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Lay Abstract 

The human brain develops across the lifespan. This ability of the brain to change 

and adapt to the environment is called plasticity and it is essential for normal brain 

functions, such as processing visual information. Immune proteins play important roles in 

the visual cortex- the brain region responsible for visual information processing. They 

help establish brain circuits in early development and regulate ongoing neural processes 

important to brain plasticity. In my thesis, I measure the expression of neuroimmune 

proteins to unpack their developmental patterns in the human visual cortex. I found that 

these proteins have fluctuating levels across development, with many displaying 

heightened expression levels in early childhood. Additionally, I found eight common 

trajectory patterns that were shared between the proteins. These findings enable a better 

understanding of how regulators of human brain development mature.  
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Abstract 

Neuroimmune proteins are involved in a wide array of biological functions 

throughout brain development. Importantly, these molecular mechanisms regulate the 

activity-dependent sculpting of neural circuits during the critical period. Abnormal 

expression of these molecular mechanisms, especially in early development, is linked to 

the emergence of neurodevelopmental disorders. Despite having central roles in both 

normal and pathological conditions, very little is known about the lifespan expression of 

neuroimmune proteins in the human cortex. As studies exploring the relationship between 

inflammation and disease tend to rely on animal models, unpacking immune lifespan 

trajectories in the human brain will be essential for translational research. Furthermore, it 

will aid the development of timely and effective therapeutic interventions for 

neurodevelopmental disorders.  In my thesis, I characterize the development of 72 

neuroimmune proteins in 30 postmortem tissue samples of the human primary visual 

cortex. These samples cover the lifespan from 20 days to 79 years. I compare the 

developmental profiles of these immune markers to those of well-studied classic neural 

proteins including glutamatergic, GABAergic and other synaptic plasticity-related 

markers. Using a data-driven approach, I found that the 72 neuroimmune proteins share 

approximately eight developmental patterns, most of which undulate across the lifespan. 

Furthermore, I used unsupervised hierarchical clustering to show that the development of 

neuroimmune proteins in the human visual cortex varies from that of classic neural 

proteins. These findings facilitate a deeper understanding of human cortical development 

through two classes of proteins involved in brain development and plasticity. 
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The term neuroimmune refers to the interaction between the nervous system and 

the immune system. Communication between these two systems is bidirectional (Reardon 

et al., 2018) and the study of these interactions is termed neuroimmunology (Nutma et al., 

2019). Proteins traditionally found in the immune system have important roles in brain, 

where they regulate many neural functions, including visual information processing 

(Boulanger, 2009).  In addition to their roles in the healthy brain, immune proteins are 

implicated in a wide range of neurodevelopmental disorders (Garay & McAllister, 2010). 

Despite their involvement in both development and disease, very little is known about the 

lifespan expression profiles of immune proteins in the human brain. Studies exploring the 

links between inflammation, aging and disease rely heavily on animal models. Therefore, 

unpacking the lifespan trajectories of these immune proteins is essential for translational 

research and for identifying molecular targets for treating neurodevelopmental disorders.  

The influence of peripheral inflammation on the central nervous system (CNS), 

and the crosstalk between neurons and glial cells are two examples of neuroimmune 

activity. In my thesis, a third branch of neuroimmune interactions will be assessed. 

Specifically, I explore the expression of immune proteins in the brain (i.e. neuroimmune 

proteins) and their involvement in brain functions like development and plasticity.  I 

create a database detailing the developmental trajectories of 72 neuroimmune proteins in 

the human primary visual cortex (V1C). Furthermore, I compare their trajectories to the 

lifespan expression patterns of classic neural proteins known to regulate critical period 

plasticity.  

 



M.Sc. Thesis - E. Jeyanesan; McMaster University - Neuroscience 

 

 3 

1.1  Critical period plasticity and neuroimmune proteins 

1.1.1 The critical period  

The critical period is a time in development when the brain is especially sensitive 

to external factors. While genetics plays an important role in determining the initial 

structure and connectivity of neural circuits, environmental factors are also key players 

(Hensch, 2004). Abnormal experience during the critical period can have enduring, 

irreversible, negative effects throughout the lifespan. The study of critical periods was 

pioneered by Hubel and Wiesel in the 1960s. Originally, completing their work in kittens, 

Hubel and Wiesel found that monocular deprivation (MD), a process through which one 

eye is occluded, produced profound changes in the cat's visual system properties (Hubel 

& Wiesel, 1963, Wiesel & Hubel, 1963a; Wiesel & Hubel, 1963b). Using single unit 

recordings, they found that after MD kittens had a decreased number of cells in the lateral 

geniculate nucleus (LGN) that received input from the deprived eye (Wiesel & Hubel, 

1963a). Interestingly they found that this decrease was greatest in the kitten with no 

visual experience - i.e. one eye sutured from birth (Wiesel & Hubel, 1963a). The atrophy 

was less in kittens with previous visual experience, and no such atrophy corresponding to 

the deprived eye was observed when the adult cat was monocularly deprived (Wiesel & 

Hubel, 1963a). They subsequently measured cellular responses in the cat visual cortex 

and found that the kittens visually deprived since birth had more cells that preferentially 

responded to the open eye (Wiesel & Hubel, 1963b). Once again, they found that this 

preference for the open eye was absent in adult cats that underwent MD. They remark 

that there is a “pronounced difference between kittens and adults in susceptibility to 
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deprivation” (Wiesel & Hubel, 1963b). The work by Hubel and Wiesel was the initial 

indication that there are time sensitive windows where the brain is susceptible to 

influence by visual experience. 

1.1.2 Ocular dominance columns and plasticity 

Hubel and Wiesel’s work also laid the foundation for the study of ocular 

dominance columns (ODCs). These refer to striated patterns of neurons in the visual 

cortex that preferentially respond to one eye over the other (Katz & Crowley, 2002). 

Once again, Hubel and Wiesel’s studies in monocularly deprived kittens revealed that 

selective receptive field properties were present in visually inexperienced kittens (Hubel 

& Wiesel, 1963). Consequently, Hubel and Wiesel theorized that there must be a genetic 

component that orchestrates the responses of neurons in the absence of visual experience 

(Hubel & Wiesel, 1963). In later experiments, injections of radioactive chemicals into the 

left eye of a Rhesus monkey, made it possible to visualize these striated patterns in the 

visual cortex (Wiesel et al., 1974). Using this autoradiography technique, they later 

showed that monocularly deprived macaque monkeys had larger bands corresponding to 

the open eye, while the bands corresponding to the deprived eye had shrunk (Hubel et al., 

1977). Importantly, these changes in band width were not observed when occluding the 

eye of an adult macaque monkey; providing further evidence that there are periods of 

time (i.e. a critical period) when the functional architecture of the visual cortex is 

susceptible to alterations based on visual experience, or lack thereof (Hubel et al., 1977). 

In later studies, LeVay et al. (1978) showed that the striated pattern was evident in adult 

cats, but not in kittens of around one to two weeks of age. Instead, LeVay et al. (1978) 
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observed one continuous band in kittens. Experiments by Crair et al. (1998) looking at 

binocularly deprived (BD) cats demonstrated that while these cortical maps were innate 

(as they developed in kittens whose eyes had not yet opened), visual experience was 

required for the modification of neural responses to the contralateral and ipsilateral eye.  

Critical periods have since been assessed in the visual cortex of cats, non-human 

primates, mice, and other animal models by numerous researchers (Espinosa & Stryker, 

2012). Using a combination of methods such as eye patching, cataracts to occlude the 

eyes, and more recently, gene knockout methods, we have been able to selectively disturb 

normal binocular vision and determine the molecular mechanisms that regulate the 

critical period for ocular dominance plasticity (ODP). Key players include proteins 

integral to excitatory and inhibitory transmission as well as the regulation of experience-

dependent cortical plasticity. 

Glutamate decarboxylase 65 (GAD65), creates the on-demand supply of gamma-

aminobutyric acid (GABA) through the decarboxylation of glutamate, and has been 

linked to the opening of the critical period for ODP (Iwai et al., 2003). Hensch et al. 

(1998) showed that in GAD65 knockout mice, cells do not show preference for the open 

eye after brief MD during the critical period for ODP. Rather cells continued to respond 

preferentially to the contralateral eye (Hensch et al., 1998). Next, they supplied the 

knockout mice with the benzodiazepine agonist, diazepam which reinstated the ocular 

dominance shift in monocularly deprived mutant mice (Hensch et al., 1998). It was later 

found that the diazepam infusion did not need to coincide with the entire deprivation 
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period, rather brief GABAergic transmission at the beginning of MD was required to 

facilitate ODP (Iwai et al., 2003). 

Similarly, GABAA receptor subunits have also been studied in the context of 

ODP. The GABAA subunit is responsible for the binding of GABA to the receptor (Smith 

& Olsen, 1995). Fagiolini et al. (2004) studied knock out mice for the three GABAA 

subunits: ɑ1, ɑ2 and ɑ3. Using a series of knockin experiments, they selectively targeted 

the benzodiazepine binding site on each of the three receptor subunits separately. 

Fagiolini et al. (2004) observed that while the ɑ1 subunit was required to drive visual 

cortical plasticity, the other two were not.  

Glutamatergic receptors have also been implicated in the regulation of synaptic 

plasticity and the opening and closing of the critical period for ODP. For example, 

increases in the level of postsynaptic scaffolding protein 95 (PSD-95) are necessary for 

the closing of the critical period, as it facilitates the maturation of synapses (Huang et al., 

2015). The glutamate receptor 2 (GluA2) subunit, on the other hand, has been implicated 

in the opening of the critical period (Rumpel et al., 1998). In fact, the critical period for 

ODP is divided into stages. The process begins with a decrease in response to the 

deprived eye followed by an increase in response to the open eye - with minor increases 

in deprived eye responses as well (Espinosa & Stryker, 2012). Finally, if the deprived eye 

is opened during the critical period, responses are recovered (Kaneko, Hanover, et al., 

2008). Each of these stages are governed by different sets of molecular mechanisms. Loss 

of GluA2 (Heynen et al., 2003) and an increase in the immature glutamate receptor 

ionotropic NMDA 2B subunit (GluN2B) accompanies the weakening of responses to the 
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deprived eye (Chen & Bear, 2007). An increase in GluA2 (Lambo & Turrigiano, 2013) 

and decrease in the mature glutamate receptor ionotropic NMDA 2A subunit (GluN2A) is 

associated with the strengthening of responses to the open eye (Smith et al., 2009). These 

molecular mechanisms also contribute to regulating ODP in the healthy brain. For 

example, visual experience during the critical period drives the loss of GluN2B (Philpot, 

et al., 2001) and an increase of GluN2A, which combined reduce ODP (Quinlan et al., 

1999). This 2A:2B subunit balance is considered a regulator of metaplasticity in the 

visual cortex (Philpot et al., 2007).  

1.1.3 Neuroimmune proteins and plasticity during the critical period  

 Neuroimmune proteins also play important roles in the regulation of the critical 

period for ODP. Multiple studies have found that the major histocompatibility complex 

(MHC) family of molecules restrict ODP (Espinosa & Stryker, 2012). These molecules 

have important roles in the detection of antigens as part of the immune system 

(Wieczorek et al., 2017). They function by binding fragments of pathogens and 

displaying them on the cell surface to trigger responses by T-cells (Wieczorek et al., 

2017). In the nervous system, paired-immunoglobulin–like receptor B (PirB) is a receptor 

for the MHC class I molecules widely implicated in activity-dependent synaptic plasticity 

(Shatz, 2009). Syken et al. (2006) used a mutant mouse in which four exons encoding the 

transmembrane portion and part of intracellular component of the PirB receptor were 

removed. This mutation made PirB unable to signal across the plasma membrane (Syken 

et al. 2006). Syken et al. (2006) found that the mutated mice had enhanced ODP after 

monocular enucleation (ME) and MD. Interestingly, they observed this enhancement in 
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adult mice also, suggesting that PirB is required to limit experience-dependent plasticity, 

not just within the critical period, but also beyond it (Syken et al., 2006). Following this 

discovery, Datwani et al. (2009) examined ODP after the deletion of 2 members of the 

MHC family of molecules: H2-Kb and H2-Db. They too found that the deletion was 

sufficient to enhance ODP in the mouse visual system after both MD and ME (Datwani et 

al., 2009). 

Tumor necrosis factor-α (TNFɑ) is a proinflammatory cytokine that also has 

important roles in ODP, particularly in the strengthening of responses to the open eye. 

Using TNFɑ knockout mice it was possible to dissociate the first and second stages of 

ODP (Kaneko, Stellwagen, et al., 2008). First, researchers monocularly deprived mutant 

mice by lid suture for a brief period during the peak of the critical period. When optical 

imaging was used to measure responses to both eyes, researchers found that there was a 

decrease in the ocular dominance shift (Kaneko, Stellwagen, et al., 2008). As mentioned 

previously, the ocular dominance shift occurs in two distinct stages. First, with a decrease 

in deprived-eye responses, which is followed by an increase in open-eye responses 

(Espinosa & Stryker, 2012). Kaneko, Stellwagen, et al. (2008) found that while TNFɑ 

knockout mice showed decreases in response to the deprived eye, the expected increase 

in response to the open eye were not observed. This revealed a role for TNFɑ in 

strengthening the responses to the open eye following MD. Taken together these findings 

suggest pleiotropic roles for neuroimmune markers in ODP, as some promote plasticity 

(i.e. TNFɑ) while others act as a break on ODP (i.e. proteins in the MHC family of 

proteins). 
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1.2  Neuroimmune proteins and brain development 
 

1.2.1 Neuroimmune proteins in the central nervous system 
 

The brain was traditionally considered to be an immune-privileged site, where the 

blood brain barrier (BBB) prevented peripheral immune proteins from entering the CNS. 

Only in the event of insult, such as during brain injury or disease when the integrity of the 

BBB is compromised, were immune proteins thought to crossover to the CNS (Forrester 

et al., 2018; Galea et al., 2007; Zlokovic, 2008). The current understanding of 

neuroimmune interactions is much more complex, as recent studies have unveiled the 

expression of immune markers by the healthy brain. From a functional perspective, the 

immune system and the nervous system have much in common (McAllister & Water, 

2009). For example, they both detect and respond to external cues through the release of 

secretory molecules to distant targets, and both immune and neurons are capable of 

forming synapses (Kioussis & Pachnis, 2009). With their many functional similarities it 

is comprehensible that the proteins that carry out these common functions are present in 

both systems. Due to their dual roles, classic immune markers are considered pleiotropic. 

Notably, they do not simply perform immune functions in the brain. Rather inflammatory 

markers are developmentally regulated and modulate nervous system development 

(Garay & McAllister, 2010). In fact, a wide range of immune proteins from both the 

innate and adaptive immune systems can be found in the human brain. These include 

cytokines, members of the complement system, and the MHC family of molecules 

(Boulanger, 2009). These classic immune proteins are associated with a range of neural 

processes, such as the experience-dependant refinement of cortical circuits, determining 
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the number of synapses, the proliferation and survival of neuronal and glial cells, axon 

guidance and synapse formation, to name a few (Stolp, 2013). 

1.2.2 Developmental roles for neuroimmune proteins 

The Shatz’s laboratory demonstrated that the healthy CNS expresses immune 

proteins, and that their expression levels are regulated by neural activity. In their study, 

spontaneous neuronal activity in the fetal cat visual system was blocked using an 

intracranial infusion of tetrodotoxin (TTX) (Corriveau et al., 1998). A subsequent 

messenger ribonucleic acid (mRNA) screen was performed to determine genes in the 

LGN that were differentially expressed in response to this activity blockade. This 

experiment surprisingly revealed that the MHC class I mRNA was downregulated. 

Subsequent studies looking at MHC molecules have revealed that neuronal expression of 

MHC molecules is linked to activity-dependent plasticity (Shatz, 2009). In the mouse 

dorsal LGN, during normal development, few cells receive input from the ipsilateral eye, 

while cells that receive input from the contralateral eye are more numerous 

(Kerschensteiner & Guido, 2017). Studies in the mouse visual cortex have revealed that 

knocking out MHC class I gene expression results in the incomplete development of 

connections between the retina and its target cells in the dorsal LGN (Huh et al., 2000). 

Specifically, the number of ipsilateral projections were high, compared to wild type mice 

(Huh et al., 2000). This shows that MHC class I molecules are necessary in the 

refinement of connections in the brain. 

Subsequent studies have elucidated the role of other neuroimmune proteins in 

synapse elimination and refinement. In early development, neurons in the brain form 
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numerous connections; many more than actually necessary (Vonhoff & Keshishian, 

2017). Synapses are subsequently pruned in an activity-dependent manner (Vonhoff & 

Keshishian, 2017). This process is fundamental to the development and maturation of the 

nervous system. In addition to MHC molecules, members of the complement cascade 

also play roles in synapse refinement (Schafer & Stevens, 2010). In one study, retinal 

ganglion cells (RGC) were cultured either alone or with a feeding layer of immature 

astrocytes, and a gene profiling approach was used to detect differentially expressed 

mRNA (Stevens et al., 2007). The researchers found that complement component 1q 

(C1q) mRNA was upregulated in RGC (i.e. neuronal expression) that were cultured with 

astrocytes (Stevens et al., 2007). C1q is the activating protein in the classical complement 

cascade, which is part of our innate immune system (Bohlson et al., 2014). C1q works to 

detect foreign antigens and also promotes the phagocytosis of apoptotic cells (Bohlson et 

al., 2014). Stevens et al. (2007) show that C1q is localized to the synapses during the 

developmental period for synapse pruning, and that using mechanisms similar to their 

immune response, C1q targets CNS synapses for elimination in the retinogeniculate 

pathway. 

  Immune proteins called pentraxins also play roles in synapse elimination and 

synapse formation (Boulanger, 2009). Increases in the pentraxin neuronal activity-

regulated pentraxin (Narp) has been linked to increases in the number of excitatory 

synapses (Boulanger, 2009; O’Brien et al., 1999). On the other end of the spectrum, 

pentraxins also play roles in synapse elimination in the visual system of mice, as 
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knocking out neuronal pentraxins delays the maturation and refinement of glutamatergic 

synapses (Bjartmar et al., 2006). 

Neuroimmune proteins interact and modulate the activity of classic neural 

proteins involved in the brain’s communication activities. MHC class I molecules on 

neurons for instance, regulate the density of GABAergic and glutamatergic synapses, and 

the frequency of both miniature excitatory postsynaptic currents (mEPSC) and miniature 

inhibitory postsynaptic currents (mIPSC) in the visual cortex (Elmer and McAllister, 

2012). Due to the differential effects of MHC and its receptors on glutamatergic and 

GABAergic receptors, the excitatory: inhibitory (E:I) balance is also modulated by MHC 

expression levels (Glynn et al., 2011). 

Moreover, excitatory α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid 

receptors (AMPAR) in the brain are susceptible to regulation by multiple immune 

proteins. For example, the release of TNFɑ by glial cells has been implicated in synaptic 

scaling (Boulanger, 2009). The TNF family of proteins is involved in many physiological 

functions in the immune system including the swelling and lysis of cells, embryo 

development, and mediating both acute and chronic inflammation (Chu, 2013). In terms 

of synaptic plasticity, exogenous TNFɑ has been shown to increase the number of 

AMPARs present on the cell surface of hippocampal neurons, this in turn increases the 

frequency of postsynaptic currents (Beattie et al., 2002). When hippocampal cell cultures 

were exposed to concentrations of TNFɑ, a two-fold increase in the number of surface 

AMPARs was observed (Beattie et al., 2002). To test if the synaptic strength is modified 

by the addition of TNFɑ, Beattie et al. (2002) compared the levels of AMPARs detected 
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in the synapses of both TNFɑ treated and untreated cultures. They found that the treated 

cultures had a much higher proportion of detectable AMPAR and that the frequency of 

mEPSC increased. Applying a TNFɑ antagonist however resulted in less frequent 

mEPSC with smaller amplitude and a smaller amount of cell surface AMPARs were 

detected (Beattie et al., 2002). To determine the endogenous source of TNFɑ, the 

researchers applied an astrocyte -condition media to the hippocampal neurons and found 

an increase in AMPARs and an increase in the mean frequency of mEPSC, similar to that 

observed when applying exogenous TNFɑ (Beattie et al., 2002). This suggested that glial 

cells were the endogenous source of TNFɑ that facilitated synaptic scaling (Beattie et al., 

2002). 

