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LAY ABSTRACT 

In the current era of antibiotic resistance, there is an urgent need to discover novel 

chemicals that can be used to treat bacterial infections. The modern antibiotic drug 

discovery pipeline allows large-scale chemical screening to test for the ability of a 

potential drug to kill off or stop the growth of bacteria. However, a common bottleneck 

associated with this lengthy and complex process is the difficulty in understanding how 

these new drugs are fighting off bacterial infections; this is called the mechanism of 

action (MOA) of a chemical. This is extremely important as it can help researchers gain a 

better understanding of the likelihood that bacteria will develop resistance to the drug 

rapidly. It can also reveal information on potential toxicity of the drug to humans. 

Ultimately, exploring the specific MOA of a new drug candidate can help researchers 

prioritize which drug to take to clinical trials. In this study, we investigate how bacteria 

respond to antibiotic treatments by looking at how they alter their genome to adapt to this 

chemical stress. We observed that similarities and differences in the changes to their 

genetic blueprint can help researcher categorize compounds with similar MOAs into the 

same group. Using this information, we have built a machine learning model that can 

help predict the MOA of a compound. This presents an exciting opportunity for 

researcher to speed up their discovery pipeline and help bring new antibiotics to the 

market.  
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ABSTRACT 
 

Bacteria live in diverse and dynamic environments that necessitate adaptation to 

external stimuli. Here, we probe Escherichia coli K-12 with a wide array of chemical 

stressors spanning several drug classes, and gauge the transcriptional responses using a 

promoter-GFP fusion library. Assayed with PFIboxes, the output fluorescence images are 

temporally resolved and data rich. When quantified as gene expression, these 

transcriptional responses are seemingly unique to each molecule tested, yet clear 

differences exist between drug classes. Promoters showing large magnitudes of 

differential regulation in selective conditions, such as DNA damage, oxidative stress, and 

cell wall stress, can be used as diagnostic reporters for primary screening assays. The 

transcriptional signatures generated by these experiments were used to train a 10-layer 

convolutional neural network in Keras for mechanism of action (MOA) predictions. This 

model was used to predict the mechanism of action of cefmetazole, polymyxin B, as well 

as cinoxacin, a compound excluded from the training set. The model predicted the 

identity of cefmetazole and polymyxin B with 95-100% accuracy. Cinoxacin was 

predicted to be enoxacin, another fluoroquinolone antibiotic, with ~80% confidence, 

illustrating the power of prediction MOA of unknown molecules with a large training 

dataset. This deep learning model predicted the MOA of an unknown compound, 

MAC168425, as trimethoprim. Further characterization of the compound suggests that its 

inhibitory activity is involved in folate-binding and utilization, and glycine cleavage.   

In all, this work illustrates that microbial reporter arrays generate unique patterns which 

can be used to make hypotheses on the MOA of unknown molecules.  
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CHAPTER 1: INTRODUCTION 
 

In the current era of antibiotic resistance, drug target identification and 

mechanism of action (MOA) are both highly sought-after but elusive components in the 

modern drug discovery pipeline1. Recent high-throughput chemical screens tend to assess 

for antibiotic activity within a chemical library in a relevant condition. In particular, cell-

based screening approaches are phenotypic based and can identify chemical perturbants 

of biology without being limited to a single target. However, investigating the MOA of 

newly discovered bioactive compounds is a lengthy and complex process, as compounds 

found in phenotype-based screens can affect multiple cellular targets. Inhibition of these 

targets commonly results in multifaceted downstream effects that extend beyond simple 

enzyme inhibition1,2. While direct protein targets have been identified for most 

conventional antibiotics, indirect and secondary effects to these antibiotics are often 

poorly characterized2. Elucidating these complex stress responses can help to define drug 

tolerance and resistance3. Furthermore, rapid identification of drug MOA can help 

researchers prioritize lead compounds from any chemical screening in a more meaningful 

way. Ultimately, there is a need to explore how bacteria respond to antibiotic stress on a 

systems level.  

 

1.2   Bacteria respond to external stimuli through various stress responses 

Bacteria exist in unpredictable environments and are often subjected to a variety 

of stressors and must sense and respond through adaptation2. These include antimicrobial 

agents, hydrogen ions, or nutrient deprivation, amongst others2. In nutrient limited 
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conditions, for example, the stringent response is often initiated4. This is a global 

physiological response, arising from stresses such as restrictions in amino acids, carbon 

sources, iron, and phosphates4.  This response is mediated by the alarmone (p)ppGpp, 

whose levels are governed by the widely conserved RelA/SpoT homolog enzymes 

depending on nutrient availability5,6. (p)ppGpp acts as a global transcriptional regulator 

by modulating RNA polymerase activity to help divert cell resources from protein 

synthesis to activating metabolic biosynthesis processes5,7. Another example is the 

envelope stress response, wherein transcriptional responses are activated by perturbation 

of different components of the cell envelope2. For instance, the Psp response helps to 

stabilize the proton motive force of the cell when the inner membrane integrity is 

impaired8,9. Additionally, a variety of outer-membrane related perturbations, such as 

mutations in the periplasmic chaperones10 and in genes that alter lipopolysaccharide 

(LPS)11, have been described to induce the σE – dependent extracytoplasmic stress 

response. σE  is known to regulate over 60 transcriptional units in E. coli, most of which 

are involved in the biosynthesis, folding, and homeostasis of outer membrane proteins 

and LPS, and can help target mis-folded proteins for degradation2,12.  

 

1.3   Antibiotic challenge leads to differential gene expression 

Sub-inhibitory concentrations of antibiotics can also trigger diverse changes in 

gene expression. These transcriptional responses result in changes in the regulation of 

steps directly affected by target inhibition. For example, the fluoroquinolone group of 

antibiotics13 are potent, bactericidal antibiotics that inhibit DNA gyrase and 
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topoisomerase14. This inhibition eventually results in the formation of double-stranded 

DNA breaks, stalled DNA replication forks and, ultimately, cell death13,14. At sub-

inhibitory concentrations, they are potent inducers of the SOS response, a global 

regulatory network in response to DNA damage in which the cell cycle is arrested and 

DNA repair is initiated15. The same holds true for non-quinolone-based DNA damaging 

agents, such as cisplatin and mitomycin C, as well as folate biosynthesis inhibitors, such 

as a trimethoprim, all of which trigger the SOS response16. The SOS response leads to the 

induction of a cascade of over 50+ genes involved in high fidelity DNA repair (e.g., 

polB17), inhibition of cell division (e.g., sulA18), and low fidelity DNA tolerance repair 

pathway (e.g., umuC19)20. Similarly, exposure to fatty acid biosynthesis inhibitors, such as 

triclosan and cerulenin, which targets the FabI21 and FabB22 enzymes respectively, have 

been shown to cause transcriptional induction of the fabI, fabF, fabA, and fabB genes23.  

Beyond the direct transcriptional response to the inhibition of the primary target, 

expression alterations are often complicated by secondary target inhibition or indirect 

effects. For example, Mitosch et al. demonstrate that at sublethal concentrations of 

trimethoprim, Escherichia coli will initiate rapid acid stress response by upregulating 

gadBC, a major acid stress operon24. Cells with higher gadBC expression following 

trimethoprim treatment are able to maintain higher intracellular pH and survive 

subsequent acid challenge24. These indirect or secondary effects can provide a better 

understanding of the downstream effects of antibiotics or the compensatory mechanisms 

that may arise due to changes in the environment. Ultimately, each class of antibiotics 

may induce a distinct set of promoters that are unique to that class and is reflective of the 
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inhibition of its target. However, signatures of individual compounds may also include 

transcriptional alterations on secondary targets or downstream effects, which may not be 

conserved within the same class of antibiotics nor unique to a single MOA class.  

 

1.4   Genome-wide studies reveal diverse changes in patterns of transcriptional 

regulation 

Genome-wide queries into antibiotic responses have been undertaken using DNA 

microarray25, proteomic investigations26, or a global transcriptional method27. Namely, 

Goh et al. measured bacterial transcription patterns using promoter-lux reporter constructs 

in a 6,500-clone Salmonella typhimurium library under erythromycin and rifampicin 

stress27. In this study, approximately 5% of the promoters were found to be modulated in 

the presence of sub-inhibitory concentrations of antibiotics, and these active promoters 

respond to varying extents depending on the antibiotic and drug concentration being 

used27. These promoters help transcribe genes of various function, such as transport, 

virulence, and DNA repair. 

Furthermore, Utaida et al. conducted a genome-wide transcriptional profiling 

experiment to further our understanding on the molecular events occurring upon 

challenge with the cell wall active antibiotics oxacillin, bacitracin, and D-cycloserine28. 

More than a hundred genes were commonly regulated by these three antibiotics; they 

belong to various functional categories, such as cell-envelope biogenesis, DNA 

replication, amino acid transport and metabolism28. More interestingly, there are more 

than 300 differentially expressed genes that are unique to just one of these antibiotics28. 
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These findings suggest that antibiotics with different chemical structures and enzyme 

targets will lead to diverse changes in patterns of bacterial gene expression, even if they 

belong to the same general MOA class27. An understanding of genome-wide gene 

expression fingerprints in response to compounds of known MOA may help infer the 

MOAs of novel uncharacterized chemicals. 

 

1.5   Transcriptional signature can help classify antibiotics based on mechanisms of 

action 

Leveraging gene expression profiling as a predictor of antibiotic MOA is not a 

novel approach and has been approached in several manners in the past. A group of 

researchers led by Dr. Hannes Loferer investigated the global transcript levels of a Gram-

positive bacterium, Bacillus subtilis, in nutrient-rich media following treatment with 37 

known antibiotics spanning 6 MOA classes using microarrays23. Predictions were made 

using a support vector machine, which is able to classify compounds based on differences 

between the MOA classes23. This model achieved high success rates (>80%) in MOA 

predictions in most of the antibiotic classes23. However, DNA damaging agents azaserine, 

doxorubicin, and hydrogen peroxide were categorized with the group of quinolone 

antibiotics despite not having the same enzyme target23. This result suggests that the 

predictor is not able to differentiate MOA within a broad group of chemicals that cause 

DNA stress23. Furthermore, the small sample size of merely 2-4 compounds under certain 

classes, such as folate and fatty acid biosynthesis compounds, resulted in false predictions 

for many known and test compounds23. 
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Further, these data were then used to identify marker genes that are indicative of 

certain compound classes29. Differentiating reporter strains were identified for inhibitors 

of protein biosynthesis (yrzI), fatty acid biosynthesis (fabHB and glpD), cell wall 

biosynthesis (ypbG), as well as quinolones (dinB) and glycopeptide antibiotics (ytrA and 

ywoB)29. However, it was difficult to determine the reporter strains for classes of protein 

and cell wall biosynthesis, as no promoter fulfilled the criteria of their filter29. As such, 

these reporters led to misclassification of their test compounds29. Together, these findings 

indicate that it would be valuable to increase the number of compounds in the database to 

improve the accuracy of the prediction tool and the specificity of fingerprint reporter 

strains.  

