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Abstract 

Biomarkers play a key role in human health for early disease screening for public health, improved 

diagnosis of human diseases, and monitoring of treatment responses on an individual level. 

However, there is urgent need for high throughput technologies to accelerate biomarker discovery 

based on comprehensive analyses of metabolites and lipids in complex human biofluids. This 

thesis contributes to new advances in metabolomics research and biomarker discovery in three 

major areas. In specific, this thesis describes (1) the development and validation of a multiplexed 

separation platform based on multisegment injection-nonaqueous capillary electrophoresis-mass 

spectrometry (MSI-NACE-MS) for the rapid and accurate determination of fatty acids and 

synthetic environmental lipids in blood specimens, (2) the application of this technique in support 

of nutritional epidemiology for objective assessment of dietary fat intake in women that can be 

correlated with self-reported food frequency questionnaires, and (3) the discovery of a panel of 

serum biomarkers for differentiation of peripheral artery disease (PAD) in older persons at high 

risk for limb amputation and death. Chapter I provides an introduction in biomarkers and 

metabolomics, including an overview of the data workflow when performing comprehensive 

metabolite profiling with emphasis on methods applicable to comprehensive fatty acid analysis. 

Chapter II introduces a novel assay based on MSI-NACE-MS for high throughput analyses of 

nonesterified or total hydrolyzed fatty acids in serum/plasma extracts following a rigorous method 

optimization and an inter-method comparison to conventional gas chromatography (GC) to 

demonstrate good mutual agreement. MSI-NACE-MS enables multiplexed analyses of seven 

samples within a single run with stringent quality control, robust inter-batch correction, and 

accurate electromigration modeling for lipid identification without pre-column chemical 

derivatization and complicated sample workup procedures. Chapter III further expands 
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concentration sensitivity when using MSI-NACE-MS/MS for rapid biomonitoring of low 

nanomolar levels of perfluoroalkyl substance (PFAS) exposures as they are a class of ubiquitous 

environmental pollutants with endocrine-disruption functions. Perfluorooctanoic acid and 

perfluorooctanesulfonic acid were quantified in a subset of serum extracts from pregnant women 

before and after 2009 with lower exposures measured in accordance with enforced PFAS 

regulation. Chapter IV demonstrates the clinical utility of circulating NEFA for accurate nutritional 

assessment of fat intake in women. MSI-NACE-MS was applied in observational and intervention 

studies to demonstrate that polyunsaturated omega-3 and saturated odd-chain NEFAs serve as 

promising dietary biomarkers to monitor intake of oily fish/fish oil supplement and full-fat dairy 

intake, respectively. Chapter V describes an untargeted characterization of the serum metabolome 

of nondiabetic PAD patients for differentiation of chronic limb-threatening ischemia from 

intermittent claudication as compared to the ankle brachial index. A panel of serum metabolites, 

including several amino acids and fatty acids were identified as promising clinical biomarkers for 

early diagnosis and/or prognostication of PAD that also provides insights into its underlying 

pathophysiology. Lastly, Chapter VI provides an overview of the major contributions derived from 

this thesis, as well as a perspective on future research initiatives. 
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Chapter I: Introduction to Biomarkers, Metabolomics and Lipidomics for New Advances 
in Clinical Medicine 
 

“An ounce of prevention is worth a pound of cure” 

1.1 Introduction to biomarkers in clinical medicine 

The term biomarker or biological marker, can be defined as any objectively measured 

characteristic reflecting a biological or physiological process relevant to human health, ranging 

from a genetic mutation in cell, a circulatory protein to a tissue imaging test.1 Well-known 

examples of classical biomarkers are elevated blood glucose for diagnosis of diabetes, high blood 

pressure for evaluating hypertension, and excessive blood lactate as an indicator of tissue hypoxia.2 

In all cases, biomarkers require determination of normal reference ranges in large populations in 

order to determine critical thresholds to screen or diagnose human diseases with adequate 

sensitivity, specificity, and importantly clinical utility, such as improved patient outcomes, and 

cost savings for healthcare.3,4 Historically, the Bence Jones protein (i.e., light-chain 

immunoglobulin) in urine was the first quantitative laboratory test devised in 1847 for cancer.2 

However, elevated protein excretion in urine (i.e., proteinuria/albuminuria) may also be caused by 

other non-malignant conditions, as well as dehydration, inflammation and kidney damage due to 

hypertension and late-stage diabetes. Only in the 1960s did the term “biomarker” emerge in the 

literature to describe discrete molecular abnormalities associated with disease.2 Nowadays, 

universal newborn screening (NBS) programs for early detection of genetic disorders in the 

population is a prime example of the utility of biomarker screening for early treatment of rare 

diseases that otherwise suffer from high mortality/morbidity rates when relying on symptomatic 

diagnosis.5 Currently in the province of Ontario, NBS allows for early detection of about 20 genetic 

diseases using high throughput direct infusion-tandem mass spectrometry (MS/MS) technology 

for multiplexed analysis of amino acids and acylcarnitines in dried blood spot extracts collected 
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from a heel prick shortly after birth. Mortality and morbidity are significantly reduced for early 

onset genetic disorders if newborn screening and confirmatory diagnosis is achieved promptly 

after birth prior to later clinical presentations. For example, phenylketonuria (PKU) is diagnosed 

by blood phenylalanine exceeding 360 μM, and is treated by lifelong restriction and therapeutic 

monitoring of dietary phenylalanine intake to avoid irreversible cognitive impairment and 

development disabilities.6  As a result, diet plays critical roles in the effective treatment of most 

genetic diseases especially when introduced early in life. 

In 2016, the FDA-NIH biomarker working group established the BEST (Biomarkers, 

Endpoints, and other Tools) resource, as a necessary tool to harmonize terms and definitions in the 

field of translational science for unambiguous communication based on 7 distinctive classes of 

clinical biomarkers.7 A diagnostic biomarker is used to detect a disease or a disease subtype in 

individuals, such as use of glycosylated hemoglobin (HbA1c) for the diagnosis of type 2 diabetes, 

and glomerular filtration rate (GFR) for the diagnosis of chronic kidney disease. A monitoring 

biomarker is one that is measured over time to assess disease progression or response to an 

intervention based on the change of its trajectory in response to a defined endpoint of clinical 

significance, such as use of blood international normalized ratio (INR) with a target range of 2 to 

3 to optimize anticoagulation response to warfarin therapy.7 A pharmacodynamic/response 

biomarker is used as an indicator of a biological response to exposure to a certain (exogenous) 

drug or therapeutic agent, such as serum LDL cholesterol to assess response to prescribed 

cholesterol-lowering statins. A predictive biomarker is one that is able to identify those patients 

who might respond to a certain drug or agent whether favourably or unfavourably as in the case of 

BReast CAncer genes 1 and 2 (BRCA1/2) in women diagnosed with ovarian cancer to estimate 

likelihood of response to treatment with PARP (Poly ADP-ribose polymerase) inhibitors.8 
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BRCA1/2 mutations can be also utilized in risk assessment of cancer recurrence in women already 

diagnosed with breast cancer. This latter example is defined as prognostic biomarker, which 

assesses the probability of progression or deterioration of a pre-existing disease. On the other hand, 

susceptibility or risk biomarker would indicate the likelihood of developing a certain disease or 

condition in apparently healthy or asymptomatic individuals.7 Similarly, BRCA 1/2 gene 

mutations are used to reveal women predisposed to breast malignancy without a previous cancer 

diagnosis.7 Lastly, a safety biomarker measures the presence or extent of toxic or adverse effects 

of exposure to a certain drug, or environmental agent, such as use of neutrophil counts to estimate 

cytotoxic effect of chemotherapeutic agents and direct course of treatment accordingly. 

The concept of biomarkers can also be extended to include dietary exposures with its own 

definitions in nutritional sciences and epidemiological studies. Well-established examples in the 

literature are the use of doubly labeled water (DLW) and 24 h urinary nitrogen for measurement 

of total energy expenditure and protein intake, respectively. A NIH-led initiative in 2018 to 

develop a common ontology for nutritional research classified dietary biomarkers into exposure 

biomarkers, which reflect (recent or long-term) intake of certain foods or nutrients, susceptibility 

biomarkers which signify risk to adverse effects caused by food (e.g., iron overload from excessive 

red meat intake), and outcome biomarkers which assess the body’s physiological responses to food 

(e.g., changes in blood lipoprotein profiles).9,10 It is increasingly evident that these dietary 

biomarker categories can overlap, where bioactive compounds from the consumption of certain 

foods modulates the metabolism/protein expression of host tissue, as well as gut microbiota 

activity. For instance, dietary choline is converted by the gut bacterial enzyme choline-TMA lyase 

(expressed mainly in anaerobic Proteobacteria) into trimethylamine (TMA) which is then 

converted by flavin monooxygenase in the liver into trimethylamine-N-oxide (TMAO) - a recently 
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identified pro-atherosclerotic metabolite.11,12 Exposure biomarkers are further categorized into 

three distinctive groups. Food component intake biomarkers (FCIBs) refer to the chemical 

constituents found in different foods including classes of nutrients and non-nutrients (e.g., fiber) 

relevant to food science and human health. Biomarkers of food intake (BFIs) are mostly non-

nutrients or exogenous compounds associated with certain foods or food groups, such as proline 

betaine which is as a recently validated biomarker of recent citrus intake.9 Lastly, dietary pattern 

biomarkers (DPBs) aim to characterize complex dietary patterns as a whole (e.g., Mediterranean, 

Prudent or Western, ketogenic diets) in populations that diverges from conventional single nutrient 

research.7,13 Growing interest in dietary biomarkers in nutritional epidemiology arises from “a 

radical need of reform” due to substantial measurement error, selective reporting, and bias 

associated with dietary self-report tools, such as food frequency questionnaires (FFQs), that 

impede the elucidation of reliable disease-diet relationships.14,15 

Various ‘-omics’ platforms have been utilized for biomarker discovery including 

genomics, epigenomics, transcriptomics, proteomics and metabolomics, that provide new 

molecular insights into the underlying pathophysiology of human diseases (Figure 1.1).16 Where 

genomic biomarkers indicate “what might happen”, metabolomic biomarkers indicate “what is 

happening” serving as a dynamic and sensitive downstream readout closest to phenotype, 

physiological responses, and importantly clinical outcomes.11 Thus, metabolomics is an expanding 

field of functional genomics research that is aimed at global metabolite profiling of complex 

biological samples, including minimally invasive biofluids (e.g., blood or urine). As compared to 

other “omics” disciplines, dynamic perturbations in metabolites as a result of environmental 

exposures can exceed changes in the proteome or transcriptome in concentration as well as speed 

(i.e., flux)17 However, there exists major technical hurdles in metabolomics research given the 
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underlying chemical diversity and dynamic range of the human metabolome, which includes a 

large fraction of detected yet unidentified compounds of biological significance. Moreover, 

metabolic phenotype changes are very dynamic and interdependent and thus the integration of 

multi-omic data sets within a systems biology approach is advantageous to better elucidate 

biological mechanisms.16  

 

Figure 1.1. The ‘-omics’ cascade from a systems biology viewpoint used to illustrate the etiology of the molecular 
phenotype from a central dogma framework that starts with the genome with a downstream direction towards the 
metabolome, where additional arrows depict other mechanistic pathways including reverse causation or feedback 
mechanisms. The influence of environmental exposures (i.e., the exposome) in addition to host’s microbiome, is 
also included given their direct influence on metabolic phenotype changes. Adapted from Chu et al.16 
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1.2 Metabolomics and the metabolomics data workflow 

Metabolomics can be defined as the comprehensive characterization of all low molecular weight 

metabolites (< 1500 Da) in a biological sample using one or more analytical technologies in 

conjunction with complementary bioinformatic methods.11 The metabolome can encompass 

thousands of metabolites, as in the case of human serum with over 25,000 putative compounds 

included in the  Human Metabolome DataBase  (HMDB), spanning nearly 11 orders of magnitude 

from millimolar (e.g., glucose and urea) to picomolar concentration levels (e.g., thyroxine and 

prostaglandin E1).18 This vast collection of small molecules consists of both endogenous 

metabolites, such as amino acids, nucleic acids, small peptides, electrolytes, sugars, alcohols, 

organic acids and lipids, as well as exogenous/xenobiotic chemicals, including prescription and 

over-the-counter drugs, plant phytochemicals, food additives, pesticides, environmental 

contaminants, and persistent organic pollutants. The latter is often collectively referred to as the 

exposome, which reflects the totality of chemical exposures from conception to death. 

To date, metabolomic experiments differ depending on the study question as well as the 

resolution, sensitivity and metabolome coverage of the instrumental method, and can be classified 

into four major sub-fields: 1. targeted metabolomics (i.e., hypothesis-testing via quantitative 

analysis of sub-set of known metabolites), 2. untargeted metabolomics (i.e., hypothesis-generating 

that includes the discovery of unknown metabolites of clinical significance), 3. fluxomics (i.e., 

metabolic flux measurement using isotope labelling to assess metabolic pathway dynamics), and 

4. metabolite imaging (i.e., spatial characterization of metabolite distributions within tissues).11 In 

general, the metabolomics workflow consists of series of interdependent steps (Figure 1.2) that 

need to be carefully implemented for meaningful and impactful research that avoids bias. As 

discussed in detail below, major hurdles to translational metabolomics research include poor study 
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designs, inadequate study power and replication, limited metabolome coverage and, importantly, 

unknown identification. These represent major bottlenecks at different stages of the metabolomics 

pipeline from pre-analytical (e.g., inconsistent sample collection and storage), analytical (e.g., lack 

of sample randomization and quality controls) to post-analytical (e.g., inappropriate statistical 

methods not adjusted for confounding variables) steps that contribute to false discoveries. 

 

Figure 1.2. Scheme showing the major steps of the metabolomics workflow for biomarker discovery from study 
design and participant recruitment followed by sample pretreatment and chemical analysis. Also, data preprocessing 
when using high resolution MS platforms (e.g., peak picking, filtering, scaling and normalization), and unknown 
metabolite identification and biological interpretation remain key bottlenecks in contemporary untargeted 
metabolomic workflows from biomarker discovery to clinical translation. 
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1.2.1 Study design and sample considerations for metabolomics 

Study design encompasses the overarching experimental approach reflecting the objectives of the 

investigation, including a defined hypothesis, desired outcome, target population/control, and 

criteria used for participant selection/rejection. Epidemiological studies largely fall under 

observational, whether case-control, cross-sectional, cohort or longitudinal, whereas experimental 

designs are best exemplified by randomized controlled trials.17 Clinical metabolomics studies often 

include “disease versus control” or paired “pre- and post-intervention” study designs to identify 

and quantify discriminating metabolites in specific biological samples. The initial stages of study 

design involving participant recruitment and biospecimen collection/storage are crucial for the 

quality of all downstream processes thereafter. This could be jeopardized in cases of inadequate 

sample sizes, non-uniform patient matching criteria, confounding, improper choice of specimens, 

and use of “specimens of convenience” for biomarker discovery based on mere availability from 

collaborating institutions.19 “Garbage in, garbage out” remains an axiom that contributes to bias, 

false discoveries and poor reproducibility in metabolomics.19 Various types of samples can be 

utilised for metabolomics studies ranging from cell cultures, tissues, and various biofluids.20 The 

latter can be further classified into metabolic fingerprinting of circulating biofluids (e.g., whole 

blood, serum or plasma) and metabolic footprinting of excreted biofluids (e.g., urine, saliva, breath 

condensates, sweat or stool).11 Careful selection of one or more biospecimen type(s) in accordance 

to the research question should be exercised. For instance, fatty acids analysis is a broad term that 

can encompass different lipid pools from adipose tissue, erythrocytes phospholipids, and 

circulating/protein-bound non-esterified fatty acids (NEFA) each reflecting a different turnover 

time, biochemical function/activity, and importantly clinical relevance.21,22  
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Further considerations are related to processes of sample collection, handling, transport 

and storage conditions, where failure to adhere to standardized operating protocols can inevitably 

contribute to bias with greater variability. Urine, cells or tissue samples are to be stored promptly 

at -80 °C immediately after collection whenever possible, whereas blood samples require 

processing prior to storage.17 This should be done on ice and ideally within half an hour from blood 

sample retrieval followed by storage at -80 °C to halt incidental enzymatic activity, prevent 

hemolysis and ensure long-term chemical stability.23 For preparation of plasma, clotting is 

prevented by collecting blood in anticoagulant tubes containing EDTA, citrate or heparin followed 

by centrifugation to fractionate plasma from cellular content in contrast to serum, where blood is 

allowed to naturally clot for a fixed time prior to fractionation.23 Thus, serum lacks fibrinogen, 

prothrombin and other coagulation factors formed during fibrin clotting and removed along with 

blood cells, but has additional pro-inflammatory cytokines and lipids, such as sphingosine-1-

phosphate and eicosanoids produced in response to clotting, that do not reflect physiological 

concentration levels.18,24  Nevertheless, studies comparing serum and plasma have shown that both 

blood specimens are highly correlated and display similar results for the majority of 

metabolites/lipids with plasma being more reproducible and serum, in turn, exhibiting overall 

higher concentrations of metabolites.18,24 Furthermore, fasting samples are superior to non-fasting 

samples as is 24 h urine collection as compared to single-spot/random urine samples. Yet, in 

practice, researchers do not necessarily have control over all factors given practical constraints and 

ethical issues involving patient recruitment/compliance, such as collection of fasting blood 

samples from children or pregnant women. Other uncontrollable confounders include between-

subject differences of metabolism, co-morbidities, microbiome activity, environmental exposures, 

dietary/lifestyle patterns and food matrix effects, notably in the case of nutrition studies.17,25 
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1.2.2 Sample processing and chemical analysis  

Prior to metabolomic analyses, sample processing is often required, depending on the specimen 

type and instrumental platform used for analysis.  Sample workup is a critical step needed to 

concentrate low abundance metabolites, reduce background matrix interferences, or transform 

metabolites to facilitate their resolution and/or detection via chemical derivatization. For instance, 

gas chromatography (GC) methods typically require pre-column chemical derivatization (e.g., 

transesterification, or oximation followed by trimethylsilylation), to convert sample analytes to a 

more volatile form that are transported through a wall-coated capillary by a gaseous mobile 

phase.17 Similarly, for the quantitative analysis of trace levels of perfluoroalkyl substances 

(PFASs) in serum, liquid extraction and subsequent enrichment using solid phase extraction (SPE) 

cartridges is employed prior to liquid chromatography-tandem mass spectrometry (LC-MS/MS) 

to enable detection of the low nanomolar levels of these environmental contaminants.26,27 In 

contrast, sample preparation for untargeted metabolomics should ensure wide selectivity for broad 

metabolome coverage with adequate sample clean-up as required, such as serum deproteination 

by organic solvent (e.g., methanol or acetonitrile) or ultrafiltration followed by dilution before 

analysis by LC coupled to high resolution MS (HRMS).28 Furthermore, it is important to keep 

freeze/thaw cycles at a minimum during sample processing to maximize metabolite stability by 

storing separate aliquots of samples for “one-time use”.29 For example, polyunsaturated fatty acids 

(PUFA) are prone to oxidation from heating, prolonged air exposure and/or presence of iron in 

case of hemolysis, thus careful sample handling is of utmost importance. Storage under nitrogen 

gas, at – 80 °C, or addition of lipid-soluble antioxidants, such as butylated hydroxytoluene (BHT) 

prior to storage, can further help to minimize losses during sample handling. 22,30,31 



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 
 

12 

At the same time of sample processing, a quality control (QC) is prepared to serve as a 

representative reference/pooled sample to assess technical variance and track variation in 

instrumental response. The same QC sample is analyzed at the start and end of analysis, as well as 

intermittently between batches of consecutive analytical runs after every 5-10 samples.32,33 Ideally, 

the QC sample is a pool of aliquots from all study samples so that most of the detected metabolites 

are also present and monitored in the QC sample.34 Alternatively, in large-scale studies or volume-

restricted samples, the QC sample could also be of external or commercial source, such as a 

certified reference material from NIST.35 In all cases, consistent use of the same QC samples allows 

for correcting of long-term signal drift that can inevitably occur in MS-based metabolomics despite 

maintaining standard operating procedures (e.g., daily instrument calibration/tuning and ion source 

cleaning), via inter- and within-batch correction algorithms.36,37 

In contrast to genomics or transcriptomics, where the entire DNA or RNA can be measured 

using a uniform analytical platform (i.e., a gene sequencer), metabolites vary drastically in their 

chemical and physical properties belonging to hundreds of different chemical classes, so that no 

single analytical method can provide a complete measure of the metabolome.11,20 Thus, it is 

common to apply several orthogonal platforms in parallel to maximize metabolome coverage 

provided there is adequate sample volume. The two main analytical techniques used in 

metabolomics are nuclear magnetic resonance (NMR) spectroscopy and high resolution mass 

spectrometry (HRMS); the latter is often coupled to various separation techniques to improve 

analytical performance, such as LC, GC, capillary electrophoresis (CE) or ion mobility 

spectrometry (IMS). These separation methods offer better selectivity to resolve isobaric/isomeric 

interferences while also reducing ion suppression/enhancement effects in nontargeted 

metabolomics when using direct infusion-MS without stable-isotope internal standards. 
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Table 1.1. Common instrumental techniques used in metabolomic studies.17,38,39  
Platform Advantages Disadvantages 

Nuclear 
Magnetic 
Resonance 
(NMR) 

• Non-destructive method 
• Minimal sample workup 
• Quantitative 
• Unambiguous identification 
• Fast (2-10 min/sample) 
• Robust technology 

• 10-100 X less sensitive than MS 
• High infrastructure/operating costs 
• Large sample volumes 100-500 µL 
• Complex deconvolution required 

due to spectral overlap in 1D NMR 
• Limited metabolome coverage 

Direct Infusion 
Mass 
Spectrometry 
(DI-MS) 

• Fast (1-3 min/sample) 
• Low sample volume  
• High sensitivity 
• No solvents 
• Ideal for targeted analysis 

• Ion suppression/matrix effects 
• No separation of isomers/isobars 
• Stable-isotope internal standards 

crucial for quantification 
• Limited selectivity 

Liquid 
Chromatography 
Mass 
Spectrometry 
(LC-MS) 

• High sensitivity 
• Good retention time 

reproducibility (reversed-phase) 
• Wide selectivity/metabolome 

coverage 
• Simpler sample workup 

• Slow (15-40 min/sample) 
• High solvent consumption/waste 
• Less robust, less reproducible 

retention times (HILIC) 
• Complicated separation mechanisms 

(HILIC) 
Gas 
Chromatography 
Mass 
Spectrometry 
(GC-MS) 

• Mature technology with 
extensive EI-MS library 

• High separation efficiency 
• Reproducible retention times 
• Ideal for volatile/thermally 

stable metabolites 

• Complicated sample workup 
• Not for thermolabile compounds  
• Slow (20-40 min/sample) 
• Limited metabolome coverage 
• Unknown compound identification 

is difficult 
Capillary 
Electrophoresis 
Mass 
Spectrometry 
(CE-MS) 

• High separation efficiency for 
ionic metabolites 

• Effective desalting/minimal ion 
suppression 

• Low sample volume (< 5 µL) 
• Simpler sample workup 
• Minimal solvent/low operating 

costs 

• Low sensitivity/limited coverage 
• Less reproducible migration times 

compared to reversed-phase LC 
• Technically challenging/less support 

from vendors 
• Few validated protocols for large-

scale studies 
• Lack of robust CE-MS interfaces 

Ion Mobility 
Mass 
Spectrometry  
(IM-MS) 

• Ultra-fast (< 100 ms) 
• Separation of isobars/isomers  
• Accurate prediction of 

collisional cross-section area  
• High reproducibility 

• Least mature technology 
• Prone to ion suppression 
• Poor orthogonality (high 

correlation) with MS 
• Limited peak capacity/resolution 
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The advantages and disadvantages of each technique is summarized in Table 1.1 with LC-MS 

being the most widely used instrumental configuration in metabolomic studies based on reversed-

phase and/or hydrophilic interaction (HILIC) modes of chromatography. CE-MS is a high 

efficiency microseparation technique based on the separation of charged ions in free solution under 

an electric field, which is optimal for resolution of polar/ionic metabolites ranging from 

phosphorylated sugars, organic acids, amino acids, nucleotides and weakly acidic/basic drugs.40-43 

In fact, CE-MS has recently been applied in large-scale serum metabolomic cohort studies with 

good long-term reproducibility.44,45 There are two fundamental electrokinetic principles that 

govern CE separations, namely the electroosmotic flow (EOF) and the intrinsic electrophoretic 

mobility of an ion (i.e., metabolite). The EOF serves as a natural electrokinetic pumping 

mechanism to transport of all ions towards the MS detector with low flow rates (nL/min).46 The 

silanol groups on the inner wall of a fused-silica capillary are deprotonated at pH > 2, and thus 

form an overall negative surface charge, which attracts electrolytes of the opposite charge in the 

background electrolyte (BGE) as shown in Figure 1.3. This process results in the formation of an 

electric double layer of electrolytes in solution. The inner fixed layer (Stern layer) exhibits a strong 

adsorption of largely immobile ions while the outer (Helmholtz) layer of electrolytes are more 

diffuse/mobile in solution that generates a potential difference (i.e., zeta potential) from the 

capillary surface to bulk solution.47 The application of an external voltage across both ends of the 

capillary, causes transport of bulk solution towards the cathode (i.e., EOF) that is mediated by the 

mobility of excess of solvated cations within the diffuse electric double layer (Figure 1.3).48  The 

EOF or electroosmotic mobility (µEOF) is largely dependent on the composition of the capillary 

surface, as well as properties of the buffer solution, including pH, ionic strength, temperature and 

viscosity, and impacts the apparent migration time of an analyte. In contrast, the electrophoretic  
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Figure 1.3 Schematic of fundamental CE separation principles when using a coaxial sheath liquid CE-MS interface 
(grounded) under negative ion mode conditions. Upper panel depicts CE-MS setup with a fused-silica capillary 
connected at the inlet (cathode) to a high voltage power supply when using a nonaqueous BGE for the separation of 
acidic lipids (e.g., long-chain fatty acids) prior to their ion desorption in ESI-MS. Lower panel models Stern’s model 
of the double layer charge distribution at the negatively charged silica wall leading to the formation of the EOF. Upon 
voltage application, the apparent migration time for acidic lipids are determined by the net superimposition of the 
electroosmotic (μEOF) and electrophoretic mobilities (μep), where ! = buffer dielectric constant: " = zeta potential; # = 
viscosity; $ = ion migration velocity; & = electric field; Qeff = effective charge;	RH = solute’s hydrodynamic radius.   

 

mobility (µep) directly impacts the selectivity of a separation and is dependent on differences in the 

intrinsic physicochemical properties of an ion, namely pKa and molecular volume (i.e., effective 

charge density). Therefore, in CE under normal polarity, small electrolytes (e.g., Na+ or K+) will 

migrate first due to their high positive mobilities that allows for desalting of highly saline samples 

prior to electrospray ionization (ESI), followed by the migration of bulkier/minimally charged 

cationic/basic metabolites (e.g., amines, amino acids, acylcarnitines). Neutral compounds are 

unresolved and co-migrate with the EOF, whereas acidic/anionic metabolites migrate in opposite 

direction towards the anode, but are transported to the detector due to the higher velocity of the 

EOF under most buffer conditions (Figure 1.3).49 Low concentration sensitivity is a major 

limitation of CE-MS due to nanoliter volumes of samples introduced hydrodynamically on-
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capillary (~ 5-10 nL), as well as post-capillary dilution effects when using a conventional coaxial 

sheath liquid interface for spray formation in CE-MS.50 Alternatively, various sheathless interface 

or low-flow (i.e., nanospray) interface designs have been developed to boost concentration 

sensitivity in CE-MS, such as a porous hydrofluoric-etched capillary tip, stainless-steel liner with 

treated/restricted capillary tips, or electrokinetically-driven sheath liquid flow through tapered 

glass emitter.51-55 A unique advantage of CE-MS however is the ability to perform multiplexed 

separations to greatly improve sample throughput via serial injection of seven or more samples 

within a single analytical run.56 Recent advances of multisegment injection (MSI)-CE-MS enable 

high throughput screening (< 3 min/sample) for comprehensive surveillance of drugs of abuse, as 

well as nontargeted metabolomics to identify serum biomarkers associated with physical inactivity 

in older persons.33,41,49 Importantly, MSI-CE-MS also offers superior data fidelity when performing 

large-scale metabolomic studies that accelerates biomarker discovery based on temporal signal 

pattern recognition.5 

CE separations are typically performed under aqueous buffer conditions for polar/ionic 

metabolites, which limits its applicability to a wide range of ionic yet lipophilic compounds, such 

as long-chain fatty acids. In this case, non-aqueous capillary electrophoresis (NACE) is an 

alternative strategy that makes use of a background electrolyte (BGE) comprised largely of an 

organic solvent solution.57 In addition to greatly expanding separations for lipid analyses, NACE 

is also associated with lower currents due to the reduced conductivity of most organic solvents 

(e.g., methanol) that allow use of higher voltages and larger bore capillaries with lower detection 

limits.58 Furthermore, NACE is ideal for coupling to electrospray ionization (ESI)-MS for better 

droplet desolvation and ionization efficiency due to the lower surface tension and higher volatility 

of many organic solvents as compared to aqueous solutions. However, analyses by NACE-MS is 
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not necessarily without challenges, which may explain the limited number of reported studies to 

date and its lack of application in the field of lipidomics. For instance, acetonitrile, the most 

common solvent used in NACE can cause swelling of the outer polyimide capillary coating leading 

to incidental capillary breakage and poor long-term reproducibility.59 Furthermore, as organic 

solvents used in NACE typically have lower boiling points and surface tension than water, this can 

create higher suctioning by the nebulizer gas used to facilitate spray generation when using coaxial 

sheath liquid CE-MS interfaces, causing air to be drawn within the capillary and leading to current 

instabilities.60 Strategies to overcome these major technical challenges have been successfully 

implemented in the development of a robust method for rapid determination of NEFA from serum 

extracts by MSI-NACE-MS,61 which is one of the major contributions described in this thesis.  

1.2.3 Data processing and statistical analysis 

Following data acquisition, deconvolution, pre-processing and pre-treatment of the raw data is 

necessary to produce clean data fit for multivariate or univariate statistical analysis in the form of 

a data matrix of samples (paired or unpaired) in columns and molecular features/metabolites 

(metabolite name, accurate mass, chemical shift bin) in rows as a function of their response 

(concentrations, integrated peak areas).62 This phase of the nontargeted metabolomics data 

workflow remains a major bottleneck, especially for HRMS-based experiments.63 It starts with 

conversion of the instrumental output into numeric values by peak integration and further includes 

data filtering, peak picking, and time alignment of molecular features if separations are coupled to 

MS. Data filtering is the removal of background noise,  such as spurious signals corresponding to 

instrumental or random noise, whereas peak picking involves identification of reproducible and 

authentic metabolites.64 ESI ionization technique commonly used in LC-MS and CE-MS 

metabolomics, is especially prone to formation of “untrue” molecular features. These can be 
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background contaminants (e.g., solvent impurities), artifacts (informatic error such as baseline 

fluctuations), as well as redundant isotopic signatures (13C, 15N), in-source fragments, adducts or 

dimers – the latter features derive from a single metabolite and is referred to as signal 

degeneracy.65,66 Hence, removal of such non-informative and error-prone signals is important for 

subsequent multivariate statistical analysis to reduce data overfitting and false discoveries. Indeed, 

stringent approaches to data filtering in LC-MS based metabolomics can lead to up to 90% 

reduction of data from 25,000 total molecular features to less than 1,000 authentic metabolites that 

are measurable with adequate precision and detection frequency.63,65 Time alignment is the process 

of peak clustering between runs to correct for variation of retention or migration times due to 

instrumental drift, which offers an orthogonal descriptor when annotating metabolites besides their 

accurate mass (m/z), such as adjusted retention times or relative migration times. Efforts for 

efficient data cleaning include open-access web-based tools (e.g., XCMS, MZmine), proprietary 

vendor software (Agilent MassHunter, Waters MassLynx), or in-house protocols, such as temporal 

signal pattern recognition using a dilution trend filter when using MSI-CE-MS.5,67,68  Moreover, 

data generated over time are unavoidably prone to long-term signal drift in intensity and mass 

accuracy. Here, consistent QC samples, randomly and regularly analysed throughout a 

metabolomics study can be used to correct for such variance between samples both between and 

within batches via open-source mathematical algorithms, especially important in the case of large-

scale MS-based metabolomics studies.36,37  

Subsequently, QC samples ran repeatedly throughout the analysis are also processed, 

where molecular features are further excluded based on acceptable technical precision, as 

measured by the coefficient of variation (CV < 30-40%).39,69 The US Food and Drug 

Administration (FDA) recommended guidelines of tolerance limits variation not to exceed 15% 
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for drugs, 20% for low abundance compounds with low signal to noise (S/N < 10), and 30% for 

biomarkers in discovery-based  metabolomic studies.29,39 Furthermore, molecular features not 

consistently detected (< 75% threshold) in the QCs or study samples are also excluded to prevent 

data skewing; otherwise, missing values imputation is performed by replacement with a small 

value, such as the concentration detection limit for metabolite (if known), the minimum response 

detected for metabolite/2 in all samples, or by a weighted k-nearest neighbour (KNN) 

algorithm.69,70 QC samples also guide whether applying a batch-correction of a metabolomics data 

set is necessary as discussed earlier. Lastly, control charts of a recovery standard (e.g., exogenous 

deuterated standard) added to all QC and study samples at a fixed concentration is an important 

method to assess long-term technical precision and flag sample outliers that may require exclusion 

or repeat analysis in case their response exceed action limits (± 3 s).39  

Once completed, the resulting filtered data is then pretreated using normalization, 

transformation and scaling to generate data optimal for statistical analysis. Peak area normalization 

relative to internal standard peak area corrects for variation in sample injection volumes, where 

additional normalization processes may be required depending on sample type. This is less of a 

concern for hemodynamically controlled biofluids (e.g., serum), unlike urine that requires 

adjustment to correct for variation in hydration status by normalizing to creatinine, osmolality, 

specific gravity, or using probabilistic quotient normalization (PQN).71-73 Similarly, stool or wet 

tissue specimens are commonly normalized to their total dried mass after lyophilization and 

weighing. Autoscaling, pareto-scaling or range-scaling account for differences in metabolites 

concentration ranges and impart equal importance of all measured metabolites irrespective of their 

absolute abundances.74 Moreover, data normality should be examined using histograms to study 

distribution patterns and either Shapiro-Wilk (S-W) or Kolmogorov-Smirnov (K-S) statistical 
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tests.75 Following, log-transformation is helpful in making skewed metabolomic data more 

normally distributed while overcoming heteroscedasticity, which originates from the fact that 

technical and other sources of biological variation are not necessarily equally distributed around 

zero.74 Choice of data pre-treatment or transformation can have considerable effect on overall data 

structure and statistical outcome, and thus should be carefully considered.76 

Both univariate and multivariate statistical methods are routinely applied to metabolomics 

data in order to reveal biological findings relevant to a tested hypothesis or to generate a testable 

hypothesis when performing nontargeted metabolomics.77 Univariate tests are often preferred due 

to the ease of direct interpretation (e.g., student’s t-test and ANOVA or their non-parametric 

equivalents) after exclusion of possible uninformative features or covariances.78 These tests are 

often used to detect statistically significant differences between two (or more) groups, such as 

healthy control versus disease state. However, in case of metabolomics data, where hundreds of 

univariate tests (equivalent to total number of variables or metabolites analyzed) are conducted, 

the alpha-level criterion of significance (typically set at p < 0.05) increases with each additional 

test leading to a high probability of false discoveries as a result of mere chance (type I error).79 

Multiple hypothesis testing corrections are thus crucial and include the more conservative 

Bonferroni correction (alpha/number of tests) but can increase the risk for rejecting true 

discoveries (type II error).80 Alternatively, false discovery rate (FDR) correction, such as the 

Benjamini-Hochberg procedure, is less strict as it controls the fraction of false positive results and 

thus is often preferred in case of pilot metabolomics studies at an early exploratory stage.79 In either 

case, there is always a trade-off between these two errors of controlling false discoveries and loss 

of statistical power by rejecting true discoveries.77 
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In contrast to univariate statistics, some findings are often only detected collectively as 

individual metabolites can complement each other via coupled metabolic pathways.78 A 

multivariate approach can also help minimize noise and biological variation within groups by the 

so called “effect of consistency at large”.78 Principal components analysis (PCA) is a widely used 

unsupervised data projection method that captures variance as a linear combination yet smaller set 

of latent variables or so called principal components (PCs).74 Those PCs, which are new coordinate 

axes in the directions that confer a majority of the underlying variation found in the samples 

overall, aim to separate structure from noise. The first PC is the one that is in the direction of 

maximal variance between samples then the second is orthogonal to the first and so on thereafter. 

Subsequently, PCA is often used to investigate metabolomics data for overall patterns of variation 

and trends in the data, as well as detection of potential outliers in an unsupervised manner.81 In 

contrast, partial least squares–discriminant analysis (PLS-DA) is a frequently used supervised 

multivariate method used in metabolomics for classification and regression,82 which optimizes 

separation between groups by maximizing covariance based on prior knowledge of class 

membership (dependent variable Y) as linked to the raw data (independent variables X).28 Unlike 

PCA, PLS-DA can detect subtle features/differences between groups in well balanced study 

designs without potential confounders.81 Nevertheless, it should be carefully used since it is prone 

to data overfitting and misclassification with the number of variables exceeding the number of 

samples (i.e., inadequate study power) especially when cross-validation/permutation testing of the 

training set is not performed.83 In most cases, rigorous validation also requires an independent set 

of samples (i.e., test set) to demonstrate predictive accuracy of model for group classification. 
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1.2.4 Unknown identification  

The untargeted metabolomics approach includes all analytically captured features for 

hypothesis generation, and thus contains a large number of unidentified/unknown metabolites. 

Structure elucidation requires additional experiments using a MS system with high resolving 

power (> 10,000), mass accuracy (< 5 ppm), and sensitivity together with the ability to acquire 

MS/MS spectra via collisional-induced fragmentation of selected precursor ions at different 

voltages.39 Though time and labour-intensive, unknown identification can lead to the discovery of 

novel metabolite classes of clinical or biological significance, such as oncometabolites and 

atherotoxins.11,38 Thus, priority is given to those metabolites that show significance in the statistical 

analysis in contrast to data independent MS/MS acquisition modes. The challenge to identify 

unknown features is further compounded by peak degeneracy, where a single metabolite can 

generate ten or more molecular features/signals in ESI-MS with the same retention/migration time, 

but different m/z. For example, glutamine, a major blood amino acid was reported to generate 100 

spectral features including complex adducts.65 In 2007, the Chemical Analysis Working Group of 

the Metabolomics Standards Initiative established a 4-level system for metabolite identification 

aiming for standardized reporting and best practices as summarized in Table 1.2.84 Level 1 exhibits 

the highest confidence level with unambiguous identification based on direct comparison to an 

authentic standard analyzed using the same instrument having the same accurate mass (m/z), 

retention/migration time, and MS/MS spectrum with high index of similarity (i.e., m/z of specific 

product ions and their relative intensities). When a standard is unavailable, putative identification 

of the metabolite (level 2) or the metabolite class (level 3) is based on comparison of experimental 

MS/MS with reference spectra deposited in public databases, or de novo annotation or in silico 

prediction of MS/MS spectra for distinctive product ions/neutral losses (i.e., functional groups or  
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Table 1.2. The four levels of metabolite identification confidence adapted from Dunn et al.85 
Level Confidence of Identity Level of Evidence 

1 Confidently identified 
compounds 

Direct comparison to an authentic standard 
analysed under identical analytical conditions 
having the same two or more orthogonal 
properties i.e. m/z, retention time, MS/MS 

2 Putatively identified 
compounds 

Identification is based on similarity of 
physicochemical properties and MS/MS spectra 
with public/commercial spectral libraries, without 
reference to authentic chemical standards  

3 Putatively annotated 
compound classes 

Based on similarity of physicochemical 
properties and MS/MS spectra to a chemical class 
of compounds 

4 Unknown compounds 

Based on minimum annotation of accurate mass 
and retention/migration time, and most likely 
molecular formula, without known structural 
information. 

 

structural motifs), respectively. Lastly, level 4 identification requires a minimum annotation of 

accurate mass and retention/migration time, and potentially most likely molecular formula, without 

known structural information, that, nevertheless imparts valuable information when reporting an 

unknown metabolite in a meaningful way.84 Noteworthy, new reporting standards are currently 

being proposed by the Metabolomics Society for a 7-level system that also includes 

presence/absence of chirality, and stereochemical information, which is particularly challenging 

when classifying the exact identity of unknown lipids. Open-access databases, such as HMDB, 

LipidMaps, KEGG, PubChem and ChemSpider are typically used to search for a putative 

compound match based on experimental accurate mass or most likely molecular formula of an ion 

in large datasets of previously reported metabolites. However, in case no matches are found, de 

novo structural elucidation is required. Fragmentation spectra based on MS/MS experiments 

conducted at several collision energies (e.g., 10, 20 and 40 V) when using ESI-MS (LC/CE-MS), 

as well as standardized (70 eV) electron impact ionization (EI)-MS spectra (GC-MS) play a 
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fundamental role in metabolite identification since a molecular formula is associated to dozens or 

hundreds of known chemical structures.85 Other chemical or biological knowledge/information 

could be applied to confirm the identification of unknown metabolites, including selective 

chemical extraction or enzymatic reactivity/transformation, as well as in silico modeling of solute 

retention times or migration times that reflect the physicochemical properties of metabolites based 

on fundamental chromatographic or electrophoretic principles.86 The latter strategy is effective at 

rejecting isobaric or isomeric candidate ions in cases when authentic standards are lacking. 