The effects of TNFɑ on AMPARs has been linked to homeostatic synaptic scaling 

in response to activity (Stellwagen & Malenka, 2006). Mice hippocampal slices from 

TNFɑ knockout mice were measured for long-term potentiation (LTP) and long-term 

depression (LTD) changes and were found to be normal (Stellwagen & Malenka, 2006). 

The authors interpret these results as evidence that TNFɑ is not mandatory for rapid, 

long-term plasticity (Stellwagen & Malenka, 2006). Nonetheless, when cell cultures were 

treated with TTX in order to block activity, an increase in the levels of surface AMPARs 

was observed, similar to that when incubated with TNFɑ (Stellwagen & Malenka, 2006). 

They found that adding an TNFɑ antagonist prevented the accumulation of AMPARs to 

the cell surface upon chronic TTX exposure (Stellwagen & Malenka, 2006). Moreover, 

the addition of the antagonist prevented the normal increase in mEPSC, and decrease in 

mIPSC, associated with chronic activity blockade (Stellwagen & Malenka, 2006). Taken 
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together these results suggests that TNFɑ is required for activity-dependent homeostatic 

synaptic scaling. Moreover, Stellwagen and Malenka (2006) found that TNFɑ released 

from glial cells were responsible for this synaptic scaling, as knocking out glial TNFɑ 

prevented the changes in postsynaptic currents and surface levels of AMPARs. TNFɑ 

preferentially increases the expression of AMPARs that lack the GluA2 subunit as the 

levels of GluA2 did not change upon treatment with TNFɑ, while the levels of glutamate 

receptor 1 (GluA1) increased two-fold (Stellwagen et al., 2005). Calcium permeable (i.e. 

GluA2 lacking AMPARs) have been implicated in the induction of synaptic plasticity 

(Man, 2011) and strengthened excitatory neocortical synapses (Wright & Vissel, 2012). 

Thus, the selective trafficking of AMPARs without GluA2, in response to TNFɑ, 

indicates increased synaptic plasticity and strength. TNFɑ can also regulate the number of 

surface-GABAA receptors (responsible for fast inhibitory transmission) in hippocampal 

cells, as exposure to exogenous TNFɑ resulted in fewer surface GABAA receptors and 

reduced inhibitory signalling (Stellwagen et al., 2005). In fact, Stellwagen et al. (2005) 

observed that the amount of endocytosed GABAA receptors increased by nearly two-fold 

upon treatment with TNFɑ. 

In addition to the roles mentioned above, neuroimmune proteins are also 

implicated in progenitor cell differentiation, neurogenesis and astrogenesis, the 

recruitment of microglia into the developing brain, and neural cell migration (Bilbo & 

Schwarz, 2012). Neuroimmune proteins are developmentally regulated and consequently 

are expressed at varying levels throughout the lifespan to modulate brain development. 
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1.3 The roles of neuroimmune proteins in disorders and disease 

1.3.1 Inflammation in neurodevelopmental disorders 

Due to the extensive involvement of neuroimmune proteins in healthy brain 

development, the abnormal expression of these molecular markers may underlie 

pathological conditions. For instance, neurodevelopmental disorders such as Rett 

syndrome and Autism spectrum disorder (ASD) have been linked to elevated levels of 

inflammation. Rett syndrome is a neurodevelopmental disorder with a known genetic 

basis as the majority of cases are caused by mutations to the X-linked methyl-CpG 

binding protein 2 (MECP2) gene (Leonard et al., 2016). The MeCP2 protein is a nuclear 

protein (Leoncini et al., 2015) that was originally described as a transcription repressor 

that binds to methylated deoxyribonucleic acid (DNA) (Ip et al., 2018). Today the 

MeCP2 protein is known to exert both enhancing and inhibiting effects on gene 

expression and can use micro-RNA to regulate post-transcriptional expression levels of 

genes (Ip et al., 2018). Cyclin-dependent kinase-like 5 (CDKL5) is a protein involved in 

mediating the phosphorylation of MeCP2 (Leoncini et al., 2015). Less commonly, 

mutations in the CDKL5 gene also underlie Rett syndrome (Leoncini et al., 2015). 

Individuals with this disorder are predominantly female as MECP2 mutations in males 

usually result in death within 2 years of age (Ip et al., 2018). Individuals initially follow 

normal patterns of development but then display regression and subsequent impairments 

of cognitive, motor and verbal abilities (Ip et al., 2018). In addition to these classic 

features, individuals with Rett syndrome also show impaired visual processing. For 

example, at the level of the eye, these individuals have refractive errors (Saunders et al., 
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1995). Studies of pattern-reversal visual evoked potentials (VEP) in heterozygous 

MeCP2 mutant mice, as well as 34 females with Rett syndrome, have found a decrease in 

VEP amplitude at later stages of the disorder (LeBlanc et al., 2015). Moreover, these 

individuals showed low visual spatial acuity when presented with a high spatial 

frequency stimulus (LeBlanc et al., 2015). Another study examined the visual acuity of 

42 female participants with Rett syndrome, these individuals between 2 ½ years to 47 

years old, showed acuity levels similar to unaffected infants 12 to 24 months of age 

(Tetzchner et al., 1996). Animal studies linking peripheral inflammation and Rett 

syndrome have found that many immune proteins are differentially expressed in Rett 

(Derecki et al., 2012). This is also true in humans, for example, an increase in the plasma 

levels of T helper 2 related cytokines were observed in MECP2-Rett (Leoncini et al., 

2015). These cytokines facilitate protective immune responses, and yet contribute to 

diseases of chronic inflammation such as asthma (Walker & McKenzie, 2017).  

In contrast to Rett syndrome, ASD does not have a single, known genetic basis. 

Rather it is a complex disorder that is linked to a large number of genes and 

environmental factors (Lord et al., 2020). Features of ASD include restricted interests, 

repetitive behaviors, and impaired communication skills (Goines & Water, 2010). 

Abnormalities in cytokine expression, immunoglobulins, dysregulation of inflammation, 

and altered cellular activation have been reported in individuals with ASD (Goines & 

Water, 2010). One study found higher levels of chemokine expression in the blood 

plasma of 80 children with ASD (Ashwood et al., 2011). Furthermore, the increased 

chemokine levels were accompanied by greater aberrant behavior scores and greater 
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impairments in visual reception, fine motor skills and expressive language (Ashwood et 

al., 2011).  

1.3.2 Neuroimmune proteins in neuropsychiatric disorders 

Similar to ASD, neuropsychiatric disorders are complex and cannot be explained 

by a single genetic mutation or environmental cause (Garay & McAllister, 2010). Just as 

neurodevelopmental disorders present visual impairment, individuals with 

neuropsychiatric disorders also experience visual perception changes. One commonly 

studied disorder with visual impairments is schizophrenia. This neuropsychiatric disorder 

is characterized by both positive symptoms such as hallucinations and delusions, as well 

as negative symptoms, such as impaired speech and cognitive abilities (Patel et al., 2014). 

In addition, some schizophrenic individuals experience abnormal vision, with 

impairments in contrast sensitivity, facial emotion recognition, perceptual organization 

and motion processing (Silverstein et al., 2015). Moreover, impaired synaptic 

transmission (Frankle et al., 2003) and impaired LTP mechanisms in the human visual 

cortex have been reported in schizophrenic individuals (Çavuş et al., 2012). These 

findings suggest that the visual cortex may be affected in neuropsychiatric disorders.  

Studies exploring the biological basis for neuropsychiatric disease and mood 

disorders have drawn parallels between systemic infection and pathological conditions. 

Both are associated with elevated levels of cytokine production in the brain and have 

similar behavioural outcomes such as sleep disturbances and loss of appetite (Bilbo & 

Schwarz, 2012). The similarities between the response to acute illness and to 
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neuropsychiatric disease provides evidence that psychiatric disorders may be caused by a 

dysregulation of neuroimmune mechanisms.  

Importantly, there is evidence that neuropsychiatric diseases are developmental in 

origin. In this line of work, studies looking at maternal immune activation (MIA) have 

linked increased prenatal levels of cytokines to abnormal fetal development (Bilbo & 

Schwarz, 2012). The most common model used to assess MIA is exposure to 

immunostimulant polycytidylic acid (polyI:C), a double stranded RNA molecule that 

mimics viral infection, and amongst other things, results in an increase in cytokine levels 

(Minakova & Warner, 2018). In mouse models, knockout of the pleiotropic cytokine 

interleukin-6 (IL-6) prevents behavioural changes seen in the adult offspring of wild type 

mice (Smith et al., 2007).  Specifically, the prepulse inhibition, social interaction, and 

open-field behavior of adult offspring was comparable to offspring of wild controls 

(Smith et al., 2007). Importantly, MIA rodent models illustrate that early exposure to 

immunostimulants have enduring effects into adulthood (Garay et al., 2013; Minakova & 

Warner, 2018). MIA has neurobiological effects in addition to behavioural ones. Notably 

there are changes in the number of synapses, excitatory and inhibitory transmission, and 

structural impairments of presynaptic inputs in adult offspring (Coiro et al., 2015). 

Furthermore, Winter et al. (2009) show that a single dose of polyI:C is sufficient to 

induce changes in the baseline levels of neurotransmitters, including an increase in 

dopamine, and a decrease in serotonin in the adult offspring. 

According to the neurodevelopmental theory of schizophrenia the etiology of the 

disorder is rooted in genetic and environmental factors that impact brain development 
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before reaching an adult-like state (Fatemi & Folsom, 2009). A two-hit model is 

sometimes used to explain schizophrenia, where a prenatal genetic or environmental 

"first hit" disrupts neural circuitry and confers vulnerability to a second hit that occurs 

later in life during adolescence (Maynard et al., 2001). Importantly, neither insult alone is 

sufficient to induce schizophrenia (Maynard et al., 2001). In this context, viral infections 

during prenatal development, including exposure to retroviruses (Karlsson et al., 2001), 

herpes simplex virus (Buka et al., 2001), and influenza (Mednick et al., 1988) are 

associated with the emergence of schizophrenia in later life (Fatemi & Folsom, 2009). In 

fact, the link between maternal influenza virus and schizophrenia in humans is one of the 

main motivators for using a viral mimic (i.e. polyI:C) to study MIA (Bilbo & Schwarz, 

2012). Interestingly, primary sensory areas, such as the V1C, are densely vascularized 

(Schmid et al., 2019). Consequently, these regions are vulnerable to viral infection during 

illness when there is severe inflammation, and cytokines can induce damage and increase 

the BBB permeability (Bilbo & Schwarz, 2012; Yarlagadda et al., 2009).  

1.3.3 Neuroimmune proteins in age-related disorders 

Finally, inflammation has also been studied in the context of aging and age-

related diseases. Aging is the main risk factor for most neurodegenerative disorders like 

Alzheimer's disease (AD) (Hou et al., 2019). Many molecular mechanisms that underlie 

the normal aging process also underlie neurodegenerative disorders; this includes 

inflammation (Franceschi et al., 2018). According to the inflammaging model, aging in 

the brain is a chronic, progressive increase in proinflammatory state (Franceschi et al., 

2000). Immune responses are considered stressors in this model, which argues that over 
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time the capacity of the brain to deal with such stressors is reduced (Franceschi et al., 

2000). Consequently, disorders of the brain can be considered cases of neuroprogression 

in which accelerated aging is taking place (Franceschi et al., 2018; Perna et al., 2016). 

For example, synapse loss is linked to AD and studies have found that the release of 

soluble factors, such as TNFɑ and IL-6 by microglia induce loss of synapses (Rajendran 

& Paolicelli, 2018).  

In fact, accelerated aging and inflammation have also been linked with 

neuropsychiatric disorders like schizophrenia. In their review, Nguyen et al. (2017) report 

that in studies of schizophrenia, markers of synaptic functions are most frequently 

differentially related to age. Other studies find that illness duration is associated with 

higher levels of inflammatory markers in serum samples (Ganguli et al., 1994). Overall, 

as neuroimmune proteins are spatially and temporally regulated, with specific functions 

during development, abnormal increases in their expression in early development may 

underlie the deficits and behavioural abnormalities seen in neurological disorders. 
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1.4 Study Rationale, Objective and Specific Aims  

Rationale: Neuroimmune proteins are involved in the plasticity and development of the 

human visual cortex (Boulanger, 2009). Nonetheless, very little is known about the 

lifespan expression patterns of neuroimmune proteins in the human brain. Unpacking the 

developmental trajectories of these molecular mechanisms will facilitate the translation of 

neuroinflammation, aging, and disease-related findings from animal models to humans. 

Furthermore, this information will increase our understanding of how the human visual 

cortex develops and will help identify periods of heightened immune expression that can 

be targeted for treatment of neurodevelopmental disorders. 

Objective: To unpack the neurobiological development of the human V1C by 

characterizing the lifespan trajectories of neuroimmune proteins. 

Specific Aims: 

1. Measure the expression of a collection of neuroimmune proteins in the human V1C 

using a multiplex ELISA and determine the number of trajectory patterns displayed 

by these proteins using unsupervised hierarchical clustering. 

2. Use known classic visual plasticity markers, such as glutamatergic and GABAergic 

receptor proteins, as guides to identify candidate plasticity processes for 

neuroimmune proteins. 

3. Compare the lifespan profiles of classic plasticity markers and neuroimmune 

mechanisms to determine whether the profile of human visual cortex development 

varies between different classes of proteins.  
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Approach: I take a data-driven approach to unpacking the development of neuroimmune 

proteins. This study falls in the realm of discovery research (opposed to hypothesis 

testing) and aims to provide novel insights about neuroimmune expression at different 

periods of the lifespan. As a data-driven study, a wide range of unsupervised clustering 

and data mining tools are used in my thesis to unpack the neurobiological development of 

the visual cortex. 
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Chapter 2. Characterizing the development of 
neuroimmune proteins in the human primary visual 
cortex 
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2.1 Introduction 

Neuroimmune proteins participate in the refinement of cortical circuits during the 

critical period for experience-dependent plasticity (Boulanger, 2009). Abnormal 

development of these mechanisms confers risk for neurodevelopmental disorders 

including neuropsychiatric disease (Bilbo & Schwarz, 2012; Garay & McAllister, 2010). 

While neuroimmune proteins are involved in numerous developmental processes, very 

little is known about their lifespan expression patterns. This is especially true for early 

developmental stages that overlap with the critical periods for cortical plasticity. 

Unpacking neuroimmune lifespan trajectories in the human cortex will enable 

translational research and allow us to apply insights from animal models to our 

understanding of inflammation and aging in the human brain. Moreover, characterizing 

neuroimmune trajectories will be instrumental in determining therapeutic targets for 

neurodevelopmental and neuropsychiatric disorders. While many brain regions have been 

linked to such disorders, the visual cortex is one of the most well-studied models for 

cortical plasticity (Smith et al., 2019). In our lab, we have previously used the visual 

cortex as a model to explore classic neurobiological mechanisms (i.e. glutamatergic and 

GABAergic receptors subunits) during the critical period (Pinto et al., 2010, Siu et al., 

2015, Siu et al., 2017). In this study, we use the visual cortex, an exemplary model for 

neurodevelopment and plasticity, to unpack the lifespan expression patterns of a set of 

neuroimmune proteins using a data-driven approach. 

Although the brain was originally considered to be an immune-privileged site, it 

is now understood that immune proteins are expressed by the healthy human brain. In 
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addition to their immunological roles, many classes of immune molecules, including the 

MHC family of proteins, toll-like receptors, cytokines, and chemokines, contribute to 

neural processes throughout brain development (Boulanger, 2009). Studies in the cat 

visual system have shown that the class I MHC molecules are required for activity-

dependent formation of synapses (Corriveau et al., 1998). Similarly, the proinflammatory 

cytokine TNFɑ  regulates synaptic scaling (Stellwagen et al., 2005; Stellwagen & 

Malenka, 2006), while cell adhesion molecules like down syndrome cell adhesion 

molecule (Dscam) and neuron cell adhesion molecule (NrCAM) regulate axon guidance, 

synapse formation and dendritic spine morphology in early development (Boulanger, 

2009; Mohan et al., 2018). MD studies in mice provide evidence that ODP is regulated by 

immune activity, as the period of strengthening of synapses corresponding to the open 

eye are extended in the absence of immune proteins like PiRB (Garay & McAllister, 

2010). Importantly, neuroimmune proteins do not function in isolation, rather they 

interact with classic plasticity mechanisms like glutamatergic and GABAergic receptor 

proteins and regulate the E: I balance in the visual cortex (Lin et al., 2008; Stellwagen et 

al., 2005; Stellwagen & Malenka, 2006). These classic neural mechanisms have well-

known roles in regulating the critical period for visual experience-dependent plasticity. 

Recent studies by Pinto et al. (2010) and Siu et al. (2017) have shown that at the protein 

level, both glutamatergic receptor subunits and GABAergic receptor subunits have 

prolonged development in the human V1C and that their trajectories are not completely 

monotonic. Nonetheless, very little is known about the lifespan trajectories of 
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neuroimmune proteins that function alongside these excitatory and inhibitory markers in 

the visual cortex. 

Due to the extensive involvement of neuroimmune proteins in brain development, 

abnormalities associated with these molecular mechanisms have been linked to the 

emergence of neurodevelopmental disorders (Garay & McAllister, 2010). According to 

the inflammaging model, aging can be described as an increase in proinflammatory state 

(Franceschi et al., 2000). Consequently, immune proteins are considered to be central 

players in brain disorders, where early increases in inflammatory state are thought to 

disturb cortical connectivity and function. Importantly, many brain pathologies, including 

neurodevelopmental disorders present visual perceptual impairment. Amblyopia, for 

example, is a neurodevelopmental disorder that stems from abnormal binocular 

experience during infancy and early childhood (Lunghi et al., 2018). While a clear 

genetic basis for amblyopia has not been identified, abnormalities in visual experience 

during the critical period have perceptual deficits including reduced visual acuity and 

impaired binocular vision (Lunghi et al., 2018). Similarly, neurological disorders with 

known a genetic basis such as Rhett syndrome also display compromised visual 

resolution acuity (Tetzchner et al., 1996). Interestingly, abnormalities in vision are also 

present in more complex, polygenic disorders such as schizophrenia and Bipolar disorder. 

In fact, slowed binocular rivalry rate has been described as an endophenotype for bipolar 

disorder (Law et al., 2017). Additionally, thinning of cell layers in the retina have been 

detected in individuals with bipolar disorder (Garcia-Martin et al., 2019). On the other 
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hand, a host of literature has connected visual impairments to schizophrenia. Specifically, 

impaired synaptic transmission (Frankle et al., 2003) and impaired long-term potentiation 

in the human V1C have been reported in schizophrenic individuals (Çavuş et al., 2012). 

While many brain regions are impacted in neurodevelopmental and neuropsychiatric 

disorders, the visual cortex is the region best understood in terms of cortical plasticity 

(Smith et al., 2019). In this study we will use a data-driven approach to unpack the 

development of the visual cortex, a well-studied model for neurodevelopment and 

plasticity. In conjunction with immunoassay methods, unsupervised clustering methods, 

and data mining tools will be used to profile the development of neuroimmune proteins in 

the human brain and compare their trajectories to those of classic markers of visual 

cortical plasticity. 
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2.2 Materials and Methods 

Tissue samples 

The study design was approved by the Hamilton Integrated Research Ethics 

Board. The post-mortem tissue samples employed in this study were obtained from the 

Brain and Tissue Bank for Developmental Disorders at the University of Maryland 

(Baltimore, MD, USA). A total of 30 samples covering the lifespan from 20 days to 79 

years were used (Table 1). Tissue donors had no history of brain disorders and the cause 

of death was of minimal trauma. Samples were taken from the posterior pole of the left 

hemisphere and included the superior and inferior portions of the calcarine fissure, 

corresponding to the human V1C. Sample post-mortem intervals (PMI) are less than 

23hrs. Upon collection the samples were sectioned coronally at 1cm intervals, flash 

frozen, and stored at -80 ℃ at the Brain and Tissue Bank.  

