina Region

Our current focus is on the Carina region which is a large star-forming complex

approximately 2.3 kiloparsecs away (Smith et al. 2006). It is one of the largest HII

regions observed having been first described in 1847 (Herschel 1847). Smith et al.

2000 showed that there are large dense clouds extending over 50 parsecs around

Trumpler 14, 15 and 16, which are notable star clusters in this region. Pillar

structures in the gas and dust have been observed (Cortes-Rangel et al. 2020,

Klaassen et al. 2020) while estimates of the total gas and dust mass in this region

is on the order of 650,000 M�. Star-formation is thought to have started about 10

Myr ago with Trumpler 15 forming 6.5 Myr ago and Trumpler 14 and 16 forming
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2-3 Myr ago (DeGioia-Eastwood et al. 2001) allowing a significant amount of time

for the clouds to become disrupted due to massive stellar feedback. For example,

this region is known for the energetic eruptions of the η Carinae binary system

which consists of a luminous blue variable star and an evolved main sequence star

(Humphreys and Martin 2012). In addition, most of the massive stars in Trumpler

15 have undergone supernovae explosions (Wang et al. 2011). Such events shape

the surrounding material giving rise to different structures like the Homunculus

nebula (Kashi and Soker 2010) which surrounds the η Carinae binary system.

Although the Carina region is a somewhat evolved star-forming region in this

regard, there is evidence of ongoing star-formation as well. This is seen in the

high levels of UV radiation on the clouds in the central part of the region which is

similar to the radiation observed in extragalactic star-burst regions (Roccatagliata

et al. 2013). Furthermore, the feedback from the massive stars contributes to the

compression of the surrounding dense clouds which appears to be resulting in new

star-formation (Gaczkowski et al. 2013). Therefore this region is complex in terms

of the gas distribution and the star-formation history.

The Carina Nebula has been observed in several surveys. The stellar distribu-

tions in the Carina region have been extensively observed in the x-ray, near-infrared

and mid-infrared wavelengths. X-ray observations obtained with the Chandra tele-

scope show over 14,000 point sources along with diffuse emission (Townsley et al.

2011b). Similar observations in the near-infrared have been obtained using the

HAWK-I instrument on the VLT (Preibisch et al. 2011) and in the mid-infrared

using the IRAC instrument on the Spitzer telescope (Povich et al. 2011). The field

of view of the VISTA (Preibisch et al. 2014), HAWK-I and Chandra observations
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overlaid on an optical image of the Carina region can be seen in Figure 1.2.

The MYSTiX project combines the HAWK-I and Chandra observations based

on the overlap in the observed regions. This overlap therefore corresponds to the

region covered by HAWK-I which can be seen in Figure 1.2. As well, the gas

observations we use in our simulations from the Herschel Hi-GAL survey overlap

with the stellar distribution observed in the HAWK-I region. Figure 1.3 shows

the observed H2 number density and Figure 1.4 shows the mean line of sight

temperature distribution. Figure 1.5 shows the observed H2 number density along

with the observed stars from the MYSTiX project. The location of η Carinae and

the centers of Trumpler 14, 15 and 16 are indicated in this image as well.

We are interested in simulating the dynamical evolution of this region specif-

ically where the stars and gas overlap (Note: Our simulations model only the

overlapping region in a 40 parsec radius centered on the stellar distribution and

we assume this region to be isolated when in reality the surrounding gas will have

an effect). As seen in Figure 1.5, the gas distribution around the stars appears

to be somewhat elongated and filamentary and does not envelop the stars in a

symmetric way. Therefore to accurately simulate the complex gas and dust distri-

bution of such regions we must go beyond simplifying assumptions and develop a

new method to incorporate observational gas data.
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Figure 1.2: Field of view of Carina region as observed with VISTA
(Preibisch et al. 2014), HAWK-I (Preibisch et al. 2011) and Chan-
dra (Townsley et al. 2011a) overlaid on optical image of Carina
where the solid line corresponds to the Galactic plane. (Credit:
Preibisch et al. 2014 reproduced with permission © ESO).

20



M.Sc – A.Mathews; McMaster University – Physics & Astronomy

Figure 1.3: Carina H2 number density obtained from processed
(Marsh et al. 2017) Herschel Hi-GAL data (Molinari et al. 2010)
assuming a line of sight depth of 20 parsecs (value from our col-
laborators Dr. Klaassen & Dr. Reiter). This follows from dividing
the column densities by 20 parsecs resulting in a number of gas
molecules per cm−3 for each pixel. Logged values are shown.
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Figure 1.4: Carina line of sight mean temperature obtained from
processed (Marsh et al. 2017) Herschel Hi-GAL data (Molinari et
al. 2010)
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Figure 1.5: Measured stellar positions from MYSTiX project
(dark blue) (Feigelson et al. 2013) overlaid on Carina H2 number
density described in Figure 1.3. Positions of Tr 14, 15, 16 and η
Carinae are in orange, cyan, yellow and red, respectively.

23



M.Sc – A.Mathews; McMaster University – Physics & Astronomy

1.6 Other Gas Observations

The previous sections described the stellar and gas observations we incorporate

in our simulations. Specifically, these observations give spatial information in

terms of stellar positions and the gas density distribution. To further increase

the accuracy of the input gas, we can allow the gas in our simulations to have a

velocity dispersion based on observations.

1.6.1 Gas Velocity Dispersion Measurements

Larson’s relation states that the internal velocity dispersion is correlated with the

size and mass of the molecular cloud which was determined through observations of

molecular clouds (Larson 1981). Using this relation would provide an estimate for

the dispersion, however it would depend on the size of the observed region which

may not reflect the size of the entire molecular cloud. As well, the estimate depends

on a single characteristic size of the cloud which may not accurately describe an

elongated cloud.

Velocity dispersion values can also be derived from observations of 12CO, 13CO

and C18O which trace different cloud densities of roughly 102 cm−3, 103 cm−3

and 104 cm−3, respectively (Mizuno et al. 1995; Kim et al. 2004; Yonekura et al.

2005). These density differences are due to the corresponding optical depth of the

transitions. For example, the 12CO emission is optically thick which is why it is

only able to trace the lower density layer of a molecular cloud.
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In our simulations, we use a velocity dispersion value derived from observations

of massive cores obtained with the NANTEN telescope (Yonekura et al. 2005)

which are traced with C18O emission lines. Figure 1.6 shows the total intensity map

of C18O while Figure 1.7 shows the positions of the cores on the C18O integrated

intensity map. Cores numbered 8-15 overlay roughly with the Herschel Hi-GAL

column density data.

Figure 1.6: Total C18O (J = 1 - 0) intensity map used to obtain
velocity dispersion of massive cores in the Carina region. Contours
begin at 0.5 K km/s and increase in steps of 0.5 K km/s. Repro-
duced from Figure 4 in Yonekura et al. 2005 with permission of the
AAS.
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Figure 1.7: Positions of cores overlaid on C18O integrated inten-
sity map. Contours are the same as those in Figure 1.6. Contours
begin at 0.5 K km/s and increase in steps of 0.5 K km/s. Repro-
duced from Figure 5 in Yonekura et al. 2005 with permission of the
AAS.

These observations have a typical line width or full-width half-maximum (FWHM)

of 3.3 km/s. The velocity dispersion σ is calculated using:

FWHM = 2
√

2 ln 2σ (1.10)

which corresponds to a velocity dispersion of 1.4 km/s.

Although these line width measurements are precise and localized, they may not
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be an indicative measure of the velocity dispersion over the entire area observed

with the Herschel Hi-GAL survey due to the fact that C18O only traces the high

density regions. Consequently, we allow the velocity dispersion to vary in our

simulations.

1.7 Thesis Overview

The purpose of this thesis project is to develop a new technique to incorporate

observational gas data into a star cluster simulation. We present and validate a new

method that is able to do this and we evolve the Carina region as an example. The

numerical methods are outlined in Chapter 2 and the new method to incorporate

observational gas data is described in Chapter 3. Results are presented in Chapter

4 and conclusions in Chapter 5.
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Chapter 2

Simulation Methods

In this chapter, we describe the numerical techniques used to model the stars and

gas in our simulations. Specifically, we use an N-body code to evolve the stars

and a smoothed-particle hydrodynamics code to evolve the gas which are coupled

through the AMUSE (a multi-physics software environment implementation for

astrophysics) framework. We present the tools used to analyze our simulations

as well. These include dendrograms which are used to describe the hierarchical

structure in the gas distribution, a clustering algorithm (DBSCAN) to track the

merging or separation of sub-clusters, and the calculation of the mass-segregation

ratio of the clusters picked out by DBSCAN.

2.1 Smoothed-particle Hydrodynamics

Smoothed particle hydrodynamics (SPH) is a mesh-free particle method initially

developed to model non-spherical stars (e.g the formation of protostars from clouds

of gas) and is based on fluid dynamics (Gingold and Monaghan 1977). This method
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involves representing fluids as discrete particles and employs a Lagrangian descrip-

tion of fluid flow where co-moving spatial coordinates of fluid elements are used

and the particle properties are followed over time. The equations of motion that

describe the fluid are therefore a set of ordinary differential equations discretized

with respect to time. Smoothed particle properties are obtained with interpolation

through the use of a kernel approximation which relies on an associated smooth-

ing length value, h, that defines a local region of influence around each particle.

Kernel functions that drop to zero at a distance h (or 2h depending on notation),

are therefore ideal (Monaghan 1992). By smoothing the particle properties in this

way, continuous fields can be constructed from the set of discrete particles. Fol-

lowing Monaghan 1992, the integral interpolant of a function A(r) over all space

is:

A(r) =
∫
A(r′)W (r− r′, h)dr′ (2.1)

where W is a kernel function that has the following two properties:

∫
W (r− r′, h)dr′ = 1 (2.2)

lim
h→0

W (r− r′, h) = δ(r− r′) (2.3)
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The interpolant can be approximated using a summation over all the particles:

As(r) =
∑
b

mb
Ab
ρb
W (r− rb, h) (2.4)

where b is a particle that has mass mb, position rb , density ρb and any other

quantity A at rb defined as Ab.

For example, the density everywhere can be estimated using:

ρ(r) =
∑
b

mbW (r− rb, h) (2.5)

which depends on the mass of the particles and the kernel function which itself

depends on the particle position and smoothing length.

An example of a kernel is a spline function seen in Monaghan and Lattanzio

(1985). The function used in GADGET-2 (the specific SPH code we use, Springel

2005) is based on this and is given as:

W (r, h) = 8
πh3



1− 6( r
h
)2 + 6( r

h
)3 if 0 ≤ r

h
≤ 1

2

(2(1− r
h
))3 if 1

2 ≤
r
h
≤ 1

0 otherwise

(2.6)

Using this spline function as a kernel is advantageous because it has compact

support and so particles have zero interactions with those that are r > h away.

This means that each particle is only influenced by its immediate neighbours. As
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well, the second derivative of this function is continuous which implies that it is

not sensitive to disorder in the particles. If the particle disorder is low, the errors

in approximating the integral interpolants by summation interpolants remains low

(O(h2)) as well which is another advantage of using this particular kernel.

As seen, the SPH method is closely tied to smoothing length values. If particles

are greater than r > h away, they cease to influence each other. Early use of

SPH (Monaghan 1992) used a smoothing length value that was proportional to

the average density of all the particles and was constant in space but varied with

time. In this way, all the particles would have the same smoothing length value at

each step in time. Hernquist & Katz (1989), Evrard (1988) and Benz et al. (1990)

improved on this and explored increased resolution by using smoothing lengths

dependent on the density of each individual particle where particles in less dense

regions would be assigned larger values of h while particles in high density regions

would be assigned smaller h values. Adaptive smoothing lengths are used in the

SPH code we use called GADGET-2, the main details of which are summarized in

the next section.

2.1.1 GADGET-2

GADGET-2 (Springel 2005) is a cosmological simulation code structured as a

TreeSPH code (Hernquist and Katz 1989) to compute gravitational interactions

and gas dynamics using smoothed-particle hydrodynamics. The tree code uses a

hierarchical multipole expansion to calculate the gravitational forces. It involves

particles being grouped into cells with distant particles being grouped into larger
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cells. The gravitational forces are then calculated with respect to the cells which

results in the total number of computations being O(N log(N)), an improvement

from O(N2) in traditional N-body codes where forces between pairs of particles

are calculated. GADGET-2 is capable of modelling collisionless dynamics (e.g

dark matter or stars in a galaxy) as well as collisional gas dynamics. This code

can be used to simulate systems with greatly differing scales including the large-

scale structure of the universe, colliding galaxies and isolated star clusters, our

focus being the latter. We use GADGET-2 to specifically model the self-gravity

and hydrodynamics of the gas in our simulations. The density for each particle is

estimated according to the previously described SPH method:

ρi =
N∑
j=1

mjW (|ri − rj|, hi) (2.7)

where the kernel function is given by equation 2.6. GADGET-2 makes use

of adaptive smoothing lengths and is able to conserve both energy and entropy.

The smoothing lengths are adaptive in order for the kernel volumes to contain a

constant mass and therefore obey the implicit equation:

4π
3 h3

i ρi = Nsphm̄ (2.8)

where Nsph is the typical number of neighbours and m̄ is the average particle

mass.
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Springel and Hernquist 2002 show that the equations of motion of the particles

are:

dvi
dt

= −
N∑
j=1

mj[fi
Pi
ρ2
i

∇iWij(hi) + fj
Pj
ρ2
j

∇iWij(hj)] (2.9)

where Pi are the particle pressures, Wij(hi) = W (|ri − rj, h) and each fi is:

fi = (1 + hi
3ρi

∂ρi
∂hi

)−1 (2.10)

Shocks are implemented using an artificial viscosity with a viscous force given

by:

dvi

dt
= −

N∑
j=1

mjΠij∇iW̄ij (2.11)

where Πij describes the artificial viscosity which was originally introduced (for

numerical reasons) to resolve shocks in fluids. Πij ≥ 0 and is non-zero when

particles approach each other. The parametrization of the viscosity by Monaghan

1997 is given by:

Πij = −α2
[ci + cj − 3wij]wij

ρij
(2.12)

where α ≈ 0.5 − 1.0 (our simulations use α = 0.5), wij = vij·rij
|rij|

and ci, cj are

the sound speeds of particles i and j.
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This summarizes certain key aspects of the SPH formalism used in the GADGET-

2 code. Further details can be seen in Springel 2005. We use SPH to model the

gas which is a fluid. To model the stars, we use an N-body code.

2.2 N-body Code

The N-body code we use is a fourth-order Hermite integration scheme (Makino

and Aarseth 1992) which takes into account the gravitational forces between the

stars. This integration scheme is a predictor-evaluator-corrector (PEC) scheme.

The first step involves position (r) and velocity (v) predictions given by:

ri,p = ri,0 + vi,0∆ti + 1
2ai,0∆t2i + 1

6 ȧi,0∆t3i (2.13)

vi,p = vi,0 + ai,0∆ti + 1
2 ȧi,0∆t2i (2.14)

Next, the acceleration and jerk are calculated using:

ai,1 =
N∑

j=0,j 6=i
Gmj

rij

(r2
ij + ε2) 3

2
(2.15)

ȧi,1 =
N∑

j=0,j 6=i
Gmj(

vij

(r2
ij + ε2) 5

2
) (2.16)
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where ε is a softening parameter, rij = rj,p−ri,p, vij = vj,p−vi,p and rij = |rij|.

We use gravitational softening to prevent the gravitational force from going to

infinity if particles approach very close to each other (r tending to zero). Our

softening length is chosen to be 200 AU.

The correction step is as follows:

ri,1 = ri,p + 1
24∆t4i äi,0 + 1

120∆t5i
...a i,0 (2.17)

vi,1 = vi,p + 1
4∆t3i äi,0 + 1

24∆t4i
...a i,0 (2.18)

The second and third derivatives of acceleration are calculated using the third-

order interpolation polynomial:

ai,1 = ai,0 + ȧi,0∆ti,0 + 1
2∆t2i,0äi,0 + 1

6∆t3i,0
...a i,0 (2.19)

where:

äi,0 = −6(ai,0 − ai,1)−∆ti,0(4äi,0 + 2äi,1)
∆t2i,0

(2.20)

...a i,0 = −12(ai,0 − ai,1)− 6∆ti,0(ȧi,0 + ȧi,1)
∆t3i,0

(2.21)
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The time step is updated according to:

ti,1 = ti,0 + ∆ti,0 (2.22)

∆ti,1 =

√√√√η |ai,1||äi,1|+ (|ȧi,1|)2

|ȧi,1||
...a i,1|+ (|äi,1|)2 (2.23)

where η is a control parameter that controls accuracy, ...a i,1 = ...a i,0 due to the

third order interpolation and äi,1 = äi,0 + ∆ti
...a i,0.

