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Abstract 

The dramatic decline in the discovery and development of novel antibiotics has been met 

with an exponential increase in antibiotic-resistant pathogenic bacteria. Calls for new 

chemical matter have been paradoxically answered with the withdrawal of multinational 

pharmaceutical companies from the field of antibiotic discovery and development. 

Nevertheless, scientific challenges have also been a major contributor to a lean antibiotic 

pipeline. Renewed efforts to gain a deeper understanding of the bacterial physiology, 

which governs growth and survival, are urgently needed. To this end, I have examined 

two important avenues with relevance to the field of new antibiotic discovery using 

Escherichia coli as a model: 1) a systems analysis of the interactions of essential 

functions under nutrient stress and 2) a physicochemical and structural analysis of small 

molecules to identify properties that influence Gram-negative activity and efflux 

susceptibility. I tackled the first aim by systematically combining 45 chemical probes that 

target essential cellular processes. I revealed a highly connected network of 186 

interactions, of which 81 were synergistic and 105 were antagonistic. The network 

highlighted new connectivity between housekeeping functions and nutrient metabolism. I 

approached the second aim by screening ~314,000 diverse synthetic compounds for 

inhibitors of an efflux-deficient E. coli strain. I identified about 4,500 actives, of which 

approximately 84% showed high susceptibility to efflux. Using a machine learning 

approach, I assessed the physicochemical space occupied by these 4,500 inhibitors and 

determined that hydrophobic and planar small molecules with low molecular stability 

exhibited antibacterial activity only in efflux-compromised E. coli. Further, compounds 



Ph.D. Thesis – S.S. El Zahed; McMaster University – Biochemistry and Biomedical Sciences 

iv 

 

with reduced branching and compactness showed increased susceptibility to efflux. 

Within this dataset, I also identified some compound series highlighting structural 

variations that have a large impact on efflux susceptibility. In all, the work provides new 

insights into an emerging target in antibiotic drug discovery, namely nutrient stress, and 

uncovers some physicochemical properties and structural motifs that contribute to 

antibacterial activity and efflux susceptibility of small molecules. 
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Preface 

 

Some parts of this chapter were adapted from a previously published book chapter: 

El Zahed, S. S., Kumar, G., Tong, M., & Brown, E. D. (2018). Nutrient stress small-

molecule screening platform for Escherichia coli. In B. Wagner (Ed.), Phenotypic 

Screening: Methods and Protocols (Vol. 1787, pp. 1-18). New York, NY: Springer New 

York. 

 

Permission has been granted by the publisher to reproduce the material herein: 

Adapted by permission from Springer Nature and Copyright Clearance Center: Nature 

Springer, Phenotypic Screening by El Zahed, S. S., Kumar, G., Tong, M., & Brown, E. D. 

© (2018). 

 

For this work, I wrote the manuscript with Kumar, G., and Tong, M. provided some input. 

Edits were provided by Brown, E.D.  
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THE NEED FOR NEW APPROACHES TO ANTIBIOTIC DISCOVERY  

Antibiotic discovery and the rise of antibiotic resistance 

The introduction of penicillin to the clinic in the 1940’s marked the beginning of the 

golden age of antibiotic discovery. During this period, many classes of antibiotics were 

discovered and developed for clinical use, revolutionizing the world of medicine, and 

extending life expectancy. Within two decades, however, the discovery of new classes of 

antibiotics dramatically declined, and ultimately the last clinically-useful antibiotic class 

was discovered in the 1980’s. Since the beginning of the 21st century, 44 antibiotics have 

been introduced to the clinic, of which only five are first-in-class: linezolid 

(oxazolidinone, 2000), daptomycin (lipopeptide, 2003), retapamulin (pleuromutilin, 

2007), fidaxomicin (tiacumicin, 2011), and bedaquiline (diarylquinoline, 2012) (Butler & 

Paterson, 2020). In parallel, there has been an exponential rise in antibiotic resistance 

where we have reached a time in which infections caused by superbugs are now common 

occurrences in the clinic. 

Resistance to antibiotics is an evolutionary phenomenon that has existed in nature long 

before antibiotics were classified as therapeutic agents (D'Costa et al., 2011; Davies & 

Davies, 2010; Wright, 2007). For millions of years, antibiotic-producing bacteria and 

fungi have posed an evolutionary pressure on neighbouring bacteria to develop resistance 

mechanisms in order to survive (Walsh, 2003). Antibiotic resistance in the clinic 

developed when drug-sensitive bacteria were exposed to antibiotics during infection. The 

antibiotic-driven evolutionary pressure led to the rise in antibiotic resistance, where some 
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pathogens became resistant to our last resort antibiotics (Liu et al., 2016; Walsh et al., 

2011). This has been attributed to the misuse of antibiotics in the clinic and agriculture, 

the paucity of new antibacterial agents, and the narrow range of bacterial pathways 

targeted by currently prescribed antibiotics. While campaigns continue to raise awareness 

about antibiotic use, the last two factors have been a major challenge in scientific 

research. Indeed, most of our current antibiotics are derivates of antimicrobials identified 

between the 1940’s and 1960’s from soil-derived actinomycetes (Valiquette & Laupland, 

2015). This traditional antibiotic discovery platform continues to be optimized for 

antibiotic discovery; however, the yield for new molecules remains low (Brown & 

Wright, 2016). Consequently, antibiotic development has shifted to chemical 

modifications of known antibiotics, which target a limited number of essential bacterial 

processes, namely the synthesis of cell wall, DNA, RNA, and proteins. This is worrisome 

since resistance to one molecule in an antibiotic class tends to develop to cross resistance 

to other antibiotics within the same class (Munita & Arias, 2016; Walsh, 2003).  

Nutrient stress and drug efflux  

Seeking to expand the target base of antibacterial drug discovery, we have developed a 

nutrient stress screening platform that identifies growth inhibitors of E. coli under nutrient 

limitation (Zlitni et al., 2013). Under nutrient stress, bacteria require an expanded 

biosynthetic capacity that includes the synthesis of amino acids, vitamins, and 

nucleobases. Growing evidence suggests that these processes may be indispensable to 

certain pathogens and at particular sites of infection (El Zahed et al., 2018). Indeed, more 

than 100 biosynthetic enzymes become indispensable in E. coli grown under nutrient 
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stress in vitro. Additionally, E. coli requires some 300 genes that code for basic 

housekeeping functions, including the synthesis of cell wall, DNA, RNA, and proteins. 

Inhibitors targeting encoded proteins in this collection of ~400 genes can serve as probes 

of biology to study the interaction network of nutrient stress functions in E. coli. As such, 

I employed a chemical biology approach where I systematically combined some 45 

chemical probes targeting a subset of these proteins and mapped their interactions under 

nutrient-limited conditions. This work revealed a highly connected network of 186 

interactions and highlighted new connectivity between nutrient synthesis and 

housekeeping functions (El Zahed & Brown, 2018).  

For more than two decades, phenotypic antibacterial screening efforts have become a 

modern approach to discover novel antimicrobials against Gram-negative bacteria. Large 

chemical collections have been screened for such molecules; however, their yield remains 

low (Brown & Wright, 2016; Silver, 2011; Tommasi et al., 2015). While the outer 

membrane barrier has been regarded as the main obstacle for this limitation, active efflux 

pumps are, in fact, major contributors that expel a diverse set of molecules and restrict 

their accumulation in bacteria. Our incomplete understanding of molecular descriptors 

governing efflux susceptibility has been a bottleneck in Gram-negative antibacterial drug 

discovery programs. In this regard, I have screened some 314,000 small molecules in 

efflux-compromised E. coli in order to identify descriptors that contribute to drug efflux. 

This work revealed some 4,500 actives where dose response analyses of these actives 

revealed that 84% were highly susceptibility to efflux. Further, using principal component 

analysis and a machine learning approach, this work revealed that hydrophobic and planar 
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small molecules with low molecular stability had antibacterial activity only in efflux-

compromised E. coli, and compounds with reduced branching and compactness showed 

increased susceptibility to efflux. To examine the structural underpinnings contributing to 

efflux, I applied structure-based clustering of the 4,500 actives and identified some side 

chain moieties that caused marked changes in efflux susceptibility. In all, this novel 

approach identified key molecular descriptors and structural moieties that contribute to 

antibacterial activity and efflux.  

GENETIC NETWORKS AND NUTRIENT STRESS 

Gene dispensability 

Since the first complete bacterial genome of Haemophilus influenzae was available in 

1995, antibiotic discovery and development have been influenced by genomic data. With 

the advancements in bioinformatics, datasets of whole genome sequences are constantly 

mined for novel antibacterial targets (Brown & Wright, 2016; Fields et al., 2017). A 

critical aspect of antimicrobial compounds is that their targets need to code for functions 

required for bacterial growth. Methodical genome-wide single-gene deletions have been 

the traditional approach to explore gene dispensability, where nonviable mutants suggest 

that their corresponding target gene is essential. Much of this work has been inspired by 

the model for molecular genetics, Saccharomyces cerevisiae, where ~19% of its genome 

is essential for viability (Giaever et al., 2002; Giaever & Nislow, 2014). Construction of a 

genome-wide single-gene deletion collection of the model Gram-positive bacterium 

Bacillus subtilis (Kobayashi et al., 2003) and the model Gram-negative bacterium 
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Escherichia coli (Baba et al., 2006) soon followed suit. Compared to S. cerevisiae, 

approximately 7% of the genome in B. subtilis (Kobayashi et al., 2003) and E. coli (Baba 

et al., 2006) are essential. Further, transposon mutagenesis has facilitated genome-scale 

approaches to systematically probe gene dispensability in other organisms (Fields et al., 

2017; Wetmore et al., 2015), including the pathogens Pseudomonas aeruginosa (Jacobs et 

al., 2003; Liberati et al., 2006), Staphylococcus aureus (Fey et al., 2013), and Klebsiella 

pneumoniae (Ramage et al., 2017).  

Gene essentiality in Escherichia coli 

A key factor in exploring gene dispensability is the environmental context of bacteria, 

which have evolved to survive and grow under different conditions. This aspect is 

important for identifying antibiotic targets since standard laboratory growth conditions 

may exclude some genes that are essential for bacterial growth during infection (Brown & 

Wright, 2016). Specifically, when the model Gram-negative bacterium E. coli is grown 

under standard nutrient-rich conditions, only 303 of ~4,400 genes in its genome are 

essential for growth (Baba et al., 2006). These genes code for basic housekeeping 

functions, such as the synthesis of cell wall, DNA, RNA, and proteins. When the growth 

condition is limited to a source of carbon, nitrogen, essential phosphates, and salts, E. coli 

shifts its metabolic activities to include the synthesis of essential amino acids, vitamins, 

nucleobases and other cofactors (El Zahed et al., 2018; Joyce et al., 2006). These 

functions are encoded by an additional set of 119 nutrient stress genes, which increase the 

total number of essential genes for viability to 422 (Figure 1). In fact, a nutrient-limited 

medium may provide a better proxy for the host environment. There have been many 
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reports of impaired growth and attenuated virulence in pathogens due to mutations in 

vitamin, nucleobase, and amino acid biosynthetic genes (Bange et al., 1996; Cersini et al., 

1998; Chamberlain et al., 1993; Cuccui et al., 2007; Hoiseth & Stocker, 1981; Mei et al., 

1997; Samant et al., 2008). From an antibiotic discovery perspective, compounds that 

target bacteria under nutrient-limited conditions could serve as leads for novel 

antibacterial drugs. As such, assessing gene essentiality in growth conditions that mimic 

the host environment during infection provides a more comprehensive list of potential 

antibacterial targets.  

Genetic interaction networks 

Genetic interaction networks identify functional and mechanistic relationships between 

genes and their corresponding pathways that can be harnessed for drug discovery. For 

example, using a synthetic lethality approach, Côté et al. have studied the interactions of 

some 82 nutrient stress genes (of 119) with the dispensable gene set in E. coli under 

nutrient-rich conditions. In that work, strains bearing deletions in 82 nutrient stress genes 

were systematically crossed with ~4,000 single-gene deletion mutants to care strains with 

pairs of deletions and to identify synthetic sick or lethal interactions. That work identified 

a dense interaction network that mapped a total of 1,881 synthetic sick interactions, 

including signature interactions between nutrient acquisition and biosynthesis (Côté et al., 

2016). This vital connection revealed that some of the 119 nutrient stress genes that code 

for nutrient biosynthesis become essential in nutrient-rich conditions if the transporter of 

the specific nutrient is absent. Indeed, this connectivity inspired a target-specific screen 

for inhibitors of biotin biosynthesis (Gehrke et al., 2017), which has been validated as a 
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promising antimicrobial target in Mycobacterium tuberculosis (Woong Park et al., 2011). 

As such, synthetic sick interactions generated from gene-gene interaction networks can be 

harnessed for antimicrobial drug discovery.  

However, the genetic interaction network charted by Côté et al. was collected in nutrient-

rich conditions, where nutrient stress genes are dispensable. Therefore, the dataset lacks 

insight into the genetic network under nutrient-limited conditions where nutrient stress 

genes have an essential phenotype. The study also did not probe the collection of 303 

genes that are essential under nutrient-rich conditions since these genes have an essential 

phenotype regardless of the growth condition. Indeed, mutagenesis has been the 

conventional approach to map genome-wide gene-gene interactions; however, essential 

genes have largely resisted these approaches. Only in S. cerevisiae, in which temperature 

sensitive alleles have been created in both essential and dispensable genes, has genetic 

perturbation been used to map the interactions of essential genes (Costanzo et al., 2016). 

That study revealed that, on average, essential genes have a higher number of interactions 

than those that are dispensable (Costanzo et al., 2016), suggesting that essential genes act 

as hubs in the molecular network of organisms. To overcome the limitations of genetic 

perturbation, chemical biology approaches have been employed to map uncharted 

interactions of functions encoded by essential genes. 

Chemical biology 

Chemical combinations have been used to probe biological systems in order to identify 

fundamental interactions and functional relationships in bacterial physiology (Lehár et al., 
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2007; Yeh & Kishony, 2007). Much like genetic or epistatic interactions among genetic 

mutations, chemical combinations can be classified into three types of interactions: 

additive, synergistic, or antagonistic. An additive interaction describes one where the 

phenotypic effect is no greater than that expected from the combination of non-interacting 

chemicals. A synergistic interaction occurs when the effect of both chemicals is enhanced 

relative to the additive effect, while an antagonistic interaction describes one that is 

suppressed. Thus, compounds that act synergistically or antagonistically are thought to 

reveal connectivity between the functions or pathways being perturbed. Additivity, on the 

other hand, identifies those that are functionally non-redundant or unconnected. 

Classically, antibiotic combinations have been used to chart the connectivity between 

housekeeping functions encoded by essential genes. For instance, Yeh et al. combined 

some 21 antibiotics of diverse modes of action and generated a chemical-chemical 

interaction network that revealed distinct connectivity between some of these functions 

(Yeh et al., 2006). This study has shown that most drugs cluster based on their target 

class, which is consistent with functional connectivity (Yeh et al., 2006). As such, 

chemical interaction networks can be employed to identify connectivities among basic 

housekeeping processes required for bacterial growth.  

Notably, the synergistic interaction of the antibiotics sulfamethoxazole and trimethoprim 

is a signature chemical combination highlighting functional connections that underpin 

bacterial metabolism. Both antibiotics inhibit key enzymes involved in folate 

biosynthesis. Sulfamethoxazole targets dihydropteroate synthase (FolP), an enzyme 

responsible for the catalysis of an early condensation step in the biosynthetic pathway and 
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is essential for growth only under nutrient-limited conditions (Keseler et al., 2016). 

Trimethoprim inhibits dihydrofolate reductase (FolA), an enzyme that is essential under 

nutrient-rich conditions and catalyzes the ultimate reduction step of dihydrofolate to 

tetrahydrofolate (Figure 2). Although the chemical combination targets sequential steps in 

folate biosynthesis, this inhibition cascades into a much more complex metabolic effect in 

bacteria. Indeed, tetrahydrofolate is required for the synthesis of glycine, methionine, 

purines, and thymidine triphosphate (Figure 2), which are required for the synthesis of 

DNA, RNA, and proteins. Interestingly, metabolomic analyses of antifolate-treated E. 

coli cells grown in different culture media revealed distinct connectivities between the 

synthesis of folate and some of these nutrients. Particularly, under nutrient-rich 

conditions, depletion of tetrahydrofolate pools in E. coli induces thymine starvation, 

which leads to DNA damage and growth inhibition (Kwon et al., 2010; Kwon et al., 

2008). Under nutrient-limited growth conditions, however, folate deprivation initially 

results in glycine depletion, followed by reduced purine pools and, eventually, growth 

inhibition (Kwon et al., 2010; Minato et al., 2018). Furthermore, some chemical-chemical 

combination studies have also shown connectivity between folate synthesis, nucleotide 

homeostasis, and DNA replication in nutrient-limited growth conditions (El Zahed & 

Brown, 2018; Wambaugh et al., 2017; Yeh et al., 2006). In all, studies of the combination 

of trimethoprim and sulfamethoxazole are illustrative of the insights that are possible into 

the functional relationships between enzymes in nutrient metabolism and housekeeping 

functions.  
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Charting the connectivity between cellular pathways under nutrient-limited conditions 

reveals a complex network that underpins bacterial growth and survival. Chemical 

combinations can be used as tools to study functional relationships between molecular 

targets and their corresponding pathways. Although powerful, this approach is limited by 

the number of well-characterized molecules that can be used to probe housekeeping 

functions and nutrient metabolism. Recently, phenotypic screens have identified some 

probes targeting nutrient metabolism in Gram-negative bacteria (Fahnoe et al., 2012; 

Zlitni et al., 2013), which can be exploited to chart new connectivity in nutrient stress.  

