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Abstract 

Public bike share systems have been recognized as an effective way to promote 

active and sustainable public transportation. With the health benefits of bike share 

becoming better understood, North American cities have continued to invest in cycling 

infrastructure and impose new policies to not only encourage the usage of bike share 

systems but also expand their operations to new cities. The city of Hamilton, Ontario, 

implemented its own bike share system in March 2015. Using the system’s global 

positioning system (GPS) data for annually aggregated trip departures, arrivals, and totals 

in 2017, this research explores various environment factors that have an impact on users’ 

bike share usage at hub level. Nine predictive linear regression models were developed for 

three different scenarios depending on the type of hubs and members for trip departures, 

arrivals, and totals. In terms of variance explained across the core service area, the models 

suggested the main factors that attract users were distance to McMaster University and the 

number of racks available at hubs. Furthermore, the working population and distance to the 

Central Business District and the closest bike lane in the immediate vicinity (200 m buffer) 

also played important roles as contributing factors. Based on the primary predictors, this 

research takes one step further and estimates potential trips at candidate sites to inform 

future expansion of public bike share system. The candidate locations were created on 

appropriate land uses by applying a continuous surface of regularly shaped cells, a 

hexagonal tessellation, on the area of interest. The estimated potential usage at candidate 

sites demonstrated that the east part of the city should be targeted for future bike share 

expansion.  

Keywords: Active travel; public bike share system; hub usage; ridership; sustainable 

transportation; travel behavior  
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Glossary 

Variables Abbreviation Description 

Social Environment  (In 200 m buffer from each hub) 

Population  Pop Number of people aged from 15 to 64 living in residential areas  

Employment  Emp Number of employees in employment areas  

Built Environment  (In 200 m buffer from each hub) 

Major intersections  T_MAJINT Number of major intersections  

Bus stops T_BSTOPS Number of bus stops 

Bus routes T_BROUTES Number of bus routes 

Hubs T_HUBS Number of hubs  

Hub racks T_RACKS Number of racks available at hubs 

Length of major roads LEN_MAJRD Length (km) of major roads  

Length of minor roads LEN_MINRD Length (km) of minor roads  

Length of bike lanes LEN_BLANES Length (km) of bike lanes  

Length of trails LEN_TRAILS Length (km) of trails  

Length of bus routes LEN_BROUTES Length (km) of bus routes  

Proximity   (Distance measures from each hub) 

Distance to McMaster DIS_MAC Distance (km) to McMaster University 

Distance to CBD DIS_CBD Distance (km) to central business district 

Distance to hub DIS_HUB Distance (km) to closest hub 

Distance to bike lanes DIS_BL Distance (km) to closest bike lanes 

Accessibility  (Measure of access to all hubs in the system) 

Population 15-64 

(linear decay) 
AcsPop Hub accessibility based on population within 200 buffers with linear decay  

Employment 15-64 

(linear decay) 
AcsEmp Hub accessibility based on employment within 200 buffers with linear decay  

Population & Employment 

15-64  

(linear decay) 

AcsPopnEmp Hub accessibility based on population and employment within 200 buffers with linear decay  



 

 

 

x
i 

Population 15-64 

(estimated decay) 
PopDecay 

Hub accessibility based on population within 200 buffers with estimated negative exponential 

distance decay  

Employment 15-64 

(estimated decay) 
EmpDecay 

Hub accessibility based on employment within 200 buffers with estimated negative exponential 

distance decay  

Population & Employment 

15-64 

(estimated decay) 

PopnEmpDecay 
Hub accessibility based on population and employment within 200 buffers with negative 

exponential estimated distance decay  
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1 Introduction 

1.1 Research Problem 

Public bike share systems provide users with short-term bike rental services with 

multiple bike hubs distributed over service areas. Over multiple evolutions since the 1960s, 

recent years have witnessed worldwide prevalence of these systems and have identified 

them as a convenient source of active transport by numerous users (Fishman, 2016). 

Initially available in only a small sample of cities across the world, bike share has now 

positioned its reputation as an alternative sustainable mode of transportation in diverse 

urban communities. As of 2016, El-Assi et al. (2017) stated that more than 800 cities 

around the globe have implemented their own public bike share system, and these systems 

are both growing (in users and fleet size) and becoming more reliable. A study by Faghih-

Imani & Eluru (2015) investigated the benefits of introducing bike shares in a city and 

revealed that having an active public bike share system encouraged individuals to become 

more environmentally conscious. Furthermore, those who make use of bike share 

contribute to building healthy cities by minimizing the impact of automobile emissions and 

reducing congestion and fuel use (Hampshire & Marla, 2012). Supporting the idea of 

launching and expanding public bike share systems universally, Shaheen and her research 

team (2013) determined the major benefits of utilizing bike share systems as follows: 

flexible mobility, health benefits, convenient access to multimodal transport connections, 

and individual financial savings. Nevertheless, insufficient analysis and investigation on 

the factors that influence the usage of bike share systems that experience a rapid expansion 

can cause setbacks and failure due to the lack of supply control (Wu & Lei, 2019). 
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With the continuous support and recognition by numerous users, public bike share 

systems have become more prevalent in many urban communities (Zhang et al., 2017). 

Accordingly, a considerable number of cities are planning or actively expanding their bike 

share systems to serve more customers (Liu et al., 2017). Furthermore, many cities have 

been investing in supportive cycling infrastructure, such as bike paths and bike lanes, while 

imposing new policies to increase the usage of bike share systems (El-Assi et al., 2017; 

Heinen et al., 2010). As a result, the volume of scientific studies on public bike share has 

also risen with the apparent increase in the demand for bike usage. It is nevertheless striking 

that, despite increasing policy and academic interest in public bike share systems, 

insufficient attention has been paid to users’ preferences in making use of a bike share as 

a primary mode of transport. For instance, many studies have established that there is a 

strong positive relationship between active travel and development of bike infrastructure 

(El-Assi et al., 2017; Ogilvie et al., 2007; Pucher et al., 2011). However, Song and her 

research team (2017) argued that the expansion of bike infrastructure alone might not 

suffice to endorse active travel, nor promote cycling as a primary mode of transportation. 

Therefore, it is essential to investigate the travel behavior of bike share users and various 

factors that attract more members to specific hubs in an effort to maximize ridership (Song 

et al., 2017). Besides the determinants of user preferences, or environment characteristics 

around a bike share hub, some researchers contended that a key to the success of a bike 

share system and further expansion is to explore the location of hubs and their relationship 

to bike share usage (Lin & Yang ,2011; Liu et al., 2017). Especially for bike share system 

expansion, a study by Liu and his colleagues (2017) discussed the importance of bike usage 



 

 3   
 

prediction for expansion areas as it can help bike share system designers approximate the 

number of new users and additional cost for a larger system. 

1.2 Research Objectives 

To contribute to current research on bike shares, this thesis uses public bike share 

system data from Hamilton, Ontario’s bike share system, Hamilton Bike Share (HBS), 

which was launched officially on March 22, 2015. The GPS (Global Positioning System) 

tracking device on each bike enables the collection of large-scale riding trajectory data, 

which allows researchers to investigate user’s travel behavior in various ways. Benefits of 

GPS-equipped bikes include, but are not limited to, a reduction of bike theft instances and 

collection of ridership (such as departures and arrivals) data at each hub and cycling routes 

across a city (Chen et al., 2020). In this research, HBS ridership data for the year 2017 

(both departure and arrival trips at hub level) were analyzed to develop predictive models 

for potential hub usage that can aid in future expansion of the system. Various environment 

factors (socio-demographics, hub attributes, built environment, and bike infrastructure 

around hubs), accessibility measures, and proximity to the nearest hub and bike lane were 

examined to understand the relationship between surrounding features near hubs and 

annual hub usage. The developed predictive models for hub usage were estimated using 

linear regression to determine the characteristics that influence ridership and attract bike 

share users in 2017. Based on the primary predictors, this study takes one step further and 

demonstrates a GIS-based approach to predict potential trips for representative candidate 

locations to inform future expansion of the public bike share system in the community. The 

results from this analysis provide a glimpse into cyclist behavior in the usage of a bike 
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share system, which provides policymakers and academic researchers with insights on the 

determinants that impact usage at specific hubs. Meanwhile, urban planners can examine 

the outcomes from this study and apply them to their communities to improve their own 

public bike share systems when predicting and planning a new location for a bicycle hub 

to maximize potential ridership.  

1.3 Thesis Outline 

There are 6 chapters comprising this thesis including this introduction. Chapter 2 

reviews recent bike literature that investigates various factors influencing the usage of a 

public bike share system, and summarizes approaches employed for bike share network 

expansion. Chapter 3 reviews the study area for context, the data sources, ridership at the 

hub level, and predictor variables. Chapter 4 discusses the research methods applied to the 

data, such as creation of multiple Ordinary Least Squares (OLS) regression models, 

selection of appropriate variables for the analysis, and the GIS-based approach for offering 

insights into system expansion. Research results are presented in Chapter 5 with predictive 

model specification and interpretation of the results. This chapter also depicts 

representative candidate sites with potential trips estimated to inform the future expansion 

of bike share system. Chapter 6 encapsulates the key findings and limitations of this thesis, 

and recommendations for future areas of research.  
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2 Background 

A number of scholars have explored recently the usage of bike share services to 

improve accessibility of urban transit. In general, those studies differ mainly in three 

aspects: temporal aggregation of demand, spatial unit of analysis (e.g., defined zones, 

dissemination areas, census blocks, or core service area), and type of bike share (e.g., 

docked or free-floating) (Guidon et al., 2020). With the availability of open data, such as 

bike hub-based data or trip level data, the impact of spatial (i.e., neighborhood) 

characteristics on bike share usage have been investigated to understand ridership at the 

hub level. By analyzing these spatial features around hubs further, it is possible to not only 

expand bike share networks in the vicinity (Zhang et al., 2017), but also predict expansion 

to a new city (Guidon et al., 2020) to serve more users. Since bike share designers across 

the world are often challenged to make a strategic decision when operating a new bike 

share service in a city or further expanding the system to new areas, some studies highlight 

the importance of knowledge about factors affecting hub usage and predicting bike demand 

accurately (Guidon et al., 2020; Liu et al., 2017; Noland et al., 2016). Conditions and 

challenges were also present in their analyses. For example, in order to investigate spatial 

characteristics, the ridership data from several days to weeks, months, seasons, or years 

must be aggregated to capture a sufficient number of observations (Guidon et al., 2020; 

Noland et al., 2016). Furthermore, historical bike transition records are not available for 

the expansion area, while bike demand at hubs tend to have huge variances across the city 

(Liu et al., 2017). Thus, this thesis reviewed assorted bike share literature that examined 

the influence of various environmental features on usage and approaches taken to 
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determine an appropriate expansion strategy for new areas. It turned out that many studies 

included similar predictor variables, indicating that their effect on hub usage can be 

compared.  

