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Abstract

In this manuscript, we develop a finite liquidity framework for two-asset

markets. In contrast to the standard multi-asset Black-Scholes framework,

trading in our market model has a direct impact on the asset’s price. The

price impact is incorporated into the dynamics of the first asset through a

specific trading strategy, as in large trader liquidity models. We adopt Euler-

Maruyama and Milstein scheme in the simulation of asset prices. Exchange

and Spread option values are numerically estimated by Monte Carlo with the

Margrabe option as a controlled variate. The time complexity of these numer-

ical schemes is included. Finally, we provide some deep learning frameworks

to implement these pricing models effectively.



Introduction

The Black-Scholes (BS) model was truly a breakthrough for the pricing of single-asset

options. It assumes participants operate in a perfect liquid, friction-less and complete

market. In practice, one or more of these assumptions are violated. When the liquidity

restriction is relaxed, trading will impact the price of the underlying assets. Wilmott

(2000) [49] was one of the pioneers of these price impact models. He considered price im-

pacts depending upon different trading strategies such as buy and hold, limit order and

portfolio optimization. To account for price impact, Liu and Yong (2005) [33] included an

additional term in the asset price stochastic differential equation (SDE). This inclusion

indirectly adds a valuation adjustment to the price of the option. Such an adjustment

stems from a lack of liquidity, and may be classified as liquidity valuation adjustment

(LVA). Various non-linear BS-like partial differential equations (PDE), capturing the re-

sulting price impact from trading have been studied [3, 7, 16, 23]. All these models share

the similarity of being single-asset LVA models.

Exchange Options provide the utility of exchanging one asset for another. Under

the BS assumption for two-asset markets, Margrabe (1978) [34] derived a closed-form

solution for the price of Exchange Options. The Exchange Option plays an essential role

in currency markets. The Foreign Exchange (FX) Option is an Exchange Option where

the assets are currencies. A common concern is raised when one considers the interaction

between liquid and illiquid currencies. A trader might ask, “How reliable is the price

of a 3-month European style USD/UAH (Hryvnia, an infrequently traded currency) FX

Option?”. In this work, we are interested in these types of scenarios. Recent studies on

Exchange Options, such as [5, 6, 24, 47], exhibit deviation from the assumptions of BS.

The aforementioned studies predominately involve stochastic volatility models.

The Spread Option also provides the utility of interchanging one asset for another, with

the additional cost of a strike price. Under the BS assumption for two-asset markets, there

is no closed-form solution for the price of Spread Options. Various groups have worked on

numerical methods for Spread Option in the past, some excellent examples can be found

in [11,15,29,31,32]. The Spread Option plays an essential role in commodity markets. The

Crush Spread is a Spread Option between soybean futures and soybean oil. Crack Spread

is a type of Spread Option specifically designed for crude oil and its refined product.



The Spark Spread provides the utility of Spread Option for wholesale electricity price and

against the cost of production. Just like the Exchange Option, one of the underlying

assets could be illiquid in nature. Pirvu et al. studied Spread Option pricing in the

presence of full or partial price impact [1, 38]. Their approach was to implement a finite

difference scheme.

In this manuscript, we consider a binary-asset market with a single illiquid asset.

Under this consideration, we construct a price impact model, called the finite liquidity

market model (FLMM). The model is a system of SDEs, one for each asset. The liquid

asset is unchanged, the illiquid is modified to incorporate the resulting price impact from

trading. Existence and uniqueness conditions on the SDES are established for the FLMM

(see B.1). We also discovered a unique risk-neutral measure for FLMM. By replicating

a portfolio, We derive the partial differential equation (PDE) characterization of option

prices. Finally, we match the solution of the PDE to the risk-neutral price formula by

invoking the discounted Feymann Kac’s formula. This concludes the establishment of

model frameworks. Next, we consider a market consisting of market makers, who trade

by Delta Hedging. We utilize both the Euler-Maruyama and Milstein method [21, 25]

and simulate the FLMM SDEs. We build Monte Carlo (MC) estimators for Exchange

and Spread option then explored various reduction techniques. Motivated by [17,45], we

applied these deep learning methods to FLMM and achieves accurate high-speed pricing.

The remainder of the content written in this manuscript is organized in the following

sections. Section 1 discusses the basic two-asset model frameworks. In Section 2, we

analyze the pricing formula of Exchange and Spread option. Section 3 discusses the

FLMM frameworks. In Section 4, we explore pricing methods for Exchange Option under

FLMM. In Section 5, we explore pricing methods for Spread Option under FLMM. Section

6 contains the implantation of Deeply Learning Derivative and Deep Galerkin Method

under FLMM. In Section 7, we make some concluding statements for the readers. The

last Section is an Appendix containing the formulas and proofs of our results.
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Notations

Ω Sample space

F ptq Brownian filtration
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Chapter 1

Basic Two-Assets Market Model

1.1 Market Model

Brownian Motion is a continuous time stochastic process of the Lévy family, it possesses

the following properties:

• W p0q “ 0,

• increments of W ptq are independent,

• W ptq ´W psq „ Np0, t´ sq for all t ą s,

• W ptq is continuous in t almost surely.

Brownian filtered probability space
`

Ω,P, tF ptqutě0

˘

is the name given to a space in

which BM can be constructed. Unless otherwise specified, the probability spaces in this

thesis are assumed to be a peculiar
`

Ω,P, tF ptqutě0

˘

. Brownian Motion are martingales,

a family of processes that has no tendency to rise nor fall. Brownian path is a particular

realization of BM, and it may take on negative values. For these reasons, BM are not

suitable to model asset prices. Asset prices should be characterized by processes that are

not only positive almost surely, but also posses non-zero drift.

Geometric Brownian Motion is defined to be the solution to the stochastic differential

equation:

dSptq

Sptq
“ µ1ptqdt` σptqdW ptq.

Solving this SDE will yield:

Sptq “ Sp0q exp
 

ż t

0

`

µ1puq ´
1

2
σ2
puq

˘

du`

ż t

0

σpuqdW puq
(

.

1



Using GBM to model assets is more suitable because it is positive almost surely and has

a tendency to change over time. This is the basis for the model considered by Merton

(1971) [35].

Figure 1.1.1: Scaled Brownian Motion with Drift and Geometric Brownian Motion

To price derivatives in multi-asset market scenarios, modelling the behaviour of assets

is of uttermost importance.

In Chapter 5 of Shreve’s book (2004) [44], he assumes risky assets have the dynamics of

Geometric Brownian Motions that are driven by multiple independent Brownian Motions.

When there are two risky assets and a stochastic interest rate, the market dynamics can

be illustrated as the following:

dS1ptq

S1ptq
“ µ1ptqdt` σ1ptqdW1ptq,

dS2ptq

S2ptq
“ µ2ptqdt` σ2ptqρptqdW1ptq ` σ2ptq

a

1´ ρptq2dW2ptq,

dDptq

Dptq
“ ´Rptqdt.

In this model, S1ptq, S2ptq and Dptq denote the risky assets and discount process respec-

tively. The Brownian Motions W1ptq and W2ptq are independent. The interest rate process

Rptq is stochastic in nature. ρptq is an instantaneous correlation process. The future price

of the assets will be determined by the following factors:

• The drift terms µ1ptq, µ2ptq and Rptq represents the mean rate of return.

2



• The volatility terms σ1ptq and σ2ptq represents the uncertainty of returns.

• The instantaneous correlation process ρptq represents the relationship between the

two risky assets. It takes on a value between ´1 and 1. It can also be used through

Lêvy’s theorem to create correlated Brownian Motions.

In 1973, Fischer Black and Myron Scholes presented the Black-Scholes model for pric-

ing European style options [10]. The BS model has the following additional assumptions:

• There exists a risk-neutral measure for the market.

• The market is perfectly liquid, i.e. any buy/sell order will be executed at a linear

price (the size of order times price per share).

• Interest rate and volatility terms are constants.

The market dynamics of BSM model is given by the following SDEs:

dS1ptq

S1ptq
“ µ1ptqdt` σ1dW1ptq,

dS2ptq

S2ptq
“ µ2ptqdt` σ2ρdW1ptq ` σ2

a

1´ ρ2dW2ptq, (1.1.1)

dDptq

Dptq
“ ´rdt.

1.2 Two-Dimensional Girsanov’s Theorem

In probability theory, the Girsanov theorem describes how the dynamics of stochastic

processes change after measure change. The theorem is especially significant in financial

mathematics as it allows for the recognition of Brownian Motions after measure change

from the real world to a risk-neutral setting.

Theorem 1.2 (Girsanov). Let Θptq “
`

Θ1ptq,Θ2ptq
˘

be a 2-dimensional adapted pro-

cess. Define

Zptq “ exp
!

´

ż t

0

Θ1puqdW1puq ´

ż t

0

Θ2puqdW2puq ´
1

2

ż t

0

`

Θ2
1puq `Θ2

2puq
˘

du
)

,

ĂW ptq “

«

ĂW1ptq
ĂW2ptq

ff

“

„

W1ptq `
şt

0
Θ1puqdu

W2ptq `
şt

0
Θ2puqdu



.
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Set Z “ ZpT q, it is clear that EpZq “ 1. Then, under the probability measure rP given by:

rPpAq “
ż

A

ZpωqdPpωq for all A P F ,

the process ĂWptq is a 2-dimensional Brownian Motion.

1.3 Risk Neutral Measure and Market Completeness

In financial mathematics, a risk-neutral measure is a probability measure such that all

the discounted asset processes are martingales under this measure. A risk-neutral measure

exists if and only if the market is arbitrage-free according to The first theorem of asset

pricing.

A risk-neutral measure for the BSM market model (1.1.1) can be defined in the fol-

lowing way:

Let

Θptq “

„

Θ1ptq
Θ2ptq



“

«

µ1ptq´r
σ1

µ2ptq´r
σ2

ff

,

Here, Θptq is called the market price of risk, or in finance it is often refered to as the

Sharpe ratio. By Girsanov’s Theorem 1.2, there will be a new equivalent probability

measure rP generated by Θptq.

Under rP, the market model becomes:

dS1ptq

S1ptq
“ rdt` σ1dW1ptq,

dS2ptq

S2ptq
“ rdt` σ2ρdW1ptq ` σ2

a

1´ ρ2dW2ptq, (1.3.1)

dDptq

Dptq
“ ´rdt,

therefore rP is a risk-neutral measure since the discounted prices will be rP martingales.

In this model, the choice of rP is unique. This leads to the concept of a complete

market.

Definition 1 (Complete Market). A market model is complete if every derivative can

be hedged.

Theorem 1.3 (Fundamental Theorems of Asset Pricing).
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• The existence of a risk-neutral measure eliminates arbitrage opportunities, according

to The First Theorem of Asset Pricing.

• A market model is complete if and only if the risk-neutral measure is unique, ac-

cording to The Second Theorem of Asset Pricing.

In fact, the BSM market model (1.1.1) is complete.

1.4 Replicating Portfolio Approach for Pricing Deriva-

tive Securities and Derivation of Black-Scholes-

Merton PDE

In chapter 4 of Shreve’s book (2004) [44], he derives the Black-Scholes-Merton partial

differential equation for the price of an European option. Shreve achieved this by de-

termining the initial capital required to completely hedge a short position in the option.

This method can also be applied in a multi-asset scenario.

Consider an investor in the BSM market model of section (1.1.1). Suppose the investor

has a self-financing portfolio Xptq constructed with the following properties:

1. The portfolio has an account for the first risky asset, with a position of ∆1ptq units.

The account has a capital gain of ∆1ptqdS1ptq.

2. The portfolio has an account for the second risky asset, with a position of ∆2ptq

units. The account has a capital gain of ∆2ptqdS2ptq.

3. The portfolio also has a money market account, with a value of Xptq´∆1ptqS1ptq´

∆2ptqS2ptq. It accrues interest at rate of r
`

Xptq ´∆1ptqS1ptq ´∆2ptqS2ptq
˘

dt.

The differential of investor’s portfolio is:

dXptq

“ ∆1ptqdS1ptq `∆2ptqdS2ptq ` r
`

Xptq ´∆1ptqS1ptq ´∆2ptqS2ptq
˘

dt

“ ∆1ptq
`

µ1ptqS1ptqdt` σ1S1ptqdW1ptq
˘

`∆2ptq
`

µ2ptqS2ptqdt

` σ2ρS2ptqdW1ptq ` σ2

a

1´ ρ2S2ptqdW2ptq
˘

` r
`

Xptq ´∆1ptqS1ptq ´∆2ptqS2ptq
˘

dt

“ rXptqdt`∆1ptq
`

µ1ptq ´ r
˘

S1ptqdt`∆2ptq
`

µ2ptq ´ r
˘

S2ptqdt

`
`

∆1ptqσ1S1ptq `∆2ptqσ2ρS2ptq
˘

dW1ptq `∆2ptqσ2

a

1´ ρ2S2ptqdW2ptq.
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While the differential of the discounted portfolio is:

d
`

DptqXptq
˘

“ ´rDptqXptqdt`DptqdXptq “ Dptq
´

∆1ptq
`

µ1ptq ´ r
˘

S1ptqdt

`∆2ptq
`

µ2ptq ´ r
˘

S2ptqdt`
`

∆1ptqσ1S1ptq `∆2ptqσ2ρS2ptq
˘

dW1ptq (1.4.1)

`∆2ptqσ2

a

1´ ρ2S2ptqdW2ptq
¯

.

The goal is to price an option whose payoff is V
`

T, S1pT q, S2pT q
˘

at some pre-specified

time horizon T, for a given payoff function V
`

T, s1, s2

˘

. We search for the option price at

a time t ă T of the form V
`

t, S1ptq, S2ptq
˘

for some function V
`

t, s1, s2

˘

.

The differential of that discounted option price is:

d
´

DptqV
`

t, S1ptq, S2ptq
˘

¯

“ ´rDptqV
`

t, S1ptq, S2ptq
˘

dt`Dptq
`

Vtdt` Vs1dS1ptq ` Vs2dS2ptq

`
1

2
Vs1s1dS1ptqdS1ptq `

1

2
Vs2s2dS2ptqdS2ptq ` Vs1s2dS1ptqdS2ptq

˘

“ ´rDptqV
`

t, S1ptq, S2ptq
˘

dt`Dptq
´

Vtdt` Vs1S1ptq
`

µ1ptqdt` σ1dW1ptq
˘

` Vs2S2ptq
`

µ2ptqdt` σ2ρdW1ptq
˘

` σ2

a

1´ ρ2dW2ptq
˘

`
1

2
Vs1s1σ

2
1S

2
1ptqdt

` Vs1s2ρσ1σ2S1ptqS2ptqdt`
1

2
Vs2s2σ

2
2S

2
2ptqdt

¯

“ Dptq
!´

´ rV
`

t, S1ptq, S2ptq
˘

` Vt ` µ1ptqS1ptqVs1 ` µ2ptqS2ptqVs2

`
1

2
Vs1s1σ

2
1S

2
1ptq ` ρσ1σ2S1ptqS2ptqVs1s2 `

1

2
Vs2s2σ

2
2S

2
2ptq

¯

dt

`
`

σ1S1ptqVs1 ` ρσ2S2ptqVs2
˘

dW1ptq `
a

1´ ρ2σ2S2ptqVs2dW2ptq
)

. (1.4.2)

Since this market model is complete, then Xptq can be used as a long portfolio to hedge

a short position in V
`

t, S1ptq, S2ptq
˘

. This is only possible if Xptq “ V
`

t, S1ptq, S2ptq
˘

for

all t P r0, T s. This leads to the conclusion that the diffusion terms of d
`

DptqXptq
˘

and

d
´

DptqV
`

t, S1ptq, S2ptq
˘

¯

are equal. The delta-hedge can be obtained by equating the

differential terms from equations (1.4.1) and (1.4.2). In the BSM market model (1.1.1),

the delta-hedges are obtained by equating the diffusion terms, whence ∆1ptq “ Vs1 and

∆2ptq “ Vs2 .

Next, equate the drift terms from d
`

DptqXptq
˘

and d
´

DptqV
`

t, S1ptq, S2ptq
˘

¯

, the

results is:

rV pt, s1, s2q “ Vt ` rs1Vs1 ` rs2Vs2 `
1

2
Vs1s1σ

2
1s

2
1 ` ρσ1σ2s1s2Vs1s2 `

1

2
Vs2s2σ

2
2s

2
2, (1.4.3)
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with 0 ă s1, s2 ă 8, 0 ď t ď T and the terminal condition:

V pT, s1, s2q “ hps1, s2q,

where hps1, s2q is the pay off function of any Two-Asset option. This is the Second-order

Black-Scholes-Merton PDE.

For of |ρ| ď 1, Equation (1.4.3) is an parabolic PDE. Chapter 4 of Friedman’s book

(1975) [18] provides the proof for existence and uniqueness for this family of PDEs.

1.5 Risk Neutral Pricing Formula

An investor often wants to evaluate the value of a position prior to maturity. In

financial mathematics, the value of an option is a F ptq-adaptive process denote by

V
`

t, S1ptq, S2ptq
˘

. To understand the logic behind this, let the payoff of an option be

h
`

T, S1pT q, S2pT q
˘

“ V
`

T, S1pT q, S2pT q
˘

, i.e., a F pT q-measurable random variable. Now,

consider an investors starting with the portfolio wealth Xp0q, and adopting some hedging

strategy ∆ptq representing the vector of the number of shares held in the portfolio at t.

