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Abstract 

This thesis presents a study of feature engineering and supervised models on infant 

general movements. General movements are purposeless movements produced by infants 

that can be used by clinicians to evaluate an infant’s developmental health. Given a 

database of healthy infant movement recordings, we train both supervised models and 

clustering algorithms to gain clinical insight into the data. First, a large set of time domain 

and frequency domain features are calculated to extract clinically meaningful features from 

the raw movement data. The infants’ data were split into different age groups based on the 

range of age, with the age group being used as the training label. Then various supervised 

models were trained on age group labels to predict the age group of an infant given their 

movement features. Using appropriate validation schemes, the supervised models attained 

good sensitivity and specificity on out-of-sample subjects, but also reflected large 

physiological variance by showing overlap between the age groups. Finally various future 

directions are presented most important of which is applying clustering algorithms with 

some preliminary results showing interesting clusters of infants. Overall these results show 

how healthy infants in the early months of life move, and are conducive to further studies 

that can quantify at-risk infant development relative to healthy infants. 
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Chapter 1 

Introduction 

1.1 Background 

General movements (GMs) are defined as purposeless movements that infants produce 

using all their limbs and with no particular pattern (Hadders-Algra., 2004). These 

movements can be observed at birth and throughout the first weeks of life up to around 4 

months of age, when a baby is laid on their back with their limbs unconstrained. GMs are 

produced from the time of birth up to around the age of 5 months, after which movements 

start becoming goal-oriented. Despite the fact that GMs are seemingly random, close 

evaluation of GMs by trained clinicians can lead to insight into the infant’s brain 

development and health (Einspieler and Prechtl 2005; Hadders-Algra., 2007). A connection 

was established linking neural development with spontaneous movement outbursts and so 

GMs can be thought of as a window into the real-time development of the infant’s nervous 

system (Feller., 1999). This led to the conclusion that the evaluation of GMs can be a 
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powerful, non-invasive, and quick diagnostic tool of the developing nervous system 

(Prechtl,. 1990).  

A particular application of GM diagnosis is the ability to, from very early on in the child’s 

life, predict later developmental disorders (Prechtl., 1990). Specifically GM diagnoses has 

been applied to the prediction of cerebral palsy (CP) and a strong correlation has been 

established to show abnormal GMs predict cerebral palsy with high sensitivity and 

specificity (Prechtl et al., 1997; Bosanquet et al., 2013). GM diagnosis is also being applied 

for prediction of developmental cognitive delays (Kanemaru et al., 2013).  

The diagnosis of cerebral palsy and other developmental disorders is generally difficult to 

establish from an early point in a child’s life. Traditional diagnosis are established around 

2-5 years of age depending on the condition and severity level (Cans., 2000). Late 

diagnoses miss a crucial window of time in which interventional therapies should have been 

applied. It has been shown that the earlier the therapy, the better the outcome (Liang et al., 

2014; Hebbeler et al., 2007). On the other hand, GM diagnosis can be applied very early 

on to at-risk infants at ages 1-4 months. The benefit of this is of course to give an indicator 

of whether or not the infant will require interventional therapy. Such early intervention has 

been shown to yield positive results in comparison to developmentally delayed children 

who have not had a specialized intervention (Blauw-Hospers et al., 2007). However despite 

the benefits, the diagnosis of GMs requires a clinician to have many years of training, and 

the diagnosis can be subjective. Currently GM diagnosis are carried out by taking a video 

of a baby and then sending it to a GM clinic where trained experts will diagnose the infant 
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in the video. In order to ensure wider implementation of this diagnosis, an automated 

diagnosis via a machine learning approach is a promising route to take.  

As with any machine learning model, we have to understand the data and what features 

should be looked at that are also clinically relevant. There is vast literature about the 

qualities and classification of GMs that are of interest to a clinician. GM patterns vary from 

infant to infant, however, qualitatively there are specific ways to categorize GMs. Some 

repeated keywords across the literature are the complexity, variability, and fluency of the 

GMs (Taga et al., 1999; Hadders-Algra., 2014). As Hadders-Algra describes in her 2014 

paper, complexity is “the spatial variation of the movements”, variability is “the temporal 

variation of the movements. It means that across time, the infant produces continuously 

new movement patterns” and fluency is essentially a measure of smoothness of translations 

and rotations while changing direction. As infants age in the first 3 months, their movement 

complexity, fluency, and variability, rapidly develop. 

A machine learning model capable of classifying GMs according to these named qualities 

would be clinically useful due to its interpretability and portability. Not only that, but 

analyzing the GMs with machine learning tools that extract clinically relevant features may 

lead to new physiological insight and reveal subtle movement signatures that were 

previously unnoticeable by a human observer. 
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1.2 Problem Statement 

In this thesis however, we focus on the slightly different problem, of classifying age groups 

given movement data features. Typically pathological movement patterns show that older 

infants are lagging behind their general age group, and so by building models that can 

correctly classify or group healthy infants, we can measure deviation from this “healthy” 

developmental trajectory. Further, we can use such models to isolate which features of 

movement are most discriminative of healthy development.  

Studies show that the qualitative aspects of GMs change rapidly during the first few months 

of life and there are transitional periods where things generally change. Einspieler and 

Prechtl (2005) review the taxonomy of GMs for both normal and abnormal GMs as: 

Age Group Type of GM 

< 8 Weeks Old Writhing movements: Typically elliptical movement of the 

limbs.  

> 8 Weeks Old Fidgety movements: small circular movements of small 

amplitudes of the limbs. Increased movement fluency. 

Table 1.1 Taxonomy of GMs for each approximate age group (Einspieler and Prechtl 

2005) 

 

As with most human related experiments, gathering large quantities of good data is difficult. 

This difficulty is further increased when dealing with infants as young as 2 – 16 weeks old. 

In this problem setting, we have gathered a database of general movements recorded from 
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49 healthy infants and therefore we focus solely on healthy infant movement classification 

and clustering. The task is to train various machine learning models on movement features 

that will allow us to quantify how healthy infants move with respect to an age group. Our 

hypothesis is that, different age groups have different defining characteristics and by using 

movement features we can predict which age group an infant falls into with significant 

accuracy. 

However, a priori we also expect there to be a lot of overlap between the different age 

groups due to the large variance that naturally exists in physiological data. And so in reality 

the problem becomes less of a strict classification problem, and more of a clustering 

problem with noisy labels, which is also referred to as semi-supervised learning. Further, 

not all features will show the general trends that exist in each age group. Naturally some 

features will not discriminate between major age group movement trends and will only 

contribute noise, and therefore confound any interesting results. And so along with a 

clustering task we will also need a feature selection or dimensionality reduction that can 

highlight which feature set best shows clear clustering of different age group movement 

characteristics. As discussed in the introduction, clinicians typically score three measures 

or factors of infant movements, which are complexity, fluency, and variability. A useful 

feature reduction algorithm should project our feature space on these three factors to give 

us better interpretability. 
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To reiterate, the tasks are three fold: 

 Feature engineering of interpretable features that reflect aspects of complexity, 

fluency, and variability of GMs 

 Supervised classification of infant movement features into the given age group 

with different levels of detail in age prediction 

 

1.3 Summary of Thesis Contributions 

This thesis studies the applicability of supervised and semi-supervised models on infant 

movement data. Here we point out the major contributions of this thesis. 

1.3.1 Movement data features 

As interpretability is a big focus for useful clinical models, interpretable features are 

calculated and extracted from the infant kinematic data. The features were chosen to reflect 

some aspect of complexity, fluency, and variability, which are standard clinical measures. 

Some novel features are proposed that give the classifiers higher accuracy than more 

traditional choices of features such as velocity statistics. 
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1.3.2 Supervised classifiers 

Two standard classifiers are trained and tuned with a big focus on accurate estimation of 

generalization error. The first is a support vector machine (SVM) model with a linear kernel 

that linearly separates the data demonstrating that the classes are linearly separable to a 

significant degree, with some overlap existing between classes in feature space. The second 

classifier trained is a random forest (RF) classifier that has a non-linear decision boundary. 