Sample preparation 

A small piece of tissue (50–100 mg) was cut from the calcarine fissure of each 

frozen block of human V1 sample, and suspended in a cold homogenization buffer (2X 

Lysis Buffer RayBiotech - that was diluted to 1X with dH20 and included a protease 

inhibitor tablet), and completely homogenized using a high-throughput FastPrep-24 

Tissue and Cell Homogenizer (MP Biomedicals). The homogenized sample was then 

filtered through a pluriStrainer Mini 100µm filter. The filtered homogenate (100µm) was 

transferred into a chilled cryovial. 
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Table 1. Cases used in the study. 

Age Bin Age (Years) Sex Post-mortem 
Interval (Hrs) 

Neonates 0.05 M 9 

Neonates 0.24 F 23 

Neonates 0.26 M 12 

Neonates 0.27 M 16 

Neonates 0.33 M 22 

Neonates 0.33 M 23 

Infants 0.36 M 16 

Infants 0.37 F 11 

Infants 0.75 M 10 

Young Children 1.34 M 21 

Young Children 2.16 F 21 

Young Children 2.21 F 11 

Young Children 3.34 F 11 

Young Children 4.56 M 15 

Young Children 4.71 M 17 

Older Children 5.39 M 17 

Older Children 8.14 F 20 

Older Children 8.59 F 20 

Older Children 9.13 F 20 

Teens 12.45 M 22 

Teens 13.27 M 5 

Teens 15.22 M 16 

Teens 19.21 F 16 

Young Adults 22.98 M 4 

Young Adults 32.61 M 13 

Young Adults 50.43 M 8 

Young Adults 53.90 F 5 

Older Adults 69.30 M 12 

Older Adults 71.91 F 9 

Older Adults 79.50 F 14 
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Measure and equate protein concentrations 

Bicinchoninic acid (BCA) assay guidelines (Pierce, Rockford, IL, USA) were 

used to determine the total protein concentration in each tissue preparation. The samples 

were compared to a set of protein standards (0.25, 0.5, 1.0, 2.0 mg/ml) (BSA protein 

standards, Bio-Rad Laboratories). Each of the four protein standards were pipetted into 

separate wells of a 96-well microplate to establish experimenter pipetting variability. 

Next, a small amount of each sample (3µl) was added to separate wells. This process was 

repeated three times for each sample and each protein standard. Next, we added 300µl of 

the BCA solution to each well and the plate was incubated at 45°C for 45 min to activate 

the reaction. The colorimetric change was quantified by scanning the plate in the iMark 

Microplate Absorbance Reader (Bio-Rad Laboratories, Hercules, CA, USA). 

The protein concentration of each standard was plotted against the net light 

absorbance. A line of best fit was used to determine the strength of the relationship 

between protein concentration and absorbance. If a minimum correlation of 0.99 was not 

achieved the assay was repeated. The average absorbance of each sample was calculated 

using all runs. We determined the total protein concentration by dividing the absorbance 

by the slope of the linear function and adding any linear shift (y-intercept) in the function. 

The concentration for each protein was then recorded and the vials were stored at -20℃. 

Antibody array 

We used a multiplexed sandwich enzyme-linked immunosorbent assay (ELISA) 

(RayBiotech Quantibody Human Cytokine Array 4000, User Manual) based quantitative 

array platform for detecting and quantifying a set of 200 cytokines, chemokines, growth 
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factors and other inhibitory factors. Once the tissue samples were prepared, they were 

outsourced to RayBiotech for protein quantification. To summarize the major steps, a 

series of glass slides with capture antibodies bound to the surface were used to run the 

ELISA. An individual glass slide consists of 16 wells; therefore, 16 samples can be 

processed on a single glass slide simultaneously. Each antibody is arrayed in 

quadruplicate in an individual well. The glass slide is left to reach room temperature. 

Next, the sample diluent (100μl) is added to each well and incubated at room temperature 

for 30 minutes to block slides. Subsequently, 100μl of sample or a standard protein 

cocktail are added to each well and incubated at room temperature for 1-2 hours. This is 

followed by incubation with a biotinylated antibody cocktail (i.e. the detection antibody) 

at room temperature for 1-2 hours. Finally, incubation with Cy3 equivalent dye labeled 

streptavidin occurs for 1 hour. Fluorescence was detected using a laser scanner equipped 

with Cy3 wavelength. The RayBiotech QAnalyzer Tool converts the detected 

fluorescence to concentration values in pg/ml. Figure 1 outlines the tissue preparation 

and protein quantification workflow. 

Data selection 

An upper (MAX) and a lower limit of detection (LOD) were reported for each of 

the 200 neuroimmune proteins in the ELISA. These values indicate concentrations that 

can be reliably measured using the array platform. Only proteins with a minimum of 10 

measurements between the LOD and MAX values were used in this study (Figure 2). 

Upon applying the quality cut-off 72 neuroimmune proteins were selected.  
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Figure 1. Tissue sample preparation and protein quantification workflow. Tissue 

samples were obtained from 30 human V1C cases covering the lifespan from 20 days to 

79 years. The samples were homogenized using a FastPrep-24 tissue homogenizer. 

Synaptoneurosome preparations were performed for the measurement of classic plasticity 

markers. This step was not carried out when preparing tissue for neuroimmune protein 

detection. BCA assay was completed to equate the total protein concentration in each of 

the samples. To measure the neuroimmune proteins, samples were outsourced to 

RayBiotech for quantification using a multiplex ELISA. Samples were processed on a 

glass slide and each antibody was arrayed in quadruplicate. Samples were incubated with 

detection antibodies and a fluorescent dye. Fluorescence was detected using a laser 

scanner. Computational software (RayBiotech Q-analyzer) was used to convert the 

fluorescence measurements to concentrations in pg/ml. Western blot techniques were 

used to measure the expression of classic plasticity markers. Multiple tissue samples from 

each case were run on a gel. Bands were scanned using an Odyssey scanner and 

densitometry was used to analyze bands. Expression levels were reported relative to a 

control sample. Average expression values were computed across all runs. 
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Note: Images used in the above workflow were obtained from external sources. The 

FastPrep-24 image was obtained from the MP Biomedicals product page.  The 

RayBiotech glass slide image was adapted from a genengnews article about the product. 

The RayBiotech incubation steps and protein detection images were obtained from the 

Quantibody Human Cytokine Array 4000 User Manual. The band visualization image 

was obtained from the Li-Cor Inc. webpage. The Odyssey scanner image was obtained 

from the product user manual. The remaining images are stock images from Shutterstock. 

All sources are cited with URLs in the reference list. 
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Figure 2. Neuroimmune data selection: examples of unreliable protein 

measurements and selected proteins. Neuroimmune proteins were quantified using a 

multiplex ELISA which reports an upper and lower limit of detection for each protein. 

The lower limit is the LOD and is represented by a solid black line. Red dots represent 

values that fall beneath this threshold. The upper limit is the MAX value and is 

represented by a dashed line. Purple dots represent values above this threshold. Black 

dots represent values between these thresholds and indicate reliable expression. Proteins 

selected for further analyses have a minimum of 10 measurements that fall into this 

range. (A) Examples of proteins that do not meet the quality-cut algorithm: the LOD 

score for MPIF-1 is 13.4pg/ml, all values fall below this threshold. Similarly, only five 

measurements corresponding to IFNg fall in the reliable range (14.5 - 2,000 pg/ml). 

Consequently, these proteins are removed from further analyses. (B) Examples of 

selected proteins: TRAIL R3 contains 18 measurements that fall in the reliable range (2.5 

- 5000 pg/ml). Similarly, Lipocalin-2 contains 28 measurements in the reliable range (1.7 

- 1000 pg/ml), with two measurements above the MAX threshold. These proteins meet 

the quality-cut criteria and were selected for further analyses. 
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Value substitutions 

A few of the 72 neuroimmune proteins contained measurements that fall outside 

of the LOD-MAX range. We defined three rules for substituting these values. First, 

concentrations greater than the protein MAX were identified and rounded down to the 

MAX value. In dealing with protein concentrations below the LOD, two scenarios must 

be considered. First, expression below the LOD may reflect an absence of protein, but it 

may also indicate an error in the detection of the protein. We rationalized that if the 

protein was truly not present during a particular stage of the lifespan then neighbouring 

cases would also have low expression (i.e. below the LOD). Therefore, we organized the 

data by increasing sample age. Next, we calculated an average concentration using the 

measurement identified as being less than the LOD and the concentrations of four 

neighbouring cases (two older, two younger). If the average concentration of all five 

cases was also less than the LOD, we substituted the measurement with a value of 0.1 

pg/ml (the smallest decimal place in our data set). If the average concentration of these 

five cases was above the LOD, we assigned the protein LOD as the concentration for that 

sample.  

Plasticity marker data 

In addition to the neuroimmune data, a set of lifespan expression profiles for 21 

classic neural plasticity markers including glutamatergic, GABAergic, structural, and 

myelin-related proteins were analyzed in this study. This data was published previously 

by Siu (2017) in her thesis. The proteins were measured in human V1C tissues from the 

same 30 samples used in quantifying the expression of neuroimmune proteins. However, 
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these plasticity markers were measured using the semi-quantitative western blot method, 

as opposed to the quantitative ELISA approach. Consequently, all plasticity marker 

expression values are reported relative to a control sample consisting of a mixture of all 

30 tissue samples. Band visualization was carried out using the Odyssey Scanner (Li-Cor 

Biosciences) and densitometry was used for band analysis. 

Importantly, each synaptic plasticity marker was quantified more than once in a 

given case and the average expression across all runs was calculated. While most proteins 

were quantified in a synaptoneurosome tissue preparation - used for the enrichment of 

synaptic proteins (Murphy et al., 2014; Siu et al., 2018), PSD-95 and gephyrin were 

measured in both homogenate and synaptoneurosome preparations. Consequently, this 

data set consists of 23 different lifespan expression profiles for 21 unique proteins. There 

are no LOD or MAX values associated with the western blots, as a result, all detected 

values were used. If a particular protein was not measured in a case, leading to missing 

values in the data set, the values were imputed using the predictive mean matching 

method to create a full data set. In this method, cases with no missing values are used as 

the pool from which a value is drawn to fill the missing data (Little, 1988; Rubin, 1986). I 

ran the imputation algorithm five times for robustness and used the average imputed 

value to create the final imputed data set. In total, 95 protein trajectories, corresponding 

to 93 unique proteins, were analyzed in this study (Table 2). 
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Table 2. Protein used in the study: names, short forms and gene symbols. 

Protein Target  
(Short form 

where 
applicable)* 

Protein Names (in Full) Gene Symbol 

ALCAM CD166 antigen ALCAM 
Angiogenin Angiogenin ANG 
Axl Tyrosine-protein kinase receptor UFO AXL 
bFGF Basic fibroblast growth factor 2 FGF2 
Cathepsin S Cathepsin S CTSS 
CB1 Cannabinoid receptor 1 CNR1 
CD14 Monocyte differentiation antigen CD14 CD14 
CEACAM-1 Carcinoembryonic antigen-related cell adhesion 

molecule 1 
CEACAM1 

Classic-MBP Classic Myelin basic protein MBP 
Contactin-2 Contactin-2 CNTN2 
CXCL16 C-X-C motif chemokine 16 CXCL16 
Drebrin Drebrin DBN1 
Dtk Tyrosine-protein kinase receptor TYRO3 TYRO3 
EG-VEGF Prokineticin-1 PROK1 
EGF R Epidermal growth factor receptor EGFR 
ErbB3 Receptor tyrosine-protein kinase erbB-3 ERBB3 
Fas Tumor necrosis factor receptor superfamily 

member 6 
FAS 

Fcg RIIBC Low affinity immunoglobulin gamma Fc region 
receptor II-b 

FCGR2B 

Flt-3L Fms-related tyrosine kinase 3 ligand FLT3LG 
GABAAα1 Gamma-aminobutyric acid receptor subunit alpha-1 GABRA1 
GABAAα2 Gamma-aminobutyric acid receptor subunit alpha-2 GABRA2 
GABAAα3 Gamma-aminobutyric acid receptor subunit alpha-3 GABRA3 
Gad65 Glutamate decarboxylase 2 GAD2 
Gad67 Glutamate decarboxylase 1 GAD1 
GDF-15 Growth/differentiation factor 15 GDF15 
GDNF Glial cell line-derived neurotrophic factor GDNF 
Gephyrin Gephyrin GPHN 
GFAP Glial fibrillary acidic protein GFAP 
GluA2 Glutamate receptor 2 GRIA2 
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GluN1 Glutamate receptor ionotropic, NMDA 1 GRIN1 
GluN2A Glutamate receptor ionotropic, NMDA 2A GRIN2A 
GluN2B Glutamate receptor ionotropic, NMDA 2B GRIN2B 
Golli-MBP Golli Myelin basic protein MBP 
gp130 Glycoprotein 130 IL6ST 
HCC-1 C-C motif chemokine 14 CCL14 
HGF Hepatocyte growth factor HGF 
HVEM Herpes virus entry mediator A / 

Tumor necrosis factor receptor superfamily 
member 14 

TNFRSF14 

I-TAC C-X-C motif chemokine 11 CXCL11 
ICAM-1 Intercellular adhesion molecule 1 ICAM1 
ICAM-2 Intercellular adhesion molecule 2 ICAM2 
IGFBP-1 Insulin-like growth factor-binding protein 1 IGFBP1 
IGFBP-2 Insulin-like growth factor-binding protein 2 IGFBP2 
IGFBP-6 Insulin-like growth factor-binding protein 6 IGFBP6 
IL-1α Interleukin-1 alpha IL1A 
IL-1Ra Interleukin-1 receptor antagonist protein IL1RN 
IL-2 Rβ Interleukin-2 receptor subunit beta IL2RB 
IL-2 Rg Cytokine receptor common subunit gamma IL2RG 
IL-4 Interleukin-4 IL4 
IL-6R Interleukin-6 receptor subunit alpha IL6R 
IL-8 Interleukin-8 CXCL8 
IL-9 Interleukin-9 IL9 
IL-11 Interleukin-11 IL11 
IL-13 R1 Interleukin-13 receptor subunit alpha-1 IL13RA1 
IL-13 R2 Interleukin-13 receptor subunit alpha-2 IL13RA2 
IL-16 Pro-interleukin-16 IL16 
Integrin-β3 Integrin beta-3 ITGB3 
LIF Leukemia inhibitory factor LIF 
LIMPII Lysosome membrane protein 2 SCARB2 
Lipocalin-2 Neutrophil gelatinase-associated lipocalin LCN2 
LYVE-1 Lymphatic vessel endothelial hyaluronic acid 

receptor 1 
LYVE1 

MCP-1 C-C motif chemokine 2 CCL2 
MCSF Macrophage colony-stimulating factor 1 CSF1 
MCSF R Macrophage colony-stimulating factor 1 receptor CSF1R 
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MICA MHC class I polypeptide-related sequence A MICA 
NAP-2 Platelet basic protein PPBP 
NrCAM Neuronal cell adhesion molecule NRCAM 
OPN Osteopontin SPP1 
PARC C-C motif chemokine 18 CCL18 
PDGF-AA Platelet-derived growth factor subunit A PDGFA 
PDGF-AB Platelet-derived growth factor subunit AB PDGFAB 
PDGF-BB Platelet-derived growth factor subunit B PDGFB 
PECAM-1 Platelet endothelial cell adhesion molecule PECAM1 
PF4 Platelet factor 4 PF4 
PSD-95 Disks large homolog 4 DLG4 
RANTES C-C motif chemokine 5 CCL5 
Resistin Resistin RETN 
SCF R Mast/stem cell growth factor receptor Kit KIT 
Siglec-5 Sialic acid-binding Ig-like lectin 5 SIGLEC5 
Synapsin Synapsin-1 SYN1 
Synaptophysin Synaptophysin SYP 
TGFα Protransforming growth factor alpha TGFA 
TGFβ1 Human TGF-beta 1 cDNA  TGFB1 
TIMP-1 Metalloproteinase inhibitor 1 TIMP1 
TIMP-2 Metalloproteinase inhibitor 2 TIMP2 
TNF RI Tumor necrosis factor receptor 1 / 

Tumor necrosis factor receptor superfamily 
member 1A 

TNFRSF1A 

TNF RII Tumor necrosis factor receptor 2 / 
Tumor necrosis factor receptor superfamily 
member 1B 

TNFRSF1B 

TNFα Tumor necrosis factor TNF 
TRAIL R3 Tumor necrosis factor receptor superfamily 

member 10C 
TNFRSF10C 

Trappin-2 Elafin PI3 
Ube3A Ubiquitin-protein ligase E3A UBE3A 
uPAR Urokinase plasminogen activator surface receptor PLAUR 
VEGF R1 Vascular endothelial growth factor receptor 1 FLT1 
VGAT Vesicular inhibitory amino acid transporter SLC32A1 
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* Due to the variation in protein name lengths, short forms are used to refer to the 

proteins in the figures found in my thesis. The protein target names for neuroimmune 

proteins are derived from the RayBiotech multiplex ELISA data sheets. For the classic 

plasticity markers, short forms commonly found in literature have been used. The protein 

names (in full), and gene symbol are derived from the RayBiotech multiplex ELISA data 

sheets and the UniProt database. Additionally, “HOM” will be used in my thesis to 

differentiate proteins measured in homogenate preparation from those measured in 

synaptoneurosome preparations.  

Age bins 

Cases are grouped into age bins: Neonates are < 0.3 years old; Infants are between 0.3 - 1 

year old; Young Children are between 1 - 4 years old; Older Children are between 5 - 11 

years old; Teens are between 12 - 20 years old; Young Adults are between 21 - 55 years 

old; and finally Older Adults are > 55 years old.  

Visualizing protein lifespan trajectories 

Protein concentration values were log2 transformed in order to normalize the 

distribution of the data. Many proteins are present at concentrations less than 1.0pg/ml, 

therefore a constant of 1.0 was added to each measurement to prevent obtaining negative 

values upon log2 normalization. To bring all protein trajectories to the same scale, 

concentrations were z-scored on a protein basis. Next, a locally estimated scatterplot 

smoothing (LOESS) curve was fitted to each protein and the 95% confidence interval 

(CI) was calculated. Figure 3 outlines the steps taken to transform protein concentrations 

in pg/ml to z-scored protein levels and protein trajectories. 
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Figure 3. Neuroimmune data preparation workflow. Raw expression values 

corresponding to the 72 selected neuroimmune proteins were subjected to a series of 

transformations in preparation of the analyses. Here, Lipocalin-2 is provided as a 

workflow example. (A) Concentration values were determined to lie either within or 

outside of the reliable detection range. This range is visualized as a dashed line to 

represent the MAX threshold and a solid line to represent the LOD. Purple dots represent 

values above the MAX threshold for Lipocalin-2. Black dots represent points in the 

reliable range. (B) Measurements that fall outside of the reliable detection range were 

substituted. The two Lipocalin-2 measurements above the MAX threshold are rounded 

down to the MAX value. (C) Log2 transformation is used to normalize the data. (D) 

Log2 expression values were z-scored to bring all protein expression values to the same 

scale. (E) LOESS curves applied to the z-score values are used as the protein lifespan 

trajectory. 
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Clustering protein trajectories 

 To determine the number of different lifespan trajectories in the human V1C, 

protein trajectories were clustered according to their similarity. The optimal number of 

clusters was determined using calculations of the total within-cluster sum of squares 

(WSS) for a range of cluster numbers. WSS is a measure of compactness in clustering, 

where a smaller WSS indicates greater compactness within clusters (Kassambara, 2017). 

