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Abstract
Estimations of heritability and variance explained due to environmental exposures and

interaction effects help in understanding complex diseases. Current methods to detect

such interactions rely on variance component methods. These methods have been neces-

sary due to the m » n problem, where the number of predictors (m) vastly outnumbers

the number of observations (n). These methods are all computationally intensive, which

is further exacerbated when considering gene-environment interactions, as the number

of predictors increases from m to 2m+1 in the case of a single environmental exposure.

Novel methods are thus needed to enable fast and unbiased calculations of the variance

explained (R2) for gene-environment interactions in very large samples on multiple traits.

Taking advantage of the large number of participants in contemporary genetic studies, we

herein propose a novel method for continuous trait R2 estimates that are up to 20 times

faster than current methods. We have devised a novel method, monsterlm, that enables

multiple linear regression on large regions encompassing tens of thousands of variants

in hundreds of thousands of participants. We tested monsterlm with simulations using

real genotypes from the UK Biobank. During simulations we verified the properties of

monsterlm to estimate the variance explained by interaction terms. Our preliminary

results showcase potential interactions between blood biochemistry biomarkers such as

HbA1c, Triglycerides and ApoB with an environmental factor relating to obesity-related

lifestyle factor: Waist-hip Ratio (WHR). We further investigate these results to reveal

that more than 50% of the interaction variance calculated can be attributed to ∼5% of

the single-nucleotide polymorphisms (SNPs) interacting with the environmental trait.

Lastly, we showcase the impact of interactions on improving polygenic risk scores.
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Chapter 1

Introduction

1.1 Introduction

The genome is often the conduit through which environmental exposures convey their

effects on health and disease. In understanding complex disease, there exists sensitivities

to certain environmental exposures and pharmacotherapies that some people experience

and others do not. It’s hypothesized to be governed by genetic factors that interact with

these exposures to determine risk. Sometimes, these genetic variations may be beneficial,

allowing the individual to be sensitive to health-enhancing effects of specific activities;

while other variations may exacerbate the detrimental effects of specific lifestyle choices.

Development of methods that quantify gene-environment interactions may eventually

yield data that helps guide health-related choices and medical interventions for complex

diseases.

Current methods to detect such interactions rely on variance component methods.

These methods have been necessary due to the m � n problem, where the number

of predictors (m) vastly outnumbers the number of observations (n). These methods

are all computationally intensive from computations of the sum of squares between

each set of predictors, which is further exacerbated when considering gene-environment
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interactions, as we increase the number of predictors from m to 2m+1 in the case of

a single environmental exposure. Novel methods are thus needed to enable fast and

unbiased calculations of the variance explained (R2) for gene-environment interactions

in very large samples on multiple traits. Taking advantage of the large number of

participants in contemporary genetic studies, we herein propose a novel method for

continuous trait R2 estimates that are up to 20 times faster than current methods.

Our method is based on the observation that the multiple regression coefficient of de-

termination or variance explained (R2) can be used to accurately estimate heritability,

whereby the trait of interest is the dependent variable and genotypes from the targeted

genetic region are the independent variables. By assuming a linear model relationship

between a quantitative trait and genetic variables, the heritability; defined as the vari-

ance explained by genetics, becomes equivalent to the R2. Extending this observation to

include an environmental exposure variable and computing the interactions between the

genotypes and environmental exposure allows us to examine the variance explained by

genetic interactions with an environmental exposure. By partitioning the genome into

non-overlapping regions, it is thus possible to estimate genome-wide interactions with

environmental exposure variables. However, partition of the genome into a large number

of small regions presents challenges. First, linkage disequilibrium (LD) spills at the junc-

tion can theoretically inflate heritability estimates if many such junctions exist. Second,

any residual population stratification effects would be amplified if heritability at each

region is even slightly overestimated. This effect is expected to be proportional to the

number of regions. Third, calculation of R2 on very large datasets can be challenging.

Through usage of the conjugate gradient method and computation acceleration via a

graphical-processing unit, we can estimate R2 using multiple linear regression models at

exponentially higher speeds. We have devised a novel method, monsterlm, that enables

multiple linear regression on large regions encompassing tens of thousands of variants

in hundreds of thousands of participants. Including up to 25 000 variants per region,

2
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1 environmental factor and 25 000 interactions between SNP variants and environmen-

tal exposure, only 60 blocks are necessary for genome-wide analysis, limiting both the

possiblity of LD spillage and inflation due to population stratification.

1.2 Background and definitions

Deoxyribonucleic acid(DNA) is a molecule, found typically in the nucleus of a cell, con-

taining the genetic information of a living organism. This information codes for cellular

growth, function and reproduction. DNA is made up of two strands of molecules called

nucleotides coiled together to form a double helix structure. Each nucleotide is made

up of one of the four nitrogen bases: adenine (A), thymine (T), cytosine (C) and gua-

nine (G), combined with a sugar and phosphate molecule. Due to the Watson-Crick

pairing rules, which states that A pairs with T and C pairs with G, each strand of

DNA contains the exact same genetic information, with different coding. A sequence of

DNA that produces a protein or other functional element is referred to as a gene. The

genome is the complete set of genetic information in an organism. Genomes are stored

in chromosomes, which are made up of long strands of DNA tightly coiled together

around histone proteins. Typically, there are 23 pairs of chromosomes that make up the

human genome. Through genetic recombination, where the genetic material between

chromosomes of the parent are exchanged, each copy of the chromosome in the child is

not identical to the parents chromosome they inherit. Single-nucleotide polymorphisms

(SNPs) are the most common form of genetic variation among humans. SNPs represents

a change that occurs at a specific locus of the genome at a single nucleotide. For exam-

ple, at a specific locus in the genome where most of the population have a C nucleotide,

there is a subset of the population that have a T nucleotide, meaning there is a SNP at

that locus of the genome. While most SNPs have no effect on the human body, certain

variations can have an effect on health. SNPs are studied to locate genes associated with

diseases with a hereditary component, such as heart disease. Most SNPs are biallelic,

3
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meaning that at a base position of the genome, there can be two possible nucleotide

variations, however, there are cases where there can be up to 4 possible bases at that

location. The variations of the nucleotide are called the alleles at that locus. The com-

mon variation at a base position is called the major allele, and the less common allele is

called the minor allele.

To analyze the effects of SNPs on various quantitative traits, studies are conducted

using genotype data. A SNP genotype dataset of n individuals and m studied SNPs is

represented as a matrix Xn×m. Typically genotype data comes from a gene array where

the columns represent the SNPs coded onto the array in its manufacture. SNP genotype

data can take on values of 0, 1, 2 to indicate the number of minor alleles in a single base

pair. The SNP genotype data is used to test for association with an observable biological

trait called the phenotype. The phenotypes of interest in this work are biomarkers related

to cardiovascular disease: ApoB, Bilirubin, Cholesterol, C-reactive protein (CRP), High-

Density Lipoprotein (HDL), Glycated Hemoglobin (HbA1c),Low-Density Lipoprotein

(LDL), and Triglycerides (TG).

SNPs are not entirely independent of one another. The genotype of one SNP may

be correlated with the genotype of other SNPs which are physically close to it in the

genome. When the genotype at multiple SNPs is not independent, the SNPs are said to

be in linkage disequilibrium (LD). SNPs in LD can affect the association between SNPs

and a measured trait. If two SNPs are high in LD, but only one SNP is a significant

contributor to a phenotype, the study can incorrectly overestimate the effects of the

non-contributing SNP on the measured phenotype due to the correlation between the

allele frequencies. It is an important aspect in studies of associations between SNPs and

phenotypes that the LD between SNPs are accounted for.

4
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1.3 Genome-Wide Environmental Interactions

The term gene−environment interaction has different meanings to different biomedical

researchers. However, in this thesis, we focus on the concept of effect modification

where the genetic and environmental exposures convey synergistic effects, or in other

words, where the joint effects are more or less than additive and the estimated genetic

effect on a trait differs in magnitude across the spectrum of an environmental exposure.

In the case of type-2 diabetes, it’s often said that the disease is the consequence of

gene-environment interactions (Wright 1932). Indeed, both the environment and the

genome are involved in diabetes etiology, and there are many genetic and environmental

risk factors for which robust evidence of association exist. But when epidemiologists

and statisticians discuss interactions, they are referring to the synergistic relationship

between the exposures, and there is limited empirical evidence for such effects in the

study of cardio-metabolic disease. In non human obesity, a condition widely believed

to result from a genetic predisposition triggered by exposure to adverse lifestyle factors,

of the >200 human gene-lifestyle interaction studies reported since 1995, only a few

examples of interactions have been adequately replicated (Ahmad et al. 2013).

In our studies, we examined gene-environmental interactions as the increased vari-

ance explained as a result of including interaction variables into our analysis model in

MonsterLM . The environmental exposure of interest, was one that would relate best

to obesity: the waist-hip ratio. An interaction variable between a SNP and the environ-

mental exposure would be defined as the multiplicative product between the 2 variables.

1.4 Applications of Gene-Environment Interactions

Some of the earliest empirical examples of gene-environment interactions come from

studies in Drosophilia that show that eye facet number varies both by genotype and

5
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temperature; similar examples exist for other features of the fly (Krafka 1920). In

agricultural genetics, the need to maintain or improve food security cultivated genetically

engineered plants to maximize crop yields conditional on environmental characteristics.

Studies in durum wheat, illustrate that in low crop yield regions, specific strains like the

D3145 can perform well, whereas other strains produce much higher yields than D3414

in high yield regions (Annicchiarico and Mariani 1996). These studies emphasize the

point that matching appropriate environments and medical interventions to genotype is

likely to be necessary for the optimization of health phenotypes in humans.

Animal studies of obesity and diabetes also provide useful examples of interactions,

where phenotypic differences between genetically engineered animals are augmented with

interventions that perturb the molecular pathways upon which the gene of interest re-

side. For example, high-fat feeding is commonly used as an intervention to accentuate

phenotypic differences between genetically distinct animals; in a study of glucose and

lipid metabolism, the effects of 8-week high and low fat feeding regimes on metabolic

phenotypes of five inbred mouse strains were compared; the study showed that metabolic

sensitivity to dietary fat varied considerably by genotype. The non-obese dietary mouse

strain has provided a longstanding mouse model for autoimmune type 1 diabetes due

to its predisposition to early-onset disease; this mouse is especially susceptible when

raised in a germ-free environment, but much less so when raised in ’dirty’ cages. This

phenomenon, which is not observed in wild-type mice is thought to reflect immune adap-

tations in the NOD mouse that require exposure to foreign microbes early in life (Singh

and Rabinovitch 1993).

Modulation of disease by environmental exposure is not limited to mouse models

either. Complex metabolic diseases such as non-autoimmune diabetes are often uncom-

mon in indigenous populations living traditional substance farming or hunter-gatherer

6
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lifestyles, yet genetically similar people living industrialized lifestyles are often dispropor-

tionately afflicted. These observations are consistent with the presence of susceptibility

loci whose effects are triggered by environmental exposures. This phenomenon is most

apparent in ethnic groups whose recent evolution is characterized by migration and

frequent exposure to famine, cold and other metabolic stressors. This process might

have led to enrichment of alleles that predispose to metabolic efficiency, specifically after

meals. Other intriguing examples are those from certain populations that cope unusually

well living at high altitudes, in nutrient deficient settings or in cold climates (Hancock

2011). Whilst these observations are especially prone to confounding, bias and reverse

causality, they provide tentative support for gene-environment interactions in human

disease.

1.5 Discovery Strategies

Through the advent of genome-wide association studies (GWAS) around 2005 facilitated

a new era of genetic association studies and the rapid discovery of thousands of loci for

many complex traits. GWAS lead to rapid advances in population genetics largely be-

cause it is agnostic to prior biological knowledge, which contrasts most previous gene

discovery approaches. Following the identification of genetic loci associated at genome-

wide significance, researchers were exploring if environmental exposures modified their

effects. There is appeal to this approach because few statistical tests are performed,

which helps preserve statistical power and is analytically simple. However, there are ar-

guments for why loci derived from GWAS may not be good candidates for interactions.

