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Abstract
Accurate prediction of tsunami waves requires complete boundary and initial con-
dition data, coupled with the appropriate mathematical model. However, neces-
sary data is often missing or inaccurate, and may not have sufficient resolution
to capture the dynamics of such nonlinear waves accurately. In this thesis we
demonstrate that variational data assimilation for the continuous shallow water
equations (SWE) is a feasible approach for recovering both initial conditions and
bathymetry data from sparse observations. Using a Sadourny finite-difference finite
volume discretisation for our numerical implementation, we show that convergence
to true initial conditions can be achieved for sparse observations arranged in mul-
tiple configurations, for both isotropic and anisotropic initial conditions, and with
realistic bathymetry data in two dimensions. We demonstrate that for the 1-D
SWE, convergence to exact bathymetry is improved by including a low-pass filter
in the data assimilation algorithm designed to remove scale-scale noise, and with
a larger number of observations. A necessary condition for a relative L2 error less
than 10% in bathymetry reconstruction is that the amplitude of the initial condi-
tions be less than 1% of the bathymetry height. We perform Second Order Adjoint
Sensitivity Analysis and Global Sensitivity Analysis to comprehensively assess the
sensitivity of the surface wave to errors in the bathymetry and perturbations in
the observations. By demonstrating low sensitivity of the surface wave to the re-
construction error, we found that reconstructing the bathymetry with a relative
error of about 10% is sufficiently accurate for surface wave modelling in most cases.
These idealised results with simplified 2-D and 1-D geometry are intended to be
a first step towards more physically realistic settings, and can be used in tsunami
modelling to (i) maximise accuracy of tsunami prediction through sufficiently ac-
curate reconstruction of the necessary data, (ii) attain a priori knowledge of how
different bathymetry and initial conditions can affect the surface wave error, and
(iii) provide insight on how these can be mitigated through optimal configuration
of the observations.
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Chapter 1

Introduction

The purpose of tsunami modelling is to accurately predict the wave height and
velocity of the tsunami at coastal areas, given observations of the wave height at
discrete locations, and the available bathymetry data. Tsunamis are series of waves
caused by large-scale disturbances in the ocean, such as seismic activity. They are
characterised by very long wavelengths relative to the ocean depth (sometimes
hundreds of kilometres), categorising them as shallow-water waves. However, the
perturbation of the free surface in the deep ocean can be less than a metre, ren-
dering it virtually imperceptible away from the shore. The wave speed c is directly
proportional to the square root of the water depth, and with an average deep-
ocean depth of 4000m, tsunamis can travel faster than 700km/h, and are capable
of generating atmospheric gravity waves that can travel into the upper atmosphere
[24]. Consequently, variations in the sea floor topography (i.e. bathymetry) can
significantly alter the wave speed, direction, and shape, with wide-reaching effects.
As the wave approaches shallower regions where the depth decreases, the speed
decreases as well. The energy flux of a tsunami remains relatively constant, there-
fore a decrease in speed results in an increase in the wave height at coastlines.
Coupled with the momentum of the wave, this can have devastating effects.

The 2004 Indian ocean tsunami and the 2011 Japanese tsunami have high-
lighted the need for more effective forecasting models that can be used to create
and implement evacuation and emergency protocols effectively in a limited amount
of time. However, existing methods are challenged by the limitations of the nec-
essary sets of data [35]. Tsunami forecasts rely on data collected via Deep-Ocean
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Assessment & Reporting of Tsunami (DART) buoys [18], initially developed by
the National Oceanic and Atmospheric Administration (NOAA), and now used
globally to measure height changes in oceanic water columns. Due to their high
operational investment, the DART buoy network is limited to approximately 60
systems, spread over the entire Pacific Ocean and located mostly near coastlines.
Other observation sources like ocean bottom seismometer (OBS) pressure gauges,
are sparsely distributed in the Indian ocean [62]. Consequently, information on the
initial conditions of tsunamis is likely to be incomplete or inaccurate. Similarly,
available data of ocean floor topography (i.e. bathymetry) is often of uneven qual-
ity and low-resolution. Databases like the ETOPO2 global relief model [13] give a
resolution of 2 arc-minutes of the earth’s surface, integrating land topography and
ocean bathymetry from multiple sources, collected using various methods. These
include measurements of variations in the gravitational field, sonar, satellite data,
data from shipping vessels, and using video data to interpolate the shape of the
sea floor, all of which are subject to inaccuracies and can be inconsistent.

An alternative theoretical approach uses surface wave propagation to extrap-
olate bathymetry [44, 21, 37]. The latter is classically known as the "inverse
problem", and is the subject of this thesis. Research in this area has focused pre-
dominantly on the refinement of algorithms and methods used to find an inversion
formula for the bathymetry. These include Monte Carlo methods, discrete least-
squares problems, and least-squares problems for functionals [59]. The general con-
sensus in existing literature is that the inversion problem for finding bathymetry
using surface wave data is ill-posed [37], and small amounts of noise can yield er-
roneous results. However, regularisation methods are used to a successful degree,
with relative errors between resultant and exact bathymetry reaching lower orders
of magnitude than previously achieved.

The primary objective of this study is to develop and test variational data assim-
ilation techniques to improve estimates of the initial conditions and bathymetry.
In this section we provide a concise overview of the mathematical model and un-
derlying assumptions, and the principles of data assimilation. We describe the
challenges involved in accurate tsunami modelling, and summarise the analyses
and results provided in each chapter to address them in an idealised model.
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Our model for tsunami wave propagation is based on the one- and two-dimensional
non-dispersive shallow water equations (SWE). These are a coupled system of
partial differential equations (PDEs) for travelling waves, governing fluid flow
in oceans and coastal regions. Tsunami waves can also be modelled using the
Boussinesq water wave approximation. While both shallow water and Boussinesq
approximations are widely used for analysing solitary wave propagation, studies
such as Dongfang et al [10] have compared the two processes, finding that in cer-
tain run up processes the two approximations are identical, and that Boussinesq
approximation is most often used to model near shore hydrodynamic behaviour.
However, our analysis addresses the optimal configuration of deep-ocean obser-
vations required to accurately reconstruct initial conditions and bathymetry and
the necessary and/or sufficient conditions for convergence, before coastal dynamics
are observed. Therefore, we do not take near-shore behaviour into account in our
analysis.

Additionally, we neglect Coriolis effects, bottom friction, and kinematic viscos-
ity, and for the bathymetry assimilation we only consider the 1-D shallow water
equations. This idealised configuration with simplified 2-D and 1-D geometry is
intended to be a first step for more complex analyses. We aim to validate the
basic approach by demonstrating the feasibility of variationally data assimilation
for tsunami wave prediction, and investigate fundamental questions for the simpler
case first before considering more physically realistic settings.

The general characteristic of shallow water flow is that the length scale of hori-
zontal motion is much larger than the fluid depth (λ� H), and the wave pertur-
bation from the free surface is much less than the average fluid depth (η � H). A
representation of the fluid column is given in figure 1.1. The SWE are derived from
the three dimensional Navier-Stokes equations for fluid flow, which are themselves
derived from the equations for conservation of mass and momentum [9].
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Figure 1.1: A single fluid layer, where the total height of the water
column is h = H+η−β. H is the average depth, η is the perturba-
tion of the free surface, and β is the bathymetry. Bathymetry can
be time-dependent (i.e. sudden shifts of the sea floor due to seis-
mic activity), however in this study we consider static bathymetry.
Shallow water approximations require that the surface wave length
is much larger than the depth (λ >> H), and that the free surface
perturbation is much less than the depth (η << H).

We assume hydrostatic balance (∂p/∂z = ρg) to integrate the Navier-Stokes
equations over depth. Eliminating the vertical dimension gives us the incompress-
ible, nonlinear 2-D shallow water equations (where we assume that the x− z and
y − z velocities are irrotational),


∂η

∂t
+ ∂

∂x

(
(η +H − β)u

)
+ ∂

∂y

(
(η +H − β)v

)
= 0,

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ g

∂η

∂x
= 0,

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ g

∂η

∂y
= 0,

η(x, y, 0) = φ(x, y),

u(x, y, 0) = v(x, y, 0) = 0,

(1.0.1a)

(1.0.1b)

(1.0.1c)

(1.0.1d)

(1.0.1e)

where:
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• u is the velocity in the x-direction (zonal velocity).

• v is the velocity in the y-direction (meridional velocity).

• η(x, y, t)+H−β(x, y) is the fluid height, where η(x, t) is the perturbation of
the free surface, H is the average depth, and β(x, y) is the time-independent
bathymetry. Note that in the SWE the bathymetry enters as a parameter,
and there is no explicit bottom boundary condition.

• g is the gravitational constant.

• φ(x, y) is the initial condition for the perturbation of the free surface η.

• We assume periodic boundary conditions for u, v, η and β in our rectangular
domain Ω = [−L L]× [−L L].

The one-dimensional SWE (as considered for the bathymetry assimilation) are



∂η

∂t
+ ∂

∂x

(
(H + η − β)u

)
= 0,

∂u

∂t
+ ∂

∂x

(1
2u

2 + gη
)

= 0,

η(x, 0) = φ(x),

u(x, 0) = 0,

(1.0.2a)

(1.0.2b)

(1.0.2c)

(1.0.2d)

where once again we have assumed periodicity at the domain boundaries x =
−L and x = L.

In the past, numerical simulation of tsunami waves was often done indepen-
dently of the data used to validate the model prediction. There are shortcomings
in this approach. Numerical simulations are subject to inaccuracies and approxi-
mation errors, and the observational data often suffers from technical, budgetary
and physical restrictions [35, 62]. These include noisy measurements subject to
errors, or sparse data at low resolution. Consequently, the logical solution is to
combine these processes, using observed data as a correction for the state vari-
ables. Data Assimilation is the study of finding the optimal way to integrate
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observed data into a computational model in order to achieve the most accurate
representation of a dynamical system possible. However, optimal reconstruction of
missing or inaccurate data can be operationally challenging. Physical systems can
be modelled by systems of PDEs, therefore if we have enough initial and boundary
data, we can solve this system and accurately forecast the state at a given time.
In reality the information available is often orders of magnitude smaller than the
complete boundary or initial data required to fully solve the system. Natural
systems like ocean currents, waves or climate can have numerous parameters and
variables that cannot always be quantified at all needed points. Additionally, they
are often nonlinear, and the processing power needed to solve a system of high
dimensionality is often not available.

Methodologies for assimilating observations into a model such that the observed
data remains consistent include variational methods, or statistical techniques like
Kalman filtering. Kalman filters recursively estimate the joint probability dis-
tribution of a model and a set of measurements, while variational methods itera-
tively minimise a cost function representing errors between the model and observa-
tions. The variational approach is routinely used in Numerical Weather Prediction
(NWP), in an algorithm called 4D-VAR (four dimensional variational data assim-
ilation), that estimates parameters and initial conditions in weather prediction
models [2].

Kalman filtering techniques have also been used extensively for both parame-
ter estimation and initial condition reconstruction in ocean models. Mayo et al.
[34] use variants of an ensemble Kalman filter EnKF (where error statistics of
the model are represented by an ensemble of forecasted model states) to estimate
bottom stress terms in the Advanced Circulation (ADCIRC) coastal model using
observations of sea surface elevations. They demonstrate accurate estimation of
friction parameters in lagoons and estuaries, and highlight the influence of the bot-
tom surface roughness, motivating the need for high-resolution bathymetry. Ghor-
banidehno et al. [17] also use Kalman filtering to estimate near shore bathymetry,
using a novel compressed-state Kalman Filter to recover both constant and tempo-
rally evolving bathymetry profiles, and demonstrate superior accuracy compared
to ensemble-based methods with comparable computational costs. Statistical data
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assimilation has also been used in tsunami modelling efforts. Yang et al. [65] use
Optimal Interpolation (OI), a variant of the EnKF to reconstruct real-time tsunami
wave fields using measurements of pressure changes on the ocean floor. However,
accurate prediction in real time using Kalman filtering techniques can be challeng-
ing as forecast accuracy depends on the choice of initial error covariance matrices,
and often the error statistics for true state variables are not available, nor easily
estimated. Additionally, the ability to resolve details of covariance structure is pro-
portional to the ensemble size, and larger ensembles may be too computationally
expensive for predictions in real time.

Nevertheless, comparison between Kalman filtering and variational data assim-
ilation (given a perfect model and same observations and domain), determined
that performance was comparatively equivalent for both [14, 30]. In this study we
implement a variational data assimilation scheme, using optimal control theory to
minimise the error between the state variables and observations. The novelty of
our variational approach is that we consider the infinite dimensional case, unlike
previous works on 4D-VAR for the SWE like Zou et al. [66] and Maeda et al. [33],
and Kalman filtering techniques. Consequently, our data assimilation algorithm is
independent of the discretisation used in its numerical implementation.

Additionally, a requirement for variational assimilation is that the system (1.0.1)
can be solved in forward time from some initial time t0 till a final time tT , given
an initial ‘guess’ from the set of admissible values of the initial condition, or
bathymetry. This should yield solutions of the state at measurement points, that
can be compared with observations. For nonlinear problems without analytical
solutions, the efficacy of this depends on the choice of numerical scheme used to
solve the system, introducing a further consideration for successful implementa-
tion. Such schemes are subject to stability and order of accuracy issues, which
need to be accounted for.

The problem can be summarised thus: what is the optimal way to integrate the
information we have access to? In this study, we attempt to find a solution, by (i)
finding the minimum information in the form of observations necessary to bring
our model output as close to observed values as possible, without exacerbating
or amplifying small errors in measurement, in a realistic amount of time, and

7

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

(ii) quantifying the effect of the reconstruction error on the free surface wave,
and understanding how variations in the algorithm parameters and observations
impact accuracy of free surface wave prediction.

The four main topics and contributions of the thesis are summarised briefly
below.

1. Chapter 2: We implement a variational data assimilation scheme for the 2-
D shallow water equations (SWE), where observations of sea surface height
are used to reconstruct initial conditions. Our approach is focused on a
qualitative investigation of the applicability to 2-D, of results from the 1-D
analysis in Kevlahan et al. [27], regarding sufficient conditions for conver-
gence. We present a comparison of observation configurations arranged in
straight lines, in a grid array, or along concentric circles, where the domain is
a rectangular grid with initial conditions located approximately at the origin.
The analyses are divided into the following three topics.

(a) Assess the optimal number and configuration of observation points such
that convergence to the true initial conditions is achieved in the data
assimilation for the 2-D SWE.

(b) Investigate whether the sufficient conditions for convergence in Kevla-
han et al. [27] for the 1-D case extends to the 2-D data assimilation.

(c) Implement the data assimilation algorithm for a relatively realistic tsunami
forecasting model, using non-flat bathymetry. Our final analysis uses
realistic bathymetry data from the ETOPO2 global topographical relief
database and the optimal observation configurations identified in this
study.

2. Chapter 3: We implement variational data assimilation for the 1-D SWE
for the reconstruction of bathymetry for an idealised case, addressing two
complementary questions:

(a) How accurately can bathymetry data be reconstructed from surface
wave measurements, and what determines the accuracy?
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(b) How accurate does the bathymetry data need to be to model sea surface
waves to given accuracy?

We quantify key relationships between the initial condition and bathymetry
amplitudes relative to the average fluid depth. We also analyse the effect
of number of observations on assimilation convergence. We implement a
Sobolev gradient smoothing technique (effectively a low-pass filter) within
our optimization scheme and illustrate its ability to reduce small-scale noise
present in the bathymetry reconstruction. We then investigate the conse-
quences of error in the bathymetry data on the resulting surface wave by
observing trends in the surface wave propagation error, as the amplitude
of the initial condition, amplitude of the bathymetry, and the number of
observation points is varied.

3. Chapter 4: We use second order adjoint methods outlined in Shutyaev
et al. [53] and Shutyaev et al. [52], to derive the sensitivity of the surface
wave error produced by the reconstructed bathymetry, to perturbations in
observations for (i) the data assimilation scheme for initial conditions out-
lined in [27], and (ii) the data assimilation scheme for bathymetry given in
Chapter 3. We do this by analytically deriving the Hessian of the cost func-
tion minimised in the data assimilation, and take advantage of its properties
to derive expressions for the sensitivity of the data assimilation to pertur-
bations in the observations. We present a numerical implementation of the
algorithm for the bathymetry data assimilation. The focus is on the latter
instead of the initial condition reconstruction, as our main objective is to use
the present analysis to further investigate the qualitative results observed in
Chapter 3. Specifically, these are (i) the link between low sensitivity and the
accuracy of the data assimilation scheme, and (ii) the effect of perturbations
in the model parameters and the observations on the sensitivity. Ultimately
we wish to see whether the conclusions from the bathymetry reconstruction
in Chapter 3 can be better understood using the results of the sensitivity
analysis in this chapter.

4. Chapter 5: While we discuss the impact of number of observations and
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spacing in detail in Chapter 4, we wish to gain more insight on how the posi-
tion of the bathymetry relative to observation points effects the bathymetry
reconstruction error and the surface wave response. We also wish to deter-
mine the sensitivity of these to model parameters. In this chapter we use
Global Sensitivity Analysis (GSA) to derive sensitivity indices quantifying
the influence of (i) bathymetry position relative to the observations, and
(ii) the amplitudes of the initial condition and bathymetry, on the error in
bathymetry reconstruction and the surface wave. We focus our analysis on
a localised surface wave propagating over a compact bathymetry. This work
is motivated by the observation in Chapter 3 that there is low sensitivity of
surface waves to noise in bathymetry reconstruction. Using variance-based
and density-based methods, we quantify and subsequently rank the influence
of these input factors on the bathymetry and surface wave errors respectively.

We conclude in Chapter 6 with a summary of the main results of the thesis,
and discuss their contribution to current research, and considerations for future
work.

The key contributions of this thesis include the derivation and implementa-
tion of a variational data assimilation algorithm for the infinite-dimensional SWE,
where we demonstrate that variational assimilation is a feasible approach for re-
covering both initial condition and bathymetry data from sparse observations.
We show that convergence can be achieved for sparse observations arranged in
multiple configurations, for both isotropic and anisotropic initial conditions, and
with realistic bathymetry data in two dimensions. We demonstrate that conver-
gence is improved by including a low-pass filter in the data assimilation algorithm,
designed to remove scale-scale noise. We highlight necessary and/or sufficient con-
ditions on the observation operator and model parameters for convergence to the
true bathymetry, and comprehensively assess the sensitivity of the surface wave
to errors in the bathymetry and perturbations to the observations. These results
are a first step towards determining criteria for sufficient convergence of optimally
reconstructed bathymetry such that we can model tsunami waves to given accu-
racy, and highlight the optimal configurations of sparse observation facilitating
convergence. These insights can subsequently be used to improve future forecasts
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of tsunamis.
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Chapter 2

Data Assimilation on the 2-D
SWE for the reconstruction of
initial conditions

2.1 Introduction

In this study we formulate a variational data assimilation scheme for the 2-D shal-
low water equations (SWE), where observations of sea surface height are used to
reconstruct missing or noisy initial conditions data. Compared to similar analy-
ses for the 1-D SWE in [27], the 2-D SWE system has additional features that
increase the complexity of the analyses, such as characteristic curves of the PDE
that are non-linear, or 2-D bathymetry features. Additionally, there is an increase
in the degrees of freedom for the observation operator, which makes finding opti-
mal configurations of observations more difficult. The 2-D SWE system includes
an additional conservation of momentum equation in the horizontal y-direction.
The state vector is subsequently (η u v)T , and the full system is given in (2.2.1).

Our goal is to determine the necessary and/or sufficient requirements for the
observation network such that the reconstruction error for the initial conditions is
minimised. In practice, Zou et al. [66] have demonstrated that the discretised 2-D
SWE are observable even with measurements of only one of the three variables
η, u, v. However, existing data assimilation methods have been applied mostly
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for tsunami forecasts in North America and Japan where relatively large observa-
tion networks exist [62]. Primary sources of observations include the Deep-ocean
Assessment and Reporting of Tsunamis (DART) buoy system, consisting of a bot-
tom pressure recorder residing on the ocean floor which transmits data to a surface
buoy. The data is then relayed to shore via NOAA’s Geostationary Operational
Environmental Satellite (GOES) [18]. The large investment required for such ap-
paratus limits the feasibility of a dense network, and currently the global network
consists of approximately 60 systems. Other observations used for tsunami de-
tection and reporting include ocean bottom seismometer (OBS) pressure gauges,
however these are sparsely distributed in the Indian ocean [62].

Existing data assimilation schemes are able to utilise multiple sources and tech-
niques for assimilating off-shore observations. Maeda et al. [33] assimilated real-
time data from an ocean bottom network of tsunameters to simulate the wave
field directly in real time instead of approximating initial conditions, and thus
mitigating the uncertainties of modelling the seismic source. Wang et al. [62]
used interpolation of observed waveforms to create virtual observational data, and
demonstrated the success of the assimilation scheme when applied to forecasting
simulations of the 2004 Indian ocean tsunami.

The purpose of the current study is not to offer alternative methodologies for
simulating observational data or modified assimilation techniques. Instead, we
present an analysis of the observation operator aimed at finding conditions on the
observation operator necessary to achieve accurate reconstruction of the initial
data. We have already proven sufficient conditions for optimal reconstruction of
the true initial conditions using sparse observations for the 1-D SWE in [27]. Our
objective was to determine the optimal number and locations of wave height mea-
surements, such that that the optimally reconstructed initial conditions obtained
via data assimilation converged to the true form. This was a first step in under-
standing observability conditions for the SWE. In order to extend the analysis
to more realistic dynamics in tsunami models, here we implement an analogous
scheme on the 2-D SWE system, and investigate whether the key results of our
previous study extend to the more complex case with full dimensionality.

Due to the sparsity of observations in tsunami models, our aim for the 2-D
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case is to find the minimum information, in the form of observations of surface
wave height, required for convergence to the true initial conditions. The focus on
observation configuration differentiates the current work from existing literature
on data assimilation for the 2-D SWE like Zou et al. [66], as they do not analyse the
choice of the observation configuration, and focus instead on the minimum number
of observational fields. Additionally, while they derive a variational scheme for the
discrete 2-D SWE system, a novelty of our approach is that we consider the infinite
dimensional case, unlike previous works on 4D-VAR. Our purpose in this chapter
is to extend the 1-D data assimilation scheme derived in [27] to 2-D. Subsequently,
we investigate whether the conditions for convergence observed for the 1-D case,
also hold for the more complex 2-D system. We recall that for the 1-D assimilation,
optimal convergence to the true initial conditions occurs when at least one pair
of observation points are spaced more closely than half the effective minimum
wavelength of the energy spectrum of the initial conditions.

In the 1-D case we were able to exploit the fact that the linear 1-D SWE
system can be formulated as the 1-D wave equation, and subsequently we used
its analytic properties to derive an exact solution for the adjoint system solved in
the variational scheme. This solution was used to prove sufficient conditions for
convergence to the true initial conditions. However, this method fails to extend
to the 2-D case, as the analytical solution to the adjoint system is not easily
found. Existing works, such as Iacono [25] on analytical solutions of the 2-D SWE,
involve drastic simplifications of the equilibrium problem. Such simplifications
would not help us find configurations of observation points that are effective in
tsunami models.

Therefore, our approach is focused on a qualitative investigation of the appli-
cability of results from the 1-D analysis for the 2-D data assimilation, and on a
comparison of different observation configurations. We begin in section 2.2 by ex-
tending the data assimilation to 2-D, and implement this algorithm numerically in
section 2.3. The results and complementary analyses are divided into the following
three topics.

1. Section 2.4: Assess the optimal number and configuration of observation
points such that convergence to the true initial conditions is achieved in the
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data assimilation for the 2-D SWE.

2. Section 2.4.1: Investigate whether the sufficient conditions for convergence
in [27] for the 1-D case extends to the 2-D data assimilation.

3. Section 2.5: Implement the data assimilation algorithm for a relatively realis-
tic tsunami forecasting model, using non-flat bathymetry. Our final analysis
uses realistic bathymetry data from the ETOPO2 global topographical relief
database and the optimal observation configurations identified in this study.

We conclude with a summary of the main results and future considerations in
section 2.6.

2.2 Derivation

The 2-D shallow water equations (SWE) are

∂η

∂t
+ ∂

∂x

(
(η +H − β)u

)
+ ∂

∂y

(
(η +H − β)v

)
= 0, (2.2.1a)

∂u

∂t
+ u

∂u

∂x
+ v

∂u

∂y
+ ∂η

∂x
= 0, (2.2.1b)

∂v

∂t
+ u

∂v

∂x
+ v

∂v

∂y
+ ∂η

∂y
= 0, (2.2.1c)

η(x, y, 0) = φ(x, y), (2.2.1d)

u(x, y, 0) = 0, (2.2.1e)

v(x, y, 0) = 0, (2.2.1f)

where H is the average depth of the fluid and the system has been normalised
such that

√
gH = 1. η and β are the perturbation of the free surface and sea floor

respectively, and u and v are the velocities in the x and y direction. We assume
the initial conditions φ ∈ L2(Ω) is compactly supported on the spatial domain
Ω = {(x, y);x ∈ [−L,L], y ∈ [−L,L]} and is periodic at the boundaries. The
notation used in the data assimilation algorithm is summarised in table 2.1.

Our objective is to minimise the least squares error between the observations
m

(o)
j (t) and the forecast solution of the wave height η(f)(x, y, t) given some initial
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Symbol Definition
η(x, y, t) General solution for the height perturbation
φ(t)(x, y) True initial conditions
β(x, y) Time-independent bathymetry
φ(g)(x, y) Starting guess for initial conditions
φ(n)(x, y) Approximate bathymetry at iteration n of the assimilation algorithm
φ(b)(x, y) Best approximation to the bathymetry (e.g., fixed point of iterations)
m(o)(t) Observations of the true height perturbation at positions {xj, yj}, j = 1, ..., Nobs

η(f)(x, y, t) Approximate (“forecast”) solution generated by approximate bathymetry
J (n) Cost function at iteration n
(·)∗ Adjoint

Table 2.1: Notation used in the derivation of data assimilation
scheme of the 2-D SWE to find the optimal initial conditions.

conditions φ. We express this as a cost functional J : L2(Ω)→ R, constrained by
the system (2.2.1),

J (φ) = 1
2

∫ T

0

M∑
i=1

[
η(f)(xj, yj, t;φ)−m(o)

j (t)
]2
dt. (2.2.2)

Then the optimal initial conditions φ(b) is the minimiser defined as

φ(b) = argminφ∈L2(Ω)J (φ). (2.2.3)

Since the minimum of (2.2.2) is achieved when

∇L2J (φ(b)) = 0, (2.2.4)

we formulate a dual adjoint system in terms of some appropriately chosen ad-
joint variables, such that ∇L2J (φ(b)) can be derived more efficiently than direct
computation of the gradient of (2.2.2), given φ.
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The first variation of J , given some arbitrary perturbation φ′ of scale ε is given
by the Gateaux derivative,

J ′(φ;φ′) = lim
ε→0

J(φ+ εη′)− J(φ)
ε

. (2.2.5)

Expanding the perturbation to O(ε), we can reformulate (2.2.5) as

J ′(φ;φ′) = −
∫ T

0

(
η(f)(xj, yj, t;φ)−m(o)(t)

)
η′ dt, (2.2.6)

where (η′, u′, v′) are the solutions of the perturbed system given the perturbation
in the initial conditions φ′, found by linearising about (η, u, v) and extracting the
O(ε) system,

∂η′

∂x
+ ∂

∂x

(
uη′ + (H + η − β)u′

)
+ ∂

∂y

(
vη′ + (H + η − β)v′

)
= 0, (2.2.7a)

∂u′

∂t
+ u

∂u′

∂x
+ v

∂u′

∂y
+ ∂η′

∂x
= 0, (2.2.7b)

∂v′

∂t
+ u

∂v′

∂x
+ v

∂v′

∂y
+ ∂η′

∂y
= 0, (2.2.7c)

η′(x, y, 0) = φ′(x, y), (2.2.7d)

u′(x, y, 0) = 0, (2.2.7e)

v′(x, y, 0) = 0. (2.2.7f)

As the Gateaux derivative is a directional derivative in the direction of the per-
turbation φ′, we can express (2.2.6) as the inner product between ∇J and φ,

J ′(φ;φ′) = 〈∇J , φ′〉L2(Ω) =
∫

Ω
∇L2J η′ dΩ. (2.2.8)

Then the following forms of J (β; β′) are equivalent,

J ′(φ;φ′) = −
∫ T

0

(
η(f)(xj, yj, t; β)−m(o)(t)

)
η′ dt =

∫
Ω
∇L2J φ′ dΩ. (2.2.9)
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We form a Lagrangian of our linearised system (2.2) with some arbitrary adjoint
variables (η∗, u∗, v∗),

∫ T

0

∫
Ω
η∗(x, y, t)

[
∂η′

∂x
+ ∂

∂x

(
uη′ + (H + η − β)u′

)
+ ∂

∂y

(
vη′ + (H + η − β)v′

]
+u∗(x, t)

[
∂u′

∂t
+ u

∂u′

∂x
+ v

∂u′

∂y
+ ∂η′

∂x

]
+v∗(x, t)

[
∂v′

∂t
+ u

∂v′

∂x
+ v

∂v′

∂y
+ ∂η′

∂y

]
dΩ dt = 0. (2.2.10)

By integrating by parts in time and space, and using the fact that due to periodicity
our boundary terms at ∂Ω vanish, (3.3.9) reduces to

0 = −
∫ T

0

∫
Ω

η′
[
∂η∗

∂t
+ u

∂η∗

∂x
+ v

∂η∗

∂y
+ ∂u∗

∂x
+ ∂v∗

∂y

]

+u′
[
∂u∗

∂t
+ u

∂u∗

∂x
+ v

∂u∗

∂y
+ (H + η − β)∂η

∗

∂x

]

+v′
[
∂v∗

∂t
+ u

∂v∗

∂x
+ v

∂v∗

∂y
+ (H + η − β)∂η

∗

∂y

] dΩ dt

−
∫

Ω
η∗η′

∣∣∣∣
t=T

dΩ −
∫

Ω
η∗η′

∣∣∣∣
t=0
dΩ

+
∫

Ω
u∗u′

∣∣∣∣
t=T

dΩ−
∫

Ω
u∗u′

∣∣∣∣
t=0
dΩ. (2.2.11)

If we pick (η∗, u∗, v∗) as the solution to

∂η∗

∂t
+ u

∂η∗

∂x
+ v

∂η∗

∂y
+ ∂u∗

∂x
+ ∂v∗

∂y
= m(xi, yi, t)−Hη(x, y, t; β), (2.2.12a)

∂u∗

∂t
+ u

∂u∗

∂x
+ v

∂u∗

∂y
+ (H + η − β)∂η

∗

∂x
= 0, (2.2.12b)

∂v∗

∂t
+ u

∂v∗

∂x
+ v

∂v∗

∂y
+ (H + η − β)∂η

∗

∂y
= 0, (2.2.12c)

η∗(x, y, T ) = 0, (2.2.12d)

u∗(x, y, T ) = 0, (2.2.12e)

v∗(x, y, T ) = 0. (2.2.12f)

18

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

Algorithm 1 Data Assimilation Algorithm for initial conditions Estimation for
the 2-D SWE.
1: Pick initial estimate for φ(g).
2: Solve the initial value problem for (η, u, v) from t = 0 to t = T .
3: Solve adjoint problem for (η∗, u∗, v∗) backwards in time from t = T to t = 0

to find η∗(x, y, 0).
4: Define ∇L2J = −η∗(x, y, 0).
5: Compute the optimal time step τn at the n-th iteration through a line min-

imisation algorithm

τn = argminτ∈R J
(
φ(n)(x, y)− τ∇L2J

(
φ(n)(x, y)

))
. (2.2.13)

6: Use a gradient descent algorithmn to compute the guess for φ at the next time
step

φ(n+1)(x, y) = φ(n)(x, y)− τn∇L2J
(
φ(n)(x, y)

)
. (2.2.14)

7: Repeat until ‖ η∗(x, y, 0) ‖≈ 0.
8: Set φ(b)(x, y) := φ(n)(x, y).

Then (2.2.11) is reduced to

∫ T

0

∫
Ω

(
η(f)(xj, yj, t;φ)−m(o)(t)

)
η′ dΩ dt = −

∫
Ω
η∗η′

∣∣∣∣
t=0
dΩ, (2.2.15)

Combining this result with the equivalence given by (2.2.9), we have

−
∫

Ω
η∗η′

∣∣∣∣
t=0
dΩ = −

∫
Ω
η∗
∣∣∣∣
t=0
φ′ dΩ =

∫
Ω
∇L2J φ′ dΩ, (2.2.16)

and thus since our functional is linear and bounded, and belongs to the space of
square-integrable functions, we can use the Riesz representation theorem to extract
∇L2J , giving us

∇L2J (φ) = −η∗(x, y, 0). (2.2.17)
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We utilise an iterative steepest descent algorithm to find our minimiser φ(b) yielding
∇L2J = 0, given some starting guess φ(g). The steps of the process at each iteration
are summarised in algorithm 1.

2.3 Numerical implementation

Our spatial domain is Ω = [−L L] × [−L L], where L = 3. The assimilation is
carried out in the time interval [0 T ] where the final time T = 2 is selected such
that there are no boundary effects.

For the spatial discretisation we implement a second-order finite difference-finite
volume Sadourny energy conserving scheme on a C-grid. A C-grid arrangement
(as shown in figure 2.1), is a regular quadrilateral grid symmetric about the x
and y directions, and has been demonstrated to mitigate group velocity errors in
the numerical discretisation of the SWE. The Sadourny scheme ensures that this
discretisation inherits the conservation properties (such as energy or enstrophy
conservation) of the original system [47].

Figure 2.1: Staggered arrangement of variables on a square.