In order to hedge a short position in the option, the following needs to hold:

XpT q “ V
`

T, S1pT q, S2pT q
˘

“ h
`

T, S1pT q, S2pT q
˘

almost surely. (1.5.1)

In matter of fact, for the hedging strategy ∆ptq to be successful, Xptq has to be equal to

V
`

t, S1ptq, S2ptq
˘

for all t P r0, T s.

Since the change in an investor’s discounted portfolio only depends on discounted asset

prices, then DptqXptq is a rP martingale. Taking the discounted expectation on both side

of equation (1.5.1) will give:

rErDpT qV
`

T, S1pT q, S2pT q
˘

|F ptqs “ rErDpT qXpT q|F ptqs “ DptqXptq,

here Xptq is the wealth needed at time t to hedge a short position in the option with the

maturity payoff h
`

T, S1pT q, S2pT q
˘

. For this reason, V
`

t, S1ptq, S2ptq
˘

is referred to as the

value of the option at time t. Naturally, the expression:

V pt, s1, s2q “
rEr
DpT q

Dptq
V
`

T, S1pT q, S2pT q
˘

|F ptqs,

is the risk-neutral pricing formula.

In the BSM market model of (1.3.1), the risk-neutral pricing formula is:

V pt, s1, s2q “
rEre´rpT´tqV

`

T, S1pT q, S2pT q
˘

|F ptqs.
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Computing this conditional expectation will lead to Black-Scholes-Merton pricing formula

of an European style option.

1.6 Feymann-Kac Formula

Feymann-Kac formula relates the conditional expectation of a Markov process to a

PDE. In financial mathematics, it provides a key role by connecting Black-Scholes-Merton

PDE to Black-Scholes pricing formula.

Theorem 1.6 (Discounted Feymann-Kac). Let W1ptq and W2ptq be two independent

Brownian Motions. Consider a 2-dimensional Markov process Xptq “
`

X1ptq, X2ptq
˘

with

corresponding SDEs:

dX1ptq “ α1

`

t,X1ptq, X2ptq
˘

dt` φ11

`

t,X1ptq, X2ptq
˘

dW1ptq ` φ12

`

t,X1ptq, X2ptq
˘

dW2ptq,

dX2ptq “ α2

`

t,X1ptq, X2ptq
˘

dt` φ21

`

t,X1ptq, X2ptq
˘

dW1ptq ` φ22

`

t,X1ptq, X2ptq
˘

dW2ptq.

Given the initial values X1ptq “ x1 and X2ptq “ x2, where t P r0, T s. Let the function

gpt, x1, x2q be the solution to the PDE:

gt ` α1gx1 ` α2gx2 `
1

2
pφ2

11 ` φ
2
12qgx1x1 ` pφ11φ21 ` φ12φ22qgx1x2 `

1

2
pφ2

21 ` φ
2
22qgx2x2

“ rgpt, x1, x2q,

with the terminal condition gpT, x1, x2q “ f
`

x1, x2

˘

for all x1 and x2. Then gpt, x1, x2q

will satisfy the conditional expectation:

gpt, x1, x2q “ Ere´rpT´tqf
`

X1pT q, X2pT q
˘

|X1ptq “ x1, X2ptq “ x2s.

Furthermore, e´rtg
`

t,X1ptq, X1ptq
˘

is a martingale.

Let hps1, s2q be the payoff function of an option, given the asset values at maturity

are S1pT q “ s1 and S2pT q “ s2. Let V pt, s1, s2q be the solution of the Black-Scholes PDE:

rV pt, s1, s2q “ Vt ` rs1Vs1 ` rs2Vs2 `
1

2
Vs1s1σ

2
1s

2
1 ` ρσ1σ2s1s2Vs1s2 `

1

2
Vs2s2σ

2
2s

2
2,

with the terminal condition V pT, s1, s2q “ h
`

s1, s2

˘

. Then, by the discounted version of

Feymann-Kac Theorem 1.6, V pt, s1, s2q will satisfy the risk-neutral pricing formula:

V pt, s1, s2q “
rEre´rpT´tqh

`

S1pT q, S2pT q
˘

|S1ptq “ s1, S2ptq “ s2s.
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Indeed e´rtV pt, s1, s2q is a Martingale, that is

e´rtV pt, s1, s2q “
rEre´rTV

`

t, S1pT q, S2pT q
˘

|S1ptq “ s1, S2ptq “ s2s.

This shows under market model (1.3.1), the Black-Scholes PDE’s characterization of

the option price is equivalent to the risk neutral pricing formula. Pricing any Two-Asset

Option would be equivalent to solving this PDE.
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Chapter 2

Options on Two-Assets

2.1 Exchange option

An exchange option provides the utility of exchanging one asset for another. It is a

special case of the spread option when the strike price K “ 0. Some examples of ex-

change option are currency swaption, interest rate swaption and commodity swaption. In

Chapter 25 of Hull’s book (2006) [27], it was mentioned that a stock tender offer can also

be seen as an exchange option. Essentially, it provides current shareholders the option to

exchange their shares for shares of another company.

2.1.1 Pricing Formula

From the risk-neutral pricing formula, the value of the exchange option is:

V
`

t, S1ptq, S2ptq
˘

“ rE
“

e´rpT´tq
`

S1pT q ´ S2pT q
˘

1S1pT qąS2pT q|F ptq
‰

. (2.1.1)

In 1978, Margrabe [34] computed this conditional expectation in closed form and obtained:

Theorem 2.1.1 (Margrabe’s formula).

rE
“

e´rpT´tq
`

S1pT q ´ S2pT q
˘

1S1pT qąS2pT q|F ptq
‰

“ S1ptqNpd`q ´ S2ptqNpd´q,

where d˘ “
log
`

S1ptq
S2ptq

˘

˘ 1
2
ν2pT´tq

ν
?
T´t

, and ν2 “ σ2
1 ` σ

2
2 ´ 2σ1σ2ρ.

Margrabe was able to achieve this by using the fact that the ratio process S1

S2
ptq is also

a GBM, and cleaver use of Numeraire measures. We will provide a derivation method

similar to Margrabe’s approach.
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Proof: Define two new Numeraire measures P1 and P2 with their respective Radon-

Nikodym processes of rP as:

Z1ptq “
e´rtS1ptq

S1p0q
“ exp

!

σ1
ĂW1ptq ´

1

2
σ2

1t
)

,

Z2ptq “
e´rtS2ptq

S2p0q
“ exp

!

σ2rρW̃1ptq `
a

1´ ρ2
ĂW2ptqs ´

1

2
σ2

2t
)

.

Then, their vector valued generator processes are:

Θ1ptq “

„

´σ1

0



, Θ2ptq “

„

´σ2ρ

´σ2

a

1´ ρ2



.

By applying Girsanov’s theorem, under the Numeraire measure P1, the processes

W
p1q
1 ptq “ ĂW1ptq ´ σ1t, and

W
p1q
2 ptq “ ĂW2ptq,

are two independent Brownian Motions. Under P2, the processes

W
p2q
1 ptq “ ĂW1ptq ´ σ2ρt, and

W
p2q
2 ptq “ ĂW2ptq ´ σ2

a

1´ ρ2t

are also two independent Brownian Motions in light of Girsanov’s theorem. The compu-

tation of (2.1.1) will reduce to:

V
`

t, S1ptq, S2ptq
˘

“ rE
“

e´rpT´tqS1pT q1S1pT qąS2pT q|F ptq
‰

´ rE
“

e´rpT´tqS2pT q1S1pT qąS2pT q|F ptq
‰

“
S1ptq

Z1ptq
rE
“

Z1pT q1S1pT qąS2pT q|F ptq
‰

´
S2ptq

Z2ptq
rE
“

Z2pT q1S1pT qąS2pT q|F ptq
‰

“ S1ptqEp1q
“

1S1pT qąS2pT q|F ptq
‰

´ S2ptqEp2q
“

1S1pT qąS2pT q|F ptq
‰

“ S1ptqPp1q
´

S1pT q ą S2pT q|F ptq
¯

´ S2ptqPp2q
´

S1pT q ą S2pT q|F ptq
¯

. (2.1.2)

Under the Numeraire measure P1, the SDEs of the asset processes will behave in the

following manner:

S1ptq “ S1p0q exp
!

σ1W
p1q
1 ptq ` pr `

1

2
σ2

1qt
)

,

S2ptq “ S2p0q exp
!

σ2rρW
p1q
1 ptq `

a

1´ ρ2W
p1q
2 ptqs ` pr ´

1

2
σ2

2 ` σ1σ2ρqt
)

.
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The first probability term of equation (2.1.2) can be evaluated as:

Pp1q
´

S1pT q ą S2pT q|F ptq
¯

“ Pp1q
´

S2ptq exp
!

σ2rρ
`

W
p1q
1 pT q ´W

p1q
1 ptq

˘

`
a

1´ ρ2
`

W
p1q
2 pT q ´W

p1q
2 ptq

˘

s

` pr ´
1

2
σ2

2 ` σ1σ2ρqpT ´ tq
)

ă S1ptq exp
!

σ1

`

W
p1q
1 pT q ´W

p1q
1 ptq

˘

`
`

r `
1

2
σ2

1

˘

pT ´ tq
)

|F ptq
¯

“ Pp1q
´

exp
!

pσ2ρ´ σ1q
`

W
p1q
1 pT q ´W

p1q
1 ptq

˘

` σ2

a

1´ ρ2
`

W
p1q
2 pT q ´W

p1q
2 ptq

˘

)

ă
S1ptq

S2ptq
exp

!1

2
pσ2

1 ` σ
2
2 ´ 2σ1σ2ρqpT ´ tq

)

|F ptq
¯

“ Pp1q
´

pσ2ρ´ σ1q
`

W
p1q
1 pT q ´W

p1q
1 ptq

˘

` σ2

a

1´ ρ2
`

W
p1q
2 pT q ´W

p1q
2 ptq

˘

ă log
`S1ptq

S2ptq

˘

`
1

2
pσ2

1 ` σ
2
2 ´ 2σ1σ2ρqpT ´ tq|F ptq

¯

.

Let

ν2
“ σ2

1 ` σ
2
2 ´ 2σ1σ2ρ, and

X1 “ pσ2ρ´ σ1q
`

W
p1q
1 pT q ´W

p1q
1 ptq

˘

` σ2

a

1´ ρ2
`

W
p1q
2 pT q ´W

p1q
2 ptq

˘

,

then X1 is Gaussian N
`

0, ν2pT ´ tq
˘

. Define Y1 “
X1

ν
?
T´t

, then Y1 is a standard Gaussian

N
`

0, 1
˘

. The first probability term simplifies to:

Pp1q
´

S1pT q ą S2pT q|F ptq
¯

“ Pp1q
´

Y1 ă
log

`

S1ptq
S2ptq

˘

` 1
2
ν2pT ´ tq

ν
?
T ´ t

¯

“ Npd`q,

where d` “
log
`

S1ptq
S2ptq

˘

` 1
2
ν2pT´tq

ν
?
T´t

.

Under the Numeraire measure P2, the SDEs of the asset processes will become:

S1ptq “ S1p0q exp
!

σ1W
p2q
1 ptq ` pr ´

1

2
σ2

1 ` σ1σ2ρqt
)

,

S2ptq “ S2p0q exp
!

σ2rρW
p2q
1 ptq `

a

1´ ρ2W
p2q
2 ptqs ` pr `

1

2
σ2

2qt
)

.
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The second probability term of equation (2.1.2) can be evaluated as:

Pp2q
´

S1pT q ą S2pT q|F ptq
¯

“ Pp2q
´

S2ptq exp
!

σ2rρ
`

W
p2q
1 pT q ´W

p2q
1 ptq

˘

`
a

1´ ρ2
`

W
p2q
2 pT q ´W

p2q
2 ptq

˘

s

` pr `
1

2
σ2

2qpT ´ tq
)

ă S1ptq exp
!

σ1

`

W
p2q
1 pT q ´W

p2q
1 ptq

˘

`
`

r ´
1

2
σ2

1 ` σ1σ2ρ
˘

pT ´ tq
)

|F ptq
¯

“ Pp2q
´

exp
!

pσ2ρ´ σ1q
`

W
p2q
1 pT q ´W

p2q
1 ptq

˘

` σ2

a

1´ ρ2
`

W
p2q
2 pT q ´W

p2q
2 ptq

˘

)

ă
S1ptq

S2ptq
exp

!

´
1

2
pσ2

1 ` σ
2
2 ´ 2σ1σ2ρqpT ´ tq

)

|F ptq
¯

“ Pp2q
´

pσ2ρ´ σ1q
`

W
p2q
1 pT q ´W

p2q
1 ptq

˘

` σ2

a

1´ ρ2
`

W
p2q
2 pT q ´W

p2q
2 ptq

˘

ă log
`S1ptq

S2ptq

˘

´
1

2
pσ2

1 ` σ
2
2 ´ 2σ1σ2ρqpT ´ tq|F ptq

¯

.

Let

ν2
“ σ2

1 ` σ
2
2 ´ 2σ1σ2ρ, and

X2 “ pσ2ρ´ σ1q
`

W
p2q
1 pT q ´W

p2q
1 ptq

˘

` σ2

a

1´ ρ2
`

W
p2q
2 pT q ´W

p2q
2 ptq

˘

,

then X2 is a Gaussian with N
`

0, ν2pT ´ tq
˘

. Define Y2 “
X2

ν
?
T´t

, then Y2 is a standard

Gaussian N
`

0, 1
˘

. The second probability term simplifies to:

Pp2q
´

S1pT q ą S2pT q|F ptq
¯

“ Pp2q
´

Y2 ă
log

`

S1ptq
S2ptq

˘

´ 1
2
ν2pT ´ tq

ν
?
T ´ t

¯

“ Npd´q,

where d´ “
log
`

S1ptq
S2ptq

˘

´ 1
2
ν2pT´tq

ν
?
T´t

.

The resulting option pricing formula is:

Ẽ
“

e´rpT´tq
`

S1pT q ´ S2pT q
˘

1S1pT qąS2pT q|F ptq
‰

“ V
`

t, S1ptq, S2ptq
˘

V
`

t, s1, s2

˘

“ s1Npd`q ´ s2Npd´q,

where d˘ “
log
`

s1
s2

˘

˘ 1
2
ν2pT´tq

ν
?
T´t

, and ν2 “ σ2
1 ` σ

2
2 ´ 2σ1σ2ρ.

This is the same as Margrabe’s formula.
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2.1.2 Greeks of Exchange option

In financial mathematics, Greeks are option’s price sensitivity to change of its param-

eters. Greeks are important because it allows portfolios to be protected against specific

undesirable exposures. The undesired exposures can be eliminated by the process hedging.

Exchange option has many Greeks because its numerous amount of parameters.

Starting with the first-order Greeks, Delta is the option’s price change due to price

change in the underlying asset. Exchange option has two Deltas, they are defined to be:

∆1ptq “
BV pt, s1, s2q

Bs1

, ∆2ptq “
BV pt, s1, s2q

Bs2

.

Theorem 2.2.1 (Exchange option Delta).

∆1ptq “ Npd`q, ∆2ptq “ ´Npd´q.

Proof: Please refer to A.1.1 in Appendix 1.

Deltas have many uses, some examples are Delta-hedging or Delta-spread strategy.

Figure 2.1.1 illustrates the behaviour of ∆1 caused by prices of the two assets at initiation.

The option parameters used for all subsequent Greeks(including Delta) are T “ 1, σ1 “

0.4, σ2 “ 0.2, ρ “ 0.5 and r “ 0.05.

Figure 2.1.1: Exchange option ∆1

Figure 2.1.2 illustrates the behaviour of ∆2 caused by prices of the two assets at

initiation.
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Figure 2.1.2: Exchange option ∆2

From the two figures, ∆1 has a positive relationship with S1p0q and a negative rela-

tionship with S2p0q. ∆2 has a negative relationship with S1p0q and a positive relationship

with S2p0q. This is not at all surprising because Npxq is an monotonically increasing

function.

Theta is commonly referred to as an option’s time decay. Holding all other parameters

at constant, Theta will decrease as option nears its maturity. This is because the option

will gradually lose its utility as it matures. Let τ “ T ´ t., then the Theta of Exchange

option is defined as:

Θptq “
BV pt, s1, s2q

Bτ
.

Theorem 2.2.2 (Exchange option Theta).

Θptq “
σ

2
?
T ´ t

s1N
1
pd`q “ ´

σ

2
?
T ´ t

s2N
1
pd´q.

The proofs are available in Appendix 1 A.1.2.

Figure 2.1.3 illustrates the behaviour of Θ caused by changes in prices of the two assets

at initiation.
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Figure 2.1.3: Exchange option Θ

Onto the second-order Greeks, Gamma is sensitivity of Delta to change in the under-

lying assets. It takes on the largest value for at the money options. When an option is at

the money, a slight price movement of the asset will cause it to be either in the money or

out of the money. Thus, Delta of the option will have the greatest instantaneous change

in magnitude. Exchange option has three Gammas, they are:

Γ11ptq “
BV 2pt, s1, s2q

Bs2
1

, Γ12ptq “
BV 2pt, s1, s2q

Bs1Bs2

, Γ22ptq “
BV 2pt, s1, s2q

Bs2
2

.

Theorem 2.2.3 (Exchange option Gamma).

Γ11ptq “
1

σ
?
T ´ t

N 1pd`q

s1

, Γ22ptq “
1

σ
?
T ´ t

N 1pd´q

s2

,

Γ12ptq “ ´
1

σ
?
T ´ t

N 1pd`q

s2

“ ´
1

σ
?
T ´ t

N 1pd´q

s1

“ Γ21ptq.

The proofs are available in Appendix 1 A.1.3.