We couple the SPH code GADGET-2 to the fourth-order Hermite integration

scheme (specific code is ph4) within the AMUSE framework to simultaneously

evolve both the stars and gas. It should be noted that although GADGET-2

contains an N-body solver which could be used, it is less precise than the ph4 code

we use.

2.3 AMUSE

AMUSE is based on the MUSE (Multi-physics Software Environment) framework

with specific applications in astrophysics (Portegies-Zwart et al. 2013; Portegies-

Zwart et al. 2018; Pelupessy et al. 2013; Pelupessy et al. 2009). The motivation for

creating the MUSE framework stemmed from a desire to be able to combine the

many independent physics community codes available. These codes span different

areas of physics including stellar evolution and hydrodynamics although each code
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is developed and maintained separately by those in the scientific community. By

integrating these existing codes, simulations would not always need to be built

from the ground up. As well, there would be more flexibility as switching be-

tween different physics modules could done with ease. MUSE is implemented in

Python and its approach depends on a user script and a community module which

itself consists of a manager, communication layer and community code layer. This

can be seen in Figure 2.1. Details about the specific components of the architec-

ture can be seen in Portegies-Zwart et al. 2013. The user script is the interface

onto the MUSE framework and is where a model is generated with the appro-

priate initial conditions and the different community codes to be used. Once the

simulation is run, any results are returned to this layer for analysis. The man-

ager is the interface onto the communication layer. The communication layer is

bi-directional and facilitates communication between the manager and the com-

munity code layer. The communication layer consists of a proxy and an associated

partner. The proxy translates Python commands which are then sent to the part-

ner to be decoded and executed to run the community codes. This step allows the

community codes to be executed which may not be written in Python (e.g they

could be written in C, C++ or FORTRAN). AMUSE (a MUSE implementation

for astrophysics) is the implementation of MUSE used to simulate astrophysical

phenomena. Different community codes that could be coupled together include N-

body, smoothed-particle hydrodynamics and stellar evolution codes. In this way,

increasingly complex simulations can be realized with relative ease through the

use of this framework.

Within AMUSE, we also couple the stars and gas using the Bridge method
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(Fujii et al. 2007). The main idea is that the gravitational effects between the

stars and gas are computed by giving the star and gas particles periodic velocity

kicks. As shown in Fujii et al. 2007, the integration for the star particles is as

follows:

v′

star,0 = vstar,0 + 1
2∆tagas→star,0 (2.24)

xstar,0 → (HermiteScheme)→ xstar,1 (2.25)

v′

star,0 → (HermiteScheme)→ v′

star,1 (2.26)

vstar,1 = v′

star,1 + 1
2∆tagas→star,1 (2.27)

The integration for the gas particles is as follows which is a leapfrog method:

vgas,1
2

= vgas,0 + 1
2∆taall→gas,0 (2.28)

xgas,1 = xgas,0 + ∆tvgas,1
2

(2.29)
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vgas,1 = vgas,1
2

+ 1
2∆taall→gas,1 (2.30)

First the accelerations of all particles acting on the gas and the gas acting on

the star particles are calculated. The stars are given a velocity kick while the gas

velocity is updated. The stellar positions and velocities are integrated forward

using the Hermite scheme while the gas positions are updated using the leapfrog

method. Next, the accelerations are calculated for t + ∆t which are then used to

give the stars another kick and update the gas velocities.
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Figure 2.1: The MUSE framework as described in Portegies-
Zwart et al. 2013 and reprinted with permission from Elsevier.
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2.4 Analysis Tools

This section summarizes the tools used to analyze the stars and gas in our simu-

lations. We compute dendrograms of the gas distribution in order to track clumps

and filamentary structures over time using the astrodendro package in Python

(Robitaille et al. 2013) . As well, we use a clustering algorithm called DBSCAN

(Density-Based Spatial Clustering of Applications with Noise) also implemented

in Python (Ester et al. 1996; Pedregosa et al. 2011b) to characterize the degree of

sub-clustering in the stars over time. Furthermore, we track the mass segregation

of the subclusters identified with DBSCAN by calculating ΛMSR (Allison et al.

2009) which is implemented in AMUSE.

2.5 Astrodendro

Dendrograms are a way to describe the hierarchical structure of objects or obser-

vations with a trunk, leaves and branches (Robitaille et al. 2013). It is a general

technique used to visualize the results of hierarchical clustering and has applica-

tions in classification problems. Leaves contain no substructure while branches

contain multiple leaves. The trunk refers to the main structure that has no par-

ent structure. The maxima of a distribution are represented by leaves that are

significantly different than their surroundings. astrodendro is a Python package

(Robitaille et al. 2013) that specifically computes dendrograms from astronomical

data. We can use this tool to compute dendrograms to describe the gas density

distribution in 2D planes over time where the maxima would correspond to dense
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regions of gas. We can then track the evolution of structures in the gas like clumps

or fragments over time. We will also be able to compare how the regions of dense

gas evolve over time compared to the stellar distribution. We chose to use den-

drograms in this way because gas in molecular clouds is hierarchical where high

density regions are surrounded by lower density gas. We model our gas using

particles which could be used as input to a clustering algorithm like DBSCAN,

however such algorithms will only pick out clusters of particles without keeping

track of any hierarchical relationships as seen in the next section. Therefore, den-

drograms are a useful tool to characterize gas distributions as regions of high and

low densities can both be traced. This tool has been previously used to charac-

terize molecular cloud structures from 12CO and 13CO observations (Nayak et al.

2016) and to characterize the fragmentation of molecular clouds in simulations

(Chira et al. 2018). Raw gas observations of molecular clouds are in the form of

2D column densities, therefore we chose to analyze our 3D simulations in 2D to

determine what would be seen from an observational perspective. An example of

a dendrogram used to describe a hierarchical structure can be seen in Figure 2.2.

Figure 2.2: Example of dendrogram structures used to describe
a 2D hierarchical distribution. Credit: Astrodendro online docu-
mentation (Robitaille et al. 2013).

Similarly, any dense clumps or filamentary structures in the gas distribution in

our simulations can be described by leaves that are connected by branches that
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are then encompassed by the surrounding gas or the trunk. In order to construct a

dendrogram of a distribution, the tree is built starting from the pixels or bins with

the highest value. The first structure or leaf is created from this peak value and

the pixel with the next highest value is considered. This next pixel may be added

to the first structure or it may form a new structure if it is a local maximum. As

subsequent pixels are considered, branches are formed which do not correspond

to local maxima but are adjacent to the leaves that are formed. This process

continues creating more leaves and branches that describe the overall distribution.

This process can be seen in Figure 2.3.

The dendrogram structures in Figures 2.2 and 2.3 assumes that all pixel values

are significant and therefore will consider all local maxima as leaves regardless

of the size of the maxima in pixels. As well, this means that any noise in the

data could potentially be added to the tree. The method used to compute the

dendrogram takes a min_value, min_delta and min_npix as parameters in or-

der to construct structures that are significant. The min_value represents the

noise level below which the tree will not be constructed, min_delta represents the

significance required for a new structure to form and min_npix is the minimum

number of pixels for a leaf to be its own entity. The initial gas particle distribution

from one of our Carina simulations (Method I run I, see 4.1 in Chapter 4) was

binned in 2D and weighted by the particle masses per square parsec such that each

bin is 0.5 parsecs in each dimension. This results in a range in densities from 0

to roughly 1000 M�/pc2. Based on this range, we set min_value to be 5 M�/pc2

to remove the relatively small fluctuations in the density. We then set min_delta

to be 10 M�/pc2 which is roughly 100 times smaller than the maximum density.
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Figure 2.3: Example of constructing a dendrogram from a 1D
dataset (Steps are from right to left, top to bottom). Credit: As-
trodendro online documentation (Robitaille et al. 2013).

This will create several structures and allows flexibility in how they are grouped

into different density ranges. We set min_npix to be 10 which corresponds to a

square of area ≈ 2.5 pc2 which is an order of magnitude greater than a thin fila-

ment (0.1 parsecs) and is reasonable for picking out clumps of gas that span more

than one bin reducing bin to bin fluctuations. Figure 2.4 shows the dendrogram

that characterizes the initial gas distribution for the Carina region.
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Figure 2.4: 2D histogram of the initial gas distribution for the
Carina region (specifically for Method I run I defined in Chapter
3). Overplotted are contours from branches and leaves in the den-
drogram. Blue corresponds to densities between 6 - 10 M�/pc2,
white corresponds to densities between 10 - 100 M�/pc2 and red
corresponds to densities between 100 - 1000 M�/pc2.

45



M.Sc – A.Mathews; McMaster University – Physics & Astronomy

2.6 DBSCAN

DBSCAN (Density-Based Spatial Clustering of Applications with Noise) is an

algorithm used to identify clusters of arbitrary shape from a set of data points

(Ester et al. 1996). Its dependence on the density of data points allows clusters

to be discovered which correspond to areas of relatively high densities and noise

which corresponds to lower densities outside the clusters. Although it was initially

developed for identifying clusters in large spatial databases with noise, the data

points themselves can be spatial coordinates, velocities or other quantities allowing

clusters to be determined with respect to various different parameters. Since its

development, this algorithm has been implemented in Python (Pedregosa et al.

2011a) and has been applied to observational stellar data resulting in the detection

of stars that are clustered in space, dynamically correlated or clusters which are

chemically homogeneous (Beccari et al. 2020; Price-Jones and Bovy 2019).

The Python implementation relies on two main input parameters which are a

search radius (eps) and a minimum number of samples in a cluster (min_samples).

The eps value is the maximum distance between two samples in order for them

to be in the neighborhood of each other while the min_samples is the number of

samples in the neighborhood for that point to be considered a ‘core’ point where

the number of cores corresponds to the number of clusters found. It is possible

for some samples to be border points where they could be grouped into more than

one cluster. If this occurs, the border points get assigned to clusters depending

on the order in which the clusters are processed which may result in some clusters

having fewer samples than themin_samples value. As a result, themin_samples

46



M.Sc – A.Mathews; McMaster University – Physics & Astronomy

parameter does not always equate to the minimum number of samples in a cluster

and is a caveat of the DBSCAN algorithm.

We apply DBSCAN to our simulation of the Carina region where the eps value

is set to 0.5 parsecs (similar to the value used in Beccari et al. 2020) and the

min_samples value is set to 20 in order to track the spatial evolution of the

clusters in 1 Myr timesteps. The clustering is performed in three dimensions and

the eps and min_samples values were chosen in order for clusters containing at

least 20 stars (in general considering the aforementioned caveat) to be identified

which are more likely to be persistent clusters rather than noise. DBSCAN is

applied in 3D to estimate the realistic clustering of stars. Figures 2.5, 2.6 and

2.7 depict the results of DBSCAN on the initial stellar distribution of the Carina

region as examples. In our analysis, we present 2D views (in the plane of the sky)

to mimic the perspective of an observer which is seen in ??. The initial stellar

distribution is derived from observations in the MYSTiX project and consists of

20 clusters (Kuhn et al. 2014) for which the 2D stellar positions are known along

with a uniform background distribution of stars. The Z coordinates of the stars

in subclusters are drawn from a range corresponding to the minor axis of the

ellipse from the fits performed by Kuhn et al. 2014 while the Z coordinates of the

background stars are drawn from a range set by the distance that encompasses the

entire region. Further details can be seen in Sills et al. 2018.

From Figures 2.5, 2.6 and 2.7, we can see that DBSCAN picks out 16 clusters

(all are visible in the XY plane) from the initial stellar distribution where the

background stars are interpreted as noise. This is different than the number of

clusters originally included from the isothermal ellipsoid fitting procedure in Kuhn
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Figure 2.5: XY view of identification of clusters in the Carina re-
gion using DBSCAN. The initial distribution of stars is seen on the
left which consists of 20 smaller clusters in a uniform background
distribution of stars. The results from DBSCAN are seen on the
right which shows that 16 clusters are identified where each cluster
corresponds to a different colour.

et al. 2014 which identified 20 clusters. This arises because the clustering meth-

ods focus on different criteria. The ellipsoid model consists of an approximately

flat core surface density which then drops off as a power law away from the core.

The model corresponding to the “best” number of clusters (a parameter which is

varied) is then chosen to represent the sub-cluster (see Kuhn et al. 2014 for fur-

ther details). This fitting procedure focuses on identifying clusters based on their

density distribution while DBSCAN depends on a search radius and a minimum

number of samples. Therefore, these algorithms are inherently different resulting

in the differing number of clusters that are picked out. We also attempted to vary

the DBSCAN parameters which would recover the 20 subclusters identified with

the ellipsoid fits but were unable to do so exactly. We chose to use DBSCAN

due to its ease of use and we pick physically reasonable parameters to track the

degree of sub-clustering in three dimensions over the course of our simulations in
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Figure 2.6: XZ view of identification of clusters in the Carina re-
gion using DBSCAN. The initial distribution of stars is seen on the
left which consists of 20 smaller clusters in a uniform background
distribution of stars. The results from DBSCAN are seen on the
right which shows that 16 clusters are identified where each cluster
corresponds to a different colour.

a consistent manner.
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Figure 2.7: YZ view of identification of clusters in the Carina re-
gion using DBSCAN. The initial distribution of stars is seen on the
left which consists of 20 smaller clusters in a uniform background
distribution of stars. The results from DBSCAN are seen on the
right which shows that 16 clusters are identified where each cluster
corresponds to a different colour.

2.7 Mass-Segregation Ratios

Mass segregation refers to massive stars being more concentrated towards the

center of a star cluster while low mass stars reside further away from the center.

This has been observed in several clusters including young clusters (e.g Littlefair

et al. 2003; Pang et al. 2013; Habibi et al. 2013) however it is not clear whether

mass segregation occurs as a result of dynamical interactions or if it is a primordial

effect. The dynamical interactions between the stars leads to two-body relaxation

effects where the massive stars sink towards the center of the cluster (McMillan et

al. 2007; Allison et al. 2009) and this theory is supported by numerical simulations

where it was found that mass segregation occurs on timescales similar to the cluster

ages in young clusters (Allison et al. 2010b; Parker et al. 2015). We track changes

in the initial stellar distribution (we do not form new stars) which allows us to

explore the effects of dynamical interactions related to mass segregation as the
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system evolves.

In our simulations we are interested in the dynamical evolution of young embed-

ded star clusters and our initial stellar distribution is informed from observations.

The stellar masses for stars within a cluster are randomly drawn from an initial

mass function within a mass range of 0.08 to 10 solar masses (details can be seen

in Sills et al. 2018) and are not correlated with stellar positions. Thus, our initial

distribution of clusters is not mass segregated. We can investigate whether mass

segregation occurs in each individual cluster before merging or if it takes place

after the clusters merge. To quantify the degree of mass segregation, we can cal-

culate the mass segregation ratio (Allison et al. 2009) which relies on constructing

a minimum spanning tree (MST). An MST is the unique set of edges that connect

a set of points without closed loops where the sum of the lengths of the edges is

minimized (Boruvka (1926); Kruskal (1956); Prim (1957); Gower & Ross (1969)).

Although different methods exist to calculate the MST of a set of points, the

mass segregation ratio calculation presented in Allison et al. 2009 is based on the

algorithm described in Prim (1957). To create an MST that connects all vertices

of a set, the algorithm first creates a tree with a single vertex randomly chosen

from the set. The tree grows one edge at a time by selecting the vertex that results

in the smallest separation from the tree at each step.

Applying this to a cluster, Allison et al. 2009 first create an ordered list of the

distances between all pairs of stars in a subset of interest and they then connect

the stars in order of increasing separation. The degree of mass segregation can

be quantified by comparing the length of the MST of the most massive stars in a

51



M.Sc – A.Mathews; McMaster University – Physics & Astronomy

cluster to the average length of the MST of k sets of N stars chosen at random.

If the length of the MST corresponding to the most massive stars is shorter than

the average length, it demonstrates that the massive stars are more concentrated

and therefore the cluster is mass segregated.

The mass segregation value and uncertainty is then given by (Allison et al.

2009):

ΛMSR = < lrandom >

lmassive
± σrandom
lmassive

(2.31)

where < lrandom > is the average MST length of k sets of N stars chosen at

random, lmassive is the MST length of the most massive stars and σrandom is the

standard deviation obtained from the k sets.

From this, we can see that ΛMSR ≈ 1 indicates no mass segregation while

ΛMSR >> 1 is indicative of mass segregation.

This calculation is implemented in AMUSE allowing both the ΛMSR and un-

certainty values to be obtained. Such values are only meaningful if the cluster

contains a reasonable number of stars. We follow Dib et al. 2018 where they cal-

culate mass segregation ratios of clusters in the Milky Way from observations and

restrict their analysis to clusters with at least 40 members. As well, they state

that if a cluster is indeed mass segregated, it can be seen in the MST that contains

at most 20 of the most massive stars regardless of the size of the cluster. In this

way, we calculate ΛMSR values for clusters picked out by DBSCAN that have at
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least 40 members and consider MSTs for 20 of the most massive stars. To obtain

the average MST length, 100 sets of 20 stars each are used.