MULTIDRUG EFFLUX BY GRAM-NEGATIVE BACTERIA 

An overview of the Gram-negative cell envelope 

The cytoplasmic membrane of Gram-negative bacteria is enclosed by an inner membrane 

(IM) and an outer membrane (OM). The former is composed of a phospholipid bilayer, 

while the latter is an asymmetric lipid bilayer consisting of a lipopolysaccharide outer 

leaflet and a phospholipid inner leaflet (Bos et al., 2007). Separating these two 

membranes is the periplasmic space which contains a thin peptidoglycan layer. 

Additionally, Gram-negative bacteria are decorated with a plethora of efflux pumps, 

generally classified into six types: the small multidrug resistance (SMR) family, the 

multidrug and toxic compound extrusion (MATE) family, the proteobacterial 

antimicrobial compounds efflux (PACE) family, the ATP-binding cassette (ABC) 

transporter superfamily, the major facilitator superfamily (MFS), and the resistance-

nodulation-division (RND) superfamily (Xian-Zhi Li, 2016). While the OM acts as a 
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robust barrier to many molecules, those that can penetrate it are subject to extrusion by 

efflux pumps. Most efflux pumps transport a relatively related range of substrates; 

however, the RND superfamily recognizes and extrudes a diverse range of substrates. 

Due to these pumps, Gram-negative bacteria are intrinsically resistant to many antibiotics. 

Indeed, overexpression of RND-type pumps has been a common resistance mechanism 

detected in multidrug resistant bacteria (Alcock et al., 2019; Shigemura et al., 2015; 

Yasufuku et al., 2011). As such, much work has been done to characterize these efflux 

pumps as well as to identify their range of substrates.  

The AcrAB-TolC efflux pump in Escherichia coli 

RND-type efflux pumps are multiple-component systems composed of an inner 

membrane transporter, a periplasmic adaptor protein, and an outer membrane channel. 

This tripartite composition allows for the extrusion of a broad range of compounds from 

the periplasmic space and outer leaflet of the inner membrane to the extracellular milieu 

(Du et al., 2014). Among Gram-negative bacteria, AcrAB-TolC in E. coli is the best 

characterized RND-type efflux pump. Specifically, AcrB is an inner membrane 

transporter driven by the proton-motive force, AcrA is a periplasmic membrane fusion 

protein, and TolC is an outer membrane channel (Zgurskaya et al., 2015). Structural 

analysis revealed a 3:6:3 compositional stoichiometry consisting of an AcrB trimer, an 

AcrA hexamer, and a TolC trimer (Du et al., 2014; Tikhonova et al., 2011; Xu et al., 

2011). Particularly, substrates bind to AcrB and are extruded through the TolC channel 

with the help of AcrA (Figure 3). Asymmetric crystal structures of AcrB revealed that 

each protomer cycles between three conformational stages which correlate with the 
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different stages of substrate entry, binding, and extrusion (Figure 3) (Anes et al., 2015; 

Eicher et al., 2012; Li et al., 2015; Murakami et al., 2006; Yamaguchi et al., 2015). 

Specifically, a substrate enters either the cleft channel, vestibule channel, or central cavity 

channel of the monomer in a loose (L) conformation. Once one of these channels is 

occupied, the monomer transitions to a tight (T) conformation, moving the substrate into 

the distal binding pocket. Co-crystallization work of AcrB with some substrates revealed 

that the distal binding pocket is large and comprised of two distinct binding sites. The 

lower portion of the pocket, coined the hydrophobic trap, is rich in phenylalanine residues 

(Bohnert et al., 2008; Murakami et al., 2006; Nakashima et al., 2013), while the upper 

“crevice” area is rich in hydrophilic and charged residues (Li et al., 2015; Takatsuka et 

al., 2010; Vargiu & Nikaido, 2012). These features of the distal binding pocket in AcrB 

highlight the ability of RND-type pumps to accommodate and expel a broad range of 

substrates. Finally, substrates bound to the distal pocket induce the T protomer to 

transition to an open (O) conformation (Eicher et al., 2012; Li et al., 2015; Murakami et 

al., 2006). This collapses the binding pocket and squeezes the substrate into the central 

funnel of AcrB toward TolC for subsequent extrusion from the cell (Anes et al., 2015; 

Eicher et al., 2012). Overall, these studies show how the composition of AcrAB-TolC and 

its binding pocket pose a major problem in Gram-negative antibiotic discovery. As such, 

two approaches have been largely underway in order to overcome the intrinsic resistance 

conferred by RND-type efflux pumps: identifying potent efflux pump inhibitors (EPIs) 

and defining the physicochemical properties for drug permeation and efflux evasion.  
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Efflux pump inhibitors 

Phenylalanine-arginine-β-naphthylamine (PAβN) was the first EPI discovered to inhibit 

the inner membrane transporter of RND-type efflux pumps in E. coli and P. aeruginosa 

(Lomovskaya et al., 2001). Since, there have been four main classes of EPIs that bind to 

the inner membrane transporter of such pumps and inhibit efflux: peptidomimetic 

compounds derived from PAβN, aryl-piperazines, pyridopyrimidines, and 

pyranopyridines (Li et al., 2015; Opperman & Nguyen, 2015; Xian-Zhi Li, 2016). 

Further, a novel class of EPIs that binds to the periplasmic adaptor protein AcrA of E. coli 

has been recently discovered; however, the exact mechanism of inhibition remains 

unknown (Abdali et al., 2017). Indeed, EPIs could be used in combination therapies as 

adjuvants that block efflux pumps and restore antibiotic activity in resistant bacteria. 

These inhibitors could broaden the activity spectrum of some Gram-positive antibiotics, 

making them effective in Gram-negative bacteria. Linezolid, for example, is a potent 

oxazolidinone antibiotic that inhibits the growth of Gram-positive bacteria by binding to 

the 50S ribosomal subunit and disrupting translation (Clemett & Markham, 2000). As 

previously mentioned, it is a first-in-class antibiotic introduced to the clinic in the early 

2000’s and has been used to treat infections caused by antibiotic-resistant pathogens such 

as methicillin-resistant S. aureus (MRSA), penicillin-resistant Streptococcus pneumoniae 

and vancomycin-resistant Enterococci (VRE) (Clemett & Markham, 2000; Livermore, 

2003). Indeed, Gram-negative bacteria are intrinsically resistant to linezolid due to RND-

type efflux pumps (Hung et al., 2013). In combination with some EPIs, on the other hand, 

linezolid gains antimicrobial activity in some Gram-negative bacteria (Schuster et al., 
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2014). This example along with others (Li et al., 2015; Lomovskaya et al., 2001; 

Opperman & Nguyen, 2015) have demonstrated the potential of EPIs in blocking efflux 

pumps and potentiating antibiotics. To date, only the PAβN analog MP-601205 has 

advanced to phase I clinical trials; however, it has since been abandoned due to toxicity 

concerns (Lomovskaya & Bostian, 2006; Opperman & Nguyen, 2015). Nevertheless, 

early stages of lead optimization for the pyranopyridine EPI MBX2319 as a potential 

antibiotic adjuvant therapy are ongoing (Nguyen et al., 2015; Opperman et al., 2014; 

Sjuts et al., 2016). In all, EPIs could broaden the antibacterial activity of narrow spectrum 

antibiotics as well as make “old” antibiotics effective again. Cytotoxicity concerns, 

however, have restricted EPIs from advancing to the clinical stage of testing.  

Physicochemical properties of antibiotics 

Defining an “ideal” physicochemical space for molecules with Gram-negative activity has 

long been sought after. This stems from the fact that such molecules would have good 

penetration across the cell envelope and low susceptibility to efflux. Such efforts have 

been largely influenced by Lipinski’s success at correlating the physicochemical 

properties of drugs with oral bioactivity. Lipinski’s rule of five have outlined that orally 

available drugs have less than 5 hydrogen-bond donors and 10 hydrogen-bond acceptors, 

a molecular weight (MW) less than 500 g mol-1, and a calculated logP no greater than 5 

(Lipinski et al., 2001). Since these rules were established in the late 1990’s, chemists have 

always considered them when designing compound libraries for high-throughput screens 

(HTS). Lipinski noted, however, that orally available antibiotics violate the rule of five 

due to their larger size (higher MW) and increased hydrophilicity (more polar). 
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Approximately a decade since the rule of five was established, O’Shea and Moser 

analyzed the physicochemical properties of some 147 antibacterial agents and compared 

them to non-antibiotic drugs (O’Shea & Moser, 2008). On average, Gram-positive 

antibiotics were larger (813 g mol-1) than Gram-negative antibiotics (414 g mol-1) and 

non-antibiotic drugs (338 g mol-1) (O’Shea & Moser, 2008). Comparing their 

lipophilicity, however, Gram-negative antibiotics were more hydrophilic (clogD -2.8) 

than both Gram-positive antibiotics (clogD -0.2) and non-antibiotic drugs (clogD 1.6) 

(O’Shea & Moser, 2008). When Gram-negative antibiotics were further classified based 

on their target location, Moser noted that those with a periplasmic target are larger (MW 

347-558 g mol-1) and more hydrophilic (clogD -5.1 to -1) than those with a cytoplasmic 

target (MW 254-465 g mol-1; -1.4 to 1.1) (Reck et al., 2019). However, the collection of 

antibiotics in both studies includes some that are susceptible to RND-type efflux pumps. 

As such, these studies propose ideal physicochemical properties for Gram-negative 

antimicrobials but lack insight into the properties that impact efflux susceptibility.  

Physicochemical properties as guidelines for compound entry and efflux 

A comprehensive analysis of some HTS campaigns at AstraZeneca revealed that 

molecules least susceptible to RND-type efflux pumps in E. coli and P. aeruginosa were 

small (MW <300 g mol-1) and hydrophilic (clogD <0) or very large (MW >700 g mol-1) 

and zwitterionic (Brown et al., 2014). Paradoxically, their hit-to-lead programs revealed 

that biochemical potency improved with increasing hydrophobicity, which antagonized 

whole-cell activity (Brown et al., 2014). This contrast in properties for efflux evasion and 

biochemical potency highlights the scientific challenge in Gram-negative antibiotic 
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discovery in the 21st century. Furthermore, a recent study that measured compound 

accumulation in Gram-negative bacteria challenged prior retrospective analyses (O’Shea 

& Moser, 2008), wherein compounds with a hydrophobic character and positive charge 

showed good accumulation in these bacteria (Richter et al., 2017). As such, 

pharmaceutical industry pundits posit that physicochemical properties offer guidelines for 

optimal Gram-negative penetration and efflux evasion rather than overarching rules 

(Tommasi et al., 2018). Most importantly, they note that these guidelines are likely to 

differ across chemical class as well as Gram-negative species (Silver, 2016; Tommasi et 

al., 2018).  

Research objectives and organization of thesis 

The objectives of the research in this thesis were to exploit nutrient stress in order to 1) 

map uncharted interactions between essential functions in E. coli and 2) identify the 

physicochemical and structural parameters contributing to antibacterial activity and efflux 

susceptibility. The thesis is based on the hypotheses that 1) charting functional 

relationships between essential processes and 2) gaining a further understanding of efflux 

susceptibility could be harnessed for antimicrobial discovery. To this end, Chapter 2 

describes a chemical biology approach using the model bacterium E. coli to identify 

interactions between housekeeping functions and those required to respond to nutrient 

stress. This work suggested a highly dense and connected network of functions essential 

to bacteria under nutrient limitation. Further, I investigated three potent interactions 

between biotin and fatty acid syntheses, amino acid biosynthesis and ribosome assembly, 

as well as purine synthesis and translation inhibition. Chapter 3 explores empirical and 
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computational approaches to determine molecular descriptors that govern antibacterial 

activity and efflux susceptibility. Using principal component analysis and machine 

learning, I identified that hydrophobic and planar small molecules with low molecular 

stability were growth inhibitory only in efflux-compromised E. coli, and compounds with 

reduced branching and compactness showed increased susceptibility to efflux. Further, 

structure-based clustering and structure-activity relationship analyses revealed some side 

chain decorations that can render small molecules susceptible to efflux. Finally, Chapter 4 

discusses some suggestions for future research, based on the work described herein.  
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Figure Legends 

Figure 1. E. coli gene essentiality. Shown is a schematic of gene essentiality in E. coli 

grown in nutrient-rich or nutrient-limited conditions. Dark blue represents the 4,400 

genes that comprise the E. coli genome. Grey represents 303 genes (of 4,400) essential 

for viability in nutrient-rich conditions. Light blue represents 422 genes essential for 

growth in nutrient-limited conditions.  

Figure 2. Synthesis and consumption of tetrahydrofolate in E. coli. Folate 

biosynthesis is shown on the left, starting with the condensation reaction catalyzed by 

FolP, followed by the addition of the glutamyl residue mediated by FolC to form 7,8-

dihydrofolate, and its reduction by FolA to produce tetrahydrofolate. Tetrahydrofolate 

consumption is represented in dashed arrows in grey. GlyA and the gcv system (Lpd, 

GcvP, GcvH, GcvT) catalyze the reversible methylation of tetrahydrofolate to 5,10-

methylenetetrahydrofolate. The former enzyme also produces L-glycine. 5,10-

methylenetetrahydrofolate is then demethylated by ThyA to form deoxythymidine 

monophosphate (dTMP), reduced by MetF for the synthesis of L-methionine, or oxidized 

and hydrolyzed by FolD for the synthesis of purines. Shown in red are the antibiotics 

sulfamethoxazole and trimethoprim which inhibit FolP and FolA, respectively. Adapted 

from Keseler et al., 2016.  

Figure 3. Rotation mechanism of substrate access, binding, and extrusion mediated 

by AcrAB-TolC in E. coli. The top and bottom panels show side and horizontal views of 

a schematic model of AcrAB-TolC in E. coli, respectively. TolC is represented by black 
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and off-white and AcrA is represented by light blue. The three AcrB protomers are 

represented in green (access; loose, L, protomer), violet (binding; tight, T, protomer), and 

dark blue (extrusion; open, O, protomer). Substrates are represented as yellow diamonds. 

Arrows indicate conformational cycling of AcrB for substrate extrusion through TolC. 

Adapted from Yamaguchi et al., 2015.  
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CHAPTER II – Chemical-chemical combinations map uncharted interactions in 

Escherichia coli under nutrient stress 
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Summary 

Of the ~4,400 genes that constitute Escherichia coli’s genome, ~300 genes are 

indispensable for its growth in nutrient-rich conditions. These encode housekeeping 

functions including cell wall, DNA, RNA and protein syntheses. Under conditions where 

nutrients are limited to a carbon source, nitrogen source, essential phosphates, and salts, 

more than 100 additional genes become essential. These largely code for the synthesis of 

amino acids, vitamins, and nucleobases. While much is known about this collection of 

~400 genes, their interactions under nutrient stress are uncharted. Using a chemical 

biology approach, we focused on 45 chemical probes targeting encoded proteins in this 

collection, and mapped their interactions under nutrient-limited conditions. Encompassing 

990 unique pairwise chemical combinations, we revealed a highly-connected network of 

186 interactions, where 81 were synergistic and 105 were antagonistic. The network 

revealed signature interactions for each probe, and highlighted new connectivity between 

housekeeping functions and those essential in nutrient stress.  
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Introduction 

Systematic analyses of genome-scale gene deletion collections have characterized 

the basic housekeeping functions for bacterial survival. Such studies in the model 

bacterium Escherichia coli, for example, have shown that 303 genes have an essential 

phenotype for growth in nutrient-rich conditions while the balance, approximately 4,000 

genes, are dispensable (Baba et al., 2006). In nutrient-limited conditions, where E. coli is 

grown in a medium containing glucose and ammonium chloride (carbon and nitrogen 

sources, respectively) as well as essential phosphates and salts, a total of 422 genes have 

an indispensable phenotype (Baba et al., 2006; Joyce et al., 2006). This additional set of 

119 genes largely encodes proteins required for the synthesis of amino acids, vitamins, 

nucleobases, and other cofactors. While much is known about these housekeeping and 

nutrient stress functions, our understanding comes from studies that are mainly 

reductionist in nature, derived from one-gene-at-a-time experiments examining cell 

physiology or from biochemical studies of the encoded protein (Baba et al., 2006; Joyce 

et al., 2006; Nichols et al., 2011). Lacking, however, is an understanding of the 

interaction of these functions with one another as well as with the greater cell system.  

We recently studied the interaction of nutrient stress genes with the dispensable 

gene set under nutrient-rich conditions using a synthetic lethality approach (Côté et al., 

2016). Some 82 nutrient stress genes (of 119) were crossed with nearly 4,000 single gene 

deletion mutants to identify synthetic sick or lethal interactions. With a total of 1,881 such 

interactions, this study revealed a large number and density of synthetic lethal (or sick) 

gene combinations for the query gene set. This work revealed signature interactions 
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between nutrient acquisition and biosynthesis as well as pathway redundancies and the 

presence, in this network, of a surprising number of genes of unknown function. Of 

course, this gene-gene interaction dataset was collected in nutrient-rich conditions, where 

nutrient stress genes are dispensable. Accordingly, the dataset lacks any insight into the 

genetic network under nutrient-limited conditions, where nutrient stress genes have an 

essential phenotype. Indeed, while genetic mutation is the dominant approach to studying 

genetic networks, genes with indispensable phenotypes have largely resisted 

characterization with network mapping tools. Only in the model yeast, Saccharomyces 

cerevisiae, where temperature sensitive alleles have been created in hundreds of essential 

genes, has synthetic lethality been used to map the interaction network of genes with 

essential phenotypes (Costanzo et al., 2016; Li et al., 2011). That effort showed that 

essential genes had many more interactions on average than dispensable genes and 

established these functions as hubs in the global genetic network of S. cerevisiae. 