The total WSS was calculated for a range of cluster numbers and plotted as a connected 

scatterplot. The bend in the plot was used as the optimal number of clusters as it indicates 

the point where a balance is achieved between forming too few clusters with minimal 

compactness and forming too many clusters with a small number of constituent proteins 

in each (Kassambara, 2017). 

 Next, protein trajectories were grouped together using ward.D2 hierarchical 

clustering and a dendrogram was produced. Ward.D2 is an agglomerative clustering 

method in which each object to be clustered is initially considered to be its own cluster 

(Kassambara, 2017). At each iterative step, the proteins with the smallest Euclidean 

distance are grouped together. This process is repeated until the desired number of 

clusters (as determined using the total WSS) is obtained. Approximately unbiased p-

values were calculated for the clusters using a multistep-multiscale bootstrap algorithm. 

Ward.D2 clustering has one main assumption: that the clusters are roughly spherical 

(Johnson & Wichern, 2007). A common approach to preparing data for clustering is to 

normalize the data, as we have done. This promotes the formation of spherical clusters 

and helps prevent elongated clusters in high-dimensional space. Using z-scored values 



M.Sc. Thesis - E. Jeyanesan; McMaster University - Neuroscience 

 

 46 

ensures that clusters are not formed based on magnitude of expression but rather on 

lifespan patterns, as all protein values will be on the same scale. 

 We find that ward.D2 is also less likely to form widely unequal clusters, where 

multiple clusters consist of only one protein and the rest are grouped together into a large 

cluster. This is actually beneficial in our study as we want to group proteins together by 

their similarity and do not want to obtain large clusters with minimal compactness. 

 Protein trajectories were clustered together in three different data sets. First, using 

the 72 neuroimmune proteins alone, then on the 23 classic plasticity marker trajectories 

alone, and finally, on a combined data set of all 95 protein trajectories. Clustering results 

from the neuroimmune data set and the plasticity marker data set were labelled from “A” 

to “H”, or “1” to “5” respectively, based on the order of the ward.D2 dendrogram. 

Clusters resulting from the combined data set including both neuroimmune and plasticity 

markers were ordered using the SynGO database [Last Version Update: 2018-07-31], 

which annotated genes with their known synaptic functions (Koopmans et al., 2019). 

Clusters were labelled from “I” to “VIII” in order of decreasing number of proteins with 

synaptic functions as indicated by SynGO. Protein trajectories in a cluster were averaged 

together to create an average curve for each cluster. 

Trajectory similarity measure 

 Fréchet distances were used as a separate metric to assess the degree of similarity 

between pairs of trajectories in a cluster and to compare trajectories mapped to different 

clusters. In calculating Fréchet distances the “sum” method was used, in which multiple 

distances are computed between all points along the two trajectories. Finally, these 
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distances are summed to produce a final distance score. Two identical trajectories would 

obtain a Fréchet distance of zero. Estimation statistics were calculated on the Fréchet 

distances obtained from proteins in the same cluster to determine if the level of 

heterogeneity across clusters is comparable. Estimation statistics were also applied to 

Fréchet distances between proteins of varying clusters to determine whether the degree of 

similarity within a cluster was greater (as expected) than the similarity between proteins 

in different clusters. 

Gene Ontology enrichment 

To determine the enriched molecular functions, cellular components and 

biological processes associated with groups of proteins in this study, a gene enrichment 

analysis was performed using gProfiler, an interface for the Gene Ontology (GO) 

database [gProfiler Version: e100_eg47_p14_7733820; Last GO Version Update: 2020-

06-01] (Ashburner et al., 2000; Mi et al., 2019; The Gene Ontology Consortium, 2019). 

Genes corresponding to the proteins assessed in this study were first determined. The 

reference list for this analysis consisted of all Homosapien genes in the GO database with 

at least one annotation. Some annotations made by gProfiler are derived from silico 

curation methods called “Inferred from Electronic Annotation” (IEA) codes (Raudvere et 

al., 2019). It is accepted that experimental, computational and manually curated evidence 

are more reliable when annotating genes than IEA codes (Raudvere et al., 2019). 

Consequently, IEA based annotations were not used in this analysis. I used the g:SCS 

algorithm to test for statistical significance (Raudvere et al., 2019). This method was 

specifically designed for GO terms that exist in a hierarchy and are thus unsuited to 
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common methods for correcting for multiple comparisons like the false discovery rate 

(FDR) and Bonferroni correction (Raudvere et al., 2019).  

In addition to revealing enriched terms, the GO analysis indicates which proteins 

in the data set map onto each of the enriched terms. Using this information, we calculated 

the proportion of proteins in a cluster that map onto a single term. Next, we calculated the 

overall proportion of proteins in the entire data set that map onto that term. A binomial 

test was used to determine whether the proportion in a cluster varied from the expected 

proportion based on the entire data set. Using the formula (1-pvalue) * k we calculated a 

score to reflect the probability that a term is differentially represented in a cluster. Here, k 

= -1 if the cluster proportion was less than the overall proportion and k = 1 if the cluster 

proportion was greater than the overall proportion. 

Identify candidate plasticity processes 

 Next, two parallel approaches were taken to evaluate the similarity between 

neuroimmune and classic plasticity marker development (Figure 4). First, Fréchet 

distances were computed between these protein trajectories while maintaining cluster 

designation. In other words, neuroimmune clusters were compared to classic plasticity 

marker clusters. This allowed me to identify groups of proteins that were highly similar 

to one another. Taking advantage of the fact that classic neural proteins have known 

expression and function in the visual cortex, I was able to use them as guides to 

understand neuroimmune function and development. 

 

 



M.Sc. Thesis - E. Jeyanesan; McMaster University - Neuroscience 

 

 49 

 

 



M.Sc. Thesis - E. Jeyanesan; McMaster University - Neuroscience 

 

 50 

Figure 4. Parallel approach to comparing neuroimmune and classic plasticity 

marker trajectories. To unpack the relationship between neuroimmune protein 

trajectories and their involvement in brain plasticity and development, a set of classic 

plasticity markers (ex. glutamatergic and GABAergic receptor subunits) were used as 

guides to identify candidate neural functions for the immune proteins. Two parallel 

approaches were taken in this analysis. The first approach involved calculating Fréchet 

distances between individual neuroimmune and classic plasticity markers. These proteins 

were organized by their respective cluster designations (i.e. eight neuroimmune clusters 

and five plasticity marker clusters) to allow the calculation of a median Fréchet distance 

between the two clustering results. Clusters that have similar trajectories were analyzed 

further using literature reviews to determine if similar trajectories were indicative of 

similar functions. Comparatively, the second approach ignores previous cluster 

designations. Instead all neuroimmune and classic plasticity markers were grouped 

together and ward.D2 clustering was carried out on the combined data set. Resulting 

clusters were annotated to highlight proteins with known synapse-related functions using 

the SynGO database. Neuroimmune proteins that cluster with these synapse-related 

proteins were identified as candidate plasticity mechanisms in the human V1C. In the 

event that a cluster contained no synapse-related proteins, STRINGdb was used to create 

a functional network using those proteins and a GO enrichment analysis was performed 

on that network to identify the biological functions that the proteins are generally 

associated with. 
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The second approach differs from the first in that it ignores previous cluster 

designations. Instead, I combined the two collections of proteins to create a data set of 95 

protein trajectories (i.e. 72 neuroimmune and 23 classic plasticity markers). Next, I 

performed ward.D2 hierarchical clustering on the combined data set. Using this approach, 

I identified proteins from both data sets that share similar developmental trajectories. For 

each of the resulting clusters, I determined the number of proteins that have synapse-

related functions. As described previously, the SynGO database was used for this 

analysis. In the event that a cluster was comprised only of neuroimmune proteins, I 

performed a functional network analysis on that cluster using the Search Tool for the 

Retrieval of Interacting proteins database (STRINGdb) [Version: 11.0; Last Version 

Update: 2019-01-19] (Szklarczyk et al., 2018).  An integrated cluster network was 

created by adding predicted functional partners, in increments of one, to the first shell. 

The enriched molecular functions, cellular components and biological processes for this 

integrated network were determined using the GO database as described previously. 

However, as this second GO enrichment analysis was conducted on a functional network 

comprised of proteins not included in my original data, I did not test for differential 

representation of terms against the entire data set. 

Viral receptors 

A list of human viral receptors mediating entry into cells was downloaded from 

UniProt [Last Version Update: 2020-03] using the keyword “Host cell receptor for virus 

entry (KW-1183)” (The UniProt Consortium, 2019). The resulting list was used to select 

for viral receptors in our data set and their LOESS curves were graphed to compare the 
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lifespan trajectories. The supplemental file “Multimedia component 1” from Qi et al. 

(2020) was used to annotate these genes with their associated viral families, specific 

viruses, and to check for links between viral receptors trajectory and their function. 

Clustering of samples 

 Robust and sparse k-means clustering (RSKC) was used to cluster cases together 

based on their protein expression. RSKC is well suited for clustering our cases as our data 

is high-dimensional in nature and contains many more variables (i.e. proteins) than 

observations (i.e. samples) (Kondo et al., 2016). In addition, RSKC is able to 

simultaneously perform clustering, detect outliers, and determine noise variables (Kondo 

et al., 2016). Consequently, RSKC assigns protein weights in accordance with the 

protein’s contribution to forming the case clusters (Kondo et al., 2016). Here, proteins 

with lower weights are treated as noise variables. The age of the cases was not supplied 

to the clustering algorithm, rather a matrix with solely protein expression values was 

included. Post-clustering, the median age of each cluster and the 25th and 75th percentile 

were calculated. Clusters were ordered based on their median age and box plots of the 

cluster median, 25th and 75th percentiles were graphed to show the progression of cluster 

ages. This analysis was performed separately on the neuroimmune and plasticity marker 

data. The clustering results from the neuroimmune RSKC and plasticity marker RSKC 

were compared using the Jaccard similarity measure. To briefly explain this calculation, 

let the neuroimmune RSKC results be called “A” and the plasticity marker RSKC results 

be called “B”. Using these results, three values were determined (Ramey, 2012; Wiwie et 

al., 2015): N1- the number of observation pairs that cluster together in both A and B;   
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N2- the number of observation pairs that cluster together in A, but not in B; and              

N3- the number of observation pairs of cases that cluster together in B, but not A. The 

Jaccard similarity coefficient of clusters is calculated as:  J = N1 / (N1 + N2 + N3).  

 Jaccard coefficients can also be calculated for each cluster by treating the clusters 

as individual data sets. For this analysis, each case was given a binary value to indicate its 

presence (i.e. 1) or absence (i.e. 0) in a cluster (Saiz, 2016). This was done for both 

neuroimmune and plasticity RSKC results, such that each case had two binary values for 

each cluster. Then on a cluster-by-cluster basis, I calculated the number of cases that had 

the same cluster designation in both clustering results (Glen, 2016). I divided this number 

by the total number of cases assigned to that cluster in either of the clustering results 

(Glen, 2016). 

 Finally, a human V1C neuroimmune developmental profile was created using the 

RSKC weighted expression values for each individual case. To obtain these weighted 

expression values, the weight assigned by RSKC for each protein was multiplied by each 

of the protein’s expression values. Next, the weighted expression values associated with 

an individual case were summed. These scores were plotted, and a LOESS curve was fit 

to the data points to reveal trends.  

Coding 

The data preparation steps, and all results presented in this study, were performed 

and generated in the R programming language (R Core Team, 2020) using the integrated 

development environment RStudio (RStudio Team, 2020). 
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Contribution to methods 

Tissue preparation and protein quantification 

The immune protein expression was measured in 30 homogenate tissue samples 

prepared by Dr. Kathryn Murphy, Dr. Justin Balsor and Steve Mancini. The samples 

were sent to RayBiotech Inc. for processing on their multiplex ELISA (RayBiotech 

Quantibody Human Cytokine Array 4000). The company sent back a series of files with 

expression values (in pg/ml) for 200 neuroimmune proteins in each of the 30 samples.  

Classic plasticity markers were measured in a combination of both homogenate 

and synaptoneurosome samples. These tissue samples were prepared by Dr. Kathryn 

Murphy, Dr. Kate Williams, Dr. Joshua Pinto, Dr. Simon Beshara, Dr. Caitlin Siu and Dr. 

Justin Balsor. They also performed western blots to detect protein expression and 

generated the plasticity marker data set used in the study.  

Data selection, value substitution and transformation 

Dr. Kathryn Murphy and I defined the rule for selecting neuroimmune proteins to 

be used in this study from the collection of 200 markers assayed in the multiplex ELISA. 

The pipeline for processing the neuroimmune expression data was created by myself, 

Keon Arbabi and Dr. Kathryn Murphy. This includes defining rules for substituting 

values outside of the reliable detection range. In terms of the classic plasticity marker 

data set, I imputed the missing values using the predictive mean matching method. 

Analyses 

 I completed the regression analysis by fitting LOESS curves to protein expression 

in both the neuroimmune and classic neuroplasticity marker data sets. The unsupervised 
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hierarchical clustering results reported in this thesis were generated by me. All Fréchet 

distance analyses (both within and between clusters) reported in this thesis were also 

completed by me. I performed the GO enrichment analysis on the 72 neuroimmune 

proteins and the SynGO analysis in this study. Furthermore, I conducted the STRINGdb 

analysis, the RSKC analyses on the tissue samples, as well as the evaluation of RSKC 

cluster similarity.  

Keon Arbabi helped determine which hierarchical clustering method to use in the 

study. Moreover, a modified version of his code was used to create GO enrichment bar 

graphs (Figure 12). Dr. Justin Balsor’s code for analyzing the RSKC results was modified 

and used in my thesis. Brendan Kumagai helped apply whiskers to my RSKC age 

progression box plots (Figure 26, Figure 28), and he created the code for visualizing my 

RSKC similarity results (Figure 29). Brendan provided the code for conducting binomial 

tests on my GO enrichment results to compute probability values (Figure 14). He also 

suggested edits to my data preparation code to make it shorter and more efficient. Dr. 

Kathryn Murphy helped determine the viral receptors to be analyzed in the study and 

provided general instruction throughout.  
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2.3 Results  

Lifespan profiles of 72 neuroimmune proteins 

To determine how a set of 72 cytokines, chemokines, growth factors and other 

immune factors develop across the lifespan, we used a multiplex ELISA to measure 

protein concentration in human V1C tissue samples covering the lifespan from 20 days to 

79 years. We z-scored the expression, applied LOESS regression and determined the 95% 

CI (Figure 5).  This analysis revealed a dynamic range of developmental patterns. For 

example, receptor tyrosine-protein kinase erbB-3 (ErbB3), a protein implicated in cancer 

(Kiavue et al., 2019) and suicide (Mahar et al., 2017), shows increasing protein levels 

across the lifespan. In contrast, lymphatic vessel endothelial hyaluronic acid receptor 1 

(LYVE-1), a regulator of cell growth implicated in multiple sclerosis (MS) (Chaitanya et 

al., 2013), shows a steady decrease across the lifespan. The majority of developmental 

patterns, however, cannot be described as a simple increase or decrease in expression. 

Rather, numerous proteins display undulating patterns, where protein levels follow a 

series of increases and decreases throughout development. Importantly, these undulating 

patterns are not all the same. For example, both glycoprotein 130 (gp130) - a pleiotropic 

cytokine involved in the cardiovascular, nervous and immune systems (White & 

Stephens, 2011), and glial cell line-derived neurotrophic factor (GDNF) - a protein 

involved in the development and maintenance of neurons (Airaksinen & Saarma, 2002) 

show undulating patterns. However, gp130 displays increasing expression into aging, 

while GDNF expression levels decrease into aging.  
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Figure 5. Lifespan trajectories of 72 neuroimmune proteins in the human V1C. 

Stamp collection of the lifespan trajectories of a set of 72 cytokines, chemokines, growth 

factors and other inflammatory factors. Trajectories were determined by fitting LOESS 

regression curves to the z-scored expression values. Age is plotted on a logarithmic scale. 

Black dots indicate the z-scored data points. Solid black lines represent the lifespan 

trajectory as revealed by LOESS regression. Grey bands indicate the 95% CI.  
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On the other hand, tissue inhibitor matrix metalloproteinase 1 (TIMP-1) and 

tumor necrosis factor receptor 2 (TNF RII) show very similar trajectories. TIMP-1 is a 

metalloproteinase inhibitor with important roles in tumor invasion, development of 

metastatic disease, cell proliferation, and anti-apoptotic function (Song et al., 2016). TNF 

RII is a TNFɑ receptor that has modulatory roles in immune function and is thought to be 

involved in CNS inflammatory diseases like autoimmune encephalomyelitis (Yang et al., 

2018). Both these proteins start with high expression during the beginning of the neonatal 

period at ~0.05 years and decrease in expression throughout infancy (0.33 – 1 year old), 

with a subsequent local peak in expression in early childhood at ~ 2 years of age. Both 

proteins switch to declining patterns throughout late childhood (5 - 11 years), 

adolescence (12 - 20 years) and into early adulthood (23 - 28 years), at which point their 

expression levels increase once again into aging. In summary, neuroimmune proteins 

show a dynamic range of undulating expression patterns in the human V1C. Importantly, 

we do not find one common trajectory or 72 unique trajectories for these proteins. 

Instead, there are a number of common patterns shared by this collection of biological 

mechanisms. 

Grouping neuroimmune proteins and identifying number of trajectory types 

To study the number of different trajectories displayed by the 72 neuroimmune 

proteins in the human V1C, we performed ward.D2 hierarchical clustering on the protein 

trajectories. We determined the optimal number of clusters by calculating the total 

within-sum of squares for a range of different cluster numbers. Next, we plotted these 

values as a scatter plot and identified that the bend in the resulting curve occurs at 8 ± 2 
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clusters, which represents the optimal number of clusters (Figure 6). Ward.D2 

hierarchical clustering of the 72 neuroimmune proteins revealed 8 clusters of varying size 

(Figure 7). An approximately unbiased p-value (AU) was calculated as a preliminary 

step to indicate cluster validity (Cluster A: n = 12, AU = 0.32; Cluster B: n = 10, AU = 

0.43; Cluster C: n = 9, AU = 0.72; Cluster D: n = 11, AU = 0.85;  Cluster E: n = 7, AU = 

0.65;  Cluster F: n= 10, AU = 0.73,  Cluster G: n = 8, AU = 0.80; Cluster H: n = 5, AU = 

0.73). The smallest cluster contained five proteins, while the largest cluster contained 12 

proteins. Taking protein trajectories that group together, we calculated an average curve 

to represent each cluster’s lifespan profile. We did not find any clusters that were strictly 

linear, rather all clusters display a non-linear, undulating pattern across the lifespan. 

Descriptively, the clusters that most closely resemble a linear pattern are Cluster A and 

Cluster E. While Cluster A is generally decreasing across the lifespan, there is a small 

increase in protein levels that begins around 28 years of age and continues into aging. In 

contrast, Cluster E generally increases across the lifespan, but protein levels begin to 

plateau in early childhood through adolescence before decreasing slightly into aging. 

Overall, neuroimmune lifespan profiles seem to follow numerous non-linear patterns. 
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Figure 6. Total Within Sum of Square calculations for determining the optimal 

number of neuroimmune protein trajectory clusters. WSS values (a measure of the 

compactness of clusters) corresponding to the hierarchical clustering of 72 neuroimmune 

lifespan trajectories. A range of cluster numbers were assessed from one to 71. The x-axis 

indicates the number of clusters and the y-axis indicates the total WSS for that cluster 

number. The WSS values decrease as the number of clusters increases. The bend in the 

curve indicates the point at which a balance is reached between minimizing the WSS and 

creating too many clusters. Here, the elbow method for determining the optimal number 

of clusters reveals a bend at 8 ± 2 clusters. 
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Figure 7. Ward. D2 hierarchical clustering of neuroimmune protein trajectories. 