The SVM and RF classifiers both showed good accuracy but with different sensitivities and 

specificity on the class errors. The classifiers also give feature weights that showed which 

features best affected the classifiers’ decision to discern between age groups. 

1.3.3 Discussion of future directions  

A Mixture of Factor Analyzers (MFA) model, was used to apply simultaneous 

dimensionality reduction and clustering with only 30% of labels provided. 70% of age 

group labels were purposely withheld from the algorithm to cluster the data because of the 

displayed overlap with the classifiers of the previous section. Though there is a big caveat 

in that our data samples multiple points from the same infant which skews statistical models 

such as the mixture models used here. Nevertheless some interesting clustering is shown 

that indicates that more sophisticated clustering algorithms can reveal age related structure 

within the data.  
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1.4 Organization of the Thesis 

First the experimental design is discussed to ground the thesis data and analysis, such as 

what the data is and how it was acquired, processed, and segmented into the final data table. 

Then a literature review of classification of infant kinematics is presented that involves 

various applications such as diagnosing pathologies and classification of age groups, the 

latter being the specific topic of this thesis. Then features of movement data are discussed 

along with their modelling capability of movement complexity, fluency, and variability. 

After that, the classification section is presented and finally the conclusion and future 

directions of this research is discussed briefly. 
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Chapter 2 

Literature Review 

In this section we go over some of the literature that utilizes machine learning on various 

tasks that involve infant kinematics. Though only one of the studies deals directly with the 

specific task of age group separation, we use the other studies to build an intuition of which 

features are appropriate and what aspects of movements are interesting. 

2.1 Classification of Infant Kinematics 

2.1.1 Classifying infants based on abnormal GMs 

In 2015 a paper was published reviewing various analysis techniques being applied to GM 

evaluation (Marcroft et al., 2015). This paper showed the approach of 12 groups from 

around the world. The various approaches were categorized according to the data. Some 

groups extracted GM features from video data by looking at things like optical flow 

(indirect sensing) whereas others used some form of motion tracking devices to directly 

measure the GMs (accelerometers, magnetic tracking system, and etc.). The groups with 
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direct measurements are of particular interest to this thesis due to the similarity in recorded 

data type.  

Gravem et al. (2012) had data acquired from an accelerometer. Their data was acquired 

from 10 infants, 6 who were later diagnosed with cerebral palsy and 4 healthy babies. They 

extracted statistical features like mean, standard deviation, min, and max of the 

accelerometer recorded values. They used a combination of SVM and DBN to classify their 

results. While they were able to see some form of clustering between healthy and 

pathological data, due to their small sample size it is difficult to generalize the results.  

Kanemaru et al. (2013) had a significantly larger sample size of 145 infants of which 16 

were later diagnosed with cerebral palsy and 129 healthy infants. Their data were recorded 

from reflective markers placed on a baby and position extracted from a video recording. 

The main features for their analysis were what they termed “jerk index” (3rd derivative of 

position), the kurtosis and skewness of acceleration, and correlation between limb 

velocities (Kanemaru et al., 2013). The jerk index is a measure of how smoothly the baby 

accelerated. Kurtosis and skewness of acceleration help to characterize the smoothness of 

the acceleration of the movements. In Karch et al. (2012) in which they come up with a 

mathematical model to measure “stereotypy”. Stereotypy is defined as the repetition of 

movement patterns (Karch et al., 2012). This is similar to the correlation measure used by 

Kanemaru et al. (2013) however they measured a cross-correlation of the entire time 

recording. The model used by Karch et al. (2012) employs a Dynamic Time Warping 

approach where they compare movement segments against one another. Their results 
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indicated that with at-risk infants, their stereotypy scores are higher than the apparently 

healthy infants.  

The findings of these are papers are very much in agreement with the qualitative 

descriptions established about normal and abnormal GM movements shown by Prechtl 

(1990) and others (Disselhorst-Klug et al., 2012). These findings also agree with some 

aspects of what Halders-Algra (2014) discussed about complexity, variation, and fluency 

of GMs, as explained in section 1.1 in the thesis.  

2.1.2 Classifying infants based on age groups 

The above studies dealt with the task of classifying GMs into healthy and pathological 

movements and they showed through features such as limb movement correlation and 

acceleration statistics this can be done. However the focus of this thesis is on classification 

into different age groups. The greater goal is gaining insight into how do GMs change over 

the first few months of life for a not-at-risk infant (i.e. healthy infant). Being able to 

correctly classify the approximate age group an infant falls into, leads us to identify which 

movement features best discriminate between the age groups and thus gain insight into the 

healthy developmental trajectory based on the discriminative features. 

In Kato et al. (2014), they investigate environment-based behavior changes for GMs of 

infants who were in a slightly older age group range than ours. Their task was to determine 

if the older infants (~4 months of age) produced more complex movements compared with 

the younger infants (~3 months of age) during a play period with a toy. Data was recorded 

before play and during play. Arm and leg movements were recorded which were converted 



 

 

MASc. Thesis – Omar Nassif;                McMaster - Electrical and Computer Engineering 

12 

into movement features such as statistics of amplitude and direction of velocity, as well as 

entropy of position. Their findings showed that the younger infants increased the amount 

of movement during play, but did not change their movement patterns. The older infants 

first changed their movement patterns during the play period and then increased the amount 

of movement. While the paper showed that there was no significant difference in movement 

patterns based on the entropy of position, their study differs from ours in that the age range 

was above ours, and in that they studied purposeful movements by introducing a toy into 

the experiment while our study focuses on purposeless movements. 

Finally Disselhorst-Klug et al. (2012) attempt to directly model aspects of GMs 

mathematically that correspond to qualitative features that are manually assessed by 

clinicians. They focus on normal babies in the same age range as us (2 weeks old to 16 

weeks old), and measure feature changes across age finding that many features were 

reflective of the infant being in a different developmental stage in early life with statistical 

significance. Though they note in their paper that none of the introduced features were able 

to express movement complexity and variability, nevertheless their features did show 

changes across the first few months of life for their healthy subjects. 

The paper by Disselhorst-Klug et al. (2012) is the closest paper in terms of objective as it 

attempts to model qualitative aspects of GMs mathematically and to show how the changes 

of these feature measurements correlates with clinical knowledge of how GMs evolve as 

the infant ages. However, as the authors state, more sophisticated features were required 

that encompass complexity, variability and fluency of GMs in order to get the full picture. 

Their analysis was also limited to running an ANOVA on the different age groups to check 
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for statistical significance, however, in this thesis we will take this a step further to try to 

predict age group from the movement feature values themselves. 

2.2 Commonly Used Features 

Going over the papers above, we compile a list of features that are potentially useful for 

age group discrimination: 

Feature Feature Description 

Statistics of Velocity Mean, STD, Min, Max, Skewness of Velocity of 

arms and legs individually 

Statistics of 

Acceleration 

Mean, STD, Min, Max, Skewness of Acceleration of 

arms and legs individually 

Stereotypy Score Dynamic Time Warp to measure similarity of limb 

movements to one another  

Positional Entropy Dispersion of the probability of finding the limb in a 

some defined location during recording 

 

Jerk 

Jerk is used to model ‘movement fluency’ by taking 

the time integral of the 3rd derivative of movement 

normalized by movement duration 

Cross-correlation 

between limbs 

Correlation between arms and legs with all 

combinations in between 

 

Table 2.1 Time-domain Features of Infant Movements 
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Most studies that looked at classification of normal and abnormal GMs looked at 

acceleration statistics (Marcroft et al., 2015). However, these feature values can be easily 

influenced by infant size if not normalized for correctly, and as we are looking to classify 

age, features which are affected by infant size are trivially correlated with age group. 