Heterogeneous SNP association signals are generally filtered out in standard GWAS

meta-analyses, yet SNPs involvement in gene x environment interactions are likely to

have different effects across populations. The need for MonsterLM is accentuated from

the fact that most comprehensive studies focused on determining whether established

GWAS-derived loci interact with environmental risk factors or clinical interventions have
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yielded predominantly null results (Franks 2011). With GWAS came the the possibility

to conduct interaction tests at a much higher variant density, and in samples of unre-

lated individuals. The simplest approach involves testing all SNPs for interaction with

one or more environmental exposures. Conventional genome-wide interactions required

sample sizes that are often unachievable to be adequately powered. The advantage of

MonsterLM is to be able to estimate the overall variance that is due to interactions.

1.6 Biomarkers and Cardiovascular Disease (CVD)

Biomarkers are a measurable substance in an organism whose presence is indicative of

some phenomenon such as disease or infection. Biomarkers are by definition objective,

quantifiable characteristics of biological processes. They may correlate with a patient’s

experience and sense of wellbeing, and it is easy to imagine measurable biological char-

acteristics that do not correspond to patients’ clinical state, or whose variations are

undetectable and without effect on health. It is also even easier to imagine measurable

biological characteristics whose measurement or intra-individual variance among pop-

ulations is so great as to render them all but useless as reliable predictors of disease

or its absence. Nonetheless, biomarkers provide valuable information on understanding

disease with respect to a patient.

The biomarkers examined throughout this project have substantial evidence relating

them to cardiovascular disease (CVD). ApoB or Apolipoprotein B is a component of

lipoproteins, which are particles that carry lipids in the blood. Specifically, this pro-

tein is a building block of very low-density lipoproteins (VLDLs), intermediate-density

lipoproteins (IDLs), and low-density lipoproteins (LDLs). These related molecules all

transport lipids, including cholesterol in the bloodstream.

LDLs are the primary carriers of cholesterol in the blood. When there is too much

cholesterol in your blood, it builds up in the walls of your arteries, causing a process

8
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called atherosclerosis, a form of heart disease. The arteries become narrowed and blood

flow to the heart muscle is slowed down or blocked. The blood carries oxygen to the

heart, and if not enough blood and oxygen reach your heart, you may suffer chest pain.

If the blood supply to a portion of the heart is completely cut off by a blockage, the

result is a heart attack.

There are two forms of cholesterol that many people are familiar with: Low-density

lipoprotein (LDL or "bad" cholesterol) and high-density lipoprotein (HDL or "good"

cholesterol.) These are the form in which cholesterol travels in the blood. Triglycerides

are another form of lipids which travel in our bloodstream, which research is showing

may also be linked to heart disease Feingold and Grunfeld 2018.

HbA1c is glycated hemoglobin, or commonly known as an individual’s blood sugar

levels. Research shows that higher HbA1c levels and glucose levels are generally linked

with a higher risk of heart disease. A study published in 2017 found that the most ideal

HbA1c level for people without diabetes is in the 5-6 percent range (Sujit 2017). Recent

research has also suggested that patients with elevated levels of C-reactive protein, an

inflammation related biomarker, also were at higher risk of diabetes, hypertension and

CVD ((Pradhan 2001)).

1.7 Population Stratification

GWAS are an effective approach for identifying genetic variants associated to disease risk.

However, a concerning issue is that they can be confounded by population stratification.

Population stratification is defined as systematic ancestry differences underlying the

genetic variance as noise, this observation comes from the first 2 principal components

showing the stratification of individuals with Eastern and Western. ancestry. This

method perform well in data sets in which population structure is the only kind of

structure present, but are inadequate in data sets that also contain family structure or

9
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cryptic relatedness. Fortunately in the data-set used in MonsterLM , the individuals

are unrelated, so this issue is minimized and can be handled through the usage of genetic

principal components.

GWAS have identified hundreds of common variants associated to disease risk or

related traits. These studies have overcome the dangers of population stratification,

which can produce spurious genetic associations if not properly corrected. However,

accounting for population structure is more challenging when family structure or cryptic

relatedness is also present, motivating the development of new methods. Because the

associations that have been reported primarily occur at markers with allele frequency

differences between subpopulations, it is critical to correct for stratification (Price et al.

2006).

The current method has been to use genetic principal components to measure the

extent of inflation due to population stratification and to correct for stratification using

methods that infer genetic ancestry by modeling our phenotypes and environmental

exposure of interest with the genetic principal components, and then taking the residuals

of that model to use in place of the old phenotypes. This is adjusting our phenotypes

and exposures for population stratification effects through residualization.

The concept of residualization will be described in more detail in the statistical back-

ground through Chapter 2.

10
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Chapter 2

Statistical Background

2.1 The Linear Model

The linear model has become the standard framework for many genetic analyses. They

provide control for confounding factors, allow for aggregating genetic effects from mul-

tiple variants and enable the join analysis of multiple traits. While inference in linear

models can be computationally demanding as the number of variants increases to large

numbers, efficient implementations and manipulation of the genotype matrix enables use

of linear models to large datasets.

A linear model describes a continuous output variable as a function of one or more

input variables, which in the case of genetics is our SNP variables. Denoting the number

of samples as N , the output variable for sample i as yi and [xi1, ..., xiM ] M input variables

or observations for sample i, the linear model can then be cast as:

yi =
M∑
m=1

ximβm + εi, εi ∼ N (0, σ2
e) (2.1)

The residual term εi accounts for the stochastic relationship between x and y, there

is measurement noise or other unmodelled factors. εi is assumed to follow a normal

11
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distribution with mean 0 and variance σ2
e , and to be independent across samples. In

equation (2.1), βm denotes the effect size of the input variable m.

Introducing the output vector y, the input matrix X, the effects vector β and the

residual vector e as

y =



y1

y2
...

yN


,X =



x11 x12 . . . x1M

x21 x22 . . . x2M
...

...
. . .

...

xN1 xN2 . . . xNM


, β =



β1

β2
...

βM


, ε =



ε1

ε2
...

εN


(2.2)

the linear model in (2.1) can be expressed in matrix form as

y = Xβ + ε, ε ∼ N (0, σ2
eIN ), (2.3)

where IN denotes the N ×N identity matrix.

2.2 Incorporating an interaction variable

An interaction may arise when considering the relationship in which the effect of one

causal variable depends on the state of a second causal variable. An interaction variable

or feature is a variable constructed from an original set of variables to try to represent

either all of the interaction present or some part of it. It is common to use the products

of original variables as the basis of testing whether interaction is present (Southwood

1978). In this case, we consider an additive model that includes an interaction between

the genotype matrix X and an environmental vector E.

In this full model with the interaction; we consider Y as a continuous phenotype

trait, X as the genotype matrix and E as the environmental exposure vector. The
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model becomes:

Yphenotype = βXXgenotype + βEEenvironment + βGxE(X × E)interaction (2.4)

Where G×E is the product between each individual SNP variant and an environmental

exposure, resulting in another N ×M matrix the same size as X. For the purposes

of analysis, we will include all variants and interactions as a single matrix U , which is

a N × 2M matrix without the exposure, as described in the methods section, will be

residualized from the traits of interest.

2.3 Ordinary Least Squares

To estimate the effects vector β, the ordinary least squares method is commonly used.

OLS chooses the parameters of a linear function of a set of input variables by the principle

of least squares: minimizing the sum of squares of the difference between the observed

dependent variable and those predicted by the linear function, it was first derived by

Gauss in 1795 (Bretscher 1995) .

Given the linear system:

Uβ = y, (2.5)

the goal is to find coefficients β which fit the equation best in minimizing the sum of

squares function S(β), where S is defined as:

S(β) = ||y− Uβ||2 (2.6)

This minimization problem has a unique solution, provided that the 2M variables

are linearly independent (which is the case through the use of LD pruning), giving the
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normal equations:

(UTU)β̂ = UT y (2.7)

Normally, this results in the solution for β̂ as:

β̂ = (UTU)−1UT y (2.8)

However, as the number of variables increases, computing the inverse of the UTU matrix

takes an extraordinary longer time; therefore, an alternative method using the Conjugate

Gradient Method was employed to speed up calculations, as it will be described in

Chapter 3.

2.4 The Coefficient of Determination R2

The coefficient of determination has many definitions. Generally, R2 is defined as the

proportion of variability (measured by the sum of squares S function) in a data set

accounted for by a multiple regression model. This interpretation is usually presented

at the conclusion of a multiple regression analysis.

Calculation of the coefficient depends on the ratio between 2 aspects, the total sum

of squares of the model, and the sum of squares of the regression model. The total sum

of squares (proportional to the total variance of the data) is defined as:

SStot =
∑
i

(yi − ȳ)2, (2.9)

But since, ȳ is mean-centered, it becomes 0, whereas the regression sum of squares is

defined as:

SSreg =
∑
i

(ŷi − ȳ)2 (2.10)
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Hence, the R2 is calculated as:

R2 = SSreg
SStot

(2.11)

Based on the definition, R2 is a goodness-of-fit statistic for the overall performance

of a multiple linear regression model. It can represent how well the regression line

approximates the observed data points, as a measure of variability of the residuals. It

lies between 0 and 1, where the close it is to 1, the better the linear relationship between

the response variable and predictors. The closer to 0, the worse the linear relationship;

indicating no linear relationship between the variables.

There is controversy regarding R2 as a goodness of fit statistic, as it always increases

even when a non-predictive regressor is added in a linear model. This is dealt with by

adjusting the R-squared variable, including a penalty for the number of predictors in a

model, the adjusted R2 increases only if the added predictor improves the model more

than would be expected by chance. The adjusted R2 is calculated as:

R2
adj = 1− (1−R2) N − 1

N − (2M)− 1 (2.12)

where N and 2M are the dimensions from the corresponding covariate matrix U with size

N × 2M . R2 is an important concept in genetics, as it described the variance explained

by an additive SNP-based linear model. This variance is more commonly known as

SNP-based heritability, which is how predictable a trait of interest can be, given all the

genetic information known about the trait.

Besides evaluating the overall performance of a multiple regression model, R2, can also

be used as a general measure of determining the relative importance of predictors in MLR

(Azen et al. 2001). After having built a model with a chosen set of predictors, one may

want to know a relatively important set of predictors, or rank the predictors according to

their contributions in predicting the outcome. This is especially important in the case
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of interaction variables, and determining if an added interaction matrix improves the

fit of a linear model. Budescu (Budescu 1993) suggested that an appropriately general

measure of importance should satisfy three conditions:

• Importance should be defined in terms of a variable’s ’reduction of error’ in pre-

dicting the outcome

• The method should allow for direct comparison of relative importance instead of

relying on inferred measures

• Importance should reflect a variable’s direct effect, total effect and partial effect.

Based on these criteria, importance became defined as the squared semipartial cor-

relation, or the difference between 2 models’ R2 from nested models.

2.5 Properties of R2

The variance of R2 was originally derived by Wishart (Wishart 1931) as:

var(R2) = 4ρ2(1− ρ2)2(n−m− 1)2

(n2 − 1)(n+ 3) (2.13)

When n is large and makes 2m + 5 small relative to n, the expression further reduces

to:

var(R2) ≈ 4ρ2(1− ρ2)2

n
(2.14)

Hence, the 100(1-α)% confidence limits for ρ2 by using the Wald method is given by

100(1− α)%CI = R2 ± zα/2

√
ˆvar(R2), (2.15)

where ˆvar(R2) is the sample estimate of var(R2) with ρ2 replaced by R2, zα/2 is the

100(α/2) upper percentile point of a standard normal distribution.
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It is important to recognize that when the coefficient of determination is 0, the

variance estimate is also 0, thus the Wald method cannot be used for that specific case

should it occur during analysis. Furthermore, this method may give confidence limits

out of range of 0 to 1, due the skewness of the sampling distribution of R2.

