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Abstract

Unsupervised classification is a problem often plagued by outliers, yet there is a

paucity of work on handling outliers in unsupervised classification. Mixtures of Gaus-

sian distributions are a popular choice in model-based clustering. A single outlier can

affect parameters estimation and, as such, must be accounted for. This issue is fur-

ther complicated by the presence of multiple outliers. Predicting the proportion of

outliers correctly is paramount as it minimizes misclassification error. It is proved

that, for a finite Gaussian mixture model, the log-likelihoods of the subset models

are distributed according to a mixture of beta-type distributions. This relationship is

leveraged in two ways. First, an algorithm is proposed that predicts the proportion of

outliers by measuring the adherence of a set of subset log-likelihoods to a beta-type

mixture reference distribution. This algorithm removes the least likely points, which

are deemed outliers, until model assumptions are met. Second, a hypothesis test is

developed, which, at a chosen significance level, can test whether a dataset contains

a single outlier.
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Chapter 1

Introduction

An outlier is an observation “that appears to deviate markedly from other members

of the sample in which it occurs” (Grubbs, 1969). Outliers may occur due to unlikely

random chance, or they may arise due to experimental, measurement, or recording

error. The treatment of outliers is a long-studied topic in the field of applied statistics.

In the mixture model-based clustering framework, outlying observations can have

detrimental effects on classification accuracy. If an outlier is far enough away from the

other data points, it may be classified into its own group. This may misrepresent the

number of groups present or force the model to merge unrelated groups. At the other

extreme, an outlier can affect parameter estimates by moving the mean or inflating

the variance, ultimately leading to unsatisfactory clustering results. Thus, outlier

detection is an important task when classifying data.

Outliers are often treated in one of three ways. We can treat them as regular data

points and keep them in the model, we can down-weight their effects on the model,

or we can remove them entirely. This thesis will focus on the third approach—

trimming outliers. Two methods presented will identify outliers and decide when to

1
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remove them from the dataset.

2



Chapter 2

Background

2.1 Mixture Model-Based Clustering

Classification aims to partition data into a set number of groups, whereby observations

in the same group are in some sense similar to one another. Clustering is unsuper-

vised classification, in that none of the group memberships are known a priori. Most

clustering algorithms originate from one of three major methods: hierarchical cluster-

ing, k-means clustering, and mixture model-based clustering. Although hierarchical

and k-means clustering are still used, the mixture modelling approach has become

increasingly popular due to its robustness and mathematical interpretability. In the

mixture modelling framework for clustering, each component is usually taken to be a

cluster. Although the model can employ almost any component distribution, Gaus-

sian components remain popular due to the distribution’s versatility and ubiquity.

Most mixture model-based clustering methods assume, either explicitly or implicitly,

that the data are free of outliers.

Mixture model-based clustering involves maximizing the likelihood of the mixture

3
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model. The density of a Gaussian mixture model is a convex linear combination of

each component density, and is given by

f(x | ϑ) =
G∑
g=1

πgφ(x | µg,Σg), (2.1)

where

φ(x | µg,Σg) =
1√

(2π)p|Σg|
exp

{
−1

2
(x− µg)′Σ−1g (x− µg)

}
is the density of a p-dimensional random variable X from a Gaussian distribution

with mean µg and covariance matrix Σg, πg > 0 is the mixing proportion such that∑G
g=1 πg = 1, and ϑ = {π1, . . . , πG,µ1, . . . ,µG,Σ1, . . . ,ΣG}.

2.2 Outlier Detection Methods

Outliers, particularly those with high leverage, can significantly affect the parameter

estimates. It is thus beneficial to remove, or reduce, the effect of outliers by accounting

for them in the model. In model-based clustering, we can incorporate outliers in

several ways. The first method, proposed by Banfield and Raftery (1993), includes

outliers in an additional uniform component over the convex hull. If outliers are

cluster-specific, we can incorporate them into the tails if we cluster using mixtures of

t-distributions (Peel and McLachlan, 2000). Punzo and McNicholas (2016) introduce

mixtures of contaminated Gaussian distributions, where each cluster has a proportion

αg ∈ (0, 1) of ‘good’ points with density φ(x | µg,Σg), and a proportion 1 − αg of

‘bad’ points, with density φ(x | µg, ηgΣg). Each distribution has the same centre,

but the ‘bad’ points have an inflated variance, where ηg > 1.

4
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Instead of fitting outliers in the model, it may be of interest to trim them from the

dataset. Cuesta-Albertos et al. (1997) developed an impartial trimming approach for

k-means clustering; however, this method maintains the drawback of k-means clus-

tering, where the clusters are spherical with equal — or, in practice, similar — radii.

Garćıa-Escudero et al. (2008) improved upon trimmed k-means with the TCLUST

algorithm. TCLUST places a restriction on the eigenvalue ratio of the covariance

matrix, as well as implementing a weight on the clusters, allowing for clusters of var-

ious elliptical shapes and sizes. An obvious challenge with these methods is that the

eigenvalue ratio must also be known a priori. There exists an estimation scheme for

the proportion of outliers, denoted α, but it is heavily influenced by the choices for

number of clusters and eigenvalue ratio. It is of great interest to bring trimming into

the model-based clustering domain, especially when α is unknown, as is the case for

most real datasets — in fact, for all but very low dimensional data.