Transcriptional assays using next-generation sequencing, such as RNA-seq, have 

also been used to speculate on MOA for unknown antibiotics. A group led by Dr. Karen 

Nelson conducted RNAseq analyses of bacterial transcriptomics under challenge from 37 

antibiotics spanning 6 different MOA classes30. Through supervised clustering, two cell 

wall (wca and ent/fep specific for fosfomycin) and one fatty acid synthesis (fabI/fabB) 

expression signatures were discovered based on the magnitude of the transcriptional 

response30. However, these diagnostic genes were often modestly regulated (3-8-fold) by 

many small molecules from other MOA classes30, suggesting that diagnoses from these 

genes may be prone to false positives. More than 400 diagnostic genes were selected 

based on those that are most significantly regulated for each compound30. The MOA of 

the protein synthesis, fatty acid synthesis, and cell wall biosynthesis inhibitors were 

predicted with 100% accuracy, while the DNA synthesis and cell membrane groups 
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achieved around 50% accuracy30. This suggests that investigations of transcriptomics can 

yield diagnostic responses to antibiotic treatment. A larger dataset performed in nutrient 

limited medium has the potential to reveal diagnostic reporter genes for inhibitors of 

metabolic pathways and uncover additional diagnostic genes for other biological 

processes.  

 

1.6   Research Objectives 

The goal of this research project is to investigate the transcriptional responses of 

E. coli when subjected to chemical challenge in nutrient limited conditions. Zaslaver et 

al. have created a 1,820 promoter-GFP fusion library to measure transcriptional activity 

in E. coli31. Conventional plate reader hardware and consumable options do not allow for 

screening beyond 1,536-density microwell plates and upscaling this approach to a full 

screening platform allows for high throughput acquisition of time-course global gene 

expression data in E. coli31. Using solid media arrays and custom hardware (PFIboxes), it 

is possible to acquire images of fluorescence phenotypes with high temporal resolution in 

a simple and inexpensive manner32. This utilizes the transcriptional responses of E. coli to 

drug stress, measuring global promoter activity in E. coli by means of promoter-reporter 

fusion constructs. PFIbox screening pipelines produce a wealth of multidimensional data, 

in 6,144-density, for every screened chemical. 

I hypothesize that antibiotics of the same class will induce similar stress responses 

in bacteria, and that each class will result in a unique set of gene expression profile that 

can help predict the mechanism of action of an unknown molecule. My objectives are to:  
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1) investigate the basic biology behind E. coli’s transcriptional network under 

antibiotic challenge 

2) build a comprehensive training set of transcriptional profiles for known 

antibiotics to help predict chemical mechanisms of action 

3) characterize the MOA of MAC168425, a compound with an unknown 

mechanism of action  
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CHAPTER 2: MATERIALS AND METHODS  

2.1   Reagents 

All chemicals and reagents were purchased from Sigma Aldrich unless otherwise 

specified. MAC168425 was purchased from Accela Chembio. Antibiotics were added to 

the media as needed for selection with final concentrations as follows: 25 µg/ml 

kanamycin, 20 µg/ml chloramphenicol, and 50 µg/mL ampicillin if needed, unless 

otherwise stated. See Table 1 for a list of chemicals and concentrations used in this study.  

 
Table 1. List of chemicals screened with the GFP-promoter library in this study.  
 

Chemical 

 
MOA Class 
Classification 

Solid MIC 
(µg/mL) 

Screening 
Concentrations 
(µg/mL) 

Ampicillin Cell Wall 16 4, 2 
Apramycin Protein 2 1, 0.25 
A22 Other >256 128, 64, 32 
Azidothymidine DNA >256 256 
Azithromycin Protein 128 64, 32, 16 
CHIR-090 Membrane 0.125 0.031, 0.016 
Cefadroxil Cell Wall 1 0.25 
Cefazolin Cell Wall 1 0.25 
Cefmetazole Cell Wall 2 1, 0.5 
Cefoxime Cell Wall 1 0.25 
Cefoxitin Cell Wall 4 1 
Ceftazidime Cell Wall 2 0.25 
Cerulenin Fatty Acid 128 32, 16 
Chloramphenicol Protein 16 8, 4, 2 
Cinoxacin DNA 32 16, 8, 4 
Ciprofloxacin DNA 0.25 0.0625, 0.03 
Colistin Membrane 16 8 
D-cycloserine Cell Wall 0.5 0.25, 0.125 
Dapsone Folate 256 64, 32 
Dirithromycin Protein >256 256, 128 
Doxycycline Protein 16 8, 4, 2 
EDTA Membrane >256 256 
Enoxacin DNA 8 4, 2, 1 
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Erythromycin Protein >256 256, 64 
5-fluoroanthranilic 
acid  

 
Nutrient 4 2, 1, 0.5 

5-fluorouracil Nutrient 4 2 
5-methyltryptophan Nutrient 16 2 
Fosfomycin Cell Wall 1 0.5 
Furazolidone DNA 8 4, 1 
Fusidic acid  Protein >256 128 
Gentamicin Protein 0.25 0.031 
Glyphosate Nutrient >256 64 
Imipenem Protein 1 0.5, 0.25, 0.125 
L-norleucine Nutrient 128 64, 32 
L-3-thienylalanine Nutrient 128 16 
Lincomycin Protein >256 128 
Linezolid Protein >256 256, 64 
MAC13772 Nutrient >256 256 
MAC168425 Other 128 64, 32, 16 
MAC173979 Nutrient >256 64 
MAC872 Other 128 32 
Mecillinam Other 256 128, 64 
Meropenem Cell Wall 2 0.5, 0.25 
Metronidazole DNA >256 256, 64 
Minocycline Protein 4 1, 0.5 
Mitomycin C DNA 2 0.25 
Nalidixic acid DNA 32 16, 8 
Neomycin Protein 8 4, 1 
Norfloxacin DNA 2 1 
Novobiocin DNA >256 128, 64 
Paraquat Other 16 4, 2 
Penicillin G Cell Wall 128 32, 16 
Pentamidine Membrane >256 64 
PF 5081090 Membrane 0.125 0.0625, 0.0156 
Polymyxin B Membrane 2 1, 0.5, 0.25 
Polymyxin B 
nonapeptide  

 
Membrane >256 50, 25, 12.5 

Rifampicin mRNA 32 8 
6-diazo-5-oxo-L-
norleucine 

 
Nutrient 0.063 0.031, 0.016, 0.008 

6-mercaptopurine Nutrient  >256 256 
6-aminoindole Nutrient >256 128, 64 
Sodium bicarbonate Other >50 mM 25 mM, 12.5 mM 
Spectinomycin Protein 64 16 
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SPR741 Membrane 32 8 
Streptomycin Protein 2 1, 0.5, 0.25 
Sulfadimethoxine Folate 256 128, 64, 32 
Sulfamethoxazine Folate >256 256, 128, 64 
Sulfathiazole Folate >256 256, 128, 64 
Sulfamethizole Folate 256 64 
Sulfamethoxazole Folate 256 128, 64, 32 
Sulfisoxazole Folate >256 256, 128, 64 
Tetracycline Protein 16 8, 4, 2 
Triclosan Fatty Acid 0.5 0.25, 0.125, 0.0625 
Trimethoprim Folate 4 2, 0.25 
2 2'-bipyridyl Other 64 16, 8 

 
 

2.2   Strain library preparation and growth conditions  

For a detailed description of the library preparation and growth conditions, refer to the 

protocol described by French et al32,33. The GFP promoter collection31 was grown from 

frozen stocks at 384 density onto Singer PlusPlates (Singer Instruments, UK) filled with 

25 mL of Lysogeny Broth (LB) agar (1.5%) medium supplemented with 25 µg/mL of 

kanamycin. These plates were grown at 37 °C for 18 hours, then upscaled to 1536 density 

onto MOPS minimal medium supplemented with 0.4% glucose (Teknova, US) and 25 

µg/mL of kanamycin using the Singer Rotor (Singer Instruments, UK). These plates were 

grown at 37 °C for 24 hours.  

 

2.3   Solid MIC determination 

The minimum inhibitory concentration (MIC) for each chemical in solid media was 

determined as described by French et al34. The liquid MICs were established for each 

compound to provide a reference point for the concentrations to be used in the solid 
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potency assay. Solid media plates (Singer Instruments, UK) were filled with 25 mL of 

2% agarose to prepare a mold for the media plugs. Empty plugs were filled with 

increasing concentrations of the test compound mixed with media until volume is leveled 

with the agarose bed. The agarose bed was removed and the media plugs were inoculated 

with E. coli K-12 MG165531, using the same Singer Rotor settings as those used for the 

screening assay plates. These plates were grown at 37°C for 24 hours, then MIC 

determined from the plugs containing no colonies.   

 

2.4   Gene expression assay 

For a detailed description of the experimental setup and analysis, refer to the protocol 

described by French et al32,33. The Alon collection was probed against a panel of 

antibiotics at sub-inhibitory concentrations (1/2-1/8x MIC). MOPS minimal medium 

supplemented with 0.4% glucose, 25 µg/mL of kanamycin, and the screening antibiotic 

was poured at 25 mL per Singer PlusPlate as per French et al33. Plates were poured on the 

day of the experiment and inoculated to 6144 density from prepared master reporter 

library plates. Plates were placed face down in PFIboxes32 and incubated at 37°C for 24 

hours, imaging every 5 minutes.  