By tracking the ΛMSR values of the clusters picked out by DBSCAN over time,

we can investigate how the mass segregation changes as the system evolves. We

can also determine the effect of the initial gas properties (e.g varying the initial

gas velocity dispersion) on the resulting stellar distributions by considering these

mass segregation ratio values.

53



Chapter 3

Gas Particle Creation Method

As mentioned in Chapter 1, star cluster simulations often rely on simplifying as-

sumptions when modelling the gas distribution which includes using spheres of gas

(e.g Federrath et al. 2010) or gas that closely follows the stellar distribution (e.g

Sills et al. 2018). Such assumptions do not lend themselves to a realistic depic-

tion of gas in clusters which is observed to contain filaments and clumps due to

various stellar feedback processes. To improve this, we developed a new technique

that is able to create a gas distribution that captures the unique characteristics of

the molecular gas from observational data and we apply this to the Carina region

as an example. In this way, we simulate the Carina region using realistic initial

conditions for the stars (details about the stellar distribution setup can be seen in

Sills et al. 2018) and the gas.

This new method of modelling the gas based on observations is beneficial for

exploring the accurate and realistic evolution of an embedded star cluster. By

taking the observed gravitational potential and temperature into account, we can

make inferences about future star formation that may occur depending on how the
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gas collects over time. Furthermore, incorporating accurate initial gas conditions

will be useful in later versions of these simulations as stellar feedback processes

are included.

In our simulations of the Carina region, we use processed Herschel Hi-GAL

maps (Molinari et al. 2010; Marsh et al. 2017) (specifically the number density

map and the 2D mean line of sight dust temperature map) to create the initial gas

conditions. Our technique involves sampling from these 2D distributions to create

SPH particles (see Chapter 2 for details about SPH) with masses, 3D Cartesian

coordinates, 3D velocities and internal energy values. The masses and positions

of the particles in the XY plane (the plane of the sky) are made to match the

observed number density distribution while the internal energies are made to match

the observed mean temperatures. We developed two such sampling methods with

slight variations and compare their relative performance. Since we do not have

cloud depth measurements, we consider different approaches of estimating the

depth based on features seen in the 2D distributions. As well, we use the measured

velocity dispersion of the cores in the Carina region (mentioned in Chapter 1) to

assign particle velocities and we also consider other velocity dispersion values to

examine their effect. To determine the validity of the techniques used to assign the

gas particle attributes, we apply our method and their variations to a simulated

observational image that is created from a known particle data set. In this chapter,

we discuss specific features of the Carina gas data that we take advantage of in

our sampling techniques, we describe the simulated image data used for testing

and we provide detailed descriptions of the methods used to assign the gas particle

attributes.
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3.1 Carina Gas Data

The gas data we use comes from the Herschel Hi-GAL survey (Molinari et al.

2010) that has been processed using the PPMAP algorithm (Marsh et al. 2017).

Details regarding the survey and processing algorithm can be seen in Chapter 1.

The distributions previously shown in Chapter 1 are in galactic coordinates that

have been assigned from the raw pixels in the images. The number density map

and the 2D mean line of sight dust temperature map can be seen in Figures 3.1

and 3.2 with the axes now in pixels. Note that the orientation of these images in

pixel coordinates is different than that shown previously in galactic coordinates

due to the conversion between the FITS image array to a Python numpy array (e.g

NAXIS1 and NAXIS2 in the FITS image corresponds to the second and first index

in the Python array, respectively). This was necessary in order to correctly match

the other matrices required (all created in Python) to create the initial conditions

(seen in section 3.3) and to ensure that the orientations of the stars and gas were

correct in Cartesian space.

These maps can be loaded as matrices in Python where each pixel is specified

by a set of two pixel coordinates (which can easily be converted to galactic coor-

dinates using astropy (Astropy-Collaboration et al. 2018, Astropy-Collaboration,

Robitaille, et al. 2013) and FITS handling in Python) and contains the observed

value. For example, the number density of H2 at a pixel location of (i, j) can be

accessed by the value in the pixel number density matrix at row i and column j.

The observational gas data gives number densities in the plane of the sky or

the XY plane. We do not have accurate cloud depth measurements, therefore we
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Figure 3.1: Carina Number Density Map in pixels. Orientation
is due to the conversion between the FITS image array to a numpy
array we use in Python.

consider different depth values (Z depths) and explore these estimates separately.

Our goal is to create SPH particles (relatively large, at least order 0.001 M�,

compared to the size of an H2 molecule) with 3D positions and masses which

resemble the original number density distribution in the plane of the sky (XY

plane) using the observations and an estimate for the cloud depth (Z coordinates).

We consider two methods to obtain the SPH particle distribution in the XY

plane. The main idea behind Method I involves creating SPH particles by normal-

izing the number density matrix and then randomly sampling from this normalized
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Figure 3.2: Carina Mean Line of Sight Temperature Map in pix-
els. Orientation is due to the conversion between the FITS image
array to a numpy array in Python.

distribution to give selected pixels. The number of particles created for each pixel

would correspond to the number of times the pixel was selected from this sampling.

The particle XY positions (requiring a conversion of pixel coordinates to Cartesian

coordinates) and masses (related to the number density of the represented pixel)

would then be set. The Z coordinates would be assigned based on an estimate. As

well, the temperature of each particle (and hence the internal energy) would then

be assigned based on the corresponding pixel value in the temperature matrix.

Method II is similar except it involves creating one particle to represent each
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pixel where the variations in the particle masses will depend on the original gas

number density distribution. As well, our simulations operate in Cartesian coor-

dinates therefore a transformation from galactic coordinates is a necessary step.

The details pertaining to these methods are discussed in section 3.3.

3.2 Simulated Observational Image

To assess the validity of our techniques to accurately describe the image data,

we apply our methods on a simulated observational image where the true par-

ticles (and their attributes) that comprise the image are known. We would be

comparing the particle set generated from our techniques to the known particle

set to determine the accuracy of our methods. We use a mock 2D image of a

gas cloud obtained from particles in a Gasoline (Wadsley et al. 2004) simulation

(Ward 2015). This is seen in Figure 3.3.

The particles have masses, 3D Cartesian coordinates and 3D velocities while the

image of the cloud seen in Figure 3.3 is given in the XY plane (plane of the sky).

In this way, the cloud depth and velocity information is lost when converting

the particle distribution to the 2D image. The goal is to apply our sampling

techniques on the mock observations to create a particle set that describes the

image data in terms of the number density in the XY plane. In addition, we can

investigate the extent to which the cloud depth (Z) distribution can be estimated

from features seen in the XY plane. We can compare our particle data set that we

obtain from processing the image to the original initial particle distribution from

which the image was created in order to assess the advantages and limitations of
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Figure 3.3: Simulated Observational Image of a Gas Cloud in
pixels where the number of gas molecules per cm−3 is shown for
each pixel. Data taken from Ward 2015 simulation data.

our techniques. Moreover, we can employ statistical methods to quantify these

comparisons, the details of which can be seen in section 3.7.

3.3 Deriving XY particle positions

In this section, we discuss how the particle positions were determined to create a

density distribution in the XY plane similar to the original data. Our approach

is to match the original density distribution by assigning varying masses to the
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SPH particles. There are two versions of our approach. Method I is based on

randomly sampling the distribution a set number of times while Method II creates

a particle for every pixel with a non-zero observed number density. Both versions

rely on the same set of initialization steps. This involves creating matrices from

the raw data that link the pixel coordinates to the world coordinates (galactic or

equatorial) and converting the pixels to Cartesian coordinates. The conversion

between the world coordinates and the pixels is handled using the astropy Python

package (Astropy-Collaboration et al. 2018, Astropy-Collaboration, Robitaille, et

al. 2013) while we explicitly code the conversion to Cartesian coordinates. The

list of matrices required and common to both versions are as follows:

• 2D Number density matrix in pixel coordinates

• 2D Temperature matrix in pixel coordinates

• GLON/GLAT (or RA, DEC) matrix for the centers of the pixels

• GLON/GLAT (or RA, DEC) matrix for the edges of the pixels

• Cartesian matrix for the edges of the pixels

• Mass matrix for the pixels (total mass contained within each pixel)

The number density and temperature matrices are loaded from the raw image

data where the (i, j) (row i and column j) pixel corresponds to the observed

value. We create a matrix linking the world coordinates to the centers of the

pixels in order to be able to retrieve gloncentral (or RAcentral) and glatcentral (or
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DECcentral) values. These correspond to the world coordinates of the central pixel

of the observed image which is used in the conversion to Cartesian coordinates.

The central values can usually be found in the FITS header, however initializing

this matrix serves as a check and ensures that the subsequent matrices are created

properly. The conversion from equatorial coordinates to Cartesian XY coordinates

is as follows:

X = cos(δ) sin(α− αcentral)
cos(δcentral)cos(δ) cos(α− αcentral) + sin(δcentral) sin(δ)D (3.1)

Y = cos(δcentral)sin(δ)− sin(δcentral)cos(δ)cos(α− αcentral)
sin(δcentral)sin(δ) + cos(δcentral)cos(δ)cos(α− αcentral)

D (3.2)

where α and δ are the RA and DEC equatorial coordinates, αcentral and δcentral

are the RA and DEC coordinates of the central pixel of the observed image and D

is the distance to the observed region (1.5 kpc for the simulated image, 2.3 kpc for

the Carina region). Equations 3.1 and 3.2 can also be used to convert from galactic

coordinates to Cartesian coordinates by using glon, glat, gloncentral and glatcentral

values. The next matrix we create links the world coordinates to the edges of the

pixels which serves as an intermediate step to ultimately create a matrix linking

the edges of the pixels to Cartesian coordinates. Again, the conversion from the

world coordinates to Cartesian coordinates is performed using equations 3.1 and

3.2. We require the matrix linking the edges of the pixels to Cartesian coordinates

in order to create the mass matrix. The mass matrix allows the total mass at pixel

(i, j) to be retrieved which is then divided among the number of particles that end
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up representing that pixel. The total mass in a pixel can be calculated by:

Mpixel = ρpixelApixelzpixel (3.3)

where ρ is the number density, A is the area in the XY plane and z is the depth

of each pixel. The number density data is the 2D column density divided by a

value of 20 parsecs (chosen by our collaborators Dr. Klaassen and Dr. Reiter),

therefore z for all pixels is equal to 20 parsecs. The value of 20 parsecs was chosen

by our collaborators Dr. Klaassen and Dr. Reiter as a characteristic depth for the

Carina region specifically and we use the same depth for the simulated data. We

always take z to be 20 parsecs when calculating the mass matrix in order for the

total mass to be constant. We can then distribute the mass along the line of sight

in different ways (e.g with varying z-depth) while the 2D density distribution in the

plane of the sky (what is observed) remains the same. The conversion from pixels

to Cartesian coordinates introduces distortion which changes the shape of the

pixels from squares to rhombuses. Therefore the area of each pixel is calculated

using Gauss’s area formula (also known as the shoelace method) which can be

used to compute the area of a quadrilateral (or other polygons in general) from

the Cartesian coordinates of its corners. This is given by:

Apixel = 1
2

∣∣∣∣∣∣∣∣
4∑
i=1

det


xi xi+1

yi yi+1



∣∣∣∣∣∣∣∣ (3.4)

where i is a corner and the Cartesian coordinates for the edges of each pixel are
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obtained from the matrix linking the two. Once the total mass in each pixel is cal-

culated and the mass matrix created, particle masses are then assigned by dividing

the total mass in a pixel by the number of particles that end up representing that

pixel.

3.3.1 Method I

This version of our method is based on a weighted random sampling of the original

number density distribution to create SPH particles (that are significantly larger

than an H2 molecule) that spatially resemble the original density distribution in

the XY plane. To do this, another matrix describing the normalized number

density distribution is required in addition to the aforementioned matrices. This

normalized matrix represents weighted pixels which are then randomly sampled

100,000 times to create this many SPH particles. We chose to use this number

of particles in order to make efficient use of computational power. The number

of particles that end up in each pixel due to this weighted sampling process are

then saved as a matrix. For each particle, the Cartesian XY coordinates are

determined using the world coordinates of the corresponding pixel edges. The

world coordinates for the pixels are rectangular with regular increments in the two

dimensions which allows values to be randomly drawn along each pixel edge with

ease. The Cartesian XY coordinates for a particle are calculated by first randomly

picking a value in world coordinates along each edge of the corresponding pixel.

This creates the world coordinates of the particle which is then transformed into

Cartesian coordinates using equations 3.1 and 3.2. Assigning XY positions in this

way allows for particles to be distributed randomly within a pixel should multiple
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fall into the same one. Figure 3.3 shows the original simulated image and Figure

3.4 shows the original density distribution sampled 100,000 times.

Figure 3.4: Distribution of 100,000 particles used to approximate
the simulated observational image where the color bar corresponds
to the number of particles representing each pixel (simulated image
from Ward 2015).

The mass matrix is then calculated assuming a constant depth of 20 parsecs

which can be seen in Figure 3.5. The mass of the particles is determined by

dividing the corresponding mass in the matrix by the number of particles in each

pixel from Figure 3.4. The particle masses range from 0.001 to roughly 0.07 M�

with most being around 0.006 M�.
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Figure 3.5: Total mass in each pixel of the simulated image (sim-
ulated image from Ward 2015).

As seen in Figure 3.4, randomly sampling 100,000 times is able to capture some

of the large-scale features of the original distributions. However, a limitation of

this is that there is no guarantee that all of the non-zero pixels will be sampled

after sampling 100,000 times. As a result, we are not making use of all the available

data. To improve this, we assign one particle to represent each pixel which is the

basis of Method II of this technique.
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3.3.2 Method II

To make use of all the available data, we represent each non-zero pixel with a

particle. The total number of particles would then be on the order of 106 (an

image is roughly 1000 x 1000 pixels) particles. By assigning particles in this way,

we will be able to capture the finer features present in the original distribution.

Initially, one particle represents each pixel. The particles are then assigned masses

that are equivalent to the total calculated mass in each pixel from the mass matrix.

All pixels are initially represented by one particle including pixels for which density

data (and hence mass data) does not exist or is zero. The particles that do not

have corresponding observational data are removed when the particle positions are

assigned. If the mass of a particle exceeds 0.5 M�, more particles are introduced

to represent that pixel in order to lower the mass of each particle. For example, if

a particle is initially assigned a mass of 1.5 M� then 2 more particles (for a total

of 3) are put in to represent that pixel each with a mass of 0.5M�. This is done to

prevent a wide spread in particle masses. Once the particle masses are assigned,

the mass-weighted distribution looks identical to that seen in Figure 3.5.

3.4 Z-depth assignment

We investigate different cloud depth (Z-depth) estimates and consider two cases.

The first case is a constant depth and the second is a varied depth based on features

seen in the 2D distribution.
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3.4.1 Constant z depth

Since we do not have information about the Z depth, our collaborators Dr. Klaassen

and Dr. Reiter assumed a depth of 20 parsecs centered at Z = 0 which is a value

between a filament width of 0.1 pc and a low density cloud of 100 pc. In this way,

we gave each particle a Z coordinate by uniformly sampling from -10 to 10 parsecs.

Therefore the cloud density is uniform along the Z axis.

3.4.2 Thresholding with use of Distance Transform

As mentioned in Chapter 1, filaments have been observed in star-forming regions

with the Herschel Space Observatory (André et al. 2010). This motivated our

efforts in using the size of dense features in the XY plane as an estimate for the

Z-depth of these structures to create filamentary structures. We began with a

watershed segmentation implemented in Python (Pedregosa et al. 2011b). This

type of segmentation takes user-defined “marker” values which represents basins.

The markers are pixel values which in our case correspond to the 2D number den-

sities. The segmentation algorithm begins flooding from the specified basins until

basins corresponding to different markers meet along watershed lines. We then

apply closing functions to remove any noise or “holes” in the resulting image. We

perform two such segmentations. The first separates the non-zero regions from the

background (marker value of zero corresponds to the background while marker val-

ues greater than zero are of interest). This serves to select the entire cloud region.

The second segmentation involves selecting for the dense regions where the marker

values less 200 cm−3 were considered to be the background while those greater than
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200 cm−3 were of interest. After obtaining the segmentations and smoothing the

results using the previously mentioned closing functions, we then obtained the dis-

tance transforms of these images (calculated using Python’s scikit-image, Walt et

al. 2014). The distance transform gives the distance to the background (in number

of pixels) for each pixel. These pixel distances are converted to physical distances

using the Cartesian matrices previously mentioned (specifically taking the average

of the distance in X and Y). Using these converted distances as z-depth values for

each pixel introduces variations which mimic filamentary structures observed in

clouds. The segmentations and distance transforms can be seen in Figures 3.6 and

3.7.

