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ABSTRACT 

Background and Objectives 

 While the number of adopting stratified cluster randomized trials (CRTs) is 

increasing, we have limited knowledge about the methodological and statistical issues 

pertaining to this design. 

 Our objectives were to (i) survey the literature to assess the methodological and 

statistical issues and quality of reporting of stratified CRTs; (ii) examine the sensitivity of 

methods for analyzing data from stratified CRTs; (iii) evaluate the performance of methods 

for analyzing continuous data from stratified CRTs. 

Methods  

 We conducted a systematic survey and identified the stratified CRTs from the 

database MEDLINE. Data were abstracted on several methodological and statistical issues 

including sample size, randomization, and method of analysis. Two empirical studies were 

conducted to examine the robustness of methods for analyzing continuous and count data 

from stratified CRTs. Furthermore, a simulation study was performed to evaluate the 

performance of methods for analyzing continuous data from stratified CRTs under different 

scenarios including number of clusters, and cluster sizes. 
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Results and Conclusions 

 There was significant deficiency in reporting and analysis of data from stratified 

CRTs. The majority of the studies did not adjust the primary method for both clustering 

and stratification to assess the intervention effect.  

 The results from the empirical studies indicated that the methods for analyzing 

continuous and count data yielded similar conclusions. However, these methods varied in 

terms of magnitude of the effect sizes and widths of the 95% confidence intervals (CIs). 

Moreover, these studies demonstrated that, widths of the 95% CIs were narrower, and p-

values were lower when adjusted for stratification compared to without adjusted for 

stratification. 

 The results from the simulation study showed that, performance of all methods 

improved as the number of clusters and cluster sizes increases. However, the performance 

of these methods deteriorated as the value of intra-cluster correlation coefficient (ICC) 

increases. Generalized estimating equations (GEE) and meta-regression yielded type I error 

rate of approximately 10% for small number of clusters. Meta-regression was the least 

powerful and efficient method compared to GEE, mixed-effects, and cluster-level linear 

regression methods. 

 The contributions of this thesis will guide the researchers to make informed 

decision about assessing the intervention effect and reporting of stratified CRTs.       
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Chapter 1 

Introduction 

 

1 Introduction 

Randomized controlled trials (RCTs) plays a vital role in evidence-based medicine 

(EBM) as these trials are the ‘gold standard’ for assessing the efficacy or effectiveness of 

treatments or interventions. RCTs can be based on individuals – where individual 

participants are randomized into intervention groups, or clusters – where intact clusters are 

randomized into intervention groups, which is known as cluster randomized trials (CRTs) 

[1]. Over the last couple of decades, the number adopting CRTs with stratified design to 

evaluate the intervention effect has been increasing [2, 3]. However, less attention has been 

given to methodological and statistical issues pertaining to stratified CRTs. 

 

1.1 Cluster Randomized Trial 

In CRTs, intact groups or clusters of individuals are randomly assigned to 

intervention groups [1]. These clusters can be diverse such as communities [4], schools [5], 

or geographical areas [6]. For example, in the CHAP trial, intact communities were 

randomized to assess the efficacy of community-based cardiovascular health awareness 

program [4]. 
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1.1.1 Reasons for randomizing clusters 

 The most common reasons for randomizing clusters of individuals, instead of 

individuals, are: 

 

 (i) Type of intervention is suitable for cluster randomization:  

In RCTs, we generally assess the efficacy of a treatment or medical interventions 

applicable to individual patients. However, there are certain type of interventions which 

are convenient and cost effective to deliver in the communities or other form of groups 

[7,8]. For example, general practices (GPs) were randomized in the diabetes education and 

self management for ongoing and newly diagnosed (DESMOND) trial to assess the 

effectiveness of an educational intervention about type II diabetes [9]. It is appropriate to 

deliver this intervention in a group, otherwise patients under the same doctor may wonder 

why some patients receiving different treatment and may demand the same. 

 

 (ii) To avoid treatment Contamination:  

One of the main reasons for adopting CRTs is to avoid contamination – which 

occurs when participants in one intervention group receive part or full intervention 

allocated to another group [8]. In the vitamin D and osteoporosis (ViDOS) trial [10], the 

long-term care (LTC) homes were randomized into intervention knowledge translation 

(KT) group and control group, to assess the efficacy of KT intervention on improving the 

prescription of vitamin D, calcium and osteoporosis medications. If individual residents 

from the same LTC were randomized to different intervention groups, there would be a 
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chance of contamination as professionals or participants in the same LTC may alter their 

practice for all residents. 

 

(iii) Convenience: 

Sometimes CRTs have greater logistical convenience than the RCTs on individuals 

[8]. In the Ghana vitamin A supplementation trial (VAST) study [11], more than 20,000 

children were enrolled to assess the efficacy of Vitamin A on mortality – a rare outcome. 

It would be difficult to organize this study by individually randomizing these 20,000 

children, especially for the field workers. Because field workers, who delivered the study 

interventions, Vitamin A or placebo, would require carrying the list of children and check 

the groups these children were assigned to over the course of study period. Instead of 

randomizing individual children the investigators divided the study investigators into 185 

geographical clusters with more than 100 children per cluster and randomized these clusters 

into vitamin A or placebo groups, which was much more convenient.   

 

1.1.2 Methodological and statistical issues due to randomizing clusters 

 There are several methodological and statistical issues that arises due to 

randomization of intact clusters, which need to be taken into account in the design and 

analysis CRTs. 
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1.1.2.1 Within cluster correlation/Between cluster variation 

Due to allocation of intact clusters of individuals the outcomes measured on the 

individuals in the same cluster are likely correlated. Within cluster correlation and between 

cluster variation represent two separate perspectives of the same phenomenon [8]. The 

degree of similarity among the outcomes from the same cluster is measured by intra-cluster 

correlation coefficient (ICC), denoted by the Greek letter 𝜌 [1,7,8], is given by 

𝜌 =
𝜎𝑏
2

𝜎𝑏
2 + 𝜎𝑤2

 

Where, 𝜎𝑏
2 is the between-cluster variance; 𝜎𝑤

2  is the within-cluster variance 

ICC, 𝜌, generally, fall between 0 and 1[1,8]. A 𝜌 = 0 indicates there is no clustering or no 

between-cluster variance. On the other hand, 𝜌 = 1 indicates subjects in the same cluster 

are perfectly correlated. ICC is analogous to the standard Pearson correlation coefficient 

between any two observations from the same cluster [1]. 

 Hayes and Moulton [8] defined a new approach to summarize the between cluster 

variability, known as coefficient of variation (CV), defined as the ratio of the standard 

deviation between clusters (𝜎𝑏) and overall mean of the outcome [7,8].  

 

1.1.2.2 Design effect 

 In CRTs, data are collected from cluster sample of individuals, instead of simple 

random sample (SRS), and design effect (DE) is used to measure the inflation in variance 

due to this sampling [8]. Design effect is defined as the ratio of the variance of the outcome 

when clustering is taken into account to the variance of the outcome when clustering is not 
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taken into account and is given by 1 + (�̅� − 1)𝜌, where �̅� is the average cluster size 

[1,7,8]. Inflation can be large even with small ICC if the average cluster size is large. For 

example, for a study with an estimated ICC, �̂� = 0.02, and average cluster size, �̅� = 52, 

the estimated DE is 1 + (�̅� − 1)𝜌 = 1 + (52 − 1) ∗ 0.02 = 2.02, i.e. we need twice as 

many participants as the RCT on individuals [7]. Design effect is also referred to as the 

variance inflation factor (VIF) since it measures the increase in the variance resulting from 

ignoring the clustering to allow for clustering [1,8]. If we conducted a CRT but performed 

the analysis like an RCT assuming individuals are independent, the standard error of the 

estimated parameters will be underestimated by √2.02 and more likely to lead to spurious 

statistically significant results [1,7].   

 

1.1.2.3 Unit of analysis 

 There are two main approaches for analyzing data from CRTs: 

 

 (i) Cluster-level analysis 

 This is a two-stage approach. In the first stage, a summary measure of the outcome 

of interest for each cluster is obtained. In the second stage, an appropriate statistical method 

is used to analyze the summary measure from each cluster [8]. 

 

 (ii) Individual-level analysis 

 Individual-level analysis is a one-stage process and based on individual-level data. 

It is possible to measure the effects of covariates through an individual-level analysis. 
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However, this approach may not perform well for CRTs with a small number of clusters 

[8]. 

 

1.2 Design of cluster randomized trials 

 In CRTs, clusters are usually allocated to intervention groups using three basic type 

of designs: (i) completely randomized – involve no stratification or matching on baseline 

prognostic factors; (ii) matched-pair – involve random assignment of two matched clusters 

into different intervention groups in each stratum; and (iii) stratified – extension of 

matched-pair design where more than two clusters in one stratum are randomized into 

intervention groups.  

 

1.2.1 Stratified cluster randomized trial  

 In stratified CRTs, the available clusters are first grouped into two or more strata 

based on some prognostic, regional, socio-economic, epidemiologic, or other factors [1,8]. 

Then, the clusters within each stratum are randomized into intervention groups. The 

Mallick et al [2] study is an example of a stratified CRT, where schools were first divided 

into quintile (1-3: lower and 4-5: higher) and stratified as a high vs low school based on 

the socio-economic resources [12]. Then, within each stratum schools were randomized 

into Classroom Communication Resource (CCR) or Usual Care groups to examine the 

effect of CCR on peer attitude towards children who stutter [12].  

 A stratified design, aims to reduce the variance of the estimated intervention effect, 

is falls between completely randomized and matched-pair design. This design can help to 
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achieve more reduction in the variance of the estimated intervention effect than the pair-

matched design [13]. A stratified design has several advantage over a matched-pair design 

including (i) it is more efficient and powerful due to the loss of fewer degrees of freedom; 

(ii) since there is more than two clusters in each stratum it is possible to test for variation 

in intervention effect between strata; (iii) if all strata have more than two clusters, loss of 

data from one cluster does not lead to any missing strata [8]. A stratified design is suitable 

for study with both small and large number of clusters since it has superior or similar 

precision and power compared to matched-pair and completely randomized design, 

respectively [8]. 

 

2 Methodological developments  

 There has been a great deal of methodological developments in the field of CRTs, 

over the last five decades, since the publication of the landmark paper by Cornfield in1978 

[14] and subsequent publication of statistical notes in BMJ [15-18] and two key books [1, 

19]. There are reviews that documented the methodological developments [20, 21]. 

Recently published books [7, 8, 22] also detailed the development in design and analysis 

of CRTs including sample size calculation, recruitment of clusters and individuals, ethics 

considerations, estimation of ICCs, statistical analysis methods, and reporting guideline.  

 Two individual-level analysis models for CRTs are commonly used in practice: (i) 

cluster-specific (CS) – estimate the average intervention effect if a participant stays in the 

same cluster but move from control to treatment arm; (ii) population-average (PA) – 

estimate the average intervention effect if a participant in the population move from control 
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to treatment arm [22]. Mixed-effects [23] – a CS approach, and generalized estimating 

equation (GEE) [24] – a PA approach, are two models commonly used to analyze the 

continuous, binary and count data from CRTs [1,7,8,22]. In addition, Bayesian methods 

have been developed for analyzing data from CRTs [25-28]. 

 Several innovative design strategies including stepped wedge and pseudo cluster 

randomized design have been developed and the methods have been developed to analyze 

the data from these designs [22]. Moreover, the CONSORT statement has been extended 

to guide the researchers about reporting of CRTs [29]. 

 

2.1 Methodological developments in stratified CRTs 

 Like standard CRTs, it is necessary to adjust for clustering as well as stratification 

to assess the intervention effect of a stratified CRT [1,7,8,22]. Ignoring the adjustment for 

stratification leads to wider confidence intervals and larger p-values [30]. Thus, we may 

fail to identify the intervention effect when it does exist [30].  

 Both PA and CS methods discussed in the previous section, adjusting for 

stratification, can be used to assess the intervention effect from stratified CRTs [1,22]. 

Researchers have investigated the performance of methods for analyzing data from CRTs 

[31,32, 33]. On the other hand, sensitivity analysis helps us to assess the robustness of the 

results obtain from the primary method [34]. However, most of these focused on a 

completely randomized design and there is very limited knowledge about the sensitivity of 

methods for analyzing data from stratified CRTs in the literature. 
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3 Methodological and statistical challenges of stratified CRTs addressed in this thesis 

 Several methodological and statistical challenges are addressed in this thesis, which 

would be beneficial for design, analysis, and reposting of stratified CRTs. The objectives 

of this thesis are to (i) conduct a systematic survey of the literature to assess the statistical 

and methodological issues and quality of reporting; (ii) investigate the sensitivity of 

methods for analyzing data; (iii) assess the impact of not adjustment for stratification 

through empirical comparison; (iv) use simulation to evaluate the performance of methods.  

 

3.1 Systematic survey of the literature to assess the current practice about reporting 

and analysis of data from stratified CRTs 

  Systematic survey of the literature and summarizing evidence about the current 

practice are essential to understanding the design characteristics, reporting and analysis of 

data from stratified CRTs. Moreover, this summarization helps us to understand whether 

there a lack of reporting and analysis methods to assess the effect of intervention, or 

whether there is any need for improvement. Kahan and Morris [30] summarizes the 

evidence from stratified RCTs on individuals and found that only 26% of the studies 

adjusted the primary analysis for balancing or stratification factors. Taljaard et al [35] 

recommended the search terms to identify the CRTs. To our knowledge, there is no such 

summarization of evidence regarding reporting and analysis of data from stratified CRTs.  

 In this thesis, we systematically surveyed the literature and identified the stratified 

CRTs by adding the term ‘strati*’ with the search terms suggested by Taljaard et al [35] 

from the database MEDLINE since the inception to July 2019. We summarized the 
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evidence on several aspect of design characteristics including sample size, randomization, 

method of analysis, and reporting of results.   

 

3.2 Sensitivity of methods for analyzing continuous data from stratified CRTs 

 It is vital to assess the robustness of the results obtained from the RCTs or CRTs 

[34]. Sensitivity analysis plays an important role to examine the robustness of the 

conclusion that obtained from the primary method [34]. For CRTs, sensitivity analysis can 

be performed in different ways including (i) using methods different from the primary 

method; (ii) with or without adjusting for clustering; (iii) using different correlation 

structure [34].   Methods used to analyze the data from completely randomized CRTs can 

be extended to stratified CRTs [1, 22]. These methods fall into two broad categories: 

individual-level methods – based on individual-level data and cluster-level methods – 

based on cluster-level summary measurements.  Mixed-effects model [23] and generalized 

estimating equation (GEE) [24] are individual-level methods. The meta-analytic approach 

[36] can be used to assess the effect of intervention across all strata of stratified CRTs, like 

multi-centre trials [37-39].  There is very limited investigation on the sensitivity of method 

for analyzing continuous data from stratified CRTs.  

 The outcome from stratified CRTs can be count data.  For example, one of the 

outcomes in the Vitamin D and Osteoporosis Study (ViDOS) [10] was number of falls, 

which was over-dispersed (mean was smaller than the variance) with excessive zeros. 

Cluster-specific and population-average extension of Poisson regression can be used to 

analyze the count data from CRTs [1, 40]. Similarly, Pacheco et al [41] investigated the 
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performance of methods for analyzing over-dispersed count data from CRTs. However, 

researchers were mostly focused on completely randomized CRTs. 

In this thesis, we investigated the sensitivity of methods for analyzing continuous 

and count data using the data from Mallick et al [12] and the ViDOS study [10], 

respectively.  

 

3.3 Assess the impact of not adjustment for stratification 

 Failure to adjust for stratification leads to wider confidence intervals and a larger 

p-value of the estimated intervention effect [30]. Kahan and Morris [30] demonstrated the 

impact of not adjusing for stratification in their study based on RCT on individuals.  

 In this thesis, we empirically examined the impact of not adjusting for 

stratification using the data from two stratified CRTs – Mallick et al  [12] and ViDOS 

[10] studies. 

 

3.4 Performance of methods for analyzing data from stratified CRTs 

 Assessing the performance of methods is essential to help researchers choose the 

optimal methods to estimate the intervention effect. Researchers have investigated the 

performance of methods from CRTs, which were mostly limited to completely randomized 

CRTs [32, 42-45]. Performance of several mixed-effects methods incorporating the 

individual- and cluster-level association, was examined to analyze the pretest-postest 

continuous outcome from CRTs [43]. On the other hand, Borhan et al [42] and Austin [32] 

focused on the performance of methods for analyzing binary data. Chu et al [46] 
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investigated the performance of several methods including meta-regression to examine the 

intervention effect from multicentre RCTs. We have very limited evidence regarding the 

performance of methods for analyzing data from stratified CRTs. 

 In this thesis, we conducted a simulation study to appraise the performance of 

several methods for analyzing continuous data from stratified CRTs. The performance of 

these methods was examined in diverse scenarios including varying the number of clusters, 

cluster size, effect size, and ICCs.   

 

 

4 Scope and outline of this thesis 

 

 This is a ‘sandwich’ thesis with four papers. First, we conducted a systematic 

survey to summarize the evidence about reporting and analysis of data from stratified 

CRTs. Second, we conducted an empirical study to examine the sensitivity and assess the 

impact of not adjusting for stratification when the outcome of interest is continuous. Third, 

we empirically assessed the sensitivity and impact of not adjusted for stratification in the 

case of count outcome. Fourth, we conducted a simulation study to evaluate the 

performance of methods for analyzing continuous data from stratified CRTs. Two of these 

four research works have been published while the other two are under review. 

In this thesis, we focused on the following research questions: 

1. What is the quality of reporting stratified CRTs? 

2. Is the intervention effect assessed through proper adjustments – namely, clustering and 

stratification? 

3. How robust is the methods for analyzing continuous data from stratified CRTs? 
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4. How robust is the methods for analyzing over-dispersed count data with excessive zeros 

from stratified CRTs? 

5. What is the impact of not adjusting for stratification?  

6. How the varying number of clusters, cluster sizes, ICCs, and effect sizes impact the 

performance of methods for analyzing continuous data from stratified CRTs? 

 
 In Chapter 2, we summarized the evidence regarding reporting and analysis of data 

from stratified CRTs. We focused on several vital methods and design characteristics 

including sample size, randomization and reporting of results. Also, we summarized the 

evidence about the primary method for assessing the intervention effect from stratified 

CRTs. 

In Chapter 3, we examined the sensitivity of methods for analyzing continuous data 

from stratified CRTs. We empirically compared several methods for examining the 

intervention effect.  

Chapter 4 contains the results of the empirical comparison of sensitivity of methods 

for analyzing count data, especially when the outcome was over-dispersed with excessive 

zeros, i.e. zero-inflated over-dispersed count data from stratified CRTs. 

In Chapter 5, we conducted a simulation study to explore the performance of several 

methods for analyzing continuous data from stratified CRTs. The performance of these 

methods was evaluated under different scenarios including varying number of clusters, 

cluster sizes, ICCs and effect sizes.    