 

2.5   Data preparations and visualization 

Fluorescent images were capture using PFIboxes32 and analyzed using ImageJ35 to extract 

fluorescent intensity values for each colony. Cumulative fluorescence was calculated for 

24 hours of growth on MOPS minimal medium with sub-inhibitory concentrations for 
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each drug screened. This provided unique overall fingerprints of promoter activity across 

the duration of the experiment, for each drug tested. Edge effects were normalized using 

a two-pass row and column normalization system34. Fingerprints were compiled as data 

frames for use in downstream analyses. In the linear discriminant analysis, known 

chemical classes were used as the groupings. These groupings were visualized in 

component space, where the first 3 discriminants comprised about 75% of the variances 

observed. Hierarchal clustering and heat map visualization were performed using the 

heatmap.2 function from the gplots package in R. Gene ontology (GO) term enrichments 

were performed through EcoCyc36 to study differentially regulated biological processes.  

 

2.6   Deep learning model and predictions 

The deep learning model utilized the fluorescence patterns at each individual timepoint, 

for each drug tested. Using these data, a deep learning network was built using the Keras 

package in R, with Tensorflow as the backend. A 10-layer model was constructed 

consisting of: 2D convolution (64 filter, 5x5 kernel, rectified linear unit (relu) activation), 

0.25 dropout, 2D convolution (128 filter, 3x3 kernel, relu activation), 0.25 dropout, 2D 

pooling (pool size 4), 0.25 dropout, flattened layer, densely connected layer (50 unit, relu 

activation), 0.25 dropout, densely connected layer (softmax activation). The input layer 

had 6,144 neurons, the number of colonies in a 64 x 96 array, and the network was 

compiled with the Adam optimizer with a binary cross-entropy loss function. Accuracy 

was visualized alongside loss while the model was compiled, and both measures levelled 

out after 10 epochs. Internal validations were performed with an 80/20 random split of 
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the data, with 80% of the data acting as the training set and the remaining 20% as the 

validation set. For test purposes, sub-inhibitory concentrations of the antibiotics were 

used, to test which compound it best matched with in the training set. These compounds 

were not included in the original training set; they were assayed on a different day with a 

different frozen stock of the library and a different batch of media. 

 
 
2.7   Bacterial strains and culture conditions for liquid assays  

Single gene deletion strains used in this study were cultured from the Keio collection37. 

Protein overexpression strains and plasmids were cultured and isolated from the E. coli 

ASKA library38. Refer to Table 2 for a list of strains and plasmids used in this study.  

 

Table 2. Bacterial strains and plasmids used in this study. All strains used in this 
study were E. coli strains.  
 
Strain/Plasmid  Genotype Description Source 
Strains    
MG1655 
BW25113 

wildtype 
wildtype 

MG Surette Lab 
Baba et al.37  

 ΔcsrD::Kan Baba et al.37 
 ΔcycA::Kan Baba et al.37 
 ΔgcvA::Kan Baba et al.37 

 ΔgcvB::Kan ED Brown Lab 
 ΔgcvH::Kan Baba et al.37 
 ΔgcvP::Kan Baba et al.37 
 ΔgcvT::Kan Baba et al.37 
 Δlrp::Kan Baba et al.37 
 ΔnudB::Kan Baba et al.37 
 ΔpabC::Kan Baba et al.37 
 ΔsstT::Kan Baba et al.37 
 ΔygfA::Kan Baba et al.37 
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 ΔygfZ::Kan Baba et al.37 
 ΔyhdH::Kan Baba et al.37 

AG1 pCA24N Kitagawa et al.38 
 pCA24N-folA Kitagawa et al.38 
 pCA24N-yhdH Kitagawa et al.38 

Plasmids    
pSim6 pSC101 with λ bacteriophage red 

genes under native control; AmpR 
Datta et al.39  

pCA24N IPTG inducible overexpression 
(empty vector) by lacI; CMR 

Kitagawa et al.38 

pCA24N-folA IPTG inducible overexpression of 
folA by lacI; CMR 

Kitagawa et al.38 

pCA24N-yhdH IPTG inducible overexpression of 
yhdH by lacI; CMR 

Kitagawa et al.38 

 
 

Overnight cultures of E. coli K-12 wildtype strain BW25113 were grown from a single 

colony in MOPS minimal medium (Teknova, US) supplemented with 0.4% glucose at 

37 °C with shaking at 250 rpm. Saturated overnight cultures were diluted 1/50 into fresh 

MOPS medium with 0.4% glucose and grown at 37 °C with shaking until the OD600 

reached 0.5. Subcultures were diluted 1/1000 to a final inoculum of 105 CFU/mL into 

fresh medium for assays in 96 well microplates. For the pSIM6 habouring strain 

containing a temperature sensitive plasmid, cultures were incubated at 30 °C. 

 

2.8   TSS competent E. coli preparation and plasmid transformation  

Bacterial cultures were prepared as stated above. Cells were harvested by centrifugation 

at 4000 x g for 15 minutes at 4 °C. The pellet was resuspended in 100 µL of TSS (100 

mg/mL PEG 8000, 5% (v/v) DMSO, 5% (v/v) of 1M MgCl2, 85% LB medium). Each 

reaction contained 2 µL of the plasmid of interest. The culture was incubated on ice for 5 
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minutes. Each reaction was supplemented with 200 µL of LB medium and incubated at 

37 °C with shaking at 250 rpm for 45 minutes. Cultures were plated onto appropriate 

antibiotic plates and incubated overnight at 37 °C for selection of single colonies 

harbouring the plasmid of interested.  

 

2.9   Liquid MIC determination 

Bacterial cultures were prepared as stated above. Diluted subcultures were mixed with 2-

fold serial dilutions of test compounds to a final volume of 200 µL. OD600 readings were 

measured using the Tecan Infinite M1000 plate reader prior to incubation to account for 

background absorbance. Microplates were incubated in a stationary 37 °C incubator for 

24 hours. The minimum inhibitory concentration for each compound was determined as 

the lowest concentration resulting in ≤ 10% of the growth of the untreated culture.  

 

2.10   Checkerboard assays 

Bacterial cultures were prepared as described above. The checkerboard broth 

microdilution assays were prepared in 8x8 or 8x12 matrices of differing combinations of 

chemical concentrations. All compounds were prepared by 2-fold serial dilutions and 

mixed with diluted subcultures to a final volume of 200 µL. OD600 readings were 

measured using the Tecan Infinite M1000 plate reader prior to incubation to account for 

background absorbance. Microplates were incubated in a stationary 37 °C incubator for 

24 hours, after which the post-incubation OD600 readings were measured.  
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2.11   Spontaneous resistant mutant generation and characterization 

Spontaneous resistant mutants were generated by plating the wildtype E. coli BW25113 

strain on 128 µg/mL of MAC168425 for 48 hours at 37 °C and isolating single colonies. 

Individual colonies were passaged in Lysogeny Broth (LB) medium without drug 

selection to confirm resistance to MAC168425. Genomic DNA of these strains were 

isolated using the Invitrogen PureLinkTM Genomic DNA kit. Whole genome sequencing 

was conducted using the Illumina NextSeq 550 platform. Subsequent variant calling 

analyses were performed using the breseq pipeline. 

 

2.12   RNA extraction  

Overnight cultures of E. coli BW25113 wildtype and the MAC168425 spontaneous 

resistant strains were used to prepare subcultures as described above. RNA stop solution 

(10% acid-phenol:chloroform in ethanol, v/v) was added (1/10) to the subcultures and 

placed on ice immediately for 5 minutes. Cells were harvested by centrifugation (4000 x 

g) for 20 minutes at 4 °C. Cells were resuspended with 800 µL of freshly prepared lysis 

solution (20 mM sodium acetate, 1 mM EDTA, 0.5% SDS), then mixed with hot (65 °C) 

acid phenol solution. Samples were incubated at 65 °C for a total of 12 minutes, with 

mixing every 1 minute. The aqueous phase was isolated and extracted once more with 

acid-phenol:chloroform (125:24:1, pH 4.5, Invitrogen Ambion) and twice with 

phenol:chloroform:isoamy alcohol (25:24:1, pH 6.6, Invitrogen Ambion). The aqueous 

phase of the last extraction was added to 800 µL of 100% Ethanol. Further RNA 
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purification and genomic DNA removal was performed using the Monarch Total RNA 

Miniprep Kit (New England Biolabs).  

 

2.13   Reverse transcription quantitative polymerase chain reaction  

Total RNA (2 µg) was reverse transcribed to cDNA with the High-Capacity cDNA 

Reverse Transcription Kit (Applied Biosystems). cDNA was diluted with TE buffer (50 

mM Tris-HCl, pH 8.0, 1 mM EDTA) to a final concentration of 50 ng/µL. Each RT-

qPCR reaction contained 5 ng of cDNA, 500 nM of each forward and reverse primer, and 

1x of the PowerUP SYBR Green Master Mix (Applied Biosystems) in a total volume of 

20 µL. RT-qPCR was performed using the CFX96 Real-Time System (BioRad). The 

cycle conditions were 50 °C for 2 minutes, 95 °C for 2 minutes, and 40 cycles of 95 °C 

for 15 seconds, and 62 °C for 40 seconds. Relative transcript levels were calculated using 

the Pfaffl method40, with the E. coli BW25113 16S rRNA, rrsA, as a reference control.  

Refer to Table 3 for the sequences of each RT-qPCR primer used in this study.  

 
Table 3. List of oligonucleotide sequences for primers used in the RT-qPCR gene 
expression experiments of this study.  
 
Primer Sequence (5’-3’)  Source 
csrD-F TCGGCCTCTGCAAGTTCAAT This study 
csrD-R AGGTTACCGTTGAGTCGCTG This study 
yhdH-F TGGGTTATCAGGTCGTTGCC This study 
yhdH-R ACGGGATTCGGCAAACTCAT This study 
rrsA-F TATCCTTTGTTGCCAGCGGT This study 
rrsA-R CGCTTCTCTTTGTATGCGCC This study 
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CHAPTER 3: RESULTS 
 
3.1   Generating transcriptional response signatures for known antibiotics  

To study the transcriptional responses of E. coli to antibiotic stress, we used the 

GFP promoter-reporter fusion library created by Zaslaver et al.31, which contains 

approximately 1,800 promoter-report fusion strains that allow for quantification of gene 

transcription, alongside the PFIboxes by French et al.3,33 for high-throughput acquisition 

of time-course data. Since inhibitors of nutrient biosynthesis pathways are only active in 

nutrient limited media, the screen was conducted in MOPS minimal medium 

supplemented with 0.4% glucose as the carbon source. In brief, the promoter collection 

was arrayed in biological triplicate per treatment condition on a single solid medium plate 

containing over 6,000 colonies in total. These assay plates were then placed into a 

parallel assembly of 16 PFIboxes inside a single incubator, where GFP fluorescence 

images were acquired over time. An image analysis pipeline written by French et al.32,33 

was able to extract and provide fluorescence time-course data for every reporter strain in 

the library. These fluorescence data files were then compiled and organized into matrices 

of raw data. The edge effects were normalized using a method developed for high-density 

colony array41, in which the colony fluorescence was divided by the interquartile means 

of the rows and columns across the plate. This method also standardizes fluorescence 

intensity values across plates. Technical and biological replicates of the same conditions 

showed a strong, linear correlation in terms of fluorescence intensity, indicating that the 

data was reproducible32. For detailed descriptions of the data acquisition and analysis 

pipeline, refer to the protocol described by French et al33. Ultimately, these genome-wide 
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transcriptional regulation studies were performed for a wide array of antibiotics spanning 

many MOA classes (Table 1). Antibiotics were divided into classes by their primary 

mechanism of action responsible for their inhibitory activity.    