In the work described here, we have taken a chemical biology approach (Parsons 

et al., 2004) to study the interaction network of housekeeping and nutrient stress functions 

in E. coli under nutrient-limited conditions where all of the associated genes are essential 

for growth. We targeted these functions with 45 chemical probes using a matrix of 990 

pairwise chemical combinations. The compounds were systematically combined in 64-

dose checkerboard matrices, referred to here as checkerboard assays, and assessed for the 

interaction phenotype of growth inhibition: synergy, antagonism, or indifference (no 

interaction). When growth inhibition that results from combining two compounds is 

simply the sum of effects of individual compounds, this is referred to as indifference. In 
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contrast, synergy and antagonism describe phenotypic interactions that lead to more or 

less growth inhibition, respectively, than predicted by the sum of the individual effects of 

the two compounds. Some 81 synergistic and 105 antagonistic interactions were recorded, 

suggesting that essential functions represent a highly connected network in bacteria. We 

further investigated some especially potent and paradoxical interactions between biotin 

and fatty acid synthesis, amino acid biosynthesis and ribosome assembly, as well as 

purine synthesis and protein translation inhibition. In all, the work highlighted a high 

density of interactions among essential functions as well as unique connectivity between 

nutrient biosynthesis and housekeeping functions in bacteria. 

Results 

Chemical-Chemical Interaction Matrix 

Some 45 compounds, known to probe bacterial functions in nutrient synthesis and 

housekeeping functions, were selected to generate a systematic analysis of chemical-

chemical combinations in order to determine the nature of each interaction, i.e., 

synergistic, antagonistic or indifferent (no interaction). The 45 compounds included 18 

nutrient synthesis probes with growth inhibitory activities restricted to nutrient-limited 

conditions, and 27 housekeeping-function probes that included antibiotics that target cell 

wall, protein synthesis, or DNA replication, and lamotrigine, a compound that was 

recently identified to be an inhibitor of bacterial ribosome biogenesis (Stokes et al., 

2014). A list of the probes and their targets is provided in supplementary data 

(Supplemental Data 1). We systematically characterized the interaction of these 45 
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compounds with one another using checkerboard assays that analyzed the concentration 

dependence of the activity of pairs of compounds. The phenotype tested for was the 

inhibition of E. coli growth in the nutrient-limited medium, M9 minimal, which consisted 

of only glucose as the carbon source, ammonium chloride as the nitrogen source, essential 

phosphates and salts. Binary combination space for n compounds is defined by the 

formula n*(n-1)/2 (Keith et al., 2005). Thus, 990 pairs of compounds were tested using a 

total of 63,360 individual data points. An analysis of the checkerboard data revealed the 

nature of these pairwise interactions. The fractional inhibitory concentration index (FICI) 

was calculated for each checkerboard assay (Transparent Methods). FICI is the sum of the 

fractional inhibitory concentration (FIC) of each tested compound, where the FIC for 

each tested compound is the ratio of its minimal inhibitory concentration (MIC) in 

combination divided by its MIC when used on its own (Krogstad et al., 1986). 

Combinations with an FICI less than or equal to 0.5 were deemed synergistic, while those 

with an FICI greater than 2 were antagonistic and those greater than 0.5 and less than or 

equal to 2 were indifferent (Krogstad et al., 1986). Of the 990 unique pairwise chemical 

combinations, 81 were synergistic and 105 were antagonistic, resulting in 186 interactions 

(Table 1 and Figure S1). Thus, on average, each compound had approximately 4 

interactions (186/45) with other bioactive compounds. Furthermore, this dataset defined a 

unique interaction profile for each of the 45 compounds. Figure 1 presents a heat map of 

the entire interaction map, hierarchically clustered according to the interaction profiles of 

each chemical compound. All FICI values for the latter are provided in supplemental data 

(Supplemental Data 2).  
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A large fraction, some 19% (186/990) of these probe combinations, showed 

interactions suggesting that targeted functions represent a highly-connected network in 

bacteria. While these compounds were selected to probe a diverse array of bacterial 

physiology, we included some redundancy in our selection of housekeeping-function 

probes, for example, two phenicols (chloramphenicol and thiamphenicol), two macrolides 

(erythromycin and dirithromycin), two fluoroquinolones (norfloxacin and ciprofloxacin) 

and two tetracyclines (tetracycline and doxycycline). Interestingly, we noted subtle 

differences among the interaction profiles of closely related probes; however, even if we 

account for some redundancy by estimating the set of non-redundant probes to be 35 

compounds, for example, we still see interactions for about 20% of our combinations. In 

all, this analysis represents the first comprehensive study to explore the interaction of 

chemical probes, targeting housekeeping functions and nutrient synthesis, when cells are 

grown under nutrient-limited conditions. Table 1 summarizes and categorizes the 186 

interactions seen.  

A total of 57 interactions occurred among the 27 probes of housekeeping 

functions. Previous antibiotic combination studies have charted interactions between the 

different classes of antibiotics (Ocampo et al., 2014; Wambaugh et al., 2017; Yeh et al., 

2006), which were largely confirmed by our dataset of antibiotic combinations. An 

interesting pair of interactions identified in this study was the potentiation of the narrow-

spectrum Gram-positive antibiotic novobiocin (Cozzarelli, 1977) against E. coli by two 

cell wall-active antibiotics, vancomycin and fosmidomycin (Figure S2). The latter 

interaction has not been reported by previous antibiotic combination studies. These 
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interactions were curious, however, we have focused herein on new chemical-chemical 

interactions of relevance to the study of nutrient stress in bacteria.  

Interestingly, of the total 186 charted interactions, 129 involved nutrient synthesis 

probes. Specifically, 88 interactions were between one of the 18 nutrient synthesis probes 

and the remaining 27 probes targeting housekeeping functions, as well as 41 interactions 

that involved combinations of nutrient synthesis probes. Below, we highlight some 

illustrative and paradoxical interactions in these categories in addition to presenting a 

deeper analysis of the interactions seen with probes of biotin, S-adenosylmethionine and 

purine synthesis. 

Hierarchical Clustering of Chemical-Chemical Interactions 

Hierarchical clustering revealed that probes mapped largely based on the chemical 

class of each compound. This was an encouraging result from the perspective of data 

quality because compounds of similar structure naturally share the same mechanism of 

action (MOA) and thus similar chemical-chemical interaction profiles. For example, 

norfloxacin and ciprofloxacin belong to the fluoroquinolone antibiotic class, and inhibit 

DNA synthesis by targeting DNA gyrase and topoisomerase IV (Drlica et al., 2008). They 

show a unique fingerprint of antagonistic interactions with the tetracyclines, 

chloramphenicol, and the thiopurine analogues (6-thiogunaine and 6-mercaptopurine) 

(Figure 2A). The macrolides, erythromycin and dirithromycin, inhibit protein synthesis 

by targeting the 50S ribosome (Menninger and Otto, 1982). They have a similar profile of 

interactions including antagonistic interactions with gentamycin and D-cycloserine, and 
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synergistic interactions with the tetracyclines, polymyxin B, DL-3-hydroxynorvaline, 

lamotrigine, and p-fluoro-phenylalanine (Figure 2B). Similarly, analogues of nutrient 

synthesis probes, such as the thiopurine analogues 6-thioguanine and 6-mercaptopurine, 

which incorporate into DNA or RNA and inhibit purine synthesis (Nelson et al., 1975), 

had similar interaction profiles (Figure 2C). Interactions unique to these compounds 

include 6-mercaptopurine’s synergistic interactions with L-norvaline and trimethoprim as 

well as 6-thiogunaine’s antagonistic interaction with cefmetazole. These observations 

emphasize the concept that compounds with similar mechanism of action exhibit similar 

interactions when used in combination with other probes of biology.  

Occasionally, interaction profiles clustered together due to a synergistic 

interaction between the two compounds. For instance, the interaction profiles of 

sulfamethoxazole and trimethoprim cluster with one another, yet only share one common 

antagonistic interaction with lincomycin (Figure 1). Similarly, DL-3-hydroxynorvaline, a 

threonine analogue (Minajigi et al., 2011), synergizes with the macrolides, erythromycin 

and dirithromycin, and clusters with these compounds, however, each compound’s profile 

is largely distinct. Nonetheless, compounds with a shared MOA largely exhibit 

substantially similar chemical interaction profiles (Figure 1). Accordingly, the chemical-

chemical interaction matrix has strong potential as a tool to elucidate the MOA of new 

antibacterial compounds, tested under nutrient-limited conditions.  

Consistent with the goals of understanding the network that underpins nutrient 

stress in bacteria, we have focused herein on the interactions that impinge on targets 

associated with nutrient synthesis. Of the 129 interactions in this category, we prioritized 
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three synergistic interactions that help to elaborate the nutrient stress network in vitamin, 

amino acid, and nucleobase biosynthesis. Accordingly, we elaborate here on the 

synergistic interactions that we characterized between MAC13772 and cerulenin, L-

norleucine and lamotrigine, as well as 6-mercaptopurine and aminoglycosides. Indeed, 

these interactions in particular revealed further insight into the complex metabolic 

network that underpins nutrient stress, as well as the connectivity with other biosynthetic 

pathways and cellular housekeeping functions.  

Biotin Synthesis Interacts with Cell Wall, SAM and Fatty Acid Biosynthesis  

The biotin biosynthesis inhibitor MAC13772 targets 7,8-diaminopelargonic acid 

synthase (BioA), an enzyme responsible for the catalysis of the antepenultimate step in 

biotin biosynthesis (Zlitni et al., 2013). Its chemical interaction profile identified one 

antagonistic and four synergistic signature interactions (Figure 3A). MAC13772 

antagonized the activity of the cell wall antibiotic D-cycloserine (FICI ≥ 3, Figure S3A), a 

D-alanine analogue that competitively inhibits two essential enzymes, alanine racemase 

and D-alanine-D-alanine ligase (Lambert and Neuhaus, 1972; Zawadzke et al., 1991). 

The racemase catalyzes the conversion of L-alanine to D-alanine, and the ligase utilizes 

two D-alanine molecules as substrates for peptidoglycan synthesis (Figure S4). Notably, 

the biotin biosynthetic step preceding the antepenultimate step utilizes L-alanine as a 

substrate (Figure 3B). The observed antagonistic interaction suggests that the inhibition of 

BioA increases L-alanine availability from the preceding biotin biosynthetic step (Figure 

S3). Where L-alanine and D-cycloserine compete for binding to the active site of the 

racemase, the abundance of L-alanine enables alanine racemization and continued 
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peptidoglycan synthesis, suppressing D-cycloserine’s activity. Recent genomic analyses 

of Mycobacterium tuberculosis have revealed that strains harboring a loss-of-function 

mutation in ald, which codes for an enzyme that catalyzes the conversion of L-alanine to 

pyruvate, are resistant to D-cycloserine (Desjardins et al., 2016). This Ald variant can no 

longer utilize L-alanine as a substrate, leading to an increase in the pool of available L-

alanine and suppression of D-cycloserine activity. Accordingly, we speculate that L-

alanine is redirected towards peptidoglycan synthesis on inhibition of BioA and 

antagonizes the effects of D-cycloserine.  

  In addition to its connection to cell wall synthesis, the BioA inhibitor MAC13772 

also synergized with L-norleucine (FICI ≤ 0.5), a nutrient synthesis probe that targets S-

adenosylmethionine (SAM) biosynthesis (Chattopadhyay et al., 1991). In E. coli, the first 

biotin biosynthetic step requires SAM as a methyl donor (Figure 3B). L-norleucine 

inhibits the methionine adenosyltransferase reaction of the MetK enzyme that catalyzes 

the production of SAM (Chattopadhyay et al., 1991). Thus, the first step of biotin 

biosynthesis is perturbed by the action of L-norleucine and synergy is seen with 

MAC13772, an inhibitor of the antepenultimate step of the same pathway (Figure 3B). 

Indeed, it has been previously shown that inhibition of SAM-dependent 

methyltransferases cascades to the inhibition of biotin biosynthesis (Lin et al., 2010). 

Accordingly, in nutrient-limited conditions, inhibition of both SAM and a late step in the 

biotin biosynthetic pathway exerts a synergistic inhibition of biotin biosynthesis in E. 

coli, leading to growth inhibition.  
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 The synergistic interaction of MAC13772 and the antibiotic cerulenin (FICI ≤ 0.5) 

highlighted an interdependence between biotin biosynthesis and fatty acid synthesis in 

nutrient-limited conditions (Figures 3C and 3D). Cerulenin targets ß-ketoacyl-ACP 

synthase I (FabB), one of the condensing enzymes required for fatty acid biosynthesis 

(Price et al., 2001) and one of the four enzymes involved in the elongation of biotin’s 

saturated chain moiety (Figure 3B). The first step in E. coli’s fatty acid biosynthetic 

pathway is a decarboxylation reaction catalyzed by the ACC complex, which uses biotin 

as a cofactor (Campbell and Cronan Jr, 2001). Thus, the inhibition of biotin biosynthesis 

appears to have a unique impact on fatty acid biosynthesis when E. coli is grown in 

nutrient-limited conditions. We assessed the effect of decreased biotin availability in 

nutrient-rich conditions using a ΔbioP mutant, harboring a deletion in the biotin 

transporter. In this genetic background, biotin biosynthesis becomes essential in nutrient-

rich conditions. Indeed, Figure 3E revealed a synergistic interaction in the ΔbioP mutant 

strain, in which cerulenin was similarly potentiated in the presence of sub-inhibitory 

concentrations of MAC13772. Thus, a decrease in biotin availability impacts fatty acid 

biosynthesis and sensitizes this pathway to inhibition by the antibiotic cerulenin.  

Perturbation of S-adenosylmethionine Biosynthesis Reveals a Growth Phenotype for 

the Ribosome Biogenesis Function of Initiation Factor 2  

Lamotrigine is best known as an anticonvulsant drug, however, it was recently 

shown to have the cryptic ability to inhibit a previously unrecognized ribosome 

biogenesis function in E. coli, namely that of initiation factor 2 (IF2) (Stokes et al., 2014). 
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While IF2 is understood to have a key role in the initiation of protein translation, its role 

in ribosome assembly was revealed through an investigation of the action of lamotrigine 

under conditions of cold stress (15°C). Indeed, the ability of lamotrigine to inhibit the 

growth of E. coli was dependent on cold stress. Herein, under nutrient-limited conditions 

and at 37°C, we found that lamotrigine showed a cold-independent activity, particularly 

in combination with certain compounds. The chemical interaction profile of lamotrigine 

revealed 12 synergistic interactions (Figure 4A), including those with the antibiotics 

cerulenin and rifampicin that persisted in nutrient-rich conditions (Figure S5). Ribosome 

assembly remains a highly enigmatic process (Shajani et al., 2011). Indeed, we are at a 

loss to identify a precise mechanism behind many of the interactions that we observed for 

lamotrigine. Nevertheless, we believe the synergistic interaction between the S-

adenosylmethionine (SAM) biosynthesis inhibitor L-norleucine (Chattopadhyay et al., 

1991) and lamotrigine (Figures 4B and 4C) may be instructive of the network that 

underpins ribosome assembly. Remarkably, inhibition of SAM biosynthesis revealed a 

growth inhibitory phenotype for the IF2-targeted compound lamotrigine under standard 

temperature conditions (37°C). 

 Ribosome profiling analysis, an assessment of the distribution of ribosomal 

material among the 30S, 50S and 70S species using sucrose gradient sedimentation, is a 

signature phenotype that is commonly used to characterize defects in ribosome assembly. 

Treatment of E. coli growing in nutrient-rich media at 15°C with lamotrigine was 

previously shown to be growth inhibitory and lead to the accumulation of immature pre-

30S and pre-50S ribosomal particles, consistent with its inhibition of ribosome biogenesis 
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(Stokes et al., 2014). Lamotrigine treatment had no such impact on growth or ribosome 

profiles, however, when E. coli was grown in nutrient-rich media at 37°C. In the work 

reported herein, lamotrigine treatment at 15°C in nutrient-limited media revealed the 

accumulation of a pre-50S species only (Figure S6). Notably, this phenotype was also 

seen when cells grown at 37°C in nutrient-limited conditions were treated with 

lamotrigine. Ribosomal subunit assembly is not thought to proceed with a linear and 

specific maturation pathway. Instead, emerging research suggests that there are multiple 

and parallel pathways for maturation. Our earlier work with lamotrigine suggested that, 

while the function of IF2 in late ribosomal subunit assembly was dispensable at 37°C, it 

became essential at cold temperatures where alternative pathways for assembly became 

limiting due to the effect of temperature on RNA folding. Nutrient limitation has not 

made this function essential for growth – Figure 4B reveals that high concentrations of 

lamotrigine alone are not especially growth inhibitory – but has revealed a small but 

detectable defect in the ribosome profile. Here again we posit that nutrient limitation may 

limit the assembly landscape, revealing a dependence on IF2. Notwithstanding its 

interaction with lamotrigine in these conditions, L-norleucine treated cells grown at 37°C 

in nutrient-limited conditions had a ribosome profile that was indistinguishable from 

untreated cells (Figure S6). Interestingly, SAM-dependent methylation of multiple sites of 

30S and 50S ribosomal particles has a key role in ribosome biogenesis (Kaczanowska and 

Rydén-Aulin, 2007; Shajani et al., 2011). To be sure that this interaction was due to the 

inhibition of IF2’s ribosome assembly function, we assessed the interaction with an E. 

coli IF2 mutant (mutant 1) (Stokes et al., 2014). This mutant encodes an N-terminal IF2 
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variant that resists the capacity of lamotrigine to inhibit the ribosome assembly activity of 

IF2. (We note here that lamotrigine does not affect the protein translation function of 

IF2.) The absence of synergy in Figure 4D confirmed that the interaction in wild-type E. 

coli was related to the role of IF2 in ribosome assembly. Although treatment of wild-type 

E. coli with L-norleucine did not produce immature ribosomal particles (Figure S6), 

perturbation of S-adenosylmethionine biosynthesis with L-norleucine revealed a profound 

growth phenotype at 37°C for the ribosome biogenesis function of initiation factor 2.  