Further, for studies which measure position, calculation of the 2nd and 3rd numerical 

derivative introduces a lot of noise into the data significantly decreasing the SNR. In this 

thesis, we focus on features that are reflective of qualitative aspects of GMs that are not 

influenced by infant size and thus removing it as a confounding factor.  

In the next section, the design experiment is discussed along with which features were 

selected that are reflective of complexity, fluency and variability of GMs. 
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Chapter 3 

Experimental Design 

In this section we discuss the experimental design, what data we are measuring, how it was 

acquired and the steps taken to process the raw data into a feature table that can be easily 

passed into a classification algorithm. 

3.1 Data Acquisition 

3.1.1 Modality and procedure 

To acquire a database of healthy infant general movements, infants were recruited and their 

GMs were recorded using a device called the Trakstar Bird. This device sets up an 

electromagnetic field that can track (x, y, z) co-ordinates of sensors within the 

electromagnetic field in real-time, and then store these values for later processing. Because 

GMs are purposeless random movements, the experimental setup was as follows:  

1. Infants were awake and as comfortable as possible with no stimulations present 

2. Infants were placed on their back on a comfortable mat (Figure 3.1) 
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3. A Trakstar sensor is attached to each limb (right/left arm, right/left leg; Table 3.1) 

4. With the infants laying on their back, their natural movements (GMs) were recorded 

for 3 – 5 minutes, and this is one trial 

5. Trials were halted if an infant became too fussy, cried, or rolled off their back 

6. Depending on the infant’s emotional state and level of cooperation, two or even 

three trials were recorded 

7. Infants were tested once during the first 8 weeks of life and, where possible, were 

asked to return for another session within their second 8 weeks. Usually around the 

12th week of life 

 

Figure 3.1 Experimental setup of infant GM data collection. The 

infant is laid on their back and allowed to freely move their limbs 

while their movements are recorded. The white tapes on the legs 

and arms are the sensors attached. 
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For each infant, multiple trials of 3 – 5 minute recordings each were recorded where the 

infant was sat on its back, and without any stimulation the natural movement of their limbs 

which we have referred to as general movements is recorded.  

For each trial recording, we obtain a comma separated file (CSV) that contains x, y, z 

coordinates of 6 sensors. The Trakstar sensor attachment was as follows: 

Sensor 1 Head 

Sensor 2 Torso 

Sensor 3 Right Arm 

Sensor 4 Left Arm 

Sensor 5 Right Leg 

Sensor 6 Left Leg 

Table 3.1 Sensor placement where each sensor records x, y, and z at 100Hz 

Note that sensor 1 and sensor 2 were not used in any of the analyses.  

3.1.2 User interface 

For the Trakstar device, a user interface (Figure 3.2) that interfaced directly with the 

Trakstar device plotted sensor positions in real-time was programmed in C# and C++ to 

allow direct feedback ensuring that sensors were still within high quality range. Outside of 

this range sensor noise increased significantly and so this allowed us to ensure the data we 

obtained was accurate data.  
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Figure 3.2 The Trakstar user interface which was programmed and used for data recording. 

The origin (0, 0, 0) is at the small cuboid which reflects the placement of the transmitter. 

 

3.1.3 Data recorded 

In Figure 3.3 an example of the recorded data for one of the sensors is shown. The data is 

positional data of each limb recorded at a sampling frequency of 100Hz. This sampling 

frequency is more than sufficient to fully capture infant motion, as most similar studies use 

sampling frequencies of at least 50Hz (Marcroft et al., 2015). 

The absolute positional data information is of little interest because this changes with each 

infant depending on their orientation and how far from the transmitter they are placed. Our 

interest is with movement patterns and behavior throughout the movement, and therefore 

we rely mainly on the velocity information which is obtained by numerically differentiating 
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and then smoothing of the positional data. This will be discussed in detail in section 3.4 of 

this thesis. 

 

 

3.1.4 Infant age distribution 

All of the infants recruited for this study were between the ages of 2 weeks old and 16 

weeks old, as this is an age range where considerable development typically occurs during 

an infant's first year of life. Infants were typically called back for a second session that was 

within the second 8 weeks of life to again collect data that reflects any change in GMs. In 

total 49 infants were used in this study in which 27 infants attended for two recording 

sessions. In figure 3.4, the age distribution of each trial file is shown. 

Figure 3.3 Example of data recording for one infant for one sensor (right 

arm). The subplots (top to bottom) are the x, y, and z axis respectively. In 

this plot, the x-axis is time (seconds) and the y-axis of each subplot is 

position (millimeters). 
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Figure 3.4 Age distribution of each trial file recorded. Each trial file was treated separately 

and was labelled with the infant's age in weeks 

 

3.2 Data Pre-processing 

3.2.1 Filtering 

The positional data was filtered to contain only relevant frequency information. A zero-

phase low-pass Butterworth filter was used with a cut-off frequency of 10Hz. Many studies 

apply a 5Hz-10Hz low-pass filter on movement data (Marcroft et al., 2015), so to avoid any 

attenuation in relevant frequencies, a 10Hz filter was applied. Each dimension of each 

sensor was filtered separately. The SNR of the signals was very high due to the accuracy 

of the Takstar tracking and so filtering was done mainly as a precautionary measure. 
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3.2.2 Data file segmentation 

First, due to some movement artifact that typically shows up at the beginning or ending of 

a recording, the first few seconds and last few seconds of each recording are removed. Any 

recording that was less than 180 seconds was discarded from the analysis. 

As most trials were between 3 – 5 minutes, we can split a recording into multiple recordings 

depending on time length and overlap used. This allows us to augment our dataset to 

increase the number of data points and to allow a more accurate training of classifiers later 

on.  

One concern of splitting files into multiple files is that the training data no longer becomes 

exactly independent and identically distributed (i.i.d.), which is a central assumption in 

statistical learning theory (Hastie, Tibshirani, and Friedman 2009) and this negatively 

affects the generalization error of a classifier. However, as seen in figure 3.3, the GMs of 

an infant are typically non-stationary over a long recording. The behavior of the movements 

change and so we make the assumption with our analysis that over a trial, the movement 

features are sufficiently non-stationary so as to allow us to assume that even if a single file 

was split into multiple files, we still maintain approximately i.i.d. data. 

Through trial and error, it was found that files 180 (seconds) in length with 60 (seconds) 

overlap produced enough training data while capturing enough information about infant 

GMs. For example, a 5 minute recording would be split into two files from [0 seconds to 

180 seconds] and [120 seconds to 300 seconds]. This segmentation scheme gives us a total 

of 325 files to extract features from. 
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3.3 Feature Extraction 

The features extracted from the GMs were carefully chosen to reflect aspects of complexity, 

fluency, and variability of GMs. 

In our setting, one would have to be careful not to use features that might be biased by the 

physical size of the infant. Because we are predicting and clustering on age group it is 

natural that the size of the infant would bias certain features, and this would introduce size 

as a confounding variable into the model. For example, if we take the absolute range of 

motion of the infant as a feature, it will likely be larger for older infants compared to 

younger infants. Therefore we focus on features that are reflective of movement quality 

only. 

 

Figure 3.5 Movement 'units' or periods highlighted in pink. For each movement 'unit', some 

features are calculated and then averaged into a final feature vector. This plot is one sensor 

from one infant and the three subplots are the x, y, and z-axis respectively. 
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Some features were calculated as global features using the data from the entire recording. 

While other features were calculated and averaged over movement ‘units’ (Figure 3.5). 

These are defined as the period of time where the tangential velocity of the sensor exceeds 

a certain threshold and then falls back below it, defining a clear movement ‘period’ for each 

sensor.  

3.3.1 Features modelling complexity 

Complexity of movements are modelled by continuous values that are larger if there are 

more interactions between limbs during movement, or movements with relatively higher 

spatial exploration. To model these two aspects we used tortuosity, and absolute deviation 

of azimuth and elevation angles of the limbs.  