2.1 Factors Influencing Bike Share Usage 

Understanding and determining various factors that influence ridership is one of the 

most frequently examined topics in the bike share literature. As the experiences of bike 

share services in other cities have risen, there have been numerous attempts to define the 

major factors that affect service use. As an example, Heinen et al. (2010) revealed the 

primary contributing factors (built environment, natural environment, socio-economic, and 

psychological factors) by surveying previous bike literature. They described the built 

environment in three categories: urban form, infrastructure, and facilities at work; and the 

natural environment in two: landscape and weather conditions. Other contributing factors 

included socio-economic and psychological factors (attitudes, social norms, and habits), 

and other factors related to utility theory (cost, travel time, effort, and safety). However, 

Heinen et al. (2010) identified these factors by reviewing and comparing studies that used 

previous generations of bike share system where ridership data was collected either through 

human observation, or GPS trackers. Over the past decade, several studies found that the 

demand at the hub level is strongly associated with built environment characteristics near 

a hub (Daddio, 2012; El-Assi et al., 2017; Faghih-Imani et al., 2014; Hampshire & Marla, 

2012; Rixey, 2013, Scott & Ciuro, 2019; Tran et al., 2015; Wang et al., 2016; Zhang et al., 

2017). Scott & Ciuro (2019) examined the impact of various spatial variables on daily 

ridership at Hamilton, Ontario’s bike share hubs using the first year of operation data. 
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Using multilevel models developed to estimate daily trip departures and arrivals, this paper 

suggested that weather conditions (temperature and precipitation), temporal variables 

(daylight hours, weekdays, holidays and university terms), and proximity to popular 

locations (McMaster University and downtown Hamilton) were strongly associated with 

ridership. On the other hand, hub attributes within 200 m buffers of hubs were markedly 

insignificant, indicating that the built infrastructure had little to no influence on daily 

ridership. Even though population density is often considered an essential independent 

variable when locating hubs, the results from their research suggested that population does 

not affect daily departures or arrivals (Scott & Ciuro, 2019). This finding is quite unlike 

many other ridership studies, where they discovered population near hubs is statistically 

significant (Daddio, 2012; Efthymiou et al., 2012; El-Assi et al., 2017; Hampshire & Marla, 

2012; Tran et al., 2015; Zhang et al., 2017). Regarding this outcome, Scott & Ciuro (2019) 

argued that the users of the HBS system are usually regular members, such as employees 

and students in the vicinity of hubs. Because the data was collected from the Canadian 

Census, where the population is based on ‘usual place of residence’, such users may not 

have been necessarily captured in the population variable for their study. In addition, they 

revealed that the location of bike share hubs plays an important role. For instance, the 

distance effects estimated in their research suggested that daily bike share usage declined 

the farther away hubs were from popular locations, demonstrating the presence of a 

distance-decay effect (Scott & Ciuro, 2019).  

Various researchers have examined the built environment factors that affect bike 

share usage through ridership data at hub-level along using a series of multiple regression 
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models, spatial analyses, and GIS techniques (El-Assi et al., 2017; Faghih-Imani et al., 

2014; Rixey, 2013; Wang et al., 2016). For instance, a study by Rixey (2013) scrutinized 

the effects of demographic and built environment characteristics on bike share usage 

through various regression models and analyses. Using monthly aggregated 2010 – 2011 

ridership data for three operational systems in the United States (Capital Bikeshare in 

Washington, D.C.; Nice Ride MN in Minneapolis-Saint Paul, Minnesota; and Denver B-

Cycle in Denver, Colorado), they identified the following spatial variables as having 

statistically significant correlations with ridership at hub level: population and retail job 

density; bike, walk, and transit commuters; median income; education; presence of 

bikeways; non-white population; days of precipitation; and proximity to a network of other 

public bike share hubs. Rixey (2013) performed a regression analysis using the natural log 

of the number of monthly rentals by hub during the system’s first operating season as the 

dependent variable. Here, the non-white population and days of precipitation variables 

were negatively associated with ridership, whereas proximity to a greater number of other 

hubs delineated a stronger positive correlation with ridership. This result suggested that 

accessibility to a comprehensive network of bike share hubs plays an important role when 

maximizing ridership. Similarly, El-Assi et al. (2017) revealed significant effects of road 

network configuration (intersection density and spatial dispersion of stations) and bike 

infrastructure (bike lane, paths, etc.) on daily bike sharing usage. However, instead of 

taking into account the total trips that occurred at hubs, El-Assi and his research team 

estimated distributed lag models to predict trip departures, arrivals, and hub-to-hub trips in 

an effort to analyze the influence of factors on departure and arrival flows at the hub level. 
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They made use of year-round historical trip data and developed a hub pair (origin-

destination) regression model. As a result, the empirical models exhibited a negative 

association between distance and ridership, indicating that usage at each hub decreased as 

distance increased. A positive correlation was discovered between hubs located near 

university campuses, transit stations, and the downtown core area. In addition, lag models 

for trip generation and attraction to predict the trips at each hub suggested that temperature 

was positively correlated with bike share trip activity. Higher temperatures, lower humidity 

levels, and smaller amounts of ground snow showed a positive relationship with bike 

ridership (El-Assi et al., 2017). Supporting El-Assi et al. (2017)’s findings, a study by 

Faghih-Imani et al. (2014) proposed that increased bicycle flow and usage were associated 

with increased bicycle facilities near a hub and fewer intersections with major roads under 

good weather conditions. To investigate these factors postulated to affect bike share 

ridership in Montréal, Canada, minute-by-minute readings of bicycle availability at all 

BIXI public bike share hubs were collected from April to August 2012. For the ease of 

applying the developed methodology and findings to other regions, Faghih-Imani et al. 

(2014) examined the arrival and departure frequencies at the station level using a multilevel 

estimation approach via statistical modelling. The results from the models for arrival and 

departure rates were then evaluated using the data from May 2013 and found to be 

reasonably accurate to the observed rates. Although Wang et al. (2016) adopted a different 

approach (log-linear and negative binomial regression models) to identify significant 

determinants that influence ridership for the Nice Ride Minnesota bike share system in 

Minneapolis-Saint Paul, Minnesota, their research found similar results. Data for 13 
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independent variables, including indicators of economic activity (retail facilities and job 

accessibility), neighborhood socio-demographics (age, race, etc.), the built environment, 

and transportation infrastructure, were obtained from a variety of sources such as 2010 

Census. The developed log-linear and binomial regression models affirmed that the hubs 

located near campuses, the central business district (CBD), water bodies, and parks were 

highly correlated with average daily hub usage (Wang et al., 2016). However, proximity to 

other bike share hubs showed a negative association with bike usage, contradicting 

previous studies. Wang et al. (2016, p. 8) and his research team concluded that “station 

oversaturation may present a challenge for system management. Relocation, monitoring of 

station use, and re-estimation of models may provide insights into the optimal number of 

stations, which can make the overall system more efficient.” The findings from various 

studies that explored the determinants of bike share usage can potentially influence 

decision makers to upgrade active transport infrastructure or expand the system for 

potential bike hubs in new areas. 

2.2 Locating Bike Share Hubs 

With the increasing amount of literature available on public bike share systems 

around the globe, many researchers and preliminary studies argue that one of the critical 

keys to the success of such systems is the location and distribution of bike hubs (Garcia-

Palomares et al., 2012; Lin & Yang, 2011; Park & Sohn, 2017). Generally, most public 

bike share systems can easily be found in city centers or higher-density areas (Garcia-

Palomares et al., 2012). This is because the size and configuration of the city are 

fundamental indicators when implementing a new public bike share system. Once the 
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coverage area is determined, the location of hubs is examined to satisfy potential demand. 

As discussed above, factors ranging from the built environment to others related to the 

natural environment, weather, socio-demographics, psychology, and utility theory play an 

essential part in the decision to select optimal locations for bike share hubs. Faghih-Imani 

et al. (2014) suggest that the proximity between hubs should be taken into consideration 

for the convenience of users prior to choosing bike share hub locations. For instance, the 

BIXI public bike share system in Montréal deployed a hub every 250 – 300 m throughout 

the central city, allowing for easy access (Faghih-Imani et al., 2014). The same was the 

case for the Hamilton Bike Share system. Consequently, BIXI users were able to efficiently 

rent and return a bicycle at their convenience. Nevertheless, Shu et al. (2013) remarked 

that the over-coverage of hubs in one area could result in unfavorable outcomes due to the 

maintenance costs caused by the clustering of hubs in one area.  

Various methodologies have been suggested to optimize the location of hubs in bike 

share systems and analyze the spatial distribution of potential ridership. Geographic 

Information Systems (GIS) have been at the forefront of this effort as an effective support 

tool (Garcia-Palomares et al., 2012; Kabak et al., 2018; Noland et al., 2016; Park & Sohn, 

2017; Zhang et al., 2019). Many studies have sought to configure an initial bike share 

system using GIS techniques. Garcia-Palomares et al. (2012) demonstrated the benefits of 

adopting location-allocation models to a proposal for the optimal location of bike share 

hubs. Location-allocation analysis is an effective tool that identifies optimal facility 

location(s) in a way that serves the postulated usage pattern most efficiently. To calculate 

the spatial distribution of the potential demand for cycling trips, Garcia-Palomares and his 
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research team (2012) made use of two of the most used location-allocation modeling 

approaches (minimizing impedance and maximizing coverage). They examined the 

optimal location for bike share hubs, explored main characteristics near hubs, and 

measured the accessibility of each hub in the city center of Madrid, Spain. For their 

proposed method, the following statistical information was manipulated: a 2010 street 

network from the Madrid Regional Statistics Office, transport zones from a 2004 mobility 

survey, the 2010 population and number of jobs available at the building level from 

Cartociudad-National Geographical Institute, and stations and stops in the public transport 

network from 2011. When the minimize-impedance solution was selected as a location-

allocation modeling approach, they found that this approach considers spatial equity as it 

generates a relatively uniform coverage based on the distance minimized for supply and 

demand. The maximize-coverage solution suggested a more interesting outcome for their 

study region in terms of efficiency. This is because the maximize-coverage solution 

maximized the potential demand within a specific radius (200 m) from the hubs, which can 

help identify potential areas for new hubs (Garcia-Palomares et al., 2012). However, their 

use of location-allocation modeling included some drawbacks: First, the bike system they 

employed was aimed to serve the local population on workdays, indicating that recreational 

or tourist bike share systems may require a different approach. Second, the incompetency 

in capturing certain places in the city, such as large parks, that have neither population nor 

jobs and yet still attract a considerable number of trips, was advised. Although location-

allocation modeling might suffice for optimizing bike share hub locations for the initial 

configuration of a system, a significant drawback is that there is no ridership data, and 
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therefore, understanding how the system has performed is challenging. In addition, they 

might be missing out on other relevant neighborhood factors (e.g. number of bike lanes in 

the vicinity of hubs or number of racks available at each hub), which could be certainly a 

multi-criteria problem. Addressing these problems, Garcia-Palomares et al. (2012) 

suggested that employing a predictive model that considers environment factors around 

hubs is essential to determine the exact location of potential hubs for future work. 