Thiopurine Analogues Showed Synergy with Aminoglycoside Antibiotics 

Thiopurine antagonists are known for their incorporation into DNA and RNA and 

for their inhibition of purine biosynthesis (Van Scoik et al., 1985). Two anticancer drugs, 

6-thioguanine and 6-mercaptopurine, are thiopurine analogues that exhibit antibacterial 

activity in nutrient-defined media (Coonrod and Eickhoff, 1972; Elion et al., 1954b). The 

mechanism of action of these drugs in both animal and bacterial cells is thought to be 

manifold. They are converted to purine analogues and get incorporated into DNA and 

RNA, but they also inhibit purine biosynthesis directly and through negative feedback 

mechanisms (Atkinson and Murray, 1965; Bolton and Mandel, 1957; Coggin et al., 1966; 

Elion et al., 1954a). These drugs showed relatively promiscuous interaction profiles in 

our study. For example, 10 synergistic interactions were seen for 6-mercaptopurine 

(Figure 2C). We posit that the central role of purine synthesis in metabolism and growth 

leads to pleiotropy and a high density of interactions for these probes. Nevertheless, we 

found it curious that, of the many protein synthesis inhibitors studied, we saw interactions 

with only the aminoglycoside class, namely with kanamycin and gentamycin. We 
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followed up on this observation, focusing on the probe 6-mercaptopurine (Figure 5) 

because it was more potent than 6-thioguanine (Figure S7). Aminoglycoside antibiotics 

are understood to corrupt ribosome function by promoting mistranslation of proteins, and 

these have toxic effects (Davies et al., 1965). Aminoglycosides encompass two distinct 

structural classes, the 4,5-disubstituted and the 4,6-disubsituted 2-deoxystreptamines, and 

a structurally dissimilar class that does not share a common backbone in their chemical 

structures (Mingeot-Leclercq et al., 1999; Recht and Puglisi, 2001). In the course of 

interfering with ribosome function, these compounds form sequence-specific hydrogen 

bonds with nucleotides in the 30S ribosome subunit (Recht and Puglisi, 2001). We 

reasoned that if 6-mercaptopurine was incorporated into RNA, then it may exert synergy 

with aminoglycosides through specific interactions. We found that not only did 6-

mercaptopurine show strong synergy with the 4,6-disusbtituted aminoglycosides 

kanamycin and gentamycin, but also with all aminoglycosides tested regardless of 

structural class (Figure 6). Thus, we conclude that the synergy is not due to specific 

interactions but rather to the downstream consequences of inhibition of purine 

biosynthesis and/or incorporation into DNA and RNA. Notably, neomycin resulted in the 

strongest synergistic interaction profile in which 6-mercaptopurine was potentiated by 

more than 100-fold (Figure 6A). In all, these findings revealed an enigmatic interplay 

among (poly)nucleotide biosynthesis and the action of aminoglycosides on protein 

mistranslation.  
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Discussion 

Systematic mutation of E. coli’s genome of nearly 4,400 genes has revealed that 

some 303 genes are essential for growth in nutrient-rich conditions. These genes code for 

so-called housekeeping functions in the bacteria that include cell wall, DNA, RNA and 

protein synthesis. Under nutrient stress, an additional set of 119 genes have an 

indispensable phenotype and these genes code largely for the synthesis of amino acids, 

vitamins, nucleobases, and other cofactors. While much is known about the function of 

this set of 422 genes and their gene products, relatively little is known of their 

interactions. Gene-gene interactions are commonly studied in model microbes with 

systematic genome-wide crosses of deletion mutations to detect unexpected growth 

defects in strains bearing deletions in two otherwise dispensable genes, resulting in a 

synthetic lethal or sick phenotype (Butland et al., 2008; Collins et al., 2007; Costanzo et 

al., 2016; Côté et al., 2016; Tong et al., 2001; Typas et al., 2008). To date, this approach 

has been limited, in E. coli, to the dispensable fraction of the genome where stable 

mutants can be created. Herein, we sought to probe the collection of genes involved in 

both housekeeping and nutrient stress functions (422) under conditions where they have 

an essential growth phenotype. To this end, we systematically combined 45 chemical 

probes targeting a subset of these functions. The 45 compounds included 18 nutrient 

synthesis probes with growth inhibitory activities restricted to nutrient-limited conditions, 

and 27 housekeeping-function probes that included antibiotics that target cell wall, 

protein synthesis, or DNA replication, and lamotrigine, a compound that was recently 

identified to be an inhibitor of bacterial ribosome biogenesis (Stokes et al., 2014).  
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Binary combination space for these 45 compounds encompasses 990 unique 

pairwise chemical-chemical combinations. Of these systematic combinations, we mapped 

186 interactions, of which 81 were synergistic and 105 were antagonistic. In addition, we 

defined signature interaction profiles for all 45 compounds under nutrient stress 

conditions, averaging 4 interactions per compound. Thus 19% (186/990) of probe 

combinations produced an interaction in this study. This number is high relative to the 

3.5% frequency recorded in the model yeast for both positive and negative gene-gene 

interactions seen genome-wide in that organism (Costanzo et al., 2016). Indeed, synthetic 

lethal/sick interactions recorded among the dispensable fraction in E. coli have been in a 

similar frequency range, for example, ~1% of the total number of double mutants created 

(French et al., 2017). Interestingly, interactions among the essential gene set in the model 

yeast S. cerevisiae have been probed using temperature sensitive alleles (Costanzo et al., 

2016) and this work has revealed a much higher frequency of interaction (24%), closer to 

that seen here using chemical probes of essential functions. Together, these studies 

suggest that essential physiology is described by a network that is much more densely 

wired than that of the dispensable fraction.  

 Hierarchical clustering of these 45 chemical-chemical interaction profiles revealed 

that compounds clustered based on their chemical class. This points to a qualitative 

dataset since analogues share a similar mechanism of action, thus resulting in overlapping 

interaction profiles. Indeed, drugs belonging to the same antibiotic class clustered 

together, revealing the least dissimilarity in their signature interactions. Another cluster 

identified highly similar profiles between the nutrient synthesis probes 6-thioguanine and 
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6-mercaptopurine. Occasionally, some interaction profiles clustered due to a shared 

synergistic interaction between the two clustered compounds. This phenotype occurred 

for increasingly dissimilar interaction profiles, suggesting that the interaction matrix is 

not predictive of synergistic interactions. Rather, the chemical-chemical interaction 

matrix is a powerful tool that can be used to elucidate the MOA of novel compounds with 

antibacterial activity (unknowns). Particularly, unknowns with a growth inhibitory 

activity restricted to nutrient-limited conditions can have their target prioritized through 

nutrient suppression profiling (Zlitni et al., 2013), in which unknowns selectively 

targeting a unique nutrient biosynthetic pathway are suppressed in the presence of the 

respective nutrient. However, nutrient suppression profiling lacks the ability to determine 

the target of unknowns suppressed by multiple nutrients. We have previously 

demonstrated the utility of chemical combinations in elucidating the target and MOA of 

uncharted chemical probes (Farha and Brown, 2010). Therefore, chemically combining 

the 45 compounds with such unknowns would generate fingerprint chemical interaction 

profiles that are unique to each unknown. Since the chemical-chemical interaction matrix 

clusters compounds with a similar mechanism of action, hierarchical clustering of the 

unknowns’ interaction profiles with that of the 45 compounds would allow the generation 

of testable hypotheses for the MOA of the unknown in question.  

Systematic combinations of nutrient synthesis probes and other bioactive 

compounds charted 186 interactions in E. coli grown in nutrient-limited conditions. Of 

the 186 interactions, 57 involved combinations of housekeeping-function probes, many of 

which have been identified by previous antibiotic combination studies (Ocampo et al., 
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2014; Wambaugh et al., 2017; Yeh et al., 2006). Herein, we report a novel synergistic 

interaction in E. coli that involves the Gram-positive antibiotic novobiocin and the cell 

wall active antibiotic fosmidomycin. This was an interesting observation in which a 

Gram-positive antibiotic was potentiated in E. coli, a Gram-negative bacterium. 

Nevertheless, we focused herein on interactions that provide further understanding of 

nutrient stress in E. coli. Of the 129 interactions, we prioritized three interactions to 

understand the connectivity between nutrient synthesis and other cellular housekeeping 

functions in nutrient-limited conditions.  

Combinations of nutrient synthesis probes revealed how biosynthetic pathways 

are interdependent in nutrient-limited conditions. Previous in vitro studies have shown 

that inhibition of fatty acid biosynthesis by cerulenin perturbs biotin biosynthesis (Lin et 

al., 2010). In this work, we report a synergistic interaction between the biotin biosynthesis 

inhibitor, MAC13772, and cerulenin. Further, this synergy echoes a synthetic sick 

interaction observed between fabH, coding for a fatty acid biosynthetic enzyme, and 

bioA, encoding the target in biotin synthesis for the compound MAC13772 (Côté et al., 

2016). Together these studies suggest a strong connectivity between these biosynthetic 

pathways. To further probe this connectivity, we assessed the interaction between 

MAC13772 and cerulenin in nutrient-rich conditions, and in an E. coli strain (ΔbioP) 

lacking the biotin transporter, making biotin biosynthesis essential regardless of the 

growth medium. Here again, we saw a strong interaction between these compounds 

consistent with a crucial role for the biotin biosynthetic pathway in the synthesis of fatty 

acids.  
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Other interactions that we studied in detail were those of lamotrigine, an inhibitor 

of the ribosome biogenesis function of initiation factor 2 (IF2) in E. coli (Stokes et al., 

2014). Lamotrigine proved to be a promiscuous interactor with 12 novel synergistic 

partner compounds. The activity of lamotrigine against IF2 has formerly only been 

evident under cold stress, a condition that is thought to narrow the complex and redundant 

landscape for ribosomal subunit maturation. Thus, the activity and cold-independent 

phenotype of lamotrigine in combination with other several cellular probes at 37°C is a 

new development and may be an indication that ribosome biogenesis is a particularly 

important hub in the cellular network. Of the 12 synergistic interactions, those with 

cerulenin and rifampicin were also evident in nutrient-rich media. Such interactions of 

clinically used drugs are intriguing from the prospect of therapy. In this context, we note 

that our dataset also revealed the well-known interaction between sulfamethoxazole and 

trimethoprim, a highly synergistic interaction between sulfamethoxazole, an inhibitor of 

folate synthesis, and trimethoprim, an inhibitor of dihydrofolate reductase. Where the 

former is active only in nutrient-limited media, the latter is active in both nutrient-limited 

and rich microbiological media, and arguably inhibits a housekeeping function, namely 

the provision of reduced folates for a variety of cellular processes including DNA 

synthesis. The mechanism behind this synergistic interaction, which persists in rich 

microbiological media, remains elusive, but is an example of one that has had great utility 

in antimicrobial therapy for many decades (Masters et al., 2003). 

The interaction of lamotrigine with L-norleucine, an inhibitor of S-

adenosylmethionine biosynthesis was particularly interesting and consistent with the 
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emerging recognition of the role of a number of bacterial methyltransferases in ribosome 

biogenesis (Baldridge and Contreras, 2014). The exact function of these modifications 

has been elusive; however, it has been suggested that methylation may serve as a 

checkpoint in ribosomal subunit assembly. The strong synergistic interaction seen in the 

work reported here sheds additional light on the role of IF2 in ribosome assembly by 

charting a connection between subunit methylation and the role of IF2 in the late steps of 

ribosome assembly. Of practical note, SAM biosynthesis has recently been identified as a 

potential antibacterial target in M. tuberculosis, where strains harboring SAM 

biosynthetic gene deletions are impaired for growth in vivo (Berney et al., 2015).  

Another notable synergy was that between 6-mercaptopurine and aminoglycoside 

antibiotics. The former is an antimetabolite used in cancer therapy but not for bacterial 

infection. Although the precise mechanism underpinning the synergy remains unknown, 

we present evidence herein that the synergy is not due to the direct interaction of 

aminoglycosides with thiopurines incorporated into ribosomal RNA. Where purine 

biosynthesis has been shown to be important for the proliferation and survival of E. coli 

in blood (Samant et al., 2008), the interaction with aminoglycosides is one worthy of 

additional study as is the potential of combination therapies that would exploit targets in 

translation and purine synthesis.  

The chemical biology combinations approach reported herein has charted the first 

foray into pairwise interactions of functions in E. coli with essential growth phenotypes. 

The effort defined a high density of interactions among these functions and suggest that 

additional probes would facilitate the expansion of this effort to further understand this 
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aspect of the bacterial cell network as well as the importance of nutrient stress. Indeed, 

nutrient metabolism is emerging as a viable virulence target in pathogenic bacteria 

(Cersini et al., 1998; Cuccui et al., 2007; Mei et al., 1997). Full validation of nutrient 

metabolism as a therapeutic target will come from studies of sites of infection and 

specific pathogens as well as a thorough understanding of the complex network that 

underpins nutrient stress in bacteria.  

Transparent Methods  

Bacterial Strains and Culture Conditions   

All antibiotics and chemicals used in the study were purchased from Sigma Aldrich. 

The strains used in this study were E. coli BW25113, ΔbioP (E. coli parent strain 

BW25113, (Baba et al., 2006)), and the E. coli IF2 mutant (mutant 1) (E. coli parent 

strain BW25113, (Stokes et al., 2014)). In all experiments, cells were prepared to a 

final working inoculum of 105 CFU/ml. Bacterial cells were grown overnight in M9 

minimal medium (0.4% glucose) or LB medium and then diluted 1:50 in fresh M9 

minimal medium or LB medium, respectively, and grown at 37°C with aeration at 250 

rpm to an OD600 of 0.4 (mid-log culture). Cells grown in M9 minimal medium were 

then diluted 1:1,000 in fresh M9 minimal medium, while those grown in LB medium 

were diluted 1:10,000 in fresh LB medium, unless stated otherwise.   

Determination of Minimal Inhibitory Concentrations  

The minimal inhibitory concentration (MIC) for all compounds was determined to 

inform on the starting concentrations in the checkerboard assays. E. coli strains were 
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grown and prepared to a final working inoculum in M9 minimal or LB medium as 

described above, unless stated otherwise. These cells were then added to a 96-well 

assay plate containing 2-fold serial dilutions of one of the compounds of interest, 

where concentrations ranged from 256 µg/ml to 0 µg/ml. Prior to incubation, 

absorbance at 600 nm (OD600) of the 96-well assay plates was measured using the 

Tecan plate reader (Infinite M1000). Assay plates were then incubated at 37°C in a 

stationary incubator for 18 h and OD600 was measured. Growth (G) at each exposed 

concentration was determined as follows  

G = Gt=18 − Gt=0 

where Gt=18 corresponds to the absorbance measured after 18 h of incubation, and Gt=0 

corresponds to the absorbance measured prior to incubation. From here, percent 

residual growth (%G) was calculated, as follows, to determine the MIC of the 

compound of interest  

%G =
Gi
G0

 

where Gi represents the growth in one of the 12 wells exposed to the different 

concentrations of the tested compound, and G0 represents the growth in the well that 

was not exposed to the tested compound. The concentration that resulted in a percent 

residual growth ≤ 10% was deemed as the MIC of the tested compound.   

Checkerboard Assays  
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E. coli strains were grown and prepared to a final working inoculum in M9 minimal or 

LB medium as described above, unless stated otherwise. The checkerboard assays 

were done as 8 × 8 dose-point matrices. All compounds were prepared as 2-fold serial 

dilutions starting at 4 × MIC to 0 µg/ml. Absorbance (OD600) was measured prior to 

and post incubation at 37°C in a stationary incubator. To define interaction of the 

combination, the fractional inhibitory concentration index (FICI) for each 

checkerboard assay was calculated as follows   

FICI =
MICA,X
MICA

+
MICB,X
MICB

 

where MICA,X is the MIC of compound A in combination with compound B, MICA is 

the MIC of compound A on its own, MICB,X is the MIC of compound B in 

combination with compound A, and MICB is the MIC of compound B on its own. 

FICI values ≤ 0.5 were synergistic interactions, values > 2 were antagonistic, and 

values > 0.5 and ≤ 2 were indifferent (Krogstad et al., 1986). All highlighted 

interactions were done in biological replicates. Of note, checkerboard assays 

constituting the chemical-chemical interaction matrix were done in the E. coli parent 

strain BW25113, which was grown and prepared to a final working inoculum in M9 

minimal medium as described above.  