2.3 Outlier Hypothesis Tests

It may be useful to use a hypothesis test to reject suspected outliers at a particular

significance level. In the univariate case, Grubbs’s test (Grubbs et al., 1950) tests

whether the maximum (or minimum) value is an outlier based on its distance from the

sample mean relative to the sample’s standard deviation. The test uses the statistic

Tn =
x(n) − x̄

s

in the maximum case, and we conclude that x(n) is an outlier when Tn is larger than

some reference value, given in Grubbs et al. (1950). This method requires the data

5
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to be normally distributed.

The quartile method is a non-parametric outlier rejection method where we find

the lower (Q1) and upper (Q3) quartiles, the values under which 25% and 75% of

the sample data reside, respectively. A point is considered an outlier if x < Q1 −

1.5(Q3 − Q1) or x > Q3 + 1.5(Q3 − Q1) (Tukey, 1977). This method requires the

underlying distribution to be symmetric (Hubert and Vandervieren, 2008).

In the multivariate Gaussian case, one can leverage the fact that the Mahalanobis

distance (MD) is chi-squared distributed (Mardia et al., 1979). Points which are far

from the mean relative to the standard deviation will have large MDs. We can reject,

at a specific significance level, points where the MD is too large.

There is a dearth of hypothesis tests for outliers in the unsupervised Gaussian

mixture-model framework.

6



Chapter 3

Methodology

3.1 Distribution of Log-Likelihoods

In this section, the distribution of subset log-likelihoods is derived. Note that, in

Section 3.1.1 we use population parameters whereas, in Section 3.1.2, we use param-

eter estimates. The ideas developed in this chapter build on those introduced in the

author’s undergraduate thesis.

3.1.1 Distribution of Subset Log-Likelihoods using Popula-

tion Parameters

Consider a dataset X = {x1, . . . ,xn} in p-dimensional Euclidian space Rp. Define

the jth subset as X \ xj = {x1, . . . ,xj−1,xj+1, . . . ,xn}. Suppose each xi ∈ X has

Gaussian mixture model density f(xi | ϑ) as in (2.1). The log-likelihood of dataset

7



M.Sc. Thesis - Katharine M. Clark McMaster - Mathematics and Statistics

X under the Gaussian mixture model is

`X =
n∑
i=1

log

[
G∑
g=1

πgφ(xi | µg,Σg)

]
. (3.1)

Assumption 1. The clusters are non-overlapping and well separated.

Assumption 1 is required to simplify the model density to the component density,

as shown in Lemma 1. In practice, however, these assumptions may be relaxed. For

more information on the effect of cluster separation on the density, see Appendix A.

Write xi ∈ Cg to indicate that xi belongs to the gth cluster. Let zi = (zi1, . . . , ziG)′,

where zig = 1 if xi ∈ Cg and zig = 0 if xi /∈ Cg.

Lemma 1. As the separation between the clusters increases, `X ' QX . In other

words, the log-likelihood in (3.1) converges asymptotically to QX , where

QX =
n∑
i=1

G∑
g=1

zig log
[
πgφ(xi | µg,Σg)

]
=
∑
xi∈Cg

log
[
πgφ(xi | µg,Σg)

]
.

A proof of Lemma 1 may be found in Appendix B. We will maintain Assumption 1

throughout this paper. Using Lemma 1, an approximate log-likelihood for the mixture

model is

QX =
∑
xi∈Cg

[
log πg + log φ(xi | µg,Σg)

]
,

which can be regarded as the approximate log-likelihood for the entire dataset X .

Define QX\xj
as the approximate log-likelihood for the jth subset X \ xj.

8
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Proposition 1. If Yj = QX\xj
−QX and xj ∈ Ch, then Yj ∼ fgamma (yj − c | p/2, 1),

where c = − log πh + p
2

log(2π) + 1
2

log|Σh|, and

fgamma (w | k, θ) =
1

Γ(k)θk
wk−1 exp{−w/θ},

for w > 0, k > 0, and θ > 0.

The requisite mathematical results are given in the following lemmata.

Lemma 2. For xj ∈ Ch,

QX\xj
−QX = − log πh +

p

2
log(2π) +

1

2
log|Σh|+

1

2
τj,

where

τj = (xj − µh)′Σ−1h (xj − µh).

Proof. Population parameters µg and Σg, g ∈ [1, G], are impervious to the sample

drawn from the dataset and remain constant for each subset X \ xj, j ∈ [1, n]. Thus,

the approximate log-likelihood for the jth subset, X \ xj, when xj ∈ Ch is

QX\xj
= QX − log πh − log φ(xj | µh,Σh). (3.2)

Rearranging (3.2) yields

QX\xj
−QX = − log πh +

p

2
log(2π) +

1

2
log|Σh|+

1

2
τj. (3.3)

Lemma 3. τj ∼ fchi-squared(p)

9
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This result is stated as Corollary 3.2.1.1 in Mardia et al. (1979).

Lemma 4. 1
2
τj ∼ fgamma(p/2, 1).

Proof. If τj ∼ fchi-squared(p), then τj ∼ fgamma(p/2, 2). Thus, 1
2
τj ∼ fgamma(p/2, 1) by

the scaling property of the gamma distribution.

Let Yj = QX\xj
−QX , xj ∈ Ch, and c = − log πh + p

2
log(2π) + 1

2
log|Σh|. Then,

Yj ∼ fgamma (yj − c | p/2, 1) ,

for yj − c > 0.