 

3.2 A summary of the spread of differentially regulated promoters in response to 

antibiotics from various MOA classes 

To get an indication of the number of interactions between each promoter against 

every treatment condition, chemicals were categorized by their MOA class and visualized 

using a bar plot to showcase the spread of differentially regulated promoters (Figure 1A).  

Fold change in fluorescence intensity is calculated by dividing the drug treated condition 

by the untreated sample. The average fold change in fluorescence intensity is very close 

to 1 for all MOA classes (Figure 1B). However, many promoters were differentially 

regulated for each MOA class (Figure 1C). The number of upregulated and 

downregulated promoters were categorized by their magnitude of fold change. Here, we 

observed that challenge by some chemical classes, such as the DNA damaging class of 

antibiotics, results in many differentially regulated promoters that were induced to a 

higher magnitude relative to other groups. On the other hand, chemicals that belong to the 

fatty acid and membrane perturbing groups of antibiotics resulted in a smaller number of 

transcriptional responses. Transcriptional responses that showed a fold change of more 

than 2 and less than 0.5 were deemed to be differentially regulated in this screen. In 

summary, there are 3865 differential regulation phenotypes across all conditions. 
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Figure 1. A summary of the spread of differentially regulated promoters in response to 
antibiotics from various MOA classes  
A) The bars depict the average fold change of every promoter in the library in response to 
chemicals belonging to that MOA class. The horizontal dashed line represents a fold change 
of 1. B) The y-scale was set to a maximum of 2 to show the spread of downregulated promoters. 
C) This table summarizes the number of promoters that are differentially regulated for each 
MOA class, categorized based on magnitude. 
 
 

A 

B 

Fold Change Folate Cell Wall Membrane Protein DNA Other Fatty Acid Nutrient
< 0.5 346 206 69 514 340 153 51 285
> 2 627 316 35 394 552 55 24 263
> 3 59 39 5 46 95 15 8 48
> 4 5 10 0 10 37 8 4 19
> 5 1 1 0 2 21 4 0 8
> 6 1 1 0 1 12 0 0 3

C 
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3.3   Ciprofloxacin induces the SOS response through DNA damage 

 
Here, we demonstrate a proof of concept example of our investigations into the 

transcriptional response profiles of the screened chemicals. Ciprofloxacin is a 

fluoroquinolone antibiotic that induces the SOS response by inhibiting DNA gyrase14. To 

determine differentially regulated promoters post treatment with ¼ MIC of ciprofloxacin, 

fold change in fluorescence intensity was calculated by dividing the fluorescence 

intensity values of the drug-treated condition by the untreated control. Welch’s unequal 

variance t-test was performed to determine the statistical significance of the differential 

phenotypes. Figure 2 depicts the log2 fold-change in fluorescence intensity in the 

presence of 1/4 MIC of ciprofloxacin. Promoters were deemed to be differentially 

expressed in the screen if their fold change value was greater than 2 or less than 0.5 

(Figure 2A) and has a p-value of less than 0.05 (Figure 2B). 

Indeed, many key SOS response genes, such as sulA, dinB, recA, recN, ftsK, 

dnaX, were upregulated by at least 2-fold relative to the untreated control (Figure 2C). 

This result showed an enrichment of genes controlled by the LexA transcriptional 

regulator. The EcoCyc database36 was used to test for enrichment of gene ontology (GO) 

terms in biological processes and transcriptional regulation. The results indicate that the 

ciprofloxacin treatment lead to the upregulation of genes involved in DNA 

recombination, DNA metabolic processes, DNA binding, the SOS response, and nucleic 

acid metabolic processes. (Figure 2D).   
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Figure 2. Ciprofloxacin-induced transcriptional response profile. Fold-change in 
fluorescence intensity in the presence of a sub-inhibitory concentration (1/4 MIC) for 
ciprofloxacin is shown. Each data point represents the average of 3 biological replicates at their 
endpoint values. A) The right and left vertical dashed lines mark the cutoff for a fold change 
of greater than 2-fold or less than 0.5-fold, respectively. Points coloured in yellow show a fold 
change in gene expression that is either greater than 2-fold or less than 0.5-fold in comparison 
to the untreated control. B) The horizontal dashed line marks the cutoff for a p-value of 0.05 
based on the Welch’s t-test. The blue coloured points represent fold change values that are 
statistically significant (p-value < 0.05). C) Points coloured in red are well characterized SOS 
responses genes known to be upregulated in response to DNA damage. D) EcoCyc was used 
to test for GO term enrichment in biological processes and transcriptional regulation.  
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3.4   Transcription of rpoS leads to the upregulation of dinB, encoding DNA 

polymerase IV, in the late exponential phase 

As the screen was conducted kinetically, this dataset provides the opportunity to 

study the induction order of genes, such as rpoS, which becomes expressed in the late 

exponential phase42. Figure 3A shows the colony growth overtime for the E. coli 

MG1655 wildtype strain on solid MOPS minimal medium supplemented with 0.4% 

glucose. The red dashed line represents the time at which the colony reached mid-

exponential phase after 3.5 hours. The blue dashed line shows the time at which the 

colony has passed the exponential phase and transitioned to stationary phase, at 24 hours.  

As an example, the transcription of dinB, the error-prone DNA polymerase IV, is 

activated in response to ciprofloxacin induced DNA damage by the sigma factor RpoS in 

late exponential phase43. On the other hand, recN, a DNA repair protein, is not under the 

control of RpoS and is expected to be induced during early log phase20. Here, we observe 

that recN is induced by more than 2-fold in the mid-exponential phase (Figure 3B), but 

dinB and rpoS show no difference in transcriptional activation during this growth phase. 

However, as the cells reach stationary phase (Figure 3C), dinB becomes induced by 3-

fold relative to the untreated control, and rpoS is upregulated by 2-fold.  

  



M.Sc Thesis – B.Y. Guo; 
McMaster University – Biochemistry and Biomedical Sciences 

   25 

 

 
 
  
 
 
 
 
 
 
 
 
 
 
   

Figure 3. Transcription of rpoS leads to the upregulation of dinB, encoding DNA 
polymerase IV, in the late exponential phase. A) The black curve shows the colony growth 
overtime for an E. coli MG1655 wildtype strain on solid MOPS minimal medium 
supplemented with 0.4% glucose. The red dashed line represents the time at which growth 
reaches mid-exponential phase after 3.5 hours. The blue dashed line shows the time at which 
the cells are in the stationary phase, at 24 hours. Fold-change in fluorescence intensity in the 
presence of a sub-inhibitory concentration (1/4 MIC) for ciprofloxacin is shown at the B) 3.5 
h mid-exponential timepoint and C) at the 24 h stationary time point. Each data point represents 
the average of 3 biological replicates at their endpoint values. The right and left vertical dashed 
lines in each figure mark the cutoff for a fold change of greater than 2-fold or less than 0.5-
fold, respectively. Points coloured in red are the dinB, rpoS, and recN reporter strains. 
 



M.Sc Thesis – B.Y. Guo; 
McMaster University – Biochemistry and Biomedical Sciences 

   26 

3.5   Linear discriminant analysis illustrates variations in differentially regulated 

promoters between classes of compounds 

A linear discriminant analysis (LDA) was performed on the endpoint data to 

examine the variations in transcriptional signatures between the known classes of 

compound in the training set (Figure 4A). The MOA classes were clearly separated based 

on transcriptional signals from promoter-reporter strains, including the nutrient 

biosynthesis inhibitors; this is a class of compounds with great therapeutic potential and 

is conditionally antimicrobial in nutrient-limited conditions. Each of these classes were 

separated by variations in gene expression fingerprints based on colony fluorescence.  

The first three discriminant dimensions explained ~75% (44.5%, 18.5%, and 12.7% 

respectively) of the variances between the classes (Figure 4B). Particularly, promoters for 

dhaM, cspA, and ygbA were most important in explaining variations between membrane 

depolarizing drugs and bacterial cell wall active drugs in the first discriminant dimension 

LDA1. Promoters for yeiE, kdsB, and fhuC contributed to the separation of drugs 

targeting folate metabolism, and protein translation inhibitors in the second discriminant 

dimension LDA2. The third dimension, LDA3, uniquely distanced the esoteric nutrient 

biosynthesis inhibitors away from the more canonical bioactive drugs. The promoters for 

kdsB, proS, hscC, and ycbW contributed the most to this separation.  
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Figure 4. Linear discriminant analysis illustrates variations in differentially regulated 
promoters between classes of compounds. A) Each MOA class is represented by its own 
colour and occupies a unique place in this three-dimensional component space. Refer to Table 
1 for antibiotics under each classification. B) The first three dimensions of the linear 
discriminant analysis explains ~75% (44.5%, 18.5%, and 12.7% respectively) of the variances 
between the classes.   
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3.6   Highly and uniquely transcribed promoters may act as diagnostic reporters for 

chemical screens  

 One area of interest while exploring transcriptional responses to antibiotics is 

identifying highly and uniquely transcribed promoters that may be used as diagnostic 

reports in small molecule screens. To this end, promoters were first prioritized using the 

criteria that they must exhibit a fold change in fluorescence intensity of more than 4-fold 

in at least one treatment condition relative to the untreated control. A total of 65 

promoters were found to satisfy these criteria and were visualized in a heatmap where 

bright red denotes a fold change of 8-fold or more and black represents no change in 

fluorescence intensity (Figure 5). Hierarchical clustering was performed for both the list 

of active promoters and the treatment conditions. At a high level, we observed trends in 

genes associated with the SOS stress response (recA, sulA, recN) in DNA damaging 

agents, response to oxidative stress (soxS, fpr) in superoxide producing compounds, as 

well as ribosome binding and assembly genes (e.g., rmf, rsd, rpsJ, rrnB, rpsJ). Generally, 

promoters that were induced to a high magnitude in one or a couple of conditions were 

specifically regulated in those conditions only and were not impacted by other chemicals. 