Tortuosity (Eq 3.1) is defined as the ratio between the straight line length and the total curve 

length between the start and stop positions of a movement unit. 

 
𝑡𝑜𝑟𝑡𝑢𝑜𝑠𝑖𝑡𝑦 =  

(𝑥𝑓,𝑦𝑓,𝑧𝑓)−(𝑥𝑠,𝑦𝑠,𝑧𝑠)

𝑎𝑟𝑐𝑙𝑒𝑛(𝑚𝑜𝑣𝑒𝑚𝑒𝑛𝑡)
, 

(3.1) 

Where arclen(_) takes the arc length from the start coordinates until the stop coordinates 

of the movement unit. This quantity has a maximum value of 1 if the limb moves in a 

straight line and then stops, and it has a minimum value close to 0 if the movement pattern 

swirls and curves before stopping. In other words, simple movements have a tortuosity 

close to 1 and spatially complex movements have a tortuosity close to 0.  
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Mean Absolute Deviation (MAD) is also used to quantify complexity by taking the MAD 

of the movement units’ azimuth angle and elevation angle. The coordinates of the 

movements (x, y, z) are converted into spherical coordinates from which we extract the 

azimuth angle (parallel to the torso of the infant) and the elevation angle (perpendicular to 

the torso of the infant). 

Finally the MAD of the distance between each combination of the four limbs (e.g. distance 

from right arm to left arm) is calculated over the entire trial. This quantity will have a higher 

value for infants who moved their limbs relative to one another in different directions, i.e. 

a limb’s movement patterns were distinct to the other limbs.  

3.3.2 Features modelling fluency 

Fluency of movements are movements that have smooth acceleration and deceleration. This 

quantity is a little challenging to model due to competing definitions, but one of the best 

mathematical models was found to be the spectral arc length (SAL) of the movement units 

(Balasubramanian et al., 2012). For each sensor (table 3.1), we take the tangential velocity 

or speed 𝑣(𝑡)  during a movement unit, and then the spectral arc length is defined as 

follows: 

 

𝑆𝐴𝐿 =  − ∫ [(
1

𝜔𝑐
)

2

+ (
𝑑Ṽ(𝜔)

𝑑𝜔
)

2

]

1

2

 𝑑𝜔;   
𝜔𝑐

0
Ṽ(𝜔) =  

𝑉(𝜔)

𝑉(0)
, 

(3.2) 

Here 𝑉(𝜔) is the Fourier magnitude spectrum of 𝑣(𝑡), 𝜔𝑐 is the cut-off frequency which 

we are measuring the arc length until. The 
1

𝜔𝑐
 term in the integral is a normalizing constant 

that normalizes the SAL with respect to the cut-off frequency and the magnitude as a whole 
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is further normalized with respect to the DC value at 0Hz. This value is averaged over all 

movement units into the final feature vector for the infant. Based on equation 3.2, the SAL 

of fluent movements will be relatively higher than low-fluency movements, because as 

demonstrated in (Balasubramanian et al., 2012), low-fluency movements have many more 

frequency components due to the uneven speed and quick direction changes which causes 

an increase in the arc length of the Fourier magnitude spectrum of the speed profile.  

One other feature for fluency is how much the speed changes in a movement unit. This was 

calculated as follows: 

 𝜟𝑠𝑝𝑒𝑒𝑑 =  
𝑣𝑚𝑎𝑥−𝑣𝑚𝑖𝑛

𝑑𝑢𝑟𝑎𝑡𝑖𝑜𝑛
, (3.3) 

The idea being that if there was a big difference between the max and min speed in a short 

duration, this can imply jittery or unsmooth movements. 

3.3.3 Features modelling variability 

Variability features are those features which model infants who continuously produce new 

movement patterns. This is the opposite extreme of an infant who repeats the same motion 

over and over again. The first feature is the inter-limb correlation. Here we binarize 

movement profiles into 1’s and 0’s to represent movement or no movement. Then the 

hamming distance is computed, where a hamming distance of 0 shows complete 

disagreement between movements, and a hamming distance of 1 shows movement in 

complete synchronicity. This is computed for each pair of limbs, i.e. between right arm and 

left arm, right arm and right leg, and so on.  



 

 

MASc. Thesis – Omar Nassif;                McMaster - Electrical and Computer Engineering 

26 

Finally, the sample entropy or SampEnt (Richman and Moorman 2000), is calculated for 

the distance over time between each limb and the torso. The sample entropy is a measure 

of predictability of a signal given previous values. The idea being that, if the infant’s GMs 

are variable, the infant continuously produces new patterns, giving a larger SampEnt value. 

Whereas an infant who continuously repeats a limb’s movements’ will have a low entropy 

value for the respective limb.  

3.3.4 Summary of features extracted 

In summary, the following are the features extracted from each trial recording: 

 

 

Calculated for each movement unit for 

each sensor and then averaged into 1 value 

per sensor 

Spectral Arc Length 

Δ Speed 

Tortuosity 

Elevation/Azimuth MAD 

 

 

Calculated over entire trial 

 

Between-Limb distance MAD 

Between-Limb correlation 

Limb-Torso distance Sample Entropy 

% of time all limbs moving 

Table 3.2 Features extracted from the trial files after pre-processing. In total there was 37 

features extracted. 
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3.4 Complete Pipeline 

 

Figure 3.6 A simple figure illustrating the pipeline until the point of having a full feature 

table 

 

It should be noted that having multiple trials per infant and segmenting long trials into 

shorter files to augment the dataset size, in our final feature matrix multiple rows can belong 

to the same infant. This potentially creates a correlation between rows in the feature matrix 

and we must be extra careful during validation to take this into account because it can 

overestimate the accuracy giving abnormally high results. 

Once all the features are extracted, the data is ready to be passed into a classifier. In the 

next section we discuss the labels applied to the feature vectors and classification 

algorithms used to classify this data.  
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Chapter 4 

Supervised Learning 

Our main goal in this section is to train a classifier that can accurately classify infants into 

their age group given their movement features. At this point we have our feature matrix 

ready, which has the dimensions [325 x 37] and where each row represents a data point 

each of which is characterized by 37 features as described in table 3.2. In the machine 

learning literature, there are many different options for classifiers, ranging from simple 

linear separators to highly non-linear functions like deep neural networks (Hastie, 

Tibshirani, and Friedman 2009). To narrow down the choices of classifiers, we look at the 

constraints of our problem such as the dataset size, the feature dimensionality, and 

interpretability for the application of studying infant kinematics. In this thesis, our 

requirements of a classifier are as follows: 

 Can be trained on a relatively small dataset without overfitting 

 Interpretable by giving feedback on which features had the highest impact on the 

classification decision 

 Making no assumptions on the distribution of the data in feature space 
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To explain the first point, one would have to be careful with smaller datasets not to use 

classifiers that have a large number of degrees of freedom to fit the data.  This is because a 

smaller dataset is not necessarily a good representation of the general population that we 

are trying to generalize to, and so any classifier that fits strongly to a smaller dataset will 

have a lower probability of generalizing well to the population. This is known as the bias-

variance trade off (Hastie, Tibshirani, and Friedman 2009). For example, an artificial neural 

network or a decision tree has very high variance but low bias because they don’t bias a 

classifier towards a specific type of function and so the decision boundary can look very 

different across different samples of the data. Whereas an SVM with a linear kernel (Hsu 

et al., 2003) would have a relatively higher bias but lower variance because the decision 

boundary will not change significantly if it is trained on different samples of the data. In 

our case due to having a smaller dataset, classifiers with higher inductive bias (such as a 

linear classifier) are safer to use to avoid overfitting to the data. One other type of classifier 

is used to better explore the data, which is an ensemble decision tree classifier known as 

the random forest (RF) classifier (Breiman., 2001). Though the decision boundary of such 

a classifier is very non-linear (compared to an SVM), typically ensemble methods average 

their classification result across many “weak” classifiers which has the effect of reducing 

prediction variance and thus reducing overfitting (Breiman., 2001). To address the second 

requirement above, both the linear SVM and the RF have the added benefit of giving feature 

weights or feature importance, giving us insights into which features of GMs have the 

strongest discriminative power to classify age group. 
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4.1 Labels 

The age of each infant (in weeks) was recorded at the time of recording the infant’s GMs. 