3.1.2 Distribution of Subset Log-Likelihoods using Sample

Parameter Estimates

Generally, population parameters µg and Σg are unknown a priori. We can replace

the population parameters with parameter estimates

µ̂g = x̄g =
1

ng

∑
xi∈Cg

xi,

Σ̂g =
1

ng − 1

∑
xi∈Cg

(xi − x̄g)(xi − x̄g)
′ =: Sg,

where ng =
∑n

i=1 zig is the number of observations in Cg.

Assumption 2. The number of observations in each cluster, ng, is large.

This is assumption required for the following lemmata.

10
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Lemma 5. Sample parameter estimates are asymptotically equal for all subsets:

x̄g\j ' x̄g,

Sg\j ' Sg,

where x̄g and Sg are the sample mean and sample covariance, respectively, for the gth

cluster considering all observations in the entire dataset X , and x̄g\j and Sg\j are the

sample mean and sample covariance, respectively, for the gth cluster considering only

observations in the jth subset X \ xj.

Proof. If xj ∈ Ch, then the equality trivially holds for all g 6= h. For g = h,

x̄h\j =
nhx̄h − xj
nh − 1

.

Thus x̄h\j → x̄h as nh →∞. Therefore, x̄h\j ' x̄h and so

Sh\j '
(nh − 1)Sk − (xj − x̄h)(xj − x̄h)

′

nh − 2
.

Thus Sh\j → Sh as nh →∞, so Sh\j ' Sh.

Using the sample parameter estimates, (3.3) becomes

QX\xj
−QX = − log πh +

p

2
log(2π) +

1

2
log|Sh|+

1

2
tj,

where tj = (xj − x̄h)
′S−1h (xj − x̄h).

11
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Lemma 6. (From Gnanadesikan and Kettenring, 1972) When X ∼ MVN (µ,Σ),

n

(n− 1)2
Tj ∼ fbeta

(
n

(n− 1)2
tj

∣∣∣∣∣ p2 , n− p− 1

2

)
,

for tj ≥ 0, α > 0, β > 0.

Ververidis and Kotropoulos Ververidis and Kotropoulos (2008) prove this result

for all n, p satisfying p < n <∞.

Proposition 2. For xj ∈ Ch, with Yj = QX\xj
−QX and c = − log πh + p

2
log(2π) +

1
2

log|Sh|,

Yj ∼ fbeta

(
2nh

(nh − 1)2
(yj − c)

∣∣∣∣ p2 , nh − p− 1

2

)
,

for yj − c ≥ 0, α > 0, β > 0.

Proof. We will perform a change of variables. Let Xj = nh

(nh−1)2
Tj and Yj = 1

2
Tj + c.

Then

Yj =
(nh − 1)2

2nh
Xj + c.

The inverse function is

xj = v(yj) =
2nh

(nh − 1)2
(yj − c).

The absolute value of the derivative of xj with respect to yj is

∣∣∣∣dxjdyj

∣∣∣∣ =

∣∣∣∣ 2nh
(nh − 1)2

∣∣∣∣ =
2nh

(nh − 1)2
.

12
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Because Xj is beta-distributed, its density is

fbeta(xj | α, β) =
Γ(α + β)

Γ(α)Γ(β)
xα−1j (1− xj)β−1,

for xj ≥ 0, α > 0, and β > 0. The transformation of variables allows the density of

Yj to be written

fY (yj) = fX (v(yj))

∣∣∣∣dxjdyj

∣∣∣∣.
The density of Yj becomes

fY (yj) =
2nh

(nh − 1)2
Γ(α + β)

Γ(α)Γ(β)

[
2nh

(nh − 1)2
(yj − c)

]α−1 [
1− 2nh

(nh − 1)2
(yj − c)

]β−1
,

(3.4)

for yj − c ≥ 0, α > 0, and β > 0. Thus, Yj has a beta-type density with

Yj ∼ fbeta

(
2nh

(nh − 1)2
(yj − c)

∣∣∣∣ p2 , nh − p− 1

2

)
.

Because f(yj) applies to any Yj = QX\xj
− QX , with xj ∈ Ch, let f(yj) = fh(y).

Proposition 2 can be applied to generate the density of the mixture model with

variable Y = QX\xj
−QX for any xj ∈ X . The density is given by

f(y | ϑ) =
G∑
g=1

πgfg(y | θg), (3.5)

where fg(y | θg) is the beta-type density given in (3.4), and θg = {ng, p, πg,Sg}.

Remark 1. Y has density f(y | ϑ) from (3.5) when typical model assumptions hold.

13
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If the density in (3.5) does not describe the distribution of subset log-likelihoods, that

is, they are not distributed according to a mixture of beta-type densities, then we can

conclude that at least one model assumption fails. In this case, we will assume that

only the outlier assumption has been violated and that there are, in fact, outliers in

the model.

3.2 OCLUST Algorithm

Let Y be the set of subset log-likelihoods generated from the data. Thus, Y is the real-

ization of random variable Y . We propose testing the adherence of Y to the reference

distribution in (3.5) as a way to test for the presence of outliers. In other words, if Y

does not have a beta-type mixture distribution, then outliers are present in the model.

Because QX is asymptotically equal to `X , we will use `X . This is important because

we will need `X\xj
for outlier identification and, additionally, it is outputted by many

existing clustering algorithms. The algorithm described below uses the log-likelihood

and parameter estimates calculated using the expectation-maximization (EM) algo-

rithm (Dempster et al., 1977) for Gaussian model-based clustering; however, other

methods may be used to estimate parameters and the overall log-likelihood.