The exception to this observation was the ribosome binding and assembly genes, which 

were induced in many conditions and not specific to certain chemicals or MOA class.  

 The sulA promoter is an example of a reporter that exhibits a high magnitude of 

induction in response to a specific group of antibiotics (Figure 6). Here, sulA was 

differentially upregulated by all DNA damaging molecules with the exception of 

novobiocin. It was also upregulated by the folate biosynthesis inhibitor trimethoprim.   
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  Figure 6. The sulA promoter is uniquely induced to a high magnitude by chemicals that 

primarily perturb DNA synthesis. Fold change in fluorescence intensity for the sulA 
reporter strain against a panel of drug treatment conditions. Drug treatments are colored 
based on MOA class and listed in ascending order. If an antibiotic was screened at multiple 
concentrations, the concentration resulting in the largest fold change, either increase or 
decrease in fluorescence, was used for this analysis. Antibiotics belonging to other MOA 
classes are shown here as representative examples of that class. The dashed horizontal line 
indicates a fold change of 1. 
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Representatives chemicals from other MOA classes show no changes in fluorescence 

intensity for the sulA promoter.  

 The recA gene is also induced in response to DNA damaging agents. It is one of 

the first genes to be activated in the DNA repair response and can be activated by weak 

inducers of DNA damage20. Here, we observe that the recA promoter is generally induced 

by antibiotics from all MOA classes to a certain extent (Figure 7). However, the 

antibiotics that induces recA to the highest magnitudes are chemicals that perturb DNA 

synthesis. The cell wall biosynthesis inhibitors ampicillin and D-cycloserine also induce 

recA to a moderate extent, indicating DNA damage as a secondary effect.  
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 The fpr gene encodes the flavodoxin/ferredoxin-NADP+ reductase, which is 

induced in response to oxidative stress44. Here, we observe that the fpr promoter is 

induced to a high magnitude by paraquat, trimethoprim, and A22, an inhibitor of MreB 

(Figure 8). Paraquat45 and trimethoprim46 are both known to be superoxide producers. 

Chemicals from other MOA classes did not induce this promoter; the average fold change 

without these three chemicals is 1.01.  

  

Figure 7. Defective cell wall biosynthesis caused by ampicillin and D-cycloserine induces 
error-free DNA repair via induction of recA. Fold change in fluorescence intensity for the 
recA reporter strain against a panel of drug treatment conditions. Drug treatments are colored 
based on MOA class and listed in ascending order. Black represents compounds from other 
MOA classes. If an antibiotic was screened at multiple concentrations, the concentration 
resulting in the largest fold change, either increase or decrease in fluorescence, was used for this 
analysis. Antibiotics belonging to other MOA classes were shown here as representative 
examples of that class. The dashed horizontal line indicates a fold change of 1.   
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 Lastly, RcsA is a positive transcriptional regulator of capsular polysaccharide 

synthesis47. It has been shown to be induced by certain cell wall biosynthesis inhibitors10 

and outer membrane perturbants48 in rich media. Here, we show that the penam group of 

cell wall biosynthesis inhibitors (mecillinam, penicillin G, ampicillin, and D-cycloserine) 

induced the rcsA promoter to the highest magnitude. The cephem group of antibiotics 

(cefazolin, cefadroxil, cefoxime, cefmetazole, cefoxitin) did not show conserved 

induction of rcsA. Additionally, we did not observe rcsA induction with membrane 

perturbants as hypothesized.  

  

Figure 8. Transcription of the fpr promoter is induced in response to superoxide 
production. Fold change in fluorescence intensity for the fpr reporter strain against a panel 
of drug treatment conditions. If an antibiotic was screened at multiple concentrations, the 
concentration resulting in the largest fold change, either increase or decrease in fluorescence, 
was used for this analysis. Antibiotics that resulted in a large fold change in fluorescence 
intensity are coloured in pink. The average fold change for all drug treatments excluding 
paraquat, A22, and trimethoprim is 1.01. The dashed horizontal line indicates a fold change 
of 1.   
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Figure 9. Transcription of the rcsA promoter is induced to the highest magnitude by 
penicillin derivatives. Fold change in fluorescence intensity for the rcsA reporter strain 
against a panel of drug treatment conditions. Drug treatments are colored based on MOA class 
and listed in ascending order. If an antibiotic was screened at multiple concentrations, the 
concentration resulting in the largest fold change, either increase or decrease in fluorescence, 
was used for this analysis. The dashed horizontal line indicates a fold change of 1.  
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3.7   A deep learning model for predicting antibiotic mechanism of action  

A deep learning network was built using the Keras package in R, with Tensorflow 

as the backend (Figure 10A). A 10-layer model was constructed consisting of: 2D 

convolution (64 filter, 5x5 kernel, rectified linear unit (relu) activation), 0.25 dropout, 2D 

convolution (128 filter, 3x3 kernel, relu activation), 0.25 dropout, 2D pooling (pool size 

4), 0.25 dropout, flattened layer, densely connected layer (50 unit, relu activation), 0.25 

dropout, densely connected layer (softmax activation). The input layer had 6,144 neurons, 

the number of colonies in a 64x96 array. The network was compiled with the Adam 

optimizer with a binary cross-entropy loss function. Accuracy was visualized alongside 

loss while the model was compiled, and both measures levelled out after 10 epochs. 

Internal validations were done with an 80/20 random split of the data. 80% of the data 

acted as the training set in which the model learns from and the remaining 20% of the 

data acts as the validation set used to monitor the accuracy. Network accuracy was about 

98% (Figure 10B) and loss approaching 0.25% (Figure 10C).  

Predictions using this system were dependent on patterns of transcriptional 

response to each chemical in each agar plate. The accuracy of the model was assessed by 

first generating new data for drugs that were either already present or absent in the 

training set, then computing a MOA prediction for these compounds using the model 

(Figure 11). Cefmetazole and polymyxin B were used as “known” test molecules to 

determine the accuracy of the model. These compounds had already been included in the 

training set. The percent probability score for these two chemicals were 95% and 100%, 

respectively. The fluroquinolone cinoxacin was used as an ‘unknown’ test molecule to 
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identify what it would match with in the existing training data. Cinoxacin was not 

included in the training set and was assayed completely independently of the training set. 

Indeed, the best prediction for the ‘unknown’ was a sub-inhibitory concentration of 

enoxacin (~80% prediction confidence), a structurally similar fluoroquinolone.   

 
  

Figure 10. A neural convolutional network for predicting the mechanism of action of 
unknown chemicals based on a training set of known transcriptional profiles. A) A deep 
learning network was built using the Keras package in R, with Tensorflow as the backend. 
A 10-layer model was constructed consisting of: 2D convolution, 0.25 dropout, 2D 
convolution, 0.25 dropout, 2D pooling, 0.25 dropout, flattened layer, densely connected 
layer, 0.25 dropout, densely connected layer (softmax activation). The network was compiled 
with the Adam optimizer with a binary cross-entropy loss function. B) Accuracy was 
visualized alongside C) loss, and both measures levelled out after 10 epochs. Internal 
validations were done with an 80/20 split of the data.  
 



M.Sc Thesis – B.Y. Guo; 
McMaster University – Biochemistry and Biomedical Sciences 

   37 

 

 
 
 
 

 
 
 
 
 
 
 
 
3.8   An antimetabolite molecule MAC168425 with an unknown MOA was predicted 

to have a MOA similar to that of trimethoprim 

In a small molecule screen by Zlitni et al49, a novel compound, MAC168425 

(Figure 12A), was discovered to exhibit inhibitory activity against wildtype E. coli in a 

nutrient limited medium. This molecule had an MIC of 8 µg/mL against wildtype E. coli 

in MOPS minimal medium with 0.4% glucose as the carbon source (Figure 12B). The 

inhibitory activity of MAC168425 was suppressed by supplementing glycine into the 

growth medium (Figure 12B). The MIC of MAC168425 increased by 2- fold when 50-

200 µg/mL of glycine was supplemented into the medium. When 400 µg/mL of glycine 

was supplemented, the MIC reached 32 µg/mL, resulting in a 4-fold suppression. This 

result suggests that MAC168425 may be targeting the glycine pathway.  
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Figure 11. Convolutional neural network predictor model can recognize and identify 
certain test compounds. A single-blind study to test the model for its ability to recognize and 
identify unknown test drugs. The model correctly predicted the identity of cefmetazole (A) 
with a 95% probability (purple) and polymyxin B (B) with 100% probability (teal). The model 
predicted the identity of enoxacin (C) with 80% probability (blue) treated sample, which was 
not included in the training set, to its close derivative, cinoxacin.  
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To further test the deep learning model built in this study, we generated a 

prediction probability output for MAC168425 (Figure 13). The model’s prediction output 

for MAC168425 is as follows: 80% trimethoprim, 10% 6-mercaptopurine, 5% nalidixic 

acid, 5% 6-diazo-5-oxo-norleucine. This suggests that MAC168425 may have a MOA 

that is the same or closely related to that trimethoprim. This became our new hypothesis 

for MAC168425 as we continued to explore its mechanism of action.   

