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Abstract

Random disruptions resulting in loss of functionality in service legs or in-

termodal terminals of transportation networks are an inevitable part of op-

erations, and considering the crucial role of aforementioned networks, it is

prudent to strive towards avoiding high-consequence disruption events. The

magnitude of the negative impact of a disruption is dependent on compo-

nent criticality; therefore, limited resources of disruption mitigation should

be assigned to the infrastructure with the highest priority. However, cate-

gorizing the service legs and terminals based on their actual post-disruption

impact is computationally heavy and inefficient. We propose a methodology

based on the combination of a bi-objective hazmat shipment planning opti-

mization model and machine learning to identify critical infrastructure more

efficiently. The proposed methodology is applied to part of CSX Corporation’s

intermodal rail-truck network in the United States as a realistic size problem

instance, in order to gain managerial insight and to evaluate the performance

of the methodology.
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Chapter 1

Introduction

Hazardous materials (hazmat) are defined by the Pipeline and Hazardous Ma-

terials Safety Administration of the U.S. Department of Transportation as

chemicals or substances that can potentially cause a highly significant risk to

health and safety of the surrounding population and property during commer-

cial transportation (PHMSA, 2020a). This definition underlines the potential

health and physical harms and hazards associated with transportation of haz-

mat such as crude oil or combustible/flammable liquids; however, these chemi-

cals are essential to the sustenance and growth of today’s industrial economies

and therefore, there is a significant demand for their transportation from man-

ufacturing plants to consumers.

Although a multitude of regulations and initiatives have been undertaken

and comprehensive safety plans have been implemented to reduce the likeli-
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hood of accidents involving the release of hazmat, on average approximately

10 fatalities and 143 injuries per year have been caused by accidents involv-

ing hazardous materials on United States highways between 2010 and 2019

(PHMSA, 2020b). For instance, in June 2015, a truck carrying diesel fuel was

involved in an accident in South Carolina that resulted in the spillage and

ignition of hazmat cargo causing three fatalities and one case of serious injury

(PHMSA, 2020b). When it comes to hazmat transportation risk, railroads

are among the safest modes; nonetheless, multicar incidents and the resulting

catastrophes still occur on rare occasions (Verma & Verter, 2013). A recent

example of such a catastrophe resulting from the rail transportation of hazmat

freight is the Lac-Mégantic rail disaster that happened in Quebec, Canada on

July 5, 2013.(TSB, 2019). Catastrophic incidents such as the above-mentioned

tragic incidents in both the rail and truck modes of transportation highlight

the necessity of including risk-cost tradeoffs into routing decisions and the

incorporation of hazmat risk assessment methodologies that accurately cap-

ture the damage caused by an accident involving the release of hazmat for the

exposed population.

One of the factors that significantly affects routing decisions and the con-

sequent transport risk is the choice of transportation mode. Although most

of the hazardous material shipments were carried by a single mode in the

United States, 27.3 million tons of hazmat were transported via a combina-
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tion of modes accounting for 10.4 percent of total ton-miles in 2012 (BTS,

2017). This can be attributed to the fact that many industries that process

hazardous materials do not have the dedicated industrial rail tracks needed

for direct delivery. Consequently, utilizing a combination of rail and highway

transportation presents itself as a viable and valuable option for them.

Rail-truck intermodal i.e. the transportation of containers by a combi-

nation of rail and truck, has experienced a steady and significant growth over

the past thirty years. The rising interest in intermodal rail-truck transporta-

tion stems from global supply chain requirements and several other factors.

It provides customers with the opportunity to take advantage of both the

highway and rail transportation modes and hence, a more cost-effective and

efficient movement of their freight. The rise in standard container utilization,

as evidenced by the fact that in 1990, containers accounted for 47 percent

of intermodal volume which rose to 69 percent at the turn of the century in

2000, and a record 92 percent in 2017, has also been another contributing

factor since unlike trailers, containers can be double stacked which leads to

increased productivity as well as cost competitiveness and ease of transfer be-

tween various modes (AAR, 2018a). Furthermore, uncertainty in lead-times

will decrease since a notable portion of freight movement is performed by re-

liable and punctual trains operating on predetermined schedules (Nozick &

Morlok, 1997).
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Moreover, the future and growth of the intermodal transportation indus-

try appears to be highly promising. According to the Association of American

Railroads, 5.6 million containers and trailers were moved in the US rail-truck

intermodal network in 1990, and this volume has grown to 9 million contain-

ers in 2000, to 11.1 million in 2010, culminating in a record 14.5 million units

in 2018 (AAR, 2018a). Furthermore, the Association of American Railroads

reports that between 2000 and 2017, there has been a 52.2 percent increase

in rail intermodal volumes (AAR, 2018b). According to the estimates of the

Freight Analysis Framework (FAF) which is a data set comprising the records

of all freight movements within the United States, the total value of shipments

transported via multiple modes will increase from 3.3 trillion dollars in 2016

to nearly 9 trillion dollars in 2045, signifying a growth of more than two and

a half times in the mentioned time period (BTS & FHWA, 2018).

The magnitude of the volumes of both hazmat and regular freight be-

ing transported on the intermodal networks and the crucial role they play

in the economic sustenance and growth of North America, highlight the im-

portance and criticality of the underlying infrastructure. In other words, the

intermodal terminals, rail tracks and roads can be considered critical infras-

tructure both for the United States economy as a whole, and for the intermodal

transportation companies as evidenced by the fact that 24 percent of the rev-

enue generated by U.S. Class 1 railroad operators in 2018 was accounted for

4
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by intermodal shipments which is the highest percentage among all the single

product groups and much higher than coal that used to be the most significant

source of transport revenue for these major railroad operators (AAR, 2018a).

The importance of these infrastructure for intermodal transportation

companies highlights the need for incorporating measures in the company’s

contingency plans to manage the risk of random disruptions resulting in the

loss of functionality in a network element. It is worthy to note that railroad

operations are disrupted far more regularly when compared to business opera-

tions (Stecke & Kumar, 2009). Intermodal terminals may either be disrupted

by random events like natural disasters, crane technical failures or by inten-

tional attacks (Sarhadi et al., 2017); whereas rail tracks may be disrupted by

natural disasters or by rail track deterioration, etc. A recent example of disrup-

tions in railroad operations is the rail blockades across Canada due to protests

which significantly hampered the ability of railroad companies to transport

goods and passengers (CBC, 2020). Hence, the need for a framework that as-

sists decision makers in creating superior contingency plans that would lessen

the severity of a random disruption event’s consequences becomes evident.

This study investigates the possibility of developing disruption risk miti-

gation strategies based on the knowledge of most critical train service legs and

intermodal terminals in a network, obtained via predictive analytics in rail-

5
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truck intermodal transportation of hazmat and regular freight. We propose a

methodology that utilizes machine learning techniques and mathematical op-

timization to more efficiently identify the most critical infrastructure in terms

of the impact of disruption, so as to assist decision makers in the development

and implementation of mitigation strategies. The proposed methodology is

ultimately applied to a case study based on CSX Corporation’s intermodal

rail-truck network in the United States as a realistic size problem instance in

order to evaluate its performance and gain managerial insight.

The remainder of this paper is organized as follows. Chapter 2 is dedi-

cated to a review of relevant literature. In Chapter 3, we provide a description

of our proposed disruption risk mitigation methodology and present a realistic

case study. In Chapter 4, the mathematical modeling framework i.e. the bi-

objective optimization model is defined and parameter estimation techniques

are elaborated. Chapter 5 summarizes the results of computational experi-

ments performed by solving the optimization program for the aforementioned

case study. In Chapter 6, we delve into the details of the predictive analytics

that are at the heart of our proposed disruption risk mitigation methodol-

ogy. Ultimately, we outline our conclusions, contributions and suggestions for

future research in Chapter 7.

6



Chapter 2

Literature review

In order to provide a comprehensive exposition of the research done in this

field and to obtain a better understanding of where this study fits in the

bigger picture of the existing literature, we elaborate the pertinent literature

under the following three areas of study: hazmat risk assessment, rail-truck

intermodal transportation of hazmat and disruption management.

2.1 Hazmat risk assessment methodologies

Despite all the efforts of transportation companies and government agencies to

reduce the risks associated with hazardous material transportation, the pos-

sibility of highly damaging accidents catalyzing the release of dangerous sub-

stances still lingers (Verma & Verter, 2013). Consequently, many researchers

have tried to capture different aspects of the aforementioned risk through dif-
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ferent methodologies. A review of popular risk assessment methodologies and

the seminal works introducing them will be provided in this section.

2.1.1 Expected consequence

The most prevalent definition of risk is described as the product of the conse-

quences of an harmful event and the probability of such an event happening.

This measure is commonly referred to as ”traditional risk” in the hazmat

transportation domain. Erkut and Verter (1998) approach this risk assess-

ment metric in the transportation setting by calculating, for every arc in a

path, the product of the likely consequences of an accident and the arc’s acci-

dent probability, and considering the path’s traditional risk to be equal to the

sum of these products.

This methodology has been used in studies such as Alp (1995) and Erkut

and Verter (1995) in the highway domain and was afterwards adapted to the

assessment of risk in the railroad domain in the works of Bubbico et al. (2004)

and Verma (2011). This risk measure has some advantages since it incorporates

both the probability of an actual accident event as well as the consequences of

the incident. However, the pertinent data required to implement this method

is not available and/or accessible in many cases and this consideration has

resulted in the formulation of other measures of risk.

8
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2.1.2 Population exposure

Scholars have defined a new risk measure, based on one extreme of the tradi-

tional expected consequence risk spectrum, which only concerns itself with the

total population number exposed to hazmat transportation risk and called it

population exposure. This approach might be more suitable when the hazmat

type being transported entails an exposure risk for the surrounding population,

for instance radiation from nuclear waste or other radioactive material. This

measure was initially developed in the highway domain in studies by Batta

and Chiu (1988) and ReVelle et al. (1991) and was later adjusted based on

the dynamics of train transportation by Verma and Verter (2007) to be used

in the railroad domain.

2.1.3 Incidence probability

On the other side of this consequence-probability continuum is the incident

probability measure which concerns itself with minimizing the likelihood of a

transportation incident. This measure is quite useful when the transported

hazmat creates a small radius of danger or when the decision maker is very

intolerant of hazmat release incidents and wants to minimize the probability of

such events. This model of risk assessment has been adopted by Saccomanno

and Chan (1985) for the highway domain and was later adapted by Bagheri

9
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et al. (2011) to take into account the intricacies of the railroad domain and to

be used for minimizing the risks of hazmat train accidents.

2.1.4 Risk-averse methods

Since the traditional risk measure doesn’t incorporate the risk preferences of

decision makers and the negative public perception towards hazmat trans-

portation, efforts were made to capture this risk-aversion. This led to the

introduction of the perceived risk model which modeled risk aversion through

the use of a risk preference parameter (Abkowitz et al., 1992). The challenges

of accurately understanding and quantifying the risk preference factor mo-

tivated Erkut and Ingolfsson (2000) to develop three catastrophe avoidance

models namely, mean-variance, maximum risk and disutility for the highway

domain. In an effort to extend this work to the railroad domain, Jabbarzadeh

et al. (2019) developed a risk measure that mixes expected risk and variability

in risk through the use of absolute deviation instead of variance.

Kang et al. (2014a, 2014b) argue that there are risk confidence level

intervals in which none of the above-mentioned methods can guarantee an

optimally safe route for hazmat freight and propose the value-at-risk (VaR)

method which captures the preferences of decision makers and generates dis-

similar routes for hazmat freight in the trucking domain. Subsequently, Hos-

10
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seini and Verma (2017) adapted the VaR based methodology for the problem of

planning rail hazmat shipment routes. However, the VaR model has not been

widely accepted since it is not a consistent risk measure and its performance

might be poor in some problem instances (Toumazis & Kwon, 2013).

The deficiencies of the VaR method and the conditional value-at-risk

(CVaR) model’s ability to generate risk-averse and flexible hazmat shipment

routes and its focus on avoiding extremely consequential events inspired Toumazis

et al. (2013) to adapt CVaR model for the highway domain, and Toumazis and

Kwon (2016) developed this methodology further. The same measure was used

in Faghih-Roohi et al. (2016) as the main objective in the dynamic optimiza-

tion of routing and scheduling of highway hazmat shipments. Subsequently,

Hosseini and Verma (2018) developed a CVaR risk assessment methodology for

hazardous material rail transportation. Finally, Su et al. (2019) propose the

use of spectral risk measures for the problem of hazmat shipment risk-averse

routing with the goal of obtaining more desirable solutions in those instances

that CVaR or other popular risk measures fail to provide the safest paths.

2.1.5 Environmental risk

It is worthy to note that the main focus of the aforementioned studies was to

model the risk of hazmat transportation for the exposed population. The im-

11
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pact of hazardous material release during road transportation on a number of

vulnerable environmental elements was considered in Martıénez-Alegrıéa et al.

(2003). Cordeiro et al. (2016) created a framework for the process of assess-

ing the environmental risks of hazmat road transportation; while, Machado

et al. (2018) developed a multi-criteria spatial analysis tool and concluded

that geology, drainage density and soil type are key factors in determining the

vulnerability of highway segments to hazardous material spills.