1.2.5 Biological interpretations, biomarker validation and clinical translation  

Candidate biomarkers identified following rigorous statistical analyses and structural elucidation 

in metabolomics are ideally linked to specific metabolic pathways and/or sources of exposure as 

required for biological or clinical interpretation of significance.87 Biomarkers can also offer new 

insights into disease mechanisms and guide therapeutic choices, disease monitoring and even drug 

discovery.87,88 Open-access metabolomics databases, such as the Human Metabolome Database 

(HMDB) provide a comprehensive resource for metabolite concentration ranges in specific 

biospecimens, and an overview on reported findings in the literature. Various computational tools 

for network modelling and pathway mapping ranging from metabolic pathway analysis, metabolite 

set enrichment analysis (MSEA) and mummichog can help reveal associated biological processes 

and their interaction with known enzymes and genes.34,89-92 But biological interpretation is often 

not straightforward and is rather a long-term endeavor of multidisciplinary research, including 

follow-up studies in animal models, as well as human observational and randomized clinical trials 

to establish causation. In fact, metabolomics studies fall under two distinct objectives seeking 

either a broader understanding of disease pathogenesis or biomarker development; the latter is not 

targeted to explain biology.93 
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Receiver operator characteristic (ROC) curve analysis is considered a standard approach 

to evaluate the performance of candidate biomarkers in clinical metabolomics research, which is 

robust to non-parametric data distribution, and has prediction power independent of disease 

prevalence, unlike prediction accuracy.94,95 ROC curve models for one or more biomarkers or their 

ratios should be reported along with 95% confidence intervals (CI) towards a better harmonization 

with clinicians in order to facilitate biomarker translation “from the benchtop to the bedside”.93,95  

ROC curves are based on the frequency of the biomarker or test under investigation of bringing 

forth true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) when 

discriminating between disease cases and healthy controls.3 Consequently, the graph comprises a 

visual representation of the sensitivity (TP/TP+FN) of a biomarker on the y-axis against 1 minus 

its specificity (TN/TN+FP) on the x-axis. Ideally the ROC curve would approach the top left corner 

of the graph with an area under the curve (AUC) or c-statistic equal to one, signifying a perfect 

classifier.1,96 In contrast, AUC equal to 0.5 signifies that the test’s prediction performs no better 

than mere chance. An AUC value from 0.9-1.0 is excellent, 0.8-0.9 is good, and 0.7-0.8 is generally 

considered fair.93 The AUC is a neat combined visualization of sensitivity (“positivity in disease”) 

and specificity (“negativity in health”) that conveys the overall performance of a biomarker or 

biomarker panel test.3 Noteworthy, ROC curves are fundamentally based on the prediction of a 

binary (i.e., benign versus malignant)  not a continuous outcome and they graphically display a 

continuum of the compromise between maximizing sensitivity (i.e., the test not missing a true 

cancer diagnosis) and specificity (i.e., test giving out a false cancer diagnosis); choice of the 

optimal threshold or critical cut-off concentration for a biomarker can be easily deduced from the 

curve in accordance to the decision makers’ priority.95,96 One example of ROC curve analysis is 

the composite Framingham risk score for coronary heart disease risk prediction, which combines 
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several biochemical (HDL, cholesterol and systolic blood pressure) and anthropometric (sex, age 

and smoking status) measurements with an AUC of 0.75.1 An additional marker that would 

enhance this value to 0.77, though a modest contribution, would still be considered significant for 

increasing the accuracy of cardiovascular disease risk stratification in high-risk individuals.1 

To move such biomarkers from exploratory to advanced phases, experiments must be repeated on 

independent/blinded samples drawn from the same population for validation.95 Only when 

discovery and validation results are replicated, sufficient evidence can be drawn that the putative 

biomarker is worth pursuing in advanced clinical testing on a much larger scale.93 At this point, 

not only study sample size increases that are collected from across multiple centres, but also more 

difficult clinical scenarios are included, such as cases with ambiguous diagnosis or comorbidities, 

so that results are more generalizable to a wider population.95 Whenever possible, the performance 

of a new biomarker is compared to conventional symptomatic diagnosis or a currently accepted 

biomarker(s) lacking adequate specificity. At the advanced stage of biomarker translation, 

important statistical criteria for assessing biomarker performance include calibration (Hosmer-

Lemeshow statistic) and reclassification, in addition to discrimination (ROC curve c-statistic).1 

Calibration describes the degree of agreement between the biomarker-predicted and actual event 

rates in longitudinal studies with clinical follow-up, whereas reclassification calculates the 

proportion of patients assigned a correct classification based on the merits of the new biomarker, 

such as a patient falsely assigned a pre-determined low-risk group would actually transition to a 

higher risk category.1,97 Reclassification is of high clinical value in coronary heart disease as it may 

prompt early and aggressive LDL-lowering pharmacological interventions.1,98 Unfortunately, 

many metabolomics biomarker studies stop at the discovery phase with “sometimes undeserved 

death” from promising early results in pilot studies as seen with many proteomics biomarkers.87,99 
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Furthermore, aside from the biological performance of a biomarker, other considerations must be 

regarded for successful translation to clinical settings, including the availability of an inexpensive 

and validated assay for routine screening or diagnostic testing within an accredited laboratory 

environment. Table 1.3 summarizes characteristics of an ideal biomarker for peripheral artery 

disease (PAD).100 PAD is a complex clinical syndrome categorized under cardiovascular disease, 

which is a form of atherosclerosis manifested in the lower extremities that leads to muscle pain, 

impaired walking, infections and tissue loss.101 In fact, PAD remains poorly recognized by 

healthcare practitioners with late symptomatic diagnosis that requires confirmation with 

specialized ankle-brachial index (ABI) measurements.102 Compared to coronary artery disease, 

there have been sparse metabolomic studies on PAD to date, where part of this thesis involves a 

comprehensive metabolomic and lipidomic study for improved differentiation of the two major 

subtypes of PAD based on a specific panel of serum biomarkers. 

Table 1.3 Ideal biomarker for peripheral artery disease (PAD). 
Characteristics of the “ideal” PAD biomarker 
1 Sensitivity to presence of PAD (positivity in disease) 
2 Specificity to PAD (negativity in health) 
3 Correlation to PAD prognosis 
4 Correlation to disease-specific features e.g. walking time or the ankle-brachial index (ABI) 
5 Minimal influence by confounding factors 
6 High-throughput measurement 
7 Reproducible and robust measurement 
8 Cost effectiveness 
9 Easy, non-invasive bio-sampling 
10 Complementing current strategies  
11 Endorsement by clinicians and patients 
Adapted from Cook and Wilson 2010100 
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1.3 Fatty acids in metabolomics and biomarker discovery 

1.3.1 Introduction to lipidomics 

Lipidomics is a growing subset of metabolomics specifically focused on the comprehensive 

analysis of lipids.103 The term was first introduced in 2003 by Spener et al. as a distinct ‘-omics’ 

science defined as “the full characterization of lipid molecular species and of their biological roles 

with respect to expression of proteins involved in lipid metabolism and function, including gene 

regulation”.104 Lipids are essential for cellular function as they play critical roles in cell membrane 

formation, energy storage, cell growth and signaling augmented by their coupling to proteins and 

sugar moieties.104,105 Indeed, in a global investigation of the human serum metabolome using 5 

different analytical platforms for maximal coverage, the following statement highlights the 

importance of studying the lipidome: “Overall, the composition of human serum is dominated by 

diglycerides, triglycerides, phospholipids, fatty acids, steroids and steroid derivatives. This simply 

reinforces the fact that serum is a key carrier of lipoproteins, fats and hydrophobic nutrients”.18 

What groups lipids together is their shared physicochemical properties rather than their distinctive 

chemical structure, unlike all other biochemical classes; they are insoluble in water and mostly 

soluble in organic solvents.105 Therefore, a comprehensive classification system of lipids was 

necessary to capture the diversity of lipid chemical structures, which was introduced through 

LIPID MAPS (Lipids Metabolites and Pathways Strategy) database. According to their distinct 

hydrophobic and hydrophilic components, lipids have been classified into eight major categories, 

including fatty acids, glycerolipids, glycerophospholipids, sphingolipids, sterol lipids, prenol 

lipids, saccharolipids and polyketides.106 Historically, lipids have also been broadly classified into 

simple and complex lipids, where the former yields two and the latter three or more products upon 

hydrolysis.106  
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1.3.2 Lipid extraction 

Sample pretreatment is critical in lipidomic studies to extract lipophilic compounds from an 

aqueous biological matrix thereby eliminating interferences caused by water-soluble protein, 

electrolytes, carbohydrates or other hydrophilic/polar metabolites.99,105  Ideally, this step should be 

fast, precise and efficient with high recovery to capture the wide range of lipids expanding over 

nearly 35 orders of magnitude on the octanol/water coefficient scale.39,107  Folch extraction was 

developed in 1951 using chloroform/methanol (2:1 vol) solvent in 20-fold excess and has been the 

a widely utilized extraction method in lipidomics.108 It was slightly modified by Bligh and Dyer in 

1959 using smaller solvents volumes while maintaining equivalent extraction efficiency.109 In 

either “gold standard”  liquid extraction methods, the lipid-containing chloroform layer is more 

dense than the aqueous methanolic layer with precipitated protein matrix partitioning at the 

interface. In order to retrieve the lower layer, a careful aliquoting is required where minimal 

amounts of precipitate collected with the chloroform layer would interrupt or hamper the 

subsequent analysis.110 In addition, chloroform is a known toxin and carcinogen and subsequently 

further research was prompted to develop simpler protocols using less harmful solvents for sample 

extraction in lipidomics.107,111,112 In 2008, Matyash et al.110 developed an alternative lipid extraction 

method yielding faster and cleaner extracts with similar or superior recoveries. It utilizes methyl-

tert-butyl ether (MTBE) as the extraction organic solvent, which due to its lower density relative 

to water, forms the upper layer during phase separation, that can be collected with ease and with 

minimal losses due to dripping caused by the lower surface tension of most other organic solvents. 

Another protocol developed by Lofgren et al.111 involves sample extraction in butanol/methanol 

followed by a two-phase separation using heptane/acidified ethylacetate. Moreover, one-phase 

extractions with just methanol or acetonitrile/methanol/water mixtures have also been used for 
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more selective extraction for certain lipid classes.107,113  Finally, supercritical fluid extraction (SCF) 

has also been employed for fast lipidomics analysis, though not widely, due to high 

instrumentation costs.114 In SCF, extraction is based on the increased solvation power of carbon 

dioxide at temperatures and pressures beyond its critical values and thus works as an excellent 

solvent for solubilizing non-polar compounds, where extraction of more polar lipids, such as fatty 

acids or phospholipids, requires addition of a solvent modifier (e.g., methanol).114 

1.3.3 Chemistry and biochemistry of fatty acids 

Fatty acids are key molecules for living organisms as the major and fundamental building block 

of complex lipid and thus have an essential function in energy metabolism and storage, formation 

of cell membranes and cell mediators, such as prostaglandins and leukotrienes.115 Fatty acyl 

structure is characterized by a hydrophobic chain formed of repeating methylene groups with a 

terminal methyl (-CH3) group (ω-end) and a polar carboxylic head group and their synthesis occurs 

through malonyl-CoA elongation of an acetyl-CoA primer.106 Fatty acids can be classified 

according to carbon chain length (short, medium, long and very long), degree of unsaturation 

(saturated, monounsaturated and polyunsaturated), and position of unsaturation (e.g., n-3, n-6, and 

n-9). Their nomenclature commonly follows a “C number of carbon/number of double bond” 

scheme, where the position of the first double bond from the terminal methyl (x) is indicated by 

“ω-x” or by “n-x”.116 For instance, stearic acid is denoted as 18:0 while linoleic acid is denoted as 

18:2 n-6 with a cis (Z) double bond geometry and its isomer linoelaidic acid with a trans (E) double 

bond geometry. Moreover, in the case of branched-chain fatty acids, the position of branching is 

indicated by “iso-” or “anteiso-” suffix for terminal isopropyl and isobutyl groups, respectively. 

Indeed, there are over 7 branched-chain fatty acids measured in meat, dairy and various fermented 
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food products (e.g., sauerkraut, miso), as well as microflora from the newborn gastrointestinal 

tract, and human milk.117 

Various biospecimens can be collected for determination of fatty acid composition and 

concentration, including adipose tissue from the buttock or abdomen, red blood cells (erythrocyte 

phospholipids), total plasma lipids or individual plasma lipid fractions ranging from non-esterified 

fatty acids (NEFA), phospholipids, cholesteryl esters, and triglycerides - in decreasing order of 

fatty acids turnover time from years to hours. 4,31,118 Less often measured biological samples include 

platelets, skin, breast milk, semen, buccal cells, neutrophils, monocytes and lymphocytes.31 

Moreover, some of these specimens are sensitive to fasting status, including plasma/serum NEFAs 

and triglycerides that undergo rapid changes in concentrations within hours of fat/meal 

consumption (i.e., post-prandial).31,119  Regrettably, detailed information of specimen collection 

and patient recruitment details (e.g., fasting status, delays to storage, sample workup conditions, 

and analytical methodology) is often missing from original papers and sometimes difficult to 

deduce, causing significant ambiguity in reporting. Additionally, there are two formats used for 

reporting fatty acids concentrations, absolute molar concentrations, and more commonly, fatty 

acids profiling.21 The latter involves reporting of individual fatty acids as a proportion relative to 

all other fatty acids measured in the specimen (e.g., wt%) and is popular in nutritional studies.21 

Relative concentrations offer the advantage of measuring fatty acids in the context of each other 

as these molecules generally tend to compete for incorporation into various lipids, however this 

approach is subject to inter-laboratory variation with a lack of a unified agreement on total and 

unknown/unidentified fatty acids measured.21 This poses a difficulty in comparing results of 

different studies and laboratories and could also mask significant biological differences in fatty 

acids between individuals.4,120 Clearer reporting and greater harmonization of validated analytical 
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methods for reliable FA determination is critical to better guide nutritional sciences and evidence-

based public health policies. Such efforts towards standardization include comprehensive fatty 

acids databases with absolute concentrations in large populations conducted for some lipid pools, 

paving the way to establish reference ranges for routine clinical testing of fatty acids for chronic 

disease prevention as done for LDL, HDL, total cholesterol and triglycerides.4,121,122 

1.3.4 Clinical significance/current status of fatty acids metabolomics studies 

Consequently, measuring the composition of circulating fatty acids in blood would serve both as  

a readily accessible and objective biomarker of ingested fats reflecting nutrition status and complex 

dietary patterns, and may also serve as potential diagnostic, prognostic or risk biomarkers for 

chronic diseases associated with dyslipidemia and obesity. This can help bridge a current 

fundamental gap between epidemiology and nutrition sciences and demands a highly 

multidisciplinary and collaborative research approach of clinical and bioanalytical chemists, 

clinicians, dietitians, epidemiologists and statisticians. The degree of accuracy or truth of 

discoveries reported in observation studies relating diets/dietary fat to various diseases such as 

cancer, diabetes or cardiovascular disease, is dependent on the degree of accuracy and precision 

in measuring diet intake. However, a “heart-healthy diet” based on promotion of low saturated 

fat/cholesterol diets (plus high carbohydrate) introduced in the 1980s in the US and the UK 

impacting 276 million people was ultimately based on flawed results from secondary studies and 

not randomised controlled trials.123 Consequently, current guidelines for reducing overall as well 

as saturated fat consumption to reduce CHD are being questioned and more research is undergoing 

to disentangle the effect of saturated fat on health while considering complex food matrices and 

overall macronutrient distribution.124 Table 1.4 is a summary of metabolomics studies that 
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Table 1.4 A review of published metabolomics studies focused on fatty acids analysis in relation to disease. 
 

Study Subjects 
# 

Biological 
fluid/fraction Analytical methodology Comments Major Findings 

1 Forouhi et al. 
(2014)135 

27,296  
 Plasma: PL Folch extraction; robotic 

SPE fractionation; GC-FID 
3 parallel analytical 
systems 

14:0, 16:0, 18:0 positively; 15:0, 17:0, 20:0, 22:0, 
23:0, and 24:0 inversely associated with T2DM 

2 Khaw et al 
(2012)136 7354 Plasma: PL 

Nested case con 
Folch extraction; robotic 
SPE fractionation; GC-FID 

3 parallel analytical 
systems 

14:0, 16:0, 18:0 positively; n-6, 15:0, 17:0, inversely 
associated with CHD 

3 Würtz et al. 
(2015)134  7256 Serum: Total  Minimal sample prep; 

NMR combined MUFA signal  MUFA positively; n-6 FA and DHA negatively 
correlated with cardiovascular events 

4 Bisgaard et al. 
(2016)128 

736  
 

Whole blood, 
breast milk 

No prior extraction 
direct microwave 
transesterification with 
BF3/methanol; GC-FID 

significantly lower FA 
estimates by microwave 
transesterification 

Third trimester DHA and EPA supplementation 
linked to reduced risk of asthma in offspring 
 

5 Santaren et al. 
(1995)137 555 Serum: Total Folch extraction; GC-FID 35 FA measured  14:0 and 16:0 positively; 15:0, 20:0, 22:0 inversely 

related to proinflammatory markers 

6 Kurotani et al. 
(2012)138 437  Serum: PL, CE Folch extraction; TLC 

fractionation; GC-FID  No isomeric resolution  18:0, 16:1, and 20:3 n-6 positively associated; 18:2 
n-6 negatively associated with insulin resistance 

7 Allalou et al. 
(2016)139 244 Plasma: NFFA Hexane extraction; GC-MS 13 FA measured 

 16:1 significantly altered with incident T2DM 

8 Yi et al.  
(2007)140 123  Plasma: EFA, 

NEFA 

Methanolic KOH to 
methylate EFA, H2SO4-
CH3OH to methylate NEFA; 
GC-MS  

Cis/trans isomers well 
resolved  

Distinct differences in NEFA profiles 
between type 2 diabetic patients and controls 



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 
 

34 

9 Suhre et al. 
(2010)141 100  

Plasma: sample 
prep not 
reported 

Metabolomics providers 
Biocrates Life Sciences and 
Metabolon Inc. 

Isomeric resolution of 
18:2 but not 18:3 

Medium chain-length fatty acids and 20:4 decreased 
in T2DM 

10 
 

Jenkins et al. 
(2017)142 90  Plasma: NEFA 

 Direct infusion MS  15:0 directly correlated with dietary intake; 17:0 
linked to metabolic disease 

11 Dudzik et al. 
(2017)32 48  Plasma: NFFA 

Methoxymation followed by 
silylation for derivatization; 
GC-MS 

 Second trimester C18:0 with discriminative power 
for T2DM post GDM 

12 Oda et al. 
(2005)143 42  Serum: Total 

Measurements conducted by 
a commercial laboratory 
center in Japan (SRL Inc.) 

Measurement procedures 
not consistently defined 

24:1 may have preventive effects on metabolic 
disorders 

13 Manfredi et al. 
(2019)144 35 Serum: Total Hexane extraction; GC-MS 37 FA measured 22:6, 20:5, 18:2 downregulated in IBD 

14 Perreault et al. 
 (2014)145 30 Serum: Total, 

PL, TAG  
Folch extraction; TLC 
fractionation; GC-FID  

28 FA analyzed 
Isomeric resolution 
reported for 18:1  

14:0, 18:0 in MHO resembled that of LH  
14:0 and 16:0 positively associated; 18:0 inversely 
associated with inflammation 

15 Volk et al. 
(2014)146 16  Plasma: TAG, 

CE, PL  
Methodology not mentioned; 
only a reference for GC 

5 FA measured; isomeric 
resolution not reported 

Increased dietary saturated fat not accumulated in 
plasma during carbohydrate restriction. 16:1 tracked 
incrementally with dietary carbohydrate 

16 Weitkunat et al. 
(2017)147 16 Serum: PL MTBE extraction; SPE 

fractionation; GC-MS 
Superior isomeric 
resolution 

OCFA: possible biomarker for fiber and dairy 
intakes; inverse relation to diabetes 
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specifically investigate the role of fatty acids in chronic diseases as well as their relationship to 

various health outcomes with some major studies discussed here. Firstly, ω-3 fatty acids are at the 

center of an on-going controversial debate on their putative health benefits and have been tested 

in several clinical intervention studies with ambiguous results.125 For instance, a meta-analysis of 

20 RCT studies found no association between ω-3 supplementation (fish oil) or dietary counseling 

and lower risk for cardiovascular events.125 However, ω-3 dosage regimes tested were low and 

variable (0.2-1.8 g/day), most studies were targeted for secondary prevention, and circulating fatty 

acids concentrations were not directly measured to assess dietary compliance or differences in 

metabolism.125 In contrast, the recently published ANCHOR trial reported a significant reduction 

of serum triglycerides in patients already on statins when supplemented with 4 g/day of a highly 

pure form of eicosapentaenoic acid (EPA).126,127 On a different note, the Copenhagen Prospective 

Studies on Asthma in Childhood (COPSAC2010) double-blind randomized controlled trial of 736 

pregnant women found that 2.4 g/day ω-3 supplementation in the third trimester reduced asthma 

and wheeze in offspring followed until 5 years of age.128,129 The greatest benefit was found in 

children whose mothers’ EPA and docosahexaenoic acid (DHA) concentrations were in the lowest 

tertile at baseline.128 Conversely, their findings suggested a maximum threshold for baseline ω-3 

fatty acid plasma concentrations beyond which supplementation was ineffective.128 Together, these 

studies suggest there may be notable benefits of DHA and EPA supplementation within specific 

populations (i.e., nutrient deficient), when using optimal dosages and that quantitative 

determination of fatty acids can stratify health status and tailor dietary/supplemental 

recommendations while allowing for improved treatment monitoring, including dietary adherence. 

A similar debate relates to the association of saturated fat with cardiovascular disease, where meta-

analysis rely on epidemiological studies that rely on subjective self-report tools without direct 
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analysis of circulating fatty acids concentrations.130,131 In contrast, an outstanding meta-analysis 

used an individual-level pooled analysis of 30 cohort studies of participants with either circulating 

or adipose tissue relative concentrations of arachidonic acid and linoleic acid (essential ω-6 PUFA 

found in nuts, vegetable oils and whole grains) to investigate their association to cardiovascular 

disease and mortality with an editorial commentary titled “are we getting closer to the truth?”.132,133 

Another NMR-based metabolomic study of 7256 subjects computed a risk score for predicting 

cardiovascular disease based on serum phenylalanine and monounsaturated fatty acids (positive 

correlation), as well as ω-6 fatty acids and DHA (negative correlation), which was equivalent to 

conventional risk factors following extensive validation in two independent cohorts (n = 6185).134 

The EPIC study of more than 25,000 participants, one of the largest with hydrolyzed serum fatty 

acids concentrations from the phospholipid fraction, revealed differential (opposing) directions of 

the relationship of even and odd-chain saturated fatty acids with type-2 diabetes mellitus and 

coronary heart disease.135,136 In conclusion, methods that enable reliable quantitative determination 

of fatty acids have promising clinical applications that complement standard blood lipid panels. 

However, there is urgent need for the development of comprehensive and high throughput 

screening methods for fatty acids in support of large-scale epidemiological studies and clinical 

trials. 

1.4 Thesis motivation: Metabolomics for dietary and cardiometabolic risk assessments  

Metabolomics has an emerging role in the investigation of physiological and pathophysiological 

processes for clinical research by using advanced analytical methods to identify and quantify 

metabolites and lipids in complex biological samples. The validation and translation of 

biomarkers, in turn, play an important role in clinical decision-making and treatment algorithms 

that can also guide public health policies. However, challenges pertaining to biological sampling, 
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analytical reporting, biomarker clinical utility and method validation hamper effective translation 

of scientific discoveries into clinical medicine.  

Fatty acids are key molecules for cell membranes, cellular fuel and signaling, which also 

may serve as specific biomarkers of dietary fat intake in women during pregnancy, particularly 

relevant to the Developmental Origins of Health and Disease (DOHaD). DOHaD is a field of 

research based on the hypothesis of “fetal origins of adult disease” where a mother’s intrauterine 

milieu dictated by her dietary/environmental exposures during a critical window of development 

can impact the health of her child later in life.148 Epidemiological observations have well supported 

the DOHaD theory, where nutritional deficiencies and environmental exposures are two major 

programming stimuli that modulate chronic disease susceptibility in the offspring.149,150 

Consequently, there is great need for new analytical platforms that allow for rapid biomonitoring 

and reliable assessment of maternal exposures. In this context, the work in this thesis aims to 

develop MSI-NACE-MS as a robust method for high throughput determination for serum fatty 

acids without fractionation, hydrolysis and chemical derivatization, thus, optimal for large-scale 

clinical or epidemiological studies (Chapter II). Furthermore, rigorous validation of MSI-NACE-

MS in conjunction with multiple reaction monitoring was extended for targeted yet sensitive 

analysis of nanomolar levels of synthetic PFASs, a class of persistent organic pollutants and 

endocrine-disrupting chemicals linked to adverse health outcomes in children from prenatal 

exposures (Chapter III). Next, a methodologically underreported lipid fraction, serum NEFAs, was 

validated as a convenient lipid biomarker of dietary fat when using MSI-NACE-MS, which has 

utility for accurate assessment of fish/fish oil and full-fat dairy intake in women as compared to 

self-report tools (Chapter IV). Finally, comprehensive profiling of polar/ionic metabolites and non-

polar/ionic lipids using MSI-(NA)CE-MS was applied for the discovery of novel metabolic 
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signatures for differentiation of chronic limb-threatening ischemia from earlier stages of 

intermittent claudication, shedding light on the role of circulating fatty acids as possible prognostic 

biomarkers of PAD progression in older persons at high risk for limb amputations and poor long-

term survivorship (Chapter V). 

1.4.1 High throughput analysis of nonesterified fatty acids in serum 

Fatty acids are clinically relevant metabolites and essential nutrients due to their myriad roles 

relevant to human health. GC remains the gold standard method for fatty acids determination as it 

offers excellent resolution, but it suffers from low sample throughput due to complicated sample 

workup, pre-column chemical derivatization procedures, and long elution times. Chapter II 

introduces MSI-NACE-MS as a high throughput method for reliable determination of serum 

NEFAs following a simple MTBE extraction procedure. This multiplexed separation method 

enables the analysis of seven serum extracts simultaneously within a single run (< 4 min/sample), 

including a QC that monitors for long-term system drift and allows for robust batch correction. 

Rigorous method optimization was performed to enhance sensitivity with sub-micromolar 

detection limits with good linearity and intermediate precision. Also, a cross-platform comparison 

of MSI-CE-MS relative to GC-MS demonstrated good mutual agreement for NEFA determination 

with minimal bias. Overall, MSI-NACE-MS offers a rapid and low-cost platform for quantitative 

determination of 20 (or more) fatty acids in serum extracts on a single instrument (> 200 

samples/day) as required for large-scale epidemiological or clinical studies.  

1.4.2 Rapid screening of perfluoroalkyl substances exposure in serum 

There is growing concern on the harmful impact of PFASs exposures to human health due to their 

ubiquitous prevalence as synthetic surfactants in commercial products worldwide. These persistent 
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organic pollutants can function as endocrine disrupting compounds during critical stages of fetal 

development, which contribute to adverse birth outcomes and chronic disease risk later in life. In 

Chapter III, we further develop MSI-NACE-MS/MS as a high throughput yet targeted approach 

for biomonitoring of serum PFASs when using a simple MTBE extraction for sample cleanup and 

enrichment. Separation and ionization conditions were optimized to quantify low nanomolar 

concentration levels of perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS) 

in serum extracts when using multiple reaction monitoring with a triple quadrupole mass analyzer 

under negative ion mode conditions. Separation of these two PFASs was achieved with excellent 

sample throughput (< 3 min/sample) when using a serial injection of seven samples in a single run 

in MSI-NACE-MS/MS with low nanomolar detection limits. This method also demonstrated good 

technical precision over 3 consecutive days for reliable detection and quantification of PFOA and 

PFOS in maternal serum samples collected prior to 2009 marking the beginning of the global PFAS 

production phase out. In contrast, lower PFAS exposures were measured in a subset of maternal 

serum samples collected after 2009. Overall, this work is a proof-of-concept for a novel approach 

for biomonitoring of maternal exposures to harmful PFASs as required for new advances in public 

health and risk assessment of chronic disease in children later in life.  

1.4.3 Investigation of serum NEFAs as dietary biomarkers of fat intake in women 

Fatty acids are dietary components that have long been implicated in human health and chronic 

disease risk. However, fatty acids analysis encompasses diverse fractions derived from blood, 

erythrocytes or adipose tissue. To date, serum phospholipid and total lipid fractions are often used 

in epidemiological and nutrition studies with a notable gap regarding the clinical utility of more 

convenient lipid pools as putative dietary biomarkers, such as serum NEFA. In Chapter IV, we 

applied our newly validated MSI-NACE-MS method for serum fatty acids determination to 
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examine the utility of certain circulating NEFAs as dietary biomarkers of fat intake in women. We 

aimed to identify certain serum NEFAs correlated to habitual intake of specific foods in an 

observational cohort of pregnant women and track their changes in women following high dose 

ω-3 fatty acids supplementation in a randomized placebo-controlled intervention trial. In the cross-

sectional analysis, pregnant women were selected with contrasting eating patterns based on a diet 

quality index score from a food frequency questionnaire. Serum ω-3 fatty acids concentrations 

correlated significantly with total ω-3 daily intake, notably EPA as its NEFA, whereas non-

esterified 15:0 and 14:0 had the strongest correlation to full-fat dairy intake. As for the intervention 

study, a 2.5-fold significant increase in serum ω-3 NEFA concentrations from baseline was 

measured within 28 days for women following ω-3 supplementation similar to independent 

erythrocyte phospholipid fatty acids measurements. For the first time, we demonstrate through a 

combination of observational and intervention studies that direct NEFA analysis offers a reliable 

approach for assessment of dietary fat without serum fractionation or hydrolysis. Our findings 

endorse the objective use of specific serum NEFAs for investigating the role of maternal nutrition 

or supplementation on birth outcomes. 

1.4.4 Metabolomics study of peripheral artery disease 

PAD is a form of atherosclerosis manifested in the lower extremities that leads to symptoms as 

painful walking, fatigue, muscle cramping and tissue loss that is classified as intermittent 

claudication (IC) at early stages of disease.101 PAD is often undiagnosed despite a high prevalence 

of 10-20% in older persons. Furthermore, some patients progress to the severe, end-stage form 

known as chronic limb-threatening ischemia (CLTI) that is characterized by rest pain, non-healing 

ischemic ulcers, and gangrene.151 A better understanding of CLTI progression can reduce delays 

in surgical interventions, reduce amputations, improve quality of life, and decrease mortality. 



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 41 

Chapter V describes the metabolic phenotype of PAD patients using a comprehensive 

metabolomics and lipidomics approach using MSI-(NA)CE-MS with full-scan data acquisition. A 

total of 60 patients were recruited and stratified based on the Rutherford classification into CLTI, 

IC, and non-PAD controls; also, patients with diabetes, history of cancer, deep vein thrombosis, 

and acute coronary syndrome were excluded from this study to reduce confounding. Compared to 

non-PAD controls (n = 20), PAD patients had lower serum concentrations of creatine, histidine, 

lysine, oxoproline, monomethylarginine, as well as higher circulating phenylacetylglutamine (p < 

0.05). Moreover, CLTI cases exhibited higher serum concentrations of carnitine, creatinine, 

cystine and trimethylamine-N-oxide along with lower circulating fatty acids relative to well-

matched IC patients. Most serum metabolites associated with PAD progression were also 

correlated with the ankle-brachial index (ABI); a PAD-specific diagnostic tool that is usually not 

available at the primary care level. Importantly, the ratio of stearic acid to carnitine, and arginine 

to propionylcarnitine differentiated CLTI from IC with good accuracy (AUC = 0.87). These 

metabolic perturbations are related to muscle energy deficits, vascular remodeling, myopathic 

ischemia, inflammation and oxidative stress and provide novel biochemical insights into the 

pathophysiology of CLTI.  
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Chapter II: A Robust Method for High Throughput Screening of Fatty Acids by 
Multisegment Injection-Nonaqueous Capillary Electrophoresis-Mass Spectrometry with 
Stringent Quality Control 

“Two are better than one… a three-fold rope is not readily broken.” 

2.1 Abstract 

High throughput screening methods for fatty acid (FA) determination are urgently needed due to 

their critical biochemical roles in human health while serving as biomarkers of habitual diet and 

chronic disease risk assessment. Herein, we introduce multisegment injection-nonaqueous-

capillary electrophoresis-mass spectrometry (MSI-NACE-MS) as a multiplexed separation 

platform for analysis of more than twenty non-esterified FAs in human serum or plasma. 

Optimization of experimental conditions was required to overcome major technical hurdles in 

MSI-NACE-MS prior to a rigorous method validation and inter-method comparison with gas 

chromatography-mass spectrometry (GC-MS). Following a simple methyl-tert-butyl ether 

extraction, seven serum extracts were analyzed directly by MSI-NACE-MS within a single run (< 

4 min/sample) under negative ion mode detection that incorporates stringent measures for quality 

control, including batch correction adjustment. Overall, excellent technical variance (RSD = 10%) 

and good mutual agreement was demonstrated for twelve non-esterified FAs consistently 

measured in 50 serum samples analyzed independently by MSI-NACE-MS and GC-MS within the 

same laboratory (mean bias = 24%, n = 600). Also, total hydrolyzed plasma FAs using MSI-

NACE-MS was compared to mean concentrations reported from a NIST standard reference 

material as an inter-laboratory method validation (mean bias = 15%, n = 20). Accurate prediction 

of ion migration behavior in CE also supports structural elucidation of FAs in conjunction with 

high resolution MS. For the first time, we demonstrate that MSI-NACE-MS offers a rapid yet 

robust platform for direct quantification of circulating FA using volume-restricted blood 
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specimens that expands metabolome coverage to encompass anionic classes of lipids as required 

for large-scale epidemiological studies. 

2.2 Introduction 

Fatty acids (FA) are fundamental building units of lipids that function as essential dietary 

macronutrients for energy production/storage, structural constituents of cell membranes, as well 

as bioactive molecules involved in the regulation of inflammation and immunity.1 For instance, 

alterations in maternal dietary FA intake impact metabolic programming and neuroendocrine 

function during fetal development that can contribute to adverse health outcomes in children later 

in life.2 However, public health policies to promote lower dietary saturated fat (i.e., diet-heart 

hypothesis) have proven largely ineffective to reduce coronary heart disease risk3-5 while 

contributing to a global obesity and type 2 diabetes epidemic.6 Similarly, the putative health 

benefits of supplementing omega-3 FAs in the diet remain controversial with mixed clinical 

outcomes7 despite the establishment of a billion dollar fish oil pill industry. As a result, there is an 

urgent need of reliable analytical methods for rapid yet accurate FA determination that can serve 

as biomarkers of habitual diet8, 9 or predictive biomarkers of incident type 2 diabetes risk.10,11 This 

is also critical for validating well-designed nutritional interventions and longitudinal/observational 

studies for chronic disease prevention and population health. 

Nuclear magnetic resonance (NMR) and gas chromatography (GC) coupled to flame 

ionization detection (FID) and mass spectrometry (MS) are widely used methods for the resolution 

and quantification of FAs and their stereoisomers in complex biological samples.12 However, there 

is considerable variation in protocols used to measure FAs in the literature in terms of biospecimen 

collected and pre-analytical sample workup conditions that complicates data comparisons. For 

example, free/unbound FAs, non-esterified (protein-bound) FAs or total (hydrolyzed) FAs from 
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specific lipid fractions (e.g., phospholipid) can be measured depending on study objectives and 

biospecimen availability, but they provide different biochemical information regarding FA 

metabolism.13 Indeed, FA determination has been reported from adipose tissue, 

erythrocytes/platelets, and blood samples, including plasma, serum or dried (whole) blood spots.8 

GC-MS is considered the gold standard for total serum FA analysis due to its high separation 

efficiency for resolving geometrical and, in some cases, positional isomers, following pre-column 

chemical derivatization to generate volatile fatty acid methyl esters (FAMEs).14,15 However, long 

analysis times and complicated sample pretreatment necessitate robotic liquid handling systems 

with multiple GC instruments operated in parallel to achieve adequate throughput (1,200 

samples/mo).16,17 In contrast, liquid chromatography-mass spectrometry (LC-MS) allows for 

shorter analysis times that is ideal for direct analysis of non-esterified FAs (NEFAs) without 

chemical derivatization or prolonged heating.18,19 This is important to prevent lipid hydrolysis and 

oxidation of labile polyunsaturated FAs ensuring their quantitative recovery.20 As a result, new 

strategies are still needed to enable high throughput screening of FAs that is also cost-effective 

when analyzing bio-banked specimens in support of large-scale epidemiological studies. 

Capillary electrophoresis (CE) offers an orthogonal separation platform for FA analysis 

that is applicable to volume-restricted samples when using detergents or organic solvents in the 

background electrolyte (BGE) in conjunction with direct or indirect UV absorbance, capacitively-

coupled contactless conductivity or fluorescence detection.21 Yet, there have been few reported 

studies for FA determination when using nonaqueous-CE when coupled to electrospray ionization-

MS (NACE-MS)22,23 with most methods applied to better solubilize pharmaceuticals, peptides, or 

natural products.24-27 Recently, Lee et al.23 reported the use of a dicationic ion pair reagent added 

to the sheath liquid to form a dynamic complex with saturated FAs during ion desorption to 
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improve their ionization responses under positive ion mode conditions. However, this method was 

not extensively validated and longer chain FAs (> 16:0) were prone to deleterious band broadening 

due to insufficient acetonitrile content in the BGE with modest enhancements to concentration 

sensitivity.23 Although NACE-MS reports have long claimed theoretical advantages in term of 

separation performance,28,29 it has not been implemented in metabolomic/lipidomic studies to 

date.30 This is likely due to the lack of robust NACE-MS methods amenable to routine application 

underlying several major technical obstacles. For instance, NACE-MS is prone to acetonitrile-

induced polyimide swelling31 and siphoning effects32 when using organic solvents of low viscosity 

that contribute to frequent capillary fractures and current drops, respectively.33 In this context, 

careful optimization of separation and ionization conditions is vital for developing standardized 

NACE-MS methods that can be successfully replicated in different laboratories. Herein, we 

introduce multisegment injection (MSI)-NACE-MS as a high throughput screening method for 

FAs that expands metabolome coverage beyond hydrophilic/polar metabolites when using 

conventional aqueous BGE conditions.34 Importantly, multiplexed separations enable the design 

of customized serial injection formats for analysis of seven independent samples within a single 

run that encodes mass spectral information based on temporal signal pattern recognition.35-37 In this 

work, an extensive validation and an inter-laboratory method comparison were conducted relative 

to GC-MS to demonstrate accurate quantification of NEFAs or total FAs in blood specimens 

following a simple methyl-tert-butyl ether (MTBE) extraction and reconstitution step. Additional 

benefits of this method include accurate prediction of ion electrophoretic mobility to facilitate FA 

identification that is complementary to high resolution MS. Batch-correction adjustment to data is 

also demonstrated when using a reference serum as QC that is included within each run to correct 

for long-term signal drift in ESI-MS. 
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2.3 Experimental Section 

2.3.1 CE-MS Instrumentation   

An Agilent 6230 time-of-flight (TOF) mass spectrometer with a coaxial sheath liquid electrospray 

(ESI) ionization source equipped with an Agilent G7100A CE unit was used for all experiments 

(Agilent Technologies Inc., Mississauga, ON, Canada). An Agilent 1260 Infinity Isocratic pump 

and a 1260 Infinity degasser were applied to deliver an 80:20 MeOH:water with 0.5% v NH4OH 

at a flow rate of 10 μL/min using a CE-MS coaxial sheath liquid interface kit. For real-time mass 

correction, reference ions purine and hexakis(2,2,3,3-tetrafluoropropoxy)phosphazine (HP-921) 

were spiked into the sheath liquid at 0.02% v/v to provide constant mass signals at m/z 119.0363 

and m/z 1033.9881, which were also utilized for monitoring for potential ion 

suppression/enhancement effects during separation. The nebulizer spray was set off during serial 

sample injection but then subsequently turned on at a low pressure of 4 psi (27.6 kPa) following 

voltage application with the source temperature at 300 °C and drying gas delivered at 4 L/min. 

