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ABSTRACT 

Disruptions due to either natural or anthropogenic hazards significantly impact the 

operation of critical infrastructure networks because they may instigate network-level 

cascade (i.e., systemic) risks. Therefore, quantifying and enhancing the resilience of such 

complex dynamically evolving networks ensure minimizing the possibility and 

consequences of systemic risks. Focusing only on robustness, as one of the key resilience 

attributes, and on transportation networks, key critical infrastructure, the current study 

develops a hybrid complex network theoretic-genetic algorithms analysis approach. To 

demonstrate the developed approach, the robustness of a city transportation network is 

quantified by integrating complex network theoretic topology measures with a dynamic 

flow redistribution model. The network robustness is subsequently investigated under 

different operational measures and the corresponding absorptive capacity thresholds are 

quantified. Finally, the robustness of the network under different failure scenarios is 

evaluated using genetic algorithms coupled with k-means clustering to classify the different 

network components. The hybrid approach developed in the current study is expected to 

facilitate optimizing potential systemic risk mitigation strategies for critical infrastructure 

networks under disruptive events.  

 

KEYWORDS: Absorptive Capacity; Cascade Failure; City Networks; Clustering Analysis; 

Complex Network Theory; Genetic Algorithms; Network Topology; Resilience; 

Robustness. 
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NOTATION AND ACRONYMS 

The following Notations and Acronyms are used in this study: 

Notation: List of Acronyms 

ki    Degree of centrality BTN Bus transit network 

Pk Degree centrality 

distribution 

LBTN Local bus transit network 

𝑘
i
 out Outward degree MLBTN Minneapolis local bus transit 

network 

𝑘
i
 in Inwards degree APC Automated passenger count 

Si Node strength AC Absorptive capacity 

wij Weight of the link between 

nodes i and j 

RN Network robustness 

xi Node state CNT Complex network theory 

Nf Number of removed nodes R Route 

γ Degree exponent PV Passenger volume 

fc Critical failure threshold RC Route capacity 

ξ1 The topological coupling 

coefficient 

R Pearson’s correlation coefficient 

ξ2 The flow coupling 

coefficient 

GA Genetic algorithm 

NFR Total number of failed 

nodes 

fc Critical failure threshold 

NTR Total number of nodes 

along routes 

fc (th) Theoretical Critical failure 

threshold 

BC Betweenness centrality fc-L Theoretical Critical failure 

threshold - link failure 

CC Closeness centrality fc-N (act) Theoretical Critical failure 

threshold – Node failure 

EC Eigen centrality fc(act) Actual Critical failure threshold 

Akj The adjacency matrix BC Betweenness centrality 

Q Modularity class CC Closeness centrality 

SR
out Weighted outdegree EC Eigen centrality 

  Akj The adjacency matrix 

  Q Modularity class 

  SR
out Weighted outdegree 
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1. INTRODUCTION 

1.1. BACKGROUND AND MOTIVATION 

The economy, security, public health, and safety of cities are continuously impacted by 

their critical infrastructure networks (e.g., power, transportation, and water). This impact is 

mainly because such networks may face various types of disruptions including planned 

incidents and terroristic attacks, natural disasters, extreme weather events, and other 

operational incidents that may result in network-level cascade (i.e., systemic) risks 

(Ezzeldin and El-Dakhakhni 2019; Yassien et al. 2020). For example, in 2012, hurricane 

Sandy impacted several infrastructure networks in New York and New Jersey cities 

including their subway and bus networks that serve around 7.5 million passengers per day 

(Schwartz et al.  2014). The subway tunnels were flooded which subsequently induced 

excess demands on bus networks and other transportation modes (Kaufman et al. 2012). 

Such unexpected demands resulted in delays, interrupted services, and significant 

crowdedness (Schwartz et al.  2014). The damages of the subway network only reached 

$4.5 billion, whereas the overall economic damages of Hurricane Sandy were estimated to 

be more than $40 billion (Progressive Railroading 2016). Such systemic risks and the 

associated impacts on city critical infrastructure networks highlight the importance of 

network resilience (the ability to withstand, adapt, and recover from disruptions).     

 City critical infrastructure networks typically comprise multiple subsystems that are 

both complex (interdependent) and dynamic (i.e., evolve with time) (Salama et al. 2020). 
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Among these networks, public transit is the backbone of city transportation systems as it 

provides the basic mobility and accessibility services that ensure equity and inclusion of 

community members (Litman 2014). For example, public transit networks in the United 

States and Canada have served around 10 and 3 billion trips during 2019, respectively 

(APTA 2019). In addition, public transit networks support cities’ economy and urban 

expansion, and they also induce transit-oriented developments. Such developments 

contribute towards multimodal transit neighbourhoods that subsequently reduce traffic 

congestions, car emissions, and accident rates (Ceder 2016). Moreover, public transit 

networks play a vital role in emergency responses and evacuation schemes during natural 

disasters and all other major incidents (Humphrey 2008).  

Among the different multimodal transit networks (e.g., light rail, subway, 

commuter rail, rapid transit, and ferry boats), an urban local bus transit network of a city is 

a vital component as it serves denser regions of the downtown core, critical land use and 

the main attractions in this city (Martin et al. 1998; Metropolitan Council 2009). For 

instance, in the United States in 2019, the Minneapolis Metro transit agency has served an 

average of 249,300 trips during the weekdays, where the urban local bus transit network 

contributes towards around 68.8% of the total served trips ( Dickens 2011; Dickens et al. 

2012; APTA 2019). Therefore, as discussed earlier, any disruptions to bus transit networks 

can cause a significant reduction in the overall system performance, thus impacting the 

quality of service provided as well as the reliability of bus transit networks (Kim et al. 
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2016). This can, in turn, lead to severe adverse socio-economic impacts (Levinson et al.  

2011). 

Disruptions to urban bus transit networks include: infrastructure maintenance and 

corresponding road closures, accidents or traffic congestions, unexpected weather and 

climatological incidents, terroristic attacks, and strikes (Weilant et al. 2019). Examples of 

recent disruptions that significantly influenced different urban public transit networks in 

North America include: i) the 2020 demonstrations across the United States (e.g., in 

Minneapolis, Chicago, Miami, Los Angeles) due to the death of George Floyd, which 

resulted in rerouting several bus lines, cancelling hundreds of trips, reducing the frequency 

of the bus transit system, interrupting and suspending the public transit service for several 

days, and stranding thousands of commuters (Fox 9, 2020); and ii) the shutdown of Toronto 

subway in 2020 due to the derailment of a train, which triggered massive crowdedness at 

several bus stops causing a chaotic situation to the bus transit network in Toronto. 

Specifically, massive crowdedness occurred at several bus stops and thousands of 

commuters waited for the bus service up to one hour in chilly weather conditions as a result 

of the subway service disruption. This chaotic situation lasted for four hours during the 

morning peak time until it was finally resolved (CTV News 2020).  

The aforementioned disruptions, together with others not mentioned herein, have 

significantly impacted key components of urban public transit networks (e.g., stations and 

routes) either directly or indirectly. This situation highlights the need for quantifying and 

enhancing the resilience of urban local bus transit networks in an effort to withstand and 
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recover from the sequential disruptions of stations and routes with minimum losses in their 

performance levels.  This will ensure reliable services during both normal conditions and 

disruptions, improve the riding experience, and increase ridership rates.  

 

1.2. RESILIENCE OF PUBLIC TRANSIT NETWORKS 

There is a lack of consensus among the definition of resilience within the transportation 

engineering field (Tamvakis and Xenidis 2012; Hosseini et al. 2016; Matherly et al. 2017; 

Haggag et al. 2020). However, according to the U.S. Department of Transportation, FHWA  

2014, resilience of transportation networks is commonly defined as “the ability to 

anticipate, prepare for, adapt and absorb perturbation and withstand, respond to, and 

recover rapidly from disruptions” (FHWA  2014). Therefore, in transportation networks, 

resilience can be represented by different operational measures, including hours of 

congestion, travel time index, volume of congestion, and the optimal spare capacity ( 

Hollnagel et al. 2008; Weilant et al.  2019). The spare capacity can be further categorized 

into three different capacities, namely absorptive, adaptive, and restorative (Hosseini et al.  