Figure 12. MAC168425 activity is suppressed by supplementation of glycine 
A) The chemical structure of MAC168425. B) Checkerboard analysis of the antagonist 
relationship between glycine and MAC168425. Dark yellow indicates maximal growth in 
this experiment and white denotes no bacterial growth. The columns contain increasing 
concentrations of MAC168425. The rows contain increasing concentrations of glycine 
supplemented into the MOPS medium.  
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3.9   Overexpression of FolA does not lead to resistance against MAC168425 

One approach for drug target identification is based on the hypothesis that target 

overexpression can confer resistance to the antibiotic. When higher copies of the protein 

target are present, higher concentrations of the antibiotic will be required to reduce target 

activity and cause growth inhibition or cell death50. Previously, overexpression of FolA 

has been shown to result in resistance to trimethoprim50. To determine whether 

MAC168425 also inhibits the same protein target as trimethoprim, the enzymatic target 

of trimethoprim, FolA, was overexpressed intracellularly using the pCA24N-folA plasmid 

from the ASKA collection38. Indeed, we observed that overexpression of FolA led to 

resistance to trimethoprim; the MIC of trimethoprim increased by at least 32-fold in the 

overexpression strain compared to the empty vector strain (Figure 14A). However, 

overexpression of FolA did not confer resistance to MAC168425, as no difference in the 

MIC between the overexpression and empty vector strain was observed (Figure 14B). 
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Figure 13. Convolutional neural network predictor model predicts that 
MAC168425 has a mechanism of action closely related to trimethoprim. A single-
blind study to compute a MOA prediction for a compound of unknown MOA, 
MAC168425. The model prediction in % probability is as follows: 80% trimethoprim, 
10% 6-mercaptopurine, 5% nalidixic acid, 5% 6-diazo-5-oxo-L-norleucine.  
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This result suggests that FolA was likely not the enzyme target of MAC168425. One 

possible explanation for this is that there is currently no probe in the dataset that target 

the same enzyme as MAC168425. Thus, the model may be suggesting trimethoprim as 

the chemical that resembles MAC168425 the most in terms of transcriptional response. 

Nonetheless, we hypothesize that the MOA of MAC168425 could still be closely related 

to the folate biosynthesis or folate utilization pathway.  
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Figure 14. Overexpression of FolA suppresses the activity of trimethoprim but not 
MAC168425. Induction of FolA overexpression using 0.1 mM isopropyl β-d-1-
thiogalactopyranoside (IPTG) was performed for pCA24N (empty vector control) and 
pCA24N-folA. A) pCA24N (dark teal) and pCA24N-folA (light teal) were grown in the 
presence of 2-fold dilutions of trimethoprim. B) pCA24N (light orange) and pCA24N-folA 
(dark orange) were grown in the presence of 2-fold dilutions of MAC168425. Experiments 
were performed on three biological replicates. The data shown represents the average of 3 
replicates ± standard deviation. 
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3.10   MAC168425 activity is synergistic with sulfamethoxazole and antagonist 

against trimethoprim 

Checkerboard assays were performed with sulfamethoxazole and trimethoprim to 

further probe the relevance of folate biosynthesis and utilization for the activity of 

MAC168425. Figure 15A shows a known synergistic interaction between 

sulfamethoxazole and trimethoprim51; this is a positive control for the experiment. When 

sulfamethoxazole and MAC168425 were assayed in combination (Figure 15B), there was 

also a synergistic interaction in terms of growth inhibition. When trimethoprim and 

MAC168425 were tested in combination, there was an antagonist interaction in terms of 

growth inhibition (Figure 15C). These interactions suggest that MAC168425 could be 1) 

also targeting DHFR as is trimethoprim but using a different mechanism, 2) targeting 

dihydropteroate synthase (FolP), the target of sulfamethoxazole at a different site, or 3) 

inhibiting an earlier or later step in a common metabolic pathway.   
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Figure 15. MAC168425 activity is synergistic with sulfamethoxazole and antagonist 
against trimethoprim. All checkerboard assays were performed with E. coli BW25113 
wildtype. Red indicates maximal growth in this experiment and white denotes no bacterial 
growth. The columns contain increasing concentrations of trimethoprim or 
sulfamethoxazole. The rows contain increasing concentrations of MAC168425 of 
sulfamethoxazole. A) The synergistic interaction of sulfamethoxazole and trimethoprim. B) 
The synergistic interaction of MAC168425 and sulfamethoxazole. C) The antagonistic 
interaction between MAC168425 and trimethoprim. D) The steps of folate biosynthesis 
involving the inhibition of sulfamethoxazole and trimethoprim. Dashed arrows represent 
more than one biosynthetic step. DHN: 7,8-dihydroneopterin; DHPPP: 7-8-dihydropterin 
pyrophosphate, PABA: para-aminobenzoic acid, THF: tetrahydrofolate.  
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3.11   Deletion mutants involved in folate biosynthesis and glycine transport exhibit 

no change in sensitivity to MAC168425 

 To determine whether the synergistic and antagonistic phenotypes of 

MAC168425 can be explained by its involvement in a related step of folate biosynthesis 

(Figure 15D), a selection of single deletion mutants were tested for their sensitivity to 

MAC168425. Mutations in genes involved in folate biosynthesis, such as ΔnudB, ΔgcvP, 

ΔygfA, showed no change in sensitivity to MAC168425, with the exception of ΔgcvT and 

Δlrp being 2-fold more sensitive to MAC168425. 

While investigating mutant sensitivity to MAC168425, we also explored the 

hypothesis that excess amount of glycine can suppress the activity of MAC168425 if they 

were competing for the same transporters for entry into the cell. To this end, deletion 

mutants in gcvB, cycA, and sstT were tested for changes in sensitivity (Table 4). 

However, there was no change in MIC for these strains, indicating that competition for 

entry to the cell was likely not the reason behind the glycine suppression phenotype.  
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Table 4. Minimum inhibitory concentrations of MAC168425 for all strains tested in 
this study. All single gene deletion strains are from the Keio collection. MICs were 
determined in MOPS medium supplemented with 0.4% glucose.  
 
Strain  Protein Description  MIC (µg/mL) Fold Change  
wildtype  16 - 
ΔcsrD::kan Carbon storage regulator 16 1 
ΔcycA::kan Serine/alanine/glycine/:H+ 

symporter 
16 1 

ΔgcvA::kan Repressor of glycine cleavage 
system 

16 1 

ΔgcvB::kan sRNA regulator 16 1 
ΔgcvH::kan Glycine cleavage system H-

protein 
16 1 

ΔgcvP::kan Glycine cleavage system P-
protein 

16 1 

ΔgcvT::kan Glycine cleavage system T-
protein 

32 2 

Δlrp::kan Leucine-responsive regulatory 
protein 

8 2 

ΔnudB::kan Dihydroneopterin triphosphate 
diphosphatase 

16 1 

ΔpabC::kan Aminodeoxychorismate lyase 1 1 
ΔsstT::kan Serine/threonine transporter 16 1 
ΔygfA::kan 5-CHO-THF cyclo-ligase 16 1 
ΔygfZ::kan THF-dependent protein  4 4 

 

3.12   MAC168425 resistant mutants shows 8-fold resistance to MAC168425 and no 

cross resistance to other antibiotics.  

To further investigate the target of MAC168425 through target modification 

resistance mechanisms, suppressor mutants were generated on MOPS minimal agar plates 

supplemented with 4x the MIC of the drug. Three biological replicates were confirmed to 

be resistant to MAC168425 after passaging on LB medium with no drug. MAC168425 

does not have any inhibitory activity in LB rich medium (Figure 16A). In MOPS minimal 
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+ 0.4% glucose medium (Figure 16B), resistant mutants showed an 8-fold resistance to 

MAC168425 relative to wildtype. Furthermore, these mutants did not show any cross 

resistance against a panel of other antibiotics, including trimethoprim and 

sulfamethoxazole (Figure 16C).  

 

 

 

 

  

Figure 16. MAC168425 resistant mutants shows 8-fold resistance to MAC168425 and 
no cross resistance to other antibiotics. E. coli wildtype and the MAC168425 resistant 
mutants were tested in the presence of increasing concentrations of MAC168425 in A) LB 
rich medium and B) MOPS minimal + 0.4% glucose medium. C) Drug susceptibility analysis 
of wildtype and each MAC168425 suppressor mutant background. The minimum inhibitory 
concentration for each drug is shown in the coloured columns under each strain background.  
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3.13   MAC168425 resistant mutants show differential expression of csrD and yhdH 

 Genomic DNA of these MAC168425 resistant mutants and the parent wildtype 

strain were isolated for whole genome sequencing. Illumina sequencing libraries were 

constructed using a Nextera DNA libray prep kit. Paired end sequencing (2x150 bp) at 

~150x coverage was carried out on an Illumina NextSeq 550 system. Adapter sequences 

were trimmed, and mutations were identified using the breseq pipeline52. Mapping the 

MAC168425 resistant strains against the parental wildtype strain revealed the presence of 

a mobile insertion sequence, IS5, in the intergenic region between csrD and yhdH at 

position 3,396,784 in the E. coli BW25113 genome (Figure 17A). The insertion element 

was positioned upstream of both csrD and yhdH. CsrD is a regulator of the carbon 

storage system of E. coli through RNase E-mediated degradation of the small RNAs, 

CsrB and CsrC53. YhdH is a putative acrylyl-CoA reductase; its physiological role is 

otherwise poorly characterized in E. coli54.  

 IS5 is a 1,195 bp mobile bacterial DNA element that can transpose to other sites 

on the E. coli genome and result in genetic arrangements55. Previously, IS5 has been 

shown to regulate transcriptional activity through insertion into the regulatory regions of 

various genes565758. To investigate the effects of IS5 insertion on csrD and yhdH, RT-

qPCR was performed on the parent wildtype and three mutant strains. Indeed, the 

insertion of IS5 upstream of csrD and yhdH resulted in differential gene expression. 

Relative to the wildtype strain, the resistant mutants show ~40% reduction in csrD 

transcript level (Figure 17B) and ~14-fold increase in yhdH transcript level (Figure 17C).  
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Figure 17. E. coli confers resistance to MAC168425 through upregulation of YhdH. A) 
Mapping the MAC168425 suppressor strains against the parental E. coli BW25113 wildtype 
strain revealed the presence of a mobile insertion element IS5 in the intergenic region 
between csrD and ydhH. All three biologically resistant mutants possessed this insertion 
element. B) RT-qPCR shows ~40% reduction in csrD transcript level. S1, S2, and S3 denotes 
three biological replicates. Error bars represent the error for three technical replicates. C) RT-
qPCR shows ~14-fold increase in yhdH transcript level. S1, S2, and S3 denotes three 
biological replicates. Error bars represent the error for three technical replicates.  
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3.14   E. coli confers resistance to MAC168425 through upregulation of YhdH 

 To determine the effects of differential csrD and yhdH expression on developing 

resistance to MAC168425, a csrD-null mutant and an YhdH overexpression strain were 

tested for their sensitivity to MAC168425. A single deletion of csrD did not show any 

changes in sensitivity to MAC168425; the MIC remained the same between the mutant 

and wildtype strain (Table 4). Conversely, when YhdH was overexpressed intracellularly 

in a wildtype background, the cells become 8-fold more resistant to the effects of 

MAC168425; the MIC in the resistant strains was 128 µg/mL (Figure 18). This 

suppression phenotype resembles the resistance phenotype we observed in the 

spontaneous resistant mutants.  
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Figure 18. Overexpression of YhdH results in 8-fold suppression of MAC168425 activity 
Induction of YhdH overexpression using 0.1 mM isopropyl β-d-1-thiogalactopyranoside 
(IPTG) was performed for pCA24N (empty vector control) and pCA24N-yhdH. pCA24N 
(black) and pCA24N-yhdH (grey) were grown in the presence of 2-fold dilutions of 
MAC168425. The data shown represents the average of 3 biological replicates ± standard 
deviation. 
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3.15   MAC168425 is implicated in glycine cleavage and folate-dependent processes  

 Although overexpression of YhdH confers resistances to MAC168425, it is likely 

not the enzyme target of MAC168425 because it is not an essential enzyme required for 

growth in minimal medium. As such, overexpression of YhdH may be a result of 

compensating for the actual inhibitory activity of MAC168425 or is co-transcribed with 

the target of MAC168425 by a common regulator. 