Chapter 6 contains the discussion and conclusion. 
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Certainly, the evidence from this thesis will guide the researchers and decision 

makers to make informed decision about the reporting of stratified CRTs and methods for 

assessing the intervention effect from stratified CRTs.  
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Abstract 

Background 

In order to correctly assess the effect of intervention from stratified cluster 

randomized trials (CRTs) it is necessary to adjust for both clustering and stratification, as 

failure to adjust can lead to erroneously large p-values and wider confidence intervals. We 

have conducted a systematic survey the literature to examine the analysis and reporting of 

stratified CRTs. 

 

Method 

We used the search terms to identify stratified CRTs from MEDLINE since the 

inception to July 2019.  In phase 1, we screened the title and abstract for English only study 

and selected studies, including the protocols, for the next phase. In phase 2, we screened 

the full text, identified the published main results of the protocol papers of phase 1, and 

selected studies for data abstraction. Data abstraction form was piloted and developed using 

REDCap. We abstracted data on multiple study characteristics including whether the 

primary method adjusted for clustering and stratification, and reporting of sample size, 

randomization, and effect estimate. 
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Results 

We screened 2686 studies in the phase1 and selected 286 studies for phase 2 - 

among them 185 studies were selected for data abstraction. Most of the selected studies 

were two-arm 140/185(76%) and parallel–group 165/185(89%) trials. Twenty-seven 

(15%) of the 185 studies did not provide any sample size or power calculation, while 

105(57%) studies did not mention any method used for randomization. Further, 43(23%) 

and 150(81%) of 185 studies did not specifically provide information about how the strata 

were defined and included in the flow chart for all the stratification variables, respectively. 

More than half 114/185(62%) of the studies did not adjusted for both clustering and 

stratification and 66/73(90%) of the studies adjusted for stratification as a covariate. 

 

Conclusion 

Stratification helps to achieve the balance among intervention groups. But to 

correctly assess the intervention effect from stratified CRTs, it is important to adjust the 

primary analysis for both stratification and clustering. Reporting of stratified CRTs require 

substantial improvement in several areas including definition of strata, inclusion of 

stratification variable(s) in the flow chart or baseline characteristics table, and the stratum-

specific number of clusters and individuals in the intervention groups. 

Key words: Stratification, Cluster randomized trial, Systematic survey  
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Background 

The random allocation of intact group of subjects - termed as clusters, into 

intervention groups are commonly known as cluster randomized trials (CRTs) [1]. The 

number of adopting CRTs to assess the effect of intervention is increasing [2]. The type of 

clusters can be diverse such as: geographical areas [3]; health care districts [4]; and schools 

[5]. There are several type of experimental design strategies that are used to allocate 

clusters including: completely randomized, stratified and matched-pair. Clusters are 

randomly allocated to intervention groups within each stratum in stratified design, which 

is suitable for small number of clusters [6].    

The potential degree of similarity among the outcomes from the same cluster, 

measured through intra-cluster correlation coefficient (ICC), should be taken into account 

to assess the intervention effect from cluster randomized trials [1]. The failure to account 

for this correlation may yield a false positive result [1,7]. Scientists have developed and 

recommended statistical methods that can be used to examine the intervention effect, while 

taking into account the ICC of clustering [1]. In addition, in the case of a stratified design 

the statistical methods need to adjust for stratification [1]. It has been shown in the literature 

that variables used in the randomization process should be adjusted for in the analysis [8-

13]. The absence of such adjustment in the analysis can yield large p-values and wider 

confidence intervals, which could potentially lead to a misleading conclusion that the 

intervention has no effect [14]. Borhan et al [15] empirically compared the methods for 

analyzing continuous data from stratified CRTs and reported that confidence intervals were 
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wider when not adjusted for stratification compared to when adjusted for stratification for 

the corresponding method.    

Thus, to correctly assess the effect of intervention it is important to adjust for 

stratification variables as it will yield correct p-values and confidence intervals. Kahan and 

Morris [14] conducted a small-scale review on randomized trials and reported that only 

26% of the studies adjusted for the balancing factors in their primary analysis. However, 

we have limited or no knowledge on how often the assessment of intervention effect from 

the stratified CRTs adjusted for clustering and stratification occurred.  

In this study, we conducted a systematic survey to examine the analysis and 

reporting of stratified CRTs, which covered several aspects including how often the 

primary method to examine the effect of intervention adjusted for both clustering and 

stratification as well as whether the reporting of sample size calculations, randomization, 

and stratification were adequate.  

 

Method  

In this systematic survey we identified the stratified cluster randomized trials and 

abstracted data on multiple study characteristics including sample size estimation, 

randomization, analysis and reporting. 
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Search strategy and study selection 

We added the term ‘strati*’ with the search terms (Table 1) suggested by Taljaard 

et al [16] to identify the stratified cluster randomized trials from MEDLINE since 1946 to 

July 2019. First, we performed title and abstract screening and selected the English only 

studies in the protocol. In the next phase, we screened the full text selected in the first phase 

and identified the studies for data abstraction. We used the protocol paper to identify the 

published main study results included in the study. In the case of multiple articles form the 

same trial we included only the main study results. Selection of studies were performed 

using EndNote X8. PRISMA flow diagram [17] was used to document the study selection 

process. 

 

Data abstraction 

A data abstraction form was piloted and developed using REDCap. Data abstraction 

form include data on many study characteristics including country, clinical area, setting of 

the study, sample size calculation, randomization, analysis of primary outcome, and 

reporting. 

 

Outcome and analysis 

We abstracted data on several methodological and reporting areas related to 

stratified CRT and descriptive summary: n (%) or mean (SD) or median (Q1, Q3), were 
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used to analyze the outcomes. There were several outcomes on reporting of sample size or 

power calculation including whether sample size or power, used level of significance, 

desired power, and adjustment of sample size for lost to follow-up reported. Similarly, we 

abstracted data on several issues related to randomization including: randomization unit, 

number and type of stratification variables and strata and method used for randomization. 

Several outcomes from the methods of primary outcome analysis were analyzed including: 

type of primary outcome, unit of analysis, type of primary analysis, whether the primary 

method adjusted for stratification or clustering or both, how the primary method adjusted 

for stratification variables, whether missing data were imputed or sensitivity analysis was 

performed, and statistical significance of intervention effect (only for 2-arm trials). 

Moreover, we abstracted data on several outcomes related to reporting including whether: 

study flow chart or baseline characteristics table included stratification variables, number 

of clusters or individuals for each stratum provided and the estimated ICC reported. See 

results section for details about the outcomes.  

 

Results 

Using the search strategy recommended by Taljaard et al [16] we have identified 

2686 papers from MEDLINE since the inception to July 2019 (Table 1). At phase 1 we 

conducted title and abstract screening and identified 286 papers, including the protocols, 

for the next phase (Figure 1). In phase 2, we screened the full texts and identified the main 
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results papers of the protocols from phase 1 for data abstraction. Finally, 185 studies were 

selected for analysis (Figure 1). 

The results of some basic characteristics of the selected studies are provided in 

Table 2. About 80% of the studies were from 2010 to 2019, while only 7 (4%) studies were 

from before 2000. Almost half of the studies, 48% were one centred, and most of the studies 

(31%) were conducted in USA or UK (Table 2). Thirty-six (19%) and 27 (15%) studies 

were focused on interventions related to child development or primary care/general 

practices. Almost the same number of studies 36 and 38 were school- or general practice-

based, respectively (Table 2). Most of the studies 140 (76%) and 165 (89%) studies were 

2-arm and parallel-group trials, respectively (Table 2). 

One hundred and fifty-eight (85%) out of 185 studies provided sample size or 

power calculations while 66% of the studies adjusted for clustering (Figure 2). While more 

than 80% of the studies reported the level of significance or desired power in sample size 

or power calculations, only 10% of the studies reported the method used and 28% of the 

studies adjusted for lost to follow-up in sample size/power calculations (Figure 2). Like the 

setting of the study almost similar numbers of studies used school or primary care/general 

practice as the randomization unit (Figure 3). Almost half of the studies had one 

stratification variable, while only 2% of the studies had 4 or more stratification variables. 

Most of the stratification variables (35%) were based on geographical location or distance. 

More than half of the studies (57%) did not provide the method used for randomization, 

while 23% of the studies specified all the strata (Figure 3).   
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The results outcomes related to method of analysis of primary analysis are provided 

in Table 3. The primary outcome of 83% of the studies were continuous or binary. One 

hundred and forty-three (77%) studies performed individual-level analysis, while for 8% 

of the studies, it was not clear whether they performed cluster-level or individual-level 

analyses. More than half (52%) of the studies used an intention-to-treat approach as their 

primary analysis approach, while 43% of the studies did not mention their primary analysis 

approach (Table 3). Seventy-one (38%) studies reported primary method/effect estimate 

adjusted for both clustering and stratification, among the studies adjusted for stratification, 

90% of the studies adjusted for stratification by using them as the covariate(s) (Table 3). 

Twenty-five (47%) of the studies reported their statistically significant intervention effect, 

among the studies where the effect estimate adjusted for both clustering and stratification. 

The results of outcomes pertaining to reporting of outcomes are provided in Figure 4. Only 

19% and 31% of the studies included stratification variables in the flow chart or baseline 

characteristics table. Only 10% of the studies reported stratum-specific effect estimate.     

 

Discussion 

In this, first-ever, systematic survey we selected 185 stratified cluster randomized 

trials from MEDLINE since the inception to July 2019 and found that 38% of the studies 

reported effect estimate adjusted for both clustering and stratification. This results largely 

supported by the findings of Kahan and Morris [14], as they reported 26% of the studies 

from their review adjusted for balancing factors. 
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As we discussed before, in order to correctly assess the effect of intervention, it is important 

to analyze the primary/secondary outcomes adjusted for stratification variables as well as 

clustering [14], which is also established from the empirical study of Borhan et al [15]. 

From this systematic review it is evident that this type of adjustment is still scarce as more 

than half of the studies did not adjust for both stratification variables and clustering.  

Along with performing adjusted analyses we also need to focus on other areas of 

stratified cluster randomization trials including: sample size calculation and randomization. 

Like randomized controlled trials on individuals it is necessary to report all the information 

used to calculate the sample size including detectable difference, level of significance, and 

desirable power. Further, it is also necessary to report the randomization method used to 

allocate clusters to intervention groups for each stratum, which was not reported by most 

of the studies in this survey.   

It is noteworthy from this systematics survey that there are significant deficiencies 

in reporting the results from the stratified CRT. Reporting on the following areas, at 

minimum, would better represent and help the audience to better understand the stratified 

nature of this type of study: (1) only a few studies provided the reasoning for stratification. 

Reporting the reasoning for stratified design and choosing the stratification variable(s) 

would be helpful; (2) more than 20% of the studies did not provide the definition of all the 

strata. For a stratified design it is essential to report how all the strata are defined; (3) almost 

all the studies provided the study flow chart, while only 19% and 31% of the studies 

included stratification variables/strata in the flow chart or in baseline characteristic table, 

respectively. Inclusion of stratification variables in the flow chart or baseline characteristics 
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table would provide the clear depiction of the design; (4) only 20% and 11% of the studies 

reported the stratum-specific number of clusters and individuals in the intervention groups, 

respectively. Thus, more attention is needed to report these numbers; (5) reporting the 

stratum-specific, if possible, would help the readers to know the intervention effect in each 

stratum.   

The major strength of this study was that we used the search terms recommended 

by Taljaard et al [16] to select the stratified cluster randomized trials from one of the largest 

database MEDLINE. Also, we included the published main trial results of the protocols 

selected in title and abstract screening. Further, this survey was based on the time period 

from 1946 to 2019. The major limitation of this study that, only one reviewer conducted 

this survey. Despite multiple checking or best effort, it is possible that, the reviewer may 

have failed to include some of the eligible studies.  

A well-designed large-scale systematic review would depict a more complete 

picture about the analysis and reporting status of stratified cluster randomized trials. 

Furthermore, a guideline for analysis and reporting of stratified cluster randomized trials 

would be helpful to guide the researchers. 

 

Conclusion 

In this, first-ever, systematic survey we identified and selected stratified cluster 

randomized trials since inception 1946 to July 2019 for analysis. More than half (57%) and 

15% of the studies did not report the method used for randomization and sample size or 
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power calculation, respectively. Similarly, primary method or reported intervention effect 

for more than half (62%) of the studies were not adjusted for both clustering and 

stratification. Also, there was substantial lack in reporting as only 23% of the studies did 

not provide details on how all the strata were defined, while 81% and 69% of the studies, 

respectively, did not include stratification variables in the study flow chart and did not 

provide stratum-specific summary statistics. To assess the intervention effect using 

stratified cluster randomized trial the analysis method should be adjusted for both 

stratification and clustering. Further, this type of study requires substantial improvement 

in reporting such as details about sample size/power calculation and randomization, 

definition of all strata, inclusion of stratification variable(s)/strata in study flow chart or 

baseline characteristics table, and stratum-specific number of clusters and individuals in 

the intervention groups. A reporting guideline focusing on stratified cluster randomized 

trial would help guide the researchers about analysis and reporting of data from this type 

of study.    
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Table 1: Search terms used to identify studies from MEDLINE since the inception 

to July 2019 

1     randomized controlled trial.pt. (485792) 
2     animals/ (6439569) 
3     humans/ (17863499) 
4     2 not (2 and 3) (4567683) 
5     1 not 4 (474298) 
6     (clusters$ adj2 randomi$).tw. (203) 
7     ((communit$ adj2 intervention$) or (communit$ adj2 randomi$)).tw. (7588) 
8     group$ randomi$.tw. (3177) 
9     6 or 7 or 8 (10908) 
10     intervention?.tw. (861625) 
11     cluster analysis/ (59383) 
12     health promotion/ (70103) 
13     program evaluation/ (59930) 
14     health education/ (59114) 
15     10 or 11 or 12 or 13 or 14 (1051673) 
16     9 or 15 (1053569) 
17     16 or 5 (1434924) 
18     16 and 5 (92943) 
19     strat*.mp. (1177180) 
20     17 and 19 (160437) 
21     18 and 19 (11717) 
22     strati*.mp. (168454) 
23     17 and 22 (24676) 
24     18 and 22 (2686) 
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Figure 1: Flow chart of study selection 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



PhD Thesis – S. Borhan; McMaster University 

Health Research Methodology, Biostatistics Specialization 
 

39 
 

Table 2: Results of study characteristics 

Characteristics  Number of studies 

 included; n=185 

Publication year; n (%) 

Before 2000 

Between 2001 and 2010 

Between 2011 and 2019 

 

7 (4) 

30 (16) 

148 (80) 

Centre of study; n (%) 

One 

Two 

Three or more 

 

89 (48) 

44 (24) 

52 (28) 

Country of the study; n (%) 

UK 

USA 

Canada  

India  

Australia  

Denmark 

Germany 

Netherlands  

South Africa 

Others  

 

32 (17) 

26 (14) 

8 (4) 

7 (4) 

15 (8) 

7 (4) 

5 (3) 

6 (3) 

8 (4) 

71 (39) 

Clinical area; n (%) 

Child development 

Primary care  

Maternal and child health 

HIV 

Cancer  

Malaria  

Cardiovascular  

Cognitive and mental health  

Others  

 

36 (19) 

27 (15) 

16 (9) 

12 (6) 

9 (5) 

9 (5) 

5 (3) 

10 (5) 

61 (33) 

Setting of the study; n (%) 

School  

General practice/Primary care 

Community  

Hospital  

Village  

Family  

Others  

 

36 (19) 

38 (21) 

36 (19) 

18 (10) 

10 (5) 

6 (3) 

41 (22) 

Design of the study; n (%) 

Parallel  

Cross-over  

 

165 (89) 

2 (1) 
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Stepped wedge 

Factorial  

Matched pair 

Split-plot 

Zelen design 

3 (2) 

7 (4) 

6 (3) 

1 (1) 

1 (1) 

Arm of the study; n (%) 

2  

3 

4 

5  

6 or more 

 

140 (76) 

28 (15) 

14 (8) 

2 (1) 

1 (1) 
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Figure 2: Results of outcomes related to sample size or power calculation among 

all the studies (n=185) 
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Figure 3: Results of outcomes related to randomization among all the studies 

(n=185) except type of stratification variables 
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Table 4: Results of outcomes related to analysis method among all the studies 

(n=185) except for significance of intervention effect 

Outcome  n=185 

Type of primary outcome; n (%) 

Continuous  

Binary  

Count  

Time to event 

Other  

 

64 (35) 

88 (48) 

28 (15) 

3 (2) 

2 (1) 

Unit of analysis; n (%) 

Cluster-level 

Individual-level 

Not clear 

 

28 (15) 

143 (77) 

14 (8) 

Primary approach of analysis; n (%) 

Intention-to-treat 

Per-protocol  

Not available  

 

96 (52) 

9 (5) 

80 (43) 

Primary method/Reported effect estimate adjusted for clustering 

or stratification; n (%) 

Clustering and stratification  

Clustering only 

Stratification only   

None  

 

 

71 (38) 

92 (50) 

2 (1) 

20 (11) 

Type of adjustment for stratification; n (%) [n=73] 

As a covariate  

Stratum specific estimate and then combine 

Stratum specific estimate 

 

66 (90) 

5 (7) 

2 (3) 

Imputed missing data; n (%) 

No 

Yes 

 

150 (81) 

35 (19) 

Performed sensitivity analysis; n (%) 

No  

Yes 

 

127 (69) 

58 (31) 

Intervention effect significant; n (%) [2-arm trials only; n=140] 

No 

Yes 

 

76 (54) 

64 (46) 

Significance of intervention effect among those adjusted for both 

clustering and stratification; n (%) [n=58] 

No 

Yes 

 

 

32 (55) 

26 (45) 

Significance of intervention effect among those not adjusted for 

both clustering and stratification; n (%) [n=82] 

No 

Yes 

 

 

44 (54) 

38 (46) 
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Figure 4: Results of reporting outcomes among all the included studies (n=185) 
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Appendix: PRISMA Checklist 

Section/topic  # Checklist item  
Reported on page 

#  

TITLE   

Title  1 Identify the report as a systematic review, meta-

analysis, or both.  

1 

ABSTRACT   

Structured summary  2 Provide a structured summary including, as 

applicable: background; objectives; data 

sources; study eligibility criteria, participants, 

and interventions; study appraisal and synthesis 

methods; results; limitations; conclusions and 

implications of key findings; systematic review 

registration number.  

2 

INTRODUCTION   

Rationale  3 Describe the rationale for the review in the 

context of what is already known.  

3 

Objectives  4 Provide an explicit statement of questions being 

addressed with reference to participants, 

interventions, comparisons, outcomes, and study 

design (PICOS).  

3 

METHODS   

Protocol and registration  5 Indicate if a review protocol exists, if and where 

it can be accessed (e.g., Web address), and, if 

available, provide registration information 

including registration number.  

There was no 

protocol and 

registration for this 

systematic survey. 

Eligibility criteria  6 Specify study characteristics (e.g., PICOS, 

length of follow-up) and report characteristics 

(e.g., years considered, language, publication 

status) used as criteria for eligibility, giving 

rationale.  

4 

Information sources  7 Describe all information sources (e.g., databases 

with dates of coverage, contact with study 

authors to identify additional studies) in the 

search and date last searched.  

4 

Search  8 Present full electronic search strategy for at least 

one database, including any limits used, such 

that it could be repeated.  