OCLUST both identifies likely outliers and determines the proportion of outliers

within the dataset. The OCLUST algorithm assumes all model assumptions hold,

except that outliers are present. The algorithm involves removing points one-by-one

until the density in (3.5) describes the distribution of Y , which is determined using

Kullback-Leibler (KL) divergence, estimated via relative frequencies. Notably, KL

divergence generally decreases as outliers are removed and the model improves. Once

all outliers are removed, KL divergence increases again as points are removed from

14
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the tails. We select the number of outliers as the location of the global minimum.

With each iteration, we remove the most likely outlier.

Definition 1 (Most likely outlier). With each iteration, we define the most likely

outlier as t = xk, where

k = arg max
j∈[1,n]

`X\xj
.

In other words, we assign the kth point as outlying if the log-likelihood is greatest

when point t = xk is removed. The OCLUST algorithm is outlined in Algorithm 1.

Algorithm 1 OCLUST algorithm.

Initialize parameters:
1: Cluster the data into G clusters using the EM algorithm, and calculate the log-
likelihood of the clustering solution, `X .
2: Calculate the sample covariance Sg, the number of points ng, and the proportion
of points πg = ng/n for each cluster.
Calculate KL divergence:
3: Create n new datasets X \ xj, each with one xj removed.
4: Cluster each of the n datasets into G clusters, calculating the log-likelihood `X\xj

for each solution.
5: Create a new set Y = {`X\xj

− `X}j=1:n of realized values for variable Y .
6: Generate the density of Y using (3.5) and the parameters from Step 1.
7: Calculate the approximate KL divergence of Y to the generated density, using
relative frequencies.
Determine the most likely outlier t as per Definition 1.
Update:
8: n←↩ n− 1.
9: X ←↩ X \ t.
Perform: (F +1) iterations of Steps 1–9 until an upper bound, F , of desired outliers
is obtained and the resulting KL divergence is calculated.
Choose: the number of outliers as the value for which the KL divergence is mini-
mized.

15
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3.3 Hypothesis Test

Consider a dataset with a single suspected outlier, xk. Let xk be the point corre-

sponding to the maximum subset log-likelihood. We may wish to determine at a

specified significance level if xk is an outlier. We generate a test of hypothesis, where

H0 : no outliers are present

HA : xk is an outlying point.

Under the null hypothesis, Y = QX\xj
−QX is distributed according to a mixture

of beta-type densities, with the probability density function given in (3.5). The

cumulative distribution function is given by

F (y | ϑ) =

∫ y

−∞

G∑
g=1

πgfg(z | θg)dz (3.6)

=
G∑
g=1

πg

∫ y

−∞
fg(z | θg)dz (3.7)

=
G∑
g=1

πgFg(y | θg), (3.8)

where Fg(y | θg) is the cumulative distribution function of the scaled and shifted beta

function given in (3.4). Thus, by a property of the maximum, the cumulative density

for the maximum subset log-likelihood is given by

F (y(n) | ϑ) = [F (y | ϑ)]n (3.9)

=

(
G∑
g=1

πgFg(y | θg)

)n

. (3.10)

16



M.Sc. Thesis - Katharine M. Clark McMaster - Mathematics and Statistics

Finally, we can calculate the p-value of our test,

P-value = P (Yk > y) = 1− P (Yk ≤ y) = 1−

(
G∑
g=1

πgFg(y | θg)

)n

.

We reject H0 when the p-value is less than our specified significance level α.

17



Chapter 4

Analyses

4.1 OCLUST

4.1.1 Simulation Study

The first simulation study tests the performance of OCLUST against the following

three popular outlier detection algorithms:

a. TCLUST (Garćıa-Escudero et al., 2008);

b. Contaminated normal mixtures (CNMix; Punzo and McNicholas, 2016); and

c. Noise component mixtures (NCM), mixtures of Gaussian clusters and a uniform

component (Banfield and Raftery, 1993).

The datasets were generated to closely mimic those used by Garćıa-Escudero et al.

(2008) and, as such, the simulation scheme and notation used here are borrowed

therefrom. Datasets containing three clusters with means µ1 = (0, 8, 0, . . . , 0)′, µ2 =

(8, 0, 0, . . . , 0)′, and µ3 = (−8,−8, 0, . . . , 0)′, respectively, were generated with n =
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1000, and p = 2 or p = 6. Covariance matrices were generated of the forms:

Σ1 = diag(1, a, 1, . . . , 1), Σ2 = diag(b, c, 1, . . . , 1), Σ3 =


d e

e f
0

0 I

 .

With different combinations for (a, b, c, d, e, f), we generate five different models:

I. (a, b, c, d, e, f) = (1, 1, 1, 1, 0, 1), spherical clusters with equal volumes;

II. (a, b, c, d, e, f) = (5, 1, 5, 1, 0, 5), diagonal clusters with equal covariance matri-

ces;

III. (a, b, c, d, e, f) = (5, 5, 1, 3,−2, 3), clusters with equal volumes, but varying

shapes and orientations;

IV. (a, b, c, d, e, f) = (1, 20, 5, 15,−10, 15), clusters with varying volumes, shapes,

and orientations; and

V. (a, b, c, d, e, f) = (1, 45, 30, 15,−10, 15), clusters with varying volumes, shapes,

and orientations but two with severe overlap.