The instrument was operated in 2 GHz extended dynamic range with negative mode detection. Vcap 

was set at 3500 V while fragmentor was 120 V, the skimmer was 65 V and the Octopole RF was 

750 V. Separations were performed on bare fused-silica capillaries with 50 μm internal diameter, 

360 μm outer diameter and 95 cm total length (Polymicro Technologies Inc., AZ, USA). A 

capillary window maker (MicroSolv, Leland, NC, USA) was used to remove about 7 mm of the 

polyimide coating on both ends of the capillary.37 The applied voltage was set to 30 kV at 25 °C 

for CE separations together with an pressure application of 20 mbar (2 kPa). The BGE was 35 mM 

ammonium acetate in 70% v acetonitrile, 15% v MeOH, 10% H2O, and 5% v isopropanol with an 

apparent pH of 9.5 adjusted by addition of 12% v of ammonium hydroxide. Serum or plasma 

extracts were injected hydrodynamically at 50 mbar (5 kPa) alternating between 5 s for each 
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sample plug and 40 s for the BGE spacer plug for a total of seven discrete samples analyzed within 

one run. Prior to first use, capillaries were conditioned by flushing for 15 min at 950 mbar (95 kPa) 

sequentially with MeOH, 0.1 M sodium hydroxide, deionized water, 1 M formic acid, deionized 

water then BGE for 30 min. Between runs, the capillary was flushed with BGE for 10 min at 950 

mbar (95 kPa). BGE and sheath liquid were degassed before use. Further description of 

chemicals/reagents, GC-MS methodology, sample workup protocols for NEFAs and total 

(hydrolyzed) FAs from serum and plasma, as well as method validation, data processing and 

statistical methods are described in the experimental of the Supporting Information. 

2.4 Results and Discussion 

2.4.1 MSI-NACE-MS Method Development and Optimization 

Due to the importance of developing a fully compatible non-aqueous BGE for routine use in 

NACE-MS, initial experiments were focused on separation optimization based on several factors 

when using a coaxial sheath liquid interface, including electrolyte type, ionic strength, BGE 

solvent/sheath liquid composition, nebulizer gas and cone voltage. Overall, ammonium acetate 

was selected as the preferred volatile electrolyte due to its better solubility in acetonitrile (ACN)-

rich solvents as compared to ammonium bicarbonate in order to ensure complete dissolution of 

very-long chain FAs (> 20:0).38 Improved peak shape and sensitivity was realized, irrespective of 

carbon chain-length (3:0-22:0), in higher ACN content solutions (> 60% v). Nevertheless, a 

minimal fraction of deionized water (10% v) was still necessary to solubilize ammonium acetate 

at sufficiently high concentrations (> 10 mM) for stable current generation in NACE. Additionally, 

a series of miscible solvent mixtures with different viscosity and polarity than ACN were also 

investigated to further optimize FA separations, including methanol (MeOH) and isopropanol 
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(iPrOH). For instance, ACN content > 80% v drastically shortened apparent migration times with 

a concomitant loss in resolution and peak capacity, whereas increasing MeOH content improved 

overall separation performance due to higher solution viscosity. The addition of 5% v of iPrOH as 

an organic modifier to the non-aqueous BGE was also found to enhance peak shapes notably for 

long-chain FAs. As a result, a compatible non-aqueous BGE for solubilizing and resolving 

complex FA mixtures by NACE-MS was comprised of 70% v ACN, 15% v MeOH, 10% v H2O, 

and 5% v iPrOH in ammonium acetate.  

 In all cases, the polyimide outer coating was removed from the terminal ends (≈ 7 mm 

length) of the fused-silica capillary to prevent deleterious swelling and irreversible aminolysis 

which causes frequent capillary fractures with prolonged contact with organic solvents32 and 

alkaline BGE systems (pH > 9.0) with reactive ammonia.33 This also has the benefit of reducing 

sample carry-over when using serial injections without compromising capillary integrity.37 In our 

study, the apparent pH (pHapp = 8.0-11.0) and ionic strength of ammonium acetate (10-75 mM) 

were varied to further optimize non-aqueous BGE conditions for resolution of anionic FAs from 

neutral compounds co-migrating with the electrosomotic flow (EOF), including butylated 

hydroxytoluene (BHT) that was used as an antioxidant in all FA calibrant solutions. A pHapp of 9.5 

was found to improve resolution of the slowest migrating very-long chain FA, lignoceric acid 

(24:0) from the EOF in order to minimize ion suppression/enhancement effects as shown in Figure 

S2.1. However, use of a higher pHapp (> 10) resulted in excessive band broadening without further 

resolution of FAs when using MSI-NACE-MS. Additionally, a lower ionic strength non-aqueous 

BGE (35 mM ammonium acetate) was used to shorten total analysis times due to a faster EOF that 

also minimizes Joule heating effects. Pressure-assisted NACE during electrophoretic separation 

was also performed using an optimal pressure setting of 20 mbar since it allowed for resolution of 
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very long-chain fatty acids from the EOF without deleterious band broadening and long analysis 

times at lower pressure settings (< 15 mbar) as depicted in Figure S2.2. A major challenge in 

implementing serial hydrodynamic sample injections in MSI-NACE-MS was the siphoning caused 

by the nebulizer gas for stable electrospray formation. This siphoning effect is most pronounced 

in NACE-MS as compared to aqueous BGE systems due to the lower viscosity of ACN-rich 

solvents, which contributes to frequent current drops due to aspiration of air plugs within the 

capillary during sample vial switching. In our case, the gas nebulizer was turned off during 

capillary flushing and sample injection in MSI-NACE-MS resulting in reliable analysis of FAs 

without incidental currents drops as spray formation is initiated only following electrophoretic 

separation. One unique feature of the sheath liquid in NACE-MS is the ability to independently 

optimize solute ionization conditions as distinct from separation conditions. For example, the 

addition of 0.5% v NH4OH as a base modifier in the sheath liquid composed of 80% MeOH v 

provided maximum ion responses in terms of signal-to-noise ratio (SNR) for most FAs detected 

as their intact deprotonated molecular ions [M-H]- under negative ion mode as shown in Figure 

S2.3. Lastly, an optimal sprayer voltage of -3.5 kV was critical for maintaining spray stability 

without corona discharge39 prevalent at higher voltage settings (> -4 kV).  

2.4.2 Multiplexed Separations of Fatty Acids in Serum Extracts by MSI-NACE-MS   

A major benefit of MSI-NACE-MS is that seven distinct samples are analyzed within a single run 

to enable high throughput lipid profiling (< 4 min/sample) as illustrated in Figure 2.1A. Unlike 

shotgun or direct infusion (DI)-ESI-MS, this retains the benefits of a high efficiency separation 

including better resolution of isobaric ions in complex sample mixtures, reduced ion suppression 

for FA quantification, as well as higher quality MS and MS/MS spectra for improved identification  
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Figure 2.1. (A) Multiplexed separation of free fatty acids using MSI-NACE-MS based on serial injection of seven or more discrete sample segments and their 
zonal electrophoretic separation following MTBE serum extraction with full-scan data acquisition under negative ion mode detection. Careful optimization of non-
aqueous electrolyte and sheath liquid conditions, including nebulizer gas operation and removal of polyimide segments at capillary ends are critical for robust 
performance. (B) An overlay of the total ion electropherogram (TIE) and mass calibrant (included in sheath liquid) depicts resolution of free fatty acids from serum 
extracts without ionization suppression from other neutral/zwitter-ionic lipids that co-migrate with the EOF following delayed spray formation with nebulizer set 
on following serial sample injection sequence. (C) An overlay of extracted ion electropherograms for representative free polyunsaturated fatty acids from pooled 
serum sample as QC (six replicate injections), including blank extract, as well as high resolution MS for determination of the most likely molecular formula for the 
deprotonated molecular ion (M-H-) with low mass error (< 1 ppm). (D) Customized serial injection configurations used in MSI-NACE-MS for free fatty acid 
quantification, including spike/recovery study for determination of method accuracy (in triplicate), repeated MTBE serum extracts to evaluate extraction efficiency 
(in duplicate) along with seven-point external calibration curve over a 200-fold concentration range (1-200 µM). 
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of unknown lipids. In our case, FAs are analyzed directly under negative ion mode conditions 

without pre-column chemical derivatization or dynamic complexation with reagents added to the 

sheath liquid24 that can contaminate the ion source. Also, zonal separation of FAs from different 

sample segments occurs within a non-aqueous BGE system based on their characteristic (i.e., 

steady-state) electrophoretic mobility (µep) in free solution whereas any overlapping ions can be 

further resolved by the TOF-MS. Matyash et al.40 first introduced a simple protocol using methyl-

tert-butylether (MTBE) for yielding cleaner lipid extracts from biological samples with similar or 

better recoveries than classic Folch extraction procedures using chloroform/MeOH.41 Due to the 

lower density of MTBE relative to water, lipid extracts are readily collected from the upper ether 

phase, whereas a protein pellet is sedimented at the bottom aqueous layer following centrifugation. 

This strategy avoids contamination of the lipid ether layer with better technical variance.42 We first 

examined the efficiency of the MTBE extraction procedure from an aliquot of human serum (50 

µL) for NEFA analysis using repeat/fresh ether aliquots after vigorous mixing, centrifugation and 

biphasic separation by collecting consecutively the first, second and third ether fractions that were 

analyzed separately. As shown in Table S2.3, 14 representative serum NEFAs from the first 

MTBE fraction demonstrated excellent overall recovery of 92% (ranging from 82 to 96%), 

whereas a much lower mean recovery of about 5.6% and 2.6% was measured in the second and 

third ether fractions, respectively. Consequently, a single MTBE aliquot allowed for near 

exhaustive serum extraction thus allowing for reliable NEFA quantification while using a simple 

sample processing protocol.  

 Figure 2.1B demonstrates that anionic FAs from a serum extract were optimally resolved 

after the EOF where ion suppression is most evident, when comparing traces for the total ion 

electropherogram (TIE) and a mass calibrant in the sheath liquid. The same trace overlay also 



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 64 

highlights the delayed onset of spray formation since the gas nebulizer is turned on only after 

voltage application following the serial sample injection to avoid current drops due to siphoning.  

Figure 2.1C depicts a series of extracted ion electropherograms (EIEs) for representative ω-3 and 

ω-6 polyunsaturated NEFAs from six replicate injections of a standard serum extract, as well as a 

solvent blank extract (0) to confirm the lack of sample carry-over between sample injections. Full-

scan data acquisition using TOF-MS allows for determination of the most likely molecular formula 

for FAs with low mass error (< 2 ppm) based on accurate mass and isotopic pattern for the 

deprotonated molecular ion [M-H]-. Figure 2.1D shows that various serial injection configurations 

in MSI-NACE-MS can be designed to encode mass spectral information temporally within a 

separation depending on experimental design. For example, recovery studies for FA calibrants 

spiked into serum (in triplicate) were used to evaluate method accuracy as shown for linolenic acid 

(18:3n-3), quantitative extraction from a single fraction was confirmed by analyzing three repeat 

MTBE extractions of serum in duplicate as depicted for arachidonic acid (20:4n-6), and a seven-

point calibration curve was acquired within a single run for NEFA quantification as highlighted 

for docosahexaenoic acid (22:6n-3).  

2.4.3 Modeling Electromigration Behavior to Support Fatty Acid Identification 

The apparent µep of a homologous series of saturated, monounsaturated and polyunsaturated FAs 

was next investigated to better understand selectivity in NACE since it represents an intrinsic 

solute property related to the effective charge density of an ion. Indeed, accurate prediction of ion 

electromigration behavior is useful to support the identification of unknown metabolites in silico 

that is complementary to high resolution MS/MS notably when reference spectra and commercial 

standards are unavailable.43 Since all model FAs have a single anionic charge upon deprotonation 

of the carboxylic acid under alkaline conditions, changes in µep reflect primarily structural  



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 65 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.2. (A) Characteristic electromigration behavior of a homologous series of saturated fatty acids when using 
MSI-NACE-MS based on replicate injections of an equimolar calibrant mixture (6X) together with a solvent blank 
(1X) as the fourth sample segment. (B) Modeling of the negative electrophoretic mobility of different classes of 
FAs when using a non-aqueous background electrolyte based on their molecular weight/deprotonated molecular 
ion [M-H]- using a least-squares linear regression. Good linearity of the model is demonstrated for a homologous 
series of saturated (SFA), monounsaturated (MUFA), as well as (C) a series of polyunsaturated FAs among 18:0, 
20:0 and 22:0 with up to five degrees of unsaturation. 

 

differences related to carbon chain length and degrees of unsaturation. Figure 2.2A highlights the 

migration order for a series of saturated FAs in a calibrant mixture, where shorter chain FAs 

migrate with a larger negative mobility (or longer migration time) counter to the EOF. Figure 2.2B 

confirms that there was an excellent linear relationship (R2 = 0.996) between carbon chain length 

in terms of molecular weight and mean apparent µep among saturated FAs (from 12:0 to 24:0) using 

a least-squares regression model. Similarly, a homologous series of monounsaturated FAs (from 

14:1 to 24:1) was also well described by a linear regression model (R2 = 0.999), including three 

separate series of polyunsaturated FAs corresponding to 18:0, 20:0 and 22:0 (R2 > 0.94) that vary 

from one to up to six degrees of unsaturation as shown in Figure 2.2C. Overall, greater FA 

unsaturation resulted in a progressively larger negative µep due to their more compact size as 

compared to linear/saturated FA analogs with equivalent carbon chain length. However, certain 
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positional (18:1, ω-3/6) and geometric (18:1, cis/trans) isomers examined by MSI-NACE-MS 

were not resolved under these conditions as they co-migrate with similar mobilities in free solution. 

Additional selectivity for resolving FA stereoisomers by NACE thus requires differential 

partitioning using non-ionic surfactants in the BGE, but this is not readily compatible with ESI-

MS.44 Nevertheless, MSI-NACE-MS offers adequate selectivity for resolution of complex 

mixtures of FAs while minimizing isobaric interferences and supporting their identification given 

the limited diagnostic information typically acquired with MS/MS under negative ion mode 

conditions.45 

2.4.4 Method Validation and Figures of Merit of MSI-NACE-MS 

Validation of the optimized MSI-NACE-MS method was next performed for 18 representative 

FAs (from 10:0 to 24:0) based on several figures of merit. Calibration curves were generated based 

on triplicate analysis of seven calibrant solutions ranging in concentration from 1.0 to 200 μM, 

each containing 50 μM stearic acid-d35 as a single stable-isotope internal standard for data 

normalization. Overall, there was good linearity over a 200-fold linear dynamic range with 

correlation coefficients (R2) ranging from 0.992 to 0.997 as highlighted in Figure S2.4. The 

median LOD (SNR = 3) and LOQ (SNR = 10) for native FAs were about 0.70 µM and 2.4 µM, 

respectively. There were however two notable exceptions, including short/medium-chain FAs (< 

10:0) and two saturated FAs (16:0, 18:0). In the former case, as ionization efficiency in ESI-MS 

is highly solute-dependent, concentration sensitivity was lower for the least hydrophobic medium-

chain FA, such as 10:0. Similarly, more water-soluble medium/short-chain NEFAs (3:0-9:0) had 

higher detection limits and they were also not readily detected in serum due to their poor extraction 

efficiency in MTBE. Additionally, higher LOD and LOQ was also measured for 16:0 and 18:0 

since they are ubiquitous plasticizer additives in the environment.46 In fact, both saturated FAs are 
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present at low concentrations levels in the background likely due to the unavoidable use of plastic 

liners for delivery of the sheath liquid that is recirculated using an isocratic LC pump. Despite the 

higher LOD for palmitate (16:0) and stearate (18:0), both saturated FAs are highly abundant in 

serum nonetheless, and thus can still be reliably measured after background correction when 

implementing stringent cleaning protocols to all plastic and glassware used in the method. Overall, 

the low micromolar to sub-micromolar detection limits reported in this work is comparable to 

outcomes when using a dication ion pair reagent in the sheath liquid in CE-MS for detection of 

saturated FAs under positive ion mode.23 Also, method detection/quantification limits for FAs are 

superior to GC-EI-MS methods applied in this work (Table S2.4), and similar to GC-FID that is 

used in large-scale epidemiological studies.17 However, a major advantage of MSI-NACE-MS is 

the simplicity of the protocol as it enables rapid yet comprehensive profiling of FAs derived from 

volume-restricted samples (< 3 µL), such as dried blood spot punches or infant sweat 

specimens.35,36 Method reproducibility was evaluated by determining the intraday (n = 18) and 

interday (n = 78) precision for FA calibrant standards at 50 μM when using MSI-NACE-MS. 

Overall, the median RSD was 7.3% and 12.1% based on RPA integration of measured FA 

responses for the intraday and interday precision, respectively, whereas RMTs for all FAs ranged 

from 0.2-2.0% for 78 repeated injections over three consecutive days. Additionally, method 

accuracy was assessed based on spike-recovery experiments in standard human serum extracts for 

five representative FAs performed in triplicate at two different concentration levels. Recoveries 

for the spiked FAs ranged from 73−103% with a mean recovery of 93% as summarized in Table 

S2.5. These results again support the valid use of a single MTBE extraction fraction for 

quantitative recovery of FAs from serum samples. Table S2.6 summarizes other major figures of 

merit of MSI-NACE-MS for determination of FAs based on their characteristic accurate mass 
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(m/z) and migration behavior (µep or RMT), including method reproducibility, linearity/linear 

dynamic range, LOD/LOQ, and separation efficiency. 

2.4.5 Inter-method Comparison for Accurate NEFA or Total Fatty Acid Quantification.  

An extensive inter-method comparison of MSI-NACE-MS relative to GC-MS was next performed 

within the same laboratory/analyst for quantitative analysis of serum NEFAs. In order to minimize 

hydrolysis of intact serum lipids for reliable NEFA determination, optimization of acid-catalyzed 

transesterification for FAMEs using GC-MS was performed under “mild” reaction conditions 

using 0.2% v/v HCl in methanol at 45 °C within 1 h.47 This takes advantage of the higher reactivity 

of NEFAs as compared to other classes of lipids in serum/plasma, including triglycerides, 

phospholipids, and cholesteryl esters that otherwise require longer reaction times to ensure 

complete derivatization.47 Figure S2.5 confirms that low background hydrolysis of glyceryl 

tridecanoate (with < 8% C13:0 formation) when using GC-MS under mild reaction conditions (45 

°C for 30 min) as compared to more vigorous reaction conditions (80 °C for 4 h). In addition, the 

overall yield of FAMEs from other endogenous NEFAs was not significantly affected due to the 

shorter incubation times and milder reaction conditions to minimize lipid hydrolysis. Furthermore, 

a comparison of these two reactions conditions were also performed on standard serum samples 

when using GC-MS as shown in Figure S2.6. As expected, there was about a 7 to 12-fold higher 

concentration for total hydrolyzed FAs (free FA, protein-bound FA and FA esterified lipids) as 

compared to their corresponding NEFAs in standard human serum. 

 An inter-method comparison of commonly measured NEFAs from a cohort of maternal 

serum samples was next examined as a way to rigorously validate MSI-NACE-MS relative to the 

GC-MS protocol. Serum aliquots were independently processed in randomized order while using 

a standard human serum as a QC analyzed intermittently after every batch of seven samples/runs  
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Figure 2.3. (A) A PCA 2D scores plot to summarize total biological variance of 14 free fatty acids measured in fasting 
maternal serum extracts (n=50) as compared to technical variance from QCs (standard human serum, n = 9) when 
using MSI-NACE-MS following a batch correction algorithm. (B) A Bland-Altman % difference plot showing an 
inter-method comparison for quantification of 14 serum NEFAs consistently measured in 50 serum extracts when 
using GC-EI-MS and MSI-NACE-MS (n = 600), which highlights a modest extent negative bias (24%) with few 
outliers (3.6%) exceeding agreement limits (95% CI). GC-MS used a standard extraction procedure in hexane 
following NEFA analysis as their FAMEs derivatives, whereas MSI-NACE-MS utilized an MTBE extraction protocol 
for direct analysis of NEFAs without chemical derivatization. 
 

when using GC-MS. In contrast, a QC was measured within every run when using a seven-sample 

serial injection format35,36 in MSI-NACE-MS (i.e., 6 individual serum extracts + 1 QC) for direct 

analysis of NEFAs without chemical derivatization. QC samples were randomized within the 

injection sequence in order to assess technical variance, which also allows for long-term signal 

drift adjustment that is critical when analyzing large batches of samples by ESI-MS. Figure 2.3A 

depicts a 2D scores plot from a principle component analysis (PCA) of serum extracts (n = 50) 

analyzed by MSI-NACE-MS as compared to reference QCs (n = 9) following a batch correction 

algorithm,48 which highlights excellent technical variance (mean RSD = 10%) as compared to the 

much greater biological variance (mean RSD = 74%) for fourteen NEFAs measured consistently 

in all serum extracts. In fact, the technical variance for NEFA determination by GC-MS was 

slightly higher than MSI-CE-MS with a mean RSD of 21% (n = 12) as compared to 17% (n = 9) 
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before QC batch correction adjustment, respectively. Moreover, control charts for deuterated 

recovery standards added to all serum samples and QCs (n = 57 or 62) prior to extraction highlights 

robust analytical performance for both instrumental platforms as reflected by a random distribution 

about the mean with few outliers exceeding warning or action limits as shown in Figure S2.7. 

Also, Figure 2.3(B) depicts a Bland-Altman %difference plot, which demonstrates good mutual 

agreement when comparing serum NEFA concentrations measured independently by MSI-NACE-

MS and GC-MS protocols. Overall, there is evidence of a modest extent of negative bias of about 

25% for NACE-MSI-MS as compared to GC-MS, whereas all data is normally distributed with 

579 out of 600 measurements falling within agreement limits (p < 0.05 with 3.5% error for 21 

outliers). This bias was likely attributed to the limited extent of background hydrolysis of serum 

lipids (< 10%) even when using mild reaction conditions for GC-MS notably for abundant serum 

FAs, such as oleic acid (18:1n-9), linoleic acid (18:2n-6), palmitic (16:0), and arachidonic acid 

(20:4n-6). Indeed, these FAs have among the highest fold-change increase when analyzing their 

total hydrolyzed lipid pool as compared to serum NEFA (protein-bound) concentration levels 

(Figure S2.5). Lastly, as a way to further validate the accuracy of MSI-NACE-MS, an inter-

laboratory method comparison was also performed based on analysis of total hydrolyzed FAs from 

a reference plasma sample (SRM 1950) with results compared with mean concentrations acquired 

at accredited laboratories using different protocols based on GC-MS/GC-FID (NIST) and GC-MS 

(CDC). In this case, a Passing-Bablok regression and Bland-Altman %difference plots 

demonstrated good mutual agreement with a slope of 1.32 and mean bias of 15% when comparing 

twenty total FAs from plasma extracts that were measured consistently across both instrumental 

platforms as shown in Figure S2.8. A modest degree of negative bias was noted for MSI-NACE-

MS as compared to GC-MS/GC-FID methods for total hydrolyzed FAs that was comparable to 
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technical precision especially considering that different extraction protocols were implemented. 

Although GC methods offer better selectivity based on resolution of certain FA geometric/regional 

isomers in hydrolyzed plasma extracts, this did not significantly impact accuracy given their low 

relative abundances in the diet,49 such as cis- and trans-vaccenic acid (18:1n-7); these FAs are 

minor positional and geometric isomers (< 10% of total) as compared to the predominant isomer 

from the diet, namely oleic acid (18:1n-9). Future work will examine strategies to improve FA 

isomer resolution while also enhancing ionization efficiency for lower detection limits. 

Comprehensive profiling of intact lipids also offers an intriguing approach to expand metabolomic 

coverage when using MSI-NACE-MS notably for the analysis of volume-limited or mass-

restricted samples ranging from bio-banked biofluids and single cells. 

2.5 Conclusion 

For the first time, we demonstrate high throughput determination of FAs from blood specimens 

when using MSI-NACE-MS following rigorous method optimization and validation to ensure 

robust performance. Several major technical obstacles were addressed during method development 

that have long hindered progress in NACE-MS for routine lipid profiling applications, including 

capillary fractures due to polyimide swelling, current drops from nebulizer siphoning and corona 

discharges when using non-aqueous electrolyte systems with negative ion mode detection. The 

development of a simple yet efficient MTBE extraction protocol for serum/plasma FAs without 

chemical derivatization was achieved when using multiplexed separations comprising seven 

discrete samples serially injected within a single run. This not only greatly improves sample 

throughput without added infrastructure costs, but also ensures more stringent QC since every run 

contains a reference sample for monitoring technical variance, which also allows for long-term 

batch correction. Moreover, accurate modeling of ion migration behavior in NACE offers a 
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complementary tool to support unknown FA identification in conjunction with high resolution MS 

or MS/MS. Overall, method sensitivity is comparable to conventional GC methods, however 

certain minor positional or geometric FA isomers in serum extracts were unresolved. Nevertheless, 

excellent technical precision and accuracy were demonstrated following extensive inter-method 

and inter-laboratory validation with good mutual agreement in serum NEFA and total plasma FA 

concentrations measured by MSI-NACE-MS as compared to GC-MS methods. This work opens 

the door for new advances in comprehensive FA profiling in support of large-scale epidemiological 

studies and population health, such as objective biomarkers of habitual diet and prognostic 

indicators of metabolic syndrome. 
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2.8 Supporting Information  
 

2.8.1 Chemicals and Reagents 

Ultra LC-MS grade methanol (Caledon Inc., Georgetown, ON, Canada) and ultra LC-MS grade 

acetonitrile (Honeywell Inc., Muskegon, MI, USA) were used to prepare sheath liquid and 

background electrolyte (BGE), respectively. Ammonium acetate, ammonium hydroxide, butylated 

hydroxytoluene (BHT), methyl-tert-butyl ether (MTBE), stearic acid-d35, myristic acid-d27, 

glyceryl tridecaonate, and other FA standards, chemicals, solvents, as well as standard human 

serum (S7023) and normal fasting human plasma from NIST (SRM 1950) were purchased from 

Sigma-Aldrich Inc. (St. Louis, MO, USA). 
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2.8.2 GC-MS Instrumentation  

Comparative analysis of serum FA for validation purposes were also performed by GC-MS using 

an Agilent 6890 gas chromatograph equipped with a Supelco SP-2380 column (30m x 0.25mm) 

coupled to an Agilent 5973 single quadrupole mass spectrometer with electron impact ionization 

(EI-MS) operating in selected ion monitoring (SIM) mode. FA were analyzed by GC/MS as their 

FAME derivatives, where quantification was based on the relative ion response ratio of their most 

abundant fragment ion relative to that of pyrene-d10 used as internal standard. In most cases, 

characteristic fragment ions for saturated/monoenoic and polyenoic FAs were monitored at m/z 74 

(i.e., McLafferty rearrangement product ion) and m/z 79 (i.e., cyclohexadienyl ion), respectively 

unless otherwise stated.1 The temperature program used for optimal resolution of FAMEs was set 

initially at 60 °C for 1 min followed by 12 °C/min temperature gradient for 10 min to 180 °C 

similar to elution conditions described elsewhere.2 The temperature was then increased for 10 min 

to 210 °C at a rate of 3 °C/min to resolve the most abundant C18 species and isomers. The 

temperature was further increased for the next 2 min with a ramp of 30 °C/min until reaching 270 

°C, at which point the temperature was held for 7 min corresponding to a total run time of 30 min 

(Table S2.1 of the Supporting Information). Samples were injected in 1.0 µL volumes using a 

splitless injector held at 250 °C. Helium was used as a carrier gas flowing at 1.0 mL/min and the 

transfer line was held at 270 °C. SIM was used for targeted quantification of 12 representative FAs 

in serum extracts for inter-method comparison studies, which began with m/z 55, 74, 77 for the 

first 13 min followed by selected ions m/z 67 and m/z 79 for the next 10 min and a final segment 

at m/z 212 for the last 7 min for detection of the internal standard with dwell time set at 100 msec 

(Table S2.2 of the Supporting Information). 
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2.8.3 Sample Workup Procedure for NEFAs by GC-MS  

Aliquots of the same 50 serum samples from the FAMILY cohort,3 as well as standard human 

serum (Sigma) that were used as QCs, were prepared randomly for an inter-method comparison 

for NEFA determination when using GC-MS relative to MSI-NACE-MS. Extractions were carried 

out in glass GC vials that were pre-rinsed with dichloromethane and all pipette tips used during 

this procedure were pre-rinsed with methanol. To 50 µL of serum, 10 µL of 1 mM stearic acid-d35 

(recovery standard), 25 µL of 8% v/v methanolic HCl reagent, 100 µL toluene and 815 µL of 

methanol with 0.05% m/v BTH were added and thoroughly mixed by vortexing. Next, vials were 

tightly sealed and incubated at 45 °C for 30 min under “mild” reaction conditions for NEFA 

determination while preventing serum lipid hydrolysis,3 which was shortened from 1 h to 30 min 

based on optimization experiments. Phase separation was then induced by adding 100 µL of 

deionized water and 200 µL of hexane. Samples were then vortexed and centrifuged at 3000 g to 

sediment serum protein prior to equilibration for 5 min at 4 °C. A fixed volume (45 µL) was 

collected of the upper hexane layer into a new GC vial insert with addition of 5 µL of 10 mg/L 

pyrene-d10 that was used as an internal standard. The serum extract was thoroughly mixed followed 

by splitless injection and analysis by GC-MS, where a QC specimen was analyzed intermittently 

every 8 runs to evaluate technical precision. For absolute quantification of FAMEs, a stock 

solution of FA standards were diluted from 5.0 to 500 μM in methanol and external calibration 

curves were constructed using seven different concentration levels, where their integrated peak 

areas were normalized to the internal standard. Calibrants were derivatized under similar 

conditions as serum samples, but 765 μL of 0.05% w/v BHT in methanol and 50 µL of deionized 

water needed to match the serum matrix for equivalent rates of trans-esterification since higher 

FAMEs recoveries were consistently observed for samples prepared in methanol as compared to 
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water or serum. Further experiments were also conducted to test “mild” reaction conditions used 

for FAME generation from NEFAs without significant hydrolysis of major serum lipids. In this 

case, glyceryl tridecanoate (Sigma-Aldrich) was used as an intact yet non-native lipid standard in 

serum with reactions performed under “harsh” reaction conditions as required for total lipid 

hydrolysis using 10 µL of concentrated sulfuric acid at 80 °C for 4 h.4 GC-MS analysis of 13:0 as 

its FAMEs derivative (m/z 74) was then compared under mild (NEFAs) and harsh (total 

hydrolyzed FAs) reaction conditions since triglycerides are among the most susceptible lipid class 

prone to hydrolysis.4 

2.8.4 Sample Workup Protocol for Nonesterified Fatty Acids by MSI-NACE-ME 

Anonymized fasting serum samples from pregnant women (n = 50) in the FAMILY cohort,3 

standard human serum (Sigma), and NIST (SRM 1950) plasma samples were prepared using a 

slightly modified extraction protocol using MTBE originally developed by Matyash et al.5 

Extractions were carried out in glass GC vials that were pre-rinsed with dichloromethane and all 

pipette tips used during this procedure were pre-rinsed with methanol. First, 100 µL of 0.01% v/v 

BHT in methanol was mixed with a 50 µL aliquot of serum. In this case, BHT was used as a 

lipophilic antioxidant to prevent degradation of labile polyunsaturated FAs during sample 

processing/storage, as well as a neutral EOF marker for CE separations for determination of 

apparent electrophoretic mobilities (µep) for FAs under non-aqueous buffer conditions. Next, 250 

μL of 50 µM myristic acid-d27 (recovery standard) in MTBE and 12.5 μL of 1 M HCl were added 

to the mixture followed by vigorous shaking for 30 min at room temperature. Phase separation was 

then induced by addition of 100 µL of deionized water. Samples were then centrifuged at 3000 g 

at +4 °C for 30 min to sediment protein at bottom of vial followed by a biphasic water and ether 

(top) layer. A fixed volume (200 µL) was collected from the upper MTBE layer into a new vial 
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then dried under a gentle stream of nitrogen gas at room temperature. Serum or plasma extracts 

were then stored at -80 °C and before analysis reconstituted in 25 µL of 

acetonitrile/isopropanol/water (70:20:10) with 10 mM ammonium acetate and 50 µM stearic acid-

d35 as internal standard. 

2.8.5 Sample Workup Protocol for Total Hydrolyzed fatty acids by MSI-NACE-MS 

The following protocol was used using NIST human plasma (SRM 1950), which is a standard 

reference material for method validation and inter-laboratory comparisons in support of growing 

metabolomic and lipidomic initiatives.6 The hydrolysis reaction for analysis of total FAs is based 

on a modified protocol in which MTBE and toluene was used as a substitute over the original 

methanol and hexane protocol to avoid producing FAMEs and problems with solvent 

immiscibility.7 First, a hydrolysis reaction for the analysis of total FAs was conducted by the 

addition of 25 μL of MTBE and 25 μL of concentrated sulfuric acid to 50 μL of serum. Next, 50 

μL of toluene is added followed by 500 μL of water and vortexed vigorously for 15 min, which 

was followed by incubation of sample in an oven at 80 °C for 4 h. Then, MTBE extraction was 

carried out to recover total hydrolyzed FAs for subsequent analysis by MSI-NACE-MS. All 

hydrolysis reactions and extractions were carried out in triplicate using glass GC vials that were 

pre-rinsed with (dichloromethane) DCM and all pipette tips used during this procedure were pre-

rinsed with MeOH. After hydrolyzed plasma sample was transferred into the vial, 100 μL of 

MeOH was added and the mixture was shaken for 30 min. Next, 250 μL of MTBE and 12.5 μL of 

1 M HCl was added to the mixture. This is then shaken for an additional 30 min. Next, 87.5 µL of 

distilled, deionized water is added which induces separation of the MTBE layer. The solutions 

were then centrifuged for 30 min to sediment protein followed by transferring a fixed 200 μL 

volume from the top MTBE layer into a new vial. Fractions were stored dried at -80 °C after 
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solvent evaporation under a gentle stream of nitrogen for 10 min at room temperature.  

2.8.6 Calibration and Method Validation of MSI-NACE-MS 

10 mM stock solutions of FA calibrants were prepared in MTBE with addition of 0.1% w/v BHT 

to prevent oxidation during storage. A serial dilution of calibrant solutions from 1.0 to 200 μM 

was prepared in triplicate when constructing seven-point calibration curves for FAs using least-

squares linear regression. All integrated peak areas for the deprotonated molecular ion [M-H-] of 

FAs were normalized using 50 µM stearic acid-d35 as an stable-isotope internal standard unless 

otherwise noted. FA concentrations corresponding to limits of detection (LOD) and limits of 

quantification (LOQ) were calculated based on a serial dilution of calibrant solutions equivalent 

to a signal-to-noise ratio (SNR) of 3 and 10, respectively. Blank (methanol) extracts were also 

prepared intermittently to confirm lack of sample carry-over effects and background interferences. 

Reproducibility was evaluated based on intraday (n = 18) and interday (n = 54) precision based on 

three independent MSI-NACE-MS runs, at the beginning, middle and end of day, each with six 

replicate injections of a 50 µM FA calibrant mixture and a blank (methanol) over three consecutive 

days. Method accuracy was assessed by representative FA standards spiked at two different 

concentration levels into standard human serum (Sigma S7023) prior to MTBE extraction and the 

% recovery was calculated based on the percentage difference between spiked and original 

(baseline) concentration of human serum divided by the spiked (known) concentration. In addition 

to evaluating the accuracy of MSI-CE-MS for NEFAs based on spike-recovery experiments, an 

inter-method comparison was also conducted on representative serum samples (n = 50) when using 

GC-MS by the same analyst in the same laboratory, whereas an inter-laboratory method 

comparison was performed on total FAs from reference plasma samples (SRM 1950). In this case, 

total plasma FA concentrations derived MSI-CE-MS were compared to reference ranges reported 
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in a certificate of analysis based on weighted means of results from NIST (GC-FID, GC-MS) and 

the Centers for Disease Control and Prevention (CDC, GC-MS).  

2.8.7 Data Processing and Statistical Analysis  

MSI-NACE-MS data was analyzed using Agilent Mass Hunter Workstation Software (Qualitative 

Analysis, version B.06.00, Agilent Technologies, 2012). Molecular features were extracted in 

profile mode using a 10 ppm mass window, and FAs were annotated based on their characteristic 

accurate mass for their deprotonated molecular ion (m/z, [M-H]-) and relative migration time 

(RMT) or apparent electrophoretic mobility (µep). Extracted ion electropherograms (EIEs) were 

integrated after smoothing using a quadratic/cubic Savitzky-Golay function (15 points) and peak 

areas, migration times and SNR were transferred to Excel (Microsoft Office, Redmond, WA, USA) 

for calculation of relative integrated peak area (RPA), RMT, µep as well as LOD and LOQ 

respectively. GC-MS data was analyzed by GC MSD ChemStation Software, version D.03.00, 

Agilent Technologies Inc. All electropherograms and chromatograms were depicted using Igor 

Pro 5.0 software (Wavemetric Inc., Lake Oswego, OR, USA). Least-squares linear regression 

analysis for external calibration curves, figures of merit calculations, FA migration prediction 

model and control charts were performed using Excel. Principle component analysis (PCA) based 

on 2D scores plots were used for data visualization (i.e., data trends/outlier detection) when 

comparing the technical variance (normal serum from Sigma as QC) and overall biological 

variance (individual serum samples; between-subject) using MetaboAnalyst 4.0,8 where data was 

normalized using a generalized log-transformation and autoscaling. Also, a QC derived batch-

correction algorithm was performed to correct for instrumental drift while improving long-term 

precision for FA determination using an algorithm available in the R Project for statistical 

computing.9 Bland-Altman % difference plots and Passing-Bablok regression used in the inter-
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method and inter-laboratory comparisons10 for NEFA (serum) or total hydrolyzed FA (plasma) 

determination were performed in MedCalc version 12.5 (MedCalc Software, Ostend, Belgium). 
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Table S2.1. Temperature gradient program used for serum NEFA analysis by GC-MS. 

Ramp (°C/min) Temperature (°C) Hold (min) Time (min) 
0.00 60 1.00 0.00 
12.00 180 0.00 12.00 
3.00 210 0.00 22.00 
30.00 270 7.00 30.00 

 
 
 
 
Table S2.2. EI-MS parameters for SIM optimized for serum NEFA analysis using GC-MS. 

Group Selected Ion (s) Target Time (min) Dwell Time (ms) 
1 55, 74, 77 MUFA, SAT. C18d35 8 100 
2 67, 79 PUFA 13 100 
3 212 Pyrene-d10  23 100 
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Table S2.3. Optimization of serum extraction protocol for NEFA analysis for quantitative recovery of 14 FAs when analyzing 
 successive MTBE fractions of standard human serum with an overall average recovery of 92% using the first extract fraction. 

Fatty Acid Molecular 
Formula 

 Relative % Recoverya 
m/z:RMT 

1st Fractionb 2nd Fractionb 3rd Fractionb 

Lauric acid (12:0) C12H24O2 199.1704:1.085 91.3 ± 1.6 4.7 ± 1.5 5.0 ± 3.1 
Myristic acid (14:0) C14H28O2 227.2017:1.054 93.0 ± 0.42 5.5 ± 2.7 3.4 ± 2.3 
Palmitic acid (16:0) C16H32O2 255.233:1.028 81.5 ± 1.5 13.2 ± 3.4 5.3 ± 2.0 

Heptadecanoic acid (17:0) C17H34O2 269.2486:1.017 91.7 ± 8.1 7.02 ± 0.13 1.3 ± 1.8 
Stearic acid (18:0) C18H36O2 283.2643:1.005 84.3 ± 4.8 10.5 ± 5.4 5.23 ± 0.61 

Palmitoleic acid (16:1n-7) c C16H30O2 253.2173:1.035 94.3 ± 1.5 4.23 ± 0.01 1.49 ± 0.18 
Heptadecenoic acid (17:1n-7) C17H32O2 267.233:1.024 93.1 ± 1.0 5.06 ± 0.44 1.84 ± 0.58 

Oleic acid (18:1n-9) c C18H34O2 281.2486:1.012 95.11 ± 0.41 3.66 ± 0.27 1.24 ± 0.14 
Eicosenoic acid (20:1n-9) C20H38O2 309.2799:0.990 90.85 ± 0.94 6.25 ± 0.15 2.9 ± 0.79 
Linoleic acid (18:2n-6) c C18H32O2 279.233:1.018 95.97 ± 0.32 3.03 ± 0.15 0.98 ± 0.17 

Eicosadienoic acid (20:2n-6) C20H36O2 307.2642:0.995 93.9 ± 1.8 4.3 ± 1.8 1.78 ± 0.03 
Linolenic acid (18:3n-3) c C18H30O2 277.2173:1.021 93.1 ± 4.9 2.57 ± 0.09 4.4 ± 5.0 

Arachidonic acid (20:4n-6) C20H32O2 303.233:1.025 95.4 ± 0.41 3.66 ± 0.27 1.23 ± 0.14 
Docosahexaenoic acid (22:6n-3) C22H32O2 327.233:1.029 94.4 ± 4.4 4.5 ± 3.8 1.12 ± 0.56 
a % Recovery was calculated based on relative peak areas (RPA) of each fraction for each FA assuming 100% recovery from all three extraction fractions 
collectively. RPA was calculated based on integrated peak area normalized to the integrated peak area of the deuterated internal standard, stearic acid-d35. 
b 50 μL of standard human serum (S7023) was repeatedly extracted with 3 X 250 μL portions of MTBE, where three consecutive ether aliquots of 200 μL were 
withdrawn after addition of 100 μL of deionized water followed by centrifugation for phase separation. Each ether extract fraction was analyzed by MSI-NACE-MS 
following an evaporation and reconstitution step with deuterated internal standard into a final volume of 25 µL. 
c For serum NEFA with positional or geometric isomers, total FA extraction fractions are reported since they are unresolved by MSI-NACE-MS. 
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Table S2.4. Method sensitivity and linearity based on FA calibration curves using the GC-EI-MSa method used in this study. 