In an effort to account for the environmental risks of moving hazmat

on railroad networks, Saat et al. (2014) proposed a quantitative methodology

that calculated the cost of population evacuation and train delay as well as

soil and groundwater cleanup, and multiplied them by accident release rates

for different chemicals to obtain an estimate of annual risk costs.

2.2 Rail-truck intermodal transportation of hazmat

Hazardous materials transportation literature is very expansive and a large

number of studies have been done in this area. Erkut et al. (2007) classify the

research in this field into four domains: risk assessment, routing, facility loca-

tion and routing and network design. We have already provided an overview

of the seminal works in the risk assessment area and now we will turn our at-

tention to the routing of hazmat and more specifically to the routing without

12
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scheduling problems which are the most relevant to our present study.

Since a very large body of work exists in the literature of routing problems

for road networks, and in the interest of brevity, we invite the reader to refer to

Holeczek (2019) for a recent comprehensive and structured review of research

in the field of hazardous material truck transportation problems.

In the railroad transportation of hazmat domain, one of the first studies

was done by Glickman (1983) who evaluated the effects of rerouting shipments

through more sparsely populated areas and concluded that hazmat transporta-

tion risk can be significantly reduced by this method. This idea is further in-

vestigated in Glickman et al. (2007) and the benefits of evaluating the risk-cost

tradeoff in routing decisions are emphasized. Furthermore, a tactical model

of railroad hazmat shipment planning and routing was developed by Verma

(2009) who incorporated an expected risk calculation method based on the

sequence of events ending in hazmat release from multiple tank cars. In an-

other study, Verma et al. (2011) used the population exposure risk assessment

framework presented in Verma and Verter (2007) for measuring risk and solved

the routing problem through a meta heuristic solution methodology. In a re-

cent study, Bornay et al. (2020) incorporated spatial risk along both network

links and yards in their hazmat shipment routing problem formulation and

discussed the effects of commodity flow bifurcation on risk-cost tradeoffs.

13
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We now turn our attention to the rail-truck intermodal transportation

mode that utilizes the combination of road and rail and is the focus of our

current study. Rail-truck intermodal transportation of regular freight has been

a well-studied area of research in the preceding years and the literature of this

field is rich (Bontekoning et al., 2004; SteadieSeifi et al., 2014). However,

comparatively fewer endeavors have tried to tackle the rail-truck intermodal

transportation of hazardous materials. Motivated by the possibility of a po-

tential hazmat transport risk reduction, Mazzarotta (2002) and Bubbico et al.

(2006) concluded through transport risk analysis that a significant reduction in

risk is possible by changing the mode of hazmat transportation from trucking

to rail-truck intermodal.

In order to evaluate the trade-offs and benefits of hazmat rail-truck in-

termodal transportation, Verma and Verter (2008) presented and analyzed an

expository Canadian case study. Using the knowledge gained in their previ-

ous study, Verma and Verter (2010) approached the modeling of a rail-truck

intermodal transportation system by introducing an analytical framework for

planning shipments of hazmat and regular freight in a rail-truck intermodal

network in which shippers and receivers can access a sole pair of terminals

through drayage. This work was extended to the most realistic case of this

intermodal system i.e. shippers/receivers having access to multiple terminals

in Verma et al. (2012).

14
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Assadipour et al. (2015) incorporated congestion and equipment capac-

ity at intermodal terminals in their model formulation for hazmat and regular

freight transportation in a rail-truck intermodal terminal. They presented a

bi-objective nonlinear mixed-integer program and provided the solution for a

realistic size problem instance via a multi-objective genetic algorithm. In an-

other study, Assadipour et al. (2016) developed a bi-level, bi-objective model

to regulate the movement of hazmat shipments in a rail-truck intermodal net-

work in which the government imposes tolls to discourage the use of certain

intermodal terminals.

In similar studies in the facility location and routing domain, Xie et al.

(2012) develop a new bi-objective location and routing model to find the op-

timal location of intermodal terminals and optimal transportation routes for

hazmat shipments in a multimodal network. Finally, Ghaderi and Burdett

(2019) formulate the location routing problem of hazmat transportation in

an intermodal network as a two-stage stochastic program and solve it via a

number of algorithms, namely Maximum Likelihood Sampling, Sample Aver-

age Approximation, and a mixture of the two to compare their performance.

Their model also considers the possibility of disruptions at transfer yards in

an effort to improve the transportation network’s reliability.

15
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2.3 Disruption mitigation and management

Considering the importance of smooth transportation operations to the ever-

growing and fast-paced modern economies and the dire consequences of a sup-

ply chain disruption on them, the significance of creating reliable transporta-

tion networks that can absorb or recover from potential disruption events

cannot be ignored. In order to consider and plan for possible disruptions

in transportation networks, researchers have introduced and studied concepts

like redundancy, resilience, reliability, flexibility and vulnerability and tried to

utilize them in assessing the impact of disruptions and the quality of trans-

portation networks. An overview of these concepts can be found in Faturechi

and Miller-Hooks (2015). Furthermore, Gu et al. (2020) review the similari-

ties and differences of the concepts of reliability, resilience and vulnerability

by analyzing relevant studies, and provide a comparison of their performance

in assessing transportation networks through illustrative numerical examples.

Another disruption risk management approach that is more closely linked

to the one we have adopted in this study concerns itself with the removal of

individual nodes or links from the network and the consequent undesirable im-

pact on transportation operations. In other words, a 100% functional capacity

reduction in a single network component is considered and the impact on the

network performance metrics is assessed by comparing the post-disruption re-
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sults with the performance of the network in normal operating conditions.

This approach provides some knowledge about the relative importance of a

specific network element compared with all the other elements in that net-

work. It is worthy to note that the network element’s capacity reduction may

not be directly associated with a real-world disruptive event, and is only in-

corporated as a disruption scenario. What follows is a survey of research done

in the disruption management area divided by transportation mode.

2.3.1 Road networks

Initial research in the area of disruption modeling was done by Asakura (1999)

who considered capacity reduction as a result of deteriorated roads and pro-

vided a definition for travel time reliability as the ratio of travel times in

degraded state to the travel times in normal operating conditions. Nicholson

and Du (1997) developed a mathematical model for a degradable transporta-

tion system based on traffic and supply/demand equilibrium to strategically

evaluate the socio-economic impacts of network component degradation. A.

Chen et al. (2002) presented capacity reliability as a novel evaluation criterion

for assessing degradable road network performance and propose a framework

based on network equilibrium, Monte Carlo methods and reliability analysis.

The aforementioned studies focused on quantifying the negative effects of
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a capacity reduction in network components. Since then numerous studies have

considered different disruption events and infrastructure criticality metrics in

road networks through the lens of different objectives. We invite the reader

to refer to Jenelius et al. (2006), Sohn (2006), Scott et al. (2006) and Sullivan

et al. (2010) for some examples of relevant studies. Sullivan et al. (2009)

categorize these studies by the goal they are pursuing, whether it is to minimize

a network’s vulnerability to failure as a result of disruption, or to maximize the

network’s potential to recover from or cope with a disruption, or its resistance

to potential disruptions. They also make a distinction between degradation

which refers to a minor reduction in capacity and disruption which implies

major reductions in capacity or the complete closure of a link/node.

In an insightful study, Mattsson and Jenelius (2015) discuss the research

on resilience and vulnerability of transportation systems and specify that re-

search on vulnerability can be divided into studies based on topological prop-

erties of transport networks and studies that incorporate the supply and de-

mand side to more comprehensively examine the impacts of disruption, while

resilience refers to the system’s ability to recover or maintain functionality

following a disruption event. In the interest of brevity, we end the review of

research in this area by inviting the reader to refer to Jafino et al. (2020) for a

conceptual and empirical comparison of seventeen transport network criticality

metrics extracted from the numerous studies done in this area.
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2.3.2 Railroads

Although both passenger and freight flow through the network will be affected

by a potential disruption, most of the works in railroad disruption management

have been in the area of passenger transportation. We invite the reader to refer

to Veelenturf et al. (2016) and Zhu and Goverde (2019) for relevant studies.

In the freight transportation domain, one of the initial efforts to examine the

impact of disruption on railroad networks was done by Peterson and Church

(2008) who developed a framework to examine how the loss of one or more

bridges or tunnels can affect train operations.

A developing and active research area in railway systems disruption/dis-

turbance management is the real-time railway rescheduling which is discussed

in the study of Cacchiani et al. (2014) and they provide an overview of recovery

algorithms and models for disruption management through this method. Sato

and Fukumura (2012) approach the management of daily railway disruptions

in Japan by evaluating the strategy of freight train locomotive reassignment

and rescheduling. In a more recent study, Altazin et al. (2020) investigate

real-time rescheduling decisions and present the results of implementing their

methodology in dense real life railway systems.

Bababeik et al. (2017) use bi-level models to assess the vulnerability of
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rail networks through the identification of links which if disrupted will impose

the most transportation cost/delay, and additionally to capture and minimize

the costs of rerouting and rescheduling of trains on the functioning sections of

the network after the critical links become dysfunctional due to disruption. A

new measure of link criticality called link exposure is introduced in Bababeik et

al. (2018) and a bi-objective model is proposed to optimally locate relief trains

along the more critical links in the rail network to increase its resilience towards

disruptions. Jabbarzadeh et al. (2019) assess the effect of random disruptions

on hazmat rail transportation and propose a novel risk measure as well as

a bi-objective two-stage stochastic mathematical model to optimize hazmat

shipment planning which incorporates the possibility of random disruptions.

Using the network element removal approach, Khaled et al. (2015) study

train design and routing and try to minimize total cost of operations after a po-

tential disruptive event that makes network infrastructure unavailable. They

presented a linear mixed-integer program and provided its solution for a case

study of a US based railroad operator by proposing an iterative heuristic algo-

rithm. Since they assumed that if a link is disrupted, it becomes unavailable,

the sole possible recovery strategy in this case would be to reroute shipments

on undisrupted links of the network. Azad et al. (2016) extended their work

by incorporating a few service leg repair scenarios, plus the possibility of re-

sending shipments from their origin, as well as allowing for the use of third
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party transportation following a disruption. Their aim was to make the model

useful both for single link disruption events, and also in case multiple network

links are disrupted.

Finally, Fikar et al. (2016) assess the effects of rail closures on the lo-

cal industries through a decision support system that simulates passenger and

freight flow on a rail network; subsequently, calculating delays due to link dis-

ruption and rerouting of traffic with the aim of identifying critical links and

assessing the impact of said disruption in their case study which was based on

a major Alpine corridor. While extending the analysis of network element crit-

icality from single-commodity problems to multi-commodity networks, Whit-

man et al. (2017) propose a three-stage method based on multi-criteria decision

analysis and multi-commodity flow optimization problem to identify the most

important links with respect to distinct commodity categories moved on the

Swedish railway system.

2.3.3 Rail-truck intermodal networks

In an effort to address and mitigate the effects of potential disruptive events in

intermodal transportation networks, Huang et al. (2011) proposed a decision

method that rerouted shipment flows if delay forecast for a link was greater

than a pre-specified threshold. Ishfaq (2012) suggest that the use of two-

21



M.Sc. Thesis - Arash Moradi Rad McMaster - Computational Science & Engineering

connected networks formed by multiple modes of transportation which provide

each origin-destination pair with at least two edge-disjoint paths can contribute

to network resilience against disruptions.

A stochastic mixed-integer mathematical model that minimizes unsatis-

fied demand in the event of a disruption was developed by L. Chen and Miller-

Hooks (2012) who also defined and proposed a quantitative measure of inter-

modal freight network resilience. Miller-Hooks et al. (2012) further developed

the previous study and this time tried to maximize intermodal transportation

network’s resiliency by including the possibility of taking preparedness and

recovery actions within the confines of a given budget. They formulated a

stochastic optimization program with the objective of maximizing freight flow

in the network under disruption scenarios. Both of the previous works’ models

were applied to small-scale networks due to computational complexity.

Uddin and Huynh (2016) contributed to the field by developing a stochas-

tic mixed-integer model to tackle the problem of determining optimal routes for

freight shipments in a rail-truck intermodal network under disruption. They

used the sample average approximation method to solve the model on two

example networks. In a similar study, Uddin and Huynh (2019) developed

a framework for finding the optimal routes for the transportation of multi-

commodity freight in an intermodal network, while assuming a lower capacity
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for network links and nodes. Their goal is to obtain a desired network reliabil-

ity level by analytically determining the level of capacity reduction that should

be considered in the planning phase. Most recently, Ke (2020) incorporated

the possibility of random disruptions at intermodal terminals by developing

a robust optimization model for hazmat shipment planning with the goal of

minimizing mean and variability of risk in a rail-truck transportation network.

In one of the few studies in the literature that used the one-at-a-time

arc/node elimination strategy in intermodal networks, Burgholzer et al. (2013)

used real-life data to micro simulate traffic and measure delay time due to

disruptions in intermodal transportation networks. The delay impact of partial

(50%) or complete (100%) disruptions on specific links was then used to rank

links in terms of how critical they are for the network and to measure criticality

of the network as a whole.

