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Abstract
This thesis studies realized volatility (RV), implied volatility (IV) and their

applications in stochastic volatility models. The first essay uses both daytime

and overnight high-frequency price data for equity index futures to estimate the

RV of the S&P500 and NASDAQ 100 indexes. Empirical results reveal strong

inter-correlation between the regular-trading-time and after-hour RVs, as well as

a significant predictive power of overnight RV on daytime RV and vice versa. We

propose a new day-night realized stochastic volatility (DN-SV-RV) model, where

the daytime and overnight returns are jointly modeled with their RVs, and their

latent volatilities are correlated. The newly proposed DN-SV-RV model has the

best out-of-sample return distribution forecasts among the models considered. The

second essay extends the realized stochastic volatility model by jointly estimating

return, RV and IV. We examine how RV and IV enhance the estimation of the la-

tent volatility process for both the S&P500 index and individual stocks. The third

essay re-examines asymmetric stochastic volatility (ASV) models with different

return-volatility correlation structures given RV and IV. We show by simulation

that estimating the ASV models with return series alone may infer erroneous es-

timations of the correlation coefficients. The incorporation of volatility measures

helps identify the true return-volatility correlation within the ASV framework.

Empirical evidence on global equity market indices verifies that ASV models with

additional volatility measures not only obtain significantly different estimations

of the correlations compared to the benchmark ASV models, but also improve

out-of-sample return forecasts
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Introduction
The volatility of financial asset returns is a major topic in finance. As a measure

of risk, volatility plays a central role in portfolio management, risk hedging and

derivative pricing. Moreover, volatility itself is a tradable asset in modern financial

practice, especially during a financial crisis. Modeling and forecasting volatility is

of great importance for both researchers and practitioners.

Since the seminal paper by Engle (1982), numerous parametric volatility mod-

els have been proposed. The GARCH model (Generalized AutoRegressive Condi-

tional Heteroskedasticity) of Bollerslev (1986) and the SV (Stochastic Volatility)

model of Taylor (1986) are two popular and well-studied volatility models. On

the other hand, realized volatility measures (realized volatility and bi-power varia-

tion), based on high frequency data, provide consistent and model-free estimations

of the volatility (Andersen and Bollerslev 1998; Barndorff-Nielsen and Shephard

2001; Barndorff-Nielsen and Shephard 2004). Takahashi et al. (2009) combine the

SV model with realized volatility (SV-RV) to jointly model return and realized

volatility processes.

The first chapter of this thesis reveals the omitted overnight volatility by es-

timating the overnight realized volatility with the high frequency prices of index

futures, which are traded almost 24 hours. The overnight realized volatility signif-

icantly improve the forecasting of the following daytime realized volatility, which

is treated as the daily realized volatility by previous studies. This chapter further

jointly estimates the daytime and overnight returns, which are jointly modeled

xi



with their realized volatilities. Both in-sample and out-of-sample empirical re-

sults indicate a strong correlation between the daytime and overnight volatility in

the equity market. The volatility clustering is persistent during and after regular

trading hours.

Another well-documented volatility measure is the implied volatility estimated

from the option prices. As an ex-ante volatility measure, the predictive relation

between implied volatility and realized volatility has been well-studied (Busch et

al. 2011). The second chapter extends the stochastic volatility model with both

realized volatility(RV) and implied volatility(IV), and examines whether RV and

IV improve the stochastic volatility model in identifying the underlying volatility

process and the out-of-sample forecast. The empirical results suggest that implied

volatility, as an expectation of future volatility in the risk-neutral measure, is

biased, and it may be insufficient to jointly model implied volatility and return

with a single latent volatility factor.

The last chapter reexamines asymmetric stochastic volatility (ASV) models

(Harvey and Shephard 1996; Jacquier et al. 2004) given realized volatility and

implied volatility as volatility measures. We focus on the estimation of the return-

volatility correlation coefficients according to different asymmetric stochastic mod-

els’ specifications. Fitting the ASV models with return series alone could lead to

misidentification of the correlation coefficients. The inclusion of volatility mea-

sures leads to return-volatility correlations that differ from the traditional ASV

models and improves out-of-sample forecasting.

xii



The thesis makes significant contributions to the existing financial economet-

rics literature by estimating the overnight volatility, examining the role of implied

volatility, and clarifying the return-volatility correlation in the SV framework. The

documented improvement in volatility forecasting has numerous further applica-

tions in derivative pricing and portfolio management.
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Chapter 1

Is Overnight Volatility

Overlooked?

1.1 Introduction

The stock market is open during the day, typically from 9:30 a.m. to 4:00 p.m.

Eastern Standard Time. However, Cliff et al. (2008) report that the cumulative re-

turn from 1993 to 2006 by holding the SPY ETF is solely due to overnight returns.

Sommer (2018) further shows that all gains by holding the S&P500 index (proxied

by the SPY ETF) from 1993 to 2018 occur outside trading hours, and holding the

equity-only portfolio during trading hours is an unprofitable investment strategy.

Berkman et al. (2012) and Liu and Tse (2017) also examine this phenomenon for

individual stocks, index ETFs and futures.

Information shocks are prone to arrive during the night. DeHaan et al. (2015)

report that 21.5% of listed firms announced their earnings during trading hours in

2000, while only 2.2% firms did so in 2011. Important macroeconomic information

1
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announcements, like the release of the unemployment rate, are usually scheduled at

8:30 a.m. EST before the opening of major exchanges (e.g., NYSE). Besides, global

economic information, especially from Asia-Pacific and European countries, affects

the U.S. equity market during the night. Unfortunately, limited research, especially

the work related to financial time series modeling and forecasting, focuses on the

overnight return and volatility series.

There are two fundamental issues for modeling overnight returns, especially

for major U.S. equity indexes. First, although the overnight return can be clearly

defined as the price change during the non-trading hours, it would be misleading for

major equity indexes like the S&P500 and Dow Jones Industrial Average (DJIA),

since it depends how index provider sets the open price. The providers of the

S&P500 and DJIA indexes have tended to set the open price according to the last

close price for the last two decades. Ahoniemi and Lanne (2013) show that the

overnight returns of the S&P 500 index are basically zero, especially before 2006,

and they use the price of S&P 500 at 9:35 a.m. EST as the open price to calculate

the overnight returns of the S&P500 index. Moreover, global market indices are

also inconsistent in setting the open prices, as shown in Figure A1.1 in Appendix

Section A1. The inconsistency of the open price explains the evidence regarding

the role and mechanism of overnight returns. Previously work that documents the

importance of overnight returns, like Gallo (2001), Tsiakas (2008), Tseng et al.

(2012), Ahoniemi and Lanne (2013), and Dhaene and Wu (2020), focus mainly on

international equity indexes or individual stocks, which are free from the open price

issue. In this paper, we use the open and close prices of index exchange-traded

funds (ETFs) to evaluate the daytime and overnight returns. The price of ETFs

2
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can fluctuate during the pre-opening price discovery process, so that the overnight

information is naturally embodied in the open price. Moreover, the Redemption

Mechanism of the ETF excludes significant deviations of the ETF open price from

the underlying constituents’ open price.

Second, and more importantly, it is hard to measure the overnight volatility

under the current market microstructure. The realized volatility, estimated from

high-frequency daytime prices (Barndorff-Nielsen and Shephard 2002), is a well-

accepted consistent estimator of the volatility process. However, the absence of

high-frequency overnight prices prevents researchers from directly measuring and

studying the overnight volatility process. Many related papers use the squared

overnight return (Fleming et al. 2003; Hansen and Lunde 2005; Ahoniemi and

Lanne 2013; Todorova and Souček 2014; Fuertes et al. 2015; Maderitsch 2017)

as a rough approximation to the overnight volatility. We show that the squared

overnight returns are very noisy and hardly capture the overnight volatility. In this

paper, we select the high-frequency price of overnight equity index futures (e.g. E-

mini future contracts) to estimate the overnight realized volatility. Taylor (2007)

estimates the overnight volatility from S&P500 E-mini futures and provides its

risk management (value-at-risk) implications. The continuous trading time of the

futures market facilitates price discovery overnight. With the rapid development

of the futures market since the early 2000s, overnight futures trading became

increasingly important and contains more pertinent information. For example,

the average daily dollar volume of the S&P 500 E-mini futures is 192 billion, while

the average dollar volume for the corresponding ETF is only 19.6 billion1. The
1https://www.cmegroup.com/education/courses/futures-vs-etfs/why-trade-futures-instead-

of-etfs.html

3
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high trading volume ensures adequate liquidity in the futures market and enhances

price discovery for the underlying assets, which, in turn, improves the estimation

of realized volatility measurement using futures data.

Our paper makes the following contributions to the existing literature. First,

we use the future prices to directly establish the estimation of the overnight re-

alized volatility. Thus, our empirical estimation avoids the rough approximation

when estimating the overnight effect on daytime realized volatility. Modeling and

forecasting realized volatility is one of the major foci and challenges for finan-

cial econometricians (Andersen et al. 2003; Andersen et al. 2005; Gonçalves and

Meddahi 2009; Corsi 2009; Patton 2011). The realized volatility measure has sub-

stantial asset pricing implications for underlying stock returns (Bollerslev et al.

2009b; Barndorff-Nielsen et al. 2008) and estimating stochastic volatility models

(Deo et al. 2006; Takahashi et al. 2009). We follow the well-documented hetero-

geneous autoregression (HAR) process to re-examine the predictive capability of

overnight realized volatility on the following daytime open to close realized volatil-

ity, which is the well-studied daily realized volatility of previous studies. For the

S&P 500 (NASDAQ 100) index, including the overnight realized volatility will re-

duce the out-of-sample forecasting mean squared error of the following daytime

logarithmic realized volatility by 16.11% (13.88%) compared to the benchmark

HAR-RV model. Along with overnight return and implied volatility, our best

model has a 26.72% (23.17%) lower out-of-sample forecasting mean squared error

compared to the benchmark HAR-RV model for the S&P 500 (NASDA-100) index.

The improvement is substantial, which is a significant contribution to the existing

literature on realized volatility forecasting.

4
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Moreover, we also model the overnight realized volatility with the HAR model

and examine the predictive capability of daytime realized volatility for the follow-

ing overnight close to open realized volatility. Similarly, we find significant im-

provement by incorporating daytime realized volatility. The estimation outcomes

from the HAR models suggest strong correlation between daytime and overnight

volatility.

Second, we propose a day-night realized stochastic volatility (DN-SV-RV) model

to model jointly the daytime and overnight return and realized volatility. This

innovative framework extends the SV model with realized volatility model (Taka-

hashi et al. 2009). The model setup allows the inter-correlation between the day-

time and overnight latent volatilities. Both the in-sample estimation and out-of-

sample return distribution forecasts support a finding that the auto-correlation

coefficient of the daytime (overnight) latent volatility will greatly decrease, which

should be around 0.9 if modeled independently. We find that the daytime and

overnight volatility processes are highly correlated. The results suggest that the

volatility clustering effect is persistent throughout the day and night. When pre-

dicting the daytime (overnight) volatility at market open (close), the most recent

information is the immediately preceding overnight (daytime) volatility. More-

over, the mean of overnight returns, after controlling the stochastic volatility, is

not necessarily higher than that of the daytime returns. The stochastic volatility

sheds light on explaining the observed high overnight returns (Berkman et al. 2012;

Branch and Ma 2012; Liu and Tse 2017).

5
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The rest of the paper is organized as follows. Section 1.2 motivates the impor-

tance of incorporating overnight information by comparing the statistics of day-

time and overnight returns and by estimating the daytime and overnight volatility

process with the SV model. Section 1.2.4 explains the approach that we used

to estimated the overnight realized volatility from high-frequency data from the

futures market. We model and forecast daytime and overnight realized volatility,

and confirm their strong correlation in Section 1.3. Section 1.4 proposes the DN-

SV-RV model and compares the model with benchmark SV and SV-RV models.

Section 1.5 concludes the paper.

1.2 Motivations

1.2.1 Daily, Daytime and Overnight Returns

For the following, we use Eastern Standard Time and follow the trading calendar

of the New York Stock Exchange (NYSE). Given daily close price SCt , t = 1, 2, ...T ,

the daily close to close return is defined as:

rt ≡ logSCt − logSCt−1. (1.1)

This is the return used by researchers and participants as the daily return. The

daily return can be decomposed into two parts, the overnight close to open and

the daytime open to close returns. Let SOt , t = 1, 2, ...T denote the daily open

price. Then the overnight return is defined as:

rN,t ≡ logSOt − logSCt−1, (1.2)
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and the daytime return is defined as:

rD,t ≡ logSCt − logSOt . (1.3)

The daily return is the summation of the overnight return and daytime return

(rt = rN,t + rD,t). Now we will demonstrate the daily and overnight returns of

major equity indices, index ETFs and individual stocks and discuss the issue of

erroneous open prices of certain equity indices. For the rest of this paper, all

returns will be scaled by 100 to represent percent returns.

1.2.2 Overnight Returns, Significant or Negligible?

The following Figure 1.1 shows the daily returns and the overnight returns of three

major equity indices: the S&P 500, the NASDAQ 100 and the Dow Jones Industrial

Average. For comparison, we also include the corresponding ETFs (SPY, QQQ

and DIA respectively).

The left column of Figure 1.1 shows the daily returns and overnight returns

of the indices from January 1st, 2001 to January 1st, 2020. The S&P 500 and

DJIA overnight returns seem to be negligible, especially before 2016, while, the

NASDAQ 100 overnight returns are significant. Considering the fact that these

indices share many common stocks, the obvious difference in overnight returns is

puzzling. On the other hand, overnight returns are significant for all three ETFs.

SPY and DIA overnight returns differ significantly from those of the S&P 500 and

DJIA indexes. In Appendix Section A1, Figure A1.2 further demonstrates the
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Figure 1.1: The daily and overnight returns of major indices
and corresponding ETFs.

daily and overnight returns of sixteen representative companies included in the

DJIA index. All component companies have significant overnight returns.

The pre-opening mechanism used by the stock exchanges only applies to trad-

able assets like individual stocks and ETFs (Cao et al. 2000; Madhavan and Pan-

chapagesan 2000; Madhavan and Panchapagesan 2002; Angel and Wu 2001). The

pre-open price discovery will reflect overnight information in the open price for

individual stocks and ETFs. However, the index open prices is not determined

through this pre-opening price discovery process. As a result, the open prices

of equity indices do not necessarily represent the average opening prices of their

component stocks.

For the rest of this paper, we use the 5-minute prices of the SPY and QQQ

ETF, which are retrieved from the TAQ database, to set the open and close prices
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according to the NYSE calendar, and calculate the daytime, overnight and daily re-

turns accordingly. Table 1.1 presents the summary statistics of daytime, overnight

and daily returns.

SPY QQQ
rt rN,t rD,t rt rN,t rD,t

Mean 0.0521 0.0317 0.0203 0.0681 0.0489 0.0192
Variance 0.8296 0.3268 0.4898 1.1639 0.4267 0.7223
Skewness -0.4286 -0.9602 -0.5670 -0.3659 -1.5144 -0.4337
Kurtosis 4.1986 13.4697 5.0766 3.5565 23.9689 3.5079

Correlation Coefficients
rt 1.0000 - - 1.0000 - -
rN,t 0.6402 1.0000 - 0.6161 1.0000 -
rD,t 0.7786 0.0164 1.0000 0.7959 0.0134 1.0000
rt−1 -0.0184 -0.0395 0.0084 -0.0109 -0.0349 0.0131
rN,t−1 0.0146 -0.0434 0.0545 0.0369 -0.0477 0.0834
rD,t−1 -0.0359 -0.0160 -0.0336 -0.0421 -0.0076 -0.0476
Sample period: 2009-10-29 to 2019-12-31.
Number of observations: 2560.

Table 1.1: Summary statistics and correlation of daily, daytime
and overnight returns.

1.2.3 Overnight Return and Volatility

From Table 1.1, overnight returns have a higher mean and lower volatility, or

higher Sharpe ratio, for the past ten years. The ratio of overnight volatility to

daily volatility (V ar(rN,t)/V ar(rt)) is 39% (0.37%) for the SPY (QQQ). Roughly

speaking, nearly 40% of daily volatility is overnight volatility. This challenges

previous work which focuses on modeling daytime volatility alone as it suggests

that 40% of the infomation in the volatilty process is omitted.

Heteroscedasticity and volatility clustering are well-documented properties of

financial return series. To examine the overnight volatility process, we fit the
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well-known stochastic volatility (SV) model, given by Eq. (1.4) and (1.5), with

daytime, overnight and daily returns respectively. We use Bayesian MCMC to

estimate the SV model and we report parameter estimation results in Table 1.2.

The Bayesian method allows us to estimate the smoothed latent volatility process

ht ≈
∑M
i=1 h

(i)
t , where h(i)

t is the MCMC draw of the latent volatility. Figure 1.2

demonstrates the smoothed estimated latent volatility process of SPY.

yt = µ+ exp(ht/2)ut, ut ∼ N(0, 1), (1.4)

ht = α + δht−1 + σhvt, vt ∼ N(0, 1). (1.5)

SPY QQQ
rD,t rN,t rt rD,t rN,t rt

µ 0.0604 0.0443 0.0982 0.0781 0.0657 0.1376
[0.009] [0.007] [0.012] [0.012] [0.009] [0.015]

(0.043, 0.078) (0.030, 0.059) (0.075, 0.121) (0.054, 0.101) (0.048, 0.083) (0.108, 0.167)

α -0.0795 -0.0822 -0.0446 -0.0565 -0.1039 -0.0225
[0.017] [0.019] [0.011] [0.013] [0.024] [0.009]

(-0.115, -0.049) (-0.122, -0.049) (-0.068, -0.025) (-0.084, -0.034) (-0.154, -0.063) (-0.041, -0.007)

δ 0.9386 0.9515 0.9419 0.9294 0.9252 0.9312
[0.011] [0.010] [0.010] [0.013] [0.016] [0.013]

(0.914, 0.959) (0.930, 0.970) (0.920, 0.961) (0.903, 0.952) (0.892, 0.953) (0.904, 0.954)

σh 0.3586 0.3042 0.3535 0.3560 0.3519 0.3519
[0.031] [0.030] [0.030] [0.032] [0.038] [0.032]

(0.305, 0.423) (0.248, 0.366) (0.299, 0.416) (0.297, 0.420) (0.283, 0.430) (0.292, 0.419)

The table reports the posterior mean, standard deviation in [] and 0.95 density interval in ().

Table 1.2: The SV model estimation results.
The prior distributions are: p(µ) ∼ N(0, 5), p(α) ∼ N(0, 5) and p(σ2

h) ∼
IG(3/2, 0.5/2). p(δ) ∼ N(0.9, 5)I|δ|<1, a normal distribution truncated to the
stationary region (-1,1).

The SV model results confirm that the heteroscedasticity of the overnight re-

turn series and the overnight volatility process is highly correlated with the daytime

volatility process. The estimated auto-correlation coefficient, δ, which is 0.9515 for
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SPY (0.9252 for QQQ), supports the volatility clustering of the overnight return

series. Figure (1.5) further demonstrates that the overnight return series shares a

similar stochastic volatility pattern with the daytime and daily returns.

Figure 1.2: Estimated latent volatility process of the SV model.

Fitting the SV model with rD,t, rN,t and rt yields estimated smoothed latent

volatility processes hD,t, hN,t and ht respectively.

1.2.4 Realized Volatility Measures and Jumps

1.2.5 Data

We collect 5-minute high-frequency S&P 500 E-mini and NASDAQ 100 E-mini

future prices from Kibot. According to the CME Group, the trading hours of

the E-mini contracts are Sunday 6:00 p.m. EST, to Friday 6:00 p.m. EST. After

the close of trading on the NYSE, which is typically 4:00 p.m EST, there is a

daily trading halt from 4:15 p.m. to 4:30 p.m. EST, Monday to Friday, and daily

maintenance from 5:00 p.m. to 6:00 p.m. EST, Monday to Thursday. For every

trading day, we can match a continuous overnight trading interval starting at 6:00

p.m. EST on the previous calendar day to the following market open.

11

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Doctor of Philosophy– Zehua Zhang; McMaster University– School of Business

Given the log asset price log(St) by continuous jump-diffusion process:

d log(St) = µtdt+ σtdWt + Jtdqt, (1.6)

where Wt is the standard Brownian motion and dqt is the Poisson process with

jump intensity λt. Jt follows a normal distribution with mean µJ and variance

σJ , measuring the jump size of the underlying process. Define the intraday return

over time interval ∆ as:

rt,j = log(St,j·∆)− log(St,(j−1)·∆), (1.7)

where log(St,j·∆) is the log asset price at day t and time j · ∆. As shown in

Barndorff-Nielsen and Shephard (2004), the realized variance and bipower varia-

tion of asset returns are

RVt =
m∑
j=1

r2
t,j

∆↓0−−→
∫ t

t−1
σ2
sds+

∫ t

t−1
J2
s dqs, (1.8)

BVt = π

2
m

m− 1

m∑
j=1
|rt,j||rt,j−1|

∆↓0−−→
∫ t

t−1
σ2
sds. (1.9)

We also filter the cumulative squared jumps (Barndorff-Nielsen and Shephard

2004; Huang and Tauchen 2005; Andersen et al. 2007; Tauchen and Zhou 2011)

as:

J2
t = (RVt −BVt)× I(ZJt≥Φ−1

α ), (1.10)

where

ZJt = RVt −BVt

RVt

√[(
π
2

)2
+ − 5

]
1
m

max
(
1, TPt

BV 2
t

) d−→ N(0, 1), (1.11)
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which converges to a standard normal distribution and

TPt = mµ−3
4/3

m

m− 2

m∑
j=3
|rt,j−2|4/3|rt,j−1|4/3|rt,j|4/3 →

∫ t

t−1
σ4
sds, (1.12)

where µk = 2k/2Γ((k + 1)/2)/Γ(1/2) for k > 0. The squared cumulative jump

is then filtered at significance level α of the z-test. For this paper, we choose

α = 0.99.

Figure 1.3: The time label of the daily, daytime and overnight
RV and returns.

Figure 1.3 illustrates how we estimate the daytime, overnight and daily realized

volatility and set the time label. We use the 5-minute prices to calculate the

intraday returns. Using returns within the overnight time interval (from 6:00 p.m.

of the previous calendar day to 9:30 a.m. of day t), we estimate the overnight

realized volatility, denoted as RVN,t. Similarly, daytime realized volatility RVD,t

is estimated with intraday returns within trading hours. In addition, we can also

estimate the daily realized volatility RVt with intraday returns from 6:00 p.m. of

the previous calendar day t− 1 to 4:00 p.m. (1:00 p.m. if early closure) of day t.
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Given our notation, RVN,t, although labeled with day t, is observed before RVD,t

and RVt=RVN,t +RVD,t.

Notice that during the trading hours, both the ETF and E-Mini futures are

traded. The daytime realized volatility measures calculated from the ETF and

futures are almost identical. Considering the higher trading volume of the futures

market and the consistency with the overnight realized volatility, we will use the

daytime realized volatility calculated from futures prices in the following. In total,

we collect 2,560 daily observations from 2009-08-29 to 2019-12-31.

Similarly, we can also estimate the overnight, daytime and daily bi-power vari-

ation (BVN,t, BVD,t and BVt) and squared overnight jumps (J2
N,t, J2

D,t and J2
t ).

1.2.6 Overnight Realized Volatility and Jumps

We report the summary statistics of the realized volatility measures of the S&P

500 in Table 1.3. The summary statistics table for the NASDAQ 100 can be found

in the Appendix, Table A1.1.

RVt RVN,t RVD,t BVt BVN,t BVD,t
Mean 0.8715 0.3611 0.5103 0.8132 0.3157 0.4875
Var 2.2285 0.4968 0.8454 2.1981 0.4059 0.8758
RVt 1.0000
RVN,t 0.8933 1.0000
RVD,t 0.9388 0.6839 1.0000
BVt 0.9941 0.8891 0.9324 1.0000
BVN,t 0.8661 0.9825 0.6530 0.8713 1.0000
BVD,t 0.9441 0.7053 0.9922 0.9479 0.6733 1.0000

Table 1.3: Summary statistics and correlations of the S&P500
realized volatility measures.
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The means of realized volatility and bi-power variation (daily, daytime and

overnight respectively) match the variances of the corresponding returns in Table

1.1, which supports the accuracy of our realized volatility measures. The correla-

tion coefficient between the overnight and daytime realized volatility, which is a

lead-lag correlation since RVN,t is observed before RVD,t, is 0.6839. This confirms

the correlation between overnight and daytime volatility, but also challenges the

method of estimating the whole day realized volatility by scaling the daytime re-

alized volatility upward to match the daily close to close return volatility. Scaling

actually assumes that the daytime and overnight realized volatility are perfectly

correlated, which is not true given our results. The overnight volatility contains

information that is independent of the daytime volatility and should not be omit-

ted.

The left column of Figure 1.4, from top to bottom, demonstrates the day-

time, overnight and daily realized volatility. The fourth row shows the squared

overnight returns. The right column shows the logarithmic RVs. We also include

the estimated latent volatility process from the SV model (as in Figure 1.2) for

comparison purposes. The logarithmic realized volatility matches the estimated

latent volatility process. However, the squared overnight returns process is too

noisy to use as an overnight volatility measure.

The last row of Figure 1.4 shows the filtered daytime (left) and overnight (right)

squared jumps. They share the same vertical axis for comparison purposes. It is

obvious that jumps are prone to occur outside the main trading hours. This is

consistent with the observation in Table 1.1 that the kurtosis of SPY (QQQ)

overnight returns is 13.45 (23.87), which is significantly higher than that of the

15

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Doctor of Philosophy– Zehua Zhang; McMaster University– School of Business

daytime returns. Releasing important information outside the main trading hours,

instead of avoiding shocks in the equity market, merely postpones the shocks. The

estimated overnight squared jumps reflect the shocks from the overnight-traded

futures market.

Figure 1.4: SPY realized volatility measures and squared
jumps.

Given the high-frequency futures prices, we reveal the overnight volatility and

jumps by estimating the realized volatility measures and squared jumps. The
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economic implications are numerous and not limited to this paper. We focus on

the daytime and overnight volatility here. The next section models the daytime

and overnight realized volatility process and investigates the correlation between

daytime and overnight volatility.

1.3 Forecasting Daytime and Overnight RV

1.3.1 HAR-RV modeling of Realized Volatility

Predicting the future realized volatility, especially after assuming a constant return

mean, is the key component in return distribution prediction (Bollerslev et al.

2009a; Maheu and McCurdy 2011). The heterogeneous autoregressive model for

realized volatility (HAR-RV), developed by Corsi (2009), is popular for modeling

the realized volatility process since it captures the long memory of the volatility

process. Inasmuch as Andersen et al. (2003) have shown that the distribution

of logarithmic realized volatility is close to normal, we will model the logarithmic

realized volatility like Andersen et al. (2007) and Liu and Maheu (2009) and follow

a parameterization similar to Patton and Sheppard (2015) for clear parameter

interpretation.