Hierarchical relationships and cluster designations for 72 neuroimmune proteins. (A) 

Hierarchical clustering dendrogram, in which the height is a reflection of the proximity 

between the trajectories, with smaller values indicating a closer relationship. Here, the 

eight clusters are identified by coloured boxes. The dendrogram is cut at a height of ~ 9 

and the clusters are labelled “A” through “H” in order from left to right on the 

dendrogram. (B) Average curves for the eight identified clusters. Age is plotted on a 

logarithmic scale, and protein levels (z-score) are shown. Thick lines represent the 

average curves, while the thin lines indicate individual protein trajectories. The number 

of proteins (n) in each cluster are indicated on the plots, this number ranges from 5 to 12. 
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Evaluate within-cluster and between cluster trajectory similarities 

We evaluated the within-cluster similarities by calculating the pairwise Fréchet 

distances between the protein trajectories in a cluster (Figure 8). A lower Fréchet score 

indicates a greater level of similarity. Across all eight clusters, 306 intracluster Fréchet 

distances were calculated with an overall median distance of ~17.3. Median (Mdn) values 

were also assessed for each cluster (Cluster A Mdn = 13.1; Cluster B Mdn = 20.2;  

Cluster C Mdn = 14.9; Cluster D Mdn = 17.1; Cluster E Mdn = 17.4;  

Cluster F Mdn = 21.9; Cluster G Mdn = 17.9; Cluster H Mdn = 17.5). Next, we 

subtracted the overall median distance from each cluster median to get a median 

difference score (∆). For each comparison we used estimation statistics to produce a 

bootstrap CI for the difference score. If the bootstrapped CI overlap or are really close to 

zero, the overall median and cluster medians can be considered similar. The analysis 

revealed however, that only Cluster C: ∆= -2.4 [95CI -5.5, +0.1]; Cluster D: -0.2 [95CI -

2.8, +2.0]; Cluster E: +0.2 [95CI -4.4, +8.3]; Cluster G: +0.6, [95CI -1.9, +3.3]; and 

Cluster H: +0.3 [95CI -4.5, +5.3]; have comparable levels of intracluster variance. 

Comparatively, Cluster A: -4.2, [95CI -6.2, -2.4] has an intracluster median that is well 

below the overall median, indicating that it is more compact than the other clusters. In 

contrast, Cluster B: +2.9 [95CI +1.1, +7.1] and Cluster F: +4.6 [95CI +2.3, +7.3] have 

median Fréchet scores that are greater than the overall median and the bootstrap CIs do 

not overlap with zero. Therefore, according to the Fréchet distance metric, the proteins in 

clusters B and F are more heterogeneous compared to the other clusters. 
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Figure 8. Fréchet distance metric for measuring intracluster similarity. Pairwise 

Fréchet distances between proteins trajectories in the same cluster. The swarm plot 

indicates the individual pairwise Fréchet distances. Here a total of nine categories are 

represented. The first category is the collection of all pairwise intracluster Fréchet 

distances. Each subsequent category corresponds to one of the eight clusters. Estimation 

statistics were used to determine if the cluster medians varied significantly from the 

overall median. Cluster A: -4.2, [95CI -6.2, -2.4] has a lower median Fréchet distance 

than the overall median, suggesting that it is a more compact cluster. The Cluster B: +2.9 

[95CI +1.1, +7.1] and Cluster F: +4.6 [95CI +2.3, +7.3] medians are greater than the 

overall median Fréchet distance, revealing that these clusters are slightly more 

heterogenous, and that the proteins in these clusters share a lower degree of similarity 

when compared to other clusters. The remaining clusters all have comparable intracluster 

similarities as indicated by the 95% CI for unpaired median difference scores overlapping 

zero. 
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Fréchet distances were also used to compare the degree of similarity between 

clusters. Pairwise Fréchet distances were computed between all 72 proteins and the 

results were visualized as a heatmap (Figure 9). The median Fréchet distance protein 

excluding self-comparisons is ~38.9. The median Fréchet distance excluding all 

intracluster comparisons is ~42.9, which is more than double the magnitude obtained 

when analyzing intracluster distances. Consequently, it appears that the proteins within a 

cluster have greater similarity to each other than proteins grouped in other clusters. To 

assess this, we used estimation statistics to examine whether the intracluster median is 

less than the intercluster median. The median difference score: -25.6, [95CI -27.4, -23.9] 

reveals that the intracluster median is smaller than the intercluster median (Figure 10).  

Next, we completed pairwise comparisons between protein in the same cluster 

and proteins in different clusters to determine how similar the clusters are to one another 

(Figure 11). We found that comparatively, the first four clusters are similar to each other, 

and that they vary from the last four clusters. This is especially evident when comparing 

Cluster A’s intracluster distances with the Fréchet distances between Cluster A proteins 

and proteins in the next three clusters. While none of the 95% CI intervals overlap with 

zero, the median difference scores are all less than 23 (Cluster B: +20.8 [95CI +16.9, 

+23.4]; Cluster C: +11.5 [95CI +9.0, +15.2]; Cluster D: +22.2 [95CI +20.2, +24.8]). On 

the other hand, median difference scores between Cluster A and the last four clusters are 

all above 47 (Cluster E: +96.7 [95CI +92.5, +100.0]; Cluster F: +54.3 [95CI +51.5, 

+57.6]; Cluster G: +47.5 [95CI +42.9, +50.3]; Cluster H: +71.8 [95CI +67.5, +76.3]). 

This shows that while none of the clusters are completely similar to each other, the first 
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Figure 9. Pairwise Fréchet distance matrix for measuring similarity between 

clusters. Pairwise Fréchet distances between all combinations of the 72 neuroimmune 

trajectories. A total of 5184 distances have been calculated and the proteins are organized 

according to their ward.D2 cluster designation. The clusters and their average trajectories 

have been labelled on the figure. The Fréchet distances range from 8.1 to 134.6, 

excluding intracluster comparisons, and the median Fréchet distance excluding 

intracluster comparisons is ~42.9.  Red cells correspond to smaller Fréchet distances and 

indicate a greater degree of similarity, while larger Fréchet distances are coloured blue 

and indicate lower levels of similarity. As both intra- and intercluster Fréchet distances 

are plotted on this heatmap, the white cells represent values between 38-39, which is the 

median Fréchet distance when considering the pool of both intracluster and intercluster 

Fréchet distances (without protein self-comparisons). Overall, a high degree of similarity 

can be seen within the clusters. Additionally, the first four clusters seem to be closely 

related to each other, while the last four clusters are closely related to one another.  
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Figure 10. Median difference between intercluster and intracluster Fréchet 

distances. The black dots in the swarm plot indicate the Fréchet distances between the 72 

neuroimmune proteins in varying clusters (i.e. intercluster distances). The Fréchet 

distances between proteins in the same cluster, with the exception of protein self-

comparisons, is indicated by the collection of blue dots. The Fréchet distances themselves 

can be seen on the y-axis on the left. The median intercluster Fréchet distance is 42.9, 

while the median intercluster distance is 17.3. The difference between the median value 

of these two sets of Fréchet distances is plotted on the second y-axis on the right.  

Estimation statistics was used to compute a bootstrap interval for the difference (-25.6, 

[95CI -27.4, -23.9]). 
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Figure 11. Estimation statistics for measuring trajectory similarity between clusters. 

Swarm plots of intracluster Fréchet scores and pairwise Fréchet distances between 

proteins in different clusters. This stamp collection of estimation plots includes eight 

graphs, corresponding to the eight clusters. In an individual plot the first category 

corresponds to the reference group: Fréchet distances between proteins in the same 

cluster. Subsequent categories indicate the Fréchet distances between proteins in the 

reference cluster and each of the seven other clusters (i.e. test clusters). An unpaired 

median difference score (test cluster median minus reference cluster median) is indicated 

along with bootstrapped CIs for each median difference score. Here we find that all 56 

bootstrapped 95% CIs lie outside the zero range, indicating that no two clusters have 

great similarity between their trajectory patterns.  
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four clusters share a greater degree of similarity and display different patterns from the 

last four clusters.   

The last four clusters also share a greater degree of similarity with one another. 

This is represented by the median difference between the Cluster H intracluster Fréchet 

scores and the distances between Cluster H proteins and all other clusters. The median 

difference scores between Cluster H and the first four clusters is above 35 (Cluster A: 

+67.4, [95CI +60.8, +73.5]; Cluster B: +35.5 [95CI +29.6, +42.1]; Cluster C: + 47.1 

[95CI +40.6, +52.9]; Cluster D: +41.2 [95CI +35.6, +46.7]). In contrast, the difference 

scores between Cluster H and the last three clusters in less than 17 (Cluster E: +10.1, 

[95CI +4.1, +16.6]; Cluster F: +16.7 [95CI +9.9, +22.6]; Cluster G: +8.8 [95CI +2.6, 

+14.9]). 

As expected, Cluster A and Cluster E show the greatest variation from each other 

based on their opposing lifespan patterns. The median intracluster Fréchet distances 

corresponding to Cluster A is ~ 13.1. In contrast, the median distance between Cluster 

A’s proteins and the proteins in Cluster E is ~ 109.8. Consequently, there is a difference 

of ~ 96.7 between these median scores. In comparison, the maximum difference when 

comparing the intracluster Fréchet distances is ~ 8.8. Therefore, the maximum 

differences of intra- and intercluster Fréchet scores vary by an order of magnitude. 

Furthermore, as seen in Figure 11, each cluster’s median intracluster Fréchet distance lies 

outside the bootstrapped CI for comparisons with other clusters. These results suggest 

that ward.D2 clustering successfully groups together proteins with similar trajectories and 

places protein trajectories with lower levels of similarity into different groups. 
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Functional enrichment analysis for neuroimmune proteins 

Next, a GO enrichment analysis was performed to determine the enriched 

molecular functions, cellular components, and biological processes associated with the 72 

neuroimmune proteins. One of the proteins in our data set, platelet derived growth factor 

(PDGF)-AB, is a heterodimer and is not encoded by a single gene. Consequently, it was 

not recognized by the enrichment platform and was removed from this analysis (n = 71). 

Nonetheless, the two PDGF-AB subunits: PDGF-A and PDGF-B, are also part of our 

collection of 72 neuroimmune proteins (as homodimers) and these were included in the 

GO analysis. We performed gene enrichment on all 71 neuroimmune proteins encoded by 

a single gene and determined the top 25 terms in each GO category (Figure 12).  

Some of the topmost enriched molecular functions are signalling receptor binding 

(p < 0.001), receptor regulator activity (p < 0.001) and cytokine activity (p < 0.001). Of 

the remaining terms, multiple are associated with growth factor-related functions 

including growth factor binding (p < 0.001) and growth factor activity (p < 0.001). This 

is unsurprising as our collection of proteins are either cytokines, chemokines, growth 

factors or other immune receptors, involved in signalling to initiate an immune response. 

The various enriched cellular components are the extracellular region (p < 0.001), 

cell surface (p < 0.001) and receptor complexes (p < 0.001). Cellular components with a 

lower (yet significant) level of enrichment include the intrinsic components of the plasma 

membrane (p < 0.001) and secretory granules (p < 0.001).  
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Figure 12. Enriched Gene Ontology (GO) Terms. Top 25 enriched terms in three GO 

categories: molecular functions (MF), cellular components (CC), and biological 

processes (BP). GO analyses were performed on 71 proteins recognized by the gProfiler 

and GO enrichment tools. P-values were -log transformed and are indicated on the x-axis. 

GO term names, including the GO term ID, are indicated on the y-axis. Terms have been 

sorted from top to bottom in order of increasing p-value. Smaller p-values (i.e. larger -

log(p-values)) are coloured black, while larger p-values are filled with a translucent grey 

shade. Note that all terms listed meet the threshold for statistical significance (p < 0.05). 
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These results are expected as immune proteins may be released as secretory molecules to 

initiate an immune response, while immune receptors are often expressed on the surface 

of cells to bind and detect foreign antigens (Nicholson, 2016). Additionally, the sample 

preparation used on our tissue samples filtered for membrane proteins, thus the enriched 

cellular components coincide with known properties of immune and membrane proteins 

(Nicholson, 2016).  

Finally, the 71 neuroimmune proteins are enriched for biological processes such 

as the cytokine-mediated signalling pathway (p < 0.001), response to cytokines (p < 

0.001) and cell surface signalling pathways (p < 0.001). Many of the remaining enriched 

biological functions have to do with some form of phosphorylation which is a common 

signalling mechanism that regulates the immune system (Sadreev et al., 2014). To 

investigate whether a GO term is disproportionately represented in a particular cluster, 

we mapped each protein to the 75 terms across all three GO categories (Figure 13). We 

calculated the proportion of proteins in each cluster that map onto the GO terms. Next, a 

binomial test was used to produce a probability score [i.e. P(x) = (1 - p-value) * k]. This 

value was used to indicate whether the cluster proportion truly varies from the overall 

proportion of proteins that map onto a term. Here, negative probability values (i.e. k = -1) 

indicate cluster proportions that are less than the overall proportion. Comparatively, 

positive values (i.e. k = 1) indicate proportions that are greater than the overall proportion 

(Figure 14). 
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Figure 13. Gene Ontology term counts by protein. Count of the number of proteins in 

each cluster that map onto the top 25 terms from each of the three GO categories: 

molecular functions (MF), cellular components (CC), and biological processes (BP). 

Proteins are organized by their order in the ward.D2 clustering dendrogram. Each cluster 

has been coloured differently for visualization purposes. The terms are organized from 

left to right in order of increasing p-value. The three GO categories are illustrated in 

separate plots.  
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Figure 14. Gene Ontology cluster proportions and probability scores. Bubble chart 

indicating the probability that enriched GO terms are represented in clusters at 

proportions that differ from the overall proportion across all clusters. The expected value 

indicates the fraction of all 71 proteins that map onto the term. Red dots indicate cluster 

proportions that are greater than the overall proportion, blue dots indicate cluster 

proportions that are less than the overall proportion. In cases where there is no difference 

between the overall proportion and the cluster proportion the bubble chart is left blank. 

The size of the dots indicates the probability that the cluster proportion is truly different 

from the overall proportion. Smaller dots, corresponding to smaller probabilities, are 

given a more translucent color. GO terms are organized in order of increasing p-value as 

illustrated in Figure 12. Each of the three GO categories (i.e. MF, CC, and BP) are 

presented in its own plot. 
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By focusing on probabilities greater than 0.95, we find that Cluster A, which 

decreases in expression until early adulthood before increasing into aging, contains a 

larger than expected proportion of proteins related to three functions: chemokine activity 

(P(x) = 0.99), chemokine receptor binding (P(x) = 0.99) and G-coupled receptor binding 

(P(x) = 0.98). Cluster B, which has high levels of expression in early development (~0.05 

years) and subsequently fluctuates across the lifespan, has a higher than expected 

proportion of proteins with growth factor activity (P(x) = 0.95). Proteins that continually 

increase into adulthood in Cluster E are related to protein phosphorylation (P(x) = 0.98). 

Importantly, these proportions should be considered trends rather than concrete 

relationships as the small cluster sizes do not provide adequate power for meaningful 

significance testing upon correction for multiple comparisons. 

Furthermore, the analysis did not reveal a one-to-one relationship between 

trajectory and function. For instance, proteins with similar trajectories had opposing 

associations with GO terms. For example, as determined by the Fréchet distances, Cluster 

G and Cluster H have similar protein trajectories. Both display lower levels of expression 

during the neonatal period ( < 0.3 years) and in older adults (55+ years old), with a peak 

in expression occurring in early childhood at approximately 2-3 years. Nonetheless, these 

clusters show opposing relationships with transmembrane signalling receptor activity. 

Cluster G contains no proteins that map onto this term, whereas 30% of all 71 terms map 

onto transmembrane signalling receptor activity. Therefore, there is a difference in 

proportion of -30% (p = 0.06, P(x) = -0.94). Cluster H on the other hand contains a 

greater proportion (60%, p = 0.18, P(x) = 0.82) of proteins that map onto this term. In this 
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analysis, we also found that clusters with widely different average trajectory patterns had 

greater than expected proportions for the same term. For example, clusters B (P(x) = 

0.95) and E (P(x) = 0.93) both have a high proportion of proteins that map onto growth 

factor activity. While both clusters exhibit undulating patterns, Cluster B generally 

decreases across the lifespan, while Cluster E generally increases across the lifespan. 

Altogether these results suggest that an individual trajectory does not represent 

involvement in a particular molecular function. Rather, there seems to be a dynamic 

relationship between protein trajectory and function. 

Classic neural plasticity marker trajectories and clusters 

Neuroimmune proteins are known to have reciprocal relationships with classic 

neural plasticity markers like glutamatergic and GABAergic receptor proteins which 

regulate synaptic plasticity in the human VIC. Here, we used plasticity markers as a guide 

to identify candidate plasticity processes for our neuroimmune proteins. Note that two 

proteins in this data set (i.e. PSD-95 and gephyrin) were measured in both homogenate 

and synaptoneurosome sample preparations. First, we used the WSS (Figure 15) and 

ward.D2 hierarchical clustering (Figure 16) methods to determine that the 23 trajectories 

segregate into five unique clusters. The clusters were of varying size, from three to six 

proteins in each cluster. AU values were calculated as a preliminary measure of the 

cluster integrity (Plasticity Cluster 1: n = 4, AU = 0.87; Plasticity Cluster 2: n = 6, AU = 

0.90; Plasticity Cluster 3: n = 6, AU = 0.74; Plasticity Cluster 4: n = 4, AU = 0.97; 

Plasticity Cluster 5: n = 3, AU = 0.87).  
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Figure 15. Total Within Sum of Square calculations for determining the optimal 

number of plasticity trajectory clusters. WSS values (a measure of the compactness of 

clusters) corresponding to the hierarchical clustering of 23 plasticity marker lifespan 

trajectories. A range of cluster numbers were assessed from one to 22. The x-axis 

indicates the number of clusters and the y-axis indicates the total WSS for that cluster 

number. The WSS values decrease as the number of clusters increases. The bend in the 

curve indicates the point at which a balance is reached between minimizing the WSS and 

creating too many clusters. Here, the elbow-method for determining the optimal number 

of clusters reveals a bend at 5 ± 1 clusters. 
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Figure 16. Ward. D2 hierarchical clustering of neuroplasticity marker trajectories. 

Hierarchical relationships and cluster designations for 23 classic visual cortical plasticity 

trajectories. (A) Hierarchical clustering dendrogram, in which the height is a reflection of 

the proximity between the trajectories, with smaller values indicating a closer 

relationship. Here, the eight clusters are identified by coloured boxes. The dendrogram is 

cut at a height of ~ 7 and the clusters are labelled “1” through “5” in order from left to 

right on the dendrogram. (B) Average curves for the five identified clusters. Age is 

plotted on a logarithmic scale, and protein levels (z-score) are shown. Thick lines 

represent the average curves, while the thin lines indicate individual protein trajectories. 

The number of proteins (n) in each cluster are indicated, this number ranges from three to 

six.  
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Similar to the neuroimmune Fréchet analysis, intracluster distances (Mdn = 20.1) 

were compared to intercluster distances (Mdn = 40.9).  The median difference: -20.8, 

[95CI -24.4, -16.3] indicates that the intracluster median is much smaller than the 

intercluster median (Figure 17). This illustrates that ward.D2 is successful in grouping 

proteins with similar trajectories together. 