First, only the distance transform of the dense region (second segmentation)

was used to set the z-depth values for the corresponding pixels. These z-depths

were assigned by drawing from a range equal in size to the distance transform value

and centered on Z = 0. For example, if a pixel had a distance transform value of

50 pixels which corresponded to a physical distance of 10 parsecs, then the z-depth

would be assigned by drawing from -5 to 5 parsecs. Pixels that did not belong to

the dense regions were given a z-depth that was approximately the size of the cloud

in the XY plane. The size is approximately 8 parsecs and the z-depths were drawn

from (-4, 4) parsecs. We then explored using both distance transforms. If a pixel

only belonged to the non-zero region and not the dense region (selected in the first

segmentation but not the second), the z-depth value was drawn from a range equal

to the distance transform of the non-zero region (value from the first segmentation)

and it was centered on Z = 0. If a pixel belonged to both, the z-depth was

first offset by the value from the distance transform of the non-zero region which
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is equally likely to lie above or below Z = 0. The z-depth value from the dense

distance transform was then added on to this. This was done to prevent variations

in Z concentrated about Z = 0 and to create slightly more realistic filamentary

structures that are embedded in the entire cloud. To illustrate, if a pixel belonged

to both and the distance transform of the non-zero region was 50 pixels (which

for example corresponds to a distance of 10 pc) and the distance transform of

the dense region was 10 pixels (for example corresponding to a distance of 2 pc),

then the z-coordinate would either be 5 + (−1, 1) or −5 + (−1, 1) due to the offset

of 5 pc being equally likely to be above or below Z = 0. In our segmentations,

there would not be any pixels that belong only to the dense region and not the

non-zero region. The resulting distribution of these two methods compared to the

true distribution of the simulated image data can be seen in Figure 3.8. The left

panel shows that using the distance transform of the dense region results in a thin

filamentary structure of gas elongated along the X axis embedded in a rectangular

distribution of lower density gas. The filamentary structure has small variations

in the Z-depth that are from the distance transform. It is an improvement on

using a constant Z-depth as a filament is introduced, however more are needed to

match the simulated data set seen in the right panel of the figure. The middle

panel shows the use of two distance transforms which gives rise to filamentary

structures that are symmetric about Z = 0 embedded in a cloud of less dense gas.

The symmetry in the filaments is not realistic, however it does appear to better

resemble the simulated data.
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Figure 3.6: Segmentation of the fake data in terms of the non-
zero pixel region (LEFT) and the high density region (RIGHT).
Regions of interest are in white while the background is in black.

Figure 3.7: Distance transform of the non-zero region (LEFT)
and dense region (RIGHT). Color bar corresponds to distances to
the background measured in pixels.

Figure 3.8: Comparison of XZ mass-weighted distribution (in
M�) from using the dense transform (LEFT), both non-zero and
dense transforms (MIDDLE) and the simulated data set (RIGHT).

71



M.Sc – A.Mathews; McMaster University – Physics & Astronomy

3.5 Internal Energies

The internal energies of the gas particles (all have radius of 200 AU ≈ 0.001 pc)

are calculated according to:

u = 3kBT
2µ (3.5)

where kB is the Boltzmann constant, T is the temperature and µ is the mean

molecular weight of the gas defined as 4.0 mproton/(1.0 + 3.0 ∗ 0.76) assuming the

gas to be neutral and composed of 76% hydrogen, 23% helium and 1% dust. T

is set to a constant value of 10 K (representative of a star-forming region) for the

particles representing the simulated observed image. When this method is applied

to the Carina region, the temperature of the particles is varied according to the

corresponding pixel temperature seen in Figure 3.2. We model our gas using an

adiabatic ideal gas equation of state.

3.6 Velocities

As previously mentioned, the velocity data is lost when the particle set from the

Gasoline simulation was converted to an observational image. We cannot infer the

velocity distribution from the 2D spatial information alone, therefore we assume

the velocity dispersion to be Gaussian where we estimate a value for σ. When

we model the Carina region, we use observations of dense gas cores to estimate

a realistic σ. Since we do not have similar observations (or other information) to
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use in combination with the simulated data, we take σ to be 1.4 km/s (the same

as the value for the Carina region from observations) and we do not compare the

velocities when testing the validity of our methods as we cannot make an informed

estimate.

3.7 Validity of Our Methods

In this section, we test the validity of the methods we developed to generate

particles from the simulated image data. We are interested in matching the spatial

density distribution, therefore we compare the mass-weighted positions (in each

of the X, Y and Z dimensions separately) of the particles created using our two

techniques (Methods I and II) and Z estimates to the known particle set from

which the image was made. We quantify these comparisons using two statistical

techniques and a histogram comparison method.

The two statistical techniques used are the χ2 test and the Kolmogorov-Smirnov

(KS) test which can compare two 1D distributions. There are some that are

strongly opposed to using the KS test in higher dimensions stating issues with

defining a unique way to order the data points of the distribution functions to

be compared (see Feigelson and Babu n.d. and references therein), which is why

we limit our analysis to the 1D distributions. The two sample form of the χ2

and Kolmogorov-Smirnov (KS) tests was conducted to determine if the output

from the particle creation methods and the simulated data come from a common

distribution. In addition to these statistical techniques, a histogram intersection
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method was used which quantifies the overlap between two histograms. We first

discuss the statistical techniques with the results summarized after.

3.7.1 χ2

The known particle set of the simulated data is large (roughly 30 million particles).

Therefore, it is less computationally expensive to compare mass-weighted positions

that are binned. The χ2 technique was selected as it is commonly used to compare

histograms. The two sample formula is as follows (Press et al. 1992):

χ2 =
k∑
i

(k1Ri − k2Si)2

Ri + Si
(3.6)

with scaling factors:

K1 =

√∑k
i Si√∑k
i Ri

(3.7)

K2 =

√∑k
i Ri√∑k
i Si

(3.8)

The cumulative distribution function (CDF) is a regularized gamma function

given by:

CDF =
γ(N2 ,

χ2

2 )
Γ(N2 )

= P (N2 ,
χ2

2 ) (3.9)
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The p value is then given by 1 − CDF . This χ2 test compares two samples

R and S (may be unequal in size) and tests the null hypothesis where the two

samples come from a common distribution. A high p value indicates that the null

hypothesis cannot be rejected. In our case, we are testing whether our particle

sets and the known set comes from a common distribution and a high p value is

therefore desirable. The sums are over k bins with k−1 (and minus any zero count

bins in R and S) degrees of freedom. One limitation with this technique is that

the χ2 value is heavily dependent on how the data are binned.

3.7.2 1D KS Test

The 1D KS test was selected as it is can be used to compare continuous data where

the null hypothesis is that the two samples come from a common distribution. As

a result, this test is not dependent on how the data are binned, however it is

more computationally expensive than the χ2 test. The test involves calculating

the cumulative distribution function (CDF) of each sample and the D statistic

according to:

D = max−∞<x<∞|F1(x)− F2(x)| (3.10)

where F1(x) and F2(x) are two different CDFs to be compared.

The CDF is given by:

CDF = 1− 2
∞∑
i=1

(−1)i−1exp(−2i2z2) (3.11)
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The p value is then calculated using:

p(D > observed) = 1− CDF (
√
NeD) (3.12)

where Ne is the effective sample size given by:

Ne = N1N2

N1 +N2
(3.13)

N1 and N2 are the sizes of samples 1 and 2, respectively. The sum converges

quickly as the sample size increases, therefore the sum was taken to be from i = 1

to i = 1000. The data being compared are mass weighted. Therefore, the CDF is

the sum over the total mass. As well, N1 and N2 are each changed to be of the

form (Monahan 2011):

N = (∑iWi)2∑
iW

2
i

(3.14)

where Wi’s are the weights.

3.7.3 Results

Table 3.1 summarizes the mass-weighted dimension being compared. In each case,

the null hypothesis is that the two samples (from our method and the simulated

data) are drawn from the same distribution. Each case will be examined using

the χ2 and 1D KS test. The critical p value at which the results reject the null
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hypothesis is taken to be 0.05 where we desire the p value to be higher than this

critical value in order to fail to reject the null hypothesis.

Test No. Particle Technique Dimension

1 Method I X

2 Method I Y

3 Method II X

4 Method II Y

5 Method II Z=20pc Z

6 Method II mostly at Z=0 Z

7 Method II around Z=0 Z

Table 3.1: Summary of tests with different particle techniques
along different dimensions.

Table 3.2 summarizes the results of the χ2 and 1D KS tests.

Test No. χ2 bins DOF χ2 pvalue D statistic z KS pvalue

1 68.33 1000 972 1.0 0.0594 37.42 3.24E-210

2 122.28 1000 980 1.0 0.1029 64.82 0

3 1.26 1000 979 1.0 0.0025 1.57 0.014

4 1.62 1000 991 1.0 0.0053 3.34 4.16E-10

5 3920.81 1000 999 0.0 0.2867 180.59 0

6 5091.11 1000 994 0.0 0.3365 211.96 0

7 934.27 1000 999 0.93 0.0992 62.49 0

Table 3.2: Results of χ2 and KS tests.
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To compare the same bins for the χ2 test, the maximum and minimum of the

histograms were chosen to be the maximum and minimum values of that in the

corresponding simulated data set (with the exception of the Z=20pc case where

the max and min were taken to be -10 and 10 pc). The simulated image data

contained 1501 x 1501 pixels. The number of bins was chosen to be 1000 to reduce

the number of bins with small counts while still maintaining structure similar to

the original image. The variation in the degrees of freedom (DOF) stems from the

varying number of zero count bins in each case. The results from this test show that

the null hypothesis cannot be rejected for tests 1-4. This is expected considering

how Method I samples from the image data and how Method II purposely samples

every pixel. In terms of variations in z-depth, only test 7 cannot reject the null

hypothesis while tests 5-6 reject the null with p values of zero. The p value of test

7 is relatively high which is surprising considering that the z-depth was estimated

from the size of features in X and Y. The extreme p values obtained could be due

to how the data were binned. Although performing this test with 1000 bins is

meaningful because it allows comparisons to be made on similar structure scales

as the original image, it does not result in a range of p values across the tests.

The results from the 1D KS tests show that tests 1-7 all reject the null hypoth-

esis which states that the compared distributions have a common distribution (i.e

that the two different particle sets come from a common gas density distribution).

This is true even for tests 3 and 4 that result in relatively low D statistic values.

This is most likely due to the extremely large sample sizes considered. As sample

size increases, the required D statistic to fail to reject the null hypothesis becomes

increasingly small. To discern how well the distributions compare, we can instead

78



M.Sc – A.Mathews; McMaster University – Physics & Astronomy

focus on the D statistic values themselves noting how tests 3 and 4 have the lowest

values. This suggests that Method II is the optimal method for determining the

mass-weighted positions of the particles along the X and Y axes. In addition, test

7 resulted in the lowest D statistic value among tests 5-7 which consider variations

in the z-depth which supports the result from the χ2 test.

3.7.4 Histogram Intersection Method

Another way of comparing the particle sets can be done using the histogram in-

tersection method. Histogram comparisons are useful in image processing appli-

cations. Specifically, the intersection of two color histograms corresponding to

two images can be compared to determine if they are the same object (Swain and

Ballard 1991). This idea can be extended to the histograms used here.

The formula to calculate the intersection is:

Intersection =
∑k
i=1 min(Ii,Mi)∑k

i=1 Mi

(3.15)

where Ii and Mi is the value of histogram I, M (model) at bin i and the

intersection value ranges from 0 to 1.

Table 3.3 summarizes the results of applying this method to the test cases.

The intersection method results in a greater spread of values compared to the

other statistical tests. From this we see that tests 3-4 result in mass-weighted

distributions that capture 99% of the true distribution (from the simulated data)

in the X and Y directions. We also see that test 7 outperforms tests 5-6 and
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captures 72% of the mass-weighted distribution along the Z direction. Thus, the

combination of the two statistical tests and the histogram intersection method

shows that Method II of our particle generation technique is best for creating

particles in the X and Y dimensions and that Method II with particles placed

symmetrically about Z=0 using the distance transforms is best for estimating the

distribution in Z.

Test No. Bins Intersection

1 1000 0.21

2 1000 0.21

3 1000 0.99

4 1000 0.99

5 1000 0.44

6 1000 0.37

7 1000 0.72

Table 3.3: Results of Histogram Intersection Method.

3.7.5 Histograms used for the Statistical Tests and Inter-

section Method
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Figure 3.9: 1D mass-weighted histograms from simulation data

Figure 3.10: Examples of histogram intersections in X which are
calculated to be the percent overlap between the simulation data
(BLUE), and the results from our methods (RED) where a larger
overlap is desirable. The comparisons of the mass-weighted X posi-
tions derived from Method I (left) and from Method II (right) are
shown.
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Figure 3.11: Mass-weighted Z histogram intersections which are
calculated to be the percent overlap between the simulation data
(BLUE), and the results from our methods (RED) where a larger
overlap is desirable. The results from a constant 20 pc depth (left),
the use of the dense distance transform (middle) and the use of the
non-zero and dense distance transforms (right) are shown.
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3.8 Summary

We developed particle generation techniques able to create SPH particles from

observational gas data. Two methods were developed to assign particle positions

and masses in the XY plane (plane of the sky). The first is a random sampling

technique while the second involves each non-zero pixel being represented by one

particle. In addition to this, we explored different estimates of the Z-depth of the

cloud (this information is not included in the gas observations) including a constant

depth of 20 parsecs and a varying depth based on dense features seen in the plane

of the sky. We applied these techniques to a simulated observed image. Based on

the validity tests (two statistical tests and a histogram comparison method), we

find that the optimal procedure for creating particles that resemble the original

density distribution involves each non-zero pixel being represented by one particle

and the Z coordinates of the particles being symmetric about Z=0 and estimated

from the size of dense features seen in the XY plane. This corresponds to Method II

of our method and the Z coordinates being determined by calculating the distance

transforms of the image in the XY plane. We use both versions of our method

in our simulations of the Carina region to investigate further differences. We

pair Method I with a constant z-depth of 20 parsecs and the resulting spatial

distribution can be seen in Figure 3.12. We pair Method II with the Z coordinates

calculated using two distance transforms which can be seen in Figure 3.14 where

the dense regions correspond to pixels with values greater than 100 cm−3. The

resulting spatial distribution from Method II can be seen in Figure 3.13. The

central region in the left panel of Figure 3.14 corresponds to the greatest distance

and therefore the greatest range in Z which leads to the overall diamond shape
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seen in XZ. The triangular features correspond to areas of relatively higher mass

(seen in XY) with lower ranges in Z while the filaments are primarily due to the

dense segmentation. The two segmentations were combined in a way to give rise

to a symmetric distribution about Z = 0 as was done with the simulated Gasoline

data. Note that Figure 3.14 corresponds to the orientation of the gas observations

seen in Figure 3.1.

Figure 3.12: Mass-weighted (in M�) Cartesian XY (left) and XZ
(right) of particles created using Method I to represent gas densities
in the observed Carina region. Gas particles range in mass from
roughly 0.07 to 15M� with most having masses of roughly 0.5M�.
(Note: 1000 bins in each of the dimensions were used.)
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Figure 3.13: Mass-weighted (in M�) Cartesian XY (left) and
XZ (right) of particles created using Method II to represent gas
densities in the observed Carina region. Maximum mass of a gas
particle is 0.5M�. (Note: 1000 bins in each of the dimensions were
used.)

Figure 3.14: Distance transform of the non-zero region (LEFT)
and dense region (greater than 100 cm−3) (RIGHT). Color bar
corresponds to distances to the background measured in pixels.
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Chapter 4

Results

In this chapter, we summarize the results from our simulations. We investigated

two methods of obtaining the positions of the gas particles in the XY plane (in the

plane of the sky based on observational data) in conjunction with two methods of

estimating the Z coordinate (depth along the line of sight). Method I (methods

described in Chapter 3) obtains the X and Y coordinates of the gas particles using

a random sampling method that samples from the original gas column density

distribution 100000 times. Method II obtains these coordinates by purposefully

representing all non-zero density pixels by at least one particle which makes use

of all the available information in the plane of the sky. In our simulations, we pair

Method I with a constant Z depth of 20 parsecs and we pair Method II with a

varied Z depth created from calculating the distance transforms of the non-zero and

dense regions. We pair Method I with a constant Z depth since this method was

developed first and we wanted to explore the assumption of a constant cloud depth.

We pair Method II with a varied Z depth which are techniques later developed

found likely to be more representative of the Carina region (see Validity section
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in 3). Other pairings are indeed possible, however our analysis is limited to these

cases at this time. Using Method I, we also investigate the effect of varying the

initial gas velocity dispersion. We compare the sets of simulations to determine the

effect of different initial gas distributions and conditions on the resulting evolution

of the star cluster system. Specifically, we consider how the stars cluster together

over time using DBSCAN (see analysis tools in Chapter 2), how and if significant

mass segregation occurs within the clusters as they merge (by calculating Λmsr),

how the gas clumps together and whether high enough densities are reached to fuel

new star-formation (using a threshold of roughly 129 ± 14 M�/pc2 (Heiderman

et al. 2010)) by analyzing the gas distribution using dendrograms created with

astrodendro.