Figures 2.1.4, 2.1.5 and 2.1.6 illustrates the behaviour of Gammas caused by changes in

price of the two assets at initiation. One may observe a spike in Gamma values along the

diagonal of the S1 and S2 plane. The option is at the money on the diagonal. Therefore

the figures are consistent with the behaviour assertion of Gamma.
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Figure 2.1.4: Exchange option Γ11

Figure 2.1.5: Exchange option Γ12
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Figure 2.1.6: Exchange option Γ22

Charm is sensitivity of Delta to time decay. It is often just referred to as Delta decay.

Exchange option has two Charms, they are:

Charm1ptq “
BV 2pt, s1, s2q

Bs1Bτ
, Charm2ptq “

BV 2pt, s1, s2q

Bs2Bτ
.

Theorem 2.2.4 (Exchange option Charm).

Charm1ptq “ N 1
pd`q

´

´
log

`

s1
s2

˘

2σpT ´ tq
3
2

`
σ

4
?
T ´ t

¯

,

Charm2ptq “ N 1
pd´q

´ log
`

s1
s2

˘

2σpT ´ tq
3
2

`
σ

4
?
T ´ t

¯

.

The proofs are available in Appendix 1 A.1.4.

Figures 2.1.7 and 2.1.8 illustrates the behaviour of Charms when the initiation price

of the two assets changes.
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Figure 2.1.7: Exchange option Charm1

Figure 2.1.8: Exchange option Charm2

For the third-order Greeks, Speed is sensitivity of Gamma to change in the underlying

asset. Exchange option has four Speeds, they are:

Speed111ptq “
BV 3pt, s1, s2q

Bs3
1

, Speed112ptq “
BV 3pt, s1, s2q

Bs2
1Bs2

,

Speed122ptq “
BV 3pt, s1, s2q

Bs1Bs2
2

, Speed122ptq “
BV 3pt, s1, s2q

Bs3
2

.
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Theorem 2.2.5 (Exchange option Speed).

Speed111ptq “ ´
N 1pd`q

σs2
1

?
T ´ t

` 2d`

σs1

?
T ´ t

` 1
˘

“ ´
Γ11ptq

s1

` 2d`

σs1

?
T ´ t

` 1
˘

,

Speed222ptq “ ´
N 1pd´q

σs2
2

?
T ´ t

` 2d´

σs2

?
T ´ t

` 1
˘

“ ´
Γ22ptq

s2

` 2d´

σs2

?
T ´ t

` 1
˘

,

Speed112ptq “ Speed121ptq “ Speed211ptq “ ´
2d`N

1pd`q

σ2pT ´ tqs1s2

“
2d`Γ12ptq

σpT ´ tq
1
2 s1

,

Speed221ptq “ Speed212ptq “ Speed122ptq “ ´
2d´N

1pd´q

σ2pT ´ tqs1s2

“
2d´Γ21ptq

σpT ´ tq
1
2 s2

.

The proofs are available in Appendix 1 A.1.5.

Colour is the sensitivity of Gamma to time decay. Exchange option has three Colours,

they are:

Colour11ptq “
BV 3pt, s1, s2q

Bs2
1Bτ

, Colour12ptq “
BV 3pt, s1, s2q

Bs1Bs2Bτ
, Colour22ptq “

BV 3pt, s1, s2q

Bs2
2Bτ

.

Theorem 2.2.6 (Exchange option Colour).

Colour11ptq “ ´
N 1pd`q

23σ3pT ´ tq
5
2 s1

´

σ4
pT ´ tq2 ` 4σ2

pT ´ tq ´ 4 log2
`S1

S2

ptq
˘

¯

,

Colour22ptq “ ´
N 1pd´q

23σ3pT ´ tq
5
2 s2

´

σ4
pT ´ tq2 ` 4σ2

pT ´ tq ´ 4 log2
`S1

S2

ptq
˘

¯

,

Colour12ptq “
N 1pd`q

23σ3pT ´ tq
5
2 s1

´

σ4
pT ´ tq2 ` 4σ2

pT ´ tq ´ 4 log2
`S1

S2

ptq
˘

¯

.

The proofs are available in Appendix 1 A.1.6.

Currently, there are no formal names given to fourth order Greeks. The sensitivity of

Speed due to change in the underlying asset will be referred as Acceleration. Exchange

option has five Accelerations, they are:

Acceleration1111ptq “
BV 4pt, s1, s2q

Bs4
1

, Acceleration1112ptq “
BV 4pt, s1, s2q

Bs3
1Bs2

,

Acceleration1122ptq “
BV 4pt, s1, s2q

Bs2
1Bs

2
2

, Acceleration1222ptq “
BV 4pt, s1, s2q

Bs1Bs3
2

,

Acceleration2222ptq “
BV 4pt, s1, s2q

Bs4
2

.
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Theorem 2.2.7 (Exchange option Acceleration).

Acceleration1111ptq “ ´
2Γ11ptq

σ2pT ´ tqs3
1

`2d2
`

s1

` 1
˘

,

Acceleration1112ptq “
2Γ11ptq

σ
?
T ´ ts1s2

` 2d2
`

σ
?
T ´ ts1

` d` `
1

σ
?
T ´ ts1

˘

,

Acceleration1122ptq “
2Γ12

σ2pT ´ tqs1s2

`

d`d´ ´ 1
˘

,

Acceleration1222ptq “
2Γ22ptq

σ
?
T ´ ts1s2

` 2d2
´

σ
?
T ´ ts2

` d´ ´
1

σ
?
T ´ ts2

˘

Acceleration2222ptq “ ´
2Γ22ptq

σ2pT ´ tqs3
2

`2d2
´

s2

` 1
˘

.

The proofs are available in Appendix 1 A.1.7.
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All of the Exchange option Greeks examined above are summarized in the table below:

Table 2.1.1: Exchange option Greeks

First order Greek
∆1ptq Npd`q
∆2ptq ´Npd´q
Θptq σ

2
?
T´t

s1N
1pd`q “ ´

σ
2
?
T´t

s2N
1pd´q

Second order Greek

Γ11ptq
1

σ
?
T´t

N 1pd`q
s1

Γ22ptq
1

σ
?
T´t

N 1pd´q
s2

Γ12ptq “ Γ21ptq ´ 1
σ
?
T´t

N 1pd`q
s2

“ ´ 1
σ
?
T´t

N 1pd´q
s1

Charm1ptq N 1pd`q
´

´
log
`

s1
s2

˘

2σpT´tq
3
2
` σ

4
?
T´t

¯

Charm2ptq N 1pd´q
´

log
`

s1
s2

˘

2σpT´tq
3
2
` σ

4
?
T´t

¯

Third order Greek

Speed111ptq ´
N 1pd`q

σs21
?
T´t

`

2d`
σs1

?
T´t

` 1
˘

Speed222ptq ´
N 1pd´q

σs22
?
T´t

`

2d´
σs2

?
T´t

` 1
˘

Speed112ptq ´
2d`N 1pd`q
σ2pT´tqs1s2

Speed221ptq ´
2d´N 1pd´q
σ2pT´tqs1s2

Colour11ptq ´
N 1pd`q

23σ3pT´tq
5
2 s1

´

σ4pT ´ tq2 ` 4σ2pT ´ tq ´ 4 log2
`

s1
s2

˘

¯

Colour22ptq ´
N 1pd´q

23σ3pT´tq
5
2 s2

´

σ4pT ´ tq2 ` 4σ2pT ´ tq ´ 4 log2
`

s1
s2

˘

¯

Colour12ptq ´
N 1pd`q

23σ3pT´tq
5
2 s1

´

σ4pT ´ tq2 ` 4σ2pT ´ tq ´ 4 log2
`

s1
s2

˘

¯

Fourth order Greek

Acceleration1111ptq ´
2Γ11ptq

σ2pT´tqs31

`2d2`
s1
` 1

˘

Acceleration1112ptq
2Γ11ptq

σ
?
T´ts1s2

` 2d2`
σ
?
T´ts1

` d` `
1

σ
?
T´ts1

˘

Acceleration1122ptq
2Γ12

σ2pT´tqs1s2

`

d`d´ ´ 1
˘

Acceleration1222ptq
2Γ22ptq

σ
?
T´ts1s2

` 2d2´
σ
?
T´ts2

` d´ ´
1

σ
?
T´ts2

˘

Acceleration2222ptq ´
2Γ22ptq

σ2pT´tqs32

`2d2´
s2
` 1

˘

These particular Margrabe Greeks will taken on an important role in the subsequent

chapters of this thesis. More specifically, the Greeks will aid in the establishment of an

existence and uniqueness requirement for the SDEs in a finite liquidity market model.
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2.2 Spread option

Spread option is similar to the exchange option. It allows the holder the choice to

exchange one asset for another, at a cost. There are spread option issued on many of

the same assets as exchange option. However, they are primarily traded over-the-counter.

Commodity spreads provide traders an unique way to have exposure of the production

process. The most notable examples are the crack, crush, and spark spread options. They

measure profits in the oil, soybean, and electricity markets respectively.

2.2.1 Pricing Formula

The risk-neutral pricing formula for spread option is:

VSpread
`

t, S1ptq, S2ptq
˘

“ rE
“

e´rτ
`

S1pT q ´ S2pT q ´K
˘`
|F ptq

‰

. (2.2.1)

Unlike exchange option, there are no closed form pricing formulas for spread option. There

are many numerical methods available for spread option such as finite difference, Monte

Carlo and numerical integration. This thesis shall adopt a Fourier transform method de-

veloped by Hurd and Zhou (2010) [29]. The reason is because Fourier discretization have

fast execution speed and can simultaneously compute a range of option prices. To sum-

marize their method for the BSM model of (1.3.1), one should first consider transforming

the payout function as ps1´s2´Kq
` “ Kpex1´ex2´1q` “ P pxq. Then,

`

X1pT q, X2pT q
˘

is a bi-variate normal with conditional characteristic function:

Φxptqpu, τq “ exp
 

iu1
`

x` r1´
1

2
pσ2

1 ` σ
2
2q
˘

τ ´
1

2
u1Σuτ

(

,

where

Σ “

„

σ2
1 σ1σ2ρ

σ1σ2ρ σ2
2



.

The pricing formula created by Hurd and Zhou for the GBM model (1.3.1) can be sum-

marized by the following theorem:

Theorem 2.2.1 (Hurd and Zhou Spread option formula).

VSpread
`

t, s1, s2

˘

“
1

p2πq2
e´rτK

ż ż

R2`iε

eiu
1XptqP̂ puqΦpu, τqdu, (2.2.2)

where

P̂ puq “
Γ
`

ipu1 ` u2q ´ 1
˘

Γ
`

´ iu2

˘

Γ
`

iu1 ` 1
˘ ,

Φpu, τq “ exp
 

iu1
`

r1´
1

2
pσ2

1 ` σ
2
2q
˘

τ ´
1

2
u1Σuτ

(

.

This pricing formula is only valid for ε2 ą 0 and ε1 ` ε2 ă ´1.
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Proof: There are few key ideas used in their pricing formula. The Fourier transformation

of a PDF is the complex conjugate of its respective characteristic function. This property

can be combined along with Parseval’s identity to simplify pricing formula (2.2.1). This is

an important step because evaluating expectations are often easier in the Fourier frequency

space. Applying Parseval’s identity C.1, one may obtain:

VSpread
`

t, s1, s2

˘

“ e´rτK

ż ż

R2

P pxptqqN 1
2pxqdx

“
e´rτK

p2πq2

ż ż

R2

F
“

P
`

xptq
˘‰

puqF
“

N 1
2

`

xptq
˘‰

puqdu (2.2.3)

The Fourier transform of the PDF’s complex conjugate is:

F
“

N 1
2

`

xptq
˘‰

puq : “

ż ż

R2`iε

e´ix1ptquN 1
2pxqdx “

rE
“

e´iX1ptqu|F ptq
‰

“ rE
“

eiX
1ptqu
|F ptq

‰

“ Φxptqpuq, (2.2.4)

The Fourier transform of P
`

Xptq
˘

does not exist. For the Fourier inverse theorem to be

applicable, P
`

Xptq
˘

needs to be coupled with a dampening factor eX1ptqε. To show this,

one can in fact check eX1ptqεP
`

Xptq
˘

is in LpR2q.

F´1
“

P̂ puq
‰`

xptq
˘

: “
1

p2πq2
e´x1ptqε

ż ż

R2

e´ix
1ptqsu

sP psuqdsu “
1

p2πq2

ż ż

R2`iε

e´ix
1ptquP̂ puqdu,

where u “ su` iε, and

P̂ puq “ F
“

P
`

xptq
˘‰

puq :“

ż ż

R2

e´ix
1ptqu

`

ex1ptq ´ ex2ptq ´ 1
˘`
dx. (2.2.5)

To obtain integrability almost everywhere, one may restrict the integration region to

D “
 

xptq : x1ptq ą 0, x2ptq ă logpex1ptq ´ 1q
(

. However, precaution needs to be taken

when dealing with values along the edges of D. Expression (2.2.5) can now be evaluated

as:

P̂ puq “

ż 8

0

e´ix1ptqu1
ż logpex1ptq´1q

´8

`

e´ix2ptqu2pex1ptq ´ 1q ´ ep1´iu2qx2ptq
˘

dx2dx1

“

ż 8

0

e´ix1ptqu1
´

`e´ix2ptqu2

´iu2

pex1ptq ´ 1q ´
ep1´iu2qx2ptq

1´ iu2

˘ˇ

ˇ

logpex1ptq´1q

´8

¯

dx2dx1.

It is important to make note that this double integral will only exist under certain condi-

tions for ε. These conditions can be determined later on in the proof. In the main time,

suppose the integral exists, then it will simplify to:

P̂ puq “
´ 1

´iu2

´
1

1´ iu2

¯

ż 8

0

e´ix1ptqu1pex1ptq ´ 1q1´iu2dx1.
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Let z “ e´x1ptq, then the expression for P̂ puq will become the integral form of a complex

beta function, that is

P̂ puq “
1

´iu2p1´ iu2q

ż 1

0

zipu1`u2q´2
pz ´ 1q1´iu2dx1 “

Γ
`

ipu1 ` u2q ´ 1
˘

Γ
`

´ iu2 ` 2
˘

´iu2p1´ iu2qΓ
`

iu1 ` 1
˘ .

Furthermore, one may apply the recursive property of gamma function

Γpz ` 1q “ zΓpzq to obtain:

P̂ puq “
Γ
`

ipu1 ` u2q ´ 1
˘

Γ
`

´ iu2

˘

Γ
`

iu1 ` 1
˘ . (2.2.6)

The complex Gamma function Γpzq is only define for <pzq ą 0. Recall u1 “ ū1 ` iε1 and

u2 “ ū2 ` iε2, then one may obtain the requirements of ε from (2.2.6):

<
`

ipu1 ` u2q ´ 1
˘

ą 0 ñ ε1 ` ε2 ă ´1,

<
`

´ iu2

˘

ą 0 ñ ε2 ą 0,

<
`

iu1 ` 1
˘

ą 0 ñ ε1 ą 1.

Therefore, P̂ puq is only defined on the contour R2 ` iε, when ε2 ą 0 and ε1 ` ε2 ă ´1.

Substituting (2.2.4) and (2.2.6) into (2.2.3), it will become:

VSpread
`

t, s1, s2

˘

“
1

p2πq2
e´rτK

ż ż

R2`iε

P̂ puqΦxptqpuqdu

“
1

p2πq2
e´rτK

ż ż

R2`iε

eiu
1XptqP̂ puqΦpu, τqdu,

where

Φpu, τq “ exp
 

iu1
`

r1´
1

2
pσ2

1 ` σ
2
2q
˘

τ ´
1

2
u1Σuτ

(

.

This concludes the proof.

2.2.2 Greeks of Spread option

Another advantage of Hurd and Zhou’s method is its simplicity when it comes to the

computation of Greeks. For instance, the spread option Deltas can be computed in the

following manner:

∆ptq “

„

∆1

∆2



ptq “
BVspr

`

t, s
˘

Bs
“
Bx

Bs

BVspr
`

t, s
˘

Bx
.
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Theorem 2.2.2 (Spread option Delta).

∆ptq “ p2πq´2e´rτKH s∆ptq, (2.2.1)

where

s∆ptq “

ż ż

R2`iε

iueiu
1XptqΦpu, τqP̂ puqdu,

H “
„

1
s1

0

0 1
s2



.

The proofs are available in Appendix 1 A.2.1.

To calculation the Greeks, a numerical scheme such as Fast Fourier Transformation

has to be used. The FFT schemes used to generate the graphs are available in Section

5.2. The parameters used to generate all the Greek graphs are: K “ 4, T “ 1, σ1 “ 0.4,

σ2 “ 0.2, ρ “ 0.5 and r “ 0.05.

Figure 2.2.1: Spread option ∆1
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Figure 2.2.2: Spread option ∆2

The spread option Theta is given by:

Θptq “
BVspr

`

t, s
˘

Bτ
.

Theorem 2.2.3 (Spread option Theta).

Θptq “ p2πq´2Ke´rτ sΘptq, (2.2.2)

where

sΘptq “

ż ż

R2`iε

´

iu1
`

r1´
1

2
pσ2

1 ` σ
2
2q
˘

´
1

2
u1Σu´ r

¯

eiu
1XptqΦpu, τqP̂ puqdu

The proofs are available in Appendix 1 A.2.2.

27



Figure 2.2.3: Spread option Θ

For the higher order Greeks, we shall adopt tensor notations for their expressions. The

Spread option Gamma can be defined as:

Γptq “

„

Γ11 Γ12

Γ21 Γ22



ptq “
B∆ptq

Bs
.

where

Theorem 2.2.4 (Spread option Gamma).