Approach One: Comparison of neuroimmune and plasticity marker trajectories 

Subsequently, two parallel approaches were carried out to compare the 

development of these plasticity markers with the neuroimmune proteins. In the first 

approach, we calculated the Fréchet distances between the 72 neuroimmune proteins and 

the 23 plasticity marker trajectories to determine if any lifespan patterns are unique to 

either of these protein classes (Figure 18).  In this analysis the proteins were organized 

according to their cluster designations. More specifically, immune proteins were 

organized into their eight clusters and the plasticity markers were organized into their 

five clusters. We found that the Fréchet distances range from ~4.7 to ~126.3, and that the 

median Fréchet distance is ~42.8.  Interestingly, the range of Fréchet values when 

comparing synaptic and neuroimmune trajectories is smaller than the range obtained 

when comparing the neuroimmune proteins to one another. To recap, the range of Fréchet 

distances for neuroimmune trajectory comparisons between clusters was ~8.1 to ~134.6 

with a median distance of ~42.9. This suggests that neuroimmune proteins show great 

variation amongst their own lifespan patterns, and that the degree of similarity between 

neuroimmune trajectories in varying clusters is similar to their relationship with the 

classic plasticity marker trajectories explored in this study.  
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Figure 17. Median difference between intercluster and intracluster Fréchet 

distances – plasticity marker data. The black dots in the swarm plot indicate the 

Fréchet distances between the 23 plasticity markers in varying clusters (i.e. intercluster 

distances). The Fréchet distances between proteins in the same cluster, with the exception 

of protein self-comparisons, are indicated by the collection of blue dots. The Fréchet 

distances themselves can be seen on the y-axis on the left. The median intercluster 

Fréchet distance is 40.9, while the median intercluster distance is 20.1. The difference 

between the median value of these two sets of Fréchet distances is plotted on the second 

y-axis on the right.  Estimation statistics was used to compute a bootstrap interval for the 

difference (-20.8, [95CI -24.4, -16.3]). 

 

 

 

 

 

 



M.Sc. Thesis - E. Jeyanesan; McMaster University - Neuroscience 

 

 93 

 



M.Sc. Thesis - E. Jeyanesan; McMaster University - Neuroscience 

 

 94 

Figure 18. Fréchet distance matrix for measuring similarity between neuroimmune 

and plasticity marker clusters. Pairwise Fréchet distances between 72 neuroimmune 

trajectories and 23 plasticity marker trajectories. A total of 1656 distances were 

calculated and each of the proteins are organized according to their ward.D2 cluster 

designation. The clusters and their average curves are displayed on the plot. The values 

range from ~4.7 to ~126.3, and the median Fréchet distance is ~ 42.8.  Red cells 

correspond to smaller Fréchet distances and indicate a greater degree of similarity, while 

larger Fréchet distances are coloured blue and indicate lower levels of similarity. The 

same colour scale as Figure 9 has been used to facilitate the comparison of results. The 

wide range of Fréchet distances indicates that neuroimmune and classic neural plasticity 

marker trajectories share some common trajectories but also contain trajectories unique to 

each set of proteins.  
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Estimation statistics were applied to produce a bootstrap CI for the median 

difference scores between the two protein sets (Figure 19). The analysis revealed that 

certain trajectories patterns are common between the plasticity and neuroimmune 

proteins, while other trajectories are unique. Plasticity Cluster 1 generally increases 

across the lifespan, until ~ 25 years when expression levels begin to decrease. 

Unsurprisingly, estimation statistics reveal that the proteins in this cluster have 

trajectories very similar to the neuroimmune Cluster E: +0.6 [95CI -5.3, +7.3] which also 

increases across the lifespan until ~ 20 years, followed by a slight decrease into aging. 

Plasticity Cluster 2 shows a slow increase in protein levels in infancy and peaks in 

expression during adolescence, with decreasing protein levels into aging. Based on the 

Fréchet distances, proteins in this cluster follow similar patterns to neuroimmune Cluster 

H: +5.1, [95CI -1.8, +13.0]. Plasticity Cluster 3 decreases across the lifespan, this pattern 

is also seen in neuroimmune Clusters A: +1.2, [95CI [-3.0, +5.7] and to a lesser extent 

Cluster B: +2.8, 95CI [-0.8, +6.4], which shows a transient increase in expression during 

infancy and early childhood. Plasticity Cluster 4 is a unique trajectory, where there are 

higher expression levels in early development and in older adults with very low levels of 

expression in young children at ~ 1-2 years of age. This expression pattern is not seen in 

the neuroimmune proteins. Finally, plasticity Cluster 5 shows an undulating pattern, with 

high levels of protein in infancy and in older adults, while there are low levels of protein 

expression in neonates and during adolescence. Neuroimmune Cluster D:  +2.9 [95CI -

1.0, +11.3], Cluster F: +3.8, [95CI -1.9, +12.2] and Cluster G: +9.3, [95CI -2.5, +20.0] 

show overlapping median distances with Plasticity Cluster 5. 
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Figure 19. Estimation statistics for measuring the similarity between neuroimmune 

and plasticity marker cluster trajectories. Swarm plots of intracluster Fréchet 

distances and pairwise Fréchet distances between proteins of varying clusters. This stamp 

collection of estimation plots includes five graphs, corresponding to the five plasticity 

marker clusters. In an individual plot the first category corresponds to the reference 

group: Fréchet distances between proteins in the same plasticity cluster. Subsequent 

categories indicate the Fréchet distances between proteins in the reference cluster and 

each of the eight neuroimmune clusters (i.e. the test clusters). An unpaired median 

difference score (test cluster median minus reference cluster median) is indicated along 

with bootstrapped CIs for each median difference score. CIs that overlap with a median 

difference of zero indicate clusters with similar patterns. 
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However, there are only three proteins in Plasticity Cluster 5; this small number of 

proteins results in larger confidence intervals when performing the estimation statistics. 

Grouping the individual protein distances together to calculate median Fréchet 

distances between neuroimmune and plasticity clusters reveals that these two protein 

collections do not share extremely similar trajectories (Figure 20). Recall that the median 

intracluster Fréchet distance for neuroimmune proteins was ~ 17.3. This value indicates 

the strength of the relationship between neuroimmune proteins in the same cluster. 

Comparatively, the median Fréchet distance between neuroimmune and plasticity marker 

trajectories is ~ 42.8, which is more than double the neuroimmune intracluster median 

distance. Of these clusters, the highest degree of similarity occurs between plasticity 

Cluster 1 and neuroimmune Cluster E. The median Fréchet distance between the proteins 

in these two clusters is ~ 22.0. Plasticity Cluster 1 is composed of proteins with known 

functions in the regulation of the critical period for experience-dependent plasticity in the 

visual cortex. Consequently, the proteins in neuroimmune Cluster E are candidates for 

plasticity and neurodevelopment processes. There are a total of six proteins in Cluster E: 

macrophage colony stimulating factor 1 (MCSF), ErbB3,  basic fibroblast growth factor 

(bFGF), fms-related tyrosine kinase 3 ligand (Flt-3L), cytokine receptor common subunit 

gamma (IL2RG), protransforming growth factor alpha (TGFα), and tyrosine-protein 

kinase receptor TYRO3 (Dtk/Tyro3).   
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Figure 20. Neuroimmune-plasticity marker cluster Fréchet distance summary. 

Median Fréchet distances between the two sets of protein clusters. Plasticity clusters are 

visualized as the columns, neuroimmune clusters are visualized as the rows. 

Dendrograms organize the order of the clusters according to the similarities in median 

Fréchet distances. Red cells correspond to smaller Fréchet distances and indicate a 

greater degree of similarity, while larger Fréchet distances are coloured blue and indicate 

lower levels of similarity. The same colour scale as Figure 9 has been used to facilitate 

the comparison of neuroimmune Fréchet distances with the plasticity marker distances. 
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Several of these proteins and their genes have important roles in the development of the 

visual cortex. For example, ErbB3 (Makinodan et al., 2012) and Tyro3 (Akkermann et 

al., 2017) are required for normal developmental myelination. MCSF on the other hand, 

mediates GABAergic circuitry in the mouse visual cortex (Michaelson et al., 1996). 

Furthermore, TGFα is implicated in regulating the survival of glial cells in the Drosophila 

visual system (Hidalgo et al., 2006), while bFGF prevents neuronal apoptosis and 

promotes plasticity after injury in the rat visual system (Chadi & Fuxe, 1998; 

Hendrickson et al., 2012).  

Overall, the average Cluster E trajectory increases across the lifespan into 

adulthood, with decreasing levels into aging. As many of the aforementioned functions 

associated with proteins in neuroimmune Cluster E are neuroprotective, a loss or decline 

in the expression of these proteins may contribute to the detrimental effects associated 

with the aging process. Furthermore, the dysregulation of these proteins is implicated in 

neurological disorders such as MS (Katiyar et al., 2018; Shafit-Zagardo et al., 2018; 

Woodbury & Ikezu, 2013), mood disorders (Kéri et al., 2014; Tang et al. 2017), and 

psychiatric disorders like schizophrenia (Janova et al., 2017; Roy et al., 2007).  

Approach Two: Comparison of neuroimmune and plasticity marker trajectories 

To approach the question of plasticity and neuroimmune trajectory similarities 

through an alternate lens, we performed unsupervised hierarchical clustering on the 

combined set of all 95 protein trajectories. The WSS method (Figure 21) and the 

ward.D2 method together revealed eight clusters ranging in size from seven proteins to 

18 proteins (Figure 22).  
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Figure 21. Total Within Sum of Square calculations for determining the optimal 

number of clusters. WSS values (a measure of the compactness of clusters) 

corresponding to the hierarchical clustering of all 95 lifespan trajectories. A range of 

cluster numbers were assessed from one to 94. The x-axis indicates the number of 

clusters and the y-axis indicates the total WSS for that cluster number. The WSS values 

decrease as the number of clusters increases. The bend in the curve indicates the point at 

which a balance is reached between minimizing the WSS and creating too many clusters. 

Here, the “elbow method” for determining the optimal number of clusters reveals a bend 

at 8 ± 2 clusters. 
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Figure 22. Ward. D2 hierarchical clustering of neuroplasticity marker trajectories. 

Hierarchical relationships and cluster designations for 95 neuroimmune and classic neural 

plasticity markers. (A) Hierarchical clustering dendrogram, in which the height is a 

reflection of the proximity between the trajectories, with smaller values indicating a 

closer relationship. Here, the eight clusters are identified by coloured boxes. The 

dendrogram is cut at a height of ~ 12 and the clusters are labelled “I” through “VIII” in 

order of the number of SynGO proteins (i.e. with recognized synapse-related functions) 

in each cluster. (B) Average curves for the eight identified clusters. Age is plotted on a 

logarithmic scale, and protein levels (z-score) are shown. Thick lines represent the 

average curves, while the thin lines indicate individual protein trajectories. The number 

of proteins (n) in each cluster are indicated, this number ranges from seven to 18. The 

total number of SynGO proteins in a cluster range from zero to six.  
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Clusters were organized by the number of synapse-related proteins. As proteins in 

the neuroimmune collection also have synapse-related functions, the SynGO database 

was used to annotate the 95 proteins with their known synaptic functions. Clusters were 

labelled “I” to “VIII” in order of decreasing number of SynGO annotated proteins 

(Cluster I: n = 13, AU = 0.80, SynGO = 6; Cluster II: n = 12, AU = 0.73, SynGO = 5; 

Cluster III: n = 7, AU = 0.70, SynGO = 4; Cluster IV: n = 11, AU = 0.81, SynGO = 3;  

Cluster V: n = 10, AU = 0.93, SynGO = 2;  Cluster VI: n= 18, AU = 0.73, SynGO = 1; 

Cluster VII: n = 13, AU = 0.77, SynGO = 1; Cluster VIII: n = 11, AU = 0.88, SynGO = 

0). Importantly, clustering did not reveal strictly linear patterns, rather these molecular 

marker clusters all show non-linear lifespan trajectories. 

Similar to the neuroimmune Fréchet analysis, intracluster distances (Mdn = 19.5) 

were compared to intercluster distances (Mdn = 44.0). The median difference: -24.5, 

[95CI -25.7, -23.2] indicates once again, that the intracluster median is much smaller than 

the intercluster median (Figure 23).  

Cluster I: Regulating ODP, E: I balance, and efficacy of synaptic transmission 

Cluster I contains six proteins annotated by SynGO (Figure 24), the largest 

number of all eight clusters. These include the excitatory scaffolding protein PSD-95 and 

the inhibitory scaffolding protein gephyrin (measured in homogenate samples). The 

relative levels of these two proteins are used as a proxy for the postsynaptic E: I balance 

(Yan et al., 2017). Thus, neuroimmune proteins in Cluster I may also play roles in 

maintaining the E: I balance in human V1C. Accordingly, TNFɑ, a quintessential 

proinflammatory cytokine, is also part of Cluster I. This molecule is widely implicated in  
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Figure 23. Median difference between intercluster and intracluster Fréchet 

distances – combined data. This figure corresponds to the data set produced by 

combining all 72 neuroimmune proteins with the 23 plasticity markers. The black dots in 

the swarm plot indicate the Fréchet distances between the proteins assigned to varying 

clusters. (i.e. intercluster distances). The Fréchet distances between proteins in the same 

cluster, with the exception of protein self-comparisons, are indicated by the collection of 

blue dots. The Fréchet distances themselves can be seen on the y-axis on the left. The 

median intercluster Fréchet distance is 44.0, while the median intercluster distance is 

19.5. The difference between the median value of these two sets of Fréchet distances is 

plotted on the second y-axis on the right.  Estimation statistics was used to compute a 

bootstrap interval for the difference (-24.5, [95CI -25.7, -23.2]). 
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Figure 24. LOESS regression curves and SynGO classification for a set of 95 

neuroimmune and classic neural plasticity proteins. Individual protein trajectories (as 

revealed by LOESS regression). Proteins have been grouped according to ward.D2 

cluster designation. Age is plotted on a logarithmic scale on the x-axis, while protein 

levels (z-score) are plotted on the y-axis. Legends that specify the proteins in each cluster 

are found to the right of the plot with arrows indicating proteins that have known 

synapse-related functions according to the SynGO database. Clusters have been 

organized from most to least amount of SynGO annotated terms.  
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activity-dependent synaptic scaling (Stellwagen & Malenka, 2006) and in regulating the 

inhibitory synaptic strength in the mouse (Stellwagen et al., 2005). 

Another candidate synaptic process for immune proteins in Cluster I is regulating 

synaptic efficacy. The protein drebrin has roles in structural plasticity where it regulates 

the morphology of dendritic spines for efficient synaptic transmission (Takahashi & 

Naito, 2017). This functional role is shared with the NrCAM, which plays roles in 

dendritic spine remodelling (Mohan et al., 2018). Synapsin too, is involved in regulating 

presynaptic transmission efficiency, by modulating the number of vesicles available to 

fuse with the synaptic membrane (Hilfiker et al., 1999). 

Finally, Cluster I contains proteins known to regulate the opening and closing of 

the critical period for ODP.  Increases in PSD-95 are associated with closing the critical 

period (Huang et al., 2015). Furthermore, a developmental shift to more GluN2A and less 

GluN2B also reduces ODP (Philpot et al., 2003; Philpot et al., 2007; Quinlan et al., 

1999). Overall, Cluster I seems to represent proteins that regulate the critical period for 

ODP, the E: I balance, and the efficacy of synaptic transmission.  

Cluster II: Modulating GABA release and synapse formation 

On the other hand, Cluster II contains proteins that are associated with modulating 

the release of GABA.  Two members of this cluster are the cannabinoid receptor 1 (CB1) 

and the vesicular inhibitory amino acid transporter (VGAT). While CB1 acts as a 

retrograde control of neurotransmitter release from the presynaptic terminal (Castillo et 

al., 2012; Kano et al., 2009), VGAT is responsible for the uptake of glycine or GABA 

into vesicles (McIntire et al., 1997; Sagné et al., 1997). Here, we find that GDNF also 
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clusters with CB1 and VGAT in our analysis. GDNF has been found in the developing 

brain to promote the differentiation and migration of cortical GABAergic neurons (Pozas 

& Ibáñez, 2005). Additionally, GDNF is localized at both the pre-synapse and the post-

synapse suggesting that it plays a role in the formation of synapses (Ledda et al., 2007). 

This is important, as Cluster II also contains classic plasticity protein Integrin-β3 that 

orchestrates pre- and postsynaptic events (Chavis & Westbrook, 2001). Similarly, 

hepatocyte growth factor (HGF), another neuroimmune protein, enhances the formation 

of excitatory synapses (Xie et al., 2016). This suggests that another candidate plasticity 

process for neuroimmune proteins in Cluster II is synapse formation. 

Cluster III: Temporal and spatial regulation and synaptic transmission kinetics 

Cluster III contains four synapse-related proteins including gamma-aminobutyric 

acid receptor subunit alpha-3 (GABAAɑ3), glutamate decarboxylase 67 (GAD67), 

synaptophysin and contactin-2. Of particular interest are synaptophysin and contactin-2, 

which have been implicated in spatial and temporal regulation of development in mice 

hippocampal neurons (Stottmann & Rivas, 1998). Notably, these two proteins are not 

colocalized, in terms of time and cortical layer (Stottmann & Rivas, 1998). In our data, 

these proteins show fluctuating patterns across the lifespan, however, their peaks in 

expression are completely out of phase. This suggests that the proteins in Cluster III may 

be involved in spatial and temporal regulation of visual cortical development. 

Furthermore, synaptophysin has also been implicated in mediating the kinetics of 

endocytosis at synapses (Kwon & Chapman, 2011). Thus, another candidate function for 

proteins in Cluster III is the regulation of synaptic transmission kinetics. For example, 
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GABAAɑ3 is an immature subunit and has slower kinetics than the mature GABAAɑ1 

(Gingrich et al., 1995). There are also variances in the kinetics of glutamate 

decarboxylase enzymes. GAD67 is the slower variant (compared to GAD65) of proteins 

that catalyze the formation of GABA (Battaglioli et al., 2003). Therefore, changes in 

Cluster III protein levels, and the developmental period during which these shifts occur, 

may indicate changing synaptic transmission kinetics. 

Cluster IV and V: Maturation of synapses and regulating CNS myelination 

A candidate process for proteins in Cluster IV is the maturation of glutamatergic 

synapses. Both the synaptoneurosome measurement of PSD-95 and GluA2 are part of 

this cluster. Increases in the expression of PSD-95 stabilizes activity-dependent synapses 

leading to the maturation of silent excitatory synapses and ending the critical period for 

ODP (Huang et al., 2015). Cluster V, on the other hand, is associated with myelination 

during the critical period, which has been traditionally considered a break in plasticity 

(Bavelier et al., 2010; Lyckman et al., 2008; McGee et al., 2005; Siu et al., 2015). In 

addition to the classic-myelin basic protein (MBP) which is responsible for the 

contraction of the myelin sheath around axons in response to activity (Wake et al., 2011), 

numerous immune markers of the tyrosine kinase family are also part of this cluster 

including Tyro3 and ErbB3. Tyro3 directly regulates myelination in the central nervous 

system (Attermann et al., 2017), while ERBB3 deletions in mice lead to developmental 

alterations in myelin and are associated with behavioural changes due to abnormal 

experience dependent plasticity (Makinodan et al., 2012). Many of the proteins in 

neuroimmune Cluster E, are part of the combined Cluster V, this includes bFGF which 
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also is implicated in oligodendrocyte myelin production (Woodbury & Ikezu, 2013). In 

addition, different members of the FGF protein family have been linked to the 

differentiation of excitatory and inhibitory synapses and regulating the E:I tone 

(Dabrowski & Umemori, 2016; Terauchi et al., 2010). GAD65, the protein responsible 

for the synthesis of the on-demand pool of GABA (Feldblum et al., 1993), is also part of 

this cluster. Therefore, in addition to myelination and plasticity, proteins in this cluster 

may participate in homeostatic plasticity to maintain appropriate levels of excitation and 

inhibition. 