4, 10 

Study selection  9 State the process for selecting studies (i.e., 

screening, eligibility, included in systematic 

review, and, if applicable, included in the meta-

4 
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analysis).  

Data collection process  10 Describe method of data extraction from reports 

(e.g., piloted forms, independently, in duplicate) 

and any processes for obtaining and confirming 

data from investigators.  

4 

Data items  11 List and define all variables for which data were 

sought (e.g., PICOS, funding sources) and any 

assumptions and simplifications made.  

4 

Risk of bias in individual 

studies  

12 Describe methods used for assessing risk of bias 

of individual studies (including specification of 

whether this was done at the study or outcome 

level), and how this information is to be used in 

any data synthesis.  

This was a 

systematic survey 

on reporting 

analysis of data 

from stratified 

cluster randomized 

trials. Since this 

was not a clinical 

systematic review, 

we didn’t assess the 

risk of bias of 

individual study. 

Summary measures  13 State the principal summary measures (e.g., risk 

ratio, difference in means).  

This was a 

systematic survey 

on reporting 

analysis of data 

from stratified 

cluster randomized 

trials. Since this 

was not a clinical 

systematic review, 

there was no 

summary of the 

outcomes. 

Synthesis of results  14 Describe the methods of handling data and 

combining results of studies, if done, including 

measures of consistency (e.g., I2) for each meta-

analysis.  

This was a 

systematic survey 

on reporting 

analysis of data 

from stratified 

cluster randomized 

trials. Since this 

was not a clinical 

systematic review, 

there was no meta-

analysis or 

assessment of 

heterogeneity. 
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Risk of bias across 

studies  

15 Specify any assessment of risk of bias that may 

affect the cumulative evidence (e.g., publication 

bias, selective reporting within studies).  

This was a 

systematic survey 

on reporting 

analysis of data 

from stratified 

cluster randomized 

trials. Since this 

was not a clinical 

systematic review, 

there was no risk of 

bias across studies. 

Additional analyses  16 Describe methods of additional analyses (e.g., 

sensitivity or subgroup analyses, meta-

regression), if done, indicating which were pre-

specified.  

This was a 

systematic survey 

on reporting 

analysis of data 

from stratified 

cluster randomized 

trials. Since this 

was not a clinical 

systematic review, 

there was no 

sensitivity or pre-

specified subgroup 

analyses. 

RESULTS  

Study selection  17 Give numbers of studies screened, assessed for 

eligibility, and included in the review, with 

reasons for exclusions at each stage, ideally with 

a flow diagram.  

4,5 

Study characteristics  18 For each study, present characteristics for which 

data were extracted (e.g., study size, PICOS, 

follow-up period) and provide the citations.  

5, 12 

Risk of bias within 

studies  

19 Present data on risk of bias of each study and, if 

available, any outcome level assessment (see 

item 12).  

This was a 

systematic survey 

on reporting 

analysis of data 

from stratified 

cluster randomized 

trials. Since this 

was not a clinical 

systematic review, 

we didn’t assess the 

risk of bias of 

individual study. 
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Results of individual 

studies  

20 For all outcomes considered (benefits or harms), 

present, for each study: (a) simple summary data 

for each intervention group (b) effect estimates 

and confidence intervals, ideally with a forest 

plot.  

This was a 

systematic survey 

on reporting 

analysis of data 

from stratified 

cluster randomized 

trials. Since this 

was not a clinical 

systematic review, 

there was results of 

individual studies. 

Synthesis of results  21 Present results of each meta-analysis done, 

including confidence intervals and measures of 

consistency.  

This was a 

systematic survey 

on reporting 

analysis of data 

from stratified 

cluster randomized 

trials. Since this 

was not a clinical 

systematic review, 

there was no meta-

analysis. 

Risk of bias across 

studies  

22 Present results of any assessment of risk of bias 

across studies (see Item 15).  

This was a 

systematic survey 

on reporting 

analysis of data 

from stratified 

cluster randomized 

trials. Since this 

was not a clinical 

systematic review, 

there was no risk of 

bias across studies. 

Additional analysis  23 Give results of additional analyses, if done (e.g., 

sensitivity or subgroup analyses, meta-

regression [see Item 16]).  

This was a 

systematic survey 

on reporting 

analysis of data 

from stratified 

cluster randomized 

trials. Since this 

was not a clinical 

systematic review, 

there was no 

sensitivity or pre-

specified subgroup 

analyses. 
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DISCUSSION  

Summary of evidence  24 Summarize the main findings including the 

strength of evidence for each main outcome; 

consider their relevance to key groups (e.g., 

healthcare providers, users, and policy makers).  

5,6 

Limitations  25 Discuss limitations at study and outcome level 

(e.g., risk of bias), and at review-level (e.g., 

incomplete retrieval of identified research, 

reporting bias).  

6 

Conclusions  26 Provide a general interpretation of the results in 

the context of other evidence, and implications 

for future research.  

6,7 

FUNDING   

Funding  27 Describe sources of funding for the systematic 

review and other support (e.g., supply of data); 

role of funders for the systematic review.  

7 

 
From:  Moher D, Liberati A, Tetzlaff J, Altman DG, The PRISMA Group (2009). Preferred Reporting Items for Systematic 
Reviews and Meta-Analyses: The PRISMA Statement. PLoS Med 6(6): e1000097. doi:10.1371/journal.pmed1000097  

For more information, visit: www.prisma-statement.org.  
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A B S T R A C T

The assessment of the sensitivity of statistical methods has received little attention in cluster randomized trials
(CRTs), especially for stratified CRT when the outcome of interest is continuous. We empirically examined the
sensitivity of five methods for analyzing the continuous outcome from a stratified CRT - aimed to investigate the
efficacy of the Classroom Communication Resource (CCR) compared to usual care to improve the peer attitude
towards children who stutter among grade 7 students. Schools – the clusters, were divided into quintile based on
their socio-political resources, and then stratified by quintile. The schools were then randomized to CCR and
usual care groups in each stratum. The primary outcome was Stuttering Resource Outcomes Measure. Five
methods, including the primary method, were used in this study to examine the effect of CCR. The individual-
level methods were: (i) linear regression; (ii) mixed-effects method; (iii) GEE with exchangeable correlation
structure (primary method of analysis). And the cluster-level methods were: (iv) cluster-level linear regression;
and (v) meta-regression. These methods were also compared with or without adjustment for stratification. Ten
schools were stratified by quintile, and then randomized to CCR (223 students) and usual care (231 students)
groups. The direction of the estimated differences was same for all the methods except meta-regression. The
widths of the 95% confidence intervals were narrower when adjusted for stratification. The overall conclusion
from all the methods was similar but slightly differed in terms of effect estimate and widths of confidence
intervals.
Trialregistration: Clinicaltrials.gov, NCT03111524. Registered on 9 March 2017.

1. Background

Randomization of intact groups, namely clusters, into intervention
groups are known as cluster randomized trials (CRT) [1]. Over the
years, the number of adopting CRTs is increasing [2]. Diverse types of
clusters can be allocated in CRTs including: geographical areas [3];
health care districts [4]; and schools [5]. Like trials on individuals’,
most CRTs use one of the following three experimental design strategy
such as: (a) completely randomized; (b) matched-pair; or (c) stratified.
A completely randomized design is satisfactory with substantial number
of clusters while stratified design is suitable for small number of clusters
[6]. In stratified designs, clusters are randomly allocated to the

intervention and control groups within each stratum. For example,
Mallick et al. [5] conducted a school-based CRT to investigate the effect
of the Classroom Communication Resource (CCR), vs Usual Care, to
improve the peer attitude towards children who stutter (CWS). In this
trial, schools were first divided into quintile (1–3: lower and 4–5:
higher) and stratified as a high vs low school based on the socio-eco-
nomic resources [5].

Due to the randomization of intact clusters, the outcome from the
same cluster may be similar. The intra-cluster correlation coefficient
(ICC) is used to measure the degree of similarity [1]. The variance of
the estimated intervention effect is inflated due to this correlation and
may produce spurious statistically significant results [1,7]. This
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inflation can be quantified by the design effect, given by
+ −m ICC1 ( ‾ 1) , where m‾ is the average cluster size [1]. Thus, the

statistical methods should take into account the potential correlation
among the outcomes from the same cluster. Further, the methodologies
need to be adjusted for stratification due to stratified design. Re-
searchers have recommended several approaches to analyze the con-
tinuous data from completely randomized CRT, which can be extended
to stratified designs [1]. The methodologies are broadly classified into
two categories: individual- and cluster-level methods. Individual-level
methods use the individual-level data such as mixed-model [8] or
generalized estimating equation (GEE) [9]. Similarly, we can employ
the meta-analytic approach (cluster-level method), which commonly
used to combine the results from different studies [10]. This approach
helps to aggregate the treatment effects over multiple stratum, like
multicentre trials [11–13].

In addition, it is vital to assess the robustness of the results obtained
from the randomized controlled trials [14]. The sensitivity analysis
helps us to assess the robustness of the results [14]. For CRTs, we can
perform several sensitivity analyses. First, we can conduct sensitivity
analyses with or without considering the clustering. Secondly, results
are compared using different correlation structures [14]. For stratified
designs, we can also assess robustness by comparing the methods with
or without adjusted for stratification. The GEE with exchangeable
correlation structure was used as the primary method of analysis in the
Mallick et al. [5] study.

In this study, we empirically examined the sensitivity of methods for
analyzing continuous outcome from the stratified CRT using the data
from the Mallick et al. [5] study, which in turn demonstrated the ro-
bustness of the results obtained using the primary GEE method.

2. Methods

2.1. Overview of the mallick et al. study

The details about the Mallick et al. study can be found elsewhere
[5,15]. In brief, this was a cluster randomized trial aimed at examining
the effect of Classroom Communication Resource (CCR) on peer atti-
tude towards Children Who Stutter (CWS) in South African schools in
the Western Cape. Schools were the unit of randomization and the
participants of this trial were the grade 7 students. The selected schools
were first stratified to high or low quintile groups and then randomized
to CCR or usual care groups. The grade 7 teachers in the intervention
group received training on CCR and administered the intervention
(including a social story, role-play and facilitated discussion) while
participants in the control group received usual curriculum. The par-
ticipants were assessed 6-month post intervention. The primary out-
come was Stuttering Resource Outcomes Measure (SROM) completed at
baseline and 6-month post intervention. The study flow chart is pre-
sented in Fig. 1.

2.2. Statistical methods

Both individual-level and cluster-level methods were used to ana-
lyze the data from the Mallick et al. [5] study. The cluster-and in-
dividual-level methods can be adjusted for cluster-level covariates,
while individual-level methods can be adjusted for individual-level
covariates. The adjustment for stratification covariate, quintile, was
applicable for cluster- and individual-level methods, since this was a
cluster-level covariate. The results from the analyses were reported in
terms of difference (Intervention - Control) along with 95% confidence
interval (CI) and associated p-value. All statistical tests were two-sided
at the significance level of 0.05. The p-value less than 0.001 were re-
ported as< 0.001 The reporting of the results follows the CONSORT
(Consolidated Standards for Reporting Trials) guidelines for reporting
cluster-randomized trials [16].

Data were analyzed using both intention-to-treat (ITT) and per-

protocol principles. Missing data were imputed using multiple im-
putation technique assuming missing data follows a missing at random
(MAR) pattern. Overall, five datasets were generated, and pooled esti-
mates were reported. All analyses were performed using statistical
software R [17].

2.2.1. Individual-level methods

2.2.1.1. Linear regression
The linear regression can be expressed as

= + +Y β β X eijkl ijkl ijkl0 1

Where Yijkl is the outcome of the l-th subject in the k-th cluster, j-th
intervention group and i-th stratum. Xijkl represents the intervention
assignment (Xijkl=1 for the treatment group; Xijkl =0 for the control),
and eijkl is the random error assumed to follow a normal distribution
with mean 0 and variance σe

2. The intercept (β0) represents the mean
outcome for the control group in all clusters, while the slope (β1) re-
presents the effect of the treatment on the mean outcome.

The linear regression model assumes that data from the participants
are independent. This model was implemented using R package lm().

2.2.1.2. Mixed-effects regression model
The mixed-effects regression model is given by

= + + + +Y β β X β S C eijkl ijkl ijkl ijk ijkl0 1 2

In this model, β1 and β2 represents the treatment and stratum effect,
respectively, which are fixed. Random cluster effect is represented by
Cijk, which follows a normal distribution with mean 0 and variance σb

2.
The intra-cluster correlation that measures the correlation among the

outcomes within cluster is given by
+

σ

σ σ
b

b e

2

2 2 , assumed equal for all clus-

ters. We fitted this model using lme4() package in R with restricted
maximum likelihood (REML) method [18,19].

2.2.1.3. Generalized estimating equation (GEE)
The generalized estimating equation (GEE) [9] has the advantage of

taking into account the correlation of the outcomes through specifica-
tion of working correlation structure. The estimated treatment effect
from the GEE model reflects the both within- and between – cluster
relationship [20]. The sandwich covariance estimator yields a robust
estimate of treatment effect in the case when the correlation structure is
misspecified [21]. Also, small number of clusters leads to an under-
estimate of variance [22].

For the primary GEE analysis, the exchangeable correlation struc-
ture, which based on the assumption that the individuals within the
same cluster are equally correlated, was used. Also, this analysis was
performed using sandwich method for standard error estimation. This
analysis was performed using geepack () package in R.

2.2.2. Cluster-level methods

2.2.2.1. Cluster-level linear regression
This method consists of first estimating a summary measure by

cluster such as mean, and then fitting a linear regression based on these
summary measures [1].

2.2.2.2. Meta-regression
This is a meta-analytic approach where cluster-level summary is

used [10]. This can be extended to perform a stratified analysis on the
mean difference in outcome between intervention and control arms
within stratum. The overall treatment effect is estimated by a weighted
average of individual mean differences across all strata. The principle of
inverse-variance weighting is often used [10]. We implemented this
method using the metacont() package in R.
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3. Results

In total, the selected 10 schools were stratified into two groups:
higher quintile (6 schools) and lower quintile (4 schools). The schools
were then randomized into the intervention CCR group and control
usual care group. The average cluster size was 45 (range: 30–54) and 46
(range: 18–68) in the CCR and usual care groups, respectively. Overall,
454 students (223 in the CCR group and 231 in the usual care group)
participated in this study. The average age was 13 years for both
groups.

We used the methods discussed above (see statistical methods sec-
tion) to evaluate the effect of intervention. The results of the estimated
intervention effect, using ITT, are provided in Fig. 2 with and without
adjustment for stratification. Results from all the methods, for the
outcome SROM, indicated that the intervention CCR had no statistically
significant effect as all the p-values were greater than the nominal level
of 0.05 (Fig. 2). The estimated mean differences (MDs) were negative
for all the methods except meta regression approach when adjusted for
stratification (MD=0.01[-0.48, 0.50]) (Fig. 2). The p-values for all the
methods were similar or lower when adjusted for stratification com-
pared to the same method when not adjusted for stratification, while
cluster-level linear regression yielded the lowest p-value (Fig. 2). The
magnitude of the widths of the confidence intervals were narrower for
cluster-level linear regression (1.06 (when adjusted for stratification);
1.36 (when not adjusted for stratification)) and meta regression (0.98
(when adjusted for stratification); 1.07 (when not adjusted for stratifi-
cation)) compared to other methods. The widths of the confidence in-
tervals were wider when the methods were not adjusted for stratifica-
tion compared to the same method adjusted for stratification.

The estimated results of the intervention effect using per-protocol

principle are provided in Fig. 3 with and without adjusted for stratifi-
cation. Similar to ITT analyses, results from per-protocol analyses
yielded that the intervention CCR had no statistically significant effect
on the outcome SROM as all the p-values were greater than the nominal
level of 0.05 for both with and without adjustment for stratification
(Fig. 3). The p-values were lower for all the methods when adjusted for
stratification (Fig. 3). Also, like ITT, the estimated mean difference was
positive (MD=0.08 [-0.99, 1.15]) for the meta regression method in
case of per-protocol analysis. The magnitude of the effect size was
higher in the per-protocol analyses compared to ITT analyses except
GEE with exchangeable correlation structure (when not adjusted for
stratification) (Fig. 3).

For both ITT and per-protocol approaches, the standard errors (SEs)
were lower for methods when adjusted for stratification compared to
the same method when not adjusted for stratification (results are not
presented here).

4. Discussion

In this study, we had empirically investigated the sensitivity of
several methods for analyzing continuous outcome from the stratified
cluster randomized trial using data from the Mallick et al. [5] study. We
used five methods in a frequentist framework to assess the effect of the
intervention CCR on SROM compared to usual care. These methods can
be differentiated by whether they account the clustering effect or adjust
for stratification or both. The overall conclusion, based on intention-to-
treat and per-protocol analyses, from all the methods was similar to the
primary method (GEE with exchangeable correlation structure) i.e.
there was no significant difference between the intervention groups –
Classroom Communication Resources (CCR), and the control group –

Fig. 1. Study flow chart of the Mallick et al. study.
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usual care, in improving the peer attitude towards CWS.
The conclusion from the linear regression method was matched with

other methods, but this method is not appropriate for analyzing data
from CRT, as this method does not account the potential correlation
among the outcomes from the same cluster. The meta-regression
method yielded the narrowest 95% confidence intervals compared to
other methods. There is very little variation among the summary
measure, mean, of control and intervention groups in low and high
stratum i.e. very low heterogeneity, which might lead to yield nar-
rowest confidence interval for meta-regression since the width of the
confidence interval decreases as the heterogeneity decreases [23].
Further, the direction of the estimated difference was opposite (posi-
tive) for this method compared to other methods when adjusted for
stratification. The cluster-level linear regression yielded the widest
confidence intervals for per-protocol approach, which are similar to the
findings of Walter et al. [22]. However, for ITT approach, the cluster-
level methods yielded narrower 95% confidence interval compared to
individual-level methods. These results support the findings of Ukou-
munne et al. [24] as the authors reported that the cluster-level method
performed well, in case of binary data, when ICC is small.

The magnitudes of the estimated differences were similar among the
methods with or without adjusted for stratification. However, the

widths of the 95% confidence intervals were narrower for adjustment of
stratification compared to without adjustment for stratification. These
findings matched with the findings of Ma et al. [25] and Kahan et al.
[26], where the authors compared several methods for analyzing binary
data from stratified CRT and continuous data from stratified rando-
mized controlled trial on individual, respectively. The p-values for all
the methods were lower or similar when adjusted for stratification
compared to the same method when not adjusted for stratification,
which is in line with the findings of Kahan et al. [26].

The failure to adjust for clustering or centre in a multicentre trial
results in inflated standard error and wider confidence interval [22,27].
Walters et al. [22] recommended to use cluster-level methods for
number of cluster less than 15 per group as individual-level methods
may not be reliable in this situation [28,29]. The estimates from the
GEE and mixed-effect methods are connected through ICC [30] and in
our case the estimates were similar due to the smaller ICC of 0.01.

We compared the results of five methods in several scenarios in-
cluding: ITT and per-protocol analyses; with and without stratification;
and account for potential correlation among the outcomes from the
same cluster, which were pertaining to analyze continuous data from
stratified CRTs. Moreover, we compared methods based on both in-
dividual-level and cluster-level summary data. Sensitivity analyses

Fig. 2. Results of ITT analyses from different methods with and without adjustment for stratification.