If the SWE are expressed in the following equivalent form,

∂η

∂t
+ ∂

∂x

(
(η +H − β)u

)
+ ∂

∂y

(
(η +H − β)v

)
= 0 (2.3.1)

∂u

∂t
−
(
∂v

∂x
− ∂u

∂y

)
v + ∂

∂x

(
gη + 1

2u
2 + 1

2v
2
)

= 0 (2.3.2)

∂v

∂t
+
(
∂v

∂x
− ∂u

∂y

)
v + ∂

∂y

(
gη + 1

2u
2 + 1

2v
2
)

= 0, (2.3.3)
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Then the discretisation

∂u

∂t
= 1

∆xδi
(
gη + 1

2u
2 + 1

2v
2
)

+
(
∂v

∂x
− ∂u

∂y

)
(
(
1 + η − β)jv

)ij
, (2.3.4)

∂v

∂t
= 1

∆yδi
(
gη + 1

2u
2 + 1

2v
2
)

+
(
∂v

∂x
− ∂u

∂y

)(
(1 + η − β)iu

)j i
, (2.3.5)

where

δif = fi+ 1
2
− fi− 1

2
, (2.3.6)

f
i = 1

2

(
fi+ 1

2
+ fi− 1

2

)
, (2.3.7)

ensures that the total energy is conserved, such that

0 =
∑
ij

∆x∆y
[
gη
∂η

∂t
+
(1

2u
2 + 1

2v
2
) ∂
∂t

(1 + η − β)
]

+
∑
ij

∆x∆y
[
(1 + η − β)u∂u

∂t

]

+
∑
ij

∆y∆x
[
(1 + η − β)v∂v

∂t

]
(2.3.8)

where the staggered centre difference operator (2.3.6) and centre linear interpo-
lation operator (2.3.7) ensure that the velocities u and v and their time derivatives
are discretised at the centre of the cell boundaries, and η and β and their derivatives
are located at cell centres, as in figure 2.1. The spatial derivations are discretised
using a second order finite difference scheme with periodic boundary conditions.
The system is then integrated using a four stage third order Runge-Kutta scheme
[57]. The resolution is 128× 128 due to computational cost considerations, as the
memory requirements for the solver are quite high. The time step ∆t = ∆x/3 is
chosen to satisfy the Courant-Friedrichs-Lewy (CFL) condition, and subsequently
the solutions for η, u, v are 128× 128× 193 matrices, which need to be stored for
all time steps. The line minimisation for (2.2.13) is carried out using the Matlab
function fminunc.
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We also consider the following anisotropic Gaussian initial conditions,

φ(t)(x, y) = 1
20 exp

(
− x2 + y2

0.12

)
. (2.3.9)

For cases where a non-isotropic initial conditions is used,

φ(t)(x, y) = 1
20 exp

(
− x2

r + (yr/5)2

0.152

)
, (2.3.10)

xr = x cos
(
− π

4

)
− y sin

(
− π

4

)
, (2.3.11)

yr = x cos
(
− π

4

)
+ y sin

(
− π

4

)
. (2.3.12)

Figure 2.2 shows the isotropic and anisotropic initial conditions. In the results,
we indicate an approximation of this support to highlight the position of the the
observation points relative to the initial conditions. While Gaussian initial condi-
tions are not technically compactly supported, they are in practise for numerical
simulations, for example when the exponential is smaller than machine precision.
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Figure 2.2: Planar view of the truel initial conditions φ(t). The
highlighted regions indicate the support of the initial conditions.

The results in section 2.4 and 2.4 are for assimilation with flat bathymetry
β(x, y) = 0 as in [27]. However, in section 2.5 we implement the data assimilation
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algorithm with (i) a Gaussian form bathymetry, and (ii) realistic bathymetry data
taken from the ETOPO2 database for global topography and bathymetry.

Verification test

To verify our numerical implementation, we conduct a verification test using the
equivalent forms for J ′(φ, φ′) used in our derivation, the Gateaux derivative and
the Riesz gradient. If the implementation is correct, the parameter κ should
converge to 1 as ε→ 0,

κ(ε) = lim
ε→0

1
ε

J (φ+ εφ′)− J (φ)∫
Ω−η∗(x, y, 0)φ′ dΩ . (2.3.13)

The results of the verification test are shown in figure 2.3, with a non-zero
bathymetry.
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Figure 2.3: Verification test for numerical implementation. (a) is
the loglog graph of κ as ε → 0, and (b) is the difference |κ(ε) − 1|
as ε→ 0.

Smoothing of ∇L2J (φ)

To mitigate noise in the gradient ∇L2J which may accumulate within the op-
timisation, we can implement the following low-pass filter in Fourier space that
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smooths ∇J such that it exists in H1(R2) and subsequently has a smooth first
derivative as well. The smoothing can be described by

̂(∇H1J )(k,l) = 1
1 +m2(k2 + l2)

̂(∇L2J )k,l, (2.3.14)

where k and l are the wavenumbers for the x and y directions respectively, and the
filter co-efficient m is chosen appropriately to adjust regularity. All modes larger
than the cut-off frequency will effectively be damped. An illustration of the filter
applied to ∇J after the first iteration in case 2.7(a) is given in figure 2.4, where
all but the lowest 10% frequencies are damped to zero.
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Figure 2.4: Energy spectrum of gradient ∇J (φ) after the first
iteration in 2.7(a),before (a) and after (b) smoothing using (2.3.14).

The filter was tested in most cases where convergence was sub-optimal in order
to gauge whether errors were due to noise in the reconstruction, however generally
it was found that there was little change in the overall result, suggesting the source
of error is not primarily due to noise in the gradient ∇J (φ).
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2.4 Numerical results

The analysis for the 2-D data assimilation is more complex than the 1-D case. The
configuration of observations has more degrees of freedom than simply the number
and spacing of points on the real line R. With the increased dimensionality from
1-D to 2-D, there is far more freedom and geometric complexity in the placement
of the observation points. With this in mind, in this section we explore the effect
of configuration and number of observations on the overall convergence of the
reconstructed initial conditions. In [27], all observation points were located to
one side of the initial condition support. In the present analysis, we consider
observations in all quadrants of our spatial domain (where the initial conditions
is centred at (0, 0)). We note that though in most cases our initial conditions is
isotropic and the subsequent wave propagation is radially symmetric given a flat
bathymetry, this azimuthal symmetry property cannot be observed by observation
points along characteristics in a single quadrant alone. This suggests the isotropic
nature of the initial conditions is only captured by observations along part of the
circle x2 + y2 = R(t)2, where R(t) is the radial position of the propagating wave
η(x, y, t) at each time t ∈ [0 T ].

We analyse results for three configurations of observation placement. (i) In a
square grid centred at (0, 0), (ii) along the characteristics x = y and x = −y, and
(iii) on arcs along the two circles x2 + y2 = r2

i for i = 1, 2. In section 2.4.1 we
extend the analysis for observation spacing from the 1−D case as in [27] for each
configuration. For all cases, we assume the initial guess φ(g) = 0. In section 2.4.2
we build on the optimal results for observation spacing, and investigate whether
convergence improves when increasing the number of observation points. In reality,
it is unlikely there will be very many observations within the support of the initial
conditions of a tsunami. Therefore, we also investigate the effect of removing all
observation points located within the support of both isotropic and anisotropic
initial conditions on convergence.
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Figure 2.5: scaled colour map of (a) |(̂φ)k,l|, and (b) log |(̂φ)k,l|

2.4.1 Observation spacing

In order to investigate the effect of observation spacing for the 2-D initial conditions
assimilation, we use the results of [27] as a benchmark. We recall that for the
1-D assimilation, optimal convergence to the true initial conditions φ(t) occurs
when at least one pair of observation points are spaced more closely than half
the effective minimum wavelength of the energy spectrum of the initial conditions.
Subsequently given a pair of observation points (m1,m2) we require

|m1 −m2| ≤
π

kmax
, (2.4.1)

where kmax is the largest effective wavenumber of φ(t). In the absence of a rigorous
equivalent result for the 2-D assimilation, we qualitatively investigate whether
convergence improves when (2.4.1) is satisfied for the 2-D wavenumbers k and
l. To find kmax and lmax, we examine the energy spectrum of the true isotropic
2-D initial conditions given in figure 2.5. We observe that the modes for k, l ≥
40 have relatively negligible magnitudes, and thus kmax = lmax = 40 is a good
approximation. Thus the distance between at least two observation points should
be less than 0.0785.

In the 1-D case, at least one pair of points was required to satisfy (2.4.1).
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However it may be that a greater number of points satisfying this condition is cor-
related with improved convergence in the 2-D case, due to the need to resolve the
two-dimensional shape of the initial conditions (e.g. azimuthal symmetry). To in-
vestigate this, we compare results with different spacing of observations ∆x = ∆y
for (∆r for the arc configurations) in a grid, along characteristics x = y and
x = −y, and in radial arcs centred on the initial conditions. We also investi-
gate convergence with different numbers of pairwise observations with a Euclidean
distance fulfilling (2.4.1). We begin with observations along characteristic lines
x = ±y.

Observations along characteristic x = ±y

For this case, we initially choose Nobs = 36. This initial choice of Nobs is larger
than those considered in [27] where Nobs ≤ 5 was considered. However, given
the higher dimensionality of the 2-D problem, we scale up our initial choice of
Nobs. We evaluate results for the ∆x = ∆y = 0.07, 0.0785, 0.1, and 0.2. These
values were chosen to include cases both when (2.4.1) is satisfied, and when it
is violated. Since observations are placed along x = ±y, the Euclidean distance
between points is

√
(∆x)2 + (∆y)2. Comparing pairwise distances between any

two observation points in the configuration, we observe that at least 8 out of a
total of 36(36−1) pairwise observations have a Euclidean distance less than 0.0785
for ∆x = 0.07, 0.0785, and 0.1. There are zero pairs satisfying (2.4.1) for ∆x = 0.2
.

The characteristic configurations can be seen in figure 2.6(a), (b), (c), and (d).
The red circle represents the boundary of the initial condition. It is an approximate
representation intended for reference only, and the actual region where φ(t) 6= 0
may be slightly larger, and corresponds to figure 2.2. The configurations in 2.6(a),
2.6(b), and 2.6(c) satisfy (2.4.1), and those in 2.6(d) do not. We wish to determine
whether convergence is worse where spacing is larger than 0.0785.
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Figure 2.6: Observations along characteristics x = ±y with vary-
ing spacing such that ∆x = ∆y, and Nobs = 36. The green circles
represent the observation points, and the area inside the red circle
approximates the support of the initial conditions. The assimila-
tion time is t ∈ [0 2]. (d) shows the convergence of the cost function
after 1000 iterations and (e) represents the relative L2 error in the
initial conditions reconstruction. We note that configuration (d)
with ∆x = 0.2 fails to converge.

The convergence results for both cases are given in 2.6(e) and 2.6(f), where
the former is the relative decrease in the cost function after 1000 iterations, and
the latter is the relative L2 error in the reconstruction. We observe that the
assimilation converges for for the three cases with ∆x ≤ 0.1. As 0.0785 is just an
estimate of the minimum spacing, it is not surprising that the slightly larger 0.1
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case also converges. There is no significant difference between the three cases and
the error is reduced to O(10−3). However, the configuration with ∆x = 0.2 fails
to converge. These results confirm condition (2.4.1) (and therefore are consistent
with the minimum spacing theorem in [27]), as ∆x = 0.2 was the only case where
there were no pairs of observations with a Euclidean distance less than 0.0785. To
analyse the smoothness of the convergence, we considered the relative L2 error for
an extended range of ∆x, and observed that the error with spacing of observations
such that 0.1 < ∆x ≤ 0.2 still converged despite having a higher error compared
to ∆x ≤ 0.1, and no configuration with ∆x ≥ 0.2 achieved convergence of the L2

error less than 10%.

We observe that the placement along characteristics in all four quadrants ap-
pears to sufficiently capture the radial symmetry of the propagating wave and
reconstruct the initial conditions accurately. We verify whether these results by
considering observations placed in a grid, and along concentric circles centred at
the initial conditions.

Observations in a grid formation

The second configuration of observation points we consider is a grid layout in
the xy plane. To maintain comparison with the characteristic configuration, we
initially choose Nobs = 62, and observations are arranged in a six-by-six square
grid centred at (0, 0). These configurations are presented in figure 2.7(a), (b), (c),
and (d) with the same values of ∆x as for the characteristic case. The trend in
the cost function and relative error decrease over 1000 iterations are presented in
figures 2.7(c) and (d).

We can see that like the characteristic configuration, the results for observa-
tions in a grid configuration show increasing convergence to zero as the spacing
between adjacent observation points in the x and y directions decrease. Even the
worst performing configuration 2.7(d) has a relative error at the final iteration of
O(10−2). This suggests that if we classify a result as convergent if the relative
error is lower than 10%, then each spacing considered in figure 2.7 convergences,
though it is clear the lower values ∆x = 0.07 and ∆x = 0.0785 perform better by
an order of magnitude. Once again, we note that these configurations both had
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64 pairwise observations satisfying (2.4.1), whereas the ones with ∆x = 0.1 and
∆x = 0.2 had none, confirming the hypothesis that (2.4.1) is a sufficient condition
for convergence with a grid configuration, for the 2-D case. While convergence
with ∆x = 0.07 is marginally better for the grid configuration than the character-
istic configuration, they are both O(10−3) and we may consider them equivalent
in performance thus far. We note that these results are also consistent with the
1-D theorem in [27].
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Figure 2.7: Observation configuraton in a grid format with vary-
ing spacing such that ∆x = ∆y, and Nobs = 36. (d) shows the
convergence of the cost function after 1000 iterations and(e) repre-
sents the relative L2 error in the initial conditions reconstruction.
All configurations converge (L2 error less than 10%), however it is
marginal for (d).

30

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

It should be noted however that in 2.7, most of the observations are placed
within the support of the initial conditions. This is a consequence of having a grid
centred at the initial conditions support with only Nobs = 36 and small values of
∆x. Consequently in section 2.4.2 we investigate the effect of increasing the num-
ber of observation points, and subsequently in section 2.4.3 the effect of removing
all points that lie in the initial conditions support.

Observations along arcs
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Figure 2.8: Observations along the two concentric circles x2+y2 =
r2
i for i = 1, 2 and with spacing between circles ∆r = |r1 − r2| and
Nobs = 36. (d) shows the convergence of the cost function after
1000 iterations and(e) represents the relative L2 error in the initial
conditions reconstruction.
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Current observations used for detection and forecasting of tsunamis such as DART
buoys are usually arrayed in an arc-like formation along coastlines [18]. Therefore,
we consider a circular arc configuration for observations, as shown in figure 2.8(a)-
(d). The observation points are placed along two concentric circles x2 + y2 = r2

i ,
for i = 1, 2. We vary the spacing ∆r = |r1 − r2| such that 2.8(a) and 2.8(b)
satisfy (2.4.1) and 2.8(c) and 2.8(d) don’t, similar to the characteristic and grid
configurations.
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Figure 2.9: Cross-sections of the reconstructed initial conditions
at y = 0 for cases in figure 2.8 with spacing ∆r = |r1 − r2| and
Nobs = 36. We observe that the peak of the Gaussian is not fully
resolved (true amplitude is 0.05) and there is small-scale noise in
the reconstruction for all cases.
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We observe in 2.8(d) that the error does not converge for any of the values of
∆r considered, and is O(10−1). This is despite the fact that there are 14 pairwise
observations satisfying (2.4.1) for ∆r = 0.07 and 8 pairs for ∆r = 0.0785. We
present the reconstructed initial conditions for each ∆r in figure 2.9. We observe
that in each case, the Gaussian peak is not fully resolved and the amplitude is
smaller than the exact initial conditions (0.05). Additionally in each case there is
small-scale noise in the reconstruction.

In theory, observations placed in concentric circles around the true initial con-
ditions should be able to capture the radial propagation of the free surface wave
in all directions, however these results suggest that either small spacing between
pairwise observations is not sufficient for convergence with an arc configuration or
that a larger number of pairwise observations satisying (2.4.1) is necessary. In the
following section we investigate whether convergence improves as we increase the
number of observations in each of the three configurations.

2.4.2 Results with large or small number of observations

In this section observe the convergence of the assimilation when the number of
observation points is either large or small for the characteristic, grid, and arc
configurations respectively. The spacing ∆x and ∆r is fixed at the best-performing
case considered in section 2.4.1 (∆x = 0.07 or ∆x = 0.0785). We first show
convergence for largeNobs, and then subsequently investigate the minimum number
of observations required for convergence. For the grid and arc configurations, we
initially consider results forNobs = 102, 122, 142 respectively, with ∆x = ∆r = 0.07.
For the characteristic configuration we chose Nobs = 60, 80, 100 and ∆x = 0.0785.
The comparatively smaller values for the characteristic configuration are due to
the fact that we required all observation points to interact with the propagating
wave in the assimilation time T , and this would not have been possible for larger
values of Nobs placed along characteristics.

Characteristic configuration

The results for the characteristic configuration are presented in figure 2.10, where
(a), (b) and (c) show the configurations for each value of Nobs. We observe that
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the relative reconstruction error presented in figure 2.10(e) does not change signif-
icantly with the number of observation points, and is O(10−3). We note that the
same level of convergence was achieved with only 36 observations, as seen in figure
2.6(e). This is encouraging from a tsunami modelling perspective, as it would sug-
gest that a smaller observation network placed along characteristics is sufficient to
recreate the initial conditions effectively.
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Figure 2.10: Characteristic formation with increased number of
points and ∆x = 0.0785.
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Grid Configuration

The configurations of observations placed in a grid format with varying number of
observation points is given in figures 2.11(a), (b), and (c). The convergence results
are presented in 2.11(d) and 2.11(e).
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Figure 2.11: Grid formation with increased number of points and
∆x = 0.07.

As with the characteristic configuration, we observe that the convergence of
the L2 relative error does not significantly change for the large values of Nobs,
and is O(10−3). To determine whether having a large number of observations is
a sufficient condition for convergence, we consider results where Nobs = 122, but
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∆x = 0.44. We see from figure 2.12(c) that the assimilation does not converge,
and therefore large Nobs is not a sufficient condition for convergence. To verify
whether it is a necessary condition for convergence, we explore results when Nobs

is small, in section 2.4.2.
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Figure 2.12: Grid formation with increased number of points and
∆x = 0.44

Arc configuration

We observed in figure 2.8 that unlike the characteristic or grid configurations,
the results for the arc configuration failed to converge for all spacings ∆r. Con-
sequently it would be of significant interest to see whether these results can be
improved by increasing Nobs. We present the configurations for Nobs = 102, 122,
and 142 in figures 2.13(a), (b), and (c) respectively.

The relative L2 error shown in 2.13(e) converges to O(10−2) for each values of
Nobs and consequently all three cases are convergent. This result suggests that
a relatively larger network of observations is required to fully resolve the initial
conditions for arc configurations. A rigorous verification would be to analyse
results with a larger values of Nobs and ∆r > 0.2. However this is not possible
with our current problem setup as a case where both Nobs and ∆r (or |mi −mj|
with a single circular arc) are large enough such that that no points satisfy (2.4.1),
would result in some observations not interacting with the free surface wave in the
assimilation time T = 2. As the latter was chosen to prevent boundary effects from
effecting the reconstruction, it cannot be altered without impacting the results.
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Figure 2.13: Arc formation with increased number of points and
∆r = 0.07

Results with small Nobs

In this section we investigate the minimum number of observation points required
for convergence. We have shown that when Nobs is large (greater than 60), increas-
ing the number of points does not have a significant impact on the convergence
of the relative minimum error for the characteristic and grid configurations. We
now consider results when 4 ≤ Nobs ≤ 16, to determine if there is a significant
increase in the relative L2 reconstruction error when Nobs is small. We do not
consider Nobs = 1, 2, or 3 as the smallest number of points we can have while still
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having points positioned in each quadrant (to capture the azimuthal symmetry of
the initial conditions) is 4.

Results for observations along a characteristic with Nobs = 4, 10, and 16 (with
spacing ∆x = 0.0785 are presented in figure 2.14.
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Figure 2.14: Characteristic formation with a small number of
points and ∆x = 0.0785.

We observe that the minimum relative L2 error is less than 1% for each case.
Therefore we conclude that for the characteristic configuration, the minimum num-
ber of observation points necessary to achieve convergence of an isotropic initial
condition is Nobs = 4.

Results for observations in a grid configuration for Nobs = 22, 32, and 42 are
presented in figure 2.15. We observe that the relative L2 error for all three con-
figurations converges. Configurations with 22 and 42 have a minimum relative L2

error of 5% and 3% respectively. The best convergence is for Nobs = 32, with a
minimum error of 0.2%, suggesting that convergence does not necessarily improve
with an increase in Nobs, even with a small number of observations.
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Figure 2.15: Characteristic formation with a small number of
points and ∆x = 0.0785.

To summarise, we have demonstrated that convergence can be achieved for the
characteristic and grid configurations with a relatively small number of points,
and does not necessarily improve as Nobs is increased. And so we conclude that,
based on the results so far, having a large number of observation points is neither
necessary nor sufficient for convergence with observations in a grid or along two
characteristics.

In the result observed thus far, we note that for all cases that converge (as
in figures 2.11 and 2.10), there were multiple observations inside the support of
the initial conditions. However, there were no points within the initial conditions
support for the arc configuration. Consequently, we must consider whether con-
vergence can be achieved for the characteristics and grid configurations when there
are no observation points inside the support of the initial conditions. In tsunami
models, it is unrealistic to assume such observations are available, and thus a logis-
tically applicable forecasting scheme should avoid such assumptions. The results
of this analysis are presented in section 2.4.3.
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2.4.3 Results with no observations within the support of
the initial conditions
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Figure 2.16: Convergence of the relative L2 error for observations
in a (a) characteristic configuration, and (b) grid configuration,
with small Nobs and ∆x = 0.07, and points within the support of
the initial conditions removed.

In this section we present results for the characteristic and grid configurations,
with points inside the initial conditions support removed. The spacing ∆x is fixed
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at the sufficient value for convergence of 0.07. As removal of these points results
in smaller values of Nobs, the initial number of Nobs before removal is increased
slightly so that the resulting number of observation points are comparable to the
results in section 2.4.2. First, we consider results for small numbers of observation
points, such that ∆x = 0.07, and there are no points within the support of the
initial condition, in figure 2.16.

We observe that even with Nobs = 28, the configuration in figure 2.16(b) (with
observations in a grid) fails to converge when there are no points in the support
of the initial conditions, despite having converged when Nobs = 4 in figure 2.15.
Similarly, a configuration of 16 observations along the characteristics x = ±y fails
to converge when there are no points within the support of the initial conditions,
as in figure 2.16(a). Consequently, we investigate whether convergence can be
achieved when Nobs is relatively large.

Figure 2.17 shows the configurations and results for observations along charac-
teristics, with Nobs = 48, 68, and 88 (after removal). The relative L2 error at the
final iteration for each case is approximately 7%, as shown in 2.17(e). We note that
the error is almost two orders of magnitude higher than it was in figure 2.10. In
figure 2.18 we show a comparison of cross-sections of the optimally reconstructed
initial conditions φ(b)(x, 0), both with and without observations in the support of
the initial conditions. We observe that there is some small-scale noise in figure
2.18(c) when there are no points within the initial condition support.

These results are not surprising, as having observations that are able to mea-
sure the true initial conditions may significantly improve the reconstructed initial
conditions. It is therefore to be expected that convergence is slightly worse when
such observations are no longer included in the assimilation. However based on
the tolerance that the relative L2 error be less than 10%, these results are still
convergent. Indeed, we can see that while the reconstruction in figure 2.18(c) has
some small-scale noise, the shape of the Gaussian is accurately resolved.

The configurations and result for observations in a grid format are presented
in figure 2.19. We note some significant differences between the results here and
those in figure 2.11. First, it is clear from figure 2.19(e) that there is improved
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Figure 2.17: Characteristic configuration with points within the
support of the initial conditions removed.

convergence for cases with Nobs > 80, suggesting that the number of observa-
tions is an important factor when we do not have observations in the support of
the initial conditions. In contrast, the results in figure 2.11(e) did not indicate
difference in convergence for the different values of Nobs. Secondly, the best con-
vergence in figure 2.19(e) is a relative L2 error of approximately 0.1%, indicating
better convergence than observed in figure 2.11(e), despite the overall number of
observations being comparable. It is interesting to note that in figure 2.11(e) the
error stagnated after approximately 400 iterations. This suggests that perhaps
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Figure 2.18: Cross section of the (a) exact initial conditions
φ(t)(x, 0), and reconstructed initial condition φ(b)(x, 0) for observa-
tions along characteristics with (b) observations within the support
of the initial condition, and (c) no observations within the support
of the initial conditions.

there is some overfitting that results in small-scale noise in the reconstructed ini-
tial conditions, when there are too many observations of the true initial conditions.
This would impact the convergence of the gradient descent algorithm used in the
data assimilation. In comparison, in figure 2.19(e) we observe that the error is
still maintaining a negative slope even at the final iteration, suggesting improved
convergence. To verify this hypothesis, figure 2.20 shows the energy spectra of
the relative absolute error of the reconstructed initial conditions for configurations
2.11(b) and 2.19(b) with Nobs = 144 and Nobs = 132 respectively .

We can see that the energy of larger wavenumbers in the reconstruction error
|φ(t) − φ(b)|/ ‖ φ(t) ‖L2 is higher for configuration 2.11(b), verifying our initial
hypothesis regarding small-scale noise present in the reconstruction that impacted
convergence. On the other hand, the energy of the error spectrum for configuration
2.19(b) is mostly restricted to smaller wave-numbers. This may explain why the
latter showed convergence of the L2 error to 0.1% whereas the former converged
to 0.3% .
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Figure 2.19: Grid configuration with points within the support
of the initial conditions removed.
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Figure 2.20: Energy spectrum of the error |φ(t)−φ(b)|/ ‖ φ(t) ‖L2

for the grid configurations in 2.11(b) (points inside the support of
φ(b)) )and 2.19(b) (no points inside the support of φ(b)) ).
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In summary, we conclude that a necessary (but not sufficient for all configura-
tions) condition for convergence is that ∆x be small enough that the Euclidean
distance between pairwise observations satisfies the condition (2.4.1). Addition-
ally, the convergent configurations for the grid configuration in figure 2.7 had
64 pairwise observations satisfying the spacing condition (2.4.1), while the non-
convergent cases with spacing ∆x ≥ 0.1 had none. Similarly, the non-convergent
arc configurations in figure 2.8 had at most 14 pairwise observations with a Eu-
clidean distance less than 0.0785. This suggests that there may be a minimum
number of pairwise observations required that satisfy the spacing condition 2.4.1.
We observed that much larger numbers of observations were required for conver-
gence in the arc configuration, and this was also true for the grid configuration
when observations inside the support of the initial conditions were removed. In
fact, we found that the assimilation error was lower in the grid configuration when
there were no observations within the support of the initial conditions. This is
likely due to overfitting generating small-scale noise in the reconstructed initial
conditions, as shown in figure 2.20.

To extend these results for more realistic conditions, we conducted equivalent
analyses with the anisotropic initial conditions given in (2.3.10).

2.4.4 Results for anistropic initial conditions

We have observed convergence for each of the observation point configurations con-
sidered in this study (characteristic, grid, and arc) by varying the spacing between
observations and the number of observation points. We have also demonstrated
convergence even when there are no observations within the support of the initial
conditions. We now verify whether convergence is still achieved with anisotropic
initial conditions. Our goal is to investigate the observability at measurement
points when the surface wave is no longer azimuthally symmetric, and constrast
with results for isotropic Gaussian initial conditions. Our goal is to provide results
that are more comparable with realistic scenarios for tsunami observations, where
the both the initial conditions and bathymetry produces highly anisotropic surface
waves.
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Figure 2.21: Characteristic formation with anisotropic initial con-
ditions with points within the support of the initial conditions re-
moved.

Briefly, we found that there was no significant impact on convergence with
anisotropic initial conditions (as given in (2.3.10)), compared to results in section
2.4.3. The results for a characteristic configuration are presented in figure 2.21, the
results for a grid format in figure 2.22, and the results for an arc configuration in
figure 2.23. We observe that the convergence of the relative L2 error for the char-
acteristic and arc configurations is O(10−2), and there is little difference between
results with different values of Nobs. The convergence for the grid configuration is
O(10−4) with Nobs = 208, and O(10−3) for the other values of Nobs.

Summary of main results

To summarise, the main results we have observed are as follows:

• Convergence was achieved (a relative L2 error less than 10%) for each of
the three configuration with both isotropic and anisotropic initial conditions
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Figure 2.22: Grid formation with anisotropic initial conditions
with points within the support of the initial conditions removed.

respectively.

• The best convergence in the present analysis was achieved with observations
placed in a grid formation. Even with no points inside the initial conditions
support, the relative L2 error in the reconstruction error was 0.1% with both
isotropic and anisotropic initial conditions. Convergence was achieved for the
characteristic and grid configurations with as few as 4 observation points, the
minimum number required to capture the azimuthal symmetry of the initial
conditions.

• A necessary condition for convergence was that the spacing ∆x for grid and
characteristic configurations be chosen such that at least some pairwise ob-
servations satisfy (2.4.1) . However convergence was not achieved for the arc
configuration even with small ∆r (the difference between radii of observations
placed in two concentric circles), suggesting this is not a sufficient condition
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Figure 2.23: Arc formation with anisotropic initial conditions
with points inse the support of the initial conditions removed and
∆r = 0.07.

for convergence, or there is a minimum number of pairwise observations with
a Euclidean distance satisfying (2.4.1), which the arc configuration did not
satisfy (having only 14 such points, whereas the convergent results for the
grid configurations in figure 2.7 had 64 such pairwise observations).

• Increasing the number of observation points improved convergence of the arc
configuration, but had little effect on the grid and characteristic configura-
tions when there were points placed inside the initial conditions support.
However, without any observations in the support of the initial conditions,
larger numbers of observations Nobs resulted in improved convergence with
the grid configuration, and even surpassed convergence achieved in the for-
mer case (points inside initial conditions support). This suggests that obser-
vations of the true initial conditions can lead to overfitting and small-scale
noise in the reconstruction, as demonstrated in figure 2.20.
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2.5 Results with non-zero bathymetry

We now consider results for simulations where the bathymetry is no longer flat.
Bathymetry can have a significant impact on propagating shallow water waves,
where wave speed c =

√
gh changes as depth h varies. A tsunami’s energy flux

remains relatively constant, and so as the tsunami’s speed varies, so does wave
height (shoaling effects).

The purpose of this section is to take the best results observed thus far, and
integrate them into a relatively more realistic model which takes us closer to condi-
tions necessary for an active tsunami forecast model. As such, we limit our results
to Nobs = 88. Even though we observed higher convergence with a greater number
of Nobs (for example in figure 2.19), there are logistical difficulties in creating dense
observation networks. Therefore we impose an upper limit. The current number of
observation buoys in the DART network is approximately 60, therefore accounting
for additional observation sources and methods (as described in section 2.1, we
maintain that Nobs = 88 is a reasonable choice. Additionally, we note that conver-
gence of the relative L2 error to O(10−2) in the initial conditions reconstruction
was achieved with ≤ 88 points in each of the three configurations considered in
this study.

We begin with a simple Gaussian bathymetry model simulating peaks and
basins, and then subsequently extend our analysis to a subsample of ETOPO2,
a digital database of land elevation and sea floor topography, where the datum
represents the vertical deviation in metres from the mean sea level.
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Figure 2.24: Gaussian Bathymetry with 3 peaks and a basin as
described in (2.5.1). The y-axis represents the amplitude of the
bathymetry relative to the mean depth H, which has been nor-
malised to H = 1.

2.5.1 Gaussian bathymetry

In this section we analyse results with the Gaussian bathymetry described by

β(x, y) = 3
10 exp

−
(

(x+ 0.5)2 + (y + 0.1)2
)

0.652

− 3
10 exp

−
(

(x− 1)2 + (y − 0.5)2
)

0.72



+ 3
10 exp

−
(

(x− 0.75)2 + (y + 1)2
)

0.652

+ 3
10 exp

−
(

(x+ 0.8)2 + (y − 0.7)2
)

0.22


(2.5.1)

where a representation is given in figure 2.24. This shape was chosen as it
contains Gaussian peaks that are 30% of the average depth H and with varying
widths, simulating underwater mountains. Additionally, a negative Gaussian rep-
resents a basin, and all features are placed such that there are relatively quick
changes in the depth, within the assimilation time T . The amplitude of the true
initial conditions is set to 0.001H, in order to accurately simulate tsunami con-
ditions where amplitude of the surface wave in the deep ocean can be just a few
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metres (depending on the generating mechanism).

We demonstrate the effect of the bathymetry on the free surface propagation
in figure 2.25, where figure 2.25(a) is the free surface at t = T with a flat bottom
bathymetry, and figure 2.25(b) is the free surface at t = T with the bathymetry
given in (2.5.1).
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Figure 2.25: Planar view of the free surface wave without
bathymetry (a), and with bathymetry given in (2.5.1) (b), at the
final time T , showing the effect of the bathymetry in distorting the
surface wave.

We observe in figure 2.25(b) that due to bathymetry effects we no longer have
azimuthal symmetry in the free surface wave propagation, and the wave amplitude
is higher at positions close to (−1, 1) and (−3

2 ,−
3
2). This suggests the influence of

the peaks in 2.24. Similarly the amplitude of the wave is slightly damped in the
first quadrant, indicating the effect of the basin.
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Figure 2.26: Results with Gaussian Bathymetry. Note that the
configuration in (b) can no longer be referred to as observations
placed along characteristics, as these are no longer characteristics
of the distorted wave.

The results with isotropic initial conditions (and no points inside the initial
conditions support) are show in figure 2.26. We note that observations placed
along the lines x = ±y can no longer be referred to as observations placed along
characteristics, as these are no longer characteristics of the distorted wave, due to
bathymetry effects. However, we include the configuration to demonstrate conver-
gence when observations are placed along lines.