Neuroimmune only cluster: Links to IL-6 function 

The final three clusters are composed of less than three proteins with known 

synaptic function, as annotated by SynGO. Of particular interest is the cluster with no 

synaptic proteins, as it contains the Golli-MBP, a molecular link between the nervous and 

immune systems (Pribyl et al., 1993). This cluster shows a unique pattern not observed in 

our plasticity marker proteins. These proteins have peaks in expression during early 

childhood, only to decrease rapidly to very low levels of expression in adolescence, 

followed by a sharp increase into aging. Specifically, the levels of expression seen in 

older adults ~ 79 years old (i.e. in aging), are roughly equal to the expression levels in 

young children ~2 years of age. In order to determine other proteins that these molecular 

mechanisms interact with, we used the STRINGdb to generate an integrated network 

using a list of predicted functional partners (Figure 25).  
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Figure 25. Functional network analysis and GO enrichment analysis of the 

neuroimmune cluster. When clustering all 95 neuroimmune and plasticity marker 

trajectories together one cluster was composed of proteins with neuroimmune functions 

alone, none of the proteins in this cluster were recognized by SynGO. (A) STRINGdb 

was used to determine functional partners that interact with the proteins in the 

neuroimmune cluster. Each node (i.e. sphere) represents a gene that encodes for the 

proteins in the cluster or one of the predicted functional partners. Lines between these 

nodes indicate a functional relationship based on: experimental evidence, documented 

relationships in other databases, gene neighbourhoods, knowledge of gene fusion, or gene 

co-occurrence. Finally, partners are also predicted by text mining, co-expression, and 

protein homology. Each one of these lines of evidence are colour coded. In the case that 

multiple forms of evidence support the functional connectedness of two proteins, multiple 

lines will connect the corresponding nodes. (B) GO enrichment analysis of the enriched 

molecular functions, cellular components and biological processes of the neuroimmune-

only cluster members and their predicted functional partners. P-values were -log 

transformed and are indicated on the x-axis. GO term names, including the GO term ID, 

are indicated on the y-axis. Terms have been sorted from top to bottom in order of 

increasing p-value. Smaller p-values (i.e. larger -log(p-values)) are coloured black, while 

larger p-values are filled with a translucent grey shade. Note that all terms listed meet the 

threshold for statistical significance (p < 0.05). 
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Completing a GO analysis on the network of proteins reveals that they are enriched for 

molecular functions including signalling receptor binding (p < 0.001), growth factor 

activity (p <0.001) and IL-6 receptor binding (p < 0.001). In terms of cellular components 

these proteins are found in secretory granules (p < 0.001), the cell surface (p < 0.001) and 

are part of the IL-6 receptor complex (p < 0.001). Finally, these molecules are part of 

biological processes associated with peptidyl-tyrosine phosphorylation (p < 0.001), 

peptidyl-tyrosine modification (p < 0.001) and immune system processes (p < 0.001) in 

general. While many of these terms overlap the enrichment results for the entire 

collection of 72 neuroimmune proteins, the STRINGdb analysis places IL-6 at the center 

of the functional network. Moreover, the enrichment analysis reveals IL-6 related 

functions. IL-6 is a pleiotropic cytokine that has been analyzed extensively in the context 

of neuropsychiatric disease and is often used as an indicator of inflammatory state 

(Borovcanin et al., 2017; Erta et al., 2012; Ng et al., 2018). The association of IL-6 with 

this cluster raises the question of whether these diseases are truly a case of 

neuroprogression, or whether they could also be interpreted as neuroregression, as protein 

levels for these proteins are as high in young children as they are in older adults.  

 Overall, both approaches to understanding the relationship between neuroimmune 

and classic plasticity marker trajectories reveal that shared developmental patterns are 

indicative of shared plasticity and development related functions. 

Profiling development of human V1C  

Lifespan trajectories reveal that protein levels are similar at extremely different 

periods of the lifespan. In order to determine whether protein expression alone is able to 
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identify sample age, we performed RSKC on the neuroimmune expression and the 

plasticity marker expression. This unsupervised clustering algorithm received only 

protein expression values, with no information about the age of the cases. A prediction-

based resampling method revealed that the optimal number of clusters for the plasticity 

marker data set was six. In order to use the plasticity markers as a guide to unpack 

neuroimmune human development profiles, six was used as the optimal number of 

clusters for both collections of proteins.       

First, we clustered the cases using solely the neuroimmune protein expression 

values and calculated the median age and interquartile range (IQR) for each cluster. We 

obtained clusters with progressing median age (Cluster A: Mdn = 0.26 years, IQR [0.16, 

0.30]; Cluster B: 0.35 years, IQR [0.29, 0.37]; Cluster C: 2.21 years, IQR[1.78, 2.78]; 

Cluster D: 5.39 years, IQR[4.56, 8.14]; Cluster E: 15.22 years, IQR[12.45, 22.98]; 

Cluster F: 70.61 years, IQR[65.45, 73.81]) (Figure 26). The youngest two clusters 

consist of cases of similar age as the difference between the median ages is only 0.09 

years. As the case clusters are formed based on protein expression vectors, this may 

indicate separate biological states that occur during the same period of the lifespan. The 

rest of the clusters are relatively discrete, where the IQR of cluster ages do not overlap. 

The RSKC algorithm weights proteins based on their importance to creating the 

case clusters. Here, the proteins with the greatest weights are tissue inhibitors of 

metalloproteinases 2 (TIMP-2), Flt-3L, vascular endothelial growth factor receptor 1 

(VEGF R1). These proteins show great changes in their protein expression levels across 

the lifespan. 
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Figure 26. Box plots of the RSKC case clusters derived from neuroimmune 

expression vectors. Cases were clustered together based on the log2 expression values of 

72 neuroimmune proteins. (A) High-dimensional clustering using the RSKC algorithm 

reveals 6 clusters. Cluster IQRs were calculated and plotted to reveal progressing median 

age. Age is plotted on a logarithmic scale on the x-axis, and the clusters themselves are 

plotted on the y-axis from youngest to oldest median age. Box plot whiskers indicate the 

minimum and maximum values that fall within 1.5* IQR. Values outside this range are 

considered outliers and are indicated as black dots. If none of the values in a cluster are 

larger than the 75th percentile and within 1.5*IQR, then an upper whisker is not depicted. 

If none of the values are smaller than the 25th percentile and within 1.5*IQR, then a 

lower whisker is not depicted. (B) RSKC weights assigned to the 72 proteins reflect their 

importance in forming the case clusters. Proteins are organized from largest to smallest 

weight. 
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In comparison, the proteins that are weighed the least are leukemia inhibitory 

factor (LIF) and urokinase receptor (uPAR). These have relatively less fluctuation in 

protein levels across the lifespan. The outlier here is growth differentiation factor (GDF-

15), which shows an undulating pattern and yet is the lowest weighted protein. This 

suggests that fluctuation and high magnitude of change across the lifespan is not 

sufficient to weight a protein highly. Thus, it seem that more subtle patterns are 

emphasized in the weighting of proteins during RSKC. 

To create a profile of human development, we took the protein expression values, 

multiplied them by their RSKC weights and calculated a sum of these weighted 

expression values for each case. The summed values were z-scored to scale the values 

and obtain total protein levels across the lifespan (Figure 27). This analysis revealed 

increasing neuroimmune protein levels during early development with a peak in 

expression in young children. These expression levels then decrease. 

Clustering the same cases using the plasticity marker data (Figure 28), we find 

once again that the clusters show progressing median age (Cluster A: Mdn = 0.33 years, 

IQR[0.27, 0.35]; Cluster B: 0.75 years, IQR[0.56, 2.66]; Cluster C: 4.71 years, IQR[1.34, 

9.13]; Cluster D: 8.14 years, IQR[5.39, 15.22]; Cluster E: 12.86 years, IQR[9.89, 18.11]; 

Cluster F: 61.60 years, IQR[51.30, 71.26]). In contrast to the neuroimmune data however, 

the youngest two cases do not have overlapping age IQRs. Here, the intermediate clusters 

(i.e. Cluster B to Cluster E) all have overlapping IQRs, while the youngest and oldest 

clusters stand apart.  
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Figure 27. Profile of human V1 development using neuroimmune weighted 

expression. Cases were given a score based on the total weighted expression across all 

72 neuroimmune proteins. Weighted expression was obtained by multiplying each 

protein’s expression values by its RSKC weight. The sum of these weighted expression 

values was calculated for each case. Values were scaled by calculating a z-score. Age is 

plotted on a logarithmic scale on the x-axis. Weighted expression levels are plotted on the 

y-axis. A LOESS curve was fit to these values. There is a wave of increased 

neuroimmune expression in early childhood between 2-3 years of age, expression levels 

are similar during the neonatal period and in aging. 
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Figure 28. Box plots of the RSKC case clusters derived from classic neural plasticity 

marker expression vectors. Cases were clustered together based on the relative 

expression values of 23 plasticity trajectories. (A) High-dimensional clustering using the 

RSKC algorithm reveals 6 clusters. Cluster IQR were calculated and plotted to reveal 

progressing median age. Age is plotted on a logarithmic scale on the x-axis, and the 

clusters themselves are plotted on the y-axis from youngest to oldest median age. Box 

plot whiskers indicate the minimum and maximum values that fall within 1.5* IQR. 

Values outside this range and considered outliers and are indicated as black dots. If none 

of the values in a cluster are larger than the 75th percentile and within 1.5*IQR, then an 

upper whisker is not depicted. If none of the values are smaller than the 25th percentile 

and within 1.5*IQR, then a lower whisker is not depicted. (B) RSKC weights assigned to 

the 23 trajectories reflecting their importance in forming the case clusters. Proteins are 

organized from largest to smallest weight. 
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This reveals greater interindividual variability during early childhood and 

adolescence in the profile of classic plasticity markers as compared to neuroimmune 

profiles. In weighting the proteins, there are no apparent trends in the synaptic data set. 

Proteins from the same cluster, with similar patterns are weighted differently. In the 

neuroimmune data set 33 proteins were assigned low weights, with magnitudes below 

0.1. Comparatively, only GABAAɑ3 in the plasticity marker data set was assigned a 

weight less than 0.1. This indicates that almost all synaptic proteins were important in 

forming case clusters that show age progression.  

To compare the cluster designations, we calculated a Jaccard similarity coefficient 

(J) and found only a 21% similarity between the clustering results (Figure 29). While 

both collection of proteins show progressing median age, the similarity measure further 

confirms that the nuances of their development in the human V1C are varied. When 

comparing clustering results between individual clusters we found that the greatest level 

of similarity occurs between Cluster F (J = 0.667) which has a median age corresponding 

to late adulthood (55+ years old). Here, 100% of the cases placed in the oldest cluster 

(Cluster F) when clustering with neuroimmune data, are placed in the oldest cluster when 

clustering with the plasticity marker data. Cluster D, which has a median age 

corresponding to late childhood (5-11 years old), also shows a moderate degree of 

similarity between the two data sets. 60% of the cases which fall into neuroimmune 

Cluster D data also fall into plasticity marker Cluster D. The resulting Jaccard similarity 

coefficient for the two Cluster Ds is J = 0.429. 
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Figure 29. Jaccard similarity coefficient between neuroimmune and plasticity 

expression-based case-cluster designations. Clustering the 30 cases using the 

neuroimmune expression, or the plasticity marker expression, both reveal clusters with 

progressing median age. Nonetheless, the composition of the clusters is not the same. (A) 

Bubble plot indicating the neuroimmune cluster designation on the x-axis and the 

plasticity marker designation on the y-axis. Each bubble indicates the number of cases 

that were classified at the intersection on point. For example, two cases were assigned to 

the youngest cluster “A” when clustering with the neuroimmune data and the classic 

plasticity marker data. Bubbles are coloured from yellow to red, with yellow representing 

a smaller number and red representing larger numbers. The size of bubbles also increases 

as the number increases. At the top right corner of the plot, the Jaccard similarity 

coefficient between the overall clustering results is indicated (i.e. ~0.211) (B) Table 

indicating the age of the cases and their cluster designation when using with either the 

neuroimmune expression or classic plasticity marker expression as the RSKC input. (C) 

Jaccard similarity coefficient indicating the similarity of individual clusters between the 

neuroimmune and classic plasticity marker RSKC results.  
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On the other hand, during the early postnatal periods as well as infancy, early 

childhood and adolescence, neuroimmune and classic neural developmental patterns do 

not coincide. Accordingly, the Jaccard similarity coefficients of the remaining clusters 

drops to 0.300 or lower. This illustrates that the developmental profile of neuroimmune 

and classic neural plasticity markers are not the same in the human V1C.  

Overall, protein expression alone is sufficient to form age-based clusters, as both 

data sets reveal clusters with progressing median age, albeit with different median ages. 

This is important as protein expression levels are similar at drastically different stages of 

the lifespan. Nonetheless, the relative levels of protein expression provide enough 

information to group cases of similar age together using their protein expression vectors.  

Heightened expression of viral receptors during childhood in the human V1C 

The visual cortex has dense microvasculature (Schmid et al., 2019) and is 

therefore vulnerable to viral infections that compromise the integrity of the BBB 

(Spindler & Hsu, 2012). As evidenced by the results of our GO cellular component 

analysis, many of the proteins explored in this study are cell surface receptors that may be 

hijacked by viruses to infect host cells. We used the UniProt database to determine a list 

of viral receptors using the keyword “Host cell receptor for virus entry (KW-1183)” and 

matched the results to our list of proteins. We found that seven of the proteins explored in 

this study are receptors that facilitate entry for human viruses. To explore whether there 

are any relationships between their trajectories and their viral functions, we plotted all 

seven trajectories and found a wave of heightened viral receptor expression in early 

childhood, before 5 years of age (Figure 30).  
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Figure 30. Viral receptor protein trajectories across the lifespan.  UniProt search 

reveals that seven proteins in our collection of molecular markers are receptors for 

viruses that infect humans. The lifespan trajectory of all seven proteins has been plotted 

on the same graph for comparison of their developmental profiles. Age is plotted on a 

logarithmic scale on the x-axis and the protein levels (z-score) are indicated on the y-axis. 

A legend can be found indicating the color that has been assigned to each protein. 
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Next, we mapped the receptors to specific viruses and viral families (Qi et al., 

2020). We found that the seven receptors are associated with 7 different viral families 

including Arenaviridae, Filoviridae, Flaviviridae, Hantaviridae, Orthomyxoviridae, 

Picornaviridae and Herpesviridae (Figure 31). These viral receptors were associated with 

14 different viruses. Tyro3 and tyrosine-protein kinase receptor UFO (Axl) act as 

receptors for the same set of viruses including lymphocytic chroiomeningitis 

mammarenavirus, lassa mammarenavirus, margurgvirus and ebola virus. Interestingly, 

these two proteins show very similar trajectories until ~5 years of age at which point the 

trajectories veer off into opposite directions. More specifically, Tyro3 increases into 

aging while Axl decreases into aging. Furthermore, many of these proteins including 

intercellular adhesion molecule 1 (ICAM-1), Integrin-β3, lysosome membrane protein 2 

(LIMPII) are receptors for various strains of Coxsackievirus, which causes hand foot and 

mouth disease (HFMD) and occurs most commonly in young children less than 5 years 

old (Liu et al., 2019). Note that these proteins also show peaks in expression during early 

childhood (absolute max for ICAM-1, Integrin-β3; local max for LIMPII). Of the 

remaining proteins epidermal growth factor receptor (EGF R) is a viral receptor for the 

influenza A virus, herpes virus entry mediator A (HVEM) is a receptor for herpes. 

Additionally, Integrin-β3 is also a receptor for West Nile Virus. As most of the viral 

receptors show peaks in expression during early childhood, there is reason to believe that 

this period of development presents increased risk of viral insult in the brain, which not 

only disrupts the functioning of neural circuits but can predispose individuals to 

psychiatric disorders in later development (Atluri et al., 2015; Hornig & Lipkin, 2001). 
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Figure 31. Viral families, strains and associated receptors.  Of the 93 unique proteins 

in our combined data set, 7 proteins are receptors for viruses that infect humans. The 

lifespan trajectory of all seven proteins has been plotted with age on a logarithmic scale 

on the x-axis and the protein levels (z-score) on the y-axis. The name of the viral family 

that the receptor is associated with is indicated in bold letters, with specific viruses 

indicated underneath. Note that some proteins are associated with one viral family and 

one specific viral strain, while other proteins are receptors for multiple viral families and 

numerous viral strains. 
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2.4 Discussion 
 
 The aim of this study was to characterize the lifespan trajectories of 72 

neuroimmune proteins in the human VIC. We found that these molecular mechanisms 

show a range of undulating patterns across the lifespan. Importantly, immune markers do 

not globally increase into aging. The “inflammaging” model suggests that aging is a 

progressive increase in proinflammatory state, resulting in a reduced ability to deal with 

stressors (Franceschi et al., 2000).  This model has been used to describe 

neurodegenerative disorders such as AD (Giunta et al., 2008) as well as neuropsychiatric 

disorders such as schizophrenia (Nguyen et al., 2017). Diseases are therefore described as 

brain states with high levels of inflammation characteristic of later stages of life 

(Franceschi et al., 2018). In our data set however, proteins that are traditionally 

considered to be proinflammatory like interleukin-8 (IL-8) show lower levels of 

expression in aging when compared to early postnatal development. 

While the protein trajectories reveal complex and dynamic lifespan trajectories, 

we recognized that some expression patterns were shared amongst proteins. Ward.D2 

hierarchical clustering identified eight trajectory clusters for our neuroimmune markers. 

Fréchet distances along with estimation statistics revealed that none of the clusters had 

overlapping median Fréchet scores, allowing us to be confident that the eight clusters are 

truly different. Lehallier et al. (2019) examined the lifespan profiles of almost 3,000 

plasma proteins and found that these also grouped into eight clusters. Similar to our 

study, they found that the developmental profile of these plasma proteins is not strictly 

linear, but rather undulating across the lifespan (Lehallier et al., 2019). While the number 
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of proteins assessed in that paper is much higher than that of our study, a similar number 

of unique trajectories was found. As a result, it seems that human brain development, at 

the level of protein expression, follows a limited number of undulating trajectories.  

A GO enrichment analysis was used to pick out the top 25 molecular functions, 

cellular components and biological processes that are enriched in our collection of 

neuroimmune proteins. We found that these terms had to do with signalling, cytokine 

activity, receptor activity, the cell surface, extracellular regions and phosphorylation. As 

our protein collection is composed of immune markers measured in a membrane sample 

preparation, these findings are not new or unexpected. We found no clear relationship 

between the lifespan trajectories and their functions when we examined the clusters 

individually. This revealed that protein clusters are composed of proteins with a range of 

biological functions. 

Nonetheless, we did find functional relationships when evaluating the similarity 

between neuroimmune and classic plasticity marker development. Two parallel 

approaches were taken to assess this similarity. In the first approach, cluster designations 

were maintained and eight neuroimmune clusters were compared to five classic plasticity 

clusters. The similarity between these groups of proteins was assessed using the Fréchet 

distance metric. This analysis revealed that select proteins in both data sets show 

increasing expression across the lifespan, with a small decrease into aging. Included in 

this list of proteins are classic MBP and neuroimmune markers that regulate myelination 

in the CNS; such as Tyro3 (Attermann et al., 2017), ErbB3 (Makinodan et al., 2012) and 

bFGF (Woodbury & Ikezu, 2013). These results indicate that proteins regulating CNS 
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myelination increase in expression for most of the lifespan, especially in early 

development when the brain is highly plastic. 

The second approach to comparing these two collections of proteins involved 

clustering all 95 protein trajectories together. Using the classic neural proteins as a guide, 

we revealed that immune proteins with roles in synaptic scaling and synaptic 

transmission like TNFɑ (Stellwagen et al., 2005; Stellwagen & Malenka, 2006) are 

clustered with classic neural proteins like PSD-95, synapsin and drebrin, which are also 

associated with the synaptic plasticity and transmission (Hilfiker et al., 1999; Huang et 

al., 2015; Takahashi & Naito, 2017). Other clusters revealed that proteins involved in 

GABAergic signalling cluster together and that proteins regulating the critical period for 

ODP cluster together. This suggests that regulators of synaptic plasticity follow similar 

expression patterns in the human V1C, whether they be classically neural or classically 

immune. 

Notably, one of the clusters obtained from partitioning the combined data set was 

composed only of proteins with immune functions. This cluster demonstrated increasing 

expression levels from adolescence (at ~13 years) to late stages of the lifespan (~79 

years). While this pattern supports the popular view that there is an increase in 

inflammation in aging, and that these increases are exacerbated in disease, the proteins in 

the “immune-only” cluster have equally high levels of expression during early childhood. 

