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Abstract
Stress is the feeling of emotional strain in response to a perceived threat that disturbs
the homeostasis and affects our health and well-being. Short-term stress has some ben-
eficial effects such as improving alertness and performance and boosting memory, but
prolonged stress responses can have deleterious effects on human health, including tissue
damage and disease. Thus regulating stress levels is important for dealing with diffi-
cult situations to mitigate negative impacts. Prevailing approaches to treating stress
have some limitations and drawbacks. Slow breathing/Resonant frequency breathing or
HRV biofeedback and Music Therapy are some of the widely used methods for deal-
ing with stress and anxiety. These methods are thought to stimulate the vagus nerve
that promotes autonomic balance and hence reduce symptoms of stress. The current
study investigated the effects of relaxing music and slow breathing/resonance frequency
breathing on heart rate variability and respiration as well as on subjective measures of
perceived stress. Although relaxing techniques are often administered in group classes,
research studies in groups are rare. To our knowledge, this is the first study to investigate
the effects of music listening and slow breathing in reducing stress evoked by watching
a stressful movie in a group setting. The study sought to evaluate the effectiveness of
the aforementioned interventions in reducing stress, measured by psychophysiological
and self-report measures. Thirty-two participants were recruited and randomly assigned
to two groups (Music, Breathing). We hypothesized that after watching the stressful
movie, the Breathing group would show greater physiological and self-report changes
marking greater stress reduction compared to the Music group. Results indicated that
slow Breathing affected perceived stress as well as HRV, whereas Music affected per-
ceived stress, but had no significant effect on HRV. Also, results indicated that Slow
Breathing and not Music reduced the complexity of heart and respiration signals. More-
over, the study found that respiration and heart rhythm synchronized maximally during
slow breathing. The results suggest that the interventions studied in this research can
be used as an effective stress reduction tool in a group setting.
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Chapter 1

Introduction

1.1 Introduction
Stress has a considerable effect on health. Regulating stress levels is important for prac-
titioners in high-stress occupations like first responders and also for dealing with stressful
situations in an everyday context. have a substantial negative impact on cardiovascular
disease, anxiety, depression, chronic pain, and addiction (Arpaia and Andersen 2019).
Stress is also connected to the occurrence of hypertension (Spruill 2010), metabolic syn-
drome (Kyrou and Tsigos 2006) and obesity (Brunner et al. 2007). also impact our
memory, cognition and immune system. Studies have shown that cause functional and
structural changes in the hippocampus (McEwen 1999) and can lead to atrophy and
neurogenesis disorders (Lupien and Lepage 2001). Stress can affect cognitive abilities
in general (Scholey et al. 2014). Stress can also affect the immune system (Khansari
et al. 1990). It has also been found that acute or chronic stress has a deleterious effect
on the function of the cardiovascular system (Rozanski et al. 1999; Herd 1991). Short-
term stress has some beneficial effects from preserving homeostasis of cells to engaging
responses in dangerous situations that aid in survival (Yaribeygi et al. 2017) but chronic
stress has harmful effects as outlined above. Therefore, stress reducing techniques can
have a positive effect on our health and well-being. In this thesis we investigate effects
of slow guided breathing and listening to relaxing music on physiological responses and
self-report measures of stress.

Studies have found that regulating mental stress reduces a number of risks including
cardiac diseases (Steptoe and Kivimäki 2012). It is not surprising that effective stress
management systems are under continuous research and development. Music therapy
and Resonance breathing have been found effective in treating stress-related symptoms
and promoting relaxation (Jerath et al. 2006; Ventura et al. 2012). Studies have shown
anxiety and respiratory rate reduction in voluntary breathe-holding and guided breathing
techniques (Meuret et al. 2018; Fuchs et al. 2018). Besides breathing, other non-invasive
techniques for stress reduction include cognitive behavioral therapy, mindfulness-based
stress reduction (Grossman et al. 2004), yoga (Chong et al. 2011), meditation (Peterson
and Pbert 1992) and biofeedback based on heart rate variability (HRV) (Hassett et al.
2007; Moss 2004; Lehrer et al. 2003).
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Music is another technique that targets the brain’s motivation and reward pathways
to induce psychophysiological changes (Salamon et al. 2003; Esch et al. 2004). Reduction
in blood pressure, respiratory rate and psychological distress were observed in Cardiac
patients who listened to 30 minutes of symphonic music with nature sounds (Cadigan
et al. 2001). Self-selected relaxing music can also reduce anxiety in surgery patients
(Cadigan et al. 2001). Studies have found that music was effective in reducing cortisol
levels (Suda et al. 2008). For example, one study observed a lower increase in cortisol
levels following a stressor when compared to a non-music control condition (Khalfa et al.
2003). In the present research, we are interested in the comparison of the effectiveness
of these two Intervention (Breathing, Music) as measured by reported stress, and physi-
ological indicators of stress (Heart Rate Variability, Respiration Rate, and Galvanic skin
Responses).

In the following sections, we will discuss how stress affects Autonomic Nervous System
and how effective interventions can be used to mitigate the effects of stress.

1.2 Stress and Autonomic Nervous System
The part of the nervous system associated with involuntary regulation of the bodily func-
tions is called the Autonomic Nervous System. The Autonomic Nervous System (ANS)
consists of sympathetic nerves and parasympathetic nerves. The two divisions are com-
plementary, with, for example, activity of sympathetic nervous system (SNS) increasing
heart rate and activity of the parasympathetic nervous system (PNS) decreasing heart
rate.

ANS can be substantially impacted by Stress. A cascade of stress hormones can lead
to physiological changes in the body in response to stressors such as a work deadline or
a natural disaster. The heart rate can go up and sweating can happen. This process
evolved as a survival mechanism and is called the fight or flight response. Quoting from
Nesse and Young (2000) “..Most stresses in modern life arise not from physical dangers
or deficiencies, but from our tendency to commit ourselves to personal goals that are too
many and too high. When our efforts to accomplish these goals are thwarted or when
we cannot pursue all the goals at once and must give something up, the stress reaction
is expressed. In short, much stress arises, ultimately, not from a mismatch between our
abilities and the environment’s demands, but from a mismatch between what we desire
and what we can have.” Prolonged exposure to stressors takes a toll on the body and can
contribute to anxiety and depression. There are two phases of the stress response. The
first one is the rapid activation of the Sympathetic Adreno-Medullar (SAM) axis and the
other one is the Hypothalamus-Pituitary-Adrenal (HPA) axis (Godoy et al. 2018). In the
first phase of the stress response, SAM provides a rapid physiological adaptation that
results in short-lasting responses that include increased alertness, vigilance and appraisal
of the situation (Kloet et al. 2005). The slower HPA axis can result in an amplified and
long-lasting response. The two axes (SAM, HPA) are shown in Figure 1.1
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Figure 1.1: HPA and SMA axes. A shows the Hypothalamic- pituitary-
adrenal (HPA) axis. When the brain experiences a stressor, the hypotha-
lamus secretes corticotrophin- releasing hormone (CRH). CRH stimulates
the secretion of adrenocorticotropic hormone (ACTH) in the pituitary
gland. The cortex of the adrenal glands then produce glucocorticoids
(cortisol) in response to ACTH, which will generate a stress response. B
shows the SMA axis. The hypothalamus activates the adrenal medulla,
which results in the production of the hormone adrenaline which prepares
the body for a fight or flight response. It leads to the arousal of the
sympathetic nervous system and reduced activity in the parasympathetic
nervous system. The figures are adapted from anxietycentre.com

The sympathetic nervous system is activated by the hypothalamus by sending signals
through the autonomic nerves to the adrenal glands. In response, these glands pump the
hormone epinephrine into the bloodstream (Godoy et al. 2018). On the other hand, If
the brain continues to perceive something as potentially threatening, the hypothalamus
releases corticotropin-releasing hormone (CRH), which travels to the pituitary gland,
which triggers the release of adrenocorticotropic hormone (ACTH). ACTH travels to
the adrenal glands, and this leads to the release of cortisol (Godoy et al. 2018). When
the stressor disappears, cortisol levels fall. The parasympathetic nervous system then
takes over and suppresses the stress response.

The activation of sympathetic nervous system is reflected in several psychophysio-
logical changes, including increased heart rate, blood pressure, pupil dilation, sensory
perception, and blood sugar. An effective intervention can bring about an optimal
balance between sympathetic and parasympathetic nervous systems and thereby help
reduce the stress response.

3
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1.3 Stress and Heart Rate
Heart rate is modulated by the Autonomic Nervous System in two ways, 1) by va-
gal/parasympathetic modulation, which slows the heart and 2) by sympathetic modula-
tion, which increases heart rate. The tenth cranial or vagus nerve is responsible for the
vagal/parasympathetic modulation of the heart (Breit et al. 2018). The vagus nerves
innervate the sinoatrial node, atrioventricular conducting pathways and the atrial my-
ocardium (Hainsworth 1998). The heart rate slows down with the slowing of the rate
of spontaneous depolarization of the pacemaker cells. The sympathetic innervation to
the heart originates in the cells of the intermediolateral column of the spinal cord. All
regions of the heart are innervated, including pacemaker and conducting tissue, and
the atrial and ventricular myocardium (Hynynen 2011), with the increased heart rate
preparing the body for the fight or flight response. It is noteworthy that sympathetic
responses are much slower than parasympathetic responses (Figure 1.2).

Figure 1.2: Autonomic Innervation of Heart. Anatomy of the sym-
pathetic and parasympathetic innervation of the heart where AV stands
for atrioventricular and SA for sinoatrial. The Figure is adapted from
(Scridon et al. 2018)

HR can be calculated from Electrocardiogram (ECG) or Photoplethysmogram (PPG)
recordings. Most published studies have used electrocardiagram (ECG) to record cardiac
activity. ECG has drawbacks as several leads need to be connected to the participant,
thus limiting mobility, convenience and flexibility. Pulse plethysmography (PPG) is
an optical measurement method that can be used to replace ECG. Previous literature
confirms that PPG provides accurate interpulse intervals and HRV measures can be
accurately derived in healthy participants under ideal condition (Lu et al. 2009). Hence,
the limitations associated with ECG can be overcome by the use of state of the art PPG
sensors, which are inexpensive and more suitable for ecological settings. Our previous
pilot studies have also shown that PPG can actually be used in lieu of ECG in ideal
conditions. Moreover, we have compared publicly available simultaneous PPG and ECG

4
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signals and found that there was no visible differences in the HRV calculated from the
aforesaid signals.

1.4 Stress and Heart Rate Variability
HRV refers to the variation in the time interval between heartbeats and is measured
as the beat-to-beat interval in millisecond (ms). HRV is related to emotional arousal
and is known to be reduced in individuals with anxiety or stress disorders. HRV, is
affected by both parasympathetic input or withdrawal (Berntson et al. 1997). Low HRV
is associated with adverse chronic psychological stress (Prinsloo et al. 2011). Studies
have reported a reduction in the high-frequency component of HRV, which is considered
a proxy for vagal activation, in stressor compared to the control sessions (Hjortskov et al.
2004).

HRV-biofeedback can help increase HRV and is known to have a positive effect on
anxiety and anxiety disorders for a variety of user groups (Kennedy and Parker 2019;
Stern 2012; Firth-Clark et al. 2019). Optimal heart rate variability is associated with
optimal responses to environmental input and lower stress levels (Shaffer and Ginsberg
2017). It is also observed that breathing rate increases with higher stress levels (Ris-
tiniemi et al. 2014) and galvanic skin responses (reflecting sweating) increase with higher
stress levels due to ionic filling of the skin’s sweat glands in response to sympathetic ner-
vous activation (Healey and Picard 2005; Lunn and Harper 2010) .

1.5 Stress and HRV Guided Breathing
HRV breathing biofeedback systems guide users to an appropriate breathing rate which
reduces heart rate and maximizes HRV, causing an increased parasympathetic activation
which is accompanied by the subjective experience of stress relief and eventual reduction
in stress levels. Some examples of biofeedback systems are emWave (Ratanasiripong et
al. 2015), Wild Divine (Cutshall et al. 2011), StressEraser (Lee and Finkelstein 2015)
etc.

Researchers have created various HRV biofeedback real-time applications such as
adaptive bio-feedback games, guided breathing apps, and biofeedback based on sonic ,
haptic, or visual interfaces. In Borthakur et al. (2019) authors have proposed sonifica-
tion of HRV features. Both open and closed loop designs have been proposed in the
literature. Open-loop systems attempt to guide breathing without feeding physiological
state data back to the user, while closed loop systems feed physiological state data back
to the user. Visual systems use some kind of visual feedback such as an opening and
closing circle (Plans et al. 2019). Auditory systems may present music syncing the phasic
relationship between sound and respiration via the target phase defined on the MIDI
score (Sato and Moriya 2019). Closed-loop systems typically present user’s physiological
state (such as HRV) as measured using a stress related physiological marker, potentially
in addition to a visual or auditory signal that guides the user’s breathe. A common
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approach is to visualize transformed inter-(heart)beat-interval (IBI) as an respiratory
sinus arrythmia (RSA) wave. This allows users to see the real-time fluctuations of their
pulse rate (Yu et al. 2016). Common are adaptive biofeedback games with breathing
frequency as an input signal (Parnandi et al. 2013), or haptic interfaces designed with
inflatable airbags (Yu 2016). All forms of guided breathing should have a substantial
effect on Heart Rate Variability. The breathe with touch a tactile interface provides
breathing guidance through shape changing airbags. The airbag inflates and deflates
at a specific rhythm that simulates the targeted respiratory pattern. A comparison of
auditory and visual feedback showed that auditory feedback was as effective as visual
feedback (Yu et al. 2015). Veterans with combat-related PTSD exhibit significantly de-
pressed HRV, which is a sign of ANS dysregulation, compared to non-PTSD. Veterans
receiving HRV biofeedback have shown a reduction in PTSD symptoms post-treatment
(Tan et al. 2011). Respiratory sinus arrhytmia (RSA) is heart rate variability in syn-
chrony with respiration, whereby the R-R interval (the distance between two consecutive
R peaks in ECG or Peak-to-Peak in PPG) on an ECG is shortened during inspiration
and prolonged during expiration (Yasuma and Hayano 2004). RSA can be useful in
measuring emotional arousal. Increased skin conductance and decreased RSA have been
associated with arousal independent of valence. RR interval was related to affective
valence and not arousal (Frazier et al. 2004). Group level studies that have examined
HRV-guided breathing biofeedback are rare. Wallmark et al. (2013), investigated the
affects of a Buddhist meditation intervention on empathy, perceived stress, mindfulness,
and self-compassion. The meditators (n=20) were divided into two smaller groups of
10 participants each, and two meditation sessions were conducted in successive order.
They found an increase in altruistic orientation in the intervention group, decrease in
perceived stress, and increases in self-compassion and mindfulness. Changes in HRV
have also been seen in Heartfulness Meditation (Léonard et al. 2019).

The coupling between heart rate and respiration has also been studied. Significantly
increased coherence between heart rate and breathing during meditation compared to
baseline was observed previously (Peng et al. 2004).

Different effects of HRV can be observed for high and low frequency components of
the heart signal. Taking a psychological test was found to lead to a significant reduction
in the high frequency component of HRV and a significant increase in the low frequency
component (Delaney and Brodie 2000). There was also a significant increase in the
low frequency to high frequency ratio. These physiological effects were related to self-
evaluation of physical tension and emotional state measured on visual analog scales
(VAS).

In sum, the efficacy of HRV breathing biofeedback has been established in the lit-
erature and such systems have been used effectively for reducing stress in a variety of
situations. In the present study, we used a design process that follows principles of so-
masthetics appreciation in order to make use of the embodied nature of the breathing
entrainment process. Aesthetically appealing embodied sounds are less likely to distract
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or annoy users over long exposure. The breathing stimuli used in the present study was
designed by Muvik Labs https://muviklabs.io/

1.6 Stress and Music
Several studies have investigated the effect of music and music therapy in reducing
stress. For example, one study examined passively listening to music before, during
and after opthalmic surgery (Fernell 2002). They found that patients in the Music
group had lower HR and BP levels compared to patients in the no Music group in
the preoperative period, during surgery, and also after surgery. Another used music as
a cognitive behavioural intervention for anxiety and pain in elderly cataract patients
awaiting surgery (Reilly 2000). Robb et al. (1995) investigated the effects of music
with a combination of progressive muscle relaxation, imagery and passive listening to
music in pediatric patients. Some clinical and laboratory-based studies have revealed
that listening to music may reduce stress by decrease sympathetic activity (Bartlett
1996; Standley 1992). Han et al. (2010) claimed that music reduces stress by entraining
respiration and blood pressure. On the other hand, Koelsch et al. (2011) argued that the
psychological effects of music are channelled through various neurological pathways that
include the mesolimbic dopaminergic system and the central nucleus of the amygdala
before they exert influence on hormones, cells and blood pressure and thus reduce stress.

Music effects HRV as well as synchronization of cardiac and respiration rhythms.
Authors in Vickhoff et al. (2013) showed that coherence analysis of HR and respiration
mirrors music structure. Music structure determines respiration rates and in those rates
respiration/HRV entrainment is seen. In their work the coherence was high during the
mantra (at 0.1 and the 0.2 Hz harmonic) as well as during the hymn (at 0.05, 0.1, and
0.2Hz).

Previous studies have compared musically driven resonance breathing with selected
relaxing music (Fuchs et al. 2018), In this research, the music therapist received direct
physiological feedback of patients’ respiratory frequency curves in order to musically
guide the participants to breathe at a low frequency (close to 6 bpm). Given that it
is not always possible to have a music therapist present, our present study focuses on
somasthetically designed breathing sounds created by Muvik labs to guide participants
to breathe at 0.1 Hz.

1.7 Measures of Heart Rate Variability
HRV reflects autonomic modulation of heart. Heart Rate (HR) and heart rhythm are
controlled by the ANS (European Society of Cardiology et al. 1996). The balance be-
tween SNS and PNS control the Heart Rate. Release of acetylcholine from the vagus
nerve is responsible for the parasympathetic influence. Similarly, the sympathetic in-
fluence on HR is mediated by the release of epinephrine and norepinephrine. An in-
crease of SNS activity or reduction in PNS activity results in acceleration of the heart
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rhythm, whereas decreased SNS or increased PNS activity results in deceleration of
heart (Acharya et al. 2006). Under resting conditions vagal/parasympathetic activity
dominates over sympathetic activity, and the interplay between the two systems results
in the variations in the heart period (HRV). Thus, heart rate variability provides infor-
mation about the functioning of nervous control on the HR and the heart’s ability to
respond to moment to moment challenges (Acharya et al. 2006). A number of measures
of heart rate variability have been devised. Early studies found that increases in stress
were associated with decreases in the RR interval (Sloan et al. 1994). Authors also
found that psychological stress was significantly associated with an increase in the low
frequency to high frequency (LF/HF) ratio, suggesting increased sympathetic activity
during stress. Here LF is defined as 0.04–0.15 Hz and HF as 0.15–0.40 Hz. However,
when the breathing rate is slowed to .1, the RSA will transfer from the HF band to the
LF band, increasing the LF/HF ratio with involvement of the parasympathetic system
(Russo et al. 2017)

Time-domain indices of HRV quantify the amount of variability in interbeat intervals
(IBI), also called NN (normal to normal) intervals, which are the time periods between
successive heartbeats. Some of the time-domain indices are shown in Table: 1.1 (Shaffer
and Ginsberg 2017).

Table 1.1: HRV Time-Domain Measures.

Measures Definition
SDNN The standard deviation of NN intervals.
RMSSD The square root of the mean of the squares of the successive differences

between adjacent NNs.
SDSD The standard deviation of the successive differences between adjacent

NNs.
NN50 The number of pairs of successive NNs that differ by more than 50 ms.
pNN50 The proportion of NN50 divided by total number of NNs.
NN20 The number of pairs of successive NNs that differ by more than 20 ms.
pNN20 The proportion of NN20 divided by total number of NNs.