Once a city has implemented a bike share system and the system gains in popularity 

as an increasingly convenient source of transport, the city may consider expanding the 

existing service area to surrounding regions. Expanding the bike share service not only 

broadens the original users’ capability to reach new areas but also attracts new users in the 

expanded areas. A study conducted by Noland and his colleges (2016) examined the 

determinants of bike share hub usage by estimating a series of Bayesian regression models 

of trip generation at hubs in an effort to forecast the trips generated at new hubs. Various 

factors were examined, including bike infrastructure (bike parking racks and bike routes), 

population and employment, different types of land uses (such as recreational, parking, 

residential, and other land uses), and access to other transit services. Estimates were 

developed for different months (February, July and November of 2014), weekdays and 

weekends, and type of user (members vs. non-members). The models’ results suggested 

that hubs located near busy subway stations, as well as areas with more population and 

employment, tend to predict greater usage of the system by members, while bike lanes and 

paths were associated with more non-member bike share trips. Based on the factors 

analyzed in 2014, their study attempted to forecast trip generation at new stations opened 
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in 2015. Although the inferential models provided some insights for decision makers as to 

what factors could influence the success of the system, the outcome suggested a large 

variation in predictive power, and the models did not perform well when forecasting trip 

generation at the hub level. They concluded that the main culprit for overestimating usage 

at new hubs was due to insufficient time for the newly opened hubs to grow in 2015 

(Noland et al., 2016). 

Similarly, Guidon et al. (2020) estimated and assessed linear and spatial regression 

models, along with random forests, for bike share demand and predicted usage in a different 

city (e.g., in the case of an expansion). Using booking data from bike share “Smide” in 

Zurich, Switzerland, they developed multi-factor bike predictive models to predict the 

number of bookings for Berne, Switzerland, and the predictions were validated with the 

data from Berne. The trip data was the number of bookings which consisted of origin and 

destination coordinates, and a timestamp (costs 5 CHF – the official currency of 

Switzerland – and usage is charged pro rata on a per-minute basis) for each trip. The trips 

were aggregated to a 300 m raster covering the service areas for both cities in the study 

period of 2018, and used as the dependent variables for regression analysis and random 

forests. It is important to note that the Smide was newly introduced in the city of Berne, 

and therefore, only three months-long of trip data (from October to December) were 

collected – 120,472 trips in Zurich for full year data and 2,973 in Berne for three months 

of data. The results suggested that social environment variables (population and 

employment) and recreational variables (bars and restaurants) were essential contributing 

predictors that have a direct effect on bike usage. However, centrality measures (distance 
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to the main train station and the boundary of the service area) appeared to be less affective 

and should be included if a research goal is to make predictions for the same city, but 

should be omitted if the goal is to make predictions for a different city. The models 

demonstrated a reasonable performance in non-central areas; however, the central areas 

depicted large overprediction of usage for the new city. They described the overprediction 

in central areas was due to higher number of main train station users in Zurich than Berne, 

and that Zurich is a bigger city with more social activity in the center. In essence, the service 

area covers a larger share of the market of trip distances in Zurich, which allows for longer 

trips, than in Berne. Their overprediction in a smaller service area and the smaller size of 

the city also suggested that there could be other drivers of usage that were not considered 

in their study (i.e., Berne has fewer visitors and tourists than Zurich). Another explanation 

was that since the data from Berne was from the three months after the introduction of the 

system, the number of bike users and bookings require more time to grow first. This 

explanation was also considered by Noland et al. (2016), which also overpredicted usage. 

At this point, it should be noted that not only factors affecting demand should be 

considered, but also the time component of ridership data (e.g. days, weeks, months, 

seasons, or years) at hubs should be taken into account when forecasting usage at potential 

hubs in new expansion areas. 

Overall, previous studies have identified population, employment, proximity to 

major centers (e.g. main subway station, university, museums etc.), and bike infrastructure 

as important variables to explain potential usage at hub level in the expanded areas. The 

effect of social environment variables (population and employment) was generally deemed 
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to show positive relationship with bike share usage. However, it should be noted that its 

magnitude may vary because of differences in trip purposes and user base (Scott & Ciuro, 

2019). The multi-factor bike usage prediction models developed by previous studies could 

present important indications of which predictors should be considered when estimating 

potential usage in the expansion areas. Nonetheless, the question remains whether using 

short period of data to represent considerable variation across the year and predict hub 

usage in new areas can give reliable indications for decision makers. To bridge this research 

gap, this thesis makes use of an annual bike hub usage data to explore relevant factors that 

influence ridership at hub level and create a predictive model based on actual travel 

behavior by users to identify candidate locations in a new region and inform future 

expansion of public bike share system.  

3 Data 

3.1 Study Area 

The city of Hamilton is a mid-sized Canadian city with a population of 536,917 in 

2016 (Statistics Canada, 2017). The city launched its public bike share system, Hamilton 

Bike Share, in March 2015. There were only 110 hubs across the city when Hamilton’s 

bike share was initially launched, but due to continued growth and support by numerous 

users, the bike share expanded its coverage through additional hubs. As of 2019, there were 

a total of 132 hubs and 825 bikes in operation in the service area (Hamilton Bike Share, 

2019). Considering equity for all citizen access and increase in public bike share demand 

in the city, HBS implemented the Everyone Rides Initiative (ERI) program and deployed 
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12 new hubs in 2017. The ERI program provided ERI members with not only new hubs in 

low-income areas in the city, but also cycle training sessions, language translation services 

and subsidized memberships. Figure 3.1 shows the distribution of hubs in the core service 

area, where regular1 hubs are distinguished from ERI hubs. The bike share also includes a 

small strip of service area along Van Wagner’s Beach, but was not included in the analysis 

since it is not contiguous with the core service area. The regular hubs show a relatively 

clustered pattern near major centers – namely, the central business district area and 

McMaster University, while the ERI hubs are distributed across the residential 

neighborhoods in the eastern part of the core service area. 

3.2 Dependent Variable 

 HBS bikes are GPS-equipped, meaning that the availability of bike at hubs and 

cycling routes can be identified in real time. For example, it is possible to inform users of 

the rental or parking availability at hubs (either start or end), while scholars can make use 

of this data for various geographic analysis (such as route choice analysis) (Lu et al., 2018). 

For this study, annual trip departures, arrivals, and totals were aggregated using bicycle 

data for all hubs in service from January 1, 2017, to December 31, 2017. However, as 

mentioned previously, the hubs near Lake Ontario (Van Wagner’s) were not taken into 

consideration as these hubs are not contiguous with the core service area. To obtain the 

number of trip records, a series of data processing steps was conducted with the following 

criteria: 

 
1 Term “regular” was used for non-ERI hubs and members 



 

  
 

1
8

 

 
Figure 3.1: Study area of Hamilton Bike Share, Ontario
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• Distance travelled was between 0.1 and 100 kilometers 

• Trip duration was between 1 and 480 minutes 

• Speed was between 1 and 35 kilometers per hour 

As a result, 14,096 trips with missing distances or trip durations, or extreme values of the 

above attributes were eliminated, and the total number of 385,041 trip data were collected. 

Nonetheless, when the ridership data was explored in detail, there were 101,502 trips that 

did not contain both departing/arriving hub information, or only had either information 

recorded. For instance, 16,582 trips failed to collect both departing/arriving hub 

information, 69,357 trips missed departing hub information, and 48,477 trips missed 

arriving hub information. To cope with missing data pertaining to the departures and 

arrivals, and thus totals, each trip with missing information was identified and associated 

with the nearest hub by using Euclidean distance, which calculates the shortest distance 

from one location to the other. In this process, trips without departure and/or arrival hub 

information located outside of a 100 m buffer around hubs were considered as irregularities 

and removed from further analysis. A 100 m buffer was chosen as a threshold considering 

how trip records were tightly clustered around the hubs (Figure 3.2). In this figure, a sample 

of hubs in the core service area are shown. The 100 m buffers for each of these hubs depict 

a considerable amount of trips included. Yet, it is possible to detect some trips being 

scattered across the service area – generally the departing trips being more spread out than 

arrival trips. This outcome could have been caused by a lag between activating a bike and 

acquiring a GPS signal after a user starts riding with it. Another explanation could be due 
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to transformation of GPS trajectories into actual traces that user took (Lu et al., 2018). To 

describe the distribution of total departures and arrivals that were being captured within the 

100 m distance from the center of buffers, Figure 3.3 was created. The gradual trendline of 

departure trips illustrates the necessity of a longer distance to capture the trip records 

compared to the steeper trendline of arrival trips, implying that the distribution of 

departures is more dispersed across the service area than arrivals. 

Once all the 2017 ridership data were defined with their original and destination 

hub information, this study developed nine predictive models, where three main 

combinations based on hubs and users estimated departures, arrivals, and totals for hubs 

(Table 3.1). The first main model incorporates the total number of departures, arrivals and 

totals recorded at the regular hubs by regular bike share members only (regular hubs + 

regular members). Model 2 builds upon the Model 1 by considering the ERI hubs in 

service, but limits usage to trips made by regular members only (all hubs + regular 

members). Lastly, Model 3 consists of Model 2 and sums up the hub usage by all members, 

including both regular members and ERI members (all hubs + all members). Using these 

nine predictive models, the impact of the ERI program on bike share usage and the 

influence of current ERI hub locations, as well as the usage by ERI members versus regular 

members, can be explored thoroughly. Accordingly, nine dependent variables were 

generated through a series of data processing steps. In essence, the number of departure,
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Figure 3.2: Example of total trip departures (A) and arrivals (B) within 100 m buffers around hubs in 2017 
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Figure 3.3: Cumulative proportion of total departures and arrivals captured within 100 m 

distance from center of buffers 

arrival, and total trips before and after applying appropriate data processing (e.g., ERI 

members vs. regular members or ERI hubs vs. regular hubs) was investigated for the 

development of predictive models (Table 3.1). During this procedure, there were some 

mismatches found in hub names between the 2017 ridership data and the 2019 hub GIS 

dataset obtained from the City of Hamilton’s open data portal. Since the 2019 hub dataset 

contained the updated version of the hub names, the mismatches between the two datasets 

were amended based on the 2019 hub data. For example, the hub name ‘40 Oxford’ in the 

ridership data was corrected to ‘Oxford at York’, while temporary hubs launched each year 

for one-day events (i.e., ‘Locke St Festival – Locke at Canada’ or ‘SUPERHUB’) were 

disregarded and the associated data were removed. Along with the hub name updates, this 

study made a minor change on the following hubs in the 2019 hub dataset: ‘Cootes Drive 

Dundas’ and ‘King at Millers’. This is because these hubs were replaced with a central 
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“virtual zone” where users can lock their bikes anywhere within this confined zone for free 

beginning in late 2017 (Campbell, 2017). However, considering how this arrangement was 

made in late 2017 and the number of trips made from the zone was less than 50, these two 

hubs were preserved. In other words, instead of creating a new study area to capture the 

trips that occurred in the virtual zone, the locations of Cootes Drive Dundas and King at 

Milers hubs were maintained, and 100 m buffers were used to obtain the ridership data 

around them. 