4.1 Summary of Simulations

We are interested in how the interaction between the stars and gas affects star

cluster structure, therefore we focused on the overlapping regions between the stars

and the gas. For this reason, we apply cuts to both the stellar and gas distributions

which also contributes to efficient use of the computational resources. To this end,

the gas distribution in a 40 parsec radius (in XY) from the cluster center was used.

The stellar distribution was also modified to only include those within the Z depth

of 20 parsecs in the gas. The set of simulations can be seen in Table 4.1. The same

stellar distribution was used for all runs in order to determine the effects of the

varying gas distribution. In addition to runs where the initial conditions of the

gas are derived from observations of the Carina region, we also ran a simulation
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where the gas is initially distributed in a uniform sphere with a constant initial

temperature of 19K (the average temperature from the Carina observations). In

doing so, we can compare the effect of varying the initial gas distribution spatially

and determine how or if that affects the resulting evolution of the cluster.

Run XY

Method

Z-depth NStars NGas Gas σ Gas

Mass

(M⊙)

Stellar

Mass

(M⊙)

1 Method I 20pc 44101 53249 1.4 25846 27113

2 Method I 19K

Uniform

Sphere

44101 53249 1.4 25846 27113

3 Method I 20pc and

19K

44101 53249 1.4 25846 27113

4 Method I 20pc 44101 53249 2 scaled 25846 27113

5 Method I 20pc 44101 53268 2 25895 27113

6 Method I 20pc 44101 53125 5 25957 27113

7 Method

II

Varied 44101 1106330 1.4 351016 27113

8 Method

II

Varied 44101 1106330 1.4 351016 27113

Table 4.1: Summary of runs.

We chose to use three gas velocity dispersion values of 1.4, 2 and 5 km/s. The

1.4 km/s value comes from observations of dense cores in the Carina region (see

Chapter 1). The other two values were chosen to explore both a small and large
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increase in the dispersion. In Table 4.1, note that run 4 is a scaled version of run 1

in terms of the gas velocity distribution. The gas particle velocities in run 1 were

multiplied by 2/1.4 km/s to create initial conditions with a gas velocity dispersion

of 2 km/s used in run 4 (with all other conditions equivalent to run 1). Run 5

also has a gas velocity dispersion of 2 km/s, however this is with a new set of gas

particles obtained from the random sampling method. Run 8 differs from run 7

in terms of the interaction timestep, the details of which are explained later. All

Method I runs were evolved up to 7.7 Myr while the Method II runs were evolved

up to a maximum of 4.6 Myr (due to the increased computation time from the

large increase in gas particles). The substantial increase in gas particles from the

Method I runs to the Method II runs stems from assigning at least one particle to

represent each pixel with more introduced if the particle mass exceeded 0.5 M�.

The substantial increase in the gas mass from the Method I runs to the Method

II is again due to each observed pixel being used.

4.2 Method I Run I

This simulation used the random sampling method, a constant Z depth of 20

parsecs, varied gas temperature from observations and a gas velocity dispersion of

1.4 km/s. The dynamical evolution of the stars and gas can be seen in Figures

4.1 and 4.2. The stars are depicted as points while the gas distribution is a

2D histogram (surface density plot) that shows the density of the gas in units

of logM�/pc2. The surface densities were obtained by binning the gas particles

using two bins per parsec (each bin increments by 0.5 pc in X and 0.5 pc in Y)
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along each axis with weights corresponding to the gas mass per square parsec. A

Gaussian interpolation was used to plot the gas distribution which smooths out the

distribution between bins and allows large scale differences in density to be more

clearly seen. Between t = 0 Myr and t = 2 Myr, slight contraction and expansion

of the stellar sub-clusters can be seen in Figure 4.1 as the clusters attract each

other and begin to merge. They begin to group together somewhat along a line in

the Y direction (seen at t = 3 Myr) which resembles the initial stellar distribution.

By t = 5 Myr, the clusters at the ends of the linear distribution have begun to

merge with those that are near the center. By t = 7.7 Myr, the stars are centrally

concentrated but not quite spherical as there still appears to be some elongation in

the Y direction. In the XZ plane, (Figure 4.2) the stars are initially in a cross-like

distribution with the gas between Z = -10 and Z = 10 parsecs. By t = 7.7 Myr, the

stellar distribution is centrally concentrated and the gas has spread out reaching

roughly Z = -20 to Z = 20 parsecs.

We analyze the evolution of the stellar and gas distributions separately. To

characterize and track the regions of relatively dense gas, we use dendrograms

which are a tool to describe hierarchical structures. This can be seen in Figure 4.3

where the contours are the structures (branches or leaves) of the dendrogram that

represent different densities.

Initially the gas is clumpy and fragmented. The high density regions (in red

which correspond to densities of 100 - 1000 M�/pc2) lie approximately between

X = -50 to 0 and from Y = -20 to 20 parsecs. The densest region is located

roughly at (-35, 5) parsecs and is clumpy while regions located at roughly (-

20, 5) and (-10, -15) appear to be slightly more elongated and filamentary. In
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general, the dense regions appear to be surrounded by less dense gas (seen as

blue and white contours representing densities of 6 - 10 M�/pc
2 and 10 - 100

M�/pc
2, respectively). Together, this forms the main filamentary structure of gas

approximately 20 parsecs in width which appears to curve downwards (negative

Y direction) and to the right (positive X direction). There are also clumps of low

density gas (6 - 10 M�/pc
2) located between X = -50 to -30 parsecs and Y =

20 to 40 parsecs that are relatively separated. As well, there are regions of less

dense gas (blue and white contours) located at X = 15 between Y = 0 and 30

parsecs which are clumped together and borders the 40 parsec radius cutoff we

used. Compared to Figure 4.1 image (A), we can see that the lower end of the

stellar distribution overlaps with the dense region at (-20, 5) parsecs (the middle

of the filamentary gas structure) but in general, the stellar distribution does not

follow the gas distribution. In fact, a significant portion of the stars are located

in regions with gas densities lower than 6 M�/pc2.

Over time, the main filamentary gas structure persists until t = 2 Myr. At this

point, the dense feature in the middle of the main filament is no longer present.

From t = 3 Myr to t = 4 Myr, we can see the main filament fragmenting into two

structures. One structure appears oval in shape with the center corresponding to

the most dense region while the second structure appears more filamentary and

extended in the Y direction. By t = 5 Myr, each of these structures ends up with

high central densities of 100 - 1000M�/pc2. At this point, the less dense regions of

gas that were separated above the main filament and clumped along the 40 parsec

border at t = 0 Myr have more or less dispersed to form regions that are less than
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6 M�/pc2. The two structures eventually merge to form one structure that is Y-

shaped at t = 7 Myr where the high density central region (in red) is surrounded

by the lower density gas (in white followed by blue) and by t = 7.7 Myr the high

density region becomes more centrally concentrated. What was initially a clumpy

distribution with high density regions that were spaced out results in a centrally

concentrated distribution by t = 7.7 Myr. The distribution does not appear to be

spherical as there are two regions extending from the main body of gas. Compared

to the stellar distribution in Figure 4.1, we can see that the dense region of gas

coincides with the central region of the stellar distribution which has also become

more concentrated.

It is interesting to note that at all times, there is at least one dense region of

gas. Within these dense regions, there are areas where the density exceeds 100

M�/pc
2 which can be seen in the orange and yellow colors. This implies that star

formation could be present throughout the evolution of the system according to

the density threshold of 129 ± 14 M�/pc2 (Heiderman et al. 2010). More checks

would be required (e.g determining if the dense gas remains bound) similar to

those used for simulations with sink particles (e.g Federrath et al. 2010) which

use a 3D density criterion to determine with more certainty if a star is formed.

At this time, we analyze our results in 2D (in the plane of the sky) to mimic an

observational view and the 2D density threshold does appear to have been met at

all times in this run.

We used DBSCAN in 3D (clustering algorithm described in Chapter 2) to char-

acterize the changing sub-structure in the star clusters over time. This is seen in

Figure 4.4 with 1 Myr increments where each identified cluster is represented by a
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different color. Initially, there are 16 clusters identified with DBSCAN. Over time,

the sub-clusters merge together and the number of clusters identified generally

decreases with time until t = 5 Myr. By t = 2 Myr, several of the clusters from

roughly X = -28 to X = -14 and Y = 7 to Y = 30 parsecs have merged together into

one cluster. The clusters originally at X = -20 to X = -15 and Y = -5 to 5 parsecs

at t = 0 Myr have also merged together into a cluster by t = 2 Myr. Further loss

of substructure occurs as the stars merge together in the X direction. By t = 5

Myr, the clusters have merged together into one large main cluster and one small

cluster. The main cluster is elongated in the Y direction which is similar to the

orientation of the clusters at t = 0 Myr. From this point onwards, the number of

clusters identified by DBSCAN increases, however there remains one large cluster

of stars while the other clusters are relatively small. The smaller clusters are due

to noise as they are not persistent. The large main cluster of stars does not form

a spherical distribution by t = 7.7 Myr.

The other runs include variations in the initial spatial distribution of the gas and

in the initial gas velocity dispersion. We will compare our results by focusing on

the significant differences between the evolution of the gas and stellar distributions.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.000 Myr

(d) t = 3.005 Myr (e) t = 4.005 Myr (f) t = 5.005 Myr

(g) t = 6.005 Myr (h) t = 7.005 Myr (i) t = 7.705 Myr

Figure 4.1: Evolution of Carina Region in XY plane with gas
velocity dispersion of 1.4 km/s.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.005 Myr

(d) t = 3.005 Myr (e) t = 4.005 Myr (f) t = 5.005 Myr

(g) t = 6.005 Myr (h) t = 7.005 Myr (i) t = 7.705 Myr

Figure 4.2: Evolution of Carina Region in XZ plane with gas
velocity dispersion of 1.4 km/s.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.005 Myr

(d) t = 3.005 Myr (e) t = 4.005 Myr (f) t = 5.005 Myr

(g) t = 6.005 Myr (h) t = 7.005 Myr (i) t = 7.705 Myr

Figure 4.3: Gas distribution in Carina region over time with ini-
tial gas velocity dispersion of 1.4 km/s. Overplotted are contours
from branches and leaves in the dendrogram. Blue corresponds to
densities between 6 - 10 M�/pc

2, white corresponds to densities
between 10 - 100 M�/pc2 and red corresponds to densities between
100 - 1000 M�/pc2.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.005 Myr

(d) t = 3.005 Myr (e) t = 4.005 Myr (f) t = 5.005 Myr

(g) t = 6.005 Myr (h) t = 7.005 Myr (i) t = 7.705 Myr

Figure 4.4: Clusters in Carina picked out by DBSCAN over time
with gas velocity dispersion of 1.4 km/s. Each cluster is denoted
by a different colour. The colours do not necessarily correspond to
the same stars across the images as they are only used to highlight
the different clusters identified.
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4.3 Method I Run II

In this run, the gas is initially distributed in a uniform sphere of radius 40 parsecs,

the gas temperature is set to 19K (which is the average temperature for the ob-

served Carina region) and the initial gas velocity dispersion is 1.4 km/s. We chose

to use a constant gas temperature of 19K since the sphere extends slightly into

the regions where we do not have corresponding temperature measurements. The

total gas mass and number of gas particles are the same as Run I. While varied

masses were used in Run I (as per the Method I prescription outlined in Chapter

3), here we use a constant gas particle mass of approximately 0.49 M�. The pur-

pose of this run is to investigate the effect of a simplified initial spatial distribution

of the gas with an initial constant gas temperature. As previously mentioned, star

formation simulations often begin with a spherical distribution of gas. This does

not realistically describe molecular clouds which have been observed to contain

filamentary structures. We want to compare the results of our methods which

incorporate observational gas data to an initial spherical distribution of gas to see

if any significant differences arise as the cluster evolves over time. The dynamical

evolution of the stars and gas can be seen in Figures 4.5 and 4.6. We can see that

overall, the change to an initial uniform sphere of gas did not have a significant

impact on the evolution of the stellar distribution in the XY plane or the XZ plane

compared to run I. They merge in a similar fashion at the same times as run I.

Although the gas distribution was initially uniform, we can see that it becomes

centrally concentrated by t = 7.7 Myr.

If we consider the dendrogram analysis seen in Figure 4.7, we can see how
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initially there are regions of lower density gas mixed together (densities of 6 - 10

M�/pc
2 and 10 - 100 M�/pc2 seen as blue and white contours). Even though the

distribution of gas was set to be a uniform sphere, the variations arise due to the

random distribution of particles. Between t = 0 Myr and t = 2 Myr, the gas

distribution does not change significantly. Between t = 3 Myr and t = 5 Myr,

we can start to see a region of relatively dense gas (still less than 100 M�/pc2)

forming in the center. By t = 7.7 Myr, the gas distribution becomes centrally

concentrated with the inner regions having a density between 10 - 100 M�/pc2

which is surrounded by lower density gas of 6 - 10 M�/pc2 (seen as white contours

surrounded by blue). It is interesting to note that even though the gas becomes

centrally concentrated over time, high density regions of gas (densities between 100

- 1000 M�/pc2) do not form. Hence, star formation is not a possibility (according

to our density threshold) in this run.

We analyzed the stellar distribution over time using DBSCAN but found no

large differences in the number of clusters identified compared to run I. We compare

the number of identified clusters over time for all of our runs in section 4.10.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.005 Myr

(d) t = 3.005 Myr (e) t = 4.005 Myr (f) t = 5.005 Myr

(g) t = 6.005 Myr (h) t = 7.005 Myr (i) t = 7.705Myr

Figure 4.5: Evolution of Carina Region in XY plane with gas
initially in a uniform sphere with a gas velocity dispersion of 1.4
km/s
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.005 Myr

(d) t = 3.005 Myr (e) t = 4.005 Myr (f) t = 5.005 Myr

(g) t = 6.005 Myr (h) t = 7.005 Myr (i) t = 7.705 Myr

Figure 4.6: Evolution of Carina Region in XZ plane with gas
initially distributed in a uniform sphere and with a gas velocity
dispersion of 1.4 km/s.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.005 Myr

(d) t = 3.005 Myr (e) t = 4.005 Myr (f) t = 5.005 Myr

(g) t = 6.005 Myr (h) t = 7.005 Myr (i) t = 7.705 Myr

Figure 4.7: Gas distribution in Carina region over time with gas
initially in a uniform sphere with initial gas velocity dispersion of
1.4 km/s. Overplotted are contours from branches and leaves in
the dendrogram where blue corresponds to densities between 6 - 10
M�/pc

2, white corresponds to densities between 10 - 100 M�/pc2

and red corresponds to densities between 100 - 1000 M�/pc2
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4.4 Method I Run III

This run used the random sampling method, a constant Z depth of 20 parsecs, a

constant gas temperature of 19K (average temperature over the observed Carina

region) and an initial gas velocity dispersion of 1.4 km/s. The initial conditions

are similar to those in run II with the only difference being the initial density

distribution of the gas. While run II considered simplifying assumptions about

the initial gas density distribution and gas temperature, the purpose of this run

is to consider the effect of only a different initial gas density distribution. We

found that the evolution of the stellar distribution over time was very similar to

run II in both the XY and XZ planes. We also found the evolution of the gas

distribution over time to be similar to run I where two main structures formed

from the gas which eventually merged together. As well, we found no large dif-

ferences in the number of clusters identified by DBSCAN compared to run I. The

results from these first three runs show that for an initial gas velocity dispersion

of 1.4 km/s, the evolution of the stellar distribution over time is not significantly

sensitive to a change in the initial gas density distribution specifically considering

a distribution derived from observations compared to gas particles distributed in

a uniform sphere. We find that incorporating a realistic initial gas distribution is

advantageous for determining possible star-formation sites as high enough densi-

ties are reached. This was not the case when we considered the gas distributed in

a uniform sphere. The next set of runs focuses on varying the initial gas velocity

dispersion while using the initial gas density distribution derived from the Carina

observations.
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4.5 Method I Run IV

This run used the random sampling method, a constant Z depth of 20 parsecs,

varied gas temperature from observations and an initial gas velocity dispersion

of 2 km/s. The initial positions and masses of the gas particles are identical to

those in run I. The evolution of the stellar distribution over time in the XY and

XZ planes is similar to that seen in run I. If we consider the evolution of the gas

distribution over time, the dendrograms appear to differ from run I at t = 5 Myr.