To fix the proportion of outliers to α = 0.1, each dataset had 900 ‘regular’ observations

and 100 outliers. Outliers were generated uniformly in the p-parallelotope defined

by the coordinate-wise maxima and minima of the ‘regular’ observations, accepting

only those points with Mahalanobis squared distances greater than χ2
p,0.995. Datasets

either had equal cluster proportions (π1 = π2 = π3 = 1/3) or unequal proportions

(π1 = 1/5, π2 = π3 = 2/5). Ten datasets were generated with each combination of

parameters (dimension, cluster proportions, model).
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We would like to test each method for classification accuracy and accuracy in

predicting α. Each method was run with G = 3. OCLUST was run using the oclust

(Clark and McNicholas, 2019) package for R (R Core Team, 2018), with an upper

bound F = 125 (α = 0.125). TCLUST was run using the tclust (Fritz et al.,

2012) package, with eigenvalue restriction c = 50. The proportion of outliers for each

dataset was estimated as the location of the ‘elbow’ of the plot generated by the

ctlcurves function. CNMix was run using the CNmixt function (Punzo et al., 2018)

with default initialization. NCM was run using the Mclust function (Scrucca et al.,

2016), initializing the noise component as a random sample of points with probability

1/4. Both CNMix and NCM inherently estimate the proportion of outliers.

Table 4.1 shows the average estimated proportion of outliers predicted by each

method, over the ten datasets. It is paramount that we correctly predict the pro-

portion of outliers, lest we introduce errors in outlier detection. CNMix and NCM

generally over-specify α, while TCLUST generally under-specifies α. As a result, the

former methods tend to have larger errors in labelling ‘regular’ points as outliers,

and the latter tends to have larger error in labelling outliers as ‘regular’. Crucially,

OCLUST predicts α very well overall, with the predicted value for α always falling

within one standard deviation of the mean. On average, OCLUST predicts closest

to the true value of α, and as such any point mislabelled as an outlier usually has

a corresponding point mislabelled as ‘regular’. A breakdown of each type of error is

available in Table C.1 in Appendix C.

We evaluate each method using outlier misclassification error. Table 4.2 lists the

outlier misclassification errors for each method, and Figure C.1 in Appendix C dis-

plays the results graphically. All four methods perform with similar misclassification
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Table 4.1: Means and standard deviations for the proportion of outliers predicted by
each method for the simulated datasets, where “E” denotes equal and “U” denotes
unequal mixing proportions πg.

OCLUST TCLUST CNMix NCM
πg p Mod. Mean SD Mean SD Mean SD Mean SD
E 2 I .1008 .0055 .0868 .0027 .1066 .0045 .1066 .0024

II .0987 .0035 .0876 .0027 .1143 .0083 .1132 .0035
III .0999 .005 .0901 .0046 .1068 .0082 .1111 .0035
IV .1001 .0038 .1029 .0033 .2083 .0719 .1442 .0096
V .1022 .0078 .1089 .0041 .147 .197 .1949 .0266

6 I .1018 .0051 .087 .0047 .1022 .0033 .1073 .002
II .1016 .0025 .0857 .0033 .1082 .0061 .1092 .0028
III .0997 .0027 .0907 .0021 .1068 .0051 .1112 .0049
IV .1036 .0062 .0928 .0029 .1488 .0351 .124 .0063
V .101 .0052 .0988 .0034 .0859 .0844 .1248 .0077

U 2 I .1 .0045 .0954 .0024 .1072 .0081 .108 .0032
II .0991 .003 .0947 .0039 .1203 .0097 .1135 .0035
III .101 .0045 .0986 .0027 .1076 .0064 .1123 .0044
IV .1028 .0051 .0962 .0038 .1489 .0343 .1417 .0059
V .102 .0051 .1107 .0034 .2629 .1659 .1814 .0236

6 I .1003 .0037 .0956 .0025 .1036 .0049 .1067 .0027
II .1012 .0058 .093 .0017 .1079 .0028 .1119 .004
III .1023 .0037 .0937 .0052 .1109 .0225 .1105 .0028
IV .0985 .005 .0906 .0034 .1132 .0364 .119 .0044
V .0968 .0061 .0973 .0047 .1383 .0808 .1253 .0064

rates in Models I–III, but OCLUST and TCLUST significantly outperform CNMix

and NCM in Models IV and V. This may be due to the fact that clusters one and two

in Models IV and V are close together or overlapping. In this case, the contamination

for each cluster is non-symmetrical, so CNMix classifies the outliers into one cluster

with large contamination parameter. NCM consistently underestimates the variance

of each cluster, which over-specifies α and results in outlier miclassification error.

OCLUST and TCLUST perform consistently with similar misclassification rates, and
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OCLUST has the lowest misclassification error in 13 of the 20 models.

Table 4.2: Outlier misclassification rate from running each method on the simulated
datasets. Classifications for OCLUST and TCLUST were taken to be those produced
when α was estimated, the average of which is detailed in Table 4.1, where “E”
denotes equal and “U” denotes unequal mixing proportions πg.