Review of pertinent literature illustrates the fact that most of the research

done in the area of disruption risk management in rail-truck intermodal net-

works focuses on regular freight and minimizing disruption impacts through

rerouting. To the best of our knowledge, no previous study has tackled the

problem of developing disruption risk mitigation strategies based on the iden-

tification of critical infrastructure via bi-objective optimization and machine

learning in multiclass hazmat rail-truck intermodal transportation networks.
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The risks associated with the transportation of hazmat as well as the total cost

of operations are two conflicting objectives that compel the decision makers to

adopt a customized approach to this problem such as the one presented in this

study. It is worthy to note that our usage of a supervised learning technique

called classification for predictive analysis is unique in this context.

We have made an effort to fill the gap in the literature by proposing

a methodology based on the combination of a bi-objective tactical shipment

planning/routing optimization model and machine learning techniques that

enables us to more efficiently identify the most critical infrastructure in the

network i.e. the train service legs and intermodal terminals, the disruption of

which has the highest negative impact on the total transportation cost and

risk. The ultimate goal of this method is to equip the company’s managers

with the knowledge of the critical network elements, so that they can plan

mitigation strategies in advance of a disruption event, and optimally assign

limited disruption risk mitigation resources to the most critical infrastructure.
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Chapter 3

Proposed methodology and case study

In this chapter, the aim is to describe our proposed methodology in more detail

and discuss how it can be used in normal operating conditions of the network

i.e. pre-disruption period as well as in case of an actual infrastructure disrup-

tion event i.e. post-disruption period. In the pre-disruption/planning period,

the transportation company can use the mathematical model to optimally plan

the movement of both regular and hazmat freight along the network, and the

predictive classification model can be used as a useful tool in identifying the

critical train service legs and intermodal terminals, so that mitigation strate-

gies can be formulated and implemented to diminish the negative impacts of

a potential disruption. In the post-disruption period, disruption events can be

incorporated in the parameters of the model to obtain the optimal shipment

rerouting solution.
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Moreover, we present a novel case study in Section 3.2 that is based on

the rail-truck intermodal transportation network of CSX Corporation in the

US to illustrate the process of implementing this methodology in more detail.

3.1 Disruption risk mitigation methodology

This section is dedicated to the description of how our proposed disruption

risk management methodology can aid companies offering rail-truck inter-

modal transportation services in planning for disruption mitigation and re-

covery strategies. Figure 1 illustrates a flowchart which summarizes the steps

for implementing the proposed methodology. In summary, the ultimate goal

of the method is to identify the critical train service legs and intermodal ter-

minals via a combination of mathematical optimization and machine learning

techniques in order to equip the transportation company’s decision makers

with the necessary knowledge required to optimally assign disruption mitiga-

tion resources. This goal can be achieved through the process outlined in more

detail below.

In the first step, we need the input data for the tactical bi-objective

routing optimization model (see Section 4.1 for further details) which comes

in the form of transportation demand. Having obtained this demand data,

we move on to the second step in which we solve the bi-objective shipment
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planning optimization model to procure the optimal routing plan and number

of trains needed. This helps us in calculating the total cost and total risk

arising from the transportation of freight in the normal operating condition of

the network which becomes the benchmark for measuring the negative impacts

of disruption on the aforementioned objective function values.

In the third step, we need to decide whether the classification model

developed in previous iterations of the cycle needs to be updated. Depending

on the decision-maker’s criteria which can include requiring an update after a

certain number of transportation planning periods or in case of a significant

change in demand volumes etc., we will decide whether to go through the

process of updating the classification model or not. In the first few iterations

of the cycle, we need to update the classification model every single iteration

since one transportation period does not provide the supervised learning model

with enough data points to train a robust model.

Assuming that the classification model needs to be updated, the next

step involves solving the aforementioned bi-objective optimization model for

as many times as there are service legs and terminals in the network each time

incorporating the disruption of a single service leg or a single terminal in the

parameters of the model. This helps us calculate the increase in total cost and

total risk of transportation in the network due to a disruption in a service leg or
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terminal compared to the benchmark which is the normal operating condition

of the network. The fifth step is to obtain the disruption impact categories into

which we intend to classify the infrastructure. This task is performed via a

clustering algorithm that will aid us in finding the best possible categorization

of the service legs and terminals.

The sixth step includes the extraction of feature data to be used alongside

the labels obtained in the clustering step. These are the prerequisites needed

to develop a classification model that predicts the disruption impact category

(class) that each service leg or terminal belongs to based on a set of input

features. Now we can utilize the trained classification model to classify the

infrastructure in the current or next planning period.

If at the third step, we conclude that the classification model does not

require an update, we can skip steps four to six and go straight to the sev-

enth step which entails using the supervised learning model trained on the

previous data to classify the infrastructure for the current transportation pe-

riod. This is considerably more computationally efficient compared with the

other method which entails obtaining actual post-disruption negative impacts

through solving the routing optimization model for every single disruption

scenario.

The final step involves another decision making task in which the man-
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agers of the company devise mitigation strategies and decide which strategy

should be implemented on which class of service leg or terminal, considering

the company’s budget and resource constraints. The idea is to optimally assign

limited disruption risk mitigation resources to the most critical infrastructure

so that the negative impacts of a potential disruption event are minimized.

A possible disruption risk mitigation strategy is to increase redundancy

in the transportation network. For train service legs, this translates into build-

ing additional train tracks or renting other railroad operators’ tracks in order

to create additional paths and thus provide more options for shipment routing

in case of a disruption. It should be noted that since the planning period con-

sidered in this study is relatively short and building new train tracks requires

expensive long-term investment from the transportation company, renting the

competitors train tracks appears to be more financially prudent. As for the in-

termodal terminals, building or renting additional cranes will create a backup

plan in case of a random disruption, while specialized repair crews can also be

deployed to respond quickly and restore the equipment to normal operating

condition.

Once the mitigation strategies have been implemented, the process ends

for the current transportation period and we move on to the next transporta-

tion period and repeat the process at the demand data procurement stage.
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Start

Step 1: Obtain transportation

demand data

Step 2: Solve optimization model

Step 3: Classification

model update required?

Step 4: Solve optimization model

for each disruption scenario

Step 5: Cluster infrastructure

based on disruption impact

Step 6: Develop a

classification model

Step 7: Use classification model

to identify critical infrastructure

Step 8: Apply

mitigation strategies

End of period

yesno

Move on to next planning period

Figure 1: Flowchart of the proposed methodology
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3.2 Case study setting

In order to be able to implement the proposed disruption risk mitigation

methodology and evaluate its performance, we have created a novel case study

to be used as a realistic problem instance based on CSX Corporation’s in-

termodal rail-truck transportation network in the north-east, south-east and

mid-west regions of the United States. The features of the aforementioned

example network will be further explored in this section in order to illustrate

the nuances and complexities of a realistic rail-truck intermodal transportation

service chain.

Figure 2 depicts a map of our case study network which has been recre-

ated using the ArcGIS software (ESRI, 2020) with white points that encompass

a train symbol representing 16 intermodal terminals belonging to CSX Cor-

poration which are access points for 24 shipper/receiver cities represented by

red points and selected based on their proximity to at least two of the avail-

able intermodal terminals. Each shipper/receiver city has been selected such

that it has access to at least two intermodal terminals in case one of them is

disrupted and loses its functionality. In that case, customer demand can still

be met using the other terminals, avoiding problem infeasibility. Finally, the

black lines signify the rail tracks owned by CSX Corporation.
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Figure 2: Map of the CSX intermodal network case study

As can be seen in Figure 2, the terminals and shipper/receivers in the

network can be divided into four geographical regions, each of which consists

of four intermodal terminals and six supply/demand nodes. The network is

designed in such a way that each intermodal terminal serves three or four ship-

pers/receivers and each shipper/receiver has access to at least two intermodal

terminals. In total, there are 27 train service legs i.e. train tracks between two
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consecutive train yards (terminals), and 32 types of intermodal train services,

each with its own unique itinerary and intermediate stops, are using those

service legs to operate in the network.

Demand data used in this study for the base-case problem instance is

hypothetical and based on the shipper/receiver’s city population; and in the

additional problem instances, the demands have been randomly varied to ac-

count for the fluctuating nature of demand for regular and hazmat freight

transportation services from one transportation period to another. It should

be noted that in our case study no demand will be generated between cities

that are in the same geographical region and/or in close proximity of each

other since transportation demand in those cases will most likely be met us-

ing the highway infrastructure as opposed to a complete rail-truck intermodal

chain. Respecting the above-mentioned conditions and pairing each shipper

and receiver results in 432 supply and demand pairs i.e. traffic-classes. Each

traffic-class will be assigned a delivery deadline and a transportation demand

for regular/hazmat freight, the details of which will be further elaborated in

the parameter estimation section.

Further details for estimating parameters such as transport risk for every

link in the network along with all the other parameters will be further explained

in Section 4.2.
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Chapter 4

Modeling framework

In this chapter, we present a bi-objective mathematical formulation for the

tactical hazmat/regular freight shipment planning and routing problem which

also incorporates the possibility of disruption in one or more of the train service

legs and/or intermodal terminals.

4.1 Mathematical formulation

Rail-truck intermodal transportation chains are typically comprised of the fol-

lowing links: (I) Inbound drayage i.e. transportation of freight from shipper

to origin terminal; (II) Rail-haul i.e. transportation of freight from origin ter-

minal to destination terminal; (III) Outbound drayage i.e. transportation of

freight from the destination terminal to the location of the receiver. Demand

of each customer (receiver) will be met by transportation of freight on the
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path created by joining these three links. We use distinct flow variables for

regular and hazmat freight to track their movement separately, since we need

to incorporate the risk associated with hazmat cargo in addition to the cost

attributes of both types of freight.

The mathematical notations used in the formulation of the model will be

introduced below. It is wort noting that since this model has been inspired

by the work of Verma et al. (2012), we have used similar notations whenever

possible for convenience.

Notations

Sets

I Set of shipper locations indexed by i

J Set of receiver locations indexed by j

A Set of origin intermodal terminals indexed by a

B Set of destination intermodal terminals indexed by b

Zij Set of shipper-receiver pairs (traffic-classes) indexed by z

Pia Set of arcs for inbound drayage indexed by p

Rab Set of rail routes between each intermodal terminal pair indexed by r

Qbj Set of arcs for outbound drayage indexed by q
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K Set of hazmat classes indexed by k

V Set of intermodal train services indexed by v

S Set of service legs indexed by s

Parameters

Cp Cost of inbound drayage for a single hazmat container on arc p

C̄p Cost of inbound drayage for a single regular container on arc p

Cr Cost of using rail route r to move a single hazmat container

C̄r Cost of using rail route r to move a single regular container

Cq Cost of outbound drayage for a single hazmat container on arc q

C̄q Cost of outbound drayage for a single regular container on arc q

FCv Fixed cost incurred by using intermodal train service type v

PCz Penalty cost per container per unit time of traffic class z

T p Travel time of arc p for inbound drayage

T r Travel time of rail route r

T q Travel time of arc q for outbound drayage

DTz Delivery deadline of traffic-class z

U v Container loading capacity of intermodal train service of type v

Gs Equals 1 if service leg s is undisrupted; 0 otherwise

Ga Equals 1 if terminal a is undisrupted; 0 otherwise

Gb Equals 1 if terminal b is undisrupted; 0 otherwise

Hp
k Risk arising from moving a single hazmat container of type k on arc p

36



M.Sc. Thesis - Arash Moradi Rad McMaster - Computational Science & Engineering

Hr
k Risk arising from moving a single hazmat container of type k using

rail route r

Hq
k Risk arising from moving a single hazmat container of type k on arc q

Dkz Demand for containers of hazmat type k demanded in traffic-class z

D̄z Demand for regular freight containers in traffic-class z

αr
v Equals 1 if rail route r uses train service v; 0 otherwise

βr
s Equals 1 if rail route r uses service leg s; 0 otherwise

M A large positive integer such that M ≥
∑

z∈Zij

(
∑
k∈K

Dkz + D̄z)

Variables

Xp
kz Number of hazmat containers of type k using arc p in traffic-class z

X̄p
z Number of regular containers using arc p in traffic-class z

Xr
kz Number of hazmat containers of type k using rail route r in traffic-class

z

X̄r
z Number of regular containers using rail route r in traffic-class z

Xq
kz Number of hazmat containers of type k using arc q in traffic-class z

X̄q
z Number of regular containers using arc q in traffic-class z

Y prq
kz Proportion of hazmat type k freight demand of traffic-class z that is

fulfilled using path prq

Ȳ prq
z Proportion of regular freight demand of traffic-class z that is fulfilled

using path prq

N v Number of intermodal train services of type v
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Bi-objective Optimization Model

minimize Cost:
∑
z∈Zij

∑
p∈Pia

[∑
k∈K

(
CpXp

kz

)
+ C̄pX̄p

z

]
+

∑
z∈Zij

∑
r∈Rab

[∑
k∈K

(
CrXr

kz

)
+ C̄rX̄r

z

]
+

∑
z∈Zij

∑
q∈Qbj

[∑
k∈K

(
CqXq

kz

)
+ C̄qX̄q

z

]
+

∑
v∈V

FCvN v +
∑
z∈Zij

∑
p∈Pia

∑
r∈Rab

∑
q∈Qbj[

PCz

((
T p + T r + T q

)
−DTz

) (
Ȳ prq
z D̄z +

(∑
k∈K

Y prq
kz Dkz

))]
︸ ︷︷ ︸

if
(
T p+T r+T q

)
> DTz

Risk:
∑
z∈Zij

∑
p∈Pia

∑
k∈K

[
Hp

k X
p
kz

]
+
∑
z∈Zij

∑
r∈Rab

∑
k∈K

[
Hr

k X
r
kz

]
+

∑
z∈Zij

∑
q∈Qbj

∑
k∈K

[
Hq

k X
q
kz

]
subject to∑
p∈Pia

Xp
kz =

∑
r∈Rab

Xr
kz ∀a ∈ A, ∀z ∈ Zij, ∀k ∈ K (1.a)