Γptq “ ´p2πq´2e´rτK
´

T p3q s∆ptq `HsΓptqH
¯

, (2.2.3)

where

sΓptq “

ż ż

R2`iε

ub̄ueiu
1XptqΦpu, τqP̂ puqdu,

T p3q “
„ 1
s21

0

0 0



b

„

0 0
0 1

s22



.

In this subsection, b denotes the tensor product(see C.2.1), and b̄ is the outer prod-

uct(see C.2.3). We also used some tensor multiplications rules, they are defined in C.2.2.

The full proof for Gamma is available in Appendix 1 A.2.3.
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Figure 2.2.4: Spread option Γ11

Figure 2.2.5: Spread option Γ12
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Figure 2.2.6: Spread option Γ22

The Spread option Charms are defined as:

Charmptq “

„

Charm1

Charm2



ptq “
B∆ptq

Bτ
.

Theorem 2.2.5 (Spread option Charm).

Charmptq “ p2πq´2e´rτKH ĞCharmptq, (2.2.4)

where

ĞCharmptq “

ż ż

R2`iε

´

iu1
`

r1´
1

2
pσ2

1 ` σ
2
2q
˘

´
1

2
u1Σu´ r

¯

iueiu
1XptqΦpu, τqP̂ puqdu.

The proofs are available in Appendix 1 A.2.4.
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Figure 2.2.7: Spread option Charm1

Figure 2.2.8: Spread option Charm2

The Spread option Speed is defined as:

Speed “

„

Speed111 Speed121

Speed211 Speed221



b

„

Speed112 Speed122

Speed212 Speed222



ptq “
BΓptq

Bs
.

Theorem 2.2.6 (Spread option Speed).

Speedptq “ p2πq´2e´rτK
´

2T p4q s∆ptq ´ T p3q
`

HsΓptq
˘

´H2
`

ĞSpeedptqH
˘

¯

, (2.2.5)
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where

ĞSpeedptq “

ż ż

R2`iε

ipub̄ub̄uqeiu
1XptqΦpu, τqP̂ puqdu,

T p4q “
´

„ 1
s31

0

0 0



b

„

0 0
0 0



¯

b

´

„

0 0
0 0



b

„

0 0
0 1

s32



¯

.

The proofs are available in Appendix 1 A.2.5.

The method required to determine higher order Greeks becomes redundant. It is clear

we only need to take higher order partial derivatives of (2.2.2). The computational result

for any higher order Greek will be a linear combination of contour integral, with each

contour integral having the form of:

ĞGreekpt, s1, s2q “

ż ż

R2`iε

fbpuqe
iu1XptqΦpu, τqP̂ puqdu (2.2.6)

where fbpuq is some tensor polynomial function. For example, Γptq (2.2.3) is a linear

combination of the contour integrals ∆̄ptq and Γ̄ptq, with their tensor polynomial functions

being iueiu
1Xptq and ub̄ueiu

1Xptq respectively.(formula available in Appendix 1 A.2)

These terms will be important when establishing the existence and uniqueness require-

ment for the SDEs in a finite liquidity market framework.

The table below summarizes some Greeks of spread option.

Table 2.2.1: Spread option Greeks

First order Greek

∆ptq “

„

∆1

∆2



ptq p2πq´2e´rτKHptq s∆ptq

Θptq p2πq´2e´rτK sΘptq
Second order Greek

Γptq “

„

Γ11 Γ12

Γ21 Γ22



ptq ´p2πq´2e´rτK
´

T p3qptq s∆ptq `HptqsΓptqHptq
¯

Charmptq “

„

Charm1

Charm2



ptq p2πq´2e´rτKHptq ĞCharmptq

Speedptq “

„

Speed111 Speed112

Speed121 Speed211



p2πq´2e´rτK
´

2T p4qptq s∆ptq ´ T p3qptq
`

HptqsΓptq
˘

b

„

Speed122 Speed221

Speed212 Speed222



ptq ´H2ptq
`

ĞSpeedptqHptq
˘

¯
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Chapter 3

Finite Liquidity Market Model

3.1 Model Setup

In the Black-Scholes model of (1.3.1) the market is assumed to be perfectly liquid, i.e.

trading does not effect assets’ price. BS model is an inaccurate representation of the real

world because trading an asset will inevitably effect its traded price. In a market with

finite liquidity, trading will have an impact on the price of assets. The model studied in

this thesis will be a slight variation of the model in [1]. The risky assets have the following

dynamics:

dS1ptq

S1ptq
“ µ1dt` σ1dW1ptq ` λ

`

t, S1ptq, S2ptq
˘

df
`

t, S1ptq, S2ptq
˘

,

dS2ptq

S2ptq
“ µ2dt` σ2ρdW1ptq ` σ2

a

1´ ρ2dW2ptq, (3.1.1)

dDptq

Dptq
“ ´rdt.

The additional λ
`

t, S1ptq, S2ptq
˘

df
`

t, S1ptq, S2ptq
˘

term on asset 1 represents the price

impact of a trading strategy. Under this particular finite liquidity model, the future price

of the assets are determined by the following factors:

• drift constants µ1 and µ2,

• volatility constants σ1 and σ2,

• a correlation constant ρ that has value between ´1 and 1,

• a risk-free interest rate r,

• a price impact term λ
`

t, S1ptq, S2ptq
˘

df
`

t, S1ptq, S2ptq
˘

of a large trader’s strategy

f
`

t, S1ptq, S2ptq
˘

on asset one, and an impact function λpt, s1, s2q.

33



The next step is to obtain the SDE of asset 1. The differential of f
`

t, S1ptq, S2ptq
˘

according to Itô’s formula is:

df
`

t, S1ptq, S2ptq
˘

“
Bf

Bt
dt`

Bf

Bs1

dS1ptq `
Bf

Bs2

dS2ptq `
B2f

Bs1Bs2

dS1ptqdS2ptq

`
1

2

B2f

Bs2
1

dS1ptq `
1

2

B2f

Bs2
2

dS2ptqdS2ptq. (3.1.2)

Next, substitute (3.1.2) into dS1ptq of (3.1.1) to get:

dS1ptq “ µ1S1ptqdt` σ1S1ptqdW1ptq ` λ
`

t, S1ptq, S2ptq
˘

´

Bf

Bt
dt`

Bf

Bs1

dS1ptq `
Bf

Bs2

dS2ptq

`
B2f

Bs1Bs2

dS1ptqdS2ptq `
1

2

B2f

Bs2
1

dS1ptqdS1ptq `
1

2

B2f

Bs2
2

dS2ptqdS2ptq
¯

. (3.1.3)

The next goal is to rearrange (3.1.3) for dS1ptq. Simple algebra applied to the expression

for dS1ptq leads to:

dS1ptq

“
1

1´ λ
`

t, S1ptq, S2ptq
˘

Bf
Bs1

´

µ1S1ptqdt` σ1S1ptqdW1ptq ` λ
`

t, S1ptq, S2ptq
˘`Bf

Bt
dt

`
Bf

Bs2

dS2ptq `
B2f

Bs1Bs2

dS1ptqdS2ptq `
1

2

B2f

Bs2
1

dS1ptqdS1ptq `
1

2

B2f

Bs2
2

dS2ptqdS2ptq
˘

¯

. (3.1.4)

To further simplify dS1ptq, we are required to compute the quadratic variations in (3.1.4):

dS1ptqdS1ptq “
1

´

1´ λ
`

t, S1ptq, S2ptq
˘

Bf
Bs1

¯2

´

σ2
1S

2
1ptq ` λ

2
`

t, S1ptq, S2ptq
˘` Bf

Bs2

˘2
σ2

2S
2
2ptq

` 2λ
`

t, S1ptq, S2ptq
˘ Bf

Bs2

ρσ1σ2S1ptqS2ptq
¯

dt,

dS1ptqdS2ptq “
1

1´ λ
`

t, S1ptq, S2ptq
˘

Bf
Bs1

´

ρσ1σ2S1ptqS2ptq ` σ
2
2S

2
2ptqλ

`

t, S1ptq, S2ptq
˘ Bf

Bs2

¯

dt,

dS2ptqdS2ptq “ σ2
2S

2
2ptqdt.
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By substituting the quadratic variations terms into the expression of dS1ptq, this leads to:

dS1ptq

“
1

1´ λ
`

t, S1ptq, S2ptq
˘

Bf
Bs1

!

`

µ1S1ptq ` λ
`

t, S1ptq, S2ptq
˘Bf

Bt
` µ2S2ptqλ

`

t, S1ptq, S2ptq
˘ Bf

Bs2

`
1

2

B2f

BS2
1

1
`

1´ λ
`

t, S1ptq, S2ptq
˘

Bf
Bs1

˘2

´

σ2
1S

2
1 ` σ

2
2S

2
2λ

2
`

t, S1ptq, S2ptq
˘` Bf

Bs2

˘2

` 2ρσ1σ2S1ptqS2ptqλ
`

t, S1ptq, S2ptq
˘ Bf

Bs2

¯

`
B2f

Bs1Bs2

1

1´ λ
`

t, S1ptq, S2ptq
˘

Bf
Bs1

´

ρσ1σ2S1S2 ` σ
2
2S

2
2λ
`

t, S1ptq, S2ptq
˘ Bf

Bs2

¯

`
1

2
σ2

2S
2
2

B2f

Bs2
2

(

dt

` σ1S1ptqdW1ptq ` σ2S2ptqλ
`

t, S1ptq, S2ptq
˘ Bf

Bs2

dW2ptq
)

.

To further simplify, we may define the functions:

σ̄11pt, s1, s2q “
σ1

1´ λpt, s1, s2q
Bf
Bs1

,

σ̄12pt, s1, s2q “
σ2

s2
s1
λpt, s1, s2q

Bf
Bs2

1´ λpt, s1, s2q
Bf
Bs1

,

µ̄1pt, s1, s2q “
1

1´ λpt, s1, s2q
Bf
Bs1

´

µ1 `
1

s1

λpt, s1, s2q
Bf

Bt
` µ2

s2

s1

λpt, s1, s2q
Bf

Bs2

`
1

2

B2f

Bs2
1

1
`

1´ λpt, s1, s2q
Bf
Bs1

˘2

`

σ2
1s1 ` σ

2
2

s2
2

s1

λ2
pt, s1, s2q

` Bf

Bs2

˘2
` 2ρσ1σ2s2λpt, s1, s2q

Bf

Bs2

˘

`
B2f

Bs1Bs2

1

1´ λpt, s1, s2q
Bf
Bs1

`

ρσ1σ2s2 ` σ
2
2

s2
2

s1

λpt, s1, s2q
Bf

Bs2

˘

`
1

2
σ2

2

s2
2

s1

B2f

Bs2
2

¯

.

The simplified result of finite liquidity model takes on the form:

dS1ptq

S1ptq
“ µ̄1

`

t, S1ptq, S2ptq
˘

dt` σ̄11

`

t, S1ptq, S2ptq
˘

dW1ptq ` σ̄12

`

t, S1ptq, S2ptq
˘

dW2ptq,

dS2ptq

S2ptq
“ µ2dt` σ2ρdW1ptq ` σ2

a

1´ ρ2dW2ptq, (3.1.5)

dDptq

Dptq
“ ´rdt.

The above SDE system can also be expressed in its canonical form:

dS1ptq “ µ̄1

`

t,Sptq
˘

S1ptqdt` σ̄11

`

t,Sptq
˘

S1ptqdW1ptq ` σ̄12

`

t,Sptq
˘

S1ptqdW2ptq,

dS2ptq “ µ2S2ptqdt` σ2ρS2ptqdW1ptq ` σ2

a

1´ ρ2S2ptqdW2ptq, (3.1.6)

dDptq “ ´rDptqdt.
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In the subsequent sections, we will discuss the establishment of a risk neutral measure

as well as existence and uniqueness theorems for our market model.

3.2 Finite Liquidity Risk Neutral Measure

To price options with the finite liquidity model of (3.1.5), one needs to discover a risk-

neutral measure. It turns out there is a risk-neutral measure. The results are summarized

in the theorem below with an unconventional proof provided.

Theorem 3.3 (Finite Liquidity Risk-Neutral Measure). There exists a unique risk-

neutral measure rP for the finite liquidity model given by the vector-valued market price of

risk generator process:

Θ
`

t, S1ptq, S2ptq
˘

“
1

σ2p
a

1´ ρ2σ̄11 ´ ρσ̄12q

„a

1´ ρ2σ2 ´σ̄12

´ρσ2 σ̄11

 „

µ̄1 ´ r
µ2 ´ r



.

Proof: Suppose there exists an equivalent measure rP generated by some process Θptq such

that under rP, dS1ptq and dS2ptq has drifts of r. Let the density process of rP with respect

to P be:

Zptq “ exp
`

´

ż t

0

xΘpuq, dWptqy ´
1

2

ż t

0

||Θpuq||2du
˘

.

Then under rP

dĂW1ptq “ dW1ptq `Θ1ptqdt, and

dĂW2ptq “ dW2ptq `Θ2ptqdt.

Under rP we have the following dynamics:

dS1ptq “
´

µ̄1

`

t, S1ptq, S2ptq
˘

´ σ̄11

`

t, S1ptq, S2ptq
˘

Θ1ptq

´ σ̄12

`

t, S1ptq, S2ptq
˘

Θ2ptq
˘

¯

S1ptqdt

` σ̄11

`

t, S1ptq, S2ptq
˘

S1ptqdĂW1ptq ` σ̄12

`

t, S1ptq, S2ptq
˘

S1ptqdĂW2ptq, (3.2.1)

dS2ptq “
´

µ2 ´ ρσ2Θ1ptq ´
a

1´ ρ2σ2Θ2ptq
¯

S2ptqdt` ρσ2S2ptqdĂW1ptq

`
a

1´ ρ2σ2S2ptqdĂW2ptq.

Imposing the risk-less return rate under rP leads to the following linear system:
„

σ̄11 σ̄12

σ2ρ σ2

a

1´ ρ2

 „

Θ1ptq
Θ1ptq



“

„

µ̄1 ´ r
µ2 ´ r



.
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The system has a unique solution rP almost surely when the determinant is not zero,

that is σ̄11ptqσ2

a

1´ ρ2 ´ σ̄12ptqσ2ρ ‰ 0, rP b dt almost surely. Due to continuity of our

processes, it will be sufficient to conclude for all t we have σ̄11ptqσ2

a

1´ ρ2´σ̄12ptqσ2ρ ‰ 0,
rP almost surely. Therefore, a necessary condition for the finite liquid market model to be

complete is:

S1ptq

S2ptq
‰

σ2ρ

σ1

a

1´ ρ2
λpt, S1ptq, S2ptqqfs2 ,

rP almost surely.

This condition is met in light of the continuous distribution of our processes.

Under the risk-neutral measure, the SDEs of finite liquidity market model has the

following dynamics:

dS1ptq

S1ptq
“ rdt` σ̄11

`

t, S1ptq, S2ptq
˘

dĂW1ptq ` σ̄12

`

t, S1ptq, S2ptq
˘

dĂW2ptq,

dS2ptq

S2ptq
“ rdt` σ2ρdĂW1ptq ` σ2

a

1´ ρ2dĂW2ptq, (3.2.2)

dDptq

Dptq
“ ´rdt.

Or in its canonical form:

dS1ptq “ rS1ptqdt` σ̄11

`

t,Sptq
˘

S1ptqdĂW1ptq ` σ̄12

`

t,Sptq
˘

S1ptqdĂW2ptq,

dS2ptq “ rS2ptqdt` σ2ρS2ptqdĂW1ptq ` σ2

a

1´ ρ2S2ptqdĂW2ptq, (3.2.3)

dDptq “ ´rDptqdt.

3.3 Existence and Uniqueness of Solutions

Itô’s result (1979) [30] established a method of guaranteeing the existence of a unique

solution for Itô processes.

Theorem 3.1 (Itô’s Existence and Uniqueness).

For T ą 0, let µpt, sq : r0, T s ˆR2 Ñ R
2 and σpt, sq : r0, T s ˆR2 Ñ R

2ˆ2 be vector

valued uniformly Lipschitz functions that satisfies the linear growth property. That is for

some c ą 0, we have

|µpt, sq ´ µpt, s̃q| ` |σpt, sq ´ σpt, s̃q| ď c|s´ s̃|, @s, s̃ P R2, t P r0, T s,

|µpt, sq| ` |σpt, sq| ď cp1` |s|q, @s P R2, t P r0, T s,
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where | ¨ | is the Euclidean norm. Then the SDE system

dS1ptq “ µ1

`

t,Sptq
˘

dt` σ11

`

t,Sptq
˘

dW1ptq ` σ12

`

t,Sptq
˘

dW2ptq,

dS2ptq “ µ2

`

t,Sptq
˘

dt` σ21

`

t,Sptq
˘

dW1ptq ` σ22

`

t,Sptq
˘

dW2ptq,

has a unique solution with the initial value Sp0q “ s̄.

In Chapter 5 of Oksendal p1992q [37], he mentioned when the Brownian Motion is

given in advance of the solution, then the solution is call a strong solution. Otherwise,

when we have to search for a alternative measure rP for such that Theorem 3.1 holds, then

it is a weak solution in the P sense and strong in the rP sense.

The following theorem presents existence and uniqueness condition for the SDEs of

our FLMM (3.1.5).

Theorem 3.3 (Existence and Uniqueness of Finite Liquidity Market Model

SDE I).

1. Under the assumptions p1q to p6q of Section B.1, the SDE system (3.1.5) has a

unique solution.