Hierarchical Clustering of the Chemical-Chemical Interaction Profiles  

The hierarchical cluster was compiled using the statistical computing and graphics 

programming language, R. The ward.2 clustering method, which clusters datasets 

based on the least variance between n groups (Murtagh and Legendre, 2014), was 
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implemented in the heatmap.2 function found in the gplots library. The dataset 

introduced to R comprises the FICIs of all 990 combinations.   

Assessment of the Synergy of MAC13772 with cerulenin in the E. coli Mutant 

Strain ΔbioP 

The synergy of MAC13772 with cerulenin was assessed in the E. coli mutant strain 

ΔbioP (Baba et al., 2006). The ΔbioP mutant strain was prepared to a mid-log culture 

in M9 minimal medium, as described above, to deplete the cells from any 

extracellularly available biotin. The mid-log culture was then diluted 1:10,000 in fresh 

LB medium. The MIC of the compounds was determined, and the checkerboard 

assays were prepared and analyzed as previously described.  

Ribosome Profiling by Sucrose Density Gradient Analysis  

A single colony of E. coli BW25113 was inoculated in 5 ml of M9 minimal medium 

(0.4% glucose) and grown overnight at 37°C with aeration at 250 rpm. The overnight 

culture was then diluted 1:20 in 50 ml of fresh M9 minimal medium (0.4% glucose) to 

obtain an OD600 of ~0.05, and grown at 37°C or 15°C with aeration at 250 rpm to an 

OD600 of 0.2 (early-log). Consequently, the early-log culture was treated with a sub-

inhibitory concentration of lamotrigine or L-norleucine, and allowed to grow for 1 h 

and 16 h at 37°C and 15°C, respectively, with aeration at 250 rpm. Cells were then 

harvested by centrifugation (4,000 rpm at 4°C for 30 min), resuspended in 5 ml 

chilled ribosome buffer (20 mM Tris-HCl, pH 7.0, 10.5 mM MgOAc, 100 mM 

NH4Cl, and 3 mM β-mercaptoethanol), and lysed using a cell disruptor set at 13 kpsi. 
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Cell lysates were clarified at 24,000 rpm at 4°C for 45 min, and the supernatant was 

collected and loaded onto 35 ml 10-45% sucrose gradients for ultracentrifugation 

(18,700 rpm at 4°C for 17 h). The gradients were then analyzed using an AKTA Prime 

FPLC equipped with a UV flow cell, which was set at an absorbance of 260 nm 

(Stokes et al., 2014). For each set of treated-cultures, a control culture without 

treatment was also harvested, lysed, clarified, and analyzed.  
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Figure Legends 

Figure 1. Chemical-Chemical Interaction Matrix under Nutrient-Limited 

Conditions.  

A heat map of systematic chemical-chemical combinations of 45 compounds (990 unique 

combinations) were assessed for their growth inhibitory effects on E. coli BW25113 

grown in M9 minimal medium. Interactions in the heat map are color-coded for the nature 

of the interaction as described by the Fractional Inhibitory Concentration Index (FICI) of 

a systematic dose response analysis of the two compounds, referred to here as 
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checkerboard analysis and described in the results and methods sections. Of the 990 

combinations, 81 were synergistic (yellow) and 105 were antagonistic (dark blue). 

Hierarchical clustering was performed based on the combination profile of each 

compound. See also Figures S1 and S2, and Supplemental Data 1 and 2. 

Figure 2. Interaction Profiles Cluster Based on Chemical Class and Mechanism. 

Compounds belonging to the same chemical class resulted in similar signature 

interactions with the listed 45 compounds. (A) The two fluoroquinolone antibiotics, 

norfloxacin and ciprofloxacin, antagonized the tetracyclines, chloramphenicol, and the 

thiopurine analogues. (B) Similarly, the macrolide class of antibiotics, specifically 

erythromycin and dirithromycin, antagonized gentamycin and D-cycloserine, while they 

synergized with the tetracyclines, polymyxin B, DL-3-hydroxynorvaline, lamotrigine, and 

p-fluoro-phenylalanine. (C) The thiopurines, 6-thioguanine and 6-mercaptopurine, are 

anticancer drugs that revealed highly overlapping signature interactions. All interactions 

were done in E. coli BW25113 grown in M9 minimal medium, and were color-coded as 

in Figure 1. 

Figure 3. Synergy of MAC13772 with Cerulenin Reveals the Importance of Biotin 

Availability for Fatty Acid Biosynthesis. 

(A) The growth inhibitory interaction profile of MAC13772 with other probes. E. coli 

BW25113 was grown in M9 minimal medium. Interactions were color-coded as in Figure 

1. (B) Biotin biosynthesis in E. coli requires S-adenosylmethionine (SAM) in its first 

committed step. FabB catalyzes one of the elongation steps. MAC13772 inhibits the 
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antepenultimate step in biotin biosynthesis by targeting BioA. Dashed arrows represent 

more than one biosynthetic step. (C) The synergistic interaction (FICI ≤ 0.5) of 

MAC13772 and cerulenin; E. coli BW25113 grown in M9 minimal medium. (D) The 

synergistic interaction in (C) was suppressed (FICI ≤ 2) in nutrient-rich conditions; E. 

coli BW25113 grown in LB medium. (E) The synergistic interaction (FICI ≤ 0.38) was 

also observed in the mutant strain E. coli BW25113 ΔbioP (Baba et al., 2006), lacking the 

biotin transporter, grown in LB medium. See also Figures S3 and S4. 

Figure 4. The Ribosome Biogenesis Function of IF2 is Revealed when S-

adenosylmethionine Biosynthesis is Perturbed. 

(A) The growth inhibitory interaction profile of lamotrigine with other probes. E. coli 

BW25113 grown in M9 minimal medium at 37°C. Interactions were color-coded as in 

Figure 1. (B) The synergistic interaction of lamotrigine with L-norleucine (FICI ≤ 0.25); 

E. coli BW25113 grown in M9 minimal medium. (C) The synergistic interaction in (B) 

was suppressed (FICI ≤ 2) in nutrient-rich conditions; E. coli BW25113 grown in LB 

medium. (D) The interaction of lamotrigine with L-norleucine using the E. coli IF2 

mutant (Stokes et al., 2014) grown in M9 minimal medium. This panel provides evidence 

that it is the ribosome biogenesis function of IF2 that contributes to the synergy seen 

between lamotrigine and L-norleucine. See also Figures S5 and S6. 

Figure 5. The Antimetabolite 6-mercaptopurine Synergizes with Aminoglycoside 

Antibiotics. 
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The figure presents checkerboard assays to analyze the interaction between 6-

mercatopurine and the aminoglycosides kanamycin and gentamycin in E. coli BW25113 

grown in M9 minimal medium. The synergistic interaction between 6-mercaptopurine 

and (A) kanamycin has an FICI ≤ 0.27, while (B) gentamycin’s interaction has an FICI ≤ 

0.31. See also Figure S7. 

Figure 6. Analysis of the Interaction of 6-mercaptopurine with a Panel of 

Structurally Diverse Aminoglycosides. 

The figure presents checkerboard assays in E. coli BW25113 grown in M9 minimal 

medium to study the interaction of 6-meracptopurine with the 4,5-disubstituted 2-

deoxystreptamine aminoglycosides (A) neomycin (FICI ≤ 0.14) and (B) paromomycin 

(FICI ≤ 0.14), as well as the structurally dissimilar class of aminoglycosides (C) 

apramycin (FICI ≤ 0.15) and (D) spectinomycin (FICI ≤ 0.14). See also Figure S7. 

Supplemental Figure Legends 

Figure S1. Summary of the Results from the Systematic Combination of 45 

Compounds against E. coli BW25113. Related to Figure 1.  

Through checkerboard assays, the chemical-chemical combination of 45 compounds 

against E. coli BW25113 grown in M9 minimal medium (0.4% glucose) resulted in more 

than 63,000 combination wells, constituting 990 unique chemical-chemical combinations. 

Of the 990 combinations, 81 were synergistic and 105 were antagonistic. 

Figure S2. Novobiocin is Potentiated by Two Cell Wall Inhibitors. Related to Figure 

1. 
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In E. coli BW25113 grown in M9 minimal medium (0.4% glucose), novobiocin is 

potentiated by both (A) vancomycin, FICI ≤ 0.38, and (B) fosmidomycin, FICI ≤ 0.5. 

Figure S3. MAC13772 Antagonizes D-cycloserine in E. coli under Nutrient-Limited 

Conditions. Related to Figure 3. 

(A) MAC13772’s inhibition of biotin biosynthesis antagonizes D-cycloserine’s growth 

inhibitory activity in E. coli under nutrient stress (FICI ≥ 3). (B) In nutrient-rich 

conditions, biotin biosynthesis is no longer required, thus suppressing MAC13772’s 

antagonism of D-cycloserine (FICI ≤ 1). 

Figure S4. Summary of L-alanine Racemization for Peptidoglycan Biosynthesis in E. 

coli. Related to Figure 3. 

L-alanine is converted to D-alanine, and two molecules of D-alanine are required by D-

alanine-D-alanine ligase for peptidoglycan biosynthesis. D-cycloserine inhibits both 

enzymes. Two consecutive arrows are used to indicate that two D-alanine molecules need 

to be synthesized for the ligase. Dashed arrow represents more than one biosynthetic step. 

Figure S5. The Synergy of lamotrigine with Antibiotics in Nutrient-Limited and 

Nutrient-Rich Conditions. Related to Figure 4. 

In E. coli BW25113 grown in M9 minimal medium (0.4% glucose) at 37°C, lamotrigine 

was potentiated by the antibiotics (A) cerulenin, FICI ≤ 0.5, and (C) rifampicin, FICI ≤ 

0.5. Both synergistic interactions persisted in nutrient-rich conditions where lamotrigine 

was also potentiated at 37°C by (B) cerulenin, FICI < 0.28, and (D) rifampicin, FICI ≤ 

0.16. 
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Figure S6. Ribosome Profile Analysis of Lamotrigine and L-norleucine-treated E. 

coli BW25113 at 15°C and 37°C. Related to Figure 4. 

E. coli BW25113 at 15°C (A-D) and 37°C (E-G) in the absence or presence of sub-

inhibitory lamotrigine or L-norleucine concentrations. Ribosomal accumulation was 

monitored using UV absorbance at 260 nm. (A, E) Untreated E. coli BW25113 cells 

grown in M9 minimal medium (0.4% glucose) did not accumulate immature pre-30S or 

pre-50S ribosomal particles. (B) Similar results to (A) were observed for untreated E. coli 

BW25113 grown in LB medium. (C) Lamotrigine-treated E. coli BW25113 cells grown 

in M9 minimal medium (0.4% glucose) accumulated immature pre-50S ribosomal 

particles. (D) Lamotrigine-treated E. coli BW25113 cells grown in LB medium resulted 

in immature pre-30S and pre-50S ribosomal particles. (F) Lamotrigine-treated E. coli 

BW25113 cells grown in M9 minimal medium (0.4% glucose) accumulated some 

immature pre-50S ribosomal particles. (G) L-norleucine-treated E. coli BW25113 cells 

grown in M9 minimal medium (0.4% glucose) did not accumulate immature ribosomal 

particles. 

Figure S7. Growth Inhibitory Activity of Thiopurine Analogues in E. coli BW25113. 

Related to Figure 5 and Figure 6. 

Potency analysis of 6-mercaptopurine (circles) and 6-thioguanine (triangles) against 

E. coli BW25113 grown in M9 minimal medium (0.4% glucose). The growth 

inhibitory activity of both nutrient synthesis probes was determined as described in 

determination of minimal inhibitory concentrations, Transparent Methods. 
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Figure 3 
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Tables 

Table 1. Categories of Interactions among Chemical Probes of E. coli under Nutrient 

Stress. 

Category 

 

Interactions 

 

Synergy 

 

Antagonism 

 

Total 

 

HK probesa 

 

18 

 

39 

 

57 

 

NS probesb 

 

22 

 

19 

 

41 

 

HK probes and NS 

probesc 

 

41 

 

47 

 

88 

 

Total 

 

81 

 

105 

 

186 

 

aHK probes, housekeeping-function probes, refer to 27/45 compounds that target 

housekeeping functions (Supplemental Data 1). Interactions belonging to the HK probes 

category involve 49 antibiotic-antibiotic and 8 lamotrigine-antibiotic combinations.  

bNS probes, nutrient synthesis probes, refer to 18/45 compounds that target nutrient 

synthesis functions (Supplemental Data 1). Interactions belonging to the NS probes 

category involve combinations between these 18 nutrient synthesis probes.  

cInteractions belonging to the HK probes and NS probes category involve interactions 

between a housekeeping-function probe and a nutrient synthesis probe. 
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Supplemental Figures 

Figure S1 

 

Figure S2 
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Figure S3 

 

Figure S4 
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Figure S5 
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Figure S6 

 

Figure S7 
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CHAPTER III - Physicochemical and structural parameters contributing to the 

antibacterial activity and efflux susceptibility of small molecule inhibitors of 

Escherichia coli 
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Preface 

 

The work presented in this chapter is in preparation for submission, as of August 25, 

2020: 

El Zahed, S. S., French, S., Farha, M. A., Kumar, G., & Brown, E. D. Physicochemical 

and structural parameters contributing to the antibacterial activity and efflux susceptibility 

of small molecule inhibitors of Escherichia coli. 

In preparation.  

 

For this work, I performed all in vitro experiments with assistance from Farha, M.A. for 

the primary screen and Kumar, G. for the dose-response. I analyzed the primary screening 

data, dose-response curves, and structure-activity relationship. French, S. calculated 

molecular descriptors, developed the code for the machine-learning models, and 

generated the structure-activity representation. I wrote the manuscript, with significant 

input from French, S. Edits were provided by Brown, E.D. 
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Abstract 

Discovering new Gram-negative antibiotics has been a challenge for decades. This has 

been largely attributed to a limited understanding of the molecular descriptors governing 

Gram-negative permeation and efflux evasion. In the work presented here, we address the 

contribution of efflux using a novel approach that applies multivariate analysis, machine 

learning, and structure-based clustering to some 4,500 actives from a small molecule 

screen in efflux-compromised Escherichia coli. We employed principal component 

analysis and trained two decision tree-based machine learning models to investigate 

descriptors contributing to the antibacterial activity and efflux susceptibility of these 

actives. This approach revealed that the Gram-negative activity of hydrophobic and 

planar small molecules with low molecular stability is limited to efflux-compromised E. 

coli. Further, molecules with reduced branching and compactness showed increased 

susceptibility to efflux. Given these distinct properties that govern efflux, we developed 

the first machine learning model, called Susceptibility to Efflux Random Forest (SERF), 

as a tool to analyze the molecular descriptors of small molecules and predict those that 

could be susceptible to efflux pumps in silico. Here, SERF demonstrated high accuracy 

and good predictive power in identifying such small molecules. Further, to examine the 

structural underpinnings contributing to efflux, we clustered all 4,500 actives based on 

their core structures. This enabled us to identify distinct clusters highlighting some side 

chain moieties that cause marked changes in efflux susceptibility. Such analysis provided 

a proof of principle for the potential of exploiting side chain modification to evade efflux 

pumps. In all, our work reveals a role for physicochemical and structural parameters in 
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governing efflux, presents a machine learning tool for rapid in silico analysis of efflux 

susceptibility, and highlights some side chain moieties that could be used to design novel 

antimicrobials evading efflux pumps. 
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Introduction 

Remarkably, no truly new Gram-negative antibiotics have been discovered since the 

quinolones, dating back to the early 1960’s1. In the same period, Gram-negative 

superbugs resistant to existing antibiotics have become a pervasive public health 

concern2. To address the growing need for new antibiotics, the World Health 

Organization (WHO) published a list of bacterial pathogens to guide research and 

development, highlighting Gram-negative pathogens as a critical priority3. The Centers 

for Disease Control and Prevention recently revealed that Gram-negative pathogens were 

responsible for ~50% of antibiotic-resistant microbial infections in the United States4. A 

recent analysis of the clinical pipeline revealed 50 antibiotics in development, of which 

only 12 are active against some of the priority Gram-negative pathogens identified by the 

WHO5, 6. Of these 12 agents, only murepavadin is considered new, with a novel 

pharmacophore, target, and mode of action. Most recently, and unfortunately, 

nephrotoxicity concerns have halted its development5, 6. Thus, the clinical pipeline is 

currently devoid of new chemical matter to treat the most troublesome infections caused 

by Gram-negative pathogens. Herein, we examine one of the most important impediments 

to identifying leads for new antibiotics targeting Gram-negative bacteria, namely, the 

physicochemical and structural parameters that delineate compound efflux. 

It is widely accepted among pundits of antibacterial drug discovery that intrinsic 

resistance mechanisms, the outer membrane barrier and active efflux pumps, have 

presented the greatest challenge to the development of new Gram-negative antibiotics7-9. 

Indeed, there has been a growing number of calls for research to understand the 
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physicochemical properties that facilitate compound entry and efflux avoidance10-12. 