As seen in figure 3.4 the ages range between 2 weeks old to 16 weeks old. Due to high 

variability in the infant’s development, regressing the age on the movement features will 

likely not work, as not every 8 week old behaves as other 8 week olds. A more logical 

approach would be to bin the ages into a different number of groups and classify the group 

as a whole. 

4.1.1 Binning for two age groups 

The first binning is into two age groups, as this naturally reflects the taxonomy of normal 

GMs (table 1.1). The infants, or more accurately the trial files recorded, were split into two 

groups, the files of infants equal to or less than 8 weeks in age, and those above 8 weeks 

old in age. 

 

Figure 4.1 Histogram of labels for two bins. Table 4.1 shows the age range break down. 
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Age Label 

0 – 8 Weeks Old 1 

9 – 16 Weeks Old 2 

Table 4.1 Age range and corresponding label assigned 

 

4.1.2 Binning for three age groups 

A finer binning of the ages is also conducted that would reflect the transitionary age group 

between the ages of 6 weeks and 10 weeks old. A more detailed binning like this allows 

greater insight to be derived from the data, as having the ability to further classify a third 

group within the data can show a finger developmental trajectory for the healthy infants. 

 

Figure 4.2 Histogram of labels for three bins. Table 4.2 shows the age range break down. 
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Age Label 

2 – 6 Weeks Old 1 

7 – 10 Weeks Old 2 

11 – 16 Weeks Old 3 

Table 4.2 Age range and corresponding label assigned 

4.2 Cross-validation 

Before training the classifiers on our feature matrix, it is crucial that a correct validation 

scheme is selected. Validation in this context refers to evaluating the generalization error 

of the classifier that is trained on our data. In our feature matrix, multiple rows may belong 

to the same infant (section 3.2.2) but we are interested in estimating the generalization error 

to new infants. Therefore we must be careful to be evaluating the classifier on data points 

that would represent completely new data points not seen by the classifier during training. 

4.2.1 Types of cross-validation 

There are two main types of validation schemes known as the train-test split and the ‘k’-

fold cross-validation (Hastie, Tibshirani, and Friedman 2009) . For the train-test split, we 

randomly select 75% of the rows in our feature matrix, train the classifier on these selected 

rows, and then test the accuracy on the remaining 25% of the rows. In the k-fold cross 

validation scheme, a loop is setup inside which we randomly choose some data points to 

be left out (e.g. 5% of rows), a classifier is trained and then tested on the left out data points. 

This is repeated ‘k’ times and the test error is averaged to give a final estimate. However 
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for our setting neither validation scheme will exactly work because multiple rows of the 

feature matrix can belong to one infant, and this will show a falsely large generalization 

accuracy because we are training and testing the same infant on themselves. Another issue 

is that some infants actually behave as infants from a different age group. If these infants 

were in the testing set this can give the false result of a low generalization accuracy when 

the source of error was the infant being an outlier in their group. 

4.2.2 Leave-k-subjects-out validation 

To solve the problem of multiple rows belonging to the same infant, we adopt an n-fold 

cross-validation scheme, but instead of randomly leaving out rows, instead on each loop 

iteration we choose k infants, leave out all the rows belonging to these k infants, and then 

test on them. This is repeated ‘n’ times to train and test on as many different combination 

of infants as possible (Figure 4.3). 

 

Figure 4.3 Leave-k-Subjects Out example flowchart where k is 20% of all infants 

repeated n times 
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4.2.3 Adjusted Accuracy and Confusion Matrix 

For the LkSO validation loop, two main statistics will be reported in the results section. 

The first is the adjusted accuracy statistic which takes into account class imbalance while 

calculating the accuracy. The second is a confusion matrix percentage estimate. 

The adjusted accuracy is calculated as follows (Mosley., 2013): 

 𝑎𝑐𝑐𝑎𝑑𝑗 = 0.5 (
𝑇𝑃

𝑇𝑃+𝐹𝑁
+  

𝑇𝑁

𝑇𝑁+𝐹𝑃
), (4.1) 

Where TP is true positive, TN is true negative, FN is false negative and FP is false positive. 

Because the left out infants are randomly sampled, we cannot guarantee that the test set has 

balanced classes on each iteration of the validation loop, and therefore accuracy may 

become inflated due to class imbalance. The adjusted accuracy addresses this by weighing 

each sample by its class’s prevalence, giving a true reflection of whether the classifier is 

either randomly guessing or always predicting the prevalent class, or whether it truly 

learned to distinguish between the labels. In the multiclass case the adjusted accuracy is 

calculated in a one-vs-all fashion for each class and then averaged over all classes. 

A confusion matrix is a table that compares predictions with the true class labels for each 

class. The confusion matrices were calculated during the LkSO loop by calculating the 

percentage of misclassified files on each LkSO iteration and then finally normalizing all 

the confusion matrix rows to 100%.  
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4.3 Linear Classifier 

The first classifier is a linear SVM which creates a linear boundary between each class. 

Given a training dataset (as per 4.2.2), we use the sklearn.svm.LinearSVC class from the 

Sci-kit Learn library implemented in Python (Pedregosa et al., 2011). The classifier is 

trained on both the 2 bin labels (4.1.1) and 3 bin labels (4.1.2) and the results of both 

analyses are reported below. 

4.3.1 Data preparation 

Before the data matrix can be passed onto the SVM classifier, a scaling step must be 

conducted in order to normalize every feature. This is important because features which 

have a larger scale will dominate the smaller scaled features thus removing their 

discrimination power although it may be the case that the smaller scale feature itself is a 

better feature (Hsu et al., 2003). Each feature column in the feature matrix is scaled 

according to: 

 𝑥�̌� =
𝑥𝑖−𝑚𝑒𝑎𝑛(𝑥𝑖)

𝑠𝑡𝑑(𝑥𝑖)
, (4.2) 

 

4.3.2 SVM hyper-parameters 

The support vector machine is an algorithm that classifies a data point according to which 

side of the decision boundary the point falls on. Ideally there exists a natural separation in 

the feature space between the classes but in practice that is rarely the case. For an SVM 
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with a linear kernel, the hyperparameter that controls the level of overlap is ‘C’ (Hsu et al., 

2003).  

As for the kernel, we used a linear kernel to avoid increasing the degrees of freedom of the 

model. Having too many hyperparameters to tune can easily result in overfitting and our 

validation loop is built for estimating generalization error and not estimating 

hyperparameters. A few values were handpicked and tried for the SVM hyperparameter 

‘C’, which controls the strength of regularization and allows a certain number of 

misclassifications in exchange for better generalization error. The end results did not 

change significantly for the handpicked value of C = 5 and so this value was used. For a 

larger dataset, a grid search loop for the hyperparameter would first be used and then the 

generalization error would be estimated separately. For the 3 class case the linear SVM was 

trained in a one-vs-all fashion in which 3 hyperplanes are constructed for each class, and 

for the respective class it was labelled 1 and all other classes -1 and then the classifier was 

trained. This creates 3 hyperplanes one for each class. 

4.3.3 SVM classification results 

The results of the LkSO validation will be reported for the 2 class binning (table 4.1) and 

then for the 3 class binning (table 4.2).  

The accuracy on the left out infant files was calculated over 300 iterations and the results 

for the 2 bins case are shown in the figures below. Note that all accuracies are reported as 

adjusted accuracies. A 0% adjusted accuracy meant that the classifier accuracy on the age 

group of the left out infants was no better than random chance (i.e. nothing interesting was 
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learned), and a 100% adjusted accuracy meant that the classifier correctly classified all left 

out infants. The confusion matrices were normalized to have rows adding to 100% 

indicating percentage of correctly and incorrectly classified rows. 