2016; Weilant et al.  2019) Absorptive capacity is the ability of a system to absorb and 

withstand the impacts and consequences of disruptive events, adaptive capacity is the 

potential of a system to change in response to disruptions in order to maintain normal 

functions, and restorative capacity is the ability of a system to achieve quick recovery and 

maintain its normal conditions at minimum damage after disruptions (Norris et al. 2008; 

Turnquist et al.  2013). Resilience can also be represented by the 4R measures: robustness, 
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rapidity, redundancy, and resourcefulness (Bruneau et al. 2003). Robustness is defined as 

the ability of a system to withstand sudden disruptions with minimum loss in its 

performance level; redundancy is the ability of a system to meet the required functions 

during disruptions with the presence of alternatives for the failed components; 

resourcefulness represents the capacity of resources to define problems and recognize 

priorities during disruptions; and rapidity reflects the ability of a system to timely satisfy 

priorities and accomplish goals. As such, based on the aforementioned definitions, the 

robustness is related to the absorptive capacity, and both measures are subsequently used 

in the current study to quantify the resilience of local bus transit networks in an effort to 

minimize the impacts of disruptions and the corresponding induced systemic risks 

(Hosseini and Barker 2016; Reggiani 2013). 

 

1.3.  ROBUSTNESS OF PUBLIC TRANSIT NETWORKS 

Complex network theory (CNT) represents a computationally efficient technique that 

enables the simulation of complex networks (Barabási 2015). In CNT, networks are 

simulated as nodes (i.e., representing the network components) and links (i.e., representing 

the interdependency between these components). The CNT has been applied in previous 

studies to investigate the robustness of a wide spectrum of transportation networks, 

including public transit networks. Such studies can be broadly classified into two main 

groups: 1) static robustness (e.g., Jiang et al. 2004; Wang et al. 2011; Zou et al. 2013); and 



 

M.A.Sc. Thesis – Rasha Hassan                              McMaster University – Civil Engineering  

 

6 

 

2) dynamic robustness ( Marchiori et al. 2000; Barrat et al. 2004; Soh et al. 2010; Sullivan 

et al. 2010; Cats et al. 2015; Huang et al. 2015). 

1.3.1. STATIC ROBUSTNESS 

The static robustness of public transit networks relies on investigating the topological 

characteristics of such networks with an assumption that the failure of a single component 

(e.g., a station or a route) does not trigger a redistribution of its load demands (e.g., number 

of passengers) throughout the network. For example, the robustness of 33 metro networks 

across the world was investigated by Derrible et al. (2010). The authors demonstrated that 

creating transfer stations to provide alternative routes during disruptive events is essential 

for improving the network robustness. Ren et al. (2016) analyzed also the urban bus transit 

network of Shenyang City through three different static networks representing the stops, 

transfers, and lines of the network. The robustness of this network was quantified based on 

interactions between stop-line and line-transfer networks. The authors proposed an 

emergency strategy that can be applied to cope with the traffic congestion that may occur. 

Recently, Liu et al. (2017) modeled the Beijing-Tianjin-Hebei rail transit network as a 

network of high exposure to natural and targeted attacks. The study highlighted the 

importance of both creating rescue stations and increasing redundant routes to enhance 

network robustness. More recently, the robustness of 40 bus transit networks in Canada 

was quantified and several robustness indices are evaluated by Abdelaty et al. (2020). The 

results highlighted a significant level of contradictions between the different robustness 
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indices. In general, the above studies recommended applying other robustness assessment 

approaches to achieve realistic and practical results, as will be discussed next. 

 

1.3.2 DYNAMIC ROBUSTNESS 

The dynamic robustness of public transit networks considers not only the network topology 

but also the redistribution of the load demands (i.e., passengers) following the failure of 

some network components that may trigger cascade failures to other components. Various 

models have been utilized in previous studies to quantify the dynamic robustness of several 

infrastructure networks including the double value impact models (Watts 2011), the 

optimal power flow models (Cupac et al. 2013), the sand pile models (Bak et al. 1987; 

Turalska et al. 2019), the load capacity models (Huang et al. 2018; Motter et al. 2002), and 

the coupled map lattice models (García-Morales 2016; Kaneko 1992). However, within the 

context of public transit networks, the dynamic robustness is quantified through either the 

load-capacity models (Huang et al.  2018)  or the coupled map lattice models (e.g., Huang 

et al. 2015; Sun et al. 2018). The load-capacity model was first introduced by Motter et al. 

(2002) to model the cascade failures of complex networks based on the assumption that a 

single unit of weight is exchanged between each pair of nodes overtime through the shortest 

path connecting these nodes. In public transit networks, the load of a station is defined as 

the total number of shortest paths that pass through the station, while the capacity of a 

station is constrained by the maximum load that this station can accommodate. If a station 

fails, it is removed from the network and its loads are redistributed to the neighboring 
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nodes. If the new loads exceed the corresponding capacities, the neighbouring nodes fail, 

and a series of cascade failures is triggered. On the other side, the coupled map lattice 

(CML) models follow a different concept in modelling cascade failures of complex 

networks. The CML model was first introduced by Kaneko (1992) to model the 

spatiotemporal chaos and pattern formation in fluids. The basic assumption of the CML 

model is that the spatiotemporal chaotic failure is mainly attributed to both the topology of 

the network as well as the redistribution of the weights on links. The applications of the 

CML model has been subsequently extended to other fields such as biology, mathematics, 

and engineering  (Chazottes et al.  2005).  

The CML models have been continuously modified to reflect realistic 

characteristics of transportation networks such that the cascade failure phenomena of these 

networks can be effectively represented. In such models, cascade failures consider the state, 

degree and strength of both failed stations and neighbouring stations as well as the weights 

and capacities of links connected to such stations. Therefore, several CML models have 

been utilized in previous studies to provide a comprehensive approach and better 

representation of cascade failures by considering key factors in public transit networks. For 

instance, Huang et al. (2015) adopted a CML model to assess the robustness of the Beijing 

bus and rail transit networks considering their passenger flows. Furthermore, Sun et al. 

(2018) assessed the robustness of an urban rail transit network using an integrated CML-

passenger flow redistribution model, where cascade failures were attributed to topological 

characteristics and passenger flow redistributions. 
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1.4. RESEARCH OBJECTIVES 

Most of the previous CML model-related studies simulated transit networks as undirected 

networks. However, this can result in misleading conclusions as load demands may vary 

over directions and centrality measures (e.g., node degree and strength) are also 

significantly different between directed and undirected networks (Barabási 2015; White et 

al. 1994). Therefore, limited studies have applied the CML model to quantify the robustness 

of directed public transit networks. For example,  Shen et al. (2019) developed a modified 

directed version of the CML model to assess the robustness of the Nanjing metro transit 

network. However, the cascade failure conducted in this study has been limited to node 

failure scenarios only. On the other hand, Zhang et al. (2019) investigated the impact of 

route failures on weighted bus transit networks considering the dynamic load redistribution 

and link prediction method. The authors simulated the underlying networks in an R-space 

framework, where routes were represented as nodes (i.e., a node failure represented a route 

failure) and links existed only if there was a connection between these routes. While this 

representation can facilitate analyzing the dynamic cascade failures, link weights and 

capacities as well as directed centrality measures were not captured for critical routes. As 

such, further investigations are still needed in order to: i) assess the robustness of directed 

public transit networks based on different failure scenarios (i.e., nodes, links, and routes); 

and ii) relate the robustness thresholds to operational bus transit measures through a 

practical mapping approach. 
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In this respect, the current study aims at developing an approach to quantify the 

robustness of city networks under systemic risks and subsequently identify the 

corresponding critical components using a hybrid approach (i.e., machine learning, genetic 

algorithm and complex network theory). To demonstrate the practical use of the developed 

modelling approach, the Minneapolis local bus transit network is utilized, where CNT is 

employed first to obtain the topological measures of the network. A CML model coupled 

with a direction-based passenger flow redistribution model are subsequently developed 

based on such CNT measures. The robustness of the network is then quantified based on 

node, link and route failure scenarios. The robustness of the network is also investigated 

under different passenger volume to route capacity ratios and absorptive capacity 

thresholds are accordingly obtained. The robustness of the network under route failures is 

studied considering 43 different centrality/operation measures and a genetic algorithm is 

then coupled with a k-means clustering approach to categorize the network routes based on 

key network measures.  

The current study is organized as follows; Section 2 introduces the methods and 

measures used to assess the robustness of bus transit networks, Section 3 contains a 

description of the case study and the data processing procedures, Section 4 includes the 

results of the robustness analysis and the corresponding coupled genetic algorithm-cluster 

analysis, and Section 5 provides the conclusions of the study and suggestions for future 

research. 
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2. METHODS AND MEASURES 

This section highlights the approach developed to assess the robustness of bus transit 

networks. The developed approach is divided into three stages, as shown in Figure 1. In 

Stage one “Data Processing and Model Development”, the underlying network is simulated 

using CNT, where stations and bus routes are represented by nodes and links, respectively. 