OCLUST TCLUST CNMix NCM
πg p Model Mean SD Mean SD Mean SD Mean SD
E 2 I .0074 .0021 .0134 .0028 .0072 .0038 .0066 .0024

II .0071 .0018 .0142 .0031 .0143 .0083 .0132 .0035
III .0065 .0031 .0123 .0037 .0102 .0044 .0111 .0035
IV .0079 .0022 .0075 .0018 .1085 .0717 .0442 .0096
V .0198 .0075 .0117 .0026 .167 .1014 .0949 .0266

6 I .0074 .0022 .013 .0047 .0066 .0018 .0075 .0022
II .0076 .0022 .0157 .0031 .0084 .006 .0092 .0028
III .0053 .0028 .0103 .0019 .0108 .0036 .0122 .0045
IV .0088 .0036 .0116 .0032 .056 .0262 .0264 .0055
V .0074 .0044 .0074 .0037 .0691 .0465 .0256 .0068

U 2 I .007 .0027 .0068 .0028 .01 .0047 .008 .0032
II .0071 .0025 .0093 .0038 .0205 .0095 .0135 .0035
III .0068 .0034 .0066 .0022 .01 .0034 .0123 .0044
IV .0098 .004 .0106 .0031 .0535 .0258 .0419 .0061
V .014 .0046 .0143 .0029 .2029 .1061 .0814 .0236

6 I .0067 .0031 .0078 .003 .0082 .0032 .0069 .0025
II .0086 .0042 .0106 .0027 .0091 .0014 .0119 .004
III .0075 .002 .0103 .004 .0239 .0129 .0123 .0026
IV .0113 .0035 .0132 .0039 .0354 .0154 .0222 .004
V .0108 .0027 .0101 .0021 .0689 .0546 .0259 .0061

4.1.2 Crabs Study

Next we compare the performance of OCLUST on a real dataset. For this, we use the

crabs dataset from Campbell and Mahon (1974). This study closely mimics the study

done by Peel and McLachlan (2000) and again by Punzo and McNicholas (2016).
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The dataset contains observations for 100 blue crabs, 50 of which are male, and 50

of which are female. The aim for each classification is to recover the sex of the crab.

For this study, we will focus on measurements of rear width (RW) and carapace length

(CL). We substitute the CL value of 25th point to one of eight values in [−15, 20].

The leftmost plot in Figure 4.1 plots the crabs dataset by sex, with the permuted

value in blue taking value CL = −5. OCLUST, as well as the three other comparative

methods in Section 4.1.1 were run for each dataset. With the exception of TCLUST,

each method was run, restricting the model to one where the clusters had equal shapes

and volumes, but varying orientations. Solutions for OCLUST, CNMix, and NCM for

the dataset with CL = −5 are also plotted in Figure 4.1. Table 4.3 summarizes the

results for each method, listing the number of misclassifications (M), the predicted

number of outliers (nO), and whether the model identified the permuted point as an

outlier (bad).

Table 4.3: Results for running each method on the crabs dataset, where “M” and
“nO” designate the number of misclassified points and number of predicted outliers,
respectively, and ‘bad’ indicates whether the substituted point was labelled as an
outlier.

OCLUST TCLUST CNMix NCM
CL M nO bad M nO bad M nO bad M nO bad
−15 10 4 3 20 1 3 13 1 3 13 1 3

−10 10 4 3 20 1 3 13 1 3 13 1 3

−5 10 4 3 20 1 3 13 1 3 13 1 3

0 10 4 3 20 1 3 13 1 3 13 1 3

5 10 4 3 20 1 3 13 1 3 13 2 3

10 10 4 3 20 1 3 13 1 3 11 3 3

15 10 4 3 20 1 3 13 1 3 10 4 3

20 10 4 3 20 1 3 13 1 3 9 5 3

Every method identifies the permuted value correctly as an outlier. OCLUST,

TCLUST, and CNMix are robust as they retain the same classifications for each
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Figure 4.1: Predicted classifications for OCLUST, and the shared solution for CNMix
and NCM, when CL = −5. Green triangles, red circles, purple crosses, and blue
squares indicate male, female, misclassified, and outlying points, respectively.

dataset, regardless of the value for CL. NCM classifies more points as outliers as the

permuted CL value becomes less extreme. TCLUST has the highest misclassification

rate, which is expected as it employs k-means clustering, which tends to fail when

the clusters are elliptical. NCM outputs the same classifications as CNMix when

CL ∈ [−15, 0], but differs when CL > 0, at which point NCM begins to classify

points like OCLUST (see Figure 4.2 for comparison of OCLUST, CNMix, and NCM

on the dataset with permuted point having CL = 20). Although the sum of ‘nO’ and

‘M’ are always the same for OCLUST and CNMix, it is important to note that the

points misclassified by CNMix are not the points labelled as outliers by OCLUST .

Instead, as seen in Figure 4.2, OCLUST identifies two points between the clusters as

technical outliers. This removes the points with high leverage, allowing the clusters

to rotate and improve the classification among low values of RW.
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OCLUST CNMix NCM

6 9 12 15 6 9 12 15 6 9 12 15

20

30

40

RW

C
L

Figure 4.2: Predicted classifications for OCLUST, CNMix, and NCM, when CL = 20.
Green triangles, red circles, purple crosses, and blue squares indicate male, female,
misclassified, and outlying points, respectively.

4.2 Hypothesis Test

4.2.1 Simulation Study

The second simulation study tests the effectiveness of the hypothesis test for different

values of n. Data are generated in two and six dimensions using Model IV in Sec-

tion 4.1.1 with unequal proportions (π1 = 1/5, π2 = π3 = 2/5). Different values of n

are tested with n ∈ {50, 100, 200, 400, 800}. For each n, 100 datasets are generated

without outliers, and 100 are created by adding a single outlier to the 100 aforemen-

tioned datasets. The outlier is generated randomly between two and seven units away

from the global maximum or minimum value in each dimension.