First, we model the daytime realized volatility and focus on forecasting the fol-

lowing daytime realized volatility given all the information available at the market

open. Following previous literature, all HAR-RV models in this section assume

normal noises with zero mean and constant variance (et ∼ N(0, σ2)). The basic

HAR-RV model is specified as follows:
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logRVD,t = µ+ ρ1 logRVD,t−1 + ρ5

(
1
4

5∑
i=2

logRVD,t−i

)
+ ρ22

(
1
17

22∑
i=6

logRVD,t−i

)
+ et.

(1.13)

Recent work (Corsi and Renò 2012; Wang et al. 2015) extend the HAR-RV by

including the implied volatility, leverage effect, etc. Before adding more explana-

tory variables to capture more volatility-related effects or modifying the HAR-RV

model with non-linear, non-Gaussian properties like Corsi et al. (2008), we need to

ensure that the right hand side includes all the available information of the volatil-

ity process itself at the market open. Including the overnight realized volatility

leads to Eq. (1.14):

logRVD,t =µ+ ρ1 logRVD,t−1 + ρ5

(
1
4

5∑
i=2

logRVD,t−i

)
+ ρ22

(
1
17

22∑
i=6

logRVD,t−i

)

+ θ1 logRVN,t + θ5

(
1
4

4∑
i=1

logRVN,t−i

)
+ θ22

(
1
17

21∑
i=5

logRVN,t−i

)
+ et.

(1.14)

We include overnight return rN,t, and lagged daytime return rD,t−1 to control

the asymmetry between return and volatility. We also include the lagged logarith-

mic implied volatility (log IVt−1, 1
4
∑5
i=2 log IVt−i and 1

17
∑22
i=6 log IVt−i ). For SPY

(QQQ), the logarithmic implied volatility is calculatd from the VIX (VXN) index

(log IVt = 2(log V IXt − log 21) ). Notice IVt−1 denotes the closing price of the

volatility index so that log IVt−1 does not contain overnight information. We can
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classify all the right hand side variables into two sets: variables with and with-

out overnight information. We expect that variables with overnight information

(overnight realized volatility and overnight returns) should have strong predictive

power.

To predict the overnight realized volatility at the market close, the benchmark

HAR model is given by Eq. (1.15):

logRVN,t = µ+ ρ1 logRVN,t−1 + ρ5

(
1
4

5∑
i=2

logRVN,t−i

)
+ ρ22

(
1
17

22∑
i=6

logRVN,t−i

)
+ et.

(1.15)

And we extend Eq. (1.15) with lagged daytime realized volatility as follows:

logRVN,t =µ+ ρ1 logRVN,t−1 + ρ5

(
1
4

5∑
i=2

logRVN,t−i

)
+ ρ22

(
1
17

22∑
i=6

logRVN,t−i

)

θ1 logRVD,t−1 + θ5

(
1
4

5∑
i=2

logRVD,t−i

)
+ θ22

(
1
17

22∑
i=6

logRVD,t−i

)
+ et.

(1.16)

Similarly, we also include lagged daytime return (rD,t−1), lagged overnight re-

turn (rN,t−1) and implied volatility (log IV O
t−1, 1

4
∑5
i=2 log IV O

t−i and 1
17
∑22
i=6 log IV O

t−i).

We choose the opening price of the volatility index so that log IV O
t−1 does not

contain the lagged daytime information when predicting the overnight realized

volatility at the market close. We can also classify the right hand variables for

overnight realized volatility forecasting into two sets: variables with and without

lagged daytime information.

We estimated the HAR-RV model using the Bayesian MCMC method. For
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model comparison, we calculate the forecasting mean squared error (FMSE) to

measure the accuracy of mean forecasting and the logarithmic predictive likelihood

(LPL) to measure the accuracy of distributional forecasting (Geweke and Amisano

2010; Gelman et al. 2014). FMSE and LPL are defined as follows:

FMSEM = 1
T − s

T−1∑
t=s

(
(yt+1 − ŷM,t+1)2 |Ft

)
, (1.17)

LPLM =
T−1∑
t=s

log pM(yt+1|Ft). (1.18)

Here yt+1 is the observation to predict and ŷM,t+1 is the prediction of yt+1 with

available information at time t (Ft denotes the available information set) according

to model M . Since the HAR model is essentially a linear model with normally

distributed noise, pM(yt+1|Ft) is a normal likelihood. Let x1:t denote the set of

explanatory variable vectors x1, x2, ...xt and y1:t denote the dependent variable

vector y1, y2, ...yt. By fitting the HAR model M with y1:t and x1:t, we have the

MCMC draws of correlation coefficients β(i)
M,t and variance σ(i)

M,t (i = 1, 2...N , N

denotes the number of MCMC iterations). Then ŷM,t+1 and pM(yt+1|Ft) of model

M can be estimated as:

ŷM,t+1 ≈
1
N

N∑
i=1

xt+1
′β

(i)
M,t, (1.19)

pM(yt+1|Ft) ≈
1
N

N∑
i=1

fN(yt+1|xt+1
′β

(i)
M,t, σ

(i)
M,t). (1.20)

fN(x|µ, σ2) denotes the likelihood function of a normal distribution with mean µ

and variance σ2. The total sample size is 2560 (T = 2560). We set the initial

sample size to be 60 (s=60) and the number of MCMC iteration to be 10,000

(N = 10, 000). We also set 1,000 burn-in iterations for parameter convergence.
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Clearly, a lower FMSEM and a higher LPLM indicate better predictive perfor-

mance of model M . To compare two models M1 and M2, we focus on the loga-

rithmic predictive Bayes factor (LBF), which is defined as: LPLM1 − LPLM2 . A

logarithmic predictive Bayes factor greater than 5 lends strong support for model

M1 over model M2. In addition, we also compare two models by the percentage

change of FMSE ( FMSE P.C. = (FMSEM1 − FMSEM2)/FMSEM2).

Tables 1.4 and 1.5 summarize the results of forecasting SPY daytime real-

ized volatility without and with overnight information. The benchmark model

is column 1 in Table 1.4. The last two rows of Tables 1.4 and 1.5 report the

FMSE percentage change (FMSE P.C.) and logarithmic Bayes factor (LBF) of

each model compared to the benchmark HAR-RV model. From Table 1.4, in-

cluding the implied volatility (column 3 in Table 1.4) significantly improves the

daytime realized volatility forecasting with a logarithmic Bayes factor of 152.07,

which is strong evidence of forecasting improvement. Moreover, further including

the lagged daytime return rD,t−1 in addition to the implied volatility yields lit-

tle improvement as column 4 of Table 1.4. Implied volatility, as a forward looking

volatility measure, has already incorporated the leverage effect, so we observe little

marginal improvement of rD,t−1. Without overnight information, we have about

11% lower FMSE compared to the benchmark model.

However, including the overnight realized volatility (overnight return) leads

to a logarithmic Bayes factor of 221.08 (135.28), which is strongly significant.

Including both overnight realized volatility and returns produces a logarithmic

Bayes factor as high as 296.59. According to the FMSE, incorporating overnight

realized volatility will decrease the FMSE by 16%, which is greater than the best
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model without overnight information. Including both overnight realized volatility

and return will will decrease the FMSE by 21%. The results strongly support

the value of overnight information in forecasting the daytime realized volatility.

Conditional on the overnight realized volatility and return, implied volatility still

has incremental information and our best model decreases the FMSE by 26%

compared to the benchmark HAR-RV model.

Similarly, Tables 1.6 and 1.7 summarize the results of forecasting SPY overnight

realized volatility without and with daytime information. The benchmark model is

column 1 in Table 1.6. As expected, the lagged daytime realized volatility yields the

greatest marginal improvement (column 2 in Table 1.7 with a logarithmic Bayes

factor of 310.56 and 22% decrease in FMSE), followed by the lagged daytime

return (column 1 in Table 1.7 with a logarithmic Bayes factor of 155.89 and 12%

percent decrease in FMSE). Again, we observe significant predictive power of

implied volatility (open price of the implied volatility) on the overnight realized

volatility, which also support the informativeness of implied volatility.

Regarding the parameters, overnight realized volatility logRVN,t has a positive

effect on the following daytime realized volatility logRVD,t (coefficient is 0.4851),

and lagged daytime realized volatility logRVD,t−1 has a positive effect on the follow-

ing overnight realized volatility logRVN,t (coefficient is 0.4660). The correlations

indicate that the volatility process is continuous and higher overnight volatility is

likely to be followed by higher daytime volatility and vice versa. Consistent with

the well-documented leverage effect, overnight return (lagged daytime return) is

negatively correlated with the following daytime (overnight) realized volatility.
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All findings for the realized volatility of the S&P500 index in this section are

consistent with those for the NASDAQ 100 index. Tables A1.2, A1.3, A1.4 and

A1.5 in the Appendix Section A2 summarize the results of the HAR-RV models for

the NASDAQ 100 index. Consistent results support the robustness of our conclu-

sion. The strong correlation between the daytime and overnight realized volatility

calls for jointly modeling the daytime and overnight return and realized volatil-

ity, which captures the correlation between the daytime and overnight volatility

processes. We will propose a day-night stochastic volatility model with realized

volatility in the next section.
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(1) (2) (3) (4)

µ -0.1014 -0.1010 -0.1780 -0.1799
[0.022] [0.021] [0.026] [0.027]

(-0.144, -0.059) (-0.143, -0.059) (-0.230, -0.126) (-0.231, -0.128)

logRVD,t−1 0.5694 0.5184 0.3073 0.3078
[0.018] [0.019] [0.022] [0.022]

(0.533, 0.605) (0.481, 0.556) (0.264, 0.350) (0.264, 0.351)

1
4
∑5
i=2 logRVD,t−i 0.2513 0.2917 0.2669 0.2670

[0.024] [0.024] [0.034] [0.034]
(0.204, 0.297) (0.245, 0.339) (0.201, 0.332) (0.200, 0.334)

1
17
∑22
i=6 logRVD,t−i 0.0984 0.1073 0.1641 0.1604

[0.021] [0.021] [0.041] [0.041]
(0.057, 0.139) (0.067, 0.148) (0.084, 0.243) (0.080, 0.240)

rD,t−1 - -0.1468 - -0.0361
[0.017] [0.017]

(-0.179, -0.114) (-0.070, -0.003)

log IVt−1 - - 1.2322 1.1648
[0.068] [0.077]

(1.098, 1.364) (1.012, 1.313)

1
4
∑5
i=2 log IVt−i - - -0.7356 -0.6697

[0.088] [0.095]
(-0.906, -0.565) (-0.855, -0.481)

1
17
∑22
i=6 log IVt−i - - -0.2225 -0.2182

[0.071] [0.071]
(-0.363, -0.079) (-0.357, -0.079)

FMSE 0.3278 0.3185 0.2908 0.2910
LPL -2157.47 -2120.76 -2005.40 -2005.30
FMSE P.C. - -2.84% -11.29% -11.23%
LBF - 36.71 152.07 152.17

The table reports the posterior mean, standard deviation in [] and 0.95 density interval in ().

Table 1.4: Forecasting S&P500 daytime realized volatility with-
out overnight information.
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(1) (2) (3) (4) (5)

µ -0.0846 -0.0304 -0.0249 -0.1467 -0.1473
[0.020] [0.026] [0.025] [0.040] [0.040]

(-0.125, -0.044) (-0.081, 0.021) (-0.074, 0.025) (-0.225, -0.069) (-0.226, -0.069)

logRVD,t−1 0.5791 0.3234 0.3644 0.2274 0.2285
[0.018] [0.020] [0.020] [0.022] [0.021]

(0.545, 0.613) (0.285, 0.363) (0.325, 0.403) (0.185, 0.270) (0.186, 0.271)
1
4
∑5
i=2 logRVD,t−i 0.2565 0.2179 0.2023 0.2474 0.2449

[0.023] [0.035] [0.033] [0.035] [0.035]
(0.212, 0.301) (0.150, 0.285) (0.137, 0.268) (0.178, 0.317) (0.178, 0.315)

1
17
∑22
i=6 logRVD,t−i 0.0890 0.2147 0.2026 0.2637 0.2638

[0.020] [0.050] [0.048] [0.046] [0.047]
(0.050, 0.129) (0.115, 0.312) (0.108, 0.297) (0.173, 0.356) (0.172, 0.357)

logRVN,t - 0.4851 0.4109 0.2840 0.2821
[0.022] [0.022] [0.023] [0.023]

(0.443, 0.527) (0.369, 0.453) (0.239, 0.328) (0.236, 0.327)
1
4
∑4
i=1 logRVN,t−i - -0.1361 -0.0809 -0.0862 -0.0812

[0.039] [0.038] [0.039] [0.039]
(-0.214, -0.059) (-0.154, -0.007) (-0.162, -0.012) (-0.158, -0.003)

1
17
∑21
i=5 logRVN,t−i - -0.1786 -0.1710 -0.1764 -0.1797

[0.050] [0.048] [0.055] [0.055]
(-0.275, -0.079) (-0.265, -0.077) (-0.285, -0.070) (-0.288, -0.072)

rN,t -0.3195 - -0.2300 -0.2675 -0.2678
[0.019] [0.018] [0.018] [0.018]

(-0.356, -0.283) (-0.266, -0.194) (-0.302, -0.234) (-0.302, -0.233)

rD,t−1 - - - - -0.0229
[0.016]

(-0.054, 0.008)

log IVt−1 - - - 0.9672 0.9249
[0.068] [0.073]

(0.833, 1.103) (0.780, 1.069)
1
4
∑5
i=2 log IVt−i - - - -0.5603 -0.5218

[0.084] [0.088]
(-0.726, -0.396) (-0.693, -0.347)

1
17
∑22
i=6 log IVt−i - - - -0.1546 -0.1496

[0.073] [0.073]
(-0.296, -0.012) (-0.292, -0.006)

FMSE 0.2943 0.2750 0.2589 0.2402 0.2405
LPL -2022.19 -1936.39 -1860.88 -1766.49 -1767.42
FMSE P.C. -10.22% -16.11% -21.02% -26.72% -26.63%
LBF 135.28 221.08 296.59 390.98 390.05

The table reports the posterior mean, standard deviation in [] and 0.95 density interval in ().

Table 1.5: Forecasting S&P500 daytime realized volatility with
overnight information.
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(1) (2) (3) (4)

µ -0.1101 -0.1056 -0.3213 -0.3193
[0.024] [0.024] [0.042] [0.043]

(-0.157, -0.062) (-0.152, -0.059) (-0.404, -0.238) (-0.402, -0.235)

logRVN,t−1 0.5063 0.4698 0.2688 0.2617
[0.019] [0.019] [0.022] [0.022]

(0.469, 0.544) (0.432, 0.508) (0.226, 0.312) (0.218, 0.305)

1
4
∑5
i=2 logRVN,t−i 0.3411 0.3824 0.2952 0.3040

[0.025] [0.025] [0.035] [0.035]
(0.292, 0.389) (0.333, 0.431) (0.226, 0.363) (0.235, 0.373)

1
17
∑22
i=6 logRVN,t−i 0.0843 0.0792 0.1001 0.0981

[0.021] [0.021] [0.046] [0.045]
(0.043, 0.125) (0.039, 0.120) (0.011, 0.187) (0.009, 0.186)

rN,t−1 - -0.1620 - -0.1061
[0.019] [0.018]

(-0.198, -0.125) (-0.142, -0.071)

log IV O
t−1 - - 1.0504 0.9611

[0.064] [0.066]
(0.924, 1.175) (0.830, 1.091)

1
4
∑5
i=2 log IV O

t−i - - -0.4829 -0.3838
[0.085] [0.088]

(-0.648, -0.318) (-0.553, -0.209)

1
17
∑22
i=6 log IV O

t−i - - -0.1545 -0.1665
[0.075] [0.075]

(-0.302, -0.004) (-0.312, -0.020)

FMSE 0.2895 0.2814 0.2602 0.2571
LPL -2000.41 -1965.42 -1866.76 -1852.06
FMSE P.C. - -2.80% -10.12% -11.19%
LBF - 34.99 133.65 148.35

The table reports the posterior mean, standard deviation in [] and 0.95 density interval in ().

Table 1.6: Forecasting S&P500 overnight realized volatility
without daytime information.
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(1) (2) (3) (4) (5)

µ -0.0951 -0.1140 -0.1075 -0.2613 -0.2597
[0.023] [0.024] [0.023] [0.038] [0.038]

(-0.139, -0.051) (-0.160, -0.068) (-0.153, -0.062) (-0.336, -0.187) (-0.334, -0.186)

logRVN,t−1 0.5064 0.1973 0.2401 0.1543 0.1529
[0.018] [0.020] [0.020] [0.022] [0.022]

(0.471, 0.541) (0.158, 0.237) (0.200, 0.280) (0.111, 0.198) (0.110, 0.195)
1
4
∑5
i=2 logRVN,t−i 0.3426 0.2778 0.2661 0.2785 0.2753

[0.023] [0.033] [0.032] [0.035] [0.035]
(0.297, 0.389) (0.214, 0.341) (0.204, 0.328) (0.209, 0.349) (0.208, 0.345)

1
17
∑22
i=6 logRVN,t−i 0.0893 0.2658 0.2534 0.1753 0.1814

[0.020] [0.042] [0.041] [0.051] [0.051]
(0.050, 0.128) (0.183, 0.348) (0.174, 0.333) (0.075, 0.275) (0.080, 0.281)

logRVD,t−1 - 0.4569 0.3847 0.3142 0.3023
[0.017] [0.018] [0.019] [0.019]

(0.422, 0.491) (0.349, 0.420) (0.277, 0.351) (0.264, 0.340)
1
4
∑5
i=2 logRVD,t−i - -0.0167 0.0147 -0.0309 -0.0128

[0.032] [0.031] [0.032] [0.032]
(-0.081, 0.045) (-0.045, 0.075) (-0.094, 0.029) (-0.076, 0.051)

1
17
∑22
i=6 logRVD,t−i - -0.1971 -0.1775 -0.1198 -0.1280

[0.043] [0.042] [0.042] [0.042]
(-0.281, -0.112) (-0.258, -0.095) (-0.202, -0.040) (-0.208, -0.045)

rD,t−1 -0.2606 - -0.1572 -0.1707 -0.1733
[0.014] [0.014] [0.014] [0.014]

(-0.288, -0.233) (-0.185, -0.130) (-0.197, -0.145) (-0.200, -0.146)

rN,t−1 - - - - -0.0717
[0.017]

(-0.105, -0.039)

log IV O
t−1 - - - 0.6273 0.5746

[0.063] [0.063]
(0.503, 0.754) (0.452, 0.701)

1
4
∑5
i=2 log IV O

t−i - - - -0.2729 -0.2176
[0.077] [0.079]

(-0.426, -0.122) (-0.371, -0.060)
1
17
∑22
i=6 log IV O

t−i - - - -0.0490 -0.0525
[0.068] [0.068]

(-0.182, 0.084) (-0.184, 0.082)

FMSE 0.2556 0.2257 0.2150 0.2066 0.2053
LPL -1844.52 -1689.85 -1629.67 -1580.43 -1573.28
FMSE P.C. -11.71% -22.04% -25.73% -28.64% -29.08%
LBF 155.89 310.56 370.74 419.98 427.13

The table reports the posterior mean, standard deviation in [] and 0.95 density interval in ().

Table 1.7: Forecasting S&P500 overnight realized volatility with
daytime information.
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1.4 A New Model Estimating the Daytime and

Overnight Return and RV Jointly

1.4.1 Model Specification

The correlation coefficients between daytime and overnight returns, from Table 1.1,

are close to zero for both SPY and QQQ, which suggests little linear correlation.

Accordingly, the benchmark joint model for daytime and overnight return series

treats them independently and fits two SV models, as follows:

rN,t = µN + exp(hN,t/2)uN,t, uN,t ∼ N(0, 1), (1.21)

hN,t = αN + δNhN,t + σhNvN,t, vN,t ∼ N(0, 1), (1.22)

rD,t = µD + exp(hD,t/2)uD,t, uD,t ∼ N(0, 1), (1.23)

hD,t = αD + δDhD,t−1 + σhD, vD,t vD,t ∼ N(0, 1). (1.24)

Inasmuch as we have daytime and overnight realized volatility, we can extend

the stochastic volatility model by jointly estimating the return and realized volatil-

ity as following SV-RV models (see Takahashi et al. (2009)):
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rN,t = µN + exp(hN,t/2)uN,t, uN,t ∼ N(0, 1), (1.25)

logRVN,t = ξN + hN,t + σRV NeN,t, eN,t ∼ N(0, 1), (1.26)

hN,t = αN + δNhN,t + σhNvN,t, vN,t ∼ N(0, 1), (1.27)

rD,t = µD + exp(hD,t/2)uD,t, uD,t ∼ N(0, 1), (1.28)

logRVD,t = ξD + hD,t + σRVDeD,t, eD,t ∼ N(0, 1), (1.29)

hD,t = αD + δDhD,t−1 + σhDvD,t, vD,t ∼ N(0, 1). (1.30)

The constant term ξ (in Eq. (1.26) and (1.29)) scales the realized volatility

to match the return volatility. A negative ξ (or exp(ξ) < 1) indicates that the

realized volatility underestimates the return volatility. Takahashi et al. (2009) fit

the SV-RV model with daily close to close returns for the Tokyo stock price index

(TOPIX) and its corresponding daytime realized volatility (to be specific, trading

hour realized volatility since Tokyo Stock Exchange has a lunch break). The pos-

terior mean of ξ is −1.0707, which implies RVt = 0.34× exp(ht). Takahashi et al.

(2009) points out that the overnight (or non-trading hour) effect is much more

significant than the microstructure noise in estimating realized volatility. Taka-

hashi et al. (2009) also uses the scaling method by Hansen and Lunde (2005) to

scale the daytime realized volatility to match the daily return volatility. However,

either scaling the daytime realized volatility before fitting the models or adding

constant term ξ in the model assumes a perfect correlation between the daytime

realized volatility and overnight volatility. As we have shown that the daytime

and overnight realized volatility are not perfectly correlated, scaling the daytime
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realized volatility could be inferior to estimating the overnight realized volatility

directly.

Our SV-RV specification (Eq. (1.25) to (1.30)) treats daytime and overnight

return separately, and there is no mismatch between return and corresponding

realized volatility. As we will show in the following empirical results, ξN and

ξD are close to zero, which supports the accuracy of our daytime and overnight

realized volatility estimation.

On the other hand, both SV-RV and SV specifications treat the daytime and

overnight volatility processes independently. Although the overnight and daytime

returns have little linear correlation, the results in the previous section suggest a

strong correlation between the daytime and overnight volatility (hD,t and hN,t).

To address this correlation, we propose the DN-SV-RV (day-night SV-RV) speci-

fication in Eq. (1.31) to (1.36).

rN,t = µN + exp(hN,t/2)uN,t, uN,t ∼ N(0, 1), (1.31)

logRVN,t = ξN + hN,t + σRV NeN,t, eN,t ∼ N(0, 1), (1.32)

hN,t = αN + βNhD,t−1 + δNhN,t−1 + σhNvN,t, vN,t ∼ N(0, 1), (1.33)

rD,t = µD + exp(hD,t/2)uD,t, uD,t ∼ N(0, 1), (1.34)

logRVD,t = ξD + hD,t + σRVDeD,t, eD,t ∼ N(0, 1), (1.35)

hD,t = αD + βDhN,t + δDhD,t−1 + σhDvD,t, vD,t ∼ N(0, 1). (1.36)
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The major difference between this specification and the traditional SV or SV-

RV approach is that the daytime latent volatility hD,t not only depends on its

own lagged term hD,t−1, but also on the overnight latent volatility hN,t, and this

correlation is captured by the parameter βD in Eq. (1.36). Similarly, βN in Eq.

(1.33) captures the correlation between the lagged daytime latent volatility hD,t−1

and the following overnight latent volatility hN,t. Moreover, the simple SV or SV-

RVmodel will be a special case of the DV-SV-RVmodel since the DN-SV-RVmodel

will degenerate into an SV-RV model if βD = βN = 0. If there is no correlation

between the daytime and overnight volatility, jointly modelling the daytime and

overnight returns (and realized volatility) would be equivalent to modelling them

independently.

To fit the DN-SV-RV model, we need to consider the daytime and overnight

return and realized volatility jointly. It is not necessary that the daytime re-

turn/realized volatility series has the same length as that of the overnight re-

turn/realized volatility series. If both daytime and overnight series have t obser-

vations, we fit the model at the market close of day t, and we use all the past

daytime and overnight information to predict the following overnight return and

volatility. If the daytime series has length t while the overnight series has length

t + 1, we fit the model at the market open of day t + 1 to predict the following

daytime return and volatility. This is important for decomposing the likelihood of

daytime and overnight observations and for out-of-sample prediction.
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The likelihood of return and realized volatility {rD,t, rN,t, logRVD,t, logRVN,t}Tt=1

of model M , conditional on parameter set Θ, is:

pM
(
{rD,t, rN,t, logRVD,t, logRVN,t}Tt=1|Θ

)
=

T∏
t=1

pM (rD,t, rN,t, logRVD,t, logRVN,t | rD,:t−1, rN,:t−1, logRVD,:t−1, logRVN,:t−1,Θ) .

(1.37)

Here y:t denotes {y1, y2, ...yt}. For SV-RV, since the daytime and overnight volatil-

ity are modeled independently, the likelihood will be:

pM
(
{rD,t, rN,t, logRVD,t, logRVN,t}Tt=1|Θ

)
=

T∏
t=1

pM (rN,t, logRVN,t|rN,:t−1, logRVN,:t−1,Θ)

T∏
t=1

pM (rD,t, logRVD,t|rD,:t−1, logRVD,:t−1,Θ) . (1.38)

However, for the DN-SV-RV model, the likelihood will be:

pM
(
{rD,t, rN,t, logRVD,t, logRVN,t}Tt=1|Θ

)
=

T∏
t=1

pM (rN,t, logRVN,t|rN,:t−1, rD,:t−1, logRVN,:t−1, logRVD,:t−1,Θ)

T∏
t=1

pM (rD,t, logRVD,t|rD,:t−1, rN,:t, logRVD,:t−1, logRVN,:t,Θ) . (1.39)

We can see the difference between DN-SV-RV and other models in information

updating. For example, at every market open, new overnight return and realized

volatility observations will be available. The SV and SV-RV only update the

overnight part of the model (Eq. (1.21) to (1.22) or (1.25) to (1.27)) and leave the
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daytime part unchanged. This represents modeling daytime series alone without

overnight information, and the prediction of the daytime return and volatility is not

affected even though the new overnight return and realized volatility observations

are available. The DN-SV-RV model updates the joint model at every market

open so that the prediction of the following daytime return and volatility will be

affected by the newly available overnight information. To update information at

the market close, when the new daytime return and realized volatility observations

are available, the DN-SV-RV model update the joint model similarly.

We use Bayesian MCMC to estimate the DN-SV-RV model (details about the

posterior distributions of latent volatility hD,t and hN,t are covered in Appendix

Section A3). We show the MCMC iteration steps and parameter prior distribu-

tions for the DN-SV-RV model here. The SV-RV/SV model can be treated as a

nested version of the DN-SV-RV model, and the parameters have the same prior

distributions as the DN-SV-RV model:

• µN , µD | hN , rN , hD, rD: Conjugate normal prior N(0, 5).