The final trip counts for the nine predictive models were obtained and are displayed 

in Table 3.1. As expected, the first main model (regular hubs + regular members) for 

departures, arrivals, and totals contained the smallest number of trips, while Model 3 (all 

hubs + all members) contained the most. In this table, it can be noticed that a different 

number of departures, arrivals, and totals were obtained depending on whether or not trips 

were associated with the ERI program (ERI hubs and members). The arrival trips for 

Models 1 and 2 show a higher number in comparison to the departure trips, whereas Model 

3 demonstrates the opposite. Explanations of such outcomes include, but are not limited to: 

(1): the GPS startup issue caused by delayed GPS signal, where the departing trips were 

recorded beyond 100 m buffers; (2) departure trips beginning at regular hubs in Model 2 

(all hubs + regular members), but completing the trips at ERI hubs; and 3) the additional 

trips taken by ERI members in Model 3 or the tendency of ERI members to park their bikes 

outside of a hub, instead of returning it to a bike rack, at their convenience by paying an 

out-of-hub penalty (Hamilton Bike Share, 2019). It is important to note that the dependent 

variables in this analysis are the natural logarithms of the number of trips per hub in 2017.
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Table 3.1: Data processing to acquire number of departures, arrivals, and totals for Models 1 to 3 

 

Model 1 

(regular hubs + regular members) 

Model 2 

(all hubs + regular members) 

Model 3 

(all hubs + all members) 

Departures Arrivals Departures Arrivals Departures Arrivals 

With 

hub 

info. 

Without 

hub info. 

With 

hub 

info. 

Without 

hub info. 

With 

hub 

info. 

Without 

hub info. 

With 

hub 

info. 

Without 

hub info. 

With 

hub 

info. 

Without 

hub info. 

With 

hub 

info. 

Without 

hub info. 

Initial trips 283,789 101,252 283,789 101,252 283,789 101,252 283,789 101,252 283,789 101,252 283,789 101,252 

Eliminated ERI 

members 
267,634 73,846 267,634 73,846 267,634 73,846 267,634 73,846 - - - - 

Eliminated ERI-

related trips that 

start at ERI hubs 

265,465 73,522 265,465 73,522 - - - - - - - - 

Eliminated ERI-

related trips that 

end at ERI hubs 

263,626 72,775 263,626 72,775 - - - - - - - - 

Eliminated trips 

located outside 

100 m buffer 

- 46,334 - 49,396 - 47,761 - 50,580 - 62,803 - 61,973 

After Name 

Update 
309,890 312,952 315,358 318,179 346,553 345,725 

Eliminated 

recreational- 

purpose trips2 

308,643 311,699 314,105 316,926 345,265 344,440 

Total departures 

& arrivals 
308,643 311,699 314,105 316,926 345,265 344,440 

Total trips 620,342 631,031 689,705 

 
2 Trips recorded in the vicinity of Van Wagner’s were not only contiguous with the core service area, but were also found to be recreational-associated 

trips by visitors (Echo, 2018).  
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The natural log transformation was selected, rather than direct use of annual ridership data, 

in order to help linearize the variables, to improve the continuity of a discrete count 

variables, and to ensure that the estimated OLS regression models to be constrained to 

positive values (Osborne, 2002; Rixey 2013). This step is essential to avoid the violation 

of the independence assumption of traditional linear regression. 

3.3 Independent Variables 

Table 3.2 summarizes the independent variables developed for this study. A 200 m 

buffer around hubs was used to capture various spatial variables in their vicinities (i.e., 

socio-demographics, hub attributes, and environment factors). Since distances between 

each hub were approximately 300 to 600 m apart, 200 m was considered adequate as the 

walking distance to the closest hub (Scott & Ciuro, 2019). Similarly, a 250 m buffer around 

each hub was used for the BIXI public bike share system in Montréal in Faghih-Imani et 

al. (2014)’s study examining the spatial determinants affecting ridership at hubs. However, 

a 250 m buffer distance was found to be excessive for Hamilton’s bike share as too many 

hubs overlapped, which can cause a problem when capturing trips and spatial variables 

within the buffer. Besides, using a 200 m buffer can minimize the number of proximate 

hubs within a buffer (Scott & Ciuro, 2019). The socio-demographic variables (population 

and employment) in this study were derived from 2016 Canadian Census data, allocated to 

appropriate land-use polygons to create refined variables for each hub, while the data for 

built environment variables were collected from the city of Hamilton’s open data portal. 
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 Social Environment 

The social environment variables used in this analysis consisted of the total 

population in residential areas and employees aged from 15 to 64 within a 200 m buffer 

from each bike share hub. In this process, this study made extensive use of ArcGIS Pro, 

which is a desktop geographic information system (GIS) software product developed by 

Esri. Considering the inadequacy of assuming population to be equally distributed 

throughout a dissemination area (DA), the lowest level of geography for census data, 

people residing in each DA were first allocated to residential areas. Subsequently, 200 m 

buffers around hubs were intersected with the residential areas to create a cross-tabulation 

of population from DAs based on the proportion of residential area inside the buffers. The 

cross-tabulation was then aggregated to the hub level. The same process was used to obtain 

the working population in each buffer, except employment areas were used instead of 

residential areas. Moreover, since the number of workers within DAs is not a standard 

census product, individual census records were aggregated by their ‘place of work’ at the 

DA level. The residential areas and employment areas were derived from Hamilton’s parcel 

data.  

 Built Environment 

Many studies investigated numerous built environment factors on bike share usage 

using ridership data at the hub level (e.g., Daddio, 2012; El-Assi et al., 2017; Faghih-Imani 

et al., 2014; Hampshire & Marla, 2012; Rixey, 2013, Tran et al., 2015; Wang et al., 2016; 

Zhang et al., 2017). In this study, the following additional variables were created to explore 

built environment factors and transportation infrastructure around hubs: the number of 
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major intersection, lengths of major roads, minor roads, bike lanes, trails and bus routes, 

the number of HSR bus stops and bus routes, and the number of hubs and racks available 

in the service area. The data to construct these variables were obtained from Hamilton’s 

open data portal. In addition, the distance from each hub to major centers (i.e., McMaster 

University and CBD), the nearest hub, and bike lanes were derived based on the Euclidian 

distance (refer to Table 3.2 for further information). 

 Accessibility 

Three different variables were created to measure each hub’s accessibility with 

respect to the rest of the system: one based on population; another, employment; and a third 

with the two combined. These accessibility measures were derived from social 

environment variables, where 200 m buffers were used around each of the HBS hubs. The 

population within the buffers was chosen to represent the number of people near the hub 

that might utilize the bike share service, while the employment within the buffers was 

chosen to represent the attractiveness of an area near a hub. In addition, a variable that 

combined the population and employment was also created and tested in the model to 

compare the results at the end. Inspired by Scott & Horner (2008), this study used two 

different functions to construct the accessibility variables. In addition to linear distance 

decay, a negative exponential distance decay impedance function was used to calculate one 

set of gravity-based accessibility measures. This method presumes that opportunities are 

complementary, and a cost is travel time or distance to the destination, which should be 

minimized and kept within a threshold (Saghapour et al., 2017; Vale et al., 2015). Gravity-
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based accessibility measures typically take the form of the following expression, 

introduced by Hansen (1959): 

𝐴𝑖 =  ∑ 𝑂𝑗𝑓(𝐶𝑖𝑗)

𝑗

 (1) 

where 𝐴𝑖 is the accessibility of place 𝑖, 𝑂𝑗 are opportunities found at place 𝑗, 𝐶𝑖𝑗 is the cost 

of traveling between 𝑖 and 𝑗, and 𝑓(𝐶𝑖𝑗) is an impedance function (also called distance 

decay function). In this study, 𝑓(𝐶𝑖𝑗) is given as exp (−β𝐶𝑖𝑗), which is an exponential 

decrease function controlled by the decay parameter β. Rather than choosing an arbitrary 

value for β, a value was calculated using the unique hub-to-hub travel distances according 

to the following model: 

 𝐼𝑘 = 𝛼 exp (−β𝑡𝑘) (2) 

where 𝐼𝑘 is the number of trips for the distance category 𝑘, and 𝑡𝑘 is the trip distance in 

100 m increments for category 𝑘. The β value computed in this model was 0.000692, as 

trip counts drastically decrease as the distance of the trip increases. By applying linear and 

estimated negative exponential distance decay functions, how spatial interaction declines 

with increasing distance can be quantitatively estimated – decrease in ridership as the 

distance to a nearby hub increases. 
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Table 3.2: Independent variables: definitions and descriptive statistics 

Variables Description Mean S.D. Min. Max. 

Social Environment (In 200 m buffer from each hub)     

Population  Number of people aged from 15 to 64 living in residential areas (×10−3)  0.45 0.40 0 2.18 

Employment  Number of employees in employment areas (×10−3)  0.64 0.92 0 4.99 

Built Environment (In 200 m buffer from each hub)     

Major intersections  Number of major intersections  0.45 0.82 0 5 

Bus stops Number of bus stops 3.91 3.82 0 25 

Bus routes Number of bus routes 3.57 5.08 0 23 

Hubs Number of hubs  1.26 0.52 1 3 

Hub racks Number of racks available at hubs 10.42 3.77 5 30 

Length of major 

roads 
Length (km) of major roads  0.43 0.34 0 1.50 

Length of minor 

roads 
Length (km) of minor roads  1.25 0.56 0 2.51 

Length of bike lanes Length (km) of bike lanes  0.47 0.34 0 1.33 

Length of trails Length (km) of trails  0.22 0.37 0 2.12 

Length of bus routes Length (km) of bus routes  1.55 2.40 0 15.11 

Proximity  (Distance measures from each hub)     

Distance to 

McMaster 
Distance (km) to McMaster University 3.84 2.12 0.15 8.44 

Distance to CBD Distance (km) to central business district 2.24 1.58 0.05 7.12 

Distance to hub Distance (km) to closest hub 0.30 0.14 0.05 1.01 

Distance to bike lanes Distance (km) to closest bike lanes 0.10 0.15 < 0.01 0.84 

Accessibility (Measure of access to all hubs in the system)     

Population 15-64 

(linear decay) 
Hub accessibility based on population within 200 buffers with linear decay (×10−3) 0.04 39.68 0 0.21 
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Employment 15-64 

(linear decay) 

Hub accessibility based on employment within 200 buffers with linear decay 

(×10−3) 
0.06 85.43 0 0.36 

Population & 

Employment 15-64  

(linear decay) 

Hub accessibility based on population and employment within 200 buffers with 

linear decay (×10−3) 
0.09 99.43 0 0.36 

Population 15-64 

(estimated decay) 

Hub accessibility based on population within 200 buffers with estimated negative 

exponential distance decay (×10−3) 
14.35 15.68 0 84.74 

Employment 15-64 

(estimated decay) 

Hub accessibility based on employment within 200 buffers with estimated negative 

exponential distance decay (×10−3) 
21.46 32.54 0 141.82 

Population & 

Employment 15-64 

(estimated decay) 

Hub accessibility based on population and employment within 200 buffers with 

negative exponential estimated distance decay (×10−3) 
35.49 38.20 0 151.76 
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4 Methodology  

4.1 Assumptions of Multiple Linear Regression 

Once all the dependent and independent variables were developed and organized, a 

series of multiple OLS regression models were estimated. For this thesis, three sets of 

predictive models were assessed. Within each set, models were estimated for trip 

departures, arrivals, and totals (departures and arrivals combined). The multiple OLS 

regression model takes the following form: 

𝑦j = 𝛽0 + 𝛽1𝑥1 + … + 𝛽n𝑥n + 𝜀  j = 1, …, J n = 1, …, N       (3) 

where 𝑦j is observed values (in this case, the number of departures, arrivals, or totals for 

hub j) for all three models, 𝛽0 is the intercept, 𝛽n are the coefficients for independent 

variables, and 𝑥n are observed independent variables for each hub. 𝜀 is a random error term 

assumed to follow a normal distribution with a mean of 0. 