Inspiration comes from success correlating a drug’s physicochemical properties with its 

pharmacokinetics, where Lipinski mapped an ideal physicochemical space for orally 

available drugs, establishing the rule of five: molecular weight (MW <500 g mol-1), 

lipophilicity (clogP ≤5), and the number of hydrogen bond donors (≤10) and acceptors 

(≤5)13. Several analyses have shown, nevertheless, that antibacterial compounds are 

exceptional in this context. O’Shea and Moser showed that Gram-negative antibiotics, on 

average, are slightly larger (MW 414 g mol-1) and more hydrophilic (clogD -2.8) than 

non-antibiotic drugs (338 g mol-1; clogD 1.6)14. When Gram-negative antibiotics were 

classified by their target location, those with a cytoplasmic target were smaller (254-465 g 

mol-1) and more hydrophobic (clogD -1.4 to 1.1) than antibiotics with a periplasmic target 

(347-558 g mol-1; clogD -5.1 to -1)15. Although these studies identify an ideal 

physicochemical space for Gram-negative activity14, 15, they include antibiotics that are 

susceptible to efflux pumps of the resistance-nodulation-division (RND) superfamily, 

composed of an inner membrane transporter, a periplasmic adaptor protein, and an outer 

membrane channel16, 17 18. These tripartite pumps extrude a broad range of molecules 

from the inner membrane and periplasmic space to the extracellular milieu18, 19. In an 

analysis of several high-throughput screening campaigns at AstraZeneca, Brown et al. 

showed that small (<300 g mol-1) and hydrophilic (clogD <0) or very large (>700 g mol-1) 

and zwitterionic compounds were least susceptible to RND efflux pumps20. Compared to 

Moser’s analysis of the physicochemical space occupied by Gram-negative antibiotics15, 

these results suggest that antimicrobials with a cytoplasmic target may be more 
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susceptible to efflux than others. In all, these initial studies highlight the complexity of 

designing new Gram-negative antibacterial agents that evade efflux pumps. To overcome 

this challenge, physicochemical and structural guidelines for Gram-negative efflux are 

greatly needed. 

In the work described herein, we have taken a novel approach that applies multivariate 

analysis, machine learning, and structure-based clustering of growth inhibitors of 

Escherichia coli to identify molecular descriptors and structure-activity relationships that 

impact efflux susceptibility. The effort defines new physicochemical and structural 

parameters that contribute to the antibacterial activity and efflux susceptibility of small 

molecules targeting this model Gram-negative bacterium.  

Results 

A screen for growth inhibitors of an efflux-deficient strain of E. coli 

Our work began with a high-throughput screen to identify compounds with growth 

inhibitory activity in the efflux-deficient stain E. coli ∆tolC. The screen comprised 

~314,000 molecules, which were largely synthetic, and included a collection of ~3,900 

previously approved drugs and bioactive molecules (bioactive collection). The data were 

reproducible and defined a distinct collection of growth inhibitors in the primary screen 

(Figure 1A). Indeed, ~4,500 actives exhibited strong growth inhibition (≤3σ below the 

mean, Figure 1B), of which 386 were from the bioactive collection. The potency (EC50) 

of each active was measured in wild-type E. coli and its mutant strain ΔtolC (Figures 1C 

and 1D, Table S1). Of the 4,500 actives, a large fraction, some 84% (3,780/4,500), 
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showed little activity at the highest concentration (50 μM) tested using wild-type E. coli 

(Figure 1C), while the EC50 using the ΔtolC strain was less than 35 μM (Figure 1D). This 

suggested that many of our actives were susceptible to efflux, where their antibacterial 

activity was abolished in the presence of efflux pumps. Among these molecules were 

antibiotics from the bioactive collection, which include β-lactams, macrolides and other 

compounds, such as doxorubicin, known to have antibiotic activity and susceptibility to 

efflux, (Table S1). This was an encouraging result from a data quality perspective given 

the previous literature on their susceptibility to efflux pumps in Gram-negative bacteria19, 

21-23. 

Hydrophobicity, level of saturation, and molecular stability contribute to Gram-

negative activity in efflux-compromised E. coli  

Next, we sought to identify the molecular descriptors for this set of 3,780 efflux-

dependent active compounds. To this end, we calculated some 50 descriptors for all 

314,000 compounds screened, which include efflux-dependent actives (Table S1), 

resulting in more than 15 million data points (Figure 2A). To reduce the dimensionality of 

this data, we initially applied a principal component analysis (PCA). The first three 

principal components of the PCA explained ~63% of the variances between the molecular 

descriptors of efflux-dependent actives and those of non-growth inhibitory (inactive) 

molecules in ΔtolC (Figure 2B). Further, the PCA identified a structural and 

physicochemical ‘pocket’ that defines the antibacterial activity of the 3,780 efflux-

dependent actives (Figure 2C). The clustering of these actives near the origin (Figure 2C) 
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was largely due to molecular size, hydrophobicity, and molecular complexity, as observed 

by the eigenvectors in principal component 1 (PC1) and principal component 2 (PC2, 

Figure 2D). Notably, PC1 uniquely comprised of molecular size, which was represented 

by molecular weight (MW), the total atom count, and the solvent accessible surface area 

(ASA), as calculated by using the radius of the solvent. Particularly, ASA contained 

components of the surface area of partial positive charge (ASA+) and partial negative 

charge (ASA-). PC2, on the other hand, consisted of both hydrophobicity and molecular 

complexity. The former was represented by clogD (pH 7.0) and the ASA of polar atoms 

(ASA_P) and hydrophobic atoms (ASA_H), while the latter was described by the number 

of aliphatic atoms and the fraction of sp3 hybridized carbon atoms (Fsp3). Overall, the 

PCA results suggest that combinations of these nine molecular descriptors addressing 

molecular size, hydrophobicity, and molecular complexity contribute to Gram-negative 

activity in ΔtolC.  

Given that the PCA highlighted some distinct molecular descriptors governing the 

antibacterial activity of efflux-dependent actives, we implemented a tree-based machine 

learning approach to quantify descriptors that restrict this activity to efflux-compromised 

E. coli. Herein, we developed a random forest classification model for the set of 3,780 

efflux-dependent actives and 3,780 inactive molecules, randomly chosen from the 

primary screen (Figure 3A). To eliminate bias from the PCA, all 50 molecular descriptors 

for each of these molecules were used to train the model, which achieved an area under 

the curve-receiver operating characteristic curve (AUC-ROC) of 0.808 (Figures 3B and 

S1). This illustrates a good measure of the model’s performance in classifying molecules 
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with antibacterial activity in ΔtolC and those without antibacterial activity. The analysis 

revealed similar descriptors to that of the PCA (Figures 2D and 3C); indeed, the model 

indicated that clogD (pH 7.0), Fsp3, and the resonant structure count of a molecule were 

the top three factors driving Gram-negative activity of small molecules in efflux-

compromised E. coli (Figure 3C). Particularly, efflux-dependent actives were 

hydrophobic (clogD 1-5), planar (Fsp3 0-0.5), and had low molecular stability (resonant 

structure count <4, Figure S2). Since these actives lost their antibacterial activity in 

efflux-proficient wild-type E. coli, these results suggest that the Gram-negative activity of 

molecules with such properties would be abolished due to efflux pumps. Of note, in the 

absence of clogD from the 50 molecular descriptors used to train this model, the model 

lost accuracy in classifying molecules with antibacterial activity in ΔtolC and those 

without activity (Figure 3C). This highlights the importance of hydrophobicity as a 

physicochemical property that affects Gram-negative activity, regardless of efflux pumps.  

A random forest model predicts efflux-prone small molecules 

Consistent with the goal to understand efflux susceptibility in E. coli, we focused our 

analysis on determining key molecular descriptors that contribute to efflux susceptibility. 

First, we categorized the 4,500 actives into efflux susceptible (pumped) molecules and 

unsusceptible (non-pumped) molecules based on their potency and calculated fold-change 

in potency (wild-type EC50/ΔtolC EC50). Actives classified as pumped molecules were 

potent in E. coli ΔtolC (EC50 <5 μM) and lacked antibacterial activity in wild-type (EC50 

>50 μM), while those classified as non-pumped molecules showed insignificant changes 

in potency between both strains (fold-change ≤2, Figure 4A). The former set of molecules 
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consisted of ~1,070 actives, while the latter set constituted ~410 actives. Of these 1,480 

actives, a random set of ~290 pumped molecules and ~290 non-pumped molecules were 

chosen as a training set, where each molecule’s 50 descriptors were used to train a second 

random forest model, called Susceptibility to Efflux Random Forest (SERF, Figure 4A). 

This model achieved an AUC-ROC of 0.839 (Figures 4B and S3), indicating a good 

measure of classifying pumped molecules and non-pumped molecules. Here, we observed 

that along with hydrophobicity and molecular stability, molecular complexity was key to 

efflux susceptibility (Figure 4C). Molecular complexity was represented by topological 

indices, namely the hyper-Wiener index, Wiener polarity, and the Balaban index, that 

describe some aspects of molecular structure24. Notably, the three descriptors largely 

governing efflux susceptibility were resonant structure count, clogD (pH 7.0), and the 

hyper-Wiener index, which describes molecular “branching” and “compactness”24, 25. 

Molecules with a relatively low molecular stability (resonant structure count ≤6), 

hydrophobic nature (clogD 1-5), and reduced branching and compactness (hyper-Wiener 

index >6,000) showed increased susceptibility to efflux (Figure S4).  

Following model development and optimization, we then assessed the predive power of 

SERF to identify molecules susceptible to efflux. We used a test set of ~440 actives (of 

1,480) that were excluded from the training set, of which 274 were predicted by SERF to 

be efflux susceptible. We curated these 274 molecules and assessed their empirically 

measured potency in wild-type E. coli and ΔtolC (Figure 5A, Table S2). Based on the 

chosen cut-off for pumped molecules (EC50 <5 μM and wild-type EC50 >50 μM), we 

observed that 260 of 274 (~95%) predicted molecules were validated, illustrating a high 
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accuracy in the model’s prediction (Figure 5A). To determine the predictive power of 

SERF, we further assessed the potency of the remaining 166 molecules (of 440), in wild-

type and ΔtolC. Here, we noted 61 pumped molecules that were not reported by the 

model, revealing an overall 80% (260/321) predictive power in identifying efflux-

susceptible molecules (Figure 5B, Table S3). In all, our analysis revealed that molecular 

stability, hydrophobicity as well as molecular branching and compactness contribute to 

efflux susceptibility. Further, we designed the first random forest model (SERF) that 

analyzes the molecular descriptors of small molecules and identifies those susceptible to 

efflux. The code for SERF can be accessed online to test other small molecules for efflux 

susceptibility (https://github.com/sfrench007/serf). 

Structure-activity relationship analyses reveal some structural modifications that 

impact efflux susceptibility   

To analyse the chemical space occupied by our 4,500 actives, we applied structure-based 

clustering using structural fingerprints. This revealed ~15-20 self-organized clusters, 

consisting on average of 15 or more molecules within a structural space (Figure 6A). 

These clusters demonstrated distinct activity cliff regions that highlight how structural 

modifications within a compound series of molecules led to significant changes in 

biological activity26. Some clusters were occupied by molecules known for their 

susceptibility to efflux, such as β-lactams and antifungals (Table 1, Table S4). Notably, 

the β-lactam cluster consisted of eleven penicillin-type antibiotics that further divided into 

five semisynthetic β-lactamase-resistant penicillins (1a-4a, 6a), four aminopenicillins (8a, 

https://github.com/sfrench007/serf
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9b, 10c, 11a), and two ureidopenicillins (5a, 7a) (Table 1). We assessed the local 

structure-activity relationship (SAR) of this β-lactam cluster, where we observed, as 

expected, that the penam was the common core among these penicillins (Figure 6B, Table 

1). Chemical modification of the acylamino side chain at the α-carbon of the penam 

largely contributed to this activity cliff (Table 1). Specifically, the amide group was 

decorated with a phenyl-isoxazolyl (1a-4a), naphthyl (6a), or benzylamine (5a, 7a, 8a, 

9b, 10c, 11a, 12a) moiety. The high fold-change in the potency of penicillins 1a-4a and 

6a suggested that both phenyl-isoxazolyl and naphthyl moieties contribute to efflux 

susceptibility (Table 1). Substituting these moieties with more polar benzylamine groups, 

on the other hand, established antibacterial activity for most of the remaining penicillins 

in wild-type (Table 1). This lowered the fold-change in potency and the penicillin’s 

susceptibility to efflux (Table 1). Furthermore, compared to penicillins 1a-4a and 6a, the 

lower hydrophobic character (clogP), an overall decrease in planar, or “flat”, nature 

(Fsp3), and increased molecular stability (RSC) of penicillins 8a, 9b, 10c, and 11a 

correlated with reduced efflux susceptibility. Notably, where the resonant structure count 

for penicillins 7a, 9b, and 11a remain constant, increased molecular compactness, as 

observed by lower hyper-Wiener indices (HWI, Table 1), reduces efflux susceptibility as 

well. In all, these results suggest that the acylamino group at the α-carbon of penams and 

the overall hydrophobicity and reduced molecular complexity of penicillins contribute to 

their efflux susceptibility in E. coli.  

Additionally, we identified a cluster occupied by six hydroxyquinoline derivatives 

(Figure 6C), where the hydroxyquinoline core was decorated with different combinations 
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of halogen atoms on its phenol and pyridine moieties (Table 2). Although these chemical 

changes seem minor, addition of a chlorine atom to the ortho and para positions of the 

phenol in compounds 12 and 13 abolished antibacterial activity in wild-type and 

maintained efflux susceptibility (Table 2). Reducing the number of chlorine atoms to one 

or none at these positions, however, established wild-type activity and decreased efflux 

susceptibility of compounds 14-17 (Table 2). Here, these modifications revealed that the 

addition of halogen atoms with low electronegativity to the phenol moiety improved 

whole-cell activity and reduced susceptibility to efflux (Table 2). Furthermore, decreasing 

the hydrophobic character (clogP <3) reduced efflux susceptibility of compounds 15-17 

(Table 2). Overall, these results highlighted modifications to the aromatic ring of 

hydroxyquinolines that affect their susceptibility to efflux.  

The SAR and fold-changes in potency available within the clusters highlighted above 

revealed that some chemical modifications impact both whole-cell activity and efflux 

susceptibility in E. coli. As such, structure-based clustering has the potential to provide 

some guidelines for optimal antibacterial activity and efflux evasion.  

Discussion  

There is a need to understand compound penetration in Gram-negative bacteria, which 

consist of both outer membrane permeability and efflux evasion. There has been much 

progress in recognizing the properties that contribute to penetration of large chemical 

collections14, 15, 20; however, the exact contribution of outer membrane permeability and 

efflux remains unclear. Herein, we addressed the contribution of efflux by using novel 
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computational approaches to investigate the molecular descriptors of some 4,500 actives 

from a small molecule screen in efflux-compromised E. coli. We applied principal 

component analysis to visualize descriptors contributing to Gram-negative activity in the 

efflux-deficient strain E. coli ΔtolC, and quantitatively assessed them using a machine 

learning approach. In so doing, we designed a machine learning model in order to identify 

descriptors governing efflux susceptibility of small molecules. The latter, referred to as 

Susceptibility to Efflux Random Forest (SERF), was further assessed for its predictive 

power to analyze the molecular descriptors of a set of small molecules and identify those 

susceptible to efflux pumps in silico. Notably, the model showed ~95% accuracy in its 

prediction and had an overall predictive power of 80%. In all, this work presents the first 

large-scale study implementing PCA and machine learning in order to further resolve the 

contribution of efflux to compound penetration. Further, it provides the first machine 

learning tool (SERF) that identifies small molecules susceptible to efflux pumps in silico.  

In this study, we identified some 4,500 actives from a phenotypic screen in the efflux-

deficient strain E. coli ΔtolC. Dose-response potency analyses of these actives in wild-

type E. coli and the mutant strain ΔtolC revealed that a majority (~84%) lost antibacterial 

activity in wild-type (efflux-dependent actives), suggesting high efflux susceptibility. 

Among these compounds were conventional antibiotics, including β-lactams and 

macrolides, and other non-antibiotic drugs known to have cryptic antibacterial activity. 

These findings further validated our work since these compounds have been well-

recognized as efflux substrates in Gram-negative bacteria 19, 21-23.  
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A PCA of some 50 molecular descriptors for each efflux-dependent active and non-

growth inhibitory molecules from the primary screen highlighted nine molecular 

descriptors that contribute to Gram-negative activity in efflux-compromised E. coli. 

These descriptors largely encompassed measures of molecular size, hydrophobicity, and 

molecular complexity. To quantify properties that contribute to Gram-negative activity 

and those that influence efflux susceptibility, we designed two random forest models. The 

first model addressed Gram-negative activity, highlighting that the antibacterial activity 

of hydrophobic and planar molecules with relatively low stability was limited to efflux-

compromised E. coli. The second random forest model (SERF) assessed efflux 

susceptibility, revealing that hydrophobic molecules with reduced branching, 

compactness, and stability were most susceptible to efflux pumps. Overall, both random 

forest models suggest that hydrophobicity and molecular stability impact Gram-negative 

activity as well as efflux susceptibility. Further, each model identified descriptors of 

molecular complexity that impact each of these aspects, where the level of saturation 

(Fsp3) governs antibacterial activity, potentially due to some influence from efflux 

pumps, while branching and compactness (hyper-Wiener index) uniquely affect efflux 

susceptibility.  