The standard deviation of the IBI (RR) of normal sinus beats (SDNN) is measured
in milliseconds. “Normal” means that abnormal beats, like ectopic beats, have been
removed. To measure SDNN a 5 min recording is typically made (European Society of
Cardiology et al. 1996) , although reliable ultra-short term HRV (10, 30, 40, 50 sec) have
also been documented previously (Salahuddin et al. 2007; Castaldo et al. 2016) , Both
SNS and PNS activity contribute to SDNN (Umetani et al. 1998), In short-term resting
recordings, the primary source of the variation in SDNN is parasympathetically-mediated
RSA (naturally occurring variation in HR that occurs during the breathing cycle), most
specifically with slow, paced breathing protocols (Shaffer et al. 2014), The low Frequency
band (LF) makes the most contribution to SDNN. SDNN is also considered an index
of physiological resilience against stress. Kang et al. (2004) found that SDNN was
significantly lower in a high strain group than in a low strain group. A higher SDNN
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indicates higher parasympathetic dominance and a reduced level of stress, whereas lower
SDNN indicates lower parasympathetic dominance and a higher level of stress. HR Max-
HR Min also reflects RSA. RSA is directly proportional to HRV (Thompson et al. 2015).
Both SNS and PNS activity contribute to SDNN and SDNN is highly correlated with
both LF band power and total power (Umetani et al. 1998). As well, greater power than
the HF band might contribute to SDNN. In the present thesis, we examined SDNN and
HR, but see Shaffer and Ginsberg (2017) for a discussion of other time domain measures.

Frequency-domain measurements estimate the distribution of absolute or relative
power into four frequency bands, ultra-low-frequency (ULF), very-low-frequency (VLF),
low-frequency (LF), and high-frequency (HF) (European Society of Cardiology et al.
1996). Some frequency domain indices are shown in Table: 1.2 : The ULF and VLF

Table 1.2: HRV Frequency-Domain Measures.

Measures Definition
ULF power Absolute power of the ultra-low-frequency band ( below 0.003 Hz).
VLF power Absolute power of the very-low-frequency band (0.0033–0.04 Hz)
LF power Absolute power of the low-frequency band (0.04–0.15 Hz).
HF power Absolute power of the high-frequency band (0.15–0.4 Hz).
LF/HF Ratio of LF to HF power.

are often ignored due to the lack of long enough data recordings to accurately resolve
these frequencies (Ramshur 2010). Here we discuss LF, HF and LF/HF ratio, which
were analysed in this work. The amount of power contained within a frequency band is
obtained by integrating the Power Spectral Density (PSD) between the band frequency
limits.

The LF band (0.04–0.15 Hz) is also called the baroreceptor range because it mainly
reflects baroreceptor activity during resting conditions (McCraty and Shaffer 2015). LF
power is affected by the SNS, but it is primarily affected by the PNS (Shaffer and Gins-
berg 2017) and by BP regulation via baroreceptors (Berntson et al. 2007; Goldstein et
al. 2011; Shaffer et al. 2014). When we breath at a very slow rate such as 0.1 Hz, the
RSA shifts to the LF band, and under these conditions, the LF predominantly reflects
parasympathetic activity through vagal activity (Ahmed et al. 1982; Tiller et al. 1996).
Thus, LF HRV increase should be interpreted as being sympathetically driven during a
stressful situation with normal or accelerated breathing, but it reflects almost entirely
parasympathetic activity during slow breathing (Shaffer et al. 2014; Lehrer 2007). Phar-
macological blockade studies also confirm this. In Kromenacker et al. (2018) authors
blocked the paraysmpathtic tone by Glycopyrrolate which is a synthetic anticholinergic
agent that inhibits the muscarinic actions of acetylcholine on autonomic nerve endings.
They found, in the parasympathetic blockade condition, the peak power is suppressed in
slow breathing condition which is not the case with sympathetic blockade. This would
mean that LF power during slow breathing is parasympathetic (vagally mediated).
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In normal breathing the HF band reflects primarily parasympathetic activity. It is
also called the respiratory band as it corresponds to the HR variations related to the
respiration. It is also noteworthy that HF power is considered as the index of vagal
modulation of HR but it does not represent vagal tone although LnHF power can be
used to estimate vagal tone or RSA (Egizio et al. 2011). It’s because the HF oscillations
coincide with the typical respiration frequency in normal breathing condition (10 and 24
breath cycles per minute). At 0.1 Hz or 6 bpm RSA also resonates with the LF baroreflex
that integrates breathing frequency and Mayer waves (Julien 2006). The baroreflex is
the body’s homeostatic mechanisms that help to maintain blood pressure at a constant
level. This creates a resonance and maximises RSA as well as inflates the power in LF
band. Both HRV (RSA) and baroreflex sensitivity are maximised when respiration is
slowed to 6 breaths per min through resonance, although this resonant frequency does
vary between individuals (Bernardi 2001; Radaelli et al. 2004; Badra et al. 2001).

LF/HF ratio reflects the ratio between SNS and PNS activity (Shaffer et al. 2014).
Sympathovagal balance in LF/HF reflects the weight of sympathetic versus parasympa-
thetic autonomic control, A higher LF/HF HRV ratio reflects sympathetic dominance
and a lower ratio reflects parasympathetic dominance (Malliani et al. 1991; Akselrod
et al. 1981) but in resonance frequency breathing a high LF/HF ratio can be interpreted
as higher levels of baroreflex and vagal nerve activity (Steffen et al. 2017). It is note-
worthy that interpretation of LF/HF changes during slow breathing as discussed above.
So, interpretation of LF as well as LF/HF should be specific to measurement conditions.
For instance, similar to slow breathing, when LF is calculated while sitting upright dur-
ing resting conditions, the primary contributors to LF are PNS activity and baroreflex
activity and not SNS activity (Kember et al. 2001; Eckberg 1983).

Non-linear HRV measures help us quantify the unpredictability of a time series (Stein
and Reddy 2005). HRV in general displays the characteristics of a nonlinear signal
and non-linear interaction between the PNS and SNS may contribute to heart beat
complexity in healthy participants (Levy 1971). The heart beat signal also shows 1/f-
like scaling which also points to the Non Linear nature of the series (Ivanov et al. 1999).
Some Non-Linear measures are shown in Table 1.3.

A Poincaré plot (return map) is a scatter plot of RR interval against the prior interval.
This plot can be used to differentiate between a pathological state and a healthy state.
A healthy participant typically displays a ’comet’ shaped plot. This shape does not vary
with respiration rate (Guzik et al. 2007). On the other hand, patients with heart failure
display atypical ’torpedo’ or ’complex’ patterns (Woo et al. 1992).

Similar to approximate entropy, the sample entropy measures the regularity and
complexity of a time series (here the RR and the Respiration Time Series). It was
designed to provide a less biased and more reliable measure of signal regularity and
complexity (Lippman et al. 1994). A higher value of Sample Entropy means a low
predictability of fluctuations in successive RR intervals. Similarly, a lower value of
Sample Entropy means that the signal is more predictable and less complex.
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Table 1.3: HRV Non Linear Measures.

Measures Definition
S Area of the ellipse which represents total HRV
SD1 Poincaré plot standard deviation perpendicular the line of identity
SD2 Poincaré plot standard deviation along the line of identity
SD1/SD2 Ratio of SD1-to-SD2
ApEn Approximate entropy, that measures the regularity and complexity of a

time series.
SampEn Sample entropy, measures the regularity and complexity of a time series
DFA α1 Detrended fluctuation analysis, which describes short-term fluctuations.
DFA α2 Detrended fluctuation analysis, which describes long-term fluctuations.
D2 Correlation dimension, which estimates the minimum number of vari-

ables required to construct a model of system dynamics

Detrended fluctuation analysis extracts the correlations between successive RR in-
tervals over different time scales. This DFA analysis results in slope α1, that describes
short term fluctuations, and slope α2, describes long-term fluctuations. The short-term
correlations reflect the baroreceptor reflex, and long-term correlations reflect the regu-
latory mechanisms that limit fluctuation of the beat cycle. Weippert et al. 2015, found
that in slow breathing α1 was increased and α2 was decreased. Descriptions of other
non-linear measures are beyond the scope of the present thesis and can be found in the
work of Shaffer and Ginsberg 2017.

Slow breathing exercises decrease nonlinear behaviour of heart rate dynamics. A
decreased complex behaviour of HRV through symbolic analysis, Entropies and DFA
during slow breathing has been reported previously (Porto et al. 2018). Weippert et al.
(2015) also observed elevation in Detrended Fluctuation Analysis (DFA) and entropy was
lowered during slow breathing. While some authors assume complexity and regularity
measures being fundamentally different and uncorrelated from traditional HRV indices
(Schmidt and Morfill 1995; MÄKIKALLIO et al. 1996), some other authors found some
correlations between traditional HRV metrics and non-linear measures (Bigger Jr et al.
1996; Perkiomaki et al. 2002)

1.8 HRV/Breathing Biofeedback
HRV biofeedback has been found to be promising for a variety of disorders. Lehrer et al.
(2000)’s work with cardiorespiratory intervention has been labeled HRVB or respira-
tory sinus arrhythmia (RSA) biofeedback, or resonance frequency feedback (RFF). The
procedure consists of feeding back beat by beat heart rate data during slow breathing
maneuvers such that the participant tries to maximize RSA by looking at the changes
in heart rate with a final goal of reaching a sine-wave-like curve of peaks and valleys
of the cardiac rhythm. The participant can use feedback or a breath pacing procedure
to produce the sinusoidal maximized RSA. A higher RSA amplitude in HRV Breathing
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might be a key point to consider while discussing the efficacy of this method. Respi-
ratory sinus arrhythmia, which is controlled by the vagus nerve can reflect aspects of
the ANS. Lehrer and Gevirtz (2014) argue that greater vagus nerve traffic will therefore
produce greater amplitudes of RSA, and many scientists equate RSA (or HF HRV) with
“cardiac vagal tone,” or parasympathetic influence on the heart (Berntson et al. 1997).
We considered 6 bpm (0.1 Hz) guided breathing for this study based on prior literature,
which indicates the highest coherence between heart and respiratory rhythms at this
rate. A higher amplitude of sinusoidal rhythm of RR time series is shown in Figure 1.3
B. At this breathing frequency the heart rate oscillation and breathing align exactly in

Figure 1.3: RR interval for Stress and Breathing condition. Plot A
shows the RR interval in the Stress condition for participant 15 in the
Breathing group. Plot B shows the RR interval in the Intervention con-
dition for participant 15 in the Breathing group.

phase. Another reason why slow breathing might be helpful is that it optimizes alveolar
ventilation and reduce dead space. Six breaths per min breathing (0.1 Hz) was found to
be optimal for improving alveolar ventilation and reducing dead space in healthy as well
as chronic heart failure patients in terms of increased arterial oxygen saturation and ease
and sustainability in terms of respiratory effort (Bernardi et al. 1998). Slow breathing at
6 breaths per min has also been found to increase venous return (Dick et al. 2014). The
baroreflex which is a reflex mediated by blood pressure sensors in the aorta and carotid
artery that modulate blood pressure fluctuations, has a role to play in HRV Breath-
ing. Stress receptors in the aorta and carotid artery detect changes in blood pressure
and modulates vagal activity at the sinoatrial node producing changes in the heart rate
oscillations (Eckberg and Sleight 1992; Vaschillo et al. 2002). When HRV biofeedback
is practiced twice daily at home over about a 3 month period, an increase in resting
baroreflex gain was observed by Lehrer and Gevirtz (2014). We already mentioned that
at 0.1 Hz RSA also resonates with the LF baroreflex that integrates frequency and Mayer
waves and both HRV (RSA) and baroreflex sensitivity are maximised when respiration
is slowed to 6 breaths per min through resonance. This is the reason why the power
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in the LF band increases as well as the amplitude of RSA. Vagus nerve stimulation
(it involves delivering electrical impulses to the vagus nerve) for severe depression and
seizure disorders have been documented (Sackeim et al. 2001; Nahas et al. 2005). It is
speculated that stimulation especially of the sub diaphragmatic pathways through slow
deep breathing techniques might be stimulating the same vagal efferent pathways and
thus having an effect on depressive/anxiety symptoms (Porges 2011; Brown et al. 2013).
From this discussion we can say that increased baroreflex leading to improved home-
ostasis (Lehrer and Gevirtz 2014) and also the stimulation of the vagal efferent system
might play roles as possible mechanisms for the effectiveness of HRV Biofeedback. We
will revisit these ideas in discussion chapter of this thesis.

1.9 Stress and Galvanic Skin Response (GSR)
The GSR also known as EDA, measures the skin conductance and varies with the state of
sweat glands in the skin which is controlled by the sympathetic nervous system (Martini
et al. 2015). The sweat gland activity is directly proportional to the sympathetic branch
of the nervous system thus skin conductance can be considered as a measure of emotional
and sympathetic responses (Carlson 2012).

Skin conductance has been previously used to detect stress (Zhai et al. 2005). Emo-
tion classification has also been an area where GSR finds it’s application such as emotion
evocation by watching videos (Wu et al. 2010). To assess the internal emotional state
of the participant along with HR the GSR can be used (Christoforou et al. 2015), and
is a convenient way of indexing changes in sympathetic arousal associated with emotion
and also cognition and attention (Critchley 2002). Authors in (Brouwer and Hogervorst
2014) used skin conductance (GSR) as a measure of physiological effects of mental stress,
which was higher during the stressful condition. Two major components of GSR:

1. Tonic component: Skin conductance level (SCL) or Tonic level is a slowly chang-
ing part of the GSR signal which can be computed as the mean value of skin
conductance over a specific window.

2. Phasic component: Phasic component is a fast changing part of the GSR signal also
called skin conductance response (SCR), that result from sympathetic neuronal
activity and occurs in relation to a single stimulus.

In the Figure 1.4 we have shown the GSR components. Several open source tooboxes
exist for GSR/EDA signal analysis. EdaExplorer (Taylor et al. 2015) is one of them
that is able to find peaks in GSR and also label epochs in the data. cvxEDA (Greco
et al. 2015) is another toolbox that is widely used for GSR analysis that uses a convex
optimization procedure to decompose the GSR into tonic component, phasic compo-
nent and a noise term. LEDALAB is also a widely used toolbox for GSR data analysis
(Benedek and Kaernbach 2010). Previous studies have investigated the effects of Mu-
sic, Visual stimuli and deep breathing on GSR. One study found that aversive visual
stimulation increases skin conductance level(SCL) and also skin conductance response
frequency. The SCL was increased during the aversive stimuli and decreased during
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Figure 1.4: GSR components. The Figure shows the flow of GSR com-
ponents.

music listening (Sokhadze 2007). In GN et al. (n.d.) authors recorded GSR before and
after practising deep breathing exercise daily for three months. They found that GSR
was significantly increased (p < 0.001) after practicing deep breathing. Authors conclu-
sion was that practicing deep breathing daily as indicated in their method, is suggesting
lowered sympathetic activity and increased parasympathetic activity. Tonic measures
of SC (SCL) have also been used in assessment of personality, aggressive and antisocial
behaviour (Crider 2008; Norris et al. 2007; Gatzke-Kopp et al. 2002).

1.10 Motivation and Relevance
This research work aims to investigate how the interventions of slow breathing and relax-
ing music compare in reducing stress induced by watching a stressful movie, as measured
by HR, HRV, Breathing, GSR and self-reported stress levels. It is of interest to compare
how these two interventions affect physiological responses and self-reported stress levels
during the interventions and whether any benefits carry over once the interventions end.
In addition, the interventions were performed in group settings as, if shown to be effec-
tive in this context, this would open many opportunities to apply the interventions in
clinical and other settings. Furthermore, the exploration of nonlinear HRV measures has
rarely been done in a study of this type and will contribute to our knowledge of how slow
breathing and relaxing music in a group setting affect these physiological parameters.
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1.11 Hypotheses and Research Questions
We investigated the effects of undergoing stress followed by one of two intervention
conditions (Breathing, Music) on HR, HRV, GSR, Respiration Rate, and self-report
stress levels of the participants (Taelman et al. 2009; Han et al. 2010). The central
research question was: can slow breathing or relaxing music be used for stress reduction?
We tested the following hypothesis:

1. Participants in the Music group will show significantly different psychophysiological
response (HRV, GSR, Respiration etc) than participants in the Breathing group
only in the Intervention condition.

2. Participants in the Music group will show significantly different Visual Analogue
Scale (VAS) ratings than participants In the Breathing group only in the Inter-
vention condition.

3. The stressful movie would induce physiological and self-report changes consistent
with stress, and both the slow breathing and the music interventions would induce
physiological and self-report changes consistent with stress reduction.

4. The slow breathing conditions would show greater physiological and self-report
changes consistent with greater stress reduction compared to the music condition.

5. The positive effects of the interventions would carry over to the immediately fol-
lowing baseline measurement in both the Breathing and Music conditions.

We also tested some secondary hypothesis:

1. Participants in the Breathing group would show a more regular, predictable and
less complex cardiac rhythm in the Intervention condition compared to the Music
group. Also, cardiac rhythm complexity would increase during the Stressful movie
in both groups.

2. The synchronization between Cardiac and Respiratory Rhythm would increase to
a greater extent in the Breathing group in the Intervention condition compared to
Music group, characterized by a high correlation and coherence between RR time
series and Respiration.

To summarize, this thesis intends to investigate the efficacy of the slow breathing and
music interventions as tools to reduce psychological stress in group settings by altering
autonomic modulation.
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Chapter 2

Experimental Design

We investigated two interventions (Slow Breathing and Relaxing Music) on the effects of
undergoing stress, measured by Heart Rate Variability (HRV), Galvanic Skin Response
(GSR), Respiration Rate and self-report measures of stress level of the participants.
These are some of the most commonly used physiological measures of stress (Taelman
et al. 2009; Han et al. 2010). Participants were tested either in a group setting or
individually to evaluate the effects of group experience, although we were not able to
finish testing or analyze those tested individually.

2.0.1 Participants

32 healthy adults between the ages of 18 and 37 (Mean= 20, SD= 3.7) participated
in the slow Breathing group and 24 adults between the ages of 18 and 44 (Mean=
20, SD= 7) participated in the Music group. All participants were recruited from the
Psychology student database (SONA) at McMaster University and were given course
credit or cash compensation for participation. Participants were asked to avoid drinking
caffeine two hours prior to the study. Participants were randomly sorted and assigned
into two groups: either the Music group or the Breathing group, and within each of
these conditions, to either group testing (8 participants/group) or Individual testing.
Testing of individual participants was not completed due to the shutdown of the lab
during the COVID-19 pandemic, so this thesis only analyzes those tested in the group
testing conditions. In the group testing setting two groups of 8 participants were tested
in each of the Music and Breathing groups for a total of 32 participants.

2.0.2 Ethics

The Experimental procedure was approved by the McMaster University Research Ethics
Board. All participants gave their informed consent by signing a consent form. Partici-
pants either received SONA credits or $10 cash.

2.0.3 Stimuli

The auditory stimuli consisted of a synthesized human breath sound that simulated
the inhale and exhale breathing sound as described below. Visual instructions were
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presented on a large video display wall situated about 6m in front of the participants,
who were seated in a semicircle (see Figure 2.1 and detailed description in section 2.0.5).
The experimental protocol is shown in section 2.2.

The breath sound stimulus was provided by Muvik labs. It was created using a white
noise substractive synthesizer, with filter coefficients modelled from a female breath
recording spectrum at the beginning and end of inhale/exhale. The breath recording
was analyzed and used to create a filter bank applied to the white noise with changing
coefficients. The steps included were:

• Female subject recorded inhale and exhale

• Spectrum produced formant peaks at certain frequencies.

• Formant peaks and amplitude used to create band-passe filter bank.

Previous research has found that researcher-selected music stimuli has shown greater
effects on stress reduction than music stimuli of subject’s choice (Pelletier 2004). We
have selected Standardized music stimuli for the Relaxing Music Experimental condition.
In our study, we used a music stimulus (“Peaceful Journey” by composer and sound
therapist Jonathan Goldman) which had already been used as relaxing music in previous
study (Fuchs et al. 2018). So we assumed that this stimulus had stress-attenuating
capacity that should be independent of individual preferences.

2.0.4 Physiological measures and Self-Reports

We collected Pulseplethysmography (PPG) data, Galvanic Skin Response, Respiration
as physiological measures. We also collected behavioural responses in the form of ques-
tionnaires. Detailed descriptions of the data collection are in section 2.0.6.