In each case, the first 100 datasets evaluate the hypothesis test’s specificity, while

the latter 100 evaluate the test’s sensitivity. Each outlier is tested at the α = 0.05
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Table 4.4: Error rate for each combination of p and n.

p outlier? n # rejected error rate
2 yes 50 100 0%

100 100 0%
200 100 0%
400 100 0%
800 100 0%

no 50 42 42%
100 15 15%
200 17 17%
400 9 9%
800 3 3%

6 yes 50 100 0%
100 100 0%
200 100 0%
400 97 3%
800 100 0%

no 50 97 97%
100 85 85%
200 55 55%
400 25 25%
800 10 10%

significance level. A table of the results are shown in Table 4.4. The hypothesis test’s

sensitivity remains nearly constant at 100% for every n, but specificity remains low

for n = 50 and increases as n increases. Thus, the power of the test increases with

n, which is a common feature of most tests. A graphical representation of the error

rates is shown in Figure 4.3.
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Figure 4.3: Type I and type II error rates for each value of n. Note that n is plotted
with a base-2 logarithmic scale.

4.2.2 Real Data

Iris Dataset

The iris dataset originates from the datasets package. It contains measurements of

sepal length, sepal width, petal length, and petal width for 50 flowers each of three

species of iris. A pairs plot of the data is shown in Figure 4.4. By visual inspection,

there do not appear to be outliers.

The hypothesis test was applied to this dataset, which resulted in a p-value of

0.0753. We do not reject H0 at the α = 0.05 significance level and we conclude that

the iris dataset does not contain an outlier. This result is expected and reflects the
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Figure 4.4: A pairs plot of the iris dataset. Points are coloured based on true classes.

information from the pairs plot.

Crabs Dataset

We extend the crabs study performed in Section 4.1.2, but we substitute the CL

value of 25th point to one of twenty values in [−15, 80]. This serves to evaluate the

responsiveness of the test. The results are shown in Table 4.5. We reject the null

hypothesis at the α = 0.05 significance level and conclude that there is an outlier

when CL is in {CL ≤ 20} ∪ {CL ≥ 40}.

The three datasets are plotted in Figure 4.5 when the hypothesis is not rejected

(i.e. CL ∈ {25, 30, 35}). By visual inspection, these points are not outliers as they

seem to be reasonable for the dataset. The hypothesis test performs as expected.
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Table 4.5: P-values for the crabs dataset with substituted CL values.

CL p-value CL p-value
-15 0 35 0.0940
-10 0 40 0.0004
-5 0 45 0
0 0 50 0
5 0 55 0
10 0 60 0
15 0 65 0
20 0 70 0
25 0.1417 75 0
30 0.1187 80 0

Value=25 Value=30 Value=35

6 9 12 15 6 9 12 15 6 9 12 15
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40
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L

Figure 4.5: The three datasets when we fail to reject the null hypothesis. The colours
correspond to the true classes, with blue squares indicating the outliers.
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Chapter 5

Conclusions and Future Work

It was proved that, for data from a Gaussian mixture, the log-likelihoods of the

subset models are distributed according to a mixture of beta-type distributions. This

result was used in two ways, first to determine the number of outliers by removing

outlying points until the subset log-likelihoods followed this derived distribution. The

result is the OCLUST algorithm, which trims outliers from a dataset and predicts

the proportion of outliers. Second, the distribution was used to develop a hypothesis

test to determine if a single outlier is present.

In simulations, the trimming methods OCLUST and TCLUST outperform the

additional-outlier-component methods CNMix and NCM, and OCLUST outperfoms

all methods 65% of the time. Crucially, however, OCLUST produces the best esti-

mation for the proportion of outliers, and as such does not consistently misclassify

outliers as ‘regular’, as is the case with TCLUST, or consistently misclassify ‘regular’

points as outliers, as is the case with CNMix and NCM. In the crabs study, OCLUST

trims technical outliers with high leverage, which improves the classification among

small values of carapace length.
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The hypothesis test performs with nearly 100% sensitivity and increasing speci-

ficity as n increases. It predicts that the iris dataset is free of outliers and it demon-

strates excellent responsiveness on the crabs dataset when carapace length is gradually

changed.

Although this work used the distribution of the log-likelihoods of the subset mod-

els to test for the presence of outliers, the derived distribution may be used to verify

other underlying model assumptions, such as whether the clusters are Gaussian. Note

that the OCLUST algorithm could be used with other clustering methods and should

be effective so long as is it reasonable to assume that the underlying distribution of

clusters is Gaussian. Of course, one could extend this work by deriving the distri-

bution of subset log-likelihoods for mixture models with non-Gaussian components.