∑
p∈Pia

X̄p
z =

∑
r∈Rab

X̄r
z ∀a ∈ A, ∀z ∈ Zij (1.b)

∑
r∈Rab

Xr
kz =

∑
q∈Qbj

Xq
kz ∀b ∈ B, ∀z ∈ Zij, ∀k ∈ K (1.c)

∑
r∈Rab

X̄r
z =

∑
q∈Qbj

X̄q
z ∀b ∈ B, ∀z ∈ Zij (1.d)
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∑
q∈Qbj

Xq
kz = Dkz ∀z ∈ Zij, ∀k ∈ K (2.a)

∑
q∈Qbj

X̄q
z = D̄z ∀z ∈ Zij (2.b)

∑
z∈Zij

∑
r∈Rab

[(∑
k∈K

αr
vβ

r
s X

r
kz

)
+
(
αr
vβ

r
s X̄

r
z

) ]
≤ U vN v ∀s ∈ S, ∀v ∈ V (3)

∑
z∈Zij

∑
r∈Rab

[(∑
k∈K

βr
sX

r
kz

)
+
(
βr
s X̄

r
z

) ]
≤ MGs ∀ s ∈ S (4)

∑
z∈Zij

∑
r∈Rab

(∑
k∈K

Xr
kz + X̄r

z

)
≤ MGa ∀a ∈ A (5.a)

∑
z∈Zij

∑
r∈Rab

(∑
k∈K

Xr
kz + X̄r

z

)
≤ MGb ∀b ∈ B (5.b)

∑
q∈Qbj

∑
r∈Rab

Y prq
kz Dkz = Xp

kz ∀p ∈ Pia, ∀z ∈ Zij, ∀k ∈ K (6.a)

∑
q∈Qbj

∑
r∈Rab

Ȳ prq
z D̄z = X̄p

z ∀p ∈ Pia, ∀z ∈ Zij (6.b)

∑
p∈Pia

∑
q∈Qbj

Y prq
kz Dkz = Xr

kz ∀r ∈ Rab, ∀z ∈ Zij, ∀k ∈ K (6.c)

∑
p∈Pia

∑
q∈Qbj

Ȳ prq
z D̄z = X̄r

z ∀r ∈ Rab, ∀z ∈ Zij (6.d)

∑
p∈Pia

∑
r∈Rab

Y prq
kz Dkz = Xq

kz ∀q ∈ Qbj, ∀z ∈ Zij, ∀k ∈ K (6.e)

∑
p∈Pia

∑
r∈Rab

Ȳ prq
z D̄z = X̄q

z ∀q ∈ Qbj, ∀z ∈ Zij (6.f)

Xp
kz ≥ 0, X̄p

z ≥ 0 integer ∀p ∈ Pia, ∀z ∈ Zij, ∀k ∈ K (7.a)

Xr
kz ≥ 0, X̄r

z ≥ 0 integer ∀r ∈ Rab, ∀z ∈ Zij ∀k ∈ K (7.b)
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Xq
kz ≥ 0, X̄q

z ≥ 0 integer ∀q ∈ Qbj, ∀z ∈ Zij ∀k ∈ K (7.c)

N v ≥ 0 integer ∀v ∈ V (7.d)

The mathematical model is a variant of the multicommodity flow problem

which is NP-Hard to solve. In order to maintain the linearity of the model

and to reduce the number of defined variables, we needed to preprocess the

network which ultimately led to less computational complexity and 140400

continuous and 37664 integer variables in total. The model incorporates both

cost and risk as objectives. The cost objective includes the cost of inbound

drayage operations, rail-haul cost, the cost of outbound drayage, fixed cost of

operating the train services in the network as well as the penalty cost incurred

if the selected transportation path for a traffic-class has a travel time that

exceeds its delivery deadline. The risk objective captures the transportation

risk associated with moving hazmat cargo on the inbound drayage, rail-haul,

and outbound drayage links.

Constraint (1) signifies the transshipment function of the intermodal ter-

minals. Constraints (1.a) and (1.b) capture the transfer of hazmat and freight

shipments respectively, from trucks coming through inbound drayage links to

trains using rail routes to reach their destination terminals. Constraints (1.c)

and (1.d) signify the transfer of hazmat and regular shipments from trains to
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trucks that use outbound drayage links the deliver the freight to their intended

receivers. Constraint (2) ensures the fulfillment of every receiver’s demand for

hazmat freight (2.a) and regular freight (2.b) using the trucks coming thor-

ough outbound drayage links. Constraint (3) incorporates the capacities of

the trains into the model and ensures that each intermodal train service type

is assigned with the minimum number of trains that is required to transport

the demanded containers on every service leg that it traverses. Constraint (4)

ensures that if a train service leg is disrupted, no train route can use the dis-

rupted service leg to transport freight. Constraints (5.a) and (5.b) ensure that

if an intermodal terminal is disrupted, no loading or unloading of shipments

can be performed on that disrupted terminal. Therefore, transport demand

has to go through other terminals and rail routes. Constraint (6) calculates

the value of the Y variables which signify the proportion of hazmat or regu-

lar demand that is fulfilled by transportation via each path (comprised of arcs

p,r,q) in the network. Constraint (7) ensures the sign and integer requirements

of the model.

4.2 Estimation of model parameters

A brief description of how we calculated each parameter used in the math-

ematical model is presented in the following subsections. Readily available
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information was used to estimate these parameters. The adopted hazmat risk

assessment methodology warranted a more detailed explanation because of its

complexity and the need for a more clear distinction between our adopted

approach and other approaches in the literature reviewed in Chapter 2.

4.2.1 Demands and capacities

Since demand for the transportation services of CSX Corporation between

each shipper and receiver pair may vary week by week, we assigned hypothet-

ical demand values to each pair based on the population of their respective

cities. We assumed that a total of 20,000 intermodal containers need to be

transported in the network, with each freight category i.e. hazmat and reg-

ular accounting for 10,000 containers. Data obtained from CSX Corporation

shows that hazmat classes 2, 3 and 8 combined account for around 80 percent

of all hazardous material cargo transported on the company’s network (CSX,

2020a). Therefore, we limit the hazmat classes analyzed in this study to the

aforementioned three, and assume that 30 percent of total hazardous material

transported belongs to Class 2, 50 percent belongs to Class 3 and 20 percent

belongs to Class 8. Finally, the capacity of intermodal trains is assumed to be

120 containers for all the trains operating in the network.
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4.2.2 Travel times and deadlines

Average intermodal train speed was calculated to be 25.184 miles per hour

using the historical data obtained from CSX Corporation’s performance mea-

sures (CSX, 2020b). Therefore, the travel time for intermodal trains can be

obtained by dividing the length of the arc by the aforementioned train speed.

This average travel time also includes intermediate terminal dwell of the trains

i.e. the total time in hours that trains spend at a given intermediate terminal.

The maximum traveling speed for trucks differs by state in the US; nonethe-

less, we have assumed an average truck speed of 50 miles per hour, taking into

account delays due to traffic congestion, traffic lights etc.

The lead time to satisfy demand for each traffic-class was calculated based

on the shortest path available for that traffic-class plus a constant number of

hours as a precautionary measure taken by the transportation company. In

other words, delivery deadline was set equal to the the shortest possible travel

time in hours for each traffic-class plus a buffer of 10 hours. For instance, if the

shortest travel time between shipper A and receiver B was equal to 35 hours,

the delivery deadline for this traffic-class would be 45 hours. The company

has a contractual obligation to transport the intermodal containers before this

pre-specified delivery deadline; otherwise, a penalty cost set to 40 dollars per

container will be incurred per each hour of delay (Sarhadi et al., 2017).
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4.2.3 Costs

The cost for drayage operations which is normally calculated based on the

amount of time that the driver and the truck are engaged, was set to be

250 dollars per hour including the fuel cost; moreover, it is assumed that

the cost of a container transfer at the intermodal terminal is 150 dollars and

the operations for loading, unloading or transfer of an intermodal container

take approximately one hour (Verma et al., 2012). Intermodal rail-haul cost

was set to be 0.875 dollars per mile and the hourly fixed cost of operating

an intermodal train was set to be 500 dollars per hour including the hourly

compensation for the services of a driver, a brakeman and an engineer assumed

to be 100 dollars each plus 200 dollars hourly rate for the engine (Verma et al.,

2012).

4.2.4 Risk

Accidents leading to hazardous material release events can have many neg-

ative consequences for the population and property affected, as well as the

surrounding environment. However, since the threat to human life is the most

significant component and has received the most attention in relevant litera-

ture, this paper focuses solely on the hazmat incident consequence of human

fatalities or serious injuries. According to Erkut and Verter (1995), we can
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define the risk caused by transportation of a single shipment of hazmat type

m via arc a for population center i as the product of individual risk and the

number of people living in the said population center as can be seen in the

following equation (from Erkut and Verter (1995)):

Riskaim = IRaim ×Qi (1)

where IRaim is the risk to individuals in population center i and Qi is the

number of individuals residing at population center i. Risk to individuals in

this case refers to the probability of death or serious injury.

If we divide the arc a into a set of homogeneous road segment denoted by

s, IRaim may be defined as the sum of individual risk arising from each road

segment on arc a and can be obtained by the following formula (adopted from

Zografos and Androutsopoulos (2004)):

IRaim =
∑
s

Ps(A)× Psm(R|A)× Pm(I|R)× Psim(C|I) (2)

where Ps(A) is the probability of an accident that involves hazmat on road

segment s, Psm(R|A) is hazmat release probability in case of an accident,

Pm(I|R) is the hazmat incident probability in case material m is released due

to an accident, and Psim(C|I) is the probability of serious injury or death in

case of a hazmat incident.

Since it is very hard and impractical to accurately estimate the impact
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of a hazmat incident on individuals, many researchers (List et al., 1991) have

simplified the previously mentioned formula by assuming that all individuals

residing within a threshold distance λ from the hazmat incident are equally

exposed to the risk of death or serious injury. This pragmatic approach leads

to the following risk expression (from Zografos and Androutsopoulos (2004))

which has been adopted in this paper:

Riskma =
∑
s

ps × Cm
s (3)

where Riskma is the total expected risk due to transportation of hazardous

material m on arc a of the network, ps is the probability of a release event on

homogeneous road segment s of arc a, and Cm
s represents the consequences of

a hazmat m release event such as the number of fatalities or serious injuries.

Since sufficient accident data might not be available for the probability

of a hazmat incident on each individual arc in the network, we resort to a

more aggregate measure which is the probability of an accident leading to

a hazmat release incident over the whole network and use it as a substitute

for the individual link’s associated hazmat incident probability. Vaezi (2018)

obtained the probability of hazmat release incident to be equal to 3.64× 10−8

on the US rail network. This value signifies the probability of a hazmat release

incident per each train mile traveled. Similarly, we have assumed the rate of

1.35× 10−7 for drayage operations (FMCSA, 2001).
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In order to obtain the threshold distance λ for each hazardous mate-

rial studied in this research, impact areas were estimated using the ALOHA

software (EPA, 2016). A representative chemical in ALOHA’s database was

chosen for hazmat classes 2, 3 and 8 and a scenario in which a full tank ex-

plodes and its chemical contents burn in a fireball is envisaged. The full list of

assumptions and ALOHA input parameters for each hazmat class is provided

in Table 1. The red zone which is a circle with radius of 0.32 miles for hazmat

class 2, 0.28 miles for hazmat class 3 and 0.16 miles for hazmat class 8 signi-

fies the area in which individuals are potentially exposed to death or serious

injury.

Having obtained the aforementioned threshold distances, three buffers

(one for each hazmat class) were created along each arc in the network using

ArcGIS software (ESRI, 2020) and the number of individuals residing inside

the impact area was calculated. This number multiplied by the corresponding

incident probability is the hazmat risk associated with the transportation of a

single hazmat container on that particular link in the network.

It is worth noting that a large number of hazmat risk assessment method-

ologies with the aim of estimating risks associated with transportation of haz-

ardous materials on specific links in the network have been developed, as was

elaborated in the literature review section, and the method adopted in this
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study might not be the best one overall. However, since the focus of this

study is on developing a methodology for disruption management, the risk

assessment method adopted here should be adequate for our purposes.