2.0.5 Experimental Procedure

Participants were assigned randomly to either the Breathing group or the Music group,
assigned according to the slot they signed up for. When participants arrived, they were
seated in the main experiment room in a random seat in the arrangement shown in the
Figure 2.1 and asked to fill out a consent form as well as a demographic information
form that contained questions on age, sex, musical and dance background, language
skills, education, employment status, annual household income, the region of residence,
handedness, and any potential hearing problems. Participants could choose to not an-
swer a question if it made them feel uncomfortable. After the consent and demographic
forms, they were asked to complete the ISMA Stress questionnaire, the Perceived Stress
Scale, the STAI-T questionnaire, the TIPI personality questionnaire, and the VAS for
stress. Before the main experiment began, each participant was taken individually into
a separate room, which was separate from the one in which the experiment was being
conducted. Each participant was asked to sit in the Live Lab facing the screen (see
setup in Figure 2.1) and fitted with three physiological sensors: a respiration belt with
a SleepSense Double Loop Piezo Crystal Respiratory Effort Sensor, a G.Tec galvanic
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Figure 2.1: Experimental Setting: In the group testing condition, par-
ticipants sat in a semicircle to watch the video. The physiological sensors
were connected to computers that captured the data on the desk behind
them.

skin response (GSR) sensor, and a photoplethysmogram (PPG) sensor (pulsesensor)
available from https://pulsesensor.com. The respiration belt was wrapped around the
participant’s chest and was used to track the participant’s respiration rate. GSR and
PPG sensors were placed on specific locations on the non-dominant hand of the par-
ticipants. The GSR sensor was placed on the proximal phalanges of the second and
third fingers of the participants’ hand, with their palm facing up. This GSR sensor
measured participants’ skin conductance. The PPG sensor sensed the blood volume
pulse (BVP) which measures cardiovascular dynamics by detecting changes in the arte-
rial translucency. Data collected from PPG sensor was converted into a digital format
via custom Arduino software, with four of the PPG sensors connected to each Arduino.
We have used a 9600 baud rate, which means the serial port is capable of transferring
a maximum of 9600 bits per second. The sensor was placed on the participants’ tip of
their index finger of non-dominant hand and the BVP was used to extract nonlinear
and linear metrices of their heart rate variability (HRV). All participants were asked not
to talk and to minimize movements of their fingers that were attached to the sensors
during the procedure. A video-screen then guided participants through the conditions
of the experiment. The statistical software IBM SPSS Statistics V25 and R were used
to do the statistical analysis of the HRV, Respiration, and GSR data collected from each
participant. Custom built scripts in Matlab were used to analyze the data along with
toolboxes (HRVAS) based on Matlab scripts (Ramshur 2010).

Once participants were hooked up with the sensors (PPG, GSR, Respiration belt),

18

http://www.mcmaster.ca/
https://www.science.mcmaster.ca/pnb/
https://www.science.mcmaster.ca/pnb/


Master of Science– Debanjan Borthakur; McMaster University– Department of
Psychology Neuroscience & Behaviour

both groups completed the four conditions of the main experiment: 1. Baseline1 con-
dition (five minutes) 2. Stress condition (five minutes) 3. Intervention condition, either
slow guided breathing or relaxing music condition (five minutes). 4. Baseline2 condition
(five minutes) (see Figure 2.1). Thus, conditions 1, 2 and 4 were identical for the Breath-
ing and Music groups. There was a 30-second gap after each Condition during which
participants rated their stress using a VAS scale from 1 (no stress) to 4 (very stressed).
In the Baseline1 condition (1), participants were instructed to breathe normally without
any guided assistance. In the stressor condition (2), participants were shown a stressful
movie scene from the movie ‘Vertical Limit’. During the Breathing Intervention condi-
tion (3), participants were guided to breathe at a rate of 0.1 Hz (6 breath per minute)
using the auditory cue. During the Relaxing Music Intervention, participants listened to
calming music, “A Peaceful Journey” by Jonathan Goldman (Fuchs et al. 2018). During
the Baseline2 condition (4), participants were again asked to breathe normally without
any guided assistance.

Participants in the Breathing group were given the following specific instructions:
“During the experiment, you will see videos and instructions on the screen and you just
need to follow these instructions. When you see ‘Baseline’ on the screen, please breath
normally and relax. When you see ‘Breath Slowly’ on the screen, please breathe slowly
following the rhythm of a breathing sound. Breathe easily and comfortably. Do not try
too hard, just follow the rhythm of the sound’. Again, when the ‘Baseline’ appears on
the screen, just relax and breathe normally. When ‘Stress Rating’ appears on the screen,
use your hand that is not attached to sensors to mark your stress level at this moment
on the Stress Rating scale on the page on your clipboard.”.

Participants in the Music group were given the following specific instructions: “During
the experiment, you will see videos and instructions on the screen and you just need to
follow these instructions. When you see ‘Baseline’ on the screen, please breath normally
and relax. When you see ‘Relaxing music’ on the screen, please listen to the music, relax
and breathe normally. Again when the ‘Baseline’ appears on the screen, just relax and
breathe normally. When ‘Stress Rating’ appears on the screen, please use your hand
that is not attached to sensors to mark your stress level at this moment on the Stress
Rating scale on the page on your clipboard.”

Once the main experiment was complete, participants were unhooked from the equip-
ment. The participants then completed their demographic form (if it was not previously
completed). Participants were provided with a debriefing form summarizing the experi-
ment, the hypotheses, and the independent and dependent variables.

2.0.6 Data Collection

Questionnaires

Before the experiment began, participants completed several questionnaires. The ISMA
Stress questionnaire (ISMA 2011) gives a general overview of a participant’s Baseline
stress level. The Perceived Stress Scale (Cohen et al. 1994) measures the perception
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Figure 2.2: Experimental Protocol. The Figure shows the experimen-
tal protocol. The top blocks shows the Experimental conditions for the
Breathing group. The Experimental conditions include Baseline1, Stres-
sor, Slow Guided Breathing and Baseline2. Similarly bottom block shows
the Experimental conditions for the Music group. The Experimental Con-
ditions include Baseline1, Stressor, Relaxing Music and Baseline2

of stress using a questionnaire with 10 different stressful situations. Each situation has
a scale associated with it, that ranges from 0–4, with 0 being ‘almost never’, 1 being
‘never’, 2 being ‘sometimes’, 3 being ‘fairly often’, and 4 being ‘almost always’. The
STAI-T (Spielberger et al. 1983) has 20 descriptions of situations people were previously
in. Participants indicate to what degree each description matches themselves using a
scale of 1–4, with 1 being ‘almost never’, 2 being ‘sometimes’, 3 being ‘often’, and 4
being ‘almost always’.

The TIPI (Gosling et al. 2003) is a measure of the big five personality traits, derived
from ratings (from 1–7, with 1 being ‘disagree strongly’ and 7 being ‘agree strongly’) of 10
questions. The five personality traits are extroversion agreeableness, conscientiousness,
emotional stability, and openness.

The Visual Analogue Scale (VAS) has 4 identical questions asking a participant how
stressed they feel at the current moment using a scale from 0–10, with 0 being ‘No’
and 10 being ‘Severe’. Each of the four questions was associated with each of the four
different points during the video in which ‘Stress Rating’ appeared on the screen.
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Table 2.1: Participant Data at Baseline Mean ± SD of participant
characteristics provided for both Breathing and music group.

Categories Breathing (16) Music (16)
Age 18.25± .45 21.12± 6.80
Sex (M, F, Unknown) (0, 12, 4) (2, 13, 1)
ISMA Score 15.87± 3.64 13.81± 5.20
Perceived Stress Scale Score 22.59± 6.71 20.93± 7.49
STAI Score 53.18± 10.02 50.06± 11.39
TIPI Extroversion Score 4.03± 1.60 4.09± 1.38
TIPI Agreeableness Score 4.75± .93 4.78± .96
TIPI Conscientiousness Score 4.93± 1.22 5.12± 1.00
TIPI Emotional Stability Score 3.84± 1.60 4.34± 1.85
TIPI Openness Score 4.62± 1.13 5.68± 1.09

Photoplethysmogram (PPG)

Heart beats cause variations in blood volume or blood flow in the body which can be
detected and registered by plethysmograph. We used a pulse or photoelectric plethys-
mography to detect the heart beats. A PPG sensor consist of a light source and a
detector to detect a cardio-vascular pulse waves that propagate through the body. The
signal reflects movement of blood in the vessels (Evans and Geddes 1988). An invis-
ible infrared light is sent into the tissue and the amount of the back scattered light
varies with the variation of the blood volume (Alnaeb et al. 2007). The intensity of
back scattered light and blood volume are thus related. The benefits of PPG over the
more traditional ECG measure is that it is low-cost and simple to use. PPG is widely
used in healthcare where there is a demand for non-invasive, accurate and simple-to-use
diagnostic techniques. Previous studies have compared the HRV signals extracted from
PPG and ECG signals. They found that in monitoring healthy individuals, the PPG
signal offers excellent potential to replace ECG recordings (Bolanos et al. 2006). The
advent of embedded devices such as Raspberry Pi and the Arduino platforms facilitated
more diverse data collection and thus popularized PPG as compared to traditional ECG,
which is considered too invasive or sometimes too disruptive for experiments.

We used The Pulse Sensor Amped which is an Arduino based heart-rate sensor for
the recording of PPG signals from participants during the experiment. The sensor and
Arduino are shown in Figure 2.3.

The Pulse sensor specifications are as follows:

• Diameter = 0.625" ( 16mm)

• Overall thickness = 0.125" ( 3mm)

• Working Voltage = 3V to 5V

• Working Current = 4mA at 5V
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Figure 2.3: Arduino and pulse sensor

Steps to connect Pulse Sensor to Arduino:

• Connect + to +5

• Connect – to GND

• Connect S to A0.

To save the serial data as csv, we used PLX-DAQ. PLX-DAQ is a Parallax micro-
controller data acquisition add-on tool for Microsoft Excel (Silva et al. 2014). The steps
followed were:

1. Click on the connect button as shown in the Figure 2.4. It will setup a connection
for serial data transfer.

2. The port number need to be selected based on the Arduino configuration.

3. Check step 2 before step 1.

4. The data will be stored in the CSV as soon as the connect button is pressed.

5. The data can be saved by clicking on the csv as save as.

6. After step 5, clear the data and repeat the process.

This add on for Microsoft Excel helped us to store excel sheets for recorded PPG am-
plitudes. This application requires Microsoft Excel in the PC in order to start recording
serial data from Arduino.

Pre-Processing in PPG signal

PPG signal quality depends on several factors such as the location and the properties of
the subject’s skin at measurement, which includes the subjects’ skin structure and blood
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Figure 2.4: PLX-DAQ framework

oxygen saturation, blood flow rate, and skin temperature (Elgendi 2012). Poor contact to
the fingertip photo sensor and excessive movement of the participant can cause artifacts.
The signals were sampled at 62 Hz for first two groups and at 31 Hz for the other two
groups. We lowered the sampling rate due to issues with signal acquisition with PLX-
DAQ (Silva et al. 2014). Previous studies suggest from analyses of variability in the
time and frequency domain that PPG may be potentially as reliable as ECG, provided
that fs ≥ 25 Hz sampling frequency is used (Choi and Shin 2017). We instructed the
participants to limit the movement of the hand where the sensor was attached. The peak
detection and RR signal acquisition was performed using python implementation of the
algorithm HeartPy (Gent et al. 2019). The RR intervals thus acquired were used for
the calculation of the Time, Frequency and Non-linear HRV matrices. The raw signals
were Bandpass filtered with a butterworth second order filter in the range of .05-2 Hz.
The resultant RR intervals in ms were used to calculate the time and frequency as well
as non-linear HRV matrices using the Matlab implementation of the toolbox (Ramshur
2010).

Both electrocardiogram (ECG) and the Photoplethysmogram (PPG) are widely used
for detection of heart beats. However, algorithms that work with ECG like Pan-
Tompkins algorithm (Pan and Tompkins 1985), might not be suitable for PPG. The
basic difference between ECG and PPG is that ECG measures the electrical activity of
the heart using electrodes attached to the body whereas, the PPG uses a small optical
sensor with a light source to measure the discoloration of the skin as blood perfuses
through it after each heartbeat. Thus, measuring of fast electrical activation and slower
pressure waves requires very different specialized signal processing. We used the HeartPy
algorithm as it works well for PPG (Gent et al. 2019).

We will now discuss the HeartPy algorithm and associated preprocessing methods. If
a PPG peak was clipped, indicating that the signal was too large for the sensor limits, a
clipping function was used to interpolate the ‘missing’ signal peak using a cubic spline,
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which takes into account 100 ms of data on both ends of the clipped portion of the
signal; then the reconstructed R-peak is overlaid on the original signal and used for
further analysis. Our analysed data did not have any peaks that were clipped.

The Heartpy toolbox employs an adaptive peak detection threshold which is followed
by several steps of outlier detection and rejection. A moving average is calculated using
a window of 0.75 s on both sides of each data point and the first and last 0.75 s of
the signal are not analyzed. Gent et al. (2019) describe Regions of interest (ROI) as
areas marked between two points of intersection where the signal amplitude is larger
than the moving average and thus a peak is detected and R-peaks are marked at the
maximum of each ROI. A more detailed explanation of peak detection can be found in
(Gent et al. 2019). The toolbox also rejects peaks based on threshold value for the RR-
intervals (the intervals between successive heartbeats). The mean of the RR-intervals in
the segments are considered for threshold computation. Gent et al. (2019) describes, the
threshold as RR (mean) +/- (30% of RR(mean) (+ or - for upper and lower threshold,
respectively). If the RR-interval exceeds one of the thresholds, it is ignored. We thus
get a set of RR intervals, also often called Inter Beat Intervals (IBI). In the next step, we
used a Matlab based toolbox for analysing the RR intervals (Ramshur 2010). HRVAS
was chosen because this toolbox has been extensively used and cited (Zenonos et al.
2016; Munla et al. 2015) and in (Bernardi et al. 2017; Bhagat et al. 2017) etc. More
detailed description of heart rate variability analysis from RR signals thus acquired will
be discussed in the HRV measurements and analysis section.

Galvanic Skin Response

A G.Tec galvanic skin response (GSR) sensor was attached to the palmar surface of the
proximal phalanges of the second and third fingers of each participant to measure skin
conductance during different experimental conditions. The signals thus acquired were z
transformed with respect to the Baseline condition and decomposed into tonic and phasic
components. Tonic components include slow drifts of the baseline skin conductance
level and spontaneous fluctuations in skin conductance (Boucsein 2012). The phasic
component is also known as skin conductance response (SCR) and reflects short time
responses to the stimulus. In our analysis, we only considered the Tonic skin conductance
(SC) because the tonic level gives us the average skin conductance over each of the four
conditions of the experiment. We used the toolbox cvxEDA (Greco et al. 2015) for
decomposing the SC signal to the two different components. The analysis is done in
MATLAB.

We downsampled the raw GSR from 256 Hz to 16 Hz. Downsampling GSR does not
pose any significant risk of losing important aspects of the tonic signal whereas filtering
smooths the GSR curve and removes the tonic component of the signal. Previous studies
such as Brouwer and Hogervorst (2014) did not decompose the signal and just used raw
GSR.

It is recommended to transform the data before using cvxEDA. A convex-optimization-
based EDA model was applied to each participant’s GSR after downsampling and Z-score
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transformation. Z-score transformation is performed in order to standardize the dataset
and increase the velocity of the optimization procedure (Greco et al. 2016). We used the
default parameters in cvxEDA. We assumed fast time constant of the Bateman func-
tion (tau1)= 0.7, slow time constant of the Bateman function (tau0)= 2.0, penalization
for the sparse SMNA driver (alpha)=.0008, penalization for the tonic spline coefficients
(gamma)=.01 and a sparse Quadratic programming (QP) solver ’quadprog’. The convex
optimization approach does not need any preprocessing step (Greco et al. 2016). The
output returns the following objects:

1. Phasic component.

2. Sparse SMNA driver of phasic component.

3. Tonic component.

4. Coefficients of tonic spline.

5. Offset and slope of the linear drift term.

6. Model residuals.

7. Value of objective function.

We only considered the tonic component that was used for quantifying the skin conduc-
tance during different conditions of the experiments.

The details of the mathematical modelling approach can be found in (Greco et al.
2015). We will mention the assumptions related to the model. Greco et al. (2015)
modelled the EDA (GSR) generation process based on the following assumptions:

1. SCRs are preceded by temporally discrete episodes of bursts from the sudomotor
nerves controlling the sweat glands (Macefield and Wallin 1996; Nishiyama et al.
2001)

2. The relationship between the number of sweat glands recruited and the amplitude
of a firing burst is linear (Nishiyama et al. 2001). The system is considered as
linear time-invariant.

3. The sweat diffusion process has a subject-specific impulse response function (IRF)
which is relatively stable for all skin conductance responses from the same subject
(Benedek and Kaernbach 2010).

4. This phasic activity is superimposed over a slowly varying tonic activity with
spectrum below 0.05 Hz.

In this way, the tonic component is extracted from the SCR signal. In the next step
we considered the last one minute of each Experimental condition (i.e., Baseline1, Stress,
Intervention, Baseline2). The reasoning behind considering the last one minute is that
the stressful movie that was displayed during the stressor condition showed the stressful
part during the last 2 minutes of the total duration. We then took median of the last
one minute of tonic activity for all the conditions.
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Respiration

A respiration belt with a SleepSense Double Loop Piezo Crystal Respiratory Effort
Sensor is used to collect the respiratory signal from all the subjects in the group. Signals
were resampled from 256 Hz to 16 Hz. A Butterworth second order bandpass filter
in the range [.07 - 5] hz was applied to the raw respiratory signals. Then, individuals
peaks were detected using Matlab’s findpeak function. Peak counts are used to calculate
the breathing rate per minute. We have seen that in the stressful movie condition the
respiration rate was higher than Baseline1 and it dropped in the Intervention condition
for both the groups. Our results are in agreement with previous research (Han et al.
2010).

HRV Measurements and Analysis

As discussed in the previous sections, the peak detection and RR signal acquisition is per-
formed using python implementation of the algorithm HeartPy, (Gent et al. 2019). For
short term HRV measurements, 5-minute segments are considered appropriate (Camm
et al. 1996), although ultra-short term HRV (10, 30, 40, or 50 sec) have also been docu-
mented previously (Salahuddin et al. 2007; Castaldo et al. 2016). We extracted 3-minute
segments from the continuous HRV data for Baseline1, Stressor, Intervention and Base-
line2 period. A few subjects (n = 8 in the Breathing group and n = 8 in the Music group)
had some portion of missing data in the Baseline2 due to technical issues. As a result we
considered 90 seconds of the Baseline2 for those participants. We analyzed the standard
deviation of NN intervals SDNN, low frequency (LF) power and ratio of LF/HF power.
We also looked at various nonlinear measures of HRV. The low frequency band of power
spectrum, ranging between 0.04 and 0.15 Hz, is thought to represent both sympathetic
and parasympathetic nervous system activity. The high frequency spectrum, ranging
between 0.15 and 0.4 Hz, is thought to estimate cardiac vagal tone which also represents
RSA. In the case of low breathing rates used in this study in the Guided Breathing
intervention, RSA falls within the LF band. Therefore, slow relaxed breathing should
increase the LF power, which would indicate increased vagal outflow (Quintana and
Heathers 2014).

In this section we discuss time, frequency and nonlinear HRV measures. Time-based
metrics measures the variance in the temporal domain. Frequency-based metrics analyze
power within certain frequency bands of the RR signal. Nonlinear-based metrices eval-
uate complexity and self-similarity. We also investigated time-frequency metrics that
examine the signal in both the time and frequency domains simultaneously. We will
first define RR and NN and IBI. In standard nomenclature “NN” (normal-to- normal)
is used in place of IBI or RR to indicate IBIs containing no ectopic intervals. We will
use IBI, RR, and NN interchangeably to represent IBI. In RR interval R is a point that
corresponds to the peak of the QRS complex of the ECG wave and RR is the interval
between successive R’s. IBI is a time series signal. The IBI time series of an ECG
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segment for N beats is given by:

IBI(n) = R(n+ 1)−R(n) : 1 ≤ n ≤ N − 1 (2.1)

where R(n) is the time location of the nth beat.