 When estimating a multiple OLS regression model, several assumptions must be 

met (Osborne & Water, 2002): 

• No or little multicollinearity in the data 

• Normal distribution of residuals 

• Linearity between the independent and dependent variables 

• Homoscedasticity – freedom from extreme values 
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If any of the assumptions listed above are violated, the predictions and scientific insights 

yielded by the analysis can be biased or misleading. Hence, prior to analyzing multiple 

OLS regression models for various ridership variables, this study explored the relationship 

between the independent variables to not only detect any multicollinearity present between 

variables but also determine the variables that predict the best fit in each model. A high 

multicollinear value present between the explanatory variables can be an issue because it 

indicates that the variables are highly linearly correlated, tends to predict identical results, 

and undermines the capability of the variables to perform effectively in an OLS regression 

equation (Osborne & Water, 2002). To visualize which variables were positively or 

negatively correlated, a Pearson correlation matrix was created and is displayed in Figure 

4.1. Most of the hub environment characteristics were found to be positively correlated. 

For instance, built environment variables such as the number of bus stops and the length of 

bus routes in the 200 m buffers from bike share hubs depicted a high-level of positive 

correlation with each other. Also, as expected, all accessibility variables showed significant 

positive correlation to their initial socio-demographic variables (e.g., population and 

employment in the vicinity of hubs). For instance, accessibility variables that are associated 

with the population group, such as “Pop”, “AcsPop”, and “PopDecay” in the matrix were 

strongly inter-correlated. The same phenomenon could also be expected from the 

employment group as well. An intriguing discovery for accessibility variables that 

combined two socio-demographic variables (e.g. “AcsPopnEmp” and “PopnEmpDecay”) 

can be noted in Figure 4.1 – they show twice as strong a relationship with the original 

employment variable as the population variable. This association suggests that these 
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Figure 4.1: Pearson correlation matrix for all independent variables 
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heterogeneous accessibility variables were more likely derived from the employment 

variable, and the employment variable would have a greater influence in the regression 

analysis compared to the population variable. A negative relationship was found between 

the distance variables (to McMaster University and to the CBD) and most of the built 

environment variables as well as the accessibility variables. Specifically, the distance to 

major centers showed a strong inverse correlation with the accessibility variables. 

As mentioned previously, highly correlated input variables (whether positively or 

negatively correlated) in a regression model can be problematic due to their tendency to 

estimate the same result. To identify important features that affect ridership at hubs, 

numerous OLS regression models were estimated and compared. The first estimation 

involved social environment variables with the built environment variables only. Then, 

accessibility variables were added into the model based on commonalities in how they were 

created. For instance, population and employment with a linear distance decay function 

were estimated together, while population and employment with the negative exponential 

distance decay function were tested together in a different regression model. For the 

accessibility variables that included both population and employment, a new regression 

model was estimated to plot them separately. Identifying diverse combinations of socio-

demographic and built environment variables with accessibility variables, and estimating 

their effects on the ridership in each regression model was found to be challenging – it can 

be time-consuming and a researcher may omit a feature for the best combination of 

variables for a regression analysis. Therefore, the study employed Exploratory Factor 

Analysis (EFA) to categorize and group highly correlated variables to not only delve into 
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the multicollinearity in detail, but also identify a set of explanatory attributes that are more 

relevant and influential in regression estimations. 

 Model Specification  

Exploratory Factor Analysis is a statistical technique that analyzes the latent 

relational structure among a set of variables and reduces a large number of variables to a 

smaller set (i.e., factors). In other words, instead of having to consider many variables that 

may be trivial, EFA categorizes input variables into meaningful groupings and describe the 

variance by a few summary factors. This process enables regression algorithms to operate 

faster and more effectively as the key variables that have significant correlation can be 

determined from a more compact result (Rummel, 1970). Using five summary factors, 

namely a five-factor solution, the explanatory variables were categorized in Figure 4.2 – 

the four-factor solution under-extracted components from the dataset, while the six-factor 

solution over-extracted. By way of explanation, the numbers displayed on top of each 

arrow demonstrate how strongly the variables are associated with each factor (1 = strongly 

correlated, 0 = no correlation, -1 = inversely correlated). MR represents a summary factor, 

where a solid arrow indicates a positive relationship and a dashed arrow a negative 

relationship. It should be noted that some variables showed a reasonable relationship with 

more than one factor (e.g., the number of major intersections was associated with both 

factors 3 and 4, and the distance to CBD with factors 2 and 5), but EFA classified these 

variables into groups with stronger correlation in each factor. To justify the performance 

of EFA and reliability of its outcome, MacCallum et al. (1999, 2001) asserted that factor 

loadings should explain at least 60% of the total cumulative variance. Here, the 5-factor 
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Figure 4.2: A graphic representation of a five-factor solution for explanatory variables  
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solution suggested that approximately 65% of the total variance in the dataset was 

explained cumulatively. In Figure 4.2, the first factor (MR1) explained the most variance 

in the dataset among other factors, accounting for 20.5% of the total variance, and it 

appeared to be primarily defined by the employment-related variables. The second factor 

(MR2) explained 16.8% of the total variance, where the variables concerned with 

population had high positive loadings. Interestingly, the population-related category 

(MR2) included the length of minor roads in its group. As this variable indicates the roads 

with less traffic that tend to be established in a residential neighborhood, the longer the 

length of minor roads in the 200 m distance from a hub suggests a greater population in the 

vicinity. The proportion of variance explained by the fourth factor (MR4) was 

approximately 14%, where the majority of the built environment variables were 

categorized. Especially public transit-related variables, such as length and number of bus 

routes, and the number of bus stops within the 200 m buffer seemed to have significant 

loadings on this factor. Lastly, the proportion of the variance explained by the third and the 

fifth (MR3 and MR5, respectively) combined was less than 13%. The third factor appeared 

to organize heavy-traffic related variables, while the fifth factor classified bike 

infrastructure-related variables. A noticeable relationship between summary factors 1 

(MR1) and 4 (MR4) may propose that employees prone to make use of public transit to 

and from their workplace.  

The findings from EFA supported the results suggested by the Pearson correlation 

matrix in terms of intensity of correlation between variables. However, the EFA technique 

enabled not only the summary factors (MR1 – MR5) to classify the variables that were 



 

 38  
 

associated with each other for easier interpretation of the multicollinearity present in the 

dataset, but also regression examinations to perform efficiently by helping to identify the 

explanatory variables. Through various approaches employed to examine the independent 

variables that have significant influence on the ridership, the following variables were 

collected for robust predictive regression models: population and employment, the number 

of racks available at each hub, distance to McMaster University and CBD, and proximity 

to the nearest hub and bike lane, and length of bike lanes and bus routes within the vicinity 

of hubs. In this research, three sets of models for departure, arrival, and total trips were 

estimated using OLS regression in an effort to investigate the model’s ability to predict 

usage for different configurations of the system. In essence, Model 1 (regular hubs + 

regular members) demonstrates the behavior of HBS prior to the launch of ERI program to 

the bike share network, Model 2 (all hubs + regular members) describes the behavior of 

the regular members with additional hubs added to the existing system, and Model 3 (all 

hubs + all members) considers the complete system which explains the effect of the ERI 

program. Identifying potential locations of additional hubs at representative candidate sites 

incorporated the complete state of HBS (e.g., all hub usage by all members) as new hubs 

would be added to the existing system. Thus, Model 3 was employed as the basic building 

block to estimate potential hub usage on the east side of the core service area to inform 

future expansion of bike share system. 

4.2 Potential Location of Bike Hubs 

After the primary environment features that influence ridership in the nine 

predictive models were identified, this study explored these characteristics further to 
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predict the potential number of trips at representative candidate sites to offer insights into 

future expansion of Hamilton’s bike share system. In this study, the candidate locations 

were created on appropriate land uses by applying a continuous surface of regularly shaped 

cells, also known as a tessellation, on the area of interest. Larsen et al. (2013) also made 

use of a continuous surface, where they superimposed 300 m grid cells over the study 

region to determine the location of potential cycling infrastructures based on the number 

of cycling trips on travelled links throughout the central city of Montreal, Québec, Canada. 

Larsen and his research team’s (2013) theory behind the grid cell approach was that the 

estimated number of observed and potential bicycle trips were aggregated by each grid cell, 

which would display the total number of estimated bicycle trips passing through the grid 

cell. This way, they were able to reveal the cells that more cycling trips pass through and 

determine potential locations for future infrastructure investments (Larsen et al., 2013). In 

a like manner, this study presents a GIS-based tessellation approach (e.g., the tiling of a 

plane built with one or more geometric shapes with no overlaps or gaps) to approximate 

candidate locations of future hubs in Hamilton, where high-priority cells based on predicted 

ridership represent the areas that should be prioritized for one or more additional hubs. 

However, rather than relying on the census geographies created mainly for administrative 

purposes (such as census geographies for the Canadian Census), this study made extensive 

use of GIS and Python to develop custom geographies that more accurately fit the study 

area. Concerning the purpose of this analysis, tessellations were developed to cover the 

Hamilton beneath the escarpment. To alleviate the issues of irregularly shaped geography 

of the study area, hexagons were chosen to create evenly spaced regularly-shaped cells for 
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further observation and experiment. Although there are other geometry shapes (e.g., 

triangles, squares, or diamonds) that could be considered to comprise the tessellations, the 

following suggestions outline how hexagons may be a better fit for this analysis (Birch et 

al., 2007): 

• Hexagons can diminish sampling bias caused by edge effects of the grid shape, 

which is related to the low perimeter-to-area ratio of its shape. In other words, the 

circularity of each hexagon grid can represent curves in the irregularly shaped 

geography of the study area more naturally than squares or triangles. A circle has 

the lowest ratio among various geometries, indicating the capability of reducing 

sampling bias the best, but cannot tessellate to form a continuous grid. A hexagon 

is the most circular-shaped polygon that can form an evenly spaced grid for the 

given area of interest 

• Any point inside a hexagon is closer to the centroid of its shape than any point in 

triangles or squares using the same area. This is because of the nature of more acute 

angles of the triangle (60°) or square (90°) versus the hexagon (120°). This benefits 

the researchers who weigh the centroid of each grid significantly for various 

reasons (i.e., assigning variables and placing a representative location within a grid) 

• Hexagon grids can result in less distortion when operating across a large area due 

to the curvature of the earth compared to the geometry of a triangle or a square 

• Lastly, detecting the neighbor grid is considerably straightforward using hexagons. 
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Having a fishnet (square) grid as an example, the distance of neighbor centroids in 

the Rook’s Case (right/left/above/below) differs from the distance in the Queen’s 

Case as the diagonal neighbors are located farther away. Meanwhile, the centroid 

of each neighbor for hexagon grids is equidistant with the identical edge or length 

of contact on each side 

Considering the use of 200 m buffers to capture the surrounding features around 

each HBS hub in the previous part of this thesis, the area of an individual hexagon that 

makes up the tessellation was designed to 104,000 m2 (200 m distance from the center of 

the hexagon to a side). Once the proper scope of each cell area was computed, a centroid 

was created for each cell to represent a candidate site for a potential bike share hub. 