Table 1: ALOHA input parameters

Hazmat Class Class 2 Class 3 Class 8

Representative Chemical Propane Ethanol Acetic Acid

Wind Speed (meters/sec) 10 (m/s) 10 (m/s) 10 (m/s)

Wind Measurement Height 3 meters 3 meters 3 meters

Ground Roughness Urban or Forest Urban or Forest Urban or Forest

Cloud Cover Partly Cloudy Partly Cloudy Partly Cloudy

Air Temperature 20◦C 20◦C 20◦C

Stability Class D D D

Inversion Height No Inversion No Inversion No Inversion

Humidity 50% 50% 50%

Tank Type & Orientation Horiz. cylinder Horiz. cylinder Horiz. cylinder

Diameter (feet) 10 9.7 8.09

Length (feet) 57 55 39

Volume (gallons) 33,500 30,500 15,000

State of Chemical Liquid Liquid Liquid

Temperature within Tank Ambient Temp Ambient Temp Ambient Temp

Liquid Level 100% 100% 100%

Type of Tank Failure BLEVE BLEVE BLEVE

Potential Hazards Thermal radiation

from fireball

Thermal radiation

from fireball

Thermal radiation

from fireball

Tank Mass in Fireball 100% 100% 100%

Red Threat Zone 10 kW/(sq m)=

potentially lethal

within 60 sec

10 kW/(sq m)=

potentially lethal

within 60 sec

10 kW/(sq m)=

potentially lethal

within 60 sec
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Chapter 5

Computational experiments

The focus of this chapter will be on providing an optimal solution to the

mathematical optimization model developed and elaborated in the previous

chapter. In the section called pre-disruption we will solve the model for normal

operating circumstances of the network in which no service leg or terminal

is dysfunctional. This can be accomplished either by removing constraints

(4) and (5) from the model or adjusting the relevant parameters to the no

disruption setting on any link or node. Subsequently, in the section called

post-disruption, we will incorporate the disruption of a single service leg or a

single terminal into the model by changing the parameter settings as required,

and solve the model again until we have covered all the network elements one

at a time.

Many techniques have been introduced in the literature for solving multi-
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objective optimization models and one of the most widely used classical ap-

proaches is the weighted sum method which consists of attaching weights to

every objective based on the decision-maker’s preferences (Deb, 2001). As

previously indicated, we define the managerial problem from the perspective

of an intermodal transportation company interested in minimizing total cost

of operations as well as the risk associated with the transportation of hazmat.

We assume that the decision maker values both objectives equally, and thus

assign identical weights to the cost and risk objectives in order to solve the

model for normal operating circumstances, as well as each of the disruption

scenarios. Nevertheless, we also report on the results and set of Pareto-optimal

solutions obtained by attaching different weights to the cost and risk objectives

in Section 5.1.1.

A necessary step that is required with the weighted sum approach is

the normalization of the objectives. The cost objective which represents the

total cost of operations is likely to be in millions of dollars, while the risk

objective which represents the expected number of people that are exposed to

the risk of death or serious injury may differ from the first objective by several

orders of magnitude. In order to scale the two objective functions, Grodzevich

and Romanko (2006) suggest we first solve the minimization problem of each

objective function separately, obtaining the lower and upper bounds of the

Pareto-optimal set called the Utopia (denoted by zUi ) and Nadir (denoted by
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zNi ) points respectively, thus bounding the objective functions (denoted by

fi(x)) by (from Grodzevich and Romanko (2006)):

0 ≤ fi(x)− zUi
zNi − zUi

≤ 1 (4)

which brings both objective functions to the same order of magnitude.

All of the problem instances and the corresponding disruption scenarios

analyzed in this study were solved using the Python API of Gurobi Optimizer

version 9.0.2. (Gurobi Optimization, 2020). All the computation were per-

formed on a laptop computer with INTEL Core i7-8550U CPU and 16 GB

of RAM. The computational times for the different problem instances varied

between roughly 2 and 20 minutes of CPU time.

5.1 Pre-disruption

For the purposes of this analysis, we define the base-case problem instance

as the case representing the first planning period’s demand data solved via

assigning equal weights to both objectives. Having solved the base-case prob-

lem instance using the weighted sum approach with equal weights attached

to both objectives after 5 minutes of CPU time, we summarize the obtained

objective function values in Table 2. The specified transportation demand in

the base-case problem instance can be met at the cost of $62.6 million, and

expected risk of 178.3 individuals. It is worth noting that a significant portion
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of transportation cost stems from drayage operations. A small penalty cost

has also been incurred which signifies the selection of longer paths to satisfy

demand (compared with the shortest path for that traffic-class) in order to

avoid exposing a significantly higher number of people to hazmat risks.

Table 2: Base-case solution

Cost Risk

Drayage Rail-haul Penalty Cost Drayage Rail-haul

48,610,400 13,992,786 20,675 103.268 75.103

Total Cost: 62,623,862 Total Risk: 178.372

Table 3 provides more details about the 32 intermodal train service types

operating in the network, with each single train having a capacity of 120

containers. For instance, the first row in the table represents the intermodal

train service that starts its operations in Atlanta and ends them in Norfolk,

with a single stop along the way in Charlotte. Only two trains are required

to transport the assigned containers which will add a fixed rail-haul cost of

$26,643 to the company’s overall transport costs. As for the second intermodal

train service which goes form the Baltimore terminal to the terminal in Chicago

with a stop in Pittsburgh, a significantly higher number of trains i.e. 21 is

needed to fulfill the assigned transportation demand which in turn incurs a

much higher train fixed cost of $321,871. The relevant details about the other
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train services in the network can be similarly interpreted.

It is evident from Table 3 that each of the train services operating between

the intermodal terminals of Cleveland and Jacksonville, Detroit and Nashville,

Detroit and Norfolk and St. Louis and Norfolk have only been assigned a

single train. This underutilization might stem from the fact that demand in

few traffic-classes is fulfilled via the paths that utilize these train services or

that the demand in those traffic-classes is minimal. The company’s decision

makers might be interested in identifying the reasons behind this inefficiency

and potentially add or remove some train services from the network.

It should be pointed out that the intermodal train services and their

intermediate stops in our case study’s network were designed with the objective

of connecting every single intermodal terminal in each of our case study’s

geographical regions to every other intermodal terminal in all the other regions.

This is an important and essential provision to ensure the connectivity of the

network both in normal operating conditions and in case of disruption in one

service leg or intermodal terminal. This consideration along with the fact that

every shipper/receiver in our network is connected to at least two intermodal

terminals makes it possible to fulfill the transportation contracts with the

existing infrastructure. Therefore, even if a train service is underutilized in

the base-case, it might play a crucial role in the case of a disruption event.
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Table 3: Train service attributes

From To 1st Stop 2nd Stop Trains Fixed Cost

Atlanta Norfolk Charlotte 2 26,643

Baltimore Chicago Pittsburgh 21 321,871

Charleston Detroit Charlotte Columbus 12 240390

Chicago Baltimore Pittsburgh 21 321,871

Chicago Detroit 6 36,928

Chicago Nashville Indianapolis 5 51,123

Chicago New York Cleveland 7 130,221

Cleveland Jacksonville Columbus Atlanta 1 22,970

Columbus New York Cleveland 3 44,432

Columbus St. Louis Indianapolis 15 128,950

Detroit Pittsburgh Columbus Cleveland 7 74,630

Detroit Chicago 6 36,928

Detroit Nashville 1 11,455

Detroit Charleston Columbus Charlotte 13 260,423

Detroit Norfolk Columbus 1 16,836

Jacksonville Nashville Atlanta 8 94,980

Jacksonville Norfolk Charleston 8 99,428

Jacksonville Cleveland Atlanta Columbus 1 22,970

Nashville Jacksonville Atlanta 11 130,598

Nashville Chicago Indianapolis 5 51,123

Nashville Detroit 1 11,455

New York Columbus Cleveland 6 88,865

New York Norfolk Philadelphia Baltimore 13 131,889

New York Chicago Cleveland 3 55,809

Norfolk St. Louis Indianapolis 1 20,409

Norfolk Detroit Columbus 1 16,836

Norfolk New York Baltimore Philadelphia 13 131,889

Norfolk Jacksonville Charleston 8 99,428

Norfolk Atlanta Charlotte 2 26,643

Pittsburgh Detroit Cleveland Columbus 8 85,292

St. Louis Columbus Indianapolis 13 111,757

St. Louis Norfolk Indianapolis 1 20,409
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Since the focus of our study is to identify the critical network infrastruc-

ture owned by the transportation company i.e. the train tracks and intermodal

terminals, and thus facilitating disruption risk mitigation planning, we try pro-

vide a better picture of the movement of freight in our network through the

simple diagram in Figure 3 for the regular freight containers and Figure 4 for

the hazmat freight containers. Figures 3 and 4 depict the rail-haul portion

of the optimal solution found for the base-case problem instance. The nodes

represent intermodal terminals and their size indicates the number of contain-

ers that are transferred from trucks to trains at this yard. The links represent

train service legs and their width indicates the traffic density on that particular

service leg.

It is evident from the diagrams that service leg and terminal utilization in

the case of hazmat freight is more evenly distributed which is an ideal situation

from a risk distribution perspective. However, when it comes to regular freight

the terminals in Philadelphia, Baltimore, Cleveland, Detroit and Chicago are

busier than the rest of terminals which indicates that a relatively larger number

of shortest paths in the network utilize these terminals and towns with a higher

population and consequently higher transportation demand are located close

to these yards. Similarly, the Baltimore-Pittsburgh service leg has a higher

traffic density which is due to its importance in connecting three geographical

regions and its utilization in many of the shortest paths.
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Figure 3: Service leg and terminal utilization (regular freight)

Figure 4: Service leg and terminal utilization (hazmat freight)
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5.1.1 Cost-risk trade-off

This section is devoted to reporting and commenting on the impact of pri-

oritizing one objective i.e. cost or risk over the other through varying the

weights attached to the two objectives and solving the bi-objective routing

optimization program for each case. Table 4 summarizes the solutions found

in the form of total cost, total risk and total number of trains in the network

and Figure 5 is a visual representation of the Pareto frontier. Every row in

Table 4 and every point in Figure 5 signifies a non-inferior solution in the

Pareto-optimal set with the min cost and min risk cases representing the two

extremes and base case representing equal weights for both objectives.

We can see in Table 4 that the total cost in the min cost case is roughly

$61.7 million and the total risk is around 203 individuals, while the min risk

solution incurs a total cost of $65.1 million and exposes 171.5 to hazmat risks.

This means that by spending an additional $3.3 million dollars, it is possible to

reduce the expected risk of death or serious injury by around 31.4 individuals.

This might be of interest to hazmat regulators. Moreover, the min risk solution

is 3.8% less risky and 4% more expensive than the base case, while the min

cost solution is 13.8% more risky and 1.3% less expensive, with the increment

in cost stemming from using longer but less risky paths for hazmat containers.
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Table 4: Cost and risk trade-off numbers

Legend Cost Risk No. of Trains

Min Cost 61,788,439 203.01 220

A: (cost, risk) = (0.9, 0.1) 61,833,594. 194.18 219

B: (cost, risk) = (0.8, 0.2) 61,906,414 189.98 220

C: (cost, risk) = (0.7, 0.3) 62,034,067 186.33 220

D: (cost, risk) = (0.6, 0.4) 62,292,888 182.03 224

Base Case 62,623,862 178.37 224

E: (cost, risk) = (0.4, 0.6) 62,859,998 176.58 226

F: (cost, risk) = (0.3, 0.7) 63,269,000 174.46 230

G: (cost, risk) = (0.2, 0.8) 63,692,907 173.12 236

H: (cost, risk) = (0.1, 0.9) 64,529,040 171.81 234

Min Risk 65,145,520 171.57 254

The number of trains required to fulfill transportation demand in the Min

Cost case is 220, and the number of trains required in the Min Risk case is 254.

This is an increase of 34 trains and means that prioritizing the risk objective

function and utilizing less risky paths to deliver hazmat shipments may lead to

them being moved on different paths compared with regular freight shipments,

and thus more trains are utilized in the network. As we move from the side

of the Pareto frontier that represents the Min Cost solution to the side that

represents the Min Risk solution in Figure 5, the number of trains required in

the network increases by around 15%.
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Figure 5: Cost - Risk trade-off

This shift in prioritization of objectives will inevitably lead to some path

selection changes as well. To cite an example, we focus on the 20 Class III

hazmat shipments that need to be transported from Allentown to Champaign.

In the base-case, the containers are sent by truck from Allentown to New York

and then continue the journey via train to Chicago, ultimately arriving by

truck at their destination. However, in the Min Cost case, the selected origin

intermodal terminal changes to Philadelphia, while in the Min Risk case, the

selected destination intermodal terminal changes to Indianapolis.
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5.2 Post-disruption

The loss of a part of the transportation network infrastructure such as one

of the service legs or terminals due to random disruptions might potentially

have an enormous impact on the efficiency of the network. In other words, the

total cost and/or risk of fulfilling the customer demand for the transportation

company may increase significantly since the shipments need to be rerouted

through costlier and riskier paths. Therefore, it is in the transportation com-

pany’s best interest to know about the magnitude of the potential impact of

losing any of the company-owned infrastructure due to random disruption so

that mitigation action can be taken prior to the actual disruption event to

lessen the severity of consequences.