This can be seen in Figure 4.9 (where we compare with run V as well). We can see

that there exists two main high density regions (represented by the red contours)

in runs I and IV at t = 5 Myr. However, the high density region at around X = -20

and Y = 10 parsecs appears to be smaller in this run compared to run I. At t = 6

Myr, the high density region around X = -35 and Y = 10 parsecs also appears to

be smaller in this run compared to run I. A t = 6 Myr, there also appears to be

more gas with densities between 10 - 100 M�/pc2 (white contours) surrounding

the dense gas in this run compared to run I. By t = 7.7 Myr, we can see that the

gas distribution becomes centrally concentrated in both cases. However the Y-

shaped gas structure is not as prominent in this run as the gas appears to be more

tightly collected together. The results from the DBSCAN analysis did not show

any large differences in the way the clusters merged together over time. Therefore,

the results from this run show that an increase in the gas velocity dispersion from

1.4 km/s to 2 km/s decreases the size of some high gas density regions and results

in a gas distribution that appears more spherical after t = 7.7 Myr.
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4.6 Method I Run V

This run used the random sampling method, a constant Z depth of 20 parsecs,

varied gas temperature from observations and an initial gas velocity dispersion

of 2 km/s. It differs from run IV as a new particle set was generated using the

sampling method which introduces a slight variation in the number of gas particles,

the spatial distribution of the gas and the gas mass as seen in Table 4.1. Again,

the overall evolution of the stellar distribution over time in the XY and XZ planes

does not appear to be significantly different from the other runs. If we look at

the dendrograms seen in Figure 4.8 describing the gas distribution, we can see

that they differ at t = 0 Myr. There appears to be more clumps of the high

density gas (red contours) here initially compared to run IV even though the main

filamentary structure is still apparent. This is due to the sampling method we use

which samples the observational gas distribution 100000 times. We expect some

slight variation in the random sampling from trial to trial which is what we see

here. The dendrograms comparing runs I, IV and V from t = 5 Myr onwards (this

is where run IV started to significantly differ from run I) can be seen in Figure

4.9. We see that the number and size of the dense regions (in red contours) differs

between this run and run IV which again is due to the slightly different initial

conditions resulting from the sampling technique. However, the overall structure

of the gas appears to be similar between these two runs where the high density

regions are surrounded by the less dense gas (white and then blue contours) which

form a Y-shape present at t = 5 Myr and t = 6 Myr. By t = 7.7 Myr, the

Y-shaped gas structure is not as prominent as the gas becomes more centrally

concentrated. Comparing these two runs to run I (where the initial gas velocity
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dispersion was set to 1.4 km/s), we can see that increasing the velocity dispersion

to 2 km/s results in smaller dense regions at t = 5 Myr, one main dense region

at t = 6 Myr and a centrally concentrated distribution that is less Y-shaped at

t = 7.7 Myr. We analyzed the stellar distribution over time using DBSCAN but

found no significant differences in the clustering of the stars over time.

Figure 4.8: Comparison of gas distribution in Carina region be-
tween runs IV (left) and V (right) at t = 0 Myr which highlights
the effect of random sampling in our particle creation technique
(Method I). Overplotted are contours from branches and leaves in
the dendrogram where blue corresponds to densities between 6 - 10
M�/pc

2, white corresponds to densities between 10 - 100 M�/pc2

and red corresponds to densities between 100 - 1000 M�/pc2.
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(a) Run I t =
5.005 Myr

(b) Run IV t =
5.005 Myr

(c) Run V t =
5.005 Myr

(d) Run I t =
6.005 Myr

(e) Run IV t =
6.005 Myr

(f) Run V t =
6.005 Myr

(g) Run I t =
7.705 Myr

(h) Run IV t =
7.705 Myr

(i) Run V t =
7.705 Myr

Figure 4.9: Comparison of gas distribution in Carina region over
time between runs I (left), IV (middle) and V (right) between t =
5 Myr to t = 7.7 Myr. Overplotted are contours from branches
and leaves in the dendrogram where blue corresponds to densities
between 6 - 10 M�/pc2, white corresponds to densities between 10
- 100 M�/pc2 and red corresponds to densities between 100 - 1000
M�/pc
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4.7 Method I Run VI

This run used the random sampling method, a constant Z depth of 20 parsecs,

varied gas temperature from observations and an initial gas velocity dispersion

of 5 km/s. This run also used a new particle set generated using the sampling

method which introduces a slight variation in the number of gas particles, the

spatial distribution of the gas and the gas mass as seen in Table 4.1. The purpose

of this run is to examine the effect of a large increase in the initial gas velocity

dispersion on the cluster evolution. Despite the relatively large increase, we find

that the overall evolution of the stellar distribution over time in the XY and XZ

planes does not appear to be significantly different from the other runs. As well, we

analyzed the stellar distribution over time using DBSCAN but found no significant

differences in the clustering of the stars over time. If we consider the dendrogram

analysis seen in Figure 4.10, we see that initially at t = 0 Myr, the main filamentary

structure is present with dense regions (red contours) embedded in lower density

gas (white and blue contours). The exact contours differ from those in run I due

to the new particle set generated for this run. The gas distribution appears to

significantly differ from runs I, IV and V starting at t = 2 Myr. This can be seen

in Figure 4.11 which compares runs I, V and VI (runs IV and V were found to be

quite similar in terms of the overall evolution of the gas distribution). At t = 2

Myr, runs I, IV and V still have regions of dense gas (red contours) while this run

does not. No dense regions of gas develop over time with densities of 100 - 1000

M�/pc
2 which implies that star formation is not a possibility (according to our

density threshold) beyond t = 2 Myr. In addition, some curvature of the main

filamentary structure has been lost by t = 2 Myr in this run where the structure
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looks slightly more compact along the X axis. At t = 5 Myr the gas distribution

starts to appear more spherical. By t = 7.7 Myr, the distribution has become quite

spherical and centrally concentrated with gas densities of 10 - 100 M�/pc2 (white

contours) surrounded by gas with densities between 6 - 10M�/pc2 (blue contours).

The results from this run show that increasing the initial gas velocity dispersion

to 5 km/s prevents dense gas from accumulating (densities of 100 - 1000 M�/pc2)

and causes initial structures present in the gas to be lost relatively quickly.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.005 Myr

(d) t = 3.005 Myr (e) t = 4.005 Myr (f) t = 5.005 Myr

(g) t = 6.005 Myr (h) t = 7.005 Myr (i) t = 7.705 Myr

Figure 4.10: Gas distribution in Carina region over time with
initial gas velocity dispersion of 5 km/s and new sampling. Over-
plotted are contours from branches and leaves in the dendrogram
where blue corresponds to densities between 6 - 10 M�/pc2, white
corresponds to densities between 10 - 100 M�/pc2 and red corre-
sponds to densities between 100 - 1000 M�/pc2.
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(a) Run I t =
2.005 Myr

(b) Run V t =
2.005 Myr

(c) Run VI t =
2.005 Myr

(d) Run I t =
5.005 Myr

(e) Run V t =
5.005 Myr

(f) Run VI t =
5.005 Myr

(g) Run I t =
7.705 Myr

(h) Run V t =
7.705 Myr

(i) Run VI t =
7.700 Myr

Figure 4.11: Comparison of gas distribution in Carina region
over time between runs I, V and VI between t = 2 Myr to t = 7.7
Myr. Overplotted are contours from branches and leaves in the
dendrogram where blue corresponds to densities between 6 - 10
M�/pc

2, white corresponds to densities between 10 - 100 M�/pc2

and red corresponds to densities between 100 - 1000 M�/pc2
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4.8 Method II Run I

This run (run VII in Table 4.1) initially assigned one particle to represent each

pixel, used a varied Z depth obtained through the use of distance transforms

and used an initial gas velocity dispersion of 1.4 km/s. The advantage of this

gas particle creation technique is that all the observed data (within the region

of interest) is used. As a result, the total gas mass is an order of magnitude

higher than the runs performed with Method I and is also an order of magnitude

higher than the total stellar mass. Therefore this run probes the regime where the

gas mass is significantly greater than the stellar mass. The total gas mass in the

Method II runs is a true representation of the total gas mass in the observed Carina

region since the entirety of the image data was used (within the region of interest)

and this is an improvement over the Method I runs. As well, the increase in gas

particles as a result of the Method II technique slowed down our simulation by

increasing the computation time. Therefore, this run was only evolved to about

2 Myr. The dynamical evolution of the stars and gas can be seen in Figures

4.12 and 4.13. Initially, we see that the overall density of the cloud is greater

than the Method I runs which is expected as more mass is included due to the

approach taken with Method II. In Figure 4.12, we see both the stellar and gas

distributions contracting with notable contraction in the gas at X = -40 and Y = 5

parsecs which creates a region of higher density gas. In Figure 4.13, the stellar and

gas distributions are also seen to contract over time. Initial straight filamentary

structures in the gas become more curved and break up into clumps. It is known

that the formation of stars follows patterns in the natal molecular cloud and it is

interesting to see filaments in the gas break up in this way which could potentially

112



M.Sc – A.Mathews; McMaster University – Physics & Astronomy

form stars.

If we consider the dendrogram analysis seen in Figure 4.14, initially there are

regions of relatively lower density gas (10 - 100 M�/pc2) around regions of high

density gas (100 - 1000 M�/pc2) which can be seen as white contours surrounding

red contours (≥ 100 M�/pc2). Again, these figures show the entire dendrogram

structure grouped into three density ranges. Since both branches and leaves are

included, contours of the same color may be found within each other. We note that

there are no regions initially with gas densities lower than 10 M�/pc2 despite such

regions being present in all the Method I runs. Therefore including all the observed

pixel data significantly increases the initial density of the gas cloud compared to

randomly sampling the data 100,000 times. The initial regions of high density

gas, particularly in the main filamentary structure, are similar to those seen in

the Method I runs. However, there are also high density regions around X = -40,

Y = 40 parsecs and around X = 15, Y = 10 which were not as prominent in the

Method I runs. Between t = 0 Myr and t = 2 Myr, we see an overall contraction

in the gas with the initial dense regions merging slightly together. These regions

persist which implies that star formation could be present according to the density

threshold of roughly 129 M�/pc2. Due to the higher overall gas densities in this

run, we performed a second dendrogram analysis with higher density ranges which

can be seen in Figure 4.15. Cyan corresponds to densities between 100 - 1000

M�/pc
2, yellow corresponds to densities between 1000 - 5000 M�/pc

2 and red

corresponds to densities between 5000 - 10000 M�/pc2. From this, we can more

clearly see the contraction in the dense gas over time and that at t = 2 Myr, the

region with the highest gas density is located at roughly X = -35, Y = 7 parsecs.
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We also used DBSCAN to analyze the stars over time and found the results

to be generally similar to those in the next run. Run II is where we sped up our

simulation by changing the bridge timestep (from 0.005 Myr to 0.01 Myr) which

dictates how often the interaction between the stars and gas are taken into account

and these results can be seen in the following section.

(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.005 Myr

Figure 4.12: Evolution of Carina Region in XY plane using
Method II with a varied Z depth and an initial gas velocity dis-
persion of 1.4 km/s.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.005 Myr

Figure 4.13: Evolution of Carina Region in XZ plane using
Method II with a varied Z depth and an initial gas velocity dis-
persion of 1.4 km/s.

(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.005 Myr

Figure 4.14: Gas distribution in Carina region over time using
Method II with a varied Z depth, and an initial gas velocity disper-
sion of 1.4 km/s. Overplotted are contours from branches and leaves
in the dendrogram. Blue corresponds to densities between 6 - 10
M�/pc

2, white corresponds to densities between 10 - 100 M�/pc2

and red corresponds to densities greater than 100 M�/pc2.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.005 Myr

Figure 4.15: Gas distribution in Carina region over time using
Method II with a varied Z depth, and an initial gas velocity dis-
persion of 1.4 km/s. Overplotted are contours from branches and
leaves in the dendrogram. Cyan corresponds to densities between
100 - 1000 M�/pc2, yellow corresponds to densities between 1000
- 5000 M�/pc

2 and red corresponds to densities between 5000 -
10000 M�/pc2.
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4.9 Method II Run II

This run (run 8 in Table 4.1) used the method where one particle was initially

assigned to represent each pixel, a varied Z depth obtained through the use of

distance transforms, an initial gas velocity dispersion of 1.4 km/s and an increased

bridge timestep (0.01 Myr as opposed to 0.005 Myr) to allow the run to evolve to

4.6 Myr in a shorter amount of time. We see that the increased timestep results

in fluctuations in the total energy between 1 - 4% not seen with the standard

timestep and future work should be done to determine the best choice for the

bridge timestep.

Although increasing this value decreases the accuracy of the simulation by re-

ducing the interactions between the stars and gas, we see no significant difference

between this and the previous run in terms of the overall cluster evolution. The

dynamical evolution of the stars and gas can be seen in Figures 4.16 and 4.17.

The evolution between t = 0 Myr and t = 2 Myr is similar to that in the previous

run. Beyond that, the stars and gas continue to contract with the stars becoming

concentrated at around X = -30, Y = 10 parsecs. In Figure 4.17, we see the ini-

tial filaments not only breaking apart into clumps but also feeding into the more

concentrated star cluster at around X = -30, Z = 0 parsecs which increases the

gas density in that region.

If we consider the dendrogram analysis seen in Figure 4.18, again initially there

are regions of relatively lower density gas (10 - 100M�/pc2) around regions of high

density gas (100 - 1000 M�/pc2) which can be seen as white contours surrounding

red contours. At t = 0 Myr, the dendrogram looks slightly different than that in
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Run I (Method II), however these differences are attributed to the variations in

the initial particle positions derived from drawing along the range of the X and Y

dimensions of each pixel (see Chapter 3 for details). Overall, the differences are not

significantly different between t = 0 Myr and t = 2 Myr. Beyond that, we see that

the regions of high density gas merge together forming a structure that is elongated

in the Y direction and that also curves upward from X = -10 parsecs to the right.

Of the Method I runs that showed a similar filamentary structure, the curved part

of it seen here was not observed in those runs. This highlights the necessity of

including all the available information from the gas observations. We take regions

marked in red to roughly contain high enough densities for star formation (density

threshold of roughly 129 M�/pc2) and if we only restrict ourselves to randomly

sampling 100,000 times to obtain the initial conditions, we will miss potential sites

of star-formation. A comparison between runs I and II from Method I and run

II from Method II can be seen in Figure 4.19. Of these, the runs that used the

observational gas data showed filamentary structures in the gas and regions of

high density gas that could potentially lead to new star-formation. Of the runs

that used observational gas, Method II run II is the most realistic as all the gas

data in the region of interest were used and filamentary structures in the gas were

incorporated.

Due to the higher overall gas densities in this run, we performed a second

dendrogram analysis with higher density ranges which can be seen in Figure 4.20.

Cyan corresponds to densities between 100 - 1000 M�/pc2, yellow corresponds to

densities between 1000 - 5000 M�/pc2 and red corresponds to densities between

5000 - 10000 M�/pc2. Again, we can more clearly see the contraction in the dense
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gas over time and how the gas merges to form a curved structure by t = 4.6 Myr.