• hD | hN , rD, logRVD: Metropolis-Hasting with tailored proposal distribution.

• hN | hD, rN , logRVN : Metropolis-Hasting with tailored proposal distribution.

• αN , βN , δN , αD, βD, δD | hN , hD: Conjugate normal prior N(0, 5) for αN and

αD and truncated normal prior N(0.9, 5)I|δ|<1 for βN , δN , βD and δD.

• ξN , ξD, | hN , hD, logRVD, logRVN : Conjugate normal prior N(0, 5).
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• σhN, σhd, σRV N | hN , hD, logRVD, logRVN : Conjugate inverse gamma prior

IG(3
2 ,

0.5
2 ).

We set flat prior distributions for all parameters to avoid subjective bias. Also, we

set the total number of MCMC iterations to be 100,000, and we keep 1 of every

10 draws. We also set 5,000 burn-in iterations for parameter convergence.

To compare the out-of-sample performance, we focus on forecasting the daytime

and overnight return distributions. We use the following logarithmic predictive

likelihood of model M :

LPLM =
T−1∑
t=s

(log pM(rN,t+1, rD,t+1|rD,:t, rN,:t, logRVD,:t, logRVN,:t)) (1.40)

Given our sample size T = 2560, we use the initial s = 560 observation to initially

fit the models. Moreover, we can further decompose the predictive likelihood in

Eq. (1.40) into daytime and overnight parts, as follows:

pM(rN,t+1, rD,t+1|rD,:t, rN,:t, logRVD,:t, logRVN,:t)

= pM(rN,t+1|rD,:t, rN,:t, logRVD,:t, logRVN,:t)

pM(rD,t+1|rD,:t, rN,:t+1, logRVD,:t, logRVN,:t+1) (1.41)
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Then the logarithmic predictive likelihood in Eq. (1.40) can be decomposed into

overnight and daytime parts, as follows:

LPLN,M =
T−1∑
t=s

(log pM(rN,t+1|rD,:t, rN,:t, logRVD,:t, logRVN,:t)) (1.42)

LPLD,M =
T−1∑
t=s

(log pM(rD,t+1|rD,:t, rN,:t+1, logRVD,:t, logRVN,:t+1)) (1.43)

We have LPLM = LPLN,M + LPLD,M given conditional independence.

For the SV-RV model, the predictive likelihood is estimated as:

pM(rN,t+1|rD,:t, rN,:t, logRVD,:t, logRVN,:t)

= pM(rN,t+1|rN,:t, logRVN,:t)

≈ 1
N

N∑
i=1

fN
(
rN,t+1|µ(i)

N , exp(α(i)
N + δ

(i)
N h

(i)
N,t + σ

(i)
hNv

(i)
N,t)

)
(1.44)

and

pM(rD,t+1|rD,:t, rN,:t+1, logRVD,:t, logRVN,:t+1)

= pM(rD,t+1|rD,:t, logRVD,:t)

≈ 1
N

N∑
i=1

fN
(
rD,t+1|µ(i)

D , exp(α(i)
D + δ

(i)
D h

(i)
D,t + σ

(i)
hDv

(i)
D,t

)
(1.45)

Here µ(i)
N , α(i)

N , δ(i)
N , h(i)

N,t and σ
(i)
hN are MCMC draws by fitting the overnight part of

the SV-RV model with overnight returns {rN,i}ti=1 and overnight realized volatility

{logRVN,i}ti=1 jointly. Similarly, µ(i)
N , α(i)

D , δ(i)
D , h(i)

D,t and σ
(i)
hD are MCMC draws

by fitting the daytime part of the SV-RV model with daytime return {rD,i}ti=1

and daytime realized volatility {logRVD,i}ti=1. v
(i)
N,t and v

(i)
D,t are iid draws from

35

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Doctor of Philosophy– Zehua Zhang; McMaster University– School of Business

a standard normal distribution. For the SV model, it is the same as Eq. 1.44

and 1.45 to evaluate the logarithmic predictive likelihood. However, we fit the SV

model without realized volatility.

For the DN-SV-RV model, the predictive likelihood is esimated as:

pM(rN,t+1|rD,:t, rN,:t, logRVD,:t, logRVN,:t)

≈ 1
N

N∑
i=1

fN
(
rN,t+1|µ(i)

N , exp(α(i)
N + β

(i)
N h

(i)
D,t + δ

(i)
N h

(i)
N,t + σ

(i)
hNv

(i)
N )
)

(1.46)

pM(rD,t+1|rD,:t, rN,:t+1, logRVD,:t, logRVN,:t+1)

≈ 1
N

N∑
i=1

fN
(
rD,t+1|µ(i)

D , exp(α(i)
D + β

(i)
D h

(i)
N,t+1 + δ

(i)
D h

(i)
D,t + σ

(i)
hDv

(i)
D )
)

(1.47)

µ
(i)
N , α(i)

N , β(i)
N , δ(i)

N , h(i)
D,t, h

(i)
N,t and σ

(i)
hN are MCMC draws from fitting the DN-SV-RV

with {rN,i}ti=1, {rD,i}ti=1, {logRVN,i}ti=1 and {logRVD,i}ti=1. This step is to predict

rN,t+1 given the information available at market close on day t. On the next day,

when the market is open, rN,t+1 and logRVN,t+1 are available. Then we fit the

DN-SV-RV model with {rN,i}t+1
i=1, {rD,i}ti=1, {logRVN,i}t+1

i=1 and {logRVD,i}ti=1 and

draw µ
(i)
D , α(i)

D , β(i)
D , δ(i)

D , h(i)
D,t, h

(i)
N,t+1 and σ(i)

hD accordingly.

Table 1.8 summarizes the estimation results for SV (Eq (1.21) to (1.24)), SV-

RV (Eq (1.25) to (1.30)) and DN-SV-RV (Eq (1.31) to (1.36)) for SPY and QQQ.

As we have stated before, the key difference between DN-SV-RV and the tradi-

tional SV-RV or SV is βD and βN . The estimation results support our expec-

tation that the correlation between daytime and overnight volatility is strong.

Taking the SPY result as an example, βD = 0.5885, which indicates a strong cor-

relation between overnight volatility and following daytime volatility. Similarly,

36

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Doctor of Philosophy– Zehua Zhang; McMaster University– School of Business

βN = 0.3901 indicates a strong correlation between daytime volatility and fol-

lowing overnight volatility. Moreover, if the daytime or overnight return series is

modelling with SV or SV-RV independently, we find robust volatility clustering

as δD and δN are around 0.9. However, as we have noted, δD only captures the

correlation between today’s daytime volatility and yesterday’s daytime volatility,

and there is an overnight gap between them. Incorporating the overnight volatil-

ity into the daytime volatility equation (incorporating the daytime volatility into

the overnight volatility equation) will significantly decrease the auto-correlation

coefficient δD = 0.3244 (δN = 0.5439).

After controlling the overnight (daytime) volatility, the auto-correlation of the

daytime (overnight) volatility is much weaker. However, there is no contradiction

to the well-documented volatility clustering. The daytime and overnight volatility,

like the daytime and overnight returns, are the converse of each other. Although

the overnight volatility has a different long-run mean and variance from that of the

daytime volatility (overnight volatility is smaller), they are driven by the same risk

factor, and the volatility clustering should be persistent throughout the day and

night. When predicting the daytime volatility, the most recent information is not

the lagged daytime volatility, but the overnight volatility and vice versa. Previous

studies that focus on daytime volatility alone use only a subset of the volatility

information. The overnight realized volatility and the DV-SV-RV complete those

overnight gaps.
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SPY QQQ

SV SV-RV DN-SV-RV SV SV-RV DN-SV-RV

µD 0.0604 0.0775 0.0882 0.0781 0.1086 0.1236
[0.009] [0.009] [0.008] [0.012] [0.012] [0.011]

(0.043, 0.078) (0.061, 0.095) (0.071, 0.105) (0.054, 0.101) (0.086, 0.131) (0.102, 0.145)

αD -0.0795 -0.1504 0.1098 -0.0565 -0.1155 0.1661
[0.017] [0.019] [0.036] [0.013] [0.015] [0.033]

(-0.115, -0.049) (-0.188, -0.115) (0.040, 0.182) (-0.084, -0.034) (-0.146, -0.086) (0.102, 0.233)

βD - - 0.5885 - - 0.4832
[0.035] [0.033]

(0.520, 0.659) (0.417, 0.547)

δD 0.9386 0.8889 0.3244 0.9294 0.8642 0.3779
[0.011] [0.012] [0.033] [0.013] [0.014] [0.033]

(0.914, 0.959) (0.865, 0.912) (0.260, 0.390) (0.903, 0.952) (0.836, 0.891) (0.314, 0.445)

σD 0.3586 0.4265 0.4833 0.3560 0.4259 0.4815
[0.031] [0.017] [0.010] [0.032] [0.018] [0.012]

(0.305, 0.423) (0.394, 0.461) (0.463, 0.503) (0.297, 0.420) (0.391, 0.461) (0.457, 0.503)

µN 0.0443 0.0497 0.0524 0.0657 0.0720 0.0762
[0.007] [0.007] [0.007] [0.009] [0.008] [0.008]

(0.030, 0.059) (0.036, 0.064) (0.039, 0.066) (0.048, 0.083) (0.055, 0.088) (0.059, 0.092)

αN -0.0822 -0.1162 -0.2673 -0.1039 -0.1206 -0.3300
[0.019] [0.017] [0.029] [0.024] [0.017] [0.032]

(-0.122, -0.049) (-0.150, -0.085) (-0.325, -0.211) (-0.154, -0.063) (-0.155, -0.089) (-0.396, -0.270)

βN - - 0.3901 - - 0.4172
[0.029] [0.033]

(0.336, 0.449) (0.356, 0.486)

δN 0.9515 0.9332 0.5439 0.9252 0.9156 0.5250
[0.010] [0.009] [0.032] [0.016] [0.010] [0.034]

(0.930, 0.970) (0.916, 0.950) (0.481, 0.604) (0.892, 0.953) (0.894, 0.935) (0.456, 0.589)

σN 0.3042 0.3261 0.3803 0.3519 0.3501 0.4133
[0.030] [0.014] [0.016] [0.038] [0.015] [0.017]

(0.248, 0.366) (0.300, 0.354) (0.350, 0.412) (0.283, 0.430) (0.321, 0.381) (0.380, 0.446)

ξD - 0.1276 0.1372 - 0.0466 0.0536
[0.030] [0.028] [0.030] [0.027]

(0.069, 0.187) (0.081, 0.192) (-0.012, 0.106) (-0.000, 0.108)

σRVD - 0.3101 0.1682 - 0.3061 0.1829
[0.015] [0.018] [0.016] [0.021]

(0.280, 0.338) (0.136, 0.205) (0.275, 0.336) (0.144, 0.227)

ξN - 0.1497 0.1672 - -0.0102 0.0120
[0.030] [0.028] [0.030] [0.029]

(0.090, 0.208) (0.112, 0.223) (-0.069, 0.047) (-0.045, 0.069)

σRV N - 0.3485 0.2768 - 0.3561 0.2706
[0.010] [0.016] [0.011] [0.019]

(0.328, 0.368) (0.243, 0.306) (0.334, 0.377) (0.231, 0.306)

The table reports the posterior mean, standard deviation in [] and 0.95 density interval in ().

Table 1.8: The estimation results for the SV, SV-RV and DN-
SV-RV models.
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Moreover, from Table 1.8, the volatility-adjusted mean of overnight returns is

lower than that of daytime returns. Back to Table 1.1, the simple mean of overnight

returns (0.0317% for SPY and 0.0489% for QQQ) is significantly higher than that

of the daytime returns (0.0203% for SPY and 0.0192% for QQQ). However, the

mean parameters in the DN-SV-RV model indicate that the overnight return mean

(µN = 0.0524% for SPY and µN = 0.0762% for QQQ) is not necessarily higher

the than daytime return mean (µD = 0.0882% for SPY and µD = 0.1236% for

QQQ). The stochastic volatility could be a potential explanation of the observed

high overnight returns.

Table 1.9 further compares the out-of-sample forecasting of the daytime and

overnight return distributions, and we find strong supportive evidence for the

overnight realized volatility and our DN-SV-RV model. Take SPY as an example,

comparing SV-RV and SV. We see the realized volatility, especially the overnight

realized volatility estimated from the high-frequency futures prices, can signifi-

cantly improve the forecasts of the return distribution. The daytime (overnight)

logarithmic predictive Bayes factor of the SV-RV model relative to the SV model

is 26.37 (54.99). The logarithmic predictive Bayes factor strongly supports the

value of our realized volatility estimated from the high-frequency futures prices.

The realized volatility, as a consistent volatility measure, improves the future re-

turn distribution forecasting. The improvement shows that our overnight realized

volatility not only enhances the daytime realized volatility forecasting in the HAR-

RV model, which models the realized volatility process itself, but also matches the

corresponding overnight returns. The improvement of the SV-RV model compared

to the simple SV model confirms that the overnight realized volatility provides
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volatility information that helps the SV-RV model identify the real volatility pro-

cess of the overnight returns and achieve better return prediction.

Moreover, the DN-SV-RV model further exploits the correlation between day-

time and overnight volatility process. The daytime (overnight) logarithmic Bayes

factor of the DN-SV-RV model over the SV-RV model is 17.05 (38.95) for SPY.

From SV-RV to DN-SV-RV, we do not introduce extra data and the SV-RV is a

nested version of DN-SV-RV. As discussed earlier, the DN-SV-RV model leads to

significantly weaker auto-correlation in the daytime and overnight volatility pro-

cesses, but strong inter-correlation. Significant forecasting improvements can be

achieved by modeling the correlation between daytime and overnight volatility.

Again, the consistent results of QQQ support the robustness of our findings, as

shown in Table 1.9.

The out-of-sample results confirm that it is necessary to incorporate the overnight

(daytime) information for predicting the following daytime (overnight) volatility.

The results here are consistent with Section 1.3’s findings that overnight (daytime)

realized volatility can significantly improve the following daytime (overnight) re-

alized volatility.

SPY QQQ

SV SV-RV DN-SV-RV SV SV-RV DN-SV-RV

LPLD -1592.67 -1566.30 -1549.25 -2125.77 -2105.92 -2077.65
LPLN -1114.66 -1059.67 -1020.72 -1501.02 -1460.56 -1422.83
LPLD + LPLN -2707.33 -2625.97 -2569.97 -3626.79 -3566.48 -3500.48

Table 1.9: Out-of-sample camparison of the SV, SV-RV and
DN-SV-RV models
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1.5 Conclusion

The stock market never sleeps; in fact, “it loves the night”. We document that

after-trading-hour return and volatility are significant for the U.S. equity market

as the overnight volatility comprises about 40% of the daily close-to-close volatility.

It is sub-optimal to overlook the overnight volatility.

In this paper, we select equity index future prices to capture the daytime and

overnight volatility, as the futures market trades for almost the full day. Using

futures high frequency data, we estimate both the daytime and overnight real-

ized volatility. We demonstrate that overnight (daytime) realized volatility will

significantly improve the forecasting of the following daytime (overnight) realized

volatility. The inter-correlation between daytime and overnight realized volatility

is significant and informative for realized volatility prediction. Inspired by the

relationship between daytime and overnight volatility, we propose the stochastic

volatility model by jointly estimating overnight and daytime returns and their re-

alized volatility, as in the DN-SV-RV model. This model significantly improves

both daytime and overnight return density forecasting. The out-of-sample im-

provements strongly support the value of the overnight realized volatility estimated

from the equity futures market. Also, the estimation outcome provides evidence of

the non-negligible importance of cross-correlation between daytime and overnight

volatility. The evidence suggests that daytime and overnight volatility complement

one another. We conclude that volatility clustering is persistent throughout the

day and night.
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Chapter 2

Estimating the Stochastic

Volatility Model with Realized

Volatility and Implied Volatility

2.1 Introduction

Heteroscedasticity (Engle 1982; Bollerslev 1986) is a generally accepted feature of

stock return series (Nelson 1991; Schwert and Seguin 1990; Stein and Stein 1991).

Empirical stochastic volatility (SV) models have been proposed (Hull and White

1987; Heston 1993; Duan 1995) and widely studied to model this heteroscedasticity.

The traditional SV models treat the volatility process as an unobserved process.

Bayesian estimation of the SV model (Harvey and Shephard 1996; Kim et al. 1998;

Jacquier et al. 1994; Jacquier et al. 2004), samples the latent volatility process

conditionally on return series alone.
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Realized volatility, as shown by Andersen and Bollerslev (1998) and Barndorff-

Nielsen and Shephard (2001), is a consistent estimator of the volatility process.

Realized volatility, as an ex-post measure of volatility, can then be used to improve

the estimation of the unobserved volatility. Takahashi et al. (2009) propose a

realized stochastic volatility model, whose specification estimates the return and

realized volatility simultaneously. Following the work of Shirota et al. (2014),

Koopman and Scharth (2013) and Asai et al. (2017) further extend this model by

allowing volatility asymmetry and long-term memory, obtaining improvements in

volatility forecasts. The realized stochastic model is a non-linear common factor

model (Yalcin and Amemiya 2001) in which the return and logarithmic realized

volatility series share the latent volatility as a common factor. Like the well-

known stochastic volatility model, the return is non-linearly correlated with the

latent volatility, while the logarithmic realized volatility is linearly correlated with

the latent volatility.

On the other hand, option-implied volatility can be treated as an ex-ante mea-

sure of the volatility process. Early work (Blair et al. 2001) reveals that implied

volatility is more informative and provides more accurate out-of-sample volatil-

ity forecasts. The survey paper by Poon and Granger (2003) compares different

volatility forecasting methods and concludes that option-implied volatility is the

best predictor of return volatility. Christensen and Prabhala (1998) show that

implied volatility improves volatility forecasts compared to using past realized

volatility. However, implied volatility is an expectation of the real volatility as-

suming risk-neutrality (see Hao and Zhang 2013 and the CBOE white paper1).

The risk premium may bias the implied volatility as a volatility measure.
1https://www.cboe.com/micro/vix/vixwhite.pdf
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The purpose of this paper is to extend the work of Takahashi et al. (2009)

by including both realized volatility and implied volatility. We estimate respec-

tively the simple SV model, the SV model with realized volatility (RVSV), the

SV model with implied volatility (IVSV), and, finally, the SV model with real-

ized volatility and implied volatility together (RVIVSV). Previous literature that

extends heteroscedasticity models with RV or IV specifications typically selects

lagged RV terms or IV as explanatory variables in the volatility equation (Koop-

man et al. 2005; Blair et al. 2001). This paper jointly estimates the return and

volatility measures assuming that they share the latent volatility as a common

factor. The inclusion of volatility measures should improve the identification of

the latent volatility and the one-day ahead return densities forecasting compared

to the simple stochastic volatility model.

Realized volatility, as a volatility measure based on high-frequency data, suf-

fers from micro-structure noises. Implied volatility, although relatively stable, has

risk premium bias as a measure of the true volatility. Compared with the simple

SV model without volatility measures, the IVSV model leads to a smooth latent

volatility process while RVSV leads to a rough latent volatility process. Including

both the implied volatility and realized volatility as the RVIVSV model, the latent

volatility process is almost identical to that of the IVSV model. The in-sample es-

timation results confirm that volatility measures substantially affect the estimation

of the latent volatility. Since volatility measures are linearly related to the latent

volatility while return is non-linearly related, volatility measures provide strong

information when identifying the latent volatility. This suggests that the accuracy

of the volatility measures could significantly affect the forecasting performance of
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the model.

To examine the out-of-sample forecasting, we focus on the predictive density of

the one-day forward equity returns. We compare the proposed SV models with the

benchmark SV model using predictive likelihood (Amisano and Giacomini 2007;

Bao et al. 2007). The empirical results indicate that incorporating either the im-

plied volatility or realized volatility into the stochastic volatility specification will

significantly improve the out-of-sample return density forecasts. For the S&P500

index and some individual stocks, realized volatility out-performs implied volatil-

ity. On the other hand, implied volatility dominates realized volatility for two

banking stocks whose return processes are highly volatile during our sample pe-

riod. Finally, when we jointly estimate the return, realized volatility and implied

volatility, the predictive performance is not significantly better than RVSV/IVSV

and may be worse for specific stocks.

The remainder of this paper is organized as follows. Section 2.2 introduces

the model specification with implied volatility for in-sample estimation of out-of-

sample prediction. We specify the data used in the study and present estimation

results for both the equity index and individual stocks in Section 2.3. Section

2.4 provides the predictive density of the proposed SV model with a comparison

to the benchmark SV model. Section 2.5 concludes the paper. We illustrate the

derivation of posterior distributions and more empirical results in the Appendix.
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2.2 Model

2.2.1 Model Specifications

The original SV model is specified as:

yt = µ+ exp(ht/2)ut, ut ∼ N(0, 1),

ht+1 = α + δht + σhηt ηt ∼ N(0, 1),

where yt denotes daily stock returns. The realized stochastic volatility model

(Takahashi et al. 2009) adds realized volatility to the model and jointly estimates

the return and realized volatility series as follows:

yt = µ+ exp(ht/2)ut, ut ∼ N(0, 1),

log(RVt) = ht + σRV ε
RV
t , εRVt ∼ N(0, 1), (2.1)

ht+1 = α + δht + σhηt, ηt ∼ N(0, 1),

where RVt denotes daily realized volatility. This specification is based on the

fact that realized volatility is a consistent estimator of quadratic return variation

under certain assumptions of stock returns. The realized stochastic volatility model

estimates yt and log(RVt) jointly with a common latent volatility factor ht. We

extend the realized stochastic volatility model by including the implied volatility

and assuming the common latent volatility process also determines the implied

volatility process. The model is specified as follows:
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yt = µ+ exp(ht/2)ut, ut ∼ N(0, 1) (2.2)

log(RVt) = aRV + bRV ht + σRV ε
RV
t , εRVt ∼ N(0, 1) (2.3)

log(IVt) = aIV + bIV ht + σIV ε
IV
t , εIVt ∼ N(0, 1) (2.4)

ht+1 = α + δht + σhε
h
t , εht ∼ N(0, 1) (2.5)

IVt denotes the daily implied volatility. This model specification jointly estimates

yt, log(RVt) and log(IVt) with a common factor ht. In this chapter, the implied

volatility measure we use is the VIX index for yt, representing S&P500 ETF (SPY)

returns, or calculated short-term implied volatility mimicking the construction of

VIX for yt, representing individual stock returns. The data provider has scaled

the VIX index and the implied volatility surface. The constant and slope terms in

Equation (2.4) will automatically capture the scaling.

We use the unadjusted realized volatility estimator. Given intraday returns

rt,i, with time intervals i = 1, ...I, the unadjusted realized volatility is estimated as

RVt = ∑I
i=1 r

2
i . This estimator suffers from market microstructure noise and non-

trading hours limitations. As a result, this simple estimator of realized volatility

could be biased and inconsistent (see Bandi and Russell 2008). Takahashi et al.

(2009) put the constant term in Equation (2.1) to resolve the potential bias. Maheu

and McCurdy (2011) adopt a bias-corrected estimator of realized volatility. In this

paper, we adopt the unadjusted estimator of realized volatility and use the ten-

minute intraday stock returns, which are less affected by the micro-structure noise,

to estimate the realized volatility within exchange trading hours. Then we add the

47

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Doctor of Philosophy– Zehua Zhang; McMaster University– School of Business

estimated realized volatility within exchange trading hours with squared overnight

returns to calculate the daily realized volatility.

On the other hand, implied volatility does not have microstructure noise, but

is biased due to the risk premium. To address the potential noise or bias for

both realized volatility and implied volatility, we keep the constant and slope

terms in Equation (2.1) and (2.4) for empirical study purposes. In our model

specification, Equations (2.2) and (2.5) comprise the simple stochastic volatility

model (denoted SV hereafter). By including Equation (2.3) or Equation (2.4),

we have the realized stochastic volatility model (RSV) or the implied stochastic

volatility model (IVSV). If we estimate stock return, realized volatility and implied

volatility together, the extended SV model becomes the RVIVSV model with a

combined specification from the RSV and the IVSV models.

2.2.2 Latent Volatility Sampling

We apply the Bayesian MCMC method to estimate the proposed and alternative

SV models. The latent volatility ht, t = 1, 2, ...T are parameters to be sampled

with the Metropolis-Hastings algorithm. Based on the single move sampler for

the simple SV model (Kim et al. 1998), we modify the proposal distribution of ht

to include the RVt and IVt processes. For notation simplicity, RVt and IVt will

denote the logarithm of realized volatility and implied volatility for this section.
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Let Θ denote the parameter set, Θ = [µ, aRV , bRV , σRV , aIV , bIV , σIV , α, δ]′. The

conditional posterior of ht is:

p(ht|h−t, yt, RVt, IVt,Θ) ∝ p(yt|ht,Θ) p(log(RVt)|ht,Θ) p(log(IVt)|ht,Θ)

p(ht|h−t,Θ), (2.6)

where p(log(RVt)|ht,Θ)p(log(IVt)|ht,Θ)p(ht|h−t,Θ) on the right hand side of Equa-

tion (2.6) is proportional to a normal distribution with mean of µt, as in equation

(2.8), and variance of σ2, as in equation (2.9) (derivation details can be found in

Appendix section B1.1). The posterior distribution of ht will be proportional to:

p(yt|ht,Θ)p(RVt|ht,Θ)p(IVt|ht,Θ)p(ht|h−t,Θ)

∝ exp(−ht2 ) exp(− (yt − µ)2

2 exp(ht)
) exp(−(ht − µt)2

2σ2 ), (2.7)

where

µt =
[

(RVt − aRV )bRV
σ2
RV

+ (IVt − aIV )bIV
σ2
IV

+ α(1− δ) + δ(ht+1 + ht−1)
σ2
h

]
σ2

(2.8)

σ2 =
(
b2
RV

σ2
RV

+ b2
IV

σ2
IV

+ 1 + δ2

σ2
h

)−1

. (2.9)

Given µt and σ2, similar to Kim et al. (1998), we have the following proposal

distribution of ht:

ht ∼ N(µt + σ2

2 [(yt − µ)2 exp(−µt)− 1], σ2).
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It is interesting to compare this proposal distribution with that of the simple SV

model. The counterpart specification of Equations (2.7), (2.8) and (2.9) is as

follows:

p(ht|h−t, yt, θ) ∝ p(yt|ht,Θ)p(ht+1|ht, w)p(ht|ht−1, w)

∝ exp(−ht2 ) exp(− (yt − µ)2

2 exp(ht)
) exp(−(ht− µ̂t)2

2σ̂2 ), (2.10)

where:

µ̂t = α(1− δ) + δ(ht+1 + ht−1)
1 + δ2 ,

σ̂2 = σ2
h

1 + δ2 .