Fig. 3. Results of per-protocol analyses from different methods with and without adjustment for stratification.
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might help researchers to make informed decisions, since there is very
limited guidance on which method is the best [14]. Furthermore, these
analyses help to assess the sensitivity to conclusions to different sce-
narios such as, with or without clustering. However, we need to be
cautious that, like binary data, the interpretation of the treatment effect
using the marginal model and the mixed-effect model are may be dif-
ferent [31]. We only considered the multiple imputation technique to
impute the missing data. Further investigation using other missing data
imputation techniques are warranted.

Based on a simulation study on binary data it has been showed that,
the statistical power of GEE is the highest compared to t-test, Wilcoxon
rank sum test, permutation test, adjusted chi-square test and logistic
random-effects model for the analysis of CRTs [32]. However, the es-
timated variance of from GEE is biased when the number of clusters is
small for both binary and continuous data [33–35]. Researchers have
reported the need for large number of clusters, 30–40 for mixed models
and 40–50 for GEEs, in CRTs [1,36]. Also, some corrections have sug-
gested - for mixed models corrections on degrees-of-freedom and for
GEEs corrections to standard error estimations, for analyzing CRTs with
small number of clusters [37–41]. Further studies are warranted to
investigate how these corrections perform in the case of stratified
cluster randomized trials.

5. Conclusion

We have empirically examined the sensitivity of five statistical
methods for analyzing continuous outcome from stratified CRTs. The
overall conclusions from all methods were similar i.e. no significant
effect of the CCR intervention on improving the attitude of peers to-
wards children who stutter. The adjustment for stratification yielded
narrower standard errors and confidence intervals, thus it is important
to adjust for stratification. Similarly, cluster-level methods yielded
narrower confidence intervals compared to individual-level methods.
However, further studies are warranted to assess the performance of
these methods in wide ranging scenarios.

Funding

There is no funding for this study.

Conflicts of interest

All authors confirm that there are no known conflicts of interest
associated with this study and there has been no financial support for
this work that could have influenced its outcome.

Acknowledgement

We wish to acknowledge the following for their contributions to the
Mallick et al. study: (1) the University of Cape Town; (2) the SA
National Research Fund (NRF); and (3) the Carnegie African Diaspora
Fellowship Programme (CADFP).

References

[1] A. Donner, N. Klar, Design and Analysis of Cluster Randomization Trials in Health
Research, Arnold London, 2000.

[2] J. Bland, Cluster randomised trials in the medical literature: two bibliometric sur-
veys, BMC Med. Res. Methodol. 4 (2004) 21–27.

[3] A. Kroeger, E.V. Avila, L. Morison, Insecticide impregnated curtains to control
domestic transmission of cutaneous leishmaniasis in Venezuela: cluster randomized
trial, Br. Med. J. 325 (7368) (2002) 810–813.

[4] M. Jordhoy, P. Fayers, T. Saltnes, M. Ahlner-Elmqvist, M. Jannert, S. Kaasa, A
palliative-care intervention and death at home: a cluster randomized trial, Lancet
356 (9233) (2000) 888–893.

[5] R. Mallick, H. Kathard, A.S.M. Borhan, M. Pillay, L. Thabane, A Cluster randomised
trial of a classroom communication resource program to change peer attitudes to-
wards children who stutter among grade 7 students, Trials 19 (2018) 664.

[6] N. Klar, A. Donner, The merits of matching in community intervention trials: a

cautionary tale, Stat. Med. 16 (1997) 1753–1764.
[7] D. Murray, S. Varnell, J. Blitstein, Design and analysis of group-randomized trials: a

review of recent methodological developments, Am. J. Public Health 94 (2004)
423–432.

[8] D. Hedeker, R. Gibbons, B. Flay, Random-effects regression models for clustered
data with an example from smoking prevention research, J. Consult. Clin. Psychol.
62 (1994) 757–765.

[9] L. Zeger, K.-Y. Liang, P. Albert, Models for longitudinal data: a generalized esti-
mating equation approach, Biometrics 44 (1988) 1049–1060.

[10] A. Whitehead, Meta-analysis of Controlled Clinical Trials, first ed., John Wiley and
Sons, Chichester, 2002.

[11] A. Gould, Multi-centre trial analysis revisited, Stat. Med. 17 (15–16) (1998)
1779–1797 discussion 1799-800.

[12] A. Agresti, J. Hartzel, Strategies for comparing treatments on a binary response with
multi-centre data, Stat. Med. 19 (8) (2000) 1115–1139.

[13] J. Fleiss, Analysis of data from multiclinic trials, Contr. Clin. Trials 7 (4) (1986)
267–275.

[14] Thabane, et al., A tutorial on sensitivity analyses in clinical trials: the what, why,
when and how, BMC Med. Res. Methodol. 13 (1) (2013) 92 2013.

[15] R. Mallick, H. Kathard, L. Thabane, M. Pillay, The Classroom Communication
Resource (CCR) intervention to change peer's attitudes towards children who stutter
(CWS): study protocol for a randomised controlled trial, Trials 19 (2018) 43.

[16] M. Campbell, D. Elbourne, D. Altman, CONSORT group, CONSORT statement: ex-
tension to cluster randomised trials, BMJ 328 (7441) (2004) 702–708.

[17] R Core Team, R: A Language and Environment for Statistical Computing, R
Foundation for Statistical Computing, Vienna, Austria, 2018 URL https://www.R-
project.org/.

[18] H. Brown, R. Kempton, The application of REML in clinical trials, Stat. Med. 13 (16)
(1994) 1601–1617.

[19] R. McLean, W. Sanders, Approximating the degrees of freedom for SE's in mixed
linear models, Proceedings of the Statistical Computing Section of the American
Statistical Association. New Orleans, Louisiana, 1988.

[20] J. Twisk, Applied Longitudinal Data Analysis for Epidemiology: a Practical Guide,
Cambridge University Press, 2003.

[21] K.-Y. Liang, L. Zeger, Longitudinal data analysis using generalized linear models,
Biometrika 73 (1986) 13–22.

[22] S. Walters, C. Morrell, P. Slade, Analysing data from a cluster randomized trial
(cCRT) in primary care: a case study, J. Appl. Stat. 38 (10) (2011) 2253–2269.

[23] Cochrane handbook for systematic reviews of interventions version 5.1.0 [updated
March 2011], in: J.P.T. Higgins, S. Green (Eds.), The Cochrane Collaboration, 2011
Available from:www.handbook.cochrane.org.

[24] O. Ukoumunne, J. Carlin, M. Gulliford, A simulation study of odds ratio estimation
for binary outcomes from cluster randomized trials, Stat. Med. 26 (18) (2007)
3415–3428.

[25] Ma, et al., Comparison of Bayesian and classical methods in the analysis of cluster
randomized controlled trials with a binary outcome: the Community Hypertension
Assessment Trial (CHAT), BMC Med. Res. Methodol. 9 (2009) 37.

[26] B. Kahan, T. Morris, Reporting and analysis of trials using stratified randomisation
in leading medical journals: review and reanalysis, BMJ 345 (2012) e5840.

[27] R. Chu, L. Thabane, J. Ma, A. Holbrook, E. Pullenayegum, P. Devereaux, Comparing
methods to estimate treatment effects on a continuous outcome in multicentre
randomized controlled trials: a simulation study, BMC Med. Res. Methodol. 11
(2011) 21.

[28] R. Hayes, L. Moulton, Cluster Randomised Trials, Chapman and Hall/CRC, Boca
Raton, FL, 2009.

[29] A. Petrie, C. Sabin, Medical Statistics at a Glance, second ed., Blackwell, Oxford,
2005.

[30] M. Campbell, A. Donner, N. Klar, Developments in cluster randomized trials and
statistics in medicine, Stat. Med. 26 (1) (2007) 2–19.

[31] P. FitzGerald, M. Knuiman, Use of conditional and marginal odds-ratios for ana-
lysing familial aggregation of binary data, Genet. Epidemiol. 18 (3) (2000)
193–202.

[32] P. Austin, A comparison of the statistical power of different methods for the analysis
of cluster randomization trials with binary outcomes, Stat. Med. 26 (19) (2007)
3550–3565.

[33] R. Prentice, Correlated binary regression with covariates specific to each binary
observation, Biometrics 44 (4) (1988) 1033–1048.

[34] L. Mancl, T. DeRouen, A covariance estimator for GEE with improved small-sample
properties, Biometrics 57 (1) (2001) 126–134.

[35] Leyrat, et al., Cluster randomized trials with a small number of clusters: which
analyses should be used? Int. J. Epidemiol. 47 (1) (2018) 321–331.

[36] N. Ivers, M. Taljaard, S. Dixon, et al., Impact of CONSORT extension for cluster
randomized trials on quality of reporting and study methodology: review of random
sample of 300 trials, 2000–8, BMJ 343 (2011) d5886.

[37] M. Kenward, J. Roger, Small sample inference for fixed effects from restricted
maximum likelihood, Biometrics 53 (1997) 983–997.

[38] M. Fay, B. Graubard, Small-sample adjustments for Wald-type tests using sandwich
estimators, Biometrics 57 (2001) 1198–1206.

[39] L. Mancl, T. DeRouen, A covariance estimator for GEE with improved small-sample
properties, Biometrics 57 (2001) 126–134.

[40] P. Li, D. Redden, Comparing denominator degrees of freedom approximations for
the generalized linear mixed model in analysing binary outcome in small sample
cluster-randomized trials, BMC Med. Res. Methodol. 15 (2015) 38.

[41] P. Li, D. Redden, Small sample performance of bias-corrected sandwich estimators
for cluster-randomized trials with binary outcomes, Stat. Med. 34 (2015) 281–296.

S. Borhan, et al. Contemporary Clinical Trials Communications 15 (2019) 100405

5

PhD Thesis - S. Borhan; McMaster University 
Health Research Methodology, Biostatistics Specialization

54

http://refhub.elsevier.com/S2451-8654(19)30060-2/sref1
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref1
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref1
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref1
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref1
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref1
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref1
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref1
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref2
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref2
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref2
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref2
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref2
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref2
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref2
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref2
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref3
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref3
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref3
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref3
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref3
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref3
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref3
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref3
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref3
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref3
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref3
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref3
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref4
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref4
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref4
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref4
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref4
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref4
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref4
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref4
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref4
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref4
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref4
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref4
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref5
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref5
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref5
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref5
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref5
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref5
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref5
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref5
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref5
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref5
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref5
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref5
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref6
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref6
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref6
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref6
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref6
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref6
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref6
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref6
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref7
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref7
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref7
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref7
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref7
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref7
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref7
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref7
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref7
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref7
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref7
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref7
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref8
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref8
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref8
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref8
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref8
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref8
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref8
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref8
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref8
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref8
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref8
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref8
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref9
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref9
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref9
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref9
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref9
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref9
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref9
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref9
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref10
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref10
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref10
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref10
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref10
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref10
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref10
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref10
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref11
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref11
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref11
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref11
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref11
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref11
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref11
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref11
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref12
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref12
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref12
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref12
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref12
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref12
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref12
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref12
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref13
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref13
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref13
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref13
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref13
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref13
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref13
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref13
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref14
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref14
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref14
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref14
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref14
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref14
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref14
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref14
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref15
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref15
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref15
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref15
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref15
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref15
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref15
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref15
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref15
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref15
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref15
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref15
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref16
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref16
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref16
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref16
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref16
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref16
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref16
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref16
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
https://www.R-project.org/
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref18
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref18
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref18
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref18
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref18
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref18
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref18
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref18
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref19
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref19
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref19
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref19
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref19
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref19
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref19
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref19
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref19
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref19
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref19
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref19
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref20
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref20
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref20
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref20
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref20
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref20
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref20
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref20
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref21
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref21
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref21
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref21
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref21
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref21
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref21
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref21
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref22
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref22
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref22
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref22
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref22
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref22
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref22
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref22
http://www.handbook.cochrane.org
http://www.handbook.cochrane.org
http://www.handbook.cochrane.org
http://www.handbook.cochrane.org
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref24
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref24
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref24
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref24
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref24
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref24
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref24
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref24
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref24
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref24
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref24
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref24
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref25
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref25
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref25
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref25
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref25
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref25
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref25
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref25
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref25
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref25
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref25
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref25
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref26
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref26
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref26
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref26
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref26
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref26
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref26
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref26
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref27
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref28
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref28
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref28
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref28
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref28
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref28
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref28
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref28
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref29
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref29
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref29
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref29
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref29
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref29
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref29
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref29
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref30
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref30
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref30
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref30
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref30
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref30
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref30
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref30
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref31
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref31
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref31
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref31
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref31
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref31
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref31
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref31
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref31
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref31
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref31
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref31
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref32
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref32
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref32
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref32
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref32
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref32
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref32
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref32
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref32
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref32
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref32
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref32
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref33
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref33
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref33
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref33
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref33
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref33
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref33
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref33
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref34
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref34
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref34
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref34
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref34
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref34
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref34
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref34
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref35
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref35
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref35
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref35
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref35
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref35
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref35
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref35
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref36
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref36
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref36
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref36
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref36
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref36
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref36
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref36
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref36
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref36
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref36
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref36
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref37
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref37
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref37
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref37
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref37
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref37
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref37
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref37
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref38
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref38
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref38
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref38
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref38
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref38
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref38
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref38
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref39
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref39
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref39
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref39
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref39
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref39
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref39
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref39
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref40
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref40
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref40
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref40
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref40
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref40
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref40
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref40
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref40
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref40
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref40
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref40
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref41
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref41
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref41
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref41
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref41
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref41
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref41
http://refhub.elsevier.com/S2451-8654(19)30060-2/sref41


Contemporary Clinical Trials Communications 17 (2020) 100539

Available online 1 February 2020
2451-8654/© 2020 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).

Contents lists available at ScienceDirect 

Contemporary Clinical Trials Communications 

Research paper 

An empirical comparison of methods for analyzing over - dispersed zero - 
inflated count data from stratified cluster randomized trials 
Sayem  Borhan a , b , c , d , * , Courtney  Kennedy d , George  Ioannidis d , Alexandra  Papaioannou d , e , 
Jonathan  Adachi e , Lehana  Thabane a , b , f 

a Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, ON, Canada 
b Biostatistics Unit, Research Institute of St Joseph's Healthcare, Hamilton, ON, Canada 
c Department of Family Medicine, McMaster University, Hamilton, ON, Canada 
d GERAS Centre, Hamilton Health Sciences, Hamilton, ON, Canada 
e Department of Medicine, McMaster University, Hamilton, ON, Canada 
f Departments of Pediatrics and Anesthesia, McMaster University, Hamilton, ON, Canada 

A R T I C L E  I N F O  

Keywords : 
Cluster randomized trial 
Stratification 
Count 
Zero inflated 
Overdispersed 
Sensitivity 

A B S T R A C T  

Background : The as sess ment of meth ods for an a lyz ing over - dispersed zero in flated count out come has re ceived 
very lit tle or no at ten tion in strat i fied clus ter ran dom ized tri als. In this study, we per formed sen si tiv ity analy - 
ses to em pir i cally com pare eight meth ods for an a lyz ing zero in flated over - dispersed count out come from the 
Vi t a min D and Os teo poro sis Study (ViD OS ) – orig i nally de signed to as sess the fea si bil ity of a knowl edge trans - 
la tion in ter ven tion in long - term care home set ting. 
Method : Forty long - term care (LTC) homes were strat i fied and then ran dom ized into knowl edge trans la tion 
(KT) in ter ven tion (19 homes) and con trol (21 homes) groups. The homes/ clus ters were strat i fied by home size 
(<250/>  =  250) and profit sta tus (profit/ non - profit). The out come of this study was num ber of falls mea - 
sured at 6 - month post - intervention. The fol low ing meth ods were used to as sess the ef fect of KT in ter ven tion 
on num ber of falls: i) stan dard Pois son and neg a tive bi no mial re gres sion; ii) mixed - effects method with Pois - 
son and neg a tive bi no mial dis tri b u tion; iii) gen er al ized es ti mat ing equa tion (GEE) with Pois son and neg a tive 
bi no mial; iv) zero in flated Pois son and neg a tive bi no mial — with the lat ter used as a pri mary ap proach. All 
these meth ods were com pared with or with out ad just ing for strat i fi ca tion. 
Results : A to tal of 5,478 older peo ple from 40 LTC homes were in cluded in this study. The mean (=1) of the 
num ber of falls was smaller than the vari ance (=6). Also 72% and 46% of the num ber of falls were zero in the 
con trol and in ter ven tion groups, re spec tively. The di rec tion of the es ti mated in ci dence rate ra tios (IRRs) was 
sim i lar for all meth ods. The zero in flated neg a tive bi no mial yielded the low est IRRs and nar row est 95% con fi - 
dence in ter vals when ad justed for strat i fi ca tion com pared to GEE and mixed - effect meth ods. Fur ther, the 
widths of the 95% con fi dence in ter vals were nar rower when the meth ods ad justed for strat i fi ca tion com pared 
to the same method not ad justed for strat i fi ca tion. 
Conclusion : The over all con clu sion from the GEE, mixed - effect and zero in flated meth ods were sim i lar. How - 
ever, these meth ods dif fer in terms of ef fect es ti mate and widths of the con fi dence in ter val. 
Trial registration : Clin i cal Tri als.gov: NC T01398527. Reg is tered: 19 July 2011. 

1 . Background 

Ran dom ized tri als in volv ing al lo ca tion of in tact groups or clus ters 
of sub jects, in stead of in de pen dent in di vid u als, are com monly re ferred 
to as clus ter ran dom ized tri als [ 1 ]. The rate of adopt ing clus ter ran - 

dom iza tion tri als is in creas ing [ 2 ]. Al lo ca tion units are di verse in such 
stud ies, and can in clude fam i lies or house holds, class rooms or schools 
[ 3 ], long - term care homes [ 4 ] or even en tire com mu ni ties [ 5 ]. 