Several pre-processing steps are used with IBI time series data. Most important
pre-processing is the removal of ectopic beat and IBI resampling. Ectopic beats are
heartbeats which are not caused by a normal sinus node pace, rather they are caused by
an electrical potential originating in some other areas (Luna and Fisch 1995). Ectopic
beats can cause errors in the HRV analysis (Thuraisingham 2006). Ectopic detection
is the first step. The percentage filter locates intervals that change by more than a
user defined percentage (often 20%) from the previous interval (Aubert et al. 1999).
This method implemented in the toolbox HRVAS locates any sudden or abrupt IBI
changes. A standard deviation filter can also be used to detect ectopic intervals, by
marking outliers as intervals that lie beyond the overall mean IBI by a user defined
value of standard deviations (Aubert et al. 1999). We performed the ectopic interval
detection using the percent filter (20%) and standard deviation filter (3 SD). Detrending
was accomplished using the wavelet packet detrending. For ectopic correction, we used
spline interpolation. We have chosen these specific parameters following the work of
(Ramshur 2010) .

Spectrum estimates from irregularly sampled time series signals can introduce ad-
ditional harmonics into the power spectrum (Niskanen et al. 2004). So, we have to
resample the IBI time series before power spectrum estimation. Other studies e.g., (Cao
et al. 2020) also found that interpolation and resampling of unevenly sampled RR in-
terval signals improves the discrimination of chronic heart failure patients from healthy
controls. In our analysis, we have chosen an IBI interpolation rate of 2 Hz. In Time
domain measures of HRV, standard deviation of the NN interval series (SDNN) was
calculated. The standard deviation of each IBI segment is first calculated and then the
mean value of the SDNN is considered. The mean value of RR intervals (RR) is denoted
by RRm. The standard deviation of RR intervals (SDNN) is defined as:

SDNN =

√√√√ 1
N − 1

N∑
j=1

(RRj −RRm)2 (2.2)

RRj denotes the value of j’th RR interval and N is the total number of successive
intervals. The SDNN reflects both short-term and long-term variation within the RR
interval series.

Power spectrum density (PSD) can be used to quantify the power within the RR
time series. The PSD estimates can inform us about the amount of power in different
frequency bands. In our analysis, we concentrated on the Low Frequency and High
Frequency bands. The LF band (0.04–0.15 Hz) is affected by breathing from 3 to 9
bpm (slow breathing rate). Whereas, the HF, which is also called the respiratory band
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Figure 2.5: The IBI signal before and after detrending and ectopic inter-
val removal. The IBI time series is shown for subject 15 in the Intervention
condition in the Breathing group. Ectopic beats are shown in red dots if
any.

(0.15–0.40 Hz) is influenced by breathing from 9 to 24 bpm (European Society of Car-
diology et al. 1996). The ratio of LF to HF power (LF/HF ratio) can also be considered
as the ratio between sympathetic nervous system (SNS) and parasympathetic nervous
system (PNS) activity under controlled conditions.

Estimating the PSD can be performed using many methods, but methods based on
Fast-Fourier Transform (FFT) and autoregressive (AR) modelling are popularly used for
spectral analysis of HRV (Clifford et al. 2006). Some commonly used FFT based methods
are developed by (Bartlett 1996; Blackman and Tukey 1958; Welch 1967). FFT is a
non-parametric method whereas the AR power spectrum methods do make assumptions
and are called parametric. Ramshur (2010) HRVAS toolbox allows analysis using both
parametric and non parametric methods. Welch’s method has some advantages over
FFT such as being robust to non-stationarity, are being less sensitive to noise, although
with a reduced spectral precision. The PSD values discussed in this thesis are calculated
using welch method (Welch 1967).

For time frequency analysis, the Ramshur (2010) toolbox has the provision for the
windowed Burg periodogram and the windowed Lomb-Scargle periodogram (Carvalho
et al. 2003; Thong et al. 2004). The windowed Lomb-Scargle periodogram is computed
by windowing the entire data series and then breaking it into segments of equal lengths.
For the time frequency analysis we used the Lomb-Scargle periodogram method with a
window of 30 sec and a 15 sec overlap.

Nonlinear measures are used to characterize HRV. Several nonlinear measures have
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been used to quantify the behaviour of heart rhythms, such as Poincaré plot (Bren-
nan et al. 2001), Approximate and Sample Entropy (Richman and Moorman 2000) ,
Detrended Fluctuation Analysis (Penzel et al. 2003; Peng et al. 1995) as well as Correla-
tion (Trulla et al. 1996; Webber Jr and Zbilut 1994) and Recurrence plots (Henry et al.
2001; Guzzetti et al. 1996). The physiological interpretation of the nonlinear results are
difficult. Studies have shown that reduction of IBI (RR) signal complexity (Thurais-
ingham 2006; Papaioannou et al. 2006) may be a feature of cardiac pathology. On the
other hand, for respiration signals, Caldirola et al. (2004) found that greater respiratory
entropy could be a factor in vulnerability to panic attacks. Similarly, other studies have
found that 0.1 Hz breathing is the most dynamic state which is characterized by a spe-
cific complexity pattern and is potentially beneficial for cardiopulmonary rehabilitation
and conditioning (Matić et al. 2020).

One commonly used nonlinear method is Poincaré plot. The Poincaré plot is the
plot of RR intervals versus the previous RR interval. In a Poincaré plot SD1 represents
the Standard Deviation (SD) of the instantaneous beat to beat variability or short term
variability and SD2 represents the SD of the continuous or long term variability (Kamen
and Tonkin 1995; Brennan et al. 2002). To parameterize, the shape an ellipse is fitted
to the plot. SD1 is the width and SD2 is the length of the ellipse. SD1 describes short
term variability and is mainly caused by RSA. SD1 is also related to the time domain
measure SDSD (Brennan et al. 2001).

Sample entropy (SampEn) is another non linear measure that has been used for
assessing the complexity of physiological time series signals, and also for diagnosing
diseased states (Richman and Moorman 2000). Larger values of SampEn represent
higher complexity. If we have a time-series data set of length N = {y1, y2, y3, .., yN}
with a constant time interval τ . We define a template vector of length m, such that
Ym(i) = {yi, yi+1, yi+2, ., yi+m−1} and the distance function d[Ym(i), Ym(j)] (i6=j) is to be
the Chebyshev distance. Euclidean distance can also be used. The sample entropy can
be defined as:

SampEn = − log A
B

(2.3)

Where, A = number of template vector pairs having d[Ym+1(i), Ym+1(j)] < r
B = number of template vector pairs having d[Ym(i), Ym(j)] < r So it can be considered
as the negative logarithm of the conditional probability of randomly selecting two m-
length sequences (embedding dimension) from a signal, that have a distance less than r
(tolerance) between them given that they also have a distance less than r if their lengths
are increased to m+1. SampEn was designed to reduce the bias of approximate entropy
and is in agreement with the theory for data with known probabilistic content (Lake
et al. 2002). The embedding dimension (m) is set to 2 and tolerance (r) is set to 0.2
times the standard deviation of the data for our analysis. These values are commonly
used for clinical HRV data (Pincus 1991; Yentes et al. 2013)

Another non-linear measure we used is the Detrended fluctuation analysis (DFA)(Peng
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et al. 1994) which tries to quantify the fractal like or self-similar properties of non-
stationary time series. Snowflakes, shorelines, crystals are some of the examples exhibit-
ing fractal structures. DFA is a modification of root-mean-square analysis of random
walks applied to non-stationary signals (Acharya et al. 2007). In a log-log plot the
root-mean-square fluctuation of an integrated and detrended time series is measured at
different scales and plotted against the size of the scale. Let’s consider an RR time series
of length N. The RR series is integrated using

y(k) =
k∑

i=1
[RR(i)−RRm] (2.4)

Where y(k) is the kth value of the integrated series, RR(i) is the i th IBI, and RRm is
the average IBI (RR interval) for the entire time series. The integrated time series is
separated into segments of length n and then a least squares line is fit to the data in each
segment to define the local trend denoted by yn(k). After that the integrated time series
is detrended by subtracting the local trend, yn(k) from each segment. The root-mean
squared fluctuation of the integrated and detrended time series is calculated by

F (n) =

√√√√ 1
N

(
N∑

k=1
[y(k)− yn(k)])2 (2.5)

where n represents the window or scale size. F(n) is computed on a user defined range of
time scales. We have used m= 4 to 100, with a break point at 13. The scaling exponent,
α, of the IBI time series represent the linear relationship between log(F) and log(n).
Two linear regions on the log-log plot are used to describe the short term scaling, α1,
and the long term scaling, α2 (Peng et al. 1995). These two regions are separated by a
breakpoint as mentioned already, at 13 in our analysis.

2.0.7 Correlation Analysis

Given a pair of random variables (X,Y), the formula for Pearson’s correlation coefficient,
ρ, is given by:

ρX,Y = cov(X,Y )
σXσY

(2.6)

where: cov is the covariance, σX is the standard deviation of X ,
σY is the standard deviation of Y

We performed a correlation analysis between cardiac (RR) and respiratory signals.
The RR signal was acquired using the methods explained in 2.0.6 and shown in the
equation 3.1. The RR signal and the Respiration signal were resampled to a common
frequency. The signals were then z-score normalized. When measurements involve data
collected asynchronously by multiple sensors, cross correlation can be applied to synchro-
nize their timings. We aligned the RR and Respiration signals using the cross correlation
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function. The next step was to use the MATLAB corrplot function. corrplot (Data) cre-
ates a matrix of plots showing correlations among pairs of variables in "Data". The
"Data" variable will contain (RR and Respiration signals). Histograms of the variables
appear along the matrix diagonal and scatter plots of variable pairs appear in the off
diagonal. The slopes of the least-squares reference lines in the scatter plots are equal to
the displayed correlation coefficients. The correlation plots (corrplots) are shown in 3.13
and in 3.14.

2.0.8 Wavelet Coherence Analysis

Cross wavelet power reveals areas with high common power. Similarly, the cross-wavelet
transform tells us how coherent the cross wavelet transform is in time frequency space
(Grinsted et al. 2004). The wavelet transform has been used previously for analysing
cardiovascular signals in the time–frequency domain (Keissar et al. 2009). Coherence
between RR-Resp has been reported previously (Indic et al. 2008). It is also a powerful
and robust tool for the analysis of transient phenomena of the Autonomic Nervous
System (Pichot et al. 1999; Davrath et al. 2003) . From the works of Torrence and
Compo (1998) the wavelet coherence of two time series can be defined as:

|S(C∗
x(a, b)Cy(a, b)))2|

S(|Cx(a, b)|2).S(|Cy(a, b)|2) (2.7)

Where: C∗
x(a, b) and C(

ya, b) denote continuous wavelet transforms of x and y at scales
a and position b. * is the complex conjugate and S is the smoothing operator in time
and scale. We have used the Matlab default coherence computation parameters that
uses the analytic Morlet wavelet, 12 voices per octave and smooths 12 scales.

We used the matlab function wcoherence(x,y) that returns the magnitude-squared
wavelet coherence, which is a measure of the correlation between signals x and y in
the time-frequency plane. For jointly stationary time series, the standard techniques
for characterizing correlated behavior in time or frequency are cross-correlation, the
(Fourier) cross-spectrum, and coherence. However, many time series are non-stationary,
meaning that their frequency content changes over time. For these time series, it is
important to have a measure of correlation or coherence in the time-frequency plane.
Wavelet coherence can be used to detect common time-localized oscillations in non-
stationary signals. Another advantage of wavelet coherence is that in situations where
one time series is influencing another, as we can see how cardiac signal is influenced by
respiratory signal, the phase of the wavelet cross-spectrum can be used to identify the
relative lag between the two time series as shown in Figure 3.16. The coherence function
can be used to assess the strength of linear coupling between two signals in the frequency
domain (Kay 2013).
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2.0.9 Statistical Analysis

The focus of data analyses was on the primary dependent variables HR, Heart Rate vari-
ability, Galvanic skin response, Respiration Rate, Visual Analogue Scale for Stress. The
Independent Variables were: Experimental conditions (Baseline1, Stress, Intervention,
Baseline2). We computed a repeated measures mixed ANOVA for each Intervention
group (Breathing, Music) for each Experimental condition (Baseline1, Stressful movie,
Intervention, Baseline2). If the Experimental condition × Intervention group interaction
was significant, we did individual comparisons between Intervention groups and also be-
tween subsequent conditions (Baseline1, Stress, Intervention, Baseline2) collapsed across
groups. The Greenhouse-Geisser statistic was used, as appropriate, to control for the
sphericity effects. We also performed Spearman rank correlations between GSR and
subjects’ self-ratings and also between different stress ratings for each subject across all
Experimental conditions for both the groups (Music, Breathing).
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Chapter 3

Results

We analyzed Heart Rate Variability (HRV), Galvanic Skin Response (GSR) and Res-
piratory Rate to measure the effects of the stress and to compare the effects of the
interventions (Breathing, Music). Similarly, we calculated the correlation and coherence
between Respiratory and Cardiac signals to examine cardio-respiratory synchrony. We
further analysed Visual Analog Scales (VAS) self-report measure. We also measured
correlations between self-report and physiological measures (GSR and Respiration and
HRV) and between various physiological measures. The details of the analysis results
are discussed in the subsequent sections.

3.1 Heart Rate Analysis
We calculated the Heart Rate (HR) for each Intervention group (Breathing, Music) for
each Experimental condition (Baseline1, Stressful movie, Intervention, Baseline2). Using
HR as the dependent variable, we performed a 2× 4 mixed repeated measures ANOVA
with between-subjects factor Intervention group (Breathing, Music) and within subjects
Experimental condition (Baseline1, Stressful movie, Intervention, Baseline2). In cases
where sphericity was violated, the Greenhouse Geisser adjustment was applied. Type-I
error probability was set to α= .05. Statistical Analysis was conducted using SPSS and
R.

The main effect of Intervention group was not significant, but there was significant
main effect of Experimental condition, F (3, 90) = 7.286, p <.001, η2

p = .195, with
post hoc pairwise comparisons indicating differences in HR in the Intervention condition
than during Baseline1 (p < .05) or the Stress condition (p < .01) (Figure 3.1 B). There
was also an interaction between Experimental condition and Intervention group , F
(3,90) = 4.169, p <.01, η2

p = .122. Post hoc pairwise comparisons (Figure 3.1 A)
examining the interaction revealed that only during the Intervention condition did HR
differ significantly between groups (p<.05) (Figure3.15) A). All post hoc tests were
conducted using Bonferroni correction. Fuchs et al. (2018) found a reduction of HR in
a slow breathing condition (6 breath/minute) where as Weippert et al. (2015) found an
increase of HR during a 0.1Hz metronome guided Breathing condition. Moreover, Engel
and Chism (1967) also found that there may be some tendency for Breathing to increase
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HR. We also found that HR was not significantly increased from Baseline1 to the Stress
condition. It is possible that some people enjoy stressful movies and their heart rate
might not change. It is also possible that people “freeze” during the stressful movie,
leading to a slower HR. One previous study also found no significant difference in HR
between a baseline condition and watching a film (Palmer 2008).

Figure 3.1: Pairwise comparisons for Heart Rate in bpm. Plot A shows
Pairwise comparisons between Intervention groups. Plot B shows compar-
isons across Experimental conditions collapsed across groups(Baseline1,
Stressful movie, Intervention and Baseline2). Comparisons are Bonfer-
roni corrected.

3.2 Respiration Signal Analysis
We calculated the Respiration Rate for each Intervention group (Breathing, Music) for
each Experimental condition (Baseline1, Stressful movie, Intervention, Baseline2). Using
Respiration Rate as the dependent variable, we performed 2×4 mixed repeated measures
ANOVA with between-subjects factor Intervention group (Breathing, Music) and within-
subject Experimental condition (Baseline1, Stressful movie, Intervention, Baseline2). In
cases where sphericity was violated, the Greenhouse Geisser adjustment was applied.
Type-I error probability was set to α= .05.

The main effect of Intervention group was significant F(1, 30) = 14.05, p=.001,
η2

p = .319. There was also a significant main effect of Experimental condition, F(2.394,
71.809) = 91.964, p<.001, η2

p = .754, and an interaction between Experimental condition
and Intervention group, F(2.394, 71.809) = 23.351, p<.001, η2

p = .438. Post hoc pairwise
comparisons of the main effect of Experimental condition revealed that the Respiration
Rate was faster in the Stress condition than in the Baseline1 (p < .001) and Intervention
(p < .001) conditions. It also revealed that the Intervention condition differed signifi-
cantly from the Baseline1 (p<.001), Stress (p<.001) and Baseline2 (p <.001) conditions
Figure 3.2 B). Post hoc pairwise comparisons examining the interaction revealed that
only during the Intervention condition did the Respiration Rate differ significantly be-
tween groups (p<.05) (Figure 3.2) A), with, not surprisingly, a slower Respiration rate
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for the Breathing group than the Music group. All post hoc tests were conducted using
Bonferroni correction. The results are shown in Figure 3.2.

Thus, Respiration increased during the Stress condition and decreased during both
interventions, but it decreased more in the Breathing condition, presumably because
participants were instructed to breathe slowly.

Figure 3.2: Pairwise comparisons for Respiration Rate in bpm. Plot A
shows Pairwise comparisons between Intervention group. Plot B shows
comparison across experimental condition collapsed across groups (Base-
line1, Stressful movie, Intervention and Baseline2). Comparisons are Bon-
ferroni corrected.

3.2.1 Sample Entropy of Respiratory Patterns

We further explored the non-linear dynamics of the respiratory signal. Previously
Caldirola et al. (2004) found that baseline respiratory patterns were higher in entropy
in patients with panic disorder than controls, which indicates a higher level of irreg-
ularity and complexity in their respiratory signal. They also mentioned that greater
respiratory entropy could be a factor in vulnerability to panic attacks. We hypothesized
that Breathing and Relaxing Music would both result in a lower entropy value of the
respiratory signal compared to Stress condition. Our results are in accordance with this
hypothesis.

We calculated the Sample Entropy for the Respiration signal for each Intervention
group (Breathing, Music) by Experimental condition (Baseline1, Stressful Movie, Inter-
vention, Baseline2). Using Sample Entropy as the dependent variable, we performed
a 2 × 4 mixed repeated measures ANOVA with between-subjects factor, Intervention
group (Breathing, Music) and within-subject factor Experimental condition (Baseline1,
Stressful movie, Intervention, Baseline2). In cases where sphericity was violated, the
Greenhouse Geisser adjustment was applied. Type-I error probability was set to α= .05.
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The main effect of Intervention group was not significant but there was a significant
main effect of Experimental condition, F(2.174,65.218) = 22.419, p <.001, η2

p = .428, and
an interaction between Experimental condition and Intervention group, F(2.174,65.218)
= 6.407, p =.002, η2

p = .176, Post hoc pairwise comparisons of the main effect of Exper-
imental condition revealed that Sample Entropy was lower in the Intervention condition
compared to the other three conditions (p’s <.001) (Figure 3.3 B). Post hoc pairwise
comparisons examining the interaction revealed that only during the Intervention con-
dition did the Sample Entropy differ significantly between groups (p <.001) (Figure 3.3)
A) with lower Sample Entropy in the Breathing than Music group. All post hoc-tests
were conducted using Bonferroni correction.

In sum, the sample entropy analysis indicates that the Stressful movie increased the
complexity of the Respiratory Signal and that both Breathing and Music decreased
complexity, but that Breathing decreased complexity to a greater extent.

Figure 3.3: Pairwise comparisons for Sample Entropy Index. Plot A
shows Pairwise comparisons between Intervention group. Plot B shows
comparison across experimental condition collapsed across groups (Base-
line1, Stressful movie, Intervention and Baseline2). Comparisons are Bon-
ferroni corrected.

3.3 Heart Rate Variability (HRV) Analysis
We analyzed the standard deviation of NN intervals (SDNN), low frequency (LF) power
and high frequency (HF) power. LF band power (0.04-0.15 Hz) reflects both sympathetic
and parasympathetic nervous system activity. HF band power (0.15 - 0.4 Hz) is used
as an estimate of cardiac vagal tone. It also typically reflects heart rate changes related
to breathing or respiratory sinus arrhythmia (RSA). In the case of slow breathing rates
which was used in this study as guided breathing intervention, RSA falls within the LF
band. Slow breathing should increase LF HRV power, which would indicate increased
vagal outflow (Quintana and Heathers 2014). We also analysed the non linear measures
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of HRV that includes Sample Entropy, Detrended Fluctuation Analysis and Poincaré
Plot Analysis.