Comparing Equation (2.7) with Equation (2.10), in the simple SV model in Equa-

tion (2.10), µ̂t contains information only from adjacent latent volatility variables

ht−1 and ht+1. This µ̂t could be far from target ht, especially when period t corre-

sponds to a highly volatile period (e.g. a sudden market shock within the period).

In the equity market, this kind of sudden market move is not rare, especially for

individual stocks. As a result, the approximation of first order Taylor extension of

exp(−ht) at µ̂t may produce a poor proposal distribution for sampling ht.

In contrast, µt from Equation (2.7) contains information not only from adjacent

latent volatility variables, but also from RVt and IVt, which directly measure the

volatility in period t. Rearranging Equation (2.8), we rewrite µt as a weighted

average of three normal distributions’ means in Equation (2.7). Equation (2.11)

shows that this average is weighted by the precision (inverse of variance) of these

three normal distributions. Intuitively, µt is a weighted average of the means of ht
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derived from RVt and IVt and adjacent latent volatility variables (ht−1 and ht+1).

In this way, we avoid the issue that we discussed for the simple SV model; i.e. when

there is a sudden market crash in period t, which indicates high ht. Although ht−1

and ht+1 may not be high, RVt and IVt are high during a market crash. Therefore,

by including the information from RVt and/or IVt, µt under the RVSV, IVSV and

RVIVSV specification is much closer to the target ht, which leads to a much closer

approximation with a first order Taylor extension.

In addition, if we explore Equation (2.11) in more detail, the weight is directly

related to the slope and variance parameters in the model. If σIV is very low com-

pared to σRV and σh, the mean of ht derived from the implied volatility (Equation

(2.4)) will have a large weight, as shown in Equation (2.11). We will come back

to this discussion in the empirical results.

µt = 1
W

[
RVt − aRV

bRV
· b

2
RV

σ2
RV

+ IVt − aIV
bIV

· b
2
IV

σ2
IV

+ α(1− δ) + δ(ht+1 + ht−2)
1 + δ2 · 1 + δ2

σ2
h

]
,

(2.11)

where

W = b2RV
σ2
RV

+ b2IV
σ2
IV

+ 1 + δ2

σ2
h

.

Conditional on ht, t = 1, ...T , other parameters are sampled by Gibbs sampling with

conjugate priors. The MCMC steps and the corresponding prior distribution is specified

as follows:

• µ | α, δ, h, y. µ is drawn from a normal posterior distribution with a conjugate

normal prior N(0, 100).

• ht | h−t, yt, RVt, IVt,Θ. ht is drawn using the Metropolis-Hastings method with

the proposal distribution discussed in the previous section.
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• α, δ, σh|h, Conditional on the latent volatility process h, parameters α, δ, σh can

be drawn as parameters of the linear regression with conjugate prior distribu-

tions: α ∼ N(0, 50), σh ∼ IG(3
2 ,

0.5
2 ) and δ follow a truncated normal prior

N(0.95, 5)I|δ|<1 for δ for stationary.

• aRV , bRV , σRV | h,RV . Conditional on the latent volatility process h and the

RV process, aRV , bRV , σRV can be drawn as parameters of the linear regression

with conjugate prior distributions: aRV ∼ N(0, 50), bRV ∼ N(1, 50) and σRV ∼

IG(3
2 ,

0.5
2 ).

• aIV , bIV , σIV | h, IV . Conditional on the latent volatility process h and the RV pro-

cess, aIV , bIV , σIV can be drawn as parameters of the linear regression with con-

jugate prior distributions: aIV ∼ N(0, 50), bIV ∼ N(1, 50) and σIV ∼ IG(3
2 ,

0.5
2 ).

Notice that, for all the parameters, we set flat priors to make sure the posterior

sampling results contain little prior information. This is especially important for the

σRV and σIV , as these two parameters represent the amount of noise contained in the

RV and IV as measures of the latent volatility and is critical in sampling the latent

volatility process. We set the total number of MCMC iterations to be 100,000 and we

keep 1 for every 10 draws. We also set 5,000 burn-in iterations for parameter convergence.

2.3 Data and Estimation Results

We examine the in-sample explanatory and out-of-sample forecast performance of the

proposed RVIVSV model using both an equity index and individual stocks. For the

equity index, we select the S&P 500 ETF and the corresponding VIX index as the

implied volatility measure. For individual stocks, we select six stocks and use their daily

individual traded option prices to back out the short-term implied volatility.
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2.3.1 S&P 500 and VIX

The S&P 500 index is one of the most commonly used and cited U.S. stock market

indices, and its corresponding Standard and Poor’s Depository Receipt (SPY) is among

the most popular tradable assets among market participants who seek liquidity. We

retrieve fourteen years (from the beginning of 2001 to the end of 2014) high-frequency

quote records from the TAQ database to calculate unajusted daily return and daily re-

alized volatility. To be more specific, we use the mid-price between the bid and ask

prices to calculate five-minutes returns. Then we use the simple unadjusted RV esti-

mator to calculate the daily RV. The mean of RV is 1.50, while the sample variance of

the daily return is 1.62 in our sample. The difference between the RV mean and the

sample variance is not large, which indicates that the simple unadjusted RV estimator

is acceptable. As for the implied volatility of the SPY ETF, we will use the VIX index,

which is constructed from S&P 500 options with near to 30-day maturity. As shown

in the next section, we follow the construction of VIX to build the implied volatility

measure for individual stocks. We present summary statistics for SPY in Table 2.1. The

mean of realized volatility is close to the variance of the daily returns, which supports

the accuracy of our estimation of realized volatility. The VIX index is scaled to match

the standard deviation of the following month. The parameters in equation (2.4) will

automatically capture the scaling.

Return RV VIX
Mean 0.0133 1.5021 20.7702
Variance 1.6235 12.3586 85.7557

Table 2.1: The summary statistics for SPY.

To illustrate the dynamics, Figure 2.1 plots the data for SPY. The graphs from top

to bottom are (1) daily closing prices of the SPY, (2) daily returns of the SPY, (3)

logarithm of daily RV and (4) logarithm of the VIX index. Both RV and VIX can reflect
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the return volatility, and they share similar dynamics. As our sample covers the 2008

financial crisis, we expect high volatility during the crisis. Both RV and VIX are high

during this period. Moreover, from the figure, it appears that the VIX index is more

stable than the RV. The daily RV only measures the volatility within a trading day while

the VIX index measures the expectation of the future 1-month volatility. The VIX index

is smoother than the daily RV since the VIX index is a forward average of the following

month’s volatility.

Figure 2.1: Data plots for SPY.

Table 2.2 reports the posterior sampling results of the SV, RVSV, IVSV and RVIVSV

models on the SPY data for the period January 2nd, 2001 to December 29th, 2014.

Comparing the various model estimations in Table 2.1, we have the following: First,

compared to the simple SV model, incorporating RV in the SV framework results in

a lower δ and higher σh, while incorporating IV leads to higher δ and lower σh. This

result reveals that the hidden volatility process inferred from the IVSV model is more

stable than that of the RVSV model. Figure 2.2 plots the hidden volatility process

54

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Doctor of Philosophy– Zehua Zhang; McMaster University– School of Business

inferred from the RVSV model and the IVSV model and clearly shows that the latent

volatility process of the RVSV model is much more volatile. This is consistent with

the inference from Figure 2.1, where the RV process itself is more volatile than the IV

process. Moreover, the sampling results for common parameters between IVSV and

RVIVSV are basically the same, as shown in Table 2.2. Figure 2.3 shows that the latent

volatility processes from these two models are almost identical. Once the IV process is

included in the model, the IV process will play a dominant role in identifying the latent

process compared to RV.

SV RVSV IVSV RVIVSV
Para Mean Stdev Mean Stdev Mean Stdev Mean Stdev
µ 0.0719 0.0132 0.0839 0.0120 0.0758 0.0129 0.0773 0.0130

(0.046, 0.098) (0.060, 0.107) (0.050, 0.101) (0.051, 0.103)

α -0.0037 0.0036 -0.0105 0.0054 -0.0013 0.0022 -0.0015 0.0023
(-0.011, 0.003) (-0.021, -0.000) (-0.006, 0.003) (-0.006, 0.003)

δ 0.9801 0.0044 0.9614 0.0056 0.9915 0.0021 0.9911 0.0022
(0.971, 0.988) (0.949, 0.972) (0.987, 0.996) (0.987, 0.995)

σh 0.2016 0.0168 0.3017 0.0159 0.1298 0.0040 0.1333 0.0041
(0.170, 0.237) (0.272, 0.333) (0.122, 0.138) (0.125, 0.141)

aRV - - -0.1149 0.0240 - - -0.2100 0.0239
(-0.161, -0.068) (-0.258, -0.163)

bRV - - 0.8898 0.0222 - - 0.9097 0.0237
(0.848, 0.934) (0.866, 0.957)

σRV - - 0.4607 0.0087 - - 0.5892 0.0071
(0.444, 0.478) (0.575, 0.603)

aIV - - - - 3.0039 0.0092 3.0058 0.0091
(2.986, 3.022) (2.988, 3.023)

bIV - - - - 0.3767 0.0089 0.3750 0.0089
(0.359, 0.394) (0.358, 0.393)

σIV - - - - 0.0373 0.0009 0.0367 0.0008
(0.035, 0.039) (0.035, 0.038)

Inside the parentheses is the 95% density interval

Table 2.2: Posterior sampling summary for SPY

From Equation (2.6), µt is a weighted average of IVt, RVt and the adjacent la-

tent volatility(ht−1, ht+1), and the weights are b2IV /σ2
IV , b2RV /σ

2
RV and (1 + δ2)/σ2

h

respectively. For the RVIVSV model, b2RV /σ2
RV = 2.3838, b2IV /σ2

IV = 104.4071 and
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(1 + δ2)/σ2
h = 111.5589. The result indicates that 47.8% of µt is from IVt, 51.1% is

from ht−1, ht+1 and only 1.1% is from RVt. For the RVSV model, b2RV /σ2
RV = 3.7303,

(1 + δ2)/σ2
h = 21.1407, and we find that RVt plays a more important role (15%).

Figure 2.2: Smoothed ht from the RVSV and IVSV models for
SPY.

The blue line represents the latent volatility process from the RVSV model, while

the orange line represents the IVSV model.

The in-sample estimation results, especially the estimation of the latent volatil-

ity process, suggest that the volatility measures have a strong influence. For the

equity index (SPY ETF), the RVSV model leads to a rough latent volatility pro-

cess, while the IVSV model leads to a smooth latent volatility process. Also, in

the RVIVSV model, IV (VIX index) plays a more critical role in identifying the

latent volatility. The estimated latent volatility process is almost identical to that

of the IVSV model.
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Figure 2.3: Smoothed ht from the IVSV and RVIVSV models
for SPY.

This graph compares the smoothed latent volatility process from the IVSV and

RVIVSV models. The blue line (IVSV) and orange line (RVIVSV) are identical.

Considering the non-linear factor model specification, the RVSV(IVSV) model es-

timates returns and logarithmic realized volatility (implied volatility) jointly with a

common latent volatility process. Since log(RVt) (log(IVt)) is linearly correlated with

ht, and yt is non-linearly correlated, the identification of ht utilizes the first moment

information of volatility measures while only the second moment information of returns

is related. So the volatility measures have substantial influence in identifying the latent

volatility, and we observe that the estimated latent volatility process share a similar

pattern with corresponding volatility measure.

However, when fitting the RVIVSV model with yt, log(RVt) and log(IVt) jointly, the

estimated latent volatility process seems only to capture the dynamics of log(IVt) and

attribute a greater portion of variations of log(RVt) to noise. As shown in Table 2.2,

the variance parameter in Eq. (2.3) in the RVIVSV model (σRV = 0.59) is significantly

higher than that of Eq. (2.1) in the RVSV model (σRV = 0.46). Figure 2.1 has shown
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that the logarithmic realized volatility and logarithmic implied volatility demonstrate

different dynamics. Modelling log(RVt) and log(IVt) jointly with a single factor ht will

make ht follow the dynamics of log(IVt), which is smoother. The standard SV model

assumes AR(1) specification for ht, which is difficult to capture the rough dynamics of

log(RVt) process and favors the smoother log(IVt) process. Moreover, the daily RV is

naturally noisy due to the micro-structure noise. As a result, the RVIVSV model will

automatically assign less weight to the daily RV when identifying the latent volatility.

In the next section, we consider individual stocks and examine whether consistent

results for the implied volatility persist.

2.3.2 Individual Stocks

To complement the results from the equity index, we select five blue-chip individual

stocks: Apple Inc. (NASDAQ: AAPL), Citigroup Inc. (NYSE: C), IBM (NYSE: IBM),

Bank of America Corp. (NYSE: BAC), General Electric (NYSE: GE), and one mid-

cap stock: JCPenney Company (NYSE: JCP). The five blue-chip stocks (and their

options) are among the most liquid assets on the U.S. equity market, given their high

trading volume. The daily return, realized volatility and option-implied volatility data

on individual stocks cover the period from September 10th, 2003 to December, 29th,

2017. JCP is included in our sample to examine the behavior of the proposed models

for a mid-cap company. A consistent result for JCP will enhance the robustness of our

conclusion.

We retrieve the high-frequency transaction data for individual stocks from the TAQ

database. Similar to the SPY ETF, we calculate ten-minute returns and then the daily

RV using the simple unadjusted estimator. The mean of the daily realized volatility

and the daily variance of return are presented in Table 2.3 to show the accuracy of the
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AAPL BAC C GE IBM JCP
RV Mean 4.6339 8.8964 11.2610 3.5707 1.9186 9.5824
Return Var 4.4899 9.8884 10.8588 3.0751 1.7040 9.0371

Table 2.3: RV mean and sample variance of individual stocks
This table summarizes the comparison between the mean of the daily realized
volatility and the variance of daily returns. The difference between them can be
the result of micro-structure noise or non-trading hours.

Figure 2.4: Data plots for AAPL

estimated RV. It is clear that for certain stocks (BAC, GE), there can be a significant

difference between the mean of the realized volatility and the return variance. Hence,

the constant and slope terms in equation (2.3) are necessary to fix the bias of the simple

estimator of realized volatility.

As for the implied volatility for individual stocks, we use daily European option

trading data from Option Metrics to mimic the construction of VIX. This volatility

data set contains traded individual option prices with different maturities and strike

prices. The implied volatilities are then backed out using the standard Black-Scholes
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European option model. To be consistent with the VIX index for the SPY, we choose

implied volatility from call and put options with short-term maturity (30 days) and

strike prices close to at-the-money. Then we take the simple average of selected put

and call implied volatilities to get the daily IV. Figure 2.4 illustrates the IV process

for AAPL as an example. The graphs from top to bottom are (1) daily AAPL close

prices, (2) daily returns (scaled by 100) (3) logarithm of daily realized volatility, and

(4) logarithm of daily implied volatility. Table 2.3 shows that the mean of daily RVs

is quite close to the daily return variance of AAPL, which is a reasonable indicator

for the accuracy of RV’s estimation. We observe many unusual peaks in the graph for

AAPL’s RV (with natural logarithm) series, which typically corresponds to the highly

volatile trading days. However, its IV process is much more stable and smoother than

the RV series. It is common for individual stocks to have sudden high daily realized

volatility in our sample. Compared to the SPY, which is a well diversified portfolio,

the idiosyncratic risk contained in individual stocks leads the return series to have more

unexpected shocks. Consequentially, unusually high ht for certain periods may cause

sampling problems, as mentioned in the previous section.

Similar to the SPY ETF, we estimate four different SV models on the return series

of these individual stocks. The estimation sample period is September 10th, 2003 to

December 19th, 2017. Table 2.4 presents the posterior sampling results for Apple Inc

(AAPL). The simple SV model has a much higher σh (0.3088) due to idiosyncratic risk,

compared to the SPY results. By introducing realized volatility, the latent volatility

process has much higher uncertainty (σh = 0.6033) and lower auto-correlation (δ =

0.8342). However, by introducing implied volatility, the latent volatility process is much

more stable and the auto-correlation is higher (σh = 0.1177, δ = 0.9867). Moreover,

similar to the SPY ETF results, the latent volatility processes sampled from the RVIVSV

and IVSV models, as well as the estimated parameters, are almost identical to each other.
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SV RVSV IVSV RVIVSV
Para Mean Stdev Mean Stdev Mean Stdev Mean Stdev
µ 0.1619 0.0253 0.1694 0.0210 0.1915 0.0273 0.1921 0.0275

(0.113, 0.212) (0.129, 0.211) (0.138, 0.245) (0.138, 0.245)

α 0.0607 0.0125 0.1454 0.0166 0.0160 0.0039 0.0158 0.0040
(0.038, 0.087) (0.114, 0.179) (0.008, 0.024) (0.008, 0.024)

δ 0.9428 0.0110 0.8342 0.0155 0.9867 0.0027 0.9868 0.0028
(0.919, 0.962) (0.803, 0.863) (0.981, 0.992) (0.981, 0.992)

σh 0.3088 0.0299 0.6033 0.0277 0.1177 0.0041 0.1190 0.0041
(0.254, 0.371) (0.551, 0.658) (0.110, 0.126) (0.111, 0.127)

aRV - - 0.0455 0.0314 - - -0.4054 0.0511
(-0.017, 0.106) (-0.509, -0.308)

bRV - - 0.8753 0.0229 - - 0.9950 0.0355
(0.832, 0.922) (0.928, 1.068)

σRV - - 0.4795 0.0164 - - 0.7898 0.0093
(0.446, 0.511) (0.772, 0.808)

aIV - - - - -1.6925 0.0206 -1.6825 0.0198
(-1.735, -1.654) (-1.723, -1.645)

bIV - - - - 0.4526 0.0140 0.4467 0.0137
(0.426, 0.481) (0.421, 0.475)

σIV - - - - 0.0362 0.0008 0.0368 0.0008
(0.035, 0.038) (0.035, 0.038)

Inside the parentheses is the 95% density interval

Table 2.4: Posterior sampling summary for AAPL.

Figure 2.5: Sampled ht from the RVSV and IVSV models for
AAPL.

The blue line (RVSV) and orange line (IVSV) clearly show that the latent volatility
process sampled from the RVSV model is much more volatile than that of the IVSV
model.
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Consistent with the SPY case, we keep the constant (aRV ) and slope (bRV ) terms in

the RV equation. Theoretically, the value of aRV is 0, as there is no bias arising from

issues like micro-structure or non-trading hours. The theoretical value of bRV is 1, as

RV is consistent and should be equal to the latent volatility asymptotically. The original

realized stochastic volatility model specified in Takahashi et al. (2009) sets aRV = 0

and bRV = 1. However, our estimated coefficients deviate from their theoretical values,

where bRV = 0.8753 in the RVSV model and bRV = 0.9950 in the RVIVSV model. This

is a different result from the SPY ETF case, where bRV in both the RVSV and RVIVSV

models are very close to one. We find bRV is significantly below 0.9 in the RVSV model,

while bRV is still close to one in the RVIVSV model. σRV in these two models is quite

different as well. σRV in the RVIVSV equation (0.7898) is considerably higher than that

of the RVSV model (0.4795). This difference between RVSV and RVIVSV (parameter

sampling results for other individual stocks are posted in the Appendix) persists for all

of the individual stocks in our sample. Moreover, bRV is below 0.9 for BAC, C, GE,

and JCP in both the RVSV and RVIVSV models. After excluding the noise in the RV

equation, the part of the RV variation that correlates with the latent volatility is less

volatile than the latent volatility as we observe a slope less than one.

From Figure 2.5, consistent with the results for SPY, RVSV leads to a rough latent

volatility process with higher σh = 0.60. When further comparing the volatility processes

of the SV and IVSV models, as in Figure 2.6, we find that the latent volatility process

for IVSV is smoother than that of SV. The σh = 0.12 of IVSV is lower than σh = 0.31

of SV. Compared with the SPY ETF case, the latent volatility process for the SV model

with individual stock data is more volatile. However, the IVSV for individual stocks

always results in a more stable latent volatility process with much lower σh. Finally, the

latent processes for RVIVSV and IVSV are very similar in the individual stock cases.

Consistent with the previous discussion, including IV in addition to RV leads to higher
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Figure 2.6: Volatility process of the SV and IVSV models for
AAPL.

σRV in the RVIVSV model. Consistent with previous discussion for the SPY ETF,

jointly modelling yt, log(RVt) and log(IVt) with a single common factor ht leads to a

latent volatility process that follows the dynamic of log(IVt) and treat log(RVt) as a

highly noisy process.

The empirical results we have found so far are not unique to Apple Inc. For all

the individual stocks in our sample, we find similar patterns of sampled parameters and

latent volatility processes using these four models (details can be found in Appendix

sections B2 and B3). The results for individual stocks are consistent with the SPY ETF

result when we change the implied volatility measure from the VIX index to option

implied volatility by our own construction.

To conclude the findings from in-sample results, we find that introducing RV into

the SV model leads to a more volatile latent volatility process with a smaller auto-

correlation coefficient (δ) and a larger volatility parameter (σh) in the latent volatility

equation. The result is consistent with Takahashi et al. (2009). However, including the

IV process leads to a more stable latent volatility process with a larger auto-correlation
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coefficient (δ) and a smaller volatility parameter (σh). By including both the RV and

IV processes, the latent volatility process for RVIVSV is almost identical to that of the

IVSV model. Compared to the RV process, the IV process is dominant in sampling

the latent volatility process. The empirical results for the RVIVSV model indicate that

implied volatility, as an ex-ante volatility measure, is more informative than the realized

volatility in identifying the latent volatility process.

However, we cannot conclude that implied volatility is better than realized volatility

with in-sample results alone. As we have discussed, the implied volatility could be biased

as a volatility measure due to the risk premium. The IVSV and IVRVSV models could

identify a biased latent volatility process. To evaluate and compare the models, we focus

on the one-day ahead return density forecasts in the next section.

2.4 Predictive Performance Comparison

Besides the in-sample explanation, it is important to compare the out-of-sample per-

formance of volatility forecasting among the various SV specifications. Koopman et al.

(2005) and Shirota et al. (2014) use RV as a volatility proxy to test the volatility fore-

casting performance, as volatility cannot be directly measured. However, this method is

potentially problematic since RV itself is an estimator and may contain noise. Moreover,

it is meaningless to test the volatility forecast of the IVSV model by comparing it to

the future realized volatility. All four models in this paper share a common specification

of the return equation. Conditional on ht+1, yt+1 follows a normal distribution with

constant mean but dynamic variance eht+1 . By comparing the density forecasts of yt+1,

we also compare the prediction of ht+1, for the reason that an accurate prediction of

ht+1 leads to better density forecasts of of yt+1.

We examine whether realized volatility or implied volatility improves the return
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density forecasts by comparing the logarithmic predictive likelihood of one-day ahead

returns. Previous work (Maheu and McCurdy 2011) shows that the predictive likelihood

is improved by incorporating RV. Given our model specification M , we evaluate the

following logarithmic predictive likelihood:

T−1∑
t=T−τ−1

log (pM (yt+1|y1:t, RV1:t, IV1:t)) , (2.12)

where y1:t, RV1:t and IV1:t represent the available observations of returns and volatility

at time t. So pM (yt+1|y1:t, RV1:t, IV1:t) is the predictive likelihood of one-day ahead

return yt+1 with available observations at time t according to model M . Given the

posterior sampling results {Θ(i)
M,t}

N

i=1 by fitting model M with available observations

and iid draws {ε(i)}Ni=1 from a standard normal distribution, the predictive likelihood in

Equation (2.12) is estimated as:

pM (yt+1|y1:t) ≈
1
N

N∑
i=1

fN (yt+1|µ(i)
M,t, exp(α(i)

M,t + δ
(i)
M,th

(i)
M,t + σh

(i)
M,tε

(i))), (2.13)

where fN (x|µ, σ2) represents the likelihood function of a normal distribution with mean

µ and variance σ2 evaluated at x and we set τ = 3000, N = 10000. For SPY ETF,

the predictive window starts January 31st, 2003, and ends December 31st, 2014. For

individual stocks, the predictive window starts January 31st, 2006, and ends December

29th, 2017. The predictive window in both cases covers the 2008 financial crisis period.

A higher logarithmic predictive likelihood indicates a better predictive performance. To

compare two models, M1 and M2, we focus on the logarithmic predictive Bayes factor,

which is defined as:

T−1∑
t=T−τ−1

log (pM1(yt+1|y1:t))−
T−1∑

t=T−τ−1
log (pM2(yt+1|y1:t)) . (2.14)
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A logarithmic predictive Bayes factor, that is greater than 5, strongly supports model

M1 over M2. We report the summary of logarithmic predictive likelihood in Table 2.5.

Models SPY AAPL BAC C GE IBM JCP
SV -3995.31 -5962.00 -6545.27 -7085.19 -5155.67 -4716.11 -7449.77
RVSV -3926.60 -5912.88 -6271.46 -6268.22 -5103.00 -4665.63 -7366.88
IVSV -3958.34 -5920.91 -6248.25 -6257.96 -5146.30 -4697.92 7402.07
RVIVSV -3954.21 -5920.00 -6244.87 -6254.87 -5143.54 -4750.48 -7426.97

Table 2.5: The predictive log-likelihood results.

From Table 2.5, the obvious conclusion we can make is that the inclusion of either

RV or IV will significantly improve the out-of-sample return prediction. For SPY, the

logarithmic Bayes factor of the IVSV model over the benchmark SV model is 36.97

(-3958.34 − -3995.31), which is strong evidence of the superiority of IVSV over SV.

However, the RVSV model has a logarithmic Bayes factor of 68.71 (-3926.60 − -3995.31)

compared to the simple SV model. Since a logarithmic Bayes factor greater than 5 is

already strong evidence, the improvement of RV or IV is substantial compared to the

simple SV model. For all individual stocks, we observe consistent improvement from

including RV and IV, especially for the two financial stocks, Bank of America (BAC)

and Citibank (C). For Citibank, the logarithmic Bayes factor of the IVSV (RVSV) model

is 827.23 (816.97). The magnitude of improvement compared to the simple SV model is

striking.

As we have discussed, the IVSV (RVSV) model is a non-linear common factor model

with two observations, return and IV (RV). The simple SV model can only infer the

latent volatility from the second moment of the return series, while IVSV (RVSV) can

directly utilize the volatility measure as another observation in addition to the return

series. This is important for highly volatile individual stocks like BAC or C since our

sample period covers the 2008 financial crisis. The out-of-sample forecasting results

confirm that both IV and RV are informative in identifying the real volatility process.
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Compared to the benchmark SV model, the IVSV and RVSV exploit additional data

with the common factor (the latent volatility ht) and achieve massive improvements in

forecast quality for returns.

Moreover, comparing RVSV and IVSV, we find that RVSV generally outperforms

IVSV. Taking the SPY as an example; the logarithmic Bayes factor of RVSV over IVSV

is 31.7 (-3926.60 − -3958.3), which is a strong evidence of the superiority of RVSV over

IVSV. Except for the two banking stocks, RVSV dominates IVSV in return forecasting.