2.6 Confidence Interval of a Semipartial R2

Comparisons of R2 may arise in the case of two R2s between 2 models, where 1 is nested

in the other. Specifically, determining whether an additional set of predictors provides a

significant improvement in prediction response. It means whether an additional param-

eter set B provides improvement over parameter set A alone in predicting y. Normally

the equivalence between the R2s between the 2 parameter sets AB and A through an F

statistic comparing a full model with a reduced model in regression analysis. However,

for MonsterLM it will be important to have CI estimates for each fit of our partitioned

genotype matrix with and without interactions.

The best way to describe an estimator of an unknown parameter of interest is to ob-

tain the density function of that estimator’s sampling distribution. However, the exact

marginal distribution for the semipartial R2 is extremely complex (Fisher 1928). Many

researchers provide asymptotic solutions for the joint distribution of multiple correla-

tions. Olkin and Siotani (Olkin and Siotani 1976) provided the asymptotic distributions

of multiple correlations, which based on central limit theorem is approximately multi-

variate normal. However, the sampling distribution of a single R2 has been known to

be so skewed that the asymptotical normality of two or more R2s is only suitable for

large samples for n > 200 (Cohen and Cohen 1983). Fortunately, the partitioning of the

genotype matrix allows such conditions to be fulfilled.

A confidence interval is usually the most important index when making statistical
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inferences on this parameter. Olkin and Finn Olkin and Finn 1995 suggested Wald-

type confidence intervals for differences between two R2, defined as ∆R2
AB−A, which is

constructed through directly estimating the variance of the difference between these R2

values.

The Wald-type confidence interval is defined as:

100(1− α)CI(∆R2
AB−A) = (R2

AB −R2
A)± zα/2σ̂1/

√
n (2.16)

where σ1 is the asymptotic standard error of the difference ∆R2, and σ̂1 is the sample es-

timate with population correlations replaced by their corresponding sample correlations,

given by:

σ̂1 =
√

ˆvar(∆R2
AB−A) (2.17)

The standard error estimator can be obtained using the delta method as suggested by

Olkin and Finn.

The way the delta method works here is by first declaring our function of interest:

f(RA, RAB) = R2
AB −R2

A (2.18)

Where AB represents the full parameter set with interactions, and A represents the

parameter set just including the genotype matrix.

The variance of the difference is obtained by the delta method from the expression:

V ar∞(R2
AB −R2

A) = aΦa′ (2.19)
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where a is a row vector comprising of 2 partial derivatives, in which the correlations are

evaluated at their parameter values. These two partial derivatives are:

δ

δrA
(R2

AB −R2
A) = 2rA (2.20)

and
δ

δrAB
(R2

AB −R2
A) = 2rAB (2.21)

Thus, we get:

a1 = 2ρABa2 = −2ρA (2.22)

Next, the matrix Φ is the 2x2 variance-covariance matrix for rAB and rA. From Olkin

and Finn (Olkin and Finn 1995),

Φ11 = V ar∞(rAB) = (1− ρ2
AB)2/nΦ22 = V ar∞(rA) = (1− ρ2

A)2/n (2.23)

and lastly the other components of Φ as:

Φ12 = Φ21 = Cov(RA, RAB)

= (1
2(2ρAB,A − ρABρA)(1− ρ2

AB − ρ2
A − ρ2

AB,A) + ρ3
AB,A)/n (2.24)

Now we will let b, c, d equal the corresponding terms of Φ to rewrite the following ex-

pression:

aΦa′ =
[
2ρAB 2ρA

] b c

c d


2ρAB

2ρA

 (2.25)

Calculating the triple product yields:

aΦa′ = 4bρ2
AB + 4dρ2

A − 8cρABρA (2.26)
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Re-substituting b,c,d into their respective equations then finally derives the asymptotic

variance of the semipartial R2
AB,A as described by Alf Jr and Graf 1999:

V ar∞(∆R2
AB−A) = V ar∞(R2

AB) + V ar∞(R2
A)− 2Cov∞(R2

AB, R
2
A) (2.27)

Combining all parts together from the previous equations, we obtain an expression

that can use to calculate this asymptotic variance:

ˆvar(∆R2
AB−A) =

4R2
AB(1−R2

AB)2/n+

4R2
A(1−R2

A)2/n−

8RABRA(0.5(2RAB,A −RABRA)(1−R2
AB −R2

A −R2
AB,A) +R3

AB,A)/n

where the term RAB,A is calculated as:

RAB,A =
√

R2
A

R2
AB

(2.28)

Through these equations, we can compute the 100(1−α/2) CI for the semipartial co-

efficient ∆R2
AB−A, where AB represents the full model with interactions and A represents

the model without interactions, i.e. the genotype matrix only.

2.7 Quantile Normalization

It’s extremely important to recognize that many assumptions of our linear model rely on

data having mean 0 and variance equal to 1, as the model does not use an intercept term.

Quantile normalization is a technique for making two distributions identical in statistical

properties. To quantile-normalize a test distribution to a reference distribution of the
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same length, sort the test distribution and sort the reference distribution. The highest

entry in the test distribution then takes the value of the highest entry in the reference

distribution, the next highest entry in the reference distribution, and so on, until the

test distribution is a perturbation of the reference distribution Bolstad et al. 2003.

To quantile normalize two or more distributions to each other, without a reference

distribution, sort as before, then set to the average (usually, arithmetic mean) of the

distributions. So the highest value in all cases becomes the mean of the highest values,

the second highest value becomes the mean of the second highest values, and so on. For-

tunately, in our analyses, the trait and variables including interactions have a reference

distribution to a Gaussian normal.

Quantile normalization is conducted in R using a standard normal reference distri-

bution with the following command:

quantNorm = function(x){qnorm(rank(x,ties.method = "average")/(length(x)+1))}

This function would be applied to all data including the biomarker traits (y), the

genotype matrix (X), the environmental exposure vector (E) and the interaction matrix

(X × E).

2.8 Residualization

Adjusting for the effects of confounding variables is an important procedure in most

statistical genetic analyses. The idea is to remove the effects a covariate that could

be confounding to the relationship between the dependent and independent variables

(Richard 2012).
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Consider the linear model, with a phenotype y, covariate matrix U , and the true

effects vector β:

y = Uβ + ε (2.29)

Given the phenotype trait, and variables to be adjusted for, we can estimate β̂ as stated

in the linear model section, by using those variables in the model, and computing the

predicted ŷ values as:

ŷ = Uβ̂ (2.30)

The predicted values ŷ contain the information that the variables to be adjusted for have

on the phenotype y. Next consider the residuals e:

e = y − ŷ (2.31)

The residuals can be considered the remaining information about the phenotype y after

the information about the variables involved with ŷ is removed through subtraction.

This method is useful in adjusting for the confounding variables in regressional anal-

yses; but has an even more important effect in MonsterLM .

MonsterLM involves partitioning the genome into multiple genetic blocks, and then

fitting the SNP blocks with their associated interactions with an environmental exposure.

However, by including the environmental exposure during each fit with a SNP block, the

overall R2 suffers from inflation.

This can be circumvented by residualizing the biomarker phenotypes with the envi-

ronmental exposure variable, alongside adjusting for population stratification effects by

including the genetic principal components. Through this residualization, there will be

no need to include the environmental exposure during the fitting of each SNP block and

associated interactions.
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The model we’ll be concerned with then would be:

e = XgenotypeβG + (X × E)interactionβGxE + ε (2.32)

Where e is the residualized phenotype after adjusting for the environmental exposure

and population stratification.

With this residualized phenotype, there will be no need to be concerned with the

potential inflation and spillover of the variance explained by the environmental exposure

on the trait of interest and in the interaction terms.
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Chapter 3

MonsterLM: Methodology

3.1 Data and Pre-processing

The data used in analysis comes from the UK Biobank, specifically a sample of 325 991

unrelated British individuals with their genotyping data available (1 031 125 variants

included), alongside phenotypic traits such as blood biomarkers: Triglycerides, ApoB,

HbA1c, CRP, total cholesterol, total bilirubin, total glucose, HDL, LDL and environmen-

tal exposures such as Body Mass Index (BMI) and Waist-Hip Ratio (WHR) (Bycroft

et al. 2018). The UK Biobank is a large population-based study which includes over

500,000 participants living in the United Kingdom. Men and Women aged 40–69 years

were recruited between 2006 and 2010 and extensive phenotypic and genotypic data

about the participants was collected, including ethnicity and history of GDM. Details

of this study are available online (https://www.ukbiobank.ac.uk) (Bycroft et al. 2018).

It was important in analysis to adjust for individuals receiving medication that would

affect glucose and cholesterol levels.

The genotype data was also processed by removing highly correlated SNPs that had

a linkage disequillibrium value of more than 0.9 (a process known as LD pruning with a

r2 threshold of 0.9), and removing rare SNPs with a minor allele frequency of less than
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0.05 as the process was examining common variants. This process cut the SNP variants

analyzed to 1 031 135 variants. After pruning, the raw genotype data was normalized

to have mean = 0 and variance = 1.

To make sure data matched between each biomarker, the genotype data and the envi-

ronmental exposure; mean imputation was employed for missing data in the biomarkers.

The underlying assumption for mean imputation requires the missing values to be the

mean values in reality, this is rarely the case, however due to the relatively small number

of missing values, the effect was minimal. Mean imputation is a method where given a

dataset with missing values, the mean of the variable is computed without the missing

values, then each missing value is replaced with the computed mean. Simple simulation

tests were done to confirm mean imputation did not have a noticeable effect on the

adjusted R2 computations.

The rationale for using WHR as the environmental exposure is that WHR is a mea-

surement of obesity; which is the accumulation of both genetic factors and lifestyle

choices (lack of exercise, poor eating habits, etc.). Specifically, it’s a measure of cen-

tral obesity, which is widely accepted as the type of adiposity mainly driving adverse

metabolic consequences, including risk of diabetes and CVD. Furthermore, a recent study

concluded that life expectancy in the United States will decrease in the coming years

due to the dramatic increase in obesity (Stewart et al. 2009). The public health impli-

cations of WHR are a strong driver in choosing WHR as the environmental exposure

in this study. The WHO states that abdominal obesity is defined as a waist-hip ratio

above 0.9 for males and above 0.85 for females. Furthermore, WHR has been shown to

be a better predictor of CVD than waist circumference and body-mass index as it also

takes into account of the differences in body structure (Mørkedal et al. 2011). Hence

it’s possible for two individuals to have vastly different waist-hip ratios despite having

the same BMI. There is a genetic component to obesity; however, from our simulation
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study, we examined the cases where the exposure was partially determined by genetics

(either by the same SNPs that are causal to the trait of interest, or different SNPs). In

both cases, the estimated interaction variance between SNPs and the exposure for the

residualized simulated phenotype did not differ from the true interaction variance. The

heritability of the waist-hip ratio can range from 20 percent to 60 percent in different

studies (Heid et al. 2010); in the UKB it is reported to be 22 percent (Bulik-Sullivan et

al. 2015, which is relevant as our simulation tested environmental exposures that would

have a heritability of around 30 percent.

3.2 MonsterLM: the Model

To enable MLR on extremely large datasets, we developed the monsterlm method. Mon-

sterlm parallelizes the calculation of least squares regression including the interaction

terms between the genotypes and environmental factor. The calculation is done such

that the only practical limitation is the inversion of the m x m matrix, where m is the

combined number of SNPs, environmental factors and interaction terms, but without

a limit on the number of participants (n) included in the analysis. This limitation is

circumvented through the use of the conjugate gradient method and GPU acceleration.

This method allows for the calculation of R2 interaction estimates for multiple traits,

leading to appreciable gains in speed.

Briefly, the n x m genotype matrix G represents genotypes at m variants on n in-

dividuals, the n x 1 vector E represents the environmental exposure on n individuals.