This would allow direct consideration of asymmetric clusters with outliers. Finally,

one could extend this approach to high-dimensional data by using an analogue of

the mixture of factor analyzers model or its extensions (see Ghahramani and Hinton

(1997), McNicholas and Murphy (2008), McNicholas and Murphy (2010)). Based on

the comparisons conducted herein, one might expect the resulting method to perform

favourably, or at least comparably, when compared to the approaches used by Wei

and Yang (2012) and Punzo et al. (2020).
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Appendix A

Relaxing Assumptions

Lemma 1 assumes that the clusters are well separated and non-overlapping to simplify

the model density to the component density. This section, however, serves to show

that this assumption may be relaxed in practice. Following Qiu and Joe (2006), we

can quantify the separation between clusters using the separation index J∗; in the

univariate case,

J∗ =
L2(α/2)− U1(α/2)

U2(α/2)− L1(α/2)
,

where Li(α/2) is the sample lower α/2 quantile and Ui(α/2) is the sample upper α/2

quantile of cluster i, and cluster 1 has lower mean than cluster 2. In the multivariate

case, the separation index is calculated along the projected direction of maximum

separation. Clusters with J∗ > 0 are separated, clusters with J∗ < 0 overlap, and

clusters with J∗ = 0 are touching.

To measure the effect of separation index on the approximate log-likelihood QX ,

100 random datasets with n = 1800 for each combination were generated using the

clusterGeneration (Qiu and Joe, 2015) package in R. Data were created with three

32



M.Sc. Thesis - Katharine M. Clark McMaster - Mathematics and Statistics

clusters with equal cluster proportions with dimensions p ∈ {2, 4, 6} and separation

indices in [−0.9, 0.9]. Covariance matrices were generated using random eigenval-

ues λ ∈ (1, 10). The parameters were estimated using the mclust package. The

log-likelihoods using the full and approximate densities were calculated using the pa-

rameter estimates. [QX − `X ]/`X , the average proportional change in log-likelihood

over the 100 datasets between the full log-likelihood `X and the approximate log-

likelihood QX , is reported in Table A.1. A graphical representation of the results is

shown in Figure A.1. As one would expect, the approximation of `X by QX improves

Table A.1: The proportional change in log-likelihood between the log-likelihood `X
and the approximate log-likelihood QX , for different values of p and varying values
for separation, where 0∗ indicates no computationally-detectable difference.

Separation Difference in Log-Likelihoods (%)
Value p = 2 p = 4 p = 6
−0.9 1.13E+01 5.14E+00 3.03E+00
−0.8 1.03E+01 5.00E+00 2.99E+00
−0.7 9.70E+00 4.82E+00 2.89E+00
−0.6 9.15E+00 4.38E+00 2.67E+00
−0.5 7.74E+00 3.90E+00 2.35E+00
−0.4 6.46E+00 3.21E+00 2.00E+00
−0.3 4.86E+00 2.43E+00 1.44E+00
−0.2 3.25E+00 1.57E+00 9.76E-01
−0.1 1.83E+00 8.86E-01 5.54E-01

0 8.18E-01 4.06E-01 2.59E-01
0.1 2.58E-01 1.32E-01 8.51E-02
0.2 5.05E-02 2.51E-02 1.60E-02
0.3 4.24E-03 2.29E-03 1.24E-03
0.4 1.63E-05 8.48E-06 2.52E-05
0.5 3.94E-10 6.49E-11 2.85E-10
0.6 0* 0* 0*
0.7 0* 0* 0*
0.8 0* 0* 0*
0.9 0* 0* 0*
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Figure A.1: Graphical representation of the results in Table A.1, showing the effect of
cluster separation on the approximate log-likelihood of the model, where the vertical
line represents the threshold between separated and overlapping clusters.

as the separation index increases (see Lemma 1). However, the difference is negligible

for touching and separated clusters (J∗ ≥ 0). In the simulations in Section 4.1.1, the

most overlapping clusters have J∗ = −0.09732371, which produces an error of less

than 2% in two dimensions, and less than 0.6% in six dimensions. In this case, the

approximation is appropriate.
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Appendix B

Mathematical Results

B.1 Proof of Lemma 1

Proof. Suppose Σ is positive definite. Then, Σ−1 is also positive definite and there

exists Q′Q = I such that Σ−1 = Q′ΛQ and Λ is diagonal with Λii = λi > 0, i ∈ [1, p].

Let x− µ = Q′w, where w 6= 0. Now,

(x− µ)′Σ−1(x− µ) = w′QΣ−1Q′w = w′Λw =

p∑
i=1

λiw
2
i

≥ inf
i

(λi)

p∑
i=1

w2
i = inf

i
(λi)‖w‖2 = inf

i
(λi)‖x− µ‖2

because ‖x − µ‖2 = ‖Q′w‖2 = w′QQ′w = ‖w‖2. Thus, as ‖x − µ‖ → ∞, (x −

µ)′Σ−1(x− µ)→∞ and

φ(x | µ,Σ) =
1√

(2π)p|Σ|
exp

{
−1

2
(x− µ)′Σ−1(x− µ)

}
→ 0.
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Suppose xi ∈ Ch. Then, as the clusters separate, ‖xi−µg‖ → ∞ and φ(xi | µg,Σg)→

0 for g 6= h. Thus, for xi ∈ Ch,

G∑
g=1

πgφ(xi | µg,Σg) =
∑
g 6=h

πgφ(xi | µg,Σg) + πhφ(xi | µh,Σh) ' πhφ(xi | µh,Σh).

Thus,

`X =
n∑
i=1

log

[
G∑
g=1

πgφ(xi | µg,Σg)

]
'
∑
xi∈Cg

log
[
πgφ(xi | µg,Σg)

]
= QX .

Remark 2. Although covariance matrices need only be positive semi-definite, we

restrict Σ to be positive definite so that X is not degenerate.
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Appendix C

Additional Tables and Figures
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