 

 

Figure 4.4 SVM adjusted accuracy scores on LkSO iterated 300 times for 2 classes. The 

average value being around 50% adjusted accuracy which is well-above a randomly 

guessing classifier. The y-axis is the relative probability of an accuracy percentage. 

 

Next the confusion matrix for the 2 class SVM classifier is shown (figure 4.5). The 

calculation of the confusion matrix in the LsKO is done according to section 4.2.3 and so 

each row of the confusion matrix is normalized to 100%.  
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The confusion matrix (figure 4.5) indicates that the classifier was able to correctly classify 

about 70% of the left out infants which is a high accuracy value given that very little 

hyperparameter tuning was conducted and the model is a linear separator. 

 

Figure 4.5 SVM confusion matrix of the 2 class classification tested as an LkSO validation 

scheme. The entries are percentages where each row adds to approximately 100%. 

 

The adjusted accuracy (figure 4.4) shows an approximately bimodal distribution indicating 

that for some infants, the classifier was less certain about their correct classification while 

for others it had a higher degree of certainty. 

Similarly for the 3 class binning (section 4.1.2) the adjusted accuracy and confusion matrix 

is reported. Compared with the adjusted accuracy of the 2 class binning, the adjusted 
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accuracy of the 3 class binning had a lower average value and was unimodal with values 

closer to 0% (Figure 4.6). 

 

Figure 4.6 SVM adjusted accuracy scores on LkSO iterated 300 times for 3 classes. The 

average value being around 40% adjusted accuracy which is well-above a randomly 

guessing classifier but less than the 2 class case. The y-axis is the relative probability of an 

accuracy percentage. 

 

This shows that for a finer binning of the age groups, the precision becomes negatively 

affected. A better visualization of the misclassifications can be seen in the confusion matrix 

(Figure 4.7). Here it is clear that between adjacent age groups physiological behavior 

overlaps and especially for age group 2 (between the ages of 6 weeks and 10 weeks) the 

infants tend to be misclassified on both sides. This behavior of misclassification is expected 
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because as noted in (Einspieler and Prechtl 2005) age group 2 marks a transitionary change 

between one type of GMs into another type (see table 1.1). 

 

Figure 4.7 SVM confusion matrix of the 3 class classification tested as an LkSO validation 

scheme. The entries are percentages where each row adds to approximately 100%. The 

results indicate expected overlap between adjacent age groups and therefore reduced 

precision. 

4.3.4 Feature importance 

For a linear kernel SVM, we can directly derive the weights of the features from the SVM 

itself. This is because for a linear kernel, the separating hyperplane solution is defined in 

terms of weights of features of the inputs. And since all features are rescaled before training 

the SVM, the weights can be interpreted as the importance of each feature. In figure 4.8 the 

top 10 feature weights for the 2 class SVM are selected. Note that we are only interested in 

absolute values and so we only look at the magnitude of the feature weights. 
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Figure 4.8 Top 10 average feature weights for the 2 class trained SVM 

 

 

Figure 4.9 Top 10 average feature weights for the 3 class trained SVM 
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All_limbs_moving 

(1 feature) 

% of trial where the infant is moving all 

their limbs at the same time 

Sensor_3_5_corr, 

Sensor_4_5_corr, 

Sensor_4_6_corr 

(3 features) 

Timing correlation between: 

Right Arm and Right Leg, 

Left Arm and Right Leg, 

Left Arm and Left Leg 

Sensor_3_6_distmad, 

Sensor_5_6_distmad 

(2 features) 

Mean deviation of distance between: 

Right Arm and Left leg, 

Right Leg and Left Leg 

R_arm_abdo_ent, 

R_leg_abdo_ent 

(2 features) 

Sample entropy of the distance between: 

Right Arm and Abdomen, 

Right Leg and Abdomen 

Sensor_3_mad_elevation, 

Sensor_5_mad_elevation 

(2 features) 

Mean deviation of elevation angle of: 

Right Arm, 

Right Leg 

Sensor_4_mean_tortuosity, 

Sensor_6_mean_tortuosity 

(2 features) 

Tortuosity of: 

Left Arm, 

Left Leg 

Sensor_3_mean_specarclen 

(1 feature) 

Spectral Arc Length of: 

Right Arm 

Table 4.3 List of the top 10 features combined from both the 2 class and 3 class SVM, 

and organized into categories of the features. Features names (left) and descriptions 

(right). 
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4.4  Random Forests 

Another classifier that was trained was the random forest (RF). This classifier is well-

known and is universally used in many different applications (Zhang and Ma 2012). While 

a single decision tree is easy to interpret because we can trace the decision process, it can 

easily over fit especially to a smaller noisy dataset. To address this limitation, we look at 

random forests. A random forest is essentially an ensemble of many decision trees that 

trains each tree on a randomly chosen subset of observations and features (Breiman., 2001). 

This ensembling scheme creates many “weak” learners because each tree is being trained 

only on a randomly chosen subset of the data for both rows and columns. However the final 

classification result is the averaged or aggregated result from all the weak ensembles, the 

idea being that many weak learners create stable accurate predictions. Averaging results 

from weak classifiers is also a standard technique for reducing overfitting to data (Hastie, 

Tibshirani, and Friedman 2009).  

One major benefit of RF is that it gives a rather straightforward framework to calculate 

feature importance based on information gained within each decision tree. In section 4.4.3 

we give a brief overview of how this is done.  

4.4.1 RF parameters 

For the RF implementation, we use the sklearn.ensemble.RandomForestClassifier class 

from the Sci-kit Learn library implemented in Python (Pedregosa et al., 2011). The 
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classifier is trained on both the 2 bin labels (4.1.1) and 3 bin labels (4.1.2), and the results 

of both analyses are reported in 4.4.2. 

The main parameter of RFs is the number of decision trees in the forest. As with the case 

in the linear classifier section, because of how our LsKO validation loop (section 4.2.2) is 

setup, and due to the dataset size and variance, a separate hyper-parameter tuning procedure 

without overfitting to the data was not possible. Luckily, for RFs, the number of decision 

trees to use asymptotically does not lead to more overfitting and this is in essence due to 

the ensembling and randomness employed in training each decision tree. For a more 

detailed analysis of the asymptotic behavior of this parameter see Breiman (2001). A few 

randomly picked values were tried for this parameter, and the best results seemed to be 

achieved with around 100 decision trees. 

In the Sci-kit Learn implementation we used, there are many other parameters for RFs, but 

these were all left at default values, because changing them did not significantly affect our 

final results. 

4.4.2 RF classification results 

The accuracy on the left out infant files was calculated over 300 iterations and the results 

for the 2 and 3 classes case are shown in the figures below, respectively. Note that all 

accuracies are reported as adjusted accuracies. A 0% adjusted accuracy meant that the 

classifier accuracy on the age group of the left out infants was no better than random chance 

(i.e. nothing interesting was learned), and a 100% adjusted accuracy meant that the 

classifier correctly classified all left out infants. The confusion matrices were normalized 
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to have rows adding to 100% indicating percentage of correctly and incorrectly classified 

rows. 

 

 

 

Figure 4.10 RF adjusted accuracy scores on LkSO iterated 300 times for 2 classes. The 

average value is approximately 50% adjusted accuracy, which is well-above a randomly 

guessing classifier. The y-axis is the relative probability of an accuracy percentage. 
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Figure 4.11 RF confusion matrix of the 2 class classification case tested as an LkSO 

validation scheme. The entries are percentages where each row adds to approximately 

100%. 