De pend ing on the al lo ca tion of clus ters, most clus ter ran dom iza - 
tion tri als can be clas si fied as us ing one of three ba sic types of de - 
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signs: (a) com pletely ran dom ized, (b) matched - pair, or (c) strat i fied. 
Com pletely ran dom ized de signs omit pre - stratification and match ing 
on base line prog nos tic fac tors. This de sign is most suited for tri als en - 
rolling fairly large num bers of clus ters [ 6 ]. Ran dom as sign ment of one 
of the two clus ters in a stra tum to each in ter ven tion group is termed a 
matched - pair de sign [ 6 ]. The strat i fied de sign ex tends the matched - 
pair de sign where more than two clus ters are ran domly al lo cated to 
in ter ven tion groups within strata. For ex am ple, Vi t a min D and Os teo - 
poro sis Study (ViD OS ) [ 4 , 7 ] con ducted a pi lot strat i fied clus ter ran - 
dom ized trial – where long - term care (LTC) home were strat i fied by 
size and profit sta tus, to as sess the ef fect of a mul ti fac eted knowl edge 
trans la tion (KT) in ter ven tion on pre scrib ing vi t a min D, cal cium and 
os teo poro sis med ica tion in long - term care home. 

Ran dom al lo ca tion of clus ters may re sult in sim i lar ity among the 
out comes from the same clus ter, which is mea sured us ing an in tra - 
cluster cor re la tion co ef fi cient (ICC) [ 1 ]. This cor re la tion among the 
re sponses from the same clus ter in val i dates the ap pli ca tion of sta tis ti - 
cal tech niques which as sume in de pen dence of ob ser va tions. Thus, 
stan dard sta tis ti cal method ol ogy needs to be ad justed for this clus ter - 
ing ef fect, which can be quan ti fied by the de sign ef fect, or vari ance 
in fla tion fac tor, given by , where is the av er age clus - 
ter size [ 1 ]. 

Don ner and Klar [ 1 ] dis cussed about sev eral ap proaches to an a lyze 
count data from clus ter ran dom ized tri als in clud ing clus ter - specific 
and pop u la tion - average ex ten sion of Pois son re gres sion. They also dis - 
cussed we can eas ily ex tend these ap proaches for strat i fied clus ter 
ran dom ized tri als. Sim i larly, Young et al. [ 8 ] com pared the per for - 
mance of clus ter - specific and pop u la tion - average ex ten sion of Pois son 
re gres sion us ing data from a non - randomized study while Pacheco et 
al. [ 9 ] in ves ti gated the per for mance of meth ods for an a lyz ing over - 
dispersed – vari ance is greater than the mean, count out come from 
com pletely ran dom ized CRT. Fur ther, to ac count the count out come 
with ex cess ze ros we need to use the zero - inflated mod els. To the best 
of our knowl edge, no study ex am ined the meth ods for an a lyz ing over 
dis persed and zero - inflated count data from strat i fied clus ter ran dom - 
ized tri als. 

On the other hand, Tha bane et al. [ 10 ] right fully em pha sized the 
im por tance of per form ing a sen si tiv ity analy sis, which help us to as - 
sess the ro bust ness of the re sults. For clus ter ran dom ized tri als we can 
per form sen si tiv ity analy ses with or with out tak ing clus ter ing into ac - 
count. We can also com pare the meth ods with or with out con sid er ing 
the strat i fi ca tion. Borhan et al. [ 11 ] ex am ined the sen si tiv ity of meth - 
ods for an a lyz ing con tin u ous out come from strat i fied clus ter ran dom - 
ized tri als and found the over all con clu sion from all the meth ods were 
sim i lar. 

In this study, we per formed sen si tiv ity analy ses to em pir i cally 
com pare eight meth ods for an a lyz ing zero in flated over - dispersed 
count out come from the ViD OS study [ 4 ]. 

2 . Methods 

2. 1 . Motivating example: ViD OS study 

We used the data from an LTC - based pi lot strat i fied clus ter ran - 
dom ized trial – de tails can be found else where [ 4 , 7 ], for this study. A 
to tal of 5,478 older peo ple from 40 LTC homes (19 In ter ven tion and 
21 Con trol) were ran dom ized into two groups KT in ter ven tion and 
con trol groups. The LTC homes were strat i fied by size (<250 
vs  ≥  250 beds) and profit sta tus (profit vs non - profit). Seven LTC 
homes with drew be fore the study be gan. The out come, num ber of 
falls were mea sured at 6 - and 12 - month post - randomization. For this 
study, we used the num ber of falls mea sured at 12 - month. The vari - 
ance of the num ber of falls is greater than the mean num ber of falls 
(vari ance  =  6  >  mean  =  1). Sim i larly, for each clus ter the mean 
num ber of falls is smaller than the vari ance of the num ber of falls. 

Thus, the num ber of falls was over - dispersed. Fur ther, the num ber of 
falls was zero in flated as 72% and 46% of the num ber of falls were 
zero in the con trol and in ter ven tion groups, re spec tively. 

2. 2 . Statistical analysis methods 

Both clus ter - specific (mixed - effect method) and pop u la tion - 
average (gen er al ized es ti mat ing equa tion) meth ods were used to an a - 
lyze the num ber of falls from the ViD OS study. The mixed - effect zero - 
inflated neg a tive bi no mial model was con sid ered as the pri mary 
method since it can take into ac count both overdis per sion and zero - 
inflation as well as clus ter ing. The ad just ment for strat i fi ca tion co vari - 
ates – home size and profit sta tus, were ap plic a ble for clus ter - and in - 
di vid ual - level meth ods, since these were clus ter - level co vari ates. The 
re sults from the analy ses were re ported in terms of the in ci dence rate 
ra tios (IRRs) along with 95% con fi dence in ter vals (CIs) and as so ci ated 
p - values. All sta tis ti cal tests were two - sided at the sig nif i cance level of 
0.05. The p - value less than 0.001 were re ported as <0.001 The re - 
port ing of the re sults fol lows the CON SORT (Con sol i dated Stan dards 
for Re port ing Tri als) guide lines for re port ing clus ter - randomized tri als 
[ 12 ]. 

Data were an a lyzed us ing In ten tion - to - treat (ITT) prin ci ples and 
miss ing data analy sis ap proach – where miss ing data were im puted 
us ing mul ti ple im pu ta tion tech nique as sum ing miss ing data fol lows a 
miss ing at ran dom (MAR) pat tern. Over all, five datasets were gen er - 
ated, and pooled es ti mates were re ported. 

2. 3 . Standard Poisson/ Negative binomial (NB) model 

The stan dard Pois son and neg a tive bi no mial model for count data 
is given by 

log ( E ( Y i j k l ) = μ i j k l ) = β 0 + β 1 X i j k l + β 2 S 1 i j k l + β 3 S 2 i j k l + e i j k l 

Where, Y i j k l is the out come, num ber of falls, of the i − t h sub ject of the 
j − t h clus ter in the k − t h ( k = 0,1) and l − t h ( l = 0,1) stra tum. X i j k l is 
the in ter ven tion (0: Con trol; 1: KT In ter ven tion). S 1 i j k l (0: <250; 
1>  =  250) is the home size and S 2 i j k l (0: Non - profit; 1: Profit) is the 
profit sta tus of the clus ter. 

Here, β 1 rep re sents the treat ment ef fect while β 2 and β 3 rep re sents 
the two strata ef fect cor re spond ing to home size (0: <250; 1: ≥250) 
and profit sta tus (0: Non - profit; 1: Profit), re spec tively. 

We con sid ered two dis tri b u tional as sump tions for num ber of falls: 

(a) Number of falls follows a Poisson distribution i. e. Y i j k l ~ P o i ( μ i j k l ) , 
with variance function V ( Y i j k l ) = φ v ( μ i j k l ) = μ i j k l , where φ is 
assumed to be 1 i. e. mean and variance are equal. 

(b) Number of falls follows a Negative Binomial (NB) distribution i. 
e. . Y i j k l ~ N B ( s ,  μ i j k l ) , with variance function 

, where φ is assumed to be 
1 and s is the overdispersion parameter indicating that the NB 
distribution models overdispersion implicitly by its parameter s . 
The NB distribution is preferred when there is overdispersion in 
the data i. e. mean  <  variance. 

The stan dard Pois son and neg a tive bi no mial model were fit ted us - 
ing glm () and glm.nb () in R [ 13 ]. 

2. 4 . Mixed - effect model (Poisson/ Negative binomial) 

The mixed - effect model for count data is given by 

log ( E ( Y i j k l ) = μ i j k l ) = β 0 + β 1 X i j k l + β 2 S 1 i j k l + β 3 S 2 i j k l + C i j k + e i j k l 

In this model, like the pre vi ous model, β 1 rep re sents the treat ment 
ef fect while β 2 and β 3 rep re sents the two stra tum ef fect cor re spond ing 
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to home size (0: <250; 1: ≥250) and profit sta tus (0: Non - profit; 1: 
Profit), re spec tively, which are fixed. Ran dom clus ter ef fect is rep re - 
sented by C i j k , which fol lows a nor mal dis tri b u tion with mean 0 and 
vari ance . The in tra - cluster cor re la tion that mea sures the cor re la - 
tion among the out comes within clus ter is given by , as sumed 
equal for all clus ters. β 1 is the log of the Rate Ra tio (RR) of the in ter - 
ven tion X i j k l (0  =  Con trol, 1  =  KT In ter ven tion). We used glmer () and 
glmer.nb () in R to fit mixed - effect with Pois son and neg a tive bi no - 
mial, re spec tively. 

2. 5 . Generalized estimating equation (GEE) (Poisson/ Negative binomial) 

The GEE model for count data is given by 

log ( E ( Y i j k l ) = μ i j k l ) = β 0 + β 1 X i j k l + β 2 S 1 i j k l + β 3 S 2 i j k l 

Like be fore, β 1 rep re sents the treat ment ef fect while β 2 and β 3 rep - 
re sents the two stra tum ef fect cor re spond ing to home size (0: <250; 1: 
≥250) and profit sta tus (0: Non - profit; 1: Profit), re spec tively. Sim i lar 
to mixed - effect method we con sid ered two dis tri b u tional as sump tion 
for count data: Pois son and neg a tive bi no mial. For GEE method we 
con sid ered ex change able work ing cor re la tion struc ture. GEE with 
Pois son was fit ted us ing geeglm () in R while GEE with neg a tive bi no - 
mial was fit ted us ing PROC GEN MOD in SAS [ 14 ]. GEE with neg a tive 
bi no mial was the pri mary method of analy sis. 

2. 6 . Zero inflated models (Poisson/ Negative binomial) 

For zero in flated mod els the dis tri b u tion of Y i j k l is 

The mixed - effect zero in flated Pois son or neg a tive bi no mial model 
is given by: 

l o g i t ( φ i j k l ) = β 0 + β 1 X i j k l + β 2 S 1 i j k l + β 3 S 2 i j k l + C i j k + e i j k l 

log ( E ( Y i j k l ) = μ i j k l ) = β 0 + β 1 X i j k l + β 2 S 1 i j k l + β 3 S 2 i j k l + C i j k + e i j k l 

The zero in flated Pois son and neg a tive bi no mial mod els were fit - 
ted us ing the R pack age GLM Madap tive. 

3 . Results 

Over all 40 clus ters were ran dom ized into KT in ter ven tion (19 clus - 
ters) and con trol (21 clus ters) groups. The clus ters were strat i fied by 

two vari ables clus ter size and profit sta tus. The av er age clus ter size in 
the KT group was 115 (min i mum  =  43, max i mum  =  294) while the 
av er age clus ter size in the con trol group was 157 (min i mum  =  49, 
max i mum  =  375). At the end of the fol low - up there were 2,209 par - 
tic i pants in the in ter ven tion group and 3,382 par tic i pants in the con - 
trol group. The av er age age of the par tic i pants in both groups were 84 
years while ap prox i mately 70% were fe male. 

We used the meth ods dis cussed above to as sess the ef fect of KT in - 
ter ven tion on num ber of falls with mixed - effect zero - inflated with 
neg a tive bi no mial dis tri b u tion as the pri mary method of analy sis. The 
re sults of the ITT analy ses with or with out ad justed for strat i fi ca tion 
are given in Fig. 1 . The di rec tion of the ef fect es ti mate in ci dence rate 
ra tios were sim i lar for all the meth ods. The stan dard Pois son and neg - 
a tive bi no mial re gres sion meth ods yielded sta tis ti cally sig nif i cant re - 
sults as p - values lower than the nom i nal level of 0.05 while the other 
meth ods yielded non - significant re sults ( Fig. 1 ). The es ti mated IRRs 
varies from 1.11 to 1.37 when ad justed for strat i fi ca tion and 1.03 to 
1.49 when not ad justed for strat i fi ca tion. The ef fect es ti mates IRRs 
were slightly higher for mixed - effect meth ods com pared to other 
meth ods. The mag ni tude of the widths of the 95% con fi dence in ter - 
vals were higher for mixed - effect Pois son and neg a tive bi no mial 
meth ods com pared to other meth ods when ad justed or not ad justed 
for strat i fi ca tion ( Fig. 1 ). The Akaike's In for ma tion Cri te ria (AIC) were 
slightly lower when the meth ods ad justed for strat i fi ca tion com pared 
to with out such ad just ment. Fur ther, the AIC val ues were lower for 
neg a tive bi no mial mod els (8391.00 and 8333.24 for mixed - effect and 
zero - inflated neg a tive bi no mial mod els re spec tively) com pared to GEE 
mod els (10858.00 and 9093.10 for mixed - effect and zero - inflated 
Pois son mod els re spec tively). 

The re sults of the miss ing data analy sis were given in Fig. 2 . Un - 
like ITT ap proach, stan dard Pois son and neg a tive bi no mial did not 
yield sta tis ti cally sig nif i cant re sults ( Fig. 2 ). Sim i lar to ITT ap proach, 
di rec tion of ef fect es ti mate for all the meth ods were sim i lar. The es ti - 
mated IRRs varies from 1.35 to 2.12, when ad justed for strat i fi ca tion 
and 1.41 to 1.96 when not ad justed for strat i fi ca tion. The mag ni tudes 
of the widths of the 95% con fi dence in ter vals were higher for all 
meth ods com pared to ITT ap proach. Sim i lar to ITT 95% con fi dence 
in ter vals were wider for mixed - methods, when not ac counted for zero 
in fla tion, com pared to other meth ods ( Fig. 2 ). 

For all meth ods, the es ti mated IRRs were very sim i lar with or 
with out ad just ing for strat i fi ca tion for both ITT and miss ing data 
analy sis ap proaches ( Figs. 1 - 2 ). Fur ther, it is no tice able, that the es ti - 
mated IRRs were slightly higher, for all meth ods, in miss ing data 
analy sis ap proach com pared to ITT ap proach ( Figs. 1 - 2 ). Also, for ITT 
ap proach, the 95% con fi dence in ter vals were slightly nar rower when 

Fig. 1 . Re sults of ITT analy sis us ing dif fer ent meth ods with/ with out ad justed for strat i fi ca tion. 
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Fig. 2 . Re sults of miss ing data analy sis us ing dif fer ent meth ods with/ with out ad justed for strat i fi ca tion. 

ad justed for strat i fi ca tion ( Fig. 1 ). The dif fer ence among the meth ods 
in terms of p - values were smaller for miss ing data analy sis ap proach 
com pared to ITT ap proach ( Figs. 1 and 2 ). 

4 . Discussion 

In this study, we em pir i cally in ves ti gate the meth ods for an a lyz ing 
overdis persed zero in flated count out come from strat i fied clus ter ran - 
dom ized trial us ing data from the ViD OS study – which was de signed 
to in ves ti gate the ef fect of a KT in ter ven tion. We com pared eight 
meth ods to as sess the ef fect of KT in ter ven tion on num ber of falls. The 
di rec tion of ef fect of es ti mate in ci dence rate ra tios (IRRs) were sim i lar 
for all meth ods for both ad justed and not ad justed for strat i fi ca tion. 
The con clu sions from both ITT and miss ing data analy ses in di cated 
that, KT in ter ven tion had no ef fect on num ber of falls. 

For ITT analy ses, both stan dard Pois son and neg a tive bi no mial 
meth ods yielded sta tis ti cally sig nif i cant re sults that the RRs of num ber 
of falls were slightly higher in the in ter ven tion group com pared to 
con trol group. How ever, these two meth ods were not ap pro pri ate for 
an a lyz ing count data from CRT as these meth ods do not take into ac - 
count the de gree of sim i lar ity among the out comes from the same 
clus ter. 

In this study, we con sid ered mixed - effect with zero - inflated neg a - 
tive bi no mial as the pri mary method of analy sis to as sess the ef fect of 
KT in ter ven tion on over dis persed num ber of falls. We per formed sen - 
si tiv ity analy ses to ex am ine the ro bust ness of the find ings of the pri - 
mary method. The over all con clu sion from all the meth ods were sim i - 
lar. These find ings match with the find ings of the Borhan et al. [ 11 ] 
when they in ves ti gated the sen si tiv ity of sev eral meth ods for an a lyz - 
ing con tin u ous out come from the strat i fied CRT. 

Over all, for all meth ods, the es ti mated IRRs and the cor re spond ing 
widths of the 95% con fi dence in ter vals were slightly lower for ITT 
analy ses com pared to miss ing data analy ses. GEE and mixed - effect 
with Pois son and neg a tive bi no mial dis tri b u tions, re spec tively, 
yielded ap prox i mately sim i lar IRRs. The es ti mated IRRs and widths of 
the 95% con fi dence in ter vals were lower for zero in flated mod els 
com pared to mixed - effect meth ods with Pois son and neg a tive bi no - 
mial dis tri b u tion. The widths of the 95% con fi dence in ter vals were 
lower for GEE meth ods com pared to mixed - effect meth ods for both 
ITT and miss ing data analy ses. This is con sis tent with the find ings of 
Pacheco et al. [ 9 ]. The au thors re ported that, GEE yielded the high est 
power and nar row CIs when the au thors in ves ti gated the per for mance 
of meth ods for an a lyz ing overdis persed count data from CRT. How - 
ever, GEE un der es ti mate the co vari ance among ob ser va tions yield ing 
down ward bi ased stan dard er rors when the num ber of clus ters is 
small [ 15 ]. Also, we need to be cau tious that, GEE method yields el e - 
vated type I er ror rates in small sam ple sit u a tions (<40 clus ters) [ 9 ]. 

We also com pared the meth ods with or with out ad just ing for strat - 
i fi ca tion. Zero in flated neg a tive bi no mial yielded the low est IRRs and 
nar row est 95% con fi dence in ter vals when ad justed for strat i fi ca tion 
among the valid meth ods. For ITT ap proach, the es ti mated IRRs and 
the widths of the 95% con fi dence in ter vals were al most sim i lar or 
lower for both GEE meth ods. Sim i larly, for mixed - effect meth ods the 
es ti mated RRs and the mag ni tude of the widths of the 95% con fi dence 
in ter vals were slightly lower when we ad justed for strat i fi ca tion. 
These find ings matched with the find ings of Borhan et al. [ 11 ], Ma et 
al. [ 16 ] and Ka han et al. [ 17 ], where the au thors com pared sev eral 
meth ods for an a lyz ing con tin u ous and bi nary data from strat i fied CRT 
and con tin u ous data from strat i fied ran dom ized con trolled trial on in - 
di vid ual, re spec tively. Sim i larly, for miss ing data ap proach, GEE 
yielded the sim i lar re sults with or with out ad justed for strat i fi ca tion. 
For all meth ods, the p - values were lower when ad justed for strat i fi ca - 
tion com pared to same method when not ad justed for strat i fi ca tion 
and matched with the find ings of Ka han et al. [ 17 ]. 