2. Under the assumptions p1q to p3q of Section B.1, the SDE system (3.2.2) has a

unique solution.

Proof: Please refer to B.1.

3.4 Replicating Portfolio of the Finite Liquidity Mar-

ket Model

We want to establish the methodology of option price with this model. Let V
`

t, S1ptq, S2ptq
˘

be the option price at t of an option with a given payoff

V
`

T, S1pT q, S2pT q
˘

at the maturity T. Our goal is to characterize the function V
`

t, s1, s2

˘

through a PDE. Let Xptq be a self-financing portfolio established in similar manner as
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section 1.4. Then, the differential of investor’s portfolio is:

dXptq

“ ∆1ptqdS1ptq `∆2ptqdS2ptq ` r
`

Xptq ´∆1ptqS1ptq ´∆2ptqS2ptq
˘

dt

“ ∆1ptqS1ptq
´

µ̄1

`

t, S1ptq, S2ptq
˘

dt` σ̄11

`

t, S1ptq, S2ptq
˘

dW1ptq

` σ̄12

`

t, S1ptq, S2ptq
˘

dW2ptq
¯

`∆2ptqS2ptq
´

µ2dt` σ2ρdW1ptq ` σ2

a

1´ ρ2dW2ptq
¯

` r
`

Xptq ´∆1ptqS1ptq ´∆2ptqS2ptq
˘

dt

“ rXptqdt`∆1ptq
´

µ̄1

`

t, S1ptq, S2ptq
˘

´ r
¯

S1ptqdt`∆2ptq
´

µ2 ´ r
¯

S2ptqdt

`

´

∆1ptqσ̄11

`

t, S1ptq, S2ptq
˘

S1ptq `∆2ptqσ2ρS2ptq
¯

dW1ptq

`

´

∆1ptqσ̄12

`

t, S1ptq, S2ptq
˘

S1ptq `∆2ptqσ2

a

1´ ρ2S2ptq
¯

dW2ptq.

The differential of the discounted portfolio will become:

d
`

DptqXptq
˘

“ Dptq
!

∆1ptq
´

µ̄1

`

t, S1ptq, S2ptq
˘

´ r
¯

S1ptqdt`∆2ptq
´

µ2 ´ r
¯

S2ptqdt

`

´

∆1ptqσ̄11

`

t, S1ptq, S2ptq
˘

S1ptq `∆2ptqσ2ρS2ptq
¯

dW1ptq

`

´

∆1ptqσ̄12

`

t, S1ptq, S2ptq
˘

S1ptq `∆2ptqσ2

a

1´ ρ2S2ptq
¯

dW2ptq
)

.
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On the other hand, the differential of the discounted option price is:

d
´

DptqV
`

t, S1ptq, S2ptq
˘

¯

“ ´rDptqV
`

t, S1ptq, S2ptq
˘

dt`Dptq
!

Vtdt` Vs1S1ptq
´

µ̄1

`

t, S1ptq, S2ptq
˘

dt

` σ̄11

`

t, S1ptq, S2ptq
˘

dW1ptq ` σ̄12

`

t, S1ptq, S2ptq
˘

dW2ptq
¯

` Vs2S2ptq
´

µ2dt` σ2ρdW1ptq ` σ2

a

1´ ρ2dW2ptq
¯

`
1

2
Vs1s1

1
`

1´ λ
`

t, S1ptq, S2ptq
˘

Bf
BS1

˘2

´

σ2
1S

2
1ptq ` λ

2
pt, S1ptq, S2ptqq

` Bf

BS2

˘2
σ2

2S
2
2ptq

` 2λ
`

t, S1ptq, S2ptq
˘ Bf

BS2

ρσ1σ2S1ptqS2ptq
¯

dt`
1

2
Vs2s2σ

2
2S

2
2ptqdt

` Vs1s2
1

1´ λ
`

t, S1ptq, S2ptq
˘

Bf
BS1

´

ρσ1σ2S1ptqS2ptq ` σ
2
2S

2
2ptqλ

`

t, S1ptq, S2ptq
˘ Bf

BS2

¯

dt
)

“ Dptq
!

´ rV pt, S1ptq, S2ptqq ` Vt ` Vs1µ̄1

`

t, S1ptq, S2ptq
˘

S1ptq ` Vs2µ2S2ptq

`
1

2
Vs1s1

1
`

1´ λ
`

t, S1ptq, S2ptq
˘

Bf
BS2

˘2

´

σ2
1S

2
1 ` λ

2
`

t, S1ptq, S2ptq
˘` Bf

BS1

˘2
σ2

2S
2
2ptq

` 2λ
`

t, S1ptq, S2ptq
˘ Bf

BS2

ρσ1σ2S1ptqS2ptq
¯

`
1

2
Vs2s2σ

2
2S

2
2ptq

` Vs1s2
1

1´ λ
`

t, S1ptq, S2ptq
˘

Bf
BS1

´

ρσ1σ2S1ptqS2ptq ` σ
2
2S

2
2ptqλ

`

t, S1ptq, S2ptq
˘ Bf

BS2

¯)

dt

`Dptq
´

Vs1σ̄11

`

t, S1ptq, S2ptq
˘

S1ptq ` Vs2σ2ρS2ptq
¯

dW1ptq

`Dptq
´

Vs1σ̄12

`

t, S1ptq, S2ptq
˘

S1ptq ` Vs2σ2

a

1´ ρ2S2ptq
¯

dW2ptq.

By equating the diffusion terms of d
`

DptqXptq
˘

and d
´

DptqV
`

t, S1ptq, S2ptq
˘

¯

, the Deltas

for hedging can be concluded to be ∆1ptq “ Vs1 and ∆2ptq “ Vs2 .

Next, equate the drift terms of d
`

DptqXptq
˘

and d
´

DptqV
`

t, S1ptq, S2ptq
˘

¯

to obtain

the PDE of the finite liquidity market model:

rV pt, s1, s2q “ Vt ` rs1Vs1 ` rs2Vs2 `
1

2
Vs1s1

´ 1
`

1´ λpt, s1, s2q
Bf
Bs1

˘2

¯´

σ2
1s

2
1

` λ2
pt, s1, s2q

` Bf

Bs2

˘2
σ2

2s
2
2 ` 2λpt, s1, s2q

Bf

Bs2

ρσ1σ2s1s2

¯

(3.4.1)

` Vs1s2

´ 1

1´ λpt, s1, s2q
Bf
Bs1

¯´

ρσ1σ2s1s2 ` λpt, s1, s2q
Bf

Bs2

σ2
2s

2
2

¯

`
1

2
Vs2s2σ

2
2s

2
2,

with 0 ă s1, s2 ă 8, 0 ď t ď T , and the terminal condition:

V pT, s1, s2q “ hps1, s2q,
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where hps1, s2q is the pay off function of any Two-Asset option.

Just like the BS PDE in (1.4.3), the FLMM PDE of (3.4.1) is also parabolic in nature.

Once again we can refer to Chapter 4 of Friedman [18] for existence and uniqueness of

this family of PDEs.

3.5 Feynman-Kac Formula of Finite Liquidity Mar-

ket Model

The Feynman-Kac formula of finite liquidity market is similar to the one in section 1.6.

For any payoff function hpq of an option, given the stock values at time t, S1ptq “ s1 and

S2ptq “ s2 where t P r0, T s. Let V pt, s1, s2q be a solution of the finite liquidity partial

differential equation (3.4.1) with the terminal condition V pT, s1, s2q “ hps1, s1q. Then

V pt, s1, s2q will satisfy the the conditional expectation:

V pt, s1, s2q “
rEre´rpT´tqh

`

S1pT q, S2pT q
˘

|S1pT q “ s1, S2pT q “ s2s.

In this case, e´rtV
`

t, S1ptq, S2ptq
˘

is a martingale.

3.6 Risk-Neutral Formula of Finite Liquidity Market

Model

In the previous sections, the delta hedging strategy as well as Feynman-Kac formula

was established for the finite liquidity model. Now, define the risk-neutral pricing formula

to be:

V
`

t, s1, s2

˘

“ rEre´rpT´tqV
`

T, S1pT q, S2pT q
˘

|F ptqs. (3.6.1)

Moreover, V
`

t, s1, s2

˘

must satisfy the finite liquidity PDE (3.4.1). This shows the finite

liquidity PDE correctly prices any option that is a function of S1ptq and S2ptq, for all

t P r0, T s.
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Chapter 4

Numerical Methods I - Exchange
Option

4.1 Impact of Delta Hedgers, Existence and Unique-

ness

Delta hedging is a strategy adopted by many big financial institutions to reduce their

option portfolio’s exposure against movements in the underlying assets. By assuming

majority of the market participates are delta hedgers, then the trading strategy function of

(3.1.1) would be equal to the Exchange Option’s Delta of asset one. That is, fpt, s1, s2q “

∆1ptq “ Npd`q. As a result, the finite liquidity market model will have the following

dynamics:

dS1ptq

S1ptq
“ µ̄1

`

t, S1ptq, S2ptq
˘

dt` σ̄11

`

t, S1ptq, S2ptq
˘

dW1ptq ` σ̄12

`

t, S1ptq, S2ptq
˘

dW2ptq,

dS2ptq

S2ptq
“ µ2dt` σ̄21dW1ptq ` σ̄21dW2ptq, (4.1.1)

dDptq

Dptq
“ ´rdt,

where

µ̄1pt, s1, s2q “
1

1´ λpt, s1qΓ11ptq

´

µ1ptq `
1

s1

λ
`

t, s1

˘

Θptq ` µ2ptq
s2

s1

λpt, s1qΓ12ptq

`
1

2
Speed111ptq

1
`

1´ λpt, s1qΓ11ptq
˘2

´

σ2
1s1 ` σ

2
2

s2
2

s1

λ2
`

t, s1

˘`

Γ12ptq
˘2
` 2ρσ1σ2s2λpt, s1qΓ12ptq

¯

` Speed112ptq
1

1´ λpt, s1qΓ11ptq

`

ρσ1σ2s2 ` σ
2
2

s2
2

s1

λpt, s1qΓ12ptq
˘

`
1

2
σ2

2

s2
2

s1

Speed122ptq
¯

,
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σ̄11pt, s1, s2q “
σ1

1´ λpt, s1qΓ11ptq
, σ̄12pt, s1, s2q “

σ2s2λpt, s1qΓ12ptq

s1

´

1´ λpt, s1qΓ11ptq
¯ ,

σ̄21 “ σ2ρ, σ̄22 “ σ2

a

1´ ρ2.

There had been many past studies done to model the price impact from trading. For

example, Liu and Yong (2005) [33] studied a price impact model for a FBSDE system.

Pirvu et al. (2014) [1] also studied a price impact model for spread option. This the-

sis will adopt a slightly different price impact model. The price impact function will

approximately be:

λ̄
`

t, s1

˘

“

#

ε
`

1´ e´βpT´tq
3
2
˘

if S1 ď s1 ď S1,

0 otherwise.
(4.1.2)

In this impact function, S1 and S1 represents trading floor and cap of the asset respectively.

Only within this range there will be trading price impact. ε is the price impact per share,

and β is a decaying constant. For the rest of this chapter, S1 and S1 will be set to 60%

and 140% of the current fair market value of the asset. ε will be set to 0.04, and β will

be set to 100. It is important to emphasize λ̄
`

t, S1ptq
˘

will be employed for numerical

approximation. The theoretical λ
`

t, S1ptq
˘

should be a function with bounded derivative,

that is obtained through a standard mollifying of λ̄
`

t, S1ptq
˘

. For the remainder of this

chapter, the trading strategy and price impact functions will be assumed to be ∆1ptq and

λ
`

t, S1ptq
˘

respectively.

Theorem 4.1 (Existence and Uniqueness of Finite Liquidity Market Model

SDE II).

The SDE system (4.1.1) has a strong solution.

Proof: Please refer to Appendix B.2 for the proof.

After establishing existence and uniqueness with the above theorem, we can easily

observe the risk-neutral dynamics of FLMM:

dS1ptq “ rS1ptqdt` rσ11

`

t, S1ptq, S2ptq
˘

dĂW1ptq ` rσ12

`

t, S1ptq, S2ptq
˘

dĂW2ptq,

dS2ptq “ rS2ptqdt` rσ21ptqdĂW1ptq ` rσ22ptqdĂW2ptq, (4.1.3)

dDptq

Dptq
“ ´rdt,

where as a new naming convention, we have:

rσ11pt, s1, s2q “
σ1s1

1´ λΓ11

, rσ12pt, s1, s2q “
σ2s2λΓ12

1´ λΓ11

.

rσ21ptq “ σ2s2ρ, rσ22ptq “ σ2s2

a

1´ ρ2.
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4.2 Numerical Solutions of Finite Liquidity Market

Model

In financial mathematics, we often use numerical method for simulation of SDEs.

Sometimes we need to simulate the processes’ entire path, this is the case for path de-

pendent options. In our case, it is because the FLMM SDE do not have a closed form

solution. In the subsequent sections, we shall employ two different simulation methods.

4.2.1 Two-Dimensional Euler-Maruyama Simulation

Euler-Maruyama is a method designed for solving stochastic differential equations

numerically. It is named after Leonhard Euler and Gisiro Maruyama. E-M method has

ample application in the field of financial mathematics. The motivation behind the method

is to use Îto Taylor expansion, then only use the first order terms in the discretization.

Let a system of stochastic differential equation be of the form:

dX1ptq “ µ1pt,X1, X2qdt` σ11pt,X1, X2qdW1ptq ` σ12pt,X1, X2qdW2ptq,

dX2ptq “ µ2pt,X1, X2qdt` σ21pt,X1, X2qdW1ptq ` σ22pt,X1, X2qdW2ptq. (4.2.1)

Suppose the system of SDEs has initial conditions X1pt0q “ x1 and X2pt0q “ x2 on the

time interval rt0, T s. Integrating both side of the system of SDEs (4.2.1):

X1ptq “ X1pt0q `

ż t

t0

µ1pu,X1, X2qdu`

ż t

t0

σ11pu,X1, X2qdW1puq

`

ż t

t0

σ12pu,X1, X2qdW2puq,

X2ptq “ X2pt0q `

ż t

t0

µ2pu,X1, X2qdu`

ż t

t0

σ21pu,X1, X2qdW1puq (4.2.2)

`

ż t

t0

σ22pu,X1, X2qdW2puq.

The Euler-Maruyama approximation is the first order discretization of the stochastic

integral. Let Y1pmq and Y2pmq be the discretization of (4.2.2), then E-M can be set up

through the following these procedures:

1. Partition rt0, T s into M equivalent intervals of length ∆t “ T´t0
M

.
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2. Set Y1p0q “ x1 and Y2p0q “ x2.

3. Sample t∆Wipjqui“1,2;j“1,2,...M , where each ∆Wipjq „ Np0,∆tq.

4. Recursively define:

Y1pm` 1q “ Y1pmq ` µ1

`

m,Y1pmq, Y2pmq
˘

∆t` σ11

`

m,Y1pmq, Y2pmq
˘

∆W1pm` 1q

` σ12

`

m,Y1pmq, Y2pmq
˘

∆W2pm` 1q,

Y2pm` 1q “ Y2pmq ` µ2

`

m,Y1pmq, Y2pmq
˘

∆t` σ21

`

m,Y1pmq, Y2pmq
˘

∆W1pm` 1q

` σ22

`

m,Y1pmq, Y2pmq
˘

∆W2pm` 1q.

Of course, M has to be sufficiently large for Y1piq and Y2piq to converge to X1ptq and

X2ptq respective. Platen (1999) [39] defined strong and weak convergence for simulated

approximation of SDEs.

Let Y piq be a discrete time simulation of the exact solution Xptq of a SDE on rt0, T s.

Y ptq is convergent to Xptq with order α if there exists a constant C or Cp, such that:

E
”

sup
t0ďtiďT

ˇ

ˇXptiq ´ Y piq
ˇ

ˇ

ı

ď Cp∆tqα, (strong sense)

ˇ

ˇ

ˇ
E
“

p
`

XpT q
˘‰

´ E
“

p
`

Y pMq
˘‰

ˇ

ˇ

ˇ
ď Cpp∆tq

α, (weak sense)

here ppxq is any polynomial.

Desmond (2015) [25] mentioned that the E-M algorithm is strongly convergent with

order 1
2

and weakly convergent with order 1. If 2ε is the width of the confidence interval

where the true parameter of a Monte Carlo estimation resides, then this accuracy may be

achieved at a combined complexity cost of Opε´3q.

Going back to the finite liquidity market model (4.1.3), the asset processes can be

simulated through E-M with the following algorithm:

1. Partition rt, T s into M equivalent intervals of length ∆t “ T´t
M

.

2. Set the initial values as S1p0q “ s1 and S2p0q “ s2.

3. Sample t∆W1pjq,∆W2pjquj“1,2,...M , where each

t∆W1pjq,∆W2pjqu „ N2p0,∆tI2q.

4. Recursively define:

S1pm` 1q “ S1pmq ` rS1pmq∆t`
2
ÿ

i“1

rσ1i

`

Spmq
˘

∆Wipm` 1q, (4.2.3)

S2pm` 1q “ S2pmq ` rS2pmq∆t`
2
ÿ

i“1

rσ2i

`

Spmq
˘

∆Wipm` 1q.