In each case we have Nobs = 88 and ∆x = ∆r = 0.07. We observe that the
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grid configuration has the best convergence of the relative L2 error, at 0.5%. The
results for the line and arc configuration also converge, however with a larger error
of 5%. There is a relative decrease in convergence compared to results for with a
flat bottom bathymetry as shown in section 2.4.3. This is most likely due to the
fact that there is no longer azimuthal symmetry in the surface wave propagation,
and not all observation points are able to capture the interaction of the free surface
wave with localised bathymetry. Despite this, we note that results for each case
converge. This is encouraging, considering our results included effects of localised
bathymetry features with amplitudes as much as 30% of the fluid depth. Another
possible reason for convergence is that the amplitude of the initial conditions is
relatively small, which would mitigate wave breaking effects that could hinder
convergence.

We now investigate whether similar results can be observed when the bathymetry
is an actual representation of ocean floor topography in section 2.5.2.

2.5.2 ETOPO2 bathymetry

ETOPO2 is a database of two-minute global relief data hosted by the National
Geophysical Data Centre at NOAA (2006). This is an amalgamation of data col-
lected via multiple sources including satellite altimetry observations and shipboard
echo-sounding measurements [13]. The grid values represent elevation at the cell
edges, averaged over the cell area. The horizontal grid spacing is 2-minutes of lati-
tude and longitude, where 1 minute of latitude represents 1.853 km at the Equator,
and the vertical precision is 1 metre, where z = 0 represents the mean sea level.

For the current analysis, a square sub-interval of the ETOPO2V2c database
was chosen within the specified latitude and longitude limits [15, 25] and [90, 100]
respectively. This is equavalent to a rectangular grid of approximately 1100km
×1100km (accounting for slight differences between degrees of longitude due to
the equatorial bulge, where the maximum variation is approximately 60km). This
bathymetry section represents the Wharton basin, a topographical feature in the
ocean floor located off the western coast of Australia. It was chosen because it
includes both basin and ridge features, and because of the relative ease with which
periodic boundary conditions could be implemented. Additionally, it has been a
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documented source for seismic activity and strike-slip events such as the 2012 and
2016 events in the region. As most earthquakes are of strike-slip mechanisms, such
events are potential sources of tsunamis in the Wharton basin [23]. A visual rep-
resentation of the region and a relief map as taken directly from the ETOPO2v2c
database are given in figure 2.28(a) and 2.28(b).

In order to find classical solutions of the shallow water equations, we require the
bathymetry β(x, y) and its first derivative to be smoother than the raw ETOPO2
data. Additionally, we require periodic boundaries. Thus the boundaries are
artificially padded with zeros, and the low pass filter (2.3.14) is used to damp
all frequencies after the lowest 5% modes to zero. A moving average filter was
implemented to remove sharp curves at the boundaries, using the Matlab smooth
function. The control time T was adjusted so that the free surface wave does not
actually reach the padded boundary region.

The average depth H = −5000m was normalised to 1 and the length scales
adjusted to [−L, L] in both x and y directions. The amplitude of the initial
conditions was set to 0.001H (equivalent to 5m). The smoothed and scaled relief
map, and 3-D plot of the bathymetry can be seen in figure 2.28(c) and 2.28(d).
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Figure 2.27: Planar view of the free surface wave with ETOPO2
bathymetry and (a) Isotropic initial conditions (2.3.9), and (b)
Anisotropic initial conditions (2.5.1), at the final time T .
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We implement the data assimilation for observations along the lines x = ±y,
a grid, and an arc, with isotropic initial conditions and anisotropic initial con-
ditions respectively. Figures 2.27(a) and 2.27(b) show the free surface wave at
the final time T . The effect of the bathymetry on the free surface wave is rela-
tively small compared to the flat bottom case in figure 2.25(a), than for the Gaus-
sian bathymetry. However, we note that the highest amplitude in the ETOPO2
bathymetry (as shown in figure 2.28 is only approximately 0.06, which is signifi-
cantly less than the bathymetry in (2.5.1). Nevertheless, we observe slightly deeper
troughs in the free surface wave indicated by the dark blue regions in 2.27(a), which
are indicative of bathymetry effects. We conclude that the wave speed affected by
the bathymetry structure may result in different coastal communities having varied
arrival time and wave energy.

The observation configurations and results with isotropic initial conditions and
anisotropic initial conditions are presents in figures 2.29 and 2.30 respectively.

For the isotropic initial conditions, we see in figure 2.29(e) that the lowest
relative error is for the grid configuration, with a minimum error of 0.3%. The
straight line configuration has minimum a relative error of 5% and thus is con-
vergent. However, as in the idealised case with Gaussian bathymetry, it is again
the worst performing configuration. The results for the arc configuration are a bit
better than those observed in figure 2.26 for the Gaussian bathymetry, with a min-
imum error of 5%. Subsequently we conclude that the main results of this study
extend to realistic bathymetry, such as the smoothed topography of the Wharton
basin.
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(a) The selected bathymetry subsample on a world map.
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Figure 2.28: Smoothed Etopo2v2c bathymetry relief within
[15, 25] and [90, 100].
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Figure 2.29: Results with ETOPO2 and isotropic initial condi-
tions. We observe better convergence with an arc configuration
of observations than for a straight-line configuration, despite the
latter being in closer proximity to the initial condition region.

We consider analogous results with a anisotropic initial conditions in figure 2.30.
The main trends in the relative L2 error shown in 2.30(e) are similar to 2.29(e) in
that the grid formation has the lowest minimum relative error, 0.2%. However, in
this case the straight line configuration performs better than observations along
the arc, although both are convergent. This is not surprising as we have already
observed in section 2.4.4 that the arc and straight line configurations show rela-
tively worse convergence with a radially asymmetric surface wave and bathymetry
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Figure 2.30: Results with ETOPO2 and anisotropic initial con-
ditions.

features. The main difference across the two cases 2.29 and 2.30 is the relatively
better performance of the straight line formation in 2.30(e). Nevertheless, over-
all convergence for both isotropic and anisotropic initial conditions is relatively
equivalent.

2.6 Conclusion and further considerations

In this study, we implemented a data assimilation scheme for the 2-D SWE to
reconstruct the initial conditions, using observations of free surface wave height.
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Our objective was to find the optimal configuration of observations such that re-
construction error is minimised. We compared observations placed along straight
lines (i.e. characteristics of the surface wave with isotropic initial conditions and
flat bathymetry), in a grid array, and along concentric arcs. We compared results
where observations satisfied the minimum distance criterion between pairwise ob-
servations (2.4.1) from the 1-D results in [27], and when they did not. We analysed
the effect of a small or large number of observations, and the effect on convergence
when observations inside the initial conditions support were removed. The algo-
rithm was implemented for both isotropic and anisotropic true initial conditions,
both with both flat and non-flat bathymetry. Additionally, computational con-
siderations such as the low-pass filter (2.3.14) were utilised to investigate whether
they improved convergence.

Summarising the main results, we observed that a necessary (but not suffi-
cient) condition for convergence was that some of the pairwise observations are
sufficiently closely spaced to observe the minimum lengthscales of the initial con-
dition, i.e. satisfy equation (2.4.1). While this confirms results from the 1-D case
in part, the main difference is that for the 1-D assimilation, the spacing condi-
tion (2.4.1) was sufficient for convergence. We have demonstrated that this is not
the case (as for results in figure 2.8) in the 2-D assimilation, and we may require
a minimum number of points satisfying (2.4.1) in order to achieve convergence.
This could be due to the need to capture the shape of true initial conditions with
higher dimensionality. We recall that equation (2.4.1) was not analytically derived
for the 2-D case, and therefore is not expected to account for its complexities.
Nonetheless, it is a useful reference tool for the qualitative analysis in this study.

For the arc configuration, we observed that a higher number of observations was
necessary for convergence, whereas convergence was achieved for the straight line
and grid configurations with as few as 4 observation points. However, small Nobs

was insufficient for convergence when there were no observations within the support
of the initial conditions. Increasing the number of observation points improved
convergence for the grid and characteristic configurations when observation points
were removed from the support of the initial conditions. The grid configuration
showed the best convergence of the relative L2 error in the reconstructed initial
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conditions. We concluded that observations are not required within the support
of the IC, and that this can actually degrade the results due to over-fitting. The
error was O(10−4) with a flat bottom bathymetry, and O(10−3) with a Gaussian
bathymetry, and bathymetry from the ETOPO2v2 database. Convergence was
slightly worse for the characteristic configuration with anistropic initial conditions
and when bathymetry features were included, but overall all configurations showed
convergence (a relative error in the reconstructed initial conditions less than 10%)
with 88 observations for both isotropic and anisotropic initial conditions, and
with bathymetry. The main results for the analyses conducted in this study are
summarised in table 2.2.

Analysis
Lines
x = ±y

Grid Arc

Nobs = 36,
minimum spacing
∆x ≤ 0.1

0.3% 0.1% 18%

Large Nobs, ∆x = 0.07 0.2% 0.3% 2%
Small Nobs, ∆x = 0.07 0.4% 0.3% None
No observations within
support of φ(t),
small Nobs, ∆x = 0.07

18% 20% None

No observations within
support of φ(t),
large Nobs, ∆x = 0.07

7% 0.1% 2%

Table 2.2: Summary of the minimum relative L2 error for the
different analyses conducted in this study for observations along (i)
straight lines, (ii) in a grid array, and (iii) along arcs. Entries high-
lighted in red indicate non-convergent results. Convergence was
achieved for all configurations with no points within the support of
the true initial conditions φ(t), with large Nobs and ∆x = 0.07.

We now consider the feasibility of integrating these findings with a realistic
tsunami model. The primary questions are:
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1. Is it realistic to assume we have a sufficient number of observations for con-
vergence, for a grid array of observations centred on the initial conditions?

2. Is it logistically possible to have a sufficient number of observations of surface
wave heights for all possible initial conditions (i.e. associated with known
seismically active regions)?

Addressing the former question, we note that the most destructive tunamis are
those generated by shallow earthquakes, with epicentres along fault lines. Of these,
tectonic subduction at the plate boundaries are the most likely causes of tsunamis,
and subsequently their position coincides with the support of the initial conditions.
Schellart et al. [51] provide a comprehensive overview of global subduction sites as
well as the velocities of the respective plates. Concentrating observations around
subduction zones may sufficiently capture the propagation of waves triggered by
seismic events originating here. However, this is not necessarily exhaustive; As we
have indicated, the Wharton basin (which does not lie on a subduction zone) is a
potential zone for small tsunamis due to strike-slip earthquakes [23], and there are
many such regions. However, the most destructive tsunamis in recent history such
as the 2004 Indian ocean tsunami, have been due to earthquakes with epicentres
falling on subduction zones, and hence merit primary focus.

The scope of positioning observations at all possible such locations, brings us
to the second question, concerning the logistical feasibility of such configurations.
Requiring observation configurations around subduction zones with the highest
probability of tsunamis occurring requires a large number of observations. In the
present analysis we have demonstrated convergence with Nobs = 88 placed around
a single source of potential tsunamis, and in reality there are several such regions.
However as we previously noted, innovative methods have already been introduced
to generate observations even when existing networks are relatively sparse. For
example, introducing virtual observation data interpolated from neighbouring real
observations as demonstrated by Wang et al. [62]. These methodologies can be
implemented to pad the existing observational network, such that requirements
for Nobs are satisfied. Additionally, there have been significant advancements in
altimetry observations taken from geospatial satellite data. Since the Geodynam-
ics Experimental Ocean Satellite 3 (GEOS-3) satellite was first launched in 1975,
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remote sensing of ocean wave height from space was predicted to provide a quan-
tum increase in forecasting capabilities [5]. Recent projects such as the ESA’s
GLOBWAVE project (2010-2013) have expanded upon this, by providing access
to consolidated datasets on ocean waves to the scientific community for the pur-
pose of modelling and forecasting. In 2017 the Copernicus Marine Environment
Monitoring Service (CMEMS) released the first real-time global wave product,
containing wave height data collected via multiple satellites, available within three
hours of acquisition. Additionally, these observations have been collected and
made accessible for forecasting models, as in Ribal and Young [46]. With a global
spatial resolution of 7km × 7km, the observation network is very similar to the
optimal grid configuration observed in this study, and thus has the potential to
generate similar results.

While tsunami waves are characteristic of relatively small amplitudes, Smith et
al. [54] demonstrated that it is still possible to measure tsunamis using altimetry
data, and restrictions for forecasting in real time were due to the delay in access
to data. With innovated products such as the CMEMS data-sets accessible in
under three hours, these restrictions can be mitigated and real-time forecasting
capabilities for tsunamis using altimetry data are on the horizon.

In conclusion, we have developed a 2-D variational data assimilation algorithm
for reconstruction of initial conditions of surface waves, with the primary aim of
extending the results of the 1-D variational assimilation outlined in [27]. We have
confirmed the feasibility of variationally data assimilation for tsunami waves in
idealised 2D configurations, and have qualitatively demonstrated the necessary
and/or sufficient conditions for convergence of the reconstructed initial conditions
to the true shape. We have analysed different configurations of observations, their
spacing and their number, with a variety of bathymetry and initial conditions.
Importantly, we have extended the 1-D results regarding necessary conditions for
the maximum distance between pairwise observations as given by equation (2.4.1),
and have additionally shown that for the 2-D case this is not a sufficient condition.
We have demonstrated that when there are no observations within the support
of the initial conditions, a sufficiently large number of observations is a necessary
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condition for convergence. Based on these criteria, we have shown that conver-
gence can be achieved for observations arranged in straight lines, grids, and along
concentric circular arcs, for both isotropic and anisotropic initial conditions, and
with realistic bathymetry data. With advances in altimetry observation data avail-
ability and accuracy, there is scope to use these results for more accurate tsunami
models, with real observation data.

63

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Chapter 3

A variational data assimilation
scheme for bathymetry detection
from surface wave observations

3.1 Introduction

The process of observing ocean bathymetry using measurements of surface waves is
ill-posed, often exhibiting sensitivity to small amounts of noise in the system, and
susceptible to instability inherent in the inversion process [39]. Data assimilation
is one such inversion process, where observations of a true state are combined with
a mathematical model in order to recover missing data governing the system evo-
lution. The verification of a variational adjoint-based scheme as presented in this
study is challenging, especially without analytical solutions for the nonlinear shal-
low water system with non-zero bathymetry. Despite this, the effect of bathymetry
is essential when predicting tsunamis, since bathymetry variation modifies speed,
direction, and stability of the propagating wave [7]. Bathymetry information can
be either static or dynamic, where the latter accounts for shifts in the ocean floor
due to seismic activity.

The high number of degrees of freedom in this problem makes it difficult to
determine the criteria for optimal bathymetry reconstruction. We must consider
the shallow water system governing tsunami propagation, as well as parameters
such as amplitude and shape of the bathymetry, and initial conditions. This is in
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addition to calibration of the optimization scheme, and deriving optimal configu-
rations of the observation network. In this study we address two complementary
questions:

1. How accurately can bathymetry data be reconstructed from surface wave
measurements, and what determines the accuracy?

2. How accurate does the bathymetry data need to be model sea surface waves
to given accuracy?

We attempt to address these questions for an idealised 1-D case, as a first step
for more complex analyses. We quantify some key relationships between the initial
conditions and bathymetry amplitudes relative to the average fluid depth. We
also analyse the effect of number of observations on assimilation convergence. We
implement a Sobolev gradient smoothing technique (effectively a low-pass filter)
within our optimization scheme and illustrate its ability to reduce small-scale noise
present in the bathymetry reconstruction. We then investigate the consequences
of error in the bathymetry data on the resulting surface wave by observing trends
in the surface wave propagation error, as the amplitude of the initial condition,
amplitude of the bathymetry, and the number of observation points is varied.

Section 3.2 provides a review of the effect of bathymetry on surface waves, and
efforts to date to map ocean bathymetry, highlighting empirical, numerical and
theoretical approaches. In section 3.3, we provide a concise overview of the shal-
low water system and derivation of the first order adjoint data assimilation scheme
using principles of optimal control theory, and a summary of the algorithm. Sec-
tion 3.4 gives preliminary results for different choices of initial conditions and exact
bathymetry for the data assimilation scheme. This investigation reveals small-scale
noise in the optimal reconstruction. To reduce this noise, section 3.5 proposes a
low pass filter, which effectively removes higher frequencies in our reconstruction
by increasing the regularity of our estimate at each iteration, taking it from the
space L2(R) to H2(R). We discuss results of the smoothed optimisation scheme
and illustrate the removal of noise in the reconstructed bathymetry in multiple
cases. Section 3.6 analyses the relationships between the amplitudes of the initial
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conditions and bathymetry relative to the average depth, and attempts to formu-
late a relationship summarising certain necessary conditions for convergence. We
also analyse the effect of number of observation points on the optimal reconstruc-
tion. Finally, we provide a sensitivity analysis of the surface wave to errors in the
bathymetry reconstruction.

We observe that the low pass filter effectively reduces small-scale noise in the
bathymetry reconstruction for multiple bathymetry shapes. Additionally, a nec-
essary condition for convergence is that the amplitude of the initial conditions be
at least two orders of magnitudes smaller than the amplitude of the bathymetry.
Convergence is significantly improved by increasing the number of observation
points, however this is not a sufficient condition for convergence. Finally, we show
qualitatively that the surface wave exhibits low sensitivity to bathymetry recon-
struction error, motivating second order adjoint sensitivity analysis (in Chapter 4)
and global sensitivity analysis (GSA) (in Chapter 5), that investigate sensitivity
of the surface wave to observations and the amplitudes of the initial conditions
and bathymetry.

Conclusions are summarised in section 3.7, where we provide insights that moti-
vate analyses in chapters two and three, with more rigorous sensitivity analysis to
quantify effects of observations, and bathymetry shape and amplitudes on surface
wave predictions.

3.2 Review of bathymetry effects and previous
work

Bathymetry can have a significant impact on propagating shallow water waves,
by altering the depth-dependent wave-speed c =

√
gH, where h is the total fluid

depth. A demonstration of bathymetry effects is given in figure 3.1, where we
observe the surface wave with and without bathymetry effects. We observe that
both the speed and height of the surface wave are perturbed by bathymetry effects.
This is because a tsunami’s energy flux remains relatively constant, and so as the
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tsunami’s speed varies, so does its height (shoaling). Thus bathymetry can signifi-
cantly impact the arrival time of tsunami waves, and differing coastal communities
can receive differing forms of tsunami energy based on local bathymetry effects.
A detailed sea floor topography is an essential component of accurate tsunami
models.

Attempts to create an accurate map of oceanic bathymetry have been made by
direct measurements, or using information from propagating surface waves. Direct
measurement includes platforms like ship-based high frequency radars. However
many of these methods are either too costly or have poor spatial resolution. Often
it is easier to measure waves propagating on the free surface, and use this informa-
tion to create a map of the bottom topography from classical wave theory. This
is an inverse problem. In practice, this can be difficult as bathymetry maps are
extremely variable in quality and resolution, and often use inconsistent grids.

Wunsch [64] provides a detailed review of inverse methods for ocean circulation
models detailing methods for both deep and shallow water. In coastal regions,
depth-inversion methods have been refined to account for observational data in
water areas with large interference from human activities and muddy water [15].
Additionally, inverse methods are also routinely used in open channel flow mod-
elling, where bed topography is approximated using surface measurements [16].

A longstanding approach to solving this inverse problem uses the dispersion
relation of surface waves. Earlier works such Lubard et al. [32] used measurements
of the frequency-wavenumber spectrum made via optical images, obtained using
cameras mounted on an oceanographic research tower. Since then, various methods
using dispersion relations have been investigated, where bathymetry is measured
by fitting the theoretical dispersion relation for gravity waves (where depth is a
system parameter), and derived using inversion formulas.

More recent works include Dugan [11], extended by Piotrowski and Dugan [43],
where image sequences of shoaling ocean waves taken from an aircraft are used to
retrieve maps of water depth via the linear dispersion relation. The accuracy of
this method were found to within 5% if the waves are reasonably linear. However,
Grilli [22] builds on the research conducted by Dugan [11], arguing that the latter
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is limited due to neglect of amplitude dispersion effects, which accumulate through
increasing nonlinearity as waves approach breaking in shallow water. He compares
the linear frequency dispersion to a third order polynomial relationship between
wave speed c as a function of wavenumber k and depth h, showing that due to
amplitude dispersion effects, linear wave theory may greatly under estimate c,
and lead to poorer estimates of bathymetry inversion formulas based on a linear
dispersion relation.

These inversion algorithms are calibrated based on results of simulated periodic
waves over mild slopes in a two-dimensional ‘numerical wave tank’. This FNPF
(Fully Nonlinear based on Potential Flow) numerical wave tank methodology was
developed by Grilli and Subramanya [20] with wave generation and absorption
methods, to calculate speed and height variation for a number of shoaling waves
over slopes ranging from 1 : 35 to 1 : 70, as shown in Grilli [22]. It was demon-
strated in Grilli [22] to have higher accuracy in coastal simulations than the non-
linear shallow water equations.

Tsai and Yue [60] also demonstrated how FNPF numerical tanks allow calcula-
tion of “numerically exact” properties of shoaling wave up to breaking point, and
can provide accurate representation of surface waves independent of nonlinearity
parameters.

While these methods are based on an empirical formula for the nonlinear inver-
sion problem, Nicholls and Taber [36] derive an inversion formula for bathymetry
analytically, using the nonlinearity of the governing Euler equations for ideal fluid
flow to detect bathymetry information. The governing equations for the surface
wave are expressed as a Hamiltonian system, and a Dirichlet-to-Neumann Opera-
tor (DNO) is applied to the system in order to remove some implicit dependencies.
The result is a single equation of the wave height at the surface in terms of the
bathymetry, and subsequently an inversion is derived. However, because their
inversion formula is linear, they are required to assume a small amplitude for
the bathymetry and their numerical results only consider normalised bathymetry
amplitudes of 0.07 and 0.025.

Additionally, surface waves can be used to characterize a rapid dynamic change
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in bathymetry, rather than approximate static bathymetry. Jang et al. [26] take a
similar approach to Grilli [22] to the related problem of measuring a sudden shift in
the sea floor, e.g. due to seismic activity, using measurements of the surface waves.
Their inversion formula however, is based on the same approach as Dugan [11];
using the linear dispersion relation with bathymetry as a parameter, and using
transforms to show that the problem becomes one of solving an integral equation
involving the known surface wave data. The uniqueness of this solution is demon-
strated, and analysis concludes that there is a lack of stability in the measurement
of the bottom displacement, and a question as to whether it depends continuously
on the wave elevation. They overcome this using regularisation methods itera-
tively as a stabilisation technique, and show numerical convergence to the integral
solution.

Each of the aforementioned methodologies has its strengths and weaknesses.
Piotrowski and Dugan [43] and Grilli [22] both discuss practical measurement
techniques of surface waves, whereas theoretical approaches such as Nicholls and
Taber [36], and Jang et al. [26] show high degree of convergence, but assume full
knowledge of the surface wave, and do not address the complexities involved in
obtaining accurate measurements in a real-world scenario, such as noise or incom-
plete measurements. Nicholls and Taber [36] state that their future objectives aim
to find an effective way of extracting wave fields from full observational data.

In summary, while the theoretical results from such models are promising, their
applicability to real-world measurements has not been established. In the present
study we attempt to combine theoretical results with realistic assumptions. We
consider 1-D geometry as a first step to validate the basic approach and investigate
fundamental questions. Assuming a finite set of observations, we analyse the
effects of different bathymetry features on convergence, as well as the effect of
different amplitudes and shape of the initial condition. These effects have not
been considered in detail in the reviewed works.

Another issue is the difference between the inversion formulas derived for linear
and nonlinear systems. Grilli [22], and Nicholls and Taber [36] give results ac-
counting for nonlinearity and the resulting dispersion effects, whereas Piotrowski
and Dugan [43], and Jang et al. [26] are restricted to linear dispersion relations for
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gravity waves. However, there remains the question of whether the empirical for-
mulation of the inversion as derived by Grilli [22] is as rigorous as the analytically
derived solution of Nicholls and Taber [36]. Both assume periodic waves, but the
practical limitations on the accuracy of the free surface data make it difficult to
assess the relative efficacy of these two methods. Ultimately, a complete evaluation
of these approaches will depend on research which systematically compares inver-
sion formulas based on the nonlinear governing equations for free surface wave
propagation, as well as addresses the practical issues of collecting realistic field
wave data.

In the present study, we approach the bathymetry estimation problem from a
variational data assimilation perspective, with the goal of formulating an algo-
rithm for the 1-D nonlinear shallow water system that predicts bathymetry from a
small set of observation. We neglect rotational Coriolis effects and assume a static
bathymetry with lateral boundary conditions. Our approach does not involve in-
version of the dispersion relation. Instead we formulate an optimisation problem,
seeking to minimise the error between observations and forecasts of the free surface
wave. The analytical derivation of the variational algorithm differs from the empir-
ical techniques introduced by Grilli [22] and is derived for the infinite-dimensional
case. The use of sparse observations aims to provide a relatively more realistic set
of assumptions than Nicholls and Taber [36], who require complete observations
of surface wave fields.

Our aim is to use conclusions of this idealised case, to better understand the
role of model parameters and the observation operator on bathymetry reconstruc-
tion. Our goal is to take the qualitative results observed here, and use them as
a benchmark for more rigorous sensitivity analyses based on second order adjoint
and Global Sensitivity Analysis approaches in Chapters 4 and 5. Consequently,
our objective is to highlight results and techniques than can improve existing
methodologies for accurate tsunami prediction .
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Symbol Definition
η(x, t) General solution for the height perturbation
φ(x) General initial condition, i.e., φ(x) := η(x, 0)
η̂ Amplitude of the initial conditions φ(x)
η(t)(x, t) True solution for the height perturbation η(x, t)
β(t)(x) True bathymetry
β̂ Amplitude of the true bathymetry β(t)(x)
β(g)(x) Starting guess for bathymetry
β(n)(x) Approximate bathymetry at iteration n of the assimilation algorithm
β(b)(x) Best approximation to the bathymetry (e.g., fixed point of iterations)
y(o)(t) Observations of the true height perturbation at positions {xj}, j = 1, ..., Nobs

η(f)(x, t) Approximate (“forecast”) solution generated by approximate bathymetry
J (n) Cost function at iteration n
(·)∗ Adjoint

Table 3.1: Notation used in the derivation of data assimilation
scheme of the SWE to find the optimal bathymetry, using same
format as given in Kevlahan et al. [27].

3.3 Derivation of adjoint based data assimilation
scheme

The nonlinear shallow water equations are a coupled system of equations for trav-
elling free surface waves. They are derived from the two-dimensional Euler equa-
tions, under the assumption that the wavelength λ of free surface waves is much
larger than the total ocean depth h, allowing us to average the Euler equations over
the vertical dimension. The fluid column height becomes h = H + η(x, t)− β(x),
where H is the average depth, η is the perturbation of the free surface, and β

is time-independent sea floor perturbation from zero, i.e. the “bathymetry”. Ap-
propriate vertical averaging gives the irrotational, constant density incompressible
one-dimensional nonlinear shallow water equations,
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∂η

∂t
+ ∂

∂x

(
(H + η − β)u

)
= 0, (3.3.1a)

∂u

∂t
+ ∂

∂x

(1
2u

2 + gη
)

= 0, (3.3.1b)

η(x, 0) = φ(x), (3.3.1c)

u(x, 0) = 0. (3.3.1d)

We assume that the initial conditions φ(x) is compactly supported, and that we
have periodic boundary conditions on some domain Ω = {x;x ∈ [−L,L]}. Our
objective is to implement a variational data assimilation scheme constrained by
(3.3.1) in order to estimate the bathymetry β(x). We wish to derive an optimal
estimate of the bottom topography using a finite number of observations of the
free surface perturbation, for all times t in our temporal domain [0, T ]. To simplify
further, we normalise the system (3.3.1) by the average height H and gravitational
acceleration g such that the wave speed c =

√
gH = 1.

We can quantify our objective as the partial differential equation (PDE) con-
strained minimisation of some cost function J ,

J (β) = 1
2

∫ T

0

M∑
i=1

[
η(f)(xj, t; β)− y(o)

j (t)
]2
dt, (3.3.2)

where y(o)
j (t) are the observations of the true free surface perturbations taken at

positions xj, j = 1, ..., Nobs, and η(f)(xj, t; β) is the solution of our system at xj
generated by the bathymetry β. We define the optimal bathymetry β(b) by

β(b) = argminβ∈L2(Ω)J (β). (3.3.3)

This is equivalent to solving

∇L2J (β(b)) = 0. (3.3.4)

As direct computation of this optimization problem is too computationally expen-
sive, we formulate a dual adjoint system in terms of Lagrange multipliers (also
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called adjoint variables), that allow us to find β(b) efficiently [19].

The first variation of J , given some arbitrary perturbation β′ of size ε is given
by the Gâteaux derivative,

J ′(β; β′) = lim
ε→0

J(β + εβ′)− J(β)
ε

. (3.3.5)

Expanding the perturbation to O(ε), we can reformulate (3.3.5) as

J ′(β; β′) = −
∫ T

0

(
η(f)(xj, t; β)− y(o)(t)

)
η′ dt, (3.3.6)

where (η′, u′) are the solutions of the perturbed system of (3.3.1) given β′, found by
linearising about (η, u) and extracting the O(ε) system. As the Gâteaux derivative
is a directional derivative in the direction of the perturbation β′, we can express
(3.3.6) as the inner product between ∇J and β′,

J ′(β; β′) = 〈∇J , β′〉L2(Ω) =
∫ L

−L
∇L2J β′ dx. (3.3.7)

Then the following forms of J (β; β′) are equivalent,

J ′(β; β′) = −
∫ T

0

(
η(f)(xj, t; β)− y(o)(t)

)
η′ dt =

∫ L

−L
∇L2J β′ dt. (3.3.8)

We form the Lagrangian associated to linearised system for (η′, u′) with some
arbitrary adjoint variables (η∗, u∗),

∫ T

0

∫ L

−L
η∗(x, t)

[
∂η′

∂t
+ ∂

∂x

(
(η′−β′)u+(η+1−β)u′

)]
+u∗(x, t)

[
∂u′

∂t
+ ∂

∂x

(
η′+uu′

)]
dx dt = 0.

(3.3.9)
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Integrating by parts in time and space reduces (3.3.9) to

0 =−
∫ T

0

∫ L

0
η′

∂η∗∂t + u
∂η∗

∂x
+ ∂u∗

∂x

+ u′

∂u∗∂t + (η + 1− β)∂η
∗

∂x
+ u

∂u∗

∂x

− β′u∂η∗∂x dxdt

+
∫ T

0
η∗
[
(η′ − β′)u+ (η + 1− β)u′

]∣∣∣∣L
−L
dt +

∫ T

0
u∗
[
η′ + uu′

]∣∣∣∣L
−L
dt

+
∫ L

−L
η∗η′

∣∣∣∣
t=T

dx −
∫ L

−L
η∗η′

∣∣∣∣
t=0
dx

+
∫ L

−L
u∗u′

∣∣∣∣
t=T

dx−
∫ L

−L
u∗u′

∣∣∣∣
t=0
dx. (3.3.10)

Due to periodicity the boundary terms vanish. If we choose (η∗, u∗) as the solution
to

∂η∗

∂t
+ u

∂η∗

∂x
+ ∂u∗

∂x
=

(
η(f)(x, t; β)− y(o)(t)

)
δ(x− xj), (3.3.11a)

∂u∗

∂t
+ (1 + η − β)∂η

∗

∂x
+ u

∂u∗

∂x
= 0, (3.3.11b)

η∗(x, T ) = 0, (3.3.11c)

u∗(x, T ) = 0, (3.3.11d)

then (3.3.10) is reduced to

∫ T

0

∫ L

0

(
η(f)(xj, t; β)− y(o)(t)

)
η′ dxdt =

∫ T

0

∫ L

0
β′u

∂η∗

∂x
dxdt, (3.3.12)

and (3.3.11) are called the adjoint equations. We note that the normalised
mean depth H = 1 is preserved in the adjoint system. Combining this result with
the equivalence given by (3.3.8), we have

∫ L

−L

∫ T

0
u
∂η∗

∂x
β′ dt dx =

∫ L

−L
∇L2J β′ dx, (3.3.13)

and thus, since our functional is linear and bounded and belongs to the space of
square-integrable functions, we can use the Riesz representation theorem to extract
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∇L2J , giving

∇L2J =
∫ T

0
u
∂η∗

∂x
dt. (3.3.14)

Losch andWunsch [31] utilise a similar adjoint based minimisation for their bathymetry
detection analysis, however they do not consider the infinite-dimensional case as
we have here. The benefits of our approach is that it is independent of the dis-
cretisation used in its numerical implementation.

To verify that our formulation for ∇L2J is correct, we define the Kappa test

κ(ε) = lim
ε→0

1
ε

J(β + εβ′)− J(β)
〈∇L2J , β′〉L2(Ω)

, (3.3.15)

where κ(ε) is the quotient of the two equivalent forms for the variation J (β; β′)
we used in the above derivation. Given some perturbation β′, if we have correctly
defined ∇L2J , then as ε → 0, we should see κ(ε) → 1. The results of the kappa
test for different cases are presented in sections 3.4 and 3.5.

The minimiser β(b) yielding ∇L2J = 0, is computed using an steepest descent
algorithm given some starting guess β(g). Using a line minimisation algorithm to
find the optimal step size at each iteration, this can be summarised as

β(n+1) = β(n) − τn∇L2J
(
β(n)

)
(3.3.16)

where

τn = argminτ∈R J
(
β(n)(x)− τ∇L2J

(
β(n)(x)

))
. (3.3.17)

The optimal bathymetry reconstruction β(b) is the fixed point of this iterative
scheme. The steps for the process are outlined in algorithm 2.
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Algorithm 2 Data Assimilation Algorithm for Bathymetry Estimation
1: Pick initial estimate for β(g).
2: Solve the initial value problem for (u, η) from t = 0 to t = T .
3: Solve adjoint problem for (u∗, η∗) backwards in time from t = T to t = 0 to

find η∗(x, t).
4: Approximate

∫ T
0 u∂η

∗

∂x
dt at every point in spatial domain Ω.