The ma jor strength of this study that, we em pir i cally ex am ined 
eight meth ods, in clud ing both clus ter - specific and pop u la tion - average 
meth ods, for an a lyz ing count out come from a strat i fied CRT - ViD OS 
study, un der dif fer ent sce nar ios in clud ing ac count ing for clus ter ing 
and ad just ing for strat i fi ca tion. We also com pared the meth ods 
through ITT ap proach and im put ing the miss ing data. In ad di tion, we 
used ap pro pri ate method such as neg a tive bi no mial to ac count for 
overdis per sion and zero in flated mod els to ac count for ex cess ze ros. 
Thus, this study will guide re searchers about the sen si tiv ity of these 
meth ods since there is no study, to the best of our knowl edge, in ves ti - 
gate the per for mance of these meth ods for an a lyz ing count data from 
strat i fied CRT. 

The ma jor lim i ta tion of this study, that ViD OS study was a pi lot 
trial de signed to in ves ti gate the fea si bil ity of the KT in ter ven tion. 
How ever, ViD OS was strat i fied by two clus ter - level co vari ates clus ter 
size and profit sta tus, which is very rare in real life. It is pos si ble that, 
we might have missed some falls data as it is dif fi cult to mea sure the 
num ber of falls and varies be tween LTCs. 

Data from 7 clus ters were miss ing in the in ter ven tion group as 6 
clus ters de clined to ac tively par tic i pate af ter ran dom iza tion and 1 
clus ter with drew af ter base line mea sure ment. Fur ther study on miss - 
ing data im pu ta tion tech niques when the whole clus ter is miss ing 
would be an im por tant ad di tion. Fur ther more, a well - designed sim u la - 
tion study is war ranted to ex am ine the per for mance of these meth ods 
un der dif fer ent sce nar ios. It re quires large num ber of clus ters (> 30) 
to get valid es ti mate us ing GEE and mixed - effect meth ods [ 18 – 21 ]. 
Re searchers have sug gested some cor rec tions to ad dress the re quire - 
ment of large num ber of clus ters [ 22 – 26 ] which can be ex tended to 
strat i fied CRT, es pe cially when the out come is count. 
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5 . Conclusion 

In this study, we em pir i cally com pared the eight meth ods for an a - 
lyz ing count out come us ing the data from ViD OS study - a pi lot strat i - 
fied clus ter ran dom ized trial. The over all con clu sion from all the 
meth ods were sim i lar that the KT in ter ven tion had no ef fect on num - 
ber of falls. The zero in flated neg a tive bi no mial model yielded the 
low est IRR and nar row est 95% con fi dence in ter val, when ad justed for 
strat i fi ca tion, com pared to GEE and mixed - effect meth ods. A well - 
designed sim u la tion study is war ranted to as sess the per for mance of 
these meth ods. 

Acknowledgements 

Vi DOS study was sup ported by an op er at ing grant from the Cana - 
dian In sti tutes of Health Re search (Fund ing Ref er ence Num ber: MOP - 
114982). 

References 

[1] A. Donner , N. Klar , Design and Analysis of Cluster Randomization Trials in Health 
Research , Arnold London , 2000 . 

[2] J. Bland , Cluster randomised trials in the medical literature: two bibliometric 
surveys , BMC Med. Res. Methodol. 4 ( 2004 ) 21 – 27 . 

[3] R. Mallick , H. Kathard , A. S. M. Borhan , M. Pillay , L. Thabane , A Cluster 
randomised trial of a classroom communication resource program to change peer 
attitudes towards children who stutter among grade 7 students , Trials 19 ( 2018 ) 
664 . 

[4] Kennedy , et al. , Successful knowledge translation intervention in long - term care: 
final results from the vitamin D and osteoporosis study (ViDOS) pilot cluster 
randomized controlled trial , Trials 16 ( 2015 ) 214 . 

[5] J. Kaczorowski , et al. , Cardiovascular Health Awareness Program (CHAP): a 
community cluster - randomised trial among elderly Canadians , Prev. Med. 46 ( 6 ) 
( 2008 Jun ) 537 – 544 . 

[6] N. Klar , A. Donner , The merits of matching in community intervention trials: a 
cautionary tale , Stat. Med. 16 ( 1997 ) 1753 – 1764 . 

[7] C. C. Kennedy , G. Ioannidis , L. M. Giangregorio , J. D. Adachi , L. Thabane , S. N. 
Morin , et al. , An interdisciplinary knowledge translation intervention in long - term 
care: study protocol for the vitamin D and osteoporosis study (ViDOS) pilot cluster 
randomized controlled trial , Implement. Sci. 7 ( 2012 ) 48 . 

[8] M. Young , J. Preisser , B. Qaqish , M. Wolfson , Comparison of subject - specific and 

population averaged models for count data from cluster - unit intervention trials , 
Stat. Methods Med. Res. 16 ( 2007 ) 167 – 184 . 

[9] Pacheco , et al. , Performance of analytical methods for overdispersed counts in 
cluster randomized trials: sample size, degree of clustering and imbalance , Stat. 
Med. 28 ( 2009 ) 2989 – 3011 . 

[10] Thabane , et al. , A tutorial on sensitivity analyses in clinical trials: the what, why, 
when and how , BMC Med. Res. Methodol. 13 ( 1 ) ( 2013 ) 92 2013 . 

[11] S. Borhan , R. Mallick , M. Pillay , H. Kathard , L. Thabane , Sensitivity of methods 
for analyzing continuous outcome from stratified cluster randomized trials – an 
empirical comparison study , Contemp. Clin. Trials Commun. 15 ( 2019 ) 100405 . 

[12] M. Campbell , D. Elbourne , D. Altman , CONSORT group , CONSORT statement: 
extension to cluster randomised trials , BMJ 328 ( 7441 ) ( 2004 ) 702 – 708 . 

[13] R Core Team , R: A Language and Environment for Statistical Computing , R 
Foundation for Statistical Computing , Vienna, Austria , 2019 URL . https:// www. R - 
project. org/ . 

[14] SAS / STAT_ User’s Guide , SAS Institute, Inc. , 2019 . 
[15] L. A. Mancl , T. A. DeRouen , A covariance estimator for GEE with improved small - 

sample properties , Biometrics 57 ( 1 ) ( 2001 ) 126 – 134 . 
[16] Ma , et al. , Comparison of Bayesian and classical methods in the analysis of cluster 

randomized controlled trials with a binary outcome: the Community Hypertension 
Assessment Trial (CHAT) , BMC Med. Res. Methodol. 9 ( 2009 ) 37 . 

[17] B. Kahan , T. Morris , Reporting and analysis of trials using stratified 
randomisation in leading medical journals: review and reanalysis , BMJ 345 ( 2012 ) 
e5840 . 

[18] R. Prentice , Correlated binary regression with covariates specific to each binary 
observation , Biometrics 44 ( 4 ) ( 1988 ) 1033 – 1048 . 

[19] L. Mancl , T. DeRouen , A covariance estimator for GEE with improved small - 
sample properties , Biometrics 57 ( 1 ) ( 2001 ) 126 – 134 . 

[20] Leyrat , et al. , Cluster randomized trials with a small number of clusters: which 
analyses should be used? , Int. J. Epidemiol. 47 ( 1 ) ( 2018 ) 321 – 331 . 

[21] N. Ivers , M. Taljaard , S. Dixon , et al. , Impact of CONSORT extension for cluster 
randomized trials on quality of reporting and study methodology: review of 
random sample of 300 trials, 2000 – 8 , BMJ 343 ( 2011 ) d5886 . 

[22] M. Kenward , J. Roger , Small sample inference for fixed effects from restricted 
maximum likelihood , Biometrics 53 ( 1997 ) 983 – 997 . 

[23] M. Fay , B. Graubard , Small - sample adjustments for Wald - type tests using 
sandwich estimators , Biometrics 57 ( 2001 ) 1198 – 1206 . 

[24] L. Mancl , T. DeRouen , A covariance estimator for GEE with improved small - 
sample properties , Biometrics 57 ( 2001 ) 126 – 134 . 

[25] P. Li , D. Redden , Comparing denominator degrees of freedom approximations for 
the generalized linear mixed model in analysing binary outcome in small sample 
cluster - randomized trials , BMC Med. Res. Methodol. 15 ( 2015 ) 38 . 

[26] P. Li , D. Redden , Small sample performance of bias - corrected sandwich estimators 
for cluster - randomized trials with binary outcomes , Stat. Med. 34 ( 2015 ) 281 – 296 . 

PhD Thesis - S. Borhan; McMaster University 
Health Research Methodology, Biostatistics Specialization

http://refhub.elsevier.com/S2451-8654(20)30023-5/sref1
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref1
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref1
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref1
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref1
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref1
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref1
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref1
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref2
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref2
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref2
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref2
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref2
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref2
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref2
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref2
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref3
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref4
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref4
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref4
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref4
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref4
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref4
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref4
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref4
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref4
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref4
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref4
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref4
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref5
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref5
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref5
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref5
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref5
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref5
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref5
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref5
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref5
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref5
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref5
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref5
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref6
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref6
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref6
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref6
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref6
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref6
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref6
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref6
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref7
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref8
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref8
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref8
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref8
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref8
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref8
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref8
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref8
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref8
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref8
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref8
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref8
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref9
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref9
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref9
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref9
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref9
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref9
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref9
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref9
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref9
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref9
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref9
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref9
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref10
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref10
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref10
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref10
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref10
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref10
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref10
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref10
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref11
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref11
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref11
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref11
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref11
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref11
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref11
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref11
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref11
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref11
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref11
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref11
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref12
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref12
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref12
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref12
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref12
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref12
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref12
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref12
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
https://www.r-project.org/
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref14
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref14
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref14
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref14
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref15
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref15
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref15
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref15
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref15
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref15
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref15
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref15
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref16
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref16
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref16
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref16
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref16
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref16
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref16
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref16
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref16
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref16
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref16
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref16
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref17
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref17
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref17
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref17
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref17
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref17
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref17
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref17
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref17
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref17
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref17
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref17
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref18
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref18
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref18
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref18
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref18
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref18
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref18
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref18
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref19
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref19
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref19
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref19
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref19
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref19
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref19
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref19
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref20
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref20
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref20
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref20
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref20
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref20
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref20
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref20
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref21
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref21
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref21
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref21
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref21
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref21
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref21
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref21
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref21
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref21
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref21
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref21
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref22
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref22
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref22
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref22
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref22
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref22
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref22
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref22
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref23
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref23
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref23
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref23
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref23
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref23
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref23
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref23
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref24
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref24
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref24
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref24
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref24
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref24
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref24
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref24
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref25
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref25
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref25
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref25
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref25
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref25
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref25
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref25
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref25
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref25
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref25
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref25
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref26
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref26
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref26
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref26
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref26
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref26
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref26
http://refhub.elsevier.com/S2451-8654(20)30023-5/sref26


PhD Thesis – S. Borhan; McMaster University 

Health Research Methodology, Biostatistics Specialization 
 
 

60 
 

Chapter 5 

Performance of methods for analyzing continuous data from stratified cluster 

randomized trials – a simulation study 

Sayem Borhan1,2,3, Jinhui Ma1, Alexandra Papaioannou1,4,5, Jonathan Adachi5, Lehana 

Thabane1,2,6 

1 Department of Health Research Methods, Evidence, and Impact, McMaster University, 

Hamilton, ON, Canada 

2 Biostatistics Unit, Research Institute of St Joseph’s Healthcare, Hamilton, ON, Canada 

3 Department of Family Medicine, McMaster University, Hamilton, ON, Canada 

4 GERAS Centre, Hamilton Health Sciences, Hamilton, ON, Canada 

5 Department of Medicine, McMaster University, Hamilton, ON, Canada  

6 Departments of Pediatrics and Anesthesia, McMaster University, Hamilton, ON, Canada 

 

 

 

Correspondence: 

Sayem Borhan 

Department of Health Research Methods, Evidence, and Impact 

McMaster University 

1280 Main Street West, Hamilton, ON 

L8S 4K1 

Canada  

Email: borhana@mcmaster.ca 

 



PhD Thesis – S. Borhan; McMaster University 

Health Research Methodology, Biostatistics Specialization 
 
 

61 
 

Abstract 

Background 

Adoption of cluster randomized trials (CRTs) with stratified design is increasing. 

While we know that the number of clusters have substantial impact on the performance of 

statistical analysis methods, but we have limited knowledge about the performance of 

methods for analyzing data from stratified CRTs. In this simulation study, we evaluated 

the performance of several commonly used methods for analyzing continuous data from 

stratified CRTs with a single stratification variable. 

 

Methods 

We compared 4 methods: mixed-effect, generalized estimating equation (GEE), 

cluster-level (CL) linear regression and meta-regression to analyze the continuous data 

from stratified CRTs using a simulation study with varying number of clusters, cluster 

sizes, and intra-cluster correlation coefficients (ICCs). We considered a stratified CRT with 

one stratification variable with two strata. Total number of clusters were equally divided 

into two strata. The performance of the methods was evaluated in terms of type I error rate, 

statistical empirical power, root mean squared error (RMSE), and width of the 95% 

confidence interval (CI).   

 

Results 

GEE and meta-regression methods yielded more than or approximately 10% type I 

error rates for study with small number of clusters. GEE had higher or similar power 
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compared to other methods. All methods had similar accuracy, measured through root 

mean square error, except meta-regression. Similarly, all methods but meta-regression had 

similar widths of the 95% CI. Performance of all methods worsened as the ICC increased 

to 0.06 from 0.03.   

 

Conclusions 

The performance of all methods improved as the number of clusters increased along 

with cluster sizes. Meta-regression was the least powerful and least efficient compared to 

other methods. 

 

Key words: Cluster randomized trials, Stratified, Simulation, Continuous 

 

 

 

 

 

 

 

 



PhD Thesis – S. Borhan; McMaster University 

Health Research Methodology, Biostatistics Specialization 
 
 

63 
 

Background 

Cluster randomization trials (CRTs) involve randomization of intact clusters, rather 

than individual participants, into intervention groups [1]. The type of clusters can be 

distinct including: geographical region [2], health care area [3], and schools [4]. Over the 

years, the number of adopting CRTs is increasing [5] as well as the number of CRTs with 

stratified design, which is suitable when the number of clusters is small [6]. In stratified 

designs, clusters are randomly allocated to the intervention and control groups within each 

stratum. For example, Mallick et al [4] conducted a school-based stratified CRT, where 

schools were first divided into quintile (1-3: lower and 4-5: higher) based on socio-

economic resources and then stratified into low versus high quintile. Schools within each 

stratum were then randomly allocated to intervention and control groups [4]. 

Randomization of intact clusters may lead to the situation where outcomes from the 

same cluster may be similar. This similarity inflated the variance of the estimated 

intervention effect and failure to account this similarity may yield false significant 

intervention effect [1, 7]. This similarity or clustering is measured by intra-cluster 

correlation coefficient (ICC) and statistical methods should adjust for this clustering [1]. 

For stratified design, these methods need to further adjust for stratification [1]. Both 

individual-level (based on individual-level data) and cluster-level (based on cluster level 

summary) methods can be used to examine the effect of intervention from the stratified 

CRTs. The individual-level methods include: mixed-effect model [8] or generalized 

estimating equation (GEE) [9], while cluster-level methods include: cluster-level linear 

regression or meta-analytic approach [10] – which can be used to assess the treatment 
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effects over strata [11-13]. Chu et al [14] compared the performance of several methods 

including meta-regression to analyze continuous data from multicentre randomized 

controlled trials.  

While it is important to adjust for stratification only 26% of the randomized 

controlled trials adjusted the primary analysis for the balancing factors [15]. In addition, 

from a recent systematic survey conducted by our team – where we added the term ‘strati*’ 

with the search terms suggested by Taljaard et al [16] to identify the stratified CRTs from 

the database MEDLINE, since the inception to July 2019, we found that, only 38% of the 

185 selected studies adjusted the primary method for both clustering and stratification to 

assess the intervention effect from stratified CRTs [17]. Failure to adjust for stratification 

leads to wider confidence intervals and larger p-values [15,17-19]. Borhan et al [18, 19] 

empirically compared several methods for analyzing continuous and count data from 

stratified CRTs using data from the Mallick et al [4] and ViDOS study [20], respectively. 

Moreover, researchers have investigated the performance of methods from completely 

randomized CRTs [21-26]. Klar and Darlington [22] investigated the performance of 

several mixed-effect methods to analyze pretest-posttest continuous data from completely 

randomized CRTs incorporating the individual-and cluster-level associations. On the other 

hand, Borhan et al [21] and Austin P [23] investigated the performance of methods for 

analyzing binary data. Based on our systematic survey [17], it is evident that, we have 

limited evidence about the performance of the methods to assess the intervention effect 

from stratified CRTs, especially when the outcome of interest was continuous.  



PhD Thesis – S. Borhan; McMaster University 

Health Research Methodology, Biostatistics Specialization 
 
 

65 
 

In this study, we conducted a simulation study to examine the performance of methods for 

assessing the intervention effect from stratified CRTs. We evaluated several methods, in 

terms of type I error rate, empirical power, root mean square error rate, and width of 95% 

confidence intervals, for analyzing continuous data from stratified CRTs.   

 

Methods 

This was a simulation study, where we evaluated the performance of several 

methods for assessing the intervention effect, when the outcome of interest was continuous 

from stratified CRTs. 

 

Statistical methods 

Both individual-level and cluster-level methods were used to assess the intervention 

effect. These methods were adjusted for stratification. 

 

Individual-level methods 

Mixed-effects regression model (mixed-effect) 

The mixed-effects regression model is given by 

𝑌𝑖𝑗𝑘𝑠 = 𝛽0 + 𝛽1𝑋𝑖𝑗𝑘𝑠 + 𝛽2𝑆𝑖𝑗𝑘𝑠 + 𝐶𝑖𝑗𝑘 + 𝑒𝑖𝑗𝑘𝑠     
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Where 𝑌𝑖𝑗𝑘𝑠 is the outcome of the 𝑖-th subject in the 𝑗-th cluster, 𝑘-th intervention 

group and 𝑠-th stratum.  𝑋𝑖𝑗𝑘𝑠 represents the intervention assignment (𝑋𝑖𝑗𝑘𝑠=1 for the 

treatment group; 𝑋𝑖𝑗𝑘𝑠=0 for the control), 𝑆𝑖𝑗𝑘𝑠 represents the dichotomous stratification 

variable with value 0 and 1, and 𝑒𝑖𝑗𝑘𝑠 is the random error assumed to follow a normal 

distribution with mean 0 and variance 𝜎𝑒
2.  