Accordingly, the passenger volumes and route capacities are attributed to each link based 

on automated passenger count (APC) data, thus constructing a directed weighted bus transit 

network. Stage two incorporates the “Network Classification and Topological 

Characteristics” and is based on node degree distribution and other centrality measures 

(e.g., betweenness and closeness). In Stage three “Robustness Assessment”, the network 

robustness is quantified under systemic risks using a CML model that considers the 

redistribution of the passenger flow. The network robustness is evaluated considering the 

failure of its different components (i.e., nodes, links). The network robustness is also 

investigated under different passenger volume to route capacity ratios and the 

corresponding absorptive capacity thresholds are identified. Finally, using an integrated 

genetic algorithm-clustering approach, the network routes are categorized based on the 

network robustness under route failures. 

2.1. COMPLEX NETWORK THEORETIC MEASURES 

Disruptions of stations and bus routes cause significant changes in the network topological 

characteristics such as the node degree centrality, node strength, and link weights. 
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2.1.1. THE DEGREE CENTRALITY (𝒌𝒊 ) AND DEGREE CENTRALITY 

DISTRIBUTION (𝑷𝒌) (CONNECTEDNESS MEASURE) 

ki is defined as the total number of links connected directly to a node. For directed networks, 

the measure is calculated as the total outward, 𝑘𝑖𝑜𝑢𝑡 , and inward, 𝑘𝑖𝑖𝑛, links connected 

directly to a node as follows (Opsahl et al. 2010; Barabási 2016):  

𝑘𝑖 =   𝑘𝑖𝑜𝑢𝑡
 + 𝑘𝑖𝑖𝑛

                                                                                                                                                                                                         (1) 

 𝑘𝑖𝑜𝑢𝑡
 =                                                                                                                                      (2) 

𝑘𝑖𝑖𝑛
 =                                                                                                                                       (3) 

 

where 𝑎𝑖𝑗 𝑎𝑛𝑑 𝑎𝑗𝑖 are the adjacency matrix elements of the network given that 𝑎𝑖𝑗 ≠  𝑎𝑗𝑖  

and 𝑎𝑖𝑖 =  𝑎𝑗𝑗 = 0, 𝑖 is the start station (source node), 𝑗 is the end station (all other nodes 

connected to the source node), and N is the total number of nodes in the network. 

The degree centrality distribution, 𝑃𝑘, represents the percentage of nodes with 

degree 𝑘  and is calculated as follows (Albert et al. 2002): 

𝑃𝑘𝑜𝑢𝑡 = 𝑁𝑘𝑜𝑢𝑡/ 𝑁                                                                                                                      (4) 

𝑃𝑘𝑖𝑛 = 𝑁𝑘𝑖𝑛/ 𝑁                                                                                                                    (5) 

Where 𝑁𝑘𝑜𝑢𝑡 and 𝑁𝑘𝑖𝑛 are the total number of nodes with 𝑘𝑜𝑢𝑡 and 𝑘𝑖𝑛, respectively. 

 

2.1.2. THE NODE STRENGTH (𝒔𝒊 ) (PASSENGER FLOW MEASURE) 
 

Si represents the sum of passenger flow in links connected to a given node (Sun et al. 2018): 

Si = ( ∑ 𝑤𝑖𝑗 + ∑ 𝑤𝑗𝑖  
𝑁
𝑗≠𝑖,  𝑁

𝑗≠𝑖, ) / n                                                                                                          (6) 

 𝑎𝑖𝑗

𝑁

𝑗=1

 

 𝑎𝑗 𝑖

𝑁

𝑗=1

 



 

M.A.Sc. Thesis – Rasha Hassan                              McMaster University – Civil Engineering  

 

13 

 

where n is number of nodes connected to node i, while 𝑤𝑖𝑗 and  𝑤𝑗𝑖 are sectional passenger 

flows (i.e., demands per hour) on links connected to node i. Such links are assigned 

directions based on the sequence of the stations along the routes. 

 

2.1.3. CML MODEL 
 

A modified CML model is developed in the current study to investigate the cascade failure 

within a weighted and directed urban local bus transit network. Specifically, the 

redistribution of the passenger flow is modified to match the characteristics of a directed 

network, where the state of node i is changed over time according to: 

𝑥𝑖(𝑡 + 1) = |(1 − 𝜉1 − 𝜉2)𝑓(𝑥𝑖(𝑡)) + 𝜉1∑ 𝑎𝑖𝑗
𝑓(𝑥𝑗(𝑡))

𝑘(𝑖)
+ 𝜉2∑ 𝑤𝑖𝑗

𝑓(𝑥𝑗(𝑡))

𝑠(𝑖)
𝑁
𝑗=1 𝑗≠𝑖

𝑁
𝑗=1 𝑗≠𝑖 | +R          (7) 

where xi(t) and xi(t+1) are the node states at times t and t+1, respectively, 𝑓(𝑥𝑖(𝑡)) is the 

local dynamic chaotic behavior of the node, 𝜉1 is the topological coupling coefficient, 𝜉2 is 

the flow coupling coefficient, 𝑤𝑖𝑗 is the passenger flow rate between nodes i and j and is 

defined by the passenger volume (PV), and R is the external perturbation severity. It is 

worth mentioning that 𝜉1 and 𝜉2 values are typically between 0 and 1 and their summation 

should be less than 1. In the current study, 𝜉1and  𝜉2  values are assumed to be 0.25 (A. 

Huang et al. 2015). 

To utilize the CML model, each station i is assigned an initial random xi between 0 

and 1. The value of xi indicates the transportation condition of the node, where higher values 

reflect worse conditions (Shen et al., 2019). A logistic chaotic map of [𝑓(𝑥) = 4𝑥(1 − 𝑥)] 
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is used in several related studies and subsequently used herein to assess the corresponding 

dynamic behavior pattern of the nodes (Sun et al. 2018; Shen et al. 2019 ). The external 

perturbation severity, R, reflects the effect and magnitude of the failure that may occur, 

where 𝑅 = 1 is assigned to the failed stations, and a value of zero is assigned to the operating 

counterparts.  

It is worth mentioning that if both xi and f(xi) are within the open interval ]0,1[ and 

there is no external perturbation (i.e., R=0), the network keeps a permanent normal state. 

However, if a node/link fails at 𝑡 = 𝑙, additional passenger volume is produced and 

propagates downstream. A cascade failure scenario may occur if the redistributed passenger 

flow results in additional node/link failures due to capacity constraint that is defined by the 

route capacity (RC). 

 

2.2. FAILURE SCENARIOS 

2.2.1. NODE AND LINK FAILURES 

When a node fails at 𝑡 = 𝑙, the node is removed and its load demand is then 

transferred to the neighbours (i.e., considering the direction) over the downstream outward 

links, as shown in Figure 2a. Such links fail when their PV/RC ratios are larger than one 

and they are subsequently removed from the network. Another step of redistribution is then 

applied to trigger the cascade failure process. To assess the robustness of a directed bus 

transit network under random node failures, RC is estimated for each link based on the 
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frequency of hourly operating busses and the desired bus occupancy. This enables including 

RC as a constraint that varies according to the link attributes.  

On the other side, when a link fails at 𝑡 = 𝑙, the associated PV is transferred to the 

destination node and subsequently distributed over the connected links, as shown in Figure 

2b, using Equation 8. Such links may also fail when the corresponding load to capacity 

ratio is large than one. The state of the downstream nodes is also updated based on Equation 

7. If an additional node fails due to the PV redistribution, this node is also removed from 

the network and another step of redistribution is applied, as discussed earlier. 

𝑤𝑗ℎ
𝑛𝑒𝑤 = 𝑤𝑗ℎ + 𝑤𝑖𝑗

𝑤𝑗ℎ

𝑆𝑗
𝑜𝑢𝑡                                                                                                                 (8) 

 

2.2.2. ROBUSTNESS INDEX FOR NODE AND LINK FAILURES 
 

The network robustness can be assessed under random node and link failure scenarios, 

where a node/link is selected randomly to initiate the failure. The percentage of active nodes 

(RN) is used to measure the network robustness and is calculated as follows:  

 𝑅𝑁  =
𝑁−𝑁𝑓

𝑁
                                                                                                                                    (9) 

where Nf  is the number of failed nodes. A single value of 𝑅𝑁 is estimated for each failure 

scenario (i.e., considering the cascade effect) using Equation 9 and is updated for each 

subsequent scenario. As the network robustness decreases with the increasing number of 

removed nodes/links, critical threshold values, fc-N  and fc-L, are defined to indicate the 

fraction of nodes and links, respectively, that result in a minimum RN value.  
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2.2.3. ROUTE FAILURE 

The impact of a route failure on the network robustness is represented by the route failure 

impact ratio (RFIR):  

RFIR = NFR / NTR                                                                                                                                                                    (10) 

where NFR is the total number of failed nodes and NTR represents the total number of nodes 

along the route. 