Studies looking at inflammation, disease and aging in general tend to compare 

inflammatory expression levels between young adults and older adults. They are also 

likely to compare expressions between adults with neurological disorders to age-matched 
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controls. Very little work, however, has compared the inflammatory levels of older 

adults, or those affected by disease, to neonates, infants and young children. Our data 

suggests that we may find that older adults, and those suffering from neuropsychiatric 

disease, have comparable inflammatory expression levels to unaffected young children. 

This may indicate differing roles for neuroimmune proteins at different points in the 

lifespan. 

Overall, taking a set of plasticity markers that regulate experience-dependent 

plasticity in the human V1C, we show that certain lifespan expression patterns are shared 

by the two classes of proteins. Specifically, both collections contain markers with 

increasing, and undulating patterns of expression. Analyzing these shared developmental 

patterns revealed shared functions. Additionally, we found that while some classic 

plasticity markers have reduced expression in early childhood, this pattern was not 

observed in any neuroimmune clusters. 

Next, to characterize the human V1C development we clustered the cases in our 

study based on protein expression. We observed that protein expression is sufficient to 

group cases together by their age. These clusters show progressing median age. This is 

unexpected as many proteins have similar expression levels during drastically different 

points in the lifespan, such as during early childhood and in aging. Our findings suggest 

that the relative levels of proteins are varied in individuals of drastically different ages. 

Furthermore, when clustering using the neuroimmune proteins we find that there are 

overlapping clusters composed of neonates and infants. We interpret these overlapping 

clusters as different biological states that exist during the similar stages of the lifespan. 
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Comparatively, the case clusters mostly overlap when partitioning them using classic 

neural protein expression. The only cluster that stands on its own, regardless of clustering 

with neuroimmune or classic plasticity data is that composed of older adults (55+ years). 

As the cluster corresponding to older adults is discrete from all others, the profile of older 

adults seems the most robust. Finally, we compared the case cluster designations obtained 

from neuroimmune and classic plasticity marker data. We found that the cases designated 

to the oldest cluster overlap the most between these two data sets. Nonetheless, 

developmental profiles are quite varied in the intervening years.  

In light of the novel coronavirus outbreak, the interactions between viral antigens 

and the human immune system have been the topic of immense investigation. Many of 

the proteins in this study are located on the cell surface and are candidates for viral 

interaction. Therefore, we investigated whether our collection of proteins are receptors 

for any human viruses. We found that seven of our proteins act as viral entry receptors 

for seven different families of viruses and 14 different viral strains. Interestingly, all of 

these viruses are known to attack the CNS  (Anastasina et al., 2017; Conrady et al., 2010; 

Huang & Shih 2015; Kakooza-Mwesige et al., 2019; Kang & McGavern, 2008; Studahl, 

2003). The majority of these viruses show increased levels of expression before five 

years of age in our data set. Particularly, three of the seven proteins are receptors for 

varying strains of HFMD. Notably, this disease most commonly affects children less than 

five years old (Liu et al., 2019), which overlaps with the developmental period where 

there is high expression for these immune markers. These results show that early 

childhood represents a period of heightened vulnerability to viral infection in the brain. 
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Nevertheless, the relationship between neuroimmune proteins and viral infection is not 

solely negative. Counterintuitively, some of the proteins that mediate viral entry also 

promote the integrity of the BBB. Axl and Tyro3 are part of the TAM family of proteins 

that maintain the integrity of the BBB in the event of viral infection (Shafit-Zagardo et 

al., 2018; Wang et al., 2020). Moreover, these proteins are thought to have protective 

roles in the CNS through suppressing the levels of proinflammatory cytokines and 

promoting stem cell survival (Ji et al., 2013). 

In conclusion, unpacking the lifespan trajectories of neuroimmune markers has 

significant implications for translational research and the development of therapeutics for 

psychiatric and neurodevelopmental disorders. As neuroimmune markers are considered 

to be central to the pathological conditions, understanding which immune proteins have 

elevated levels, and most importantly when these elevations occur, will be instrumental in 

developing treatments that are timely and effective. Similarly, charting the patterns of 

neuroimmune development is essential in verifying whether patterns observed in mice 

models of psychiatric and neurodevelopmental disorders actually translate to humans. 

 
 
 
 
 
 
 
 
 



M.Sc. Thesis - E. Jeyanesan; McMaster University - Neuroscience 

 

 141 

Chapter 3. General Discussion 
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3.1 Summary of Main Findings 
 

My thesis contributes to the understanding of how neuroimmune proteins change 

across the lifespan. As most studies focus on animal models and measure gene 

expression, my thesis fills the knowledge gap about how protein levels of cytokines, 

chemokines, growth factors and other inflammatory factors change across the lifespan in 

the human cortex. Furthermore, my thesis compares these neuroimmune markers to 

classic neural proteins, to determine whether they show similar patterns. Finally, I 

explore different functions for these neuroimmune proteins and connect these functions 

to the lifespan trajectories. 

Neuroimmune proteins expressed in the human V1C show a wide range of 

developmental profiles. Some proteins increase across the lifespan, while others decrease. 

We also observed that the majority of proteins had undulating trajectories, following a 

series of increases and decreases in protein levels across the lifespan. While the 

development of neuroimmune proteins in the human cortex could not be explained by a 

common trajectory, we also did not observe 72 unique trajectories. Rather eight common 

trajectory patterns were determined using hierarchical clustering. 

 Through the GO analysis we determined that trajectories and function in the 

human V1C do not map onto one another in a one-to-one relationship. In other words, 

proteins with similar trajectories were not associated with the same set of functions. 

Nonetheless, by calculating the Fréchet distance between classic neural proteins and 

neuroimmune markers we found that proteins (in both data sets) involved in myelination 

show increasing patterns into adulthood with slight decreases in protein levels into aging.  
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A parallel approach to comparing the neuroimmune and plasticity clusters, 

involved clustering all 95 trajectories together. This analysis revealed that certain lifespan 

expression patterns are common to both neuroimmune and classic neural proteins, while 

other patterns are unique. In particular, while some proteins in the plasticity marker 

collection show the lowest level of protein expression in early childhood (ex. drebrin, 

synaptophysin, GABAAɑ3, and GAD67) this expression pattern is not seen in the 

neuroimmune data. On the other hand, a collection of neuroimmune proteins show an 

undulating pattern not seen in the plasticity marker data. These proteins increase from 

almost no expression in adolescence to high expression levels in late adulthood. 

Nonetheless, this is only part of the picture, as these proteins have similarly high levels of 

expression in early childhood. Using online databases to determine functional partners for 

these proteins reveals that they are connected to IL-6 function, which is a commonly 

studied cytokine used to measure proinflammatory states in a range of neurological 

disorders (Erta et al., 2012). As childhood is a period of great brain plasticity, these 

results suggest that proteins with high expression levels in early childhood and in late 

adulthood may have differing functions across the lifespan. 

 Finally, clustering the cases together using protein expression revealed that 

protein levels are sufficient to identify cases of similar age. Nonetheless, the 

developmental profile revealed by the two collections of proteins was not the same. 

While neuroimmune data showed heterogeneous biological states during the neonatal-

infancy period, plasticity markers show greater heterogeneity from infancy to early 

adulthood. Using the RSKC protein weightings we found that there is a period of 
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heightened immune expression in early childhood. Interestingly, the viral receptors 

present in our data all show peaks in expression during this time. As viral infections can 

cross the BBB and infect the CNS (Spindler & Hsu, 2012), this heightened expression 

represents a wave of increased susceptibility to CNS viral infection. 
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3.2 Significance 
 

Immune proteins are implicated in a host of neurodevelopmental processes. They 

are involved in all stages of the lifespan and in all brain regions, from embryonic 

development to the early postnatal sculpting of circuits in the visual cortex, they are even 

involved in neurogenesis and plasticity in the adult hippocampus (Boulanger, 2009). Due 

to their extensive involvement in mediating brain development, immune proteins have 

also been implicated in many neurodevelopmental, neuropsychiatric and 

neurodegenerative disorders (Garay & McAllister, 2010). Despite the fact that elevation 

in inflammatory levels are associated with normal and pathological conditions, very little 

is actually known about the lifespan expression of immune proteins in the human cortex. 

Many studies exploring these molecular markers and their typical and atypical 

development use animal models and are not reflective of human expression levels. 

Moreover, levels of mRNA expression - not protein expression - are usually measured. 

As proteins carry out biological functions in our cells and form the cellular components, 

it is important to understand how they change across the lifespan (Carlyle et al., 2017). 

Consequently, this study aims to address the gap in our knowledge about how immune 

proteins develop across the lifespan in the human cortex and whether their development 

varies from that of classic neural proteins. As these markers play important roles in 

development, we charted their expression in the visual cortex, which is an exemplary 

model for studying neurodevelopment and plasticity. 
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Undulating trajectories explain neuroimmune development in human V1C 
 
 The traditional view of visual cortical development is hierarchical. The findings 

from perceptual (Aslin & Smith, 1988) and anatomical data (Huttenlocher & Dabholkar, 

1997) suggest that the V1C matures first and that the maturation of association cortices 

follows subsequently. Studies in our lab, however, have found that classic neural proteins 

including glutamatergic receptor proteins, GABAergic receptor proteins and myelin-

related proteins show protracted development well into adulthood (Pinto et al., 2010; Siu 

et al., 2015, Siu et al., 2017). Despite the fact that neuroimmune proteins regulate the 

development of these proteins, very little was known about how neuroimmune protein 

expression compares. Our findings show that immune proteins are not monotonic, rather 

they show lifelong, changing patterns of expression. As the levels of neuroimmune 

proteins are dynamic across the lifespan, this further supports the idea that the visual 

cortex is constantly changing and that contrary to the hierarchical view, V1C maturation 

is not achieved in the first few years of life. 

 While the expression profiles of neuroimmune proteins is complex, we do not 

observe a unique trajectory for each protein. Rather there are a number of limited, 

undulating expression patterns that are shared by the set of neuroimmune proteins 

assessed in this paper. As measurements for nearly 3,000 human plasma proteins also 

reveal a small number of clusters with undulating expression (Lehallier et al., 2019), this 

suggests that higher order molecular mechanisms orchestrate protein development in a 

limited, specific number of non-linear patterns. 
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Immune markers in the human V1C have pleiotropic, even opposing functions 
  
 Neuroimmune proteins are considered pleiotropic as they have both 

immunological roles and development roles in the CNS (Boulanger, 2009; Stolp, 2013). 

Our findings support this understanding of immune proteins in the brain. While we were 

not able to find a one-to-one relationship between neural function and immune protein 

trajectories, this is probably due to the fact that a single protein is involved with a range 

of neural processes. Furthermore, a single protein can also have opposing functions. For 

example, through our study of viral receptors in the brain we find that immune proteins 

can act as viral receptors that mediate entry into host cells (Qi et al., 2020). It is 

interesting that these molecular mechanisms also have protective effects that maintain the 

integrity of the BBB and supposed to prevent viral entry into the CNS (Shafit-Zagardo et 

al., 2018; Wang et al., 2020). In addition, it has been shown that the type of cell releasing 

a cytokine, the target cell and the amount of the cytokine released, are a few of the factors 

that determine the function of a neuroimmune molecule (Cavaillon, 2001). For instance, 

whether or not a cytokine will have pro- or anti-inflammatory effects (Cavaillon, 2001). 

As a result, to simply measure the levels of cytokines in plasma is not sufficient to 

indicate a proinflammatory state. 

Elevated immune expression levels in young children and in older adults 
 

In this study we found that a group of neuroimmune proteins show a unique 

developmental pattern not observed in the classic plasticity marker collection of proteins. 

Here, the protein expression levels increase from very low levels in adolescence to high 

protein expression in older adults. This pattern has been used as evidence for the 
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inflammaging model that describes aging as an increase in proinflammatory state 

(Franceschi et al., 2000). Additionally, neurological disorders have been described (in 

part) as accelerated aging due to the findings that immune protein expression levels are 

high in these individuals. To provide a few examples, a study looing looking at 

depression and suicide measured elevated TNFα, IL1-B and IL-6 mRNA levels in the 

post-mortem brain tissue of affected individuals (Pandey, 2017). These results were taken 

as evidence that depression is a case of neuroprogression (Pandey, 2017). Another study 

looked at the levels of proteins in the TNF pathway and also found increased levels in 

teens with schizophrenia and bipolar disorder (Hoseth et al., 2017). Interestingly, these 

studies use age-matched controls or adult controls as their reference group. In contrast, it 

is uncommon to see studies compare affected individuals with unaffected young children. 

Our results suggest that the picture is incomplete when considering inflammation in just 

adults. We find that many of these proteins with high levels of expression in older adults 

also have high levels of expression in neonates and early childhood. Thus, presenting the 

possibility that proteins have varying roles throughout development. 

Brain development profile varies between immune and classic neural markers 

We used protein expression to profile human V1 development. We found that 

protein expression was sufficient to identify and group proteins together by similar age. 

This is especially interesting, as individual proteins in both data sets show almost-equal 

levels of expression at varying developmental stages (ex. young children and older adults 

have similar levels of TRAIL R3). The formation of clusters with progressing median age 

using just protein expression suggests that it is not the magnitude of expression, but 
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rather the complex relationship between protein levels allows the identification of sample 

ages. This being said, the profiles produced by neuroimmune and classic neural proteins 

is highly different. Neuroimmune proteins show heterogeneity in the neonatal-infancy 

periods, where two overlapping clusters are produced. Contrastingly, overlapping clusters 

are not observed in the neonatal period when clustering classic plasticity markers. Rather, 

we find that the clusters overlap in IQR for the rest of the lifespan, with the exception of 

older adults. This suggests that developmental programmes for different classes of 

proteins are distinct in the human V1C. Finally using the RSKC weighted expression we 

found that there is a wave of increased immune expression around 2 years of age. Of the 

seven proteins that act as mediates of viral entry, three of them are receptors for HFMD 

which peaks in children less than 5 years old. Our findings suggest that the increased 

expression of viral receptors in the child CNS heightens vulnerability to viral infection 

and may contribute to repeated childhood infections (AlKhater, 2009) 
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3.3 Methodological Considerations 
 

Strengths: Approach to data collection 
 

Neuroimmune protein expression was measured using a multiplex ELISA. A 

major strength of this approach is that it enables the simultaneous detection of hundreds 

of proteins. Using this method, I was able to create a lifespan expression database for 

many neuroimmune proteins that have not been studied in the human visual cortex. 

Another strength of this approach is its high specificity and sensitivity to protein targets 

(Sakamoto et al., 2018). Additionally, an ELISA enables the measurement of absolute 

concentration values as opposed to relative expression.  

On the other hand, western blots were used to detect the expression of classic 

plasticity markers. This tool also has high sensitivity and specificity to the protein target 

(Ghosh et al., 2014). Moreover, the synaptoneurosome preparation used in the study 

facilitates the enrichment of low abundance synaptic proteins for detection by western 

blot (Murphy et al., 2014). Both the multiplex ELISA and the western blot techniques 

result in the reliable detection of protein targets. 

Limitations: Approach to data collection 
 

Western blots and multiplex ELISAs do not convey cell-type related information. 

Moreover, they do not provide specify protein localization in terms of cortical layer, and 

with respect to cell components. Neuroanatomical studies and immunohistochemistry 

techniques will be required to identify which cortical layers and neuronal (or glial) 

components these proteins are preferentially expressed in. Another limitation of this 

study is that the western blot technique is semi-quantitative. Consequently, relative 
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expression is reported not protein concentration (Mahmood & Yang, 2012). Furthermore, 

in the multiplex ELISA, each protein antibody was arrayed in quadruplicate in the same 

sample. In contrast, multiple runs of the western blot enabled the measurement of a single 

protein in different samples from the same tissue donor. Finally, the small sample size (n 

= 30) results in a lower level of statistical power for the study.  

Data analysis considerations 

Modern high-dimensional data analysis tools were used to evaluate the resulting 

data. My study falls under the category of discovery research, where a data-driven 

approach is used to unpack novel protein interactions. I begin to create a pipeline for 

analyzing numerous proteins simultaneously and using their developmental patterns to 

identify biological significance. 

Clustering is highly effective in revealing subtle patterns in protein expression. 

When visually comparing two trajectories it may seem that they are similar. Nonetheless, 

this may not truly be the case. Features of the curve - such as when fluctuations in 

expression occur - are important factors in interpreting time-series data, and they are not 

easily quantifiable by eye. In this study we reveal eight different clusters using the 

ward.D2 hierarchical clustering method. Ward.D2 is well suited for answering our 

research question as it is an agglomerative method, this means that a bottom-up approach 

is used in grouping protein trajectories together (Murtagh & Legendre, 2014). The 

algorithm functions by grouping together proteins that are similar to each other. The 

strength of this approach is that previous knowledge about the proteins does not bias the 
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formation of these clusters. Rather the protein-protein relationships are based in their 

lifespan expression. 

A separate metric called the Fréchet distance was used to measure the similarity 

of trajectories within and between clusters identified by the ward.D2 method. Fréchet 

distances are better suited to our data than a standard Pearson correlation, as the Fréchet 

similarity measure was designed for times series data. Specifically, in computing Fréchet 

distances the order of points, and their positions are taken into account (Eiter & Mannila, 

1994). Additionally, I used the “sum” algorithm for calculating the Fréchet distance in 

this study. This method has the added benefit of representing the degree of variation 

between curves at multiple points across the entire trajectory, as opposed to indicating 

only the largest distance between the curves (Genolini & Guichard, 2016). 

One limitation to consider is the small cluster sizes in this study. Clustering was 

completed on the neuroimmune data set, the plasticity marker data set and a combined 

data set. Dividing these collections of proteins into five or eight groups results in small 

clusters; some containing only three to six members. As a result, these smaller clusters 

are not suitable for significance testing when performing GO enrichment on a cluster-by-

cluster basis, nor are they well-suited for estimation statistics analyses on intracluster 

Fréchet distances. 

On the other hand, RSKC was used for clustering cases together as it is designed 

for situations in which the number of objects to be clustered is roughly equal to, or less 

than the dimensions used for clustering those objects. In this study, neuroimmune data 

resulted in more compact case clusters than plasticity markers, this may in part be due to 
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the smaller number of proteins in the classic neural protein data set. There are two 

advantages to using RSKC for the formation of case clusters. First, RSKC is good at 

dealing with outliers (Kondo et al., 2016). The algorithm will identify outliers while 

clustering and remove them from the process initially (Kondo et al., 2016). These outliers 

are incorporated at the end, when all other objects have been clustered, by determining 

which of the clusters the outliers most closely resemble (Kondo et al., 2016). Secondly, 

RSKC provides weights for the clustering dimensions. One of the challenges with 

clustering high-dimensional data is that dimensions are not equally important; some 

proteins may be noise variables. RSKC is capable of determining noise variables and will 

assign low weights to these variables (Kondo et al., 2016). In this study, RSKC 

weightings reveal which proteins facilitate the formation of clusters with progressing 

median age and it also identifies proteins that did not contribute to this process.  
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3.4 Future Directions 

The present study begins to unpack how neuroimmune proteins change across the 

lifespan and whether their expression patterns are comparable to classic neural proteins. 

The next step will be to explore whether a similar number of unique trajectories are 

detected in the human V1C on a larger number of proteins. Furthermore, as there is only 

a 40% correlation between protein and gene expression levels (Vogel & Marcotte, 2012), 

the question of how immune genes develop across the lifespan is of particular interest. In 

addition, future studies may address questions about whether neuroimmune proteins 

preferentially expressed in certain brain cell types are differentially expressed across the 

lifespan. Finally, regional comparisons can be carried out to determine whether visual 

association areas show the same or different protein trajectories. These will help further 

our understanding of the robustness of protein developmental trajectories and may 

uncover varying functions for these proteins in different regions of the brain.  
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