3.3.1 Time Domain Analysis of HRV

We measured the HRV metric SDNN for each Intervention group (Breathing, Music) by
each Experimental condition (Baseline1, Stressful movie, Intervention, Baseline2). Using
SDNN as the dependent variable, we performed a 2×4 mixed repeated measures ANOVA
with between-subjects factor Intervention group (Breathing, Music) and within-subject
factor Experimental condition (Baseline1, Stressful movie, Intervention, Baseline2). In
cases where sphericity was violated, the Greenhouse Geisser adjustment was applied.
Type-I error probability was set to α= .05.

The main effect of Intervention group was not significant, but there was a significant
main effect of Experimental condition, F (2.533, 75.99) = 10.950 p <.001, η2

p = .267,
and an interaction between Experimental condition and Intervention group, F (2.533,
75.99) = 10.459, p <.001, η2

p = .259. Post hoc pairwise comparisons of the main effect of
Experimental condition revealed that Intervention condition significantly differed from
the Baseline1 (p < .01) and the Stressful movie conditions (p <.05). (Figure 3.4 B).
Post hoc pairwise comparisons examining the interaction revealed that only during the
Intervention condition did the SDNN differ significantly between groups, and was higher
in the Breathing than Music group (p <.05) (Figure 3.4) A). All post hoc tests were
conducted using Bonferroni correction.

Figure 3.4: Pairwise comparisons for HRV measure SDNN (ms). Plot
A shows Pairwise comparisons between Intervention group. Plot B shows
comparison across experimental condition collapsed across groups (Base-
line1, Stressful movie, Intervention and Baseline2). Comparisons are Bon-
ferroni corrected.

This increase in SDNN during slow breathing was expected as slow breathing has been
shown to increase LF power (Fuchs et al. 2018) which correlates with SDNN (Otzenberger
et al. 1998). Slow breathing is also associated with parasympathetically mediated RSA,
marked by an increase in SDNN (Russo et al. 2017). However, SDNN differences between
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groups disappeared immediately following the intervention, with no difference during
Baseline2.

Previous studies also found that the primary source of variation in SDNN is parasym-
pathetically mediated RSA in slow paced breathing protocols (Shaffer et al. 2014). As
slow breathing increases the LF power hence it should increase the SDNN as we have
shown in the present study. Our results corroborates previous findings and it can be said
that slow breathing protocol is capable of inducing parasympathetic response marked
by an increase in SDNN.

3.3.2 Frequency Domain Analysis of HRV

We calculated HRV for low frequency power LF (.04-.15 Hz), high frequency power HF
(.15-.4 Hz) and the LF/HF ratio. The slow breathing paradigm guides the subjects to
breathe at a rate of 0.1 Hz which shifts the RSA to the low frequency range. At slow
respiration rates, vagal activity can easily generate oscillations in the heart rhythms that
cross over into the LF band (Shaffer and Ginsberg 2017). We therefore expect that there
should be a increased LF power in the Slow Breathing compared to Music Intervention
condition.

Power spectral density (PSD) plots are shown in Figure 3.5. The windowed Lomb-
Scargle periodogram (LSP) for each segment is computed as shown in Figure 3.5. We
calculated the Frequency domain HRV measure Low Frequency (LF) for each Inter-
vention group (Breathing, Music) for each Experimental condition (Baseline1, Stressful
movie, Intervention, Baseline2). Using LF as the dependent variable, we performed
a 2 × 4 mixed repeated measures ANOVA with between-subjects factor Intervention
group (Breathing, Music) and within subject factor Experimental condition (Baseline1,
Stressful movie, Intervention, Baseline2). In cases where sphericity was violated, the
Greenhouse Geisser adjustment was applied. Type-I error probability was set to α= .05.

The main effect of Intervention group was not significant. There was also a significant
main effect of Experimental condition, F (1.549,46.45) = 13.571 p <.001, η2

p = .311, and
interaction between Experimental condition and Intervention group, F (1.549, 46.45) =
10.164, p =.001, η2

p = .253. Post hoc pairwise comparisons of the main effect of Experi-
mental condition revealed that the Intervention condition significantly differed from the
Baseline1 condition (p < .05), the Stressful movie (p<.01) and the Baseline2 conditions
(p < .05). As well, the Stressful movie condition differed significantly from the Baseline2
condition (p<.05) (Figure 3.6 B). Post hoc pairwise comparisons examining the interac-
tion revealed that only during the Intervention condition did the LF differ significantly
between Intervention groups, being larger in the Breathing group as expected (p <.01)
(Figure 3.6) A). All post hoc tests were conducted using Bonferroni correction.
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Figure 3.5: Spectral power density and time frequency plots. A and B
show spectral density plots, and C and D show time frequency plots for
the Stressful Movie and Intervention conditions for one participant (Subj
15) in the Breathing group. Similarly, for E, F, G , and H show the same
plots for one participant (Subj 5) in the Music group. Clear peaks in plots
B and D are visible at around the breathing rate of 0.1 Hz. In the plots,
purple represents LF (0.04-0.15 Hz) and arctic represents HF (0.15-0.4
Hz).

We also performed a 2×4 mixed repeated measures ANOVA on the LF/HF ratio with
between-subjects factor Intervention group (Slow Breathing, Music) and within subject
factor Experimental condition (Baseline1, Stressful movie, Intervention, Baseline2). In
cases where sphericity was violated, the Greenhouse Geisser adjustment was applied.
Type-I error probability was set to α= .05.

The main effect of Intervention group was significant, F (1, 30) = 25.11 p <.001,
η2

p = .456, with an overall higher LF/HF ratio in the Breathing group compared to
the Music group. There was also a significant main effect of Experimental condition,
F (1.570,47.08) = 21.115 p <.001, η2

p = .413, and a significant interaction between
Experimental condition and Intervention group, F (1.570,47.08) = 19.547, p <.001,
η2

p = .395. Post hoc pairwise comparisons of the main effect of Experimental condition
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Figure 3.6: Pairwise comparisons for LF measure. Plot A shows Pair-
wise comparisons between Intervention group. Plot B shows comparison
across experimental condition collapsed across groups (Baseline1, Stress-
ful movie, Intervention and Baseline2). Comparisons are Bonferroni cor-
rected.

Figure 3.7: Pairwise comparisons for LF/HF ratio. Plot A shows Pair-
wise comparisons between Intervention group. Plot B shows comparison
across Experimental condition collapsed across groups (Baseline1, Stress-
ful movie, Intervention and Baseline2). Comparisons are Bonferroni cor-
rected.

revealed that the LF/HF ratio was significantly higher in the Intervention condition
than in the Baseline1 (p < 01), Stress Movie(p < .01), and Baseline2 (p < .05) as shown
in (Figure 3.7 B). Post hoc pairwise comparisons examining the interaction revealed
that only during the Intervention condition did the LF/HF differ significantly between
groups, being higher in the Slow Breathing than Music group (p <.01) (Figure 3.7) A).
All post hoc tests were conducted using Bonferroni correction.

We have shown from the frequency domain analysis of HRV that LF power is higher
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during the Intervention condition in Breathing group compared to Music group. More-
over LF/HF ratio was also significantly higher. During periods of slow respiration rates,
vagal activity can generate oscillations in the heart rhythms that inflates the LF band
power (Ahmed et al. 1982; Tiller et al. 1996). Also respiratory-related efferent vagally
mediated influences can be seen in the LF band when respiration rates are low (Tiller
et al. 1996) as in our case (0.1 Hz). Usually, HF is said to represent the parasympa-
thetic tone because it reflects RSA as normal breathing falls in this HF range. When
breathing is slowed down, RSA shifts to LF band. The effect did not carry over to the
final baseline. We discussed why the effect did not carryover in the section 4.5.

3.3.3 Non-Linear Analysis of HRV

To examine the effects of Music and Slow Breathing We also investigated several non-
linear measures of HRV. We hypothesized that there will be significant differences be-
tween Music group and the Breathing group during the Intervention condition.

3.3.4 Sample Entropy

Sample Entropy measures the complexity or irregularity of the signal. Large values
of Sample Entropy indicate high irregularity and smaller values indicate more regular
signal.

We calculated the HRV non-linear measure ’Sample Entropy’ for each Intervention
group (Breathing, Music) for each Experimental condition (Baseline1, Stressful movie,
Intervention, Baseline2). Using Sample Entropy as the dependent variable, we performed
a 2 × 4 mixed repeated measures ANOVA with between-subjects factor Intervention
group (Breathing, Music) and within subject factor Experimental condition (Baseline1,
Stressful movie, Intervention, Baseline2). In cases where sphericity was violated, the
Greenhouse Geisser adjustment was applied. Type-I error probability was set to α= .05

The main effect of Intervention group was significant F(3, 90) = 15.366, p <.001,
η2

p = .248, with lower entropy in the Slow Breathing compared to Music groups. There
was also a significant main effect of Experimental condition, F (1,30) = 9.90, p <.01,
η2

p = .339, and an interaction between Experimental condition and Intervention group,
F(3, 90) = 3.820, p =.013, η2

p = .113. Post hoc pairwise comparisons of the main effect
of Experimental condition revealed that Entropy was significantly lower in the Interven-
tion condition compared to the Baseline1 (p <.01) and Stressful movie conditions (p
<.001) (Figure 3.8 B). Entropy was also lower in the Baseline2 condition compared to
the Baseline1 (p <.01) and Stress movie conditions (p < .001). Post hoc pairwise com-
parisons examining the interaction revealed that only during the Intervention condition
did the Sample Entropy differ significantly between groups, with lower Entropy for the
Slow Breathing than Music group (p <.001) (Figure 3.8) A). All post hoc tests were
conducted using Bonferroni correction. Our results are in agreement with the findings
of (Porto et al. 2018; Weippert et al. 2015).
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Figure 3.8: Pairwise comparisons for Sample Entropy. Plot A shows
Pairwise comparisons between Intervention group. Plot B shows compar-
ison across experimental conditions collapsed across groups (Baseline1,
Stressful movie, Intervention and Baseline2). Comparisons are Bonfer-
roni corrected.

3.3.5 Detrended Fluctuation Analysis: DFA α1 and DFA α2
The DFA plots are shown in Figure 3.9 for both Music and Breathing group. We cal-
culated the HRV non-linear measure DFA α1 for each Intervention group (Breathing,
Music) for each Experimental condition (Baseline1, Stressful movie, Intervention, Base-
line2). Using DFA α1 as the dependent variable, we performed a 2× 4 mixed repeated
measures ANOVA with between-subjects factor Intervention group (Slow Breathing,
Music) and within subject factor Experimental condition (Baseline1, Stressful movie,
Intervention, Baseline2). In cases where sphericity was violated, the Greenhouse Geisser
adjustment was applied. Type-I error probability was set to α= .05

The main effect of Intervention group was significant F (1, 30) = 8.03, p<.01,
η2

p = .211, with DFA α1 being larger in general for the Slow Breathing compared to
Music group. There was also a significant main effect of Experimental condition, F (3,
90) = 29.102, p <.001, η2

p = .492, and an interaction between Experimental condition
and Intervention group, F (3, 90) = 17.275, p <.001, η2

p = .365. Post hoc pairwise com-
parisons of the main effect of Experimental condition revealed that DFA α1 was higher
in the Intervention condition than in the Baseline1 (p < .001) and Stressful movie con-
ditions (p < .001). As well, DFA α1 was higher in the Baseline2 condition than in the
Baseline1 and Stressful movie conditions (Figure 3.10 B) . Post hoc pairwise compar-
isons examining the interaction revealed that only during the Intervention condition did
the DFA α1 differ significantly between groups, being higher in the Slow Breathing than
Music group (p <.001) (Figure 3.10). All post hoc tests were conducted using Bonferroni
correction. Our results supports the findings of (Weippert et al. 2015).

Similarly, we calculated the HRV non-linear measure DFA α2 for each Intervention
group (Slow Breathing, Music) for each Experimental condition (Baseline1, Stressful
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movie, Intervention, Baseline2). Using DFA α2 as the dependent variable, we performed
a 2 × 4 mixed repeated measures ANOVA with between-subjects factor Intervention
group (Breathing, Music) and within subject factor Experimental condition (Baseline1,
Stressful movie, Intervention, Baseline2). In cases where sphericity was violated, the
Greenhouse Geisser adjustment was applied. Type-I error probability was set to α= .05.

The main effect of Intervention group was not significant, but there was a significant
main effect of Experimental condition, F (3, 90) = 8.368, p <.001, η2

p = .218, and an
interaction between Experimental condition and Intervention group, F (3, 90) = 5.044,
p <.001, η2

p = .144. Post hoc pairwise comparisons of the main effect of Experimental
condition revealed that DFA α2 was lower in the Intervention condition than in the
Stressful movie (p< .01) for Baseline2 conditions. (Figure 3.10 B). Post hoc pairwise
comparisons examining the interaction revealed that only during the Intervention condi-
tion did DFA α2 differ significantly between groups, being lower in the Slow Breathing
than Music group (p <.001) (Figure 3.10) A) . All post hoc tests were conducted using
Bonferroni correction. Our DFA analysis results are also in agreement with the existing

Figure 3.9: Detrended Fluctuation Analysis (DFA) plots. Slope of red
line represents DFA α1 and slope of green line represents DFA α2. Plot
A and Plot B represent DFA analysis for Breathing group for subject
15. Similarly, Plot C and Plot D represent DFA analysis for Music group
subject 5.

literature (Weippert et al. 2015). Authors in Weippert et al. (2015) reported an increase
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of DFA α1 and a decrease of DFA α2 in slow breathing condition. DFA plots are shown
in Figure 3.9 and results are shown in 3.10. We found that in Intervention condition
in Breathing group the DFA α1 was significantly higher than the Music group. On the
other hand, DFA α2 was significantly lower for the Breathing group as compared to the
Music group in the Intervention condition.

Figure 3.10: Pairwise comparisons for measures DFA α1 and DFA
α2. Plot A shows Pairwise comparisons between Intervention group and
Plot B shows comparison across experimental condition collapsed across
groups (Baseline1, Stressful movie,Intervention and Baseline2) for DFA
α1. Plot C shows Pairwise comparisons between Intervention group and
Plot D shows comparison across experimental condition collapsed across
groups (Baseline1, Stressful movie, Intervention and Baseline2) for DFA
α2. Comparisons are Bonferroni corrected

.

3.3.6 Poincaré Plots

Poincaré plot is another commonly used nonlinear method that is easy to interpret. This
plot is a graphical representation of the correlation between successive RR intervals,
consisting of a plot of RRn+1 as a function of RRn. An ellipse is fitted to the plot as
shown in Figure 3.11. The orientation of the ellipse is according to the line-of-identity
(RRn = RRn+1). The standard deviation of the points perpendicular to the line-of-
identity is denoted by SD1 and describes short-term variability whereas the standard
deviation of the points along the line-of-identity denoted by SD2 describes long-term
variability.

We calculated the HRV non-linear measure SD1 for each Intervention group (Slow
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Figure 3.11: Poincaré plot analysis. SD1 and SD2 are the standard
deviations perpendicular to and along the line-of-identity RRn = RRn+1,
respectively. Plot A and B corresponds to Stressful movie condition and
Intervention condition for subject 15 in Breathing group, similarly Plot C
and D corresponds to Stressful Movie condition and Music condition for
subject 5 in Music group.

.

Breathing, Music) for each Experimental condition (Baseline1, Stressful movie, Interven-
tion, Baseline2). Using SD1 as the dependent variable, we performed a 2× 4 mixed re-
peated measures ANOVA with between-subjects factor Intervention group (Slow Breath-
ing, Music) and within subject factor Experimental condition (Baseline1, Stressful movie,
Intervention, Baseline2). In cases where sphericity was violated, the Greenhouse Geisser
adjustment was applied. Type-I error probability was set to α= .05.

Only the interaction between Experimental condition and Intervention group was
significant, F (3, 90) = 1.150, p >.05, η2

p = .037. However, post hoc pairwise comparisons
of the interaction revealed no significant differences (Figure 3.12 A) All post hoc tests
were conducted using Bonferroni correction.

We calculated the HRV non-linear measure SD2 for each Intervention group (Slow
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Figure 3.12: Pairwise comparisons for measures SD1 and SD2. Plot A
shows Pairwise comparisons between Intervention group and Plot B shows
comparison across experimental condition collapsed across groups (Base-
line1, Stressful movie, Intervention and Baseline2) for SD1 . Plot C shows
Pairwise comparisons between Intervention group and Plot D shows com-
parison across experimental condition collapsed across groups (Baseline1,
Stressful movie, Intervention and Baseline2) for SD2 . Comparisons are
Bonferroni corrected.

Breathing, Music) for each Experimental condition (Baseline1, Stressful movie, Interven-
tion, Baseline2). Using SD2 as the dependent variable, we performed a 2× 4 mixed re-
peated measures ANOVA with between-subjects factor Intervention group (Slow Breath-
ing, Music) and within subject factor Experimental condition (Baseline1, Stressful movie,
Intervention, Baseline2). In cases where sphericity was violated, the Greenhouse Geisser
adjustment was applied. Type-I error probability was set to α= .05.

There was a significant main effect of Experimental condition, F (3,90) = 11.707, p
<.001, η2

p = .281 , and an interaction between Experimental condition and Intervention
group, F (3,90) = 9.062, p <.001, η2

p = .232. Post hoc pairwise comparisons of the
main effect of Experimental condition revealed that SD1 was significantly higher in the
Intervention condition than in the Baseline1 (p <.05) and Stressful movie conditions (p
<.05). (Figure 3.12 D). As well, SD1 was higher in the Baseline2 condition than in the
Baseline1 (p < .001) and the Stressful movie conditions (p < .05). Post hoc pairwise
comparisons examining the interaction revealed that only during the Intervention condi-
tion did SD2 differ significantly between groups, with higher SD2 in the Slow Breathing
than Music group (p <.05) (Figure 3.12) C). All post hoc tests were conducted using
Bonferroni correction.

Thus, Slow Breathing produced different effects from Music for SD2 but not for
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SD1, but these differences did not carry over to Baseline2. Authors in Porto et al.
(2018) concluded that Poincaré plot was not sensitive to detect changes which the DFA,
symbolic analysis and entropy identified in HRV during slow breathing. Authors did not
see visual differences in the Poincaré plot patterns during spontaneous breathing and
during slow breathing. In our analysis we investigated the quantitative characteristics of
Poincaré plots for the slow Breathing and Relaxing Music condition as well as for other
Experimental conditions. We found that SD2 is significantly effected by slow breathing
intervention.

Table 3.1: HRV measures for Music and Breathing group for all the
experimental conditions.

Variable group Baseline1 Stress Intervention Baseline2
HR Breathing 79.85± 6.81 77.30± 6.7 82.7± 5.15 80.31± 5.42
HR Music 75.15± 11.69 75.58± 10.81 76.28± 11.07 76.37± 11.64
SDNN Breathing 51.21± 15.01 49.96± 11.03 77.97± 26.89 57.47± 16.89
SDNN Music 55.95± 29.32 60.63± 21.84 59.67± 23.19 68.01± 27.68
LF Breathing 884.48± 560.11 523.7± 220.40 4983.46± 4400.29 1293.8± 938.6
LF Music 1362.45± 2572.4 896.9± 717.15 1514.7± 2034.5 1642.2± 1997.1
LF/HF Breathing 1.52± .956 .87± .39 10.79± 7.09 3.4± 3.84
LF/HF Music 1.0139± .778 1.09± 1.02 1.303± 1.154 1.599± 1.151
SampEn Breathing 2.05± .26 2.3± .22 1.5± .32 1.8± .45
SampEn Music 2.3± .42 2.4± .50 2.1± .40 2.0± .34
DFA1 Breathing 1.06± .20 .85± .18 1.5± 1.2 1.2± .30
DFA1 Music .91± .23 .95± .24 .99± .27 1.09± 1.324
DFA2 Breathing .79± .22 .87± .23 .46± .16 .79± .17
DFA2 Music .75± .25 .81± .26 .77± .20 .91± .30
SD1 Breathing 28.19± 7.66 31.86± 7.088 31.90± 11.24 27.11± 6.74
SD1 Music 34.27± 18.38 36.23± 14.82 33.95± 13.92 34.34± 15.68
SD2 Breathing 67.18± 38.02 62.72± 19.90 104.76± 36.99 80.12± 29.25
SD2 Music 70.88± 38.02 77.10± 28.94 76.73± 31.14 80.128± 29.25

3.3.7 Summary of HRV measures

Summarizing the findings of the HRV analyses we can conclude that slow breathing
affects HRV differently from relaxing music, with no significant differences between the
Slow Breathing and Music conditions during the Baseline2 condition. The time domain
and frequency domain HRV results are also consistent with previous findings which
suggest that slow breathing can reduce stress, indicated by high HRV (Fuchs et al.
2018). We have also found that nonlinear matrices of HRV are significantly affected
by slow breathing as compared to relaxing music intervention. The complexity and
unpredictability of the heart rhythm reduces during slow breathing. These findings are
also in line with previous research (Porto et al. 2018; Weippert et al. 2015). To interpret
our results we have to consider the fact that Variability and complexity are two different
concepts. Variability is measured by variance and related statistical metrics. Two signals
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may have similar degree of statistical variability but very different complexity properties
(Goldberger et al. n.d.). We discussed this in details in the discussion section 4.3. Heart
rate variability describes the beat-to-beat changes in cardiac inter-beat intervals and
indexed by SDNN in our work. Even two heart rate sequences having nearly identical
mean values and variances for a given observation period can have different complexity
measures such as entropy which is a measure of unpredictability and reflects complexity
(Goldberger et al. n.d.). Detailed discussion can be found in section 4.3.