  

2.2.3.1.  CORRELATION ANALYSIS 
 

Correlation analysis is generally used to assess the strength of the interrelationship between 

variable pairs (Pearson 1896). To date, several correlation measures have been developed 

(e.g., Pearson’s, Spearman’s, Kendall's tau correlation coefficient), each of which has its 

strengths and limitations (Winter et al. 2016). A correlation coefficient with a high absolute 

value indicates a strong linear relationship (or at least a strong monotonical variation) 

between a variable pair, and vice versa. In the current study, Pearson’s correlation 

coefficient (R) was used to assess the strength of the linear relationship between the RFIR 

and the corresponding topology- and operation-related variables are presented in Table 1. 

Such an assessment can be used to identify the most influential variables that control the 

route failure impact and severity on the network robustness. It is noteworthy that low R 

values may reflect the interdependence between multiple variables rather than a weak 

interrelationship between variable pairs. As such, further investigations are necessary when 

low R values are encountered. 
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2.2.3.2.  GENETIC ALGORITHMS AND CLUSTER ANALYSIS 
 

Cluster analysis is typically used to group observations in an unsupervised manner based 

on the degree of similarity. Observations allocated to the same group should therefore share 

similar characteristics, whereas those allocated to different groups should be extremely 

different. Several similarity measures have been developed to date (e.g., Euclidean 

distance, Manhattan distance, Cosine Similarity), each of which is suitable for certain 

applications (Pandit et al., 2011). K-means clustering is a widely used clustering measure; 

however, it requires a prior definition of the number of clusters (K). A range of K values is 

therefore assumed, and the performance of the resulting models is assessed. The percentage 

of variance explained is the typical measure of the model performance and can be implicitly 

expressed through several alternatives (e.g., within cluster sum of squares, silhouette 

score).  

A feature selection technique can be coupled with the clustering approach when the 

number of variables in the dataset is relatively large, the variables are highly 

interdependent, or a high degree of collinearity presents in the dataset. The feature selection 

step aims at removing irrelevant/redundant information such that the model estimates are 

unbiased (Celebi et al. 2013). Feature selection techniques are generally classified into: i) 

filters, where unimportant variables are removed based on prespecified evaluation criteria 

(e.g., the value of R); and ii) wrappers, where an optimization algorithm is introduced to 

select the optimum (or near optimum) feature subset (Saeys et al., 2007; Beniwal et al., 

2012). In the current study, the genetic algorithm (GA) was used as a feature selection 
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technique and was then integrated with K-means clustering to classify the network routes 

based on their common characteristics.  

GA are evolutionary algorithms that rely on the survival of the most adapted 

solution (Beniwal et al. 2012). Specifically, an initial set of solutions (initial population) is 

assumed, and a fitness function is used to assess the suitability of each set. A set of genetic 

operations (i.e., elitism, mutation, and crossover) is used within the GA to prevent the 

solution from being trapped in local minima or maxima. Such operations aim at improving 

the population fitness over generations (i.e., iterations) such that an optimal (or a near 

optimal) solution can be obtained. When GA is used as a feature selection technique within 

a cluster analysis, each individual (i.e., solution) is represented by a binary vector. A value 

of one is used to indicate that a variable is included for clustering, while a value of zero is 

used to indicate that the variable is not included. For example, an individual in the form of 

[1 0 1 0 0 0 0 … 0 1] indicates that the first, third, and last variable will be included for 

clustering, while all other variables will not be included. In the current study, the K value 

was between two and thirty and the GA was applied in each case to identify the optimal 

variable set used within the K-means clustering. The maximum number of clusters 

employed in the present study (i.e., 30) was selected to ensure the homogeneity of the 

resulting clusters (i.e., the clusters include a similar number of observations). The 

percentage of explained variance (𝑆𝑒𝑥𝑝
2 ) was used as the fitness function, with the aim of 

maximizing its value for each K value. Accordingly, the GA-based clustering can be 

formulated mathematically as: 
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max
𝑥𝑖
𝑆𝑒𝑥𝑝
2

subject to: 𝑥𝑖  is binary ∀ 𝑖
                                                                                                          (11) 

where 𝑆𝑒𝑥𝑝
2 = 1 −

𝑆𝑆𝑐

𝑆𝑆𝑇
, SSc is the within cluster sum of squared distance, and SST is the sum 

of squared distance between observation pairs (Jones and Harris 1999). As the optimum 

variable set differs based on the K value, the frequency of including a specific variable in 

the optimum set is used to reflect its importance for clustering the network routes. The 

optimum value of K and the optimum variable set were chosen based on assessing the 

performance of the optimal GA solution over the different K values.  

 

3. DEMONSTRATION APPLICATION: MINNEAPOLIS LOCAL BUS TRANSIT 

NETWORK  

In the current study, The Minneapolis local bus transit network (MLBTN) is considered as 

a case study for the application of the developed robustness assessment approach. 

Minneapolis is the largest (i.e., 430,000 capita) and most populous (i.e., 7.6% of the total 

population in Minnesota) city in the U.S. state of Minnesota (U.S Census Bureau, 2019). 

The transportation system in the city is characterized by a highly connected urban 

multimodal transit network that serves numerous attractions, destinations, and other critical 

facilities such as universities, hospitals, public schools, and recreational and shopping 

centers (Minneapolis City 2019). The system is operated by the city’s Metro Transit 

Agency and incorporates light rail, commuter rail, and local bus transit networks. The 
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public transit network serves an average of 249,300 passengers per day, with the local bus 

transit networks only serve approximately 171,600 passengers per day (Metropolitan 

Council 2019). The city’s comprehensive plan for 2040 aims at improving the reliability of 

the public transit in order to increase ridership rates as well as to support new housing, job 

schemes and other transit-oriented developments (Minneapolis 2040 — The City’s 

Comprehensive Plan 2019).  

 

3.1. DATA DESCRIPTION AND PREPROCESSING 

The automated passenger count (APC) dataset of the MBLTN is provided by the Metro 

Transit Agency under the Metropolitan council agreement. The dataset is available on the 

Minnesota Geospatial Commons website under the Minnesota Government Data Practices 

Act (Minnesota Geospatial commons website 2019). It includes the average daily boarding 

and alighting at each station during regular working hours from September 2019 to 

December 2019. The provided APC dataset includes the longitude, latitude, X and Y-

coordinates, stops site ID and stops’ name, the average daily boarding and alighting at each 

station during regular working hours (non-standard days are excluded from the average). 

The open-source data has been filtered and non-representative days are excluded from the 

dataset, including days of extreme weather conditions, unusual events, and other days with 

abnormal travel patterns.  

Within the dataset, the total boarding and alighting are unequal for different 

stations, routes and provider levels. This might be attributed to (Kimpel et al. 2002; Lan 
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2015): 1) APC device faults that may undercount passengers due to high volumes of 

passengers at blind spots when they are not detected ; 2) behavior of passengers (passenger 

carry over) that mostly occurs in routes that end in a loop or in a pair of interlined routes, 

where passengers may stay on board to join the next trip; 3) overcount of passengers due 

to the bus operator activities that mostly occur at layover points when the bus is empty (i.e., 

adjusting bus mirrors or using washrooms) ; and 4) errors in data collection, aggregation 

and filtering. 

The above unbalanced trip error has been addressed in the current study through 

two stages. First, the variation between the total boarding (ons) and the total alighting (offs) 

along the routes has been calculated (i.e., between 0.8 and 1.1) and compared to the 

allowable thresholds (i.e., between 0.7 and 1.3) according to the TCRP synthesis 77 

guidelines (Boyle 2009). Second, ons and offs are balanced such that negative loading 

errors of the cumulative passenger flow are avoided (i.e., correcting negative loads). Three 

methods are available in the literature and can be applied to balance such errors including 

factor into the higher count (Lan 2015), pseudo stop (TCRP113 2006), and factoring the 

average ( Lu 2008). In the current study, the latter method was used as Dawei Lu (2008) 

highlighted that such three methods typically yield similar balanced trips. The factoring to 

the average method splits the imbalanced trip errors over the boarding and alighting counts 

such that they are over- or undercounted. A target total number of passengers is computed 

based on the average total number of boarding and alighting and an adjustment factor is 

subsequently obtained for each of the boarding and alighting. The boarding and alighting 
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counts are then multiplied by the corresponding adjustment factor, and total balanced 

boarding and alighting are obtained. The adjusted passenger flow rates are then checked 

herein for negative loading errors and are found to be free of such errors.  