5: Define ∇L2J =
∫ T

0 u∂η
∗

∂x
dt.

6: Compute the optimal time step τn through a line minimisation algorithm.
7: Use a gradient descent algorithmn to compute β(n+1)(x) = β(n)(x) −
τn∇L2J

(
β(n)(x)

)
.

8: Repeat until ‖ ∇L2J ‖< ε for some small ε (‖
∫ T

0 u∂η
∗

∂x
dt ‖≈ 0).

9: Set β(b)(x) := β(n)(x).

3.4 Initial results using L2 gradients

Case Bathymetry Initial conditions
I Gaussian Gaussian
II Sandbar Gaussian
III Gaussian Sinusoidal

Table 3.2: Cases considered for data assimilation algorithm 2.

To verify the numerical implementation of algorithm 2, we consider three cases,
characterised by different initial conditions φ(x) and the true bathymetries β(t)(x).
These cases are represented in Table 3.2, and shown in fig 3.1. These cases were
chosen to analyse convergence in scenarios where the support of φ(x) and the
support of β(t)(x) overlap or are disjoint. Additionally, we want to evaluate the
effect of a surface wave with compactly supported initial conditions (cases I and II)
or periodic initial conditions (case III). We consider Gaussian and sandbar profiles
for the bathymetry, similar to Nicholls and Taber [36], as a 1-D approximation
for peaks and ridges characterising ocean bathymetry. The primary application
of this study is tsunami modelling given some optimal reconstruction of missing
bathymetry data, hence we are primarily interested in a non-periodic propagating
surface wave, as in case I and case II. However, including the periodic initial
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conditions case III in our analysis helps understand the effects of the observation
operator and model parameters, on the optimal reconstruction.

We implement these schemes using a second order finite difference approxima-
tion in space, and a four stage third order Runge-Kutta scheme [57] in time. The
resolution of our spatial grid is N = 512, and our spatial domain is Ω = {x ∈
R;−L ≤ x ≤ L}.

The system is integrated for t ∈ [0, T ]. In the variational data assimilation
for the initial conditions reconstruction in Kevlahan et al. [27], the system is
integrated in time for t ∈ [0 T ], where T = 2 is chosen such that the free surface
wave does not reach the boundary. This was appropriate when our objective
was to reconstruct the initial conditions of a tsunami wave in real time. For the
bathymetry assimilation, as we have no constraints on the assimilation time, the
final time is chosen to be T = 2L, where boundary effects were present. Periodic
boundary conditions are artificial in the sense that they are not a substitute for
realistic ocean conditions and are not intended to simulate coastlines. However
they are appropriate in our idealised 1-D case as they simplify the dynamics, and
do not violate underlying principles. In our case we restrict the choice of free
surface wave to (i) a travelling Gaussian, and (ii) a sinusoidal wave. The latter
is periodic and is not significantly altered by the boundary conditions. For the
Gaussian initial conditions, the wave is effectively reflected at the boundary, and
consequently is a wave travelling in the opposite direction. We observed that there
were no errors generated at the boundaries that propagated inside the domain
and impacted results. The main conclusions of this study were not altered by
increasing the assimilation time from T = 2 to T = 2L, however convergence of
the reconstructed bathymetry improved with the longer assimilation time.
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Figure 3.1: (a), (b), & (c) show the three test cases for
bathymetry β(x) and free surface perturbation initial conditions
η(x, 0) for the data assimilation scheme. The green circles repre-
sent the observations, with Nobs = 5 and y

(o)
1 = 0.1L. Note that

while the spatial distribution is correct, amplitude of the initial
conditions η̂, amplitude of the bathymetry β̂, and average depth H
are not to scale in these diagrams, as η̂ was restricted to 1% of β̂
across most of the numerical tests. Plots (d), (e) & (f) show the
propagating free surface wave at t = 1.95 with flat bottom (blue)
and bathymetry (red) for each case I, II and III respectively, to
highlight the effect of bathymetry on surface wave propagation.

We integrate the system (3.3.1) on a staggered grid where u(x, t) values are
located at grid edges and β(x) and η(x, t) are located at grid centres. Periodic
boundary conditions are imposed at x = L and x = −L where L = 3. We assume
we have no background information for bathymetry a priori, and set β(g)(x) = 0.

The results in fig 3.2 illustrate the convergence of the data assimilation scheme
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for each case outlined in table 3.2, as well as the convergence of the kappa test
(3.3.15). In all results we take a relative L2 error less than 10% as the threshold for
“converged” bathymetry. Let us first consider the convergence of the cost function
(3.3.2) to zero. Ultimately the purpose of the optimization scheme is to minimise
the error between the observations of the true height perturbation y(o)(t) and the
approximated solution, η(f) given the optimal bathymetry β(b). Accurate recon-
struction of the bathymetry is predicted to be a consequence of minimising the
error. However, due to the ill-posed nature of the problem, convergence of the cost
function may not guarantee accurate bathymetry reconstruction. Indeed, the re-
sults highlight the difference between these two objectives. We see in figure 3.2(b),
that the relative decrease in the cost function over 500 iterations of algorithm 2 is
greatest for case I at O(10−6), and thus the algorithm converges successfully for
this case. The relative decrease in J (n) for cases II and III is not less than O(10−2)
and O(10−4) respectively. We show the errors in the reconstructed bathymetry β(b)

corresponding to these cost functions in figure 3.2(c).

It is clear that for each case, convergence of the cost function does not necessar-
ily correspond to the true bathymetry β(t). Only in Case I does the reconstructed
bathymetry converge to the true bathymetry, although even in this case the er-
ror is relatively large, 0.04. Figures 3.2(d), (e) and (f) give the reconstructed
bathymetry for each case. It is immediately clear that the primary source of error
is small-scale noise in the reconstruction. For case I, we see that although the
Gaussian bathymetry is well-resolved, there is still small-scale noise present in the
tails. However, for case III where we assume periodic initial conditions φ(x), the
error in the reconstructed bathymetry is large, and we conclude that the observ-
ability of the bathymetry by sensors measuring a sinusoidal propagating surface
wave is significantly lower than that of a travelling Gaussian wavefront, as in case
I.
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Figure 3.2: Results for iterative data assimilation scheme outlined
in algorithm 2, with ∇J ∈ L2(Ω). Only in case I do we consider
that the assimilation has reconstructed the bathymetry with suffi-
cient accuracy (< 10% relative error). (a) shows convergence of the
kappa test for the three cases. (b) shows the relative reduction in
the cost function after 500 iterations. (c) shows the relative error
in the reconstructed bathymetry. (d), (e) & (f) show the optimal
reconstructed bathymetry for each case. We observe noise in the
reconstruction for each case, especially in case II.

For case II, it is interesting to note that the noise is larger scale on the front
slope of the bathymetry (x < 0) than the back slope of the bathymetry (x < 0).
Since the observation points are placed on the right hand side of the Gaussian
initial conditions φ (as shown in figure 3.1), and as such there are no observations
of the left propagating wave. Additionally, unlike cases I and III, the observations
are not positioned before the support of the bathymetry. This could suggest that
observations for x > 0 may not be able to sufficiently capture the bathymetry
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effects on the left-propagating wave. We give a deeper analysis of sensitivity to
the placement of the observations and the resulting effect on reconstruction error
in chapters 2 and 3.

We expect that if the kappa test converges, the error of the associated varia-
tional algorithm should also converge (even though this is not necessary). However,
we see in figure 3.2(a) that the best convergence for the kappa test is for case III,
whereas figure 3.2(c) shows that case III actually has the least accurate bathymetry
reconstruction.

In the following section we show that an optimisation scheme where the gradient
of the cost function (3.3.14) exists in L2(Ω) is not smooth enough to obtain classical
solutions to (3.3.1), and thus in section 3.5 we analytically derive a low pass filter
by smoothing our gradient such that ∇J ∈ H2(Ω) and provide results of the
numerical implementation. Using smoother H2 gradients largely eliminates the
small scale errors in the reconstructed bathymetry we have seen here using L2

gradient.

3.5 Smoothing using Sobolev gradients

In system (3.3.1), the bathymetry is incorporated via the (βu)x term. Thus, a
classical solution to this system requires smoothness not just on β, but also its
derivative. Because of this, we require the gradient (3.3.14) to be in the Sobolev
space H2(Ω), which imposes smoothness conditions on βx as well as β. The fol-
lowing derivation of the corresponding Sobolev gradient is adapted from Protas
[45].
H2(Ω) is a Sobolev space equipped with the inner product

〈v1, v2〉H2(Ω) = 〈v1, v2〉L2(Ω) + l21

〈
∂v1

∂s
,
∂v2

∂s

〉
L2(Ω)

+ l42

〈
∂2v1

∂s2 ,
∂2v2

∂s2

〉
L2(Ω)

=
∫ L

s=−L

[
v1v2 + l21

∂v1

∂s

∂v2

∂s
+ l42

∂2v1

∂s2
∂2v2

∂s2

]
ds, (3.5.1)

where v1, v2 ∈ H2(Ω), and l1, l2 ∈ R are the length scale parameters used
to adjust the regularity. As long as l1, l2 are finite, by the Riesz representation
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theorem,

J ′(β; β′) = 〈∇L2J , β′〉L2(Ω)

= 〈∇H2J , β′〉H2(Ω)

= 〈∇H2J , β′〉L2(Ω) + l21

〈
∂∇H2J
∂s

,
∂β′

∂s

〉
L2(Ω)

+ l42

〈
∂2∇H2J
∂s2 ,

∂2β′

∂s2

〉
L2(Ω)

.

(3.5.2)

In order to extract the gradient as we did in (3.3.13), we need to isolate the β′

term, and define an equivalent expression for ∇L2J . And so we integrate by parts
as before, on the second and third term in (3.5.2). We impose periodic conditions
in space to eliminate the resulting boundary terms, and subsequently we have

〈∇L2J , β′〉L2(Ω) = 〈∇H2J , β′〉H2(Ω)

=
∫ L

s=−L

[
∇H2J − l21

∂2∇H2J
∂s2 + l42

∂4∇H2J
∂s4

]
β′ ds. (3.5.3)

Since this holds for every arbitrary perturbation β′, the process of smoothing
the gradient from L2(Ω) to H2(Ω) is equivalent to solving the inhomogeneous
boundary value problem

∇L2J (s) = ∇H2J (s)− l21
∂2∇H2J (s)

∂s2 + l42
∂4∇H2J (s)

∂s4 , (3.5.4a)

∂(2i+1)∇H2J (s)
∂s(2i+1)

∣∣∣∣
s=L

= ∂(i)∇H2J (s)
∂s(i)

∣∣∣∣
s=L

, i = 0, 1. (3.5.4b)

In Fourier space, solving (3.5.4) is simplified to

̂(∇H2J )k = 1
1 + l21k

2 + l42k
4
̂(∇L2J )k. (3.5.5)

This is effectively a low pass filter applied to the L2 gradient. We can make this
filter as aggressive as needed by “tuning” l1 and l2, where the case l1 = l2 = 0
is equivalent to the L2 gradient. For our smoothed data assimilation algorithm,
we set l1 = 0 and calibrate l2, as this gives us the desired regularity and reduces
the number of degrees of freedom in the problem. We now consider the numerical
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Algorithm 3 Data Assimilation algorithm with low pass filter for bathymetry
estimation
1: Pick initial estimate for β(g).
2: Solve the initial value problem for (u, η) from t = 0 to t = T .
3: Solve adjoint problem for (u∗, η∗) backwards in time from t = T to t = 0 to

find η∗(x, t).
4: Approximate

∫ T
0 u∂η

∗

∂x
dt at every point in spatial domain Ω.

5: Define ∇L2J =
∫ T

0 u∂η
∗

∂x
dt.

6: Apply low pass filter (3.5.5) to ∇L2J to get ∇H2J
7: Compute the optimal time step τn through a line minimisation algorithm.
8: Use a gradient descent algorithmn to compute β(n+1)(x) = β(n)(x) −
τn∇H2J

(
β(n)(x)

)
.

9: Repeat until ‖ ∇H2J ‖< ε for some small ε (‖
∫ T
0 u∂η

∗

∂x
dt ‖≈ 0).

10: Set β(b)(x) := β(n)(x).

implementation of this updated optimization scheme, summarised in algorithm 3.
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Figure 3.3: The gradient of J (β), obtained after one iteration
for case III, for H1 and H2 Sobolev smoothing compared to the
(unsmoothed) L2 gradient.

Before we present the results of the data assimilation scheme, we illustrate
the efficacy of the filtering in fig 3.3. We compare the gradient in L2 with the
gradient in H1 and H2 obtained after smoothing for case III. The purpose of this
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comparison is to illustrate that requiring ∇J ∈ H2 is more effective at reducing
noise than H1 smoothing, where the H1 inner product is equivalent to (3.5.1) with
l2 = 0. In both cases, we try to choose optimal values of l1 (for H1) and l2 (for
H2) to filter out higher frequencies that contribute to the noise in the bathymetry
reconstruction, without also getting rid of necessary information for observing the
bathymetry propagated by the lower wavenumbers. We observe in figure 3.3 that
the H1 gradient filters out the noise, but also reduces the amplitude of the signal
peaks, whereas the H2 gradient filters the noise and is closer to the original signal
shape. We therefore conclude that H2 Sobolev smoothing is optimal.

The results of algorithm 3 are given in fig 3.4. The plots (b), (e), and (h) show
the relative error in the reconstruction for cases I, II, and III respectively. The
first thing we note is that in each case, the error is lower for the results with H2

smoothing compared to results in figure 3.2. Especially with cases I and II, we
observe the error decreases by at least an order of magnitude. The reconstructed
bathymetry shown in (c) and (f) illustrates how the noise has been greatly reduced,
and for case I is almost negligible. For case II we see some noise remaining on the
plateau of the sandbar, however it is a drastic improvement from the unfiltered
result. This increase is reflected in the kappa test results given in (a) and (d)
for case I and II respectively, though the increased convergence does not scale
proportionally with the error, as we saw before in fig 3.2.

However, for case III there is no increase in convergence for the kappa test
in figure 3.4(a) , and while the reconstruction of β(x) has less small-scale noise,
we observe that amplitude of the Guassian in figure 3.4(f) is significantly smaller
than the exact bathymetry. These results did not improve with a more restrictive
choice of l2, leading us to consider whether additional factors such as the system
parameters and placement of the sensors y(o)(t) affect the observability of the non-
localised bathymetry. In section 3.6 we attempt to analyse some of these effects.
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Figure 3.4: Results for assimilation scheme with Sobolev H2

smoothing applied to∇L2
J . (a) shows the convergence of the kappa

test, (b) shows the convergence of the cost function, (c) shows the
relative L2 error ‖ β(t) − β(n) ‖2L2/‖ β(t) ‖2L2 between the exact
and reconstructed bathymetry at each iteration. (d), (e), & (f)
shows the reconstructed bathymetry with H2 smoothing and the
exact bathymetry for cases I, II and III respectively. Convergence
is improved compared to results without smoothing given in figure
3.2.

3.6 Necessary conditions on model parameters
and the observation operator

In the previous section we showed that using smoother H2 gradients is necessary to
avoid small scale errors in the reconstructed bathymetry. We now conduct a qual-
itative analysis to understand the effect of model parameters and the observation
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operator on the convergence of the data assimilation. The qualitative results ob-
served here motivate the more rigorous analyses in Chapter 4 and Chapter 5, using
second order variation and global sensitivity analyses respectively. All subsequent
results are for J (β) ∈ H2.

3.6.1 Necessary conditions on parameters

For the purpose of this study, we restrict our parameter analysis to understanding
the relationship between the amplitude of the initial conditions η̂, the amplitude of
the true bathymetry β̂, and the average depth H, which we have normalised to 1.
The number of observation points Nobs is 45, and they are positioned as in figure
3.1 with y(o)

1 = 0.1L. As this research is focused on improvement in tsunami predic-
tion, our objective is to understand how surface waves propagate over bathymetry,
and these factors play an important part when considering the scales involved.
Tsunamis are characterised by their long wavelength, often reaching 100-150km in
the deep oceans, and their relatively small amplitude can be between 0.1 − 1m,
making them often imperceptible. Even when approaching coastlines the ampli-
tude of the surface wave can be 20− 50m whereas the wavelength may still be up
to 2km. As the energy flux of the wave speed is dependent on depth-dependent
wave speed c =

√
g(H + η(x, t)− β(x)), the amplitude and smoothness of the

bathymetry can have a big impact on tsunami propagation [8]. Additionally, in
deeper water when h is larger the effects of bathymetry are smaller. Consequently
we also investigate the effectiveness of free surface observations in reconstructing
bathymetries with amplitudes much smaller than the average depth H.

We therefore give special consideration to case I, Gaussian initial conditions
with Gaussian bathymetry as shown in figure 3.1(a). We wish to highlight how
convergence is affected when (i) the ratio η̂/β̂ is increased, and (ii) the normalised
bathymetry amplitude β̂/H varies. As H = 1, for the latter we may consider
values of β̂.

We investigated convergence of the kappa test and relative error in the re-
constructed bathymetry when η̂/β̂ is O(10−1) (“large”), O(10−2) (“small”), and
O(10−3) (“very small”) respectively. The experiments are conducted for β̂ =
O(10−1) and for β̂ = O(10−3). The results of the six configurations are presented
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in table 3.3. For each case we provide the error in the kappa test |κ(ε)−1| and the
relative L2 error in the reconstruction. We set a tolerance for the kappa test, such
that all values of |κ(ε) − 1| ≥ 10−2 are non-convergent. The entries highlighted
in red indicate cases where the optimisation algorithm became unstable and the
gradient ∇J failed to converge to zero or became unbounded.

η̂

β̂
= O(10−1) η̂

β̂
= O(10−2) η̂

β̂
= O(10−3)

β̂ = O(10−1)
|κ(ε)− 1| = 3× 10−2 |κ(ε)− 1| = 2.7× 10−2 |κ(ε)− 1| = 4.2× 10−4

Failed to converge L2 Error = 1.3× 10−3 L2 Error = 4.6× 10−3

β̂ = O(10−3)
|κ(ε)− 1| = 2.5× 10−3 |κ(ε)− 1| = 3× 10−2 |κ(ε)− 1| = 2.7× 10−3

L2 Error = 7.4× 10−3 Failed to converge Failed to converge

Table 3.3: Analysis of six experiments for case I where η̂/β̂ and β̂
are varying orders of magnitude. The results show the convergence
error in the kappa test and the error reconstruction error ‖ β(t) −
β(b) ‖2L2(Ω)/‖ β

(t) ‖2L2(Ω). Entries highlighted in red denote non-
convergent cases.

We observe there are two cases where convergence was achieved (the only cells
not highlighted in red): (i) when η̂/β̂ = O(10−1) (“large”), β̂ = O(10−3) (“very
small”), and (ii) when η̂/β̂ = O(10−3) (“very small”), β̂ = O(10−1) (“large”).
We note that for accurate and stable results we require either η̂/β̂ to be small or
β̂ to be very small (O(10−3)), however when both are very small (O(10−3)) the
results are non-convergent. We also note that convergence fails when both are
large (O(10−1)). Additionally, we see that when η̂/β̂ = O(10−2), β̂ = O(10−1)
the bathymetry reconstruction error is relatively low, despite the kappa test error
being higher than the set tolerance, suggesting that the latter may be relaxed to
permit |κ(ε)− 1| = O(10−2).

Consequently the only admissible cases where the reconstruction error converges
are when (i) η̂/β̂ ≤ O(10−2), or (ii) β̂ is small enough that the ratio between η̂

and H is O(10−3) or smaller as a consequence.

87

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

Having explored the relationship between η̂/β̂ and convergence, we now consider
the effects of the amplitude of the bathymetry β̂ when η̂ is fixed. We analyse
convergence of algorithm 3 for amplitudes ranging from 1% of the average depth
to 30%. The results are summarised in figure 3.5, and we have included analysis
for cases II and III for more insight. In all cases we fix η̂ to be 0.001, and Nobs = 45.
We see that for case I, figure 3.5(a) indicates that the error is highest when β̂ is
small, however it shows a steady decrease even when β̂ is 30% of H. Case III
shows a similar trend, even though the error is two orders of magnitude smaller
than for case I. For case II, the error remains stable at approximately O(10−2) for
all values of β̂.

As bathymetry effects on the surface wave decrease when the fluid depth h

is large, it is reasonable that higher amplitudes of bathymetry lead to a slight
decrease in the reconstruction error, as observability of the bathymetry by the
surface wave may improve. However, to consider the effects of higher amplitudes
of the bathymetry in tsunami models, it is logical to analyse the error in the
surface wave error given the reconstructed bathymetry as β̂ increases. Results for
this analysis are given in section 3.6.3.
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Figure 3.5: The relative error in the bathymetry reconstruction
‖ β(t) − β(b) ‖L2(Ω)/‖ β(t) ‖L2(Ω) (where Ω = [−L,L]), shown for
different amplitudes β̂, with amplitude of initial conditions η̂ =
0.001. Note that case III has barely converged for any value of
bathymetry amplitude.
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Based on the results of table 3.3, we suggest that for situations like case I
(i.e. a localized surface wave propagating over a compact bathymetry feature of a
similar size) a necessary condition for our data assimilation scheme is that η̂/β̂ be
at most O(10−2) when bathymetry amplitudes are large (O(10−1)). We observed
in figure 3.5 that increasing the amplitude of the bathymetry does not effect the
error in the bathymetry, however further analysis is needed on the resulting error
in surface wave given the reconstructed bathymetry, in order to quantify the effects
of bathymetry in tsunami propagation.

3.6.2 Observation Operator

The observation operator (i.e. the number and location of observations of sea
surface height) used in our optimisation scheme is significant, as we have direct
control over the number and location of sea surface sensors in real world simula-
tions. We are therefore interested in configuring observation points to optimize
convergence to the exact bathymetry.

We consider the effect of the number of observation points on convergence.
In fig 3.6 we present the results of algorithm 3 for 5, 10, 20, and 25 observation
points. Each configuration is a set of equidistant points, with the first point
placed at x = L/10. For cases I and II the first point is within the support of
the Gaussian initial condition. We show the convergence of both the cost function
and the relative L2 error. In all three test cases, the general conclusion is that
more observation points produces better convergence. For cases I and II the error
decreases by approximately two orders of magnitude as Nobs is increased from 5
to 45. However, none of the results for case III converge, and the error remains
greater than 10% for all values of Nobs.
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Figure 3.6: Relative cost function and relative L2 error for differ-
ent numbers of observation points.

To better understand the effects of Nobs, in figure 3.7 we present the recon-
structed bathymetry for each case, with Nobs = 5 and Nobs = 45 respectively. We
observe in figure 3.7(a) that even with Nobs = 5, the bathymetry is well-resolved,
and increasing the number of observations successfully eliminates some small-scale
noise at the base of the Gaussian.

In figure 3.7(b) it is clear that Nobs = 5 is not enough to resolve the bathymetry
shape, especially for the bathymetry features in the region x < 0. However,
increasing Nobs to 45 leads to accurately reconstructed bathymetry. The only
significant error is a small amount of noise at the plateau of the sandbar profile near
x = 0. For case III, we note that while neither of the reconstructed bathymetries
in figure 3.7(c) converge to the true bathymetry in figure 3.1(c), convergence is
much better qualitatively for Nobs = 45. However the peak of the Gaussian is not
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fully resolved and the amplitude of the reconstruction with Nobs = 45 is smaller
than the amplitude of the true bathymetry.
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Figure 3.7: Reconstructed bathymetry for cases I, II and III with
Nobs = 5 and Nobs = 45 respectively.

Based on these results, we conclude that a sufficiently number of observations
Nobs is a necessary condition for optimal convergence. However, as indicated by
the reconstructions in figure 3.7(c), it is not a sufficient condition for convergence.
Despite this, results in figure 3.7(a) demonstrate that observations of a free sur-
face wave with Gaussian initial conditions are able to reconstruct both a Gaussian
bathymetry and a Sandbar bathymetry with relatively small error in convergence.
The question remains, how does this reconstruction error affect prediction of the
free surface wave? In the context of tsunami modelling, our priority is accurate
prediction of the free surface wave given the reconstructed bathymetry. Therefore,
motivated by results observed thus far, in section 3.6.3 we analyse the L2 error in
the surface wave given the reconstructed bathymetry, as Nobs is increased. Addi-
tionally, a rigorous sensitivity analysis of the surface wave error to observations is
presented in Chapter 4 using second order variational techniques, and in Chapter
5 using Global Sensitivity Analysis (GSA). The objective of this analysis is to ex-
plore further not only the effect of the number of observation, but also the position
of the observations in the spatial domain.
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3.6.3 Sensitivity of propagating surface wave to to bathymetry
reconstruction error

Our final analysis concerns the sensitivity of the surface wave to the bathymetry,
in particular, to errors in the bathymetry data. Given some optimal reconstruction
β(b), we wish to gauge the sensitivity of the propagating surface wave η(x, t) to
the errors in the reconstruction. Our objective is to address the question: how
does the reconstruction error in the bathymetry impact the propagating surface
wave? If our goal is to utilise reconstructions of the bathymetry to generate more
accurate predictions of tsunami waves, then the main consideration is not the error
between the optimal bathymetry reconstruction and the true bathymetry, but the
error resulting error in η(x, t). In other words, we just need the reconstructed
bathymetry to be “good enough” to produce sufficiently accurate surface waves.
Thus far we have qualitatively assessed the convergence to the exact bathymetry
as we varied the observation operator, and the amplitudes of the initial conditions
and bathymetry η̂ and β̂. We now address the corresponding error in the surface
wave given the reconstructed bathymetry η(x, t; β(o)) as a function of η̂, β̂, and
Nobs.
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Figure 3.8: The relative L2 error in the bathymetry reconstruc-
tion, shown for different amplitudes β̂, and the corresponding rela-
tive L2 error in the propagating surface wave η(x, t). The amplitude
of the initial conditions η̂ is 0.001, and Nobs = 45.

The results for each are summarised in figures 3.8 , 3.9, and 3.10 respectively.
The L2 error in the bathymetry is plotted alongside the resulting L2 error (in
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space and time) in the surface wave. Figure 3.8 shows the respective errors as a
function of bathymetry amplitude, where η̂ = 0.001. In each of the three cases,
we observe the error in the surface wave for β̂ . 0.1 is almost 2 orders of magni-
tude lower than the error in the bathymetry estimation. As the relative amplitude
of the bathymetry β̂ increases, so does the surface wave error, even though the
bathymetry error remains relatively constant. This is intuitive, as we observe that
since the effect of bathymetry decreases as the fluid depth increases ( a consequence
of smaller amplitudes β̂), the height η(x, t) is affected more by larger bathymetry
amplitudes. As such, errors in the reconstruction of larger bathymetry pertur-
bations are more likely to be observed in the resulting surface wave. Therefore
we consider β̂ ≤ 0.1 a necessary condition for optimal convergence of the surface
wave. Overall the results suggest there is low sensitivity of the surface wave to
bathymetry reconstruction errors as β̂ varies.
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Figure 3.9: The relative L2 error in the bathymetry reconstruc-
tion, shown for different values of Nobs, and the corresponding rela-
tive L2 error in the propagating surface wave η(x, t). The amplitude
of bathymetry β̂ is 0.1. Amplitude of the initial conditions η̂ is fixed
to be 1% of β̂

Figure 3.9 presents the L2 error in the bathymetry alongside the resulting L2

error in the surface wave, as a function of the number of observation points. We
consider Nobs = 5, 10, 20, and 45 and plot the resulting errors for each of the
three cases. β̂ is fixed at 0.1 and η̂ = 0.01β̂. We observe that for cases I and III,
the error in the surface wave is almost two orders of magnitude smaller than the
bathymetry error, and both decrease proportionally as the number of observation
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points increases. For case II, the difference in the errors is O(10−1) for smaller
values of Nobs, however this difference increases as we increase the number of the
observation points, suggesting the sensitivity of the surface wave decreases with
more observation points for a sandbar profile. A reason for this may be that for case
II there are no observation points places before the support of the bathymetry, and
consequently a smaller value of Nobs may not be sufficient to create a an accurate
profile, resulting in increased error in the reconstruction (as observed in figure 3.7).
Consequently, the error in the surface wave increases as well. However, as more
observation points are added in figure 3.7 the noise in the bathymetry is smoothed,
and the smoother profile may explain the relative larger decrease in the surface
wave error, up to two orders of magnitude smaller than the bathymetry error.
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Figure 3.10: The relative L2 error in the bathymetry reconstruc-
tion and the corresponding relative L2 error in the propagating sur-
face wave η(x, t),as a function of the initial conditions amplitude η̂.
The amplitude of the bathymetry is fixed to be 0.2.

Finally, figure 3.10 shows the bathymetry reconstruction and surface wave errors
as a function of the initial conditions amplitude η̂. We have already observed a
correlation in the amplitudes η̂ and β̂, and we concluded in section 3.6.1 for optimal
convergence we require η̂/β̂ = O(10−2). Therefore in figure c we present results for
small values of η̂, and β̂ = 0.2. For each case we observe that the error in the surface
wave is orders of magnitude lower than the bathymetry error for most values of η̂.
Both errors are relatively high for smaller values of η̂, but as η̂ → 10−3, they both
decrease, suggesting that the free surface wave is more sensitive to bathymetry
reconstruction error when η̂ is very small.
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To summarise, we observed that across variations in (i) the number of obser-
vation points, and (ii) model parameters such as η̂ and η̂, the error in the surface
wave was orders of magnitude lower than the bathymetry reconstruction error,
suggesting low sensitivity of the surface wave to bathymetry reconstruction error.
The consequences of this low sensitivity are significant. It essential to understand
the sensitivity of the surface wave to the bathymetry for two distinct but related
reasons. First, the assimilation described in this study is contingent upon the as-
sumption that the surface wave (and observations) are affected by the bathymetry.
We have demonstrated this is true in figure 3.1. Additionally, the variation in the
surface wave error in figure 3.8 illustrates that changes in bathymetry amplitude
and shape does significantly affect surface wave propagation. However, we ob-
serve that the sensitivity of the surface wave to the bathymetry reconstruction
error is low. This means that the surface wave is not sensitive to the details of the
bathymetry: a roughly accurate reconstruction of bathymetry is sufficient in many
cases. This suggests that for tsunami modelling we only need the bathymetry to be
accurate enough that the surface wave is modelled correctly, and that we can derive
criteria for when the bathymetry reconstruction is reconstructed sufficiently well.
Additionally, we also do not require our optimal reconstruction β(b) to be unique.
These implications motivate a more rigorous analysis of surface wave sensitivity,
and we explore this further in chapters 2 and 3.

3.7 Conclusion

This study provides a first step in better understanding the role of observations
and model parameters in variational bathymetry assimilation. We are limited
somewhat by the lack of analytical solution for the shallow water system with
non-zero bathymetry, but these computational results provide key insights for
further analyses. The 1-D geometry considered in this analysis is intended to be
a foundation for extensions to more realistic 2-D cases, and the results observed
here should prove an insightful reference for future work.

In summary, we derived a variational data assimilation algorithm to reconstruct
the bathymetry from a set of free surface wave observations, by minimising a
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functional J (β) representing the least squares error between observations and
forecast solutions. We observed that ∇J ∈ L2(Ω) resulted in small-scale noise
in the bathymetry reconstruction and impacted convergence. Consequently, we
showed that smoother H2 gradients are necessary to avoid small-scale errors in the
reconstructed bathymetry. We were able to accurately reconstruct the bathymetry
for test cases with a Gaussian initial condition, and (i) a Gaussian bathymetry,
and (ii) a sandbar profile bathymetry. We analysed the relationship between the
normalised bathymetry and initial conditions amplitudes β̂ and η̂ to understand
how they influence convergence. Based on a qualitative analysis of a localized
surface wave propagating over a compact bathymetry feature of a similar size, we
suggest a necessary condition for convergence is that the ratio of the surface wave
amplitude to the bathymetry amplitude η̂/β̂ be at most O(10−2) when bathymetry
amplitudes are O(10−1). Additionally, we observe that a relatively large number of
observations Nobs is necessary for convergence. Nobs = 45 was the optimal number
of observations in the present study.

Perhaps the most significant observation of this study was that that the surface
wave η(β(b)) has relatively low sensitivity to errors in the reconstructed bathymetry.
We showed that the free surface error was orders of magnitude smaller than the
bathymetry reconstruction error as a function of Nobs, β̂ and η̂ respectively. Recon-
structing the bathymetry with a relative error of about 10% is sufficiently accurate
for surface wave modelling in most cases.

If this can be verified in higher dimensions and with inclusion of additional
complexities such as turbulence and Coriolis effect, this can enhance tsunami fore-
cast models by quantifying exact tolerance levels for the prediction. Additionally,
tolerances for smaller scales in bathymetry reconstruction may be quantified.

As the present analysis was primary qualitative, in chapters 2 and 3 we conduct
more rigorous sensitivity analyses to verify these results. Our objective is to derive
analytical results that quantify the sensitivity of response functions (such as the
error in the surface wave given the reconstructed bathymetry) to the observations,
or to the bathymetry and the initial conditions amplitudes. In Chapter 4, our
analysis is based on works like Wang et al. [63], using second order adjoint methods
(i.e. the Hessian of the cost function J ) to derive the sensitivity of response
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functions to observations. In Chapter 5, we use an alternative technique, Global
Sensitivity Analysis (GSA), to decompose the variance of the bathymetry and
surface wave error respectively, and generate sensitivity indices quantifying the
influence of the initial conditions and bathymetry amplitudes, and the position of
the bathymetry relative to observations.