Lastly, the m x n interaction matrix GxE represents m interaction effects for 1 exposure

on n individuals. All genotypes and environmental exposures have been quantile nor-

malized to have mean 0 and variance 1, and adjusted for population stratification effects

through residualizing the biomarkers of the first 20 genetic principal components. Given

a quantitative trait y, the combined covariate matrix U, we describe the least squares
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estimate for β̂ as a manipulation of the quadratic form of the normal equation (described

in Section 3.4). After computing β̂, the predicted values (ŷ), can be computed as:

ŷ = Uβ̂ (3.1)

, where U is the combined matrix of variants for the genotype block of interest and

interaction terms. We can compute the same model except the interaction terms are no

longer present.

Then, from each model we can calculatethe varianced explained by interactions as

the difference between the variance explained for the full model and the model without

interactions for each monsterblock:

R2
interaction = R2

fullmodel −R2
SNPsonly (3.2)

Under the assumption that the variants selected for analysis are not highly correlated

(based on pruning for LD), we can then estimate the total interaction variance explained

across the pruned genotype-wide environmental interaction matrix R2
GWEI as:

R2
GWEI =

j∑
i

R2
interaction (3.3)

where j represents the total number of monster blocks generated, which for this analysis

is 60.

To compute the 100(1 − α) confidence intervals for R2
GWEI , we take the calculated

variance of each block’s difference as R2
fullmodel−R2

genotype, and based on the assumption

of low to moderate correlation between blocks (not very we can calculate the total

variance as:

V ar∞(∆R2
GWEI) =

j∑
i

(V ar∞(∆R2
i )) (3.4)
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Then with the total variance calculated, we can use the Wald method to compute the

interval as:

100(1− α)CI = ∆R2
GWEI ± zα/2

√
V ar∞(∆R2

GWEI) (3.5)

3.3 Simulation Study

We tested MonsterLM with simulations using LD-pruned and MAF filtered genotypes

from the UK Biobank (Bycroft et al. 2018. Specifically, we used chromosome 22 alongside

the full UKB sample (325K individuals) to generate a single block of 20 000 SNPs. We

then simulated the effects (β) from a standard normal distribution, simulated the error

assuming it belonged to an i.i.d. normal distribution and randomly sampled 20% of

the total SNPs to have a causal genetic effect in simulation our trait of interest: Y. To

sample the GxE effects to be causal, we randomly subset a sample of the SNPs that had

causal effects, and set 50% of these SNPs to have GxE effects causal to the trait (10%

of the total SNPs). The simulated trait Y is computed through the following equation:

During simulations we considered multiple scenarios: 1) The environmental factor is

not dependent on the genotypes of individuals (noted as EFND). 2) The environmental

factor is dependent on the genotype of individuals. Further exploring this scenario, we

considered 2 sub-scenarios. First, we simulated the EF assuming that the SNPs causal

to the phenotype, would be the same SNPs that the EF depended on. The second sub-

scenario simulated the EF assuming that the SNPs causal to the phenotype, were not

the same SNPs that the EF depended on. The heritability was set to 0.025, exposure

R2 set to 0.2 and interaction R2 set to 0.005 to simulate real trait scenarios. . The

simulated trait Y is computed through the following equation:

Yphenotype = βGXgenotype + βEEenvironment + βGxE(X × E)interaction + ε (3.6)
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In the cases where we simulated an environmental exposure that was dependent on

the SNPs, we’d use the following equation:

Exposure = βSNPsXgenotype + ε (3.7)

where the genetic effect of SNPs in determining the exposure would explain 20% of the

variance in the exposure trait, an extreme estimate for a single chromosome simulation;

however this setting proves the robustness of our model to high correlation between

SNPs and the environmental exposure.

The simulations were based on a single chromosome to simplify results. The heri-

tability was set to 0.025, the environmental exposure R2 set to 0.01, GxE interaction

R2 set to 0.005 and the error variance was set to 0.96 to accurately simulate real trait

scenarios. Adjusting the variance explained by the genetic effect was done by adjusting

the product of the β and U matrix or vector after mean-variance standardization or

vector:

Effectadj =
√
R2 (Uβ − µ̂Uβ

σ̂Uβ
(3.8)

Where R2 is the variance explained set for the simulation experiment for each effect.

This process was repeated for all effects including the environmental exposure effect and

GxE interaction effects.

Our simulation results (Fig. 3.1) confirm that monsterlm can estimate interaction

effects with notable precision and accuracy regardless of the dependency of the envi-

ronmental factor (with slight bias). It may be a surprising result that despite the envi-

ronmental exposure being dependent on SNPs, the distribution of interaction variance

narrowed slightly; however a study had derived that correlation between SNPs and en-

vironmental exposure would have minimal effects on the interaction variance Sulc et al.

2020.
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Figure 3.1: Distribution of Estimated R2 for the 3 cases described in
Simulations

3.4 GPU Acceleration through the Conjugate Gradient

Method

Solving the normal equation for β̂ using equation (2.7), which we will rewrite as:

Aβ̂ = b (3.9)

where A = XTX and b = XT y, computing the least squares solution for β̂ can still be

quite a computationally intensive task for matrices of size 50 000 x 50 000. Knowing that

matrix A is a positive-definite matrix, we can actually solve β̂ directly from using the

Conjugate Gradient method. The Conjugate Gradient method is one of the most popular

methods for solving systems with definite matrices (Bohacek et al. 2019). It produces the
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exact solution of β̂ after a finite number of iterations (Shewchuk 1994). Through the use

of graphical processing units, the conjugate gradient method can compute estimates for

the multiple linear regression model up to 170 times faster for matrices of up to 50 000

features than the usual method solving the normal equation through matrix inversion

(Fig. 3.2). The experiment described simulates the n × p covariate matrix, the p × 1

coefficient vector β, and a noise term ε. From here, β̂ was estimated using both general

matrix inversion in base R (B/L) and using the proposed solution (PPSD), and the error

was computed as the mean squared error between the estimated β̂ and the true β.

Figure 3.2: Comparison of GPU-based acceleration vs. baseline inver-
sion of matrices in R

The theory and algorithm of the conjugate gradient method will be described in the

supplementary section; but a brief outline will be given here.

Given the normal equation, we can rewrite the equation as a quadratic function to

be minimized:

F (β̂) = 1
2 β̂

TAβ̂ − β̂T b (3.10)
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The purpose of the CG method is to minimize quadratic functions similar to the

normal equation, an initial solution vector β̂0 is initialized (usually the inverse of the

main diagonal of the A matrix), and then that vector is iterated going in the direction

of the gradient of F (β̂) until the minimum. Let β̂k be the solutions vector after the k-th

iteration. The residual vector after the k-th iteration is:

rk = y −Xβ̂k, (3.11)

and the negative gradient is:

gk = −∇F (β̂k) = XT rk (3.12)

Resulting in the following algorithm (Algorithm 1), The speed of this method comes

Algorithm 1 Conjugate Gradient Algorithm - Initiate β̂0

r0 = y −Xβ̂0
g0 = XT r0
for i = 1 to m(
if gi−1 = 0 then return xi−1
if (i > 1) then β̂i = ||gi−1||2/||gi−2||2
if i = 1, then pi = g0, else pi = gi−1 − β̂ipi−1
αi = ||gi−1||2/||Xpi−1||2
β̂i = β̂i−1 + αipi
ri = ri−1 − αiXpi
gi = XT ri)
return xm

from skipping the computation of the inverse of a large matrix, but instead just finding

a vector over many iterations that solves the normal equation, and only requires one

multiplication of X with an m-size vector and one multiplication of XT with an n-vector.

The multiple iterations can be computed in parallel via GPU systems.
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3.5 Analysis Workflow

With MonsterLM tested and verified through simulations, the analysis workflow would

consist of 3 stages:

1. Primary Analysis: Calculate total variance explained by interactions across all

325 991 individuals and all 60 blocks for the 9 biomarkers and environmental

exposure: WHR.

2. Secondary Analysis: Split the UKB data into two sets, 70 percent for model

building (known as the discovery set), and 30 percent for model testing (known as

the validation set). This would be followed with 2 separate analyses

(a) Analysis 1: Conduct univariate regression on the discovery set with just SNPs

and select a set of SNPs based on a set of p-value threshold (0.01, 0.001,

0.0001, 0.00001). Then test those SNPs and their associated interactions in

the validation set and calculate heritability and interaction variance explained

(and compare to the Primary Analysis Results).

(b) Analysis 2: Conduct univariate regression similar to Analysis 1, however

based on interaction p-values instead of SNPs, then conduct MonsterLM

with a proportion of interactions passing the same p-value thresholds on the

validation set and calculate interaction variance explained.

3. Polygenic Risk Scores Guided by the results of Analysis 1 and 2, we would

compute polygenic risk scores and examine if the incorporation of interactions can

improve the predictiveness of PRS scores on the biomarkers.

The purpose of primary analysis was to get a measure of the variance explained by

common variants across the genome interacting with an exposure that reflects lifestyle

choices (i.e. obesity through waist-hip ratio).
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3.6 Univariate Regression

The purpose of secondary analysis was to answer three questions:

1. Do G x E interactions arise from SNPs associated strongly to the trait of interest

or all SNPs (including SNPs not significant to the trait).

2. Do a few strong G x E interactions explain the large variance explained by inter-

actions, or is it a large number of small interactions.

Initially, significant SNPs were to be evaluated using a p-value threshold based on

multivariable regression p-values. However, due to the large number of variables, the

standard error on each βi coefficient would become too large to be deemed signficant.

Thus univariate regression was employed to evaluate the individual significance of a SNP

or interaction for secondary analysis.

Upon completion of univariate SNP-based regression on the discovery set, four sets

of SNPs were generated with each sets corresponding to a set of SNPs passing one of

the following p-value thresholds in the validation set: p < 0.01, p < 0.001, p < 0.0001,

p < 0.00001.

Each block would then be refitted to a linear model usingMonsterLM , and then the

heritability and interaction variance would be calculated for each of biomarkers. Then

the proportion of variance explained by the set of SNPs would be compared to the total

variance explained defined as:

h2
fraction = h2

SNPset

h2
fullgenotype

(3.13)

for heritability, and for interaction variance:

∆R2
fraction = ∆R2

intset

∆R2
fullint

(3.14)
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The process for interaction-based univariate analysis would occur as follows:

1. Regression would be conducted on each single SNP and its associated interaction

effect from the discovery set for each block of SNPs.

2. SNPs would be selected if the interaction p-value passed the significance threshold,

as stated in univariate SNP-based regression.

3. The significant interactions would then be included for each block of SNPs in

the validation set, where MonsterLM would fit each SNP block including the

interactions passing the significance threshold used.

4. Once the fitting was complete, the fraction for interaction would be calculated as

in Equation (3.12).

3.7 Polygenic Risk Scores

The final analysis of the project was to examine if inclusion of G x E interactions improve

polygenic risk score’s predictiveness.

A PRS is a quantitative measure that serves to predict the risk of a certain trait in

individuals based on their genetics. Polygenic scores look at the relationship between

an individual’s genetic variation, represented by the SNP genotype data, and a certain

phenotype. Once constructed, a polygenic risk scores can be used to predict the trait of

an individual based on his or her genetics.

For a given phenotype, the polygenic risk score is defined to be a linear combination

of a subset of the given coded genotypes of the SNPs and their associated weights that

reflect the association between each individual SNP and the trait of interest. Let [xi,j ]Mj=1

represent the genotypes of the M SNPs used in the PRS for individual i, the PRS is

35

http://www.mcmaster.ca/
http://www.biology.mcmaster.ca/


Master of Science– Mohammad Khan; McMaster University– Department of Statistics

defined to be:

Si =
M∑
j=1

xi,jWj (3.15)

One of the most common ways to construct the weights of a PRS is to use the regression

coefficients from an external GWAS on the phenotype as the weights in the risk score.