The transit time-of-day analysis is performed in the current study to calculate the 

peak hour volumes based on the average daily passenger flow, which are subsequently used 

as link weights. Since the peak hour volumes oblige the required size of the transit fleet, 

the transit time-of-day analysis approach is based on a factor of 0.14  [according to the 

TRB-National Highway research program (Martin et al.  1998)] to convert the total average 

daily passenger flow (i.e., available within the dataset) to peak hour volumes for all 

purposes-transit trips.  

 

3.2. MODEL DEVELOPMENT 

The topological configuration of a public transit network can be defined through three 

different mapping methods: a) Space of changes (P-space), where nodes represent stations 

and links exist if there is a direct bus route between any two stations (Kurant et al. 2006); 

b) Space of routes (R-space), where routes are defined by nodes and connection between 

lines are common stations between these routes (Xu et al. 2007; Zhang et al. 2019); and c) 

Space of stations (L-space), where nodes represent stations, while links represent both the 

physical and the route connection between these stations ( Kurant et al. 2006; Xu et al. 

2007). The current study followed the latter method because it can capture the actual 
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variation in passenger demands over links as well as the operating frequency and capacity 

of bus transit routes (Zhang et al. 2018).  

The Minneapolis local bus transit network (MLBTN) contains 27 routes, resulting 

in a network of 4,339 nodes and 4,664 links, as shown in Figure 3. The MLBTN is 

conceptualized as a weighted directed network, where each link is assigned a weight and 

direction based on the passenger flow and route direction, respectively. The direction of 

links is represented by either Eastbound, Westbound, Northbound or Southbound based on 

the bus schedule and stops’ sequence, as shown in Figures 3a and 3b. The MLBTN is 

modelled as a directed network and represented by G = (S, L), where G represents the 

Minneapolis local bus transit network, S represents the set of stations and L denotes links of S 

components. The adjacency matrix of the network is represented by: 

 𝑎𝑖𝑗 = {
1, (𝑖, 𝑗)  ∈  𝑆

0,   (𝑖, 𝑗)  ∉  𝑆
  ,       𝑎𝑖𝑗 ≠ 𝑎𝑖𝑗  𝑎𝑛𝑑  𝑎𝑖𝑖 = 0 ,  

𝑤ℎ𝑒𝑟𝑒 𝑎𝑖𝑗 = 1  if there is a direct connection (i.e., a bus route) from 𝑖 to 𝑗. 

 

4. RESULTS 

This section demonstrates the topological characteristics and cascade failure analysis 

results of the MLBTN. First, the topological characteristics of the network are examined 

based on various centrality measures. In addition, the CML model is used to obtain the 

dynamic robustness of the MLBTN network based on random node, link and route failure 

scenarios that represent different disruptions to bus transit components such as traffic 
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congestion and severe weather conditions (e.g., snowstorms, floods, etc.). Specifically, 

such disruptions may induce additional demands, thus impacting transit stations or roadway 

sections or transit corridors (U.S DOT Statistics 2018).  The network robustness towards 

route failures is quantified considering various centrality and operational measures. A 

sensitivity analysis is conducted on the impact of PV/RC ratio variations on the failure 

thresholds and the corresponding absorptive capacities are obtained. 

 

4.1. TOPOLOGICAL CHARACTERISTICS  
 

The static analysis of the MLBTN’s topology demonstrates that approximately 81% of the 

nodes have Kout = 1 and Kin = 1, as shown in Figures 4a and 4b, respectively. As can be 

seen also in the Figures, the MLBTN follows a power-law distribution (𝑃𝑘𝑜𝑢𝑡 = 0.72 k-3.21   

and 𝑃𝑘𝑖𝑛 = 0.72 k-3.22) and subsequently can be classified as a scale-free network. The 

power-law exponent values (i.e., 3.21 and 3.22) show that the MLBTN is of significant 

heterogeneity.  Such values indicate also that the MLBTN acts as a random network during 

random failures (Barabási 2015) and subsequently fragments at a finite critical threshold 

independent of the network size, as will be discussed next. 
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4.2. ROBUSTNESS  

4.2.1. LINK AND NODE FAILURES 
 

Figure 5 shows a significant difference between the overall robustness of the MBLTN 

under node and link failure scenarios. For example, at a fraction of removed nodes and 

links, f, of 0.3, the corresponding network robustness values are 0.38 and 0.61, respectively. 

However, both scenarios yield completely disconnected networks at similar critical 

threshold values of fc-N(act) = 0.58 and fc-L(act) = 0.63 when nodes and links are triggered, 

respectively, as shown in Figure 5. By comparing such values to the theoretical critical 

threshold value, fc(th), developed by Molloy et al. (1995) for scale-free networks and 

presented in Equation 12, there are variations of 20% and 15% for node and link failures, 

respectively. These variations are mainly because fc(th) is based on the network topology 

(𝑘min and γ) only; while fc-N (act) and fc-L (act) values depend on the developed CML model 

that considers both the topology and the passenger flow when systemic risks within bus 

transit networks are quantified. 

𝑓𝑐(𝑡ℎ) = 1 −
1

(γ−2)

(γ−3)
𝑘min−1 

,    𝑓𝑜𝑟   γ >  3                                                                                                                     (12) 

 

4.2.2.  CAPACITY DISRUPTIONS 

The passenger volume to route capacity (PV/RC) ratios can be utilized to represent any 

disruptions that may occur as a result of either variation in the frequency of buses or excess 

in demands with respect to the route capacities. In this respect, disruptions to the network 
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capacities have been investigated in the current study and the corresponding network 

robustness is quantified under various PV/RC ratios. Figures 6a and 6b show the sensitivity 

of 𝑓c to different PV/RC ratios under node and link failure scenarios, respectively. The 

MLBTN exhibits an initial PV/RC value of 0.18 and corresponding critical threshold value 

of fc-N(act) = 0.58 and fc-L(act) = 0.63 for node and link failures, respectively. However, in the 

current study, the absorptive capacity is represented by the PV/RC ratio that the network 

can withstand with minor changes in the corresponding critical thresholds. Therefore, the 

absorptive capacity of the MLBTN is 0.35 (i.e., 200% increase) and 0.45 (i.e., 250% 

increase) under node and link failures, with corresponding minor variations in fc-N(act) and 

fc-L(act), respectively. 

As can be seen also in Figures 6a and 6b, for all PV/RC ratios, the fc-N(act) and fc-N(act) 

are lower than fc(th). For instance, at PV/RC = 0.09 (i.e., 50% less than the original value), 

the fc(act) values are 0.59 and 0.64 for node and link failures, respectively, which are smaller 

than fc(th).  This finding emphasises the importance of considering the PV/RC ratio as well 

as the topological characteristics of the network in obtaining the critical thresholds of local 

bus transit networks. 

4.2.3. ROUTE FAILURES 

As every route encompasses a set of nodes and links, the robustness of the MBLTN under 

route failures highly depends on the characteristics of such components. Therefore, for each 

route failure, 43 different variables are calculated to represent a wide range of operational 
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(e.g., NL, NN, (PV/RC)R
 (Aver)) and topological (e.g.,  𝐵𝐶𝑅

aver, 𝐷𝑅
aver, ECR 

max, 𝐶𝐶𝑅
aver) 

measures, as presented in Table 1. A preliminary analysis is conducted to investigate the 

correlation between the route failure and such measures. As can be seen in Figure 7, 

although the RFIR has shown a correlation that is higher than 0.7 with the PRR
avg and DR

avg, 

the correlation matrix indicates the insignificant correlation between the robustness indices 

(i.e., RFIR, Nf-L % and Nf-N % ) and the majority of the considered measures. These results 

highlight the interdependence, rather than the direct interrelation, between such measures, 

which renders the robustness of the MLBTN to be a function of the interplay between all 

topology and operational measures. 

GA was therefore integrated with K-means clustering in order to categorize the 

MLBTN routes considering the interplay between their topology and operational measures. 