As discussed in the previous section on in-sample empirical results, the RVSV yields

a more volatile latent volatility process compared to IVSV and SV. The out-of-sample

results favor the volatile latent volatility. In fact, the real volatility process is a rough

process with heteroscedasticity and jumps (Andersen et al. 2007; Corsi et al. 2008;

Gatheral et al. 2018). The modeling of the volatility process itself is an ongoing research

topic. The standard AR(1) specification of the latent volatility process in the SV model

is not sufficient to capture all the properties of the volatility process. Gatheral et al.

2018 use fractional Brownian motion to model the volatility process. RV, as a model-free

estimator of the real volatility, contains all the documented and undocumented properties

of the real volatility process. The common factor model specification of RVSV leads to

a latent volatility process that captures the dynamics of the RV process. The out-of-

sample forecasting performance of RVSV indicates that the high volatile latent volatility

from RVSV is not merely a result of the microstructure noise of RV; it also reflects

the properties of the real volatility process. Compared to the smoother latent volatility

process from the IVSV, which could be biased due to the risk premium embodied in

IV, RVSV better captures the properties of the real volatility and produce better return

forecasts.
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Unfortunately, jointly estimating the returns, RV and IV, as the RVIVSV, is in-

effective in utilizing the information from both RV and IV. From Table 2.5, RVIVSV

has better predictive performance only when IVSV has better predictive performance

compared to RVSV (on stocks C and BAC). Moreover, RVIVSV is not significantly

better than IVSV on these two stocks. The logarithmic Bayes factor of RVIVSV over

IVSV is 3.38 (3.09) for BAC (C), which does not support a significant difference between

RVIVSV and IVSV. When RVSV is better than IVSV, RVIVSV can be even worse. For

IBM, RVIVSV is worse than the benchmark SV model with a logarithmic Bayes factor

of -34.37. As we discussed, modeling both RV and IV with a single common latent

volatility could be misspecified. RV and IV demonstrate different proprieties, and the

inferred latent volatility of RVIVSV is always similar to IV and attributes RV as noises.

Modeling return, RV and IV jointly needs further elaborations.

2.5 Conclusion

This paper extends the realized stochastic volatility model by using implied volatility in

the SV framework. Besides, we modify the single move sampler of latent volatility ht to

include information from RV and IV. Further extension to a block move sampler of ht

can be quickly conducted.

The estimation results show that there is a significant difference between the latent

volatility processes sampled from the simple SV model and RVSV/IVSV. The IVSV

model has a relatively stable latent volatility process with stronger auto-correlation and

less noise, while the RVSV model has a volatile process with weaker auto-correlation

and higher noise. When incorporating both RV and IV into the SV framework si-

multaneously, implied volatility, rather than realized volatility, plays a dominant role in

identifying the latent volatility. As for out-of-sample prediction, RVSV generally obtains
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better one-day forward return density forecasts according to the logarithmic predictive

likelihood. The IVSV model is better for highly volatile stocks like banking stocks during

our sample period. The latent volatility process of IVSV could be biased and smoothed

since the implied volatility contains the risk premium and reflects the volatility of the

following 1-month. As a result, IVSV and IVRVSV are inferior to RVSV in capturing

the real volatility process of daily equity returns.

Finally, the RVIVSV model specification fails to effectively utilize information from

both RV and IV in out-of-sample predictions. Our results suggest that it is not enough

to model equity returns, realized volatility and implied volatility with a single latent

factor. Implied volatility is not only affected by the underlying equity market, but also

affected by the option market or even by the volatility market like the VIX index, which

is a tradable market itself. Further study regarding implied volatility and the realized

volatility is necessary for a joint model.
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Chapter 3

Improving Asymmetric Stochastic

Volatility Models with Ex-post

Volatility

3.1 Introduction

The asymmetric stochastic volatility (ASV) model is an important extension of the sim-

ple stochastic volatility (SV) model to document the asymmetric correlation between

equity returns and volatility. To be specific, equity returns tend to be negatively corre-

lated with current or future volatility changes. Moreover, this asymmetry is stronger for

market indexes (aggregate market) than individual stocks (Kim and Kon 1994; Tauchen

et al. 1996; Andersen et al. 2001). Harvey and Shephard 1996 propose a asymmetric

stochastic volatility model (ASV-HS hereafter), in which the equity return innovation

is correlated with future volatility changes. Jacquier et al. 2004 propose an alternative

asymmetric stochastic volatility model (ASV-JPR hereafter), in which return innovation

is correlated with synchronous volatility changes. Yu 2005 and Men et al. 2017 compare
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these two model specifications. Yu 2005 show that return series under the ASV-JPR

specification is not a martingale. Moreover, Yu 2005 further shows that ASV-HS is

superior to ASV-JPR using a model fitting (marginal likelihood) comparison.

The economic interpretation of this observed asymmetry relies on the causal relation

between equity returns and volatility. If the impact on returns causes the volatility

moves, the return-volatility asymmetry can be explained as the leverage effect (see Black

1976; Christie 1982). A stock price decline leads to a higher leverage ratio of the firm,

which results in higher risk or volatility. The ASV-HS specification is consistent with

this causality as current innovation in the returns is correlated with future volatility

moves. However, if the impact on volatility causes the return changes, the asymmetry

can be alternatively interpreted as volatility feedback. An expected increase in volatility

leads to a higher required rate of return if volatility risk is priced (see French et al. 1987;

Campbell and Hentschel 1992). Previous work has examined and compared these two

effects. Figlewski and Wang 2000 argue that the magnitude of the asymmetry could be

too large to be explained by the changing of leverage ratios. Andersen et al. 2001 point

out that the stronger asymmetry at the aggregate market level compared to individual

stocks lends support to the volatility feedback effect rather than the leverage effect. A

recent work by Jensen and Maheu 2018 find supportive evidence for volatility feedback

effect in monthly data.

The identification of this causality depends on the lead-lag relation between return

and volatility. Whether the returns lead the future volatility changes or the inverse. As

Bollerslev et al. 2006 point out, the return and volatility innovations appear immediately

at daily (or lower) frequencies, and the causality seems indistinguishable. They further

investigate the asymmetry with higher frequency data and find that sharp market de-

clines over five-minute intervals lead to a rise in volatility lasting up to several days.
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However, as we will show in the Section 3.5, fitting the ASV-HS model with daily and

weekly market index returns still yields lead-lag return-volatility correlations that are

far from zero.

Besides volatility prediction and stochastic volatility modelling, the asymmetry is

also the foundation of analyzing tradable volatility products. Given the asymmetry

(inverse return-volatility correlation), investors can utilize volatility products to further

hedge the exposure of volatility (Vega) of equity, derivative and mixed portfolios. Alexan-

der et al. 2016 develop the theoretical framework of diversifying risks with volatility prod-

ucts. The existence of volatility products facilitates the contemporary return-volatility

moves and thus correlation. In fact, a strong lead-lag return-volatility correlation, which

implies predictable volatility changes like those of the ASV-HS model, could potentially

violate the market efficiency of volatility products. In the late 1990s, investors could only

trade volatility through portfolio of delta hedged options or variance swaps. Carr and

Lee 2009 provide an extensive survey of these volatility derivatives. Recent financial in-

novations allow market participants to trade volatility directly through future contracts

or ETFs/ETNs based on a major volatility index e.g. VIX and VSTOXX (see Alexan-

der et al. 2015 for further details). Efficient markets implies that information from the

equity return should be fully reflected in its corresponding volatility products in the

same trading periods, which implies the contemporaneous return-volatility correlation

structure.

The rapid growth of volatility markets and the intensive focus on stochastic volatility

modeling requires research to re-examine the structure and magnitude of the return-

volatility asymmetry. In this chapter, we use simulation studies to show that estimating

the existing ASV models with just daily or lower frequency return data leads to erro-

neous estimation of the return-volatility relation. To be specific, both the ASV-HS and
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ASV-JPR models only reflect the general asymmetry. However, they only represent the

asymmetry according to their own return-volatility correlation structure if the true corre-

lation structure is different from their specification. The simulation evidence shows that

it is difficult to differentiate the lead-lag or synchronous return-volatility correlations

by fitting these existing ASV models with just return data. In other words, significant

(far from zero) correlation coefficients from fitting the return-based ASV models, are

insufficient to draw the conclusion that the true return-volatility relation is consistent

with the corresponding ASV models’ correlation structures.

The erroneous correlation could be a result of inadequate volatility measures. In

the traditional SV model, the latent volatility process is inferred from the return series

according to the corresponding ASV model’s specification. So the estimated correlation

parameter only reflects correlation of the return series and the inferred latent volatility

process, but may be inconsistent with the true return-volatility correlation coefficient.

To address this erroneous return-volatility correlation, we propose a simple solution

by incorporating accessible volatility measures, such as volatility index (VIX), realized

volatility (RV) and bi-power variation (BV). By jointly modeling the equity return and

corresponding volatility measures (see Takahashi et al. 2009), the latent volatility process

is no longer entirely or endogenously determined by the return series alone. We find that

correlation coefficients differ significantly from the original ASV models (ASV-HS and

ASV-JPR). Different volatility measures favor different volatility structures. Consistent

with our expectations, the forward looking volatility measure (VIX) supports stronger

synchronous correlation and weaker lead-lag correlation compared to RV and BV. Out-

of-sample forecasts support our conclusion that ASV models with volatility measures

greatly improve the out-of-sample return density prediction.

This chapter is organized as follows. Section 3.2 presents the ASV-HS/ASV-JPR
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models and their corresponding model specifications given volatility measures. Section

3.3 further illustrates how the ASV-HS model could generate pseudo-correlation coeffi-

cients and how incorporation of a volatility measure could mitigate this problem. Section

3.4 discusses the data set covered in this chapter. Section 3.5 presents the empirical re-

sults of in-sample estimation and out-of-sample return density forecasts. Section 3.6

concludes the chapter.

3.2 Model Specification

3.2.1 Asymmetric Stochastic Volatility Models

The continuous asymmetric stochastic volatility process of the logarithmic equity price

St and the corresponding centered logarithmic volatility process log(σ2
t ) (see Yu 2005)

are:

dSt = σtσydB
y
t , (3.1)

d log(σ2
t ) = β log(σ2

t )dt+ σhdB
h
t . (3.2)

There is no constant term in the volatility process (equation. (3.2)) under our specifi-

cation. However, it is equivalent to having a constant term σy in equation (3.1) so that

the volatility process is a centered volatility process with an unconditional mean of 0.

dBy
t and dBh

t are two Brownian processes with By
t dB

h
t = ρdt. The consensus on this

correlation coefficient is ρ < 0.

To estimate the discrete time SV model, we need to discretize this continuous model.

We can choose either forward difference (dt ≈ 4t = t + 1 − t) or backward difference

(dt ≈ 4t = t− t− 1). If we choose backward difference in the price equation (3.1), i.e.

dSt ≈ St − St−1 and forward difference in the volatility equation (3.2), i.e. d log(σ2
t ) ≈

74

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Doctor of Philosophy– Zehua Zhang; McMaster University– School of Business

log(σ2
t+1)− log(σ2

t ), the resulting discrete stochastic volatility model will be the ASV-HS

model of Harvey and Shephard 1996 in equations (3.3)-(3.5). Current return innovation

ut and future volatility innovation vt+1 jointly follow a bi-variate normal distribution.

yt ≡ log(St)− log(St−1) = exp(ht/2)ut, (3.3)

ht+1 = δht + vt+1, (3.4) ut

vt+1

 ∼N


0

0

 ,
 σ2

y ρσyσh

ρσyσh σ2
h


 . (3.5)

This specification is consistent with the leverage effect interpretation as we can see from

the following uni-variate representation of the ASV-HS model:

yt = µ+ exp(ht/2)ut, ut ∼ N(0, σ2
y), (3.6)

ht+1 = δht + ρσh
σy

ut +
√

1− ρ2 wt+1, wt+1 ∼ N(0, σ2
h). (3.7)

In equation (3.7), future volatility ht+1 can be treated as a dependent variable with

current volatility ht and return innovation ut as independent variables. The correlation

coefficient measures the effect of current return innovation on future volatility. The

return-volatility correlation structure of the ASV-HS model is a lead-lag relation in

which current equity return is associated with future volatility and is consistent with

the leverage effect interpretation of the asymmetry.

If we take backward difference on both the price and volatility equations (dSt ≈

St−St−1 and d log(σ2
t ) ≈ log(σ2

t )− log(σ2
t−1) for (3.1) and (3.2)), the resulting discrete

stochastic volatility model will be the ASV-JPRmodel of Jacquier et al. 2004 in equations

(3.8)-(3.10). Synchronous return innovation ut and volatility innovation vt jointly follow
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a bi-variate normal distribution.

yt ≡ log(St)− log(St−1) = exp(ht/2)ut, (3.8)

ht = δht−1 + vt, (3.9)ut
vt

 ∼N


0

0

 ,
 σ2

y ρσyσh

ρσyσh σ2
h


 . (3.10)

Similarly, the following uni-variate representation of the ASV-JPR model shows that

there is no lead-lag relation between the return and volatility.

yt = µ+ exp(ht/2)ut, ut ∼ N(0, σ2
y), (3.11)

ht = δht−1 + ρσh
σy

ut +
√

1− ρ2 wt, wt ∼ N(0, σ2
h). (3.12)

Given equation (3.12), we are unable to identify either volatility feedback or the

leverage effect (Men et al. 2017) as the return and volatility innovations are immediate

in this model. The return-volatility correlation structure of the ASV-JPR model is

consistent with the synchronous asymmetric correlation, especially at lower frequencies,

like weekly or even monthly, where we cannot differentiate between return and volatility

in the lead-lag relation.

Interestingly, if we take the forward difference in the price equation (3.1) (dSt ≈

St+1 − St) and the backward difference in the volatility equation (3.2) (d log(σ2
t ) ≈

log(σ2
t ) − log(σ2

t−1)) we obtain the following asymmetric stochastic volatility model,

which is consistent with the volatility feedback effect (ASV-VFB hereafter):
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yt+1 ≡ log(St+1)− log(St) = exp(ht+1/2)ut+1, (3.13)

ht = δht−1 + vt, (3.14)ut+1

vt

 ∼N


0

0

 ,
 σ2

y ρσyσh

ρσyσh σ2
h


 . (3.15)

We are not proposing the ASV-VFB model as a reasonable ASV model. We only use

this model for data generation purposes as the return-volatility correlation structure is

consistent with the volatility feedback assumption given the following uni-variate repre-

sentation:

yt+1 = exp(ht+1/2)(ρσy
σh

vt +
√

1− ρ2 wt+1), wt+1 ∼ N(0, σ2
y), (3.16)

ht = δht−1 + vt, vt ∼ N(0, σ2
h). (3.17)

3.2.2 ASV Models with Volatility Measures

If we have a volatility measure denoted as VMt, we can jointly model the return yt and

the volatility measure VMt (see Takahashi et al. 2009). Combining the ASV-HS model

with a volatility measure leads to the following VM-ASV-HS model specification:

yt = exp(ht/2)ut, (3.18)

ht+1 = δht + vt+1, (3.19)

VMt = a+ bht + et, et ∼ N(0, σ2
VM ), (3.20) ut

vt+1

 ∼N


0

0

 ,
 σ2

y ρσyσh

ρσyσh σ2
h


 . (3.21)
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The volatility measure VMt can be the volatility index(VIX), realized volatility(RV)

or bi-power variation(BV). For notation purposes, we will denote them as VIX-ASV-

HS, RV-ASV-HS, and BV-ASV-HS respectively. Similarly, we could also extend the

ASV-JPR model with a volatility measure as follows:

yt = exp(ht/2)ut, (3.22)

ht = δht−1 + vt, (3.23)

VMt = a+ bht + et, et ∼ N(0, σ2
VM ), (3.24)ut

vt

 ∼N


0

0

 ,
 σ2

y ρσyσh

ρσyσh σ2
h


 . (3.25)

Under the state space model specification, we do not need the potential volatility

measure VMt (can be either implied volatility, realized volatility, bi-power variation,

etc.) to be equal to the latent volatility. As long as the volatility measure is correlated

with the true volatility process, we can use it as extra information to identify the latent

volatility ht. Note that the volatility measure is not necessarily linearly correlated with

the latent volatility with normal noise et ∼ N(0, σ2
VM ) as in equation (3.20) and (3.24).

Investigating the exact non-linear relation between the potential volatility measure and

the true latent volatility is beyond the scope of this paper. However, a simple linear

relation works well to help us study the asymmetry.
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For the balance of this chapter, we use the following specification of VM-ASV-HS:

yt = exp(ht/2)ut, (3.26)

ht+1 = δht + vt+1, (3.27)

V̂ M t = bht + et, et ∼ N(0, σ2
VM ), (3.28) ut

vt+1

 ∼N


0

0

 ,
 σ2

y ρσyσh

ρσyσh σ2
h


 . (3.29)

Given the specification of the latent volatility, the long run mean E(ht) = 0. How-

ever, the volatility measures will have different means. So we use the centered volatility

measure: V̂ M t = VMt−VM t, where VM t is the sample mean of the volatility measure

series. Without loss of generality, excluding the constant parameter in the volatility

measure equation and centering the volatility measure data improves the identification

of the model.

Similarly, the VM-ASV-JPR model we will use for the remaining this chapter is:

yt = exp(ht/2)ut, (3.30)

ht = δht−1 + vt, (3.31)

V̂ M t = bht + et, et ∼ N(0, σ2
VM ), (3.32)ut

vt

 ∼N


0

0

 ,
 σ2

y ρσyσh

ρσyσh σ2
h


 . (3.33)
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3.3 Simulation Study

3.3.1 ASV Models with Returns

We use Bayesian MCMC to estimate the ASV-HS, ASV-JPR, VM-ASV-HS and VM-

ASV-JPR models. (Details regarding the MCMC steps can be found in Appendix C1.)

We set the total number of MCMC iterations to be 100,000 and we keep 1 for every 10

draws. We also set 5,000 burn-in iterations for parameter convergence. To avoid effects

of prior choice, we set flat prior distributions as follows:

• δ: Conjugate truncated normal distribution N(0.98, 4)I|δ|<1. A normal distribu-

tion with mean 0.98 and variance 4 and truncated for stationary.

• σy, σh, ρ: Conjugate Wishart distribution W (n, S−1
0 ), where n = 3 and

S0 =

0.852 0

0 0.22

 .
We set zero correlation in the inverse of the scale matrix. The choices of degree

of freedom guarantees the Wishart prior is uninformative.

• b: Conjugate normal distribution N(1, 10).

• σVM : Conjugate inverse gamma prior distribution IG(3
2 ,

0.1
2 ).

First, let’s examine the estimation results of fitting the ASV-HS and ASV-JPR model

with the full sample daily and weekly S&P500 index returns. The data range from 1957-

03 to 2019-06 (15688 daily and 3252 weekly observations). Table 3.1 summarizes the

estimation results.

80

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Doctor of Philosophy– Zehua Zhang; McMaster University– School of Business

ASV-HS Day ASV-HS Week ASV-JPR Day ASV-JPR Week
Para Mean Stdev Mean Stdev Mean Stdev Mean Stdev
δ 0.9795 0.0019 0.9404 0.0101 0.9852 0.0015 0.9605 0.0063

(0.9756, 0.9832) (0.9194, 0.9587) (0.9821, 0.9880) (0.9475, 0.9720)

σy 0.7591 0.0216 1.7653 0.0629 0.8573 0.0310 1.9965 0.0867
(0.7213, 0.8043) (1.6409, 1.8908) (0.8026, 0.9229) (1.8387, 2.1792)

σh 0.1810 0.0075 0.2693 0.0246 0.1583 0.0064 0.2371 0.0185
(0.1670, 0.1971) (0.2246, 0.3200) (0.1459, 0.1710) (0.2020, 0.2742)

ρ -0.5701 0.0225 -0.5753 0.0437 -0.6004 0.0245 -0.6738 0.0382
(-0.6129, -0.5258) (-0.6587, -0.4851) (-0.6457, -0.5505) (-0.7431, -0.5935)

Inside the parentheses is the 95% density interval.

Table 3.1: ASV-HS and ASV-JPR with the full sample S&P500
daily and weekly returns.

Table 3.1 confirms the generally accepted asymmetry as both models lead to correla-

tion coefficients around −0.6. However, the results may be confusing as current returns

can be correlated with either current or future volatility from both a daily or weekly

perspective. Yu 2005 shows the the ASV-HS model is preferred to ASV-JPR based on

the marginal likelihood. However, it is still not sufficient to conclude the correlation

coefficient parameter in the ASV-HS model reflects the true return-volatility correlation

structure. In fact, we expect the leverage effects to be weak for the weekly returns as the

return and volatility changes tend to be synchronous and the lead-lag return-volatility

relation should be weaker. However, as shown in the second column of Table 3.1, we

still observe a strong lead-lag return-volatility correlation under weekly frequency and

the correlation coefficients ρ are basically the same as those of the daily returns. Now

we move on to the following simulation study and illustrate how ASV models (both

ASV-HS and ASV-JPR) fail to identify the true return-volatility relation.

We generate simulated data according to the following examples of ASV-HS, ASV-

JPR, ASV-FB and SV models, which correspond to leverage effect, synchronous corre-

lation, volatility feedback and no correlation. The parameters for data simulation are

chosen according to the estimation results of Table 3.1 so that we are simulating data

reasonably. Actually, all the simulation results of this section are robust to different
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parameter settings.

1. To represent the leverage effects, i.e., return leads volatility, we have the following

ASV-HS simulation:

yt = exp(ht/2)ut, (3.34)

ht+1 = 0.98ht + vt+1, (3.35) ut

vt+1

 ∼N


0

0

 ,
 0.852 −0.6× 0.85× 0.2

−0.6× 0.85× 0.2 0.22


 . (3.36)

2. To represent the synchronous correlation, i.e., return and volatility changes are

contemporaneous, we have the following ASV-JPR simulation:

yt = exp(ht/2)ut, (3.37)

ht = 0.98ht−1 + vt, (3.38)ut
vt

 ∼N


0

0

 ,
 0.852 −0.6× 0.85× 0.2

−0.6× 0.85× 0.2 0.22


 . (3.39)

3. To represent the volatility feedback, i.e., volatility leads return, we have the fol-

lowing ASV-VFB simulation:

yt+1 = exp(ht+1/2)ut+1, (3.40)

ht = 0.98ht−1 + vt, (3.41)ut+1

vt

 ∼N


0

0

 ,
 0.852 −0.6× 0.85× 0.2

−0.6× 0.85× 0.2 0.22


 . (3.42)

4. If there is no return-volatility correlation (ρ = 0), all ASV specifications will
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degenerate into a symmetric SV model. So we also include the following SV

simulation for comparison:

yt = exp(ht/2)ut, (3.43)

ht = 0.98ht−1 + vt, (3.44)ut
vt

 ∼N


0

0

 ,
0.852 0

0 0.22


 . (3.45)

We simulate 4000 return observations of the ASV-HS, ASV-JPR, ASV-VFB and

SV examples respectively. Then we fit the ASV-HS and ASV-JPR models with these

simulated return series. The estimation results are summarized in Tables 3.2 and 3.3.

HS Simulation JPR Simulation VFB Simulation SV Simulation
Para Mean True Mean True Mean True Mean True
δ 0.9793 0.98 0.9757 0.98 0.9811 0.98 0.9717 0.98

[0.0033] [0.0044] [0.0038] [0.0038]

(0.9725, 0.9853) (0.9665, 0.9836) (0.9731, 0.9880) (0.9605, 0.9812)

σy 0.8284 0.85 0.7986 0.85 0.8199 0.85 0.8329 0.85
[0.0556] [0.0461] [0.0614] [0.0576]

(0.7289, 0.9493) (0.7155, 0.8956) (0.7103, 0.9442) (0.7345, 0.9649)

σh 0.2132 0.2 0.1881 0.2 0.1940 0.2 0.2093 0.2
[0.0139] [0.0139] [0.0139] [0.0155]

(0.1873, 0.2416) (0.1615, 0.2165) (0.1670, 0.2248) (0.1806, 0.2413)

ρ -0.5856 -0.6 -0.4412 0 -0.3227 0 0.0083 0
[0.0444] [0.0564] [0.0604] [0.0575]

(-0.6676, -0.4934) (-0.5484, -0.3280) (-0.4369, -0.2020) (-0.1031, 0.1195)

The table reports standard deviation in [] and 0.95 density interval in ().

Table 3.2: Fitting the ASV-HS model with simulated data

Table 3.2 shows the results of estimating the ASV-HS model with ASV-HS, ASV-

JPR, ASV-VFB and SV simulated returns. The first column confirms that the ASV-HS

model can correctly identify the true parameters if the return series is truly generated

as the ASV-HS model. This also supports the correctness of our Bayesian MCMC

estimation. In addition, fitting the ASV-HS model with a symmetric SV simulated
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return series further confirms that the model can identify the symmetric SV as a special

case of asymmetric SV.

However, when we fit the ASV-HS model with ASV-JPR and ASV-VFB simulated

returns, the model erroneously deduces non-zero correlation coefficients (the 95% density

intervals also do not include zero). Given the ASV-JPR and ASV-VFB specification,

the current return is not related to the future volatility change and we expect estimated

ρ close to zero when fitting the ASV-HS model with those simulated returns. However,

as we can see from Table 3.2, fitting ASV-HS with ASV-JPR (ASV-VFB) simulation

leads to ρ = −0.44 (ρ = −0.32), which is far from zero. In fact, even the upper bounds

of the 95% density intervals are far from zero. The simulation results here show that

the estimated correlation coefficient ρ of the ASV-HS model should not be interpreted

as a causal relation. In other words, the estimated parameter ρ of the ASV-HS model

is not necessarily supportive evidence for the leverage effect. In fact, even if the true

asymmetric correlation is volatility changes leading returns (ASV-VFB), the ASV-HS

still yields ρ far from zero.

HS simulation JPR simulation VFB simulation SV simulation
Para Mean True Mean True Mean True Mean True
δ 0.9833 0.98 0.9785 0.98 0.9835 0.98 0.9720 0.98

[0.0031] [0.0039] [0.0033] [0.0053]

(0.9770, 0.9889) (0.9704, 0.9857) (0.9765, 0.9895) (0.9610, 0.9816)

σy 0.9167 0.85 0.8523 0.85 0.8720 0.85 0.8469 0.85
[0.0768] [0.0495] [0.0626] [0.0559]

(0.7764, 1.0828) (0.7582, 0.9507) (0.7576, 0.9963) (0.7571, 0.9747)

σh 0.1898 0.2 0.1956 0.2 0.1916 0.2 0.2079 0.2
[0.0131] [0.0130] [0.0134] [0.0157]

(0.1660, 0.2172) (0.1716, 0.2223) (0.1667, 0.2192) (0.1786, 0.2400)

ρ -0.4451 0 -0.5857 -0.6 -0.5270 0 0.0220 0
[0.0547] [0.0442] [0.0502] [0.0575]

(-0.5487, -0.3347) (-0.6696, -0.4945) (-0.6215, -0.4242) (-0.0923, 0.1386)

The table reports standard deviation in [] and 0.95 density interval in ().