The hydrophobic nature of efflux-susceptible Gram-negative antibacterials has been 

recognized by Brown et al.20. Recent analyses of the physicochemical properties of some 

β-lactams, fluoroquinolones, and a subset of other antibiotics have shown that 

lipophilicity contributes to efflux susceptibility17. Furthermore, O’Shea and Moser14 have 

shown that Gram-negative antibiotics are more hydrophilic than other drugs. These 
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studies validate our analyses, where we observed that the Gram-negative activity of 

hydrophobic molecules was abolished in efflux-proficient E. coli. The impact of 

molecular stability and molecular complexity on efflux susceptibility, however, provides 

novel insight into compound penetration. Particularly, planar, or “flat”, molecules with 

low molecular stability lost their Gram-negative activity in efflux-proficient E. coli, while 

“unbranched” and “elongated” molecules with low molecular stability showed increased 

susceptibility to efflux pumps. These molecular descriptors highlight ideal efflux 

substrates that may result in optimal binding to AcrB, for example, and extrusion. Indeed, 

AcrAB-TolC is a well-characterized RND efflux pump in E. coli27. This multiple-

component system consists of an outer membrane channel, TolC; a periplasmic adaptor 

protein, AcrA; and an inner membrane transporter, AcrB18. Co-crystallization of AcrB 

with some molecules revealed that it undergoes conformational cycling in order to bind 

and extrude molecules through TolC19, 22. Hydrophilic molecules tend to bind to the upper 

“crevice” of the distal pocket, which is rich in hydrophilic and charged residues27-29. On 

the other hand, hydrophobic molecules interact with the phenylalanine-rich hydrophobic 

trap located in the lower portion of the binding pocket22, 30, 31. Molecular dynamics 

simulation studies have suggested that a tight interaction with the hydrophobic trap 

distorts the binding pocket and inhibits efflux, while a loose interaction facilitates binding 

and extrusion27, 29, 32. As such, our analyses suggest that hydrophobic molecules that are 

planar, unbranched, and elongated may be ideal candidates for loose interactions with the 

hydrophobic trap in AcrB. Furthermore, decreasing the molecular stability of such 
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molecules increases their reactivity, which may facilitate non-specific binding and 

extrusion.   

Additionally, we used the machine learning model SERF to predict, in silico, which 

antibacterials would be susceptible to efflux pumps. For a set of some 440 actives, SERF 

predicted that 274 molecules would be susceptible. Following empirical validation, we 

found that the prediction was ~95% accurate, and the model showed good (80%) 

predictive power in identifying molecules susceptible to efflux. Overall, this highlights 

the potential of machine learning approaches to predict which compounds could be 

susceptible to efflux. Where novel approaches to study and overcome efflux are greatly 

required10, 11, 33, SERF can be used as a tool to rapidly explore efflux susceptibility of 

small molecules in silico. As such, our machine learning model provides an opportunity 

to systematically develop and synthesize a novel library of Gram-negative antibacterial 

agents that could evade efflux pumps. 

As for the structure-based clustering of the 4,500 actives, this analysis revealed ~15-20 

self-organized clusters, consisting of 15 or more molecules, on average, within a self-

organized structural space. We profiled the SAR within a cluster of β-lactams and 

hydroxyquinoline derivatives with uncharacterized modes of action. The β-lactam cluster 

consisted of penicillin-type antibiotics, including some five β-lactamase resistant 

penicillins, four aminopenicillins, and two ureidopenicillins. Modifications to the 

acylamino moiety of these penicillins impacted their efflux susceptibility, where the 

phenyl-isoxazolyl and naphthyl moieties of β-lactamase resistant penicillins showed high 

susceptibility to efflux. Substituting these moieties with polar benzylamine groups as well 
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as decreasing the hydrophobicity of the antibiotic reduced efflux susceptibility of some 

aminopenicillins and ureidopenicillins. Moreover, increasing the molecular complexity of 

these antibiotics by reducing their “flat” nature as well as increasing their molecular 

stability and compactness allows for better efflux evasion. Overall, this analysis 

highlights that chemical substitutions along the acylamino group and changes in 

hydrophobicity and molecular complexity may be key to efflux susceptibility for 

penicillins. Indeed, earlier modifications of penicillins have shown that the β-lactamase-

resistant penicillins are insensitive to hydrolysis by β-lactamases and susceptible to 

efflux34-37. Further modifications largely focused on substitutions to the acylamino 

moiety34, 38, which yielded the aminopenicillins and ureidopenicillins. Indeed, these 

penicillins have an extended activity spectrum that encompasses some Pseudomonas 

spp.38, 39. Although some remain susceptible to efflux, these β-lactams have shown 

improved Gram-negative activity in efflux-proficient strains21, 39. Of practical note, 

acylamino groups decorated with benzylamines could be used in medicinal chemistry 

efforts to assess for reduced efflux in other compound series.  

The second cluster was composed of hydroxyquinoline derivatives exhibiting chemical 

modification to their aromatic rings. Substitution of chlorines (compounds 12 and 13) 

with halogen atoms decreasing in electronegativity (compounds 14-17) largely improved 

wild-type activity and decreased efflux susceptibility. A lower hydrophobic character 

within this compound series, also, seemed to contribute to improved activity in wild-type 

and reduced efflux. While hydrophobicity has been recognized for its impact on Gram-

negative activity and efflux susceptibility14, 15, 20, the hydroxyquinoline cluster revealed 
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that decorating aromatic rings with different halogen atoms may lead to some changes in 

efflux susceptibility. In previous studies, compounds containing halogenated aromatic 

moieties have been shown to improve antibacterial activity in Gram-positive bacteria40 

and have been used as antibiotic adjuvants to overcome colistin resistance in some 

ESKAPE pathogens41. Here, we highlight the prospect of such moieties to improve Gram-

negative activity and reduce efflux susceptibility.  

The empirical and computational approaches reported herein identified molecular 

descriptors and structural modifications that advance our understanding of efflux 

susceptibility. Our work here illustrates that physicochemical properties and chemical 

structures serve as guidelines for efflux, and combinations thereof generally define 

substrate quality. Leveraging these properties, we developed the first machine learning 

tool that can be used to assess efflux susceptibility of small molecules in silico. Further 

expansion of guidelines for efflux, however, will come from additional assessment of 

compound accumulation in Gram-negative bacteria, including those identified in this 

work.   

Conclusion 

Efflux pumps are major contributors to the intrinsic resistance of many antibiotics in 

Gram-negative bacteria. These pumps have challenged the design of candidate molecules 

that would be otherwise efficacious in Gram-negatives. Understanding the molecular 

descriptors of small molecules susceptible to efflux pumps is important to overcome this 

challenge. Herein, we present a novel approach to determine the physicochemical and 
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structural spaces occupied by such molecules. Multivariate analysis and a machine 

learning approach identified that hydrophobicity, the level of saturation, and molecular 

stability contribute to Gram-negative activity yet limit it to efflux-compromised E. coli. 

SERF, a second machine learning model, further revealed that along with hydrophobicity 

and molecular stability, the extent of molecular branching and compactness is a key factor 

that also governs efflux susceptibility. Additionally, SERF proved capable of predicting 

molecular efflux and is the first machine learning tool to identify small molecules 

susceptible to efflux pumps in silico. Furthermore, structure-activity relationship analyses 

revealed that some molecular side chains, and their associated physicochemical 

properties, serve as triggers for efflux. In all, the results of this work provide novel insight 

into the physicochemical properties and chemical structures governing efflux in Gram-

negative bacteria, which can be used to guide the design of novel Gram-negative 

antimicrobials. 

Methods 

Screen for antibacterial activity in the efflux-deficient strain E. coli ΔtolC 

The strains used in this study were E. coli BW25113 (wild-type) and ΔtolC (E. coli parent 

strain BW25113)42. In all experiments, a mid-log culture in M9 minimal medium was 

prepared as previously described43 and used to prepare cells to a final working inoculum 

of ~105 CFU/mL. For the small molecule screen, compounds were added to a 384-well 

assay plate to a final concentration of 10 μM. Molecules, dissolved in DMSO, were 

sourced from Enamine, ChemDiv, Asinex, ChemBridge, Maybridge, Sigma (Lopac), 
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Prestwick, Biomol, and Microsource. To these plates, a final working inoculum of the E. 

coli ΔtolC strain was added to a final volume of 50 μL, and plates were incubated at 37°C 

for 18 h. All screens were performed in duplicates. Liquid handling was performed using 

a Beckman Coulter FXP Laboratory Automated Workstation. After incubation, 

absorbance at 600 nm (OD600) of the 384-well assay plates was measured using a Perkin 

Elmer EnVision plate reader.  

Analysis of screening data 

To reduce plate-to-plate variation, data from the OD600 measurements of each 384-well 

assay plate were rank-ordered and the interquartile mean of each plate was calculated. 

Data were first normalized on a per plate basis as previously described44. To account for 

positional effects, these data were further normalized by the interquartile mean of each 

well position as previously described44. A cut-off at three standard deviations below the 

mean was established to determine actives, where any wells with values below this cut-

off were considered actives.  

Determination of antibacterial potency in dose 

Wild-type E. coli and ΔtolC strains were grown and prepared in M9 medium to final 

working inocula as described above. These cells were then added to a 96-well assay plate 

containing half-log serial dilutions of one of the actives identified from the screen 

described above, where concentrations ranged from 50 μM to 0 μM. Assay plates were 

then incubated at 37°C for 18 h and OD600 was measured using a Tecan plate reader 

(Infinite M1000). Growth at each exposed concentration was determined as follows 
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𝐺 =
𝐺𝑖
𝐺0

 

where Gi represents the growth in one of the wells exposed to the different concentrations 

of the tested compound, and the G0 represents the growth in the well that was not exposed 

to the tested compound. A value of 0 represents no growth on the plate and 1 represents 

no growth inhibition. An EC50 dose-response curve was then fit to the data using the four 

parameter dose-response model in GraphPad Prism in order to calculate the potency of a 

compound, based on the ratio of wild-type EC50 to ΔtolC EC50 (wild-type EC50/ΔtolC 

EC50). 

Calculation and principal component analysis of molecular properties 

Structures of all compounds in this study exist as MOL file coordinates within compiled 

SDF files. All structures had 3D coordinates generated using cxcalc (ChemAxon), and the 

lowest energy conformer was chosen as the basis for molecular property calculations. All 

calculations were done using cxcalc in a Linux terminal, with pH set to 7.0 where 

relevant. An initial principal component analysis (PCA) was performed as a means of 

dimensionality reduction, in order to visualize the actives from the primary screen within 

the chemical space of the screened molecules. The R statistical programming language45 

was used here, with data appropriately scaled to eliminate bias from the different units 

and magnitudes of chemical descriptors. Code and dataset examples, including cxcalc 

commands used to generate the chemical properties, can be found on GitHub 

(https://github.com/sfrench007/serf).  

https://github.com/sfrench007/serf
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Machine learning and prediction of efflux susceptibility 

Further exploring the importance of the molecular descriptors specific to the 3,780 efflux-

dependent actives, these molecules were used in a random forest machine learning 

approach to explore the properties key to Gram-negative activity in an efflux-deficient E. 

coli BW25113 ∆tolC strain. A binary (two-class) approach was used in creating a data set 

to train a random forest model. In this, the 3,780 efflux-dependent actives were classified 

as ‘true’ and an equal number of randomly sampled inactive molecules from the screened 

collection were classified as ‘false’. This was performed in R, with the random forest 

learning done using the caret package46. Molecular descriptors that were redundant based 

on a similarity matrix (>85% similarity) were removed from the model training set. The 

model was trained with 2000 trees grown, 10 iterations, and a two-class summary 

function for ‘true’ and ‘false’ identifications. Validation was done through repeated 

random sub-sampling (70/30 split, training/test), with 10 repeats for each cross-

validation. The number of properties randomly sampled when splitting at each tree node 

was incrementally increased and used to tune the optimal number of properties for the 

highest receiver operating characteristic (ROC) value. The ROC is a measure of how well 

the model can classify, in this case, Gram-negative active molecules. Upon training the 

model, molecular descriptors were ranked by their relative importance; importance in that 

removing that descriptor from the training set would result in incorrect classification and 

predictions. Frequency distributions for important descriptors were also examined, to 

visualize the separations, or shifts, between the two phenotypes used in the model.  
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To explore molecular descriptors contributing to efflux susceptibility, a second random 

forest model was created. This model used the same decision tree parameters as the 

previous, this time comparing ~290 pumped actives (EC50 <5 μM and wild-type EC50 

>50 μM), and a random subset of ~290 non-pumped actives (fold-change in potency ≤2). 

This random forest model, called Susceptibility to Efflux Random Forest (SERF), was 

tuned and evaluated in a similar manner as the first to identify descriptors of importance 

to efflux. A set of ~440 actives was assessed by SERF to predict small molecules 

susceptible to efflux. All code and dataset examples can be found on GitHub 

(https://github.com/sfrench007/serf). 

Structure-activity relationship analysis 

Dose-response curves from primary screening actives (ΔtolC strain) were compared to 

dose-response curves of the wild-type strain. In this, EC50 values for each dose-response 

curve were calculated and compared to obtain a fold-change value. These fold-changes 

were tabulated along with chemical structure (as a mol representation within an SDF file), 

and structural fingerprints were calculated in Data Warrior47. The fingerprints were based 

on a fragment dictionary generated within Data Warrior, and a correlation matrix within 

the software compared all 4,507 actives in the data table. All active molecules are 

randomly placed within a 2D space, and force-directed clustering applied47 based on the 

correlation matrix, bringing like-molecules together into groups. The result is a 2D 

structural representation of molecular connectivity, providing insights into the functional 

groups that define efflux-susceptible and efflux-evading molecules. 

https://github.com/sfrench007/serf
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Clusters of actives in Figure 6 were more closely examined by breaking down the 

molecules to common structural cores and R-groups. This was done using Data Warrior, 

which calculated the common core for each chemical analog within each group of 

molecules and generated a list of functional groups added to that core. Using this method, 

several structure-activity relationship tables were generated, indicating which functional 

groups had an impact on how well chemical analogs in each table were susceptible to 

efflux. 
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Figure Titles and Legends 

Figure 1. Primary small molecule screen and potency analysis of actives. (A) 

Replicate plot of the primary screen of ~314,000 small molecules in the efflux-deficient 

mutant strain E. coli BW25113 ΔtolC. Data were normalized as per Mangat et al.44 and 

shows good reproducibility. Density distributions are depicted in secondary plots for each 

of the two replicates. (B) From this primary screen, ~4,500 actives exhibited strong 

growth inhibition (≤3σ below the mean; normalized mean OD value of ~0.5 or less was 

deemed a growth inhibitor) against the mutant strain E. coli BW25113 ΔtolC. The 

potency of these 4,500 actives was measured in wild-type E. coli BW25113 and the 

mutant strain E. coli BW25113 ΔtolC. A histogram of the measured potency values 

obtained from dose-response analyses in (C) wild-type E. coli BW25113 and (D) the 

mutant strain E. coli BW25113 ΔtolC. 

Figure 2. Principal component analysis of molecular descriptors of efflux-dependent 

actives and non-growth inhibitory molecules from the primary screen. (A) Molecular 

descriptors for each efflux-dependent active and the remaining screened compounds were 

calculated. The former set and all non-growth inhibitory molecules from the primary 

screen (inactive molecules) were visualized using a principal component analysis (PCA). 

(B) 10 principal components (PC) explaining variances between descriptors of efflux-

dependent actives and those of inactive molecules are shown. The first 3 principal 
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components, PC1, PC2, and PC3, explain ~63% of these variances. (C) For visualization 

purposes, the first two principal component scores are presented, where efflux-dependent 

actives occupied a distinct chemical space (blue) among the inactive molecules (grey). 

(D) The loading eigenvectors for this PCA plot are shown, where molecular descriptors 

contributing the most to the scores of PC1 and PC2 are highlighted in blue, MW: 

molecular weight; atom count; ASA: accessible surface area of (-) partial negative charge; 

(P) polar atoms; (+) partial positive charge; and (H) hydrophobic atoms; Fsp3: fraction of 

sp3 hybridized carbon atoms; aliphatic count, and descriptors with lower contributions are 

shown in grey. 

Figure 3. A machine learning approach identifies key molecular descriptors for 

Gram-negative activity of efflux-dependent actives. (A) Molecular descriptors for the 

3,780 efflux-dependent actives and a random set of 3,780 inactive molecules (no growth 

inhibition in E. coli BW25113 ΔtolC) from the primary screen were used to train a 

random forest model to examine descriptors contributing to Gram-negative activity in 

efflux-compromised E. coli. (B) The area under the curve-receiver operating 

characteristic curve (AUC-ROC) plot for the random forest model is 0.808, showing a 

good distinction between efflux-dependent actives and inactive molecules. Sensitivity 

refers to the true positive rate of the model, while specificity refers to its false positive 

rate. (C) The top 10 molecular descriptors that reduce the model’s accuracy are shown, 

with clogD, Fsp3 (fraction of sp3 hybridized carbon atoms), and resonant structure count 

topping the list.  
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Figure 4. The Susceptibility to Efflux Random Forest model identifies molecular 

descriptors governing efflux. (A) The pipeline highlights the training set of compounds 

used to build the Susceptibility to Efflux Random Forest (SERF) model and identify key 

descriptors that contribute to efflux susceptibility. Based on the shown cut-offs for the 

4,500 actives from the primary screen, ~1,070 actives were pumped molecules and ~410 

actives were non-pumped molecules. For a random set of ~290 pumped molecules and 

~290 non-pumped molecules, molecular descriptors for each of these compounds were 

used to train SERF and identify those contributing to efflux susceptibility in E. coli. (B) 

The area under the curve-receiver operating characteristic curve (AUC-ROC) plot for 

SERF is 0.839, showing a good distinction between pumped molecules and non-pumped 

molecules. Sensitivity refers to the true positive rate of the model, while specificity refers 

to its false positive rate. (C) The top 10 molecular descriptors that reduce the model’s 

accuracy are shown, with resonant structure count, clogD, and hyper-Wiener index 

accounting for the greatest impact on accuracy. Polarizability tensor a(yy): principal 

component of polarizability along the coordinate space a(yy).  