3.4 Cardio respiratory synchronization

3.4.1 Correlation Analysis

Heart rate increases with inspiration and decreases with expiration. This phenomenon
is called Respiratory Sinus Arrhythmia (Yasuma and Hayano 2004). In order to investi-
gate the synchrony of heart and respiration rhythms we performed correlation analysis
between cardiac (RR) and Respiratory signals. The correlation plots are shown in Figure
3.14. We tested if we could replicate the findings of Lagos et al. (2008) that have shown
a very high correlation between Respiration and Heart Rhythm during slow breathing.
Other studies also reported that breathing at resonant frequency maximizes heart rate
oscillations by creating a zero degree shift between heart rate and respiration (Vaschillo
et al. 2006). Our results corroborate their findings. The respiratory and heart signals
were acquired via different sensors, so we aligned the signals using cross correlation.

The normalized Respiration and RR signals for Breathing and Stress movie condition
is shown in Figure 3.13. The x axis represents the time and y axis represents the
normalized amplitude (Plot A and B). Similarly, the correlation matrix is shown in Plot
C and Plot D for Breathing and Stress Movie condition respectively. A correlation as
high as (ρ = 0.68) can be seen in Intervention condition compared to Stress Movie
condition (ρ = 0.26) in Breathing group. Similarly, the normalized Respiration and
RR signals for Music and Stress movie condition is shown in Figure 3.14. The x axis
represents the time and y axis represents the normalized amplitude (Plot A and B).
Similarly, the correlation matrix is shown in Plot C and Plot D for Music and Stress
Movie condition respectively.

We calculated the correlation between the RR time series and the Respiration signal
for each Intervention group (Breathing, Music) for each Experimental condition (Base-
line1, Stressful movie, Intervention, Baseline2). Using correlation as the dependent
variable, we performed a 2× 4 mixed repeated measures ANOVA with between-subjects
factor Intervention group (Breathing, Music) and within-subject factor Experimental
condition (Baseline1, Stressful movie, Intervention, Baseline2). In cases where sphericity
was violated, the Greenhouse Geisser adjustment was applied. Type-I error probability
was set to α= .05

The main effect of Intervention group was not significant, but there was a significant
main effect of Experimental condition, F(3, 90) = 9.780, p <.001, η2

p = .246, and an
interaction between Experimental condition and Intervention group, F(3, 90) = 10.726,
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Figure 3.13: Correlation plot. Plot A and Plot B shows the normalized
RR intervals and Respiration signals for subject 15 from the Breathing
group in Intervention condition and Stressful movie condition respectively.
Plot C and Plot D shows correlations between RR and Respiration. His-
tograms of the variables and scatter plots of variable pairs are displayed
along with Pearson correlation coefficient. Correlation coefficient is higher
for the Slow Breathing condition as compared to the Stress Movie condi-
tion.

p <.001, η2
p = .263. Post hoc pairwise comparisons of the main effect of Experimental

condition revealed that the correlation was higher for the Intervention condition than the
Baseline1 (p < .01), Stressful Movie (p < .01) and Baseline2 (p < .01) condition. (Figure
3.15 B). Post hoc pair-wise comparisons examining the interaction revealed that only
during the Intervention condition did the correlation between RR and respiration differ
significantly between groups, being higher in the Slow Breathing than Music group (p
<.001) (Figure 3.15) A). All post hoc tests were conducted using Bonferroni correction.

Previous studies have reported that the modulation of heart rate by respiration is
strongest at low breathing frequencies of approximately 0.1 Hz (6 respiratory cycles/min)
(Berntson et al. 1993; Bernardi et al. 2000; Stark et al. 2000). In our study we have found
a higher correlation during Breathing group compared to music listening, consistent with
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Figure 3.14: Correlation plot. Plot A and Plot B shows the normal-
ized RR and Respiration signals for subject 5 from the Music group in
Intervention condition (Relaxing Music) and Stressful movie condition
respectively. Plot C and Plot D shows correlations between RR and Res-
piration. Histograms of the variables and scatter plots of variable pairs
are displayed along with Pearson correlation coefficient. Correlation co-
efficient is higher for the Slow Breathing condition as compared to the
Stress Movie condition.

this. Figure 3.15 shows Pairwise comparisons for correlation.
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Figure 3.15: Pairwise comparisons for the correlation analysis. Plot
A shows Pairwise comparisons between the two Intervention groups by
Experimental condition. Plot B shows comparison across experimental
conditions collapsed across groups Comparisons are Bonferroni corrected.

3.4.2 Coherence Analysis

In addition to correlation we also investigated heart rate-respiration synchronization
using wavelet coherence technique in order to know at which frequency bands the syn-
chronization between RR and Respiration is maximal. Coherence between the cardiac
and respiratory signals has been found within the normative HF band (0.15–0.4 Hz)
throughout the supine rest task in (Keissar et al. 2009). The coherence plots are shown
in Figure 3.16. We hypothesized that this coherence would be shifted to LF band during
slow breathing and there should be a high coherence in the HF band during the relaxing
music condition compared to other conditions.

We calculated the wavelet coherence between the RR time series and the Respiration
signal for each Intervention group (Breathing, Music) for each Experimental condition
(Baseline1, Stressful movie, Intervention, Baseline2) in LF (0.04-0.15 Hz)) and HF (0.15-
0.40 Hz) bands.

Using HF coherence as the dependent variable, we performed a 2 × 4 mixed re-
peated measures ANOVA with between-subjects factor Intervention group (Breathing,
Music) and within subject factor Experimental condition (Baseline1, Stressful movie,
Intervention, Baseline2). In cases where sphericity was violated, the Greenhouse Geisser
adjustment was applied. Type-I error probability was set to α= .05.

The main effect of Intervention group was not significant, but there was a significant
main effect of Experimental condition, F(2.32,69.8) = 9.28, p <.001, η2

p = .0.23 , and
an interaction between Experimental condition and Intervention group, F(2.32,69.8)
= 3.8571, p< 0.05, η2

p = .114. Post hoc pairwise comparisons of the main effect of
Experimental condition revealed that HF coherence was higher in Baseline1 than in
the Stressful movie (p < .05), Intervention (p <.05) or Baseline2 (p < .05) conditions
(Figure 3.17 B). Post hoc pairwise comparisons examining the interaction revealed that
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only during the Intervention condition did the coherence between RR and respiration at
HF band differ significantly between groups, with higher HF coherence in the Music than
in the Breathing group (p <.001) (Figure 3.17) A) , All post hoc tests were conducted
using Bonferroni correction.

Figure 3.16: Wavelet transform coherence analysis between RR and
Respiration. Plot A and Plot B show the time-frequency wavelet coher-
ence for subject 5 in the Music group. Plot A corresponds to Music condi-
tion and Plot B to stressful movie condition. Plot C and Plot D show the
time-frequency wavelet coherence for subject 15 in the Breathing group.
Plot C corresponds to Breathing condition and plot D corresponds to
Stressful Movie condition. High coherence is visible in Plot C around
0.1 Hz. The relative phase relationship is shown as black arrows. In-
phase pointing right, anti-phase pointing left and vertical arrows pointing
towards a 90 degree phase difference between RR and Respiration Signal.

We also investigated coherence in the LF band. The main effect of Intervention group
was not significant, but there was a significant main effect of Experimental condition
F (3, 90) = 21.35, p <.001, η2

p = .0.416, and an interaction between Experimental
condition and Intervention group, F (3, 90) = 20, p< 0.001, η2

p = .4. Post hoc pairwise
comparisons of the main effect of Experimental condition revealed that coherence was
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higher for the Intervention conditions than for the Baseline1 (p< .01), Movie (P< .01)
and Baseline2 (p<.001) conditions (Figure 3.18) A). Post hoc pairwise comparisons
examining the interaction revealed that only during the Intervention condition did the
coherence between RR and respiration at LF band differ significantly beween groups,
with higher LF coherence for the Slow Breathing than the Music group (Figure 3.18)
B). All post hoc tests were conducted using Bonferroni correction.

Figure 3.17: Pairwise comparisons for Coherence in the HF band. Plot
A shows pairwise comparisons between Intervention groups for each condi-
tion. Plot B shows comparisons across experimental conditions collapsed
across groups (Baseline1, Stressful movie, Intervention and Baseline2).
Comparisons are Bonferroni corrected.

Figure 3.18: Pairwise comparisons for Coherence in the LF band. Plot
A shows pairwise comparisons between Intervention groups for each condi-
tion. Plot B shows comparisons across experimental conditions collapsed
across groups (Baseline1, Stressful movie, Intervention and Baseline2).
Comparisons are Bonferroni corrected.

We have seen from Post hoc pairwise comparisons examining the interaction, that
only during the Intervention condition did the coherence between RR and respiration at
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LF and HF band differ significantly. Authors in Vickhoff et al. (2013) did not specifically
looked at the HF and LF bands. We found in our analysis that the coherence was
maximum in the HF band during Intervention condition (Figure 3.17) for Music group.
where as LF coherence was maximum in the Intervention condition in the Breathing
group. HF HRV oscillations are thought to be para sympathetically mediated, and
LF HRV oscillations are thought to be both sympathetically and para-sympathetically
mediated (Malliani et al. 1994; Pomeranz et al. 1985).

In summary, the larger HF coherence during the Music than the Slow Breathing
condition is consistent with relaxing music influencing cardio vagal activity. Previous
studies indicate that during slow breathing, the LF band reflects parasympathetic activ-
ity (Shaffer et al. 2014; Lehrer 2007). We could therefore interpret that parasympathetic
activity was higher during the slow breathing condition compared to the music condition.

3.5 Galvanic Skin Response (GSR) Analysis
The GSR signals decomposed to tonic and phasic components are shown in Figure 3.19.

We calculated the Mean Tonic GSR for each Intervention group (Slow Breathing,
Music) for each Experimental condition (Baseline1, Stressful movie, Intervention, Base-
line2). Using Mean Tonic GSR as the dependent variable, we performed a 2×4 mixed re-
peated measures ANOVA with between-subjects factor Intervention group (Slow Breath-
ing, Music) and within subject factor Experimental condition (Baseline1, Stressful movie,
Intervention, Baseline2). In cases where sphericity was violated, the Greenhouse Geisser
adjustment was applied. Type-I error probability was set to α= .05

The main effect of Intervention group was not significant but there was a significant
main effect of Experimental condition, F(1.481,39.99) = 44.713, p <.001, η2

p = .623 and
no interaction between Experimental condition and Intervention group, F(1.481,39.99)
=.558, p =.623, η2

p = .020. Post hoc pairwise comparisons of the main effect of Experi-
mental condition revealed that Tonic GSR was lower during Baseline1 than during the
Stress Movie (p < .001), Intervention condition(p < .001) and Baseline2 conditions (p
< .001). In addition Tonic GSR was higher during the Stress Movie than during the In-
tervention (p < .001) and Baseline2 (p < .001) conditions. (Figure 3.20 B) significantly
differed from Stressful movie condition (p< .001), Baseline1 condition also differed signif-
icantly from Stress Movie condition (p<.001). Post hoc pairwise comparisons examining
the interaction revealed no significant difference between the groups 3.20 A). All post
hoc tests were conducted using Bonferroni correction.

Results are in line with previous papers (Brouwer and Hogervorst 2014). We have
decomposed the signals to tonic and phasic components and only considered the tonic
response using the algorithm described in (Greco et al. 2015).

In Figure 3.19 the raw GSR signals are shown. Plot A,B,C,D represents the GSR
activity for the whole duration of the experiment. The normalized signal is represented
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by blue color, phasic component is represented by red color, tonic component is rep-
resented by yellow color. During the time period between 5 and 10 minutes, stressful
movie condition increased the GSR amplitude marking a sympathetic arousal.

In summary, the GSR reveals the fact that stressful movie could change the intensity
of emotional state. GSR signal does not represent the type of emotion, it only represents
the intensity. There is no significant difference between GSR activity in slow breathing
condition vs relaxing music condition. Stress stimuli resulted in an increase in arousal
and thus an increase in skin conductance has been observed. More Details of the findings
are discussed in the Discussion section 4.6.

Figure 3.19: Galvanic Skin Responses. Blue color represents normalized
amplitude. Red color represents Phasic activity and Yellow color repre-
sents Tonic activity of GSR. Plot A, B, C, D represents GSR activity for
the whole duration of the experiment for subjects 13, 6, 24 and 30. Higher
activity is seen in the stress movie condition. The vertical dashed lines
represent Baseline1 start, Baseline1 end, Stress Movie start, Stress Movie
end, Intervention start, Intervention end, Baseline2 start and Baseline2
end respectively.
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Figure 3.20: Pairwise comparisons for Tonic GSR activity. Plot A shows
Pairwise comparisons between Intervention group. Plot B shows com-
parison across experimental condition collapsed across groups (Baseline1,
Stressful movie, Intervention and Baseline2). Comparisons are Bonferroni
corrected.

3.6 Visual Analog Scale (VAS) for stress
We examined the Stress VAS for each Intervention group (Breathing, Music) for each
Experimental condition (Baseline1, Stressful movie, Intervention, Baseline2). Using VAS
as the dependent variable, we performed a 2× 4 mixed repeated measures ANOVA with
between-subjects factor Intervention group (Breathing, Music) and within subject factor
Experimental condition (Baseline1, Stressful movie, Intervention, Baseline2). In cases
where sphericity was violated, the Greenhouse Geisser adjustment was applied. Type-I
error probability was set to α= .05.

The main effect of Intervention group was not significant but there was a significant
main effect of Experimental condition, F(1.481,39.99) = 44.713, p <.001, η2

p = .623, and
no interaction between Experimental condition and Intervention group, F(2.187, 65.614)
= .1861, p=.160. Post hoc pairwise comparisons of the main effect of Experimental
condition revealed that Stress VAS was significantly higher for the Stress condition than
Intervention (P < .001) and Baseline2 (p < .001) conditions (Figure 3.21 B). All post
hoc tests were conducted using Bonferroni correction. VAS ratings are shown in Figure
3.21.

To summarize, VAS stress ratings confirm that Subjects in both the intervention
group(Music,Breathing) felt a higher level of stress during stressful movie condition.
Moreover, the perceived stress reduced in the Intervention and Baseline2 condition.
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Figure 3.21: Pairwise comparisons for VAS Rating. Plot A shows Pair-
wise comparisons between Intervention group. Plot B shows comparison
across Experimental condition collapsed across groups (Baseline1, Stress-
ful movie, Intervention and Baseline2). Comparisons are Bonferroni cor-
rected.

.

3.7 Correlation between Stress Ratings and Physiological
Measures

To examine how GSR and Respiration Rate related to perceived stress, we calculated
correlations with the Participant’s VAS ratings. We performed Spearman rank corre-
lations between GSR and subjects’ self-ratings for each subject across all conditions.
The results showed that GSR activity was significantly correlated with perceived stress
(rs(60) = 0.38, p = 0.0042) for Music group and (rs(56) = 0.33, p = 0.0098) for the
Breathing group. We also investigated spearman rank correlation between Respiration
and stress ratings. The correlation were not significant (p=.088 for Music and p=.5
for Breathing group). None of the HRV parameters measures correlated significantly
with VAS stress ratings. We found a significant correlation p<.01 in both Music and
Breathing groups in self reported perceived stress with skin conductance as shown in
Figure 3.22.

We also found that Ln (LF) and Respiration in the Music group and also in Breathing
group are negatively correlated. Respiration and GSR are not significantly correlated in
any of the groups. We found that GSR and SDNN are not significantly correlated in any
of the groups also GSR and LF not significantly correlated in any of the Groups. We
found that respiration is negatively correlated with heart rate variability (3.23). We used
Spearman rank correlation coefficient to measure the correlation strengths. In Gąsior
et al. (2016) authors have found that the coefficients of correlation between Respiration
rate and HRV decreased for all parameters such as in RMSSD, SDNN, LF, LF/HF etc.
Our findings are also in line with their findings. Also, we did not see any significant
correlation between GSR and HRV measures discussed above. Also, Resp and GSR are
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non significantly but positively correlated. These findings suggest that respiration is
a strong modulator of HRV and probably slow respiration rate is responsible for vagal
stimulation that results in a high HRV and parasympathetic activation.

Figure 3.22: Spearman rank correlation matrix. The correlation be-
tween stress ratings of subjects in Breathing group and Music group with
GSR activity is shown in plot A and B. The correlation between stress
ratings of subjects in Breathing group and Music group with Respiration
is shown in plot C and D. Histograms of the variables and scatterplots of
variable pairs are displayed. Spearman Rank correlation coefficients (rs)
of the significant correlations are shown in red.

Figure 3.23: Spearman rank correlation matrix. The correlation be-
tween ln(LF) of subjects in Breathing group and Music group with Res-
piration is shown in plot A and B. The correlation between SDNN in
Breathing group and Music group with Respiration is shown in plot C
and D. Histograms of the variables and scatterplots of variable pairs are
displayed. Spearman Rank correlation coefficients (rs) of the significant
correlations are shown in red.
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Chapter 4

Discussion

The purpose of this thesis was to investigate the efficacy of two widely used interven-
tions (Breathing, Music) on psychological stress reduction. The main findings showed
that (1) both the Music and Slow Breathing conditions affected perceived stress and
(2) slow breathing had a larger effect than music on physiological measures of stress
such as in HRV. Surprisingly, HRV was not affected significantly by the stressful movie,
and it increased during the following Intervention condition only in the Slow Breathing
group, not in the Music group. On the other hand, the amplitude of the GSR response
increased significantly during the stressful movie. During the interventions, slow breath-
ing reduced and music also reduced GSR amplitude. We also found that HRV and GSR
changes during the Intervention conditions did not carry over to the immediately follow-
ing baseline, suggested that they did not have lasting effects within the context of the
present study.

4.1 Music Effects Perceived Stress not HRV
In this work we sought to understand the effects of Relaxing Music and of Slow Guided
Breathing on perceived stress and psychophysiological measures including Respiration,
HRV and GSR. We found that the Relaxing Music Intervention resulted in a lowered
perceived stress in the Music group. Some previous studies have found reductions in
perceived levels of psychological stress or altered levels of perceived relaxation after
listening to music (Allen et al. 2001; Burns et al. 1999). Our findings from self-reports
are in line with these studies. Not all previous studies have found anxiety reductions in
all contexts, however. For example, Evans (2002) found that the music reduced anxiety
of patients during normal care deliver, but had no impact on the anxiety of patients
when undergoing different surgical procedures. They also found that music improved
the mood and tolerance of patients but had little effect on vital signs. In our work, using
a visual analogue scale, we found that both music and slow breathing reduced reported
stress levels after watching a stressful movie. There was also a non-significant trend for
a greater reduction with music than with slow breathing, perhaps because participants
were not familiar with slow breathing techniques.
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We found that HRV measure LF was higher in the Intervention condition for Music
group compared to Baseline1 and Stress Condition although changes are not statisti-
cally significant. The LF/HF also increased during Intervention compared to Initial
Baseline and remained high during the final Baseline, the changes are not significant
after Bonferroni correction. Also, Post Hoc analyses revealed that during intervention,
HRV measures SDNN, LF, LF/HF in the Music and Breathing group differed signifi-
cantly. We also did not see significant changes in HR in the Music group. The effects of
music on physiological measures are not consistent across studies. Some studies found
that sedative music decreased HR and blood pressure (BP) (Fuchs et al. 2018; JONG
et al. 1973; Knight and Rickard 2001) whereas other studies report that music induced
no changes in HR or BP (Davis and Thaut 1989; Strauser 1997; Vanderark and Ely
1994). Some studies have found that music does effect HRV. For example, Iwanaga et
al. (2005) found that the LF component of HRV and the LF/HF ratio increased during
both sedative and excitative music sessions, whereas HRV decreased when there was no
music. Fuchs et al. (2018) found an increase in LF, HF and RMSSD during a music
Intervention condition compared to a Stress condition.