Under the GWAS approach, the PRS is calculated to be:

PRSi =
M∑
j=1

xi,j β̂j (3.16)

A major issue with this GWAS approach is that since GWAS regression is univariate, it

will not the resulting model will not be one that fits the optimal linear combination of

SNPs to the desired polygenic trait. Another issue is that the analysis does not account

for SNPs in strong linkage disequilibrium. Suppose that a region on the genome has one

very high contributing SNP, and a number of non-contributing SNPs that are in high LD

with the contributing SNP. Due to being in LD with the contributing SNP, the polygenic

risk score could incorrectly over-emphasize the effects of the non-contributing SNPs on

the measured trait. Thirdly, due to the size of M , it is computationally infeasible to fit

any higher-order interaction terms, resulting in a model that does not take into account

any possible interaction effects between SNPs that could either increase or decrease the

effects of the interacting SNPs on the phenotype. Fortunately, throughMonsterLM and

the use of LD pruning, these issues can be solved and more accurate PRS calculations

can be computed through using the β coefficients outputted from monsterLM

3.7.1 Applications of PRS

The first successful application of a polygenic risk score in humans using GWAS data

was in the International Schizophrenia Consortium (2009) Consortium 2009. Using the

pruning and threshold method, the study first conducted extensive pruning of the SNPs

independent of their association with the measured trait. After pruning the SNPs,
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the study tested setting the significance threshold at p-values of 0.1, 0.2, 0.3, 0.4, and

0.5 percent levels. International Schizophrenia Consortium (2009) performed a case-

control study of 3,322 cases and 3,587 controls of individuals of European descent, the

study constructed a PRS using up to approximately one million SNPs associated with

risk of schizophrenia. The best resulting PRS used a threshold of 0.5 percent, and

was able to explain approximately 3 of the total variability in the risk of developing

schizophrenia. The study also showed that the PRS for schizophrenia is also associated

with risk of bipolar disorder, but not associated with non-psychiatric diseases such as

coronary artery disease, Crohn’s disease, or T1/T2D. In addition, they were the first to

show in a simulation study that the effectiveness of polygenic risk scores increases as

sample size increases, showing that the explained variance increases from approximately

3 percent to over 20 percent by simulating a sample of 20,000 case/control pairs.

Since then, studies have applied PRS to several complex traits to test for both asso-

ciation and prediction of traits, with varying results. Simonson et al. (2011) (Simonson

et al. 2011) aimed to use GWAS to identify common SNPs associated with cardiovascular

disease (CVD) as well as to develop a PRS using the unadjusted GWAS coefficients to

predict CVD risk. The results of the study was ultimately inconclusive, with no SNPs

reaching the genome-wide significance level of 5 × 10−8, while the polygenic risk score

showed low predictive power, only explaining 1 percent of the variance in risk of CVD.

While many studies have used GWAS and polygenic scores, quite often the results

were statistically inconclusive. Dudbridge (Dudbridge 2013) showed that previous stud-

ies with mixed to negative results were not due to the limitations of the polygenic risk

score, but rather could be attributed to studies having too few participants to achieve

any substantial test power or pre- dictive accuracy. Furthermore, Dudbridge (2013) went

on to show that an increase in sample size is sufficient to improve both the power of asso-

ciation tests and the predictive accuracy of the polygenic risk scores. These conclusions
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serve to further reinforce the claims made in Inter- national Schizophrenia Consortium

with regards to sample size which demonstrated that predicting quantitative traits will

become more precise as sample data grows in size, observing an increase in explained

variance from 3 to 20. However, the sample size required was orders of magnitude greater

than what was available at the time, requiring 20,000 case control pairs compared to the

original study of 3,322 cases and 3,587 controls.

Despite its prevalence in current construction of polygenic risk scores, the P+T

method is not without its drawbacks. The main shortfall of P+T is that SNPs that

are discarded from the GWAS for not being statistically significant enough could still

contribute to the overall polygenic trait, resulting in a score with reduced predictive

power. Simonson et al noted in their study using polygenic models to predict CVD

that “Thousands of small effects that are indistinguishable from background noise when

performing a traditional GWAS can collectively account for a large proportion of the

risk variation”. Yang et al (Yang et al. 2010) was able to show that a model that takes

into account all SNPs was able to explain a much larger pro- portion of heritability in

human height as opposed to a model using only the SNPs that meet a certain signifi-

cance value, showing that the most accurate polygenic scores should be built using all

the SNPs simultaneously. The conclusion made by these studies is further reinforced by

Ware et al (Ware et al. 2017) in a study conducted on the population-based longitudinal

panel study Health and Retirement Study across four different polygenic traits: height,

BMI, educational attainment, and depression. This study showed polygenic risk scores

that include all available SNPs were able to either achieve a higher explained variance,

or had non-inferior performance than a risk score that did not use all SNPs.

3.7.2 PRS Workflow for MonsterLM

The process for computing PRS first without interactions is as follows:
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1. Select SNPs based on univariate p-values from the discovery set based on p-value

thresholds as in Secondary Analysis 1).

2. Re-run MonsterLM regression on the discovery set and obtain the β coefficients.

3. Using the β coefficients from 2. calculate the PRS in the validation set using

equation 3.14

4. Fit a linear model to the biomarker and PRS, calculating the R2 for the model.

This process would be repeated for the 4 sets of p-value thresholds and each biomarker,

and then the set which would give the PRS the highest predictability (based on R2),

and use that set of SNPs as the basis for computing PRS with interactions.

For the computation of PRS with interactions:

1. Select significant interaction terms based on the univariate interaction p-values

from the discovery set using p-value thresholds for the SNP set that passes p-value

thresholds from univariate SNP analysis.

2. Re-run MonsterLM regression on the discovery set with the set of SNPs from

PRS computation with the selected interactions and associated SNPS, then obtain

the β coefficients.

3. Using the β coefficients from 2. calculate the PRS in the validation set using

equation 3.14

4. Fit a linear model to the biomarker and PRS, calculating the R2 for the model.

This process would also be repeated for the 4 sets of p-value thresholds and each

biomarker. Then the highest R2 would be examined to see if the incorporation of inter-

actions improve the PRS.
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To calculate the PRS score with interactions the following equation was used, once

the βX and βX×E coefficients were calculated from the discovery set:

PRSX×E =
∑
i

(βX,i ·Xi) +
∑
j

(βX×E,j · (X × E)j)) (3.17)

where Xi and (X ×E)j are the individual SNPs and SNP interactions features from the

validation set selected based on univariate p-values from the discovery set. By using a

validation set for prediction purposes, we mitigate the potential bias that occurs from

overfitting the PRS after continuously re-using the same dataset for univariate analysis,

beta-coefficient computation and then re-using the coefficients on that set.
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Chapter 4

Results

4.1 The Importance of Quantile Normalization

After the UKB genotype data was pruned and partitioned into 60 blocks of 25 000

contiguous SNPs per block, it was then normalized prior to fitting in MonsterLM .

An important assumption in MonsterLM is that the model requires all covariates

(including interaction terms) to have mean = 0, and variance = 1, as the model does

not use an intercept term.

If the interaction terms were not quantile normalized to have mean = 0, variance = 1;

then the model was observed to have a negative bias with respect to R2 for each block.

An initial test with residualized triglycerides shows the negative bias below (Table 4.1):

Table (4.2) below shows the correct estimates after properly quantile normalizing the

interaction terms, as can be seen from the results; the negative bias present in each block

is no longer present.

After identifying the error to be attributed to lack of normalization for interactions,
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monsterLMs data-processing pipeline included a feature to quantile-normalize interac-

tions included in analysis.

4.2 Total Interaction Variance for the Biomarkers

The 9 biomarkers: ApoB, Bilirubin, Cholesterol, Glucose, High-Density Lipoproteins,

HbA1c, Low-Density Lipoproteins and Triglycerides were subsequently analyzed using

MonsterLM . Through the use of GPU-based parallel processing, the 9 traits could be

analyzed in parallel and obtaining the R2
GWEI for each trait could be done within a week

for a total of 2 062 250 covariates (1 031 125 variants × 2, for 1 environmental exposure)

and 325 991 individuals. (Fig. 4.1), showcases the calculated interaction variances and

heritabilities across all LD-pruned common variants with confidence intervals.
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Figure 4.1: Interaction Variance and Heritability computed using
MonsterLM for the residualized biomarkers, adjusted for age, sex and
stratification effects, with confidence intervals calculated as in Chapter 2.
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The table below (Table 4.4) summarizes the heritability and full R2 values computed

through MonsterLM . Although, these estimates of interaction R2 can appear to be

quite high for specific biomarkers (like ApoB and HDL); however under the results of

our simulation study and based on the CI’s, we are quite confident in these estimates

under the assumptions outlined. However, it is important to note that CRP did not

have interaction variance > 0 after fitting through MonsterLM with waist-hip ratio.

Since no significant interaction variance was found, it was decided that CRP wouldn’t

be examined further in secondary analysis. It is important to recognize this result could

be purely due to chance, as the 95% CI of CRP contains positive interaction values in

its range.

4.3 Univariate SNP-based Analysis

Following the results of Primary Analysis, a few questions were posed regarding the

interaction variance estimates. Now that it was shown that 8 of the 9 biomarkers had

rather large, significant estimates in interaction variance, we wanted to understand where

this variance came from. If it was attributed to the SNPs that were associated to the

trait, or perhaps unique SNPs that weren’t associated with the trait were the ones

interacting with waist-hip ratio.

Following the protocol outlined in Chapter 3, we split the UKB data into 2 sets:

the discovery and validation set. Then, univariate regression was conducted onto the

discovery set to determine which SNPs were significant to the trait of interest. Initially,

multivariable regression via MonsterLM was used to select for significant SNPs, but an

important caveat was discovered in the use of multivariable regression in genome-based

complex trait analysis. When examining the standard error for the effect size estimates

(βi), it is equal to:

SE = σ̂2(XTX)−1 (4.1)
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As the number of parameters in the model becomes quite large in MonsterLM , the

standard error on the estimates also becomes large, resulting in most SNPs (and potential

interactions) having very low p-values, and very few pass even the 0.01 significance

threshold. The multivariable results are shown in Table (4.5), and these SNPs captured

a minimal amount of the variance explained by the MAF/LD pruned SNP set used in

primary analysis.

After conducting the analysis based on the univariate regression p-values, 4 sets

of SNP blocks were created in the validation set, and using MonsterLM protocol to

estimate heritability, especially for SNP sets that were greater than 25K SNPs in size,

requiring multiple blocks. After heritability was estimated, all possible interactions with

the SNPs involved were added to the model, and the total R2
full was computed, and then

the R2
γ was calculated afterwards. The results are shown in Figure (4.2).

4.4 Univariate Interaction-based Analysis

From the previous analysis, we identified that the SNPs contributing to the interaction

variance estimated in primary analysis were not mostly not the same SNPs that were

causal to the biomarker. This prompted the next analysis described in Chapter 3.6, using

univariate interaction p-values to select a set of GxE interactions passing a significance

threshold in the discovery set.

With the residualized phenotype, we conducted regression with the following model:

e ∼ βSNPXSNP + βX×E(XSNP × E) (4.2)

where X was a single SNP, and the single interaction between SNP and WHR was

included in the model; then interactions were selected based on the p-values that tested
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Figure 4.2: Fraction of Heritability and Interaction Variance Explained
as a function of Significance levels for each of the 8 biomarkers used in
follow-up analyses based on the validation sample

the hypotheses that:

H0 : β̂X×E = 0

HA : β̂X×E 6= 0

After selecting for these interactions based on 4 univariate interaction p-value thresh-

olds: 0.01, 0.001, 0.0001 and 0.00001; we would create 60 new blocks to be computed

through MonsterLM . Each block consisted of all the SNPs associated with the cor-

responding genetic block, and then the corresponding interactions selected from the

univariate p-values would be added to the genetic SNP block, creating a new set of 60

blocks with SNPs and a proportion of interactions in the validation set. Then after

fitting MonsterLM to the blocks, the R2
GWEI would be computed for each biomarker,
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with the results displayed in Figure (4.3).
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Figure 4.3: Fraction of Interaction Variance Explained as a function of
Significance Levels for each of the 8 biomarkers

4.5 Incorporating Interactions into Polygenic Risk Scores

The final step of this project was to compute polygenic risk scores and examine if these

scores could have improved predictive capabilities by incorporating interactions into

computation of the PRS. Due to its relatively high interaction variance, ApoB was

selected for PRS analysis including interactions with WHR.