45



We may redefine a matrix recursion version of the Milstein Scheme. Consider the

following evolutionary dynamic of Sptq:

Spm` 1q “ BpmqSpmq. (4.2.4)

The matrix Bpmq consists of the first order approximation and the vector bpmq is the

second order approximation. For our SDE system (4.1.3), Bpmq and bpmq can be defined

as follows:

Bpmq “

„

1` r∆t` rσ11

`

Spmq
˘

∆W1pm` 1q rσ12

`

Spmq
˘

∆W2pm` 1q
rσ21

`

Spmq
˘

∆W1pm` 1q 1` r∆t` rσ21

`

Spmq
˘

∆W2pm` 1q



.

Algorithm 4.2.1 Euler-Maruyama

Initialize Values Sptq “ s
Define ∆t “: T´t

M

for m “ 0 to M ´ 1 do
∆Wpmq “

`

∆w1pmq,∆w2pmq
˘

„ N2p0,∆tI2q

Set Bpmq
Spm` 1q “ BpmqSpmq

end for
return SpMq

The complete code of all algorithms of this chapter are made available at:

https://github.com/ShuAiii/FLMMExchange.

4.2.2 Two-Dimensional Milstein Simulation

E-M algorithm from the previous section is a first order approximation of SDE’s so-

lution. Mil’shtein G. N. (1975) [36] created the Milstein method which is a second order

approximation, that is the second order terms from Îto Taylor expansion will be kept in

the discretization scheme. Consider an approximation of the diffusion function term:

σij
`

t,X1ptq, X2ptq
˘

« σij
`

t0, X1pt0q, X2pt0q
˘

`

2
ÿ

k,l“1

Bσij
Bxl

σlk
`

t0, X1pt0q, X2pt0q
˘

Wkptq,
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substituting the above approximation into (4.2.2) yields:

X1ptq « X1pt0q `

ż t

t0

µ1pu,X1, X2qdu`

ż t

t0

σ11pu,X1, X2qdW1puq

`

ż t

t0

σ12pu,X1, X2qdW2puq `
2
ÿ

j,k,l“1

Bσ1j

Bxl
σlk

`

t0, X1pt0q, X2pt0q
˘

ż t

t0

WkpuqdWjpuq,

X2ptq « X2pt0q `

ż t

t0

µ2pu,X1, X2qdu`

ż t

t0

σ21pu,X1, X2qdW1puq

`

ż t

t0

σ22pu,X1, X2qdW2puq `
2
ÿ

j,k,l“1

Bσ2j

Bxl
σlk

`

t0, X1pt0q, X2pt0q
˘

ż t

t0

WkpuqdWjpuq.

By using integral Itô product rule, we have:

WjptqWkptq ´Wjpt0qWkpt0q “

ż t

t0

WjpuqdWkpuq `

ż t

t0

WkpuqdWjpuq ` ρjkpt´ t0q.

If we let

Aijpt, t0q “

ż t

t0

´

`

Wipuq ´Wipt0q
˘

dWjpuq ´
`

Wjpuq ´Wjpt0q
˘

dWipuq
¯

, (4.2.1)

then
ż t

t0

WkpuqdWjpuq “
1

2

`

WjptqWkptq ´Wjpt0qWkpt0q ` ρjkpt´ t0q ´ Aijpt, t0q
˘

.

Substituting the above expression into (4.2.2) yields

X1ptq « X1pt0q `

ż t

t0

µ1pu,X1, X2qdu`

ż t

t0

σ11pu,X1, X2qdW1puq `

ż t

t0

σ12pu,X1, X2qdW2puq

`
1

2

2
ÿ

j,k,l“1

Bσ1j

Bxl
σlk

`

t0, X1, X2

˘`

WjptqWkptq ´Wjpt0qWkpt0q ` ρjkpt´ t0q ´ Aijpt, t0q
˘

,

X2ptq « X2pt0q `

ż t

t0

µ2pu,X1, X2qdu`

ż t

t0

σ21pu,X1, X2qdW1puq `

ż t

t0

σ22pu,X1, X2qdW2puq

`
1

2

2
ÿ

j,k,l“1

Bσ2j

Bxl
σlk

`

t0, X1, X2

˘`

WjptqWkptq ´Wjpt0qWkpt0q ` ρjkpt´ t0q ´ Aijpt, t0q
˘

.

The expression (4.2.1) is the Lévy Area between two BMs [21]. There are many

techniques to generate the Lévy Area, one of the easiest method is to just generate the

bi-linear form piece by piece. This thesis will provide an algorithm that can be found in

a paper by Scheicher (2007) [43].
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Algorithm 4.2.2 Lévy Area

Define sub-partition length ∆2t :“ ∆t
K

Generate z1, z2 „ NKp0, IKq.
Generate lower triangular matrix of 1s T , set R :“ ∆2tT
Generate lower and upper diagonal matrices of 1s L and U of 1s.
Set B1 :“ Rz1 and B2 “: Rz2

A “ b1
T
pU ´ Lqb2

return A

According to Scheicher, this algorithm for Lévy Area has complexity of OpKq.
The Milstein approximation for the system of SDEs in (4.2.1) can be set up by following

these procedures:

1. Partition rt0, T s into M equivalent intervals of length ∆t “ T´t0
M

.

2. Set Y1p0q “ x1 and Y2p0q “ x2.

3. Sample t∆Wipjqui“1,2;j“1,2,...M , where each ∆Wipjq „ Np0,∆tq.

4. Generate AijpT, tq with t∆Wipjqui“1,2;j“1,2,...M .

5. Recursively define:

Y1pm` 1q “ Y1pmq ` µ1

`

m,Y1pmq, Y2pmq
˘

∆t` σ11

`

m,Y1pmq, Y2pmq
˘

∆W1pm` 1q

` σ12

`

m,Y1pmq, Y2pmq
˘

∆W2pm` 1q `
1

2

2
ÿ

i,j,k“1

Bσ1i

Byk
σkj

`

m,Y1pmq, Y2pmq
˘

ˆ
`

∆Wipm` 1q∆Wjpm` 1q ´ 1pi“jq∆t´ Aijp0,∆tq
˘

,

Y2pm` 1q “ Y2pmq ` µ2

`

m,Y1pmq, Y2pmq
˘

∆t` σ21

`

m,Y1pmq, Y2pmq
˘

∆W1pm` 1q

` σ22

`

m,Y1pmq, Y2pmq
˘

∆W2pm` 1q `
1

2

2
ÿ

i,j,k“1

Bσ2i

Byk
σkj

`

m,Y1pmq, Y2pmq
˘

ˆ
`

∆Wipm` 1q∆Wjpm` 1q ´ 1pi“jq∆t´ Aijp0,∆tq
˘

.

Desmond (2015) [25] mentioned that the Milstein has the same weak form convergence

rate as E-M. On the other hand, Milstein has a strong form convergence rate of α “ 1,

which is superior than E-M. Desmond also mentioned, for a 2ε confidence interval, the

MC estimator that use Milstein simulation will have an Opε´2q complexity cost due to its

faster convergence rate. For the system of GBMs in the standard BSM model of (1.3.1), a

comparison of E-M and Milstein is available in 4.2.1 and 4.2.2. The simulation algorithms

are available at 4.2.1 and 4.2.3.
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Figure 4.2.1: E-M vs Milstein for M “ 100

Figure 4.2.2: E-M vs Milstein for M “ 10000

Note: the GBM parameters used are S1p0q “ 60, S2p0q “ 80, T “ 1, σ1 “ 0.3, σ2 “ 0.3,
ρ “ 0.5 and r “ 0.05.

Going back to the FLMM under risk-neutral measure (4.1.3), its Milstein approxima-

tion can be set up by following these procedures:

1. Partition rt, T s into M equivalent intervals of length ∆t “ T´t
M

.

2. Set the initial values as S1p0q “ s1 and S2p0q “ s2.
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3. Sample t∆W1pjq,∆W2pjquj“1,2,...M , where each

t∆W1pjq,∆W2pjqu „ N2p0,∆tI2q.

4. Generate Lévy Areas Aijp0,∆tq.

5. Recursively define:

S1pm` 1q “ S1pmq ` rS1pmq∆t`
2
ÿ

i“1

rσ1i

`

Spmq
˘

∆Wipm` 1q `
1

2

2
ÿ

i,j,k“1

Brσ1i

Bsk

ˆ rσkj
`

Spmq
˘`

∆Wipm` 1q∆Wjpm` 1q ´ 1pi“jq∆t´Aij
˘

, (4.2.2)

S2pm` 1q “ S2pmq ` rS2pmq∆t`
2
ÿ

i“1

rσ2i

`

Spmq
˘

∆Wipm` 1q `
1

2

2
ÿ

i,j,k“1

Brσ2i

Bsk

ˆ rσkj
`

Spmq
˘`

∆Wipm` 1q∆Wjpm` 1q ´ 1pi“jq∆t´Aij
˘

.

We may redefine a matrix recursion version of the Milstein Scheme. Consider the

following evolutionary dynamic of Sptq:

Spm` 1q “ BpmqSpmq `
1

2
bpmq. (4.2.3)

The matrix Bpmq consists of the first order approximation and the vector bpmq is the

second order approximation. For our SDE system (4.1.3), Bpmq and bpmq can be defined

as follows:

Bpmq “

„

1` r∆t` rσ11

`

Spmq
˘

∆W1pm` 1q rσ12

`

Spmq
˘

∆W2pm` 1q
rσ21

`

Spmq
˘

∆W1pm` 1q 1` r∆t` rσ21

`

Spmq
˘

∆W2pm` 1q



,

bpmq “

„

WT pm` 1qJ1ΣWpm` 1q ´ trpJ1Σq ´ 1T pJ1Σ ˝Aq1
WT pm` 1qJ2ΣWpm` 1q ´ trpJ2Σq ´ 1T pJ2Σ ˝Aq1



.

Here Ji is the Jacobi matrix of the i-th asset’s diffusion functions at the m-th step. Matrix

Σ encapsulates diffusion functions of all assets, also at m-th step. They are of the form:

Ji “

„

Brσi1
Bs1

Brσi1
Bs2

Brσi2
Bs1

Brσi2
Bs2



, Σ “

„

rσ11 rσ12

rσ21 rσ22



.

A is the matrix of Lévy Areas at step m, it has the form:

A “
„

0 A12

A21 0



,

notice A is an off diagonal matrix, this is because the stochastic integral (4.2.1) is 0 when

i “ j.
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Algorithm 4.2.3 Milstein

Initialize Values Sptq “ s
Define ∆t “: T´t

M

for m “ 0 to M ´ 1 do
∆Wpmq “

`

∆w1pmq,∆w2pmq
˘

„ N2p0,∆tI2q

Set Bpmq, bpmq, Ji, Σ and A
Spm` 1q “ BpmqSpmq ` 1

2
bpmq

end for
return SpMq

4.3 Monte Carlo Methods for Exchange Option Value

Monte Carlo is a method that takes advantage of a large quantity of random samples

for the purpose of estimation. In the reminder of this chapter, we will use various Monte

Carlo schemes to estimate the price of Exchange Option under FLMM. We will also deploy

various variance reduction techniques to get the best variance vs compute time trade off.

The objective function is:

V pt, s1, s2q “
rEre´rpT´tq

`

S1pT q ´ S2pT q
˘`
|S1pT q “ s1, S2pT q “ s2s,

This is the result of the discounted Feynman-Kac formula of Section 3.5, with the payoff

function hps1, s2q “ ps1 ´ s2q
`.

4.3.1 Naive Estimator

For any option that has payout V
`

T, S1pT q, S2pT q
˘

with current asset prices S1ptq “ s1

and S2ptq “ s2, define a naive Monte Carlo estimator for the current option value to be:

θpexqn “
e´rτ

N

N
ÿ

i“1

`

S
piq
1 pT q ´ S

piq
2 pT q

˘`
. (4.3.1)

Of course, this estimator is unbiased and converge to V pt, s1, s2q almost surely when nÑ

8. There is a trade off between variance and unbiasedness when building an estimator.

Ideally, a Monte Carlo estimator should chosen to be unbiased and then optimized for its

variance and sampling complexity.

Under the finite liquidity framework of (4.1.1), exchange option can be priced by

applying the MC estimator of (4.3.1). The following algorithm computes the mean,

variance and confidence interval of the estimator:
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Algorithm 4.3.1 Naive Monte Carlo

Sample N paths of S1 and S2

S1,S2 “ r~S
p1q
1 , ~S

p2q
1 , ..., ~S

pNq
1 ; ~S

p1q
2 , ~S

p2q
2 , ..., ~S

pNq
2 s

Estimate the Mean:
µ̄
pexq
n “ 1

N

řN
i“1

´

`

S
piq
1 pT q ´ S

piq
2 pT q

˘`
¯

Option Value:
θ
pexq
n “ e´rτ µ̄

pexq
n

Variance of θ
pexq
n

σ̄2 “ e´2rτ

N

řN
i“1

´

`

S
piq
1 pT q ´ S

piq
2 pT q

˘`
´ µ̄

pexq
n

¯2

1´ α Confidence Interval of the Value
CIpexq “

“

θ
pexq
n ´ zα

σ̄?
n
, θ
pexq
n ` zα

σ̄?
n

‰

The next objective of this thesis is to compare E-M and Milstein in terms of variance

and compute time. In the experiment, the hardware specifications are:

• Hardware processor: 2.8 GHz Intel Core i7.

• Memory: 16 GB 1600 MHz DDR3.

Table 4.3.1: Naive MC of Exchange option by E-M sampling

N M θn Variance 95% CI 99% CI Compute
of θn of θn of θn Time

1000 1000 1.1673 20.1567 p0.8891, 1.4456q p0.8016, 1.5331q 4.258944
1000 10000 1.0804 22.0730 p0.7892, 1.3716q p0.6977, 1.4631q 40.60171
1000 100000 0.9292 16.9776 p0.6739, 1.1846q p0.5936, 1.2649q 392.1904
10000 1000 0.9284 17.2189 p0.8470, 1.0097q p0.8215, 1.0353q 42.56745
10000 10000 1.0576 21.3853 p0.9670, 1.1483q p0.9385, 1.1768q 425.4602
10000 100000 0.9614 17.5385 p0.8793, 1.0435q p0.8536, 1.0693q 4057.075
100000 1000 0.9973 19.0405 p0.9703, 1.0244q p0.9618, 1.0329q 425.5349
100000 10000 1.0002 18.8249 p0.9733, 1.0271q p0.9648, 1.0355q 4358.332
100000 100000 1.0104 19.4680 p0.9831, 1.0378q p0.9745, 1.0464q 41624.19
Note: the option parameters used are S1p0q “ 60, S2p0q “ 80, T “ 0.5, t “ 0, σ1 “ 0.4,

σ2 “ 0.2, ρ “ 0.5 and r “ 0.05.
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Table 4.3.2: Naive MC of Exchange option by Milstein sampling

N M θn Variance 95% CI 99% CI Compute
of θn of θn of θn Time

1000 100 0.9782 18.1167 p0.7144, 1.2420q p0.6315, 1.3250q 11.300327
1000 150 0.9797 17.3380 p0.7216, 1.2378q p0.6405, 1.3189q 22.556142
1000 200 1.0290 19.9200 p0.7523, 1.3056q p0.6654, 1.3926q 39.1799
10000 100 0.9440 17.3338 p0.8623, 1.0256q p0.8367, 1.0512q 109.802010
10000 150 1.0763 21.6443 p0.9852, 1.1675q p0.9565, 1.1962q 226.998594
10000 200 0.9707 19.6852 p0.8837, 1.0576q p0.8564, 1.0850q 388.166524
100000 100 1.0081 19.2850 p0.9809, 1.0354q p0.9724, 1.0439q 1094.246791
100000 150 1.0264 19.8405 p0.9987, 1.0540q p0.9901, 1.0626q 2237.045344
100000 200 0.9981 18.5951 p0.9714, 1.0248q p0.9630, 1.0332q 3919.410313

Note: the option parameters used are S1p0q “ 60, S2p0q “ 80, T “ 0.5, t “ 0, σ1 “ 0.4,
σ2 “ 0.2, ρ “ 0.5 and r “ 0.05.

From the plot below, we can conclude the Milstein naive sampler is more computationally

efficient than the E-M naive sampler, when trying to achieve comparable accuracy.

4.3.2 Antithetic Variate Estimator

There are numerous variance reduction techniques available for Monte Carlo estimators.

When the sampling density is symmetric, that is fpxq “ fp´xq, then the number of

samples can be doubled for essentially free. This can be achieved by just incorporating the

negative of all the sampled points into the Monte Carlo estimator. Doing this will reduce
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the sample variance without effecting the sample mean. Suppose fpxq is a symmetrical

density and V pxq is a Borel function, the antithetic variate method works because:

ErV pXqs “
ż 8

´8

V pxqfpxqdx “
1

2

´

ż 8

´8

V pxqfpxqdx`

ż 8

´8

V p´yqfpyqdy
¯

“
1

2

´

E
“

V pXq
‰

` E
“

V p´Xq
‰

¯

“ E
“1

2
V pXq `

1

2
V p´Xq

‰

.

On the other hand, the variance is:

V ar
“1

2
V pXq `

1

2
V p´Xq

‰

“
1

4

´

V ar
“

V pXq
‰

` V ar
“

V p´Xq
‰

` 2Cov
“

V pXq, V p´Xq
‰

¯

“
1

2
V ar

“

V pXq
‰

`
1

2
Cov

“

V pXq, V p´Xq
‰

.

It is clear that V ar
“

1
2
V pXq ` 1

2
V p´Xq

‰

ă V arrV pXqs whenever CovrV pXq, V p´Xqs is

negative.