Our focus on how the bathymetry and the initial conditions shapes affect recon-
struction of the bathymetry from free surface observations is a valuable contribu-
tion to the literature reviewed in section 3.2. Additionally, we hope the sensitivity
analyses and results observed here can pave the way for more refined approaches
to incorporate bathymetry estimates in tsunami models. Extending this approach
to 2-D and verifying the main conclusions observed here would contribute to ef-
forts for accurate bathymetry in tsunami models. Similar analyses are presented
in Chapter 2, where we have extended the 1-D variational data assimilation for
the initial conditions reconstruction in Kevlahan et al. [27], to 2-D. we observe
that some of the main conclusions from 1-D are still relevant in the 2-D case. It
is possible that this may be true for the 2-D bathymetry assimilation as well.
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Chapter 4

Second order adjoint sensitivity
analysis for variational data
assimilation of tsunami models

4.1 Introduction

Data assimilation is integral to accurate climate, atmosphere and ocean modelling.
Variational data assimilation algorithms such as 3D-VAR, 4D-VAR, and Kalman
filtering techniques like the EnKF (Ensemble Kalman filter) are regularly used
for numerical weather prediction and forecasts of climate trends. For example,
data assimilation is used by the ECMWF for climate reanalysis, where archived
observations are “reanalysed”, in order to create a comprehensive global dataset
describing the recent history of the earth’s climate, atmosphere and oceans [12].
Additionally, data assimilation is used in tsunami forecast models, where observa-
tions of surface waves are used to reconstruct missing information such as initial
conditions, and subsequently predict impact at coastlines [35]. The observations
have a significant impact on the results of the data assimilation scheme, as demon-
strated in Chapter 3. Therefore, it is interesting to quantify the sensitivity of the
assimilation algorithm results to perturbations in the observation operator. In
this study, we use methods outlined in Shutyaev et al. [53] and Shutyaev et al.
[52], to derive the sensitivity of arbitrary response functions to perturbations in
observations for (i) the data assimilation scheme for initial conditions outlined in
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Kevlahan et al. [27], and (ii) the data assimilation scheme for bathymetry given
in chapter 3. We do this by analytically deriving the Hessian of the cost function
minimised in the data assimilation scheme, and take advantage of its properties to
derive expressions for the sensitivity of the data assimilation to perturbations in
the observations. We present a numerical implementation of this algorithm for the
bathymetry data assimilation. The focus is on the latter instead of the initial con-
ditions assimilation, as our main objective is to use the present analysis to further
investigate the qualitative results observed in chapter 3. Specifically, these are (i)
the link between low sensitivity and the accuracy of the data assimilation scheme,
and (ii) the effect of perturbations in the model parameters and the observations
on the sensitivity. Ultimately we wish to see whether the conclusions from the
bathymetry assimilation in chapter 3 can be better understood using the results
of the sensitivity analysis in this chapter.

In section 4.2 we summarise the data assimilation schemes. Section 4.4 gives the
analytical derivation of the Hessian and subsequent sensitivity analysis for initial
conditions assimilation results, and section 4.5 gives the derivation for bathymetry
assimilation results. Section 4.6 presents the numerical implementation of the
sensitivity analysis for the bathymetry data assimilation. Finally, section 4.7 sum-
marises the main results and suggests further considerations for future analyses.

4.2 Initial conditions reconstruction

We briefly summarise the data assimilation scheme for initial conditions recon-
struction. The 1-D SWE are

∂η

∂t
+ ∂

∂x

(
(1 + η − β)u

)
= 0, (4.2.1a)

∂u

∂t
+ ∂

∂x

(1
2u

2 + η
)

= 0, (4.2.1b)

η(x, 0) = φ(x), (4.2.1c)

u(x, 0) = 0. (4.2.1d)

We assimilate a set of measurements y(o)(t), which are observations of the true
height perturbation η(x, t) at positions {xj}, j = 1, ..., Nobs. We assume that
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the initial conditions φ(x) are compactly supported, and that we have periodic
boundary conditions on some domain Ω =

{
x ∈ R;−L ≤ x ≤ L

}
. In the initial

conditions reconstruction, the system is integrated in time for t ∈ [0 T ], where
T = 2 is chosen such that the free surface wave does not reach the boundary. This
is appropriate considering that our objective is to reconstruct the initial conditions
of a tsunami wave in real time.

We assume that we do not have complete information about φ(x), and our
objective is to minimise the error between the forecast solution η(f)(x, t) given
some guess for φ, and the observations y(o)(t). We define this error in terms of a
cost function,

J (φ) = 1
2

∫ T

0

M∑
i=1

[
Hη(f)(xj, t;φ)− y(o)

j (t)
]2
dt, (4.2.2)

where H is the linear operator from the state to the observation space. This is
equivalent to solving

∇J L2(φ(b)) = 0, (4.2.3)

Where φ(b) is the optimal approximation for φ(x), and the local minimiser of
(4.2.2). We formulate a Lagrangian constrained by (4.2.1) and some arbitrarily
chosen adjoint variables (Lagrange multipliers) (η∗, u∗) that are solutions of


∂η∗

∂t
+ u

∂η∗

∂x
+ ∂u∗

∂x
= H

(
η(f)(x, t;φ)− y(o)(t)

)
,

∂u∗

∂t
+ (1 + η)∂η

∗

∂x
+ u

∂u∗

∂x
= 0,

η∗(x, T ) = 0,

u∗(x, T ) = 0.

(4.2.4a)

(4.2.4b)

(4.2.4c)

(4.2.4d)

We use the Riesz representation theorem and the Gateaux derivative representa-
tion of J ′(φ; η′) given an arbitrary perturbation η′ to derive

∇L2J (φ) = −η∗(x, 0), (4.2.5)
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where

J ′(φ; η′) = 〈∇J (φ), η′〉L2(Ω)

=
∫ L

−L
∇L2J (φ) η′ dx. (4.2.6)

For a more detailed analysis of this derivation we refer the reader to Kevlahan et
al. [27]. Finally, the optimal reconstruction of the initial conditions φ(b) is where

∇L2J (φ(o)) = −η∗(x, 0) = 0. (4.2.7)

In the assimilation scheme we use a gradient descent algorithm to iteratively find
the optimal reconstruction of the initial conditions φ(b) given some initial guess,
such that (4.2.2) is minimised.

4.3 Bathymetry reconstruction

We recall from Chapter 3 that the data assimilation scheme to recover missing
bathymetry information β(x) in (4.2.1) is similar to the initial conditions case,
except now φ(x) is known, and the cost function we minimise is

J (β) = 1
2

∫ T

0

M∑
i=1

[
η(f)(xj, t; β)− y(o)

j (t)
]2
dt. (4.3.1)

We derived the adjoint system


∂η∗

∂t
+ u

∂η∗

∂x
+ ∂u∗

∂x
= H

(
η(f)(x, t; β)− y(o)(t)

)
,

∂u∗

∂t
+ (1 + η − β)∂η

∗

∂x
+ u

∂u∗

∂x
= 0,

η∗(x, T ) = 0,

u∗(x, T ) = 0.

(4.3.2a)

(4.3.2b)

(4.3.2c)

(4.3.2d)
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We found the following equivalent expression for the Gâteaux derivative,

J ′(β; β′) = 〈∇J (β), β′〉L2(Ω)

=
∫ L

−L
∇L2J (β) β′ dx

=
∫ L

−L

∫ T

0
u
∂η∗

∂x
β′ dt dx. (4.3.3)

Therefore the Riesz representation of the gradient is

∇L2J =
∫ T

0
u
∂η∗

∂x
dt, (4.3.4)

and the optimal approximation for β(x), defined as β(b) is where

∇L2J (β(b)) =
∫ T

0
u
∂η∗

∂x
dt = 0. (4.3.5)

For the bathymetry reconstruction, as we have no constraints on the assimila-
tion time, the final time is chosen to be T = 2L.

4.4 Initial conditions reconstruction sensitivity
analysis

To derive the sensitivity of some arbitrary response function using the methods
outlined in Shutyaev et al. [53] and Shutyaev et al. [52], we need to formulate
expressions for the Hessian of the cost functions (4.2.2) and (4.3.1) formulated in
section 4.2. [53, 52] give a general method that utilises properties of the Hessian,
however they do not provide a derivation, which means we need to extend our
variational adjoint analysis used to find the gradient of J , to find the Hessian of
J .

While works such as Wang et al. [63] provide a derivation of the Hessian vector
product for the initial conditions assimilation, their derivation is for the finite
dimensional case, and assumes a vector form for both the state variables and the
control variable. In our case the derivation of the first order adjoint is for the
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infinite dimensional case in the space L2(Ω) over some domain Ω, where we used
the L2 inner product and the Riesz respresentation theorem to extract our gradient
∇L2J (φ). For that reason, a derivation of the Hessian in the same functional space
as for our first order adjoint is appropriate, and in doing so we aim to extract the
“Gâteaux Hessian” for Hilbert spaces with the following definition:

If f is twice Gâteaux differentiable at x, we can identify D2f(x) with the oper-
ator ∇2f(x) ∈ B(H) in the sense that

(∀y ∈ H)(∀z ∈ H),(
D2f(x)y

)
z =

〈
z,∇2f(x)y

〉
B(H)

, (4.4.1)

where we call ∇2f(x) the (Gâteaux) Hessian of f at x, B(H) is the space of
continuous linear functionals in H, and Df(x)y is the Gâteaux derivative of f in
the direction y.

In the remainder of this section we present the derivation of the Hessian of J (φ)
and subsequently the sensitivity analysis for the initial conditions assimilation,
using methods outlined in [53]. Parallel results for bathymetry assimilation are
presented in section 4.5 following the methods given in [52].

4.4.1 Hessian of J (φ) for the initial conditions reconstruc-
tion

To derive a form for the Hessian in a Hilbert space we use the fact that we derived
the following form for the Gâteaux derivative of J with respect to the initial
conditions and some perturbation direction η′ in Kevlahan et al. [27],

J ′(φ; η′) = −
∫ L

−L
η∗(x, 0;φ)η′ dx. (4.4.2)
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Then, if we consider a second perturbation of J ′(φ; η′), η′′ where we have φ →
φ+ εη′′, the second order Gâteaux derivative of J can be expressed as

J ′′(φ; η′; η′′) = lim
ε→0

J ′(φ+ εη′′; η′)− J ′(φ; η′)
ε

= d

dε
J ′(φ+ εη′′; η′)

∣∣∣∣
ε=0

= d

dε

{
−
∫ L

−L
η∗(x, 0;φ+ εη′′)η′ dx

}
.

We consider a regular perturbation expansion of η∗(x, 0;φ+εη′′), approximating it
by the series f0 + f1ε+O(ε2). We can see this is equivalent to a Taylor expansion
about ε = 0. Then

d

dε
J ′(φ+ εη′′; η′)

∣∣∣∣
ε=0

=− d

dε

∫ L

−L
(f0 + f1ε)η′ dx

∣∣∣∣
ε=0

=−
∫ L

−L
f1η
′ dx.

In order to find the term f1, we recognise that this is equivalent to the coefficient
of the linear term in the Taylor approximation, and f1 = d

dε
η∗(x, 0;φ+ εη′′)

∣∣∣∣
ε=0

.

To find f1, we need the adjoint variable η∗ at t = 0 given the perturbed initial
conditions φ + εη′′. Substituting this back into our forward system (4.2.1)and
adjoint system (4.2.4), and gathering terms of O(ε) will give us our perturbed
SWE and second order adjoint (SOA) system. We assume this perturbation in the
initial conditions brings about the following perturbations to our state and adjoint
variables;

• u→ u+ εû and η → η + εη̂ for the shallow water system (4.2.1).

• u∗ → u∗ + εū and η∗ → η∗ + εη̄ for the adjoint system (4.2.4).
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The resulting perturbed model for the SWE is


∂η̂

∂t
+ ∂

∂x

(
uη̂
)

+ ∂

∂x

(
(η + 1)û

)
= 0,

∂û

∂t
+
∂
(
ûu
)

∂x
+ ∂η̂

∂x
= 0,

η̂(x, 0) = η′′,

û(x, 0) = 0,

(4.4.3a)

(4.4.3b)

(4.4.3c)

(4.4.3d)

and the second order adjoint (SOA) model is


∂η̄

∂t
+ û

∂η∗

∂x
+ u

∂η̄

∂x
+ ∂ū

∂x
= −Hη̂,

∂ū

∂t
+ (η + 1)∂η̄

∂x
+ η̂

∂η∗

∂x
+ u

∂ū

∂x
+ û

∂u∗

∂x
= 0,

η̄(x, T ) = 0,

ū(x, T ) = 0.

(4.4.4a)

(4.4.4b)

(4.4.4c)

(4.4.4d)

Going back to the definition of f1, we can rewrite this as

f1 = d

dε

(
η∗(x, 0;φ) + εη̄(x, 0; η′′)

)∣∣∣∣
ε=0

= η̄(x, 0; η′′),

And thus we have

J ′′(η0; η′; η′′) =−
∫ L

−L
η̄(x, 0; η′′)η′ dx = (4.4.5)

〈−η̄(x, 0; η′′), η′〉L2(Ω) (4.4.6)

and by the definition of the Gâteaux Hessian, we get ∇2J (η0; η′′) = −η̄(x, 0; η′′).

We define successive solutions of (4.4.3) and (4.4.1) by the operatorH acting on
η′′. Thus the Hessian of the cost function given a perturbation η′′ can be defined
as

Hη′′ = −η̄(x, 0; η′′). (4.4.7)
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This form of the Hessian of the cost function can be verified using a modified form
of the kappa test analysis outlined in Kevlahan et al. [27]. To ensure our derivation
is correct, we define

κ(ε) = lim
ε→0

1
ε

J ′(φ+ εη′′; η′)− J ′(φ; η′)
−
∫ L
−L η̄(x, 0; η′′)η′ dx

, (4.4.8)

where

J ′(η0 + εη′′; η′) (4.4.9)

= lim
τ→0

J ′(φ+ εη′′ + τη′)− J ′(φ+ εη′′)
τ

, (4.4.10)

and

J ′(φ; η′) = lim
τ→0

J ′(φ+ τη′)− J ′(φ)
τ

. (4.4.11)

If the derivations are correct, κ(ε) should converge to 1 as ε→ 0.

A key observation is that we have only derived the action of the Hessian on
some perturbation η′′, whereas in section 4.2 we were able to derive the gradient
of J (φ) for any arbitrary perturbation η′. It does not seem possible to proceed as
before and find the Hessian for any arbitrary η′′ using variational methods. This
is because the gradient ∇J is an element of the Hilbert space L2(Ω), whereas the
Hessian H is an operator defined on this space. Indeed, Wang et al. [63] were
also limited to derivation of a “Hessian vector product” in the finite dimensional
case. Despite this, the current derivation is sufficient for the following sensitivity
analysis.
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4.4.2 Sensitivity analysis for the initial conditions recon-
struction

Define the optimality system as the successive solution of


∂η

∂t
+ ∂

∂x

(
(1 + η)u

)
= 0,

∂u

∂t
+ ∂

∂x

(1
2u

2 + η
)

= 0,

η(x, 0) = φ(x),

u(x, 0) = 0.

(4.4.12a)

(4.4.12b)

(4.4.12c)

(4.4.12d)

∂η∗

∂t
+ u

∂η∗

∂x
+ ∂u∗

∂x
= H

(
η −m

)
,

∂u∗

∂t
+ (1 + η)∂η

∗

∂x
+ u

∂u∗

∂x
= 0,

η∗(x, T ) = 0,

u∗(x, T ) = 0,

(4.4.13a)

(4.4.13b)

(4.4.13c)

(4.4.13d)

Where φ(x) is the optimal reconstruction of the initial conditions η(x, 0) giving

∇L2J (φ(b)) = −η∗(x, 0) = 0, (4.4.14)

and m(t) are the observations taken at positions {xj} at for j = 1, ..., Nobs at
continuous times t. Note that for the initial conditions reconstruction we assume
a flat bathymetry β(x) = 0. Let us consider some arbitrary response function

G(η, u, φ). (4.4.15)

This function may represent any quantity of interest given the optimal results of
the data assimilation. In the numerical implementation we choose G to be the
least squares error in the free surface wave given the optimal control variable, as
shown in (4.6.1).

107

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

By the chain rule, the sensitivity of G to perturbations in the observations m
can be defined as

dG
dm

= dG
dη

dη

dm
+ dG
du

du

dm
+ dG
dφ

dφ

dm
. (4.4.16)

Let us now consider a perturbation in the observations m→ m+ m̂ giving

• u→ u+ û and η → η + η̂ for the shallow water system (4.4.12).

• u∗ → u∗ + ũ∗ and η∗ → η∗ + η̃∗ for the adjoint system (4.4.13).

• φ→ φ+ φ̂ for the optimal initial condition.

Our perturbed system becomes


∂η̂

∂t
+ ∂

∂x

(
uη̂
)

+ ∂

∂x

(
(η + 1)û

)
= 0,

∂û

∂t
+
∂
(
ûu
)

∂x
+ ∂η̂

∂x
= 0,

η̂(x, 0) = φ̂(x),

û(x, 0) = 0,

(4.4.17a)

(4.4.17b)

(4.4.17c)

(4.4.17d)

∂η̃∗

∂t
+ û

∂η∗

∂x
+ u

∂η̃∗

∂x
+ ∂ũ∗

∂x
= H(m̂− η̂(xi, t; φ̂),

∂ũ∗

∂t
+ (η + 1)∂η̃

∗

∂x
+ η̂

∂η∗

∂x
+ u

∂ũ∗

∂x
+ û

∂u∗

∂x
= 0,

η̃∗(x, T ) = 0,

ũ∗(x, T ) = 0.

(4.4.18a)

(4.4.18b)

(4.4.18c)

(4.4.18d)

−η̂∗(x, 0) = 0. (4.4.19)

Then we can say

〈
dG
dm

, m̂

〉
Yobs

=
〈
∂G
∂η
, η̂

〉
Y

+
〈
∂G
∂u

, û

〉
Y

+
〈
∂G
∂φ

, φ̂

〉
Yp

(4.4.20)
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where

Yobs = L2
(

[−L,L]× [0, T ]
)
, (4.4.21)

Y = L2
(

[−L,L]× [0, T ]
)
, (4.4.22)

Yp ∈ L2
(

[−L,L]
)
, (4.4.23)

are the observation space, state space, and the initial conditions space respectively.
Now, let us introduce some adjoint variables Pi, i = 1, ..., 5, where Pi ∈ Y , i =
1, ..., 4, and P5 ∈ Yobs. Then if we take the inner product of P1 and P2 with the
systems (4.4.17), inner product of P3 and P4 with (4.4.18), and P5 with (4.4.19),
we get the following duality relation

0 =∫ T

0

∫ L

−L

P1

∂η̂
∂t

+ ∂

∂x

(
uη̂
)

+ ∂

∂x

(
(η + 1)û

)]

+ P2

[
∂û

∂t
+
∂
(
ûu
)

∂x
+ ∂η̂

∂x

]
+ P3

[
∂η̃∗

∂t
+ û

∂η∗

∂x
+ u

∂η̃∗

∂x
+ ∂ũ∗

∂x
−H(m̂− η̂)

]
+ P4

[
∂ũ∗

∂t
+ (η + 1)∂η̃

∗

∂x
+ η̂

∂η∗

∂x

+ u
∂ũ∗

∂x
+ û

∂u∗

∂x

]dtdx
+
∫ L

−L
P5

[
− η̂∗(x, 0)

]
dx. (4.4.24)

integrating the double integral in (4.4.24) by parts in space and time, we are
able to transfer the derivatives onto the adjoint variables Pi, i = 1, ..., 5 instead
of on û, η̂, ũ∗, ũ∗. Since the choice of adjoint variables is arbitrary, we pick the
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following systems for Pi,

∂P3

∂t
+ ∂

∂x

(
uP3

)
+ ∂

∂x

(
(η + 1)P4

)
= 0,

∂P4

∂t
+
∂
(
uP4

)
∂x

+ ∂P3

∂x
= 0,

P3(x, 0) = −P5

P4(x, 0) = 0

(4.4.25a)

(4.4.25b)

(4.4.25c)

(4.4.25d)

∂P1

∂t
+ P4

∂η∗

∂x
+ u

∂P1

∂x
+ ∂P2

∂x
−HP3 = −∂G

∂η
,

∂P2

∂t
+ (η + 1)∂P1

∂x
+ P3

∂η∗

∂x
+ u

∂P2

∂x
+ P4

∂u∗

∂x
= −∂G

∂u
,

P1(x, T ) = P5 −
∂G
∂φ

,

P2(x, T ) = 0.

(4.4.26a)

(4.4.26b)

(4.4.26c)

We subsequently eliminate P5 by using the fact that P1(x, T ) = P5 − ∂G
∂φ
, and

P3(x, 0) = −P5, and define P3(x, 0) = ν, where the auxiliary variable ν is defined
as

ν = ∂G
∂φ
− P1(x, 0). (4.4.27)

Then subsequently, as a result of integration by parts and the choice of systems
for Pi, (4.4.24) reduces to

〈
HP3, m̂

〉
Yobs

=
〈
∂G
∂η
, η̂

〉
Y

+
〈
∂G
∂u

, û

〉
Y

+
〈
∂G
∂φ

, φ̂

〉
Yp

. (4.4.28)

By the Riesz representation theorem and equivalence of inner products in (4.4.20)
and (4.4.28), we can define the sensitivity of the response function G(η, u, φ) to
perturbations in the observations m as

∂G
∂m

= HP3(x, t). (4.4.29)

Finding P3 requires solving the systems (4.4.25) (with P3(x, 0) = ν), and (4.4.26).
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This is a coupled system of four variables, with two initial time conditions and
two final time conditions, making it challenging to solve. However, this difficulty
can be avoided by recognising that (4.4.25) is equivalent to the perturbed system
for the Hessian ∇2J (φ) (4.4.3), and that (4.4.26) is equivalent to the second order

adjoint (SOA) system (4.4.1) with forcing term
(
− ∂G

∂η
,−∂G

∂u

)T
. Shutyaev et al.

(2017) show that the solutions to the adjoint systems (4.4.25) and (4.4.26) are
then equivalent to solving

Hν = F , (4.4.30)

where F is defined as

F = ∂G
∂φ

+ ψ(x, 0), (4.4.31)

and ψ is the solution of the forced first order adjoint system


∂ψ

∂t
+ u

∂ψ

∂x
+ ∂ϕ

∂x
= ∂G
∂η
,

∂ϕ

∂t
+ (1 + η)∂ψ

∂x
+ u

∂ϕ

∂x
= ∂G
∂u

,

ψ(x, T ) = 0,

ϕ(x, T ) = 0.

(4.4.32a)

(4.4.32b)

(4.4.32c)

(4.4.32d)

The significance of recognising the systems (4.4.26) and (4.4.25) as the Hessian
with external forcing is that if we may use properties of the Hessian to solve for ν
uniquely. If H is the hessian of J , then since J is convex, H is positive definite.
[53] demonstrate that the operator equation (4.4.30) has a solution everywhere in
Yp, and for every F , we can find a unique ν such that (4.4.30) holds. Then the
sensitivity ∂G/∂m can be found by the steps in algorithm 4.
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Algorithm 4 Calculation of Second Order Adjoint Sensitivity ∂G
∂m

for Initial Con-
dition Assimilation
1: Define F = ∂G

∂φ
+ ψ(x, 0), where ψ is the solution of (4.4.32).

2: Solve Hν = F for ν.
3: Solve the system (4.4.25) using P3(x, 0) = ν to find P3(x, t).
4: Define ∂G

∂m
= HP3(x, t), where H is the operator mapping the η from state

space Y to the observation space Yobs .

4.5 Bathymetry reconstruction sensitivity anal-
ysis

4.5.1 Hessian of J (β) for bathymetry reconstruction

The derivation of the Hessian for J (β) and subsequent sensitivity analysis for the
bathymetry assimilation described in section 4.3 a is similar procedure to the initial
conditions case. As we now use results of parameter data assimilation instead of
initial conditions assimilation, the adjoint equations are slightly different, however
the derivation steps remain the same. The sensitivity analysis is based on the
procedure for parameter assimilation described in [52].

We know from section 4.3 that the Gâteaux derivative of J with respect to the
bathymetry and some perturbation direction β′ is

J ′(β; β′) = −
∫ L

−L

∫ T

0
u
∂η∗

∂x
dt

β′ dx. (4.5.1)

Consider a second perturbation of J ′(β; β′), β̂ where we have β → β + εβ̂. Then
the second order Gâteaux derivative of J is

J ′′(β; β′; β̂) = d

dε
J ′(β + εβ̂; β′)

∣∣∣∣
ε=0

= d

dε

{ ∫ L

−L

∫ T

0
u(x, t; β + εβ̂)∂η

∗

∂x
(x, t; β + εβ̂) dtdx

}∣∣∣∣
ε=0

.
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Considering a regular perturbation expansion of the integrand as before, we ap-
proximate it by the series f0 + f1ε+O(ε2). Then

d

dε
J ′(β + εβ̂; β′)

∣∣∣∣
ε=0

= − d

dε

∫ L

−L

( ∫ T

0
(f0 + f1ε) dt

)
β′ dx

∣∣∣∣
ε=0

= −
∫ L

−L

( ∫ T

0
f1 dt

)
β′ dx.

We have f1 = d
dε
u(x, t; β + εβ̂) ∂

∂x
η∗(x, t; β + εβ̂)

∣∣∣∣
ε=0

, and require u and adjoint

variable η∗ given the perturbed bathymetry β + εβ̂. To find the resulting forward
and adjoint systems given the perturbation, we assume this perturbation in the
initial conditions produces the following perturbations to our state and adjoint
variables;

• u→ u+ û and η → η + η̂ for the shallow water system.

• u∗ → u∗ + ū and η∗ → η∗ + η̄ for the adjoint system.

The resulting perturbed model for the state variables û, η̂ is

∂η̂

∂t
+ ∂

∂x

(
(1 + η − β)û

)
+
∂
(
uη̂
)

∂x
−
∂
(
β̂u
)

∂x
= 0,

∂û

∂t
+
∂
(
ûu
)

∂x
+ ∂η̂

∂x
= 0,

η̂(x, 0) = 0,

û(x, 0) = 0.

(4.5.2a)

(4.5.2b)

(4.5.2c)

(4.5.2d)

and the second order adjoint (SOA) model is


∂η̄

∂t
+ û

∂η∗

∂x
+ u

∂η̄

∂x
+ ∂ū

∂x
= −η̂(xi, t; β̂),

∂ū

∂t
+ (1 + η − β)∂η̄

∂x
+ (η̂ − β̂)∂η

∗

∂x
+ u

∂ū

∂x
+ û

∂u∗

∂x
= 0,

η̄(x, T ) = 0,

ū(x, T ) = 0.

(4.5.3a)

(4.5.3b)

(4.5.3c)

(4.5.3d)
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Giving us

∇2J (β; β̂) =
∫ T

0

(
û
∂η∗

∂x
+ u

∂η̄

∂x

)
dt. (4.5.4)

We define the Hessian H acting on the perturbation β̂ as the successive solution
of the perturbed and SOA models such that

Hβ̂ =
∫ T

0

(
û
∂η∗

∂x
+ u

∂η̄

∂x

)
dt. (4.5.5)

This derivation can be verified using the kappa test with

κ(ε) = lim
ε→0

1
ε

J ′(β + εβ̂; β′)− J ′(β; η′)

−
∫ L
−L

( ∫ T
0

(
û∂η

∗

∂x
+ u∂η̄

∂x

)
dt
)
β′ dx

, (4.5.6)

As before, if the derivations are correct, κ(ε) should converge to 1 as ε→ 0. The
results for the kappa test for the Hessian H are presented in section 4.6 in figure
4.2.

4.5.2 Sensitivity analysis for bathymetry reconstruction

Define the optimality system for bathymetry assimilation as the successive solution
of

∂η

∂t
+ ∂

∂x

(
(1 + η − β)u

)
= 0,

∂u

∂t
+ ∂

∂x

(1
2u

2 + η
)

= 0,

η(x, 0) = η0(x),

u(x, 0) = 0.

(4.5.7a)

(4.5.7b)

(4.5.7c)

(4.5.7d)

∂η∗

∂t
+ u

∂η∗

∂x
+ ∂u∗

∂x
= H

(
η −m

)
,

∂u∗

∂t
+ (1 + η − β)∂η

∗

∂x
+ u

∂u∗

∂x
= 0,

η∗(x, T ) = 0,

u∗(x, T ) = 0,

(4.5.8a)

(4.5.8b)

(4.5.8c)

(4.5.8d)
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Where λ(x) is the optimal reconstruction of the bathymetry β(x) giving :

∫ T

0
u
∂η∗

∂x
dt = 0. (4.5.9)

As before, we have periodic boundary conditions in space, where the domain is
Ω =

{
x ∈ R;x ∈ [−L,L]

}
.

Let us consider some arbitrary response function

G(η, u, λ). (4.5.10)

Then by the chain rule, the sensitivity of G to perturbations in the observations
m can be defined as

dG
dm

= dG
dη

dη

dm
+ dG
du

du

dm
+ dG
dλ

dλ

dm
. (4.5.11)

Give some perturbation of the observations such that given m→ m+ m̂ we have

• u→ u+ û and η → η + η̂ for the shallow water system (4.5.7).

• u∗ → u∗ + ũ∗ and η∗ → η∗ + η̃∗ for the adjoint system (4.5.8).

• λ→ φ+ λ̂ for the optimal initial condition.

Our perturbed system becomes


∂η̂

∂t
+ ∂

∂x

(
uη̂
)

+ ∂

∂x

(
(η + 1− λ)û

)
− ∂

∂x

(
λ̂u
)
− ∂

∂x

(
λû
)

= 0,

∂û

∂t
+
∂
(
ûu
)

∂x
+ ∂η̂

∂x
= 0,

η̂(x, 0) = φ̂(x),

û(x, 0) = 0,

(4.5.12a)

(4.5.12b)

(4.5.12c)

(4.5.12d)
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

∂η̃∗

∂t
+ û

∂η∗

∂x
+ u

∂η̃∗

∂x
+ ∂ũ∗

∂x
= H(m̂− η̂(xi, t; λ̂),

∂ũ∗

∂t
+ (η + 1− λ)∂η̃

∗

∂x
+ η̂

∂η∗

∂x

+ u
∂ũ∗

∂x
+ û

∂u∗

∂x
− λ̂∂η

∗

∂x
= 0,

η̃∗(x, T ) = 0, ũ∗(x, T ) = 0.

(4.5.13a)

(4.5.13b)

(4.5.13c)∫ T

0

(
û
∂η∗

∂x
+ u

∂η̃∗

∂x

)
dt. (4.5.14)

Then we can say

〈
dG
dm

, m̂

〉
Yobs

=
〈
∂G
∂η
, η̂

〉
Y

+
〈
∂G
∂u

, û

〉
Y

+
〈
∂G
∂λ

, λ̂

〉
Yp

(4.5.15)

where

Yobs = L2
(

[−L,L]× [0, T ]
)
, (4.5.16)

Y = L2
(

[−L,L]× [0, T ]
)
, (4.5.17)

Yp = L2
(

[−L,L]
)

(4.5.18)

are as before in section 4.4. Let us introduce some adjoint variables Pi, i = 1, ..., 5,
where Pi ∈ Y , i = 1, ..., 4, and P5 ∈ Yobs. Then if we take the inner product of P1

and P2 with the systems (4.5.12), inner product of P3 and P4 with (4.5.13), and
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P5 with (4.5.14), we get the following duality relation

0 =∫ T

0

∫ L

−L

P1

∂η̂
∂t

+ ∂

∂x

(
uη̂
)

+ ∂

∂x

(
(η + 1− λ)û

)

− ∂

∂x

(
λ̂u
)
− ∂

∂x

(
λû
)]

+ P2

[
∂û

∂t
+
∂
(
ûu
)

∂x
+ ∂η̂

∂x

]
+ P3

[
∂η̃∗

∂t
+ û

∂η∗

∂x
+ u

∂η̃∗

∂x
+ ∂ũ∗

∂x
(4.5.19)

−H(m̂− η̂(xi, t; λ̂)
]

+ P4

[
∂ũ∗

∂t
+ (η + 1− λ)∂η̃

∗

∂x
+ η̂

∂η∗

∂x
(4.5.20)

+ u
∂ũ∗

∂x
+ û

∂u∗

∂x
− λ̂∂η

∗

∂x

]

+ P5

[
û
∂η∗

∂x
+ u

∂η̃∗

∂x

]dtdx. (4.5.21)

Integrating (4.5.21) by parts in space and time, we are able to transfer the deriva-
tivatives onto the adjoint variables Pi, i = 1, ..., 5 instead of on û, η̂, ũ∗, ũ∗. We
pick the following systems for Pi,

∂P3

∂t
+ ∂

∂x

(
(1 + η − λ)P4

)
−
∂
(
uP5

)
∂x

−
∂
(
λP4

)
∂x

= 0,

∂P4

∂t
+
∂
(
P4u

)
∂x

+ ∂P3

∂x
= 0,

P3(x, 0) = 0,

P4(x, 0) = 0.

(4.5.22a)

(4.5.22b)

(4.5.22c)

(4.5.22d)

∂P1

∂t
+ P4

∂η∗

∂x
+ u

∂P1

∂x
+ ∂P2

∂x
−HP3 = −∂G

∂η
,

∂P2

∂t
+ (1 + η − λ)∂P1

∂x
+ (P3 − P5)∂η

∗

∂x
+ u

∂P2

∂x
+ P4

∂u∗

∂x
= −∂G

∂u
,

P1(x, T ) = 0,

P2(x, T ) = 0.