Subsequently, buffers with the equivalent distance as the hexagonal grid (200 m) for each 

candidate location were developed to describe the environment features. Although the 

hexagonal-shaped tessellation was only constructed to shape a continuous surface over the 

study area, this study conducted an analysis with both hexagons and equivalent 200 m 

buffers to identify potential hub locations, and to compare the results in the end (Figures 

4.4a, 4.4b). To entirely focus on the east of the core service area for bike share expansion, 

the following areas were eliminated consecutively, and the number of candidate sites was 

determined, respectively. For example, followed by the removal of water bodies present in 

the city, the unrelated geographies produced during the development of hexagon 

tessellation outside of the study area were disregarded. As a result, the number of 

candidates was reduced from 1,934 to 653. Then, the candidates on inappropriate land uses 

were identified using the land-use dataset obtained for the City of Hamilton, which was  
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Figure 4.3 (a): Candidate locations on hexagonal grids created over the potential area of 

bike share expansion for both departure and arrivals trips 

 

Figure 4.3 (b): Candidate locations on 200 m equivalent buffers created over the potential 

area of bike share expansion for both departure and arrivals trips 
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provided by the City of Hamilton Department of Planning and Economic Development, 

GIS – Planning and Analysis. The types of land uses that were relevant and sufficient to 

determine the potential location of new hubs were residential, commercial, institutional, 

and office, while the non-candidate areas included industrial, agriculture, vacant lots, open 

spaces, and miscellaneous. The number of candidate sites after selecting only appropriate 

land uses shortened to 288. Ultimately, this thesis examined the candidate sites outside of 

the active core service area to propose a potential area for future expansion of Hamilton’s 

bike share. Correspondingly, the final count of 164 candidates remained as the potential 

sites for new hubs in the study area. When exploring the visualizations of hexagonal grids 

and equivalent 200 m buffers, the hexagons formed a continuous surface throughout the 

given area (Figure 4.4 (a)), where buffers overlapped with each other (Figure 4.4 (b)). In 

fact, as previously stated, buffers in Figure 4.4 (b) demonstrate how the intersected areas 

by the edge of its shape form a hexagon-shaped geometry in the center. 

5 Results 

 Before examining and interpreting the results of the OLS regression analyses, the 

outcomes in each of the nine predictive models were found to violate some fundamental 

assumptions of regression analysis that were discussed in section 4.1. For instance, residual 

distributions depicted negative skewness (left-skewed) due to extreme outliers in the 

dataset, which can cause biased results. To cope with the outliers in the dataset for each 

predictive model, this study used Cook’s distance, a multivariate model approach that 

investigates unusual combinations of model variables (Prabhakaran, 2016). Alternatively, 

the univariate method, which searches for data points with extreme values on only one 
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variable, could be considered. However, declaring observations outliers based on just one 

variable may lead to unrealistic inferences (Prabhakaran, 2016). As one of the critical 

multivariate approaches, Cook’s distance is beneficial for this study as it computes the 

impact exerted by each observation on the predicted outcome in a given regression model 

(Jayakumar & Sulthan, 2014). Applying Cook’s distance in the 2017 hub dataset, two hubs 

(George Street and James at Vine) were removed from Model 1 (regular hubs + regular 

members) and Model 3 (all hubs + all members), while one hub (George Street) was 

removed from Model 2 (all hubs + regular members) for all ridership. Consequently, the 

distributions of residuals for all three models became normally distributed, which is one of 

the underlying assumptions for regression analysis (Figure 5.1). In fact, the hubs removed 

as outliers recorded constantly the lowermost trips in the ridership data. Figure 5.1 

illustrates the distributions of residuals before and after removing the outliers (George 

Street and James at Vine hubs) from Model 3. Instead of displaying the improvement of 

residual distributions after eliminating outliers for all nine models, departure trips from 

Model 3 were chosen for consistency. In this figure, the peaks of trendlines show a 

significant difference in terms of height and width, where the peak is more centered once 

the outlier was removed. This is an indication of model’s significant improvement in terms 

of generating a more consistent and less biased results. The linearity between the 

independent and dependent variables was confirmed once the normality of the residual 

histogram was stabilized by removing outliers from the predictive models. As another key 

assumption of regression analysis, multicollinearity between explanatory variables in  
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Figure 5.1: Distributions of residual before (top) and after (bottom) removing outliers for 

departure trips from Model 3 (all hubs + all members) 

each OLS model was explored. A high multicollinearity value causes a problem when 

interpreting the outputs from the analysis because it implies that two or more variables are 

strongly linearly related that they tend to predict the identical phenomenon. On this 

account, this study estimated various combinations of variables based on correlations to 
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not only identify the most effective factors but also assure that there were no or only 

acceptable correlation present in the models. In addition, Variance Inflation Factor (VIF) 

was also evaluated to quantitatively display the value of multicollinearity between 

predictor variables, which were confirmed under 2.5 – VIF greater than or equal to 5 is 

problematic as it can increase the variance of the regression coefficients (Kock, & Lynn, 

2012). To delve into any spatial autocorrelation in the dataset, Moran’s I spatial analysis 

was investigated for each model. This spatial analysis tests if the dataset is spatially 

clustered or randomly dispersed throughout the space by adding spatial weights into a 

regression analysis (Stieve, 2012). Although the ridership dataset appears to be relatively 

clustered due to the locations of Hamilton’s bike share hubs (which were initially deployed 

based on population density), Moran’s I analysis on residuals proposed a random 

distribution of the predicted trips, and therefore, there is no autocorrelation and spatial 

regression analysis is not required. 

5.1 Regression Model Results 

Taking the key elements for regression analysis into consideration, Tables 5.1 – 5.3 

present the results for the three sets of multiple OLS regression models for three different 

types of users and hubs. Through the nine predictive models created for different 

configurations of the system, the effect of 12 additional hubs on the existing bike share 

network was explored by Model 1 (regular hubs + regular members) and Model 2 (all hubs 
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Table 5.1: Summary statistics table for Model 1 estimation results without outliers 

               Dep. Variable: 

                   ln (trips + 1) 

 

 

Variables 

Model 1  

(regular hubs + regular members) 

A: Departures B: Arrivals C: Totals 

Coe. t statistic Coe. t statistic Coe. t statistic 

Intercept 8.218 33.973*** 8.120 31.656*** 8.866 36.602*** 

Social Environment       

Population (×10-3) 0.101 0.936 -0.111 -0.970 <0.001 0.006 

Employment (×10-3) 0.118 2.381* 0.122 2.324* 0.112 2.405* 

Built Environment       

ERI hub (dummy) - - - - - - 

Length of bike lanes (×10-3) 0.007 0.055 -0.050 -0.375 -0.017 -0.136 

Length of bus routes (×10-3) 0.015 0.762 0.015 0.692 0.015 0.744 

Hub racks 0.038 3.506*** 0.044 3.847*** 0.041 3.804*** 

Distance to McMaster (×10-3) -0.229 -7.703*** -0.176 -5.594*** -0.205 -6.897*** 

Distance to CBD (×10-3) -0.083 -1.899* -0.056 -1.210 -0.073 -1.661* 

Distance to hub (×10-3) -0.080 -0.264 -0.375 -1.171 -0.193 -0.637 

Distance to bike lanes (×10-3) -0.458 -2.933** -0.425 -2.566* -0.434 -2.772** 

Trips 308,643 311,699 620,342 

Adjusted R2 0.599 0.533 0.579 

Significance levels: ‘***’ = p < 0.0001, ‘**’ = p < 0.001, ‘*’ = p < 0.01, ‘*’ = p < 0.05, ‘ ’ = p < 1 

All coefficients and t-values are rounded up to the third decimal place.  
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Table 5.2: Summary statistics table for Model 2 estimation results without outliers 

               Dep. Variable: 

                   ln (trips + 1) 

 

 

Variables 

Model 2 

(all hubs + regular members) 

A: Departures B: Arrivals C: Totals 

Coe. t statistic Coe. t statistic Coe. t statistic 

Intercept 8.270 27.968*** 8.225 26.761*** 8.938 30.294*** 

Social Environment       

Population (×10-3) 0.112 0.923 -0.098 -0.773 0.013 0.108 

Employment (×10-3) 0.109 1.952* 0.111 1.903* 0.109 1.955* 

Built Environment       

ERI hub (dummy) -0.860 -4.521*** -0.955 -4.832*** -0.909 -4.788*** 

Length of bike lanes (×10-3) -0.171 -0.974 -0.238 -1.306 -0.201 -1.147 

Length of bus routes (×10-3) 0.010 0.461 0.010 0.436 0.010 0.465 

Hub racks 0.042 3.507*** 0.047 3.803*** 0.045 3.748*** 

Distance to McMaster (×10-3) -0.217 -7.734*** -0.175 -6.000*** -0.197 -7.048*** 

Distance to CBD (×10-3) -0.100 -2.568* -0.077 -1.917* -0.090 -2.318* 

Distance to hub (×10-3) -0.264 -0.739 -0.537 -1.445 -0.367 -1.027 

Distance to bike lanes (×10-3) -0.838 -2.134* -0.821 -2.011* -0.831 -2.120* 

Trips 314,105 316,926 631,031 

Adjusted R2 0.722 0.688 0.714 

Significance levels: ‘***’ = p < 0.0001, ‘**’ = p < 0.001, ‘*’ = p < 0.01, ‘*’ = p < 0.05, ‘ ’ = p < 1 

All coefficients and t-values are rounded up to the third decimal place 



 

 49  
 

Table 5.3: Summary statistics table for Model 3 estimation results without outliers 

               Dep. Variable: 

                   ln (trips + 1) 

 

 

Variables 

Model 3 

(all hubs + all members) 