In this model, 𝛽1 and 𝛽2 represents the treatment and stratum effect, respectively, 

which are fixed. The random cluster effect is given by 𝐶𝑖𝑗𝑘, which follows a normal 

distribution with mean 0 and variance 𝜎𝑏
2. The ICC represents the correlation between two 

randomly chosen subjects in the same cluster. A single common ICC given by 
𝜎𝑏
2

𝜎𝑏
2+𝜎𝑒

2 was 

assumed for all clusters. The R package lme4() was used to fit this model with restricted 

maximum likelihood (REML) method [26, 27]. 

 

Generalized estimating equation (GEE) 

The generalized estimating equation (GEE) model is given by 

𝐸(𝑦𝑖𝑗𝑘𝑠) = 𝛽0 + 𝛽1𝑋𝑖𝑗𝑘𝑠 + 𝛽2𝑆𝑖𝑗𝑘𝑠     

Like mixed-effect model, 𝛽1 and 𝛽2 represents the treatment and stratum effect, 

respectively. The working correlation structure in the GEE model take into account the 

correlation among the outcomes from the same cluster and the sandwich covariance 

estimator yields a robust estimate of the treatment effect even if the correlation structure is 
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mis-specified [28]. In the GEE analysis, we assumed the correlation structure followed an 

exchangeable pattern. R package geepack() was used to fit the GEE model. 

 

Cluster-level methods 

Cluster-level linear regression (CL Linear Regression) 

Cluster-level method is based on cluster-level summary measure, such as mean [1]. 

We first calculated the mean for each cluster, then a linear regression was fitted, adjusted 

for stratification, using these mean values.  

 

Meta-regression 

The meta-regression approach is based on cluster-level summary measure [10]. We 

extended this method for stratified design and used the mean difference, in outcomes, 

between the intervention and control arms within each stratum. Random-effect model was 

used to estimate the treatment effect and was conducted using the R package metacont().  

 

Simulation study 

We conducted a simulation study, to assess the performance of the statistical 

methods to analyze the continuous outcome from the stratified cluster randomized trials, 

using the approach adopted by Arnold et al [29] and Moerbeek & Schie [30]. We 
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considered a stratified design with one stratification variable with two strata. The outcome, 

𝑌, was simulated, separately for each stratum, using the following mixed-effects linear 

regression model: 𝑌𝑖𝑗𝑘 = 𝛽0 + 𝛽1𝑋𝑖𝑗𝑘 + 𝐶𝑖𝑗 + 𝑒𝑖𝑗𝑘; where, 𝑌𝑖𝑗𝑘 is the outcome of the 𝑖-th 

subject in the 𝑗-th cluster, in the 𝑘-th intervention group; 𝑋𝑖𝑗𝑘(= 0,1) represent the dummy 

variable for treatment allocation (𝑖 = 1,… , 𝑛𝑗; 𝑗 = 1, … , 𝐽); 𝐶𝑖𝑗 is the cluster-level random 

effect while 𝑒𝑖𝑗𝑘 is the individual-level random error term. Both 𝐶𝑖𝑗 and 𝑒𝑖𝑗𝑘 follow normal 

distributions with mean 0 and standard deviations 𝜎𝑐 and 𝜎𝑒, respectively. Random effects 

and error term related to the ICC as ICC(=
𝜎𝑐
2

𝜎𝑐
2+𝜎𝑒

2) is the ratio of between cluster variance 

to the total variance [1]. Without loss of generality, the total variability was fixed at 𝜎2 =

𝜎𝑐
2 + 𝜎𝑒

2 = 1 and 𝛽0 = 0. The other parameters for this simulation study such as, the 

number of clusters, cluster sizes, intervention effect size, and ICC, were selected, given in 

Table 1, based on the studies that had continuous outcome as the primary outcome from 

our recently conducted systematic survey [17]. For each of these designs,  1000 simulations 

were run for each combination of 𝛽1 = 0, 0.11; number of clusters =6, 24, 34, 68; number 

of individuals per cluster=5,10,15,20,25,30,35,40,45,50 and  ICC=0.03, 0.06. This 

simulation study was conducted using R [31]. 

 

Comparison of methods 

We applied the methods, discussed in the statistical methods section, to assess the 

effect of intervention for each simulated data set. The following quantities were used to 

evaluate the performance of these methods: (1) empirical type I error rate measured as the 
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proportion of time the test statistic reject the null hypothesis of treatment effect 𝐻0: 𝛽1 =

0, when the true treatment effect was  𝛽1 = 0; (2) empirical power was measured as the 

proportion of the time the test statistic reject the null hypothesis of treatment effect 

𝐻0: 𝛽1 = 0, when the true treatment effect was  𝛽1 = 0.11; (3) root mean squared error 

(RMSE) measured as the √𝐸[(𝛽1̂ − 𝛽1)
2
], where 𝛽1̂ and 𝛽1are the estimated and true value 

of treatment effect; (4) average width of the 95% confidence intervals was measured as the 

average of the difference between the upper limit and lower limit across all 1000 

replications. 

 

Results 

Type I error rate 

The results of type I error rate for all the methods and study types are given in 

Figure 1 for both ICC=0.03 and 0.06. The type I error rates were more than 10% and around 

10% for the GEE and meta-regression methods, when the number of clusters was 6. This 

rate was around 7% for the GEE when the number of clusters was 24. On the other hand, 

mixed-effect and CL linear regression yielded approximately 5%, nominal level, type I 

error rates. All the methods followed the similar pattern as ICC=0.03 when the ICC was 

0.06 (Figure 1).    

Overall, GEE and meta-regression yielded liberal type I error rates for study with 

small number of clusters. Both of these methods yielded approximately 5% type I error 
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rates as the number of clusters increased. Mixed-effect and CL linear regression yielded 

5% type I error rates almost in all cases.  

 

Empirical power 

The results of empirical power for all methods are provided in Figure 2 for both 

ICC=0.03 and 0.06. GEE and meta-regression had more power compared to mixed-effect 

and CL linear regression methods when the number of clusters was 6. CL linear regression 

and mixed-effect had power around 10%. For the number of clusters 24, mixed-effect, CL 

linear regression and meta-regression had almost similar power, while GEE had slightly 

more power compared to these methods. Meta-regression had the lowest power compared 

to other methods for the number of clusters 34 and 68. GEE, mixed-effect and CL linear 

regression had almost similar power when the number of clusters was 68.  

The power for all methods followed almost the similar pattern as ICC=0.03 for the 

ICC=0.06. However, the power for all methods were slightly lower when the ICC was 0.06 

compared to ICC=0.03. No method yielded 80% power when the ICC was 0,06 (Figure 2).  

Overall, the power for all methods increased as the number of clusters and cluster 

size increased. GEE had the highest power compared to other methods for small number 

of clusters (6, 24).  As the number of clusters increased CL linear regression and mixed-

effect had similar power as GEE, while meta-regression yielded the lowest power.  
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Root Mean Squared Error (RMSE) 

Overall, the average RMSEs were decreased as the number of clusters and cluster 

sizes increased. All methods had almost similar RMSEs, except meta-regression, for each 

combination of cluster size and number of clusters (Figure 3). Meta-regression had slightly 

higher average RMSEs for study with small number of clusters.  

The average RMSEs follows the similar pattern of ICC=0.03 for the ICC=0.06 for 

all methods. However, RMSEs were slightly higher for each combination of cluster size 

and number of clusters for all methods (Figure 3).  

 

Width of 95% confidence intervals 

The results of the average widths of the 95% confidence intervals for ICC=0.03 and 

0.06 for all methods are given in Figure 4. For the number of clusters 6, GEE had the 

narrowest widths compared to other methods, while CL linear regression had the widest 

widths. Meta-regression had the widest widths compared to other methods for the number 

of clusters 24, 34 and 68. CL linear regression and mixed-effect methods had almost similar 

widths for the number of clusters 24, while GEE had slightly narrower widths compared to 

these methods.   

Overall, average widths of the 95% confidence intervals decreased as the number 

of clusters and cluster sizes increased. CL linear regression had the widest widths for small 

number of clusters. However, as the number of clusters increased meta-regression had the 
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widest widths compared to other methods. The average widths for all methods follow the 

same pattern as of ICC=0.03 for ICC=0.06. However, the widths were slightly higher for 

each combination of cluster size and number of clusters for all study types (Figure 4). 

 

Discussion 

In this simulation study, we investigated the performance of several methods to 

assess the intervention effect from stratified CRTs with a single stratification variable. We 

have compared 4 different methods: GEE, mixed-effect, CL linear regression and meta-

regression methods. It is evident that, the number of clusters and cluster sizes, and ICC had 

impacted the performance of these methods evaluated through type I error rate, power, root 

mean square error, and width of 95% confidence interval.  

GEE and meta-regression methods yielded liberal type I error rates for the small 

number of clusters. On the other hand, CL linear regression and mixed-effect methods 

yielded satisfactory, approximately 5%, type I error rates. Borhan et al [21] investigated 

the performance of methods for analyzing pretest-posttest binary data from completely 

randomized CRTs and found that the GEE method yielded liberal type I error rates for 

small number of clusters. Similarly, Klar and Darlington [22] reported that mixed-effect 

methods yielded satisfactory 5% type I error rate when analyzed continuous data from 

completely randomized CRTs. These findings were in line with our findings.  

GEE method yielded higher empirical power compared to other methods for small 

number of clusters, which matched with the findings of Austin 2007 [23] as the author 
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found GEE method yielded more power compared to other methods when the author 

investigated the methods for analyzing binary data from CRTs. Researchers noticed that, 

sandwich covariance method underestimate the standard error in the case of small number 

of clusters, which inflated the type I error rate and empirical power [24, 32]. Further, the 

researchers have suggested, it required at least 40 clusters to get reliable estimate using 

GEE [7]. Overall, meta-regression yielded the lowest power compared to other methods, 

for number of clusters more than 6, which matched with the findings of Chu et al [14].  

Power of all methods decreased as the ICC increased. Chu et al [14] demonstrated that, 

empirical power for all methods decreased as the ICC increased.  

GEE and meta-regression had almost similar performance in terms of type I error 

rates and power for small number of clusters. Further study to evaluate the performance of 

GEE with small sample adjustment [25] is warranted. In addition, it requires further 

methodological investigation, especially small sample adjustment, to improve the 

performance of meta-regression in the context of stratified cluster randomization trials.   

The average RMSEs for all methods were similar except meta-regression and 

RMSEs were getting lower as the number of clusters and cluster sizes increases for all the 

methods. Meta-regression yielded slightly higher RMSEs compared to other methods for 

the small number clusters, which was in line with the findings of Chu et al [14].  Meta-

regression method yielded the widest 95% confidence intervals compared to other methods 

for number of clusters more than 6. 

There were several limitations of this study: first, we considered only 1 

stratification variable with 2 strata; secondly, we considered only 1:1 allocation of clusters 
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into interventions groups and fixed cluster size in each stratum; thirdly, this study was 

limited to two-arm parallel group trial; finally, we adjusted for stratification by using the 

stratification variables as covariate(s). From our recent systematic survey, we found that 

most of the stratified cluster randomized trials were two-arm parallel-group trials and 

adjusted method by using stratification variables as covariate(s) [17]. 

Researchers have emphasized that, it is important to adjust for stratification, in 

addition to clustering, to correctly assess the intervention effect from stratified CRTs 

[15,18,19]. This study shed light on performance of methods – adjusted for stratification 

and clustering, for analyzing continuous data from stratified CRTs. Future studies are 

warranted to examine the performance of these methods with varying number of clusters 

and cluster sizes across strata.   

 

Conclusions  

In this simulation study, we investigated the performance of four methods, adjusted 

for stratification and clustering, for analyzing continuous data from stratified cluster 

randomized trials with one stratification variable. The performance of all methods 

improved as the number of clusters and cluster sizes increased, while the performance of 

all methods worsened as the ICC increased. GEE had more than 10% and meta-regression 

had approximately 10%, type I error rates for small number of clusters. Meta-regression 

was the least powerful and least efficient compared to other methods.  
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CRT: Cluster Randomized Trial 

GEE: Generalized Estimating Equation  

CL: Cluster-level 
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REML: Restricted Maximum Likelihood 

RMSE: Root Mean Square Error 
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Table 1: Selected parameters for simulation study 

Variable Summary from studies that 

had continuous outcome as 

their primary outcomea 

Selected for simulation 

study 

Number of clusters in the 

intervention groups 

Mean= 50; Median= 34; 

Q1=24; Q3=68; Min=6; 

Max=228 

Total number of clusters: 6, 

24, 34, 68 

 

Number of individuals per 

cluster 

- 5, 10, 15, 20, 25, 30, 35, 40, 

45, 50 

Number of stratification 

variables  

Mean= 2; Median= 1; Q1=1; 

Q3=2; Min=1; Max=3 

1 

Effect size Mean= 0.36; Median= 0.11; 

Q1=-0.12; Q3=1.02; Min=-

9.12; Max=7.17 

0, 0.11 

ICC Mean= 0.09; Median= 0.03; 

Q1=0.00; Q3=0.06; Min=0.00; 

Max=0.58 

 0.03, 0.06 

aSummary of these variables were calculated form our recently conducted systematic survey [17] 

Q1 =  25th percentile; Q3 = 75th percentile; ICC = intra-cluster correlation coefficient 
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Figure 1: Results of type I error rate for testing null treatment effect, when the true treatment 

effect was 0, over 1000 simulations for ICC=0.03 & 0.06 and number of clusters 6, 24, 34 and 

68 
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Figure 2: Results of empirical power for testing null treatment effect, while the true treatment 

effect was 0.11, over 1000 simulations for ICC=0.03&0.06 and number of clusters 6, 24, 34, and 

68 
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Figure 3: RMSE for testing null treatment effect, while the true treatment effect was 0.11, over 

1000 simulations for ICC=0.03 & 0.06, and number of clusters 6, 24, 34, and 68 
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Figure 4: Width of 95% CI for testing null treatment effect, while the true treatment effect was 

0.11, over 1000 simulations for ICC=0.03 & 0.06, and number of clusters 6, 24, 34 and 68 
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Appendix A: Supplemental material 

Table A1: Type I error rate for ICC=0.03 

Number 

of clusters 

Number of 

individuals 

per cluster 

CL Linear 

Regression 

GEE Meta 

Regression 

Mixed-effect 

6 5 0.056 0.135 0.091 0.054 

10 0.050 0.130 0.101 0.054 

15 0.048 0.119 0.104 0.049 

20 0.054 0.136 0.101 0.053 

25 0.056 0.127 0.102 0.047 

30 0.055 0.130 0.103 0.044 

35 0.066 0.143 0.111 0.049 

40 0.043 0.131 0.099 0.050 

45 0.048 0.128 0.102 0.060 

50 0.058 0.129 0.106 0.061 

24 5 0.053 0.068 0.049 0.052 

10 0.056 0.073 0.054 0.054 

15 0.061 0.080 0.067 0.058 

20 0.050 0.062 0.045 0.051 

25 0.052 0.062 0.047 0.055 

30 0.052 0.060 0.044 0.051 

35 0.051 0.067 0.052 0.053 

40 0.048 0.065 0.043 0.051 

45 0.064 0.085 0.061 0.060 

50 0.047 0.072 0.047 0.051 

34 5 0.055 0.061 0.046 0.052 

10 0.041 0.050 0.034 0.040 

15 0.052 0.062 0.047 0.053 

20 0.043 0.051 0.037 0.048 

25 0.051 0.063 0.046 0.050 

30 0.050 0.061 0.045 0.046 

35 0.057 0.073 0.055 0.058 

40 0.053 0.062 0.048 0.048 

45 0.039 0.053 0.034 0.040 

50 0.046 0.052 0.040 0.048 

68 5 0.057 0.061 0.049 0.054 

10 0.040 0.043 0.035 0.040 

15 0.040 0.046 0.028 0.044 

20 0.041 0.046 0.036 0.041 
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25 0.035 0.042 0.030 0.037 

30 0.051 0.053 0.042 0.053 

35 0.052 0.059 0.038 0.055 

40 0.051 0.055 0.043 0.054 

45 0.035 0.040 0.036 0.039 

50 0.045 0.047 0.036 0.043 
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Table A2: Type I error rates for ICC=0.06 

Number 

of clusters 

Number of 

individuals 

per cluster 

CL Linear 

Regression 

GEE Meta 

Regression 

Mixed-effect 

6 5 0.056 0.135 0.091 0.054 

10 0.050 0.130 0.101 0.054 

15 0.048 0.119 0.104 0.049 

20 0.054 0.136 0.101 0.053 

25 0.056 0.127 0.102 0.047 

30 0.055 0.130 0.103 0.044 

35 0.066 0.143 0.111 0.049 

40 0.043 0.131 0.099 0.050 

45 0.048 0.128 0.102 0.060 

50 0.058 0.129 0.106 0.061 

24 5 0.053 0.068 0.049 0.052 

10 0.056 0.073 0.054 0.054 

15 0.061 0.080 0.067 0.058 

20 0.050 0.062 0.045 0.051 

25 0.052 0.062 0.047 0.055 

30 0.052 0.060 0.044 0.051 

35 0.051 0.067 0.052 0.053 

40 0.048 0.065 0.043 0.051 

45 0.064 0.085 0.061 0.060 

50 0.047 0.072 0.047 0.051 

34 5 0.055 0.061 0.046 0.052 

10 0.041 0.050 0.034 0.040 

15 0.052 0.062 0.047 0.053 

20 0.043 0.051 0.037 0.048 

25 0.051 0.063 0.046 0.050 

30 0.050 0.061 0.045 0.046 

35 0.057 0.073 0.055 0.058 

40 0.053 0.062 0.048 0.048 

45 0.039 0.053 0.034 0.040 

50 0.046 0.052 0.040 0.048 

68 5 0.057 0.061 0.049 0.054 

10 0.040 0.043 0.035 0.040 

15 0.040 0.046 0.028 0.044 

20 0.041 0.046 0.036 0.041 

25 0.035 0.042 0.030 0.037 
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30 0.051 0.053 0.042 0.053 

35 0.052 0.059 0.038 0.055 

40 0.051 0.055 0.043 0.054 

45 0.035 0.040 0.036 0.039 

50 0.045 0.047 0.036 0.043 
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Table A3: Empirical power for ICC=0.03 