Fatty Acid Molecular 
Formula 

RT 
(min) 

LOD 
(µM) 

LOQ 
(µM) 

Range 
(µM) 

Linearity 
(R2) 

Lauric acid (12:0) C12H24O2 8.32 5.27 6.03 5-500 0.992 
Myristic acid (14:0) C14H28O2 9.69 3.62 4.17 5-500 0.993 

Pentadyclic acid (15:0) C15H30O2 10.33 8.36 8.76 5-500 0.990 

Palmitic acid (16:0) C16H32O2 10.94 0.42 1.39 5-500 0.997 

Heptadecanoic acid (17:0) C17H34O2 11.54 0.84 2.79 5-500 0.998 

Stearic acid (18:0) C18H36O2 12.18 0.51 1.69 5-500 0.996 

Palmitoleic acid (16:1) C16H30O2 11.3 8.33 27.78 5-500 0.99 

Elaidic acid (18:1, trans) C18H34O2 12.45 7.89 26.32 5-500 0.995 
Oleic acid (18:1, cis) C18H34O2 12.56 7.50 25.00 5-500 0.994 

Linoleic acid (18:2n-6) C18H32O2 13.21 1.90 6.33 5-500 0.992 
Linolenic acid (18:3n-3) C18H30O2 14.06 0.95 3.17 5-500 0.993 

Arachidonic acid (20:4n-6) C20H32O2 16.02 1.20 4.00 5-500 0.996 
Docosahexaenoic acid (22:6n-3) C22H32O2 20.22 1.40 4.50 5-500 0.997 

a Analysis of FA standards for GC-EI-MS method validation was performed on a Supelco SP-2380 column (30m x 0.25mm) operating in selected ion monitoring (SIM) mode. 
Characteristic fragment ions for saturated, monoenoic and polyenoic FAs were monitored at m/z 74, 55 and 79, respectively. The temperature program used for resolution 
of FAMEs is described in Table S1.   
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Table S2.5. Spike and recovery studies for 5 saturated/polyunsaturated FA standards at two concentration levels in human serum. 

  Fatty Acid Molecular 
Formula 

 
m/z:RMT 

Concentration in 
normal serum 

(µM) 

Level 1 
spike 
(µM) 

% Recoverya 
Level 2 
spike 
(µM) 

% Recoverya 

1 Myristic acid 
(14:0) C14H28O2 227.2017:1.054 14.10 ± 0.07 +25 90 ± 7 +50 73 ± 5 

2 Pentadyclic acid 
(15:0) C15H30O2 241.2173:1.041 3.21 ± 0.02 +8 106 ± 1 +16 80 ± 3 

3 Linolenic acid 
(18:3n-3) C18H30O2 277.2173:1.021 17.95 ± 0.43 +30 97 ± 2 +60 95 ± 12 

4 Docosahexaenoic 
acid (22:6n-3) C22H32O2 327.233:1.029 6.56 ± 0.04 +10 99 ± 11 +20 80 ± 5 

5 Eicosapentaenoic 
acid (20:5n-3) C20H30O2 301.2173:1.027 3.36 ± 0.09 +10 80 ± 4 +20 Average 

Recovery = 93 % 
a % recovery for NEFAs was calculated based on the percentage difference between spiked and original concentrations (in normal human serum from Sigma) divided by the spiked 
concentration with triplicate measurements performed (n=3).  
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Table S2.6. Method validation and summary of figures of merit for high throughput screening of fatty acids by MSI-NACE-MS. 

          Precisionb (%RSD)     Linearityd   

Fatty Acid Molecular 
Formula 

Mobilitya m/z  Mass Error 
(ppm)      RMT RMT 

(n=78) 
RPA 

Interday 
(n=78) 

RPA 
Intraday 
(n=18) 

LODc 
(µM) 

LOQc 
(µM) 

Range 
(µM) R2 

Peak 
width 
(min) 

Number of 
Theoretical 

Platese 
(cm2/Vs) [M-H]-   

Capric acid  
(10:0) C10H20O2 -0.0001636 171.1390 2.6 1.123 1.06 23.3 7.62 2.5 8.4 1-200 0.994 0.71 23,702 

Lauric acid  
(12:0) C12H24O2 -0.0001554 199.1704 2.0 1.085 0.73 10.7 9.32 0.70 2.4 1-200 0.995 0.78 26,294 

Myristic acid  
(14:0) C14H28O2 -0.0001489 227.2017 3.5 1.054 0.49 11.8 14.4 0.90 3.0 1-200 0.991 0.59 27,970 

Pentadyclic acid 
(15:0) C15H30O2 -0.0001454 241.2173 2.1 1.041 0.38 11.7 7.55 0.80 2.7 1-200 0.995 0.64 28,670 

Palmitic acid  
(16:0) C16H32O2 -0.0001421 255.2330 1.2 1.028 0.28 13.9 4.59 6.9 23 5-200 0.991 0.67 42,832 

Heptadecanoic 
acid (17:0) C17H34O2 -0.0001391 269.2486 2.2 1.017 0.25 7.00 3.97 0.30 1.1 1-200 0.997 0.63 25,131 
Stearic acid  

(18:0) C18H36O2 -0.0001359 283.2643 4.6 1.005 0.23 14.4 8.56 4.2 14 5-200 0.992 0.64 32,198 
Arachidic acid 

(20:0) C20H40O2 -0.0001302 311.2956 3.8 0.983 0.26 29.3 29.3 0.40 1.3 1-200 0.995 0.71 22,388 
Behenic acid  

(22:0) C22H44O2 -0.0001243 339.3269 0.59 0.960 0.39 12.3 6.15 0.7 2.4 1-200 0.991 0.63 25,610 
Lignoceric acid 

(24:0) C24H48O2 -0.0001200 367.3582 0.54 0.945 0.65 16.0 14.2 1.4 4.5 1-200 0.974 0.48 26,523 
Palmitoleic acid 

(16:1n-7) C16H30O2 -0.0001442 253.2173 2.4 1.035 0.36 13.8 10.73 0.70 2.3 1-200 0.993 0.66 24,550 
Oleic acid  
(18:1n-9) C18H34O2 -0.0001382 281.2486 1.1 1.012 0.22 13.7 7.03 0.60 2.2 1-200 0.995 0.73 32,705 

Erucic acid  
(22:1n-9) C22H42O2 -0.0001272 337.3112 0.59 0.966 0.28 8.66 5.8 0.90 3.1 1-200 0.995 0.54 32,699 

Nervonic acid  
(24:1n-9) C24H46O2 -0.0001208 365.3425 5.2 0.946 0.48 10.2 9.66 0.10 0.4 1-200 0.996 0.68 28,290 

Linoleic acid  
(18:2n-6) C18H32O2 -0.0001396 279.2330 0.36 1.018 0.26 8.41 5.35 0.30 1.1 1-200 0.996 0.69 24,350 

Linolenic acid  
(18:3n-3) C18H30O2 -0.0001411 277.2173 1.4 1.021 0.26 7.93 3.34 0.20 0.6 1-200 0.996 0.68 24,628 

Arachidonic acid 
(20:4n-6) C20H32O2 -0.0001413 303.2330 2.3 1.025 0.27 9.05 4.54 0.08 0.27 1-200 0.993 0.63 36,869 

Docosahexaenoic 
acid (22:6n-3) C22H32O2 -0.0001423 327.2330 2.4 1.029 0.26 9.91 5.22 0.10 0.38 1-200 0.997 0.57 64,004 

            Median RSD 0.32% 12% 7.3%          
a Apparent average negative electrophoretic mobility for FAs was measured using 35 mM ammonium acetate in ACN (70% v/v), MeOH (15% v/v), IPA (5% v/v), pHapp 9.5 under an applied voltage of 
30 kV with 20 mbar pressure applied during separation within a 95 cm fused-silica capillary at 25 °C using BHT as a neutral EOF marker.  
b Precision were assessed by analyzing six replicate injections of 50 µM FA calibrants along with a blank at the beginning, middle and end of day, over three consecutive days. 
c LOD and LOQ were estimated at the lowest FA concentration that generated a SNR ≈ 3 and 10, respectively. 
d External calibration curves were derived from triplicate analysis of seven calibrant solutions for FAs over a 200-fold concentration range normalized to stearic acid-d35.  
e Average plate number (n=6) for separation of fatty acids by MSI-NACE-MS based on migration time (MT) and width at half peak height (w0.5) method, where N = 5.54 (MT/w0.5)2 
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Figure S2.1. Extracted ion electropherograms (EIEs) illustrating the impact of apparent pH of non-aqueous background electrolyte on the resolution of the neutral EOF marker and 
antioxidant added to all FA calibrant solutions, butylated hydroxytoluene (BHT), from lignoceric acid (24:0) that is a very-long chain FA with the lowest negative electrophoretic 
mobility. Serial injection of a six calibrant samples at 50 μM together with a blank (sample#4) using MSI-NACE-MS highlighting (A) partial overlap of 24:0 in the late migrating 
zone of sample#7 with BHT/EOF from sample#1 at pHapp = 8.5 that is prone to ion suppression effects, as compared to improved baseline resolution at pHapp = 9.5. MSI-NACE-MS 
conditions: fused-silica capillary: 95 cm total length and 50 μm, id; BGE: 75 mM ammonium acetate in ACN (70% v/v), MeOH (15% v/v), IPA (5% v/v), adjusted to desired pHapp 
with ammonium hydroxide; applied voltage of 30 kV with 20 mbar applied pressure during separation; temperature, 25℃; serial hydrodynamic injection at 40 mbar alternating 5 s 
for sample and 40 s for BGE spacer. TOF-MS conditions: Full-scan data acquisition under negative ion mode detection; capillary voltage 3500 V; nebulizer gas N2 at 0 psi during 
flushing/injection and then set at 4 psi following electrophoretic separation; dry gas 4 L/min at 300 ℃; sheath liquid, MeOH/H2O (80:20 v/v) with 0.5% NH4OH at 1.0 mL/min. 
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Figure S2.2. Extracted ion electropherograms (EIEs) illustrating the impact of pressure assistance on the resolution of the neutral EOF marker, butylated hydroxytoluene (BHT), 
from lignoceric acid (24:0) that is a very-long chain FA with the lowest negative electrophoretic mobility and on the migration of caproic acid (6:0) that is a short-chain FA 
determining total run time. Serial injection of a six calibrant samples at 50 μM together with a blank (sample#4) using MSI-NACE-MS highlighting (A, B) partial overlap of 24:0 in 
the late migrating zone of sample#1 with BHT/EOF from sample#7 at pressures = 40 or 35 mbar that is prone to ion suppression effects, as compared to (C) improved baseline 
resolution at pressure = 20 mbar and total run time under 30 min for seven samples. (D) Further decrease of pressure = 15 mbar drastically increases run times to 60 min and results 
in deleterious band broadening. MSI-NACE-MS conditions: fused-silica capillary: 95 cm total length and 50 μm, id; BGE: 35 mM ammonium acetate in ACN (70% v/v), MeOH 
(15% v/v), IPA (5% v/v), adjusted to pHapp = 9.5; applied voltage of 30 kV with desired applied pressure during separation; temperature, 25℃; serial hydrodynamic injection at 40 
mbar alternating 5 s for sample and 40 s for BGE spacer. 
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Figure S2.3. Bar graphs comparing the effect of NH4OH as a base modifier in the sheath liquid to improve ionization efficiency of fatty acids (FAs) when using MSI-NACE-MS 
under negative ion mode detection. A maximum ionization response based on measured signal-to-noise ratio (SNR) for majority of FAs was achieved with 0.5% v/v NH4OH when 
using a coaxial sheath liquid interface in CE-MS to enhance deprotonation of FAs during spray formation.  However above 1% v/v NH4OH, the average SNR generally decreased 
for most FAs likely due to ion suppression effects at higher concentrations as compared to no base modifier added to the sheath liquid (80:20 v/v MeOH:H2O). 
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Figure S2.4. Representative calibration curves for saturated, monounsaturated and polyunsaturated FAs when using MSI-NACE-MS under negative ion mode detection, where their 
ion responses are normalized to a single deuterated internal standard, stearic acid-d35.  Overall, good linearity (R2 > 0.99) was achieved over a 200-fold dynamic range when using 
a least-squares linear regression model with low micromolar to sub-micromolar detection limits. Importantly, a single MTBE extract enables quantitative recovery of serum NEFAs 
that is amenable to automation without complicated sample handling or pre-column chemical derivatization. 
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Figure S2.5. (A) Overview of sample workup protocol developed for analysis of fatty acid methyl esters (FAMEs) from serum extracts under mild (for NEFA) and harsh (for total 
hydrolyzed FAs) reaction conditions. (B) Characteristic fragment ions for saturated, monounsaturated and polyunsaturated FAs were measured by GC-EI-MS with using selective 
ion monitoring (SIM) as reflected in the total ion chromatogram for a representative serum extract. (C) Reduction of temperature (from 80 to 45 °C) and incubation time (from 4 h 
to 30 min) was able to ensure quantitative yield of FAMEs for protein-bound/free FAs under mild conditions (e.g.,16:1) with a low extent of lipid hydrolysis (e.g., spiked glyceryl 
tridecanoate in serum) as reflected by low residual amount of 13:0 formation (< 8% of total) as compared to harsh reaction conditions. This method takes advantages of the different 
reactivities of FAs, such as protein-bound or free fatty acids (FFA) as compared to FAs incorporated into various lipid classes, including phospholipids (PhL), triglycerides (TG) and 
steroid esters (SE), such as cholesterol esters. 
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Figure S2.6. Bar graph showing extent of FA derivatization into FAMEs under mild reaction conditions (NEFAs) as compared to harsh reaction conditions (total hydrolyzed FAs) 
when using GC-EI-MS based on triplicate analysis of standard human serum samples along with a solvent blank mainly attributed to 16:0 and 18:0 from background due to plastic 
tubing and liners.  
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Figure S2.7. Control charts for deuterated recovery standards added to all serum samples (n = 50) and QCs (n = 7-12) depicting the long-term robustness of MSI-NACE-MS and 
GC-EI-MS methods for reliable serum NEFA determination. Both methods display good overall technical precision when measuring recovery standards added to serum samples 
prior to extraction at the same concentration as reflected by a random distribution about a mean with few outliers exceeding both warning (± 2s) or action (± 3s) limits. 
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Figure S2.8. An inter-laboratory method comparison for accurate quantification of 20 total hydrolyzed FAs measured in a certified reference plasma sample from NIST (SRM 1950). 
(A) A Passing-Bablok regression plot highlights good correlation with a modest positive bias (linear slope of 1.32) for total serum FAs measured independently by MSI-CE-MS as 
compared to mean results from GC-FID and GC-MS methods (NIST; CDC) using different extraction protocols. (B) Similarly, a Bland-Altman % difference plot also shows good 
mutual agreement between results with a mean bias of 15% with few outliers exceeding agreement limits (95% CI).   
 



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 97 

 

Chapter III: 
 

Rapid Biomonitoring of Perfluoroalkyl Substance Exposures in Serum by Multisegment 
Injection-Nonaqueous Capillary Electrophoresis-Tandem Mass Spectrometry 

 

 

 

Thesis chapter is derived from a published peer-reviewed article: 

S.M. Azab, R. Hum and P. Britz-McKibbin.  Rapid biomonitoring of perfluoroalkyl substance 

exposures in serum by multisegment injection-nonaqueous capillary electrophoresis-tandem mass 

spectrometry. Anal. Sci. Adv. 2020, 1: 1-10. https://doi.org/10.1002/ansa.202000053. 
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Chapter III: Rapid Biomonitoring of Perfluoroalkyl Substance Exposures in Serum by 
Multisegment Injection-Nonaqueous Capillary Electrophoresis-Tandem Mass 
Spectrometry 

 
“Test all things; hold fast to that which is good” 

3.1 Abstract 

Perfluoroalkyl substances (PFASs) are a major contaminant class due to their ubiquitous 

prevalence, persistence and putative endocrine disrupting activity that may contribute to chronic 

disease risk notably with exposures early in life. Herein, multisegment injection-nonaqueous 

capillary electrophoresis-tandem mass spectrometry (MSI-NACE-MS/MS) is introduced as a high 

throughput approach for PFAS screening in serum samples following a simple methyl-tert-butyl 

ether (MTBE) liquid extraction. Separation and ionization conditions were optimized to quantify 

low nanomolar concentration levels of perfluorooctanoic acid (PFOA) and 

perfluorooctanesulfonic acid (PFOS) from serum extracts when using multiple reaction monitoring 

under negative ion mode conditions. Multiplexed separations of PFOA and PFOS were achieved 

with excellent throughput (< 3 min/sample), adequate concentration sensitivity (LOD ~ 20 nM, 

SNR = 3) and good technical precision over three consecutive days of analysis (mean CV = 9.1%, 

n = 84). Accurate quantification of PFASs was demonstrated in maternal serum samples (n = 16) 

when using MSI-CE-MS/MS following pre-column sample enrichment with median 

concentrations of 3.46 nM (0.7 to 9.0 nM) and 3.29 nM (1.5 to 6.6 nM) for PFOA and PFOS, 

respectively. This was lower than average PFAS exposures assessed for pregnant women who had 

serum collected prior to 2009 due to subsequent phase out of their production. Overall, this method 

offers a convenient approach for large-scale biomonitoring of environmental exposures to legacy 

PFASs and their emerging replacements that is relevant to maternal health and chronic disease risk 

in children.  
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3.2 Introduction 

Perfluoroalkyl substances (PFASs) are synthetic compounds first developed in the 1940s due to 

their unique thermal and chemical properties that render them useful in a myriad of consumer 

products and industrial applications.1,2 These ubiquitous chemicals are both water and oil-repellant, 

with heat-resistant and surface-active properties comprising over 4,000 different perfluoroalkyl 

acid analogs.3 PFASs have been incorporated in food packaging, electronics, stain-resistant 

textiles, non-stick coatings, as well as firefighting foams.3-5 Yet, PFASs are a major contaminant 

class in environmental toxicology given their persistence and tendency to bioaccumulate with 

widespread human exposures from the ingestion of contaminated food and drinking water,6,7 as 

well as household cookware, treated carpets and waterproofed clothing.8 Biomonitoring studies 

have largely focused on analyzing the two most abundant contaminants from this chemical class, 

namely perfluorooctanoic acid (PFOA) and perfluorooctanesulfonic acid (PFOS), which are 

classified as persistent organic pollutants (POPs) under the Stockholm Convention. With a global 

phase-out of PFOA and PFOS production with exceptions granted to certain products (e.g., 

medical devices), other alternatives have replaced these legacy contaminants, including short-

chain (C4-C6) PFAS substitutes, and chlorinated polyfluoroalkyl ether sulfonic acids (Cl-

PFESAs);2, 9 however, the long-term impacts of these emerging replacements for regulated PFASs 

on human and wildlife health remain poorly understood.10 A study by the U.S. Center for Disease 

Control and Prevention (CDC) reported declining serum concentrations of PFOS in the population, 

constant levels of PFOA and even increased concentrations of certain other non-regulated PFASs 

(e.g., perfluorononanoic acid).11 Long-range atmospheric and/or oceanic transport to polar regions 

with subsequent biotic uptake may explain these observations due to unregulated manufacturing 

and emission of PFASs occurring in developing countries.12,13  For these reasons, there is urgent 
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need for continued surveillance of PFASs as they are not effectively removed from wastewater 

treatment plants, which can also generate unexpected chlorinated by-products.14 

Human exposure studies have shown that PFASs are predominately stored within the liver 

and in the circulation bound to plasma proteins with an estimated half-life ranging from 4 to 8 

years for PFOS and PFOA.3,15 As a result, blood is a specimen of choice for biomonitoring of 

PFAS exposures in the population.16 Also, human breast milk represents a complementary 

specimen for assessment of PFAS exposures during infancy,17 as well as urine which is correlated 

with PFAS in serum.18 PFASs may function as potential endocrine disrupting chemicals due to 

their ability to compete with thyroxine binding to human thyroid hormone transport protein 

transthyretin19 along with antagonist effects on receptors for testosterone20 and progesterone.21 

Nevertheless, safe levels of PFAS exposures and their exact mechanisms of toxicity remain 

unclear22 with health advisory limits of 0.07 µg/L PFOS and PFOA in drinking/ground water.23 

Similar to other environmental pollutants, children have a higher burden of PFASs as compared to 

adults,24 attributed to transfer in utero from maternal exposures, feeding of breastmilk and/or 

commercial baby formula,25 and ingestion from active mouthing behaviour that is exacerbated by 

indoor dust exposure.26 Several studies have reported an inverse relation of PFOA and PFOS 

exposures to birth weight, as well as a direct relation to dyslipidemia and impaired gestational 

glucose homeostasis later in life. 4,27,28 In a study evaluating the association of maternal POPs serum 

levels with the risk of childhood obesity, PFOA and PFOS have been associated with increased 

BMI and risk for overweight/obesity in early childhood.29 On the other hand, serum PFAS 

concentrations in children did not show a similar association, suggesting that exposure to 

environmental stressors in-utero may represent a critical period of susceptibility during 

gestation.29,30 Further research is needed to assess the long-term health impacts of early life 
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exposures to PFASs and mixtures of other endocrine disrupting chemicals31 using high throughput 

methods that enable low-cost and large-scale biomonitoring studies in environmental 

epidemiology.32 

Analytical methods for PFAS determination require exquisite sensitivity and selectivity 

without complicated sample workup or background/matrix interferences.33 Liquid chromatography 

coupled to tandem mass spectrometry (LC-MS/MS) with multiple reaction monitoring (MRM) is 

the gold standard for analysis of nanomolar levels of PFAS in complex biological and 

environmental samples.16,34,35 Standardized protocols have been developed for reliable PFAS 

analysis by LC-MS/MS following pre-column sample enrichment and off-line clean-up based on 

ion-pair extraction or anion-exchange solid-phase extraction (SPE).34,36,37 Recent advances for 

PFAS screening by LC-MS/MS include on-line SPE with column switching to automate sample 

processing and reduce total analysis times (~ 28 min run/sample).38 Capillary electrophoresis (CE) 

offers an alternative microseparation platform, but is far less commonly used for routine analysis 

of PFASs due to poor separation performance in aqueous buffer systems and/or inadequate 

concentration sensitivity and selectivity when using UV detection.39-41 Recently, CE-MS using a 

novel nanospray interface was reported for anionic micropollutants analysis in drinking water 

samples, however deleterious peak broadening was noted for the surface-active contaminants, 

PFOA and PFOS.42 Herein, we introduce a new strategy for high throughput screening of PFOA 

and PFOS in serum extracts when using multisegment injection-nonaqueous capillary 

electrophoresis-tandem mass spectrometry (MSI-NACE-MS/MS) following a simple methyl-tert-

butyl ether (MTBE) extraction protocol.43,44 Extensive method optimization and validation was 

performed to demonstrate reliable serum PFOA and PFOS analyses by MSI-NACE-MS/MS with 
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stringent quality control (QC), which was applied to assess PFAS exposures in women during 

pregnancy. 

3.3 Experimental Section 

3.3.1 Chemicals and reagents 

Ultra LC-MS grade methanol (Caledon Inc., Georgetown, ON, Canada) and ultra LC-MS grade 

acetonitrile (Honeywell Inc., Muskegon, MI, USA) were used to prepare sheath liquid and 

background electrolyte (BGE), respectively. Ammonium acetate, ammonium hydroxide, butylated 

hydroxytoluene (BHT), methyl-tert-butyl ether (MTBE), PFOA and PFOS standards, chemicals, 

solvents, as well as standard human serum (S7023) used for initial optimization, were purchased 

from Sigma-Aldrich Inc. (St. Louis, MO, USA). The stable isotope sodium salt of 

perfluorooctanesulfonate (13C8-PFOS) was obtained from Cambridge Isotope Laboratories, Inc 

(Tewksbury, MA, USA). 

3.3.2 CE-MS instrumentation 

An Agilent 6470 triple quadrupole (QQQ) mass spectrometer with a coaxial sheath liquid 

electrospray ionization (ESI) source coupled to an Agilent 7100 CE unit was used for all 

experiments (Agilent Technologies Inc., Mississauga, ON, Canada). An Agilent 1260 infinity 

isocratic pump and degasser were used to deliver a sheath liquid mixture of methanol:water (80:20 

vol) with 0.5% vol NH4OH at a flow rate of 10 μL/min using a CE-MS coaxial sheath liquid 

interface kit. The nebulizing gas (N2) was set off during serial sample injection and then turned on 

at a pressure of 10 psi during separation following voltage application.43, 44 The source capillary 

voltage (Vcap) was set at 3500 V with the drying gas at a flow rate of 4 L/min and the source 
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temperature at 300 °C in negative ion mode. For all PFAS standards, an MRM scan was performed 

including quantifier and qualifier ion transitions generated under optimal fragmentation voltages 

as summarized in Table 3.1. Separations were performed on bare fused-silica capillaries with 50 

μm internal diameter, 360 μm outer diameter and 90 cm total length (Polymicro Technologies Inc., 

AZ, USA). A capillary window maker (MicroSolv, Leland, NC, USA) was used to remove about 

7 mm of the polyimide coating on both ends of the capillary to prevent polymer swelling when in 

contact with organic solvents.45 The applied voltage was set to 30 kV at 25 °C for CE separations 

together with a pressure application of 20 mbar (2 kPa) for the first 8 min followed by a 2 mbar 

per minute gradient pressure increase. The nonaqueous background electrolyte (BGE) was 

composed of 35 mM of ammonium acetate in acetonitrile (70% vol), methanol (15% vol) and 

isopropanol (5% vol) with an apparent pH of 9.5 adjusted by addition of 12% vol of concentrated 

ammonium hydroxide. Samples were injected hydrodynamically at 50 mbar (5 kPa) alternating 

between 10 s for each sample plug and 40 s for the nonaqueous BGE spacer plug for a total of 

seven discrete samples analyzed within a single run. Prior to first use, capillaries were conditioned 

by flushing for 5 min at 950 mbar (95 kPa) sequentially with methanol, 0.1 M sodium hydroxide, 

deionized water, 1.0 M formic acid, deionized water then nonaqueous BGE for 15 min. Between 

runs, the capillary was flushed with nonaqueous BGE for 5 min at 950 mbar (95 kPa). Both 

nonaqueous BGE and sheath liquid solutions were degassed before use.  

3.3.3 Calibration and method validation of MSI-NACE-MS/MS 

10 mM stock solutions of PFOA and PFOS calibrants were prepared in MTBE with addition of 

0.1% w/v BHT as a neutral electroosmotic flow (EOF) marker. A serial dilution of calibrant 

solutions from 0.025 to 1.0 μM was prepared in triplicate when constructing seven-point 

calibration curves for PFASs using least-squares linear regression. All integrated peak areas for 
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the quantifier ions were normalized using 1.0 μM 13C8-PFOS as a stable-isotope internal standard. 

PFAS concentrations corresponding to limits of detection (LOD) and limits of quantification 

(LOQ) were calculated based on a serial dilution of calibrant solutions equivalent to a signal-to-

noise ratio (SNR) of 3 and 10, respectively. Blank extracts were also prepared intermittently to 

confirm lack of sample carry-over effects and background interferences. Reproducibility was 

evaluated via intra-day (n = 28) and inter-day (n = 84) precision studies based on three independent 

MSI-NACE-MS runs, at the beginning, middle and end of day, each with seven replicate injections 

of a 1.0 μM PFAS calibrant mixture over three consecutive days. Method accuracy was assessed 

by spike-recovery studies using PFOA and PFOS standards at three different concentration levels 

(100, 500, 1000 nM) into standard human serum (Sigma S7023) prior to MTBE extraction. PFAS 

recovery was calculated based on the percentage difference between spiked and original (baseline) 

concentration of human serum divided by the spiked (known) concentration.  

3.3.4 Study birth cohorts 

SouTh Asian birth cohoRT (START) study is a prospective birth cohort study involving 1006 

predominantly South Asian pregnant women recruited from Brampton and Mississauga, Ontario 

between 2011 and 2015.46 Fasting blood samples were collected in the second trimester, and serum 

was fractionated within 2 h from collection according to standard protocols and stored at -80 °C. 

A subset of residual serum samples from START birth cohort (n = 16) were analyzed for PFOA 

and PFOS in this work. The Family Atherosclerosis Monitoring In earLY life (FAMILY) study is 

a prospective birth cohort study involving 839 predominantly white European pregnant women 

recruited from the greater Hamilton area between 2002 and 2009.47 Fasting blood samples were 

collected in the second trimester, and serum was fractionated within 2 h from collection according 

to standard protocols and stored at -80 °C. A pooled serum sample from FAMILY was used as a 
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reference sample for PFAS analysis during method validation and was also used as a QC and 

introduced in every run to monitor technical precision when using MSI-NACE-MS/MS. Ethical 

approval and informed consent from all study participants were obtained.46,47 

3.3.5 Sample workup procedure for serum extracts 

 Human serum samples were prepared using a slightly modified extraction protocol using MTBE 

originally developed by Matyash et al.44, 48 First, 100 μL of 0.01% vol BHT in methanol was mixed 

with a 200 μL aliquot of serum. Next, 500 μL of 0.01 μM 13C8-PFOS in MTBE and 25 μL of 1.0 

M HCl were added to the mixture followed by vigorous shaking for 30 min at room temperature. 

Phase separation was then induced by addition of 200 μL of deionized water. Samples were then 

centrifuged at 3000 g at 4 °C for 30 min to sediment protein at the bottom of the vial followed by 

a biphasic water and ether (top) layer. A fixed volume (400 μL) was collected from the upper 

MTBE layer into a new vial, then dried under a gentle stream of nitrogen gas at room temperature. 

Serum extracts were then stored at -80 °C and reconstituted in 5.0 μL of 

acetonitrile/isopropanol/water (70:20:10 vol) with 10 mM ammonium acetate prior to analysis. 

This extraction procedure results in an overall 40-fold enrichment of PFAS from serum with good 

quantitative recovery. Standard human serum samples (100 µL) were spiked with 100, 500 and 

1000 nM PFAS in triplicates and extracted following the same protocol.  

3.3.6 Data processing and statistical analysis 

MSI-NACE-MS data was analyzed using Agilent Mass Hunter Workstation Software (Qualitative 

Analysis, version B.06.00, Agilent Technologies Inc., 2012). Molecular features were extracted in 

profile mode using a 10 ppm mass window for all transitions. Extracted ion electropherograms 

(EIEs) were integrated after smoothing using a quadratic/cubic Savitzky-Golay function (15 
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points) and peak areas, migration times and SNR were transferred to Excel (Microsoft Office, 

Redmond, WA, USA) for calculation of relative integrated peak area (RPA), relative migration 

time (RMT), LOD and LOQ. Least-squares linear regression analysis for external calibration 

curves and figures of merit calculations were performed using Excel. MedCalc version 12.5.0 

(MedCalc Software, Ostend, Belgium) was used for generation of boxplots and control charts, and 

all extracted ion electropherograms were depicted using Igor Pro 5.0 software (Wavemetric Inc., 

Lake Oswego, OR, USA). 

3.4 Results and Discussion 

3.4.1 Method optimization for PFAS analysis by MSI-NACE-MS/MS 

Optimization of separation, ionization and fragmentation conditions for PFASs was first explored 

when using MSI-NACE-MS/MS coupled to a coaxial sheath liquid interface (Figure 3.1A), which 

was recently validated for rapid quantification of serum fatty acids and accurate assessment of 

dietary fat intake.43,44 In this case, multiplexed separation was performed using a serial 

hydrodynamic injection program involving the introduction of alternating sample and BGE 

segments within a bare fused-silica capillary to increase sample throughput without complicated 

column switching or hardware modifications.49-51 However, perfluorinated anionic surfactants 

possess strong adsorption properties that contribute to band broadening and/or poor resolution in 

CE when using aqueous BGE conditions with inadequate organic modifier content.42 As a result, 

a nonaqueous BGE system was used for separation of PFASs in this work, which was composed 

of 70% vol acetonitrile, 15% vol methanol, and 5% vol isopropanol; however, residual water (10% 

vol) was still needed for solubilization of ammonium acetate as the electrolyte (apparent pH of  



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 107 

 
 

 
Figure 3.1. (A) Multiplexed separations of surface-active PFOA and PFOS when using MSI-NACE-MS based on serial injection of seven discrete samples 
followed by their zonal electrophoretic separation with MRM-scan data acquisition of quantifier (m/z 413à369 for PFOA m/z 499à80 for PFOS) and qualifier 
ions (m/z 413à169 for PFOA m/z 499à99 for PFOS) under negative ion mode detection. (B) Comparison of PFOA and PFOS separation resolution under 
aqueous (left) and non-aqueous (right) background electrolyte conditions.  (C) Optimization of nebulizer gas pressure for the coaxial sheath liquid interface. (D) 
Optimization of MRM transition parameters including fragmentor voltage (V) and collision energy for maximal precursor and product ion response, respectively. 
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9.5) to generate a stable current during electrophoretic separation. Figure 3.1B demonstrates a 

clear benefit of the non-aqueous BGE system as required for resolution of PFOA from PFOS 

unlike equivalent aqueous buffer conditions (pH 9.5) without organic modifiers that resulted in 

their co-migration after the EOF, where BHT serves as a neutral marker. In fact, baseline resolution 

of all seven independently introduced sample plugs in the same run was achieved within 20 min 

(~ 3 min/sample) when using the non-aqueous BGE system with PFOS migrating with a larger 

apparent negative electrophoretic mobility (i.e., longer migration time) as compared to PFOA. 

Improved solubilization and specific solvent-solute interactions have long been attributed to the 

unique selectivity in NACE52 with PFOS being bulkier, less volatile and more hydrophobic than 

PFOA.23 We recently demonstrated that a homologous series of fatty acids are accurately modeled 

in NACE based on their characteristic mobilities reflecting differences in carbon chain length and 

degree of unsaturation supporting their unambiguous identification that is complementary to high 

resolution MS.43  

Other experimental variables also impacted PFAS separation performance, such as drying 

gas flow rate, nebulizer gas pressure, as well as a hydrodynamic pressure applied during 

electromigration (i.e., pressure-assisted NACE). Nebulizer gas pressure is required in the CE-MS 

interface to stabilize spray formation, and higher nebulizer gas velocities contributed to faster 

migration times due to a greater siphoning effect,53 which in turn gave rise to sharper peaks and a 

3-fold higher SNR as depicted for PFOA in Figure 3.1C. Nevertheless, the nebulizer gas was 

required to be shut off during serial sample introduction in MSI-NACE-MS/MS when using low 

viscosity nonaqueous BGE solutions that can give rise to suctioning of air within the capillary inlet 

resulting in a current drop upon voltage application.43 In contrast, increasing drying gas flow rate 

from 4 L/min to 8 L/min resulted in longer migration times exceeding 20 min for both PFOA and  
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PFOS with greater band dispersion, whereas reducing it to 2L/min shortened the separation 

window with insufficient resolution from the EOF. Next, a pressure gradient of 2 mbar/min starting 

at 8 min was also introduced to further sharpen peaks for improved resolution of PFASs while also 

reducing total analysis times. Lastly, selective yet sensitive analysis of PFASs was achieved by 

MSI-NACE-MS/MS when performing collisional-induced dissociation of precursor ions to 

generate characteristic product ions, including quantifier and qualifier ions that were detected via 

MRM as shown in Figure 3.1D. Table 3.1 summarizes optimal voltage settings for MRM 

transitions for quantifier and qualifier ions associated with PFOS, PFOA and 13C8-PFOS (as 

internal/recovery standard), including fragmentor voltage, cell accelerator voltage, and collision 

energy. Noteworthy, a conventional electrospray ion source was optimal for MSI-NACE-MS/MS 

since it allowed for uninterrupted analyses without incidental capillary failures and/or current 

instabilities upon voltage application. In contrast, a dual Jet Stream electrospray source that uses 

a high flow of heated sheath gas together with a nozzle voltage increases the susceptibility to 

Table 3.1. Optimized parameters for MSI-NACE-MS/MS determination of PFOS and 
PFOA with 13C8-PFOS used as recovery standard in serum extracts. 

Compound MRM 
transition 

Fragmentor 
Voltage (V) 

Collision 
energy 

(V) 

Cell 
accelerator 
voltage (V) 

Dwell 
time 

(msec) 
PFOS 
Quantifier 499à80 60 60 5 100 

PFOS 
Qualifier 499à99 60 60 5 200 

PFOA 
Quantifier 413à369 60 10 7 100 

PFOA 
Qualifier 413à169 60 10 7 100 
13C8-PFOS 
Quantifier 507à80 60 60 5 100 
13C8-PFOS 
Qualifier 507à99 60 60 5 200 
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corona discharge under negative ion mode conditions resulting in frequent capillary fractures.43,45 

Also, the Jet Stream electrospray source precludes the ability of the sheath gas to be turned off 

completely during sample introduction that is critical for stable runs when using non-aqueous BGE 

systems. As a result, systematic method optimization of several experimental variables in MSI-

NACE-MS/MS was critical to enable high efficiency separation of PFASs with excellent 

selectivity, sensitivity, and robustness. 

3.4.2 Method validation for PFAS determination from serum extracts 

Validation of the optimized MSI-NACE-MS/MS method was next performed for reliable 

quantification of PFOA and PFOS from serum extracts based on several figures of merit as 

summarized in Table 3.2. External calibration curves were generated based on triplicate analysis 

of seven calibrant solutions that were acquired in a single run from 25 to 1000 nM, each containing 

1.0 μM 13C8-PFOS as a single stable-isotope internal/recovery standard for peak area normalization 

to correct for variations in injection volume between samples as shown in Figure 3.2A. As 

expected, there is co-migration of 13C8-PFOS and PFOS in all seven independent introduced 

sample plugs in MSI-NACE-MS/MS, which facilitates alignment and unambiguous confirmation 

of sample positions in cases when PFOS is not detected. Good linearity was found for PFOA and 

PFOS over a 40-fold linear dynamic range with correlation coefficients (R2) of 0.997 and 0.995, 

respectively as highlighted in Figure 3.2A. The LOD (SNR ~ 3) and LOQ (SNR ~ 10) for PFOA 

were 20 nM and 102 nM, and for PFOS were 25 nM and 117 nM, respectively. As expected, these 

detection limits are considerably lower than previous CE methods coupled to UV detection (LOD 

~ 3300 nM),39 as well as NACE methods with on-line sample preconcentration using large-volume 

sample stacking or field-amplified sample injections (LOD ~ 30-280 nM).41 Yet, LC-MS/MS 

methods with pre-column SPE reported significantly lower LODs for PFASs ranging from 0.02 to 
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Table 3.2. Method validation and figures of merit for rapid screening of PFOS and PFOA from serum extracts using MSI-NACE-
MS/MS 

PFAS Molecular 
Formula 

RMTa LODb 
(nM) 

LOQb 
(nM) 

Rangec 
(nM) 

Linearityc 
(R2) 

Mean 
% Recoveryd 

Intraday 
RMTe 
(CV) 

Intraday 
RPAe  
(CV) 

Interday 
RMTe  
(CV) 

Interday 
RPAe  
(CV) 

PFOA C8HF15O2 0.76 20 103 25-1000 0.997 97 ± 12 1.11 4.58 1.43 9.56 
PFOS C8HF17O3S 1.00 25 117 25-1000 0.995 109 ± 9 1.55 4.75 1.78 8.59 

a Relative migration time (RMT) calculated by normalization to 13C8-PFOS, which was also used for PFAS quantification based on relative peak area. 
b LOD and LOQ were estimated at the lowest PFAS calibrant concentration that generated a SNR ≈ 3 and 10, respectively. 
c Calibration curves from triplicate analysis of 7 calibrant solutions for PFASs over a 40-fold concentration range normalized to 13C8-PFOS.  
d Average % recovery for PFASs was calculated based on the percentage difference between spiked and original concentrations (in normal human serum) divided 
by the spiked concentration with triplicate measurements performed (n=3) at 3 concentration levels (100, 500 and 1000 nM). 
e Precision was assessed by analyzing 6 replicate injections of 1.0 µM PFAS calibrants along with a blank at the beginning, middle and end of day, over 3 
consecutive days analyzed using a single capillary. Method reproducibility determined by intraday (n = 28) and interday (n = 84) precision for both quantifier 
ions for PFOA and PFOS when using MSI-NACE-MS. 
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Figure 3.2. (A) Seven-point calibration curve for PFAS quantification by MSI-NACE-MS/MS over a 40-fold concentration range (25 to 1000 nM) based on 
their relative peak areas (RPA) normalized to 13C8-PFOS (1000 nM) as a single stable-isotope internal standard.  (B) Control charts depicting long-term method 
precision over 3 days of analysis for a calibrant mixture (n=84) of PFOA and PFOS when using MSI-NACE-MS/MS with mean CV < 10% and no outlier data 
exceeding action limits (± 3s). (C) Method application on pooled maternal serum samples collected before 2009 from FAMILY birth cohort highlighting higher 
PFAS exposures with precise measurements of six replicate serum extracts with no background signal in blank (0) extract. (D) Boxplots showing the distribution 
of PFOA and PFOS serum concentrations in a subset of maternal serum samples (n=16) from START birth cohort collected after 2009. 
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0.20 nM due to the much larger sample volumes injected on-column (~ 100-fold) as compared to 

CE (~ 10 nL).34,38 For these reasons, off-line sample enrichment was critical to enable the 

quantification of low nanomolar levels of PFOSs from serum extracts when using MSI-CE-

MS/MS. In this case, a simple MTBE extraction protocol using a 200 µL serum aliquot was able 

to preconcentrate PFASs by a factor of 40-fold when reconstituted into 5.0 µL, which effectively 

reduced LOD and LOQ to about 0.5 nM and 2.5 nM, respectively. This compares well to a recent 

CE-MS method using a sheathless interface for analysis of trace levels of environmental 

contaminants with LOD of 0.1 and 0.8 nM reported for PFOA and PFOS, respectively.42 

Importantly, spike-recovery studies confirmed good method accuracy in standard human serum, 

which was performed in triplicate for PFOA and PFOS at three different concentration levels (100, 

500 and 1000 nM). Overall, measured recoveries for PFASs in serum ranged from 86−123% with 

a mean recovery of 103% as summarized in Table 3.2. These results support the valid use of a 

single MTBE extraction fraction to ensure accurate quantification of PFASs that are predominately 

bound to human serum albumin in circulation, where PFOS has greater binding affinity than 

PFOA.54 Lastly, method precision was evaluated by assessment of both intraday (n = 28) and 

interday (n = 84) reproducibility for analysis of a standard mixture of PFASs by MSI-NACE-

MS/MS. Overall, the mean CV for the quantifier ions was 4.7 % and 9.1 % for intra-day and inter-

day precision, respectively when responses were normalized to 13C8-PFOS, whereas the mean CV 

for RMTs of PFOS and PFOA were < 2.0% for 84 repeated injections performed over three 

consecutive days (Table 3.2).  Figure 3.2B depicts control charts for analysis of PFOA and PFOS 

highlighting acceptable long-term technical precision over 3 days of intermittent analysis (CV < 

10%) with few outliers exceeding warning (± 2s), and no data exceeding action (± 3 s) limits. As 
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a result, high throughput screening of serum PFASs is feasible with acceptable accuracy, linearity 

and precision when using MSI-NACE-MS/MS following a simple ether extraction procedure. 