In our study, relaxing music affected self-reported stress levels, but had minimal
impact on HR and HRV. One possibility is that there are large individual differences in
how people react physiologically to music (Davis and Thaut 1989; Harrer and Harrer
1977). It is also the case that we tested participants in groups, and this may have affected
their physiological responses. Finally, our sample size of 32 participants was relatively
small, so this study needs to be repeated with more participants and with a comparison
of individual and group settings.

4.2 Slow Breathing Effects Perceived Stress as well as HRV
The self-report ratings revealed that slow breathing lowered participants’ perceived stress
from what they reported during the Stress condition, and that this effect was similar to
that of the Music condition.

We found that HR increased from the stressful condition to the slow breathing Inter-
vention. Previous literature on the effect of slow breathing on HR is inconsistent. Fuchs
et al. (2018) found a decrease in HR with slow breathing, but Weippert et al. (2015)
found an increase in HR during .01 Hz metronome guided slow breathing and Engel and
Chism (1967) found a tendency for HR to increase during slow breathing. We conducted
a pilot test prior to the LIVElab experiment with slow and fast breathing conditions.
The pilot test had no Stress condition and no baseline condition, HR was significantly
lower during the slow breathing compared to the fast breathing condition. The Results
of that pilot test are shown in the Supplement section in the Figure A1.1. Thus effects of
slow breathing on HR may depend on the context such as whether the measure is taken
following a stressful situation. Further testing is needed to reach a conclusion about the
effect of slow breathing on HR.
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We selected SDNN as the time domain measure of HRV as SDNN can be considered
as an index of physiological resilience against stress, with higher SDNN reflecting higher
HRV (Kim et al. 2018). SDNN was significantly higher in the Breathing group compared
to the Music group during the Intervention condition and SDNN increased from the
Stress movie to the Slow Breathing condition, but this effect did not carry over to the
following baseline period. Both SNS and PNS activity contribute to SDNN, and it is
highly correlated with both LF band power and total power (Umetani et al. 1998). Our
results are consistent with previous studies indicating that in slow breathing, SDNN
increases (Shaffer et al. 2014; Guzik et al. 2007) largely due to a lower-frequency of
para-sympathetically mediated RSA. and a higher SDNN reflects high HRV. Guzik et
al. (2007) also found that increasing respiratory rate caused a significant reduction in
SDNN (p = 0.0136). The SDNN value increases when HRV is large and irregular.
So, there was a significant increase of SDNN from Stress to Intervention condition in
the Breathing group (p=.002). Similar significant change is absent in the Music group
(p>.05).

Our analysis of LF power and LF/HF ratio showed results that are consistent with
previous studies (Fuchs et al. 2018). We found that LF power was significantly higher
during slow breathing than music listening condition. This is likely because at the
very low breathing frequency of 0.1 Hz the RSA resonates with the LF baroreflex that
integrates frequency and Mayer waves (Julien 2006). Mayer waves are waves in arterial
blood pressure caused by oscillations in baroreceptor and chemoreceptor reflex control
systems (Julien 2006; Sleight et al. 1995; Akselrod et al. 1985; Lanfranchi and Somers
2002) , As well, when breathing is slowed to 0.1 Hz, RSA will fall into the LF band
rather than the HF band, and so the LF measurement during slow breathing will reflect
parasympathetic processes to a greater extent compared to when the breathing rate is
faster.

Baroreflex modulates blood pressure fluctuations and when blood pressure increases,
the baroreflex causes an immediate decrease in heart rate. Similarly, as blood pressure
falls, the baroreflex causes an immediate increase in heart rate. The slow breathing
stimulation causes maximal stimulation to the baroreflex and increases HRV (Lehrer
and Gevirtz 2014). This baroreflex response is mediated through the nucleus tractus
solitarius (NTS) which is located in the brain stem (Raven et al. 1997; Rogers et al.
2000). The NTS communicates with the amygdala and also extends to the insula (Volz
et al. 1990). Lehrer and Gevirtz (2014) speculate that this is why HRV biofeedback has
been effective in treating anxiety and depression (Patron et al. 2013; Zucker et al. 2009;
Siepmann et al. 2008; Reiner 2008; Karavidas et al. 2007). Similar to LF power, we
also found that the LF/HF ratio was higher during slow breathing than during music
listening. Previous studies (Steffen et al. 2017) have reported higher positive mood and
a significantly higher LF/HF HRV ratio in Resonance Frequency Breathing relative to
the control group(p < 0.05). Together, our analyses of frequency domain measures are
consistent with previous studies.

The traditional techniques for Heart Rate Variability (HRV) analysis in the time and
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frequency domains are often not sufficient to characterize the complex dynamics of the
heartbeat that are influenced by nonlinear regulatory inputs. Moreover the nonlinear
domain provides useful information for characterizing autonomic balance and nonlinear
measures may provide more reliable markers of cardiovascular disease (Godoy 2016). We
examined three nonlinear measures: Sample Entropy, DFA, and Poincaré plot indices. In
Music group none of these measures revealed significant differences between the stressful
condition and the music listening Intervention.

In the Breathing group, Sample Entropy decreased from the stressful condition to
the slow breathing Intervention, and was significantly lower during slow breathing than
during music listening. We found that the Poincaré plot index SD1 do not change sig-
nificantly between the stressful condition, either slow breathing or Music group. On the
other hand, the Poincaré plot index SD2 was significantly greater during slow breathing
than during the stressful condition, and it was significantly greater during Intervention
in Breathing group than in Music group.

The DFA analysis is a scaling analysis method to represent the correlation properties
of a signal (Peng et al. 1995), that determines the the statistical self-affinity of a signal.
The α1 index increased from the stressful condition to the Slow Breathing conditions
and was significantly higher during slow breathing than music listening. The α2 index
decreased significantly from the stressful condition to the Slow Breathing condition and
was significantly lower during slow breathing than during music listening.

The interpretation of these nonlinear HRV effects are discussed in Section 4.3.

4.3 Slow Breathing and not Music reduces complexity of
Heart and Respiration signal

The RR time series is generated by a network of biological oscillators that have non-
linear proprieties (Porta et al. 2006). It has been observed that a healthy cardiovascular
system is associated with HRV of a chaotic nature that reflects adaptability and a capac-
ity to respond to unpredictable stimuli (Beckers et al. 2006). Our work was consistent
with that of Weippert et al. (2015) and Porto et al. (2018) in showing that slow breath-
ing decreases the chaotic behavior of heart rate dynamics. The reasons for this are still
under debate. One hypothesis is that in periods of restoration the complexity might
decrease, while during dynamically changing challenges from the internal and external
environment the complexity might increase. For analogy, HRV drops during exercise
and recovers post-exercise (Michael et al. 2017). Similarly regular biofeedback training
can improve resting HRV. The Vagal Tank Theory of Laborde et al. (2018) says that
cardiac vagal tone can be depleted and replenished and that this provides an integra-
tive psychophysiological index of self-regulation. Resting levels of cardiac vagal tone are
considered different from reactivity and recovery levels. The theory hypothesize that
depleting factors may decrease cardiac vagal tone momentarily, but replenishing factors
may boost it at the reactivity level and might help build higher long-term baseline levels
leading to improved psychophysiological self-regulation (Blum et al. 2019). Also, In the
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loss of complex variability with exercise in heart rate dynamics is followed by a relax-
ation (recovery) period in which slowing of the rate is accompanied by reappearance of
complex variability (Goldberger et al. n.d.). Perhaps we can consider the slow breath-
ing/resonant breathing biofeedback, which has already been established as a treatment
for stress-related disorders and symptoms (Wheat and Larkin 2010; Gevirtz 2013; Goessl
et al. 2017), as a reactivity stage for (replenishing) or restoration which will be followed
by a relaxation state. In this case, the reduction in complexity of the heart rhythm,
marked by low Sample Entropy, might reflect a state of restoration and building re-
serves. In this context we can also discuss the unease modulation (UM) model (Arpaia
and Andersen 2019). A reduction in subjective unease during practice is seen in patients
who practice relaxation, mindfulness, and similar techniques and is also accompanied by
reduction in sympathetic nervous system activation and an increase in para-sympathetic
nervous system activation (Van Der Zwan et al. 2015). According to the UM Model,
such autonomic changes will also increase reserves and increased reserves will tend to
reduce levels of sympathetic nervous system activation. Thus, one interpretations of
our results is that the reduction in HR complexity during slow breathing is actually
increasing the reserves and will eventually tend to reduce the sympathetic dominance
over time. We did not see any carryover effects from the Slow Breathing condition to the
immediately following baseline condition, suggesting that longer slow breathing practice
may be needed to see any long term benefit. It remains for future research to investigate
this further.

The Poincaré plot is a scatterplot in which current RR is plotted as a function of
previous interval. We did not see any changes to Poincaré plot index SD1, reflect-
ing short-term changes in HRV, whereas Poincaré plot index SD2, reflecting long-term
changes in HRV, was significantly higher in the Slow Breathing group compared to Mu-
sic group during the Intervention condition. Our findings are in line with (Guzik et al.
2007) who found that SD2 decreased when the respiration rate increased from 6 to 12
breath per minute. The ratio of SD2/SD1 has been interpreted as a measure of the bal-
ance between long- and short-term HRV, by its analogy to its similarity to LF/HF. LF
oscillations are thought to be responsible for long-term HRV variability (Kleiger et al.
2005). In sum, our findings of Poincaré Plot analysis suggest that a slow breathing pace
will increase the long-term characteristics of HRV.

The scaling exponents of DFA represent the correlation properties of the heart signal.
We have seen that α1 increased whereas α2 decreased significantly from the Stress con-
dition to slow breathing. Similar results were were seen in the works of (Grigorieva et al.
2017) and (Weippert et al. 2015). Additionally, the scaling exponents of RR intervals
differ between normal and pathological conditions (Grigorieva et al. 2017). Melillo et al.
(2011) found reduced α1 under academic stress. Studies have also found that patients
with higher α1 were associated with lower cardiac and total mortality (Chiang et al.
2016). We found a significant increase in α1 from stress to slow breathing but not from
stress to music listening. One interpretation is that α1 is related to the balance of LF
to HF heart rate fluctuations. Breathing frequency of 0.1 Hz inflates the power in the
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LF range compared with the HF range, thereby it increases the DFA α1 value (Weip-
pert et al. 2015). The relationship of autonomic regulation to DFA will require more
investigation, which is beyond the scope of this thesis.

4.4 Respiration and Heart Rhythm synchronizes maximally
in Slow Breathing group during Intervention.

The Respiration rate falls within the LF band during slow breathing whereas during
music listening the Respiration rate falls within the HF band. We found that the Inter-
vention condition showed a significantly higher correlation between RR and Respiration
than Stressful Movie condition. Also, only in the Intervention condition correlation be-
tween RR and Respiration differ significantly. Studies have found that modulation of
heart rhythm by Respiration is strongest at low breathing frequencies of approximately
0.1 Hz (Berntson et al. 1993; Bernardi et al. 2000; Stark et al. 2000). Our results are in
line with the assumption of higher cardio respiratory synchronization during slow breath-
ing compared to spontaneous breathing. The correlation was higher in the Breathing
group vs Music group, although we did not quantify RSA, but a higher synchroniza-
tion of respiratory and heart rhythm would reflect a high amplitude of RSA and also it
will stimulate the baroreceptors maximally improving baroreflex. Slowed respiration to
approximately 6 breaths/min can increase both HRV and Baroreflex sensitivity (BRS)
(Bernardi et al. 2001). The resonance created by respiratory rate of 6 breaths/minute
with the baroreflex loop and Mayer waves of arterial pressure is probably responsible for
the increase of the respiratory sinus arrhythmia (Eckberg 2003; Cooke et al. 1998; Hirsch
and Bishop 1981) and (Eckberg 2003; Cooke et al. 1998; Hirsch and Bishop 1981). At
approximately 0.1 Hz the maximum heart rate oscillations occurs and at this frequency
the heart rate oscillates with breathing at a 0 degree phase relationship producing both
the highest amplitude of RSA and the most efficient gas exchange (Lehrer and Gevirtz
2014). Also, during periods of slow breathing, vagal activity can generate oscillations in
the heart rhythms that cross over into the Low Frequency band of HRV (Lehrer et al.
2003; Ahmed et al. 1982). This might explain the high correlation of RR and Respiration
signals in the slow breathing group during Intervention condition than the Music group.

Correlation analysis does not reveal information at which HRV frequency band the
synchronization is maximal. To further evaluate this, we also conducted the wavelet
coherence analysis. Our results confirm the hypothesis that the coherence between RR
and Respiration would be shifted to LF band during Intervention condition in Breathing
group and there should be a high coherence in the HF band during the Intervention
condition in Music group. We found that only during the Intervention condition the
coherence between RR and Respiration at HF band differed significantly. We also found
that during the Intervention condition the coherence between RR and Respiration at
LF band differed significantly. The significance of these findings are that it quanti-
fies coupling and degree of synchronization between different oscillating systems (RR
and Respiration). We found that body’s two oscillatory systems (respiration and heart
rhythms) become entrained and operate at the same frequency when subjects breathe
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at a slower frequency. There are evidences that supports the claim of a strong coherence
as a state of well being and health. Previous findings also reveal that even the expe-
rience of positive emotion can result in a sine-wavelike heart rhythm that too without
any conscious control (McCraty et al. 1995). According to McCraty and Zayas (2014)
during coherent states there is an increase in vagal afferent neuronal traffic which also
inhibits thalamic pain pathways at the level of the spinal cord.

In the Music group the HF band coherence was increased in the Intervention condition
compared to Stress condition. But similar significant increase is not seen in the Breathing
group for HF band. This finding might suggest that Music can have relaxing effects as
HF band is para-sympathetically mediated. In the Breathing group the LF coherence
was increased in the Intervention condition compared to Stress condition. At a very
slow rate of breathing (0.1 Hz) the LF band almost entirely represent parasympathetic
dominance. Our results suggest that the coherence between cardiac and respiratory
rhythm maximises in the LF band. The physiological interpretation of the coherence
could be explored in depth in a future study building upon our present work.

4.5 Most effect of Intervention are not maintained past the
time of the Intervention

We found that the effects of the Interventions, whether slow breathing or music listen-
ing, did not carry over immediately to Baseline2 condition with two exceptions. First
SDNN was higher during the final compared to initial baseline prior to the stressful and
Intervention conditions. Second, Sample Entropy was lower during the final baseline
compared to the initial baseline. It is not clear whether we did not have enough power
with our current sample size to see effects that were maintained past the intervention,
or whether a longer intervention would be necessary to see more long lasting effects.

Future studies would also benefit from the inclusion of cortisol measures, which can
indicate whether stress levels are reduced at time points after the interventions. Pre-
vious studies have shown that HRV biofeedback training significantly improve general
emotional well-being and reduce anxiety (McCraty et al. 1998). Several studies also have
reported in a reduction of cortisol with deep breathing (Perciavalle et al. 2017; Kim et al.
2013). Another hypothesis for lack of significant group differences in the final Baseline
period can be accounted for the attrition due to study fatigue-which is a drawback of
repeated measures design (Breach 2012).

In the Protocol for Heart Rate Variability Biofeedback Training (Lehrer et al. 2013)
practitioners are instructed to breath at the resonance frequency for 20 minutes twice a
day, which is a much longer duration than what we used in our study. So one possible
reason why the effects of slow breathing (increase in HRV) was not maintained once the
slow breathing ended, was the short duration’s (5 min) of the slow breathing and music
listening interventions in our protocol. Another possible fact was that participants un-
familiarity with the slow breathing protocol. The visual displays might also have been
distracting as the subjects were instructed to watch the screen during the experiment
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while listening to the auditory cue. It is possible that only auditory feedback or sonifica-
tion may have reduced possible visual overload and fatigue. We did not measure cortisol
in this study. We speculate that although the effects of intervention is not reflected by
HRV post Intervention condition, cortisol levels will still remain low as found in Ma et al.
(2017). It would be definitely worth investigating the levels of cortisol post intervention
in both the groups (Music, Breathing) in future studies.

4.6 Intensity of emotional state reflected by GSR is af-
fected by Stressful Movie.

Previous studies have shown the link between stress and GSR/EDA, with the amplitude
of GSR increasing linearly with perceived arousal in participants given emotional stimuli
(Winton et al. 1984; Manning and Melchiori 1974; Greenwald et al. 1993). Other studies
have also reported a rise in GSR in stress inducing tasks like sing a song (Brouwer and
Hogervorst 2014). Our results are in agreement with these previous findings. We found
that the Stress movie significantly increased GSR. GSR did decrease from the Stress
movie to the Intervention conditions, but there was no significant difference between the
effects of slow breathing and music listening. From this we can infer that Slow Breathing
is as effective as Music in lowering the stress.

It is noteworthy that the GSR signal does not represent the type of emotion, it only
represent intensity. It has actually been reported that GSR increases in participants who
practice breathing exercises. The reasoning provided was that deep breathing causes a
phasic sympathetic release that increases sweating (Nida et al. 2014). The reason we did
not see any statistically significant differences between Tonic GSR activity in the relaxing
and slow breathing techniques can be explained from the facts that GSR intensity might
also be effected by slow breathing which does not mean a higher sympathetic tone. A
deep breath can elicit a sympathetic discharge that causes an increase in sweating, which
increase the GSR response. Authors in GN et al. (n.d.) found that statistically highly
significant increase in GSR was seen in subjects who practiced deep breathing (6 breath/
minute). The reasoning provided was that it is a sign of reduction of sympathetic tone
and increase in parasympathetic tone following such breathing.

Moreover, GSR alone might not shed light on the effectiveness of relaxing music vs
slow breathing in reducing stress. HRV analysis should be considered carefully along
with GSR activity.

4.7 Correlation between GSR, Respiration and self Re-
ports.

Previous studies have investigated correlation between behavioural scales and GSR. Na-
jafpour et al. (2017) found that GSR is a reliable and valid measure for assessment of
children’s dental anxiety in the clinical context and may help to identify clinically anx-
ious children before dental treatment so that appropriate Interventions can be provided.
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To examine how GSR and respiration rate related to perceived stress, we examined cor-
relations among participants’ stress ratings, GSR and Respiration. We found that GSR
activity was significantly correlated with perceived stress for both Music group and the
Breathing group. The correlation between and Stress Rating was not significant but
correlation of with HRV measures were significant.

We also found some significant correlations between personality traits and self reports
of perceived stress (VAS). We found that PSS and VAS are significantly correlated.
Moreover, we found PSS and STAI-T correlated significantly. Similarly, Yu and Ho
(2010) also found a positive correlation between PSS and STAI-T (r = 0.693, P < 0.01)
consistent with our results. We also found significant positive correlations between ISMA
and PSS. and ISMA and STAI-T.

4.8 Limitations of the current study
One of the methodological limitations of the current study is its small sample size.
We only had 16 subjects in each Intervention groups (Music, Slow Breathing). Previous
research supports the efficacy of HRV biofeedback, and we have also replicated the same,
but the effect did not carry over to the post intervention stage for the most part. Another
limitation of our study is that our results may be limited to the sample characteristic of
our population and may or may not generalize to individuals of other demographic or
age. Although the effects of slow breathing have already been established with minimal
individual variability with the exception of choice of individual resonant frequency which
was fixed (0.1 Hz) in our study. Same can’t be applied to Relaxing Music.