The GA was applied using a population size of 200, crossover ratio of 0.2, maximum 

generations of 100, and a tournament selection with size 2. The integrated GA-clustering 

analysis was applied 29 times, each of which includes: 1) predefining a K value (between 

2 and 30); and 2) applying a binary GA to identify the optimum variable set that can 

represent the whole dataset through such number of clusters (i.e., K). An optimum variable 

set is thus identified for each number of clusters and is referred to as the GA solution. Figure 

8 shows the frequency of including each of the 43 measures in the GA solution. A high 

frequency indicates that the corresponding measure was frequently used for clustering, 

which reflects its importance for representing the whole dataset. For example, the top five 

measures of the highest importance are the maximum weighted degree, SR
max, the RFIR, the 
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average degree, 𝐷𝑅
aver, the average Eigen-centrality, ECR

 aver, and the maximum weighted 

outdegree, SR out-aver. These measures appeared 21, 18, 17, 14, and 14 times in the GA 

solutions, respectively. Measures of the highest importance include topology and centrality 

measures. This supports the limitation of characterizing bus transit routes based on 

operational measures only and the need for including topology measures to assess the 

overall bus transit network robustness under route failures. 

The percentage of the variance explained by each GA solution and the number of variables 

included at each of the predefined K values are shown in Figure 9. As can be seen in the 

figure, the percentage of variance explained increases with the number of clusters (i.e., K), 

where the best cluster model is that with six variables and 27 clusters (describing 

approximately 100% of the variance). However, this is considered an infeasible model due 

to the large number of clusters generated. As such, a model with a smaller number of 

clusters can be more useful. The use of six clusters with eight variables can represent 

approximately 96% of the variance, which can be increased by only 3.7% using a model 

with more clusters. Accordingly, a model with six clusters and eight variables is considered 

herein as the near optimal cluster model. Figure 10 shows the statistical behavior of each 

variable over the six clusters. The variables included for clustering represent three different 

measures; robustness (RFIR), connectedness (𝐵𝐶𝑅
aver , 𝐶𝐶𝑅

aver , ECR
 aver , 𝐷𝑅

𝑖𝑛− 𝑚𝑎𝑥 ,  QR
max), and 

passenger flow (SR out-max  and SR
max). These variables along with their definitions, physical 

representations, and mathematical formulations are presented in Table 2, whereas a detailed 

description of each cluster is provided in Table 3. Based on the RFIR values, route impacts 
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can be classified into low, moderate, and high. Specifically, clusters 1 to 4 include routes 

with low RFIR values that span between 0.18 and 0.48. Cluster 5 represents routes with 

high RFIR values that are between 0.62 and 0.99, while cluster 6 contains moderate impact 

routes with RFIR values that vary between 0.34 and 0.63. The results show that  𝐵𝐶𝑅
aver, 

ECR
 aver were found to have a significant impact on the severity of the failure compared to 

other connectedness indicators, highlighting the importance of the location, accessibility 

levels, and characteristics of the neighboring nodes in controlling the severity of failure 

propagation through the network.  Moreover, routes with relatively high connectedness 

indicators and moderate to high passenger flow indicators can significantly impact the 

overall network vulnerability. In contrast, routes with relatively low connectedness 

indicators and high passenger flow indicators are characterized by low or moderate route 

failure impact ratio (i.e., their failures have low to moderate effects on the overall network 

vulnerability).  

Figure 11 shows the spatial distribution of the six clusters over the MLBTN. Routes of 

relatively higher failure impacts (i.e., those with moderate to high RFIR values) are highly 

connected and located in the core of the network. Most of the stations along such routes 

exhibit high connectedness (expressed through higher BCR
avg

, CCR
avg and ECR

avg) compared 

to other routes, as presented in Table 3. On the other hand, routes of lower failure impacts 

(i.e., those with low RFIR values) are located near the network boundaries. However, a 

small fraction of the stations along these routes is highly connected to other routes in the 

network.  
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4.2.4. MANAGERIAL INSIGHTS 

Enhancing the robustness of transit networks is key towards improving the overall 

reliability of these networks which is considered one of the main goals of transit agencies. 

Therefore, evaluating the network robustness during disruptions provides a deeper 

understanding of the required emergency/mitigation strategies and managing the available 

resources that aid at minimizing the impact and recovery time of disruptions. 

The current study develops an approach that considers the nature of critical 

infrastructure networks with a demonstration application on public transit networks. The 

approach provided an in-depth understanding of the failure behavior of the network 

components (bus stops, accessibility between stations, and bus routes) during disruptions 

and the impact of these disruptions on the transit service. 

Based on the results of this study, transit service providers and decision-makers can 

evaluate the transit network under various operational conditions (e.g., passenger volume-

to-route capacity ratios) and obtain the corresponding robustness thresholds. In addition, 

the results enable assessing the ability of the spare capacity to absorb the excess demands 

during disruptions. Moreover, based on the identified critical routes and their 

characteristics, transit agencies can manage the transit fleet and ensure the availability of 

alternative routes as a response strategy during disruptive events that ensure the fulfillment 

of the service requirements during and following such events. 
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5.  CONCLUSIONS AND FUTURE WORK 

Urban local bus transit networks provide fundamental accessibility and mobility services 

for users and any disruptions to such complex and dynamic networks are associated with 

severe socio-economic impacts. Therefore, more efforts and studies should be directed 

towards quantifying and enhancing their resilience under cascade failure scenarios to 

ensure a trustworthy service for the users. 

 In the current study, a hybrid approach is developed to quantify the robustness of 

urban local bus transit networks, where complex network theory, machine learning and 

genetic algorithms are integrated within the transportation engineering field. The developed 

approach aims at utilizing several topology and operational measures to evaluate the 

robustness of urban local bus transit networks following the failure of key network 

components (i.e., stops, links, and routes). As such, the CML model is applied to assess the 

robustness of the MLBTN considering different PV/RC ratios. The MLBTN is simulated 

as a directed weighted network through an integrated CML-passenger flow redistribution 

model. In addition, GA is coupled with K-means clustering to identify the primary 

controllers of the network robustness as well as to categorize routes based on their 

topological and operational measures.  

The results of the current study showed that the MLBTN exhibits a higher 

vulnerability and a lower absorptive capacity under random node failures compared to 

those under random link failures. In addition, the degree of accessibility, location, and 

characteristics of the failed stops along with their neighboring stops are key cascade failure 
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factors. The actual obtained critical thresholds of the MLBTN are also lower than their 

corresponding theoretical values, which indicates the importance of considering the 

redistribution of passenger flows when cascade failures are quantified. Moreover, both 

connectedness and passenger volumes on outwards links impact significantly the Route 

failure impact ratio of the routes. The results of the clustering analysis, in particular, show 

that both directions of the routes may not necessarily fall within the same cluster, which 

emphasizes the importance of simulating local bus transit networks as directed networks. 

Overall, the result of this study indicates the importance of including both the topology and 

operation-related measures for the characterization of the local bus transit networks. This 

can, in turn, facilitate the development of effective planning, management, and risk 

mitigation strategies. 

The approach developed in the current study can be applied during the post-design 

stage to evaluate the network robustness considering its topology and operational measures. 

Specifically, the approach provides an attainable post design approach for evaluating the 

cascade failure-based reliability of urban local bus transit networks, which is essential to 

comprehensively understand the interplay between key network robustness factors, develop 

mitigation strategies and emergency schemes and enhance the network robustness. This 

can ultimately aid the decision-makers and transit service providers to assess the 

consequences of planning decisions and operational changes. 

 The results of the current study can further aid the decision-makers in: i) evaluating 

the potential planning- and operation-related decisions and their impacts on the network 
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robustness under normal and abnormal interventions; and ii) preparing effective 

management and risk mitigation strategies that minimize the impact and consequences of 

disruptive events. This will, in turn, contribute to improving the network resilience and 

cascade failure-based reliability, enhancing the attractiveness of the network, and 

increasing the ridership rates.  

Future research studies should incorporate other modes of transportation (e.g., 

subway, light rail, and taxi) and simulate transit networks as a directed multimodal network. 