(4.5.23a)

(4.5.23b)

(4.5.23c)

(4.5.23d)
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∫ T

0

(
P4
∂η∗

∂x
+ u

∂P1

∂x

)
dt = ∂G

∂λ
. (4.5.24)

Subsequently as a result of integration by parts and the choice of systems for Pi,
(4.5.21) reduces to

〈
HP3, m̂

〉
Yobs

=
〈
∂G
∂η
, η̂

〉
Y

+
〈
∂G
∂u

, û

〉
Y

+
〈
∂G
∂λ

, λ̂

〉
Yp

. (4.5.25)

By the Riesz representation theorem and equivalence of inner products in (4.4.20)
and (4.4.28), we define the sensitivity of the response function G(η, u, λ) to per-
turbations in the observations m as

∂G
∂m

= HP3(x, t). (4.5.26)

As in the initial conditions case, we observe that (4.5.22) is equivalent to the
perturbed system for the Hessian ∇2J (φ) (4.5.1) with P5 = β̂(x), and (4.5.23)
is equivalent to the second order adjoint (SOA) system (4.5.1) with forcing term(
− ∂G

∂η
,−∂G

∂u

)T
. Let us replace P5 with the auxiliary variable ν. Then Shutyaev

et al. [52] show that the solutions to the adjoint systems (4.5.22) and (4.5.23) are
equivalent to solving

Hν = F , (4.5.27)

where F is defined as

F = ∂G
∂λ
−
∫ T

0
u
∂γ

∂x
dt, (4.5.28)
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and γ is the solution of the forced first order adjoint system


∂γ

∂t
+ u

∂γ

∂x
+ ∂ψ

∂x
= −∂G

∂η
,

∂ψ

∂t
+ (1 + η − β)∂γ

∂x
+ u

∂ψ

∂x
= −∂G

∂u
,

γ(x, T ) = 0,

ψ(x, T ) = 0.

(4.5.29a)

(4.5.29b)

(4.5.29c)

(4.5.29d)

As before, under the assumption H is positive definite (as our cost function J is
convex), we can find a unique ν for every F such that Hν = F [52]. We are then
able to find ∂G

∂m
by the steps outlined in algorithm 5.

Algorithm 5 Calculation of Second Order Adjoint Sensitivity ∂G
∂m

for Bathymetry
Assimilation
1: Define ∂G

∂λ
−
∫ T

0 u∂γ
∂x
dt, where γ is the solution of (4.5.29).

2: Solve Hν = F for ν.
3: Solve the system (4.4.25) using P5(x) = ν to find P3(x, t).
4: Define ∂G

∂m
= HP3(x, t), where H is the operator mapping the η from state

space Y to the observation space Yobs .

4.6 Numerical Implementation

The results of this analysis would be a significant extension and complement to
the work undertaken in Kevlahan et al. [27], and the results in chapter 3. In
this section, we present the numerical implementation of the second order adjoint
sensitivity analysis for the bathymetry assimilation. While the initial conditions
assimilation certainly merits a similar analysis and can provide key insights for
tsunami models, our primary focus is to extend and possibly confirm the results
observed for data assimilation for bathymetry in chapter 3. To summarise, we
noted that the surface wave resulting from the optimally reconstructed bathymetry
was insensitivie to the reconstruction error. We also observed that a greater num-
ber of observation points, placed before the support of the bathymetry resulted in
better convergence of the L2 error in bathymetry reconstruction. Additionally, we
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investigated the effect of varying the amplitudes of the bathymetry and initial con-
dition, and concluded that a necessary condition for data assimilation convergence
was that the amplitude of the initial conditions be at least two orders of magnitude
smaller than the normalised amplitude of the bathymetry. The sensitivity analysis
in the present study is a significant addition to this work, since it demonstrates
how results can vary as the observation operator is perturbed.

In tsunami modelling we wish to choose the number and positions of the obser-
vation network such that the accuracy of the surface wave forecast is maximised.
Therefore selecting an observation operator that does not impact the surface wave
accuracy is an important consideration, and so we quantify how sensitive the sur-
face prediction given some reconstructed bathymetry is to the choice of observation
operator. We define the response function G as the least squares error between the
surface wave given the true bathymetry, and the wave resulting from the optimally
reconstructed bathymetry,

G(η, u, β(b)) =
∫ T

0

[
η(β(t))− η(β(b))

]2
dt, (4.6.1)

where we have implicit dependence on the surface wave velocity u(x, t) through
coupling in the shallow water equations. We recall that mj(t) are the observations
taken at positions {xj} for j = 1, ..., Nobs at continuous times t. Then,

dG/dm can be defined as the sensitivity of the error in the surface wave pro-
duced by the reconstructed bathymetry (4.6.1), to perturbations in the observations
{mj(t)}.

These perturbations include changes in the positions {xj}, or any perturbations
in the parameters of the system (4.2.1) that result in a change in {mj(t)}. Subse-
quently dG/dm is an Nobs × Nt matrix, where Nt is the temporal resolution, and
the mi,j entry of dG/dm represents the sensitivity of the surface wave error (4.6.1)
to the i-th observation at the j-th time step.

Our analysis aims to answer the following three questions:
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I Is there a correlation between low sensitivity ∂G/∂m and optimal conver-
gence of the reconstructed bathymetry to the exact shape?

II How does changing parameters in the data assimilation scheme (such as the
number of observation points or bathymetry shape) affect the sensitivity
∂G/∂m?

III Can our conclusions from chapter 3 be verified by the results of the sensitivity
analysis?

We examine these questions one by one, beginning with question I.

Question I

We wish to quantify the relationship between the convergence in bathymetry as-
similation and the sensitivity ∂G/∂m derived as a function of the assimilation
results. If

If the error in the bathymetry reconstruction is defined as

‖ β(t) − β(b) ‖L2

‖ β(t) ‖L2
, (4.6.2)

(where β(t) is the true bathymetry and β(b) is the optimal reconstruction), then our
objective is to understand whether a relatively higher error for the bathymetry re-
construction (4.6.2) correlated with increased sensitivity ∂G/∂m where G is given
by (4.6.1). This question is significant because high sensitivity ∂G/∂m is unde-
sirable, as it implies that variations in where observations are measured and their
total number, have a large effect on the accuracy of surface wave predictions

To answer this question, we compare the convergence of the relative L2 error
in convergence to the exact bathymetry of the optimal reconstruction as seen in
chapter 3, and the resulting sensitivity ∂G/∂m for each case considered, These are
summarised in table 4.1, and can be seen in figure 4.1.

121

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

Case Bathymetry Initial Conditions
I Gaussian Gaussian
II Gaussian Sinusoidal
III Sandbar Gaussian

Table 4.1: Cases considered for data assimilation algorithm.

-3 -2 -1 0 1 2

x

(a) Case I

-3 -2 -1 0 1 2

x

(b) Case II

-3 -2 -1 0 1 2

x

(c) Case III

Figure 4.1: The three test cases for bathymetry β(x) (dashed line)
and initial conditions φ(x) (solid line) for the data assimilation. The
surface wave initial conditions η̂, bathymetry β̂, and average depth
H are not to scale in these diagrams, as η̂ was restricted to 1% of
β̂ across most of the numerical analyses, and β = 0.1.

We recall that these cases were chosen to analyse convergence in scenarios where
the support of φ(x) and the support of β(t)(x) overlap or are disjoint, and to
evaluate the effect of a surface wave with compactly supported initial conditions
(cases I and II) or periodic initial conditions (case III). We consider Gaussian and
sandbar profiles for the bathymetry as a 1-D approximation for peaks and ridges
characterising ocean bathymetry. The results of the kappa test for each case are
given in figure 4.2.
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Figure 4.2: The results of the kappa test in (4.5.1), to verify
the numerical calculation of the Hessian H. (a) presents the log
convergence to 1 of (4.5.1) as ε→ 0, and (b) presents the log error
in the convergence.

Using these data assimilation results, we implement algorithm 5 to find the
sensitivity of the cost function G to the observations m.

Recall the results for the convergence error in the optimal data assimilation
results in figure 3.4(c). As we can see, the best convergence is for case I. For Cases
II and III, the optimal results do not accurately recover the exact bathymetry
and the error in the reconstructed bathymetry is relatively larger, O(10−2) and
O(10−1) respectively.

To find the optimal v such thatHν = F as in (4.5.27), we used the Bi-Conjugate
Gradient Stabilised Method (BICGSTAB) to solve the system for v. Figure 4.3
illustrates the convergence of Hν to the right hand side F for the optimal ν.

The BICGSTAB method is a Krylov linear solver designed for non-symmetric
linear operators, and was found to prove better convergence in this analysis than
with comparable solvers such as GMRES (Generalised Minimum Residual Method).
We observe that the error in convergence in case I (figure 4.3(a) ) is due to noise
in the right hand side F , and that Hν in figure 4.3(b) shows some overfitting.
A reasonable tolerance for convergence of BICGSTAB is a relative residual error
less than 1e − 4, however due to the small-scale noise shown in figure 4.3, this
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Figure 4.3: Hν (red) and F (blue) for each case where ν is the
solution ofHν = F found using the matlab linear solver bicgstabl.

tolerance was not met. Convergence is improved for BICGSTAB when the the
system is preconditioned [4]. Consequently, errors may be due to the fact that
preconditioners for the operator H were not easily computable in the algorithm,
and hence were not used. As the error in figure 4.3 seems to be due to a small
amount of noise only, for the purpose of this study we consider the convergence to
be satisfactory.

Thus, assuming that we have optimally found ν (representing the adjoint vari-
able P5) given F and the operator H, we can derive the sensitivity ∂G/∂m =
HP3(x, t) as the solution of the system (4.4.25) using ν as the initial condition,
where H is the observation operator.
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Figure 4.4: The sensitivity dG/dm as a function of time (with
final time t = T ), for assimilation results for Case I. There are
Nobs = 45 observations, equidistantly spaced with ∆x = 0.06 and
with the first point at 0.1L. Results show dG/dm at three distinct
observation points mj , where j = 1 (first observation), dNobs

2 e (the
median observation), and Nobs (the last observation).

The sensitivity for case I is presented in figure 4.4 as a function of time, high-
lighted at three observation points. We derived sensitivity for assimilation results
using Nobs = 45, as this value produced optimal convergence in chapter 3. These
are equidistantly spaced with ∆x = 0.06 and with the first point at 0.1L. We
recall that the sensitivity dG/dm is an Nobs ×Nt matrix. To be concise, in figure
4.4 we only plot results for dG/dm for three distinct observation points mj, where
j = 1 (first observation), dNobs

2 e (the median observation), and Nobs (the last obser-
vation). Figure 4.4 shows that at each mj the sensitivity is O(10−8). Comparing
the trend across observation points, we see increased oscillation at the time steps
where the surface wave is presumably observed by the measurement points. How-
ever, the amplitude of the sensitivity remains low. Given the relative error for the
case I bathymetry reconstruction was O(10−4), our initial hypothesis is that the
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lower error in the reconstructed bathymetry is correlated with low sensitivity of
the surface wave error given the reconstructed bathymetry, to the observations.
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Figure 4.5: The sensitivity dG/dm as a function of time (with
final time t = T ), for assimilation results for Case II. There are
Nobs = 45 observations, equidistantly spaced with ∆x = 0.06 and
with the first point at 0.1L. Results show dG/dm at three distinct
observation points mj , where j = 1 (first observation), dNobs

2 e (the
median observation), and Nobs (the last observation).

To substantiate this further, we observe the results for cases II and III, as
presented in figures 4.5 and 4.6. The number, position, and spacing of observations
is the same as for figure 4.4. For case II we see that the sensitivity is much higher,
O(10−4) at m1, m23 and m45. The oscillations indicating the passing wave are
present for case I as well, and have a relatively lower frequency compared to figure
4.4, possibly due to flatter curvature of the sandbar bathymetry compared to a
Gaussian bathymetry, resulting in a more gradual effect on the surface wave. We
note that the bathymetry reconstruction error (4.6.2) for case II (as shown in figure
??) is O(10−2), and subsequently an order of magnitude higher than for case I.
Subsequently the increased sensitivity in figure 4.5 for case II compared to case I
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is correlated to a higher reconstruction error in bathymetry with a sandbar profile
that with a Gaussian profile.
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Figure 4.6: The sensitivity dG/dm as a function of time (with
final time t = T ), for assimilation results for Case III. There are
Nobs = 45 observations, equidistantly spaced with ∆x = 0.06 and
with the first point at 0.1L. Results show dG/dm at three distinct
observation points mj , where j = 1 (first observation), dNobs

2 e (the
median observation), and Nobs (the last observation

For case III, we see that the sensitivity is intermediate, O(10−5) at all three
observation points, and the oscillatory behaviour is present at all time steps, due
to the periodic nature of the surface wave. For case III, the relative error in the
bathymetry reconstruction is also much larger than case I, O(10−1). therefore we
observe that for cases II and rom3, the fact that the sensitivity in these cases is at
least three orders of magnitude higher than with case I further confirms our initial
hypothesis that a higher error in bathymetry reconstruction is related to higher
sensitivity of the surface wave error to perturbations in the observations.
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To gauge the sensitivity across all observation points, in figure 4.7 we consider
the time integrated sensitivity across all 45 observation points for each case. As
we can see, the hypothesis is confirmed across all cases, where the sensitivity of
the surface wave error to perturbations in the observation points is much higher
for the cases with a higher L2 error in the reconstructed bathymetry (cases II and
III).
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Figure 4.7: The time integrated sensitivity
∫ T

0
∂G
∂mdt at each ob-

servation point.

We summarise the results comparing sensitivity of the surface wave error to
perturbations in the observations and relative error in bathymetry reconstruction
in table 4.2. We note that the sensitivity is lower for case III compared to case
II despite the fact that III has a relatively higher error in the bathymetry recon-
struction. however, this value is still high relative to case I, and so we stipulate
that our hypothesis conclusion has merit, even though the correlation may not be
completely linear.
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Case Error Sensitivity
I O(10−3) O(10−9)
II O(10−2) O(10−5)
III O(10−1) O(10−6)

Table 4.2: Comparison of the relative L2 reconstruction error
(4.6.2) in the bathymetry as shown in figure 3.5(c), and the time
integrated sensitivity

∫ T
0 dG/dm dt of the surface wave error to the

observations.

We now extend the sensitivity analysis to question II, and observe the trend
when we perturb influential parameters in the algorithm, such as the placement
and number of observation points.

Question II

We now analyse the dependence of the sensitivity dG/dm on the position and num-
ber of observation points, as well as on the shape of the bathymetry. Our objective
is to determine if there is an optimal spacing, or number of observations such that
the sensitivity of the surface wave error (4.6.1) to observations {mj(t)} remains
low. For each of cases I, II, and III, we vary the (i) spacing of observation points,
(ii) number of observation points and (iii) shape of the bathymetry. The latter is
motivated by the significant difference in sensitivity we observed between case I,
where we have a gaussian bathymetry with relatively low standard deviation, and
case II, where we have a sandbar bathymetry with more “spread”.

First, we consider the sensitivity of the surface wave error to the spacing of
the observation points. Our objective is to find the spacing of a fixed number
of evenly spaced observation points that minimizes the sensitivity of the surface
wave error to perturbations in the observations {mj(t)} for j = 1, ..., Nobs, where
Nobs = 45. We iteratively run the data assimilation algorithm, where in each
iteration the position of the last observation point x45 is fixed, and as ∆x is
varied, the the first observation point is shifted back (as in figures 4.8 (d), (e)
and (f)). We wish to observe how the resulting sensitivity of the surface wave
error to observations changes, and thus answer the question: does increasing the
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spacing of the observations (and subsequently increasing coverage of the domain
by observation points) lead to a decrease in the sensitivity dG/dm? If so, the
implication for tsunami models is that, given a fixed number of evenly spaced
observation points, it is best to choose a relatively wide spacing that covers as
much of the bathymetry feature as possible.
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Figure 4.8: Case I: The time integrated sensitivity of the surface
wave error

∫ T
0

∂G
∂mdt as the location of the first observation point is

varied such that the observation points cover a greater proportion
of the domain and the initial conditions support.

Figure 4.8, showing the time integrated sensitivity
∫ T
0

∂G
∂m
dt of the surface wave

error for case I, corresponding to different spacings ∆x for 45 observation points.
The values of ∆x and the resulting observation configurations are given in the
bottom panels of figure 4.8. We observe that for case I, the amplitude of the
sensitivity dG/dm is small for each choice of ∆x, at most O(10−8). This suggests
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that with a Gaussian bathymetry and initial conditions (as seen in figure 4.8(d)-(f)
), larger spacing of observations does not significantly increase the sensitivity of
the error in the surface wave produced by the reconstructed bathymetry, to the
observations mj(t).
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Figure 4.9: Case II: The time integrated sensitivity of the surface
wave error

∫ T
0

∂G
∂mdt as the location of the first observation point is

varied such that the observation points cover a greater proportion
of the domain and the initial conditions support.

Results for case II are shown in figure 4.9. We note that increasing the spacing
∆x improves the time integrated sensitivity

∫ T
0 dG/dm dt. We note that this may

be due to the increased “coverage” of the bathymetry support by the observation
points. We observe that configurations of observations for case II in figures 4.9(b)
and (c) show larger coverage of the bathymetry feature by observations than in
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4.9(a), where only half of the bathymetry is observed by the right propagating
surface wave.

0 10 20 30 40 50

Observation Point

-5

-4

-3

-2

-1

0

1

2

3

4

∫
T 0

∂
G

∂
m
d
t

×10
-6

(a) x1 = 0.3, ∆x = 0.06
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(b) x1 = −1.19, ∆x = 0.09
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(c) x1 = −2.83, ∆x = 0.13
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Figure 4.10: Case III: The time integrated sensitivity
∫ T

0
∂G
∂mdt as

the location of the first observation point is varied such that the
observation points cover a greater proportion of the domain and
the initial conditions support.

The results for case III are summarised in figure 4.10. There does not appear to
be a significant change in the time integrated sensitivity shown in figure 4.10(a)-
(c). Our hypothesis that the position of the observation points relative to the
support of the bathymetry significantly affects the sensitivity dG/dm like for case
II, is strengthened by the results in 4.10. In each configuration 4.10(d)-(f), the first
observation point is positioned to the left of the bathymetry perturbation, and the
bathymetry is always covered by the “observed zone” for each ∆x. This was also
true for case I, but not for case II, and as a greater proportion of the bathymetry
support was covered by the observation points, the sensitivity decreased. Based on
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this result we suggest that while varying the spacing ∆x does not have a significant
impact on

∫ T
0 dG/dm dt, increasing the coverage of the observation network such

that it covers the support of the bathymetry, results in lower sensitivity of the
response function G to the observations mj(t).
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Figure 4.11: Case I: The time integrated sensitivity
∫ T

0
∂G
∂mdt as

the number of the observation points is varied.

Having analysed the placement of the observation points, we now consider re-
sults when varying the number of observation points. We conduct trials of the
data assimilation algorithm, where each trial has an increasing number of obser-
vation points, and the spacing ∆x is fixed at 0.12. Like the analyses for varied
spacing, the position of the final observation point is xNobs

= 2.52, and as Nobs

increases, the “coverage zone” of the observations does as well. We conduct trials
for Nobs = 5, 10, 20, and 45. The results for each case are summarised in figures
4.11, 4.12 and 4.13 respectively.

For case I there is a clear decrease in sensitivity as more observation points are
considered. We see the sensitivity go from O(10−4) to O(10−7) as Nobs is increased
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from 5 to 45. For case II, we see in figure 4.12 that while the decrease in sensitivity
is not as large as for case I, we do see a decrease by two orders of magnitude as
we increase Nobs from 5 to 45.
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(d) Nobs = 45
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Figure 4.12: Case II: The time integrated sensitivity
∫ T

0
∂G
∂mdt as

the number of the observation points is varied.

The results for case III are presented in figure 4.12. We note that like case II,
there is a decrease in sensitivity by an order of magnitude when increasing Nobs

from 5 to 10, however there does not seem to a further increase when increasing
Nobs from 10 to 20 or 45. This suggests that for case III, there is little change
in the surface wave error given the reconstructed bathymetry, to perturbations
in observations with varying number of observation points. We note that this
is not dissimilar to the qualitative analyses of the bathymetry data assimilation
results for case III, where changing the number of observation points did not have
a significant improvement in the bathymetry reconstruction error.
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(d) Nobs = 45
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Figure 4.13: Case III: The time integrated sensitivity
∫ T

0
∂G
∂mdt as

the number of the observation points is varied.

Based on these results, we can see a contrast emerging between case I and case
II, where we have the same initial conditions (Gaussian) but differing bathymetry.
Subsequently in our next analysis, we run trials of the data assimilation scheme
where we begin with a Gaussian as in case I, and iteratively increase the standard
deviation of the bathymetry such as it becomes closer in shape qualitatively to
a sandbar type bathymetry, with flatter curvature. We consider two different
positions for the initial condition, given in figures 4.14 and 4.15 respectively. This
is because for case I the bathymetry is to the right of the support of the initial
condition, and so we replicate this positioning in figure 4.14. However, in case II
the support for both the bathymetry and the initial conditions is centred at x = 0,
and so we replicate this for the set of results in figure 4.15.

In both 4.14 and 4.15 it is clear that the flatter the bathymetry shape, the
higher the sensitivity of the response function to observations. The similarity
between the 4.14 and 4.15 suggests that the position of the bathymetry relative
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to the initial conditions support does not influence sensitivity, but the curvature
of the bathymetry does. Each trial was conducted with Nobs = 45 and ∆x = 0.1,
with the position of the first observation at x1 = −L (complete coverage of the
domain by the observations).
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Figure 4.14: Comparison with Case I:
∫ T

0
∂G
∂mdt as the standard

deviation of the bathymetry Gaussian is increased.

Having gained some insight into the influence of spacing and number of points on
sensitivity, our ultimate objective is to gauge whether these conclusions regarding
the sensitivity of the surface wave error produced by the bathymetry reconstruction
to observations ∂G/∂m, can be linked back to the main conclusions of chapter 3.
This analysis is given in Question III.
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(a) σ = 0.2
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Figure 4.15: Comparison with Case II:
∫ T

0
∂G
∂mdt as the standard

deviation of the bathymetry Gaussian is increased.

Question III

In chapter 3, we presented results for optimally reconstructing bathymetry using
surface wave observations in a variational data assimilation algorithm. We con-
cluded that the data assimilation results are improved by (i) increasing the number
of observation points, and (ii) maintaining an optimal ratio between the amplitude
of the initial conditions and bathymetry relative to the average depth. We also
observed the error in the surface wave produced by the reconstructed bathymetry
was orders of magnitude smaller than the error in the bathymetry reconstruction,
suggesting low sensitivity of the surface wave to bathymetry reconstruction error.

In terms of the current sensitivity analysis, the question we wish to address is:
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Does implementation of the aforementioned conditions (i) and (ii) also result in
low sensitivity of the surface wave error (4.6.1) to perturbations in the observations
{mj(t)}, and is this sensitivity orders of magnitude lower than the reconstruction
error in the bathymetry?

We provide an answer by verifying the following conclusions using the sensitivity
analysis results.

C. i. Does increasing the number of observations (with fixed spacing ∆x) result
in lower sensitivity of the surface wave error to the observations?

C. ii. Does a sub-optimal ratio (that lead to non-convergent results in chapter 3)
between the amplitudes of the initial conditions and bathymetry result in
greater sensitivity of the surface wave error to observations?

C. iii. If the reconstruction error in the bathymetry is high (i.e. 10%), does that
imply that the sensitivity of the resulting error in the surface wave to obser-
vations is also proportionately high?

We already observed the results of (C. i) in the previous section where our
analyses in figures 4.11, 4.12, and 4.13 indicated lower sensitivity across all three
cases when the number of observation points was increased (with fixed spacing
∆x = 0.12). Thus our hypothesis that increasing the number of observation
points improves our data assimilation results is supported by the second order
adjoint sensitivity analysis.

(C. ii) is based on results in chapter 3, where we analysed the affect of varying
η̂/β̂ and β̂/H on the resulting reconstruction error in the bathymetry. Here η̂ rep-
resents the amplitude of the initial condition, β̂ is the amplitude of the bathymetry,
and H is the average sea depth (normalised to H = 1). We observed that con-
vergence was sub-optimal when η̂/β̂ was greater than O(10−2) and bathymetry
amplitudes were large ( over 10% of the average sea depth H).
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(a) β̂/H = 1%
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(b) β̂/H = 15%
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Figure 4.16: Case I: Time integrated sensitivity
∫ T

0
∂G
∂mdt as the

relative amplitude of the bathymetry is increased.

As having η̂/β̂ ≤ O(10−2) is necessary for convergence of the data assimilation,
we do not explicitly violate this condition in our analysis. Instead, we analyse the
effect on the sensitivity of the surface wave error to observations, as β̂ is varied
(and η̂ is fixed at 1% of β̂). The relationship between the ratio β̂/H and the
sensitivity ∂G/∂m can be observed in figures 4.16, 4.17, and 4.18. The figures
correspond to cases I, II and III respectively. For each case, we present the time-
integrated sensitivity as β̂ is varied from 0.01 to c, where c is the approximate
cut-off value beyond which the surface wave error became larger than 0.1% (as
shown in chapter 3). In figure 4.16(a) - (c), results are shown for case I with
β̂/H = 1%, 15%, and 30% respectively. We observe that when the bathymetry
is 1% of the depth, the sensitivity is O(10−9), and as β̂ increases to 30% of the
depth, the sensitivity increases to O(10−7).
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Figure 4.17: Case II: Time integrated sensitivity
∫ T

0
∂G
∂mdt as the

relative amplitude of the bathymetry is increased.

Similarly in figure 4.17, we consider the sensitivity for case II with β̂/H =
2%, 8%, and 20%. We see that as β̂ increases, the sensitivity increases from
O(10−8) by at at least two orders of magnitude for each value of β̂, indicating
a clear correlation between the normalised height of the bathymetry β̂ and the
sensitivity of the surface wave error to observations.
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(b) β̂/H = 5%
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(c) β̂/H = 10%
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Figure 4.18: Case III: Time integrated sensitivity
∫ T

0
∂G
∂mdt as the

relative amplitude of the bathymetry is increased.

Figure 4.18 shows the results for case III, for β̂/H = 1%, 5%, and 10. The
error does not decrease from O(10−7) for the first two β̂ values, but we observe a
decrease to O(10−6) when β̂ = 0.1.

To summarise, in each of the cases I, II, and III sensitivity increases with β̂/H.
We note that for cases I and III especially, this increase occurs when β̂/H increases
from 1% to 10%. For case I sensitivity did not vary significantly when β̂/H was
10% or larger (see figure 4.16(b) and figure 4.16(c)). Similarly for case III, figure
4.18 shows constant sensitivity at O(10−7) when β̂/H is 1%. Based on these
observations, we conclude that a lower relative bathymetry height β̂/H decreases
the sensitivity of G to changes in the observations {mj(t)}.

Perhaps the most significant question we aim to address with this analysis is
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(C. iii). In chapter 3 we found that the error in the surface wave was orders of
magnitude lower than the error in the bathymetry, suggesting low sensitivity of
the surface wave to bathymetry reconstruction error. This implies relatively large
tolerance levels for bathymetry reconstruction error in tsunami models may be
acceptable, at least in the one-dimensional case. We now wish to make this con-
clusion more rigorous, and verify whether the second order adjoint sensitivity of the
surface wave error to the observations ∂G/∂m also exhibits the same behaviour. If
∂G/∂m were the same order of magnitude as bathymetry reconstruction error, this
would imply that if the bathymetry reconstruction is sub-optimal, the accuracy of
surface wave prediction is sensitive to changes in observations. This is undesirable
from a forecasting perspective as it indicates predictions may vary greatly based
on small changes in the observations. Due to the ill-posedness of inverse problems
of this kind, errors in measurements can be amplified and subsequently have a
large affect on the surface wave error.

However, based on our analyses we observe clearly that in all cases considered
the sensitivity ∂G/∂m is orders of magnitude lower than the optimal values for
the bathymetry reconstruction error presented in table 4.2. This relationship does
not change even for the worst sensitivity results (observed for case II in figure
4.17(c), where the sensitivity isO(10−3). This is still an order of magnitude smaller
than the lowest error observed for case II, which was O(10−2). Additionally, we
observed in our analysis that even when the bathymetry reconstruction error is
sub-optimal the sensitivity can be relatively far smaller, as in figures 4.16(a) and
4.17(a) where the sensitivity was O(10−9) and O(10−8) respectively, while the
bathymetry reconstruction error was O(10−1).

4.7 Conclusion

In this chapter, we analytically derived the sensitivity of a response function G
(a function of optimal data assimilation results) to the observations m, using sec-
ond order adjoint techniques and the Hessian of the original cost function J . We
did this for the initial conditions assimilation and for the bathymetry assimilation

142

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

respectively. In each case we first derive the Hessian product Hν given some arbi-
trary perturbation of the control variable ν, and then demonstrate that deriving
the sensitivity ∂G/∂m involves solving the forced equation Hν = F with the right
hand side F dependent on the optimal assimilation results. For the present study,
we chose the response G to be the relative L2 error in the surface wave, produced
by the reconstructed bathymetry.

We numerically implemented the sensitivity algorithm for the bathymetry as-
similation case, in order to further investigate and confirm the conclusions of the
bathymetry assimilation from chapter 3. We formulated three questions. Question
I asks whether there is a link between the sensitivity ∂G/∂m and the convergence
of the reconstructed bathymetry to the exact form. The results for the three
bathymetry and initial conditions configurations outlined in table 4.1 showed that
a higher error in bathymetry reconstruction is associated with higher sensitivity
of the surface wave error to perturbations in the observations.

Question II asks how changing parameters in the data assimilation scheme (such
as the spacing and number of observation points, or shape of the bathymetry) af-
fects the sensitivity. We analysed the sensitivity ∂G/∂m as we varied the observa-
tion point placement and number of points. We concluded that for cases I and III
, the spacing ∆x of a fixed number of observation points was non-influential and
that for all values of ∆x considered, the resulting observation configuration cov-
ered the entire support of the bathymetry. This was not true for case II where only
the largest spacing ∆x = 0.13 corresponded to coverage of the entire bathymetry
support by observations, and we observed that the sensitivity decreased as the
observation points spanned a larger interval of the bathymetry support.

To gain further insight into the differences between cases I and II and their dif-
fering bathymetry shapes (same localized surface wave in each case but compact
and “spread out” bathymetry respectively), we conducted trials where we incre-
mentally increased the standard deviation of the Gaussian bathymetry in case
I, until its curvature qualitatively resembled the sandbar bathymetry in case II.
We observed that the higher standard deviation led to an increase in the time-
integrated sensitivity, regardless of the position of the bathymetry relative to the
initial condition.
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Finally for question III, we investigated whether our previous conclusions could
be confirmed by the sensitivity analysis. One of the main conclusions from chapter
3 was that convergence improved with more observation points. Therefore, we
investigated whether increasing the number of observations also resulted in lower
sensitivity of the surface wave error to the observations. The results given in
figures 4.11, 4.12, and 4.13 indicated lower sensitivity across all three cases when
the number of observation points was increased, confirming our earlier conclusion.

Our second conclusion from chapter 3 addressed the relationship between the
bathymetry and initial conditions amplitudes β̂ and η̂, and the average depth
H. We observed that a necessary condition for convergence of the reconstructed
bathymetry was that the relative height of the initial conditions compared to the
bathymetry height η̂/β̂ be less than or equal to O(10−2) when β̂/H was larger than
10% of the depth. In the sensitivity analysis we varied the relative bathymetry
amplitude β̂/H (keeping η̂ at 1% of β̂, to investigate the effect of the relative
bathymetry amplitude on the sensitivity of the surface wave response G to the
observations. In each of the cases I, II, and III we saw a general increase in
sensitivity as the relative bathymetry height β̂/H increased.

Finally, we verified the observation from chapter (3) that the error in the surface
wave is orders of magnitude lower than the error in the reconstructed bathymetry,
suggesting low sensitivity of the surface wave to reconstruction error. We therefore
investigated whether the sensitivity ∂G/∂m exhibited the same behaviour, i.e.
whether the sensitivity of the surface wave error to observations was orders of
magnitude lower than the bathymetry reconstruction error. We clearly observed
that in all cases considered, the sensitivity ∂G/∂m was orders of magnitude lower
than the optimal values of the reconstruction error presented in table 4.2.

In conclusion, the analyses in this chapter confirm the results observed for the
data assimilation in chapter 3. We have shown that the necessary conditions
for convergence of the bathymetry reconstruction error, also correspond to low
sensitivity of the surface wave error to the observations. By showing that ∂G/∂m
is orders of magnitude lower than the bathymetry reconstruction error, we stipulate
that even if the reconstruction of the bathymetry is sub-optimal, the forecast of
surface wave exhibits low sensitivity to changes in observations. High sensitivity
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of the surface wave error to observations implies that predictions may vary greatly
based on small changes in the observations. As errors in measurements can be
amplified and subsequently have a large affect on the surface wave error, the low
sensitivity observed in these analyses is encouraging from a forecasting perspective,
especially in situations where the relative bathymetry reconstruction error is sub-
optimal (larger than 10%).

Improvements to the current analysis could be made by ensuring better con-
vergence of Hν = F , such that the residual error is decreased further. Equivalent
results for the initial conditions assimilation may also shed more light on the sen-
sitivity of surface wave propagation to observations.

We note that these results are for an idealised 1-D case. The next step would
be verify the conclusions of this analysis for the 2-D data assimilation, allowing
us to move away from the idealised case and use available ocean bathymetry data
and observation data in our analysis. In chapter 3 we provided a concise overview
on the importance of bathymetry for accurate tsunami modelling. Consequently,
the results from the current analysis help us quantify the accuracy required for the
reconstructed bathymetry, such that the sensitivity of the the error in the surface
wave to the observations remains low. We also gain a better understanding of
how large bathymetry features impact the surface wave accuracy, and the effects
of the number and placement of observations. Therefore, the results observed
here provide an encouraging first step towards a more realistic implementation for
tsunami models, and may serve as a benchmark for future analyses.