YhdH is a putative acrylyl-coA reductase and is hypersensitive to acrylate and 3-

hydroxyproprionate54. However, its physiological role in E. coli is otherwise poorly 

characterized. Homologs of YhdH exist in other bacterial taxa. Namely, the AcuI 

homolog in the Roseobacter group of marine bacteria degrades acrylate through 

catabolism of dimethylsulfoniopropionate (DMSP), an abundant nutrient source and anti-

stress molecule released by marine plankton54. Similar to E. coli yhdH mutants, mutants 

lacking acuI are hypersensitive to the inhibitory effects of acrylate54.  

It has been shown that many acuI-like genes are located in close proximity with 

other DMSP catabolism genes such as dmdA. Of the 37 searchable Roseobacter strains 

that contains acuI, 26 encode a DmdA demethylase; 24 of these dmdA genes are located 

downstream of acuI and are co-transcribed54. The acrylate sensitivity of E. coli ΔyhdH 

can be corrected by cloning acuI from bacteria whose acuI gene is closely linked to 

dmdA. E. coli does not contain the dmdA gene or catabolize DMSP, but this close 

association prompted investigations into E. coli protein homologs of DmdA.  

DmdA is a member of the aminomethyltransferase-like protein family59. In terms 

of protein homology, it shares structural similarity with the proteins GcvT60 and YgfZ61. 
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GcvT is a member of the glycine cleavage system responsible for the oxidation of 

glycine62. YgfZ has been implicated in the synthesis and repair of iron-sulfur clusters63, 

response to oxidative stress64, and tRNA modification65. Interestingly, all these proteins 

are all folate-binding or folate-dependent enzymes61,62.  

To determine the effects of MAC168425 on GcvT and YgfZ, dose response 

assays were performed with gcvT and ygfZ-null mutants. The gcvT-null mutant is 2-fold 

more sensitive to MAC168425 relative to wildtype (Table 4) and the yhdH-null mutant is 

4-fold more sensitive (Figure 19). This interaction with glycine cleavage and folate-

dependent enzymes may explain the glycine suppression phenotype we observed 

previously, as well as the trimethoprim prediction output from the deep learning model. 
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Figure 19. The ygfZ-null mutant is 4-fold more sensitive to the activity of MAC168425. 
Dose response curve of MAC168425 against E. coli wildtype (black) and ΔygfZ (red). Each 
strain grown in the presence of 2-fold dilutions of MAC168425. The data shown represent the 
average of 3 technical replicates ± standard deviation. 
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CHAPTER 4: DISCUSSION 

Here, we investigate the transcriptional response of E. coli when challenged with 

sub-inhibitory concentrations of antibiotics spanning several antibiotic classes. Using a 

transcriptional promoter-reporter library31 and the PFIbox32, we acquired images of 

fluorescence transcriptional phenotypes in solid media arrays in a high-throughput and 

inexpensive manner. This provides a comprehensive look at the global promoter activity 

in E. coli by means of promoter-reporter fusion constructs. Although there have been 

previous investigations aimed at leveraging gene expression profile as a predictor of 

antibiotic MOA, this is the first study, to our knowledge, to explore this objective in a 

Gram-negative bacterium, E. coli, under nutrient limited conditions.  

Conventional discovery platforms use nutrient rich laboratory media when 

identifying drug targets and hit compounds. However, additional genes in the 

biosynthesis of amino acids, vitamins, and cofactors become conditionally essential to 

ensure survival in the host environment1. Namely, MAC13772, an inhibitor of BioA, is a 

potent compound that shows in vivo efficacy against priority pathogens, such as 

Acinetobacter baumannii, Klebsiella pneumoniae and Pseudomonas aeruginosa66. 

Performing the screen in nutrient-limited media provides the opportunity to probe such 

antimetabolite compounds that are otherwise inactive in rich media49. This dataset can 

also be mined to contribute insights into transcriptional responses of other groups of 

antibiotics in minimal media, in which the transcriptional responses may differ from 

nutrient rich environments. Additionally, examining the transcriptional network in a 
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Gram-negative bacterium informs on the effects of molecules that perturb the outer 

membrane. Membrane perturbants are often used in combination for their ability to 

potentiate the activity of other antibiotics67. This presents an attractive area for 

therapeutic opportunities; however, the exact mechanisms of action of these antibiotics, 

such as colistin, are still not very well understood67. This study provides the opportunity 

to gain a better understanding of the ways in which bacteria respond to membrane 

damage. Although transcriptomic experiments such as RNA-seq are the current gold 

standards for studying changes in gene expression, it is coupled with RNA turnover and 

typically conducted at only a few time points23. The screening platform presented here 

provides data every 5 minutes for 24 hours. A high temporal dataset allows for analysis 

of co-expression, which may provide a wealth of information on promoters and their 

associated biological processes3. The dataset generated from this study offers new 

knowledge to the field through the use of a wide range of compounds, some of which had 

not been included in a study previously. Ultimately, this project offers a unique 

opportunity to study the basic biology behind E. coli’s transcriptional network under 

chemical stress. Furthermore, these data can serve as a hypothesis generation and MOA 

prediction tool to help characterize unknown compounds. 

Data and plots will be made available through an online searchable server, 

wherein scientists can search for a gene of interest, compare within and between drug 

classes, and investigate specific drug conditions. Researchers will be able to explore the 

time course data, which can inform on order of induction for genes involved in a specific 

pathway or genes that may be controlled by a certain regulator. Investigating genes that 
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are co-expressed may provide insight into co-regulation and suggest genes that may be 

closely related in terms of biological processes or belonging to the same stress response. 

This tool will contribute to existing transcriptional response knowledge and may help 

generate new and intriguing hypotheses.  

Another interesting application of this dataset is to mine for diagnostic reporters 

for the detection of a specific group of chemicals. In the current drug discovery pipeline, 

many chemical screens will begin with an assay for growth inhibition, followed by 

counter screens to select for compounds of particular interest based on certain criteria. 

Development of selective primary screening assays that can sensitively detect compounds 

of interest can help avoid off-target compounds and advance through the steps of the 

discovery stages more rapidly68. In a study by Czarny et al, an autonomous luminescence 

gene cluster driven by the promoter of ywaC was used in a primary screen to detect 

inhibitors of cell wall biosynthesis68; 9 novel compounds that target cell wall biosynthesis 

in Bacillus subtilis were discovered in this screen68. In this study, we present sulA as a 

reporter for compounds whose primary MOA involves damaging DNA. This includes the 

fluoroquinolones13 which target DNA gyrase and topoisomerase, as well as the 

mitomycins69 and nitrofurans70 which bind to DNA and form cross-links. The 

aminocoumarin group of antibiotics, such as novobiocin, interfere with the ATPase 

activity of DNA gyrase71. The chromosomal integrity is maintained and no double-

stranded breaks occur; the SOS response is not activated in this case71. The recA reporter 

is complementary to the sulA reporter; recA reports on early stage SOS response while 

sulA indicates the activation of late stage SOS response72. Here, we observe that the cell 
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wall biosynthesis inhibitors ampicillin and D-cycloserine induces recA to a moderate 

extent, indicating DNA damage as a secondary effect. This result is in agreement with 

what is currently known about cell wall inhibitors and SOS response73. The fpr reporter is 

very selective for detecting superoxide producing antibiotics, including trimethoprim46 

and paraquat74. The results suggest that A22 may also induce oxidative stress. Lastly, the 

rcsA promoter was induced to the highest degree by the penam group of cell wall 

inhibitors, and less so by the cephems, as seen in the literature10. However, the membrane 

perturbants did not induce rcsA as expected. Indeed, we have observed, through our 

BARseq experiments, that many genes are more sensitive to colistin, a membrane 

perturbant, in minimal medium relative to nutrient rich medium (Unpublished, Singh, M). 

As such, we hypothesize that the stringent response may lead to changes in the membrane 

stress response through regulation of metabolic pathways associated with membrane 

assembly. Ultimately, these promoters have the potential to become selective diagnostic 

reporters with low background fluorescence. 

As one of the main objectives of this study, we demonstrate that investigating 

bacterial transcriptional responses to exogenous chemicals can help determine the MOA 

class for an unknown compound. As seen through the linear discriminant analysis, MOA 

classes were separated by variations in transcriptional fingerprints and occupy unique 

places in the LDA 3-dimensional space. Clustering of any unknown compounds with this 

set of known antibiotics can help infer on the MOA class of the unknown molecule. Key 

promoters responsible for the distinction between classes have been identified and can be 

tested with unknown molecules to investigate MOA hypotheses. Although some 
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antibiotics may activate stress responses due to a distinct secondary effect that is not 

conserved within its MOA class, the differences in transcriptional signature between each 

class and the similarity within each class is sufficient for distinguishing between classes. 

Furthermore, a neural network was built using time course fluorescence patterns 

from the set of known antibiotics. Deep-learning approaches have been used in MOA 

prediction for bioactive chemical queries, typically utilizing imaging techniques. These 

approaches implement high-content screening approaches to collect cell and organelle 

features from fluorescent stains, to train neural networks. Feature acquisition is generally 

limited by the fluorescent probes chosen to screen, as well as the number of response 

phenotypes to the chemical probes they are exposed to. This is in contrast to reporter 

library-based methods, which have features associated with every reporter, but also 

enable the collection of temporal features when acquired kinetically. The temporal 

dimension effectively expands the data that can be associated with a chemical structure 

and the deep learning model jointly identifies patterns in the data (co-expression)32. 