 

Figure 4.12 RF adjusted accuracy scores on LkSO iterated 300 times for 3 classes. The 

average value of approximately 40% adjusted accuracy is well-above a randomly guessing 

classifier but less than the 2 class case. The y-axis is the relative probability of an accuracy 

percentage. 
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Figure 4.13 RF confusion matrix of the 3 class classification tested as an LkSO validation 

scheme. The entries are percentages where each row adds to approximately 100%.  

4.4.3 Feature Importance 

A RF is a large collection of decision trees, where each decision tree, independent of one 

another, is trained on randomly chosen rows and columns from the original feature matrix. 

Therefore for each decision tree, there are observations which are not used to train the 

decision tree (also commonly referred to out-of-bag (OOB) observations), and the OOBs 

can be used to estimate generalization error for that specific tree. Using this idea, feature 

importance can then be computed by random shuffling all the values in a feature column, 

and then checking how that affects the accuracy of the relevant decision trees. This allows 

us to quantify the importance of each feature column across the entire RF. Due to the 

significant drop in accuracy for the 3 class RF (figure 4.13), the feature importance for that 

model will not be used for analysis, and therefore we only present the feature importance 

for the 2 class RF (figure 4.14). 
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Figure 4.14 Top 10 average feature weights for the 2 class trained RF 

 

Sensor_4_5_corr 

(1 feature) 

Timing correlation between: 

Left Arm and Right Leg, 

Sensor_4_mean_tortuosity, 

Sensor_6_mean_tortuosity 

(2 features) 

Tortuosity of: 

Left Arm, 

Left Leg 

Table 4.4 List of the top 10 features combined from both the 2 class and 3 class RF, and 

organized into categories of the features. Features names (left) and descriptions (right). 

 

 



 

 

MASc. Thesis – Omar Nassif;                McMaster - Electrical and Computer Engineering 

49 

Table 4.4 (continued) 

Sensor_3_mad_elevation, 

Sensor_4_mad_elevation, 

Sensor_5_mad_elevation, 

Sensor_6_mad_elevation, 

 (4 features) 

Mean deviation of elevation angle of: 

Right Arm, 

Left Arm, 

Right Leg, 

Left Leg 

Sensor_3_5_distmad, 

Sensor_4_6_distmad, 

Sensor_5_6_distmad 

(3 features) 

Mean deviation of distance between: 

Right Arm and Right Leg, 

Left Arm and Left Leg, 

Right Leg and Left Leg 

 

4.5 Discussion of classification results 

Comparing the SVM results with the RF results shows that there is a drop in precision and 

accuracy for the RF model, particularly for the 3 class classification task. This is somewhat 

expected a priori because the decision boundary of RFs are significantly more complicated 

(despite ensemble effects) compared to a linear SVM that just sets up a plane of separation 

between the data points. The RF therefore can be prone to fitting the noise in the data more 

strongly. However, there is another reason that most likely explains this drop in accuracy 

and this is to do with how a RF gains its strength as a classifier. A crucial aspect of training 

the decision trees in a RF is that the trees must be independent of one another (Breiman., 

2001). However, because we have multiple rows belonging to the same infant in our feature 
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matrix, this can create a correlation between the rows. The decision trees in turn are 

separately trained on these correlated rows, which can reduce the independence between 

the decision trees and therefore negatively affect the generalization capability of the RF.  

An analysis of subject-level bootstrapping for RFs is conducted in Karpievitch et al. (2009), 

and it was shown that a RF’s accuracy can be improved by ensuring that the decision trees 

are trained on random rows that belong to strictly different subjects, but this is left for future 

work to test on our dataset. 

Of most importance to these results is that the simpler model (SVM) was capable of 

separating the classes quite accurately. Moreover for the 3 class case, class 2 shows 

significant overlap into class 1 and 3. As these are consecutive age groups this overlap is 

expected. In fact, class 2 are the infants in the age group 6 – 10 weeks old and Einspieler 

and Prechtl (2005) speaks about this as the transitionary group that will show aspects of 

both groups as the infant begins changing their GM patterns. This shows that our classifier 

is picking up on this transitionary period and we can conclude that the classifier is learning 

something clinically interesting.  

It must also be mentioned that there are infants who were group 1 but were misclassified 

into group 3 and vice-versa. There is quite a large gap in age between these two groups and 

an in-depth investigation into the infants must be conducted, though this is left for future 

work. Some speculation can be done, and there are many reasons why this could happen, 

but most likely it is due to infants behaving abnormally due to fussiness or at the other end 

of the spectrum, sleepiness. It could also be that a certain movement feature value caused 
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them to become misplaced and so an investigation into interpretable decision models can 

bring to light the reason for misclassification. 

 

4.6 Discussion of feature importance 

More interesting than the classification results are the selected features. Using two different 

algorithms, we derived feature importance or feature weights, which were most important 

for the classifier’s decision. The top 10 features were selected from the 2 and 3 class SVM 

and only the 2 class RF model. There is a lot of overlap in the selected features, but more 

interestingly, most of the features belonged to the complexity or variability modelling 

features but only 1 fluency modeling feature was selected (see section 3.3 for definitions). 

The fluency feature selected was the SAL of the right arm and this makes sense because at 

the ages of infants which were recorded, the arms perform more movement relative to the 

legs and so the infant has a higher chance of displaying fluent movements in the arms not 

the legs. It is known from the GM literature that fluency begins developing towards the 

latter part of the second 8 weeks of life and therefore more likely to in the very oldest 

infants in our sample population. In fact those approaching their fifth month (Einspieler 

and Prechtl 2005). And so it is conceivable that fluency might not be important to 

discriminate the age groups in our age range and in fact that would agree closer with the 

GM literature. For the SVM classifier, the feature ‘all_limbs_moving’ had the highest 

weight for both the 2 and 3 class tasks. This feature is associated with complex movement, 

if all limbs are simultaneously being used then that would be qualitatively more complex 
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than moving a single limb. As for the RF classifier, its most selected feature category was 

the MAD of the elevation angle of each of the four limbs. This shows that the amount of 

vertical movements (anti-gravity) is a sign of healthy development.  
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Conclusion 

5.1 Future Work 

Below we outline some of the immediate next steps that can be taken with this project. 

These include both clinical exploration but also algorithmic exploration, using different 

algorithms to derive more insight from the data. 

5.1.1 Clustering and Dimensionality Reduction 

As per the discussion in Chapter 4, it was shown that our dataset exhibits some variance, 

and labels based on a finer binning of age were difficult to accurately predict with adjacent 

age groups showing overlap (figure 4.7 and figure 4.13). Therefore a natural next step is to 

apply clustering techniques that allow the data points to fall into their natural clusters 

without imposing strong labels on each data point. We hypothesize that the clustering 

should demonstrate some separation based on age, but observations will overlap between 

clusters due to some infants developing faster/slower than others in their age group.  

There are many clustering techniques that exist in the literature with various assumptions 

on feature distributions, outliers, dimensionality, and so on. Initially the Gaussian Mixture 



 

 

MASc. Thesis – Omar Nassif;                McMaster - Electrical and Computer Engineering 

54 

Model (GMM) was chosen due to its ability to model various shaped clusters. And since 

we do not assume independence of our feature columns (in fact several are correlated), the 

GMM is an ideal clustering solution to use. 

The Gaussian mixture model is a ubiquitous clustering algorithm that can model a wide 

range of data distributions. The model is given by the following equation: 

 𝑝(𝑥) =  ∑ 𝜋𝑘𝑁(𝑥|𝜇𝑘, 𝛴𝑘)𝐾
𝑘=1 , (5.1) 

Where K is the number of Gaussian clusters, 𝜋𝑘 is the proportion out of 1 of each Gaussian 

cluster, 𝜇𝑘 are the means of each Gaussian cluster, 𝛴𝑘 are the covariances of each cluster, 

and N is the normal distribution. The parameters of this model are fit to a data set using the 

Expectation Maximization (EM) algorithm (Bishop., 2006). Note that because the 

dimensionality of our data is [325 x 37] and multiple rows are sampled from the same infant, 

this can reduce the accuracy by which the GMM parameters are estimated. Because we 

want to impose as little structure on the parameters as possible, this problem requires that 

we estimate a covariance matrix for each cluster that has d2 parameters where d is the 

number of features in our problem. This causes the number of parameters of the model to 

estimate to grow very quickly. Reducing the number of parameters to be estimated from a 

dataset can lead to more accurate parameter estimations, and this leads us to the Mixture of 

Factor Analyzers (MFA) models (McNicholas and Murphy 2008). 