3.4.3 Assessment of PFAS exposures in maternal serum 

Following method optimization and validation, MSI-NACE-MS/MS was next applied to evaluate 

PFOS exposures in a sub-set of second trimester pregnant women (n = 16) from START. 

Additionally, a pooled maternal serum sample from FAMILY was used as a QC sample, as well 

as a reference comparator to evaluate potential changes in mean PFAS exposures prior to 

regulations to restrict PFAS production in 2009. Figure 3.2C shows representative extracted ion 

electropherograms for PFOA and PFOS detected from replicate serial injection of serum extracts 

for pooled QC (n = 6) together with a blank extract (n = 1) when using MSI-NACE-MS/MS, which 

highlights good technical precision (CV < 6%) with no sample carryover effects/background 

contamination. Overall, pregnant women from FAMILY (serum collected prior to 2009) were 

found to have a higher average exposure of PFASs as compared to START (serum collected after 

2009) with mean serum concentrations of PFOS and PFOA of 26 nM and 14 nM, respectively. In 

contrast, PFAS exposures assessed from individual pregnant women in START were variable yet 

much lower in concentration notably for PFOS, with median concentrations of 3.5 nM (range of 

0.70 to 9.0 nM) and 3.3 nM (range of 1.5 to 6.6 nM) for PFOS and PFOA, respectively as depicted 

in box-whisker plots in Figure 3.2D. These concentrations are consistent with exposures measured 

in a large cohort of Swedish women early in pregnancy with median concentrations of 10.8 and 

3.9 nM for PFOS and PFOA respectively, which also reported a higher risk for preeclampsia in 

women with greater PFAS exposures after adjustment for confounders.55 Also, the lower PFAS 

exposures in START as compared to FAMILY is in agreement with longitudinal studies in the 

Fernald Community cohort that demonstrated decreasing serum concentration trajectories 
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occurring from 2000-2008, especially for PFOS, yet with a corresponding increase in certain 

unregulated PFAS analogs, such as perflourononanoic acid.56 Future studies will investigate 

temporal changes in PFAS exposures in larger numbers of ethnically diverse birth cohorts, 

including assessing their impacts on childhood health outcomes. Also, the application of 

nanospray/sheathless interfaces in CE-MS42,57 is needed to further lower detection limits under 

negative ion mode conditions for measurement of legacy PFASs and an expanding array of PFAS 

replacements relevant to contemporary exposures. 

3.5 Conclusion 

PFASs pose an on-going challenge to environmental epidemiology due to their widespread 

pervasiveness and bioaccumulation that ensures a continued exposure risk given the rise of 

unregulated PFAS substitutes. For the first time, we demonstrate a rapid method for PFAS 

determination from serum when using MSI-NACE-MS/MS that is optimal for large-scale 

biomonitoring applications. This approach allows for reliable PFOS and PFOA quantification 

using a simple ether extraction protocol following rigorous method optimization and validation to 

ensure adequate robustness, accuracy, and precision. Our work overcomes previous technical 

challenges of CE/CE-MS methods using aqueous background electrolyte systems related to poor 

solubilization, deleterious band broadening and/or inadequate sensitivity for PFAS determination 

with low nanomolar detection limits. Multiplexed separations comprising seven or more discrete 

samples serially injected within a single run offers higher throughput (< 3 min/sample) than 

conventional chromatographic separations with greater data fidelity since a reference sample 

and/or blank extract can be incorporated in each run for improved quality control and batch 

correction. Preliminary studies confirm that maternal exposures to PFOA and PFOS have largely 

decreased since 2009, with considerable between-subject variability in PFAS serum 
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concentrations reflecting different exposure mechanisms in pregnant women.  We anticipate that 

this method may allow for comprehensive PFAS surveillance when using full data acquisition with 

high resolution MS for new advances in maternal health and the developmental origins of health 

and disease.  
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Chapter IV: Serum Non-Esterified Fatty Acids have Utility as Dietary Biomarkers of Fat 
Intake from Fish, Fish Oil and Dairy in Women  

 

“All we know is what we’re told?” 

4.1 Abstract 

Nutritional studies rely on various biological specimens for fatty acid (FA) determination, yet there 

remains a knowledge gap regarding the relationship of serum non-esterified FA (NEFA) to other 

circulating lipid pools. We performed two studies to assess the utility of specific serum NEFA as 

biomarkers of dietary fat intake in women when using a high throughput method (< 4 min/sample) 

based on multisegment injection-non-aqueous-capillary electrophoresis–mass spectrometry (MSI-

NACE-MS). We first aimed to identify circulating NEFA correlated to habitual intake of specific 

foods among pregnant women with contrasting dietary patterns (n = 50). Acute changes in serum 

NEFA trajectories were also measured in young women (n = 18) following high-dose (5 g/day) 

fish oil supplementation or isoenergetic sunflower oil placebo over 56 days. In the cross-sectional 

study, serum omega-3 (ω-3) FA correlated with self-reported total ω-3 daily intake, notably 

eicosapentaenoic acid (EPA) as its NEFA (r = 0.46; p = 0.001), whereas pentadecanoic acid was 

strongly associated with full-fat dairy intake (r = 0.43; p = 0.002); these outcomes were consistent 

with FA measurements from total serum hydrolysates. In the intervention study, a 2.5-fold increase 

in serum ω-3 NEFA from baseline was achieved within 28 days following fish oil supplementation 

that was most pronounced for EPA (p = 0.0004). Circulating EPA was also correlated to its 

erythrocyte phospholipid fraction (r = 0.66; p = 4.6 × 10-10) unlike docosahexaenoic acid, and was 

more sensitive to detect dietary non-adherence. MSI-NACE-MS offers a rapid approach for serum 

NEFA quantification as required for accurate biomonitoring of dietary fat intake in support of 

maternal health. 
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4.2 Introduction 

Accurate assessment of dietary fat intake remains a methodological challenge reflecting decades 

of conflicting evidence regarding the benefits of a low-fat diet for public health.1 Validated semi-

quantitative food frequency questionnaires (FFQ) are widely used dietary assessment tools in 

large-scale observational studies as they can reliably differentiate habitual dietary patterns, as well 

as estimate micro- and macronutrient intake in a cost-effective manner.2 However, FFQ are prone 

to recall bias, errors in estimation of true portion sizes, as well as selective reporting;3 this problem 

is exacerbated when assessing habitual fat intake due to the large variation of fatty acid (FA) 

species in the diet, and the tendency for underreporting fat consumption.4 Errors associated with 

participant self-reporting have been recognized as one of the greatest obstacles in nutritional 

epidemiology, limiting our ability to capture food exposures in contemporary societies.5 

Comprehensive metabolite profiling (i.e., metabolomics) offers a strategy to objectively measure 

complex dietary patterns, including the discovery of new biomarkers of recent food intake.6 An 

optimal dietary biomarker is readily measurable in a minimally invasive human biofluid (urine or 

blood), specific to a single food group (selective), responsive to changes in the amount of food 

consumed (dose-response) over a desired time frame (time-response), and is ideally not generated 

in vivo nor extensively biotransformed (exogenous).7 For example, proline betaine is a reliable 

dietary biomarker of recent citrus intake (< 24 h) in plasma and urine samples that has been 

validated in several independent observational and intervention studies.3,8-10 Such biomarkers 

generally do not exist for most FA since they are synthesized de novo from carbohydrates and 

other FA precursors; however, there are some exceptions, such as certain polyunsaturated FA 

(PUFA), odd-chain FA (OCFA), and trans-FA (TFA) since they are primarily derived from 

specific food sources and thus largely not synthesized in-vivo.11 
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 There is an evolving consensus regarding optimal nutritional guidelines for dietary fat with 

greater emphasis placed on assessing the specific type of fat within complex dietary patterns as 

opposed to measuring total fat intake and single nutrients.12 For example, many jurisdictions have 

now restricted industrial TFA exposures from processed foods due to their deleterious effects on 

cardiovascular health as compared to non-restricted populations.13 Recent findings from the 21-

country Prospective Urban and Rural Epidemiological (PURE) study reported that total fat is 

correlated with lower total mortality, and increased saturated fat or total dairy consumption with 

lower risk for cardiovascular events;14, 15 however, these studies have relied on estimating intakes 

of FA from FFQ, and gathered health information from different countries with the potential for 

residual confounding. As a result, high throughput methods for objective measurements of 

circulating FA concentrations are thus needed to provide a more standardized yet accurate 

approach for assessment of habitual fat consumption. This is important given conflicting data 

regarding the putative health benefits of dietary intake of essential omega-3 (ω-3) PUFA,16 such 

as clinical trials involving supplementation of eicosapentaenoic acid (EPA) and docosahexaenoic 

acid (DHA) from fish oil (FO) or a prescription based EPA analog for primary or secondary 

prevention of cardiovascular disease events.17,18 Various biospecimen types have been used for FA 

determination and each reflects a different time interval associated with dietary fat intake, 

including adipose tissue (1-2 years), erythrocyte membrane (2-3 months), serum phospholipids 

(PL) or cholesterylesters (CE) (past few days), and triglycerides (TG) (past few hours) 

fractions.4,11,19 While adipose tissue may be useful for long-term assessment of dietary fat intake, 

such biopsies are invasive and cannot be routinely collected. Also, erythrocytes isolated from 

whole blood are prone to hemolysis during processing and long-term storage20, 21 and they are not 

often available in most bio-bank repositories unlike serum or plasma. As of 2016, it was reported 
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that 90% of studies analyzing ω-3 PUFA used erythrocytes membrane PL, serum PL, or total 

(hydrolyzed) plasma lipids.22 Alternatively, fasting serum non-esterified FA (NEFA) are a more 

accessible protein-bound lipid pool, which are released into circulation by the hydrolyzing action 

of lipases on TG from adipose tissue.4 Nevertheless, there have been few reports to date examining 

the utility of NEFA as biomarkers of dietary intake in nutritional studies as compared to total FA 

from serum extracts, and other blood fractions or adipose tissue samples.19, 23 For instance, gas 

chromatography (GC) methods allow for high efficiency separation of FA and their isomers,24 but 

are limited by long analysis times and pre-column chemical derivatization procedures that 

contribute to bias due to hydrolysis of esterified FA from other lipid classes, impeding reliable 

serum NEFA determination.25 

 Herein, we performed two studies to assess the utility of serum NEFA as convenient dietary 

biomarkers of fat intake in women when using multisegment injection-non-aqueous-capillary 

electrophoresis–mass spectrometry (MSI-NACE-MS). This multiplexed separation method offers 

higher sample throughput (< 4 min/sample) and stringent quality control (QC) for direct analysis 

of NEFA from serum extracts without fractionation, hydrolysis and chemical derivatization unlike 

conventional GC methods.26 For the first time, we assess a cross-section of pregnant women with 

contrasting diet quality patterns27 when using MSI-NACE-MS to identify specific serum NEFA 

that serve as biomarkers of habitual intake of fish/seafood, full-fat dairy products, and fiber as 

compared to FA from total serum hydrolysates. Also, time-dependent changes in serum EPA and 

DHA in young women participating in a placebo-controlled, repeated-measures trial of high-dose 

FO supplementation28 were also examined as their circulating NEFA relative to independent 

erythrocyte membrane PL measurements.  
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4.3 Experimental Section 

4.3.1 Serum NEFA biomarkers of dietary fat intake in pregnant women from FAMILY 

The Family Atherosclerosis Monitoring In earLY life (FAMILY) study is a prospective birth 

cohort study involving 839 predominantly white European pregnant women recruited from the 

greater Hamilton area between 2002 and 2009.27 Fasting blood samples were collected in the 

second trimester, and serum was fractionated within 2 h from collection according to standard 

protocols and stored at -80 °C. Comprehensive clinical and dietary data from all participants were 

also collected. Ethical approval and informed consent from all study participants were obtained. 

In this study, we used purposive sampling, after exclusion of smokers and women with gestational 

diabetes mellitus, to generate a subset of women (n = 50) from 226 eligible participants, half of 

whom consumed a healthy diet and half of whom consumed a poor quality diet as assessed by a 

diet quality index (DQI) score29 with a mean age of 32 years (range of 17 to 43 years) and pre-

pregnancy BMI of 27 kg/m2 (range of 18 to 50 kg/m2). Briefly, a semi-quantitative FFQ developed 

for the Study of Health and Risk in Ethnic Groups (SHARE) study30 was used to assess maternal 

dietary intake on one occasion after recruitment at about mid-pregnancy by asking the participants 

to answer the questions in the context of the usual eating habits during the last one year period. 

The complete FFQ was analyzed by using a database linked to the Canadian Nutrient File. Nutrient 

composition was calculated as previously described,31 excluding records where the FFQ was 50% 

incomplete, or with implausible dietary intakes (< 500 or > 4500 kcal/d). Use of supplements was 

also assessed as part of the FFQ, which included a separate supplemental questionnaire for cod 

liver or halibut oil supplement usage. The DQI score used to classify the nutritional status of 

pregnant women into healthy and unhealthy eating categories was based on reported daily servings 

of foods from 36 harmonized food groups as described previously.29 This aggregate score reflects 
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differences in the overall nutritional quality of foods consumed, which was based on the sum of 

the daily number of servings of healthy and nutrient-rich foods (e.g., fermented dairy, fish and 

seafood, vegetables, fruits, whole grains, nuts and seeds) minus the daily number of servings of 

unhealthy and processed foods (e.g., processed meats, refined grains, fries, snacks, sweets and 

sweet drinks). A positive DQI score signifies consumption of greater amounts of healthy than 

unhealthy foods and vice versa for a negative DQI score. In this study, 25 participants were 

selected from the top 10th percentile to form the “good diet” group, and the bottom 10th percentile 

of the cohort comprised the “poor diet” group as summarized in Figure S4.1. 

4.3.2 High dose ω-3 PUFA supplementation in women and serum NEFA trajectories 

Serum NEFA were analyzed using fasting serum samples from a clinical intervention trial 

investigating the effect of ω-3 PUFA supplementation from FO on attenuating skeletal muscle 

atrophy following leg immobilization.28 The trial was registered at the U.S. National Library of 

Medicine (https://clinicaltrials.gov/) as NCT03059836. Briefly, a cohort of healthy young women 

with a mean age of 22 years (range of 19 to 31 years) and BMI of 24 kg/m2 (range of 18 to 26 

kg/m2), were recruited from the greater Hamilton area to participate in a randomized, double-

blinded, placebo-controlled intervention study. Participants received either the active treatment 

arm of a high-dose ω-3 PUFA from FO (3.0 g EPA, and 2.0 g DHA daily, n = 9), or a control 

based on an isoenergetic and volume equivalent sunflower oil daily (n = 9). Serum samples in the 

resting fasted state was collected from participants at baseline, and at 28, 42 and 56 days following 

initiation of the intervention, which were then stored at -80 °C. Participants taking FO supplements 

within 6 months of the study were excluded, 2 participants had missing residual serum samples 

from the original study, and 1 participant was reported to be non-compliant to leg immobilization 

intervention, and possibly dietary treatment.28 Comprehensive analysis of serum NEFA in this 
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work was compared to FA concentrations reported for the erythrocyte membrane PL fraction 

measured using a validated protocol based on GC-FID. 28  

4.3.3 Validated method protocol for serum NEFA and total FA analysis by MSI-NACE-MS  

NEFA from fasting serum samples collected from young women in both studies, along with 

standard human serum (Sigma S7023) used as a quality control (QC) specimen, were analyzed 

using a previously validated protocol for rapid serum NEFA determination based on MSI-NACE-

MS that included an extensive inter-method comparison to GC-MS.26 In all cases, frozen serum 

aliquots were thawed once slowly on ice prior to analysis. Briefly, protein-bound circulating FA 

were extracted from serum in acidified (3.7 % vol of 1.0 M HCl) methyl-tert-butyl ether 

(MTBE):methanol (5:1, vol) containing butylated hydroxytoluene (BHT, 0.01% vol) as an 

antioxidant additive during sample processing, and a deuterated analog of myristic acid, 14:0-d27 

as a recovery standard. Following vigorous shaking, phase separation was then induced by addition 

of deionized water, and samples were then centrifuged to sediment protein at bottom of vial (at 

3000 g at 4 °C for 30 min) followed by a biphasic water and ether (top) layer. A fixed volume (200 

μL) was collected from the upper MTBE layer into a new vial then dried under a gentle stream of 

nitrogen gas at room temperature. Dried serum extracts were then stored at -80 °C and at time of 

analysis reconstituted in 25 μL of acetonitrile/isopropanol/water (70:20:10) with 10 mM 

ammonium acetate and 50 μM deuterated stearic acid, 18:0-d35 as an internal standard. For 

analysis of total (hydrolyzed) serum FA, acid-catalyzed hydrolysis was performed using 2.5 M 

sulfuric acid and 0.01% vol BHT in toluene followed by incubation at 80 °C for 1 h.26 MTBE 

extraction was then carried out to recover total serum FA similar to protocol outlined for serum 

NEFA. An Agilent 6230 time-of-flight (TOF) mass spectrometer with a coaxial sheath liquid 

electrospray (ESI) ionization source equipped with an Agilent G7100A CE unit was used for all 
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experiments (Agilent Technologies Inc., Mississauga, ON, Canada). An Agilent 1260 Infinity 

isocratic pump was used to deliver an 80% vol methanol with 0.5% vol ammonium hydroxide at a 

flow rate of 10 μL/min using a CE-MS coaxial sheath liquid interface kit. Separations were 

performed on bare fused-silica capillaries with 50 μm internal diameter, 360 μm outer diameter 

and 95 cm total length (Polymicro Technologies Inc., AZ, USA). The applied voltage was set to 

30 kV at 25 °C for CE separations together with an isocratic pressure of 20 mbar (2 kPa). The 

background electrolyte (BGE) was 35 mM ammonium acetate in 70% vol acetonitrile, 15% vol 

MeOH, 5% vol isopropanol with an apparent pH of 9.5 adjusted by addition of 12% vol of 

ammonium hydroxide. Serum extracts were injected hydrodynamically at 50 mbar (5 kPa) 

alternating between 5 s for each sample plug and 40 s for the BGE spacer plug for a total of 7 

discrete samples analyzed within 30 min for a single run.26,32 Repeat QC samples introduced in a 

randomized position for each MSI-NACE-MS run were analyzed for NEFA (n = 8) and total FA 

analysis (n = 8) for assessment of technical precision of the method. All FA extracts were analyzed 

directly by MSI-NACE-MS without chemical derivatization when using negative ion mode 

detection at 3500 V with full-scan data acquisition (m/z 50-1700), which allows for comprehensive 

screening of 24 FA consistently measured in human serum extracts. 

4.3.4 Data processing, statistical analyses and data availability 

MSI-NACE-MS data was analyzed using Agilent Mass Hunter Workstation software (Qualitative 

Analysis, version B.06.00, Agilent Technologies, 2012). Molecular features were extracted in 

profile mode within a 10 ppm mass window, and serum NEFA were annotated based on their 

characteristic accurate mass (m/z) corresponding to their intact deprotonated molecular ion [M-H]-

, and relative migration time (RMT) reflecting the electrophoretic mobility for anionic FA. 

Extracted ion electropherograms (EIE) were integrated after smoothing using a quadratic/cubic 
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Savitzky-Golay function (15 points), and integrated peak areas and apparent migration times were 

normalized to stearic acid-d35 for determination of relative peak area (RPA) and RMT. Least-

squares linear regression analysis for external calibration curves and control charts were performed 

using Excel (Microsoft Office, Redmond, WA, USA). Principal component analysis (PCA) was 

used for data visualization (i.e., data trends/outlier detection) when comparing the technical 

variance of QC samples as compared to the overall biological variance of serum NEFA 

concentrations between-subjects when using MetaboAnalyst 4.0.33 For multivariate analysis for 

data visualization and univariate analysis comparing maternal diet sub-groups, data was 

normalized using a generalized log transformation and autoscaled with FDR correction applied for 

multiple hypothesis testing. Also, a QC based batch-correction algorithm was performed to correct 

for long-term signal drift in ESI-MS for robust serum NEFA determination using an algorithm 

available in the R Project for statistical computing.34 Normality tests, Pearson and Spearman rank 

correlations, student’s t-test, and nonparametric statistical analysis (Mann-Whitney U test) were 

performed using the Statistical Package for the Social Science (SPSS, version 18), whereas 

MedCalc version 12.5.0 (MedCalc Software, Ostend, Belgium) was used for generation of 

boxplots. To assess the validity of serum NEFA and total FA against reported dietary intakes of 

fish, full-fat dairy, and total fiber, as well as the diet quality index score, we used a Spearman’s 

rank correlation coefficient (r) for non-transformed data. A correlation coefficient of r = 0.1 to 0.3 

was considered a small effect, r = 0.3 to 0.5 a moderate effect, and r > 0.5 a large effect. In order 

to minimize error by accounting for EPA and DHA sources from both the diet and 

supplementation, a total daily ω-3 PUFA servings score (total ω-3) was devised, calculated from 

FFQ as the sum of EPA and DHA from self-reported dietary intake (g/day), as well as self-reported 

supplement use (g/day). Multiple regression models were constructed for log-transformed 
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measured serum NEFA concentrations to account for potential confounding variables (i.e., BMI, 

cholesterol and HDL) that were different (p < 0.05) between the two dietary sub-groups. 

Circulating NEFA are reported in terms of absolute molar concentrations (μM) as a standardized 

way to enable data comparisons independent of analytical platform, sample workup protocols, and 

range of FA measured. A 2-way between and within mixed-model ANOVA (treatment; time) was 

used for assessing the impact of high-dose FO supplementation to alter circulating NEFA 

concentrations in healthy/non-pregnant women as compared to a placebo control. A Pearson 

correlation coefficient for non-transformed data was used to test the association between serum 

NEFA and FA from erythrocytes PL fraction. All processed serum FA data and de-identified 

clinical/dietary information for participants is available as an excel file in the supporting 

information section (NEFA-Serum-JLR.xlsx). This data includes original and batch-corrected 

RPA for NEFA measured by MSI-NACE-MS, as well as their serum concentrations from both 

observational and intervention studies, including matching total serum hydrolysate and 

independent erythrocyte PL fraction measurements, respectively.   

4.4 Results 

4.4.1 High throughput serum NEFA determination by MSI-NACE-MS 

Overall, 24 serum FA (ranging from 9:0 to 24:1) were reliably measured as their NEFA and/or 

total hydrolyzed FA by MSI-NACE-MS from serum ether extracts (> 95%) with acceptable 

technical precision (CV < 15%) when using standard serum for QC as summarized in Table S4.1. 

Serum FA were analyzed after normalization of their ion responses to a single deuterated internal 

standard (18:0-d35) added to all samples, and most circulating FA were quantified in terms of their 

absolute concentration (μM) using an external calibration curve. Each run consisted of a serial 
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injection of 6 randomized serum samples together with a QC as shown in Figure 4.1A for 

representative serum NEFA annotated by their accurate mass and relative migration time 

(m/z:RMT). Anionic FA are resolved based on differences in their electrophoretic mobility (i.e., 

carbon-chain length, degrees of unsaturation) that migrate after the electroosmotic flow (EOF) 

away from major neutral/zwitter-ionic lipids (i.e., triacylglycerides, phospholipids, cholesterol) 

when using an alkaline non-aqueous buffer system, and detected as their intact molecular ion [M-

H-] under negative ion mode using a coaxial sheath liquid interface;26 however, geometric isomers 

for certain FA are not baseline resolved. Figure 4.1B highlights that larger biological variance was 

evident for fasting serum NEFA (mean CV = 62%) as compared to corresponding total FA from 

serum lipid hydrolysates (mean CV = 32%) in pregnant women (n = 50). Also, good technical 

precision was confirmed based on repeat analysis of QC samples (mean CV ≈ 12%, n = 8), whereas 

a control chart for a recovery standard (14:0-d27) shows reliable long-term performance with few 

samples (≈ 2.6%, n = 114) exceeding warning limits (± 2s). Previous method validation studies 

demonstrated good mutual agreement for serum FA determination when using MSI-NACE-MS as 

compared to GC-MS,26 which is optimal for higher throughput NEFA screening (< 4 min/sample) 

without pre-column chemical derivatization, lipid fractionation and/or hydrolysis artifacts. Only 

about 5-6% of total PUFA are protein-bound NEFA (e.g., DHA, EPA and arachidonic acid) unlike 

other FA that are not extensively esterified into blood lipids, such as lauric acid (12:0) and myristic 

acid (14:0) as summarized in Table S4.1. 
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Figure 4.1. (A) Multiplexed separations of FA from serum extracts for assessment of dietary fat intake in pregnant 
women using MSI-NACE-MS under negative ion mode detection. This method relies on a serial injection of six 
randomized samples and a QC within each run to enhance sample throughput, where traces depict a total 
electropherogram, and a series of extracted ion electropherograms for representative serum NEFA annotated by their 
characteristic accurate mass and relative migration time (m/z:RMT), including a deuterated internal standard for data 
normalization. (B) Unsupervised multivariate data analysis using PCA depicts the biological variance from 24 FA as 
their NEFA or total hydrolysates, as compared to the technical variance from repeat QC, including a control chart for 
a recovery standard added to all processed serum samples. 

4.4.2 Serum ω-3 PUFA status reflects differences in diet quality and habitual fish intake 

Anthropometric and clinical data from second trimester pregnant women classified by their 

contrasting diets from FFQ are summarized in Table 4.1. Overall, 50 women were selected from 

eligible FAMILY participants (Figure S4.1) reflecting healthy (median DQI score = 12.0 ± 1.9) 

and non-healthy (median DQI score = - 9.1 ± 3.0) maternal eating patterns, respectively. As 

expected, pre-pregnancy BMI was lower in the healthy eating diet sub-group, but there were no 

differences in age, and weight gain during pregnancy, as well as fasting glucose concentrations, 

hemoglobulin glycation, serum triglycerides, and LDL; however, total and HDL cholesterol were   
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Table 4.1. Anthropometric and clinical characteristics of a cross-section of second-trimester 
pregnant women with contrasting dietary patterns from the FAMILY study. 
Parameter Poor diet group (n=25) Good diet group (n=25) p-value 
Age (years) 31.3 ± 5.2 33.7 ± 5.7 0.14 
Pre-pregnancy BMI (kg/m2)* 29.3 ± 7.4 24.6 ± 5.3 0.011 
Gestational weight gain (kg) 14.8 ± 6.9 14.1 ± 4.4 0.69 
Total cholesterol (mmol/L) 6.0 ± 1.2 6.9 ± 1.0 0.015 
LDL (mmol/L) 3.1 ± 1.0 3.5 ± 1.3 0.32 
HDL (mmol/L) 1.8 ± 0.4 2.2 ± 0.5 0.006 
Triglycerides* (mmol/L) 2.2 ± 0.8 2.3 ± 0.9 0.76 
Fasting blood glucose (mmol/L) 4.4 ± 0.4 4.4 ± 0.5 0.69 
HbA1c* 0.05 ± 0.01 0.05 ± 0.003 0.65 
Diet quality index score* 
(range) 

- 9.1 ± 3.0 
(-16.5 to - 6.2) 

12.0 ± 1.9 
(10.8 to 17.4) < 0.0001 

Fish/seafood (#servings/day)* 0.1 ± 0.1 0.3 ± 0.2 < 0.0001 
Total [EPA+ DHA] (g/day)* 0.07 ± 0.06 0.39 ± 0.50 < 0.0001 
Total fiber (g/day) 18.3 ± 8.3 34.2 ± 7.6 < 0.0001 
Full-fat dairy (#servings/day) 1.2 ± 1.1 1.6 ± 1.4 0.36 
Presented data are mean and error as ± 1 s. Statistical comparisons assuming equal (t-test) or unequal variance 
(Welch’s t test) or non-parametric Mann-Whitney test* were performed as appropriate. Results were considered 
significant when p < 0.05. Full range of diet quality index score shown. 

modestly lower in the poor diet quality maternal group (p < 0.02). Importantly, total fiber intake, 

and daily fish/seafood servings were significantly higher in the healthy eating diet group (p < 

0.0001) unlike full-fat dairy intake since it was not used a variable in the DQI score for participant 

selection. As expected, pregnant women consuming a healthy diet had consistently higher 

circulating concentrations of ω-3 PUFA, namely DHA and EPA in terms of their serum NEFA 

and total FA as compared to the poor diet quality maternal sub-group (Figure 4.2A and 4.2B). 

Moreover, moderate correlations (r = 0.3 to 0.5; p < 0.05) were measured between serum EPA, 

DHA, and their sum [EPA+DHA], relative to the DQI score, as well as total ω-3 PUFA from FFQ 

based on daily average intakes of EPA and DHA estimated during pregnancy from both dietary 

sources and FO supplement use as highlighted in Table 4.2. 
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Figure 4.2. Boxplots and scatter plots for ω-3 PUFA in serum as (A) total hydrolyzed FA and (B) NEFA that are 
different among pregnant women with contrasting diets based on a DQI score using univariate Mann-Whitney test (p 
< 0.05) and after FDR adjustments (q < 0.05). (C) Scatter plot (left) showing the correlation of serum [EPA+DHA] 
measured as their NEFA by MSI-NACE-MS with self-reported total daily intake of ω-3 PUFA from FFQ; and 
histogram (right) showing the concentration distribution of EPA as its NEFA. (D) Scatter plot (left) showing the 
correlation of 15:0 as its NEFA with daily servings of full-fat dairy from FFQ, and histogram (right) showing the 
concentration distribution of 15:0 as its NEFA. 
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Table 4.2. Spearman rank correlation coefficients between serum ω-3 PUFA concentrations 
measured as their NEFA or total (hydrolyzed) FA fraction as compared to the diet quality index 
score, fish/seafood daily servings, and total ω-3 PUFA intake in pregnant women (n = 50) with 
contrasting diets from the FAMILY study. 
 Diet quality index scorea Fish/seafood (#servings/day) Total ω-3 (g/day)b 

Serum fatty acids r p-value r p-value r p-value 

NEFA       

EPA (20:5n–3) 0.29* 0.043 0.45** 0.0010 0.46** 0.0010 

DHA (22:6n–3) 0.38** 0.0060 0.36* 0.011 0.40** 0.0040 

[EPA+DHA] 0.36** 0.010 0.40** 0.0040 0.43** 0.0020 

Total FA       

EPA (20:5n–3) 0.37** 0.0090 0.47** 0.0010 0.50** 0.0003 

DHA (22:6n–3) 0.28 0.052 0.29* 0.045 0.33* 0.024 

[EPA+DHA] 0.40** 0.004 0.43** 0.0020 0.46** 0.0010 

Correlation is significant at the * 0.05 level (2-tailed) ** 0.01 level (2-tailed) 
a An aggregate score reflecting differences in nutritional quality of foods consumed based on the sum of the daily 
number of servings of healthy/nutrient-rich foods (e.g., fermented dairy, fish/seafood, vegetables, fruits, whole 
grains, nuts/seeds) minus the daily number of servings of unhealthy/processed foods (e.g., processed meats, refined 
grains, fries, snacks/sweets). 
b Daily average servings of [EPA + DHA] intake estimated from FFQ, including diet (fish/seafood) and FO 
supplement use. 

In fact, the strongest correlation was serum EPA as its NEFA or total FA with self-reported total 

ω-3 PUFA with r = 0.46 and 0.50 (p < 0.001), respectively. As for the correlation of circulating 

DHA with total ω-3 PUFA intake, it was found to be higher for NEFA (r = 0.40; p = 0.0040) as 

compared to total serum FA pool (r = 0.33; p = 0.024). Only 4 of 50 women were reported to be 

taking FO/ ω-3 supplements during pregnancy, and these women had the highest circulating NEFA 

concentrations for EPA. Tables S4.2 and S4.3 summarize results from the linear regression model 

based on measured EPA and DHA concentrations as a function of the DQI score, and total ω-3 

PUFA with adjustments for covariates between both diet groups, namely BMI, total cholesterol 
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and HDL. Overall, correlations remained significant (p < 0.05) after adjustments for BMI and total 

cholesterol, as well as HDL in most cases. The scatter plot in Figure 4.2C illustrates the positive 

correlation (r = 0.43, p = 0.0020) between measured concentrations for [EPA+DHA] as compared 

to self-reported ω-3 PUFA intake (g/day), which also includes a histogram for circulating EPA as 

its NEFA which had a median serum concentration of 1.64 μM. A correlation analysis (Table 

S4.4) between serum NEFA and total FA also demonstrated a much stronger association for EPA 

(r = 0.57; p = 2.0 × 10-5) as compared to DHA (r = 0.29; p = 0.049) highlighting the unique attribute 

of this low abundance circulating ω-3 PUFA. 

4.4.3 Serum odd-chain/saturated FA reflect full-fat dairy and total fiber intake 

Certain SFA as their serum NEFA and/or total FA hydrolysates were correlated with self-reported 

intake of full-fat dairy (Table 4.3). For instance, serum pentadecanoic acid (15:0) as its NEFA had 

the strongest association to full-fat dairy intake (r = 0.43; p = 0.0020), whereas heptadecanoic acid 

(17:0) was not significant (r = 0.21; p = 0.15). However, 17:0 from total hydrolyzed serum had a 

weak correlation to full-fat dairy (r = 0.29; p = 0.043). In this case, total 17:0 was also associated 

with daily fiber servings (r = 0.29; p = 0.050), including both soluble (r = 0.38; p = 0.008), and 

insoluble fiber (r = 0.31; p = 0.034) fractions. Also, serum myristic acid (14:0) showed a similar 

outcome as 15:0 as its NEFA (r = 0.30; p = 0.034) and total FA (r = 0.35; p = 0.016) albeit with a 

more moderate correlation to full-fat dairy intake. The scatter plot in Figure 4.2D highlights the 

positive correlation of fasting serum 15:0 as its NEFA to self-reported daily intake of dairy 

products (#servings/day). NEFA 14:0 and notably 15:0 are selective biomarkers of dairy fat since 

they were not correlated to either low-fat or fermented dairy intake. Also, circulating NEFA 15:0 

status did not differentiate dietary sub-groups of pregnant women from FAMILY (p = 0.36) as  
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Table 4.3. Spearman rank correlation coefficients between serum FA measured as their NEFA 
or total (hydrolyzed) FA fraction as compared to full-fat dairy daily servings, and total fiber in 
pregnant women (n = 50) with contrasting diets from the FAMILY study. 
 Full-fat Dairy (#servings/day)a Total Fiber (g/day)b 

Serum Fatty Acids r p-value r p-value 

NEFA     

Myristic acid (14:0) 0.30* 0.034 0.040 0.76 

Pentadecanoic acid (15:0) 0.43** 0.0020 0.12 0.39 

Heptadecanoic acid (17:0) 0.21 0.15 -0.26 0.86 

Total     

Myristic acid (14:0) 0.35* 0.016 0.11 0.48 

Pentadecanoic acid (15:0) 0.33* 0.023 0.22 0.14 

Heptadecanoic acid (17:0) 0.29* 0.043 0.29* 0.050 

Correlation is significant at the * 0.05 level (2-tailed) ** 0.01 level (2-tailed)  
a Daily average servings of full-fat dairy products estimated from FFQ, including intake of cream of any kind,  
whole milk, milk, cottage/ricotta cheese, cream cheese, sour/whipping cream, full-fat cheese. 
b Daily average intake of total fiber from various dietary sources estimated from FFQ. 
 

 
they had similar consumption patterns for full-fat dairy (Table 4.1) with a median serum 

concentration of 2.78 μM for 15:0 as its NEFA. 

4.4.4 Dietary intervention study in women: FO supplementation and serum NEFA 
trajectories  

In this study, serum NEFA were analyzed in fasting serum samples from 18 young women 

collected at 4 time points over a 56 day intervention period, including baseline. For the active 

treatment arm, there was a mean 2.5-fold increase in serum NEFA concentrations for [EPA+DHA] 

from baseline after 28 days following high-dose FO supplementation as compared to the placebo 

group; however, there was no further increase in serum concentrations of EPA, DHA, or 

[EPA+DHA] at later sampling times (42 and 56 days) when using a 2-way mixed model ANOVA 
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(p = 0.012) as shown in Figure 4.3A. As expected, there was no changes in the temporal 

concentrations for other serum NEFA measured by MSI-NACE-MS either within-subjects, or 

between treatment arms at all time points (Table 4.4). This includes circulating linoleic acid and 

oleic acid despite being major constituents of sunflower oil consumed by the placebo group 

(Figure 4.3B); these two major FA in circulation are highly abundant in numerous other food 

sources in the diet. Overall, changes in serum EPA as its NEFA was found to be more sensitive to 

FO supplementation as compared to DHA or [EPA+DHA], which also was able to readily detect 

a non-adherent participant (S10) to FO supplementation who was also previously reported not to 

be compliant with leg immobilization protocols.28 This is likely due to the lower circulating 

concentrations of EPA, and the higher dosage of EPA (≈ 3 g or 50% higher than DHA) used in FO 

supplement relative to DHA. Independent measurements available for hydrolyzed FA from 

erythrocyte membrane PL fraction showed a mean fold-change in [EPA+DHA] concentration of 

2.6 from baseline, which was consistent with serum NEFA measurements. Further exploration of 

the underlying relationship between these two distinctive blood lipid pools demonstrated that there 

was a strong correlation only for EPA (r = 0.66; p = 4.6 × 10-10) at all time points (n = 69) when 

comparing concentrations from NEFA (protein-bound) and erythrocytes (membrane-bound) PL 

fractions in matching blood samples unlike DHA  (r = 0.22; p = 0.074) as depicted in Figure 4.3C. 

A moderate correlation for DHA was only evident when comparing baseline and control cases (r 

= 0.35; p = 0.015; n = 44) after excluding data from the ω-3 PUFA treatment arm post-

supplementation. No associations were found for other FA analyzed from these two blood fractions 

when using validated MSI-NACE-MS and GC-FID methods. 
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Figure 4.3. Graphs depicting dynamic changes in serum NEFA concentrations in the intervention study in young 
women for the high dose fish oil supplementation group (FO) (n = 9) as compared to sunflower oil (Con) (n = 9) based 
on means and error bars (± 2s), including (A) responsive EPA, DHA, and [EPA+DHA] in contrast to (B) non-
responsive serum NEFA controls, including oleic acid, linoleic acid and pentadecanoic acid. The former two FA are 
major constituents in sunflower oil used that did not change in the control group. (C) Scatter plots showing a strong 
linear correlation (r = 0.66) between EPA concentrations as its serum NEFA as compared to corresponding erythrocyte 
phospholipid (PL) fraction at all time points (n = 69), unlike the much weaker correlation (r = 0.22) for DHA 
concentrations. Serum EPA was also more sensitive to detect dietary non-adherence to FO supplementation as 
indicated by arrows for one participant (S10) as compared to DHA as its NEFA. 
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Table 4.4. Fasting serum NEFA identified using a 2-way mixed-model ANOVA with repeated 
time points for within-subjects effects between high dose FO supplementation and control 
(sunflower oil) groups. 