In order to assess the impact of the loss of a network element on the

total network cost and risk, we incorporate the disruption of each individual

service leg or terminal in the optimization model’s parameters one by one,

and then solve the model for each of these disruption scenarios. The results

of this process have been summarized in Table 5 for service legs and in Table

6 for terminals. Columns 3 and 4 illustrate the network-wide cost and risk of

transportation operations after the disruption, while columns 5 and 6 signify

the difference between the aforementioned values and the total cost and risk

in the base-case which acts as a benchmark of network performance.
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Table 5: Post-disruption objective function values (service legs)

No. Service Leg Total Cost Total Risk Cost Increase Risk Increase

1 Atlanta - Charlotte 62,812,865 183.593 189,003 5.221

2 Atlanta - Columbus 62,770,895 183.531 147,033 5.159

3 Atlanta - Jacksonville 62,894,529 184.142 270,666 5.770

4 Atlanta - Nashville 64,758,267 184.369 2,134,404 5.996

5 Baltimore - Norfolk 64,391,560 185.180 1,767,697 6.808

6 Baltimore - Philadelphia 64,500,143 187.312 1,876,280 8.940

7 Baltimore - Pittsburgh 64,910,534 189.863 2,286,671 11.491

8 Charleston - Charlotte 62,748,289 183.696 124,426 5.324

9 Charleston - Jacksonville 62,731,185 184.469 107,322 6.097

10 Charleston - Norfolk 63,184,050 186.153 560,187 7.781

11 Charlotte - Columbus 63,148,713 192.806 524,851 14.434

12 Charlotte - Norfolk 63,113,170 184.121 489,307 5.749

13 Chicago - Cleveland 62,791,334 184.749 167,472 6.377

14 Chicago - Detroit 63,181,462 183.607 557,599 5.235

15 Chicago - Indianapolis 63,366,856 184.898 742,994 6.526

16 Chicago - Pittsburgh 63,568,431 185.842 944,569 7.470

17 Cleveland - Columbus 63,151,184 185.864 527,322 7.492

18 Cleveland - New York 62,902,990 187.062 279,127 8.690

19 Cleveland - Pittsburgh 63,355,890 183.269 732,027 4.897

20 Columbus - Detroit 63,181,501 187.682 557,639 9.309

21 Columbus - Indianapolis 62,907,744 189.678 283,881 11.306

22 Columbus - Norfolk 62,703,766 184.149 79,903 5.777

23 Detroit - Nashville 62,836,195 183.546 212,332 5.174

24 Indianapolis - Nashville 63,301,108 184.366 677,245 5.994

25 Indianapolis - Norfolk 62,730,086 184.251 106,223 5.879

26 Indianapolis - St. Louis 62,742,049 183.490 118,187 5.117

27 New York - Philadelphia 62,763,407 183.698 139,544 5.326
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Table 6: Post-disruption objective function values (terminals)

No. Terminal Total Cost Total Risk Cost Increase Risk Increase

1 Atlanta 63,581,241 177.132 957,378 -1.239

2 Baltimore 65,223,236 179.268 2,599,373 0.896

3 Charleston 62,893,928 180.165 270,065 1.793

4 Charlotte 62,912,715 183.904 288,852 5.532

5 Chicago 64,693,587 176.831 2,069,724 -1.540

6 Cleveland 64,620,267 183.766 1,996,405 5.394

7 Columbus 63,006,900 184.269 383,038 5.897

8 Detroit 64,180,308 181.642 1,556,445 3.270

9 Indianapolis 63,106,983 183.716 483,121 5.344

10 Jacksonville 62,697,925 179.334 74,063 0.962

11 Nashville 63,372,036 178.662 748,173 0.290

12 New York 62,593,026 181.293 -30,836 2.921

13 Norfolk 62,540,241 183.181 -83,620 4.808

14 Philadelphia 63,075,336 184.730 451,474 6.358

15 Pittsburgh 62,821,773 182.364 197,910 3.992

16 St. Louis 62,742,049 183.490 118,187 5.117

As is evident from Table 5, the disruption of the Baltimore-Pittsburgh

service leg has the highest impact in terms of cost. This can be attributed

to the high utilization rate of this service leg in the base-case solution as

evidenced by Figure 3. Since a large number of containers need to be rerouted

to costlier paths, the overall cost of operations increases significantly. Similarly,

a disruption in the Baltimore terminal leads to a substantial surge in total
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cost. The highest increase in risk occurs after a disruption in the Charlotte-

Columbus service leg, and the Philadelphia terminal which are both used in a

large number of least risk paths.

As we mentioned in Section 3.1, the purpose of obtaining these numer-

ical values representing the increase or decrease in post-disruption objective

function values is to use them as input for the subsequent machine learning

models. Each row in Tables 5 and 6, which represents the post-disruption

impact of a service leg or a terminal respectively, will be regarded as an input

data point. This provides us with 27 data points in the service leg data set

and 16 data points in the terminal data set which are clearly not enough to

train a generalizable classification model.

Therefore, we assume the demand data for 10 additional planning periods

are available and we go through the process outlined in the beginning of this

section to obtain the results in Tables 5 and 6 for each subsequent planning

period. It is worthy to note that the total number of containers to be trans-

ported in each subsequent period varies between 19,000 and 21,000 containers

and customer demand will be randomly assigned to each traffic-class. In addi-

tion to providing us with 297 data points in the service legs data set and 176

data points in the terminals data set, this provision ensures that variability in

real life transportation demand is also incorporated in our analysis.
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Chapter 6

Predictive analytics

The transportation company decision-makers can identify the infrastructure

with the highest negative impact on total cost and/or risk by looking at the re-

sults of the post-disruption model summarized in Tables 5 and 6. For instance,

it is clear from column five of Table 5 that a disruption in the Atlanta-Nashville

service leg causes a massive increase in cost of more than two million dollars

while a disruption in Charlotte-Columbus does not increase the cost as much

but increases the population at risk by more than 14 people. The Baltimore-

Pittsburgh service leg increases network-wide costs by more than two million

and also increases total risk to the population by more than 11 individuals.

With regards to terminals, a disruption in the Baltimore intermodal ter-

minal results in an increase of more than 2.5 million dollars, while a disrup-

tion in the Philadelphia intermodal terminal increases the network-wide risk
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by more than 6 individuals. Cleveland terminal’s disruption is impactful in

terms of both objectives with close to 2 million dollars in cost increase, and

exposing an additional 5 people to the risk of death or serious injury.

Although comparing the actual post-disruption total cost and risk impact

values can be useful in accurately identifying the critical infrastructure, ob-

taining these values is computationally expensive and time-consuming, since

the routing optimization model needs to be solved for as many times as the

number of service legs and terminals in the network. Consequently, the bigger

the network is, the less efficient this method of obtaining actual post-disruption

values and then manually categorizing the infrastructure becomes.

Our proposed methodology’s advantage lies within its promise to help the

decision-makers circumvent the process of obtaining actual post-disruption to-

tal cost and risk impact values for every single transportation planning period,

once a reliable classification model has been trained. The goal of categoriz-

ing the company’s infrastructure into different classes based on their post-

disruption impact on network performance is realized through harnessing the

power of a category of unsupervised learning techniques known as clustering

which will aid us in categorizing network elements, as well as supervised learn-

ing techniques known as classification which will assign the infrastructure to

the pertinent criticality class based on a predefined set of their features.
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6.1 Clustering

In order to plan for disruption mitigation strategies, the transportation com-

pany’s decision-makers need to have a clear idea of which subset of their net-

work infrastructure can be considered high impact and which ones can be

considered low impact, since applying the same mitigation strategies to all

the service legs and terminals will be very costly and not economically viable.

This is an area in which clustering techniques can be very helpful.

Clustering refers to a host of techniques for discovering subsets or groups

of similar observations in a data set. The aim of this process is to divide

the data points into groups in which members are as similar to each other

as possible, while data points belonging to different groups should be quite

dissimilar to each other. The measure of similarity in our case is the amount

of increase in the post-disruption total cost and/or total risk compared to the

pre-disruption total cost and total risk. In other words, we want the network

infrastructure pieces which lead to significant increases in post-disruption cost

and/or risk when disrupted to be grouped together, and the ones which lead

to smaller negative impacts to be placed into other groups.

One of the most commonly used and convenient clustering techniques is

the K-means clustering algorithm. James et al. (2013) state that K-means
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clustering minimizes within-cluster variances or the sum of squared Euclidean

distance from every data point to the centroid in a cluster, and define it as

the following optimization problem (equation from James et al. (2013)):

minimize
C1,...,CK

{ K∑
k=1

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)2
}

(5)

in which K is the number of clusters, |Ck| signifies how many data points are

in the kth cluster and xij are the data points in the kth cluster.

In K-means clustering, the data points are partitioned into a predefined

number of clusters; therefore, we need a method to determine the number of

clusters that works best for our data set. The Silhouette Coefficient method

and the Elbow Criterion method are two commonly used methods that aid us

in selecting the optimal number of clusters.

In the elbow criterion method, the underlying idea is to run the K-means

algorithm on the data set for a specified range of k values and plot the re-

sulting within-cluster sum of squares (WCSS) against the number of clusters.

The elbow of the resulting curve in the graph will be chosen as the optimal

number of clusters since the diminishing returns after this point makes pick-

ing a higher number of clusters not worth the additional cost. The goal in the

elbow criterion method is to adopt a small number of clusters that entails a

reasonably small sum of squared distances between different data points in a

cluster.
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In the silhouette coefficient method, the silhouette coefficient/score is a

measure of how similar a data point is to other points in the same cluster

and how dissimilar it is to data points in the neighboring cluster. Silhouette

score can take values between -1 and +1, with the former representing wrong

clustering for a data point and the latter representing accurate clustering.

Therefore, the average silhouette score, which is the mean of the silhouette

scores of individual data points in the data set, can signify how good the

clustering performance for a specific number of clusters has been.

Having obtained the optimal number of clusters by utilizing these tech-

niques, we run the K-means clustering algorithm on our data set to assign every

service leg and terminal to a cluster. This categorization will be regarded as

the correct class of post-disruption objective function impact (criticality class)

of a network element and will be used as the response variable for the training

of our subsequent classification model. The results of our clustering analysis

will be presented in the following sections.

It should be noted that the K-means clustering algorithm and the perti-

nent analysis done in this study were implemented using the functions available

in Python’s Scikit-learn library version 0.22.1 (Pedregosa et al., 2011).
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6.1.1 Clustering of service legs

In order to implement the K-means clustering algorithm for the service legs,

we pool all the 297 data points that we obtained by calculating the increase

in total cost and total risk due to disruption on a service leg for all the 11

transportation planning periods considered in our study. This data aggrega-

tion provides more input data points for the clustering algorithm which in turn

improves its performance.

The resulting data set is two-dimensional meaning that each data point

has two attribute values. The first dimension signifies the increase in post-

disruption cost for a particular service leg (see column five of Table 5), and

the second dimension signifies the increase in post-disruption risk for the same

service leg (see column six of Table 5).

Figure 6 depicts a scatter plot of the 297 data points with the increase

in cost represented on the x-axis and the increase in risk represented on the

y-axis and each point representing a service leg in one of the 11 transportation

planning periods. We can already see that some data points are closer to each

other and can potentially be clustered into the same group. Therefore, Figure

6 can be utilized to validate the results of the K-means clustering algorithm

as well as gaining more insight about the resulting clusters.
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Figure 6: Distribution of disruption impact data (service legs)

The next step is to find the optimal number of clusters for this data

set. As mentioned in the beginning of this chapter, we will use the average

silhouette score and the elbow criterion method to achieve this goal. We enlist

the aid of Figure 7, which is a visual representation of the results of these two

methods, and Table 7 to explain how we obtain the optimal number of clusters

via these methods.
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(a) No. of Clusters = 2 (b) No. of Clusters = 3

(c) No. of Clusters = 4 (d) No. of Clusters = 5

(e) No. of Clusters = 6 (f) No. of Clusters = 7

(g) The elbow plot

Figure 7: Silhouette plots and the elbow plot (service legs)
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In parts (a) to (f) of Figure 7, the silhouette score for every data point

is represented on the x-axis of the left-hand side figure, while the different

clusters are represented on the y-axis and highlighted with a distinct color.

The vertical red lines in the same figures represent the average value of all the

data points’ silhouette scores obtained after running the K-means algorithm

with the corresponding number of clusters. The right-hand side figures in

parts (a) to (f) are scatter plots of the data points that highlight the results

of running the clustering algorithm with the corresponding number of clusters

as well as the ensuing cluster centers. Each cluster’s members are highlighted

in the same color used in the left-hand side figure to illustrate the silhouette

scores.

To further clarify the intricacies of these figures, we turn our attention

to part (c) of Figure 7. It depicts the silhouette scores obtained after running

the clustering algorithm with 4 clusters. We can observe that most of the data

points in the blue cluster have high silhouette scores which signifies a good

clustering performance, while the green cluster’s data points mostly have low

silhouette scores which is a sign of poor clustering results. We can observe

this more intuitively in the right-hand side figure. The data points in the blue

cluster are substantially closer to each other than the data points in the green

cluster. Hence, the optimal number of clusters will most probably not be equal

to four for this data set.
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In part (g), we have the elbow plot with the within-cluster sum of squares

(WCSS) on the vertical axis and the number of clusters on the horizontal axis.

As the number of clusters increases, the within-cluster sum of squares decreases

until it reaches a value of zero when the number of clusters equals the number

of observations in the data set.

By looking at Table 7, we can see that the best average silhouette score

belongs to k = 2; however, since the within-cluster sum of squares is a rather

large value, running the algorithm with just two clusters will not yield an

ideal result. As mentioned before, the goal is to choose a small k as long as

it produces a reasonably small within cluster sum of squares. The next best

average silhouette score belongs to k = 5 and we can see that the corresponding

within-cluster sum of squares is adequately small as well. Therefore, we pick

k = 5 as the optimal number of clusters.