The analyses in this chapter quantified the sensitivity of the surface wave error
given the reconstructed bathymetry to observations. To gain further insight on
the sensitivity of the surface wave error to parameters in the models (like the
bathymetry and initial conditions amplitudes η̂ and β̂), in chapter 5 we use Global
Sensitivity Analysis (GSA) techniques to derive sensitivity indices quantifying the
variation in the surface wave error resulting from the respective parameters.
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Chapter 5

Global Sensitivity Analysis (GSA)

5.1 Introduction

The second order adjoint sensitivity analysis in Chapter 4 quantified the sensitiv-
ity of response functions to perturbations in the observations. However, results
from Chapter 3 for data assimilation for bathymetry reconstruction demonstrated
the influence of other parameters such as initial conditions and bathymetry ampli-
tude. Additionally, while we discussed the impact of number of observations and
spacing in detail in Chapter 4, we wish to gain more insight on how the position of
the bathymetry relative to observation points effects the reconstruction error and
resulting error in the surface wave. In the present study, we use Global Sensitivity
Analysis (GSA) to quantify the influence of these additional parameters on the
error in bathymetry reconstruction. We also consider the sensitivity of the surface
wave error to model parameters given the reconstructed bathymetry. We focus our
analysis on a localized surface wave propagating over a compact bathymetry. This
work is motivated by the observation in Chapter 3 that there is low sensitivity of
surface waves to noise in bathymetry reconstruction. Using GSA we aim to quan-
tify, and subsequently rank the influence of these parameters on the bathymetry
and surface wave errors respectively.

We begin with a review of GSA and applications to Earth System Modelling
(ESM) in section 5.2.1. In section 5.2.2 we implement a variance-based sensitivity
analysis (VBSA) scheme to define sensitivity indices, using the Sobol’ method. We
decompose the variance of the model output into the respective contributions of
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each of the model parameters. We present a brief overview of the Sobol’ method,
and subsequently discuss considerations such as choice of sampling method for the
input parameters, base sample size and accuracy of numerical approximations for
model variance. In section 5.3 we present the results for the variance-based Sobol’
analysis, attempting to quantify the influence of three significant model parame-
ters. We show that the probability distribution of the surface wave error is highly
skewed, suggesting that variance-based analysis may not accurately represent the
influence of the parameters on model outputs. Therefore, in section 5.4 we perform
density based sensitivity analysis (DBSA) as an alternative, and implement the
algorithm outlined in Saltelli et al. [48]. This method uses the conditional and un-
conditional cumulative density functions of the model to derive sensitivity indices,
instead of using moments such as variance. Section 5.5 presents the DBSA results,
and we demonstrate that density-based sensitivity indices pass tests for robustness
and convergence. We show that the most influential parameter for the surface wave
error is bathymetry amplitude, whereas the position of the bathymetry ψ (where ψ
is the x-coordinate of the Gaussian bathymetry peak) relative to the fixed position
of the observation points was most influential on the bathymetry reconstruction
error. Finally, in 5.6 we summarise the results and discuss their connection to
conclusions of the bathymetry data assimilation presented in Chapter 3.

5.2 Sensitivity analysis methods, derivation, and
sampling considerations

5.2.1 Review of GSA

Saltelli et al. [48] define GSA as the set of mathematical techniques used to assess
the propagation of uncertainty in a numerical model. In practice, a set of synthetic
indices are derived, that quantify the relative contribution to output variance
from different input parameters. These are known as sensitivity indices. Liu and
Homma [29] propose that good sensitivity indices should exhibit the following
properties:
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1. They are global, and consider the influence of model inputs on the entire
output range.

2. They are quantifiable, and thus can be computed and reproduced numeri-
cally.

3. They are not conditional on any assumed input values.

4. The value of the sensitivity index for some input gives an easy interpretation
of the sensitivity of the model to the parameter.

5. They are consistent across multiple samples and simulations.

6. They are ideally moment-independent, and not reliant on a specific quanti-
tative measure of the output distribution.

GSA methods can be categorised as one-at-a-time methods (OAT), where out-
put variations are induced by varying one input at a time, or all-at-a-time methods
(AAT), where all input factors are varied simultaneously. A well known methods
is the Elementary Effect Test (EET), which computes output perturbations from
multiple points in the input space, and quantifies global sensitivity by aggregating
individual sensitivities. Another is the Fourier Amplitude Sensitivity Test (FAST),
a variance-based method that uses the Fourier expansion of the output for the sen-
sitivity index derivation. For more extensive descriptions we refer the reader to
Pianosi et al. [40].

GSA methods are especially prevalent in Earth Systems Modelling (ESM). An
example is the work conducted by the Modelling, Observations, Identification for
Environmental Sciences (MOISE) project [1] on variance-based sensitivity analysis
on a marine eco-system model of the Ligurian sea, using the Sobol’ method (which
we implement in section 5.2.2).

A concise review of the contributions of GSA on advancement of ESM is pro-
vided in Wagener and Pianosi [61]. They highlight the surge in computational
capacity for Earth and climate models, and address the resulting problem of in-
creased interaction between model components and parameters, even when rep-
resenting a relatively low number of physical processes. This issue is particularly
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problematic in ESM where incomplete knowledge and the lack of relevant exact
solutions makes model validation very difficult. In addition, such models are forced
with noisy and inaccurate observations. Typical uses of GSA include:

• Ranking the influence of the parameters on model output from highest to
lowest.

• Creating a threshold criteria for sensitivity allowing us to determine param-
eters of negligible influence (screening).

• Finding thresholds in the input parameter values that map into specific out-
put regions (factor mapping).

Thus, the primary objective of this study is to use GSA to analyse the data
assimilation model for bathymetry detection presented in Chapter 3, in order to
rank, screen and factor map the influence of its parameters. A review of the data
assimilation input-output model used in the analysis, and the VBSA algorithm
used to derive the sensitivity indices is provided in the following section.

5.2.2 Variance Based Sensitivity Analysis (VBSA)

We begin with a brief review of the model, and provide a derivation of the variance-
based sensitivity indices using the Sobol’ method [56]. In Chapter 3, we measured
the relative L2 reconstruction error in the bathymetry

Yβ =
‖ β(t) − β(b) ‖L2(ΩX)

‖ β(t) ‖L2(ΩX)
, (5.2.1)

where β(t) is the “true” bathymetry and β(b) is the “best” reconstruction obtained
via the data assimilation scheme. We also found that the relative L2 error in the
propagating surface wave η(x, t) given the reconstructed bathymetry β(b)

Yη =
‖ η(β(t))− η(β(b)) ‖L2(ΩX×T )

‖ η(β(t)) ‖L2(ΩX×T )
, (5.2.2)

was orders of magnitude lower than the bathymetry error (5.2.1), suggesting low
sensitivity to the bathymetry error, as a function of the bathymetry amplitude

149

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

β̂. Based on this initial observation, we wish to derive a more rigorous way to
measure sensitivity of results to parameters η̂ (amplitude of the surface wave), β̂
and ψ (amplitude and position of the bathymetry respectively) such that

η(t)(x, 0) = η̂e−(10x)2
(5.2.3)

β(t)(x) = β̂e
−
(

10(x−ψ)
)2

. (5.2.4)

We solved the 1-D SWE system (3.3.1) using a second order finite difference
approximation in space, and a four stage third order Runge-Kutta scheme in time.
The mean depth H is normalised to 1. The resolution of our spatial grid is N =
256, and our spatial domain is ΩX = {x ∈ R;−L ≤ x ≤ L}. The system is
integrated over ΩT = {t ∈ R; 0 ≤ t ≤ T}, with final time T = 2L. Periodic
boundary conditions are imposed at x = L and x = −L where L = 3. We assume
we have no background information for bathymetry a priori, and set our initial
guess for the bathymetry β(g)(x) to 0. We focus on case I from Chapters 3 and 4,
where we have compactly supported Gaussian initial conditions centred at zero,
and a localised Gaussian bathymetry centred at x = ψ. We use 45 equidistant
observation points with spacing ∆x, and the first observation is located at x = 0.3.
An example configuration with Nobs = 45 and ψ = 1.5 is shown in figure 5.2.2.
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-3 -2 -1 0 1 2

x

Figure 5.1: Gaussian initial conditions and localised Gaussian
bathymetry centred at ψ = 1.5 (bathymetry and initial conditions
amplitudes not to scale), with 45 observation points. Note that the
value of ψ is the position of the peak of the Gaussian bathymetry.

The key property of ψ is that it determines the location of the bathymetry
relative to the observation points. We see from figure 5.2.2 that when ψ is small, a
smaller proportion of observation points observes the surface wave before it inter-
acts with the bathymetry, and for ψ approximately less than 1, the observations
do not span the entire bathymetry support. In Chapter 4 section 4.6, we ob-
served that having a larger number of observation points placed to the right of
the bathymetry support (and also spanning it) corresponded to low sensitivity of
the surface wave error to observations, suggesting that this relative position is a
significant parameter for surface wave accuracy. We wish to extend this analysis
and discover whether the influence of shifting the bathymetry position ψ relative
to the fixed observation points confirms this result.

Using the variance based sensitivity analysis (VBSA) outlined by Sobol [56],
we formulate our model as f(η̄, β̄, ψ) = Y , where output Y is either the error in
the bathymetry (5.2.1) or error in the surface wave (5.2.2). We represent (5.2.1)
by Yβ and (5.2.2) by Yη.

If we denote the input variables (η̄, β̄, ψ) as x = (x1, x2, x3) then we can de-
compose the variance of f(x1, x2, x3) into fractions attributed to each parameter
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individually and to coupled interactions,

f = f0 + f1 + f2 + f3 + f1,2 + f1,3 + f2,3 + f1,2,3. (5.2.5)

If f is a square integrable function, it follows that the fractions (5.2.5) are as well,
and thus we denote the constants

D =
∫
f 2(x) dx− f 2

0 (5.2.6)

Di1..is =
∫
f 2
i1..is(xi1 ...xis) dxi1 ..dxis (5.2.7)

as variances of the function f and its fractional decomposition respectively, where
i1 < .. < is ≤ 3. We observe that

D =
3∑
i=1

3∑
i1<..<is

Di1..is . (5.2.8)

As stipulated in Sobol [56], if x is a uniformly distributed random point in the
3-dimensional parameter space, then f(x) and fi1..is(xi1 ...xis) are random vari-
ables with variance D and Di1..is respectively. Subsequently, we define the global
sensitivity indices as the ratios

Si1..is = Di1..is
D

. (5.2.9)

Sensitivity indices Si1..is are the proportion of total variance represented by each
component. All correctly derived sensitivity indices should be non-negative, and
should sum to 1, such that

S1 + S2 + S3 + S1,2 + S1,3 + S2,3 + S1,2,3 = 1 (5.2.10)

We use the sensitivity indices Si1..is as a useful proxy to investigate the relative
variance contributed to our model f(x) by each parameter. We can also compute
sensitivity indices for subsets of our parameter space, for example calculating the
sensitivity index S(Tot)

1 which quantifies the total variance contributed by the pa-
rameter x1. If we consider a subset y = (xk1 , ..., xkm), of our parameter space such
that 1 ≤ m < 3 and 1 ≤ k1 ≤ ... ≤ km ≤ 3, then we can partition our parameters
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such that we have x = (y, z) where z is the set of 3−m complementary variables.
Then the variance corresponding to the subset y is

Dy =
3∑
i=1

∑
(i1<..<is)∈K

fi1..is(xi1 ...xis), K = (k1, ..., km), (5.2.11)

and by defining Dz in a similar manner, the total variance contributed by y is

D(Tot)
y = D −Dz, (5.2.12)

We demonstrate the difference between the two with an example in the current
context.

Assume y = (x1, x3) and z = (x2). Then,

Dy = D1 +D3 +D(1,3), (5.2.13)

D(Tot)
y = D −Dz = D −D2 = D1 +D(1,2) +D(1,2,3) +D(2,3) +D3 +D(1,3).

(5.2.14)

And so we define two global sensitivity indices for the set of parameters in y,

S(Tot)
y =

D(Tot)
y

D
(5.2.15)

Sy = Dy

D
. (5.2.16)

The values of S(Tot)
y and Sy respectively cast light on the influence of the subset y;

for example if S(Tot)
y = Sy = 1, this implies the total variations of the model f(x)

can be explained by y alone, and hence f(x) has no dependence on z. By this
procedure, we can screen which variables can be neglected from the model. We
call the indices S1, S2, S3 the first order indices and S(1,2), S(1,3), S(2,3) the second
order indices respectively. The former are relatively simpler to compute, and can
be used to rank the input parameters by the sensitivity index values by ordering
them from most to least influential on the model variance. However the latter can
also be useful, for example, in determining whether the interaction of two variables
has a greater effect on the model output than the individual variables alone.
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The efficacy of such analyses hinges on the ease of numerical approximation
of model variance, and subsequently the sensitivity indices. Sobol [56] outlines a
Monte Carlo algorithm that obtains estimates for the variances D, Dy, Dz. In-
dependent points are chosen randomly from the uniformly distributed parameter
space and, by conducting enough trials, Monte Carlo estimates are formed for the
variances which converge stochastically to the integrals in (5.2.6) and (5.2.7). Fur-
ther details of the numerical approximation of the sensitivity indices and sampling
strategy is given in the following section.

5.2.3 Numerical approximation and sampling strategy

To approximate the variance of the model, and subsequently derive the sensitivity
indices, we must sample input parameters such that the model evaluated at these
points adequately represent the spread of the probability distribution of Y . One of
the most commonly used sampling strategy in GSA is Latin Hypercube Sampling
[40].

Latin Hypercube sampling (LHS) is a stratified sampling technique, where the
population the model parameters are sampled from is partitioned into homoge-
neous subpopulations (strata) before sampling [38]. Thus, every sample point can
be assigned to a single stratum. In LHS, the sample is generated such that each
of the d (uniformly distributed) parameters is stratified into N equal strata. For
example when d = 2, the sample space is partitioned into a “latin square” where
each row and each column contains only a single sample. The latin hypercube is
the generalisation of this concept to higher dimensions. When sampling, the range
of each of the d parameters is broken up into N equally probable intervals, from
which N sample points are chosen in accord with the latin hypercube require-
ments. The value of the sample point can be randomly generated from a uniform
distribution, or it can be chosen at a fixed location within the interval, such as the
midpoint. When N >> d, the LHS technique can be very effective in capturing
the influence of each parameter [49].

For the current analysis, we use a tailored approach considered appropriate
for VSBA where a sample of size 2N is generated using LHS, then a further dN
samples are built using recombinations of the base sample vectors. These are
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subsequently used to derive Monte Carlo estimates of the sensitivity indices. The
latter strategy and computational scheme was outlined by Saltelli et al. [48] and
we present a general overview as follows.

Recall that we defined S(Tot)
y = D

(T ot)
y

D
and Sy = Dy

D
, where x = (y, z) is a

partition of our input parameters, and D(Tot)
y = D − Dz. Then to compute the

indices S(Tot)
y and Sy we need to approximate the following integrals,

∫
f(x) d(x),

∫
f 2(x) dx,

∫
f(x)f(y, z′) dydz′,

∫
f(x)f(y′, z) dy′dz . (5.2.17)

The Monte Carlo algorithm outlined in Sobol [56] stipulates that, if we consider
two independent random points ξ = (γ, ζ) and ξ′ = (γ′, ζ ′) uniformly distributed in
the 3-dimensional parameter space, then with N trials the following Monte Carlo
estimates can be obtained,

1
N

N∑
i=1

f(ξi) P−→ f0,

1
N

N∑
i=1

f 2(ξi) P−→ D + f 2
0

1
N

N∑
i=1

f(ξi)f(γj, ζj ′) P−→ Dy + f 2
0

1
N

N∑
i=1

f(ξi)f(γ′j, ζj)
P−→ Dz + f 2

0 , (5.2.18)

where each trial requires three computations of the model, f(γ, ζ), f(γ′, ζ), and
f(γ, ζ ′), and P−→ implies stochastic convergence.

Saltelli et al. [48] implement this approximation using two sample matrices A
and B of size N × d, having elements aij and bij respectively where i = 1, ..., N
and j = 1, ..., d. The matrix A(i)

B is introduced as the matrix with columns from
A except the i-th column which is from B. Then the following is an improved
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approximation for Dy and D(Tot)
y

Dy = 1
N

N∑
j=1

f(B)j(f(A(i)
B )j − f(A)j) (5.2.19)

D(Tot)
y = 1

2N

N∑
j=1

(f(A)j − f(A(i)
B )j)2 . (5.2.20)

2N model evaluations are required to compute Y given the input sample matrices
A and B, and a further dN evaluations are needed to compute Y for the sample
matrix A(i)

B . The total number of evaluations is then Ntotal = N(d+ 2).

The choice of an appropriate base sample rate N has been widely debated in
current GSA literature. Given that N determines the number of model evaluations
we require, it determines the computational cost of the analysis (computation of
the indices themselves is a relatively quicker post-processing step). As previously
mentioned, with a LHS strategy we require N >> d to accurately capture the
influence of the parameters on Y . For VBSA especially, current results in litera-
ture suggest that the appropriate base sample size varies from one application to
another, and often very large base sample rates are needed to achieve reliable re-
sults, especially for input factors that exhibit high sensitivity [40]. Generally, it is
accepted that the appropriate base rate is dependent on the number of parameters
d. For d = 3 as in our case, convergence has been reported across multiple VBSA
experiments in literature for Ntotal between 103 and 104 [50]. Once the appropriate
base rate is selected, then generally all pairs of first-order and total-effect indices
can be computed, and any single interaction terms can be computed at the ad-
ditional cost of N model evaluation. Saltelli et al. [49] estimate that for a model
with 10 input parameters and Ntotal = N(d+ 2), at half a minute of CPU per run,
a good characterisation of the first-order and total-effects indices can be obtained
at a cost of about 50h of CPU.

For the present analysis, a base rate of N = 3000 was selected, and using LHS,
sample matrices A and B of size 3000 × 3 were generated, corresponding to our
three (uniformly distributed) input variables η̂, β̂, ψ. Based on the conclusions of
the bathymetry data assimilation in Chapter 3, we picked the parameter intervals
to be β̂ ∈ [0.01, 0.35], η̂ ∈ [0.001, 0.0035], and ψ ∈ [0.5, 2].
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Using the resampling strategy outlined above, the resampled matrix AB is
created of size 9000 × 3. Thus the number of evaluations Ntotal needed of our
model Y is 15000.

For the numerical calculation of the sensitivity indices, we used the SAFE tool-
box for MATLAB developed by Francesca Pianosi, Fanny Sarrazin and Thorsten
Wagener at the Department of Civil Engineering at the University of Bristol [41].

It should be noted that the actual base sample rate N used to calculate sensi-
tivity indices was slightly less than 3000. This is because post model evaluation,
results for Y where the data assimilation failed to converge, were removed. Such
instances were expected, as one of the observations from Chapter 3 was that a
necessary condition for convergence of the data assimilation is that η̂/β̂ < 0.1.
This condition is not satisfied by combinations of η̂ and β̂ from the extreme ends
of the parameter space intervals, such as for β̂ = 0.01 and η̂ = 0.0035. However,
the removal did not cause a significant decrease in the base sample rate and the
adjusted base sample rate was N = 2986.

5.3 Results of VBSA

The objectives for the analysis are to determine first order sensitivity indices for
the main and total effects for the three parameters β̂, η̂, and ψ. In doing so, we
may rank the parameters in order of influence on the bathymetry reconstruction
error Yβ, and also the resulting error in the surface wave Yη. Additionally, we
wish identify non-influential parameters based on some sensitivity tolerance levels.
Our primary goal is to determine conditions for optimal convergence in the data
assimilation scheme that lead to improved knowledge for tsunami modelling, e.g.
understanding the relationship between the relative position of the observation
points and bathymetry (through input parameter ψ) and the effect it has on the
accuracy of tsunami wave model prediction.

We present results for the two different model outputs, f(η̂, β̂, ψ) = Yβ and
f(η̂, β̂, ψ) = Yη, where Yη and Yβ are the error norms given by (5.2.1) and (5.2.2)
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respectively. Figure 5.2 illustrates the initial results for the first order sensitivity
indices Si and S(Tot)

i for f(η̂, β̂, ψ) = Yβ.

β̂ η̂ ψ
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Figure 5.2: Sensitivity indices Si (Main effects) and S
(Tot)
i (to-

tal effects) for the three input parameters, and model output Yβ.
We note that based on these results, the combined effects of the
parameters is much more significant than their effects individually.

The sensitivity indices for main effects Si are very low for each input parameter,
at O(10−2). However the total effect S(Tot)

i in each case is relatively very high.
The exact values are presented in table 5.1. For VBSA, input parameters with
sensitivity indices below 1% are generally considered non-influential [40]. Thus, all
the main and total effects indices in figure 5.2 may be considered significant. We
observe that the main effects for β̂ are more than double the sensitivity of η̂ and
ψ respectively, and that ψ exhibits the highest total effect. These initial results
suggest that while none of these input parameters present significant contributions
to the model variability on their own, their interactions with other sources of
variability in the bathymetry reconstruction error is high.
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However, before we accept these conclusions we must assess the credibility of
these results. Pianosi et al. [40] provide a useful checklist for assessing the con-
vergence and robustness of our results. The derived sensitivity indices are an
approximation, and thus susceptible to approximation error due to factors such as
sample size. Subsequently we use a bootstrapping method to resample the data,
allowing us to (i) derive confidence intervals for the index estimates, and (ii) assess
the convergence of indices as the size of the sample is varied.

Input Si S
(Tot)
i S̄i

¯
S

(Tot)
i

β̂ 0.0833 0.8169 0.0819 0.8166
η̂ 0.0388 0.7472 0.0386 0.7450
ψ 0.0387 0.9175 0.0412 0.9136

Table 5.1: Main (Si) and Total (S(Tot)
i ) sensitivity indices for each

input parameter. S̄i and
¯

S
(Tot)
i represent main and total sensitivity

indices averaged over 700 bootstrap resamples. Asinput parameters
with sensitivity indices above 0.1 are generally considered influen-
tial, each parameter is significant in terms of both total and main
effects. However, we note that the total effect indices are much
larger, indicating that interaction effects are high.

The bootstrapping technique involves generating multiple resamples by drawing
randomly (with replacement) from the original sample of the model. Because we
are using the existing sample for which input/output has already been generated,
there are no further model evaluations required. We can analyse behaviour of
the index estimates as the sample size is varied (convergence), and assess whether
estimates are independent of a specific input-output sample (robustness).

To assess convergence and robustness we create confidence intervals for the
sensitivity index distribution. For the present analysis we compute 95% confidence
intervals (5% significance level). Results for the main and total effects generated
over 700 bootstrap resamples with confidence intervals are given in figure 5.3(a),
and the convergence over the different resamples ranging from N = 300 to N =
2986 is shown in figure 5.3(b). Index results for Si and S

(Tot)
i averaged over the

700 bootstrap resamples are also given in table 5.1.

159

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

β̂ η̂ ψ

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

m
a
in

e
ff
e
c
t
s

β̂ η̂ ψ

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

t
o
t
a
l
e
ff
e
c
t
s

(a) Bootstrapping

Model Evals
-1

-0.5

0

0.5

1

M
a
in

E
ff
e
c
t

β̂

η̂

ψ

Model Evals
-0.5

0

0.5

1

1.5

2

T
o
t
a
l
E
ff
e
c
t

ψ

β̂

η̂

(b) Convergence

Figure 5.3: Extended sample with bootstrapping and convergence
for Yβ. Main and total effects generated over 700 bootstrap resam-
ples are shown in figure (a), and the convergence over different
resamples ranging from N = 300 to N = 2986 is shown in (b).

As a summary statistic to test convergence, we compute the maximum width
of the confidence intervals for all the model parameters

Statcf = max
i=1,..,d

|Subi − Slbi | (5.3.1)

Where Slbi and Subi represent the lower-bound and upper-bound of the i-th input
parameter respectively. Confidence intervals with a width approaching zero indi-
cate convergence of the index to a fixed value Sarrazin et al. [50]. We present an
overview of the distance |Subi − Slbi | for each parameter in table 5.2.

Input |Subi − Slbi | |(S(Tot)
i )ub − (S(Tot)

i )lb|
β̂ 0.3264 0.6001
η̂ 0.3454 0.6051
ψ 0.3341 0.5817

Table 5.2: Summary statistics Statcf for each parameter, corre-
sponding to the confidence intervals in figure 5.3(a). These values
indicate a margin of error far greater than desired.
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As we see from table 5.2, Statcf statistics for Si and S
(Tot)
i are 0.3454 and

0.6051 respectively. If assume the confidence intervals are around the mean of
the predicted sensitivity index, we observe that the maximal margin of error for
Si is 0.1727 and for S(Tot)

i it is 0.3025. As the sensitivity indices are normalised
between 0 and 1, this indicates a margin of error of 17% and 30% respectively,
which are far greater than desired. The convergence in figure 5.3(b) further reflects
this as we see the confidence interval widths (represented by the area between the
dotted lines for each input) are very high, and it is not clear that the indices are
approaching a fixed value as the resample size increases.

We conduct similar analyses for the model f(η̂, β̂, ψ) = Yη. We approximate
the sensitivity of the surface wave error to the input parameters using the same
sample discussed above. Results for the initial approximations for the indices, and
results with bootstrapping and confidence intervals are given in figure 5.4(a) and
5.4(b).
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Figure 5.4: ( Sensitivity indices for Yη, with an extended sample.
Main (Si) and Total (S(Tot)

i ) effects over 700 bootstrap resamples
are shown in figure (a), and the convergence over different resamples
ranging from N = 300 to N = 2986 is shown in (b).

A key detail in figure 5.4(a) is that the sensitivity indices for each parameter
are negative. In principle, the exact sensitivity indices should always take values

161

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

in [0, 1]. Negative values are a result of approximation error, and can occur if the
value of the index is lower than the estimation error. Consider figure 5.4(b) where
we have used bootstrapping to derive confidence intervals. Our summary statistic
Statcf for Yη can be calculated using the values of |Subi − Slbi | and |(S

(Tot)
i )ub −

(S(Tot)
i )lb| given in table 5.3.

Input |Subi − Slbi | |(S(Tot)
i )ub − (S(Tot)

i )lb|
β̂ 0.0868 0.1701
η̂ 0.0985 0.2201
ψ 0.0919 0.2548

Table 5.3: Summary statistics for confidence intervals as in figure
5.4(b) for model output Yη. If the true values for Si and S(Tot)

i are
less than the error margins indicated in the table, the approximated
indices have negative values.

Statcf statistics for Si and S(Tot)
i are 0.0985 and 0.2548 respectively. Thus the

maximal margins of error for each are 0.0493 and 0.1274. Thus can see that if
the true values for Si and S(Tot)

i were less than these margins, our approximated
indices could have negative values.

In light of this analysis, we clearly must address the lack of robustness and
convergence present in our results, and find the underlying cause. In many cases
these issues are a reflection of inadequate sample size [40, 50]. High confidence
interval summary statistics, lack of convergence to fixed values over multiple re-
samples, and negative approximations for the indices can in theory be mitigated
by increasing the sample size.

To try to remedy these shortcomings, we generated 6000 additional samples
using LHS and the recombination method outlined in Saltelli et al. [48]. When
adjusted for removal of sample points where the data assimilation didn’t converge,
the extended base rate is N = 8956, and the extended resampled matrix AB

is size 26, 868 × 3. Sensitivity indices and confidence intervals are approximated
using bootstrapping over 700 resamples for both model outputs Yβ and Yη. The
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results are summarised in figure 5.5, and the equivalent convergence analysis as
the resample size is increased from 900 to 8956 is presented in figure 5.6.
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Figure 5.5: Sensitivity indices for main and total effects for (a)
Yβ, and (b) Yη. Extended sample size is N = 8956, and confidence
intervals are shown for 700 bootstrap resamples.

Looking at figure 5.5(a) and comparing with the results for the model output
Yβ in figure 5.3(a), we see that there is some decrease in confidence interval width,
and Statcf = 0.2057 for Si, and Statcf = 0.3528 for S(Tot)

i . However, this is not
a significant decrease in the margin of error, and we note that the index for η̂ is
negative, indicating estimation error larger than the value of the index. Results
for model output Yη in figure 5.5(b) indicate a similar trend; while the summary
statistic has been reduced, it is still far above an acceptable tolerance, and all
three input parameters have negative sensitivity indices.

To verify whether this is because the sample size is still inadequate, we consider
the convergence analysis for both outputs in figure 5.6(a) and 5.6(b). Observe that
convergence has actually improved relative to figure 5.3 for Yβ, and it is clear in
figure 5.6(b) that for Yη, resamples of increasing size do not have a big effect on the
indices as the sample size increases. Despite this, the confidence interval widths
are still too high to consider the index values to be reliable.
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Figure 5.6: Convergence of the main and total effect sensitivity
indices for (a) Yβ, and (b) Yη. The dotted lines represent confidence
for resamples ranging from N = 300 to N = 8956.

Given these results, we can assume that the large confidence intervals and
approximation errors are due to factors other than the size of the sample. Pianosi
et al. [40] outline the following principles that VBSA relies on:

1. The variance of the output distribution is a good proxy of output uncertainty.

2. The contribution to the output variance from a given input parameter is a
measure of uncertainty.

It is therefore possible that our data assimilation model does not meet these
requirements, and so we investigate potential scenarios where variance is not a
good measure of sensitivity, and check whether our model exhibits any of these
characteristics.

Sobol [55] observe that the VBSA sensitivity indices are related to the terms of
the variance decomposition of the model output, and as such reflect the structure
of the model itself. Thus, they are subject to two necessary conditions for variance
analysis; (i) The input factors are independent and uncorrelated, and (ii) The
output distribution is not highly skewed or multi-modal, otherwise the assumption
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that variance captures model uncertainty is broken, and subsequently variance is
no longer a meaningful indicator of sensitivity [40, 42, 28].

Subsequently, we check our model input factors for correlation, and analyse
the output probability density distributions for Yβ and Yη for skewness. To check
correlation between β̂, η̂ and ψ, we compute the Spearman correlation coefficient
on our input sample, defined in terms of the covariance between two random
variables A and B,

ρ(A,B) = cov(A,B)
σAσB

, (5.3.2)

where cov(A,B) is the covariance and σ is the standard deviation. ρ(A,B) takes
values between 0 and ±1, where ρ = ±1 indicates complete positive or negative
correlation and ρ = 0 indicates no correlation. We define the 3 × 3 correlation
coefficient matrix R containing all pairwise correlation coefficients for the input
parameters.

R =


1.0000 −0.0066 −0.0060
−0.0066 1.0000 0.0040
−0.0060 0.0040 1.0000

 . (5.3.3)

The order of the input parameters in each row/column is β̂, η̂ and ψ, e.g. the r1,2

entry corresponds to ρ(β̂, η̂). As each variable is perfectly correlated with itself
the diagonal entries are always 1. We can see the correlation coefficients for each
pair are very low, below 1%. This is not surprising, as in reality the amplitude
of the initial conditions and the amplitude or position of bathymetry observed
outside the support of the initial conditions are independent. However, within the
data assimilation algorithm we observed that optimal results occurred when there
was a dependency between β̂ and η̂, and since we discarded some sample points
where the necessary condition relating these was broken, it was possible the values
could be correlated within the sample. However R clearly indicates that this is
not the case, and so we may conclude our input parameters are independent and
uncorrelated.
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To check for skewness, we present the probability density functions (PDFs) and
cumulative density functions (CDFs) for Yβ and Yη in figure 5.7.
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Figure 5.7: Probability distributions of Y .

We see immediately that both PDFs in figure 5.7(a) and 5.7(b) are skewed to
the left. The PDF for Yη especially is highly skewed, and as such does not fulfill
the requirements of VBSA. It is evident that the skewed distribution is the culprit
for the high error margins in our sensitivity index approximations. Confidence
intervals use the variability of the model output to assess the accuracy of the
approximation. If the distribution is skewed, this explains the high values for
Statcf .
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Pianosi and Wagener [42] observe that in this situation, using variance as a
proxy for uncertainty would cause the uncertainty about the model output to
increase when uncertainty about one of the inputs is removed, which is a contra-
diction.

In attempting to pinpoint the cause of the skewed distribution, we note that this
may be a result of the parameter space used for sampling. Only those values for
η̂ and β̂ were considered such that the data assimilation in Chapter 3 converged.
As we observed, there was low sensitivity of the surface wave error (Yη) for these
values, and so we see the skew to the left corresponds to a higher frequency of
lower values for output Yη in the probability distribution. Wagener and Pianosi
[61] observe that the choice of the input parameter space can have a significant
affect on GSA results, and thus using multiple methods to cross-validate results
is recommended. Indeed, Pianosi and Wagener [42] note that skewness in output
distribution is found in non-linear and environmental models quite often.

Another point to consider is whether the skewed distribution could this be
a result of the sampling strategy. While the sampling strategy is an important
consideration, the sampling method outlined in Saltelli et al. [48] is considered to
be relatively robust [41]. Generally, the sample size is considered more significant
that the strategy [40]. However, we observed that even with O(10−4) (within the
recommended sample size tolerance for VBSA [49]), the skewed distribution was
not altered.

In conclusion, our results do not satisfy the conditions of credibility due to
skewness. This is because they violate the principles that VBSA relies on [40].
Because of this, we cannot credibly use these results for screening or ranking of
the input parameters. We require a different measure of sensitivity that is not
variance based. In the next section, we introduce Density-based methods as an
alternative to VBSA.