 Test of within-subjects effects Test of between-subjects effects 

Serum Fatty Acids F p-valuea Effect 
sizeb 

Study 
power F p-valuea Effect 

sizeb 
Study 
power 

EPA  8.36 0.0020* 0.39 0.99 22.2 0.0004* 0.63 0.99 

[EPA+DHA] 5.59 0.0030* 0.30 0.92 19.0 0.0010* 0.59 0.98 

DHA  3.54 0.023* 0.21 0.74 13.1 0.0030* 0.50 0.92 

Myristic acid  1.93 0.14 0.13 0.46 1.5 0.24 0.10 0.21 

Pentadecanoic acid  1.28 0.30 0.090 0.31 0.0 0.95 0.00 0.05 

Heptadecanoic acid  0.28 0.84 0.020 0.10 0.26 0.62 0.02 0.080 

Linoleic acid  0.34 0.80 0.030 0.11 1.5 0.24 0.11 0.21 

Oleic acid  0.50 0.68 0.040 0.13 1.9 0.19 0.13 0.25 

a Mixed ANOVA model significant at the 0.001 level for EPA and DHA only for within and between subjects effects, 
where data sphericity was assumed/satisfied using Mauchly’s test of sphericity. 
b Based on partial Eta squared 
 

4.5 Discussion 

For the first time, we report that fasting serum NEFA have promising utility for biomonitoring of 

dietary fat intake and FO supplementation in support of maternal health. Various blood fractions 

have been used for FA determination in nutritional studies35,36 ranging from circulating lipid pools 

involved in transport (e.g., NEFA, serum phospholipid fraction), cellular function (e.g., 

erythrocyte or platelet membrane), to long-term storage (e.g., adipose tissue triglycerides);37 

however, reports on serum NEFA as biomarkers of dietary fat have been sparse likely due to 

technical challenges in limiting background lipid hydrolysis even under mild reaction conditions 

for preparation of fatty acid methyl esters prior to GC analysis.38 GC methods offer excellent 

selectivity for resolution of some FA geometric/positional isomers, but require longer analysis 
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times (> 20 min) even when using optimal column and elution conditions for comprehensive FA 

determination.39 In this case, rapid serum/fasting NEFA screening can be achieved by enzymatic 

based colorimetric assays yet these less selective methods are prone to bias with discordant results 

as compared to LC-MS methods.40 Alternatively, separation-free direct infusion-high resolution 

MS41 or multiplexed chemical isotope labeling with LC-MS42 offer greater sample throughput, but 

these approaches are better suited for analysis of total hydrolyzed FA from serum/plasma after 

sample processing. In this work, fasting serum NEFA were directly analyzed using a multiplexed 

separation platform based on MSI-NACE-MS,26 which offers a higher throughput approach for 

assessment of complex dietary patterns associated with a health-promoting Prudent diet.9 

Equivalent or better correlations to self-reported intake of fish/seafood, full-fat dairy, as well as 

FO supplementation was achieved for certain serum NEFA as compared to their corresponding 

total FA from serum hydrolysates or erythrocyte membrane PL fractions. Indeed, there are 

conflicting reports on the exact relationship of fasting serum/plasma NEFA with corresponding 

FA from adipose tissue,19,43,44 where circulating NEFA may serve as a virtual surrogate for tissue 

biopsies, and thus more convenient dietary biomarkers of habitual and acute changes in the intake 

of seafood and dairy products.45 

 Overall, our results from the cross-sectional study are consistent with a subset of 

participants from the EPIC study, where EPA and DHA had moderate correlations to self-reported 

fish intake from FFQ based on either total hydrolysates from plasma PL fraction (r = 0.33 and 

0.29, respectively) or erythrocyte-membrane PL fractions (r = 0.29 and 0.40, respectively).46 In 

our work, correlations for fasting serum EPA and DHA as their NEFA ranged from 0.36 to 0.46 

indicating that it provides an analogous assessment of habitual fat intake without lipid fractionation 

and hydrolysis as required for FA determination from serum phospholipids.36 For the high-dose 
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ω-3 PUFA supplementation study, our results demonstrated a relatively fast equilibration time for 

serum [EPA+DHA] as their NEFA as reflected by a mean 2.5 fold-change from baseline within 

28 days, which is consistent with acute changes in circulating blood lipid pools in previous FO 

intervention studies;37,47,48 this was a selective treatment effect as no other changes were measured 

in other serum NEFA from either active treatment or sunflower oil placebo arms. We hypothesize 

that this fast equilibration may be a consequence of the high ω-3 PUFA dosage regime used in this 

study (5 g/day) that is greater than the average intake of fish for Canadians (0.1-0.7 seafood 

meals/week) or used in commercial supplements (≈ 1 g/day).22,49 Furthermore, the strong 

correlation between erythrocyte membrane PL and serum EPA as its NEFA over the duration of 

the study, but not DHA suggests that EPA is more responsive to changes in dietary patterns as 

compared to DHA, which is a consistent finding in both our observational and intervention studies 

involving young women. This is also in agreement with reports on other plasma fractions, where 

EPA responds to high-dose FO supplementation and cessation within 1 week50 despite appreciable 

retroconversion of EPA to DHA.51 In our work, serum EPA concentrations (median = 1.6 µM, 

range from 1.0 to 6.3 µM) were lower (p = 0.00010) in pregnant women than DHA (median = 6.1 

µM, range from 3.8 to 27 µM) as their NEFA, which was more striking as compared to differences 

in their total serum hydrolysate (p = 0.0010) concentrations (Figure 4.1). Also, EPA as its NEFA 

was much more sensitive to detect self-reported FO supplement use among 4 pregnant women, as 

well as acute changes in non-pregnant women following high-dose ω-3 PUFA supplementation as 

compared to DHA or [EPA+DHA] (Figure 4.3A; Tables 4.2, 4.4) while also revealing likely 

dietary non-adherence for a participant. Furthermore, serum EPA as its NEFA was strongly 

correlated (r = 0.66, p = 4.6 × 10-10) to independently measured erythrocyte PL membrane 

concentrations unlike DHA (Figure 4.3C). Consequently, we propose fasting serum EPA as its 
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NEFA as a robust and sensitive dietary biomarker that correlates well to long-term/habitual fish 

intake, as well as acute changes following FO supplementation. This is important given expanding 

interests in high dose ω-3 PUFA (either EPA+DHA or EPA only) for prevention of muscle 

atrophy,28 reduction of asthma and persistent wheezing52 that promotes also lean mass and bone 

growth in childhood,53 as well as reducing atherosclerotic cardiovascular disease risk in patients 

with hypertriglyceridemia.54 However, ω-3 PUFA can have quite distinctive lipid composition 

impacting their bioavailability while also varying up to 10-fold in natural abundance when 

comparing oily fish (e.g., mackerel, salmon, sardines) to other commonly consumed lean fish (e.g., 

haddock, canned tuna, cod) and other seafood sources (e.g., algae, krill, prawns).55 Interestingly, 

the poor diet quality sub-group of pregnant women had an estimated total ω-3 PUFA of only 71 

mg/day from self-reported FFQ as compared to 217 mg/day for the healthy eating sub-group, 

which is still below 300 mg/day DHA recommended by the International Society for the Study of 

Fatty Acids and Lipids Working Group.49 This information is valuable for prenatal screening of 

circulatory ω-3 PUFA status and biomonitoring of individual responses to dietary modifications 

or supplementation regimes for optimal maternal nutrition. 

 Next, OCFA are of special interest due to their role as promising food-specific biomarkers 

of full-fat dairy intake, which have also been reported to be inversely associated with type 2 

diabetes risk.56,57 Observational and intervention studies have reported that 15:0 and 17:0 are 

dietary biomarkers reflecting milk fat intake as measured from adipose tissue TG, serum PL, serum 

CE, total serum lipids, as well as dried blood spots;56-60 however, there have been sparse reports 

from the analysis of serum OCFA as their NEFA.61 In fact, serum 17:0 does not correlate with 15:0 

since 17:0 can also be endogenously synthesized via a-oxidation, as well as generated via 

propionate via the action of gut microbiota on fermentable fiber;56,57 for these reasons, 17:0 may 
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serve as a putative biomarker of dietary fiber intake. Alternatively, adipose tissue 14:0 has been 

proposed as a biomarker for long-term intake of dairy fat.60 Our results confirmed that 14:0 (r = 

0.30, p = 0.034), and especially 15:0 (r = 0.43, p = 0.0020) as their NEFA were robust dietary 

biomarkers of full-fat dairy intake in pregnant women (Figure 4.2D; Table 4.4), but not skim/low 

fat or fermented milk. Our results for 17:0 were inconsistent when comparing NEFA and total FA 

pools, with only the latter showing a weak association with self-reported intakes of full-fat dairy 

and total fiber, including soluble and insoluble fiber. Further studies that incorporate microbiome 

analyses are needed to better elucidate the utility of OCFA as biomarkers of fiber intake since it is 

a major source of biological variance. Nevertheless, our work validates the use of fasting serum 

NEFA as a convenient circulating lipid pool reflecting dietary intake of oily fish and full-fat dairy 

without invasive adipose tissue biopsies. 

 Strengths of our study include use of a rapid method based on MSI-NACE-MS for 

quantitative serum NEFA measurements with stringent quality control that was applied to two 

independent cohorts of women involving a validated FFQ, and a placebo-controlled, high-dose ω-

3 PUFA clinical trial. Serum NEFA have been rarely investigated as dietary biomarkers in 

nutritional studies largely due to technical challenges when using low throughput GC protocols 

that are susceptible to background lipid hydrolysis and oxidation artifacts during sample 

processing. This work also compared analyses between NEFA and total serum FA pools for 

assessment of habitual fat consumption patterns, which represents a viable alternative to 

erythrocyte membrane PL hydrolysates when biomonitoring responses to ω-3 PUFA 

supplementation, including confirming dietary adherence. Our study has some limitations, 

including the modest sample size of each cohort involving a single biological sex, and the lack of 

self-reported diet records in the ω-3 PUFA clinical trial. Also, since extreme diet scores from 
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pregnant women were selected to maximize the effect size, this might have introduced a selection 

bias. For the intervention study, sampling shorter time points (< 28 days) is also needed to better 

assess the minimum time frame required for ω-3 PUFA equilibration that is likely both dose and 

sex-dependent. In conclusion, our study introduces a rapid yet inexpensive approach for 

quantification of serum NEFA that avoids serum lipid fractionation, hydrolysis and/or pre-column 

chemical derivatization procedures. This approach largely provides equivalent and in some cases 

superior results as compared to total FA hydrolyzed from serum, as well as erythrocyte PL fraction 

notably in the case of assessment of circulating EPA and 15:0 as optimal NEFA biomarkers of 

habitual intake of oily fish and full-fat dairy, respectively. MSI-NACE-MS is anticipated to enable 

large-scale blood-based testing of serum NEFA with greater sample throughput, lower costs, and 

better quality control than standard GC protocols, which is needed for more accurate assessment 

of dietary fat intake as compared to self-reported diet records and semi-quantitative FFQ.  
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4.8 Supplemental Information 

 
Table S4.1. Serum fatty acids (NEFA and/or total FA) measured by MSI-NACE-MS from FAMILY cohort (n=50). 

 Fatty Acid Molecular 
Formula m/za RMTb Mass Error 

(ppm) 
%RSD 
(n = 8)c 

Ratio of NEFA/Total 
(%)d 

1 Pelargonic acid (9:0)* C9H18O2 157.123 1.214 0.7 9.8 - 
2 Capric acid (10:0)* C10H20O2 171.139 1.123 2.6 22.6 - 
3 Lauric acid (12:0) C12H24O2 199.170 1.085 2.0 14.1 137 ± 80 
4 Myristic acid (14:0) C14H28O2 227.202 1.054 3.5 8.6 85 ± 42 
5 Pentadecanoic acid (15:0) C15H30O2 241.217 1.041 2.1 11.0 34 ± 18 
6 Palmitic acid (16:0) C16H32O2 255.233 1.028 1.2 12.6 19 ± 9 
7 Heptadecanoic acid (17:0) C17H34O2 269.249 1.017 2.2 13.2 28 ± 14 
8 Stearic acid (18:0) C18H36O2 283.264 1.005 4.6 13.6 22 ± 13 
9 Arachidic acid (20:0)* C20H40O2 311.296 0.983 3.8 13.6 - 
10 Behenic acid (22:0)** C22H44O2 339.327 1.017 0.6 15.9 - 
11 Myristelaidic acid (14:1) C14H26O2 225.186 1.061 1.8 13.1 42 ± 13 
12 Palmitoleic acid (16:1) C16H30O2 253.217 1.035 2.4 8.5 85 ± 45 
13 Heptadecenoic acid (17:1) C17H32O2 267.233 1.024 1.8 7.9 120 ± 50 
14 Oleic acid (18:1)x C18H34O2 281.249 1.012 1.1 12.7 69 ± 33 
15 Gondoic acid (20:1) C20H38O2 309.280 0.99 4.2 13.1 87 ± 50 
16 Nervonic acid (24:1)** C24H46O2 365.342 0.946 5.2 15.5 - 
18 Linoleic acid (18:2)x C18H32O2 279.233 1.018 0.4 7.7 18 ± 9 
17 Eicosadienoic acid (20:2) C20H36O2 307.264 0.995 3.1 11.8 33 ± 30 
19 Linolenic acid (18:3)x C18H30O2 277.217 1.021 1.4 8.1 71 ± 32 
20 Dihomo-g-linolenic acid (20:3n-6) C20H34O2 305.249 1.004 2.3 10.6 - 
21 Arachidonic acid (20:4n-6) C20H32O2 303.233 1.025 2.3 5.1 5 ± 4 
22 Eicosapentaenoic acid (20:5n-3) C20H30O2 301.217 1.027 5.0 9.6 5 ± 4 
23 Adrenic acid (22:4n-6)** C22H36O2 331.264 0.991 4.5 8.5 - 
24 Docosahexaenoic acid (22:6n-3) C22H32O2 327.233 1.029 2.4 9.0 6 ± 6 

a Accurate mass of fatty acid detected as its intact molecular ion [M-H-] under negative mode ionization. 
b Migration time of fatty acids relative to the internal standard, C18d35 for data normalization. 
c Relative standard deviation of repeated QC samples introduced in each run for assessment of technical precision. 
d Relative abundance of NEFA as compared to total (hydrolyzed) FA based on a ratio of their relative peak areas. 
*Fatty acid only detected in serum NEFA analysis 
**Fatty acid only detected in serum for total fatty acid analysis 
X Isomeric resolution of cis and trans geometrical isomers for fatty acids was not achieved. 
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Table S4.2. Multiple linear regression model to predict levels of ω-3 fatty acids (dependent variable) 
as a function of the diet quality index score with adjustments for covariates, BMI, cholesterol, and HDL. 
Independent variables     Coefficient           p-value               r 
EPA-Total    
Diet index (DI) 0.018 0.0020 0.44 
DI, BMI 0.017 0.0030 0.44 
DI, BMI, cholesterol 0.013 0.029 0.52 
DI, BMI, cholesterol, HDL 0.006 0.19 0.75 
DHA-Total    
Diet index (DI) 0.015 0.0030 0.42 
DI, BMI 0.015 0.0030 0.42 
DI, BMI, cholesterol 0.009 0.061 0.57 
DI, BMI, cholesterol, HDL 0.008 0.10 0.58 
EPA-NEFA    
Diet index (DI) 0.012 0.017 0.34 
DI, BMI 0.012 0.025 0.35 
DI, BMI, cholesterol 0.013 0.019 0.37 
DI, BMI, cholesterol, HDL 0.009 0.087 0.52 
DHA-NEFA    
Diet index (DI) 0.013 0.017 0.34 
DI, BMI 0.013 0.027 0.35 
DI, BMI, cholesterol 0.014 0.024 0.36 
DI, BMI, cholesterol, HDL 0.011 0.081 0.45 

 

Table S4.3. Multiple linear regression model to predict levels of ω-3 PUFA (dependent variable)  
as a function of total ω-3 daily servings with adjustment for covariates, BMI, cholesterol, and HDL. 
Independent variables Coefficient p-value r 
EPA-Total    
Tω-3 0.373 0.020 0.34 
Tω-3, BMI 0.363 0.024 0.35 
Tω-3, BMI, HDL 0.295 0.055 0.50 
Tω-3, BMI, cholesterol, HDL 0.209 0.076 0.76 
DHA-Total    
Tω-3 0.520 1.9 × 10-6 0.53 
Tω-3, BMI 0.518 2.7 × 10-6 0.53 
Tω-3, BMI, HDL 0.446 4.7 × 10-6 0.68 
Tω-3, BMI, cholesterol, HDL 0.434 8.5 × 10-6 0.69 
EPA-NEFA    
Tω-3 0.329 0.024 0.32 
Tω-3, BMI 0.320 0.029 0.34 
Tω-3, BMI, HDL 0.337 0.025 0.36 
Tω-3, BMI, cholesterol, HDL 0.283 0.039 0.54 
DHA-NEFA    
Tω-3 0.308 0.056 0.27 
Tω-3, BMI 0.297 0.067 0.30 
Tω-3, BMI, HDL 0.310 0.061 0.32 
Tω-3, BMI, cholesterol, HDL 0.265 0.095 0.44 
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Table S4.4. Spearman correlation coefficients between circulating DHA and EPA (molar concentrations) measured as 
their NEFA and hydrolyzed (total) serum (n = 48) in pregnant women (n = 50) from the FAMILY study. 
 Serum Total 
 DHA (22:6n–3) EPA (20:5n–3) 
Serum NEFA r p-value r  p-value 
EPA (20:5n–3) 0.44** 0.0020 0.57** 0.000020** 
DHA(22:6n–3) 0.29* 0.049 0.44** 0.0020** 
Correlation is significant at the * 0.05 level (2-tailed) ** 0.01 level (2-tailed) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Figure S4.1. A consort flow diagram outlining selection criteria used in a cross-sectional study involving participants 
from the FAMILY birth cohort (n = 50) having contrasting eating patterns as measured by a diet quality index score. 
NEFA and total hydrolyzed fatty acids analysis was performed using MSI-NACE-MS on maternal serum samples 
collected during the second trimester of pregnancy. 
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Chapter V: 

Serum Metabolic Signatures of Chronic Limb-Threatening Ischemia in Patients with 
Peripheral Artery Disease 

 
 

Thesis chapter is derived from a published peer-reviewed article: 

S.M. Azab, A. Zamzam, M. Syed, R. Abdin, M. Qadura and P. Britz-McKibbin. Serum metabolic 
signatures of chronic limb-threatening ischemia in patients with peripheral artery disease. J. Clin. 
Med. 2020, 9: 1877. 
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conducted the metabolomics analysis including serum processing and data processing under the 

supervision of P.B.M. Statistical analysis was performed by S.M.A. and P.B.M., which was further 

evaluated by A.Z., M.Q. and S.M.A. drafted the manuscript that was edited by P.B.M. with critical 

feedback from M.Q. All authors read and approved the final manuscript. 
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Chapter V: Serum Metabolic Signatures of Chronic Limb-Threatening Ischemia in 
Patients with Peripheral Artery Disease 
 

“It is far better to foresee even without certainty than not to foresee at all.” 

5.1 Abstract  

Peripheral artery disease (PAD) is characterized by the atherosclerotic narrowing of lower limb 

vessels, leading to ischemic muscle pain in older persons. Some patients experience progression 

to advanced chronic limb-threatening ischemia (CLTI) with poor long-term survivorship. Herein, 

we performed serum metabolomics to reveal the mechanisms of PAD pathophysiology that may 

improve its diagnosis and prognosis to CLTI complementary to the ankle–brachial index (ABI) 

and clinical presentations. Non-targeted metabolite profiling of serum was performed by 

multisegment injection–capillary electrophoresis–mass spectrometry (MSI–CE–MS) from age and 

sex-matched, non-diabetic, PAD participants who were recruited and clinically stratified based on 

the Rutherford classification into CLTI (n = 18) and intermittent claudication (IC, n = 20). 

Compared to the non-PAD controls (n = 20), PAD patients had lower serum concentrations of 

creatine, histidine, lysine, oxoproline, monomethylarginine, as well as higher circulating 

phenylacetylglutamine (p < 0.05). Importantly, CLTI cases exhibited higher serum concentrations 

of carnitine, creatinine, cystine and trimethylamine-N-oxide along with lower circulating fatty 

acids relative to well matched IC patients. Most serum metabolites associated with PAD 

progression were also correlated with ABI (r = ± 0.24−0.59, p < 0.05), whereas the ratio of stearic 

acid to carnitine, and arginine to propionylcarnitine differentiated CLTI from IC with good 

accuracy (AUC = 0.87, p = 4.0 × 10−5). This work provides new biochemical insights into PAD 

progression for the early detection and surveillance of high-risk patients who may require 

peripheral vascular intervention to prevent amputation and premature death. 
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5.2. Introduction 

Peripheral artery disease (PAD) is a form of atherosclerosis that manifests in the lower extremities 

leading to a cascade of symptoms from insufficient blood flow, including impaired/painful 

walking, reduced functional capacity, ischemic myopathy, and recurrent skin lesions.1 PAD is also 

associated with higher risk for cardiovascular events such as myocardial infarction, stroke, and 

vascular death.2 Although most PAD patients are asymptomatic, patients with PAD usually present 

with intermittent claudication (IC), characterized with varying degrees of pain in leg muscles 

induced by walking. If left untreated, patients can progress to a severe end-stage form of PAD 

known as chronic limb-threatening ischemia (CLTI), which is characterized by rest pain, non-

healing ischemic ulcers, and gangrene requiring limb amputation.2 Disease progression in PAD is 

highly variable and unpredictable as some CLTI patients who undergo amputations do not exhibit 

any PAD symptoms 6 months before onset.3 In fact, cardiovascular events are more prevalent 

among CLTI patients than coronary artery disease (CAD) indicating significant associated 

morbidity.3 Although CLTI accounts for less than 5% of total PAD diagnoses, survivorship is poor 

with a 5-year mortality rate of about 50%.4 As a result, there is an urgent need for understanding 

the mechanisms of PAD progression for the early detection of CLTI that also guides evidence-

based treatment decisions.5 

Despite a high estimated prevalence of 10–20% among older persons, PAD is often 

undiagnosed and/or untreated in the primary care setting with most physicians unaware of the 

diagnosis.6 In practice, diagnosis is confirmed in symptomatic patients by an abnormal resting 

ankle–brachial index (ABI) below 0.90, which is determined by the ratio of the systolic blood 

pressure at the ankle of the affected leg to the upper arm, using a Doppler ultrasound blood flow 

detector.1 Usually, ABI is a reliable diagnostic tool for PAD diagnosis that may also predict 
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atherosclerotic PAD mortality when performed in accredited laboratories with specialized 

equipment and training.7 However, in 25% of diabetic patients, ABI lacks sensitivity to diagnose 

patients with PAD due to peripheral arterial stiffening from calcification.8 Moreover, the benefit 

of the routine screening of PAD risk in asymptomatic patients using ABI remains inconclusive 

based on the recent findings from the US Preventive Services Task Force.9 For these reasons, 

specific yet sensitive blood-based biomarkers are needed for PAD diagnosis and risk assessment 

that is applicable for routine testing in a clinical setting, including the surveillance of high-risk 

CLTI patients following revascularization interventions. 

Metabolomics offers a systemic approach for the molecular phenotyping of complex 

biological processes underlying cardiovascular diseases (CVD) as required for new advances in 

precision medicine and drug development.10 Comprehensive metabolite profiling using high-field 

nuclear magnetic resonance (NMR) and increasingly high-resolution mass spectrometry (MS) 

enables the discovery of clinically relevant biomarkers associated with atherosclerosis, that reflect 

the dynamic interactions between the host, gut microbiota, and dietary exposures, such as 

trimethylamine-N-oxide.11 Growing evidence also demonstrates that elevated plasma branched-

chain amino acid concentrations increase the risk for stroke that may be counteracted by Prudent 

diet modifications.12 However, most metabolomic studies to date have focused on identifying 

aberrant metabolic pathways in CAD as compared to standard predictors.13 In contrast, there have 

been few reports using metabolomics to understand the pathophysiology of PAD, which is prone 

to confounding since older patients often suffer from other comorbidities, including type 2 

diabetes, chronic kidney disease and/or cardiovascular events.14–17 Herein, we apply an untargeted 

serum metabolomics data workflow with stringent quality control (QC) on a clinically stratified 

non-diabetic patient cohort for the assessment of PAD progression that may allow for better  
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therapeutic monitoring of patients as compared to conventional ABI and clinical assessment tools. 

5.3. Experimental Section 

5.3.1. Study Cohort and Design 

This study was approved by the research ethics board at St. Michael’s Hospital-University of 

Toronto (REB #16-375), and informed consent was obtained from all participants in accordance 

with the Declaration of Helsinki principles. PAD diagnosis and classification into IC and CLTI 

were made according to specialists’ clinical examination and arterial ultrasound.18 Patients with 

CLTI or “Rutherford stage ≥ 4” referred to vascular surgery ambulatory clinics or emergency 

department at St. Michael’s Hospital (Toronto, ON, Canada) from June 2017 to August 2017, were 

requested to participate in this study. Exclusion criteria included all patients on anticoagulants, 

chemotherapy or biological anti-inflammatory agents. Patients diagnosed with sepsis, type 2 

diabetes, systematic inflammatory disease or with an active/history of any cancer or deep vein 

thrombosis were excluded as well. Moreover, patients with a 6-month history of acute coronary 

syndrome, heart failure, or uncontrolled arrhythmia, as defined by the American College of 

Cardiology, also failed to meet the inclusion criteria of this study.19 A total of 128 consecutive 

ambulatory patients were initially recruited, however only 20 CLTI patients met the inclusion 

criteria and consented for this study. Upon acceptance to participate, CLTI patients were matched 

with non-diabetic IC cases or “Rutherford stage 1–3”, and non-PAD controls in a ratio of 1:1:1 by 

age group and biological sex. To do so, during the months of January and February 2018, 20 IC 

patients and 20 non-PAD participants were recruited to match the CLTI cohort. PAD status was 

defined clinically as per the Rutherford classification, whereas non-PAD controls were defined as 

patients with cardiovascular risk factors alongside a normal arterial ultrasound of the lower limbs, 
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and palpable distal pulses without a significant clinical history of claudication. However, after 

matching our cohorts, two CLTI patients later withdrew their consent and were not included in the 

final study. 

5.3.2. Baseline Patient Clinical Assessments 

Medical history included details of any previous acute coronary syndrome, hyperlipidemia, arterial 

arrhythmia, arterial hypertension, renal disease, congestive heart failure, history of stroke or 

transient ischemic attack, history of cancer, diabetes, and smoking status. Hyperlipidemia was 

defined as total cholesterol > 5.2 mM or the use of anti-hyperlipidemic medication. Hypertension 

was defined as systolic blood pressure ≥ 130 mmHg or diastolic pressure ≥ 80 mm Hg, or the use 

of antihypertensive medication. Renal disease was defined as an estimated glomerular filtration 

rate of less than 60 mL/min/1.73 m2 as per the Kidney Disease Outcomes Quality Initiative 2002 

guidelines, since serum cystatin C and urinary creatinine clearance are not measured routinely for 

vascular patients. Diabetes mellitus was defined as glycosylated hemoglobin A1c ≥ 6.5% or the 

use of antidiabetic medication. Smoking status was recorded for each patient. 

5.3.3. Chemicals and Reagents 

All chemicals were purchased from Sigma Aldrich (St. Louis, MO, USA) unless otherwise stated. 

Stock solutions for internal standards and metabolite standards were prepared in deionized water 

from a Barnstead EASYpure® II LF system (Dubuque, IA, USA) for hydrophilic metabolites, and 

in methyl-tert-butyl ether (MTBE) for lipophilic fatty acids. Ultra-grade LC–MS solvents 

(acetonitrile, methanol, 2-isopropanol and water) purchased from Caledon Laboratories Ltd. 

(Georgetown, ON, Canada) were used to prepare sheath liquid solution for spray formation and 

aqueous or nonaqueous background electrolyte (BGE) for the capillary electrophoresis (CE) 
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separations. All stock solutions for chemical standards were stored at 4 ºC. Nanosep® 3k OmegaTM 

ultrafiltration devices (Pall Life Sciences, Port Washington, NY, USA) were used for processing 

the diluted serum samples with a 3 kDa molecular weight cut-off filter for protein removal. 

5.3.4. Serum Creatinine Measurement by Jaffé Method 

Measurement of serum creatinine was performed at St. Michael’s Hospital using a modified Jaffé 

colorimetric assay on a Beckman Coulter AU system/analyzer (Beckman Coulter, Inc., Brea, CA, 

USA). Briefly, creatinine standard reagent (OSR6678) was added to an aliquot of serum, where 

the serum creatinine reacted with picric acid under alkaline conditions to form a yellow-orange 

complex and the rate of change in absorbance at 520/800 nm was proportional to the serum 

creatinine concentration to minimize other reacting/absorbing interferences.20 Serum creatinine 

measurements by the Jaffé colorimetric assay were compared with multisegment injection–

capillary electrophoresis–mass spectrometry (MSI–CE–MS) using independent serum aliquots 

collected from the same participants. 

5.3.5. Serum Sample Collection and Preparation 

Fasting blood samples were collected and immediately centrifuged at 4 °C within 1 h after clotting 

at room temperature, where the serum was separated, aliquoted and stored frozen at −80 °C. Frozen 

serum was then thawed slowly on ice, vortexed for 30 s and aliquoted prior to ultrafiltration or 

liquid extraction. An aliquot of 50 μL of serum was diluted two-fold with ultra-grade LC–MS 

water containing 40 μM of two recovery standards, 3-chloro-L-tyrosine (Cl-Tyr) and 3-

cyclohexylamino-1-propanesulfonic acid (CAPS). The diluted serum was vortexed for 30 s, 

transferred to a pre-rinsed ultrafiltration device, that was centrifuged at 14,000 × g for 10 min to 

separate the proteins from the serum filtrate used for the analysis of polar/hydrophilic metabolites. 
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Ultrafiltration devices were pre-rinsed with ultra-grade LC–MS water, centrifuged for 5 min at 

14,000 × g and air dried for about 20 min prior to the first use to wash out background additives 

(e.g., lactic acid). Thereafter, serum filtrates (15 μL) were diluted one or two-fold with ultra-grade 

LC–MS water containing three internal standards, 4-fluoro-L-phenylalanine (F-Phe), 2-

napthalenesulfonic acid (NMS) and 13C6-glucose. The final concentrations for all the internal and 

recovery standards were 10 μM with the exception of 13C6-glucose (2 mM), and all diluted serum 

filtrate samples were analyzed using MSI–CE–MS with two aqueous BGE systems optimal for the 

separation of ionic/hydrophilic metabolites.21,22 

A second aliquot of frozen serum was slowly thawed on ice and processed separately for lipid 

analysis following acid hydrolysis and liquid extraction as described previously.23,24 In this work, 

the total (hydrolyzed) serum fatty acids were analyzed by multisegment injection–nonaqueous 

capillary electrophoresis–mass spectrometry (MSI–NACE–MS). Acid-catalyzed hydrolysis of 

esterified lipids was performed by  the addition of 25 μL of serum, 25 μL of 2.5 M sulfuric acid 

and 25 μL of 0.01% vol butylated hydroxytouene (BHT) as an antioxidant additive in toluene 

followed by incubation at 80 °C for 1 h. Serum fatty acids were subsequently extracted using a 

slightly modified extraction protocol originally reported by Matyash et al.25 using 500 μL of MTBE 

containing 50 μM of deuterated myristic acid (14:0-d27) as a recovery standard, with 12.5 μL of 

1.0 M HCl for better extraction efficiency. Following vigorous shaking for 30 min at room 

temperature, phase separation was then induced by the addition of 100 μL of deionized water. 

Samples were then centrifuged at 3000× g at 4 °C to sediment the protein for 30 min resulting in 

phase separation into a water and ether (top) layer. A fixed volume (200 μL) was collected from 

the upper MTBE layer into a new vial then dried under a gentle stream of nitrogen gas at room 

temperature. Serum extracts were then stored dry at −80 °C and at the time of analysis reconstituted 
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in 25 μL of acetonitrile/isopropanol/water (70:20:10 vol) with 10 mM ammonium acetate and 50 

μM deuterated stearic acid (18:0-d35) as an internal standard. All hydrolysis reactions and 

extractions were carried out using glass GC vials that were pre-rinsed with dichloromethane and 

all the pipette tips used during this procedure were pre-rinsed with methanol to minimize the 

background palmitic acid (16:0) and stearic acid (18:0) contamination.23 An internal QC sample 

was prepared in-house by pooling together serum aliquots from all the study participants. Separate 

QC aliquots were processed using the same sample protocols described above, stored at −80 °C 

and thawed once prior to analysis by MSI–NACE–MS using a nonaqueous BGE system optimal 

for the separation of acidic lipids. 

5.3.6. Hydrophilic Metabolome Profiling by MSI–CE–MS 

MSI–CE–MS experiments were performed on an Agilent G7100A CE instrument (Agilent 

Technologies Inc., Mississauga, ON, Canada) equipped with a coaxial sheath liquid (Dual AJS 

ESI) Jetstream electrospray ionization source coupled to an Agilent 6550 quadrupole-time-of-

flight (QTOF) system. An Agilent 1260 Infinity isocratic pump equipped with a 100:1 splitter and 

a 1260 Infinity degasser were used to deliver the sheath liquid at a rate of 10 μL/min. Separations 

were performed using uncoated fused-silica capillaries (Polymicro Technologies, Phoenix, AZ, 

USA) of a total length of 130 cm and an inner diameter of 50 μm. The BGE consisted of 1.0 M 

formic acid with 13% vol acetonitrile as the organic modifier (pH 1.8) under positive ion mode, 

and 35 mM ammonium acetate (pH 9.5) under negative ion mode for the comprehensive analysis 

of cationic and anionic serum metabolites, respectively.26–28 Approximately 7 mm of the polyimide 

coating was removed from both the capillary inlet and the outlet using a capillary window maker 

(MicroSolv, Leland, NC, USA) to reduce the sample carry-over as well as the polymer swelling 

or degradation when in contact with organic solvent or buffer solutions containing ammonia.29,30 
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Samples were injected hydrodynamically at 50 mbar (5 kPa) for 5 s for each sample, interspaced 

with alternating BGE spacer plugs injected hydrodynamically for 40 s (for positive ion mode) and 

electrokinetically for 45 s at 30 kV (for negative ion mode) for a total of 7 discrete serum filtrates 

analyzed within a single run. Customized serial injection configurations using calibrant mixtures, 

filtrate blanks, and pooled QC samples were analyzed in MSI–CE–MS depending on the study design 

requirements. Prior to first use, each bare fused-silica capillary was conditioned by flushing for 15 min 

at 950 mbar (95 kPa), sequentially, with methanol, 1.0 M sodium hydroxide, water, and BGE. An 

applied voltage of +30 kV at 25 °C was used for all the CE separations under normal polarity, however 

a pressure gradient of 2 mbar/min was implemented for the faster elution of slow migrating anions 

under negative ion mode conditions.29 Between runs, the capillary was flushed with BGE for 15 

min at 950 mbar (95 kPa). The sheath liquid was comprised of 60% vol MeOH with 0.1 vol% 

concentrated formic acid for positive ion mode, and 80% vol MeOH for negative ion mode 

detection. Reference ions purine and hexakis(2,2,3,3-tetrafluoropropoxy)phosphazine (HP-921) 

were spiked into the sheath liquid at 0.02% vol, providing constant mass signals to enable the real-

time mass calibration and to allow for the monitoring of potential ion suppression effects during 

separation. The instrument was operated in a GHz extended dynamic range. The Vcap and nozzle 

voltage were both set at 2000 V, while the fragmentor was 380 V, the skimmer was 65 V and the 

octopole RF was 750 V. The QTOF–MS system was operated with full-scan data acquisition over 

a mass range of m/z 50–1700 and an acquisition rate of 1 spectrum/s. At the beginning of each day, 

the QTOF–MS system was calibrated before analysis using an Agilent tune mixture to ensure 

residual mass ranges did not exceed 1 ppm. Additionally, daily cleaning of the CE electrode and 

ion source with 50% vol isopropanol was performed as preventative maintenance. A standard 

mixture run followed by a QC sample run with blank were analyzed at the start of each day to 



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 167 

equilibrate the CE–MS system and assess the system stability. Each serum filtrate sample from 

PAD and non-PAD participants in this study were analyzed in duplicate over two consecutive days 

by MSI–CE–MS under positive and negative ion modes for cationic/zwitter-ionic (e.g., amino 

acids) and anionic (e.g., organic acids) metabolites. 

5.3.7. Lipophilic Metabolome Profiling by MSI–NACE–MS 

Total serum (hydrolyzed) fatty acids were analyzed by MSI–NACE–MS under negative ion mode 

conditions as described elsewhere.23,24 An Agilent 6230 time-of-flight (TOF) mass spectrometer 

with a coaxial sheath liquid electrospray (ESI) ionization source equipped with an Agilent G7100A 

CE unit was used for all experiments (Agilent Technologies Inc., Mississauga, ON, Canada). An 

Agilent 1260 Infinity Isocratic pump and a 1260 Infinity degasser were applied to deliver an 80:20 

vol methanol:water with 0.5% vol ammonium hydroxide at a flow rate of 10 μL/min using a 

coaxial sheath liquid interface kit. For real-time mass correction, reference ions purine and 

hexakis(2,2,3,3-tetrafluoropropoxy)phosphazine (HP-921) were spiked into the sheath liquid at 

0.02% vol to provide constant mass signals at m/z 119.0363 and m/z 1033.9881, which were also 

used to monitor for potential ion suppression/enhancement effects during separation. The nebulizer 

spray was set off during serial sample injection but then subsequently turned on at a low pressure 

of 4 psi (27.6 kPa), following voltage application with the source temperature at 300 °C and drying 

gas delivered at 4 L/min. The instrument was operated in a 2 GHz extended dynamic range with 

negative mode detection. Vcap was set at 3500 V while fragmentor was 120 V, the skimmer was 

65 V and the Octopole RF was 750 V. Separations were performed on bare fused-silica capillaries 

with 50 μm internal diameter, 360 μm outer diameter and 95 cm total length (Polymicro 

Technologies Inc., Phoenix, AZ, USA), and a capillary window maker was used to remove about 

7 mm of the polyimide coating on both ends of the capillary. The applied voltage was set to 30 kV 
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at 25 °C for the CE separations together with an applied pressure of 20 mbar (2 kPa) used during 

the CE separation. The nonaqueous BGE was 35 mM ammonium acetate in 70% vol acetonitrile, 

15% vol methanol, 10% deionized water, and 5% vol isopropanol with an apparent pH of 9.5 

adjusted by the addition of 12% vol of ammonium hydroxide. Serum extracts, pooled QC extracts, 

or fatty acid calibrants were injected hydrodynamically at 50 mbar (5 kPa) alternating between 5 

s for each sample plug and 40 s for the BGE spacer plug for a total of seven discrete samples 

analyzed within one run. Prior to the first use, the capillaries were conditioned by flushing for 15 

min at 950 mbar (95 kPa) sequentially with methanol, 0.1 M sodium hydroxide, deionized water, 

1.0 M formic acid, deionized water then BGE for 30 min. Between runs, the capillary was flushed 

with BGE for 10 min at 950 mbar (95 kPa), and nonaqueous BGE and sheath liquid solutions were 

degassed before use. 

5.3.8. Data Processing and Statistical Analyses 

All the MSI–CE–MS and MSI–NACE–MS data were analyzed using Agilent Mass Hunter 

Workstation Software (Qualitative Analysis, version B.06.00, Agilent Technologies Inc., 

Mississauga, ON, Canada). Molecular features were extracted in centroid and profile modes using 

a 10 ppm mass window for hydrophilic and lipophilic metabolites. Polar metabolites and 

hydrolyzed fatty acids were annotated based on their characteristic accurate mass (m/z) for their 

protonated, [M+H]+ or deprotonated, [M−H]− molecular ion together with their relative migration 

time (RMT), where apparent migration times were normalized to an internal standard migrating 

from the same sample position.26 Extracted ion electropherograms (EIEs) were integrated after 

smoothing using a quadratic/cubic Savitzky Golay function (15 points) and the peak areas and 

migration times were transferred to Excel (Microsoft Office, Redmond, WA, USA) for the 

calculation of relative integrated peak areas (RPAs) and relative migration times (RMTs). Data 
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normalization to an internal standard (Cl-Tyr, CAPS, or 18:0-d35) improves the precision in CE 

by correcting for differences in sample volumes introduced in-capillary, as well as migration time 

drift due to the changes in electroosmotic flow between runs. Control charts for monitoring long-

term method stability were derived from changes in measured responses (RPA) for recovery 

standards (F-Phe, NMS, or 14:0-d27) added to all the serum filtrates or extracts, including the QC 

samples. In most cases, serum metabolites and fatty acids from hydrolyzed lipids were identified 

with a high confidence (level 1)31 using authentic standards with the exception of 8 metabolites 

(10% of total identified 85 metabolites; level 2) where standards were unavailable, as well as 7 

unknown metabolites with only a putative molecular formula (level 4). Overall, 85 authentic 

metabolites were consistently detected (CV < 30%) in the majority of serum samples (>75%) when 

applying stringent quality control (QC) measures on 800 initially extracted features to filter 

redundant and spurious signals arising from contaminants, artifacts, isotopes, in-source fragments, 

adducts or dimers. 