Furthermore, the behavioral response of passengers during disruptive events should be 

considered when the passenger flow redistribution models are developed.  
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Table 1: Variables included in the feature selection stage 

Variable Acronym 
Maximum weighted degree SR

max 

Route failure impact ratio RFIR 

Average degree DR
avg 

Average eigen centrality ECR
avg 

Maximum weighted outdegree SR
out-max 

Average harmonic closeness centrality CCHR
avg 

Maximum modularity class QR
max 

Maximum eigen centrality ECR
max 

Average weighted outdegree SR
out-avg 

Average strong component number SCR
avg 

Maximum indegree DR
in-max 

Average indegree centrality DR
in-avg 

Maximum weighted indegree SR
in-max 

Average closeness centrality CCR
avg 

Maximum harmonic closeness centrality CCHR
max 

Average weighted degree SR
avg 

Maximum betweenness centrality BCR
max 

Maximum degree DR
max 

Number of links along the route NL 

Average betweenness centrality BCR
avg 

Percentage of nodes with outdegree =1 N(Dout=1) % 

Average outdegree centrality DR
out-avg 

Average modularity class QR
aver 

Maximum closeness centrality CCR
max 

Number of stations along the route NN 

Average authority score AR(v)avg 

Maximum page ranks PRmax 

Percentage of failed nodes based on link failure Nf-L % 

Percentage of nodes with indegree = 1 N(Din=1) % 

Average clustering CR
avg 

Maximum clustering CR
max 

Average PV/RC (PV/RC)R
avg 

Average weighted indegree SR
in-avg 

Average page ranks PRR
avg 

Maximum outdegree DR
out-max 

Maximum eccentricity ER(v)max 

Maximum authority AR(v)max 

Maximum hub HR(v)max 

Maximum strong component number SCR
max 

Percentage of failed nodes based on node failure Nf-N % 

Maximum PV/RC (PV/RC)R
max 

Average eccentricity ER(v)avg 

Average hub HR(v)avg 
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Table 2: Measures and definitions 

Variables 

included in the 

clusters 

 

Definition and 

Representation 

 

Formula 

Vulnerability or robustness indicator:  

Route failure 

impact ratio 

(RFIR) 

 

• The ratio between the total 

number of failed nodes (NFR) 

when a specific route failed 

and the number of nodes 

along that route (NTR).  

• RFIR is used to identify the 

critical routes that can 

facilitate cascade failures in 

the network. 

 

 RFIR = NFR / NTR 

Connectedness and accessibility indicators (represent the location and 

importance of a station): 

Average 

betweenness 

centrality (BCR) 

 

• The average betweenness 

centrality (BC) of the nodes 

along the route R, where BC 

is the fraction of shortest 

paths passing through each 

node k along that route 

(Barabási 2015; Newman 

2001). 

• BCR is used to identify the 

route containing the 

relatively important stops in 

terms of location compared 

to other stops included in the 

network (Jayasinghe et al. 

2014). 

 

 
 

 

 

 

 

 

𝐵𝐶𝑅 =
1

𝑁𝑇𝑅
   

𝜌(𝑙, 𝑘,𝑚)

𝜌(𝑙,𝑚)
 , 𝑘 

𝑚𝑙𝑘

≠ 𝑙 ≠ 𝑚 
 

 

 

 
 
The average closeness centrality 

(CC) of the nodes along the route 
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AVER-closeness-

centrality (CCR) 

R (Rubulotta et al. 2013), where 

CC represents the average 

distance of each node k on that 

route to all other nodes in the 

network (Barabási 2015; Opsahl 

et al. 2010).  

 

• CCR represents the degree of 

accessibility to the stations 

belonging to the route R 

compared to other stations in 

the network (Jayasinghe et al. 

2014). 

 

 

𝐶𝐶𝑅 =
1

𝑁𝑇𝑅
 
𝑁−1
∑ 𝑑kj𝑗𝑘
  

where, 𝑑kj is the length of the 

shortest path between nodes k and 

j. 

AVER-eigen 

centrality (ECR) 

 

• The average eigen centrality 

(EC) of the nodes along the 

route R, where EC measures 

the influence of each node k 

along that route based on the 

importance of the 

neighboring nodes (Bonacich 

2007; Rubulotta et al. 2013).  

• ECR represents the 

importance of the stations of 

a certain route based on and 

the importance of their 

neighboring stations (Mishra 

et al. 2012; Rodrigues 2019). 

 

 

𝐸𝐶𝑅 =
1

𝑁𝑇𝑅
 
1

𝜆
𝑘

 𝐴𝑘𝑗𝐷𝐸𝐶𝑗
𝑗

 

 
where DEC is the right leading 

eigenvector,  𝐴𝑘𝑗 is the adjacency 

matrix, and λ is the eigenvalue of 

𝐴𝑘𝑗for which DEC exists. 

MAX-indegree 

(𝐷𝑅
𝑖𝑛) 

 

• The maximum number of 

links directed towards any 

node k over the route R 

(Barabási 2015).  

• It corresponds to the stops 

with the largest size (major 

stop like terminals, or main 

stations) that exit along a 

route based on the number of 

routes directed towards the 

station. 

 

 

𝐷𝑅
𝑖𝑛 = max

𝑘
 𝑎𝑗𝑘
𝑗

 

where 𝑎𝑗𝑘 is the adjacency 

matrix entry corresponding to 

the connection between nodes j 

and k.  
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MAX-modularity 

class (QR) 

 

The maximum modularity 

class (Q) amongst the nodes 

located along the route R, 

where Q is used to measure 

the strength of divisions of a 

network into modules (Dugué 

et al. 2015; Leicht et al. 2008) 

. 

• It represents the likelihood of 

being within the same 

community, where higher 

modularity denotes that a 

group of edges are most 

likely within the same 

community. 

 

 

 

 

 

𝑄 =
1

𝑚
 [𝐴𝑖𝑗 −

𝐷𝑖
𝑖𝑛𝐷𝑗
𝑜𝑢𝑡

𝑚
]𝛿(𝑐𝑖 , 𝑐𝑗)

𝑖.𝑗

 

where Aij is the adjacency matrix, 

m is the number of edges in the 

network, 𝐷𝑖
𝑖𝑛  is the indegree of the 

node i, 𝐷𝑗
𝑜𝑢𝑡t is the outdegree of the 

node j, ci (cj) is the community to 

which the node i (j) belongs, and 

𝛿ij  is the Kronecker delta function 

(Leicht et al. 2008). 

 

Passenger flow indicators: 

MAX-weighted 

outdegree (𝑆𝑅
𝑜𝑢𝑡) 

 

 

• The maximum outward node 

strength along the route R.  

• It represents the maximum 

passenger volume (PV) 

originated from a specific 

route (Barabási 2015). 

 

 

𝑆𝑅
𝑜𝑢𝑡 = max

𝑘
 𝑤𝑘𝑗
𝑗

 

where k is the node index along the 

route R and 𝑤𝑘𝑗 is the entry of the 

weighted adjacency matrix 

corresponding to the connection 

between nodes k and j. 

MAX-Weighted 

Degree (SR) 

 

• The maximum node strength 

along the route R (Barabási 

2015). 

• It corresponds to the station 

with the highest passenger 

circulation along a specific 

route (Mishra et al. 2012). 
 

 

𝑆𝑅 = max
𝑘
( 𝑤𝑘𝑗
𝑗

+ 𝑤𝑗𝑘
𝑗

) 
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Table 3: Clustering analysis results 

 

Cluster 

# 

Routes 

Included 

 

Features of each cluster 

 

Comments 

Clusters of low route failure impact ratio (RFIR):  

1 

5N, 5S, 

 9E 

14N,14S,  

19N, 19S 

22N, 22S 

Robustness indicator: 

• Relatively low RFIR values that range 

between 0.23 and 0.3, indicating that the 

failure of such routes does not significantly 

impact the overall network performance 

 

Connectedness and accessibility indicators: 

• Relatively low BCR values (between 0.21 

and 0.41), indicating that the stations 

(nodes) along such routes are of a 

secondary importance in terms of the 

number of shortest paths passing through 

them.  

• Low CCR values (between 0.13 and 0.17), 

indicating that the stations along these 

routes are less accessible and far from other 

stations across the network.  

 

• Relatively low ECR values of (between 

0.12 and 0.39), indicating that the bus stops 

along such routes are of a secondary 

importance as they are connected to a 

relatively less important stop.  

• Low 𝐷𝑅
𝑖𝑛 values (between 0.35 and 0.45), 

indicating the presence of more local bus 

stops (with a limited number of inward 

connections), compared to major stations 

or terminals, along such routes. 

• Low values of Max-modularity class 

(between 0-0.01) indicates a low strength 

of divisions of the networks into modules. 

 

 

 

The overall 

network 

vulnerability is 

not significantly 

impacted by the 

failure of these 

routes 
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Passenger flow indicators: 

• Relatively high 𝑆𝑅
𝑜𝑢𝑡 values (between 0.6 

and 0.78), indicating the high passenger 

volume originated from the stops along 

these routes. 

• Relatively high SR values (between 0.68 

and 0.72), indicating the high passenger 

circulation in the stops along the included 

routes. 

2 

 

6N,6S 

4N, 

7N,  

10N, 11N 

12E, 17E, 

18N 

25N, 

61E,141N 

Robustness indicator: 

• Relatively low RFIR values that range 

between 0.18 and 0.32, indicating that the 

failure of such routes does not significantly 

impact the overall network performance. 