A: Departures B: Arrivals C: Totals 

Coe. t statistics Coe. t statistics Coe. t statistics 

Intercept 8.303 32.394*** 8.242 31.144*** 8.963 35.232*** 

Social Environment       

Population (×10-3) 0.091 0.806 -0.094 -0.812 0.004 0.032 

Employment (×10-3) 0.147 2.835** 0.146 2.732** 0.146 2.832** 

Built Environment       

ERI hub (dummy) -0.833 -4.681*** -0.897 -4.881*** -0.864 -4.894*** 

Length of bike lanes (×10-3) 0.037 0.296 -0.010 -0.073 0.019 0.150 

Length of bus routes (×10-3) 0.002 0.108 0.002 0.106 0.002 0.113 

Hub racks 0.036 3.228** 0.042 3.598*** 0.039 3.515*** 

Distance to McMaster (×10-3) -0.186 -7.087*** -0.151 -5.564*** -0.170 -6.522*** 

Distance to CBD (×10-3) -0.094 -2.391* -0.073 -1.806* -0.086 -2.187* 

Distance to hub (×10-3) -0.414 -1.252 -0.700 -2.051* -0.525 -1.601 

Distance to bike lanes (×10-3) -0.422 -2.685** -0.365 -2.248* -0.389 -2.490* 

Trips 345,265 344,440 689,705 

Adjusted R2 0.738 0.707 0.732 

Significance levels: ‘***’ = p < 0.0001, ‘**’ = p < 0.001, ‘*’ = p < 0.01, ‘*’ = p < 0.05, ‘ ’ = p < 1 

All coefficients and t-values are rounded up to the third decimal place 
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+ regular members), while the introduction of the ERI program on HBS hub usage was 

examined by Model 3 (all hubs + all members). The explanatory variables, except for the 

number of racks available, were scaled by dividing by 1,000 to improve coefficient 

interpretation. Independent variables that are not listed in the tables were not considered 

for further analysis due to insignificant contribution to the models’ outcome or violation of 

key assumptions of multivariate linear regression examination. For instance, accessibility 

variables were not included in the final predictive models as these variables not only 

demonstrated a high collinearity with the social environment variables (population and 

employment), but also found less significant through EFA and regression examinations. A 

dummy variable “ERI Hub” was also created and employed in the analysis in order to 

distinguish between ERI hubs and regular hubs. Figure 5.2 illustrates how the addition of 

the ERI dummy variable further improved the distribution of the residual histogram from 

Figure 5.1, indicating that more reliable and precise regression outputs would be produced 

from the predictive models. 
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Figure 5.2: Distribution of residuals with the addition of the ERI dummy variable for 

departure trips for Model 3 

The effect of each explanatory variable in terms of predicting ridership in Tables 

5.1 – 5.3 suggests that the variables are largely consistent across the models. For example, 

the primary contributing factors, such as hub racks and distance to the McMaster campus, 

were found consistently significant, whereas population and length of bike lanes and bus 

routes in the vicinity of hubs had no impact on hub usage throughout the models. In order 

to explore the performance of each main model, the adjusted R-squared values were 

investigated. The provided adjusted R-squared values in the tables explained the capability 

of models to define the variance of the ridership (number of departures, arrivals, and total 

trips) with the given independent variables. Although multiple R-squared values for each 

model could be considered to inspect the model’s performance and consistency, the 

proposed multiple R-squared values could be misleading due to their tendencies to increase 

by addition of new variables. In contrast, an adjusted R-squared value only increases or 
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decreases depending on the validity of the new variable to the prediction of the model. 

When scrutinizing the behavior of the main predictive models with adjusted R-squared 

values, a consistent improvement in adjusted R-squared values were observed from 

approximately 60% of variance explained by Model 1 to 73% by Model 3. Considering 

consistent statistical significance of explanatory variables between the models, and 

capability of Model 3 to better explain the variance in the dataset compared to Models 2 

and 1, the remainder of the thesis interpreted the OLS regression results for Model 3 (Table 

5.3).  

 Social Environment Characteristics 

Table 5.3 exhibited contrasting results for the two socio-demographic variables 

(population and employment), where the working people aged from 15 to 64 captured 

within the 200 m buffers from each hub suggested a stronger impact on ridership than 

population. Such an outcome is a compelling result considering how population density 

was an important factor in determining initial HBS hub locations. Moreover, the 

insignificant population variable in this study differs from the findings of many other 

articles on bike share systems that suggest the critical role of population in their models to 

determine the usage at the hub level (e.g., Daddio, 2012; Efthymiou et al., 2012; El-Assi 

et al., 2017; Hampshire & Marla, 2012; Tran et al., 2015; Zhang et al., 2017). Possible 

reasons for insignificant population variable include, but are not limited to, the student 

population near McMaster University that was not accounted for through the 2016 

Canadian Census (Scott & Ciuro, 2019), and a policy that bike share members can pick up 

and drop off bikes at any location in the service area by paying an out-of-hub fee. 
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Nevertheless, the positive coefficients of the population variable imply that the number of 

departures, arrivals, and total trips tend to increase as population increases within 200 m of 

a hub. On the contrary, the significant role of employment proposes that many working 

populations can be considered as a surrogate for the attractiveness of a destination.  

 Built Environment Characteristics 

 Two bike infrastructure variables were statistically insignificant in the regression 

models – length of bus routes and length of bike lanes. However, for length of bus routes, 

its positive coefficient indicated that if there were longer bus routes in the vicinity of hubs, 

then hub usage would also increase. Another interpretation that one could take from this 

result is that some HBS users also make use of the bikes as part of a multimodal trip. With 

respect to the relationship between ridership and presence of bike lanes near hubs, 

interesting results can be drawn – length of bike lanes in the vicinity of hubs was found 

insignificant, whereas distance to nearest bike lane was found important. This suggests that 

bike share users consider the presence of bike lanes close to hubs as attractive 

characteristics, but are not concerned with the length in the neighborhood of the hubs. Yet, 

retaining these insignificant variables contributed to improvement of the model’s 

performance in general for all three models in Table 5.3. There are several predictor 

variables that were found statistically significant across Model 3 (A, B, and C): the number 

of racks available at each hub, the hub’s distance to McMaster University, and the ERI hub 

dummy variable. This indicates that regardless of the purpose of the bike usage, or whether 

a user chose to rent or return, these variables always play a significant role in influencing 

ridership at hubs. The amount of racks available at each of HBS hub could demonstrate 
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that there is a greater likelihood of finding a bike with increasing racks. Furthermore, it 

could reflect the fact that the racks were scaled to account for users’ demand – hubs with 

greater number of racks were placed in the areas of high demand. The effective relationship 

between the distance to McMaster University and ridership reveals that the university is 

both an origin and destination for trips; less trips were recorded as the distance to McMaster 

University increased. In fact, the top two hub locations with the highest trip counts were 

on McMaster University’s campus. Similarly, the ERI dummy variable created to 

distinguish between regular and ERI hubs depicted a strong negative correlation with the 

ridership in the regression analysis, indicating that ERI hubs attract fewer trips compared 

to the regular hubs. This could explain the early state and progression of new hubs (Model 

2) and the system (Model 3) to the existing bike share network (Model 1). The variables 

that showed a reasonably strong impact in the regression examination for Model 3 were 

the distance to CBD and the nearest hub. The influence of the distance to CBD variable on 

bike usage was also found to be influential in Scott & Ciuro (2019)’s findings, where they 

found that the number of daily trips recorded at each hub in 2015 decreased as the distance 

from CBD increased. In table 5.3, this variable displayed a more significant importance in 

Model 3 A (departure trips) than B (arrival trips), which could suggest that bike share users 

tend to have CBD as a departure point. In contrast, the distance to the nearest hub was 

insignificant across the models except for in model B. However, its small impact on arrival 

trips proposes that bike users’ concern with the distance between the hubs when returning 

the bikes after use. This relationship may be linked to the outcome of the rack availability, 

where a stronger influence was found for arrival trips compared to departures in Table 5.3, 
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because users would desire to be able to return their bikes successfully without having to 

travel to a different hub location as the hub is out of space for parking. 

In terms of improvement of the models’ performance, the importance of applying 

the log-transformation on dependent variables can be addressed and quantitatively justified 

by comparing the predicted values from regression models and the actual number of trips 

taken at each hub. This is because a model may under- or over-estimate the outcome and 

cause an irrational result without the log-transformation. Taking departure trips from 

Model 3 for instance, the minimum value for the estimated predicted trips before the log-

transformation applied was a negative value (approximately -449 trips), which is 

unreasonable for the trip counts at hubs. On the other hand, when the natural logarithm 

transformation was applied on ridership, positive minimum and maximum predicted values 

were obtained (approximately 233 and 10,103 trips, respectively). The average difference 

between the number of actual trips and predicted trips was around 200, which would be 

acceptable considering the total number of departure trips was nearly 350,000. 

5.2 Predicting Usage for Potential Hub Expansion 

Using the regression results for Model 3 (all hubs + all members), this research 

estimated potential trips at 164 candidate locations to inform future expansion of the public 

bike share system in Hamilton. Model 3 was chosen for this analysis because the new 

expanded system would be based on the behavior of the complete state of the existing bike 

share network. However, as the negative coefficients of the ERI dummy variable suggested 

the negative impact of the early progression of new hubs, potential hubs in the expanded 
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area could also experience less ridership until they become familiar as regular hubs. Taking 

this outcome from regression analyses for predictive models into account, this study 

considered a best-case scenario where the outcome reflects usage after some time has 

passed. In other words, newly added hubs in the expanded areas were evaluated as regular 

hubs and the bike share network would be expanded the same way the initial HBS was 

originally set up. Accordingly, there were some changes conducted to several variables for 

further analysis. For instance, a value of zero was given to ERI dummy variables because 

the potential hubs would behave as regular hubs, meaning that the hubs do not need to be 

distinguished considering the equity of citizens in the city nor target low-income 

populations. Furthermore, the policy sensitive variables that also required adjustments 

were the availability of the number of racks at each hub and the closest distance measured 

between hubs within the core service area. To assign a reasonable number of racks to each 

candidate, the mean value of hubs across the service area was computed and a constant 

value of ten was obtained. This is because HBS hubs have a diverse number of accessible 

racks dependent on their size (e.g., a hub with a greater demand for bikes expects a higher 

number of racks). Lastly, instead of measuring distances from a hub to the nearest existing 

hub in the core service area, a distance from a candidate to the nearest candidate site was 

calculated to demonstrate predictive ability of the models for expansion of the system. 

Initially, this variable was created to describe that the farther away from a hub in the 

existing system, there are fewer trips predicted for that hub. However, as this study aims 

for the gradual expansion of the system eastward, the distance between candidate locations 

was investigated. In order to analyze a reasonable distance between the candidates, the 
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initial configuration of HBS, in the range of 300 – 600 m between hubs (Scott & Ciuro, 

2019), was taken into consideration. Respectively, the shortest distance between candidates 

measured 341 m, the longest distance was 729 m, and the mean was 354 m. In fact, a 

constant distance of 347 m was obtained between the top ten candidate locations, which 

supports the idea of acknowledging the initial configuration of HBS in this research.  

 Potential ridership was computed at representative candidate sites using the two 

different custom geographies (hexagons and equivalent 200 m buffers). Despite the fact 

that the centroids of the continuous surface were used to create the 200 m equivalent buffers 

for the given area of interest, this study assessed potential trips for both approaches to 

compare the results at the end. Here, the explanatory variables adopted in Model 3 (all hubs 

+ all members), as well as the appropriate policy sensitive variables described above, were 

calculated for both approaches. Consequently, intriguing results were derived, where 

paired t-tests suggested that the mean of the differences between the two approaches was 

around three for departure trips (p < 0.0001) and one for arrival trips (p < 0.0001). 