Least-squares linear regression analysis for external calibration curves and control charts were 

performed using Excel (Microsoft Office, Redmond, WA, USA). All the multivariate data 

analysis, including principal component analysis (PCA), hierarchical cluster analysis (HCA), 

correlation matrix analysis (CMA), partial least-square discriminant analysis (PLS-DA), as well 

as receiver operating characteristic (ROC) curves were processed using MetaboAnalyst 4.0 

(wwww.metaboanalyst.ca)32, where the data were normalized using a generalized log-

transformation and autoscaling unless otherwise stated. PCA, HCA and CMA methods were used 

for data visualization (i.e., data trends, outlier detection), and comparing technical variance relative 

to the overall biological variance, whereas the PLS-DA was used for selecting significant serum 

metabolites associated with the PAD progression. Additionally, ROC curves were performed only 
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for the top-ranked ratiometric serum metabolites that discriminated between IC and CLTI based 

on the area under the curve (AUC).32 Baseline characteristics of PAD participants, including the 

control (CON), IC, and CLTI sub-groups were compared using Fisher exact tests for categorical 

variables and an analysis of variance (ANOVA) for continuous variables in addition to an 

independent Student t-test for comparing the IC and CLTI sub-groups. A one-way ANOVA was 

used to identify the significant differences between the CON, IC, and CLTI groups for all the 

metabolites with a polynomial contrasts analysis to identify the linear trends associated with 

disease progression and Welch’s F employed in the case of inequality of variance tested by 

Levene’s homogeneity test. This was followed by planned contrasts with contrast 1 comparing 

CON to all the PAD cases [IC + CLTI], as well as contrast 2 comparing IC to CLTI (i.e., clinical 

PAD sub-groups), which was further confirmed by post-hoc analyses with Gabriel’s and Games–

Howell procedures. In addition, a two-tailed Student’s t-test was employed on non-transformed 

and log-transformed data to compare the CLTI to IC separately in the subgroup analysis while 

applying Benjamini Hochberg false discovery rate (FDR) correction (q < 0.05) for multiple 

hypothesis testing. Pearson correlations were calculated to evaluate the associations between the 

ABI and the metabolites on non-transformed data for the majority of variables and log-transformed 

data for non-normally distributed variables which was further confirmed with partial correlations 

adjusting for the BMI and smoking status. Normality tests, a Shapiro–Wilk test (p < 0.05), Pearson 

and partial correlations, ANOVA, t-tests and nonparametric statistical analysis (Kruskal–Wallis 

and Mann–Whitney U test) were performed using the Statistical Package for the Social Science 

(IBM SPSS, version 18.0, Armonk, NY, USA). MedCalc version 12.5.0 (MedCalc Software, 

Ostend, Belgium) was used for boxplots, as well as Bland–Altman % difference plot and Passing–

Bablok regression for the inter-laboratory method comparison of serum creatinine concentrations. 



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 171 

5.4. Results 

5.4.1. Cohort Demographics and Clinical Characteristics 

This study comprised a cohort of non-diabetic older persons (n = 58) with an mean age of 63 years, 

including PAD patients at different stages of disease progression as clinically defined by the six-

stage Rutherford classification (stages 1–3: IC, and stage ≥ 4: CLTI), as well as non-PAD controls 

(CON). A summary of the study demographics and the other clinical characteristics for the 

participants is summarized in Table 5.1. There were no significant differences in age, sex, body 

mass index (BMI), glycated hemoglobin, as well as leukocyte and platelet counts between the three 

patient sub-groups. The IC and CLTI patients presented with a higher incidence of dyslipidemia 

(>80%), hypertension (>65%), coronary artery disease (>40%), statin/antiplatelet medication use 

(>80%), and notably smoking (~95%) than the controls. However, all patients with a 6-month 

history of acute coronary syndrome, heart failure, or uncontrolled arrhythmia were excluded in 

this study eliminating active coronary symptoms at the time of blood sampling. Importantly, when 

analyzing the differences between the two PAD subgroups, IC and CLTI, the patients were closely 

matched with no statistical differences (p > 0.05) in anthropometric properties, comorbidities, or 

medication use with the exception for ABI (<0.90; p = 2.36 × 10−9), which was lower in the CLTI 

(mean ABI = 0.38) as compared to the IC group (mean ABI = 0.57) and non-PAD controls (mean 

ABI = 1.08). Moreover, there were only two PAD patients diagnosed with renal insufficiency (1 

CLTI; 1 IC), thus the vast majority of participants had normal kidney function at the time of 

recruitment. 
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Table 5.1. Baseline patient demographics and clinical characteristics for two peripheral artery 
disease (PAD) sub-groups (intermittent claudication (IC), chronic limb-threatening ischemia 
(CLTI)) and non-PAD controls (CON). 

Parameter CON (n = 20) IC (n = 20) CLTI (n = 18) p-value 

Rutherford stage - 1-3 [2.75 ± 0.4] ≥ 4 [4.11 ± 0.3] - 

Walking distance (m) > 1000 530 < 160 - 

ABI 1.08 ± 0.09 0.57 ± 0.08 0.38 ± 0.07 3.06×10-33;2.4x10-9 

Age (years) 62.6 ± 6.6 61.0 ± 7.4 65.2 ± 5.6 0.151; 0.055 

BMI (kg/m2) 26.6 ± 2.5 24.3 ± 3.0 24.9 ± 3.6 0.061; 0.631 

HbA1c (%) 5.75 ± 0.51 5.98 ± 0.50 5.58 ± 0.99 0.217; 0.124 

Leukocytes 6.6 ± 2.2 7.8 ± 2.5 8.4 ± 3.4 0.156; 0.534 

Platelets 251 ± 76 244 ± 64 209 ± 65 0.152; 0.118 

Males (%) 50 (10/20) 55 (11/20) 72 (13/18) 0.401; 0.224 

Smoking (%) 55 (11/20) 95 (19/20) 94 (17/18) 0.002; 0.730 

Diabetes mellitus (%) 0 0 0 - 

Hypertension (%) 40 (8/20) 65 (13/20) 72 (13/18) 0.099; 0.450 

Hyperlipidaemia (%) 39 (7/20) 85 (17/20) 83 (15/18) 0.001; 0.616 

Renal insufficiency (%) 0 (0/20) 5 (1/20) 6 (1/18) 0.76; 0.730 

Coronary artery disease (%) 0 (0/20) 40 (8/20) 61 (11/18) 0.001; 0.165 

Statin use (%) 30 (6/20) 80 (16/20) 100 (18/18) <0.001; 0.066 

Antiplatelet use (%) 50 (10/20) 100 (20/20) 100 (18/18) <0.001; - 

Data shown as the mean ± standard deviation for continuous variables and % (number of cases/total) for categorical 
variables. p-value represents the overall difference between the three groups where significant differences are 
observed for (p < 0.05) calculated Fisher exact tests for categorical variables and ANOVA for continuous variables; 
followed by p-value for PAD subgroup comparison between CLTI and IC calculated using independent samples 
Student’s t-test or non-parametric Mann–Whitney U test (only for body mass index , BMI). Smoking status reflects 
numbers of past/current smokers. 

 

5.4.2. The Serum Metabolome of PAD Patients 

Nontargeted analysis of the serum metabolome was performed by MSI–CE–MS and MSI–NACE–

MS under three configurations for polar/hydrophilic and non-polar/lipophilic metabolites, 

respectively. Each run comprised a serial injection of seven serum samples for the CON, IC and 

CLTI patient sub-groups that were randomly analyzed in duplicate (except for fatty acids that used 

a single analysis), together with a pooled serum sample as a QC, to monitor for the long-term 
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signal drift as shown in Figure 5.1A. Serum metabolites were authenticated based on their 

characteristic accurate mass and relative migration time under positive or negative ion mode 

(m/z:RMT:mode) when using multiplexed separations together with temporal signal pattern 

recognition.33 For instance, only serum metabolites measured with adequate precision (CV < 30%, 

n = 6) with no signal detected in blank filtrate/extract26 were initially selected after rejecting 

spurious signals, background artifacts, as well as redundant ions derived from the same metabolite 

(e.g., in-source fragments, isotopic signals, and adducts) that constitute a majority of signals (> 

90%) in ESI–MS.34 Additionally, the identity of most serum metabolites was confirmed by spiking 

with authentic standards (level 1) based on their co-migration (RMT < 1%) with low mass error 

(< 5 ppm), which was also used for evaluating method accuracy (i.e., spike/recovery) (Figure 1B), 

and quantification using external calibration curves (Figure 5.1C). Otherwise, seven serum 

metabolites with unknown chemical structures were annotated based on their most likely 

molecular formula (level 4). Moreover, serum metabolites were reported only if they satisfied two 

additional inclusion criteria to reduce false discoveries in metabolomics, namely they were 

measured with adequate precision throughout the entire study (CV < 30% from QC runs) and 

detected with high frequency (> 75%) in all serum samples. This iterative process of data filtering 

and selection culminated in a final data matrix of 85 serum metabolites reliably measured in the 

majority of the samples in this cohort, including 42 hydrophilic cations, 18 hydrophilic anions and 

25 lipophilic anions (Table S5.1). Overall, the coverage of the serum metabolome when using 

three configurations in MSI-(NA)CE-MS, included a diverse range of circulating metabolites 

ranging from amino acids, amines, organic acids, long-chain fatty acids, ketone bodies, hexoses, 

and osmolytes/uremic toxins. 
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As expected, the overall biological variance of the serum metabolome (median CV = 39%, n 

= 58) was considerably larger than the technical precision of the method based on the repeated 

analysis of a QC sample in each run (median CV = 14%, n = 17–22) as shown in the PCA 2D 

scores plots in Figure 5.2A,B. Moreover, control charts for the three recovery standards used in 

MSI–CE–MS (10 μM F-Phe and NMS) and MSI–NACE–MS (50 μM 14:0-d27) added to all serum 

samples, prior to ultrafiltration or MTBE extraction, further demonstrate the acceptable 

intermediate precision (mean CV < 15%) with few outliers (< 2%, n = 57 total runs) exceeding 

warning limits (± 2s) (Figure 5.2C–E). An inter-laboratory method comparison of the serum 

creatinine concentrations measured independently from 56 participants was also performed by 

MSI–CE–MS relative to the Jaffé colorimetric method, which was used for the estimation of the 

GFR for patients as an indicator of kidney function.20 In this case, a Bland–Altman % difference 

plot confirms a good mutual agreement for serum creatinine determination by both methods with 

a mean bias of −5.6% (Figure 5.2F). In addition, there was a random distribution in the data with 

few outliers (4 of 56) exceeding the agreement limits (±2 s). Similarly, a Passing–Bablok 

regression analysis (Figure 5.2G) reveals no statistically significant difference from the line of 

equality (p = 0.93) with a modest positive slope of 1.17. Only two PAD patients (1 IC and 1 CLTI) 

out of the 58 study participants were diagnosed with renal insufficiency. Furthermore, no patients 

had mean serum creatinine concentrations exceeding a clinically relevant cutoff value (>150 μM) 

for older persons, that is indicative of renal failure35 in the absence of urinary creatinine clearance 

for the calculation of the GFR. 
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Figure 5.1. (A) Nontargeted metabolite profiling of serum samples from PAD patients using MSI–(NA)CE–MS under three different configurations, where the black 
trace depicts a total electropherogram using aqueous BGE conditions with positive mode detection. This multiplexed separation method relies on a serial injection of 6 
serum samples and a quality control (QC) within each run to enhance sample throughput and data fidelity when using temporal signal pattern recognition. A rigorous 
data-filtering process allows for the reliable authentication of metabolites based on their accurate mass (m/z), which are measured in 6 replicate serum samples with 
acceptable precision (CV < 15%) with no background signal in blank (0) as shown for (B) carnitine and (C) stearic acid (18:0) under positive and negative ion mode 
detection, respectively. Various serial injection configurations are illustrated, such as a replicate injection of QC samples with a blank extract to filter out spurious and 
background signals in ESI–MS, the assessment of technical precision and potential sample carry-over for authentic serum metabolites, a randomized analysis of 6 serum 
samples from individual PAD patients along with a QC, a spike-recovery study to evaluate accuracy and confirm the identity based on co-migration, and a 7-point 
calibration curve for serum metabolite quantification. 
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Figure 5.2.  Two-dimensional scores plot from the principal component analysis (PCA) of the glog-transformed and autoscaled serum metabolome data used 
to compare the intersubject biological variance relative to the technical variance from the repeat analysis of pooled serum QC samples for (A) the hydrophilic 
serum metabolome and (B) the lipophilic serum metabolome. Control charts for (C) the recovery standard (F-Phe) measured under aqueous positive ion 
mode, for (D) the recovery standard 2-napthalenesulfonic acid (NMS) measured under aqueous negative ion mode, and for (E) the recovery standard 14-d27 
measured under nonaqueous negative ion mode for all serum and QC samples demonstrate acceptable precision (CV = 5.2–15.5%) with no outliers exceeding 
the warning limits (±3 s). (F) Bland–Altman percent difference plot for comparing the mutual agreement between the serum creatinine concentrations 
measured independently by MSI–CE–MS and Jaffé colorimetric methods at two different laboratories from 56 participants. Overall, the data are randomly 
distributed with a modest mean bias of –5.6% with four outliers outside agreement limits. (G) A Passing–Bablok regression analysis demonstrates no 
significant deviation (dotted lines; 95% confidence interval) from the line of equality (p > 0.05) with a slope of 1.17 (black line; regression line).
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 Table 5.2. Top-ranked serum metabolites showing significant changes reflecting disease progression when comparing non-PAD controls to PAD 
cases, as well as IC to CLTI patient sub-groups when using a one-way ANOVA with planned contrasts and their correlation to ABI.  

Metabolite ID  m/z:RMT:mode F-value p-value 
overall 

p-value 
lineara 

Effect 
sizeb 

p-value 
Contrast 1 
PAD:CONc 

FC 
PAD:CONc 

p-value 
Contrast 2 
CLTI:ICd 

FC 
CLTI:ICd 

r correlation 
to ABIe 

p-value 
for r 

Creatine              
HMDB000064 132.077:0.745:p 6.02* 0.006 0.002 0.422 0.008 0.65 0.097 0.75 0.44 0.001 

Histidine             
HMDB000117 156.077:0.620:p 5.54 0.006 0.003 0.410 0.002 0.85 0.435 0.95 0.38 0.004 

Phenylacetylglutamine 
HMDB0006344 263.104:0.899:n 5.43* 0.009 0.017 0.319 0.030 1.89 0.880 0.94 -0.30 0.020f 

Lysine 
HMDB0000182 147.113:0.580:p 4.23 0.020 0.005 0.365 0.014 0.85 0.137 0.88 0.35 0.007f 

Tyrosine 
HMDB0000158 182.080:0.9564:p 3.53 0.036 0.014 0.338 0.012 0.81 0.520 0.94 0.34 0.008f 

Monomethylarginine 
HMDB0029416 189.134:0.606:p 3.19 0.049 0.022 0.332 0.005 0.74 0.378 0.93 0.32 0.014f 

Oxo-proline 
HMDB0000267 128.035:1.137:n 2.89 0.054 0.028 0.316 0.021 0.69 0.638 0.86 0.34 0.013 

Creatinine  Jaffé method 6.57 0.003 0.002 0.446 0.055 1.27 0.003 1.25 -0.31 0.020 

Creatinine 
HMDB0000562 114.066:0.614:p 6.14 0.004 0.011 0.428 0.271 1.07 0.001 1.30 -0.30 0.035 

Linoleic acid (18:2n-6) 
HMDB0000673 279.233:1.0189:l 4.96 0.010 0.007 0.390 0.101 0.78 0.009 0.95 0.24 0.066 

Eicosadienoic acid (20:2) 
HMDB0005060 307.265:0.994:l 4.30 0.018 0.010 0.368 0.089 0.79 0.019 1 0.25 0.061 

Nervonic acid (24:1) 
HMDB0002368 365.342:0.947:l 3.96 0.025 0.012 0.356 0.095 0.86 0.026 0.75 0.23 0.085 

Phe/Tyr - 3.67 0.032 0.026 0.343 0.22 1.10 0.018 1.15 -0.25 0.055 

Behenic acid (22:0) 
HMDB0000944 339.327:0.969:l 3.49 0.038 0.026 0.336 0.187 0.91 0.024 0.75 0.22 0.105 

Lignoceric acid (23:0) 
HMDB0002003 367.358:0.942:l 3.45 0.037 0.015 0.334 0.088 0.84 0.045 0.75 0.26 0.050 

Cystine  
HMDB0000574 241.030:0.933:p 3.15* 0.050 0.028 0.377 0.305 1.07 0.019 1.29 -0.24 0.065 

 a p-value for a linear trend when applying polynomial contrasts analysis; b Effect size calculated based on eta-squared; c p-value and mean FC for planned contrast 1 comparing PAD 
to CON; d p-value and mean FC for planned contrast 2 comparing CLTI to IC; e Pearson correlation (r) on normally-distributed non-transformed or log-transformed serum metabolites 
to the ABI, after adjusting for BMI and smoking. f not significant after adjusting for BMI and smoking. * Welch’s F-test employed in case of inequality of variance tested by Levene’s 
homogeneity test. Abbreviations correspond to RMT: relative migration time, p: positive aqueous mode, n: negative aqueous mode, l: negative nonaqueous mode, CON: non-PAD 
controls, PAD: peripheral artery disease [IC + CLTI], CLTI: chronic limb-threatening ischemia, IC: matched intermittent claudication, FC: fold-change, ABI: ankle–brachial index. 
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5.4.3. Differentiating Serum Metabolites of PAD Progression 

Figure 5.3A depicts a 2D heat map with HCA that summarizes the overall data structure involving 

85 serum metabolites consistently measured in all 58 study participants (with only 0.7% missing 

values), the including CON, IC, and CLTI sub-groups. Figure 5.3B depicts a 2D scores plot when 

using PLS-DA for the differentiation of the serum metabolic phenotype in CLTI (n = 18) from the 

IC patients (n = 20), as well as CON (n = 20) based on glog-transformed and autoscaled data. 

Figure 3C summarizes the 10 top-ranked serum metabolites largely responsible for group 

separation along the first principal component (variable importance in projection, VIP > 1.5), 

including creatine, lysine (Lys), histidine (His), monomethylarginine (MMA), tyrosine (Tyr), 

phenylacetylglutamine (PAG), and several long-chain fatty acids from hydrolyzed lipids (18:2, 

20:2, 23:0, 24:1). Figure 5.3D depicts a correlation matrix for the top-ranked serum metabolites 

associated with PAD progression, which highlights two major clusters of strongly co-linear serum 

metabolites not correlated to PAG, namely amino acids (r > 0.60 with Lys), and fatty acids (r > 

0.70 with linoleic acid, 18:2n-6). Univariate statistical analysis was also performed to confirm the 

significance of the serum metabolites associated with PAD progression when using a one-way 

ANOVA with planned contrasts as summarized in Table 5.2. Overall, 14 serum metabolites were 

determined as significant (p < 0.05) when using a linear contrast analysis model across all three 

categories (i.e., CON–IC–CLTI), including 10 metabolites identified by the PLS-DA model, as 

well as four additional serum metabolites, namely oxo-proline (oxo-Pro), behenic acid (23:0), 

creatinine, and cystine. Moreover, the phenylalanine:tyrosine ratio (Phe/Tyr) was higher in CLTI 

as compared to IC, which is an indicator of inflammation in PAD.16 Importantly, most serum 

metabolites exhibited a linear change in their concentrations (or RPAs) as a function of PAD status 

(p < 0.05). Overall, discrimination between the major patient sub-groups follows a linear trend  
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Figure 5.3. (A) Two-dimensional heat map of the serum metabolome of PAD patient sub-groups (IC, CLTI) and non-
PAD controls (CON) that summarizes the overall data structure of this study. (B) Two-dimensional  scores plot using 
a partial least-square discriminant analysis (PLS-DA) model to differentiate the metabolic phenotype of late-stage 
CLTI (n = 18) from early onset IC (n = 20) cases as compared to age and sex-matched CON (n = 20) based on 85 
serum metabolites/lipids. (C) Ten top-ranked serum metabolites that differentiate PAD patients and non-PAD controls 
based on a variable importance in projection (VIP scores > 1.5). (D) Correlation matrix depicts two main clusters of 
circulating metabolites associated with PAD, including circulating amino acids/amines strongly correlated (r~0.70) to 
lysine (histidine, tyrosine, MMA: monomethylarginine, and creatine), as well as long-chain fatty acids (18:2, 20:2, 
24:0, 24:1) unlike serum phenylacetylglutamine (PAG). 
 

where IC clusters in the middle between the CON and the more severe CLTI cases; these results 

are analogous to trends depicted in the PLS-DA model (Figure 5.3B). 
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Further analysis was next performed to identify the specific between-group differences 

without inflating type I error by using an ANOVA with two discrete planned contrasts, namely 

CON–PAD (contrast 1) and CLTI–IC (contrast 2). The box–whisker plots in Figure 5.4 show that 

circulating concentrations of creatine, His, oxo-Pro, Lys, Tyr and MMA were higher in non-PAD 

controls compared to PAD patients [IC + CLTI] unlike PAG (contrast 1, p < 0.05). Furthermore, 

serum creatinine, cystine, and Phe/Tyr were elevated in CLTI patients as compared to IC cases, 

whereas a series of circulating fatty acids (18:2, 22:0, 20:2, 24:0, 24:1) display the opposite trend. 

As expected, a similar outcome was found for serum creatinine independently measured by the 

Jaffé colorimetric method, confirming good mutual agreement with MSI–CE–MS results. An 

additional subgroup analysis using a two-tailed Student’s t-test was used to better evaluate changes 

associated with PAD progression since IC and CLTI patients were closely matched in terms of 

age, sex, BMI, smoking, co-morbidities, and medication use (Table 5.1). Table 5.3 summarizes 

16 serum metabolites that were differentially expressed (p < 0.05) in the two PAD sub-groups, 

including 11 metabolites after a FDR adjustment (q < 0.05). In this case, serum creatinine, carnitine 

(C0), propionylcarnitine (C3), cystine, Phe/Tyr, and trimethylamine-N-oxide (TMAO) were 

elevated in CLTI as compared to IC cases, in contrast to several circulating fatty acids, including 

saturated/odd-chain fatty acids (15:0, 16:0, 17:0, 18:0). All putative serum biomarkers of PAD 

progression were also correlated with the ABI, notably stearic acid (18:0, r = 0.51, p = 0.001), as 

well as C0 and cystine (r = −0.48, p = 0.002).  

Lastly, receiver operating characteristic (ROC) curve analysis was also performed on all the 

serum metabolites and their ratios to demonstrate the reliable discrimination of severe CLTI from 

lower risk IC patients. Figure 5.5 shows two top-ranked ratiometric biomarkers in serum with an 

area under the curve or AUC~0.87 along with their 95% confidence intervals (0.73–0.98), namely 
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Table 5.3. Top-ranked serum metabolites comparing IC (n = 20) to CLTI (n = 18) using student’s t-
test and their correlation to ABI. 

Metabolite ID                   m/z:RMT:mode p-value* FDR         
q-valuea 

FC b 
(CLTI/IC) 

r correlation 
to ABI c p-value for r 

Stearic acid; 18:0 
HMDB0000827 283.264:1.005:l 0.001 0.014 0.72 0.51 0.001 

Linoleic acid; 18:2n-6 
HMDB0000673 279.233:1.019:l 0.003 0.028 0.68 0.39 0.016 

Heptadecanoic acid; 17:0 
HMDB0002259 

269.249:1.030:l 0.003 0.029 0.72 0.43 0.007 

Palmitic acid; 16:0 
HMDB0000220 

255.233:1.030:l 0.004 0.030 0.73 0.37 0.024 

Creatinine          
HMDB0000562 114.066:0.614:p 0.004 0.031 1.30 -0.45 0.004 

Carnitine            
HMDB0000062 162.112:0.719:p 0.005 0.031 1.28 -0.48 0.002 

Oleic acid; 18:1n-9 
HMDB0000207 

281.249:1.013:l 0.005 0.031 0.71 -0.04 0.756 

Heptadecenoic acid; 17:1n-9 
HMDB0062437 

267.233:1.026:l 0.008 0.043 0.73 -0.01 0.961 

Propionylcarnitine 
HMDB0000824 

218.138:0.784:p 0.008 0.043 1.37 0.09 0.507 

Eicosadienoic acid; 20:2n-6 
HMDB0005060 307.265:0.994:l 0.009 0.047 0.72 0.37 0.023 

Pentadecanoic acid; 15:0 
HMDB0000826 

241.217:1.042:l 0.010 0.047 0.66 0.33 0.044 

Cystine              
HMDB0000574 241.0299:0.933:p 0.014 0.061 1.29 -0.48 0.002 

Arachidic acid; 20:0n-3 
HMDB0002212 

311.296:0.981:l 0.015 0.061 0.68 0.39 0.015 

Trimethylamine-N-oxide 
HMDB0000925 

76.077:0.544:p 0.019 0.080 1.60 -0.44 0.005 

Nervonic acid; 24:1 
HMDB0002368 365.342:0.947:l 0.024 0.091 0.75 0.29 0.083 

Phe/Tyr ratio - 0.022 0.103 1.19 -0.33 0.041 

Two-tailed exact p-value on log-transformed serum metabolome data. a FDR correction for multiple hypothesis testing; b mean fold-
change (FC) ratio when comparing relative ion response ratio for each metabolite as a ratio of CLTI/IC; c Pearson correlation on 
normally-distributed non-transformed or log-transformed data.  

 

18:0/C0 and arginine (Arg)/C3. These two ratiometric biomarkers also exhibited a strong linear 

correlation with the ABI from PAD patients (r = 0.54 – 0.59, p < 0.001, n = 38). This is relevant 

for biomarker discovery in pilot studies to anchor aberrant metabolism to a validated physiological 

measure used for risk stratification of symptomatic PAD patients, which reflects increasing 

blockage of peripheral blood flow to the lower limbs.  
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Figure 5.4. Box–whisker plots illustrating differences in the twelve top-ranked serum metabolites compared between the chronic limb-threatening ischemia 
(CLTI) patients (n = 18), matched intermittent claudication (IC) patients (n = 20) and the non-PAD controls (n = 20). A one-way ANOVA test was performed 
to compare the means and identify significant changes in circulating metabolite concentrations between the three groups, as summarized in Table 2, where a 
polynomial contrasts analysis depicts most metabolites having a significant linear trend, proportional with disease progression. Planned contrasts were 
conducted by comparing non-PAD controls to PAD cases (IC + CLTI) (contrast 1; long bracket) followed by comparing IC to CLTI (contrast 2; short bracket) 
reflecting disease status and PAD progression, respectively where test significance is denoted as * p < 0.05 and ** p < 0.01. Serum stearic acid and carnitine 
were different between CLTI and IC when using an unpaired Student’s t-test after a FDR adjustment (q < 0.05). Serum metabolites responses in terms of 
absolute concentrations (mM), or relative peak area (RPA) if standards were not available
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Figure 5.5. Upper panels show the receiver operating characteristic (ROC) curves and their corresponding box–
whisker plots for the two top-ranked serum biomarker ratios used for discriminating chronic limb-threatening ischemia 
(CLTI, n = 18) from intermittent claudication (IC, n = 20) patients, including (A) stearic acid/carnitine (18:0/C0) and 
(B) arginine/propionylcarnitine (Arg/C3). Ratiometric ROC curves depict the area under the curve (AUC) and their 
95% confidence intervals (blue shaded area). Lower panels depict the linear relationship of the serum biomarkers of 
PAD disease progression as a function of abnormal ankle–brachial index (ABI < 0.90) measurements with moderately 
strong Pearson correlation coefficients (r > 0.50; p < 0.002). 
 

5.5. Discussion 

The lack of PAD awareness among physicians continues to pose a major diagnostic challenge due 

to its variable clinical manifestations and unpredictable aggressive progression. An improved 

screening strategy for the early detection of PAD in asymptomatic patients is required, given the 

poor sensitivity of specialized Doppler methods for ABI assessment at early stages of 

atherosclerosis in peripheral tissue.36 In this case, prognostic biomarkers will augment well 

established traditional risk factors (e.g., smoking, diabetes, age, hyperlipidemia, renal dysfunction) 

while allowing for the reliable diagnosis of PAD, especially in high-risk patients with calcified 
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vascular tissue not suitable for the ABI. Regrettably, blood-based protein biomarkers (e.g., 

inflammatory cytokines, C-reactive protein) have yet to be clinically validated for the routine 

screening of PAD, predict disease progression, and/or monitor the treatment responses of patients.6 

In this pilot study, we identified a panel of serum metabolites associated with PAD progression, 

which is important given the poor survivorship of patients with CLTI following invasive surgical 

interventions, including revascularization procedures and limb loss from amputation.2 

Untargeted metabolite profiling was performed on fasting serum samples collected from PAD 

patients, including well matched CLTI and IC cases, as well as non-PAD controls. Overall, 85 

serum metabolites were consistently detected in most serum samples with good technical precision 

when using three different configurations in MSI–(NA)CE–MS. This multiplexed separation 

method takes advantage of unique data workflows and iterative data filtering processes to 

authenticate metabolites while also applying stringent QC to reduce false discoveries. We 

identified a panel of serum metabolites that differentiated CLTI from IC patients, as well as PAD 

from non-PAD controls. Serum creatine was found to be one of the most significant metabolites 

lower in PAD as compared to CON (F = 6.0, p = 0.006, effect size = 0.42), which also exhibited a 

linear change in concentration (p = 0.002) across the three patient sub-groups. Creatine is derived 

from dietary protein, as well as endogenously produced in the liver that is actively transported 

within muscle tissue, where it accumulates against a large concentration gradient. Creatine plays 

a key role in energy metabolism within skeletal muscle tissue by conversion into phosphocreatine 

via creatine kinase, which is an abundant phosphagen required for ATP regeneration during active 

muscle contractions.37 As a result, lower serum creatine concentrations in CLTI likely reflects 

inadequate muscle energy storage and a loss of function with more advanced stages of PAD 

progression.22 
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Additionally, lower antioxidant capacity within ischemic muscle tissue likely plays a role in the 

0.83-fold reduction of serum His concentrations in PAD as compared to CON (F = 5.5, p = 0.006, 

effect size = 0.41). The antioxidant and anti-inflammatory properties of His, whether in free, 

peptide or protein form (e.g., intramuscular carnosine), have been attributed to the capacity of the 

imidazole ring to scavenge hydroxyl radicals and singlet oxygen species.38 Our findings suggest 

that lower circulating His may contribute to a greater susceptibility to oxidative stress in PAD in 

accordance with reports of histidine protection of cardiac and vascular tissue injury.16,38 Similar to 

trends identified in metabolite trajectories for creatine and His, PAD patients also exhibited a 

decrease in serum Lys, MMA and oxo-Pro concentrations relative to non-PAD controls (Table 2, 

Figures 3 and 4). For example, the essential amino acid Lys acts as an exogenous inhibitor of 

plasmin-induced proteolysis that contributes to matrix remodeling, continued connective tissue 

degradation in the vascular wall and the formation of atherosclerotic lesions.39 Since oxo-Pro is a 

degradation product of the major intracellular antioxidant glutathione,22,40 the 0.63-fold decrease 

in serum oxo-Pro in PAD cases as compared to non-PAD controls may indicate increased 

glutathione depletion and the activation of the glutathione salvage pathway that is a hallmark of 

deleterious oxidative stress.41,42 This is consistent with elevated serum cystine in CTLI as compared 

to IC (p = 0.014), which is a biomarker of systemic oxidative stress prevalent in PAD, and is 

associated with adverse clinical outcomes independent yet synergistic to inflammation.43 An 

opposing trend was found for serum PAG with a 1.9-fold higher concentration in PAD as compared 

to CON (F = 5.4, p = 0.009, effect size = 0.32). This circulatory uremic toxin is an independent 

risk factor for cardiovascular disease, where elevated serum PAG may serve as a predictor of 

overall mortality in high-risk patients with chronic kidney disease,44 but it has not been reported in 

PAD patients without renal dysfunction as was the case for most participants (> 96%) in our study. 
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Plasma metabolomic profiles of near-term death PAD patients was previously reported to be 

strongly correlated with lipid metabolism based on differentiating chemical signals from fatty acid 

acyl chain protons in lipoprotein species.14 However, as this study used NMR, the exact identity 

of fatty acids associated with PAD progression was not fully elucidated. Our results confirmed 

aberrant circulating lipid metabolism in terms of several serum fatty acids (total hydrolyzed) that 

were highly co-linear (Figure 5.3D) and consistently reduced in PAD patients relative to CON 

participants (Table 5.2), notably when comparing CLTI to IC cases in PAD patient sub-groups 

(Table 5.3). The essential omega-6 fatty acid, linoleic acid (18:2n-6), derived largely from dietary 

vegetable oils and nuts, has been the subject of conflicting reports regarding its putative pro- or 

anti-inflammatory roles.45 A recent meta-analysis of 30 cohort studies supports that higher blood 

or adipose tissue levels of 18:2n-6 are associated with lower, and not higher, risk of cardiovascular 

disease, in agreement with our results.46 Besides their roles in cell membrane phospholipid 

structure and energy metabolism, polyunsaturated fatty acids also serve as precursors of bioactive 

mediators of inflammation that have also been implicated in PAD pathophysiology.47 For example, 

a randomized clinical trial involving 7435 participants reported that a Mediterranean diet 

supplemented with either extra-virgin olive oil or nuts was associated with a lower risk of PAD 

incidence as compared to a low-fat counseled control group.48 Similarly, odd-chain/saturated fatty 

acids, 15:0 and 17:0, have been associated with lower ischemic heart disease and type 2 diabetes 

incidence,49 which are derived from dietary intake of full-fat dairy, as well as fiber and gut 

microflora activity.24 Overall, serum 18:0 was the most significantly depleted in CLTI as compared 

to IC patients after a FDR adjustment (q < 0.05), that was also moderately correlated with the ABI 

(r = 0.51, p = 0.01). Mounting evidence supports that increasing circulating 18:0 lipids are 

associated with reduced blood pressure and improved heart function, which also promotes 
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mitochondrial fusion with greater beta-oxidation activity50 in late-stage PAD patients with severe 

muscle ischemia. Further work is warranted to confirm the exact role of serum fatty acids that are 

depleted with PAD progression, which interestingly did not include omega-3 fatty acids, such as 

eicosapentaenoic acid (20:5n-3) and docosahexaenoic acid (22:6n-3) that are associated with 

dietary intake of oily fish.24 

Due to potential confounding when comparing PAD patients to non-PAD controls, several 

serum metabolites were also differentially expressed (most satisfying a FDR adjustment, q < 0.05) 

in well matched CI and CLTI patients (Table 3). A mean 1.3-fold increase in serum carnitine (p = 

0.005) likely reflects severe myofiber degeneration occurring in CLTI as compared to a less acute 

muscle atrophy in IC due to its key role in mediating the transport of long-chain fatty acids within 

the mitochondria for beta-oxidation.51 Moreover, TMAO generated from dietary 

phosphatidylcholine and carnitine via the action of gut microbiota has been widely reported as a 

pro-atherogenic metabolite in CAD, and circulating TMAO predicts higher risk of 5 year all-cause 

PAD mortality.52,53 A higher degree of atherosclerosis associated with CLTI, as compared to IC, is 

consistent with elevated serum TMAO concentrations (p = 0.019) in the PAD sub-group analysis 

as reflected by their lower ABI measurements (Table 5.1). In addition, creatine deficiency in 

circulation indicates a state of a diminished energy supply among CLTI patients, possibly 

contributing to disease progression. Creatine undergoes spontaneous irreversible non-enzymatic 

degradation within skeletal muscle tissue into creatinine, which diffuses out of the muscle tissue 

into the circulation to be excreted by glomerular filtration through the kidneys. In our study, a 

mean 1.3-fold increase in serum creatinine was measured in CLTI as compared to IC patients (p = 

0.004), which was replicated independently on two different instrumental platforms/laboratories 

when using the Jaffé colorimetric assay and MSI–CE–MS (Figure 5.1G; Table 5.2). This finding 
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highlights the consequence of ischemic muscle with advanced CLTI contributing to elevated 

serum creatinine, which was reported to predict mortality in PAD patients with renal failure 

independent of hypertension and type 2 diabetes.54 An obvious confounder would be impaired 

renal function in CLTI, but our IC and CLTI patients were well balanced with only one participant 

from each group diagnosed with renal insufficiency. Furthermore, no other known differences 

exist among major PAD sub-groups, including comorbidities, smoking and medication use, with 

the exception of the ABI and clinical symptoms (i.e., leg pain and reduced mobility). Lastly, we 

observed a higher serum Phe/Tyr in CLTI relative to IC patients, consistent with recent reports of 

this as a ratiometric biomarker of inflammation in advanced stages of PAD,16 as well as acute 

ischemic stroke that is also correlated with serum cytokines, such as interleukin-6.55 Given the 

need for the improved risk stratification of PAD, other ratiometric biomarkers were found to be 

superior to Phe/Tyr (AUC = 0.708, p = 0.0216) as a diagnostic biomarker of CLTI in our study. 

For instance, the ratio of serum 18:0/C0 and Arg/C3 demonstrated better accuracy in 

differentiating CLTI from IC patients, with an AUC ~ 0.87 (p = 4.0 × 10−5) from the ROC curves 

(Figure 5.5). As expected, these ratiometric serum biomarkers were also strongly correlated (r = 

0.54−0.59, p < 0.001) with the ABI and may thus prove useful for routine monitoring PAD 

progression and/or allow for the early detection of PAD in asymptomatic patients in a primary care 

setting. Since PAD is a complex clinical syndrome contributing to peripheral ischemia and 

claudication, Figure 5.6 provides a systemic overview of the serum metabolites identified in this 

study that reflect its underlying pathophysiology, including elevated oxidative stress, 

inflammation, glutathione depletion, and perturbed energy homeostasis that contribute to severe  
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Figure 5.6. Schematic illustrating the systemic effects of an aberrant circulatory metabolism reflecting PAD 
progression in serum that also reflects the localized ischemia of skeletal muscle in lower limbs. Reduced serum 
lysine, an inhibitor of plasmin activation, in pathological states, leads to excessive proteolysis and vascular tissue 
degradation that is exacerbated by elevated TMAO, further promoting atherosclerosis in CLTI. Serum 
oxoproline, a key precursor used in the glutathione (GSH) salvage pathway, decreases in circulation as it is 
transported within the muscle to support intracellular glutathione recycling in response to elevated oxidative 
stress as reflected by lower histidine, and higher cystine in serum. Reduced creatine availability leads to lower 
intramuscular phosphocreatine, attributing to myopathic ischemia and perturbed energy homeostasis within the 
muscle that coincides with elevated creatinine concentrations in serum for CLTI. Impaired mitochondrial beta-
oxidation is reflected by higher circulating carnitine and propionylcarnitine, that are not stored within ischemic 
muscle tissue in conjunction with lower circulating lipids/fatty acids, such as stearic acid and linoleic acid. Lastly, 
increased serum phenylacetylglutamine and Phe/Tyr reflect increased inflammation in CLTI, which are risk 
factors for all-causes mortality and cardiovascular disease. Abbreviations correspond to ROS: reactive oxygen 
species, ADP: adenosine diphosphate, ATP: adenosine triphosphate, Crt K: creatine kinase, Crt Tr: creatine 
transporter, Plsgen: plasminogen, Plsn: plasmin. 
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ischemic muscle dysfunction. This panel of serum metabolites offers a convenient approach for 

diagnostic testing complementary to the ABI, that may also predict CLTI onset, while guiding 

optimal dietary, pharmacological and/or surgical interventions to mitigate PAD progression 

relevant to improving long-term patient survivorship and their quality of life. 

5.6. Conclusions 

In summary, our work has revealed distinctive metabolic signatures associated with PAD 

progression in age/sex-matched non-diabetic patients, largely without renal failure or differences 

in prescribed medications (e.g., statins, antiplatelets). We applied a high throughput metabolomics 

platform for the nontargeted analysis of circulating metabolites and hydrolyzed lipids from fasting 

serum samples, while applying a rigorous approach to data filtering to reduce the false discoveries 

with good technical precision. Certain serum metabolites have been reported in previous targeted 

and nontargeted metabolomic studies as indicative of PAD, using different instrumental platforms 

(NMR, GC–MS, LC–MS) that further corroborates our findings, including His, C0, TMAO, 

creatinine, Tyr and Phe/Tyr14–17,52–54; however, we did not observe differences in central energy 

metabolites (e.g., glutamate, 3-hydroxybuyrate, ketoglutarate) and metabolites from the urea cycle 

(e.g., ornithine, citrulline) that were also measured by MSI–CE–MS with stringent QC. In fact, 

discordant results were reported in two studies as related to the role of the urea cycle, likely 

reflecting potential confounding due to comorbidities in recruited PAD patients.15,16 Importantly, 

we report for the first time that lower serum creatine, MMA, oxo-Pro, cystine, and several long-

chain fatty acids are indicative of CLTI as compared to IC and/or non-PAD controls, with opposing 

trends for the uremic toxin, PAG. Overall, serum 18:0/C0 and Arg/C3 were among the most 

promising ratiometric biomarkers of PAD to accurately differentiate CLTI from IC, which also 

had strong positive correlations to the ABI. This panel of serum metabolites were related to 
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multiple pathological processes associated with the clinical syndrome of PAD, including muscle 

energy perturbations, vascular remodeling, atherosclerosis, myopathic ischemia, inflammation, 

and oxidative stress. Major limitations to our pilot study include the modest sample size of PAD 

patients recruited from a single center, which did not include patient diet records to assess the 

influence of habitual diet on PAD progression. Future work is needed to better validate the clinical 

utility of lead serum metabolites as potential diagnostic, prognostic and/or treatment biomarkers 

of PAD in prospective studies involving larger patient cohorts, including monitoring responses 

following vascularization surgery. Moreover, muscle metabolomic studies37 may prove useful to 

better understand the deleterious impacts of chronic muscle ischemia in localized tissues, as related 

to the pathophysiology of PAD when compared to systemic changes of metabolism in serum. The 

specificity of PAD biomarkers also needs to be evaluated as compared to other related 

cardiometabolic diseases, including CAD, type 2 diabetes, chronic kidney disease, as well as 

sarcopenia in older persons.22 

5.7 Acknowledgment 

P.B.M. acknowledges funding from the Natural Sciences and Engineering Research Council of 

Canada, and Genome Canada. S.M.A. acknowledges funding from the Egyptian Ministry of 

Higher Education. M.Q. acknowledges funding from the Blair Foundation. 