Returning to the finite liquidity market model of (4.1.1), take tS
piq
1 , S

piq
2 u

N
i“1 to be a

random set of stochastic paths sampled from E-M or Milstein. There exists a set of

antithetic paths taS
piq
1 , aS

piq
2 u

N
i“1, this is discussed in detail by Giles (2014) [20]. We can

setup a matrix recursive version by using (4.2.3) and define the antithetic asset paths:

aSpm` 1q “ aBpmqaSpmq, E-M

aSpm` 1q “ aBpmqaSpmq `
1

2
bpmq, Milstein

where the new term aBpmq is

aBpmq “

„

1` r∆t´ rσ11

`

Spmq
˘

∆W1pm` 1q ´rσ12

`

Spmq
˘

∆W2pm` 1q
´rσ21

`

Spmq
˘

∆W1pm` 1q 1` r∆t´ rσ21

`

Spmq
˘

∆W2pm` 1q



.

Pseudo-code for generating antithetic paths from E-M and Milstein are provided in 4.3.2

and 4.3.3.

Algorithm 4.3.2 Antithetic Paths from Euler-Maruyama

Initialize Values aSptq “ s
Define ∆t “: T´t

M

for m “ 0 to M ´ 1 do
∆Wpmq “

`

∆w1pmq,∆w2pmq
˘

„ N2p0,∆tI2q

Set aBpmq
aSpm` 1q “ aBpmqaSpmq

end for
return aSpMq
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Algorithm 4.3.3 Antithetic Paths from Milstein

Initialize Values aSptq “ s
Define ∆t “: T´t

M

for m “ 0 to M ´ 1 do
∆Wpmq “

`

∆w1pmq,∆w2pmq
˘

„ N2p0,∆tI2q

Set aBpmq, bpmq, Ji, Σ and A
aSpm` 1q “ aBpmqaSpmq ` 1

2
bpmq

end for
return aSpMq

Apply the generated antithetic paths, the antithetic variate estimator of an option can

be defined to be:

θpexqav “
e´rτ

2N

N
ÿ

i“1

´

`

S
piq
1 pT q ´ S

piq
2 pT q

˘`
`
`

aS
piq
1 pT q ´ aS

piq
2 pT q

˘`
¯

. (4.3.1)

For the exchange option under the finite liquidity framework of (4.1.1), the estimator of

(4.3.1) can be set up by the following algorithm:

Algorithm 4.3.4 Antithetic Variate Monte Carlo

Sample N numbers of ~S1 , ~aS2, ~aS1 and ~aS2 from E-M or Milstein
S1,S2 “ r~S

p1q
1 , ~S

p2q
1 , ..., ~S

pNq
1 ; ~S

p1q
2 , ~S

p2q
2 , ..., ~S

pNq
2 s

aS1, aS2 “ r ~aS
p1q

1 , ~aS
p2q

1 , ..., ~aS
pNq

1 ; ~S
p1q
2 , ~aS

p2q

2 , ..., ~aS
pNq

2 s

Estimator of Mean:
µ̄
pexq
av “ 1

N

řN
i“1

`

aS
piq
1 pT q ´ aS

piq
2 pT q

˘`

Value of Option:
θ
pexq
av “ e´rτ pµ̄

pexq
n ` µ̄

pexq
av q

Variance of θav

σ̄2 “ e´2rτ

4N

řN
i“1

!´

`

S
piq
1 pT q´S

piq
2 pT q

˘`
´µ̄

pexq
n

¯2

`

´

e´rτ
`

aS
piq
1 pT q´aS

piq
2 pT q

˘`
´µ̄

pexq
av

¯2

`

2
´

`

S
piq
1 pT q ´ S

piq
2 pT q

˘`
´ µ̄

pexq
n

¯´

`

aS
piq
1 pT q ´ aS

piq
2 pT q

˘`
´ µ̄

pexq
av

¯)

1´ α Confidence Interval of the Value
CIpexq “

“

θ
pexq
av ´ zα

σ̄?
n
, θ
pexq
av ` zα

σ̄?
n

‰

Using the same option parameters and hardware specifications of section 4.3.1, the

experimental results of the antithetic variate estimator is:
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Table 4.3.3: Antithetic variate MC of Exchange option by E-M sampling

N M θav Variance 95% CI 99% CI Compute
of θav of θav of θav Time

1000 1000 0.8663 6.9150 p0.7033, 1.0293q p0.6521, 1.0805q 7.2621531
1000 10000 1.1069 10.9207 p0.9020, 1.3117q p0.8377, 1.3761q 69.378477
1000 100000 1.0270 8.5708 p0.8455, 1.2084q p0.7885, 1.2654q 725.903939
10000 1000 1.0482 9.8333 p0.9867, 1.1096q p0.9674, 1.1289q 75.420984
10000 10000 0.9635 8.6733 p0.9058, 1.0213q p0.8877, 1.0394q 682.378098
10000 100000 0.9997 8.6710 p0.9420, 1.0574q p0.9238, 1.0755q 7338.541184
100000 1000 0.9955 8.8140 p0.9771, 1.0139q p0.9713, 1.0197q 798.884626
100000 10000 1.0017 8.9771 p0.9831, 1.0203q p0.9773, 1.0261q 7671.303108
100000 100000 1.0009 9.1100 p0.9822, 1.0196q p0.9763, 1.0255q 80655.893226
Note: the option parameters used are S1p0q “ 60, S2p0q “ 80, T “ 0.5, t “ 0, σ1 “ 0.4,

σ2 “ 0.2, ρ “ 0.5 and r “ 0.05.

Table 4.3.4: Antithetic variate MC of Exchange option by Milstein sampling

N M θav Variance 95% CI 99% CI Compute
of θav of θav of θav Time

1000 100 0.9752 10.4032 p0.7753, 1.1752q p0.7125, 1.2380q 11.781618
1000 150 0.8503 6.5731 p0.6914, 1.0092q p0.6414, 1.0591q 23.614247
1000 200 1.1215 10.6341 p0.9193, 1.3236q p0.9193, 1.3236q 42.144800
10000 100 1.0700 10.3100 p1.0070, 1.1329q p0.9872, 1.1527q 119.277441
10000 150 0.9968 8.8748 p0.9384, 1.0551q p0.9200, 1.0735q 236.847002
10000 200 1.0032 9.0669 p0.9442, 1.0622q p0.9256, 1.0808q 414.999724
100000 100 1.0088 9.1435 p0.9901, 1.0276q p0.9842, 1.0335q 1184.310578
100000 150 0.9919 8.8645 p0.9735, 1.0104q p0.9677, 1.0162q 2377.319245
100000 200 0.9983 9.0031 p0.9797, 1.0169q p0.9739, 1.0228q 4224.681379

Note: the option parameters used are S1p0q “ 60, S2p0q “ 80, T “ 0.5, t “ 0, σ1 “ 0.4,
σ2 “ 0.2, ρ “ 0.5 and r “ 0.05.

The plot below reflects comparable conclusions to the naive samplers.
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4.3.3 Control Variate Estimator

For any random variable Y and its random sample tYiu
N
i“1,2,.., an unbiased estimator

of zero can be artificially created as:

θ0 “
1

N

N
ÿ

j“1

“

Yi ´ ErY s
‰

.

The control variate estimator can be created by adding the estimator of zero to the naive

Monte Carlo estimator, that is:

θcv “ θn ` cθ0 “
1

N

N
ÿ

j“1

Xi `
c

N

N
ÿ

j“1

`

Yi ´ ErY s
˘

“
1

N

N
ÿ

j“1

`

Xi ` cYi
˘

´ cErY s.

Control variate estimator have the same mean as the naive estimator, while having a

variance of:

V arrθcs “
1

N2

N
ÿ

j“1

V ar
“

X ` cY
‰

“
1

N

N
ÿ

j“1

`

V arrXs ` c2V arrY s ` 2cCovrX, Y s
˘

.

The variance is minimized when ĉ “ ´CovrX,Y s
V arrY s

, and the expression will become:

V arrθcs “
1

N
V arpXq

`

1´ Cor2
rX, Y s

˘

.
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An important observation to make is that the choice of Y will have a direct impact on

the amount of variance reduction. In fact, choice of Y with higher correlation in absolute

value with X will cause greater variance reduction effect.

To price exchange option under the finite liquidity framework of (4.1.1), the Mar-

grabe’s option would make an excellent candidate as the control variate. This is because

the regular GBM paths can be generated simultaneously from the same normal random

variables used to numerically solve the SDEs of (4.1.1). One would assume the simulated

GBM will be highly correlated with the numerical solution of the SDEs. This thesis will

provide algorithms to generate GBMs through E-M or Milstein.

Algorithm 4.3.5 Geometric Brownian Motion from Euler-Maruyama

Set initial values
CS1ptq “ s1, CS2ptq “ s2

Import the normal random variables used for S1ptq, S2ptq
∆W “ r∆w1p1q,∆w1p2q, ...,∆w1pMq,∆w2p1q,∆w2p2q, ...,∆w2pMq, s
Generate Markov Chain
for i “ 0 to M ´ 1 do
CS1pi` 1q “ CS1piq ` rCS1piq∆t` σ1CS1piq∆w1piq
CS2pi` 1q “ CS2piq ` rCS2piq∆t` ρσ2CS2piq∆w1piq `

a

1´ ρ2σ2CS2piq∆w2piq
end for
return ~CS1, ~CS2

Algorithm 4.3.6 Geometric Brownian Motion from Milstein

Set initial values
CS1ptq “ s1, CS2ptq “ s2

Import the normal random variables used for S1ptq, S2ptq
∆W “ r∆w1p1q,∆w1p2q, ...,∆w1pMq,∆w2p1q,∆w2p2q, ...,∆w2pMq, s
Generate Markov Chain
for i “ 0 to M ´ 1 do
CS1pi` 1q “ CS1piq ` rCS1piq∆t` σ1CS1piq∆w1piq `

1
2
σ2

1CS1piq
`

∆w2
1 ´∆t

˘

CS2pi ` 1q “ CS2piq ` rCS2piq∆t ` ρσ2CS2piq∆w1piq `
a

1´ ρ2σ2CS2piq∆w2piq `
1
2
ρ2σ2

2CS2piq∆w
2
1 ` ρ

a

1´ ρ2σ2
2CS2piq∆w1∆w2 ` 1

2
p1 ´ ρ2qσ2

2CS2piq∆w
2
2 ´

1
2
σ2

2CS2piq∆t
end for
return ~CS1, ~CS2
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Use the generated GBMs, the control variate estimator of an option can be defined as:

θpexqcv “
e´rτ

N

N
ÿ

j“1

´

`

S
piq
1 pT q ´ S

piqpT q
2

˘`
` c

`

CS
piq
1 pT q ´ CS

piqpT q
2

˘`
¯

´ cE
”

`

S1pT q ´ S2pT q
˘`
|S1ptq “ s1, S2ptq “ s2

ı

. (4.3.1)

Here S
piq
1 pT q and S

piq
2 pT q are from the FLMM of (4.1.3). While CS

piq
1 pT q and CS

piq
2 pT q

are the risk-neural GBMs from the BSM model of (1.3.1). The Exchange option’s control

variate estimator of (4.3.1) can be set up through the following algorithm:

Algorithm 4.3.7 Control Variate Monte Carlo

Sample N numbers of ~S1 ,~S2, ~CS1 and ~CS2 from E-M or Milstein
S1,S2 “ r~S

p1q
1 , ~S

p2q
1 , ..., ~S

pNq
1 ; ~S

p1q
2 , ~S

p2q
2 , ..., ~S

pNq
2 s

CS1,CS2 “ r ~CS
p1q

1 , ~CS
p2q

1 , ..., ~CS
pNq

1 ; ~CS
p1q

2 , ~CS
p2q

2 , ..., ~CS
pNq

2 s

Estimator of mean:
µ̄
pexq
cv “ 1

N

řN
i“1

`

CS
piq
1 pT q ´ CS

piq
2 pT q

˘`

Value of exchange option:
θ
pexq
cv “ e´rτ pµ̄

pexq
n ´ cµ̄

pexq
cv q ´ c

`

S1ptqNpd`q ´ S2ptqNpd´q
˘

Variance of θ
pexq
cv

σ̄2 “ e´2rτ

N´1

řN
i“1

!´

`

S
piq
1 pT q´S

piq
2 pT q

˘`
´µ̄

pexq
n

¯2

`c2
´

`

CS
piq
1 pT q´CS

piq
2 pT q

˘`
´µ̄

pexq
cv

¯2

`

2c
´

`

S
piq
1 pT q ´ S

piq
2 pT q

˘`
´ µ̄

pexq
n

¯´

`

CS
piq
1 pT q ´ CS

piq
2 pT q

˘`
´ µ̄

pexq
cv

¯)

1´ α confidence interval of option value
CIpexq “

“

θ
pexq
cv ´ zα

σ̄?
n
, θ
pexq
cv ` zα

σ̄?
n

‰

Using the same option parameters and hardware specifications of section 4.3.1, the

experimental results of the control variate estimator for are:

Table 4.3.5: Control variate MC of Exchange option by E-M

N M θn Variance 95% CI 99% CI Compute
of θn of θn of θn Time

1000 1000 1.0011 3.7996e-05 p1.0007, 1.0015q p1.0006, 1.0016q 4.826849
1000 10000 1.0015 5.8401e-05 p1.0010, 1.0019q p1.0008, 1.0021q 48.550229
1000 100000 1.0012 3.9162e-05 p1.0008, 1.0016q p1.0007, 1.0017q 497.311908
10000 1000 1.0011 4.5441e-05 p1.0010, 1.0013q p1.0010, 1.0013q 49.032302
10000 10000 1.0011 4.3201e-05 p1.0010, 1.0013q p1.0010, 1.0013q 498.811247
10000 100000 1.0011 4.5981e-05 p1.0010, 1.0012q p1.0009, 1.0013q 4963.06468
100000 1000 1.0011 4.4595e-05 p1.0011, 1.0012q p1.0011, 1.0012q 523.006558
100000 10000 1.0012 4.6887e-05 p1.0011, 1.0012q p1.0011, 1.0012q 4937.107023
100000 100000 1.0012 4.5917e-05 p1.0011, 1.0012q p1.0011, 1.0012q 49194.245715
Note: the option parameters used are S1p0q “ 60, S2p0q “ 80, T “ 0.5, t “ 0, σ1 “ 0.4,

σ2 “ 0.2, ρ “ 0.5 and r “ 0.05.
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Table 4.3.6: Control variate MC of Exchange option by Milstein

N M θn Variance 95% CI 99% CI Compute
of θn of θn of θn Time

1000 100 1.0019 4.6735e-05 p1.0015, 1.0023q p1.0013, 1.0025q 11.142887
1000 150 1.0019 4.3898e-05 p1.0015, 1.0023q p1.0014, 1.0024q 22.157359
1000 200 1.0020 5.1035e-05 p1.0016, 1.0024q p1.0014, 1.0026q 38.554110
10000 100 1.0019 5.4073e-05 p1.0018, 1.0021q p1.0017, 1.0021q 109.983456
10000 150 1.0017 4.6736e-05 p1.0016, 1.0018q p1.0015, 1.0019q 222.957975
10000 200 1.0017 5.3887e-05 p1.0015, 1.0018q p1.0015, 1.0019q 381.742344
100000 100 1.0018 4.7936e-05 p1.0017, 1.0018q p1.0017, 1.0018q 1104.416934
100000 150 1.0018 5.0517e-05 p1.0017, 1.0018q p1.0017, 1.0018q 2214.915358
100000 200 1.0018 5.4128e-05 p1.0017, 1.0018q p1.0017, 1.0018q 3825.958450

Note: the option parameters used are S1p0q “ 60, S2p0q “ 80, T “ 0.5, t “ 0, σ1 “ 0.4,
σ2 “ 0.2, ρ “ 0.5 and r “ 0.05.

The plot below reflects comparable conclusions to the naive and Antithetic samplers.

Out of all the Monte Carlo samplers we have studied, the controlled variate samplers

are the most accurate and computationally efficient. This result is not at all surprising

due to the high correlation between FLMM asset and regular GBM asset processes.
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4.4 Monte Carlo Methods for Exchange Option Sen-

sitivities

Managing the Greeks is an essential part of trading. To determine the Deltas of FLMM

Exchange option, we will adopt the adjoint method of Giles and Glasserman (2006) [19].

This method first requires the Greeks to be generated pathwise, then a Monte Carlo can

be applied to estimate the actual value. The adjoint method is advantageous because

these pathwise Greeks can be generated simultaneously with the assets.

4.4.1 Option Delta

Suppose interchangeability exists between the differential operator and expectation, then

the j-th Delta of FLMM Exchange option is:

∆jptq “
B

BSjptq
rEt,s1,s2

”

e´rpT´tqV
`

SpT q
˘

ı

“ e´rpT´tqrEt,s1,s2
”

B

BSjptq
V
`

SpT q
˘

ı

.

By relaxing certain regularity conditions outlined in Glasserman (2004) [22], we may

rewrite it as:

B

BSjptq
V
`

SpT q
˘

“

2
ÿ

i“1

BV

BSipT q

BSipT q

BSjptq
.