Furthermore, the top ten candidate sites identified by both custom geographies were 

practically the same – only differences were the order of the ranks for both models, and the 

last candidate for departure trips (Table 5.4). 
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Table 5.4: Comparison of potential departure and arrival trips estimated by hexagons and buffers at top ten candidate sites 

Rank 

Trips by Hexagons Trips by Buffers 

Grid ID Departures Grid ID Arrivals Grid ID Departures Grid ID Arrivals 

1 AR-23 660 AQ-27 807 AR-23 670 AR-25 802 

2 AQ-27 656 AQ-26 807 AQ-27 663 AQ-26 802 

3 AQ-26 648 AR-25 804 AQ-26 656 AQ-27 802 

4 AR-24 635 AR-23 803 AR-24 646 AR-23 801 

5 AR-25 633 AR-24 801 AR-25 641 AR-24 795 

6 AS-23 626 AR-26 785 AS-23 634 AR-26 784 

7 AQ-25 620 AQ-25 782 AQ-25 625 AQ-25 779 

8 AR-26 609 AS-23 769 AR-26 615 AS-22 769 

9 AS-24 598 AS-22 766 AS-24 605 AS-23 766 

10 AT-24 578 AS-24 754 AS-22 585 AS-24 751 

Note. Grid ID = the unique identification codes for the top ten candidate sites provided when the hexagonal tessellations were created 
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 When examining the rounded departure and arrival trips in Table 5.4, a constant 

decrease in potential ridership from the first candidate site to the last can be observed. 

However, the departure model shows a smaller number of trips estimated in general than 

the arrivals, which could have been caused by the stronger effects of distance to McMaster 

University and the CBD for the departure model. For departures, there were eight candidate 

sites with over 600 trips predicted in the east side of the core service area. The 9th and 10th 

candidates were found slightly farther away from the core service area with less than 600 

trips estimated. Similarly, the arrival model predicted over 800 trips for the first five 

candidate sites, followed by 750+ trips for the subsequent ranks. Nevertheless, the results 

for both models suggested that the candidate sites located further away from the core 

service area had a fewer number of usages computed. Considering the redundancy of 

adopting the 200 m equivalent buffer approach and the advantages of using hexagonal grids 

(e.g., the tessellation approximates the area around the grids as a potential location for a 

new hub), this study used the tessellation technique to illustrate the candidate sites of 

potential hubs for future expansion of the bike share system in the city (Figure 5.3 (a) & 

(b)).   
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Figure 5.3 (a): Top ten candidate locations for departure model
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Figure 5.3 (b): Top ten candidate locations for arrival model 
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6 Conclusion 

6.1 Summary of Findings  

This thesis used annually aggregated bike share GPS data to explore the 

determinants that have an impact on users’ bike share usage at hub level and estimated 

potential trips at representative candidate sites to inform the future expansion of the public 

bike share system in Hamilton, Ontario. Annual trip departures, arrivals, and totals were 

aggregated using HBS bicycle data for all hubs in the core service area from January 1, 

2017, to December 31, 2017. By estimating diverse combinations of regression models 

along with EFA for the given dataset, the relationship between ridership and assorted 

variables were examined to create predictive bicycle usage models. Three sets of main 

predictive linear regression models were developed for three different scenarios depending 

on the type of hubs and members to investigate the model’s ability to predict ERI usage for 

different configurations of the system – Model 1 (regular hub + regular members) 

incorporated the total ridership counted at each regular hub by regular members; Model 2 

(all hubs + regular members) built upon Model 1 by incorporating the ERI hubs in service, 

but usage by only regular members was considered; and lastly; Model 3 (all hubs + regular 

members) consisted of Model 2 with the hub usage by all members (both regular and ERI 

members). Through the nine predictive models, it was possible to analyze the impact of 

various factors on ridership for the existing hubs in the core service area, while the effect 

of the ERI program was discerned. In essence, Model 1 demonstrates the behavior of HBS 

prior to the launch of ERI program to the bike share network, Model 2 describes the 

behavior of the regular members with additional hubs in the existing system, and Model 3 
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considers the complete system which explains the effect of ERI program. To understand 

the primary environment factors that influence the ridership, numerous environment 

variables (socio-demographic, built environment, and accessibility) within a 200 m buffer 

from a hub were explored based on the purpose of trips - starting, ending, or both combined. 

As a result, unlike the findings of many other bike share studies that suggest population 

density variable as a significant variable (e.g., Daddio, 2012; Efthymiou et al., 2012; El-

Assi et al., 2017; Hampshire & Marla, 2012; Tran et al., 2015; Zhang et al., 2017), it did 

not play a significant role in influencing the hub usage in this study. Instead, the following 

three variables were found to be consistently significant throughout the models: number of 

racks available at a hub and distance to McMaster University (ERI hub dummy variable 

was found significant in Models 2 and 3). The positive relationship between the number of 

racks and the hub usage indicated that the availability of the bikes does have a notable 

impact on the decision of an individual to select a specific hub - a greater number of racks 

implies the likelihood of greater bike availability. It should be noted that racks at hubs were 

scaled to accommodate demand in the areas. The negative coefficient between the distance 

to McMaster University and ridership demonstrates that being far away from the campus 

negatively influences usage at a hub, suggesting the importance of the university in 

attracting and generating trips. In fact, the top two hub locations with the most trips 

recorded were on the McMaster campus. The negatively correlated ERI dummy variable 

implied that there were less departing and attracting trips at ERI hubs compared to the 

regular hubs. This dummy variable could also demonstrate the early state and progression 

of new hubs (Model 2) and the system (Model 3) to the existing bike share network (Model 
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1). Interestingly, an environment characteristic that showed a strong relationship with 

departure trips across the models was distance to the CBD. For example, this variable was 

significant for Models 1A, 2A, and 3A, which indicates that hub usage increases close to a 

major source of activity. The distance to the closest bike lane measured was found effective 

throughout the predictive models, especially for 1A, 1C, and 3A, while employment 

variable was found significant in Models 1 and 3 (A, B, and C). With regards to the strong 

impact of distance to nearest bike lane on bike usage, one could conclude that bike share 

users consider the presence of bike lanes near hubs as a significant feature that influence 

the hub usage. The working population variable was only slightly effective in Models 1 

and 3, which explains the high number of employees starting or ending their trips near the 

regular hubs, and how the presence of the ERI hubs did not have a large impact on their 

usage. When the performance of each of the three models was reviewed for departures, 

arrivals and totals, Model 3 was found to predict the best fit for ridership followed by 

Model 2 and Model 1 by observing adjusted R-squared values.  

Considering the fact that the expansion of HBS takes into account the complete 

state of the existing bike share network, the number of potential trips at 164 candidate sites 

were predicted using the Model 3 regression equation. When adopting and calculating the 

predictor variables used in Model 3 for the custom geographies to predict the potential trips 

at representative candidate sites, some variables were explored in detail and modified to 

demonstrate predictive ability of the models for expansion of the system. In this process, 

an important assumption was constructed, where the potential hubs in the expanded area 

were presumed to behave as regular hubs in the existing service area that bike users are 
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familiar with the new hubs. This is due to the fact that the strong negative relationship of 

the ERI dummy with the ridership suggests the negative impact of the early progression of 

new hubs, and that potential hubs in the expanded area could also experience less ridership 

until they become familiar as regular hubs. Accordingly, a value of zero was set for the 

ERI dummy variable and ten (mean value of racks at HBS hubs) for the number of racks 

available. Instead of using the distance to nearest hub variable, this research measured the 

distances between candidate sites by reflecting the initial configuration of HBS where the 

distance between hubs were in range of 300 – 600 m. Subsequently, the top ten closest 

candidate locations were found approximately 347 m apart from each other, supporting the 

idea of concerning the initial network of HBS. As the number of potential ridership were 

estimated using custom geographies (hexagonal tessellations and 200 m equivalent 

buffers), the outcome produced by the buffer approach was found superfluous, and thus, 

this study proceeded the analysis using the tessellation technique only. Through a series of 

estimation and evaluation, the top ten potential sites for additional hubs and the expansion 

of the ground coverage were placed by the east side of the core service area, where the 

potential hubs located further away had a fewer number of usage computed. 

6.2 Limitations and Future Research 

Despite the important findings from a series of regression models, the investigation 

included several limitations when exploring the relationship between bike hub usage and 

surrounding characteristics for the existing hubs in the core service area. For instance, the 

total variance explained by each variable in the regression examinations (approximately 

60% for Model 1, 70% for Model 2, and 73% for Model 3) was adequate to demonstrate 
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its consistency as a trip prediction model, but future work could consider employing new 

variables to improve the model’s performance further. With regards to the explanatory 

variables created in the vicinity of HBS hubs, one could argue that socio-demographic 

variables should have taken the different age groups into consideration. In other words, 

hypothetically, if a population variable is mainly composed of age groups that are less 

likely to use bike share in contrast to the age groups that are more likely to use them, the 

significance of the variable as well as the behavior of the models could have produced 

different results. However, Winters and her research team (2019) stated that only a nuanced 

difference was found in terms of bike usage by different age groups from 16 to 34 and 35 

to 54 in Vancouver, Canada. In addition, the variables that were altered for the candidate 

sites in the expanded areas were policy sensitive, indicating that other researchers could 

conduct an experiment with different number of racks or distance between the candidate 

sites to observe if they produce better prediction. However, the strength of these effect 

could be incomparable since every study is different in design of their research in terms of 

modeling approach, data collection and aggregation, and predictor variables.  

A potential improvement one can propose includes applying a different form of 

transformation, instead of a natural log transformation on the dependent variables, which 

might be more suitable for the given dataset as well as the area of study. Another direction 

that future work could consider is determining the potential location of bike share hubs at 

a different zone level. Compared to the method that manipulates the geographies of the 

area of interest, and investigates the surrounding environments of each candidate site, the 

street network representing the centerline of the street can be analyzed for more expansive 
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examination. Among diverse types of roads, those that are classified as major roads in the 

city can be taken into account, even though candidate sites nearby highways might be 

improper as a potential hub due to limited environment features that could attract bike 

users. Limitations also persist when utilizing the multi-factor usage prediction models for 

the existing core service area to predict potential hub usage in the expanded areas. This 

implies that the behavior in the new region would equate and react uniformly as the 

behavior in the existing area, which could bring large prediction error (Liu et al., 2017). 

Furthermore, there might be other important attracters affecting the hub usage, which could 

not be considered in this study. Examples include hotspots of social activity (e.g., 

commercial areas in downtown Stoney Creek) that cannot be easily identified and obtained 

from open-data sources. Ultimately, it should be noted that this project deliberated the 

results of various analyses in the context of one bike share system with an annual hub usage 

data. Considering other studies are concerned with modeling shorter time frames (e.g., 

daily or monthly), the year data used for this study differs by the time frame and presents 

important and significant results. Future research can take a step further by incorporating 

multiple years of operational GPS data to validate the findings of incremental growth over 

time, or compare predictions with different cities to compare the impact of environment 

characteristics on ridership and the location of potential bike hubs to promote sustainable 

public transportation. 
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