Table 3.3: The ASV-JPR model with simulated data

Nevertheless, a similar issue exists in the ASV-JPR model. Table 3.3 summarizes the
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estimation results of fitting the ASV-JPR model with ASV-HS, ASV-JPR, ASV-VFB

and SV simulated returns. Similarly, if the return series is generated by the ASV-JPR

model or the symmetric SV model, the ASV-JPR model can identify the true parameters

correctly. However, the model will also erroneously deduce non-zero correlation coeffi-

cients that are far from zero if the true return-volatility correlation structure is either

specified as ASV-HS (leverage effect) or ASV-VFB (volatility feedback). Similarly the

estimated parameter ρ of the ASV-JPR model does not necessarily serve as evidence of

the synchronous return-volatility correlation.

To conclude, both ASV models are consistent with the general asymmetry, i.e. the

negative correlation between return and volatility, and both ASV models can also identify

the correct correlation coefficient (ρ = 0) if there is no asymmetry. However, when

there is asymmetry, both ASV models can only reflect the asymmetry according to

their own correlation structure even if the true structure is different. This could be

misleading when we are trying to interpret the correlation coefficient parameter ρ. Given

the simulation study, irrespective of whether the exact return-volatility correlation is

return leading volatility (leverage effect), volatility leading return (volatility feedback)

or synchronous correlation, both asymmetric specifications (ASV-HS and ASV-JPR) will

produce significant correlation coefficients far from zero. As a result, if we are trying

to differentiate the exact causal or lead-lag relation between return and volatility, the

ASV models with return series alone may lead to a conclusion that is inconsistent with

the true return-volatility correlation. An estimated correlation coefficient far from zero

would lend little support to the correctness of the model’s correlation structure.

Consistent with what we observed in Table 3.1, given weekly frequency, the leverage

effect should be weak. However, the asymmetry is still valid and strong for weekly

returns. So we expect weaker lead-lag correlation, but stronger synchronous correlation.
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Consistent with the simulation results, the second column of Table 3.1 shows that ASV-

HS still produce a lead-lag return-volatility correlation coefficient with weekly returns.

This indicates that the ASV-HS model still represents the asymmetry as a lead-lag

correlation even though the leverage effect should be weak for weekly returns.

This arises from the fact that volatility is not directly observable and the stochastic

volatility models treat the volatility process as a latent process. More importantly,

all the ASV models will infer the latent process according to their own return-volatility

correlation specification. As a result, the correlation between the returns and the inferred

latent volatility process could be misleading and inconsistent with the true correlation.

Now we will show how this problem could be mitigated if we have volatility measures

that can be jointly modeled with the return series.

3.3.2 ASV Models with Returns and Volatility Measures

Given each simulated return series and their corresponding true latent volatility process

(the ASV-HS simulation, the ASV-JPR simulation and the ASV-VFB simulation respec-

tively), we can further simulate the corresponding volatility measures that are linearly

correlated to the latent volatility process as follows.

VMhigh
t = ht + et, ehight ∼ N(0, 0.22), (3.46)

VM low
t = ht + et, elowt ∼ N(0, 0.022). (3.47)

For comparison purposes, we simulate two volatility measures that differ in the

amount of noise. VMhigh
t is a volatility measure with more noise as ehight in equa-

tion (3.46) has a standard deviation of 0.2 (same as vt in the simulated latent volatility

process). VM low
t is another volatility measure with less noise as the standard deviation
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of elowt in equation (3.47) is only 0.02. Now for each ASV simulated return data, we have

two corresponding volatility measures. In total we have six simulated return volatility

measure pairs, which are as follows:

1. ASV-VFB returns with low noise volatility measure (VFB Low).

2. ASV-VFB returns with high noise volatility measure (VFB High).

3. ASV-JPR returns with low noise volatility measure (JPR Low).

4. ASV-JPR returns with high noise volatility measure (JPR High).

5. ASV-HS returns with low noise volatility measure (HS Low).

6. ASV-HS returns with high noise volatility measure (HS High).

Now we can fit the VM-ASV-HS model with VFB Low, VFB High, JPR Low and JPR

High data sets to check if the volatility measure can help to identify the true return-

volatility correlation parameter, which should be zero in these four data sets. The

estimation results are summarized in Table 3.4.

As expected, inclusion of a low noise volatility measure will help the model to identify

the true correlation parameter. Fitting the VM-ASV-HS model with both VFB Low and

JPR Low data sets will lead to correlation parameters (ρ) that are very close to zero

(-0.0076 and -0.0786 respectively). Even if we have a high noise volatility measure, ρ will

also decrease in magnitude (closer to zero) compared to the result in Table 3.2, where

we fit the ASV-HS model with returns alone.

Similarly, we can also fit the VM-ASV-JPR model with VFB Low, VFB High, HS

Low and HS High data. The results are summarized in Table 3.5. Consistent with

the VM-ASV-HS results, inclusion of a volatility measure with low noise drives the
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VFB Low VFB High JPR Low JPR High
Para Mean True Mean True Mean True Mean True
δ 0.9831 0.98 0.9788 0.98 0.9773 0.98 0.9754 0.98

[0.0029] [0.0033] [0.0033] [0.0033]

(0.9773, 0.9888) (0.9723, 0.9853) (0.9708, 0.9837) (0.9689, 0.9820)

σy 0.8545 0.85 0.8544 0.85 0.8365 0.85 0.8394 0.85
[0.0095] [0.0098] [0.0093] [0.0096]

(0.8358, 0.8732) (0.8353, 0.8735) (0.8188, 0.8551) (0.8207, 0.8584)

σh 0.1894 0.2 0.2063 0.2 0.1844 0.2 0.1849 0.2
[0.0050] [0.0073] [0.0055] [0.0068]

(0.1798, 0.1995) (0.1922, 0.2208) (0.1743, 0.1961) (0.1719, 0.1982)

ρ -0.0076 0 -0.0727 0 -0.0786 0 -0.2780 0
[0.0175] [0.0238] [0.0186] [0.0273]

(-0.0422, 0.0265) (-0.1203, -0.0272) (-0.1147, -0.0422) (-0.3308, -0.2238)

b 0.9926 1 0.9996 1 1.0095 1 1.0173 1
[0.0218] [0.0231] [0.0259] [0.0269]

(0.9500, 1.0346) (0.9548, 1.0449) (0.9542, 1.0576) (0.9684, 1.0745)

σVM 0.0593 0.02 0.2004 0.2 0.0610 0.02 0.2099 0.2
[0.0032] [0.0048] [0.0035] [0.0043]

(0.0530, 0.0659) (0.1910, 0.2099) (0.0540, 0.0681) (0.2014, 0.2183)

The table reports standard deviation in [] and 0.95 density interval in ().

Table 3.4: Estimation results of the VM-ASV-HS models with
the simulated return and volatility measure pairs.

correlation coefficient ρ very close to zero. Even high noise volatility measures will also

decrease the magnitude of ρ compared to Table 3.3.

Given the volatility measure, the latent volatility process {ht}nt=1 will no longer be

fully determined by the return process. With an informative (low noise) volatility mea-

sure, a greater portion of the latent volatility will be inferred from the volatility measure.

As a result, inclusion of the volatility measure will help to mitigate the issue when es-

timating the correlation coefficient. Now we will move on to the empirical application

with real world data.
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VFB Low VFB High HS Low HS High
Para Mean True Mean True Mean True Mean True
δ 0.9827 0.98 0.9800 0.98 0.9861 0.98 0.9849 0.98

[0.0029] [0.0030] [0.0026] [0.0026]

(0.9770, 0.9883) (0.9741, 0.9857) (0.9810, 0.9912) (0.9797, 0.9900)

σy 0.8597 0.85 0.8613 0.85 0.8370 0.85 0.8391 0.85
[0.0098] [0.0099] [0.0093] [0.0097]

(0.8411, 0.8790) (0.8424, 0.8809) (0.8190, 0.8554) (0.8202, 0.8583)

σh 0.1873 0.2 0.1908 0.2 0.1818 0.2 0.1816 0.2
[0.0051] [0.0063] [0.0045] [0.0061]

(0.1776, 0.1978) (0.1785, 0.2035) (0.1732, 0.1908) (0.1699, 0.1939)

ρ -0.0600 0 -0.2726 0 -0.0534 0 -0.2430 0
[0.0190] [0.0268] [0.0191] [0.0276]

(-0.0974, -0.0231) (-0.3245, -0.2192) (-0.0909, -0.0166) (-0.2968, -0.1888)

b 0.9917 1 1.0063 1 0.9984 1 1.0108 1
[0.0214] [0.0216] [0.0185] [0.0210]

(0.9489, 1.0331) (0.9655, 1.0523) (0.9630, 1.0357) (0.9714, 1.0545)

σVM 0.0631 0.02 0.2125 0.2 0.0638 0.02 0.2136 0.2
[0.0037] [0.0045] [0.0037] [0.0044]

(0.0561, 0.0704) (0.2038, 0.2213) (0.0567, 0.0711) (0.2050, 0.2222)

The table reports standard deviation in [] and 0.95 density interval in ().

Table 3.5: Estimation results of the VM-ASV-JPR models with
the simulated return and volatility measure pairs.

3.4 Equity Index and Volatility Products

3.4.1 Stock Market Indices and Volatility Measures

We focus on the following four equity indexes and their corresponding volatility measures

(IV, RV, BV) from January 2004 to June 2019:

• The S&P 500 Index (SPX) and the corresponding volatility measures: Volatility

Index (VIX), Realized Volatility and Bi-power Variation, with a total of 3,899

daily and 808 weekly observations.

• The Russell 2000 Index (RUT) and the corresponding volatility measures: Volatil-

ity Index (RVX), Realized Volatility and Bi-power Variation, with a total of 3,899

daily and 808 weekly observations.
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• The EURO STOXX 50 (STOXX) and the corresponding volatility measures:

Volatility Index (VSTOXX), Realized Volatility and Bi-power Variation, with a

total of 3,974 daily and 808 weekly observations.

• The Hong Kong Hang Seng Index (HSI) and the corresponding volatility measures:

Volatility Index (VHSI), Realized Volatility and Bi-power Variation, with a total

of 3,819 daily and 808 weekly observations.

The CBOE Volatility Index (VIX), closely followed by market participants and global

media, is the most recognized measure of the volatility of the U.S. equity market. The

VIX index went through a significant change on September 22, 2003. Before September

22, 2003, the index tracked the S&P 100 index whereas the CBOE switched to the S&P

500 index thereafter. The CBOE also adopted a revised methodology to calculate the

index. Considering that all other major volatility indices, including the Europe and

Hong Kong equity markets, follow a similar method of volatility index calculation, we

set our sample period from January 2004 to June 2019 for all equities and their volatility

measures. This choice is also consistent with the trading of volatility products as the

major tradable volatility products were launched during this period. The S&P 500

index and the Russell 2000 index are highly correlated, they may have similar volatility

processes. The inclusion of STOXX and HSI supports the robustness of our empirical

results as the European and Hong Kong markets’ volatility processes will differ from

that of the U.S. market.

We summarize the trading of volatility products related to the equity indices in our

sample as follows:

• Chicago Board Options Exchange (CBOE) launched the VIX futures in 2004 and

soon became the major volatility product in the market. The VIX option was
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introduced in 2006. There are several (leveraged) ETN/ETF products with VIX

as the underlying index. The major VIX-based ETN, according to trading volume,

is the iPath Series B S&P 500 VIX Short-Term Futures ETN (VXX) launched in

2009.

• Chicago Board Options Exchange(CBOE) launched the RVX futures in 2007. It

was delisted in 2010 and then relaunched in 2013. However, it was discontinued

in 2018. No related ETFs/ETNs are traded.

• Eurex Exchange (EUREX) launched the VSTOXX futures in 2005 and then re-

vised the future contracts in 2009. The revised contracts have 1/10 of the standard

contract size. The option of the VSTOXX index was initially listed in 2010. In

2017, EUREX introduced options with the VSTOXX futures as the underlying

asset, and the original option with the VSTOXX index as the underlying asset

was discontinued. ETN/ETF products based on VSTOXX were introduced in

2009.

• Hong Kong Exchanges and Clearing Limited (HKEx) launched the VHSI futures

in 2012.

Given our sample period, VIX-related products are the most popular products in the

U.S. equity market, whereas VSTOXX-related products are the most popular volatility

products outside the U.S., and provide investors exposure to European market volatility.

The trading of volatility indices makes them no longer by-products of equity options

and enables investors to profit directly from volatility predictions. Consistent with the

well-documented asymmetry, all the volatility indices are negatively correlated with

their underlying equity indices. This allows investors to construct further diversified

portfolios by holding the equity indices’ component companies and the volatility indices.

If the volatility market is efficient, the volatility index should include all the current

91

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Doctor of Philosophy– Zehua Zhang; McMaster University– School of Business

information, including the current underlying equity index returns so that there should

be no arbitrage opportunity in the volatility markets by utilizing the leverage effect.

However, if strong correlation between current returns and future volatility changes

exists, as in the ASV-HS model in Table 3.1 (ρ = −0.59 given the full sample estimation

results of the ASV-HS model with the S&P 500 daily returns), there could be arbitrage

opportunities with volatility products as the volatility changes are highly predictable

with current returns. As we see in the following empirical results, including VIX as the

volatility measure would lead to stronger contemporaneous return-volatility correlation

and weaker lead-lag return-volatility correlation, which is consistent with the market

efficiency of the volatility products. Moreover even including RV/BV will lead to a

much weaker lead-lag return-volatility correlation compared to the ASV-HS model with

return series alone.

3.5 Estimation Results and Forecasts

3.5.1 In-sample Estimation Results

In this section, we summarize the estimation results of fitting the ASV-HS, ASV-JPR,

VM-ASV-HS, VM-ASV-JPR with the data sets in Section 3.4. Again, we set the total

number of MCMC iterations to be 100,000 and keep 1 for every 10 draws. We also set

5,000 burn-in iterations for parameter convergence. For the following estimations, we

choose the prior distributions as follows:

• δ: Conjugate truncated normal distribution TN(0.95, 4)I|δ|<1. Truncated normal

distribution for stationary.
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• σy, σh, ρ: Conjugate Wishart distributionW (n, S−1
D ) for daily data andW (n, S−1

W )

for weekly data, where n = 3 and

SD =

0.852 0

0 0.22

 and SW =

2.02 0

0 0.32

 .
.

• b: Conjugate normal prior distribution N(1, 10).

• σVM : Conjugate inverse gamma prior distribution IG(3
2 ,

0.5
2 )

First, we report the estimation results of the ASV-HS and ASV-JPR model with the

daily and weekly S&P500 index returns ranging from 2004-01 to 2019-06. The results

are summarized in Table 3.6.

ASV-HS Day ASV-HS Week ASV-JPR Day ASV-JPR Week
Para Mean Stdev Mean Stdev Mean Stdev Mean Stdev
δ 0.9683 0.0043 0.9008 0.0268 0.9803 0.0026 0.9461 0.0113

(0.9593, 0.9762) (0.8416, 0.9450) (0.9749, 0.9851) (0.9223, 0.9662)

σy 0.8106 0.0373 1.7554 0.1055 1.1421 0.0791 2.2878 0.1977
(0.7425, 0.8896) (1.5598, 1.9753) (1.0070, 1.2850) (1.9384, 2.6982)

σh 0.2650 0.0172 0.4037 0.0600 0.2213 0.0125 0.3225 0.0353
(0.2326, 0.3000) (0.2957, 0.5318) (0.1981, 0.2461) (0.2568, 0.3953)

ρ -0.7410 0.0320 -0.6855 0.0625 -0.8225 0.0266 -0.8159 0.0449
(-0.7990, -0.6731) (-0.7951, -0.5528) (-0.8689, -0.7637) (-0.8892, -0.7117)

Inside the parentheses is the 95% density interval.

Table 3.6: Estimation results of ASV models with S&P500 daily
and week returns.

For this sample period, we observe stronger asymmetry between return and volatility

compared to the full sample results in Table 3.1 for both the ASV-HS and ASV-JPR

models. As for the ASV-JPR model, the synchronous return-volatility relation is basi-

cally the same for daily or weekly returns. The similarity is expected as the synchronous

return-volatility correlation should be similar from a daily or weekly perspective. In
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contrast, the lead-lag return-volatility (leverage effect) should be weaker for weekly fre-

quency. However, Table 3.1 shows that the posterior mean of ρ from the weekly ASV-HS

model is -0.69, which is not significantly different from that of the daily ASV-HS model.

Considering the previous simulation study, the correlation coefficient from the weekly

ASV-HS model may not truly represent the leverage effect in the weekly results.

Table 3.7 and 3.8 summarize the estimation results of the VM-ASV-HS and VM-

ASV-JPR models with the S&P 500 daily returns and the corresponding volatility

measures (RV, BV and VIX). As expected, RV and BV have relatively high noise

(σVM = 0.44 for RV and σVM = 0.41 for BV) compared to that of VIX (σVM = 0.04

for VIX). Furthermore, the noise of BV is slightly smaller than that of RV since BV is

robust from jumps.

Regarding the correlation coefficient parameter ρ, first, we focus on the lead-lag

return-volatility correlation (the ASV-HS and VM-ASV-HS models). Including volatility

measures leads to significantly weaker (smaller in magnitude) lead-lag correlation. When

we use the VIX index as the volatility measure, the correlation coefficient of the VIX-

ASV-HS model is -0.23, which is much weaker than that of the ASV-HS model with

return data alone (ρ = −0.74). RV and BV also lead to significantly weaker correlation,

while the difference is not as much as that of VIX. From the perspective of synchronous

return-volatility correlation (the ASV-JPR and VM-ASV-JPR models), we find that the

VIX-ASV-JPR model yields a correlation coefficient (ρ = −0.81), which is basically the

same as that of the ASV-JPR model (ρ = −0.82) with return data alone. However, the

RV-ASV-JPR and BV-ASV-JPR models lead to relatively weaker correlation (ρ = −0.63

and ρ = −0.66 respectively).

The results here support the fact that asymmetry exists both synchronously and

asynchronously (lead-lag correlation) in real world data. Both ASV models will attribute
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RV-ASV-HS BV-ASV-HS VIX-ASV-HS
Para Mean Stdev Mean Stdev Mean Stdev
δ 0.9496 0.0050 0.9509 0.0048 0.9836 0.0026

(0.9397, 0.9591) (0.9411, 0.9601) (0.9786, 0.9886)

σy 0.7629 0.0094 0.7697 0.0094 0.8066 0.0092
(0.7445, 0.7816) (0.7518, 0.7885) (0.7885, 0.8247)

σh 0.3203 0.0137 0.3095 0.0124 0.1647 0.0050
(0.2942, 0.3479) (0.2854, 0.3342) (0.1551, 0.1744)

ρ -0.4982 0.0284 -0.4253 0.0299 -0.2275 0.0257
(-0.5534, -0.4405) (-0.4833, -0.3658) (-0.2774, -0.1777)

b 0.9338 0.0208 0.9277 0.0211 0.3540 0.0079
(0.8938, 0.9752) (0.8884, 0.9709) (0.3394, 0.3699)

σVM 0.4436 0.0082 0.4051 0.0081 0.0381 0.0012
(0.4272, 0.4597) (0.3892, 0.4211) (0.0356, 0.0405)

Table 3.7: The estimation results of ASV-HS models with the
S&P500 daily returns and volatility measures.

all the asymmetry to their own return-volatility correlation structure. Inclusion of the

volatility measures mitigates the problem. Nevertheless, different volatility measures

yield different return-volatility correlations.

The difference is consistent with the fact that VIX is a forward looking volatility

measure. Since the leveraged effect is a well-documented phenomenon, the VIX index,

as a market-orientated volatility measure, reflects the leverage effect immediately. For

example, if the market crashes on day t, the volatility changes corresponding to the

leverage effects will be reflected in the VIX index on the same trading day. So, the VIX-

ASV-JPR model will have stronger synchronous return-volatility correlation compared

to the RV-ASV-JPR and BV-ASV-JPR models as VIX already incorporates the future

volatility changes in the same trading day. Consistently, the VIX-ASV-HS model will

have weaker lead-lag correlation compared to RV-ASV-JPR and BV-ASV-JPR models

since the potential volatility changes from the leverage effect are reflected (or partial

reflected) in the VIX index contemporaneously. This also partially explain the predictive
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RV-ASV-JPR BV-ASV-JPR VIX-ASV-JPR
Para Mean Stdev Mean Stdev Mean Stdev
δ 0.9613 0.0042 0.9559 0.0044 0.9870 0.0017

(0.9529, 0.9692) (0.9471, 0.9643) (0.9837, 0.9904)

σy 0.7732 0.0094 0.7814 0.0094 0.8166 0.0094
(0.7549, 0.7916) (0.7633, 0.7999) (0.7984, 0.8352)

σh 0.3030 0.0120 0.3232 0.0115 0.1497 0.0037
(0.2801, 0.3266) (0.3013, 0.3456) (0.1424, 0.1568)

ρ -0.6252 0.0229 -0.6552 0.0185 -0.8111 0.0078
(-0.6684, -0.5793) (-0.6910, -0.6189) (-0.8261, -0.7953)

b 0.9789 0.0220 0.9873 0.0211 0.4427 0.0090
(0.9358, 1.0228) (0.9469, 1.0292) (0.4264, 0.4614)

σVM 0.4360 0.0077 0.3695 0.0074 0.0283 0.0007
(0.4210, 0.4512) (0.3553, 0.3840) (0.0270, 0.0297)

Table 3.8: The estimation results of ASV-JPR models with the
S&P500 daily returns and volatility measures.

power of VIX or implied volatility (IV) on RV as documented by Busch et al. 2011. Since

the future RV changes caused by the leveraged effect have already been embedded in

current IV changes.

3.5.2 Out-of-sample Forecasts

The in-sample results already shed light on the correlation coefficients of the ASV models.

However, as we have shown, forward (VIX) and backward (RV/BV) volatility measures

lead to different correlation structures. We need out-of-sample tests to conclude which

volatility measure and corresponding correlation structure is better. Considering the

return series is our main interest, we calculate the following logarithmic predictive like-

lihood of the ASV-HS and the VM-ASV-HS models with daily data (see Geweke and

Amisano 2010 for details of time series models’ comparisons):

T−1∑
t=T−τ−1

log(pM (yt+1|y1:t, RV1:t, BV1:t, V IX1:t)). (3.48)

96

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Doctor of Philosophy– Zehua Zhang; McMaster University– School of Business

M indicates model specifications, y1:t, RV1:t, BV1:t and V IX1:t represent the available

observations of returns and volatility measures at time t. The predictive likelihood

measures the predictive performance of one-day ahead return yt+1 with available obser-

vations at time t according to model M . Given the posterior sampling results {Θ(i)
M }

N

i=1

by fitting model M with available observations and iid draws {ε(i)}Ni=1 from a standard

normal distribution, the predictive likelihood in Equation (3.48) is estimated as:

pM (yt+1|y1:t, RV1:t, BV1:t, V IX1:t) ≈
1
N

N∑
i=1

fN (yt+1 | 0, σ(i)
M,y

2
exp(h(i)

M,t+1) ),

where:

h
(i)
M,t+1 = δ

(i)
M h

(i)
M,t +

ρ
(i)
Mσ

(i)
M,h

σ
(i)
M,y

yt

exp(h(i)
M,t/2)

+
√

1− ρ(i)
M

2
σ

(i)
M,hε

(i).

To compare two models M1 and M2, the logarithmic predictive Bayes factor of M1

relative to M2 is simply defined as:

T−1∑
t=T−τ−1

log(pM1(yt+1|y1:t, RV1:t, BV1:t, V IX1:t))−

T−1∑
t=T−τ−1

log(pM2(yt+1|y1:t, RV1:t, BV1:t, V IX1:t)). (3.49)

A logarithmic predictive Bayes factor greater than 5 lends strong support for model M1

over modelM2. We choose τ = 3000, N = 10000 and report the summary of logarithmic

predictive likelihood in Table 3.9:

S&P500 Russell 2000 STOXX 50 HangSeng Index
ASV-HS -3929.83 -4907.68 -4712.83 -4907.03
VIX-ASV-HS -3927.88 -4874.10 -4711.21 -4892.93
RV-ASV-HS -3882.43 -4879.67 -4696.74 -4892.93
BV-ASV-HS -3865.00 -4878.29 -4691.21 -4897.60

Table 3.9: The predictive log-likelihood of ASV-HS and VM-
ASV-HS models
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Clearly, volatility measures (both VIX or RV/BV) will improve the out-sample pre-

diction. For the S&P 500 index and the EURO STOXX index, BV-ASV-HS dominates

other models whereas VIX does not have a significant improvement compared to the

benchmark ASV-HS model. The logarithmic predictive Bayes factor of the VIX-ASV-HS

model relative to the ASV-HS model for the S&P 500 index (EURO STOXX 50 index) is

1.95 (1.63). Comparatively, the logarithmic predictive Bayes factor of the BV-ASV-HS

model relative to the ASV-HS model for the S&P 500 index (EURO STOXX 50 index)

is 64.83 (21.62), which indicates a significant improvement compared to the benchmark

ASV-HS model. On the other hand, VIX tends to outperform RV/BV marginally on

the Russell 2000 and Hang Seng indices as the log Bayes factor of the VIX-ASV-HS

model relative to the BV-ASV-HS model for the Russell 2000 index (Hang Seng index)

is 4.19 (4.67). Generally speaking, including volatility measures, either VIX or RV/BV

will improve the out-of-sample performance, and BV-ASV-HS tends to have better out-

of-sample return density prediction.

The results here further confirm our in-sample findings about the erroneous esti-

mations of the correlation coefficient ρ in the ASV (ASV-HS) models. The in sample

estimation results of the ASV-HS model with the daily return series of these four indices

show very strong lead-lag correlations (ρ = −0.74, −0.77, −0.79 and −0.53 for the S&P

500, Russell 2000, EURO STOXX 50 and Hang Seng indices respectively). The strong

lead-lag correlation of the ASV-HS model indicates that the future volatility changes

are highly predictable. However, the BV-ASV-HS and RV-ASV-HS lead to much weaker

correlations while VIX-ASV-HS has even weaker correlations. In fact, for the Russell

2000 and Hang Seng indices, the VIX-ASV-HS model has correlation coefficients that

are close to zero (ρ = −0.15, −0.05 respectively). However, VIX-ASV-HS dominates the

ASV-HS model for those two indices. It turns out that the strong lead-lag correlation

of the ASV-HS model does not necessarily imply a strong prediction of the future true
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volatility through the leverage effect. Including either VIX or RV/BV will result in a

medium or weak lead-lag correlation (ρ < −0.5), but dominate ASV-HS in out-of-sample

forecasting.

3.6 Conclusion

This paper re-examines asymmetric stochastic volatility models with different return-

volatility correlation structures especially under the availability of volatility measures.

We find that both ASV-HS and ASV-JPR models only represent the general asymmetry

according to their own correlation specification and they attribute all the asymmetric

correlation to their own correlation structure. As as result, the estimated correlation

coefficient of ASV model with return series alone is not necessarily supportive evidence of

the model’s correlation structure. In fact, the coefficient ρ only represents the correlation

between return and the latent volatility process, which is entirely inferred from the

return series according to the model’s specification. This estimated coefficient may be

inconsistent with the true return-volatility correlation.