We asked the participants not to take caffeine 2 hours prior to the experiment. But
consumption of caffeine outside that time window, engagement in exercise, food taken
before the study, Body Mass Index etc, were not controlled for in the current study. We
did not correct HRV for HR and also . Laborde et al. (2017) recommended researchers
not to engage in routine correction of HRV for respiration in the case of spontaneous
breathing. Previous researchers whose experimental design was much closer to ours such
as (Fuchs et al. 2018) did not adjust HRV for any confounding variables such as age,
gender, circadian rhythm, medication, diseases etc. Also, Geus et al. (2019) argued that
adjustment approaches might remove meaningful variance in outcomes of interest which
can be attributable to autonomic and neurophysiological phenomena. Future studies
might address the knowledge gaps in our understanding of the meaning of HRV metrics
and whether adjustment is required or not.

The ideal procedure for dealing with confounding factors is to get objective measures
of these potentially confounding factors whenever possible. But it was not practically
feasible in our study, which is another limitation. For instance to control for individual
differences in blood pressure, it’s recommended to measure the blood pressure directly
(Geus et al. 2019). We also did not control for the influence of circadian rhythm. We
had one group in the morning and one in the evening. It was not practically possible to
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have consistent timings for the recording of PPG due to the limited availability of the
recording space.

Another limitation of our study is that we did not measure cortisol which is a stress
hormone. Some other studies have also found that breathing exercises can lower the
levels of cortisol as mentioned above. In the work of Ma et al. (2017), authors found
that Breathing Intervention group showed significantly increased sustained attention
after training, compared to baseline. Also, there was a significant interaction effect of
group and time in the diaphragmatic Breathing condition on cortisol levels. Authors
found a lower cortisol level after training compared to control group. The conclusion
was that diaphragmatic breathing (4 breaths/min) could improve sustained attention,
affect, and cortisol levels.

We asked the participants to watch a screen where a circle was growing big or small
and participants were instructed to breathe to that cue. Continuous watching of this
stimulus might have been tedious and influenced self-reports. This might explain why
participants reported a higher perceived stress in the Breathing group compared to Music
group during the Intervention condition.

4.9 Future Direction
In our study there was neither a human interaction nor live played music in device-
guided breathing. Future studies should employ music therapists in a group setting
such as in a classroom before the exam starts and it could lead to interesting findings
regarding HR and HRV. Another important suggestion for future research is to use real-
time biofeedback as visual or auditory feedback to gain control over involuntary bodily
functions including blood pressure or heart rate. In the current study, the subject is
breathing to a paced cue with no conscious awareness of his or her bodily signals. We
hypothesize that using a real time biofeedback will increase bodily awareness and increase
focus or mindfulness, the part that is missing in our study.

Another possible direction would be to use user-specific resonant breathing frequency.
We had to keep the resonant frequency fixed at 6 breath per minute. Researchers can
pilot test with 4,5,6,7 bpm sound cues and find out the frequency at which maximum
FFT amplitude of heart rhythm is achieved. Although, in a group study such as ours
it’s not possible to use individualized resonant frequencies.

The stressor we used was an excerpt from the movie ‘the vertical limit’. Future
studies might use Trier social stress test (TISS) and Stroop test and compare with
Stressful movies in terms of the impact on HRV and GSR. Future investigations should
also replicate the current study, with the addition of a larger sample size. Researchers
are also encouraged to replicate our findings in actual real world settings such as in
classroom setting for students, yoga classes, or in resilience training among public safety
personnel who are exposed to Post-Traumatic Stress Injuries, etc.
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Future studies could look at he gender differences, as well as differences between par-
ticipants with prior training and familiarity with meditation, HRV biofeedback, medita-
tive dancing, tai chi etc. Studies should explore different types of relaxing music besides
western ones, such as Indian music melodic scale, healing Ragas like Raga Bhimpalas
(Ubrangala et al. 2020), Raga Darbari-Kanhra, Raga Bageshvari (Sarkar and Biswas
2015) etc.
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Chapter 5

Conclusion

The present study confirmed that slow breathing, also known as resonant frequency
breathing, is an effective intervention for stress in a group setting. Moreover, subjective
reports of perceived stress showed that listening to relaxing music also reduces stress.
This study has shown the effects of interventions (Music, Breathing) on HRV, GSR
and Respiration of subjects. This study also explored both the linear and non-linear
domains of HRV and possible explanations were considered for increased HRV (marked
by an increase in SDNN), increased synchronization between respiration and cardiac
rhythms, and the loss of complexity of cardiac and respiratory rhythms during slow
breathing. These findings can be used in association with current research on the use of
resonance breathing techniques and relaxing music as instruments to guide training for
stress resilience that would optimize overall health and performance of people both in
an individual setting or in a group setting, such as in a yoga studio or classroom.
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Appendix A

Supplement

A1 Pilot Test Results for Heart Rate

Figure A1.1: Fast and Slow Breathing comparison of HR. The plot
shows the two Breathing Conditions Fast and Slow.

A2 Correlation analyses between personality traits and
self reports of VAS stress

Correlation analyses between personality traits and self reports of VAS stress revealed
some significant correlations. Significant correlations (p<.05) are shown by red color.
The behavioural traits measured are ISMA Score, Perceived Stress Scale (PSS), STAI
Form, Y-2(STAI), TIPI Extroversion(TIPIE), TIPI Agreeableness, TIPI Conscientious-
ness(TIPIC), TIPI Emotional Stability(TIPIE), TIPI Openness(TIPIO). As shown in
figure A1.2 only PSS was significantly correlated with VAS stress scores (rs(64) =
0.44, p < .01). The correlations are not corrected for multiple comparisons.
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Figure A1.2: Spearman rank correlation. The correlation between per-
sonality traits and self reports of perceived stress is shown. Histograms of
the variables and scatterplots of variable pairs are displayed. Spearman
Rank correlation coefficients (rs) of the significant correlations are shown
in red (p<.05)

.

A3 VAS Ratings Table

Table A1.1: VAS ratings Mean ± SD of participant characteristics
provided for both Breathing and Music group.

Categories Slow Breathing (16) Music (16)
Stress Rating 1 3.18± 2.22 3.00± 2.25
Stress Rating 2 5.25± 2.56 6.37± 2.70
Stress Rating 3 3.50± 1.86 3.21± 2.02
Stress Rating 4 2.62± 2.12 2.62± 1.89
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A4 Questionnaires

   

3.9_Visual_Analog_Scale_v1 Feb-14-2020 

Visual Analogue Scale for stress 
 

Date:  ______________________________________ 

 

ID:    ___________________________________ 

  

     ______   __________________ 

Stress Rating 1 

 

  Are you feeling stressed? 

 

No   1    2   3    4    5    6    7    8    9    10     Severe  

 

 

     ______   __________________ 

Stress Rating 2 

 

 

   Are you feeling stressed? 

 

No   1    2   3    4    5    6    7    8    9    10     Severe  

 

 

     ______   __________________ 

Stress Rating 3 

 

 

 Are you feeling stressed? 

 

No   1    2   3    4    5    6    7    8    9    10     Severe  

 

 

     ______   __________________ 

Stress Rating 4 

 

  Are you feeling stressed? 

 

No   1    2   3    4    5    6    7    8    9    10     Severe  

 

  

     ______   __________________ 

 

 

 

 

 

Figure A1.3: Visual Analogue Scale for stress.
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Ten-Item	Personality	Inventory	(TIPI)	
 
Here are a number of personality traits that may or may not apply to you. Please 
write a number next to each statement to indicate the extent to which you agree or 
disagree with that statement. You should rate the extent to which the pair of traits 
applies to you, even if one characteristic applies more strongly than the other. 
 
 

Disagree 
strongly 

Disagree 
moderately 

Disagree a 
little 

Neither 
agree nor 
disagree 

Agree a 
little 

Agree 
moderately 

Agree 
strongly 

1 2 3 4 5 6 7 
 
 
I see myself as: 
 
1. _____ Extraverted, enthusiastic. 
 
2. _____ Critical, quarrelsome. 
 
3. _____ Dependable, self-disciplined. 
 
4. _____ Anxious, easily upset. 
 
5. _____ Open to new experiences, complex. 
 
6. _____ Reserved, quiet. 
 
7. _____ Sympathetic, warm. 
 
8. _____ Disorganized, careless. 
 
9. _____ Calm, emotionally stable. 
 
10. _____ Conventional, uncreative. 
 

 
 

Figure A1.4: Ten-Item Personality Inventory
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PERCEIVED STRESS SCALE 
 

The questions in this scale ask you about your feelings and thoughts during the last month.  

In each case, you will be asked to indicate by circling how often you felt or thought a 

certain way. 

 

Name ____________________________________________________________    Date ______________ 

Age ________    Gender (Circle):    M    F            Other _____________________________________ 

 
0 = Never     1 = Almost Never     2 = Sometimes     3 = Fairly Often     4 = Very Often 

1. In the last month, how often have you been upset because of 
something that happened unexpectedly? 

 
0 1 2 3 4 

       

2. In the last month, how often have you felt that you were unable to 
control the important things in your life? 

 
0 1 2 3 4 

       

3. In the last month, how often have you felt nervous and “stressed”?  0 1 2 3 4 
       

4. In the last month, how often have you felt confident about your 
ability to handle your personal problems? 

 
0 1 2 3 4 

       

5. In the last month, how often have you felt that things were going 
your way? 

 
0 1 2 3 4 

       

6. In the last month, how often have you found that you could not cope 
with all the things that you had to do? 

 
0 1 2 3 4 

       

7. In the last month, how often have you been able to control irritations 
in your life? 

 
0 1 2 3 4 

       

8. In the last month, how often have you felt that you were on top of 
things? 

 
0 1 2 3 4 

       

9. In the last month, how often have you been angered because of 
things that were outside of your control? 

 
0 1 2 3 4 

       

10. In the last month, how often have you felt difficulties were piling up 
so high that you could not overcome them? 

 
0 1 2 3 4 

 

 
info@mindgarden.com 

www.mindgarden.com 
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Figure A1.5: Perceived Stress Scale
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  Stress Questionnaire 
 

Copyright ©ISMA
UK

 2013 

 

 

Because everyone reacts to stress in his or her own way, no one stress test can give you a complete diagnosis of 
your stress levels. This stress test is intended to give you an overview only.  Please see a Stress Management 
Consultant for a more in depth analysis. 

Answer all the questions but just tick one box that applies to you, either yes or no. Answer yes, even if only part 
of a question applies to you. Take your time, but please be completely honest with your answers:  

    Yes  No  

1  I frequently bring work home at night              

2  Not enough hours in the day to do all the things that I must do        

3  I deny or ignore problems in the hope that they will go away       

4  I do the jobs myself to ensure they are done properly       

5  I underestimate how long it takes to do things        

6  I feel that there are too many deadlines in my work / life that are difficult to meet        

7  My self confidence / self esteem is lower than I would like it to be       

8  I frequently have guilty feelings if I relax and do nothing       

9  I find myself thinking about problems even when I am supposed to be 
relaxing                                                             

      

10  I feel fatigued or tired even when I wake after an adequate sleep        

11  I often nod or finish other peoples sentences for them when they speak slowly       

12  I have a tendency to eat, talk, walk and drive quickly        

13  My appetite  has changed, have either a desire to binge or have a loss of appetite / may skip meals        

14  I feel irritated  or angry if the car or traffic in front seems to be going too slowly/                                                  
I become very frustrated at having to wait in a queue   

      

15  If something or someone really annoys me I will bottle up my feelings       

16  When I play sport or games, I really try to win whoever I play       

17  I experience mood swings, difficulty making decisions, concentration and memory is impaired        

18  I find fault and criticize others rather than praising, even if it is deserved       

19  I seem to be listening even though I am preoccupied with my own thoughts        

20  My sex drive is lower, can experience changes to menstrual cycle        

21  I find myself grinding my teeth        

22  Increase in muscular aches and pains especially in the neck, head, lower back, shoulders       

23  I am unable to perform tasks as well as I used to, my judgment is clouded or not as good as it was            

24  I find I have a greater dependency on alcohol, caffeine, nicotine or drugs        

25 I find that I don’t have time for many interests / hobbies outside of work        

A yes answer score = I (one), and a no answer score = 0 (zero).                                        TOTALS   

Figure A1.6: ISMA Stress Questionnaire
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Figure A1.7: STAI-T self-evaluation questionnaire
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PARTICIPANT BACKGROUND INFORMATION FORM 
The following questions are optional, and you may choose to skip any that you would 

prefer not to answer. Any information that you do provide will be kept confidential. 
 

Study ID: ____________________________  Age: _______________  Sex: __________ 
 
1. Do you currently play a musical instrument (including voice)? 

_____ Yes (go to question #2)                       _____ No (skip to question #3) 
 
2. Please provide the following information for each instrument you currently play, starting 

with the one that you consider your primary instrument. 
 

Instrument 
Ages during which 
you have played 

this instrument 

Ages during which 
you took music 
lessons on this 

instrument 

Hours per week 
that you play this 

instrument 
currently 

    

    

    

 
Please describe the situations in which you play (e.g., alone, in a small ensemble or band, in a 
large orchestra or choir, etc.) 
___________________________________________________________________________
___________________________________________________________________________ 

 
3. Have you previously played an instrument (including voice) that you no longer play (e.g., 

as a child)? 
____ Yes (go to question #4)                       _____ No (skip to question #5) 
 

4. Please provide the following information for each instrument that you used to play. 
 

Instrument 
Ages during which 

you played this 
instrument 

Ages during which 
you took lessons on 

this instrument 

Hours per week 
that you played 
this instrument  

    

    

    

 
Please describe the situations in which you played (e.g., alone, in a small ensemble or band, in 
a large orchestra or choir, etc.) 
___________________________________________________________________________
___________________________________________________________________________ 

Figure A1.8: Demographic questionnaire
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5. Do you have dance experience (lessons, amateur or professional experience)? 
_____ Yes (go to question #6)                       _____ No (skip to question #7) 
 

6. Please provide the following information for each dance style you are familiar with. 
 

Style of dance 
Ages during which 

you danced this 
style 

Ages during which 
you took lessons in 

this style 

Hours per week 
that you dance(d) 

this style  
    

    

    

 
Please describe the situations in which you dance(d) (e.g. alone, with family, in group classes) 
__________________________________________________________________________ 
__________________________________________________________________________ 
 
7. Please indicate the highest formal music levels (instrumental/vocal performance, dance or 

theory) that you have achieved (e.g. Royal Conservatory, Theory, Suzuki Books, etc). 
Instrument/Course/Subject Level 

  
  
  

 
8. Do you play music professionally? If so, please describe the situations in which you are 

paid to play music (e.g. performance, teaching, playing in bands, DJ, etc): 
___________________________________________________________________________ 
___________________________________________________________________________ 
 
9. Describe your current recreational music and dance activities (e.g., “jam sessions” with 

friends, singing karaoke, dancing at nightclubs, etc.): 
___________________________________________________________________________
___________________________________________________________________________ 
 
10. For how many years have you played any instrument (including voice) or danced regularly 

and consistently (e.g. at least 3x per week, most weeks of the year?) _________________ 
 
11. How often do you attend musical or dance concerts or performances? ________________ 
 
12.  Have you had any formal ear training*?  ___ Yes ( ____ years)     ___ No ___ Not sure 
* In ear training or “aural skills” lessons, musicians learn to identify musical elements such as intervals, chords and 
rhythms, simply by hearing them.   

Figure A1.9: Demographic questionnaire
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13. Do you play by ear*?    ____Yes  ____ No 
* playing or learning to play a piece of music by listening to a musical rendition, without the aid of printed material 

 

14. Do you have absolute/”perfect” pitch*?  ___Yes ___ No  ___ Not sure 
* absolute pitch is the ability to name notes without a reference, e.g. to hear a tone and immediately know it was a “C” 

 
15. Can you name a note if you are given a reference*?      ___ Yes     ____No     ___ Not sure 
* e.g., if you heard two notes on the piano and were told the first one was a “C”, could you name the other note? 

 

16. To the best of your knowledge, are you tone deaf*?       ___ Yes     ____No     ___ Not sure 
* tone deafness is when you are unable to perceive differences of musical pitch accurately 

 
17. How many hours per week do you spend listening to music? _______ hours/week 
 
18. Please describe your regular listening habits (e.g., listen to mp3/iPod on the bus, play 

stereo at home, etc.): 
___________________________________________________________________________
___________________________________________________________________________ 
 
19. Do you pay close attention when listening to music? Please rank from 1 to 5 

(music is background only)  1 2 3 4 5       (always pay close attention) 
 
20. What styles of music do you listen to (e.g., rock, r&b, classical, traditional/folk, etc.) 
___________________________________________________________________________
___________________________________________________________________________ 
 
21. Do any of your close friends or family members play a musical instrument (or did so in the 

past)? If so, please provide the following information.   
 

Their relation to 
you 

 
Instrument that they 

play(ed) 

How old were you 
(age range) when 
you heard them 

play? 

Number of hours 
per week that you 
hear/heard them 

play 
    

    

    

 
22. Please briefly describe your other main activities or interests (e.g., sports, outdoor activities, 

art, reading, video game playing, etc.). 
___________________________________________________________________________
___________________________________________________________________________ 
 

Figure A1.10: Demographic questionnaire
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24. What is the highest level of education you have completed, or are currently completing? 
____ High school / High school equivalency 

 ____ College / skilled trade training program 
 ____ University undergraduate (e.g. B.Sc., H.B.A, etc) 
 ____ Graduate school – professional or academic (e.g. LLD, MD, Ph.D) 
 ____ Other (please specify) ____________________ 
 ____ Prefer not to say 
 
24. What is your current employment status? 
 ____ Student 
 ____ Employed – Full time 
 ____ Employed – Part time 
 ____ Unemployed 
 ____ Retired 
 ____ Other 
 ____ Prefer not to say 
 
25. Please indicate the range that reflects your annual household income 
 ____ less than $30,000 
 ____ $30,000 - $60,000 

____   $60,000 - $90,000 
____   $90,000 - $120,000 
____ $120,000 - $150,000 
____  greater than $150,000 
____ Prefer not to say 

 
23. Do you currently speak any other languages besides English?  ___ Yes ___ No 
If yes, please indicate which language(s) including English, the percentage of time that you 
use them, and the situations in which you speak each language. 

Language Percentage (%) of time that 
you use this language 

Situations in which you use the 
language 

 
 

  

 
 

  

 
 

  

Figure A1.11: Demographic questionnaire
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24. Did you previously speak any languages other than English that you no longer speak? If 

yes, please list and describe the ages and situations in which you used these languages: 
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________ 
 
25. Have you lived in North America for all your life?  ____Yes  ____No 

If not, please describe where else you have lived, and for how long. 
Location How old were you (age range) when you 

lived there? 
  
  
  

 
26. Do you have any hearing problems that you are aware of? If yes, please specify. 
__________________________________________________________________________ 

 
27. Please indicate whether you are left or right handed when performing the following tasks:  

Left   Right   Both 
Writing    _____   _____   _____ 
Drawing    _____   _____   _____ 
Using a Spoon   _____   _____   _____ 
Throwing     _____   _____   _____ 
Kicking    _____   _____   _____   
 

28. Do you wear glasses or contacts?    ____Yes  ____No 
 
29. Do you currently have a cold or other illness? ____Yes  ____No 
 

Thank you for your assistance! 

Figure A1.12: Demographic questionnaire
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24. Did you previously speak any languages other than English that you no longer speak? If 

yes, please list and describe the ages and situations in which you used these languages: 
___________________________________________________________________________
___________________________________________________________________________
___________________________________________________________________________ 
 
25. Have you lived in North America for all your life?  ____Yes  ____No 

If not, please describe where else you have lived, and for how long. 
Location How old were you (age range) when you 

lived there? 
  
  
  

 
26. Do you have any hearing problems that you are aware of? If yes, please specify. 
__________________________________________________________________________ 

 
27. Please indicate whether you are left or right handed when performing the following tasks:  

Left   Right   Both 
Writing    _____   _____   _____ 
Drawing    _____   _____   _____ 
Using a Spoon   _____   _____   _____ 
Throwing     _____   _____   _____ 
Kicking    _____   _____   _____   
 

28. Do you wear glasses or contacts?    ____Yes  ____No 
 
29. Do you currently have a cold or other illness? ____Yes  ____No 
 

Thank you for your assistance! 

Figure A1.13: Demographic questionnaire
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