Figure 5. SERF identifies small molecules susceptible to efflux pumps. (A) Molecular 

descriptors of a test set of ~440 actives (~320 pumped molecules and ~120 non-pumped 

molecules) that were excluded from the training set were used by SERF to identify 

molecules susceptible to efflux. SERF predicted some 274 molecules, of which 260 were 

validated by dose-response potency analysis. (B) The Venn diagram represents the 

accuracy and predictive power of SERF to identify efflux-susceptible molecules, as 

determined by empirical assessment and validation; 260 molecules were correct 
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predictions; 14 molecules were incorrect predictions; 61 molecules were not identified by 

SERF to be efflux-susceptible. 

Figure 6. Structure-activity representation of the 4,500 actives from the primary 

screen. (A) Small molecules were clustered by structural similarity with fragment-based 

fingerprints in Data Warrior47, using a force-directed method of clustering within the 2D 

space shown. Several clusters containing >15 molecules (neighbours) are seen from the 

primary screening data. The points are coloured by a fold-change in EC50 between wild-

type E. coli BW25113 and the mutant strain E. coli BW25113 ΔtolC. The sizes of the 

points indicate the structural similarity between a compound and its immediate 

neighbours. The location of the β-lactam cluster (black oval) and the hydroxyquinoline 

derivatives cluster (red oval) are highlighted. Structures of the common core for the (B) 

β-lactam cluster and (C) the hydroxyquinoline derivatives cluster are shown. 

Supporting Information 

Figure S1. The receiver operating characteristic curve for the random forest model 

classifying efflux-dependent actives and inactive molecules from the primary screen. 

The training set of molecules used to build this model was composed of 3,780 efflux-

dependent actives and a random set of 3,780 inactive molecules from the primary screen. 

Tuning the number of molecular descriptors possible at each node in the decision trees, 

the number of randomly selected descriptors (features) were compared to a receiver 

operating characteristic curve (ROC). Here, the number of molecular descriptors at each 

tree node that resulted in the most accurate model was observed to be 10.  
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Figure S2. Physicochemical and molecular space occupied by efflux-dependent 

actives and inactive molecules from the primary screen. Density plots comparing 

some molecular descriptors of the 3,780 efflux-dependent actives (blue) and the random 

set of 3,780 inactive molecules (grey) from the primary screen. This set of molecules and 

their associated descriptors were used to build the random forest model in Figure 3. 

Shown are the top three descriptors contributing to this model’s accuracy in classification: 

(A) clogD (pH 7.0), (B) Fsp3, and (C) resonant structure count.    

Figure S3. The receiver operating characteristic curve for SERF. The training set of 

molecules used to build this model was composed of a random set of ~290 pumped 

molecules and ~290 non-pumped molecules. Tuning the number of molecular descriptors 

possible at each node in the decision trees, the number of randomly selected descriptors 

(features) were compared to a receiver operating characteristic curve (ROC). Here, the 

number of molecular descriptors at each tree node that resulted in the most accurate 

model was observed to be 6. 

Figure S4. Physicochemical and molecular space occupied by pumped molecules and 

non-pumped molecules. Density plots comparing some molecular descriptors of the 

random set of ~290 pumped molecules (blue) and ~290 non-pumped molecules (grey). 

This set of molecules and their associated descriptors were used to build SERF. Shown 

are the top three descriptors contributing to SERF’s accuracy in classification: (A) 

resonant structure count, (B) clogD (pH 7.0), and (C) hyper-Wiener index.    
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Table S1. Measured potency and molecular descriptors of all 4,500 actives from the 

primary screen. All EC50 values reported here were assessed in duplicates against wild-

type E. coli BW25113 and the efflux-deficient strain E. coli BW25113 ΔtolC strain 

grown in M9 medium, as described in methods. The fold-change in potency and 

molecular descriptors were calculated as described in methods.  

Table S2. Measured potency of 274 molecules predicted by SERF to be susceptible to 

efflux pumps. All EC50 values reported here were assessed in duplicates in wild-type E. 

coli BW25113 and the efflux-deficient strain E. coli BW25113 ΔtolC strain grown in M9 

medium, as described in methods. Molecules highlighted in blue were correct predictions 

by SERF while those highlighted in red were incorrect predictions.  

Table S3. Measured potency of 61 molecules empirically identified to be efflux-

susceptible but not predicted to be susceptible by SERF. All EC50 values reported here 

were assessed in duplicates in wild-type E. coli BW25113 and the efflux-deficient strain 

E. coli BW25113 ΔtolC strain grown in M9 medium, as described in methods.  

Table S4. Structure, activity, and molecular descriptors of an antifungal compound 

series. Local structure-activity relationship of the structure-based cluster of some 

antifungals. 
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Figures 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 

 

 

 

 

 

 

 

 

 

 

 

 



Ph.D. Thesis – S.S. El Zahed; McMaster University – Biochemistry and Biomedical Sciences 

119 

 

Figure 5 
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Figure 6 
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Tables 

Table 1. Structure, activity, and molecular descriptors of a β-lactam compound 

series 

 

 

 



Ph.D. Thesis – S.S. El Zahed; McMaster University – Biochemistry and Biomedical Sciences 

122 

 

aCmpd, compound 

bW.T., wild-type E. coli 

cF.C., fold-change 

dPSA, polar surface area 

eFsp3, ratio of sp3 hybridized carbon atoms/total carbon atoms 

fRSC, resonant structure count 

gHWI, hyper-Wiener index 
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Table 2. Structure, activity, and molecular descriptors of a hydroxyquinoline 

compound series 

 

 

aCmpd, compound 

bW.T., wild-type E. coli 

cF.C., fold-change 

dPSA, polar surface area 

eFsp3, ratio of sp3 hybridized carbon atoms/total carbon atoms 

fRSC, resonant structure count 

gHWI, hyper-Wiener index 
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Supplemental Figures 

Figure S1 

 

 

Figure S2 
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Figure S3 

 

 

Figure S4 
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Supplemental Tables 

Table S4. Structure, activity, and molecular descriptors of an antifungal compound 

series 

 

 

aCmpd, compound 

bW.T., wild-type E. coli 

cF.C., fold-change 

dPSA, polar surface area 

eFsp3, ratio of sp3 hybridized carbon atoms/total carbon atoms 

fRSC, resonant structure count 

gHWI, hyper-Wiener index 
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CHAPTER IV – Conclusion 
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Summary and future directions 

The work described in this thesis, although wide in scope, highlights the utility of 

exploiting nutrient stress to understand the complex network that underpins bacterial 

growth as well as addresses efflux susceptibility of small molecules. Chapter 2 describes 

the first chemical biology approach to chart interactions between functions essential for 

viability in E. coli under nutrient stress. Systematic chemical combinations of antibiotics 

and chemical probes revealed a highly connected network in bacteria. Hierarchical 

clustering of the chemical-chemical interaction profiles showed that compounds clustered 

based on their chemical class. This simple approach generated a chemical-chemical 

interaction matrix that can be harnessed as a tool to elucidate the MOA of novel 

antimicrobial agents (unknowns). Indeed, chemical combinations and interaction matrices 

have proven their utility in elucidating the target and MOA of unknowns (Farha & 

Brown, 2010). Thus, characterizing the interaction of compounds of unknown mechanism 

of action with the 45 known compounds presented in Chapter 2 could be used to generate 

signature interaction profiles. Given that the chemical-chemical interaction matrix 

clusters compounds with similar MOA, hierarchical clustering of the interaction profiles 

of unknowns and the 45 compounds could provide testable hypotheses for the compound 

in question.  

Chapter 2 also highlights three interactions that revealed some connectivity between 

biotin and fatty acid syntheses, amino acid biosynthesis and ribosome assembly, as well 

as purine synthesis and translation inhibition. The mechanism behind these synergies 

could be studied in order to further understand their functional relationships. The first 
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interaction shows an interdependence between biotin and fatty acids. The superpathway 

of fatty acid synthesis can be generally divided into two stages: fatty acid initiation and 

fatty acid elongation. As described in Chapter 2, cerulenin targets FabB, which is an 

enzyme involved in fatty acid initiation (Keseler et al., 2016). Given that biotin is used as 

a cofactor in the first step of fatty acid initiation (Keseler et al., 2016), I have since 

assessed whether the synergy between MAC13772 and cerulenin is particularly due to the 

inhibition of this stage. As such, I assessed the chemical combination of MAC13772 and 

triclosan, a fatty acid synthesis inhibitor that targets enoyl-ACP reductase (FabI), which is 

involved in fatty acid elongation. Figure 1 reveals additivity (FICI ≤0.6), suggesting that 

the synergistic interaction between MAC13772 and cerulenin highlights a more specific 

relationship between biotin and fatty acid initiation.  

The remaining two synergies address functional relationships between nutrient 

metabolism, ribosome assembly and bacterial translation. Primarily, the interaction 

between lamotrigine and L-norleucine highlights a key role for the ribosome biogenesis 

function of IF2 in SAM-limited growth conditions. As previously mentioned, L-

norleucine inhibits the synthesis of SAM, an essential methyl donor for multiple 

intracellular methylation sites, including ribosomal RNA (rRNA) and ribosomal proteins 

(r-proteins). The methylation of rRNAs and r-proteins is one of the maturation steps that 

occur in ribosome biogenesis. The function of the methylated sites remains unknown; 

however, it has been suggested that they contribute towards the stability of the ribosome 

(Decatur & Fournier, 2002). Consequently, the synergy suggests that the inhibition of 

SAM synthesis cascades to a perturbation in the overall methylation of the ribosome, 
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which in turn may be compensated for by the ribosome biogenesis function of IF2. As a 

result, lamotrigine gains growth inhibitory activity by binding to IF2 and inhibiting this 

compensatory role. In fact, some in vitro ribosome assembly work has shown that 

ribosome biogenesis has redundant assembly pathways that become essential under 

certain stress conditions, such as suboptimal growth temperatures (Williamson, 2008). 

Similarly, the synergy between lamotrigine and L-norleucine reveals an IF2-dependent 

ribosome assembly pathway in growth conditions lacking sufficient SAM pools.  

The synergy between 6-mercaptopurine and aminoglycosides, on the other hand, 

highlights a key functional relationship between the synthesis of nucleobases and their 

incorporation into rRNAs. Particularly, sequence-specific hydrogen bonds between 4,5-

disubstituted and 4,6-disubstituted aminoglycosides and their target rRNA have shown a 

purine-rich binding pocket (Recht & Puglisi, 2001). Since 6-mercaptopurine has been 

suggested to incorporate into RNA, these purine residues may be substituted with 

thiopurine analogs, which may lead to further perturbation of bacterial translation in the 

presence of aminoglycosides. Overall, identifying and characterizing suppressor mutants 

against both synergistic interactions would provide further insight into their mode of 

action. 

With nutrient metabolism emerging as a potential antibacterial target in M. tuberculosis 

(Berney et al., 2015) and in pathogenic bacteria, such as S. aureus (Mei et al., 1997), 

Shigella flexneri (Cersini et al., 1998), and Burkholderia pseudomallei (Cuccui et al., 

2007), some synergistic interactions discussed in Chapter 2 could be exploited for 

potential combination therapies. Notably, our lab recently validated biotin synthesis as an 
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in vivo target in the priority pathogens Acinetobacter baumannii, K. pneumoniae, and P. 

aeruginosa (Carfrae et al., 2020). Consequently, the synergistic interaction between the 

biotin inhibitor, MAC13772, and the fatty acid synthesis inhibitor, cerulenin, would be a 

promising candidate for combination therapy. Fatty acids have been known for their 

essential role in the synthesis of phospholipids (Keseler et al., 2016), which are 

incorporated into bacterial cell membranes. As such, enzymes catalyzing fatty acid 

synthesis have been recognized as potential antibacterial targets (Parker et al., 2020; Yao 

& Rock, 2017). Due to cytotoxicity and resistance development concerns (Wright & 

Reynolds, 2007; Yao & Rock, 2017), however, many inhibitors of fatty acid synthesis 

have yet to reach the clinical pipeline. Combination therapy would alleviate these 

concerns since efficacy could be achieved with dose-sparing treatments and the evolution 

of resistance would be reduced (Munck et al., 2014; Tyers & Wright, 2019).  

Chapter 3 introduces a discussion of the molecular descriptors and side chain decorations 

of small molecules susceptible to efflux pumps. Here, we employ multivariate, machine 

learning, and structure-based clustering approaches to identify physicochemical 

properties and structural moieties of small molecules that render them susceptible to 

efflux. These analyses revealed that hydrophobic and planar molecules with low 

molecular stability have antibacterial activity only in efflux-compromised E. coli, and 

compounds with reduced branching and compactness showed increased susceptibility to 

efflux. Further, structure-based clustering revealed a β-lactam and hydroxyquinoline 

compound series, where structure-activity relationship analyses of these series revealed 

that polar acylamino side chains and some halogenated aromatic rings reduced efflux 
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susceptibility. Notably, trends in the hydrophobic nature, molecular stability, and 

molecular complexity of compounds within these series correlated with the machine 

learning results. Together, this work offers suggestions for medicinal chemistry efforts in 

hit-to-lead antibacterial programs aimed at enhancing antibacterial potency and reducing 

efflux susceptibility. Polar acylamino groups, for example, could be used as side chain 

modifications for some compounds with poor Gram-negative antibacterial activity due to 

their susceptibility to efflux pumps. In fact, a similar approach has been employed to 

modify the Gram-positive specific inhibitor deoxynybomycin and establish Gram-

negative antibacterial activity (Richter et al., 2017). Further, the β-lactam and 

hydroxyquinoline compound series could be assessed for efflux susceptibility in some 

pathogenic Gram-negative bacteria, such as Salmonella Typhimurium, K. pneumoniae, 

and P. aeruginosa. This analysis will reveal whether the physicochemical properties and 

side chain decorations identified in Chapter 3 could serve as overarching guidelines for 

efflux evasion in all Gram-negative bacteria.  

Of the two machine learning approaches discussed in Chapter 3, I assessed the predictive 

power of the Susceptibility to Efflux Random Forest (SERF) model in identifying 

compounds susceptible to efflux pumps. Given its high accuracy within its prediction, 

SERF is the first machine learning model that could be used as a tool to rapidly assess the 

molecular descriptors of small molecules and identify those susceptible to efflux in silico. 

As such, this tool can be used to assess a structurally diverse subset of molecules from the 

PubChem collection, which consists of more than 100 million compounds. Consequently, 

compounds strongly predicted to be susceptible to efflux pumps can be empirically tested 
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for efflux susceptibility by measuring their fold-change in potency and accumulation in 

efflux-proficient and efflux-deficient strains of E. coli. These results can be used to re-

train SERF in order to further optimize its predictive power. Notably, measuring 

compound accumulation by LC-MS/MS has been recently exploited to identify 

physicochemical properties contributing to good accumulation and antibacterial activity 

(Iyer et al., 2017; Zgurskaya & Rybenkov, 2020). In fact, this method has been 

considered the gold standard approach for such analysis due to its broad applicability and 

high accuracy (Silver, 2016; Zgurskaya & Rybenkov, 2020). For example, Davis et al. 

measured the accumulation of sulfonyl adenosines in E. coli, B. subtilis, and 

Mycobacterium smegmatis by LC-MS/MS and identified that ring content and size 

improved accumulation (Davis et al., 2014). Similarly, Richet et al. revealed that 

molecules most likely to accumulate in E. coli are amphiphilic, rigid, and have low 

globularity (Richter et al., 2017). As such, accumulation analysis could be used as an 

additional parameter in SERF thus enhancing its prediction of compounds susceptible to 

efflux. Further, SERF provides an opportunity to systematically design a chemical 

collection of Gram-negative antibacterial chemical matter with low efflux susceptibility. 

This collection would be tested for antibacterial activity in efflux-proficient E. coli, where 

potent molecules could be investigated against Gram-negative pathogens and assessed for 

cytotoxicity. Compounds showing a good spectrum of growth inhibitory activity and low 

cytotoxicity would be prioritized for infection models in order to assess their efficacy in 

vivo.  
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Concluding remarks 

The work presented herein aims to chart the cellular network that underpins nutrient 

stress in E. coli and identify molecular descriptors and structural moieties that render 

small molecules susceptible to efflux. The large fraction of interactions among 

characterized chemical probes suggests a dense network among essential functions. In the 

long term, the chemical-chemical interaction matrix can be used as a tool to elucidate the 

mode of action of novel antimicrobial agents. Furthermore, highlighted synergies can be 

assessed for their mechanism of action in order to further understand the underlying 

functional relationships. Additionally, some synergistic interactions within the interaction 

matrix offer potential combination therapies that could be further explored in vitro and in 

vivo across different Gram-negative bacteria. On the other hand, screening platforms 

continue to be optimized to discover novel antimicrobials against Gram-negative bacteria; 

however, efflux pumps have hampered such efforts. This stems from an incomplete 

understanding of efflux susceptibility in Gram-negative bacteria. I have presented some 

physicochemical properties and side chain decorations that contribute to the efflux 

susceptibility of small molecules. Further, this work highlights the first machine learning 

tool, SERF, that shows potential in rapidly identifying molecules susceptible to efflux in 

silico. This model allows for a systematic approach in designing novel molecules with 

potent Gram-negative activity and reduced efflux susceptibility. 
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Figure Legends 

Figure 1. Additivity of MAC13772 with triclosan highlights importance of biotin 

availability for the initiation of fatty acid synthesis. The additive phenotype (FICI 

≤0.6) of MAC13772 and triclosan; wild-type E. coli (BW25113) grown in M9 minimal 

medium.  
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