This problem can be mitigated if we have volatility measures like RV/BV or VIX.

Jointly estimating the volatility measure and the return series will lead to significantly

different correlation coefficients compared to the ASV model with return series alone.

In addition, we also show that inclusion of volatility measures will greatly improve the

out-of-sample predictive performance compared to the benchmark ASV-HS model even

if the estimated correlation coefficient of the VM-ASV-HS model implies a much weaker

lead-lag return-volatility correlation (leverage effect).

All in all, availability of the volatility measures in recent decades greatly improves

the traditional SV/ASV models with return series alone, especially for modelling the

asymmetry. In fact, modelling the volatility process itself theoretically and empirically
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is another popular research area especially for the long memory properties (see e.g.

Andersen and Bollerslev 1997, Andersen et al. 2001, Andersen et al. 2003 and Koopman

et al. 2005) and the roughness(see e.g. Gatheral et al. 2018, Livieri et al. 2018) of the

log-volatility process. Further ASV related research that takes the complexity of the

volatility process into consideration would be promising.
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A1 Supplementary Overnight Return Plots
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Figure A1.1: Overnight returns of major global market indices.
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Figure A1.2: Overnight return plots of the DJIA.
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RVt RVN,t RVD,t BVt BVN,t BVD,t
Mean 1.1165 0.4002 0.7163 1.0454 0.3469 0.6790
Var 3.0208 0.4878 1.4361 2.6427 0.3974 1.2509
RVt 1.0000
RVN,t 0.8537 1.0000
RVD,t 0.9528 0.6553 1.0000
BVt 0.9877 0.8702 0.9253 1.0000
BVN,t 0.8161 0.9779 0.6136 0.8533 1.0000
BVD,t 0.9581 0.6955 0.9842 0.9549 0.6612 1.0000

Table A1.1: Summary statistics and correlations of QQQ real-
ized volatility measures.

Figure A1.3: QQQ realized volatility measures and squared
jumps.
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A2 HAR-RV Results for NASDAQ 100

(1) (2) (3) (4)

µ -0.0805 -0.0824 -0.1462 -0.1488
[0.018] [0.017] [0.022] [0.022]

(-0.115, -0.045) (-0.116, -0.048) (-0.190, -0.103) (-0.192, -0.105)

logRVD,t−1 0.5551 0.4989 0.3258 0.3233
[-1.5ex] [0.018] [0.019] [0.022] [0.023]

(0.519, 0.591) (0.461, 0.537) (0.282, 0.370) (0.279, 0.368)
1
4
∑5
i=2 logRVD,t−i 0.2429 0.2870 0.2513 0.2542

[0.024] [0.024] [0.034] [0.034]
(0.196, 0.289) (0.239, 0.335) (0.186, 0.316) (0.188, 0.321)

1
17
∑22
i=6 logRVD,t−i 0.1044 0.1117 0.1493 0.1440

[0.023] [0.022] [0.041] [0.041]
(0.060, 0.148) (0.069, 0.155) (0.068, 0.228) (0.065, 0.223)

rD,t−1 - -0.1216 - -0.0526
[0.014] [0.014]

(-0.148, -0.095) (-0.080, -0.026)

log IVt−1 - - 1.2131 1.0877
[0.078] [0.086]

(1.060, 1.363) (0.916, 1.255)
1
4
∑5
i=2 log IVt−i - - -0.7478 -0.6239

[0.099] [0.105]
(-0.938, -0.557) (-0.828, -0.415)

1
17
∑22
i=6 log IVt−i - - -0.1859 -0.1826

[0.074] [0.074]
(-0.333, -0.037) (-0.327, -0.039)

FMSE 0.3207 0.3116 0.2935 0.2927
LPL -2129.95 -2093.25 -2016.03 -2010.81
FMSE P.C. - -2.84% -8.48% -8.73%
LBF - 36.7 113.92 119.14

Standard deviation in brackets and 95% density interval in parentheses.

Table A1.2: Forecasting NASDAQ 100 daytime realized volatil-
ity without overnight information.
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(1) (2) (3) (4) (5)

µ -0.0616 0.0143 0.0258 -0.0849 -0.0884
[0.017] [0.029] [0.029] [0.045] [0.045]

(-0.094, -0.029) (-0.043, 0.072) (-0.030, 0.083) (-0.172, 0.002) (-0.176, -0.001)

logRVD,t−1 0.5610 0.3312 0.3685 0.2440 0.2434
[0.018] [0.020] [0.020] [0.022] [0.022]

(0.526, 0.595) (0.292, 0.371) (0.329, 0.407) (0.200, 0.287) (0.200, 0.286)
1
4
∑5
i=2 logRVD,t−i 0.2512 0.2097 0.1932 0.2467 0.2448

[0.023] [0.035] [0.033] [0.035] [0.035]
(0.206, 0.296) (0.142, 0.277) (0.127, 0.259) (0.177, 0.317) (0.178, 0.315)

1
17
∑22
i=6 logRVD,t−i 0.0974 0.2180 0.2008 0.2240 0.2246

[-1.5ex] [0.021] [0.048] [0.047] [0.046] [0.046]
(0.056, 0.139) (0.123, 0.313) (0.109, 0.292) (0.135, 0.314) (0.134, 0.316)

logRVN,t - 0.4282 0.3578 0.2630 0.2585
[0.021] [0.021] [0.022] [0.022]

(0.388, 0.468) (0.317, 0.398) (0.220, 0.305) (0.215, 0.301)
1
4
∑4
i=1 logRVN,t−i - -0.1200 -0.0632 -0.0731 -0.0642

[0.037] [0.036] [0.037] [0.037]
(-0.193, -0.047) (-0.133, 0.006) (-0.146, -0.001) (-0.138, 0.010)

1
17
∑21
i=5 logRVN,t−i - -0.1624 -0.1495 -0.1398 -0.1467

[0.046] [0.044] [0.050] [0.050]
(-0.252, -0.071) (-0.235, -0.064) (-0.239, -0.042) (-0.246, -0.047)

rN,t -0.2705 - -0.2007 -0.2258 -0.2263
[0.016] [0.016] [0.015] [0.016]

(-0.302, -0.239) (-0.232, -0.170) (-0.256, -0.196) (-0.257, -0.195)

rD,t−1 - - - - -0.0410
[0.013]

(-0.067, -0.015)

log IVt−1 - - - 0.9487 0.8536
[0.078] [0.082]

(0.797, 1.103) (0.692, 1.016)
1
4
∑5
i=2 log IVt−i - - - -0.6185 -0.5285

[0.094] [0.098]
(-0.803, -0.435) (-0.719, -0.335)

1
17
∑22
i=6 log IVt−i - - - -0.0965 -0.0888

[0.078] [0.078]
(-0.249, 0.054) (-0.242, 0.063)

FMSE 0.2892 0.2762 0.2602 0.2467 0.2464
LPL -2000.68 -1943.41 -1867.53 -1799.54 -1796.94
FMSE P.C. -9.82% -13.88% -18.86% -23.07% -23.17%
LBF 129.27 186.54 262.42 330.41 333.01

Standard deviation in brackets and 95% density interval in parentheses.

Table A1.3: Forecasting NASDAQ 100 daytime realized volatil-
ity with overnight information.
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(1) (2) (3) (4)

µ -0.1219 -0.1139 -0.3600 -0.3569
[0.024] [0.024] [0.048] [0.048]

(-0.170, -0.073) (-0.161, -0.067) (-0.454, -0.265) (-0.450, -0.262)

logRVN,t−1 0.4874 0.4503 0.2999 0.2670
[0.019] [0.020] [0.022] [0.022]

(0.450, 0.525) (0.412, 0.488) (0.258, 0.342) (0.224, 0.310)
1
4
∑5
i=2 logRVN,t−i 0.3521 0.3930 0.2662 0.2946

[0.025] [0.025] [0.035] [0.034]
(0.303, 0.400) (0.343, 0.442) (0.198, 0.333) (0.227, 0.362)

1
17
∑22
i=6 logRVN,t−i 0.0769 0.0739 0.1083 0.1092

[0.022] [0.021] [0.045] [0.044]
(0.033, 0.119) (0.032, 0.116) (0.021, 0.194) (0.023, 0.194)

rN,t−1 - -0.1439 - -0.1383
[0.017] [0.016]

(-0.177, -0.110) (-0.170, -0.108)

log IV O
t−1 - - 1.0568 1.0319

[0.073] [0.072]
(0.914, 1.196) (0.890, 1.173)

1
4
∑5
i=2 log IV O

t−i - - -0.4573 -0.4079
[0.093] [0.094]

(-0.638, -0.276) (-0.590, -0.220)
1
17
∑22
i=6 log IV O

t−i - - -0.1817 -0.2001
[0.082] [0.081]

(-0.342, -0.017) (-0.358, -0.042)

FMSE 0.3113 0.3032 0.2854 0.2778
LPL -2090.87 -2058.39 -1982.50 -1949.56
FMSE P.C. - -2.60% -8.32% -10.76%
LBF - 32.48 108.37 141.31

Standard deviation in brackets and 95% density interval in parentheses.

Table A1.4: Forecasting NASDAQ 100 overnight realized
volatility without daytime information.
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(1) (2) (3) (4) (5)

µ -0.1145 -0.1659 -0.1621 -0.3282 -0.3266
[0.023] [0.028] [0.028] [0.044] [0.043]

(-0.160, -0.069) (-0.220, -0.111) (-0.216, -0.108) (-0.413, -0.243) (-0.412, -0.242)

logRVN,t−1 0.4858 0.2118 0.2479 0.1784 0.1654
[0.018] [0.020] [0.020] [0.021] [0.021]

(0.450, 0.521) (0.173, 0.251) (0.208, 0.287) (0.137, 0.221) (0.124, 0.207)
1
4
∑5
i=2 logRVN,t−i 0.3538 0.3225 0.3077 0.2772 0.2848

[0.024] [0.032] [0.031] [0.035] [0.034]
(0.307, 0.400) (0.260, 0.384) (0.246, 0.369) (0.208, 0.346) (0.218, 0.353)

1
17
∑22
i=6 logRVN,t−i 0.0793 0.2220 0.2107 0.1828 0.1900

[0.021] [0.041] [0.040] [0.049] [0.049]
(0.039, 0.120) (0.142, 0.300) (0.132, 0.288) (0.086, 0.278) (0.093, 0.284)

logRVD,t−1 - 0.4660 0.3944 0.3322 0.3068
[0.018] [0.019] [0.020] [0.020]

(0.430, 0.502) (0.357, 0.432) (0.293, 0.371) (0.266, 0.347)
1
4
∑5
i=2 logRVD,t−i - -0.0583 -0.0213 -0.0839 -0.0604

[0.033] [0.032] [0.033] [0.033]
(-0.125, 0.006) (-0.084, 0.041) (-0.149, -0.021) (-0.125, 0.005)

1
17
∑22
i=6 logRVD,t−i - -0.1773 -0.1584 -0.1200 -0.1280

[0.044] [0.043] [0.043] [0.043]
(-0.263, -0.091) (-0.243, -0.074) (-0.206, -0.037) (-0.212, -0.043)

rD,t−1 -0.2134 - -0.1232 -0.1364 -0.1413
[0.012] [0.012] [0.012] [0.012]

(-0.237, -0.189) (-0.147, -0.099) (-0.160, -0.113) (-0.165, -0.118)

rN,t−1 - - - - -0.0890
[0.015]

(-0.119, -0.060)

log IV O
t−1 - - - 0.6481 0.6530

[0.071] [0.069]
(0.509, 0.791) (0.516, 0.791)

1
4
∑5
i=2 log IV O

t−i - - - -0.1844 -0.1726
[0.085] [0.086]

(-0.352, -0.019) (-0.339, -0.004)
1
17
∑22
i=6 log IV O

t−i - - - -0.1322 -0.1393
[0.074] [0.074]

(-0.277, 0.011) (-0.282, 0.007)

FMSE 0.2779 0.2460 0.2365 0.2279 0.2250
LPL -1948.40 -1797.76 -1749.00 -1703.11 -1688.40
FMSE P.C. -10.73% -20.98% -24.03% -26.79% -27.72%
LBF 142.47 293.11 341.87 387.76 402.47

Standard deviation in brackets and 95% density interval in parentheses.

Table A1.5: Forecasting NASDAQ 100 overnight realized
volatility with daytime information.
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A3 Latent Volatility Sampling for DN-SV-RV

We sample the daytime and overnight latent volatility process ({hD,t}Tt=1 and {hN,t}Tt=1)

seperately. Conditional on {hD,t}Tt=1, we have:

rN,t = µN + exp(hN,t/2)uN,t, (A.1)

hN,t = αN + βNhD,t−1 + δNhN,t−1 + σhNvN,t, (A.2)

hD,t = αD + βDhN,t + δDhD,t−1 + σhDvD,t, (A.3)

logRVN,t = ξN + hN,t + σRV NeN,t. (A.4)

Let Θ denote the set of parameters. The posterior distribution of hN,t is:

p(hN,t|rN,t, logRVN,t, hN,−t, hD,Θ)

∝p(rN,t, logRVN,t|hN,t,Θ) p(hN,t+1|hN,t, hD,t,Θ) p(hD,t|hN,t,Θ)p(hN,t|hN,t−1, hD,t−1,Θ)

∝ exp
(
−hN,t

2

)
exp

(
− (rN,t − µN )2

2 exp(hN,t)

)
exp

(
− (logRVN,t − ξN − hN,t)2

2σ2
RV N

)
exp

(
− (hN,t+1 − αN − βNhD,t − δNhN,t)2

2σ2
hN

)
exp

(
− (hD,t − αD − βDhN,t − δDhD,t−1)2

2σ2
hD

)
exp

(
− (hN,t − αN − βNhD,t−1 − δNhN,t−1)2

2σ2
hN

)
(A.5)

We use the Metropolis-Hastings algorithm with tailored proposals to sample . We

need to simulate hD,0, hN,0 and hN,T+1 according to Eq. (A.2) and (A.3).
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While conditional on {hN,t}Tt=1, we have

rD,t = µD + exp(hD,t/2)uD,t, uD,t ∼ N(0, 1), (A.6)

hD,t = αD + βDhN,t + δDhD,t−1 + σhDvD,t, vD,t ∼ N(0, 1). (A.7)

hN,t+1 = αN + βNhD,t + δNhN,t + σhNvN,t+1, vN,t+1 ∼ N(0, 1), (A.8)

logRVD,t = ξD + hD,t + σRVDeD,t, eD,t ∼ N(0, 1). (A.9)

The posterior distribution of hD,t is

p(hD,t|rD,t, hD,−t, hN ,Θ)

∝p(rD,t, logRVN,t|hD,t,Θ) p(hD,t+1|hD,t, hN,t+1,Θ) p(hN,t+1|hD,t,Θ)p(hD,t|hD,t−1, hN,t,Θ)

∝ exp
(
−hD,t

2

)
exp

(
− (rD,t − µD)2

2 exp(hN,t)

)
exp

(
− (logRVD,t − ξD − hD,t)2

2σ2
RV D

)
exp

(
− (hD,t+1 − αD − βDhN,t+1 − δDhD,t)2

2σ2
hD

)
exp

(
− (hN,t+1 − αN − βNhD,t − δNhN,t)2

2σ2
hN

)
exp

(
− (hD,t − αD − βDhN,t − δDhD,t−1)2

2σ2
hD

)
(A.10)

We need to simulate hD,0, hN,T+1 and hD,T+1. If we are fitting the DN-SV-RV model

at the market open time, hN,T+1 will be available.

120

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/


Appendix B

Chapter 2 Supplement

B1 Sampling Details

B1.1 Posterior Distribution of Volatility Process

Details of derivation from Equation (2.7) to (2.9):

p(RVt|ht,Θ)p(IVt|ht,Θ)p(ht|ht−1,Θ)p(ht+1|ht,Θ)

= fN (RVt|aRV + bRV ht, σ
2
RV )fN (IVt|aIV + bIV ht, σ

2
IV )fN (ht|α+ δht−1, σ

2
h)

fN (ht+1|α+ δht, σ
2
h).

∝ fN

(
ht

∣∣∣∣∣RVt − aRVbRV
,
σ2
RV

b2RV

)
fN

(
ht

∣∣∣∣∣IVt − aIVbIV
,
σ2
IV

b2IV

)

fN

(
ht

∣∣∣∣∣α(1− δ) + δ(ht+1 + ht−1)
1 + δ2 ,

σ2
h

1 + δ2

)
.

This will lead to the results in Equations (2.8) and (2.9). To get the proposal

distribution, we go back to the conditional posterior of ht.
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p(ht|h−t, r, w) ∝ p(yt|ht, w)p(RVt|ht, w)p(V IXt|ht, w)p(ht|h−t, w)

∝ fN (rt|µ, exp(h− t))fN (ht|µt, σ2)

∝ 1
exp(ht/2) exp

(
− 1

2 exp(ht)
(rt − µ)2

)
fN (ht|µt, σ2)

' exp
(
−ht2 −

1
2 exp(−µt)(rt − µ)2(1 + µt − ht)

)
exp

(
−(ht − µt)2

2σ2

)
∝ fN (ht|µ̄t, σ2), (B.1)

where µ̄t = µt + σ2

2
[
(rt − µ)2 exp(−µt)− 1

]
and σ2 =

(
b2
RV

σ2
RV

+ b2
IV

σ2
IV

+ 1+δ2

σ2
h

)−1
.
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B2 Latent Volatility Sampling Results in Graphs

Notice that the latent volatility processes sampled from IVSV and RVIVSV models are

almost identical. So we only post the hidden volatility sampled from SV, IVSV and

RVSV here.

Figure B2.1: Latent volatility process for SPY.

Figure B2.2: Latent volatility process for AAPL
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Figure B2.3: Latent volatility process for BAC.

Figure B2.4: Latent volatility process for C.
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Figure B2.5: Latent volatility process for GE.

Figure B2.6: Latent volatility process for IBM.

Figure B2.7: Latent volatility process for JCP.
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B3 Parameter Sampling Results
Table B2.1: Posterior sampling summary for BAC

The posterior estimation results for return series, realized volatility and implied
volatility of Bank of American Corp (NYSE: BAC). The parameter set comes from
Equations (2.2) to (2.5). The simplest SV model takes the smallest parameter
set, and the proposed RVIVSV model takes the full parameter set. The RVSV
and IVSV models take a partial parameter set from the full specification. The
estimation sample period is September 10th, 2003 to December 19th, 2017.

SV RVSV IVSV RVIVSV
Para Mean Stdev Mean Stdev Mean Stdev Mean Stdev
µ 0.0421 0.0203 0.0495 0.0181 0.0686 0.0201 0.0688 0.0204

(0.002, 0.082)* (0.014, 0.085) (0.030, 0.108) (0.029, 0.109)

α 0.0119 0.0049 0.0349 0.0086 0.0048 0.0027 0.0049 0.0028
(0.003, 0.022) (0.019, 0.052) (-0.001, 0.010) (-0.001, 0.011)

δ 0.9872 0.0034 0.9559 0.0060 0.9951 0.0016 0.9950 0.0017
(0.980, 0.993) (0.944, 0.967) (0.992, 0.998) (0.992, 0.998)

σh 0.2219 0.0189 0.4289 0.0192 0.1332 0.0035 0.1354 0.0035
(0.187, 0.261) (0.392, 0.467) (0.127, 0.140) (0.129, 0.142)

aRV - - 0.1523 0.0267 - - -0.0229 0.0287
(0.099, 0.204) (-0.081, 0.032)

bRV - - 0.8616 0.0163 - - 0.8665 0.0171
(0.831, 0.894) (0.833, 0.900)

σRV - - 0.4454 0.0105 - - 0.6464 0.0078
(0.424, 0.466) (0.631, 0.662)

aIV - - - - -1.7201 0.0122 -1.7159 0.0121
(-1.744, -1.697) (-1.740, -1.693)

bIV - - - - 0.4131 0.0073 0.4120 0.0072
(0.399, 0.427) (0.398, 0.426)

σIV - - - - 0.0399 0.0009 0.0396 0.0009
(0.038, 0.042) (0.038, 0.041)

*Inside the parentheses is the 95% density interval.
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Table B2.2: Posterior sampling summary for C

The posterior estimation results for return series, realized volatility and implied
volatility of Citigroup Inc (NYSE: C). The parameter set comes from Equations
(2.2) to (2.5). The simplest SV model takes the smallest parameter set, and the
proposed RVIVSV model takes the full parameter set. The RVSV and IVSV
models take a partial parameter set from the full specification. The estimation
sample period is September 10th, 2003 to December 19th, 2017.

SV RVSV IVSV RVIVSV
Para Mean Stdev Mean Stdev Mean Stdev Mean Stdev
µ 0.0376 0.0201 0.0322 0.0184 0.0607 0.0205 0.0606 0.0469

(-0.02, 0.077)* (-0.004, 0.068) (0.020, 0.101) (0.020, 0.102)

α 0.0122 0.0050 0.0373 0.0089 0.0042 0.0026 0.0043 0.0027
(0.003, 0.022) (0.020, 0.055) (-0.001, 0.009) (-0.001, 0.010)

δ 0.9873 0.0034 0.9543 0.0063 0.9957 0.0015 0.9956 0.0016
(0.980, 0.994) (0.942, 0.966) (0.993, 0.999) (0.993, 0.999)

σh 0.2215 0.0198 0.4364 0.0211 0.1266 0.0032 0.1280 0.0031
(0.185, 0.262) (0.396, 0.479) (0.120, 0.133) (0.122, 0.134)

aRV - - 0.1467 0.0283 - - -0.0293 0.0293
(0.091, 0.201) (-0.088, 0.027)

bRV - - 0.8761 0.0170 - - 0.8679 0.0169
(0.843, 0.910) (0.836, 0.902)

σRV - - 0.4778 0.0114 - - 0.6837 0.0081
(0.455, 0.500) (0.668, 0.670)

aIV - - - - -1.7055 0.0124 -1.7028 0.0123
(-1.730, -1.682) (-1.728, -1.679)

bIV - - - - 0.4146 0.0072 0.4141 0.0070
(0.401, 0.429) (0.401, 0.428)

σIV - - - - 0.0360 0.0008 0.0358 0.0008
(0.034, 0.038) (0.034, 0.037)

*Inside the parentheses is the 95% density interval.
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Table B2.3: Posterior sampling summary for GE

The posterior estimation results for return series, realized volatility and implied
volatility of General Electric (NYSE: GE). The parameter set comes from Equa-
tions (2.2) to (2.5). The simplest SV model takes the smallest parameter set, and
the proposed RVIVSV model takes the full parameter set. The RVSV and IVSV
models take a partial parameter set from the full specification. The estimation
sample period is September 10th, 2003 to December 19th, 2017.

SV RVSV IVSV RVIVSV
Para Mean Stdev Mean Stdev Mean Stdev Mean Stdev
µ 0.0014 0.0166 0.0026 0.0155 0.0260 0.0179 0.0255 0.0178

(-0.031, 0.033)* (-0.028, 0.033) (-0.009, 0.061) (-0.009, 0.060)

α 0.0110 0.0052 0.0149 0.0072 0.0034 0.0022 0.0034 0.0022
(0.001, 0.021) (0.001, 0.029) (-0.001, 0.008) (-0.001, 0.008)

δ 0.9651 0.0068 0.9354 0.0080 0.9926 0.0020 0.9925 0.0020
(0.951, 0.977) (0.919, 0.951) (0.989, 0.997) (0.988, 0.997)

σh 0.2888 0.0242 0.4093 0.0207 0.1196 0.0036 0.1210 0.0037
(0.243, 0.339) (0.369, 0.451) (0.112, 0.127) (0.114, 0.128)

aRV - - 0.1107 0.0241 - - -0.1022 0.0268
(0.063, 0.157) (-0.157, -0.051)

bRV - - 0.8759 0.0211 - - 0.9272 0.0255
(0.836, 0.918) (0.879, 0.978)

σRV - - 0.4735 0.0108 - - 0.6441 0.0077
(0.452, 0.495) (0.629, 0.659)

aIV - - - - -1.7515 0.0111 -1.7472 0.0111
(-1.774, -1.730) (-1.770, -1.726)

bIV - - - - 0.4245 0.0104 0.4216 0.0105
(0.401, 0.429) (0.401, 0.443)

σIV - - - - 0.0379 0.0009 0.0380 0.0009
(0.036, 0.040) (0.036, 0.040)

*Inside the parentheses is the 95% density interval.
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Table B2.4: Posterior sampling summary for IBM

The posterior estimation results for return series, realized volatility and implied
volatility of IBM (NYSE: IBM). The parameter set comes from Equations (2.2) to
(2.5). The simplest SV model takes the smallest parameter set, and the proposed
RVIVSV model takes the full parameter set. The RVSV and IVSV models take a
partial parameter set from the full specification. The estimation sample period is
September 10th, 2003 to December 19th, 2017.

SV RVSV IVSV RVIVSV
Para Mean Stdev Mean Stdev Mean Stdev Mean Stdev
µ 0.0299 0.0161 0.0463 0.0143 0.0415 0.0178 0.0421 0.0179

(-0.002, 0.062)* (0.018, 0.075) (0.007, 0.077) (0.008, 0.078)

α 0.0044 0.0068 -0.0094 0.0094 0.0048 0.0021 0.0044 0.0022
(-0.009, 0.018) (-0.028, 0.009) (0.001, 0.009) (0.000, 0.009)

δ 0.9076 0.0146 0.8588 0.0154 0.9826 0.0031 0.9831 0.0031
(0.877, 0.933) (0.827, 0.887) (0.977, 0.988) (0.977, 0.989)

σh 0.3783 0.0312 0.5058 0.0271 0.1173 0.0045 0.1191 0.007
(0.320, 0.443) (0.454, 0.560) (0.109, 0.126) (0.110, 0.128)

aRV - - 0.0555 0.0225 - - -0.2594 0.0276
(0.011, 0.099) (-0.315, -0.207)

bRV - - 0.8130 0.0240 - - 0.9572 0.0387
(0.768, 0.862) (0.884, 1.035)

σRV - - 0.4813 0.0130 - - 0.6987 0.0083
(0.455, 0.506) (0.683, 0.715)

aIV - - - - -1.7544 0.0113 -1.7467 0.0110
(-1.777, -1.733) (-1.769, -1.726)

bIV - - - - 0.4351 0.0156 0.4235 0.0154
(0.406, 0.466) (0.395, 0.455)

σIV - - - - 0.0369 0.0008 0.0380 0.0009
(0.035, 0.038) (0.036, 0.040)

*Inside the parentheses is the 95% density interval.
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Table B2.5: Posterior sampling summary for JCP

The posterior estimation results for return series, realized volatility and implied
volatility of JCPenny (NYSE: JCP). The parameter set comes from Equations
(2.2) to (2.5). The simplest SV model takes the smallest parameter set, and the
proposed RVIVSV model takes the full parameter set. The RVSV and IVSV
models take a partial parameter set from the full specification. The estimation
sample period is September 10th, 2003 to December 19th, 2017.