The results for this analysis are displayed in Table (4.6). We’ve observed improve-

ments in every case of incorporating interactions into the PRS score resulting in a %
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increase ranging from 0.8% to 8% relative to the base PRS using only genotyping data.

% increase was calculated as:

%increase =
R2
PRS+INT −R2

PRS

R2
PRS

(4.3)
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Table 4.1: Preliminary Results for Triglycerides without Quantile Nor-
malization of Interactions

chr block adj R2Full adj R2Geno Interacction R2

1 1 1.73 · 10−3 3.76 · 10−3 −2.03 · 10−3

2 4.15 · 10−3 6.64 · 10−3 −2.49 · 10−3

3 6.92 · 10−4 2.64 · 10−3 −1.94 · 10−3

4 9.61 · 10−4 3.39 · 10−3 −2.43 · 10−3

2 1 1.04 · 10−2 1.25 · 10−2 −2.12 · 10−3

2 −1.18 · 10−3 1.2 · 10−3 −2.38 · 10−3

3 1.75 · 10−3 4.27 · 10−3 −2.53 · 10−3

4 5.94 · 10−4 3.42 · 10−3 −2.82 · 10−3

3 1 7.22 · 10−4 2 · 10−3 −1.28 · 10−3

2 −1.1 · 10−3 1.17 · 10−3 −2.28 · 10−3

3 3.38 · 10−4 1.7 · 10−3 −1.36 · 10−3

4 6.09 · 10−4 2.13 · 10−3 −1.52 · 10−3

4 1 7.71 · 10−4 3.39 · 10−3 −2.62 · 10−3

2 2.07 · 10−3 3.88 · 10−3 −1.81 · 10−3

3 −1.57 · 10−3 1.25 · 10−3 −2.83 · 10−3

15 1 4.82 · 10−3 6.52 · 10−3 −1.71 · 10−3

2 1.73 · 10−3 3.26 · 10−3 −1.53 · 10−3

16 1 1.37 · 10−3 2.15 · 10−3 −7.78 · 10−4

2 2.32 · 10−3 4.67 · 10−3 −2.34 · 10−3

17 1 1.43 · 10−3 2.44 · 10−3 −1.01 · 10−3

2 4.1 · 10−3 6.62 · 10−3 −2.53 · 10−3

18 1 −2.14 · 10−4 2.6 · 10−4 −4.74 · 10−4

2 −4.33 · 10−4 2.6 · 10−3 −3.03 · 10−3

19 1 6.85 · 10−3 7.97 · 10−3 −1.12 · 10−3

2 9.89 · 10−3 1.05 · 10−2 −5.83 · 10−4

20 1 2.58 · 10−4 1.52 · 10−3 −1.27 · 10−3

2 2.48 · 10−3 4.28 · 10−3 −1.81 · 10−3

21 1 5.41 · 10−4 1.59 · 10−3 −1.05 · 10−3

22 1 −3.76 · 10−4 1.61 · 10−3 −1.99 · 10−3

TOTAL 0.14 0.24 −5.37 · 10−2
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Table 4.2: Preliminary Results for Triglycerides without Quantile Nor-
malization of Interactions

chr block adj R2Full adj R2Geno Interacction R2

1 1 4.21 · 10−3 1.84 · 10−3 2.38 · 10−3

2 6.09 · 10−3 3.78 · 10−3 2.32 · 10−3

3 4.33 · 10−3 3.74 · 10−3 5.89 · 10−4

4 3.82 · 10−3 2.99 · 10−3 8.26 · 10−4

2 1 5.53 · 10−3 4.09 · 10−3 1.44 · 10−3

2 2.79 · 10−2 2.55 · 10−2 2.35 · 10−3

3 4.42 · 10−3 3.26 · 10−3 1.15 · 10−3

4 5.38 · 10−3 3.87 · 10−3 1.51 · 10−3

3 1 3.61 · 10−3 2.42 · 10−3 1.18 · 10−3

2 2.91 · 10−3 2.11 · 10−3 7.98 · 10−4

3 3.54 · 10−3 1.77 · 10−3 1.77 · 10−3

4 2.83 · 10−3 1.9 · 10−3 9.25 · 10−4

4 1 5.58 · 10−3 2.95 · 10−3 2.63 · 10−3

2 7.81 · 10−3 6.37 · 10−3 1.44 · 10−3

3 4.62 · 10−3 3.15 · 10−3 1.47 · 10−3

15 1 6.31 · 10−3 3.85 · 10−3 2.45 · 10−3

2 3.25 · 10−3 3.17 · 10−3 7.7 · 10−5

16 1 6.54 · 10−3 4.97 · 10−3 1.57 · 10−3

2 3.7 · 10−3 1.53 · 10−3 2.17 · 10−3

17 1 4.49 · 10−3 2.84 · 10−3 1.65 · 10−3

2 8.15 · 10−3 6.69 · 10−3 1.46 · 10−3

18 1 2.32 · 10−3 1.72 · 10−3 6 · 10−4

2 2.63 · 10−3 9.3 · 10−4 1.7 · 10−3

19 1 1.73 · 10−2 1.59 · 10−2 1.37 · 10−3

2 4.21 · 10−3 2.45 · 10−3 1.76 · 10−3

20 1 8.34 · 10−3 7.19 · 10−3 1.14 · 10−3

2 3.41 · 10−3 1.87 · 10−3 1.54 · 10−3

21 1 3.94 · 10−3 1.79 · 10−3 2.15 · 10−3

22 1 4.64 · 10−3 3.07 · 10−3 1.57 · 10−3

TOTAL 0.32 0.24 8.69 · 10−2
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Table 4.3: Preliminary results summarizing the fitting monsterLM with
triglycerides, with and without normalizing the interaction terms

Case Just Genotype Genotype + Interactions

Without QN 0.241004903 0.13899865
With QN 0.241004903 0.32281015

Table 4.4: Interaction R2 Estimates

Biomarkers Heritability Total Variance Interaction Variance

ApoB 0.25 0.7 0.45
Bilirubin 0.38 0.79 0.41

Cholesterol 0.17 0.28 0.11
CRP 0.26 0.22 −3.75 · 10−2

Glucose 9.59 · 10−2 0.27 0.17
HbA1c 0.26 0.45 0.19
HDL 0.3 0.88 0.58
LDL 0.17 0.25 8.05 · 10−2

Triglycerides 0.24 0.32 8.69 · 10−2
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Table 4.5: Examining fraction of heritability estimates from analysis
using multivariable p-values

Biomarkers Significance h2
SNPset Fraction of h2

tot

ApoB 1 · 10−5 2.24 · 10−2 9.08 · 10−2

ApoB 1 · 10−4 2.54 · 10−2 0.1
ApoB 1 · 10−3 4.47 · 10−2 0.18
ApoB 1 · 10−2 7.59 · 10−2 0.31
Bili 1 · 10−5 0.25 0.65
Bili 1 · 10−4 0.25 0.66
Bili 1 · 10−3 0.25 0.67
Bili 1 · 10−2 0.27 0.73

Glucose 1 · 10−5 2.99 · 10−2 0.31
Glucose 1 · 10−4 3.3 · 10−2 0.34
Glucose 1 · 10−3 3.83 · 10−2 0.4
Glucose 1 · 10−2 6.08 · 10−2 0.63
Chol 1 · 10−5 1.01 · 10−3 5.8 · 10−3

Chol 1 · 10−4 9.68 · 10−3 5.58 · 10−2

Chol 1 · 10−3 1.25 · 10−2 7.19 · 10−2

Chol 1 · 10−2 2.41 · 10−2 0.14
HDL 1 · 10−5 3.82 · 10−2 0.13
HDL 1 · 10−4 5.27 · 10−2 0.18
HDL 1 · 10−3 6.11 · 10−2 0.21
HDL 1 · 10−2 0.1 0.34
HbA1c 1 · 10−5 2.65 · 10−2 0.1
HbA1c 1 · 10−4 3.26 · 10−2 0.13
HbA1c 1 · 10−3 4.35 · 10−2 0.17
HbA1c 1 · 10−2 7.12 · 10−2 0.28
LDL 1 · 10−5 4.75 · 10−2 0.28
LDL 1 · 10−4 5.23 · 10−2 0.31
LDL 1 · 10−3 5.47 · 10−2 0.32
LDL 1 · 10−2 7.43 · 10−2 0.43
TG 1 · 10−5 3.21 · 10−2 0.14
TG 1 · 10−4 3.28 · 10−2 0.14
TG 1 · 10−3 4.43 · 10−2 0.19
TG 1 · 10−2 7.51 · 10−2 0.32
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Table 4.6: Comparing polygenic risk scores with and without interac-
tions included at the significance levels displayed

Int Significance Geno Significance PRS R2 PRS R2 + Int Percent Increase in R2

0.00001 0.00001 0.1137 0.1146 0.79
0.00001 0.0001 0.1101 0.1164 5.41
0.00001 0.001 0.1011 0.10644 5.02
0.00001 0.01 0.0813 0.08204 0.9
0.0001 0.00001 0.1137 0.1147 0.87
0.0001 0.0001 0.1101 0.1163 5.33
0.0001 0.001 0.1011 0.1066 5.16
0.0001 0.01 0.0813 0.08268 1.67
0.001 0.00001 0.1137 0.1157 1.73
0.001 0.0001 0.1101 0.1185 7.09
0.001 0.001 0.1011 0.1075 5.95
0.001 0.01 0.0813 0.08328 2.38
0.01 0.00001 0.1137 0.1165 2.4
0.01 0.0001 0.1101 0.1197 8.02
0.01 0.001 0.1011 0.1086 6.91
0.01 0.01 0.0813 0.08268 1.67
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Chapter 5

Discussion

5.1 Discussion of Primary Analysis: Interaction Results

Interactions between obesity-related environmental exposures and genes relating to lipids

is documented (Walker and Jebb 2012). An adverse lipid profile of high triglycerides,

total cholesterol and low-density lipoprotein cholesterol; and low HDL cholesterol has

been observed to have genetic interactions in relation to cardiovascular disease Wilson

et al. 1998. At a population level, diet is an important determinent of the lipid profile,

but a great amount of inter-individual variation has been noted consistently, especially in

the lipid responses to dietary changes. This variation has been attributed to differences

in genetic background, in addition to age, gender and ethnicity. Reductions in total

fat, saturated fatty acids and trans-fatty acids are all effective in reducing total choles-

terol, LDL cholesterol and triglycerides (Keys and Parlin 1966). However, a reduction

in total dietary fat intake achieved by replaced with carbohydrates has been associated

with an unfavorable reduction in HDL cholesterol and increased triglycerides (Poppitt

et al. 2002). Conversely, replacement of trans- or saturated fatty acids has been found to

maintain HDL cholesterol. Increased dietary intake of n-3 polyunsaturated fatty acids

has been associated with lower triglycerides. In addition to changes in dietary composi-

tion, a reduction in total energy leading to weight loss is associated with reductions in
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cholesterol and triglycerides, and an increase in HDL cholesterol associated with weight

loss (Dattilo and Kris-Etherton 1992, Poobalan et al. 2004). However, population-level

effects of diets on lipid levels conceal significant heterogeneity at an individual level,

which is often attributed in part to genetic variation. Heritability estimates for varia-

tion in lipid levels within a population range from 10 percent to 60 percent, which our

heritability estimates are in line with.