Table 7: Performance of different cluster numbers (service legs)

Number of Clusters Average Silhouette Score Within Cluster Sum of Squares

k = 2 0.594 233.090

k = 3 0.485 148.562

k = 4 0.505 103.338

k = 5 0.512 76.303

k = 6 0.465 61.118

k = 7 0.484 47.277
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Ultimately, we run the K-means clustering algorithm with number of

clusters set to be five. Figure 8 illustrates the results of our clustering model,

with data points in the same cluster represented with a unique color and

cluster centers represented with a red circle. It should also be noted that

since the K-means algorithm is sensitive to the scale of Euclidean distances

between data points, we need to scale the data set along its two dimensions

before running the model, considering the fact that the values associated with

increase in post-disruption total cost are several orders of magnitude higher

than the values associated with increase in post-disruption total risk.

Figure 8: Service legs clustering results
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As is evident from Figure 8, majority of service legs in a cluster increase

total cost and risk more or less than a specific amount which is the basis

of grouping data points in the clustering algorithm. The attributes of these

clusters have been further elaborated in Table 8. We have also assigned each

of these clusters a name that underlines their respective attributes. These

cluster names will be used as the true label of each service leg in the subsequent

classification models.

Table 8: Service legs cluster attributes

Cluster Color Cluster Name Attributes

Purple
Steep Cost &

Risk Impact

Majority of service legs in this cluster increase the total

cost by more than 4 million dollars and total risk by

more than 10 persons

Green
High Cost &

Risk Impact

Majority of service legs in this cluster increase total cost

by more than 2.2 million dollars and total risk by more

than 8 individuals

Gray
Steep Risk

Impact

Majority of service legs in this cluster increase total risk

by more than 11 individuals, while total cost increase is

less than 1.5 million dollars

Teal
Moderate Cost

& Risk Impact

Majority of service legs in this cluster increase the total

cost by less than 2 million dollars and total risk by more

than 9 persons

Hazel
Low Cost &

Risk Impact

Majority of service legs in this cluster increase the total

cost by less than 1 million dollars and total risk by more

than 7 persons
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6.1.2 Clustering of terminals

Due to the fact that the process of implementing the K-means clustering al-

gorithm on the terminals data set is the same as the process implemented for

the service legs data set and in the interest of brevity, we will refrain from

going into too much detail in this section and instead, only a brief description

of each step and the obtained results will be presented.

The first step involves pooling all the 176 data points that we have pro-

cured by calculating the increase in total cost and total risk due to disruption

on a service leg for all the 11 transportation planning periods considered in

our study. Combining the data from several transportation periods provides

more input data points for the clustering algorithm which subsequently leads

to a clustering performance improvement.

The 176 data points are drawn in the scatter plot illustrated in Figure 9,

with increase in post-disruption total risk on the vertical axis and increase in

post-disruption total cost on the horizontal axis, while each point represents

a terminal in one of the 11 transportation planning periods. The result is

a visual representation of this two-dimensional data set that will aid us in

validating the performance of the K-means clustering algorithm, as well as

gaining some insight into the characteristics of the possible clusters.
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Figure 9: Distribution of disruption impact data (terminals)

The next task is to find the optimal number of clusters for the K-means

algorithm. Once again, we utilize the silhouette coefficient and the elbow cri-

terion methods to obtain the optimal number of clusters. We plotted and

analyzed the silhouette scores and the associated clustering results for k rang-

ing from 2 to 7 in parts (a) to (f) of Figure 10. Moreover, we plotted the

within-cluster sum of squares against number of clusters ranging from 1 to 10

and produced the graph known as the elbow plot in part (g) of Figure 10.
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(a) No. of Clusters = 2 (b) No. of Clusters = 3

(c) No. of Clusters = 4 (d) No. of Clusters = 5

(e) No. of Clusters = 6 (f) No. of Clusters = 7

(g) Elbow plot

Figure 10: Silhouette plots and the elbow plot (terminals)
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The plots in Figure 10 and their significance have been explained in more

detail in the service legs clustering section.

Table 9 contains average silhouette scores and within cluster sum of

squares (WCSS) for number of clusters (k) ranging from 2 to 7. The highest

average silhouette score recorded in the table belongs to k = 6 and the corre-

sponding within-cluster sum of squares is also reasonably small; therefore, the

conditions for choosing 6 as the ideal number of clusters are met. It is also

worthy to note that the within cluster sum of squares will eventually be zero

when the number of clusters is equal to the number of observations in the data

set. However, by looking at the elbow plot we can see that the WCSS doesn’t

decrease significantly after k = 6 and thus, it is not worth the extra cost to

reduce the WCSS further. Moreover, increasing k beyond a certain value may

lead to potential difficulty in analyzing and justifying the clustering results.

Table 9: Performance of different cluster numbers (terminals)

Number of Clusters Average Silhouette Score Within Cluster Sum of Squares

k = 2 0.506 160.785

k = 3 0.461 96.701

k = 4 0.498 73.532

k = 5 0.507 51.745

k = 6 0.539 38.436

k = 7 0.522 29.887
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Running the K-means clustering algorithm with six as the optimal num-

ber of clusters for the terminal data set produces the clusters illustrated in

Figure 11. Each of these clusters has been drawn with a different color and the

cluster centers are represented by relatively bigger red points in the aforemen-

tioned figure. It is worthy to note that due to the sensitivity of the K-means

clustering algorithms to the Euclidean distances between data points, the data

set has been scaled and the values on the x-axis and the y-axis are the scaled

versions of original values.

Figure 11: Terminals clustering results
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The attributes of clusters obtained using the K-means algorithm have

been summarized in Table 10. Moreover, each cluster has been assigned a

name that will be used as the true label for each of its member data points in

the training and testing of subsequent classification models.

Table 10: Terminals cluster attributes

Cluster Color Cluster Name Attributes

Gray
Steep Cost

Impact

Majority of service legs in this cluster increase the total

cost by more than 1.5 million dollars but total risk does

not increase significantly

Teal
High Cost

Impact

Terminals in this cluster increase total cost on average

by approximately 1.25 million dollars but they decrease

total risk by a small margin

Green
Moderate Cost

& Risk Impact

Terminals in this cluster increase total cost on average

by roughly 1.5 million dollars, while total risk increase

is on average approximately 2 individuals

Purple
Low Cost &

Risk Impact

Majority of terminals in this cluster increase the total

cost by less than half a million dollars and total risk by

less than 3 persons

Orange
High Risk

Impact

Terminals in this cluster increase total risk by around

7 persons and total cost by around half a million on

average

Hazel
Steep Risk

Impact

Terminals in this cluster increase total risk by more than

11 persons and total cost by around 1 million dollars on

average
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6.2 Classification

Classification, an instance of supervised learning, is the process of determining

to which class or category an unknown observation belongs by utilizing a

classification model trained on a set of data with known classes. In the context

of our study, we are interested in knowing to which class of post-disruption

cost and/or risk impact, an unknown service leg or terminal belongs and we

hope to perform this task by developing and using a classification model that

boasts high accuracy.

Developing a classification model requires a training set with known labels

as well as a set of input features that facilitate the creation of a model for the

relationship between predictors commonly denoted by X and the response

variable commonly denoted by Y . We have already created a data set with

labeled observations in the previous section. Consequently, we need to identify

a set of features that will have a significant relationship with the label variable.

The features that we use in the following classification models are a mix-

ture of features extracted from the results of the mathematical optimization

model and features that are based on the transportation network’s topology.

We will explain the selected features for service legs and terminals separately

in the following subsections. The next logical step would be to assess whether
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the features improve the fit of the model. The features that contribute to

improving the fit of the model will be kept in the model while the rest will

be discarded. To be able to evaluate the model, we will set aside 10 percent

of the observations in the data set and call it the test set, and the remaining

90 percent of data points will act as the classification model’s training set.

Ultimately, several different classification algorithms as outlined below will be

implemented on this study’s data sets.

Now we will turn our attention to providing a brief and intuitive explana-

tion of each classification technique based on the definition presented in James

et al. (2013) and the relevant literature. We also invite the reader to refer to

James et al. (2013) for a more in depth review of the supervised learning

techniques used in this study.

The bagging, boosting and random forests algorithms use decision trees as

a stepping stone toward building better predictive models. In the decision tree

classifier, the algorithm starts at the root and repeatedly partitions the data

points based on the feature that may best divide the data. Gradient boosting

uses a weak learner like decision trees to fit an initial model to the data set.

Each successive model that is added tries to improve on the shortcomings of the

previous model and thus an ensemble of predictive models is created. Bagging

classifier uses the concept of bootstrap to extract multiple samples from the
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training data set and by taking the average of the predictions, decreases the

variance of decision tree models. To improve classification performance, the

random forests classifier decreases correlation in the trees by only allowing a

random subset of features to be considered at each tree partition.

The goal of the support vector classifier is to create hyperplanes or bound-

aries based on which the data points will be classified. Neural networks, which

are a set of neurons arranged in layers, learn by creating weighted associations

between an example input and output and recursively adjusting the weight-

ings such that the result of their layered processing becomes more like the ideal

output. Independence between the features and Gaussian distribution in the

training data set is assumed in the Gaussian naive Bayes classifier, and the

Bayes theorem is used to classify the data points. Linear discriminant analysis

makes predictions based on estimating the probability of a data point belong-

ing to each of the existing classes in the data set. In the k-nearest neighbor

algorithm, an unknown observation will be assigned to the class which has the

most representatives in the neighborhood of size k around the data point.

It should be noted that all classification algorithms and the pertinent

analysis in this study were implemented using the functions available in Python’s

Scikit-learn library version 0.22.1 (Pedregosa et al., 2011).
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6.2.1 Service legs classification models

The first task in the implementation of classification models on the service

legs is to identify a set of service leg features with potential relationship with

the label variable. The routing optimization model introduced in Section 4.1,

provides us with five service leg features that have the potential to be used

as input for the classification models. For instance, we will extract the opti-

mal number of regular containers on each service leg from the results of the

optimization model to be used as a feature in the training and testing of clas-

sification models. Another service leg feature obtained from the results of the

optimization model is the optimal number of trains that traverse that specific

service leg. The first five features explained in Table 11 refer to these input

features.

The next six features are based on the topological properties of the com-

pany’s transportation network as opposed to its supply and demand aspects.

Some of these features have been adopted from relevant literature and others

have been inspired by concepts in graph theory. For instance, the number of

times a service legs is used in the least cost paths for all the traffic-classes can

be considered a service leg feature. Another possible feature is the number of

adjacent service legs. The last six features explained in Table 11 refer to these

input features.
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This will provide the classification model with eleven input features in

total, an overview of which is presented in Table 11. It is worthy to mention

that a direction for feature research can be trying to identify other service leg

features and incorporating them in the analysis .

Table 11: Input features for the classification model (service legs)

Feature

No.
Feature Name Explanation

1 Regular Opt Vol Optimal volume of regular containers

2 Class 2 Opt Vol Optimal volume of class 2 hazmat containers

3 Class 3 Opt Vol Optimal volume of class 3 hazmat containers

4 Class 8 Opt Vol Optimal volume of class 8 hazmat containers

5 Number of Trains Optimal number of trains traversing a service leg

6 Path Contribution
The number of times a service leg is used in the feasible

paths of the network

7 Cost Profile
The number of times a service leg is used in the net-

work’s least cost paths

8 Class 2 Risk Profile
The number of times a service leg is used in the net-

work’s Class 2 least risk paths

9 Class 3 Risk Profile
The number of times a service leg is used in the net-

work’s Class 3 least risk paths

10 Class 8 Risk Profile
The number of times a service leg is used in the net-

work’s Class 8 least risk paths

11 Adjacent Service Legs Number of direct connections to other service legs

Table 12 contains common descriptive statistics such as minimum, max-

imum, mean and standard deviation for each of the features discussed.
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Table 12: Descriptive statistics for input features (service legs)

No. Name Format Min Max Mean Std Dev

1 Regular Opt Vol Numeric 2 2960 822.29 568.89

2 Class 2 Opt Vol Numeric 0 721 229.97 178.86

3 Class 3 Opt Vol Numeric 0 1131 382.21 298.17

4 Class 8 Opt Vol Numeric 0 452 149.82 114.73

5 Number of Trains Numeric 2 42 19.09 11.38

6 Path Contribution Numeric 1728 7326 4020 1309.14

7 Cost Profile Numeric 0 108 36.7 27.6

8 Class 2 Risk Profile Numeric 0 116 36.29 29.89

9 Class 3 Risk Profile Numeric 0 118 36.37 30.22

10 Class 8 Risk Profile Numeric 0 119 33.77 31.35

11 Adjacent Serv Legs Numeric 2 9 5.7 1.86

The next step is to evaluate each feature’s potential contribution or lack

thereof to improving the fit of the model. Using Scikit-learn’s ANOVA F-test,

which is commonly used for identifying the best input features of a classifi-

cation model, we obtain the pertinent p-values for each feature. In case the

obtained p-value is less than the predefined significance level, we will be able

to reject the relevant null hypothesis and keep the aforementioned feature as

an input for the model.