167

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

5.4 Density Based Sensitivity Analysis (DBSA)

Due to the shortcomings of the variance based methods discussed in the previous
section, sensitivity analyses have been developed that do not use moments of the
model output such as the expected value, variance or skewness, as a measure of
uncertainty. Such methods are collectively known as “Density Based Sensitivity
Analysis”(DBSA). The idea is to measure sensitivity through variations of the
probability density function that occur when the influence of a certain input factor
is removed. This is done by computing the difference between unconditional PDFs
generated by varying all parameters, and conditional PDFs obtained when fixing
individual input parameters at a particular nominal value [40]. The sensitivity
index is then computed as a statistic based on this divergence.

For the present analysis, we follow the method outlined in Pianosi and Wa-
gener [42], who improve on this idea by characterising output distributions by
their cumulative density functions (CDFs) instead. Known as the PAWN method,
density-based sensitivity indices are calculated using conditional and unconditional
CDFs, using the fact that these are more efficiently derived than PDFs. We give
a brief overview of the PAWN method, the divergence statistic used to compute
the indices, and the sampling strategy used in the numerical implementation.

Let us define the unconditional cumulative density distribution of our output
Y (where Y can be either Yβ or Yη) as FY (Y ), and the conditional cumulative
density distribution when the input parameter xi is fixed as FY |xi

(Y ). As FY |xi
(Y )

represents the case where there is no variability resulting from xi, the distance
between the two functions FY |xi

(Y ) and FY (Y ) represents the variability in the
output induced by xi. This distance is proportional to the influence of xi, i.e. if
FY |xi

(Y ) = FY (Y ) then xi has zero influence on the variability of output Y . In the
PAWN method, this distance is computed using the Kolmogorov-Smirnov statistic

KS(xi) = max
Y

∣∣∣∣FY |xi
(Y )− FY (Y )

∣∣∣∣. (5.4.1)
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As KS depends on the value of xi, the PAWN sensitivity index Ti is calculated
using a statistic (such as the median or maximum) over all values of xi,

Ti = Stat
xi

[
KS(xi)

]
. (5.4.2)

Pianosi and Wagener [42] observe that the sensitivity index Ti satisfies all of the
properties of a “good” sensitivity index, as it is global, quantitative and model-
independent. It has the advantage over VBSA indices, that it is also moment-
independent. By definition it is normalised to take values between 0 and 1. We
observe that it is comparable to the total effects sensitivity index for VBSA, S(Tot)

i ,
as the divergence between the CDF distributions when xi is fixed and when it is
allowed to vary may potentially include interaction affects.

In the numerical implementation, empirical CDFs are used to compute FY |xi
(Y )

and FY (Y ), using a sample of the parameter space. PAWN has a big advantage
over the sample size requirements in VBSA, as a smaller sample size can be used
to affectively approximate the CDFs due to their regularity properties. FY (Y )
is approximated using Nu model evaluations obtained by sampling over the en-
tire parameter space, while FY |xi

(Y ) is approximated using Nc model evaluations
derived by sampling over the non-fixed parameters only, while keeping xi fixed.
Additionally, the conditioning value xi used to compute Ti in (5.4.2) is replaced
by xi = x̄i

(1), x̄i
(2), .., x̄i

(n), n randomly-sampled values for the fixed input xi. And
thus the total number of model evaluations is Nu + n × d × Nc. Generally these
values are chosen by trial and error. Pianosi and Wagener [42] suggest a reasonable
choice for n is between 10 and 50. For our analysis, we set Nu = 200, Nc = 150,
and n = 15. Thus a total of 6950 model evaluations were obtained, a significant
reduction relative to the 45000 total evaluations conducted for VBSA, and subse-
quently a fraction of the computational cost. As with the variance-based indices,
the computation of the density-based indices is a quick post-processing step. To
verify whether the sample size is adequate, bootstrapping can be used to analyse
robustness of sensitivity index estimates, as in the previous section. We present the
results for the DBSA sensitivity indices approximated using the PAWN method in
the following section.
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5.5 Results of DBSA

Like the VBSA analysis, the number of evaluations used in the analysis was ad-
justed to exclude sample points where the data assimilation did not converge. Nc

was adjusted to 145, and 6725 evaluations were used to approximate Ti. For the
initial analysis we chose the maximum as the statistic used in 5.4.2.
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Figure 5.8: Approximation of the density-based sensitivity indices
for β̂(red), η̂ (blue) and ψ (green). (a) shows the influence of each
parameter on Yβ and (b) shows the influence of each parameter on
Yη.

Figure 5.8 presents the initial results for the sensitivity indices Ti for each input
parameter. Figure 5.8(a) gives the result for model output Yβ and figure 5.8(b)
for Yη. In both cases, we see a big contrast to the results we observed with VBSA,
highlighting how much the skewness of the PDFs can distort the approximated
sensitivity. Yβ has the greatest sensitivity to position of the bathymetry ψ (86%).
Interestingly, we can see in figure 5.8(b) that the amplitude of the initial conditions
η̂ and amplitude of the bathymetry β̂ have relatively low influence on the error in
the surface wave Yη compared to ψ, at 22% and 13% respectively. On the other
hand, we observe that the amplitude of the bathymetry β̂ is highly influential for
the bathymetry error Yβ, with Tβ̂ = 0.895.
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As before, we check these results for robustness and convergence before we ac-
cept them as conclusive. Bootstrapping is done over 700 resamples, and confidence
intervals are derived. These can be seen in figure 5.9. We present the distances
between upper and lower bounds for each parameter in table a, and subsequently
compute Statcf for each.
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Figure 5.9: Approximation of the density-based sensitivity indices
for β̂(red), η̂ (blue) and ψ (green), with confidence intervals derived
using 700 resamples. (a) shows the influence of each parameter on
Yβ and (b) shows the influence of each parameter on Yη.

Input |T ubi − T lbi | (Yβ) Tmi (Yβ) |T ubi − T lbi | (Yη) Tmi (Yη)
β̂ 0.1081 0.2241 0.0850 0.8878
η̂ 0.0831 0.1335 0.0824 0.1265
ψ 0.0800 0.8583 0.0848 0.2899

Table 5.4: Width of the confidence interval |T ubi −T lbi |, and mean
index Tmi averaged over 700 bootstrap resamples. Results given for
model output Yβ and Yη respectively.

We observe a great improvement in the Statcf statistics relative to VBSA re-
sults, where Statcf (Yβ) = 0.1081 and Statcf (Yη) = 0.0850. The largest margin
of error from the mean Tmi across all input factors and both outputs is 6.3%. If
we set a tolerance level of 0.05 for the error margin, then there is only a single
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instance ( |T ub
β̂
− Tm

β̂
| = 0.0630) where the error margin is higher. We hypothesize

that this could be further improved by taking a slightly larger sample size.

The convergence of the sensitivity indices is given in figure 5.10. We can see
that across both errors Yβ and Yη, the most influential parameters (position ψ and
amplitude β̂ of the bathymetry) appear to converge. For the other less influential
parameters in each case, convergence is still relatively smooth. However, we see
that the index values are still decreasing slightly even at the largest sample, sug-
gesting that a larger number of samples might be needed for convergence to a fixed
point. Nevertheless, given the results of the robustness analysis and convergence
observed thus far, we claim that we may still accurately gauge the influence of the
parameters on our model outputs with the current sample size, especially in order
to determine the most influential factors. Consequently, we proceed to consider
ranking, screening, and factor mapping of the input parameters.
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Figure 5.10: Convergence analysis for DBSA indices for (a) Yβ,
and (b) Yη, for resamples of size N = 215 to N = 2375.

The PAWN method can be effectively used to screen for non-influential input
factors. Figure 5.11 presents an overview of the different values of KS over the 15
randomly chosen sample points xi for each input parameter. To determine which
input parameters are most influential, the two-sample Kolmogorov-Smirnov test
[42] has been implemented, which allows us to reject the hypothesis that FY (Y )
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and FY |xi
(Y ) are the same if

KS > c(α)
√
Nc +Nu

NcNu

, (5.5.1)

where α is the confidence level, and c(α) is a critical value determined in the
literature [42]. Figure 5.11(a) presents results for Yβ and figure 5.11(b) for Yη.
The red dotted line represents the threshold value at the confidence level α = 0.05.
KS statistics for input xi that fall below this critical threshold indicate that xi is
non-influential.
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Figure 5.11: K-statistics with significance level 0.05. Values be-
low the dotted red line are non-influential.

We observe that for both outputs Yβ and Yη, η̂ is non-influential across all 15
choices for the fixed value. KS statistics for β̂ fall below the threshold at fixed
values approximately between 0.1 and 0.25 for the model Yβ. This indication
corroborates results from Chapter 3, where we observed that the bathymetry re-
construction error Yβ was higher when the amplitude of the bathymetry β̂ was
either too big or too small relative to the avereage depth H. In the present anal-
ysis the maximum KS statistic is used to compute Ti for each input parameter,
and so β̂ is still considered influential on Yβ. It is interesting to contrast this result
with the KS statistics for β̂ and output Yη, as shown in figure 5.11(b). While we
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see a similar trend, where the KS statistic is higher if the bathymetry amplitude β̂
is at the lower or upper end of the sample interval, the resulting variation is much
higher, and all KS statistics are above the influence threshold value.

In a similar manner, while the position of the bathymetry ψ has relatively low
KS statistics across all fixed values of the surface wave error Yη (approximately half
of the values are above the cutoff with no clear trend), it has relatively much higher
KS values, and subsequently higher influence on the bathymetry reconstruction
error Yβ, as observed in the third panel in figure 5.11(a). Once again, KS statistics
are much higher at values closer to the endpoints of the parameter space for ψ,
[0.5 2]. We suggest this indicates that the placement of the bathymetry relative to
the observation points has a significant influence on the error in the bathymetry
reconstruction. This confirms conclusions of the second order adjoint analysis in
Chapter 4 that the coverage of the bathymetry by observations was influential on
the surface wave error. This is because as the bathymetry Gaussian placement
varies over the interval, so does the time and position where the bathymetry is
first observed by the measurement points.

Thus, based on the threshold level for a confidence interval α = 0.05, and using
the maximum KS statistic to compute Ti, we observe that for both bathymetry
reconstruction error Yβ and surface wave error Yη, the amplitude of the initial con-
ditions η̂ can be considered non-influential. We note that the choice of a different
statistic in (5.4.2) such as the mean or median may change the value of Ti. We pro-
vide a comparison of the different indices in tables 5.5. Given the threshold value
of 0.147 ( c(α = 0.05)), we can see that by choosing a mean or median statistic,
β̂ is categorised as a non-influential parameter for the bathymetry reconstruction
error Yβ.
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Input Max Mean Median
β̂ 0.2114 0.1334 0.1336
η̂ 0.0847 0.0613 0.0610
ψ 0.8524 0.5608 0.5155

Table 5.5: Model Output Yβ: Indices Ti using different statistics
in the definition of the sensitivity index (5.4.2). Values highlighted
in red are below the threshold value of 0.147 (c(α = 0.05) = 1.36)
and are non-influential.

Input Max Mean Median
β̂ 0.8950 0.5582 0.5467
η̂ 0.0745 0.0560 0.0538
ψ 0.2624 0.1780 0.1626

Table 5.6: Model Output Yη: Indices Ti using different statistics
in the definition of the sensitivity index (5.4.2). Values highlighted
in red are below the threshold value of 0.147 (c(α = 0.05) = 1.36)
are non-influential.

As we can see from table 5.5 , the overall ranking of the parameters does not
change based on the statistic used for Yβ. The only exception is the parameter β̂,
which is influential with a max statistic. The position of the bathymetry ψ is the
most influential parameter for Yβ, and the amplitude of the initial conditions η̂ is
the least. Similarly for model output Yη, results in table 5.6 indicate that across
all choice of statistics, β̂ is the most influential parameter and η̂ is non-influential.

So far we have used the results of the PAWN sensitivity analysis to rank and
screen our input factors. A third analysis that can prove insightful is factor map-
ping; We can compute sensitivity indices based on a sub-interval of our output Y
given the current sample. For example, over all model evaluations, the maximum
surface wave error Yη is 2.63 × 10−2, and the minimum is 2.23 × 10−4. Similarly
the maximum bathymetry reconstruction error Yβ is 0.265 and the minimum is
3.75 × 10−2. To determine the influence of input parameters when the values of
Yη and Yη are relatively high, we define a parameter M such that we can compute
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sensitivity indexes for all input-output samples for the cases Y > M , and Y ≤M

separately. We chooseM = 0.015 for output Yβ andM = 0.001 for Yη. The results
are given in figures 5.12(a) and 5.12(b).
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(a) Output Yβ , M = 0.15
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(b) Output Yη, M = 0.001

Figure 5.12: Indices Ti for influence of β̂ (red), η̂ (blue) and ψ
(green) on model outputs Y > M (left panel), and Y ≤ M (right
panel) for (a) Yβ, and (b) Yη. Confidence intervals were calculated
using 700 bootstrap samples.

While there is not much difference in terms of ranking between the left (Y > M)
and right (Y ≤M) panes for either Yβ or Yη, it is interesting to note that for the
surface wave error in figure 5.12(b) the influence of the bathymetry amplitude
β̂ decreases when Yη ≤ 0.001 (right panel). This is insightful, as it suggests
that the bathymetry is more influential when the errors in the surface wave are
large. However, in both intervals of Yη the influence of β̂ is high (above 70%).
Additionally, the effect of the bathymetry position ψ when Yη greater than 0.001
is 29%, and subsequently is greater than the influence threshold value. On the
other hand, the influence of the initial conditions amplitude η̂ and bathymetry
position ψ drops below the threshold value when Yη ≤ 0.001.

For the bathymetry reconstruction error Yβ, we see in figure 5.12(a) that the in-
fluence of the bathymetry position ψ is approximately doubled when the bathymetry
reconstruction error is less than 0.015. The lower sensitivity of each of the input
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parameters when the bathymetry reconstruction error is higher could be sugges-
tive of other significant influences on the model error, that cannot be attributed
to these parameters alone.

5.6 Conclusion and further considerations

In summary, we conclude that variance-based sensitivity analysis is not appropriate
for our data assimilation model as the skewness of our model output violates
the necessary conditions that VBSA relies on. This is the cause of the large
confidence intervals and the negative sensitivity indices observed in section 5.3. As
an alternative, we used a density-based method to compute indices that rely on
the variation between unconditional and conditional cumulative density functions
when particular inputs are fixed, as a measure of sensitivity. Implementing the
PAWN algorithm outlined in Pianosi and Wagener [42], we derived sensitivity
indices for three input parameters β̂, η̂ and ψ, and the model outputs Yβ and
Yη. Our objective was to rank the the influence of the inputs from highest to
lowest, screen for non-influential parameters, and finding thresholds in the input
parameter values that map into specific output regions (factor mapping). We have
summarised the conclusions in table 5.7.

Our results showed that for the model Yη (the error in the surface wave given the
reconstructed bathymetry), the most influential parameter was β̂, the amplitude
of the bathymetry, whereas the amplitude of the surface wave initial conditions
η̂ was categorised as non-influential. This confirms conclusions from Chapter 3
(section 3.6.3), where we observed that the surface wave error increased as the
amplitude of the relative bathymetry β̂/H became larger. We consider specific
output regions for both the bathymetry reconstruction error and the surface wave
error. For the latter we consider relative L2 errors Yη > 0.001 and Yη ≤ 0.001,
and found that the influence of all three parameters (the bathymetry and initial
conditions amplitudes β̂ and η̂, and the bathymetry position ψ), decreases when
Yη ≤ 0.001.

The bathymetry position ψ was also the most influential parameter on the
bathymetry reconstruction error Yβ, while the initial conditions amplitude η̂ was
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determined to be non-influential. The influence of ψ for small errors Yβ ≤ 0.015
was approximately 85%, however this dropped by almost half for large errors
Yβ > 0.015. Overall the bathymetry reconstruction error was less sensitive to
each of the input parameters when the bathymetry reconstruction error was large.
This suggests that other parameters that are not considered in this analysis may
have a significant influence for larger values of the bathymetry reconstruction error.

Input Yβ > 0.15 Yβ ≤ 0.15 Yη > 0.001 Yη ≤ 0.001
β̂ Non-influential Influential Influential Influential
η̂ Non-influential Non-influential Non-Influential Non-influential
ψ Influential Influential Influential Non-influential

Table 5.7: Classification of each input parameter as influential
or non-influential for the sub-regions of Yβ and Yη in figure 5.12.
Values below the threshold value of 0.147 (c(α = 0.05) = 1.36) are
non-influential.The entries highlighted in blue are the most influ-
ential parameter for Yβ and Yη respectively.

While the locations of the observation points was kept fixed in the analysis,
the choice of the bathymetry position ψ alters the values of the observations, as
the point where the bathymetry is observed by the measurement points varies, as
does the proportion of observation points that observe the surface wave before it
interacts with the bathymetry. We observed that ψ was influential on the surface
wave error for all statistics, except when the error in the surface wave Yη was less
than 0.001. As our objective is to determine which parameters are responsible
for large errors in the surface wave, we can conclude that the placement of the
observation points relative to the reconstructed bathymetry is influential on the
surface wave accuracy. This observation confirms conclusions from Chapter 4,
where we determined that the position of the observation points (and subsequently
the coverage of the bathymetry support) had a significant effect on the sensitivity
of the surface wave error to observations.

A key observation is that for both bathymetry reconstruction error and the
surface wave error, the amplitude of the initial conditions η̂ was non-influential for
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each sub-region. This is in contrast to conclusions from Chapter 3, where we deter-
mined that a necessary condition for convergence of the bathymetry assimilation
was that the amplitude ratio η̂/β̂ be less than 0.1. However, the lack of sensitivity
to η̂ can be explained by the fact that all values where the amplitude ratio con-
dition was violated (and subsequently the assimilation was non-convergent) were
removed from the sample used to derive sensitivity indices. Therefore, we cannot
accept the conclusion that η̂ is non-influential in the bathymetry reconstruction
and the resulting free surface wave, on the basis of these results alone.

Further questions that should be addressed in future work are the inclusion of
more parameters in the sensitivity analysis, like the final control time t = T , or
the resolution of the numerical approximation (both of which would impact the
accuracy of the reconstructed bathymetry). Additionally, quantifying the sensi-
tivity to interaction between inputs would also prove a valuable result, especially
considering the correlation between η̂ and β̂ observed in Chapter 3. As VBSA is
not appropriate for this model, using density based methods for interaction affects
would need to be explored. Sensitivity analyses on the accuracy of the observations
themselves would also provide insight. In atmosphere and ocean models, observa-
tion measurements possess a significant degree of uncertainty, and subsequently a
measure of their sensitivity to the observation operator would be illuminating for
future work [61].

The present analysis proved insightful for an idealised model of data assimi-
lation for the 1-D shallow water equations with Gaussian initial conditions and
bathymetry. In order to utilise these results for more realistic forecasts, the in-
evitable next step for future considerations is the extension to a full 2-D model, and
inclusion of multiple forms of bathymetry, such as sandbar or ridge formations.
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Chapter 6

Conclusions

In this PhD thesis, we developed and evaluated variational data assimilation tech-
niques for the nonlinear shallow water equations to reconstruct inaccurate or miss-
ing initial conditions and bathymetry data, in order to improve tsunami modelling.
We use the “optimise then discretise” approach, by deriving the variational assimi-
lation algorithms for the infinite-dimensional case, and then developing a Sadourny
finite-difference finite-volume numerical scheme to solve the adjoint equations [47].
In this chapter we discuss the contributions of each chapter in turn, and conclude
with the main contributions of our work and perspectives for future research.

In Chapter 2 we derived and implemented a 2-D variational data assimilation
algorithm for the optimal reconstruction of initial conditions of surface waves,
with the primary aim of extending the results of the 1-D variational assimilation
outlined in [27]. We confirmed the feasibility of variationally data assimilation
for tsunami waves in idealised 2D configurations, and demonstrated the necessary
and/or sufficient conditions for convergence of the reconstructed initial conditions
to the true shape. An essential difference between the 1-D and 2-D case is that the
observations need to be able to measure the azimuthal symmetry of the surface
wave, as well as its minimum length scale. This has implications for the number
and configuration of the observation points. We showed that convergence can be
achieved for sparse observations arranged in straight lines, grids, and along con-
centric circular arcs, for both isotropic and anisotropic initial conditions, and with
realistic bathymetry data. Importantly, we have extended the 1-D results regard-
ing sufficient conditions for the maximum distance between pairwise observations,

180



Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

and showed that for the 2-D case this is a necessary but not sufficient condition.
We found that when there are no observations within the support of the initial
conditions, having approximately 80 observations for a grid configuration and 65
for observations along x = ±y, is a necessary condition for convergence. Note
that this is still far fewer observation points than the number of grid points in the
simulation, 1282 = 16384.

In Chapter 3 we derived a data assimilation algorithm for the 1-D nonlinear
SWE to reconstruct the bathymetry from a set of observations of the free surface
height, by minimising a functional J (β) representing the least squares error be-
tween observations and forecast solutions. Initial results showed that ∇J ∈ L2(Ω)
resulted in small-scale noise in the bathymetry reconstruction and impacted con-
vergence. Consequently, we showed that smoother H2 gradients are necessary
to avoid small-scale errors in the reconstructed bathymetry. With a Gaussian
initial condition, we accurately reconstructed the bathymetry for (i) a Gaussian
bathymetry, and (ii) a sandbar profile bathymetry. Based on qualitative results
for a localized surface wave propagating over a compact bathymetry feature, we
observed that a necessary condition for convergence is that the ratio of the initial
conditions amplitude to the bathymetry amplitude η̂/β̂ be at most O(10−2) when
bathymetry amplitudes are larger than 10% of the average depth. Additionally, we
observed that convergence improves with increasing numbers of observation points,
and that at least 10 observation points are necessary for convergence of the as-
similation algorithm to the true bathymetry with Gaussian initial conditions. We
observed that the surface wave η(x, t; β(b)) has relatively low sensitivity to errors
in the reconstructed bathymetry, and showed that the free surface error was orders
of magnitude smaller than the bathymetry reconstruction error as a function of
Nobs, β̂ and η̂ respectively. We found that reconstructing the bathymetry with a
relative error of about 10% is sufficiently accurate for surface wave modelling in
most cases.

In order to more precisely quantify the sensitivity of the surface wave produced
by the reconstructed bathymetry to perturbations in the observations, in Chapter
4 we analytically derived the sensitivity of the surface wave error (G) to the ob-
servations (m), using second order adjoint techniques and the Hessian of the cost
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function J . We recall that mj(t) are the observations taken at positions {xj} at
for j = 1, ..., Nobs at continuous times t, and dG/dm is an Nobs×Nt matrix, where
Nt is the temporal resolution, and the mi,j entry of dG/dm represents the sensitiv-
ity of the surface wave error (4.6.1) to the i-th observation at the j-th time step.
We derived the Hessian vector product Hν given some arbitrary perturbation of
the bathymetry ν, and demonstrated that deriving the sensitivity ∂G/∂m involves
solving the forced equation Hν = F with the right hand side F dependent on the
optimal assimilation results. Using this sensitivity analysis, we investigated the
conclusions of the bathymetry assimilation. We formulated three questions.

Question I asked whether there is a link between the sensitivity ∂G/∂m and
the convergence of the reconstructed bathymetry to the exact form. Results indi-
cated that a higher error in bathymetry reconstruction is associated with higher
sensitivity of the surface wave error to perturbations in the observations.

Question II asked how changing parameters in the data assimilation scheme
(such as the spacing and number of observation points, or the shape of the bathymetry)
affects the sensitivity. We concluded that for a compact Gaussian bathymetry,
the spacing ∆x of a fixed number of observations was non-influential and noted
that for all values of ∆x, the observation points covered the entire support of
the bathymetry. This was not true with a sandbar bathymetry, where only the
largest spacing resulted in coverage of the entire bathymetry support by obser-
vations, and we observed that the sensitivity decreased as the observation points
spanned a larger area of the bathymetry support. We conducted trials where the
width of the Gaussian bathymetry was increased incrementally, until it qualita-
tively resembled the sandbar bathymetry. We observed that the larger width led
to an increase in the time-integrated sensitivity, regardless of the position of the
bathymetry relative to the initial condition. We concluded that more extensive
bathymetry features produce surface waves that are more sensitive to perturba-
tions in the observation points.

Finally for question III, we investigated whether the qualitative observations
from the bathymetry algorithm presented in Chapter 3 could be verified by the
second order adjoint sensitivity analysis. One of the main conclusions from Chap-
ter 3 was that convergence improved with more observation points. Therefore,

182

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

we investigated whether increasing the number of observations also resulted in
lower sensitivity of the surface wave error to the observations. The results indi-
cated lower sensitivity across all cases when the number of observation points was
increased, confirming our earlier conclusion.

We investigated the relationship between the bathymetry and initial conditions
amplitudes β̂ and η̂, and the average depth H, using the second order adjoint
sensitivity. We varied the relative bathymetry amplitude β̂/H, to investigate the
effect of the relative bathymetry amplitude on the sensitivity of the surface wave
response G to the observations. We saw a general increase in sensitivity as the
relative bathymetry height β̂/H increased, again confirming our observations in
Chapter 3.

Finally, we verified the observation from Chapter 3 that the error in the surface
wave is orders of magnitude lower than the error in the reconstructed bathymetry,
suggesting low sensitivity of the surface wave to reconstruction error. We investi-
gated whether the sensitivity ∂G/∂m exhibited the same behaviour, i.e. whether
the sensitivity of the surface wave error to observations was orders of magnitude
lower than the bathymetry reconstruction error. In all cases considered, the sen-
sitivity ∂G/∂m was orders of magnitude lower than the minimum reconstruction
error, confirming our observations from Chapter 3.

Complementary to the second order adjoint sensitivity analysis, we used Global
Sensitivity Analysis (GSA) to derive sensitivity indices quantifying the influence
of (i) the location of a Gaussian bathymetry relative to the location of the obser-
vation points, and (ii) the amplitudes of the initial conditions and bathymetry, on
the bathymetry reconstruction error and the surface wave response respectively.
We demonstrated that variance-based sensitivity analysis (VBSA) is not appropri-
ate for our data assimilation model as the skewness of the model output violates
necessary conditions that variance-based methods rely on, explaining the lack of
convergence and robustness observed in initial results. As an alternative, we used a
density-based sensitivity analysis (DBSA) to compute indices that rely on the vari-
ation between unconditional and conditional cumulative density functions (CDFs)
when particular inputs are fixed, as a measure of sensitivity. We derived sensi-
tivity indices in order to (i) rank the the influence of the inputs from highest to
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lowest, (ii) screen for non-influential parameters, and (iii) find thresholds in the
input parameter values that mapped into specific output regions (factor mapping).

Our results showed that for the error in the surface wave, the most influential
parameter was the amplitude of the bathymetry β̂, whereas the amplitude of the
initial conditions η̂ was categorised as non-influential. This confirmed conclusions
from Chapter 3, where we observed that the surface wave error increased as the
amplitude of the relative bathymetry β̂/H became larger. We considered specific
output regions for both the bathymetry reconstruction error and the surface wave
error. For the latter we consider relative L2 errors greater or less than 0.1%, and
found that the influence of all three parameters decreases when the error is less
than 0.1%.

We varied the position of the bathymetry (where ψ is the position of the peak
of the Gaussian bathymetry as seen in figure 5.2.2), such that as ψ was decreased,
a decreasing proportion of observation points observed the surface wave before it
interacted with the bathymetry. For ψ approximately less than 1, the observations
did not span the entire bathymetry support . We observed ψ was influential on the
surface wave error for all statistics, when the error in the surface wave was larger
than 0.1%. This confirmed conclusions from Chapter 4, where we determined
that the position of the observation points (i.e. whether observations spanned
the entire bathymetry support or not) had a significant effect on the sensitivity
of the surface wave error to observations. These results suggest that in order to
maintain low sensitivity of the surface wave response to the observations {mj(t)},
the observations should span entire bathymetry features of Gaussian shapes 10% of
the average depth, especially in cases where the error in the surface wave produced
by the reconstructed bathymetry is predicted to be larger than 0.1%.

The bathymetry position ψ was the most influential parameter on the relative
bathymetry reconstruction error, while the initial conditions amplitude η̂ was non-
influential. Overall the bathymetry reconstruction error was less sensitive to each
of the input parameters when the bathymetry reconstruction error was large, sug-
gesting that other parameters not considered in this analysis may have significant
influence on larger values of the bathymetry reconstruction error.

184

http://www.mcmaster.ca/
http://www.computational.mcmaster.ca/


Doctor of Philosophy– Ramsha Khan; McMaster University– Comp. Science & Eng.

For both bathymetry reconstruction error and the surface wave error, the am-
plitude of the initial conditions η̂ was non-influential for each sub-region. On the
other hand, in Chapter 3 we concluded that a necessary condition for convergence
of the bathymetry assimilation was that the amplitude ratio η̂/β̂ be less than 0.1.
However, the lack of sensitivity to η̂ can be explained by the fact that all values
where the amplitude ratio condition was violated (and subsequently the assimila-
tion was non-convergent) were removed from the sample used to derive sensitivity
indices. Therefore, we cannot assume that η̂ is non-influential in the bathymetry
reconstruction and the resulting free surface wave.

These results help us understand both the feasibility and limitations of varia-
tional data assimilation to recover initial conditions and bathymetry, with potential
to inform future tsunami models in order to (i) maximise accuracy of the surface
wave prediction through optimal reconstruction of the necessary data, (ii) attain
a priori knowledge of how different bathymetry and initial conditions shapes can
effect the surface wave error, and (iii) how these can be mitigated through op-
timal configuration of the observations. By demonstrating low sensitivity of the
surface wave to the reconstruction error, we conclude we only need the recon-
structed bathymetry to be “good enough” to produce sufficiently accurate surface
waves. We observed that more than 10 observation points are required to ensure
the relative error in the bathymetry reconstruction is less than 10%, especially
when the bathymetry is more extensive, and having the observations span the en-
tire bathymetry feature (as opposed to partial converage) reduces the sensitivity of
the surface wave response to perturbations in the observations of sea surface height
mj(t). The influence of “coverage” of the bathymetry feature by the observation
points increases when the error produced in the surface wave by the reconstructed
bathymetry is larger than 0.1%. Larger surface wave error is correlated with larger
bathymetry amplitudes, however bathymetry features as tall as 30% of the aver-
age depth can be accurately reconstructed as long as the amplitude of the initial
conditions is less than 1% of the bathymetry height.

In conclusion, we note that these results for bathymetry assimilation are for an
idealised case, and the logical next steps are to extend the bathymetry assimilation
algorithm to two dimensions, as we did for the initial conditions assimilation.
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Secondarily, we could also include other physical effects such as Coriolis force,
bottom friction and noisy observations, while retaining computational efficiency
and numerical stability. Inclusion of such effects is also a logical next step for
the 2-D assimilation for the initial conditions reconstruction. Although we are
primarily interested in tsunami wave propagation over variable bathymetry over
open ocean, we could also consider interaction with coastlines, or idealized closed
geometries, such as channels. Finally, in order to incorporate observations that
were effectively measured on a globe, we require a domain as close to realistic
propagation as possible. Thus, the 2-D assimilation could be extended to the
sphere.

We noted in Chapter 1 that tsunami waves can also be modelled using the
Boussinesq water wave approximation. While both Boussinesq and shallow water
approximations are widely used for analysing solitary wave propagation, for break-
ing waves the Boussinesq equations provide a better model of the wave evolution
up till breaking point. Incorporation of coastlines motivates further analysis using
the Boussineq approximation, for both comparison purposes as well as to verify
the results derived for the shallow water model.

A significant consideration that was not addressed in this study is uncertainty
propagation. Realistic applications of initial conditions reconstruction or parame-
ter estimation using observations often involve a high degree of uncertainty in both
the assimilated data and estimated values. Inclusion of a covariance function that
accurately describes the deviation between the true and inferred parameter or ob-
served value is necessary to ascertain the accuracy of the predicted state, but such
covariances are not perfectly known. While Kalman filtering is a stochastic pro-
cess that uses the error covariance of the estimated state and the measurements to
generate an optimised estimate at the next time step, variational data assimilation
usually has static covariances that do not evolve with future forecasts. However,
there is scope for hybrid data assimilation methods, that effectively take flow-
dependent covariances from an ensemble Kalman filtering model, and introduce
them into the variational algorithm through additional control variables in the cost
function [3]. Additionally, it is possible to describe a spatially varying parameter
(like bathymetry) by modelling it as a stochastic processes, thereby determination
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of the covariance function can be achieved by reduced-order representation of the
stochastic process (a series of random variables with probability density functions
and statistical moments). This approach was successfully implemented by Mayo
et al. [34] to estimate Manning’s n coefficient (used to represent bottom stress
terms), where a spectral representation of the stochastic process was used, with
eigenfunctions of the associated covariance used as basis functions. Similar anal-
yses for future bathymetry estimation would help quantify the uncertainty in the
estimated parameter field.

Another simplification in of the mathematical model used in our analyses is
that it describes the motion of a single fluid layer with a free surface. Additional
dynamics may be captured by considering two or more distinct layers of different
densities. This is especially suitable to an ocean model with an upper mixed layer
and lower ocean, or deep ocean currents flowing under relatively quiescent fluid
[58].

Ultimately, we have developed and extensively verified the use of variational
data assimilation for the initial conditions and bathymetry reconstruction in a va-
riety of idealized 1D and 2D configurations. We have found valuable insights on
the effects of the observation operator and parameters, on convergence of recon-
structed data to exact initial conditions or bathymetry shapes. Our verification
of 1-D conditions for the 2-D initial condition assimilation suggest that results
for the 2-D bathymetry assimilation similar to those we have highlighted in this
thesis, may be observed. Additionally, the sensitivity analysis we have derived of
the surface wave to bathymetry, should prove widely applicable to other applica-
tions in oceanography. Consequently, we believe that our work provides a valuable
first step to understand the observability of bathymetry and initial conditions by
surface waves, and the subsequent effect of reconstructing innaccurate or missing
data, on surface wave accuracy. These results have the potential to faciliate more
accurate forecasts of tsunami waves, and mitigate their high socioeconomic impact.

.
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