Summarizing current genetic studies, the gene variants identified in apolipoproteins

and genes involved in cholesterol synthesis and efflux, lipolysis, lipogenesis, triglycerides

and cholesterol transfer, explaining some of the variation in lipid levels areAPOE,CETP ,

and APOA5 (Corella and Ordovas 2005). It is quite interesting to note that in these

studies, the genes examined are those that are already found associated with the trait

through GWAS studies, where a single gene is examined at a time with the trait.

The literature described thus far explains some of the high interaction variance found

in the lipoproteins and triglycerides from our primary results, however there is not

as much literature available on the interactions of another biomarker: bilirubin with

obesity-related exposure factors; however the literature does show the biomarker being

associated to T2D, which increases risk to CVD by 5-fold. Another biomarker of inter-

est is blood glucose levels as measured by glycated haemoglobin A1c, for its interaction

levels with obesity-related exposure factors. A recent study examined some potential

interactions between genetics and diet on haemoglobin A1c and type 2 diabetes risk

(Eriksen et al. 2019). Statistical interactions were observed between gene risk scores for

HbA1c and intake of wholegrains, with a p-value < 0.04 for the interaction coefficient

with respect to risk of T2D. The effect of the diet interactions on HbA1c was greater

in high-genetic risk individuals compared to lower genetic risk individuals. Furthermore

significant interactions between gene-risk scores related to HbA1c and BMI categories

were also observed. There was a greater effect of the gene-risk score on HbA1c among
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obese candidates for interaction p-value < 0.03. A caveat of these results is that the

analysis was only based on a single gene-risk score derived from 87 common SNPs as-

sociated with HbA1c; however from our primary analysis, there are many more SNPs

that are associated with HbA1c that may interact specifically with an environmental

exposure, and they may be identified through the use of MonsterLM using a database

with an extremely large cohort in the UK Biobank.

5.2 Interaction Variance Analysis Comparisons

Alternative methods that examine gene-environment interactions include the genetic-

covariate interaction: genome-based restricted maximum likelihood method, denoted

as:GCI-GREML which was developed(Robinson et al. 2017). This method defines GxE

interaction in a very narrow sense as genotype–covariate interaction is detected if changes

in genetic effects do not scale proportionally with changes in mean or phenotypic variance

across ages as a time-dependent factor. Furthermore, the method computes multiple like-

lihood ratio tests (>250 tests), requiring a very high p-value threshold after Bonferroni

correction, potentially rejecting many interactions with slightly weaker associations, but

still having an impact. Their analysis focused specifically on age, smoking and diet ex-

posures with respect to BMI variance, which is different than what our analysis focused

on, making the primary results not completely comparable.

Another method that is very similar to MonsterLM in computing GxE interaction

effects was recently published as: GxE Mixed Model (Dahl et al. 2020. The method

also characterizes the aggregate polygenic contributions of GxE. Also like MonsterLM ;

relative to single-variant GxE tests, GxEMM has higher power for polygenic traits but

it differs in having lower resolution. Regardless, both methods are particularly useful for

characterizing the biological relevance of environmental measures. GxEMM is limited in

how many SNPs can be analyzed and the sample size cannot be very large, limiting the
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use of asymptotic properties of estimators. This is a big limitation as large sample sizes

are required in order to have well-powered analyses. When an analysis is underpowered,

many results could be hidden as the number of samples is insufficient to accurately ob-

serve the overall variance explained by interactions, and other such quantities. Another

limiting factor in this analysis, is the use of traditional OLS estimation, requiring the

computationally intensive inverse of a large matrix to be computed, greatly increasing

computation time as the number of SNPs and sample size increase to large numbers.

Through the use of the conjugate gradient method and GPU systems, MonsterLM can

compute estimates faster than these methods for much larger datasets.

5.3 Heritability Analysis Comparisons

Furthermore, all heritability estimates are in similar range to previous literature on

the heritability of these biomarkers (Bulik-Sullivan et al. 2015) in the same population,

further validating the results of primary analysis, with the only notable exception in

ApoB (Table 5.2). Another method quite similar to MonsterLM in the context of

estimating heritability is the generalized random effects model (Kangcheng et al. 2019)

which doesn’t prune for LD but uses a generalized inverse to take into account the LD

structure has very similar results for traits like BMI and WHR, and identical results for

the only biomarker examined Low-density cholesterol at 0.083. Table (5.1). However,

their analysis also filtered out a great deal of SNPs from the UK Biobank, as our analysis

computed more than 2.5 million SNPs, while theirs comprised of roughly 500K SNPs.

Furthermore, their method doesn’t examine the potential of computing interaction effects

between exposures and SNPs, as the computational burden to compute twice as many

features becomes a great deal higher. However; the purpose of describing the GRE

method was to validate the method of MonsterLM compared to traditional methods

that rely on univariate regression or variance component computations.
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LD score regression was another method used to estimate heritability in the compari-

son analysis; which differs quite a bit fromMonsterLM , in that heritability is estimated

from univariate regression from GWAS for each phenotype, and then the resulting heri-

tability estimate for each SNP is corrected for each estimate by using the LD score for

each SNP, which is the sum of Pearson correlations between all other SNPs associated

with the current SNP being analyzed. This method uses summary statistics to estimate

heritability instead of individual-level data, which provide less precise estimates. The

purpose of comparing these methods is not to just state that MonsterLM provides bet-

ter estimates than LDSR, but more-so have a reference point to compare the heritability

estimates for biomarkers in the UK Biobank cohort, where such estimates are currently

limited.

Since MonsterLM takes into account many more SNPs in analysis within a single

block and relied on variance component methods due to the M much greater than N

problem. Current methods also make many assumptions on genetic architecture such

as polygenicity (the number of variants with effects larger than some small constant δ)

and MAF/LD-dependence. Our model makes no such assumptions in the genetic data

as our data is pruned for SNPs high in LD and have a MAF higher than 0.05. Under

most models, there are additional assumptions on the distribution of βi and the form of

σ2
i that are unnecessary under MonsterLM .

Table 5.1: Comparing MonsterLM with a similar model: generalized
random effects model

Trait MonsterLM GRE

BMI 0.31 0.29
WHR 0.18 0.17

Cholesterol 0.083 0.082
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Table 5.2: Comparing heritability estimates from the UK Biobank for
the biomarkers

Biomarkers MonsterLM h2 Neale Lab h2

ApoB 0.25 0.1
Bilirubin 0.38 0.44

Cholesterol 0.17 0.12
Glucose 9 · 10−2 9 · 10−2

HDL 0.3 0.33
HbA1c 0.26 0.2
LDL 0.17 0.1
TG 0.24 0.22

5.4 Discussion of Secondary Analysis

5.4.1 Univariate SNP-based Regression Discussion

From the results of Univariate SNP-based Regression (4.2), a few key observations are

noted. The first observation is that R2 increases consistently for heritability as more

SNPs are included (as a result of increasing the significance threshold). However, the

change in R2 for interaction variance does not follow such a relationship, there are

notable counterexamples in triglycerides and LDL where there is a decrease in R2 for

interaction variance after increasing the significance threshold from 0.0001 to 0.001.

The other major observation is that while a small subset of SNPs can capture between

50-80% of the total SNP-based heritability (h2). The number of SNPs varied between

1000 at the 0.00001 significance level to 38 000 - 40 000 SNPs at the 0.01 significance

level for the various biomarkers. Considering the original SNP set was of 1 031 025

SNPs, an enrichment of ∼0.1 to 4% of SNPs carrying the majority of variance is a

well-documented but interesting observation. However, the same cannot be said for the

interaction variance in these results. In fact, the interactions with the SNP set selected

from univariate SNP-based p-values, captured very little of the interaction variance. At

the 0.01 signficance level, only 10% of the interaction variance was captured by the
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interactions between SNPs associated with the biomarker of interest and WHR. This

result suggests that the SNPs that interact with the environmental exposure: WHR, are

mostly different than the SNPs that are associated with the biomarker of interest. From

this finding, we sought to investigate where the interaction variance could be attributed

to in the next univariate regression analysis.

5.4.2 Interaction-based Univariate Regression Discussion

From these results (4.3, we see that, similar to the first univariate SNP-based analysis,

the most significant interactions capture between 50 - 70 percent of the interaction

variance observed in primary analysis at the 0.01 significance level which includes 3-5% of

total SNPs in each block that have significant interactions. R2 is consistently increasing

at each significance level , however the rate of that increase is not as consistent as there

are dramatic increases in R2 for traits like LDL, triglycerides and total cholesterol. There

are 2 main observations to take away from these results. The first is that as initially

observed from the SNP-based analysis, the majority of interaction variance explained is

due to SNPs that are either weakly associated or not associated with the biomarker of

interest directly interacting with WHR to produce significant GxE interaction effects.

This is because the univariate SNP-based analysis shown previously had low enrichment

in interaction variance, which primarily examined the SNPs strongly associated with

the biomarkers. Another key observation is that the this high percent of interaction

variance is captured by a much smaller number of SNPs interacting with WHR. On a

per block basis, there are approximately 25 000 SNPs in a block; however, the number of

SNPs that have significant interactions with WHR at the 0.01 significance level ranges

from 1000 to 1250. This means roughly 5 percent of SNPs with interactions are able to

capture majority of the interaction variance. To exclude the observed enrichment being

due to chance alone, we randomly selected the same number of SNPs irrespective of

their interaction p-values. We tested ApoB due to its high interaction variance ( 40%)
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and the observation that 72% was explained only by ∼ 50 000 SNPs (representing 5%

of total SNPs; Table 5.3). A subset of results for this test for false positives is shown in

Table (5.3). The total R2
int for the randomly selected SNPs + interaction sets captured

roughly 1 percent of the interaction variance for ApoB observed in primary analysis,

while the SNPs + interaction sets passing the 0.01 significance threshold captured 70

percent of the interaction variance. This confirms the reproducibility of results and that

the majority of interaction variance can be attributed to a small percentage of SNPs

interacting with WHR that are either weakly or not associated directly to the biomarker

of interest.

These findings are quite novel and not reported in most literature, in fact most

analyses examine only SNPs associated with the trait of interest when estimating GxE

interactions (Sulc et al. 2020), resulting in only minor estimates of GxE interactions.

The unexplained variance in most interactions model being attributed to these weakly

associated SNPs could provide quite novel information for predicting disease risk and

personal medicine based on these newly identified interactions with SNPs and environ-

mental exposures.
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Table 5.3: Comparing interaction variance results between the set of
SNPs passing an interaction p-value threshold of 0.01 and a set of SNPs
randomly selected, where the R2 was estimated per block analysed, dis-
played below are results for chromosomes 10-19