Where imaging methods may extract > 800 features75 associated with a chemical 

structure, kinetic transcriptional reporter methods can provide even more. Namely, 

Zoffmann et al.76 examined traditional morphological fingerprints after compound 

exposure in bacteria, aiming to identify MOA for compounds with unknown target. A 

series of 15 boronate compounds were used as test compounds and three of these 

compounds were found to have a high similarity score (0.66-0.72) to FabI inhibitor, 

triclosan76. However, a limitation to looking at diagnostic morphological features is that 

some chemicals, such as nitroxoline, will not produce a distinct morphological 
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fingerprint76. In fact, in their work, only 5 of the 15 borate analogs demonstrated a 

fingerprint based on the morphology defect they elicit76. Using transcriptional 

information to complement the morphology, nitroxoline resulted in a transcriptional 

response that is distinct from other MOA classes76. The authors suggest that these 

combined datasets can help guide hit-to-lead campaigns and can be applied to a broad 

range of biological problems. 

In this study, the deep learning model was tested by generating new data for drugs 

that were either present or absent from the training set and predicting the mechanism of 

action using the model. While the linear discriminate analysis could report on the MOA 

class of unknowns based on clustering, the deep learning model may be able to identify a 

specific chemical in the training set that is most similar to the test compound in terms of 

transcriptional response. Here, we show that the model was able to accurately predict the 

identity of cefmetazole, polymyxin B, and cinoxacin as enoxacin, a structurally similar 

fluoroquinolone, to a high degree accuracy (80%-100% accuracy). Future work needs to 

prioritize further testing of this model for its prediction accuracy. One test method would 

be the “leave-one-out” approach, where each compound in the training set is removed 

from the group and treated as a test compound instead. This will provide a prediction 

output for every drug in the training set and report on the accuracy of the model with a 

larger sample size. An important limitation of this prediction tool is that it will not be able 

predict the target or MOA of a compound if the target is not already covered in the 

training set. In other words, if there are no known inhibitors of a target protein or the 

inhibitor is not included in the training set, the model will not be able to correctly identify 
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the target or MOA of the compound, as there is no example inhibitor for the model to 

learn from. Currently, the best way to combat this limitation is to continue screening 

compounds and cover as many protein targets as possible. Additional compounds should 

be screened and included in the training set; this is especially needed for MOA classes 

with low prediction accuracy and/or MOA classes that are underrepresented compared to 

other groups. As the total number of compounds in the training set increases, the layers of 

the neural network will be continuously adjusted and optimized to achieve a highly 

accurate system.   

The deep learning model presented in this study was used to generate a prediction 

for a compound with an unknown MOA, MAC168425. The objective here was to 

determine whether a MOA prediction could help identify the target of an unknown 

compound through a series of targeted follow-up experiments. MAC168425 is an 

antimetabolite compound discovered by Zlitni et al. in a chemical screen looking for 

growth inhibition in nutrient limited medium49. It was observed that the activity of 

MAC168425 was suppressed by glycine and to a lesser extent by L-threonine49. The 

hypothesis was that the inhibitory activity of MAC168425 was mediated through the 

biosynthesis or utilization of glycine49; however, its enzymatic target remained unknown. 

Here, we continued the MOA investigation on this compound; the model 

predicted trimethoprim for MAC168425. Overexpression of the enzymatic target of 

trimethoprim, FolA, does not lead to any changes in its activity, suggesting that FolA is 

likely not the target of MAC168425. However, it is important to note that the 



M.Sc Thesis – B.Y. Guo; 
McMaster University – Biochemistry and Biomedical Sciences 

   58 

overexpression of a target protein does not necessarily lead to resistance against the 

compound50. Palmer and Kishony stated that target overexpression with compounds that 

divert metabolic flux, such as sulfonamides and coumermycin A, will not lead to 

resistance to the drug50. Nonetheless, we reasoned that the target of MAC168425 may be 

either novel or is not yet covered by a compound in the training set. We proceeded with 

the hypothesis that if the training set does not contain an existing inhibitor of the target of 

MAC168425, the prediction model will compute a drug output that most closely resemble 

MAC168425 in terms of transcriptional response. We hypothesized that MAC168425 

may still be closely related to the folate biosynthesis pathway or folate utilization.  

After examining the combination effects of MAC168425 with sulfamethoxazole 

and trimethoprim, we reasoned that MAC168425 could be 1) targeting DHFR as is 

trimethoprim but using a different mechanism, 2) targeting dihydropteroate synthase 

(FolP), the target of sulfamethoxazole at a different site, or 3) inhibiting an earlier or later 

step in a common metabolic pathway. The first and second explanations seem unlikely 

since Zlitni et al49 showed that the inhibitory activity of trimethoprim and 

sulfamethoxazole cannot be suppressed by adding glycine to the medium. In fact, Kwon 

et al states that in glycine-supplemented media, trimethoprim will cause thymine-less cell 

death77. These results suggest that MAC168425 may be targeting an earlier or later step in 

a common pathway. However, after investigating the sensitivity of folate biosynthesis 

deletion mutants to MAC168425, we discovered that mutants involved in the steps of the 

folate biosynthesis largely showed no change in sensitivity. 
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Another approach at discovering the enzymatic target of a molecule is to generate 

spontaneous resistant mutants. All three mutants contained an insertion of a mobile 

element, IS5, upstream of both csrD and yhdH. Through RT-qPCR and dose response 

assays, we determined that the IS5 upregulates yhdH to confer resistance against 

MAC168425. Although overexpression of YhdH suppresses the activity of MAC168425, 

it is likely not the enzyme target of MAC168425 because it is not an essential enzyme 

required for growth in minimal medium. As such, overexpression of YhdH may be a 

result of compensating for the actual inhibitory activity of MAC168425 or is co-

transcribed with the target of MAC168425 by a common regulator.  

Since the physiological role of YhdH in E. coli is poorly characterized, we studied 

the homolog of YhdH in the Roseobacter group of marine bacteria, named AcuI54. AcuI is 

involved the catabolism of DMSP, which is not used by E. coli54. However, it was 

intriguing that many acuI-like genes were located in close proximity with other DMSP 

catabolism genes such as dmdA54. Many of these dmdA genes were located directly 

downstream of acuI and were co-transcribed54; this close association prompted 

investigations into E. coli protein homologs of DmdA. To determine what the 

physiological role of YhdH may be in E. coli, we further explored dmdA as it is often co-

regulated with yhdH. DmdA is a member of the aminomethyltransferase-like protein 

family59. DmdA shares structural similarity with the proteins GcvT60 and YgfZ61. GcvT is 

a member of the glycine cleavage system responsible for the oxidation of glycine62. YgfZ 

has been implicated in the synthesis and repair of iron-sulfur clusters63, response to 

oxidative stress64, and tRNA modification65. Deletion mutants in gcvT and ygfZ both 
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showed increased sensitivity to MAC168425. Interestingly, the similarity between these 

proteins mostly comes from the fact they are all folate-binding or folate-dependent 

enzymes61,62. The three-dimensional structure of DmdA, GcvT, and YgfZ contains similar 

folate binding sites; these three enzymes all use tetrahydrofolate to accept a formaldehyde 

unit, yielding 5,10-methylene-THF59,61,78. Indeed, this interaction with glycine cleavage 

and folate-dependent enzymes may explain the glycine suppression phenotype we 

observed previously, as well as the trimethoprim prediction output from the deep learning 

model. 
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CHAPTER 5: CONCLUSIONS AND FUTURE DIRECTIONS 
 
 

As demonstrated in this study, E. coli respond to chemical stimuli in their 

environments. These transcriptional responses can be captured as unique and 

reproducible signatures and used to train deep-learning models to predict the MOA of 

unknown compounds. This project offers a unique opportunity to study bacterial response 

to chemical stress in a large-scale, kinetic, and comprehensive manner. The distinct 

response signatures induced by each antibiotic class can not only help researchers 

generate hypotheses about compounds with an unknown MOA, but also gain further 

insight into the off-target or secondary effects of known antibiotics. This high-throughput 

phenomics platform provides a means to study genome-scale transcriptional responses to 

a wide range of environmental stressors, which stretches beyond the limits of chemicals. 

Innovative methods as such are crucial in advancing the pipeline of modern drug 

discovery.  

Future work needs to prioritize further testing of this model for its prediction 

accuracy. One test method would be the “leave-one-out” approach, where each 

compound in the training set is removed the group and treated as a test compound 

instead. This would provide a prediction output for every drug in the training set and 

report on the accuracy of the model with a larger sample size. An important limitation of 

this prediction tool is that it will not be able predict the target or MOA of a compound if 

the target is not already covered in the training set. In other words, if there are no known 

inhibitors of a target protein or the inhibitor is not included in the training set, the model 

will not be able to correctly identify the target or MOA of the compound, as there is no 
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example inhibitor for the model to learn from. Currently, the best way to combat this 

limitation will be to continue screening compounds and cover as many protein targets as 

possible. Additional compounds should be screened and included in the training set; this 

is especially needed for MOA classes with low prediction accuracy and/or MOA classes 

that are underrepresented compared to other groups. As the total number of compounds in 

the training set increases, the layers of the neural network will be continuously adjusted 

and optimized to achieve a highly accurate system.   

Many questions still remain regarding the MOA of MAC168425. Future work is 

required for complete characterization. Firstly, our current hypothesis was established on 

the assumption that upregulation of YhdH would also lead to upregulation of DmdA, 

which may be GcvT and YgfZ in E. coli. To test this, RT-qPCR needs to be performed on 

the MAC168425 resistant mutants and their parent wildtype strain. Since YgfZ has been 

implicated as an oxidative stress response protein64, we can further probe the interaction 

between YgfZ and MAC168425 through checkerboards with superoxide inducing 

molecules such as paraquat45. One confounding factor for the ygfZ-null strain is that 

previous work has reported that a ygfZ-null mutant grows very poorly in a nutrient 

limited condition79. Future work should prioritize generating a new ygfZ-null mutant with 

PCR confirmation. If this mutant is indeed essential in minimal media, then it could very 

likely be the target of MAC168425.  
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