Number 

of clusters 

Number of 

individuals 

per cluster 

CL Linear 

Regression 

GEE Meta 

Regression 

Mixed-effect 

6 5 0.074 0.151 0.117 0.055 

10 0.086 0.164 0.139 0.071 

15 0.077 0.171 0.142 0.074 

20 0.098 0.215 0.163 0.091 

25 0.100 0.223 0.154 0.096 

30 0.116 0.206 0.160 0.096 

35 0.112 0.227 0.171 0.105 

40 0.117 0.240 0.184 0.115 

45 0.110 0.239 0.172 0.099 

50 0.125 0.255 0.180 0.114 

24 5 0.125 0.144 0.109 0.103 

10 0.154 0.189 0.155 0.146 

15 0.233 0.265 0.212 0.228 

20 0.280 0.318 0.245 0.265 

25 0.312 0.350 0.275 0.299 

30 0.300 0.331 0.263 0.275 

35 0.330 0.368 0.296 0.332 

40 0.335 0.386 0.314 0.340 

45 0.384 0.409 0.321 0.362 

50 0.390 0.435 0.364 0.385 

34 5 0.151 0.171 0.131 0.140 

10 0.240 0.267 0.211 0.235 

15 0.302 0.334 0.264 0.275 

20 0.354 0.396 0.308 0.336 

25 0.413 0.454 0.355 0.404 

30 0.413 0.443 0.366 0.410 

35 0.486 0.522 0.424 0.476 

40 0.488 0.519 0.429 0.466 

45 0.505 0.533 0.443 0.488 

50 0.523 0.558 0.438 0.516 

68 5 0.292 0.306 0.242 0.272 

10 0.438 0.458 0.370 0.427 

15 0.565 0.581 0.481 0.569 

20 0.646 0.664 0.544 0.642 

25 0.691 0.708 0.603 0.689 
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30 0.724 0.737 0.637 0.720 

35 0.765 0.774 0.689 0.758 

40 0.796 0.807 0.685 0.781 

45 0.822 0.829 0.713 0.817 

50 0.816 0.825 0.712 0.805 
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Table A4: Empirical power for ICC=0.06 

Number 

of 

clusters 

Number of 

individuals 

per cluster 

CL Linear 

Regression GEE 

Meta 

Regression Mixed-effect 

6 5 0.082 0.158 0.114 0.063 

10 0.080 0.168 0.134 0.078 

15 0.077 0.152 0.140 0.070 

20 0.077 0.188 0.145 0.074 

25 0.087 0.201 0.137 0.091 

30 0.088 0.189 0.137 0.082 

35 0.102 0.193 0.149 0.085 

40 0.100 0.205 0.173 0.079 

45 0.095 0.195 0.145 0.084 

50 0.097 0.213 0.141 0.090 

24 5 0.122 0.144 0.106 0.103 

10 0.131 0.157 0.129 0.132 

15 0.188 0.215 0.167 0.189 

20 0.228 0.254 0.195 0.209 

25 0.232 0.261 0.213 0.227 

30 0.224 0.256 0.189 0.216 

35 0.243 0.274 0.206 0.243 

40 0.241 0.273 0.223 0.233 

45 0.267 0.301 0.236 0.241 

50 0.262 0.301 0.247 0.267 

34 5 0.139 0.168 0.122 0.135 

10 0.222 0.245 0.183 0.227 

15 0.237 0.268 0.208 0.229 

20 0.265 0.299 0.240 0.260 

25 0.319 0.345 0.269 0.301 

30 0.312 0.332 0.261 0.300 

35 0.350 0.382 0.299 0.345 

40 0.352 0.384 0.312 0.334 

45 0.339 0.372 0.308 0.340 

50 0.366 0.401 0.309 0.352 

68 5 0.272 0.283 0.219 0.256 

10 0.385 0.400 0.317 0.378 

15 0.464 0.481 0.400 0.470 

20 0.515 0.534 0.425 0.514 

25 0.545 0.554 0.458 0.541 
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30 0.564 0.582 0.482 0.548 

35 0.566 0.582 0.497 0.567 

40 0.596 0.616 0.506 0.598 

45 0.622 0.647 0.537 0.615 

50 0.634 0.650 0.544 0.625 
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Table A5: RMSEs for ICC=0.03 

Number 

of 

clusters 

Number of 

individuals 

per cluster 

CL Linear 

Regression 

GEE Meta 

Regression 

Mixed-

effect 

6 5 0.28 0.28 0.28 0.28 

10 0.21 0.21 0.22 0.21 

15 0.18 0.18 0.18 0.18 

20 0.17 0.17 0.18 0.17 

25 0.15 0.15 0.15 0.15 

30 0.15 0.15 0.15 0.15 

35 0.14 0.14 0.14 0.14 

40 0.14 0.14 0.14 0.14 

45 0.13 0.13 0.13 0.13 

50 0.13 0.13 0.14 0.13 

24 5 0.14 0.14 0.14 0.14 

10 0.10 0.10 0.10 0.10 

15 0.09 0.09 0.09 0.09 

20 0.08 0.08 0.08 0.08 

25 0.08 0.08 0.08 0.08 

30 0.07 0.07 0.07 0.07 

35 0.07 0.07 0.07 0.07 

40 0.07 0.07 0.07 0.07 

45 0.07 0.07 0.07 0.07 

50 0.06 0.06 0.07 0.06 

34 5 0.12 0.12 0.12 0.12 

10 0.08 0.08 0.08 0.08 

15 0.08 0.08 0.08 0.08 

20 0.07 0.07 0.07 0.07 

25 0.06 0.06 0.06 0.06 

30 0.06 0.06 0.06 0.06 

35 0.06 0.06 0.06 0.06 

40 0.06 0.06 0.06 0.06 

45 0.05 0.05 0.05 0.05 

50 0.05 0.05 0.05 0.05 

68 5 0.08 0.08 0.08 0.08 

10 0.06 0.06 0.06 0.06 

15 0.05 0.05 0.05 0.05 

20 0.05 0.05 0.05 0.05 

25 0.04 0.04 0.04 0.04 
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30 0.04 0.04 0.04 0.04 

35 0.04 0.04 0.04 0.04 

40 0.04 0.04 0.04 0.04 

45 0.04 0.04 0.04 0.04 

50 0.04 0.04 0.04 0.04 
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Table A6: RMSEs for ICC=0.06 

Number 

of 

clusters 

Number of 

individuals 

per cluster 

CL Linear 

Regression 

GEE Meta 

Regression 

Mixed-

effect 

6 5 0.29 0.29 0.30 0.29 

10 0.23 0.23 0.24 0.23 

15 0.20 0.20 0.21 0.20 

20 0.20 0.20 0.21 0.20 

25 0.18 0.18 0.18 0.18 

30 0.18 0.18 0.19 0.18 

35 0.17 0.17 0.18 0.17 

40 0.17 0.17 0.17 0.17 

45 0.16 0.16 0.17 0.16 

50 0.17 0.17 0.17 0.17 

24 5 0.15 0.15 0.15 0.15 

10 0.11 0.11 0.11 0.11 

15 0.10 0.10 0.11 0.10 

20 0.09 0.09 0.09 0.09 

25 0.09 0.09 0.09 0.09 

30 0.09 0.09 0.09 0.09 

35 0.09 0.09 0.09 0.09 

40 0.08 0.08 0.08 0.08 

45 0.08 0.08 0.08 0.08 

50 0.08 0.08 0.08 0.08 

34 5 0.12 0.12 0.12 0.12 

10 0.09 0.09 0.09 0.09 

15 0.09 0.09 0.09 0.09 

20 0.08 0.08 0.08 0.08 

25 0.08 0.08 0.08 0.08 

30 0.08 0.08 0.08 0.08 

35 0.07 0.07 0.07 0.07 

40 0.07 0.07 0.07 0.07 

45 0.07 0.07 0.07 0.07 

50 0.07 0.07 0.07 0.07 

68 5 0.09 0.09 0.09 0.09 

10 0.06 0.06 0.06 0.06 

15 0.06 0.06 0.06 0.06 

20 0.05 0.05 0.05 0.05 

25 0.05 0.05 0.05 0.05 
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30 0.05 0.05 0.05 0.05 

35 0.05 0.05 0.05 0.05 

40 0.05 0.05 0.05 0.05 

45 0.05 0.05 0.05 0.05 

50 0.05 0.05 0.05 0.05 
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Table A7: Width of 95% confidence intervals for ICC=0.03 

Number 

of 

clusters 

Number of 

individuals 

per cluster 

CL Linear 

Regression 

GEE Meta 

Regression 

Mixed-

effect 

6 5 1.21 0.91 1.16 1.11 

10 0.90 0.68 0.85 0.82 

15 0.79 0.59 0.74 0.70 

20 0.72 0.54 0.68 0.63 

25 0.66 0.50 0.65 0.57 

30 0.63 0.48 0.59 0.54 

35 0.61 0.46 0.58 0.52 

40 0.58 0.44 0.55 0.49 

45 0.57 0.43 0.55 0.48 

50 0.56 0.42 0.54 0.47 

24 5 0.55 0.51 0.61 0.55 

10 0.41 0.39 0.46 0.40 

15 0.36 0.34 0.40 0.35 

20 0.32 0.30 0.36 0.31 

25 0.30 0.29 0.34 0.29 

30 0.29 0.27 0.33 0.28 

35 0.28 0.26 0.31 0.26 

40 0.27 0.25 0.30 0.26 

45 0.26 0.25 0.30 0.25 

50 0.26 0.24 0.29 0.25 

34 5 0.46 0.44 0.52 0.46 

10 0.34 0.33 0.39 0.34 

15 0.30 0.29 0.34 0.29 

20 0.27 0.26 0.30 0.26 

25 0.25 0.24 0.28 0.25 

30 0.24 0.23 0.28 0.24 

35 0.23 0.22 0.26 0.22 

40 0.22 0.22 0.25 0.22 

45 0.22 0.21 0.24 0.21 

50 0.21 0.21 0.25 0.21 

68 5 0.32 0.31 0.36 0.32 

10 0.24 0.24 0.28 0.24 

15 0.21 0.20 0.24 0.21 

20 0.19 0.19 0.22 0.19 

25 0.18 0.17 0.20 0.18 
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30 0.17 0.17 0.19 0.17 

35 0.16 0.16 0.19 0.16 

40 0.16 0.15 0.18 0.16 

45 0.15 0.15 0.18 0.15 

50 0.15 0.15 0.17 0.15 
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Table A8: Widths of 95% confidence intervals for ICC=0.06 

Number 

of 

clusters 

Number of 

individuals per 

cluster 

CL Linear 

Regression 

GEE Meta 

Regression 

Mixed-

effect 

6 5 1.27 0.95 1.21 1.14 

10 0.99 0.74 0.94 0.87 

15 0.90 0.68 0.85 0.77 

20 0.84 0.63 0.80 0.71 

25 0.79 0.59 0.77 0.66 

30 0.77 0.57 0.72 0.64 

35 0.75 0.56 0.71 0.62 

40 0.73 0.55 0.68 0.60 

45 0.72 0.54 0.69 0.59 

50 0.71 0.54 0.69 0.59 

24 5 0.58 0.54 0.64 0.57 

10 0.45 0.43 0.51 0.44 

15 0.41 0.38 0.45 0.39 

20 0.38 0.36 0.42 0.36 

25 0.36 0.34 0.41 0.35 

30 0.35 0.33 0.40 0.34 

35 0.34 0.32 0.38 0.32 

40 0.33 0.32 0.37 0.32 

45 0.33 0.31 0.37 0.32 

50 0.33 0.31 0.36 0.31 

34 5 0.48 0.46 0.54 0.48 

10 0.38 0.36 0.43 0.37 

15 0.34 0.33 0.38 0.33 

20 0.32 0.30 0.35 0.31 

25 0.30 0.29 0.34 0.29 

30 0.29 0.28 0.34 0.28 

35 0.28 0.27 0.32 0.28 

40 0.28 0.27 0.32 0.27 

45 0.27 0.26 0.30 0.27 

50 0.27 0.26 0.31 0.26 

68 5 0.34 0.33 0.38 0.33 

10 0.27 0.26 0.31 0.26 

15 0.24 0.23 0.28 0.23 

20 0.22 0.22 0.26 0.22 

25 0.21 0.21 0.24 0.21 
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30 0.20 0.20 0.23 0.20 

35 0.20 0.20 0.23 0.20 

40 0.20 0.19 0.22 0.19 

45 0.19 0.19 0.22 0.19 

50 0.19 0.19 0.22 0.19 
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Chapter 6 

Discussion and Conclusion 

 

 In this thesis, we investigated the several methodological and statistical challenges 

pertaining to stratified CRTs : (i) surveyed the literature to assess the current practice about 

reporting and analysis of data from stratified CRTs; (ii) assessed the sensitivity of methods 

for analyzing continuous data from stratified CRTs; (iii) empirically investigated the 

sensitivity of methods for analyzing count data from stratified CRTs; (iv) evaluated the 

performance of methods for analyzing continuous data from stratified CRTs. In this 

chapter, we summarize the key findings focusing on the research questions this thesis is 

based on. The implications and limitations of these research works are also highlighted 

here. 

 

6.1 Addressing the research questions 

6.1.1 What is the quality of reporting of stratified CRTs? 

 In Chapter 2, we conducted a systematic survey [1] to appraise the reporting and 

analysis of data from stratified CRTs. Overall, 185 stratified CRTs were included for data 

abstraction. Data were abstracted on several design characteristics including reporting of 

sample size, randomization, primary method of analysis and reporting of results. All of the 

included studies did not report the sample size calculation. Only ~60% of the 185 studies 

reported the ICC or CV, while ~25% studies reported the adjustment for lost to follow-up 

and <10% reported method used to calculate the sample size. More than 50% of the studies 
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did not report the method used for randomization, while 23% of the studies did not define 

all the strata.  

   

6.1.2 Is the intervention effect assessed through proper adjustments – namely, 

clustering and stratification? 

 In order to correctly assess the intervention effect from stratified CRTs it is 

necessary to adjust for both stratification and clustering in the primary analysis. One of the 

objectives of this thesis was to summarize the evidence on that front. From our systematic 

survey [1] in Chapter 2, we found that only 38% of the studies adjusted the primary method 

for both stratification and clustering. Further, only 19% and 31% of the studies included 

stratification variables in the study flow chart and baseline characteristics table, 

respectively. 

 

 6.1.3 How robust is the methods for analyzing continuous data from stratified CRTs? 

In Chapter 3, we conducted an empirical study [2] to examine the sensitivity of 

methods for analyzing continuous data from stratified CRTs. Five individual- and cluster-

level methods including: standard linear regression, cluster-level linear regression, GEE, 

mixed-effect and meta-regression were compared to assess effect of the intervention 

classroom curriculum resources (CCR) on improving the peer attitude towards children 

who stutter using the data from the Mallick et al [3] study. The conclusion from all methods 

was similar that is, CCR has no effect compared to usual care on improving the peer attitude 

[2]. The direction of the estimated effect was similar for all methods except for meta-
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regression. The magnitudes of the estimated differences were similar among the methods 

with or without adjustment for stratification.  

 

6.1.4 How robust is the methods for analyzing over-dispersed count data with excess 

zeros from stratified CRTs? 

In Chapter 4, we assessed the sensitivity of methods for analyzing count data from 

stratified CRTs [4], using the data from the ViDOS study [5]. The outcome, number of 

falls, was over-dispersed with excessive zeros. Eight methods based on Poisson and 

negative binomial distributions were compared. The overall conclusions from all methods 

were similar that the KT intervention had no effect on number of falls. However, these 

methods differ in terms of estimated RRs, and widths of 95% confidence intervals. The 

estimated RRs were higher and confidence intervals were wider for methods that did not 

take into account the inflated zeros.  

 

6.1.5 What is the impact of ignoring the adjustment for stratification?  

 In Chapter 3 and 4 we assessed the impact of not adjusting for stratification in 

estimating the intervention effect when the outcomes of interest were continuous and count, 

respectively. The results from these empirical studies demonstrated that, the widths of the 

95% confidence intervals were wider and p-values were higher in the absence of 

adjustment for stratification, even if the methods were adjusted for clustering.  
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6.1.6 How the varying number of clusters, cluster sizes, ICCs, and effect sizes impact 

the performance of methods for analyzing continuous data from stratified CRTs?  

 In Chapter 6, we conducted a simulation study to evaluate the performance of 

several methods for analyzing continuous data from stratified CRTs [6]. We considered a 

stratified CRT with one binary stratification variable. Data were generated for varying 

number of clusters, cluster sizes, ICCs, and effect sizes. Mixed-effects method, GEE, meta-

regression and cluster-level linear regression were compared in terms of type I error rate, 

statistical power, root mean square error and widths of 95% confidence intervals.  

 The performance of all methods improved as the number of clusters and cluster 

sizes increased. GEE and meta-regression yielded ~10% type I error rate for small number 

of clusters [6]. Rejection rate for all methods for testing the null intervention effect 

increased as the effect size increased. All methods but meta-regression had approximately 

similar accuracy and precision. Performance of all methods worsened as the ICC increases. 

Meta-regression was the least efficient and least powerful method compared to GEE, 

mixed-effects method and cluster-level linear regression for assessing intervention effect 

from stratified CRTs [6]. 

 

6.2 Implications for research and researchers 

From our systematic survey [1] it is evident, reporting of stratified CRTs require 

significant improvement. It is important to report the sample size calculation and the 

necessary parameters used to calculate the sample size including ICC, one- or two-sided 

test, and method used to calculate the sample size. Further, it is vital to define all the strata 
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and include the stratification variables in the study flow-chart or baseline characteristics 

table to highlight the stratification nature of the study. The primary method to examine the 

intervention effect should adjust for both stratification and clustering as failure to such 

adjustment will lead to erroneous conclusion [2,4,7]. Stratum-specific reporting of number 

of clusters, cluster sizes and effect size (if possible) would be beneficial for the readers.  

The results from the empirical studies demonstrated the robustness of several 

methods for analyzing continuous and zero-inflated over-dispersed count data from 

stratified CRTs. The overall conclusion from all the methods were similar. But these 

methods differ in terms of effect size and precision. Also, these empirical studies confirmed 

that the failure to adjust for stratification yield wider confidence intervals and larger p-

values, which in turn reinforce the need for such adjustment for assessing the effect of 

intervention. 

We investigated the performance of several methods for analyzing the continuous 

data from stratified CRTs under varying number of clusters, cluster sizes, ICCs, and effect 

sizes, and found that meta-regression was the least powerful and least efficient method 

compared to GEE, mixed-model, and cluster-level linear regression methods. However, 

people have to be cautious about using cluster-level linear regression since it is based on 

cluster-level mean.  

 

6.3 Major limitations and future work 

There are several major limitations of this thesis. First, the systematic survey [1] 

we conducted was based on MEDLINE only. Also, one reviewer was involved in the study 
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selection and data abstraction. A large-scale systematic review including all the available 

databases would provide more complete picture about the reporting and analysis of data 

from stratified CRTs. 

Second, our empirical studies on continuous [2] and count [4] data were based on 

very small and pilot stratified CRTs, respectively. Empirical study based on large stratified 

CRT can be further investigated to assess the robustness of methods. 

Finally, in the simulation study [6] we only considered a stratified design with one 

stratification variable with two strata. This can be further extended involving more than 

one stratification variable and more than two strata. Also, we did not consider any 

adjustment for small number of clusters in the GEE method [8] in our simulation study, 

which can be further investigated. This type of simulation study can be further extended to 

binary or count data.  

 

6.4 Conclusion 

In this thesis, we conducted a systematic survey to summarize the evidence about 

the reporting and analysis of data from stratified CRTs. We identified the significant 

deficiency in reporting and analysis of data and highlighted some areas that need to be 

included in the reporting. We examined the robustness of methods for analyzing continuous 

and count data from stratified CRTs. Finally, we evaluated the performance of methods for 

analyzing continuous data from stratified CRTs. We believe, these research works will 

guide the researchers to correctly assess the effect of intervention as well as improve the 

reporting from stratified CRTs. 
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