The authors declare no conflict of interest. 

5.8 References 

1. Hirsch AT, Criqui MH, Treat-Jacobson D, et al. Peripheral arterial disease detection, 
awareness, and treatment in primary care. JAMA. 2001;286:1317–1324. 
 

2. Conte MS, Bradbury AW, Kolh P, White, JV, Dick F, FitridgeR, Mills JL, Ricco JB, Suresh 
KR, Murad MH, et al. Global vascular guidelines on the management of chronic limb-
threatening ischemia. J. Vasc. Surg. 2019;69:3S–125S. 



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 192 

 
3. Dormandy J, Belcher G, Broos P, Eikelboom B, Laszlo G, Konrad P, Moggi L, Mueller U. 

Prospective study of 713 below–knee amputations for ischaemia and the effect of a 
prostacyclin analogue on healing. Br. J. Surg.1994;81:33–37. 

 
4. Varu VN, Hogg ME, Kibbe MR. Critical limb ischemia. J. Vasc. Surg. 2010;51:230–241. 
 
5. Almasri J, Adusumalli J, Asi N, Lakis S, Alsawas M, Prokop LJ, Bradbury A, Kolh P, Conte, 

MS, Murad MH. A systematic review and meta-analysis of revascularization outcomes of 
infrainguinal chronic limb-threatening ischemia. J. Vasc. Surg. 2019;69:126S–136S. 

 
6. Cooke JP, Wilson AM. Biomarkers of peripheral arterial disease. J Am. Coll. Cardiol. 2010; 

55:2017–2023. 
 
7. Hyun S, Forbang NI, Allison MA, Denenberg JO, Criqui MH, Ix JH. Ankle-brachial index, 

toe-brachial index, and cardiovascular mortality in persons with and without diabetes mellitus. 
J. Vasc. Surg. 2014;60:390–395. 

 
8. Clark N. American Diabetes Association. Peripheral arterial disease in people with diabetes. 

Diabetes Care. 2003;26:3333–3341. 
 
9. Curry SJ. Screening for peripheral artery disease and cardiovascular disease risk assessment 

with the ankle-brachial index: US Preventive Services Task Force Recommendation 
Statement. JAMA. 2018;320:177–183. 

 
10. McGarrah RW, Crown SB, Zhang GF, Shah SH, Newgard CB. Cardiovascular metabolomics. 

Circ. Res. 2018;122:1238–1258. 
 
11. Wang Z, Klipfell E, Bennett BJ, et al. Gut flora metabolism of phosphatidylcholine promotes 

cardiovascular disease. Nature. 2011;472:57–63. 
 
12. Ruiz-Canela M, Toledo E, Clish CB, et al. Plasma branched-chain amino acids and incident 

cardiovascular disease in the PREDIMED Trial. Clin. Chem. 2016;62:582–592. 
 
13. Shah SH, Sun J-L, Stevens RD, et al. Baseline metabolomic profiles predict cardiovascular 

events in patients at risk for coronary artery disease. Am. Heart J. 2012;163:844–850. 
 

14. Huang CC, McDermott MM, Liu K, Kuo CH, Wang SY, Tao H, Tseng YJ. Plasma 
metabolomic profiles predict near-term death among individuals with lower extremity 
peripheral arterial disease. J. Vasc. Surg. 2013;58:989–996. 

 
15. Zagura M, Kals J, Kilk K, Serg M, Kampus P, Eha J, Soomets U, Zilmer M. Metabolomic 

signature of arterial stiffness in male patients with peripheral arterial disease. Hypertens. Res. 
2015;38:840–846. 

 



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 193 

16. Ismaeel A, Franco ME, Lavado R, et al. Altered metabolomic profile in patients with 
peripheral artery disease. J. Clin. Med. 2019;8:1463. 

 
17. Hernández-Aguilera A, Fernández-Arroyo S, Cabre N, Luciano-Mateo F, Baiges-Gaya G, 

Fibla M, Martín-Paredero V, Menendez JA, Camps J, Joven J. Plasma energy-balance 
metabolites discriminate asymptomatic patients with peripheral artery disease. Mediat. 
Inflamm. 2018;18:1–12. 

 
18. Rutherford RB, Baker JD, Ernst C, Johnston KW, Porter JM, Ahn S, Jones DN. Recommended 

standards for reports dealing with lower extremity ischemia: Revised version. J. Vasc. Surg.1997; 
26:517–538. 

 
19. Al-Khatib SM, Stevenson WG, Ackerman MJ, et al. 2017 AHA/ACC/HRS Guideline for 

management of patients with ventricular arrhythmias and the prevention of sudden cardiac 
death: A Report of the American College of Cardiology/American Heart Association Task 
Force on Clinical Practice Guidelines and the Heart Rhythm Society. J. Am. Coll. Cardiol. 
2018;72:e91–e220. 

 
20. Ou M, Song Y, Li S, Liu G, Jia J, Zhang M, Zhang H, Yu C. LC-MS/MS method for serum 

creatinine: Comparison with enzymatic method and Jaffé method. PLoS ONE. 2015;10: 
e0133912. 

 
21. Wild J, Shanmuganathan M, Hayashi M, Potter M, Britz-McKibbin P. Metabolomics for 

improved treatment monitoring of phenylketonuria: Urinary biomarkers for non-invasive 
assessment of dietary adherence and nutritional deficiencies. Analyst. 2019;144:6595-6608. 

 
22. Saoi M, Li A, McGlory C, Stokes T, von Allmen MT, Phillips SM, Britz-McKibbin P. 

Metabolic perturbations from step reduction in older persons at risk for sarcopenia: Plasma 
biomarkers of abrupt changes in physical activity. Metabolites. 2019;9:134. 

 
23. Azab S, Ly R, Britz-McKibbin P. Robust method for high-throughput screening of fatty acids 

by multisegment injection-nonaqueous capillary electrophoresis–mass spectrometry with 
stringent quality control. Anal. Chem. 2019;91:2329–2336. 

 
24. Azab SM, de Souza RJ, Teo KK, Anand SS, Williams NC, Holzschuher J, McGlory C, Phillips 

SM; Britz-McKibbin P. Serum non-esterified fatty acids have utility as dietary biomarkers of 
fat intake from fish, fish oil and dairy in women. J. Lipid Res. 2020;61:933–944. 

 
25. Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by 

methyl-tert-butyl ether for high-throughput lipidomics. J. Lipid Res. 2008;49:1137–1146. 
 
26. Kuehnbaum NL, Kormendi A, Britz-McKibbin P. Multisegment injection-capillary 

electrophoresis-mass spectrometry: A high-throughput platform for metabolomics with high 
data fidelity. Anal. Chem. 2013;85:10664–10669. 

 



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 194 

27. Nori de Macedo A, Mathiaparanam S, Brick L, Keenan K, Gonska T, Pedder L, Hill S, Britz-
McKibbin P. The sweat metabolome of screen-positive cystic fibrosis infants: Revealing 
mechanisms beyond impaired chloride transport. ACS Cent. Sci. 2017;3:904–913. 

 
28. Wellington N, Shanmuganathan M, de Souza RJ, et al. Metabolic trajectories following 

contrasting Prudent and Western diets from food provisions: Robust biomarkers of short-term 
changes in habitual diet. Nutrients 2019;11:2407. 

 
29. Yamamoto M, Ly R, Gill B, Zhu Y, Moran-Mirabal J, Britz-McKibbin P. Robust and high-

throughput method for anionic metabolite profiling: Preventing polyimide aminolysis and 
capillary breakages under alkaline conditions in capillary electrophoresis-mass spectrometry. 
Anal. Chem. 2016;88:10710–10719. 

 
30. DiBattista A, Rampersaud D, Lee H, Kim M, Britz-McKibbin P. High throughput screening 

method for systematic surveillance of drugs of abuse by multisegment injection–capillary 
electrophoresis–mass spectrometry. Anal. Chem. 2017;89:11853–11861. 

 
31. Dunn WB, Erban A, Weber RJM, et al. Mass appeal: Metabolite identification in mass 

spectrometry-focused untargeted metabolomics. Metabolomics. 2013;9:44–66. 
 
32. Chong J, Soufan O, Li C, Caraus I, Li S, Bourque G, Wishart DS, Xia J. MetaboAnalyst 4.0: 

Towards more transparent and integrative metabolomics analysis. Nucleic Acids Res. 2018; 
46:W486–W494. 

 
33. Yamamoto M, Pinto-Sanchez MI, Bercik P, Britz-McKibbin P. Metabolomics reveals 

elevated urinary excretion of collagen degradation and epithelial cell turnover products in 
irritable bowel syndrome patients. Metabolomics. 2019;15:82. 

 
34. Mahieu NG, Patti GJ. Systems-level annotation of a metabolomics data set reduces 25,000 

features to fewer than 1000 unique metabolites. Anal Chem. 2017;89:10397–10406. 
 
35. Swedko PJ, Clark HD, Paramsothy K, Akbari A. Serum creatinine is an inadequate screening 

test for renal failure in elderly patients. Arch. Intern. Med. 2003;163:356–360. 
 
36. Gilstrap LG, Wang TJ. Biomarkers and cardiovascular risk assessment for primary 

prevention: An update. Clin. Chem. 2012;58:72–82. 
 
37. Saoi M, Percival M, Nemr C, Li A, Gibala M, Britz-McKibbin P. Characterization of the 

human skeletal muscle metabolome for elucidating the mechanisms of bicarbonate ingestion 
on strenuous interval exercise. Anal. Chem. 2019;91:4709–4718. 

 
38. Wade AM, Tucker HN. Antioxidant characteristics of L-histidine. J. Nutr. Biochem. 1998;9: 

308–315. 
 
39. Tomé D, Bos C. Lysine requirement through the human life cycle. J. Nutr. 2007;137:1642S–

1645S. 



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 195 

 
40. Castellano I, Merlino A. (Eds). Gamma-glutamyl transpeptidases: Structure and function. In 

Gamma-Glutamyl Transpeptidases: Structure and Function; Springer Briefs in Biochemistry 
and Molecular Biology; Springer: Basel, Switzerland, 2013; pp. 1–57. ISBN 978-3-0348-
0682-4. 

 
41. Steven S, Daiber A, Dopheide JF, Münzel T, Espinola-Klein C. Peripheral artery disease, 

redox signaling, oxidative stress—Basic and clinical aspects. Redox Biol. 2017;12:787–797. 
 
42. Saoi M, Sasaki K, Sagawa H, Abe K, Kogiso T, Tokushige K, Hashimoto E, Ohashi Y, Britz-

McKibbin P. High throughput screening of serum γ-glutamyl dipeptides for risk assessment 
of nonalcoholic steatohepatitis with impaired glutathione salvage pathway. J. Proteome Res. 
2020;19:2689-2699. 

 
43. Hajjari J, Tahhan AS, Alkhoder A, et al. Markers of oxidative stress and peripheral artery 

disease. J. Am. Coll. Cardiol. 2018;71:A2076. 
 
44. Poesen R, Claes K, Evenepoel P, de Loor H, Augustijns P, Kuypers D, Meijers B. Microbiota-

derived phenylacetylglutamine associates with overall mortality and cardiovascular disease in 
patients with CKD. J. Am. Soc. Nephrol. 2016:27:3479–3487. 

 
45. Sanders Thomas AB. Omega-6 fatty acids and cardiovascular disease. Circulation 2019;139: 

2437–2439. 
 
46. Matti M, Wu JHY, Imamura F, et al. Biomarkers of dietary omega-6 fatty acids and incident 

cardiovascular disease and mortality. Circulation. 2019;139:2422–2436. 
 
47. Grenon, SM, Hughes-Fulford M, Rapp J, Conte MS. Polyunsaturated fatty acids and 

peripheral artery disease. Vasc. Med. 2012;17:51–63. 
 
48. Ruiz-Canela M, Estruch R, Corella D, Salas-Salvadó J, Martínez-González MA. Association of 

Mediterranean diet with peripheral artery disease: The PREDIMED Randomized Trial. JAMA 
2014:311:415. 

 
49. Weitkunat K, Schumann S, Nickel D, Hornemann S, Petzke KJ, Schulze MB, Pfeiffer AF, 

Klaus S. Odd-chain fatty acids as a biomarker for dietary fiber intake: A novel pathway for 
endogenous production from propionate. Am. Clin. Nutr. 2017;105:1544–1551. 

 
50. Senyilmaz-Tiebe D, Pfaff DH, Virtue S, et al. Dietary stearic acid regulates mitochondria in 

vivo in humans. Nat. Commun. 2018;9:3129. 
 
51. Weiss DJ, Casale GP, Koutakis P, Nella AA, Swanson SA, Zhu Z, Miserlis D, Johanning JM, 

Pipinos II. Oxidative damage and myofiber degeneration in the gastrocnemius of patients with 
peripheral arterial disease. J. Transl. Med. 2013;11:230. 

 



 Ph.D. Thesis – Sandi M. Azab; McMaster University – Chemical Biology  

 196 

52. Senthong V, Wang Z, Fan Y, Wu Y, Hazen SL, Tang WHW. Trimethylamine N -oxide and 
mortality risk in patients with peripheral artery disease. J. Am. Heart Assoc. 2016;5:e004237. 

 
53. Roncal C, Martínez-Aguilar E, Orbe J, et al. Trimethylamine-n-oxide (TMAO) predicts 

cardiovascular mortality in peripheral artery disease. Sci. Rep. 2019;9:15580. 
 
54. Mlekusch W, Exner M, Sabeti S, Amighi J, Schlager O, Wagner O, Minar E, Schillinger M, 

Serum creatinine predicts mortality in patients with peripheral artery disease: Influence of 
diabetes and hypertension. Atherosclerosis. 2004;175:361–367. 

 
55. Ormstad H, Verkerk R, Sandvik L. Serum phenylalanine, tyrosine, and their ratio in acute 

ischemic stroke: On the trail of a biomarker? J. Mol. Neurosci. 2016;58:102–108. 

 
5.9 Supplemental Information: 
 
 
Serum Metabolome Data Matrix and Deidentified Patient Data.  
 
An excel file (PAD-Metabolomics-Data.xls) containing serum metabolome data matrix measured 

for all PAD patients (IC, CLTI) and non-PAD controls for authenticated metabolites/lipids 

measured by MSI-(NA)CE-MS under three different configurations is provided, including quality 

controls. All serum metabolites are annotated by their accurate mass and relative migration time 

(m/z:RMT) and name (if identified), where responses reflect their ion response ratio normalized to 

an internal standard. This excel file also contains deidentified patient demographic and clinical 

information from this pilot study for full data transparency.  
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Table S5.1. Summary of 85 serum metabolites detected in PAD patients that are annotated 
based on their accurate mass (m/z), relative migration time (RMT), ionization mode (l = non-
aqueous negative mode, p = aqueous positive mode, n = aqueous negative mode), metabolite 
ID, most likely molecular formula, confidence level for identification, and technical precision 
of repeated QCs analyzed in each run. 

m/z:RMT:mode Metabolite 
ID 

Molecular 
Formula 

Confidence 
level % CV 

Myristic-d27 acid (14:0-d27) 254.371:1.053:l C14HD22O2 1 6.0 

Lauric acid (12:0) 199.170:1.081:l C12H24O2 1 14.2 

Myristelaidic acid (14:1) 225.186:1.064:l C14H26O2 2 16.1 
Myristic acid (14:0) 227.202:1.058:l C14H28O2 1 16.1 

Pentadyclic acid (15:0) 241.217:1.042:l C15H30O2 1 29.2 

Palmitoleic acid (16:1n-7) 253.217:1.037:l C16H30O2 1 7.3 

Palmitic acid (16:0) 255.233:1.030:l C16H32O2 1 11.6 

Heptadecenoic acid (17:1n-7) 267.233:1.026:l C17H32O2 2 14.5 

Heptadecanoic acid (17:0) 269.249:1.017:l C17H34O2 1 12.0 
Linolenic acid (18:3n-3) 277.217:1.023:l C18H30O2 1 6.8 

Linoleic acid (18:2n-6) 279.233:1.019:l C18H32O2 1 5.2 

Oleic acid (18:1n-9) 281.249:1.013:l C18H34O2 1 5.4 

Stearic acid (18:0) 283.2676:1.0051:l C18H36O2 1 14.9 

Eicosapentaenoic acid (20:5n-3) 301.217:1.031:l C20H30O2 1 4.9 

Arachidonic acid (20:4n-6) 303.233:1.028:l C20H32O2 1 6.5 
Dihomo-linolenic acid (20:3n-6) 305.252:1.004:l C20H34O2 2 7.8 

Eicosadienoic acid (20:2) 307.265:0.994:l C20H36O2 2 7.6 

Arachidic acid (C20:0) 311.295:0.981:l C20H40O2 1 27.1 

Docosahexaenoic acid (22:6n-3) 327.233:1.034:l C22H32O2 1 6.3 

Docosapentaenoic acid (22:5n-6) 329.253:0.992:l C22H34O2 2 14.3 

Adrenic acid (22:4n-6) 331.268:0.990:l C22H36O2 1 6.2 
Behenic acid (22:0) 339.327:0.969:l C22H44O2 1 21.8 

Unknown#1 353.235:1.027:l C20H34O5 3 23.4 

Nervonic acid (24:1n-9) 365.342:0.947:l C24H46O2 1 20.9 

Lignoceric acid (24:0) 367.357:0.942:l C24H48O2 1 26.5 

Glycine 76.040:0.702:p C2H5NO2 1 27.5 

Trimethylamine-N-oxide 76.077:0.544:p C3H9NO 1 19.4 
Alanine 90.055:0.758:p C3H7NO2 1 11.7 

g-Aminobutyric acid 104.071:0.805:p C4H9NO2 1 18.0 

Dimethylglycine 104.071:0.926:p C4H9NO2 1 24.2 

Choline 104.108:0.569:p C5H14NO 1 14.6 
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Serine 106.050:0.842:p C3H7NO3 1 7.2 

Creatinine 114.066:0.614:p C4H7N3O 1 7.8 
Proline 116.071:0.908:p C5H9NO2 1 6.3 
Guanidoacetate 118.086:0.835:p C3H7N3O2 1 17.0 
Betaine 118.086:0.956:p C5H11NO2 1 11.9 
Threonine 120.065:0.885:p C4H9NO3 1 6.7 
Unknown#2  129.066:0.736:p C5H8N2O2 4 7.5 
Hydroxyproline 132.065:1.022:p C5H9NO3 1 6.4 
Creatine 132.077:0.745:p C4H9N3O2 2 8.2 
Isoleucine 132.102:0.848:p C6H13NO2 1 8.6 
Leucine 132.102:0.861:p C6H13NO2 1 7.5 
Ornithine 133.097:0.578:p C5H12N2O2 1 9.3 
Unknown#3 134.044:0.969:p C4H7NO4 4 14.2 
Hypoxanthine 137.046:1.058:p C5H4N4O 1 13.9 
Glutamine 147.076:0.910:p C5H10N2O3 1 5.5 
Lysine 147.113:0.580:p C6H14N2O2 1 6.6 
Glutamic acid 148.060:0.923:p C5H9NO4 1 5.6 
Methionine 150.058:0.896:p C5H11NO2S 1 5.3 
TMAO (dimer) 151.144:0.544:p C3H9NO 1 16.8 
Histidine 156.077:0.620:p C6H9N3O2 1 7.8 
Unknown#4 160.133:0.709:p C8H17NO2 4 15.3 
a-Aminoadipate 162.076:0.924:p C6H11NO4 1 12.9 
Carnitine 162.112:0.719:p C7H15NO3 1 7.5 
Phenylalanine 166.086:0.926:p C9H11NO2 1 6.7 
Unknown #5 169.058:0.910:p C5H10N2O3 4 25.5 
Methylhistidine 170.092:0.635:p C7H11N3O2 1 5.4 
Arginine 175.119:0.601:p C6H14N4O2 1 7.3 
Citrulline 176.103:0.936:p C6H13N3O3 1 5.3 
Tyrosine 182.080:0.9564:p C9H11NO3 1 2.8 
Monomethylarginine 189.134:0.606:p C7H16N4O2 1 18.9 
Acetylcarnitine 204.123:0.762:p C9H17NO4 1 7.5 
Tryptophan 205.097:0.925:p C11H12N2O2 1 7.4 
Unknown#6  217.154:0.836:p C15H20O 4 28.8 
Propionylcarnitine 218.138:0.784:p C10H19NO4 1 13.5 
Cystine 241.030:0.933:p C6H12N2O4S2 1 5.8 
Cysteinylglycine disulfide 298.052:0.806:p C8H15N3O5S2 2 6.6 
Pyruvic acid 87.009:1.338:n C3H4O3 1 26.9 
Lactic acid 89.024:1.281:n C3H6O3 1 16.6 
Phosphoric acid 96.970:1.949:n H3O4P 2 14.7 
Dimethylglycine 102.056:1.182:n C4H9NO2 1 25.5 
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3-Hydroxybutyric acid 103.040:1.142:n C4H8O3 1 29.8 
2-Hydroxybutyric acid 103.040:1.168:n C4H8O3 1 23.4 
a-Ketoisovaleric acid 115.040:1.213:n C5H8O3 1 30.9 
Taurine 124.007:0.972:n C2H7NO3S 1 15.2 
Pyroglutamic acid 128.035:1.137:n C5H7NO3 1 31.4 
3-Methyl-2-oxovaleric acid 129.055:1.142:n C6H10O3 1 22.3 
Aspartic acid 132.030:1.350:n C4H7NO4 1 22.4 
Unknown#7  135.031:1.110:n C4H8O5 4 19.1 
Uric acid 167.021:1.101:n C5H4N4O3 1 16.3 
Hippuric acid 178.051:1.009:n C9H9NO3 1 13.8 
Glucose 179.056:1.000:n C6H12O6 1 16.1 
Citric acid 191.020:2.418:n C6H8O7 1 26.1 
Gluconic acid 195.050:0.976:n C6H12O7 1 26.6 
Phenylacetylglutamine 263.104:0.899:n C13H16N2O4 1 15.5 
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Chapter VI: Future Directions in Biomarkers, Metabolomics and Lipidomics for Clinical 
Medicine 
 

“Let us not lose heart in doing good, for in due time we will reap if we do not grow weary” 
 

6.1 Overview of major thesis contributions 

The research presented in this thesis has contributed two main directions in metabolomics and 

biomarker discovery: (1) development of novel analytical methods for high-throughput, simple 

and robust measurement of long-chain  fatty acids and perfluoroalkyl substances (PFASs) in serum 

in support of large-scale epidemiological studies of metabolic disorders in birth cohorts as well as 

new advancements in clinical medicine and public health; and (2) application of these metabolomic 

and lipidomic analyses in nutritional science and cardiovascular disease for the purpose of 

biomarker discovery and dietary biomarker validation. Herein, various metabolomics studies were 

exemplified either through a targeted hypothesis-testing approach to assess maternal fat intake by 

analyzing serum non-esterified fatty acids (NEFAs) or an untargeted hypothesis-generating 

approach for characterization of the serum metabolome in peripheral artery disease (PAD). 

Chapter I of this thesis provided a comprehensive review of the types and roles of 

biomarkers in clinical medicine and the role of metabolomics in biomarker discovery. It provides 

a thorough overview of the metabolomics experiment, major steps and challenges of the 

metabolomics workflow as well as the process of biomarker validation for translational research 

and concludes with a specific focus on fatty acids, their chemistry, biochemistry and clinical 

significance, as an important class of lipids and key molecules for human health. Chapter II 

introduced a novel assay based on multisegment injection - non-aqueous capillary electrophoresis 

– mass-spectrometry (MSI-NACE-MS) following rigorous method optimization and validation for 

fatty acids profiling in serum that is relevant for a multitude of clinical applications.1 In this study, 
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a major limitation of the gold standard gas chromatographic (GC) methods, which require lengthy 

sample derivatization and complicated workup protocols was evaded, requiring only a simple 

single-step liquid extraction step using methyl-tert-butyl ether (MTBE) was needed.2,3 

Furthermore, multiplexed separations of seven sequential sample injections in a single run of 30 

minutes offered a 7 x higher throughput in addition to superior quality management granted by the 

incorporation of a (Quality Control) QC sample in each run for monitoring instrumental drift and 

overall technical variance with subsequent batch correction as needed.4,5,6 Accurate modeling of 

ion migration behavior of fatty acids in NACE was also achieved and served as a complementary 

physicochemical tool useful for identification of unknown fatty acids notably standards are 

unavailable. Importantly, longstanding technical challenges associated with NACE-MS that 

constitute major obstacles to an otherwise promising technique for lipidomics, were carefully 

studied and systematically overcome, including capillary swelling and incidental fractures, current 

instabilities from nebulizer suctioning effects, as well as frequent corona discharge under negative 

ion mode detection when using organic solvent solutions.  

A rigorous validation of MSI-NACE-MS was further expanded in Chapter III using 

tandem mass spectrometry (MS) on a triple quadrupole (QQQ) system for targeted multiplexed 

analysis of nanomolar levels of PFASs in human serum with rigorous quality control. PFASs are 

a class of synthetic persistent organic pollutants and endocrine-disrupting chemicals linked to 

metabolic abnormalities in children from prenatal exposures and pose a global challenge to 

scientists, industry leaders and public health.7,8,9 We demonstrated clear advantage of the use of 

non-aqueous background electrolyte systems over aqueous ones for capillary electrophoresis (CE) 

and CE-MS for superior solubilization, resolution and peak sharpness of perfluorooctanoic acid 

(PFOA) and perfluorooctanesulfonic acid (PFOS), the two major perflourinated contaminants in 
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serum extracts. Similar to fatty acids, the sequential injection of seven discrete samples including 

a repeated QC sample within one run, offers higher throughput (< 3 min/sample) and adequate 

quality control for rapid biomonitoring of PFASs by MSI-NACE-MS/MS. Finally, the newly 

developed method was applied on a small subset of samples from birth cohorts collected after 2009 

and compared to a pooled sample from before 2009 with a notable decrease in serum concentration 

in accordance with enforced PFASs regulation by the Stockholm Convention with considerable 

variation of individual serum concentrations of PFOA and PFOS in pregnant women. 

Chapter IV of this thesis details a direct application in nutritional epidemiology of the 

rigorously validated lipidomic MSI-NACE-MS method developed in Chapter II for fatty acids 

analysis through an integration of two observational and intervention studies to assess the utility 

of circulating NEFA as biomarkers of fat intake in women and how this underreported lipid 

fraction correlated with other lipid pools.10 From a methodological point of view, NEFA analysis 

is challenging as its chemical derivatization for GC without background hydrolysis is difficult and 

thus NEFA is an underreported fraction with 90% of studies focusing on phospholipid fraction, 

either from serum or erythrocytes, or total hydrolyzed serum lipids.1,11,12 MSI-NACE-MS offers 

direct NEFA analysis with no need for derivatization, fractionation or hydrolysis and is thus 

optimal for large-scale epidemiological studies urgently needed for evidence-based dietary 

guidelines of fat intake in relation to disease. Furthermore, in search of candidate biomarkers of 

food intake (BFIs), ideally these should be readily measurable, specific to food and not 

endogenously produced by the body, as in the special case of ω-3 fatty acid and odd-chain fatty 

acids, which are the focus of this study. In the cross-sectional study of 50 pregnant women, 

eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in terms of their serum NEFA and 

similar to total hydrolyzed fraction, were significantly higher in women consuming a healthy diet 
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than women with a poor diet quality and were also correlated to self-reported fish/ω-3 intake. As 

for biomarkers of dairy fat intake, serum pentadecanoic aid (15:0) as its NEFA followed by 

myristic acid (14:0) had the strongest association and selectivity to self-reported full-fat dairy 

intake with no correlation found to either low-fat or fermented dairy intakes. In parallel, the 

randomized controlled study of serum NEFA following a high-dose fish oil supplementation as 

compared to a placebo group in 18 young women followed over a 56 day intervention period 

revealed a significant 2.5-fold increase from baseline in serum EPA and DHA as their NEFA 

within a month in the treatment arm with no further changes at later time points. These outcomes 

were comparable to independent erythrocyte phospholipid measurements with no other changes in 

other measured serum NEFAs. Interestingly, we have noted a strong correlation between 

erythrocyte PL and NEFA for EPA but not DHA, to support non-esterified EPA as a likely more 

responsive and sensitive biomarker of high-dose fish oil supplementation while also revealing non-

adherence to fish oil supplementation for participants. These results are especially important in 

light of various interests focused on high-dose ω-3 fatty acids for the prevention and/or treatment 

of childhood asthma, as well as muscle atrophy, and cardiovascular disease in older persons. For 

the first time, we demonstrated that NEFA analysis using MSI-NACE-MS offers a rapid approach 

for accurate assessment of dietary/supplemental fat intake, in specific fat from fish, fish oil and 

dairy in women, consistent with other commonly used lipid pools, as needed to complement 

dietary self-report tools and food frequency questionnaires that are subjective and often biased and 

prone to error. 

Chapter V described the non-targeted characterization of serum hydrophilic and lipophilic 

metabolome of age and sex-matched nondiabetic PAD patients. In addition to measuring total 

hydrolyzed serum fatty acids using MSI-NACE-MS as described in Chapter II, we have applied a 
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high throughput metabolomics platform for polar ionic compounds using MSI-CE-MS in both 

positive and negative ion modes. The incorporation of a QC sample in each MSI run, randomly 

allocated in the sample injection sequence, allowed for rigorous quality control measures of data 

with subsequent data filtering to exclude spurious signals/redundant features and reduce false 

discoveries. Overall, 85 authenticated metabolites were consistently detected in the majority of 

serum samples. We have revealed for the first time that lower serum creatine, 

monomethylarginine, oxoproline, cystine, and several fatty acids are indicative of chronic limb-

threatening ischemia (CLTI) as compared to intermittent claudication (IC) and/or non-PAD 

controls with opposing trends for the uremic toxin, phenylacetylglutamine. Consistent with recent 

literature, we observed higher serum trimethylamine-N-oxide and phenylalanine/tyrosine ratio in 

CLTI relative to IC, as markers of atherosclerosis and inflammation, respectively, in advanced 

stages of PAD, as well as lower serum histidine levels in PAD patients versus non-PAD controls; 

a hallmark of reduced antioxidant capacity.13,14 Noteworthy, this work outlined the discovery of 

promising ratiometric metabolites, namely serum stearic acid/carnitine and 

arginine/propionylcarnitine, that allow for differential discrimination of CLTI with good accuracy, 

not predictable by ABI measurements alone. These metabolites are related to multiple pathological 

processes associated with PAD, including skeletal muscle energy perturbations, vascular 

remodeling, atherosclerosis, myopathic ischemia, inflammation, and oxidative stress. In 

conclusion, a panel of serum metabolites that reflect underlying pathophysiology of PAD has been 

identified, that can putatively aid in early diagnosis or risk assessment of PAD and serve as a risk-

stratifying tool for IC and CLTI for timely identification and therapeutic monitoring of high-risk 

patients to reduce delays in surgical interventions, amputations and mortality. 
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6.2 Further advancement of lipidomics analyses by MSI-NACE-MS 

Successful non-traditional lipidomics analyses using MSI-NACE-MS were initiated in this thesis  

and show promise of future advancement for high throughput lipidomic studies, which largely rely 

on lower throughput LC-MS methods with reversed-phase or hydrophilic interaction 

chromatographic separations with continuous need for interlaboratory harmonization.15 Chapter II 

introduced a rapid method based on MSI-NACE-MS for the reliable determination of fatty acids 

in human serum extracts that is optimal for large-scale analyses in nutritional epidemiological.1 

This method was rigorously validated and demonstrated acceptable linearity, precision, accuracy 

and sensitivity for accurate quantification of 24 fatty acids in addition to putative identification of 

other anionic lipids. However, isomeric resolution of geometrical or positional isomers was not 

achieved and improved resolution of low levels of branched-chain fatty acids and fatty acids 

isomers (cis/trans) is sought for in future studies through several directions. As with the advantage 

offered by micellar electrokinetic capillary chromatography (MEKC), use of a complexing agent 

that binds differently to geometric isomers could be expected to segregate co-migrating isomers. 

Unfortunately, this is less compatible with electrospray ionization-MS due to persistence and 
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memory effects of the used surfactants, nevertheless, use of volatile MS-compatible surfactants 

has shown some potential.16 A different approach is one that supresses the EOF by employing a 

linear polyacrylamide (LPA) coated capillary which supresses electroosmosis; a major source of 

migration time variability in NACE.17 Under reversed polarity, fatty acids would then migrate 

towards the capillary outlet held at the anode, which would theoretically increase separation 

window and peak capacity. 

Moreover, certain low abundance eicosanoids, ideal for MSI-NACE-MS analysis in 

negative mode (e.g., leukotrienes and prostaglandins), could benefit from improved concentration 

sensitivity in MSI-CE-MS when transitioning to sheathless/nanospray interfaces for CE-MS which 

can enhance ionization responses by up to two orders of magnitude.18 In addition, use of a wider-

bore inner diameter fused-silica capillary (100 μm) could be explored for increased sample 

loading. Similar approaches could also be applied to the method introduced in Chapter III for 

biomonitoring of serum PFASs by MSI-NACE-MS/MS to boost sensitivity and detection limits. 

Additionally, expanding coverage of the analytical assay by further optimizing multiple reaction 

monitoring (MRM) transitions seems a simple and quite promising step for quantitation of various 

other legacy PFASs that are not regulated, including perfluorononanoic acid (PFNA) and 

perfluorohexane sulfonic acid (PFHxS), as well as emerging fluorinated replacements (e.g., 

chlorinated polyfluoroalkyl ether sulfonic acids). Importantly, method development for intact 

phospholipid analysis by MSI-NACE-MS under positive ion mode is currently undergoing (by 

Ritchie Ly supervised by Dr. Britz-Mckibbin) and is anticipated to offer expanded and extensive 

cationic lipid profiling of more than 80 different cationic lipid species to include 

phosphatidylcholines, sphingomyelins and phosphatidylethanolamines. This strategy relies on a 

rapid yet safe reaction for derivatization of zwitterionic phospholipids, that would otherwise co-
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migrate close to EOF, by fixing a net permanent positive charge using 3-methyl-1-p-toyltriazene 

(MTT) to methylate phosphoric acid residues; optimal for positive ion mode detection. By means 

of the resulting increased mobility shift, more efficient separation and improved ESI signal 

responses are achieved while significantly increasing the lipidome coverage of MSI-NACE-MS. 

6.3 NEFA analysis of maternal serum in the FAMILY birth cohort 

In Chapter III, a subset of the maternal serum samples (n = 50) of the FAMILY birth cohort was 

used to investigate the utility of NEFA as objective BFIs, in specific, fish and full-fat dairy.19 In 

this context, fatty acids profiling is undergoing for a larger sample size (n = 300) from FAMILY 

as part of the collaborative initiative for “Deciphering the metabolic signature of the metabolic 

syndrome in children”.20 This project first serves as a validation for pilot studies presented in 

Chapter III on the utility of serum non-esterified ω-3 fatty acids and 15:0 as biomarkers of 

maternal intake of fatty fish and full-fat dairy, respectively.21 Furthermore, this work will provide 

reference ranges for absolute concentrations of circulating NEFA from a representative population 

of pregnant women in Canada, which is valuable for the research community to provide average 

baseline measures during pregnancy, that are not estimated from dietary assessment, in support of 

nutritional science as well as biomarker cutoffs as compared to normal distributions.22 Absolute 

concentrations are also advantageous compared to weight percentages when pooling/investigating 

multiple studies to allow for direct integration of data from different study populations.22 

Additionally, an untargeted metabolomics approach will be conducted to precisely explore and 

expand MSI-NACE-MS coverage with previous putative identification of other classes of acidic 

metabolites in serum extracts e.g. bilirubin, pregnanediole-3-glucuronide, lysophosphatidic acid 

and some bile acids, for more comprehensive analyses as exemplified in Figure 6.1. Finally, this 

study will investigate the associations of the maternal metabolome/lipidome, which reflects  
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Figure 6.1 Representative mass spectra and tentative identification of various classes of acidic lipids in serum 
extracts from pregnant women when using nontargeted data analysis with MSI-NACE-MS. Tentative identification 
based on accurate mass since unambiguous elucidation of exact chemical structures for anionic lipids requires 
comparison to reference MS/MS spectra that are also confirmed with standards 
 

maternal exposures and the prenatal milieu, with various disease and metabolic outcomes in the 

offspring later in life such as obesity, hyperlipidemia or asthma, as predisposed during fetal 

programming.  

6.4 Validation of preliminary findings of PAD-specific metabolic differences in serum 

Chapter V reported, for the first time, differential metabolic and ratiometric differences indicative 

of CLTI as compared to IC and/or non-PAD controls. Future studies to validate results of this work 
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are necessary to confirm the findings in larger and independent cohorts including a multi-center 

study design. In order to move the identified panel of serum metabolites from exploratory to 

advanced phases of biomarker discovery and translation to clinical settings, results must be first 

replicated on different samples drawn from the same population using receiver operating 

characteristic (ROC) curves to confirm the diagnostic performance (AUC > 0.90) of an optimal 

panel of serum metabolites or metabolite ratios.23 Only when discovery and validation results are 

consistent, is the candidate biomarker(s) worth pursuing in advanced clinical testing on a much 

larger scale across multiple centres. Therefore, next phases include developing an ultra-fast assay 

for quantitative analysis of lead candidate serum biomarkers (ideally with stable-isotope internal 

standards) with greater overall study power (n > 1000) as well as inclusion of more complicated 

patient cases,24 such as ambiguous diagnosis or comorbidities to ensure biomarker use is 

generalizable to a wider clinical population especially PAD patients with type 2 diabetes and/or 

chronic kidney disease.25  

Another objective in future studies will be the investigation of the muscle metabolome of 

PAD patients to better understand the deleterious impacts of chronic muscle ischemia in localized 

tissues on the pathophysiology of PAD as compared to systemic changes in circulatory 

metabolism. Moreover, future longitudinal studies of the serum metabolome of CLTI patients who 

undergo surgical interventions will also comprise investigating metabolites trajectories over time 

in search of treatment response biomarkers that reflect improved vascular flow, reduced myopathic 

ischemia or inflammation. This would greatly assist surgeons in the surveillance of patients 

following revascularization surgery who may be at risk of relapse and poor survivorship. 

Direct application of this research into clinical practice can be foreseen as these potential 

blood-based biomarkers are non-invasive, easy to measure and implement in primary care settings 
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as a means to monitor asymptomatic high-risk patients (with a predefined optimal threshold as 

exemplified in the ROC curves) as well as to monitor progression of symptomatic patients for 

timely referrals and treatment given the poor survivorship of CLTI (50% mortality rate within 5 

years) and the fact that its progression is currently unpredictable.26 Additionally, when comparing 

PAD patients and non-PAD controls, we found significant insufficiencies of several metabolites 

and amino acids (e.g., histidine, lysine and creatine), which could be potentially prescribed in the 

form of dietary supplements to delay disease progression. Consequently, follow up randomized 

controlled trials on dietary/supplemental interventions are part of future studies to investigate if a 

favourable outcome in symptomatic or asymptomatic PAD patients is achieved in support of 

evidence-based nutrition guidelines and precision medicine.  

6.5 Thesis conclusion 

In summary, novel MSI-NACE-MS methods have been developed and extensively validated in 

this thesis for analysis of fatty acids and their analogues, PFASs, to support reliable metabolome 

measurements for epidemiological and clinical applications. This unique metabolomics platform 

was devised as one with high-throughput and rigorous quality control measures ideal for biomarker 

discovery and large-scale studies. Additionally, this thesis identified serum NEFA as an objective 

measurement of fat for new advances in nutritional epidemiology anticipated to allow for routine 

clinical testing of dietary fat and ω-3 fatty acids status as potential modifiable cardiovascular risk 

factors in high-risk populations and as part of personalized diet plans for optimal nutrition.  Finally, 

this thesis presented the first characterization of the serum metabolic signature of CLTI in non-

diabetic PAD patients. This pilot study revealed metabolite changes associated with the 

development of PAD (susceptibility or risk biomarkers) as well as the prognosis of CLTI 

(prognostic biomarkers), that could potentially also serve in treatment monitoring and patients’ 
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surveillance following surgical revascularization (monitoring biomarkers) to assist vascular 

surgeons in risk assessment and decision making.  
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