SV RVSV IVSV RVIVSV
Para Mean Stdev Mean Stdev Mean Stdev Mean Stdev
µ 0.0229 0.0363 0.0284 0.0309 0.0541 0.0372 0.0543 0.0374

(-0.048, 0.095)* (-0.032, 0.089) (-0.019, 0.125) (-0.020, 0.127)

α 0.1205 0.0256 0.2570 0.0264 0.0146 0.0044 0.0145 0.0044
(0.075, 0.176) (0.206, 0.310) (0.006, 0.023) (0.006, 0.023)

δ 0.9317 0.0146 0.8395 0.0158 0.9927 0.0021 0.9926 0.0021
(0.900, 957) (0.807, 0.870) (0.989, 0.997) (0.989, 0.997)

σh 0.3322 0.0361 0.5628 0.0275 0.0986 0.0032 0.0991 0.0033
(0.266, 0.406) (0.510, 0.616) (0.092, 0.105) (0.093, 0.106)

aRV - - 0.2248 0.0443 - - -0.0849 0.0619
(0.135, 0.308) (-0.213, 0.031)

bRV - - 0.8719 0.0228 - - 0.8876 0.0299
(0.829, 0.918) (0.831, 0.949)

σRV - - 0.4585 0.0156 - - 0.7261 0.0086
(0.426, 0.487) (0.709, 0.743)

aIV - - - - -1.6699 0.0265 -1.6622 0.0264
(-1.724, -1.621) (-1.717, -1.613)

bIV - - - - 0.4477 0.0127 0.4448 0.0127
(0.424, 0.474) (0.421, 0.471)

σIV - - - - 0.0345 0.0007 0.0348 0.0007
(0.035, 0.036) (0.033, 0.036)

*Inside the parentheses is the 95% density interval.
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Appendix C

Chapter 3 Supplement

C1 Posterior Sampling

C1.1 ASV-HS and VM-ASV-HS

The ASV-HS model:

yt = exp(ht/2)ut, (C.1)

ht+1 = δht + vt+1, (C.2) ut

vt+1

 ∼N


0

0

 ,
 σ2

y ρσyσh

ρσyσh σ2
h


 . (C.3)

Denotes the set of the parameters {δ, ρ, σy, σh} as Θ, fN (x|µ, σ2) denotes the

density function of normally distributed variable x with mean µ and variance σ2. The

MCMC steps for the ASV-HS model are:
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1. δ | y, h, ρ, σy, σh. Conditional on return series y and latent volatility process h,

the univariate representation of the volatility equation is:

ht+1 −
ρσh
σy

yt
exp(ht/2) = δht +

√
1− ρ2 wt+1, wt+1 ∼ N(0, σ2

h). (C.4)

δ can be treated as the coefficient of linear regression with dependent variable

ht+1 − ρσh
σy

yt
exp(ht/2) and independent variable ht with known variance (1 − ρ2)σ2

h.

We set conjugate truncated normal prior p(δ) N(0.98, 4.0)I|δ|<1.

2. ρ, σy, σh | y, h, δ. The precision matrix (inverse of the covariance matrix in

(C.3)) can be drawn from a Wishart posterior distribution given the conjugate

Wishart prior: W (n, S0), where the degree of freedom n = 3.0 and

S0 =

0.852 0.0

0.0 0.22

 .
.

3. ht | y, h−t, Θ. For t = 1, 2, ...N Sample ht with the Metropolis-Hasting algorithm.

The posterior and proposal distributions will be explained below. Notice that when

sampling h1, we assume h0 = 0, which is the long run mean of ht. For sampling

hN , we draw hN+1 from the following distribution:

hN+1|yN , hN ∼ N(δhN + ρσh
σy

yN
exp(hN/2) , (1− ρ2)σ2

h).

Now we move on to the posterior and proposal distributions of ht. First, the posterior

distribution:
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p(ht|Y, h−t,Θ) (C.5)

∝ p(yt|ht, h−t,Θ) p(ht|y−t, h−t,Θ) (C.6)

∝ p(yt|ht, h−t,Θ) p(ht+1|ht,Θ) p(ht|ht−1, yt−1,Θ) (C.7)

∝ exp(−ht2 ) exp(−
( yt

exp(ht/2) −
ρσy
σh
ht+1 + ρσy

σh
δht)2

2σ2
y(1− ρ2) ) exp(−(ht+1 − δht)2

2σ2
h

)

exp(−
(ht − (δht−1 + ρσh

σy

yt−1
exp(ht−1/2)))2

2(1− ρ2)σ2
h

) (C.8)

∝ exp(−ht2 ) exp(−
( yt

exp(ht/2) −
ρσy
σh
ht+1 + ρσy

σh
δht)2

2σ2
y(1− ρ2) )fN (ht|µt, σ2), (C.9)

where:

µt = (δht+1
σ2
h

+
δht−1 + ρσh

σy

yt−1
exp(ht−1/2)

(1− ρ2)σ2
h

)σ2, (C.10)

σ2 = ( δ
2

σ2
h

+ 1
(1− ρ2)σ2

h

)−1. (C.11)

Given the Taylor extension of exp(−ht/2) at point −µt/2, we have the following

proposal distribution:

p(ht|Y, h−t,Θ)

≈ exp(−ht2 ) exp(−
( yt

exp(µt/2)(1 + µt
2 −

ht
2 )− ρσy

σh
ht+1 + ρσy

σh
δht)2

2σ2
y(1− ρ2) )fN (ht|µt, σ2) (C.12)

∝ fN (ht|µ̂t, σ̂2
t )fN (ht|µt, σ2) (C.13)

∝ fN (ht|µ̃t, σ̃2
t ), (C.14)
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where

µ̃t = (
pq − σ2

y(1− ρ2)/2
σ2
y(1− ρ2) + δht+1

σ2
h

+
δht−1 + ρσh

σy

yt−1
exp(ht−1/2)

(1− ρ2)σ2
h

)σ̃2
t , (C.15)

σ̃2
t = ( δ

2

σ2
h

+ 1
(1− ρ2)σ2

h

+ q2

σ2
y(1− ρ2))−1, (C.16)

p = yt
exp(µt2 )(1 + µt

2 )− ρσy
σh

ht+1, (C.17)

q = yt
2 exp(µt2 ) −

ρσy
σh

δ. (C.18)

If we have a volatility measure series VMt, for the following VM-ASV-HS specifica-

tion:

yt = exp(ht/2)ut, (C.19)

ht+1 = δht + vt+1, (C.20)

VMt = a+ bht + et, et ∼ N(0, σ2
VM ), (C.21) ut

vt+1

 ∼N


0

0

 ,
 σ2

y ρσyσh

ρσyσh σ2
h


 . (C.22)

The sampling steps will be:

1. δ | y, h, ρ, σy, σh. As with the ASV-HS model, we set conjugate truncated

normal prior p(δ) N(0.98, 4.0)I|δ|<1..

2. ρ, σy, σh | y, h, δ. As with the ASV-HS model, we set the conjugate Wishart

prior W (n, S0).
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3. a, b, σVM | δ, y, h, ρ, σy, σh. Conditional on latent volatility process, a, b, σVM

can be sampled as linear regression coefficients and variance parameters with con-

jugate prior: p(a) ∼ N(−1.0, 100), p(b) ∼ N(1.0, 100) and p(σ2
VM ) ∼ IG(3

2 ,
0.1
2 ).

4. ht | y, h−t, Θ. For t = 1, 2, ...N , sample ht with the Metropolis-Hasting algorithm

as with the ASV-HS model. The posterior and proposal distributions will be

explained below.

The posterior of ht will be:

p(ht|y, V M, h−t,Θ) (C.23)

∝ p(yt|ht, h−t,Θ) p(ht+1|ht,Θ) p(ht|ht−1, yt−1,Θ) p(ht|VMt,Θ) (C.24)

∝ exp(−ht2 ) exp(−
( yt

exp(ht/2) −
ρσy
σh
ht+1 + ρσy

σh
δht)2

2σ2
y(1− ρ2) )fN (ht|µt, σ2), (C.25)

where:

µt = (δht+1
σ2
h

+
δht−1 + ρσh

σy

yt−1
exp(ht−1/2)

(1− ρ2)σ2
h

+ (VMt − a)b
σ2
VM

)σ2, (C.26)

σ2 = ( δ
2

σ2
h

+ 1
(1− ρ2)σ2

h

+ b2

σ2
VM

)−1. (C.27)

And the proposal distribution:

fN (ht|µ̃t, σ̃2
t ), (C.28)
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where:

µ̃t = (
pq − σ2

y(1− ρ2)/2
σ2
y(1− ρ2) + δht+1

σ2
h

+
δht−1 + ρσh

σy

yt−1
exp(ht−1/2)

(1− ρ2)σ2
h

+ (VMt − a)b
σ2
VM

)σ̃2
t , (C.29)

σ̃2
t = ( δ

2

σ2
h

+ 1
(1− ρ2)σ2

h

+ q2

σ2
y(1− ρ2) + b2

σ2
VM

)−1, (C.30)

p = yt
exp(µt2 )(1 + µt

2 )− ρσy
σh

ht+1, (C.31)

q = yt
2 exp(µt2 ) −

ρσy
σh

δ. (C.32)

C1.2 ASV-JPR and VM-ASV-JPR

The ASV-JPR specification is

yt = exp(ht/2)ut, (C.33)

ht = δht−1 + vt, (C.34)ut
vt

 ∼N


0

0

 ,
 σ2

y ρσyσh

ρσyσh σ2
h


 . (C.35)

The MCMC steps are similar to those of the ASV-HS model. For δ | y, h, ρ, σy, σh,

conditional on return series y and latent volatility process h, the univariate representation

of the volatility equation is:

ht −
ρσh
σy

yt
exp(ht/2) = δht−1 +

√
1− ρ2 wt, wt ∼ N(0, σ2

h).

The MCMC steps for the parameters and prior settings will be as for the ASV-HS model.

The main difference is the posterior of ht, t = 1, 2, ...N . To sample h1, we set h0 = 0,
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as with the ASV-HS model. To sample hN , we need hN+1 and yN+1, and we can easily

draw a sample of [yN+1, hN+1] according to the ASV-JPR model.

The posterior distribution of ht is:

p(ht|Y, h−t,Θ) (C.36)

∝ p(yt|ht, h−t,Θ) p(ht+1|ht, yt+1,Θ) p(ht|ht−1,Θ) (C.37)

∝ exp(−ht2 ) exp(−
( yt

exp(ht/2) −
ρσy
σh
ht + ρσy

σh
δht−1)2

2σ2
y(1− ρ2) ) exp(−(ht − δht−1)2

2σ2
h

)

exp(−
(ht+1 − (δht + ρσh

σy

yt+1
exp(ht+1/2)))2

2(1− ρ2)σ2
h

) (C.38)

∝ exp(−ht2 ) exp(−
( yt

exp(ht/2) −
ρσy
σh
ht + ρσy

σh
δht−1)2

2σ2
y(1− ρ2) )fN (ht|µt, σ2), (C.39)

where:

µt = (δht−1
σ2
h

+
δ(ht+1 − ρσh

σy

yt+1
exp(ht+1/2))

(1− ρ2)σ2
h

)σ2, (C.40)

σ2 = ( 1
σ2
h

+ δ2

(1− ρ2)σ2
h

)−1. (C.41)

And the proposal distribution of ht will be a normal distribution fN (ht|µ̃t, σ̃2
t ) where:

µ̃t = (
pq − σ2

y(1− ρ2)/2
σ2
y(1− ρ2) + δht−1

σ2
h

+
δ(ht+1 − ρσh

σy

yt+1
exp(ht+1/2))

(1− ρ2)σ2
h

)σ̃2
t , (C.42)

σ̃2
t = ( 1

σ2
h

+ δ2

(1− ρ2)σ2
h

+ q2

σ2
y(1− ρ2))−1, (C.43)

p = yt
exp(µt2 )(1 + µt

2 ) + ρσy
σh

δht−1, (C.44)

q = yt
2 exp(µt2 ) + ρσy

σh
. (C.45)
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For the VM-ASV-JPR model:

yt = µ+ exp(ht/2)ut, (C.46)

ht = δht−1 + vt, (C.47)

VMt = a+ bht + et, et ∼ N(0, σ2
VM ), (C.48)ut

vt

 ∼N


0

0

 ,
 σ2

y ρσyσh

ρσyσh σ2
h


 . (C.49)

Similar to the VM-ASV-HS and ASV-JPR, we set the same prior and similar MCMC

steps for δ, σy, σh, ρ, a, b, σVM . The key difference is the posterior of ht:

The posterior of ht in the VM-ASV-JPR model is:

p(ht|Y, h−t,Θ) (C.50)

∝ p(yt|ht, h−t,Θ) p(ht+1|ht, yt+1,Θ) p(ht|ht−1,Θ)p(ht|VMt,Θ) (C.51)

∝ exp(−ht2 ) exp(−
( yt

exp(ht/2) −
ρσy
σh
ht + ρσy

σh
δht−1)2

2σ2
y(1− ρ2) )fN (ht|µt, σ2), (C.52)

(C.53)

where:

µt = (δht−1
σ2
h

+
δ(ht+1 − ρσh

σy

yt+1
exp(ht+1/2))

(1− ρ2)σ2
h

+ (VMt − a)b
σ2
VM

)σ2, (C.54)

σ2 = ( 1
σ2
h

+ δ2

(1− ρ2)σ2
h

+ b2

σ2
VM

)−1. (C.55)
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And the proposal distribution will be a normal distribution fN (ht|µ̃t, σ̃2
t ) where:

µ̃t = (
pq − σ2

y(1− ρ2)/2
σ2
y(1− ρ2) + δht−1

σ2
h

+
δ(ht+1 − ρσh

σy

yt+1
exp(ht+1/2))

(1− ρ2)σ2
h

+ (VMt − a)b
σ2
VM

)σ̃2
t , (C.56)

σ̃2
t = ( 1

σ2
h

+ δ2

(1− ρ2)σ2
h

+ q2

σ2
y(1− ρ2) + b2

σ2
VM

)−1, (C.57)

p = yt
exp(µt2 )(1 + µt

2 ) + ρσy
σh

δht−1, (C.58)

q = yt
2 exp(µt2 ) + ρσy

σh
. (C.59)
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C2 Supplementary Empirical Results
Russell 2000

ASV-HS Day ASV-HS Week ASV-JPR Day ASV-JPR Week
Para Mean Stdev Mean Stdev Mean Stdev Mean Stdev
δ 0.9823 0.0035 0.9355 0.0196 0.9869 0.0021 0.9582 0.0114

(0.9747, 0.9886) (0.8917, 0.9674) (0.9824, 0.9908) (0.9336, 0.9774)

σy 1.1273 0.0552 2.4464 0.1581 1.4964 0.0828 3.0006 0.2680
(1.0244, 1.2368) (2.1513, 2.7606) (1.3520, 1.6524) (2.5009, 3.5790)

σh 0.1634 0.0140 0.2824 0.0418 0.1605 0.0109 0.2600 0.0318
(0.1375, 0.1921) (0.2058, 0.3707) (0.1381, 0.1820) (0.2030, 0.3261)

ρ -0.7663 0.0395 -0.7024 0.0737 -0.8449 0.0249 -0.8009 0.0551
(-0.8386, -0.6816) (-0.8275, -0.5379) (-0.8889, -0.7912) (-0.8883, -0.6717)

HSI
ASV-HS Day ASV-HS Week ASV-JPR Day ASV-JPR Week

Para Mean Stdev Mean Stdev Mean Stdev Mean Stdev
δ 0.9868 0.0031 0.9678 0.0132 0.9883 0.0026 0.9707 0.0116

(0.9802, 0.9923) (0.9374, 0.9886) (0.9829, 0.9928) (0.9452, 0.9912)

σy 1.1231 0.0658 2.5704 0.2054 1.2193 0.0748 2.5739 0.2585
(1.0046, 1.2551) (2.1782, 3.0073) (1.0776, 1.3783) (1.9622, 3.0374)

σh 0.1305 0.0129 0.1655 0.0307 0.1281 0.0113 0.1639 0.0270
(0.1071, 0.1585) (0.1151, 0.2329) (0.1081, 0.1519) (0.1156, 0.2229)

ρ -0.5346 0.0580 -0.4229 0.1218 -0.6014 0.0493 -0.4967 0.1082
(-0.6413, -0.4133) (-0.6346, -0.1587) (-0.6924, -0.5017) (-0.6833, -0.2597)

STOXX50E
ASV-HS Day ASV-HS Week ASV-JPR Day ASV-JPR Week

Para Mean Stdev Mean Stdev Mean Stdev Mean Stdev
δ 0.9706 0.0045 0.9424 0.0170 0.9825 0.0027 0.9493 0.0115

(0.9611, 0.9783) (0.9029, 0.9696) (0.9769, 0.9875) (0.9242, 0.9698)

σy 1.0172 0.0422 2.3265 0.1441 1.2884 0.0743 2.8123 0.2027
(0.9390, 1.0978) (2.0555, 2.6235) (1.1649, 1.4340) (2.4646, 3.2410)

σh 0.2261 0.0170 0.2565 0.0390 0.1775 0.0127 0.2621 0.0321
(0.1958, 0.2621) (0.1870, 0.3434) (0.1533, 0.2032) (0.2036, 0.3290)

ρ -0.7922 0.0285 -0.7465 0.0707 -0.7918 0.0298 -0.8240 0.0431
(-0.8433, -0.7316) (-0.8615, -0.5892) (-0.8462, -0.7294) (-0.8942, -0.7263)

Inside the parentheses is the 95% density interval.

Table C3.1: ASV models with the Russell 2000, HSI and
STOXX50E indices daily and weekly returns.
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RV-ASV-HS BV-ASV-HS VIX-ASV-HS
Para Mean Stdev Mean Stdev Mean Stdev
δ 0.9493 0.0053 0.9498 0.0053 0.9891 0.0022

(0.9387, 0.9594) (0.9391, 0.9597) (0.9848, 0.9933)

σy 1.1292 0.0139 1.1304 0.0138 1.1540 0.0132
(1.1027, 1.1569) (1.1035, 1.1575) (1.1283, 1.1798)

σh 0.2574 0.0126 0.2530 0.0121 0.1159 0.0038
(0.2334, 0.2830) (0.2299, 0.2778) (0.1088, 0.1235)

ρ -0.4937 0.0324 -0.4723 0.0330 -0.1546 0.0258
(-0.5556, -0.4292) (-0.5366, -0.4074) (-0.2054, -0.1047)

b 0.9559 0.0280 0.9828 0.0281 0.3723 0.0093
(0.9029, 1.0126) (0.9287, 1.0396) (0.3537, 0.3902)

σVM 0.4631 0.0079 0.4604 0.0081 0.0302 0.0009
(0.4475, 0.4782) (0.4445, 0.4763) (0.0286, 0.0320)

RV-ASV-JPR BV-ASV-JPR VIX-ASV-JPR
Para Mean Stdev Mean Stdev Mean Stdev
δ 0.9552 0.0048 0.9545 0.0048 0.9907 0.0014

(0.9455, 0.9642) (0.9450, 0.9636) (0.9878, 0.9935)

σy 1.1365 0.0137 1.1390 0.0137 1.1606 0.0134
(1.1101, 1.1640) (1.1127, 1.1661) (1.1348, 1.1875)

σh 0.2739 0.0120 0.2726 0.0119 0.1129 0.0033
(0.2516, 0.2976) (0.2503, 0.2960) (0.1065, 0.1198)

ρ -0.6580 0.0210 -0.6679 0.0202 -0.8303 0.0066
(-0.6989, -0.6163) (-0.7068, -0.6274) (-0.8429, -0.8171)

b 0.9871 0.0274 1.0264 0.0292 0.4498 0.0117
(0.9350, 1.0422) (0.9714, 1.0864) (0.4261, 0.4737)

σVM 0.4389 0.0074 0.4304 0.0074 0.0209 0.0004
(0.4244, 0.4535) (0.4161, 0.4449) (0.0201, 0.0218)

Inside the parentheses is the 95% density interval.

Table C3.2: The estimation results of the ASV models with
Russell 2000 daily returns and volatility measures.
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RV-ASV-HS BV-ASV-HS VIX-ASV-HS
Para Mean Stdev Mean Stdev Mean Stdev
δ 0.9760 0.0039 0.9751 0.0039 0.9923 0.0020

(0.9681, 0.9834) (0.9672, 0.9826) (0.9884, 0.9961)

σy 1.1108 0.0138 1.1138 0.0138 1.1141 0.0127
(1.0837, 1.1376) (1.0871, 1.1415) (1.0894, 1.1395)

σh 0.1748 0.0101 0.1777 0.0097 0.1036 0.0035
(0.1554, 0.1949) (0.1592, 0.1970) (0.0960, 0.1101)

ρ -0.2162 0.0381 -0.2101 0.0369 -0.0463 0.0217
(-0.2913, -0.1425) (-0.2802, -0.1364) (-0.0892, -0.0038)

b 0.8622 0.0259 0.8850 0.0255 0.4253 0.0123
(0.8131, 0.9127) (0.8363, 0.9360) (0.4048, 0.4571)

σVM 0.4212 0.0063 0.4223 0.0064 0.0266 0.0007
(0.4092, 0.4337) (0.4096, 0.4349) (0.0252, 0.0279)

RV-ASV-JPR BV-ASV-JPR VIX-ASV-JPR
Para Mean Stdev Mean Stdev Mean Stdev
δ 0.9735 0.0038 0.9727 0.0040 0.9912 0.0017

(0.9657, 0.9807) (0.9647, 0.9802) (0.9879, 0.9945)

σy 1.1125 0.0137 1.1150 0.0136 1.1187 0.0130
(1.0864, 1.1397) (1.0887, 1.1421) (1.0941, 1.1443)

σh 0.1818 0.0097 0.1844 0.0102 0.0940 0.0028
(0.1638, 0.2018) (0.1650, 0.2052) (0.0884, 0.0994)

ρ -0.4575 0.0295 -0.4464 0.0293 -0.6070 0.0127
(-0.5149, -0.3989) (-0.5022, -0.3884) (-0.6316, -0.5814)

b 0.8943 0.0259 0.9192 0.0280 0.5009 0.0131
(0.8434, 0.9448) (0.8662, 0.9744) (0.4763, 0.5298)

σVM 0.4131 0.0063 0.4138 0.0064 0.0228 0.0005
(0.4008, 0.4256) (0.4014, 0.4264) (0.0218, 0.0239)

Inside the parentheses is the 95% density interval.

Table C3.3: The estimation results of the ASV models with HSI
daily returns and volatility measures.
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RV-ASV-HS BV-ASV-HS VIX-ASV-HS
Para Mean Stdev Mean Stdev Mean Stdev
δ 0.9573 0.0045 0.9626 0.0040 0.9868 0.0023

(0.9482, 0.9656) (0.9544, 0.9700) (0.9822, 0.9913)

σy 1.0010 0.0125 1.0085 0.0125 1.0469 0.0119
(0.9769, 1.0256) (0.9843, 1.0330) (1.0241, 1.0705)

σh 0.2621 0.0120 0.2391 0.0110 0.1280 0.0046
(0.2398, 0.2866) (0.2180, 0.2612) (0.1187, 0.1367)

ρ -0.6167 0.0308 -0.6141 0.0309 -0.1995 0.0261
(-0.6758, -0.5541) (-0.6726, -0.5517) (-0.2514, -0.1499)

b 0.8843 0.0226 0.9170 0.0242 0.3843 0.0115
(0.8413, 0.9294) (0.8702, 0.9648) (0.3650, 0.4090)

σVM 0.5039 0.0076 0.4979 0.0073 0.0330 0.0010
(0.4888, 0.5188) (0.4838, 0.5120) (0.0311, 0.0349)

RV-ASV-JPR BV-ASV-JPR VIX-ASV-JPR
Para Mean Stdev Mean Stdev Mean Stdev
δ 0.9667 0.0039 0.9685 0.0036 0.9889 0.0015

(0.9587, 0.9741) (0.9610, 0.9753) (0.9859, 0.9919)

σy 1.0168 0.0126 1.0239 0.0125 1.0567 0.0120
(0.9925, 1.0420) (0.9995, 1.0487) (1.0336, 1.0802)

σh 0.2419 0.0111 0.2348 0.0102 0.1234 0.0034
(0.2213, 0.2654) (0.2158, 0.2556) (0.1169, 0.1303)

ρ -0.6765 0.0248 -0.7124 0.0210 -0.8332 0.0063
(-0.7227, -0.6258) (-0.7520, -0.6697) (-0.8451, -0.8206)

b 0.9623 0.0263 1.0077 0.0282 0.4658 0.0113
(0.9118, 1.0154) (0.9556, 1.0641) (0.4436, 0.4878)

σVM 0.4914 0.0072 0.4732 0.0069 0.0221 0.0005
(0.4773, 0.5056) (0.4596, 0.4869) (0.0211, 0.0230)

Inside the parentheses is the 95% density interval.

Table C3.4: The estimation results of the ASV models with
STOXX50E daily returns and volatility measures.

143

http://www.mcmaster.ca/
https://www.degroote.mcmaster.ca/

	Abstract
	Acknowledgements
	Declaration of Authorship
	Introduction
	Is Overnight Volatility Overlooked?
	Introduction
	Motivations
	Daily, Daytime and Overnight Returns
	Overnight Returns, Significant or Negligible? 
	Overnight Return and Volatility
	Realized Volatility Measures and Jumps
	Data
	Overnight Realized Volatility and Jumps

	Forecasting Daytime and Overnight RV
	HAR-RV modeling of Realized Volatility

	A New Model Estimating the Daytime and Overnight Return and RV Jointly
	Model Specification

	Conclusion

	Estimating the Stochastic Volatility Model with Realized Volatility and Implied Volatility
	Introduction
	Model
	Model Specifications
	Latent Volatility Sampling

	Data and Estimation Results
	S&P 500 and VIX
	Individual Stocks

	Predictive Performance Comparison
	Conclusion

	Improving Asymmetric Stochastic Volatility Models with Ex-post Volatility
	Introduction
	Model Specification
	Asymmetric Stochastic Volatility Models
	ASV Models with Volatility Measures

	Simulation Study
	ASV Models with Returns
	ASV Models with Returns and Volatility Measures

	Equity Index and Volatility Products
	Stock Market Indices and Volatility Measures

	Estimation Results and Forecasts
	In-sample Estimation Results
	Out-of-sample Forecasts

	Conclusion

	Bibliography
	Chapter 1 Supplement
	Supplementary Overnight Return Plots
	HAR-RV Results for NASDAQ 100
	Latent Volatility Sampling for DN-SV-RV

	Chapter 2 Supplement
	Sampling Details
	Posterior Distribution of Volatility Process

	Latent Volatility Sampling Results in Graphs
	Parameter Sampling Results

	Chapter 3 Supplement
	Posterior Sampling
	ASV-HS and VM-ASV-HS
	ASV-JPR and VM-ASV-JPR

	Supplementary Empirical Results