In order to better understand the significance of each feature to the fit

of the model, we have plotted −Log(p− value) of each feature in a bar chart

illustrated in Figure 12. The red line represents our chosen significance level.
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As is evident from the figure, all of the selected features have p-values that

are substantially less than the our adopted significance level of α = 0.05 and

therefore, we can keep and utilize all of them in the model.

However, in case the performance of classification models are not satis-

factory, we can remove the features that do not contribute as much to the fit of

the model by only including the ones with the best performance in the F-test

in the model. Another popular technique that can be used in such circum-

stances is the Principal Component Analysis which can significantly increase

the accuracy of classification models on some data sets (James et al., 2013).

Figure 12: Significance of service leg input features
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The final task is to train the classification model using the the chosen

algorithms i.e. support vector classifier, k-nearest neighbors, etc. and evalu-

ate their accuracy. Accuracy of a classification model refers to how often it

correctly classifies the data points or in this case, the percentage of service

legs that are assigned to the correct class. The highest accuracy reached is

93% which is a relatively excellent performance for a classification task. Table

13 summarizes the accuracy of the nine classification algorithms implemented

along with a visual representation of each model’s confusion matrix.

The confusion matrix is a special table that facilitates the visualization

of a classification algorithm’s performance. The name originates from the

fact that this visual matrix enables us to see if the model is confusing two or

more classes. Each row in the confusion matrix signifies data points in one of

the true classes and each column signifies data points in one of the predicted

classes. Therefore, if a data point in the test set is classified correctly, it will be

located on the diagonal of the confusion matrix. For instance, the yellow box

in the support vector machine’s confusion matrix represents around 12 service

legs belonging to the class denoted by zero that have been classified correctly.

However, there are two off-diagonal boxes as well that represent service legs

belonging to the class denoted by two that have been incorrectly classified into

classes denoted by zero and one.
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Table 13: Performance of classification models (service legs)

Support Vector Classifier Neural Network K-Nearest Neighbors

Accuracy: 93.3% Accuracy: 93.3% Accuracy: 93.3%

Decision Tree Classifier Random Forests Bagging

Accuracy: 90% Accuracy: 93.3% Accuracy: 90%

Gradient Boosting Linear Discriminant Analysis Gaussian Naive Bayes

Accuracy: 93.3% Accuracy: 80% Accuracy: 66.6%
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6.2.2 Terminals classification models

Similar to the process we followed through for the service legs, the first task

in the process of building a classification model for terminals is identifying

a set of features (predictors) with potential relationship with the response

variable. We identified 10 features in total for each intermodal terminal and

these features have been further explained in Table 14.

Table 14: Input features for the classification model (terminals)

Feature

No.
Feature Name Explanation

1 Regular Opt Vol Optimal volume of regular containers

2 Class 2 Opt Vol Optimal volume of class 2 hazmat containers

3 Class 3 Opt Vol Optimal volume of class 3 hazmat containers

4 Class 8 Opt Vol Optimal volume of class 8 hazmat containers

5 Path Contribution
The number of times an intermodal terminal is used in

the feasible paths of the network

6 Cost Profile
The number of times an intermodal terminal is used in

the network’s least cost paths

7 Class 2 Risk Profile
The number of times an intermodal terminal is used in

the network’s Class 2 least risk paths

8 Class 3 Risk Profile
The number of times an intermodal terminal is used in

the network’s Class 3 least risk paths

9 Class 8 Risk Profile
The number of times an intermodal terminal is used in

the network’s Class 8 least risk paths

10 Degree Centrality
Number of links (service legs) in the network connected

to this intermodal terminal
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The first four variables are based on the routing optimization model in-

troduced in Section 4.1. These four features are identical to the ones used for

service legs except for the fact that we calculate the number of containers that

are transferred from truck to train or vice versa in this terminal, instead of the

ones traversing service legs. The other six features are based on the topolog-

ical properties of the company’s transportation network. These features have

been inspired either by ideas from graph theory or by features used in relevant

literature. For instance, the concept of degree centrality for a node which in

this context means the number of service legs that are directly connected to a

terminal has been adopted from graph theory.

Table 15 contains common descriptive statistics such as minimum, max-

imum, mean and standard deviation for each of the features discussed.

Table 15: Descriptive statistics for input features (terminals)

No. Name Format Min Max Mean Std Dev

1 Regular Opt Vol Numeric 111 2889 1250 566.93

2 Class 2 Opt Vol Numeric 85 676 375.38 122.55

3 Class 3 Opt Vol Numeric 103 1081 622.82 204.67

4 Class 8 Opt Vol Numeric 68 419 251.78 69.72

5 Path Contribution Numeric 4104 5472 4387.5 522.91

6 Cost Profile Numeric 12 96 54 23.55

7 Class 2 Risk Profile Numeric 2 90 54 28.14

8 Class 3 Risk Profile Numeric 2 90 54 28.25

9 Class 8 Risk Profile Numeric 18 90 54 25

10 Degree Centrality Numeric 1 6 3.37 1.26
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The next step is to evaluate each feature’s contribution or lack thereof

to improving the fit of the model. Implementing the ANOVA F-test, which is

commonly used for identifying the best input features of a classification model,

we extract the pertinent p-values for each feature. As was mentioned before,

if the p-value for a feature is less than the predefined significance level, we

will be able to reject the relevant null hypothesis and keep that feature in the

model.

In order to better understand the significance of each feature for improv-

ing the fit of the model, we have plotted −Log(p − value) of each feature

in a bar chart illustrated in Figure 12. The red line represents the chosen

significance level. As is evident from the figure, all of the selected features

have p-values that are smaller than the adopted significance level of α = 0.05;

and therefore, we can keep all of them in the model due to their potential

contribution to the fit of the model.

Nonetheless, if we could not achieve a high enough accuracy and the

classification performance was poor, we can take advantage of feature selection

methods to solely select the features that perform better in the F-test, and

remove the rest from the input features of our classification model. Moreover,

we can also use the principal component analysis which has been shown to

improve the accuracy of supervised learning models in special cases.
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Figure 13: Significance of terminal input features

Ultimately, we train the classification models with the nine algorithms se-

lected in this study and evaluate their accuracy. The highest accuracy reached

in 94.4% which is even higher than the accuracy that we achieved for service

legs. Table 13 shows a summary of accuracy values obtained from the nine clas-

sification algorithms implemented along with a visual representation of each

model’s confusion matrix. We elaborated on the significance and meaning of

these accuracy values and confusion matrices in Section 6.2.1.
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Table 16: Performance of classification models (terminals)

Support Vector Classifier Neural Network K-Nearest Neighbors

Accuracy: 94.4% Accuracy: 94.4% Accuracy: 94.4%

Decision Tree Classifier Random Forests Bagging

Accuracy: 88.8% Accuracy: 88.8% Accuracy: 94.4%

Gradient Boosting Linear Discriminant Analysis Gaussian Naive Bayes

Accuracy: 88.8% Accuracy: 94.4% Accuracy: 88.8%
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6.3 Validation of the classification models

In this section, we evaluate the performance of the classification models trained

on data from the previous transportation periods on a new problem instance

representing a new transportation period.

In order to test the validity of our methodology, we create a new shipment

planning problem instance by generating new random demand data for each

traffic-class, and solve the routing optimization model for the normal operating

conditions of the network. Having obtained the optimal number of contain-

ers/trains utilizing each service leg or terminal from the optimal solution of

the non-disruption case, we compile a data set of input features required to

be able to make predictions using the previously trained classification models.

Subsequently, we use the predictive model to assign the infrastructure to the

previously defined criticality classes.

However, in order to be able to assess the accuracy of these predictions,

we need to know every network element’s actual criticality class which is based

on how much the total cost/risk of operations increase in case this element is

disrupted. Consequently, we solve the optimization model for every one of

the disruption events individually and calculate the increase in total risk/cost

compared with the non-disruption case for each of them. By inputting these
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post-disruption cost/risk increases into the K-means clustering algorithm, we

obtain the correct label (criticality class) for each service leg and terminal.

Comparing the aforementioned true labels with the predicted labels ob-

tained from running the classification models on the new problem instance’s

feature data set provides us with the level of accuracy of each predictive clas-

sification model. Table 17 and Table 18 illustrate the performance of the

nine previously trained classification models on the new problem instance for

service legs and terminals respectively.

The highest accuracy achieved by a classification model for service legs be-

longs to support vector classifier and random forests in both the training/test

data set with 93.3% accuracy and the validation data set with 92.5% accuracy.

As for terminals, support vector classifier again performs best along with the

k-nearest neighbors technique, with both achieving an accuracy of 94.4% on

the training/test data set and an accuracy of 87.5% on the validation data set.

Based on these results, the proposed methodology can classify service

legs with approximately 93% accuracy, in addition to classifying terminals

with roughly 88% accuracy which are impressive results for a classification

task. Therefore, we have validated our proposed methodology’s capabilities in

providing the company’s managers with a valuable decision making tool that

efficiently identifies critical infrastructure.
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Table 17: Classification performance on validation data (service legs)

Support Vector Classifier Neural Network K-Nearest Neighbors

Accuracy: 92.5% Accuracy: 88.8% Accuracy: 88.8%

Decision Tree Classifier Random Forests Bagging

Accuracy: 88.8% Accuracy: 92.5% Accuracy: 92.5%

Gradient Boosting Linear Discriminant Analysis Gaussian Naive Bayes

Accuracy: 92.5% Accuracy: 77.7% Accuracy: 66.6%
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Table 18: Classification performance on validation data (terminals)

Support Vector Classifier Neural Network K-Nearest Neighbors

Accuracy: 87.5% Accuracy: 75% Accuracy: 87.5%

Decision Tree Classifier Random Forests Bagging

Accuracy: 75% Accuracy: 81.2% Accuracy: 81.2%

Gradient Boosting Linear Discriminant Analysis Gaussian Naive Bayes

Accuracy: 81.2% Accuracy: 81.2% Accuracy: 68.7%
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Figure 14 is a visual representation of the results of classification ob-

tained from the support vector classifier algorithm for train service legs and

intermodal terminals in the validation problem instance. The service legs rep-

resented by red lines are those that increase both cost and risk significantly.

In other words, the classification model has classified these service legs in ei-

ther of the Steep or High Cost & Risk Impact categories introduced in Table

8. The service legs drawn in yellow only increase the risk by a significant

amount. This means that the classification model has classified them into

the Steep Risk Impact category in Table 8. The rest of the service legs have

been classified into the Moderate or Low Cost & Risk Impact category and

are represented by green lines signifying lack of criticality.

As for the terminals, the red points represent the terminals whose dis-

ruption results in a significant increase in total cost; in other words, the Steep

and High Cost Impact categories in Table 10. The yellow points represent the

terminals causing a significant increase in post-disruption total risk, meaning

the Steep and High Risk Impact categories. Lastly, the terminals represented

by green points belong to the Moderate or Low Cost & Risk Impact categories.

Equipped with this knowledge of critical infrastructure, the company’s

managers can plan and apply mitigation strategies to the highest priority

service legs and intermodal terminals in the network.
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Figure 14: Critical service legs and terminals

For instance, all the service legs connected to the the Baltimore terminal

have been identified as critical in terms of both the cost and the risk impact.

Considering that the Baltimore terminal is identified to be critical in terms

of cost impact and the terminals in Philadelphia, Pittsburgh and Norfolk are

critical in terms of risk impact, decision makers should pay special attention to

the network elements in this area. Furthermore, a problematic area in terms

of post-disruption risk impact consists of service legs connecting Charlotte and

Indianapolis to Columbus and the corresponding terminals.
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Chapter 7

Conclusions

In this study, we introduced a decision making tool for the managers of rail-

truck intermodal transportation companies in the form of a disruption risk

mitigation methodology that can be used in the transportation planning of

both regular and hazmat freight in networks with multiple terminals. The

method utilizes a machine learning technique known as classification that

makes predictions based on a set of input features extracted from inherent

network attributes and topology, alongside a set of features obtained from the

optimal shipment plan that represents the results of the presented bi-objective

tactical routing optimization model.

The proposed methodology was applied to a case study of an intermodal

rail-truck network in the north-east, south-east and mid-west regions of the

US. We found that the methodology enables us to classify the network infras-
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tructure with high accuracy both in the case of train service legs and in the

case of terminals. The output of this methodology is the knowledge of the most

critical network elements which assists transportation company managers to

avoid significant surges in total cost and total risk of operations in case of a

disruption event by implementing mitigation strategies in advance.

To the best of our knowledge, no other work in the literature provides an

analytical framework for identifying critical train service legs and intermodal

terminals by using bi-objective optimization as well as classification/clustering

algorithms, in order to assist disruption risk mitigation efforts in hazardous

material rail-truck intermodal transportation networks. We have contributed

to the literature by developing a customized methodology of disruption risk

mitigation that combines optimization modeling with supervised and unsu-

pervised machine learning techniques in rail-truck intermodal networks which

transport both regular freight and different classes of hazmat shipments.

Future research in this area may be done on the removal of the assumption

regarding the availability of all train services when the transportation period

begins and the incorporation of train service scheduling into the optimization

model which increases its complexity. Future research may also be directed

toward studying the inclusion of a direct trucking option in case of infeasibility

of fulfilling demand due to multiple simultaneous disruptions.
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