We analyzed the stars over time using DBSCAN and the results can be seen

in Figure 4.21. Overall, the clusters seem to group together in a similar way as

that seen in the Method I runs by merging together to create clusters elongated

in Y before starting to form a somewhat spherical shape. However, in terms of

the timescale on which this occurs, the formation of one main cluster occurs 1

Myr earlier (at roughly t = 4 Myr) than in the Method I runs. In this run at

t = 4.6 Myr, one main cluster is present with its center at roughly X = -26, Y =

5 parsecs. In Method I run I, at t = 5 Myr, which is around the same time, one

main cluster is also present. However this cluster is more elongated and its center

is roughly at X = -21, Y = 11 parsecs. Therefore this shows that Methods I and

II result in differences in the clustering of the stars over time. This difference is

attributed to the greater amount of gas (and hence greater gas potential) present

in the Method II runs compared to the Method I runs. A similar result was seen

in the simulations described in Sills et al. 2018 which showed that a higher gas

mass affects the stellar distribution.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.000 Myr

(d) t = 3.010 Myr (e) t = 4.010 Myr (f) t = 4.610 Myr

Figure 4.16: Evolution of Carina Region in XY plane using
Method II with a varied Z depth, an initial gas velocity dispersion
of 1.4 km/s and an increased interaction timestep.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.000 Myr

(d) t = 3.010 Myr (e) t = 4.010 Myr (f) t = 4.610 Myr

Figure 4.17: Evolution of Carina Region in XZ plane using
Method II with a varied Z depth, an initial gas velocity dispersion
of 1.4 km/s and an increased interaction timestep.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.000 Myr

(d) t = 3.010 Myr (e) t = 4.010 Myr (f) t = 4.610 Myr

Figure 4.18: Gas distribution in Carina region over time using
Method II with a varied Z depth, an initial gas velocity dispersion
of 1.4 km/s and an increased interaction timestep. Overplotted are
contours from branches and leaves in the dendrogram. Blue corre-
sponds to densities between 6 - 10 M�/pc2, white corresponds to
densities between 10 - 100M�/pc2 and red corresponds to densities
greater than 100 M�/pc2.
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(a) MI Run I t =
0.000 Myr

(b) MI Run II t =
0.000 Myr

(c) MII Run II
t = 0.000 Myr

(d) MI Run I t =
2.005 Myr

(e) MI Run II t =
2.005 Myr

(f) MII Run II
t = 2.000 Myr

(g) MI Run I t =
4.005 Myr

(h) MI Run II t =
4.005 Myr

(i) MII Run II t =
4.010 Myr

Figure 4.19: Comparison of gas distribution in Carina region over
time between Method I (MI) runs I, II and Method II (MII) run II
between t = 0 Myr to t = 4 Myr. Overplotted are contours from
branches and leaves in the dendrogram where blue corresponds to
densities between 6 - 10 M�/pc

2, white corresponds to densities
between 10 - 100 M�/pc2 and red corresponds to densities greater
than 100 M�/pc2
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.000 Myr

(d) t = 3.010 Myr (e) t = 4.010 Myr (f) t = 4.610 Myr

Figure 4.20: Gas distribution in Carina region over time using
Method II with a varied Z depth, an initial gas velocity dispersion
of 1.4 km/s and an increased interaction timestep. Overplotted are
contours from branches and leaves in the dendrogram. Cyan corre-
sponds to densities between 100 - 1000M�/pc2, yellow corresponds
to densities between 1000 - 5000 M�/pc2 and red corresponds to
densities between 5000 - 10000 M�/pc2.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.000 Myr

(d) t = 3.010 Myr (e) t = 4.010 Myr (f) t = 4.610 Myr

Figure 4.21: Clusters in Carina picked out by DBSCAN over time
using Method II with a varied Z depth, an initial gas velocity dis-
persion of 1.4 km/s and an increased interaction timestep. Each
cluster is denoted by a different colour. The colours do not neces-
sarily correspond to the same stars across the images as they are
only used to highlight the different clusters identified.
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4.10 Stellar Distribution Comparisons

We analyzed the stellar distributions over time using DBSCAN and we also com-

puted Λmsr values (using AMUSE) to quantify any mass segregation that may

be present in the clusters identified. As previously mentioned, we found no large

differences between the Method I runs in terms of the overall evolution of the stel-

lar distribution over time although there were slight variations in the number of

clusters identified by DBSCAN. A plot of the number of clusters over time picked

out using DBSCAN can be seen in Figure 4.22. Considering the Method I runs

first, we see a general decrease in the number of clusters which reaches the lowest

at t = 5 Myr. From there, the number of clusters increases with a sharp increase

between t = 5 Myr and t = 6 Myr. Overall, the number of clusters is not drasti-

cally different between the Method I runs from t = 0 Myr to t = 5 Myr. Beyond

t = 5 Myr, there is a greater spread in the number of clusters. The spread is

due to the variation in the smaller clusters that are picked out although the main

cluster appears similar throughout. These smaller clusters are due to noise and

are transient. The results of DBSCAN on the Method I runs at t = 6 Myr, t = 7

Myr and t = 7.7 Myr can be seen in Figures 4.23, 4.24 and 4.25.

The Method II runs also show a general decrease in the number of clusters until

t = 4.6 Myr when only one cluster is picked out. At t = 4 Myr, two clusters are

picked out. However, one is a large main cluster while the other is significantly

smaller which is again likely due to noise or a transient grouping of stars. Com-

paring Methods I and II, we find that a large main cluster is formed 1 Myr earlier

with Method II (at t = 4 Myr) compared to Method I which demonstrates that the
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gas conditions affects the stellar distribution. The slight differences between the

two Method II runs are due to a combination of effects which includes variations

in the original gas density arising from drawing from the X and Y dimensions of

each pixel to determine particle positions and differences in the bridge timestep.

Figure 4.22: Nclusters over time as identified by DBSCAN for all
runs. Run details can be seen in Table 4.1.

Of the clusters identified by DBSCAN, the Λmsr value was calculated for clusters

that had at least 40 members. The maximum and minimum Λmsr values (and their

uncertainties) for the selected clusters can be seen in Table 4.2. Note that at t = 0

Myr for the three runs, the Λmsr values are similar but not exactly the same. This is

because 100 random sets are chosen to calculate the mass-segregation value which
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(a) Run I (b) Run II (c) Run III

(d) Run IV (e) Run V (f) Run VI

Figure 4.23: DBSCAN results for Method I runs I-VI at t = 6
Myr. Each colour corresponds to a different cluster. Colours do
not necessarily correspond to the same stars between the images.

introduces a slight variation in the resulting value. However, the Λmsr values at

t = 0 are all still within the uncertainties of each other. Figures 4.26 and 4.27

show the results of DBSCAN on Method I run I and Method II run II, respectively,

where the clusters with the greatest Λmsr value (within uncertainties of each other)

can be seen in black. The results from the Method I runs are all similar. As seen

in Table 4.2, the Λmsr values change over time and the maximum Λmsr values are

not always significantly greater than 1 (consider Λmsr ≥ 2 for mass segregation to

be present). This means that even though the clusters in black have the greatest

Λmsr value, they may not be considered mass segregated.
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(a) Run I (b) Run II (c) Run III

(d) Run IV (e) Run V (f) Run VI

Figure 4.24: DBSCAN results for Method I runs I-VI at t = 7
Myr. Each colour corresponds to a different cluster. Colours do
not necessarily correspond to the same stars between the images.

Initially at t = 0 Myr, the clusters are not mass segregated (see Sills et al. 2018).

The maximum Λmsr value is roughly 1.2 and the corresponding clusters can be seen

in black which are in the middle of the stellar distribution. In the Method I runs,

the clusters with the largest Λmsr value fluctuate until t = 5 Myr when most of the

clusters have merged together and the large main cluster then corresponds to the

largest Λmsr value. This large main cluster continues to have the largest Λmsr value

until t = 7.7 Myr. The same fluctuation is not seen in the Method II run, however

the large main cluster that forms eventually does correspond to the largest Λmsr

value. The maximum Λmsr values for each of the runs over time can be seen in
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(a) Run I (b) Run II (c) Run III

(d) Run IV (e) Run V (f) Run VI

Figure 4.25: DBSCAN results for Method I runs I-VI at t = 7.7
Myr. Each colour corresponds to a different cluster. Colours do
not necessarily correspond to the same stars between the images.

Figure 4.28. Overall we see that the maximum Λmsr value ranges from roughly

1 to 5. We consider Λmsr ≥ 2 for mass segregation to be present which is true

between t = 1 and t = 4 Myr and again between t = 6 and t = 7 Myr. We expect

some fluctuation in the Λmsr value between the mass segregated and non mass

segregated case due to the merging of the subclusters. If a subcluster becomes

mass segregated and then proceeds to merge with other subclusters, it will take

time for the larger cluster to mass segregate due to dynamical interactions.

Over time, the runs are not significantly different except at t = 3 and at t = 4
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Myr. At t = 3 Myr, run VI has a higher Λmsr value than the other runs. It is

unclear if it is due to the increase in the gas velocity dispersion or due to the new

particle set generated from sampling. We see a spread in the maximum Λmsr at

t = 4 Myr before the clusters merge at t = 5 Myr. At t = 4 Myr, runs I and III are

significantly different. These runs differ only in the initial temperature of the gas

particles which shows that using a constant average gas temperature as opposed

to varied temperatures results in a significantly lower Λmsr value. Comparing

Runs IV and V shows that differing particle sets from random sampling results

in significantly different Λmsr values. Runs I and IV have the highest Λmsr values

at this time with overlap in the errors. These runs differ only in the gas velocity

dispersion which shows that increasing the initial gas velocity dispersion from 1.4

km/s to 2 km/s lowers the Λmsr value but does not result in a significantly different

value. Runs II and III only differ in the initial distribution of the gas and are not

significantly different either. Run VI is significantly different from runs I and IV,

however it is unclear if this is due to the increase in the gas velocity dispersion or

the new particle set. Therefore significant differences between the Method I runs in

the Λmsr value arise due to different initial gas temperatures and different particle

sets from the random sampling method. The Method II runs are not significantly

different than the Method I runs between t = 0 Myr and t = 3 Myr although the

Λmsr are in general lower compared to the other runs. At t = 4 Myr, the Λmsr

decreases before rising slightly again at t = 4.6 Myr. This feature is similar to that

seen in the Method I runs which dip at t = 5 Myr before slightly rising and can be

attributed to the main cluster of stars forming 1 Myr earlier in the Method II run

compared to the Method I runs. The Λmsr values in the Method II run appear to

be constrained between 1 and 2. There are not large fluctuations like those seen in
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Method I. This suggests that environments with more gas prevents or limits mass

segregation, however more work is needed in this area.

132



Run Time (Myr) Nclusters Nclusters > 40stars Min λmsr error Max Λmsr Error

MI Run I

0.0 16 12 0.77 0.09 1.23 0.14
1.0 12 6 1.19 0.10 1.91 0.21
2.0 8 4 1.06 0.10 2.19 0.27
3.0 4 3 1.17 0.16 2.33 0.23
4.0 5 3 1.10 0.16 4.76 0.63
5.0 2 1 N/A N/A 1.33 0.16
6.0 8 3 1.04 0.08 1.73 0.26
7.0 9 3 1.16 0.09 1.61 0.20
7.7 9 1 N/A N/A 1.76 0.27

MI Run II

0.0 16 12 0.83 0.08 1.25 0.17
1.0 12 6 1.18 0.11 1.89 0.24
2.0 9 5 1.00 0.08 1.77 0.20
3.0 4 4 1.10 0.10 1.77 0.19
4.0 7 4 1.08 0.15 2.83 0.31
5.0 3 2 1.07 0.12 1.35 0.13
6.0 9 4 0.91 0.07 1.30 0.17
7.0 8 2 1.27 0.16 1.33 0.14
7.7 7 1 N/A N/A 1.22 0.17

MI Run III

0.0 16 12 0.82 0.08 1.25 0.17
1.0 12 6 1.19 0.10 1.90 0.21
2.0 9 4 1.02 0.12 2.02 0.27
3.0 3 3 1.12 0.13 1.90 0.20
4.0 5 3 1.10 0.16 2.31 0.28
5.0 4 2 1.01 0.08 1.12 0.13
6.0 7 3 1.14 0.09 1.42 0.21
7.0 7 3 0.92 0.09 1.44 0.21
7.7 10 2 1.05 0.10 1.32 0.18

MI Run IV

0.0 16 12 0.80 0.08 1.23 0.15
1.0 11 6 1.17 0.10 1.88 0.21
2.0 12 4 1.01 0.11 1.96 0.28
3.0 3 3 1.24 0.15 2.08 0.23
4.0 6 4 1.07 0.10 3.93 0.48
5.0 1 1 N/A N/A 1.44 0.16
6.0 10 3 1.04 0.12 1.69 0.23
7.0 12 5 0.92 0.07 2.03 0.25
7.7 4 2 0.98 0.09 1.45 0.21

MI Run V

0.0 16 12 0.88 0.10 1.21 0.15
1.0 11 7 0.96 0.07 1.76 0.25
2.0 12 5 1.11 0.12 2.06 0.25
3.0 4 3 1.15 0.13 2.24 0.22
4.0 5 3 1.07 0.16 1.95 0.26
5.0 4 1 N/A N/A 1.07 0.15
6.0 10 2 1.34 0.12 1.88 0.30
7.0 10 4 0.89 0.08 1.37 0.16
7.7 8 1 N/A N/A 1.47 0.21

MI Run VI

0.0 16 12 0.81 0.08 1.22 0.16
1.0 14 6 1.19 0.10 1.90 0.18
2.0 10 4 1.14 0.11 1.95 0.24
3.0 5 3 1.03 0.12 3.06 0.30
4.0 4 3 1.36 0.23 2.86 0.36
5.0 3 1 N/A N/A 1.48 0.19
6.0 13 2 0.97 0.09 1.82 0.27
7.0 11 5 0.86 0.07 1.57 0.19
7.7 7 2 1.19 0.08 1.22 0.18

MII Run I
0.0 16 12 0.81 0.08 1.22 0.17
1.0 9 5 1.09 0.10 1.58 0.20
2.0 6 4 1.07 0.10 1.70 0.24
2.2 6 3 1.22 0.12 1.91 0.25

MII Run II

0.0 16 12 0.81 0.07 1.24 0.15
1.0 12 7 1.09 0.08 1.88 0.20
2.0 4 3 1.34 0.17 1.81 0.24
3.0 4 3 1.19 0.18 1.61 0.16
4.0 2 1 N/A N/A 1.18 0.18
4.6 1 1 N/A N/A 1.56 0.16

Table 4.2: Λmsr values for clusters picked out by DBSCAN.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.005 Myr

(d) t = 3.005 Myr (e) t = 4.005 Myr (f) t = 5.005 Myr

(g) t = 6.005 Myr (h) t = 7.005 Myr (i) t = 7.705 Myr

Figure 4.26: Clusters picked out by DBSCAN for Method I Run
I with most mass-segregated clusters in black.
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(a) t = 0.000 Myr (b) t = 1.000 Myr (c) t = 2.000 Myr

(d) t = 3.010 Myr (e) t = 4.010 Myr (f) t = 4.610 Myr

Figure 4.27: Clusters picked out by DBSCAN for Method II Run
II with most mass-segregated clusters in black.
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Figure 4.28: Max Λmsr over time for clusters identified by DB-
SCAN for all runs. Run details can be seen in Table 4.1.
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4.11 Further Comparisons

In this section, we make further comparisons of different quantities over time

between the runs. The purpose of comparing these quantities is to determine

if there are any additional differences between the runs (and hence the initial

conditions) that were not previously seen in the DBSCAN or dendrogram analysis.

It also serves as another way to quantify how the initial gas properties affect the

overall cluster evolution. A list of the specific quantities is as follows:

• Kinetic and potential energies of the gas

• Kinetic and potential energies of the stars

• Bound stellar and gas mass

• Lagrange radii of the stars and gas

• Average gas temperature over time

All of these quantities were tracked in the Method I runs. All of these quantities

except the bound stellar and gas mass were tracked in the Method II runs due to the

increased computational time required. Figure 4.29 shows the kinetic and potential

energies of the stars and gas as a function of time for Method I runs I-VI. Runs I,

II, and III all have similar gas kinetic energies at t = 0 Myr. This is expected as

these runs have the same initial gas velocity dispersion of 1.4 km/s. Runs IV and

V start with a higher gas kinetic energy and run VI has the greatest gas kinetic

energy initially. This too is expected as the kinetic energy scales with the initial

gas velocity dispersion (runs IV and V have initial gas velocity dispersions of 2
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km/s and run VI has an initial gas velocity dispersion of 5 km/s). There is a drop

in the gas kinetic energy across all runs between t = 0 Myr and t = 1 Myr with

run VI experiencing the most significant drop. We did not see any large differences

in the dendrograms between t = 0 Myr and t = 1 Myr which is consistent with

the gas having slow movement during this time interval. We noticed significant

changes in the gas structure becoming apparent at t = 2 Myr onwards which is

consistent with the observed rise in the gas kinetic energy from this point. It is

interesting to note that runs I and III begin with a lower gas kinetic energy but

end up with higher values than runs IV and V. Despite having starting with the

same initial gas velocity dispersion, run II deviates from runs I and III and only

experiences a slight increase in the gas kinetic energy over time. Run II used an

initial uniform sphere of gas while runs I and III used a gas distribution derived

from the Carina observations. This shows that the initial gas distribution has an

effect on the evolution of the gas kinetic energy over time. All the runs appear to

have the gas kinetic energies level off beyond t = 7 Myr which is in line with the

previously seen gas distributions becoming centrally concentrated and persisting.

If we consider the gravitational potential energy of the gas, we see that all the runs

begin with similar potentials except run II. All the runs except run II used a gas

distribution derived from the Carina observations and so this result is expected.

There is still some slight variation in the exact value at t = 0 Myr between these

runs which is due to the differences in the particle sets generated with the sampling

method. All the runs except run VI show a downward turn in the potential over

time which implies that the gas becomes more bound. Runs I and III show the

steepest decrease indicating that the gas is most bound in these runs. Compared to

runs IV and V, we see that a difference in the initial gas velocity dispersion (with
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the same initial gas distribution) affects the gas potential over time where the lower

dispersion value leads to a more tightly bound gas distribution. Run II shows that

gas initially distributed in a sphere with an initial velocity dispersion of 1.4 km/s

also tends to become more bound over time. Run VI shows an upward trend in

the potential indicating that the gas becomes less bound over time. This is in line

with the results from the dendrogram analysis which showed that substructures in

the gas did not persist as long as they did in runs I and III-V.