 

Connectedness and accessibility indicators: 

• Moderate values of BCR (between 0.38 and 

0.7), indicating that the stations along such 

routes are of relatively high importance in 

terms of the number of shortest paths 

passing through them.  

• Low CCR values (between 0.8 and 0.14), 

indicating that the stations along these 

routes are less accessible and far from other 

stations across the network.  

• Relatively low ECR values of relative 

(between 0.22 and 0.4, indicating that the 

bus stops along the included routes are of 

secondary importance as they are 

connected to a relatively less important 

stop. 

• Low 𝐷𝑅
𝑖𝑛 values (between 0.22 and 0.44), 

indicating the low number of major stations 

or terminals along the included routes.  

• Low values of Max-modularity class 

(between 0.02 and 0.38) indicates a low 

strength of divisions of the networks into 

modules. 

 

The overall 

network 

vulnerability is 

not significantly 

impacted by the 

failure of these 

routes 
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Passenger flow indicators: 

• Very high 𝑆𝑅
𝑜𝑢𝑡 values (0.9), indicating the 

very high passenger volume originated 

from the stops along such routes. 

• Very high SR values (1.0), indicating 

the significant passenger circulation at 

the stops along the included routes. 

 

 

     3 

 

 

4S, 

 7S,  

10S, 11S, 

12W, 17W 

18S, 25S,  

59S 

61W, 141S 

Robustness indicator: 

• Relatively low RFIR values that range 

between 0.18 and 0.38, indicating that the 

failure of such routes does not significantly 

impact the overall network performance. 

 

 

 

Connectedness and accessibility indicators: 

• Moderate BCR values (between 0.3 and 

0.5), indicating that the stops (nodes) along 

such routes are of secondary importance in 

terms of the number of shortest paths 

passing through it.  

• Low CCR values (between 0.08 and 0.14), 

indicating that stations along these routes 

are less accessible and far from other stops 

across the network.  

• Low values of relative ECR (between 0.3 

and 0.5), indicating that the stations along 

such routes are connected to a relatively 

less important neighboring station. 

• Very high 𝐷𝑅
𝑖𝑛 values (1.0), indicating the 

presence of major stations or terminals 

along these routes.   

• Very high values of Max-modularity class 

(equals to 1) indicates a very high strength 

between divisions of the networks into 

modules. 

 

 

The overall 

network 

vulnerability is 

not significantly 

impacted by the 

failure of these 

routes 
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Passenger flow indicators: 

• Very high 𝑆𝑅
𝑜𝑢𝑡 values (1.0), indicating the 

very high passenger volume originated 

from the stations along the routes in this 

cluster. 

• Very high SR values (0.9), indicating the 

high passenger circulation at the stations 

along these routes. 

4 

 

 

 

2E, 2W, 3E 

3W, 9W, 

21E,21W, 

67E, 67W 

74E,74W, 

824N 

825N,825S, 

A-LINE-N 

A-LINE-S 

Robustness indicator: 

• Low RFIR values that range (between 0.24 

and 0.48), indicating that the failure of such 

routes does not significantly impact the 

overall network performance. 

 

Connectedness and accessibility indicators: 

• Moderate BCR values (between 0.2 and 

0.57), indicating that stops (nodes) along 

such routes are of secondary importance in 

terms of the number of shortest paths 

passing through it.   

• Relatively low CCR values (between 0.08 

and 0.24), indicating that the stations along 

these routes are less accessible and far from 

other stations across the network.  

• Relatively low ECR values (between 0.2 

and 0.44), indicating that the stations along 

such routes are connected to a relatively 

less important neighboring station. 

• Relatively low 𝐷𝑅
𝑖𝑛 values (between 0.2 

and 0.42), indicating the low number of 

major stations or terminals along the routes 

included in this cluster. 

• Very low values of Max-modularity class 

(equals to 0) indicates a very high strength 

between divisions of the networks into 

modules. 

 

Passenger flow indicators: 

• Relatively low 𝑆𝑅
𝑜𝑢𝑡 values (between 0.12 

and 0.38), indicating the very high 

The overall 

network 

vulnerability is 

not significantly 

impacted by the 

failure of these 

routes 
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passenger volume originated from the 

stations along the routes in this cluster. 

• Relatively low SR values (between 0.18 and 

0.42), indicating the low passenger 

circulation at the stations along these 

routes. 

Cluster of high route failure impact ratio (RFIR): 

5 
53W, 

C-LINE-N, 

C-LINE-S 

Robustness indicator: 

• Relatively high RFIR values (between 0.62 

and 0.99), indicating that the failure of such 

routes can significantly impact the overall 

network performance. 

 

Connectedness and accessibility indicators: 

• High BCR values (between 0.75 and 0.95), 

indicating that the stops (nodes) along such 

routes are of relatively high importance in 

terms of the number of shortest paths 

passing through it.  

• Low CCR values (between 0.14 and 0.16), 

indicating that stations along these routes 

are less accessible and far from other 

stations across the network.  

• High ECR values (between 0.62 and 1), 

indicating that the stations along such 

routes are connected to a relatively less 

important neighboring station. 

• Moderate 𝐷𝑅
𝑖𝑛 values (between 0.35 and 

0.48), indicating the low number of major 

stations or terminals along the routes 

included in this cluster. 

• Very low values of Max-modularity class 

(equals to 0) indicates a very high strength 

between divisions of the networks into 

modules.  

 

Passenger flow indicators: 

• Moderate to high values of 𝑆𝑅
𝑜𝑢𝑡 values 

(between 0.32 and 0.7), indicating the 

relatively high passenger volume 

The overall 

network 

vulnerability is 

significantly 

impacted by the 

failure of these 

routes 
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originated from the stations along the 

routes included in this cluster. 

• Moderate to high SR values (between 0.36 

and 0.68), indicating the relatively high 

passenger circulation at the stations along 

these routes. 

 

Cluster of moderate route failure impact ratio (RFIR):  

6 

53E, 59N,  

824S 

 

 

 

Robustness indicator: 

• Moderate RFIR values that range between 

0.34 and 0.63, indicating that the failure of 

such routes can impact the overall 

network performance. 

 

Connectedness and accessibility indicators: 

• Low - Moderate BCR values (between 0.3 

and 0.63), indicating that the stops (nodes) 

along such routes are of relatively high 

importance in terms of the number of 

shortest paths passing through it. 

• High CCR values (between 0.68 and 1.0), 

indicating that the stations along these 

routes are of a high accessibility level and 

are closer to other stations in the network.  

• Moderate ECR values (between 0.35 and 

0.63), indicating that the stations along 

such routes are connected to some 

important stations. 

• Relatively Low 𝐷𝑅
𝑖𝑛 values (between 0.35 

and 0.48), indicating the low number of 

major stations or terminals along the routes 

included in this cluster   

• Very low values of Max-modularity class 

(ranges between 0 and 0.06) indicate a very 

low strength between divisions of the 

networks into modules. 

 

 

 

The overall 

network 

vulnerability is 

moderately 

impacted by the 

failure of these 

routes 
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Passenger flow indicators: 

• Moderate to high values of 𝑆𝑅
𝑜𝑢𝑡 values 

(between 0.32 and 0.9), indicating the 

relatively high passenger volume 

originated from the stations along the 

routes included in this cluster. 

• Moderate to high SR values (between 0.32 

and 1.0), indicating the relatively high 

passenger circulation at the stations along 

these routes. 
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Figure 1: Methodology for robustness assessment of Minneapolis Local Bus Transit Network
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a) b)

Figure 2: Passenger flow redistribution based on: a) Node failure; b) Link failure
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Figure 3: Minneapolis local bus transit network a) GIS Map; b) Directed Network using CNT
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Figure 4: The probability density function data of the network: a) Outgoing degree (𝑘 out); b) Incoming degree (𝑘 in)
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Figure 5: Robustness of Minneapolis local bus transit network (MLBTN) based on

random node and link failures.
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Figure 6: Robustness of the MLBTN under different PV/RC ratios: a) Random node failure; b) Random link failure.
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Figure 7: Correlation matrix.

64

M.A.Sc. Thesis – Rasha Hassan McMaster University – Civil Engineering 



M.A.Sc. Thesis – Rasha Hassan McMaster University – Civil Engineering 

65

Figure 8: Frequency of variable inclusions in the GA solution
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Figure 9: Results of the GA-based feature selection
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Figure 10: Clusters properties
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Figure 11: Classification of route impacts based on the clustering analysis
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