chr block h2 ApoB R2
full R2

int Random R2
full Random R2

int

10 1 3.36 · 10−3 7.47 · 10−3 4.11 · 10−3 3.15 · 10−3 −2.16 · 10−4

2 −1.6 · 10−3 3.66 · 10−3 5.25 · 10−3 −1.46 · 10−3 1.39 · 10−4

3 3.96 · 10−3 7.91 · 10−3 3.95 · 10−3 4.26 · 10−3 2.95 · 10−4

11 1 1.86 · 10−3 5.04 · 10−3 3.17 · 10−3 2.16 · 10−3 3 · 10−4

2 8.04 · 10−3 1.06 · 10−2 2.55 · 10−3 8.3 · 10−3 2.62 · 10−4

3 9.1 · 10−3 1.34 · 10−2 4.32 · 10−3 9.52 · 10−3 4.28 · 10−4

12 1 −2.09 · 10−3 2.61 · 10−3 4.71 · 10−3 −2.9 · 10−3 −8.07 · 10−4

2 −3.43 · 10−3 3.34 · 10−3 6.77 · 10−3 −2.16 · 10−3 1.27 · 10−3

3 9.76 · 10−3 1.19 · 10−2 2.09 · 10−3 1.16 · 10−2 1.84 · 10−3

13 1 5.21 · 10−4 6.52 · 10−3 6 · 10−3 6.76 · 10−4 1.56 · 10−4

2 −4.15 · 10−4 3.75 · 10−3 4.17 · 10−3 −2.81 · 10−5 3.87 · 10−4

14 1 1.28 · 10−4 5.77 · 10−3 5.64 · 10−3 2.09 · 10−3 1.96 · 10−3

2 4.63 · 10−3 9.74 · 10−3 5.11 · 10−3 3.97 · 10−3 −6.63 · 10−4

15 1 1.75 · 10−2 2.18 · 10−2 4.29 · 10−3 1.85 · 10−2 1.01 · 10−3

2 3.14 · 10−3 7.32 · 10−3 4.18 · 10−3 2.49 · 10−3 −6.46 · 10−4

16 1 5.99 · 10−3 9.34 · 10−3 3.36 · 10−3 6.88 · 10−3 8.87 · 10−4

2 2.89 · 10−2 3.36 · 10−2 4.76 · 10−3 2.83 · 10−2 −5.68 · 10−4

17 1 5.48 · 10−3 8.7 · 10−3 3.22 · 10−3 6.7 · 10−3 1.22 · 10−3

2 1.58 · 10−2 1.98 · 10−2 3.97 · 10−3 1.74 · 10−2 1.52 · 10−3

18 1 3.49 · 10−4 3.15 · 10−3 2.8 · 10−3 −4.83 · 10−4 −8.32 · 10−4

2 1.28 · 10−2 1.72 · 10−2 4.33 · 10−3 1.44 · 10−2 1.56 · 10−3

19 1 4.98 · 10−3 8.14 · 10−3 3.16 · 10−3 5.05 · 10−3 6.89 · 10−5

2 9.36 · 10−3 1.35 · 10−2 4.1 · 10−3 1.01 · 10−2 7.33 · 10−4

TOTAL 0.28 0.53 0.25 0.3 1.94 · 10−2

5.5 Discussion of PRS Results

The PRS analysis shows that incorporation of interactions between genotype data and

environmental exposures can improve polygenic risk scores. Although the effect may

seem modest, power to identify specific interactions is low and thus the improvement

can be expected to increase with larger sample size. Another notable insight is that if

a p-value that is too liberal is used for either interaction or SNP-based univariate se-

lection, then the predictiveness in the validation sample decreases. There is an optimal
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zone of adding interactions at the 0.0001 significance level, where adding or removing

interactions decreases the PRS R2 in the validation set. Examining the literature, the

incorporation of interactions into gene risk scores has been approached a variety of ways.

A recent study (Sulc et al. 2020) examined the incorporation of interactions with envi-

ronmental exposures, specifically the interaction between a single gene-risk score that

aggregates variant data with a set of lifestyle factors that reflect obesity, with respect

to BMI as their trait of interest. The first difference between our approaches in com-

puting risk scores with interactions, is that while our method examines the interactions

between each individual SNP interacting with the environmental exposure; while the

study done by the Kutalic lab (Sulc et al. 2020) focused specifically on interactions with

the risk-score itself and the exposure. The major difference is that this method is es-

timating the proportion of variance potentially explained by interactions of PRS with

all environmental factors, estimating the increased predictiveness of PRS with a perfect

knowledge of environment interactions with PRS. Both methods saw an increase in R2

between 0.1 to 1%. While this other method may be more computationally efficient (as

it only looks at the interaction with just the gene risk score), our method has the ad-

vantage of examining individual SNP interactions with the exposure, which has further

applications in pathway analysis for specific gene-lists. Furthermore, as seen in previous

secondary analysis, it was observed that majority of interaction variance is attributed to

SNPs that were either weakly or not associated with the biomarker analysed. This result

could explain why the increase in R2 for PRS that included interactions for both of our

analyses were quite small. Our results are a very important proof-of-concept that show

the way for incorporation of GxE in PRS. Recent studies focus on the use of environmen-

tal interactions with the PRS itself, when in fact our approach shows that interactions

come from incorporation of SNPs interacting with the environmental exposure.
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Chapter 6

Conclusion and Future Directions

for Research

6.1 Conclusion

In this work, we showcased the novel method we developed MonsterLM and its useful-

ness in understanding genome-wide interactions with environmental exposures. We first

tested monsterlm with simulations using LD-pruned and MAF filtered real genotypes

from the UK Biobank. During simulations we verified the properties of monsterlm to

estimate the variance explained by interaction terms. We also considered multiple cases

that could be encountered with real data regarding the dependency of the environmental

exposure on SNPs.

Our results demonstrate the presence of Gene x Environment interactions between

blood biochemistry biomarkers such as HbA1c, Triglycerides and ApoB with an envi-

ronmental factor relating to obesity-related lifestyle factor: Waist-hip Ratio (WHR).

The estimates for 8 of the 9 biomarkers analysed were significant, and prompted further

analysis into these R2 estimates ranging from 0.08 to 0.58. Furthermore, we verified the
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heritability estimates from our method with other published methods with comparable

and consistent results.

We further investigated these results through univariate p-value selection identify

the distribution of interaction variance across SNPs. We observed high SNP enrichment

within the genome 50-70% of interaction variance explained was through by 5% of total

SNPs in the genome, and further observed that these SNPs were either weakly or not

associated with the biomarker of interest. Lastly, we demonstrated the impact of in-

teractions on improving polygenic risk scores for ApoB, as incorporation of interactions

would improve PRS overall by 1% and a percent increase ranging from 0.8% to 8% with

respect to baseline PRS.

As described by (GxEPare), the collection of large amounts of genetic and pheno-

typic data has enabled investigators to examine their databases and explore the existence

of modulations by environmental exposures for genetic association signals. Past methods

involved using interaction meta-analyses on data from multiple cohorts. These methods

may have been successful for genetic association studies, meta-analysis may not work

well in the context of GxE interactions due to the diversity of measurements and data

across cohorts, which degrades statistical power (Ahmad 2013). Through the use of

MonsterLM on a large cohort like the UK Biobank, we’ve followed a logical method

to accurately measure interaction effects since this process is well-validated and uses

standardized assessment methods.

Emphasis is frequently placed on translation when GxE is discussed, as identifying

genetic markers that define patients who are substantially greater or lesser risk of disease

than the general population given exposure to modifiable risk factors, or who will respond

better or worse to treatments could optimize medical interventions. However, there

are no translatable examples of GxE that are sufficiently convincing to guide medical

interventions for T2D (Pare and Franks 2016). Fortunately, numerous examples from
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Mendelian disorders and pharmacogenetics fuels hope that genetic data may eventually

help tailor prevention or treatment strategies for complex diseases focused on lifestyle

modifications.

6.1.1 Limitations

A limitation toMonsterLM is the requirement to remove predictors that are perfectly or

nearly perfectly correlated, which is done through LD pruning in our analysis. Another

limitation ofMonsterLM is the assumption that the phenotypic trait and environmental

exposure are both continuous variables. As many environmental exposure variables are

categorical in nature, it is important to circumvent this issue, a potential solution is to use

the liability scale to work with traits that are binary or categorical onto a continuous scale

(Falconer 1965). The liability scale can convert the heritability of the observed binary

trait and the more interpretable heritability of the continuous liability is computed as

(Lee et al. 1965):

h2
liability = h2

observed

K(1−K)(K(1−K)
ψ(Φ−1[K]2(P (1− P ))

where K is the frequency of the binary trait in the population, P is the frequency

of the binary trait in the observed sample, and the denominator of the first fraction

is the squared probability density function evaluated at the K quantile of the inverse

cumulative density function of the standard normal distribution. Though this formula

does not directly apply to the case of GxE interactions, and further derivations will need

to conducted in order to solve this potential issue.

6.2 Future Analyses

The first analysis to conduct following this thesis study is to examine how interacting

SNPs weakly or not associated with the trait would improve PRS R2. Past literature also

examined interactions only with SNPs that were significantly associated with the trait
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of interest, and thus found small improvements in PRS R2. Given that our secondary

analysis showed strong enrichment in interaction variance explained by weakly associ-

ated SNPs, there is the potential that interactions with these SNPs can have stronger

improvements in PRS R2, which could have great clinical applications in predicting

disease risks and further understanding these blood biochemistry biomarkers.

6.2.1 Pathway Analysis

After completing the remaining analysis with PRS scores, a further analysis to be done is

pathway analysis; examining the genes to which the SNPs strongly interacting withWHR

belong to and examining the potential protein pathways the genes are associated with.

By examining the gene sets containing SNPs with strong interactions with WHR, we can

potentially identify novel functions of proteins, which can further aid clinical applications

and interventions for individuals who are identified as high risk for particular diseases.
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Appendix A

Supplementary: Conjugate

Gradient Algorithm

Suppose we want to solve the system of linear equations:

Ax = b (A.1)

for the vector x, where the known n×n matrix A is symmetric, positive-definite and

real, and b is known is well.

We say that two non-zero vectors u and v are conjugate with respect to A if:

uTAv = 0 (A.2)

Since A is symmetric and positive-definite, the left-hand side defines an inner product:

uTAv = 〈u, v〉A = 〈Au, v〉 = 〈u,AT v〉 = 〈u,Av〉 (A.3)

Two vectors are conjugate if and only if they are orthogonal with respect to this
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inner product. Being conjugate is a symmetric relation: if u is conjugate to v, then v is

conjugate to u. Suppose then:

P = [p1, ..., pn]

is a set of n mutually conjugate vectors (with respect to A). Then P forms a basis for

Rn, and we may express the solution x∗ of Ax = b in this basis (Gestenes and Stiefel

1952):

x∗ =
n∑
i

αipi (A.4)

Based on this expansion, we compute:

Ax∗ =
n∑
i

αiApi (A.5)

Left-multiplying by pTk :

pTkAx∗ =
n∑
i

αip
T
kApi (A.6)

Substituting Ax∗ = b and uTAv = 〈u, v〉A:

pTk b =
n∑
i

αi〈pk, pi〉A (A.7)

Then uT v = 〈u, v〉 and for all i, k where i 6= k 〈u, v〉A = 0 yields:

〈pk, b〉 = αk〈pk, pk〉A (A.8)

which implies:

αk = 〈pk, b〉
〈pk, pk〉A

Which gives a method to solve the linear system: find a sequence of n conjugate direc-

tions, and then compute the coefficients αk
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A1 The iterative method of CG Analysis

If we choose the conjugate vectors pk carefully, then we don’t need to compute all of them

to obtain a good approximation to the solution. This also allows us to solve systems

where n is so large that the direct method would take too much time (Barrett et al.

1994).

As state in chapter 3, we denote the initial guess for x∗ now denoted as β∗ by β0.

Starting with β0 we search for the solution and in each iteration we need a memtric

to tell us whether we are closer to the solution β∗. The metric comes from the unique

minimizer of the modified normal equation:

f(β) = 1
2β

TAβ − βT b, β ∈ Rn (A.9)

The existence of a unique minimizer is confirmed as its second derivative is given by A,

a symmetric positive-definite matrix, and that the minimizer solves the first derivative:

∇f(β) = Aβ − b. (A.10)

This suggests taking the first basis vector p0 to be the negative of the gradient of f at

β = β0. Starting with an initial guess β0, this means we take p0 = b − Aβ0. The other

vectors in the basis will be conjugate to the gradient. Note that p0 is also the residual

provided by the initial step of the algorithm described in chapter 3.

A2 GPU Acceleration

Due to the sparsity of the XTX matrix (noted as A), we can take advantage of this

structure in order to apply the CG method in a very fast iterative manner. The sparse

matrix–vector multiplication (SpMV) of the matrix A and the vector β is another time

consuming operation in the CG algorithm. The implementation naturally depends on
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the storage format of A. There are several popular storage formats such as the coordinate

(COO) format, the compressed sparse row (CSR) format, the diagonal (DIA) format,

the ellpack (ELL) format and some others. Due to symmetry of A, it is enough to store

only the main diagonal and the two sub-diagonals, through manipulation of memory

storage during the iterations of computations for the large A matrix, the computation

of β becomes much much faster.
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