The kinetic energy of the stars over time appears similar between t = 0 Myr

and t = 4 Myr. Beyond t = 4 Myr, we start to see a spread in the kinetic energies

between the runs. This is interesting because we did not see any large significant

differences between the runs in the DBSCAN analysis. However, here we see that

the initial conditions of the gas do indeed affect the stellar properties over time.

The two runs for which this is most noticeable are runs II and VI. Comparing run

II to runs I and III shows that the initial uniform sphere of gas causes the kinetic

energy of the stars to dip between t = 4 Myr and t = 6 Myr when the initial gas

velocity dispersion is 1.4 km/s. Comparing run VI to runs I, III, IV and V shows

that increasing the initial gas velocity dispersion to 5 km/s also causes a dip in the

kinetic energy when the initial gas distribution is derived from the observations.

If we consider the gravitational potential energy of the stars over time, we

again see that the runs appear similar between t = 0 Myr and t = 4 Myr. Beyond

this, we again see a spread in the potential energies with runs II and VI being

the most noticeable. We also see a spread in the stellar kinetic energies beyond

t = 4 Myr with these same two runs being the most noticeable. The results

from the DBSCAN analysis showed that the star clusters merged together until
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t = 4 to t = 5 Myr when a predominant single cluster forms. We do not see

large differences in the stellar kinetic or potential energies between the runs until

t = 4 Myr which shows that the gas properties do not significantly affect the stars

until they merge together. Once they merge, the surrounding gas has a significant

effect. In runs II and VI, there were only regions of lower density gas distributed

somewhat spherically from t = 4 Myr onwards. Our simulations take interactions

between the stars and gas into account. Therefore the less dense gas results in less

interactions taking place which could slow the movement and prevent the stars

from reaching bound states similar to the other runs. Conversely, the other runs

have higher density gas distributed in a filamentary structure from t = 4 onwards

which results in more interactions with the stars causing the stellar kinetic energies

to be higher and the stellar potential energies to be lower. We also see that as the

initial gas velocity dispersion increases in the runs where the Carina observations

were used (runs I, IV, V and VI), the less bound the stars are between t = 4

Myr and t = 6 Myr. The dendrogram analysis showed that increasing the initial

velocity dispersion results in less dense regions of gas over time which ultimately

contributes to less interactions taking place between the stars and the gas. As

well, run II was the only run where the gas was initially distributed in a uniform

sphere. This run differs from the other runs in that it reaches its most bound state

(most negative potential energy and highest kinetic energy) at t ≈ 6.5 Myr while

the other runs reach this state at t = 6 Myr. Therefore, the spread seen in the

stellar kinetic and potential energies of the different runs from t = 4 Myr onwards

is attributed to the differing gas densities at this time which depends on the initial

gas velocity dispersion and the initial spatial distribution of the gas.
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Figure 4.30 shows the kinetic and potential energies of the stars and gas as

a function of time for both Method I and Method II runs. Initially, the gas

potential energy for the Method II runs is significantly lower (more bound) than

the Method I runs. This is expected due to the increased gas mass used in the

Method II runs. The gas potential energy decreases over time indicating significant

contraction in the gas cloud from t = 0 to t = 4.6 Myr. Contraction was observed

in Method I runs I-V although this occurred at a slower rate. Of all the runs,

Method I run VI was the only one to show an increase in the gas potential energy

over time (becoming less bound) which is attributed to the relatively high initial

gas velocity dispersion (5 km/s). The gas kinetic energy of the Method II runs

increases drastically over time which is consistent with the significant changes in

the gas structure seen in the dendrogram analysis. In all the Method I runs, the gas

kinetic energy levels off after the gas distribution becomes centrally concentrated.

As previously mentioned, the Method II runs were evolved to a maximum of 4.6

Myr due to computational constraints (specifically the wall clock time to evolve

the model and generate the output files, which contain the particle properties,

at regular timesteps was increased to approximately 10 hours from 3-4 hours).

However, it would be interesting to see if and when a centrally concentrated gas

distribution forms in the Method II runs which would require further evolution of

the system.

The initial gas conditions of the Method II runs results in significantly different

trends in the potential and kinetic energies of the stellar distribution. The differ-

ence between the Method I and Method II runs starts to become apparent after

t = 1.5 Myr. After this time, the stellar kinetic energy increases and the stellar

141



M.Sc – A.Mathews; McMaster University – Physics & Astronomy

potential energy decreases compared to the Method I runs. This shows that the

stellar distribution in the Method II runs becomes more bound over time compared

to the Method I runs. Again, this shows that increased gas densities result in more

interactions between the stars and gas resulting in higher stellar kinetic energies

and lower stellar potential energies. To summarize, the gas distribution in the

Method II run becomes more bound in a shorter period of time compared to the

Method I runs as evidenced by the faster decrease in the value of the gas potential

energy (more negative gas potential energy is more bound). This increased gas

potential works to contract the stellar distribution in shorter amount of time as

seen in the decrease in the value of the stellar potential energy.

Figure 4.29: Kinetic and potential energies of the stars and gas
over time for Method I runs I-VI.
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Figure 4.30: Kinetic and potential energies of the stars and gas
over time for Method I and Method II runs.

The bound stellar and gas mass over time can be seen in Figure 4.31. The bound

gas mass at t = 0 is similar for all runs except run VI. The slight differences in

runs I-V are due to the different initial gas velocity dispersions and the initial

gas distribution. Comparing runs I, III, IV and V, shows that an increase in the

gas velocity dispersion (from 1.4 km/s to 2 km/s) results in a lower total bound

gas mass. Increasing the gas velocity dispersion to 5 km/s (run VI) drastically

decreases the total bound mass to about half. Between t = 0 Myr and t = 1.5

Myr, all runs show an increase in the bound gas mass which corresponds to the

sub-cluster contraction seen in the XY and XZ images in the previous sections.
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From t = 2 Myr onwards, the bound mass decreases with a prominent decrease

occurring at around t = 6 Myr to t = 7 Myr for all the runs. It is also during the

time interval that the stellar potential energy reaches its lowest (most negative)

point indicating that the stellar distribution is the most bound. The bound stellar

mass across all the runs shows a sharp decrease around t = 3 Myr to t = 4 Myr.

The results from the DBSCAN analysis show that a few clusters are picked out

that are in the process of merging at this time. There is also an increase in the

stellar kinetic energy during this time interval as the merging occurs which leads

to this decrease in the bound stellar mass. Beyond this, the bound stellar mass

fluctuates without any distinct pattern between the runs.

Figure 4.31: LEFT: Bound gas mass over time for Method I runs
I-VI. RIGHT: Bound stellar mass over time for Method I runs I-VI.

Figure 4.32 shows the Lagrangian radii of the stars and gas over time. These

radii describe a sphere centered on the stellar or gas distribution which contains

a certain amount of mass. For example the 10% Lagrangian radius describes the

radius of a sphere which contains 10% of the total mass in question. The 10%

Lagrangian radius of the gas is initially the same for all Method I runs except for

run II. This is expected as the Lagrangian radii depends on the spatial distribution
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of the gas and run II is the only run where the gas is distributed is a significantly

different manner (in a uniform sphere). Slight variations between the value can be

seen in the other runs with Method I and this is attributed to the different particle

sets created using the sampling method. Over time, all runs show a decrease in

the 10% Lagrangian radius of the gas except for run VI. This is interesting as it

shows that the gas distribution does not become more concentrated in the center

than it was initially. By t = 7.7 Myr, run VI has the highest 10% Lagrangian

radius of the gas. This shows that a greater initial gas velocity dispersion does not

significantly affect the concentration of the gas near the center of the distribution.

The 10% Lagrangian radius of the gas for the Method II runs is initially greater

than most of the Method I runs except for Method I run II. This is expected as the

gas distribution is more similar to Method I runs I, III-VI but with increased gas

mass. Over time, the 10% Lagrangian radius of the gas for the Method II runs is

seen to decrease significantly in a shorter period of time compared to the Method I

runs with fluctuations occurring between t = 2.5 and t = 4.6 Myr. The significant

decrease indicates a greater contraction of the gas which results in the higher

densities observed in the dendrogram analysis. Considering the 50% Lagrangian

radius, or the half-mass radius, Method I run VI shows a significant increase in this

value with time and it tends to decrease with the other runs. Comparing Method

I runs I and III to runs IV and V shows that an increase in the initial gas velocity

dispersion from 1.4 km/s to 2 km/s slows the decrease of the half-mass radius.

The significant increase in the gas half-mass radius value for Method I run VI

physically corresponds to the dispersal or expansion of the gas distribution. This

is interesting as this expansion is not able to be clearly seen in the dendrogram

analysis. Method I run II used gas initially in a uniform sphere with a gas velocity
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dispersion of 1.4 km/s. The gas half-mass radius for this run is different than

the other runs at t = 0 but decreases over time similar to runs I, III, IV and V.

The Method II runs begin with a 50% Lagrangian radius greater than most of the

Method I runs except Method I run II and this value decreases significantly from

t = 2 Myr onwards which again is indicative of increased contraction in the gas

cloud over a short period of time compared to the Method I runs.

The stellar 10% Lagrangian radius appears to be similar across all the Method

I runs. Initially, there is a significant decrease between t = 0 Myr and t = 1

Myr which corresponds to the initial sub-cluster contraction. After this point, the

clusters expand slightly and then start to merge together which corresponds to the

increase in the 10% Lagrangian radius value at around t = 1.5 Myr followed by the

slow decrease over time. The Method II runs follow the same trend until t = 2.5

Myr when the stellar 10% Lagrangian radius begins to decrease more significantly

than the other runs. Overall, the stellar half-mass radius (50% Lagrangian radius)

value across all the Method I runs is similar over time with some separation at

t = 5 Myr onwards seen in Method I runs II and VI. As previously mentioned,

the gas distributions appear to have an effect on the stars after they have merged

together and at t = 5 Myr, there is one predominant single cluster of stars. Method

I Runs II and VI have regions of lower density gas compared to the other runs

at this time. As stated before, this results in less significant interactions between

the gas and the stars causing the stellar potential energies to be less bound (more

positive) for these runs. This corresponds to a increase in the distances between

the stars seen as an increase in the half-mass radius. The stellar half-mass radius

for the Method II runs begins to significantly deviate from the other runs at t = 1.5
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Myr. At this point the stellar half-mass radius decreases more rapidly compared

to the Method I runs. At t = 4.6 Myr, there is a sharp increase which is due to

some slight cluster expansion. The differences between the Method I and Method

II runs demonstrate the effect of differing initial gas conditions as the increased gas

mass causes earlier and increased contraction in both the stars and gas. Again, in

our simulations we only focused on the region where the stars and gas overlap. If

the other surrounding gas were to be included as well, this may have an effect on

the collapse of the gas and stellar distributions. For example, the surrounding gas

will likely result in pressure forces that keep the overall gas cloud from collapsing

as quickly resulting in a slower decrease in the half-mass radius of the gas which

would be more realistic.

The average gas temperatures for all the runs can be seen in Figure 4.33. Among

the Method I runs, run VI is seen to have a drastic increase in the average gas

temperature until about t = 1.5 Myr which then decreases beyond that while the

other runs show a somewhat steady increase. The Method II runs initially show

an increase similar to the Method I runs except run VI. After roughly t = 2 Myr,

the temperature of the Method II run drastically increases compared to the other

runs. The temperature values themselves seem quite high and there appears to

be a dependence on the initial velocity dispersion and initial gas mass. This is

certainly an area that can be further explored in the future.
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Figure 4.32: LEFT: Gas Lagrange radii for Method I and Method
II runs. RIGHT: Stellar Lagrange radii for Method I and Method
II runs.

Figure 4.33: LEFT: Average gas temperature for Method I runs.
RIGHT: Average gas temperature for Method I and Method II runs.
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Chapter 5

Discussion and Conclusion

5.1 Incorporation of Observational Gas Data

We have successfully developed a technique to incorporate observational gas col-

umn density data into a star cluster simulation. We developed two versions where

the first randomly samples the gas distribution and the second assigns at least

one particle to represent each pixel. When we applied our techniques to a simu-

lated data set as a test case, we found that Method II was better able to capture

the spatial density distribution in 2D. We also explored different Z depth (cloud

depth) estimates and found that using distance transforms of the high and low

density regions gave rise to filamentary structures. This is more realistic than a

constant cloud depth, however more work needs to be done in order to improve its

semblance to a gas cloud. For example, the current technique forces the filaments

to be symmetric which is not necessarily the case in real clouds. In our simula-

tions, we paired Method I with a constant cloud depth of 20 parsecs and we paired

Method II with a varied cloud depth determined using the distance transforms.
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5.2 Effect of Initial Gas Properties on Star Clus-

ter Evolution

We used stellar positions derived from the MYSTiX project and our gas particle

creation techniques to model the evolution of the Carina region. We explored

different initial gas velocity dispersions as well as gas initially distributed in a

uniform sphere. We found that in all of our Method I runs, the stellar sub-

clusters tended to merge together in a similar manner to form one large main

cluster of stars. This merging process was not significantly affected by the initial

properties of the gas. After the main cluster of stars was formed, the effects of the

surrounding gas became noticeable. For example, in runs where the main cluster

was surrounded by less dense gas, the kinetic energy of the stars was observe to be

less compared to runs where the main cluster was surrounded by higher density

gas. It is interesting that the differences between the initial gas properties only

became apparent after the large main cluster was formed. As well, we explored

three initial gas velocity dispersions of 1.4, 2 and 5 km/s. We found that the greater

the initial gas velocity dispersion, the less likely it was for regions of dense gas to

persist. This ultimately affects future star formation as the density threshold is

not reached. Increasing the initial gas velocity dispersion also resulted in the gas

distribution becoming more spherical in a shorter amount of time which shows

that filamentary structures and clumps in the gas are more likely to remain with

low gas velocity dispersions.

We performed two runs using Method II with an initial gas velocity dispersion

of 1.4 km/s. However, due to the increased computation time from the significant
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increase in gas particles, we were only able to evolve the system to 4.6 Myr. Com-

pared to the Method I runs, we found differences in terms of the the filamentary

structures in the gas. Regions of higher gas densities were also seen using Method

II compared to Method I which has implications when considering future sites of

star-formation.

We analyzed the stellar distribution over time using DBSCAN (a clustering

algorithm) and tracked the mass segregation of the identified clusters over time by

calculating Λmsr values. We found that there in general there were no significant

differences between the runs except at t = 4 Myr. This is right before the clusters

merge together in the Method I runs and where the clusters merge in the Method II

run. The Method II run showed that the clusters merge to form one main cluster

approximately 1 Myr earlier than the Method I run. As well, the main cluster

that forms with the Method II run is not at the same location as the main cluster

that forms in the Method I runs. The Method II run began with a significantly

greater initial gas mass which is more realistic. Further investigations of the Carina

region could be done with Method II while varying other parameters (e.g initial

gas velocity dispersion).

5.3 Future Work

In the future, our models can made increasingly realistic by incorporating stellar

feedback processes. We would then be able to study their effects on the surrounding

gas initially derived from observations. Our models can also be evolved for a

longer duration of time with massive stars included to investigate the effects from
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supernovae feedback. In addition, a treatment of binaries either those that are

primordial or form dynamically would be interesting to consider as well. We can

also incorporate more observational gas data as it becomes available. For example,

we could include better measurements of the gas velocity dispersion and possibly

extinction measurements as well to estimate the cloud depth. In terms of analyzing

our simulations, instead of only using a density threshold to infer star formation,

we could also determine if certain dense regions end up bound. We could also

incorporate star formation in our simulations by including sink particles. As well,

we could improve our analysis of the gas distributions by using filament finder

codes in addition to constructing dendrograms. Filament finder codes typically

find thinner dense regions which could then be used to determine localized sites

of potential star formation.

Both of our gas particle creation techniques were based on randomly sampling

to some extent. The first version relied on random sampling of the original gas

density distribution to create particles. The second originally assigned one particle

to represent each pixel and would introduce more particles if the mass of the

particle was greater than 0.5M�. The positions in X and Y of these particles were

determined by drawing from the ranges of the pixels in the X and Y dimensions. We

could modify the particle distribution to resemble a glass distribution to observe

any effect that may have.

Going forward, the goal would be to simulate other star-forming regions in

the MYSTiX catalogue. The gas particle creation techniques we have developed

will allow us to accurately simulate such regions furthering our understanding of

star-formation, the loss of stellar substructure and mass segregation over time.
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As our models become increasingly complex with the inclusion of stellar feedback

processes, we will also be able to investigate the effects of gas expulsion in realistic

star cluster environments. This would allow us to probe the process by which

young embedded clusters emerge from their natal molecular cloud and the extent

to which they will be bound in the context of specific star-forming regions. Being

able to incorporate observational gas distributions ensures that we consider the

history of such regions and their complex gas morphologies as we evolve these

systems forward in time.
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