Mixture of Factor Analyzers are based on factor analysis models, and are combined with 

GMMs. Factor analysis is a form of dimensionality reduction that models correlations that 

exist in the variables of the data by modelling the features as linear combinations of hidden 
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factors. For MFA, the covariance matrices 𝛴𝑘  are parametrized by lower dimensional 

matrices with dimensions given by [p x q], where q << p (Ghahramani and Hinton 1996). 

This effectively reduces the number of parameters that need to be estimated from the data. 

We refer the reader to Ghahramani and Hinton (1996) and McLachlan and Peel (2000) for 

an in-depth discussion of these models. The point of interest for our application is the 

reduced number of parameters compared to GMMs, and thus giving better estimates for the 

clustering parameters.  

For this task we use the R package pgmm (McNicholas et al., 2019). This package trains 

12 families of MFAs with various constraints imposed on the parameters as shown in 

McNicholas and Murphy (2010). The best model is selected based on two criteria: Its 

reflection of age groups and the relative Bayesian Information Criterion (BIC) of the model. 

The BIC balances model fit with the number of parameters used. This is because a trivial 

solution is to fit a separate cluster for each data point but of course this does not tell us 

anything interesting about the data. The BIC has been shown to work well for model 

selection in the case of GMM and MFA (Steele et al., 2010).  

One major issue with EM algorithms is the parameter initialization because part of the 

algorithm is to initialize the parameters and then to iteratively update them according to 

data fit. Depending on how this is done, the solution can converge to clustering solutions 

that are wildly different from one another (Bishop., 2006). In our application, interpretable 

solutions are crucial to allow applicability in a clinical setting. Running on a completely 

unsupervised case with no guidance from age labels leads to clusters that might not reflect 
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any interesting patterns, particularly because not all features in our feature matrix provide 

useful information for grouping based on age.  

In the pgmm R package (McNicholas et al., 2019), their algorithm supports passing in group 

membership information for some of the data points. This acts as a sort of prior on the 

cluster assignments for the data points, and this helps guide the optimization to converge 

on clusters that reflect the different age groups. As mentioned previously, not every infant 

truly behaves according to the label assigned to them, some infants behave as older infants 

do and vice-versa (figure 4.7) 

With this in mind, we adjust our code to pass in some cluster assignments with our data 

points. All respective rows of 30% of infants in each age group are kept with their originally 

assigned label based on their age in weeks, while the remaining rows of the other 70% of 

infants in each age group is given a label of ‘0’ meaning that their group membership is 

unknown and clustering should assign them. We still expect most of the unlabeled infants 

in each age group to be assigned into their respective age group, but the clustering should 

do this with no label information. 

The rest of the inputs into the pgmm algorithm are the range of number of clusters to use, 

and a range of the number of factors to use. In our case the range of number of clusters was 

set to [3 to 8] clusters and the number of factors ‘q’ was [3 to 8] as well.  

The results of the clustering algorithm are shown in figure 5.1. The pgmm clustering 

algorithm, based on the BIC criterion, chose the ‘CUU’ model with 3 clusters and 8 factors, 

significantly reducing the dimensionality of our data. This model constrains one of the 
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parameters, referred to as the loading matrix, to be shared across clusters. For further details 

and mathematical background see McNicholas and Murphy (2008). 

 

Figure 5.1 Cluster assignment compared with original age group label (based on table 4.2) 

 

We also report for the infants who are in age group 2 that were assigned to clusters 1 and 

3, their median ages are shown in table 5.1. This shows that age group 2 truly is a 

transitionary period where the younger infants in age group 2 tend to cluster with age group 

1 and the older infants in age group 2 cluster with age group 3. 

Cluster 1 7 weeks old 

Cluster 3 10 weeks old 

Table 5.1 Median age of age group 2 infants were clustered with the other age groups 

instead 
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With this clustering scheme we see that despite not knowing the true age group of 70% of 

the infants, the clustering algorithm placed many of these infants in the cluster that contains 

other infants who, in the majority, are of the same age group as one another.  

Of particular interest are infants who are in age group 3 that were clustered with age group 

1. Referring back to the notes during the recording sessions we see comments from the 

clinician that say that these infants were “fussy” and had “insufficient complexity & 

variability”. Indicating that relative to the older age group, the younger age groups had less 

complexity and variability in their movements. 

The infants who were in age group 1 and 2 who clustered in cluster 3 are those infants who 

were relatively more active and who utilized all their limbs in a complex fashion. 

Particularly one infant who received the highest GM rating from the clinician, clustered 

with age group 3 despite their age falling into age group 2. 

Again it must be emphasized that, though these results do validate our expected clustering, 

they cannot be completely trusted because of how the data was sampled. Multiple 

observations were sampled from the same infant and this breaks the i.i.d. assumption of 

statistical models such as the GMM and by extension the MFA. More sophisticated 

clustering algorithms that take into account our data structure and sampling methods must 

be used, such as for example giving each infant a multi-dimensional matrix and clustering 

the matrices as a whole. See Tait and McNicholas (2019) for a potential approach. 
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5.1.2 Interpretation of factors 

The features used in this thesis were carefully selected or created to reflect qualitative 

aspects of GMs that are common in GM evaluation. These aspects are the complexity, 

variability, and fluency of movements. Ideally a low dimensional projection of the feature 

matrix should be found that projects all the features on these three axis so that a 

visualization of complexity, variability, and fluency can be seen and infants can be rated 

along these “factors”. 

5.1.3 Clustering with abnormal GMs 

The immediate next step is to collect GM data from babies who are considered at risk of 

having developmental disorders. These include babies who are born pre-maturely, or those 

who had complications during birth. Once the “abnormal” GMs are collected, they should 

be tested against the healthy GMs through training classifiers or comparing against healthy 

GM clusters.  

As noted in the background (section 1.1), GM evaluation is being looked at for early 

evaluation of many pathologies including various forms of Cerebral Palsy, but also Autism 

Spectrum Disorder. It is important that more data is collected from at-risk infants and 

compared with the low-risk infant database in order to establish feature markers that 

distinguish the two groups clearly. This would also allow automation of diagnosis, which 

is one of the main desirable outcomes of this research direction. 
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5.1.4 Misclassified infants 

An in-depth investigation into the infants who were significantly misclassified needs to be 

conducted as well. Though not many infants were significantly misclassified so as to cause 

concern for the integrity of the classifiers, but it is important that these misclassifications 

be investigated, through a non-black box model, to understand what aspects of their GMs 

caused them to be misclassified into significantly higher or lower age groups than their 

respective age group.  

5.2 Summary of thesis 

In this thesis, we studied the classification of infants into various age groups based on their 

movement characteristics. These movement characteristics were carefully chosen to model 

aspects of GMs which clinicians use to qualitatively evaluate GMs. We showed that 

complexity and variability features help to discriminate between the different age groups 

and that we can achieve good precision and accuracy on predicting the age group. On the 

other hand, fluency related features did not have a significant importance for classification 

and this is in agreement with what the GM literature says about fluency in the age range of 

the infants who participated in this study. Though the classifiers achieved good accuracy 

on the 2 class classification task, they showed notable overlap when finer binning of age as 

a label was used. This was addressed by instead clustering the infants in a semi-supervised 

fashion. The clusters reflected different age groupings that are reflective of a healthy 

developmental trajectory, but also showed the variance that exists in infants where some 

infants develop at a faster or slower pace than others within their age group. 
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