During implementation, BV
BSipT q

can be approximated through algorithmic differentia-

tion. While the BSipT q
BSjptq

term is obtained from taking the path-wise derivative of E-M (4.2.3)

or Milstein scheme (4.2.2). Set ∆ijptq “
BSipT q
BSjptq

, we obtain an approximating scheme for

∆ijpmq as follows:

∆ijpm` 1q “ ∆ijpmq ` r∆ijpmq∆t`
2
ÿ

k,l“1

Brσik
Bsl

∆ljpmq∆Wkpm` 1q E-M

∆ijpm` 1q “ ∆ijpmq ` r∆ijpmq∆t`
2
ÿ

k,l“1

Brσik
Bsl

∆ljpmq∆Wkpm` 1q Milstein

`
1

2

2
ÿ

k,l,p,q“1

∆qjpmq
´

B2
rσik

BspBsq
rσpj

`

Spmq
˘

`
Brσik
Bsp

Brσpl
Bsq

¯

,
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where m “ 0, 1, ...M ´ 1. If we define a matrix Dpmq as:

Dijpmq “ δijpmq ` r∆t`
2
ÿ

k“1

Brσik
Bsj

∆Wkpm` 1q E-M

Dijpmq “ δijpmq ` r∆t`
2
ÿ

k“1

Brσik
Bsj

∆Wkpm` 1q Milstein

`
1

2

2
ÿ

k,l,p“1

´

B2
rσik

BspBsj
rσpj

`

Spmq
˘

`
Brσik
Bsp

Brσpl
Bsj

¯

,

then the evolution of ∆ can be redefined using matrix recursion as follows:

∆pm` 1q “ Dpmq∆pmq,

where ∆ptq “ I. Similar to estimating the option price, we a can use the Delta from

the Magrabe option as a multivariate control variate. We adopt the method presented by

Rubinstein and Marcus (1985) [41] and set up the estimator for Delta:

∆ “
e´rpT´tq

N

N
ÿ

i“1

´

∆piq
pMq ` C1∆

piq
cv pMq

¯

´ C1∆Margrabe. (4.4.1)

The variance of ∆ is minimized when Ĉ1 “ Σ∆∆cvΣ
´1
∆cv∆cv

.
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Chapter 5

Numerical Methods II - Spread
Option

5.1 Existence of a Delta Hedging Price Impact Model

In a market where majority of the participate adopts delta hedging, a reasonable

trading strategy function for Market Model (3.1.1) would be the Spread Option’s Delta

on asset one. That is,

fpt, s1, s2q “ ∆1ptq “ p2πq
´2e´rτ

K

s1

ż ż

R2`iε

u1e
iu1XptqΦpu, τqP̂ puqdu. (5.1.1)

To see the SDE dS1ptq in (4.1.1) have an unique solution in the case of strategy function

(5.1.1). Recall back to Equation (2.2.6), it is established that all the Greeks involving

partials of s1 and s2 can be expressed as linear combination of:

ĞGreekpt, s1, s2q “

ż ż

R2`iε

fbpuqe
iu1XptqΦpu, τqP̂ puqdu.

This contour integral is equivalent to:

ĞGreekpt, s1, s2q “ e´ε
1Xptq

ż ż

R2

fbpu` iεqe
i<puq1XptqΦpu` iε, τqP̂ pu` iεqdu. (5.1.2)

Within Expression (5.1.2), recall Xptq “ log
`

Sptq
˘

. Since ei<puq
1Xptq is on the complex

unit circle, then (5.1.2) is unbounded in Sptq on
`

r0, T sˆ pR`q2
˘

solely due to the e´ε
1Xptq

term. However, the dampening constants has restrictions of ε1 ă ´1 and ε2 ą 0. Because

of this reason, we should incorporate a global price cap S and a global price floor S into a

modified price impact function. The purpose of the cap and floor is to ensure the existence

of our market model. Consider the Spread Option price impact function:

λ̄
`

t, s1, s2

˘

“

#

ε
`

1´ e´βpT´tq
3
2
˘

if S ă s1, s2 ă S,

0 otherwise.
(5.1.3)
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Here ε and β still are the price impact per share and decaying constant respectively. For

the rest of this chapter, ε will be set to 0.04, and β will be set to 100. It is important

to emphasize λ̄pt, s1, s2q will be employed for numerical approximation. The theoretical

λpt, s1, s2q should be a function with bounded derivative, that is obtained through a

standard mollifying of λ̄pt, s1, s2q.

For the remainder of this chapter, the trading strategy and price impact functions will

be assumed to be ∆1ptq and λpt, s1, s2q respectively.

Consider the FLMM with Spread Option Greeks. The dynamics of this model is:

dS1ptq

S1ptq
“ µ̄1

`

t, S1ptq, S2ptq
˘

dt` σ̄11

`

t, S1ptq, S2ptq
˘

dW1ptq ` σ̄12

`

t, S1ptq, S2ptq
˘

dW2ptq,

dS2ptq

S2ptq
“ µ2dt` σ̄21dW1ptq ` σ̄21dW2ptq, (5.1.4)

dDptq

Dptq
“ ´rdt,

where

µ̄1pt, s1, s2q “
1

1´ λpt, s1, s2qΓ11ptq

´

µ1ptq `
1

s1

λpt, s1, s2qΘptq ` µ2ptq
s2

s1

λpt, s1qΓ12ptq

`
1

2
Speed111ptq

1
`

1´ λpt, s1, s2qΓ11ptq
˘2

´

σ2
1s1 ` σ

2
2

s2
2

s1

λ2
pt, s1q

`

Γ12ptq
˘2

` 2ρσ1σ2s2λpt, s1, s2qΓ12ptq
¯

` Speed112ptq
1

1´ λpt, s1, s2qΓ11ptq

`

ρσ1σ2s2

` σ2
2

s2
2

s1

λpt, s1, s2qΓ12ptq
˘

`
1

2
σ2

2

s2
2

s1

Speed122ptq
¯

,

σ̄11pt, s1, s2q “
σ1

1´ λpt, s1, s2qΓ11ptq
, σ̄12pt, s1, s2q “

σ2s2λpt, s1, s2qΓ12ptq

s1

´

1´ λpt, s1, s2qΓ11ptq
¯ ,

σ̄21 “ σ2ρ, σ̄22 “ σ2

a

1´ ρ2.

To avoid the complex µ̄1

`

t, S1ptq, S2ptq
˘

term, we choose to work under the risk neutral

measure with the model dynamics:

dS1ptq

S1ptq
“ rdt` σ̄11

`

t, S1ptq, S2ptq
˘

dĂW1ptq ` σ̄12

`

t, S1ptq, S2ptq
˘

dĂW2ptq,

dS2ptq

S2ptq
“ rdt` σ̄21dĂW1ptq ` σ̄21dĂW2ptq, (5.1.5)

dDptq

Dptq
“ ´rdt.

Theorem 5.1 (Existence and Uniqueness of Finite Liquidity Market Model

SDE III).

The SDE system (5.1.5) has a strong solutions.
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The proofs of this theorem is available at Appendix B.3.

5.2 Fast Fourier Transform

A fast Fourier transform (FFT) is a discrete Fourier transform algorithm with a com-

plexity of Op2N log pNqq instead of Op2N2q when computing N points. FFT was first

adopted by Cooley and Tukey (1965) [14].

In this chapter, the goal is to simulate a solution for the SDEs of the finite liquidity

market model. Since Γ11ptq and Γ12ptq are the only Greeks within dS1ptq, therefore only

these Greeks needs to be simulated. To construct the FFT scheme for spread option

Gammas, one must first discretize the Fourier frequency domain with the lattice:

L “
 

upkq “
`

upk1q, upk2q
˘ˇ

ˇk “ pk1, k2q P p0, 1, ..., N ´ 1q2
(

,

where η is the frequency domain lattice spacing. Then for ū “ Nη
2

, the frequency domain

bounds are r´ū, ūs, and the frequency lattice points are

upkq “ ´ū` kη “

„

ū1

ū2



` k

„

η1

η2



.

The reciprocal domain lattice can be defined as:

L˚ “
 

xplq “
`

upl1q, upl2q
˘
ˇ

ˇl “ pl1, l2q P p0, 1, ..., N ´ 1q2
(

,

where the lattice points are

xplq “ ´x̄` lη˚ “

„

x̄1

x̄2



` l

„

η˚1
η˚2



,

with the corresponding bounds

x̄ “

„

x̄1

x̄2



“

«

Nη˚1
2

Nη˚2
2

ff

.

The frequency domain bounds ūi can be initialized in a manner to ensure the initial asset

value Xptq “
`

X1ptq, X2ptq
˘

lay exactly on the grid. The following algorithm outlines the

method
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Algorithm 5.2.1 FFT Spread option grid spacing

for i “ 0 to N ´ 1 do

ū
pnewq
i “

πpi´N
2
q

Xiptq

if ū
pnewq
i ą ū then

return ū
pnewq
i

end if
end for
return ūi

Then it is clear that the frequency and reciprocal domain spacing are:

ηi “
2ū
pnewq
i

N
,

and

η˚i “
2π

Nηi
.

Using the frequency domain lattice, (2.2.3) can be discretized in the following manner:

Γptq „ ´
Ke´rτη1η2

p2πq2

!

T p3q
N´1
ÿ

k1,k2“0

i
`

upkq ` iε
˘

ei
`

upkq`iε
˘1

XptqΦ
`

upkq ` iε, τ
˘

P̂
`

upkq ` iε
˘

du

`H
´

N´1
ÿ

k1,k2“0

´

`

upkq ` iε
˘

b̄
`

upkq ` iε
˘

¯

ei
`

upkq`iε
˘1

XptqΦ
`

upkq ` iε, τ
˘

P̂
`

upkq ` iε
˘

du
¯

H
)

.

Then, by applying the reciprocal domain lattice, FFT can be applied to determine a

solution grid that contains Xptq.

Γptq „ ´p´1ql1`l2
η1η2KN

2e´rτ

p2πq2
e´ε

1Xplq
! 1

N2

N´1
ÿ

k1,k2“0

e
2πikl
N Mpkq

)

“ ´p´1ql1`l2
η1η2KN

2e´rτ

p2πq2
e´ε

1Xplq
!

IFFT
`

MpKq
˘

)

,

where

Mpkq “

«

1
S2
1ptq

`

H∆1pkq ´HΓ11pkq
˘

1
S1ptqS2ptq

HΓ12pkq
1

S1ptqS2ptq
HΓ12pkq

1
S2
2ptq

`

H∆2pkq ´HΓ22pkq
˘

ff

,

and

H∆1pkq “ p´1qk1`k2
`

iu1pk1q ´ ε1
˘

Φ
`

upk` iεq, τ
˘

P̂
`

upk` iεq ` iε
˘

,

H∆2pkq “ p´1qk1`k2
`

iu2pk2q ´ ε2
˘

Φ
`

upk` iεq, τ
˘

P̂
`

upk` iεq ` iε
˘

,

HΓ11pkq “ p´1qk1`k2
`

iu1pk1q ´ ε1
˘2

Φ
`

upk` iεq, τ
˘

P̂
`

upk` iεq ` iε
˘

,

HΓ12pkq “ p´1qk1`k2
`

iu1pk1q ´ ε1
˘`

iu2pk2q ´ ε2
˘

Φ
`

upk` iεq, τ
˘

P̂
`

upk` iεq ` iε
˘

,

HΓ22pkq “ p´1qk1`k2
`

iu2pk2q ´ ε2
˘2

Φ
`

upk` iεq, τ
˘

P̂
`

upk` iεq ` iε
˘

.
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The spread option Gammas can be generated through the following FFT algorithm:

Algorithm 5.2.2 FFT of Spread Option Gammas

Set up the Mpkq matrix
Run inverse fast Fourier by IFFT

`

Mpkq
˘

Set up a Cpxq matrix as Cij “ p´1qi`je´rτ η1η2N
2

p2πq2
e´εxptq

Compute the Gammas value grid by GridΓpi, jq “ Ke´rτ<
´

CpxqIFFT
`

Mpkq
˘

¯

Find the position on L˚ corresponding to Xptq as pp1, p2q

return GridΓpp1, p2q

The full code for Spread Option price and Greeks are available at:

https://github.com/ShuAiii/Spread-option-by-fast-Fourier-transform.

The Gammas generated from Algorithm 5.2.2 can be used along with E-M Algorithm

4.2.1 or Milstein Algorithm 4.2.3 to generate the asset processes of FLMM.

5.3 Monte Carlo for Spread Option

For the reminder of this chapter, we will use a naive and a controlled variate estimator

to price Spread Option under FLMM. Our goal is to optimize for variance and compute

time. The objective function is:

V pt, s1, s2q “
rEre´rpT´tq

`

S1pT q ´ S2pT q ´K
˘`
|S1pT q “ s1, S2pT q “ s2s,

This is the result of the discounted Feynman-Kac formula of Section 3.5, with the payoff

function hps1, s2q “ ps1 ´ s2 ´Kq
`.

5.3.1 Naive Estimator

The previous section covered a method of generating spread option Gammas through

FFT. With the Gammas in hand, the FLMM assets can be simulated through E-M or

Milstein algorithm in a similar fashion to Algorithm 4.2.1 and 4.2.3. Ultimately, a naive

Monte Carlo estimator for spread option’s market value can be defined as:

θpsprqn “
e´rτ

N

N
ÿ

i“1

`

S
piq
1 pT q ´ S

piq
2 pT q ´K

˘`
. (5.3.1)

The following algorithm computes the spread option’s market value, variance and

confidence interval:
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Algorithm 5.3.1 Naive Monte Carlo for spread option

Sample N paths of ~S1 and ~S2 from E-M or Milstein with the FFT Scheme Spread option
Gammas
S1,S2 “ r~S

p1q
1 , ~S

p2q
1 , ..., ~S

pNq
1 ; ~S

p1q
2 , ~S

p2q
2 , ..., ~S

pNq
2 s

Estimator of Mean:
µ̄
psprq
n “ 1

N

řN
i“1

´

`

S
piq
1 pT q ´ S

piq
2 pT q ´K

˘`
¯

Option Value:
θ
psprq
n “ e´rτ µ̄

psprq
n

Variance of θ
psprq
n

σ̄2 “ e´2rτ

N

řN
i“1

´

`

S
piq
1 pT q ´ S

piq
2 pT q ´K

˘`
´ µ̄

psprq
n

¯2

1´ α Confidence Interval of the Value
CIpsprq “

“

θ
psprq
n ´ zα

σ̄?
n
, θ
psprq
n ` zα

σ̄?
n

‰

The next objective of this thesis is to compare E-M and Milstein in terms of variance

and compute time.

Table 5.3.1: Naive MC of spread option by E-M sampling

N M θn Variance 95% CI 99% CI Compute
of θn of θn of θn Time

1000 1000 0.5912 11.0583 p0.3851, 0.7974q p0.3204, 0.8621q 895.112738
1000 2000 0.7469 12.1064 p0.5313, 0.9626q p0.4635, 1.0303q 1810.373330
1000 5000 0.7359 11.2246 p0.5282, 0.9435q p0.4629, 1.0088q 4351.69952
2000 1000 0.5133 7.1721 p0.3978, 0.6325q p0.3609, 0.6694q 1779.017111
2000 2000 0.6276 11.1551 p0.4812, 0.7740q p0.4352, 0.8200q 3351.880970
2000 5000 0.6752 12.3751 p0.5191, 0.8275q p0.4706, 0.8759q 8660.636052
5000 1000 0.7050 15.2943 p0.5966, 0.8134q p0.5626, 0.8475q 4243.803608
5000 2000 0.6844 11.4267 p0.5907, 0.7781q p0.5612, 0.8075q 8540.922872
5000 5000 0.6838 15.0798 p0.5762, 0.7915q p0.5423, 0.8253q 21584.663345
Note: the option parameters used are S1p0q “ 60, S2p0q “ 80, K “ 4, T “ 0.5, t “ 0,

σ1 “ 0.4, σ2 “ 0.2, ρ “ 0.5 and r “ 0.05.

The full code for FLMM Spread Option pricing is available at:

https://github.com/ShuAiii/FLMMSpread.

5.3.2 Control Variate Estimator

Once again, the Margrabe’s price formula for Exchange Option can be used as the

control variate to price spread option under the FLMM. The control variate estimator of
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spread option can be defined as:

θpsprqcv “
e´rτ

N

N
ÿ

j“1

´

`

S
piq
1 pT q ´ S

piq
2 pT q ´K

˘`
` c

`

CS
piq
1 pT q ´ CS

piq
2 pT q

˘`
¯

´ cE
”

`

S1pT q ´ S2pT q
˘`
|S1ptq “ s1, S2ptq “ s2

ı

. (5.3.1)

Similar to the previous chapter, S
piq
1 pT q and S

piq
2 pT q are from the FLMM of . While

cS
piq
1 pT q and cS

piq
2 pT q are the risk-neural GBMs from the BSM model of (1.3.1). The

GBMs of both market models are generated through Algorithm 4.2.1 or 4.2.3.

The control variate estimator for the FLMM spread option value can be computed

through the following algorithm:

Algorithm 5.3.2 Control variate Monte Carlo for spread option

Sample N paths of ~S1 and ~S2 from E-M or Milstein with the FFT Scheme Spread option
Gammas
S1,S2 “ r~S

p1q
1 , ~S

p2q
1 , ..., ~S

pNq
1 ; ~S

p1q
2 , ~S

p2q
2 , ..., ~S

pNq
2 s

CS1,CS2 “ r ~CS
p1q

1 , ~CS
p2q

1 , ..., ~CS
pNq

1 ; ~CS
p1q

2 , ~CS
p2q

2 , ..., ~CS
pNq

2 s

Estimator of mean:
µ̄cv “

1
N

řN
i“1

`

CS
piq
1 pT q ´ CS

piq
2 pT q

˘`

Value of exchange option
θ
psprq
cv “ e´rτ pµ̄

psprq
n ´ cµ̄cvq ´ c

`

S1ptqNpd`q ´ S2ptqNpd´q
˘

Variance of θ
psprq
cv :

σ̄2 “ e´2rτ

N´1

řN
i“1

!´

`

S
piq
1 pT q ´ S

piq
2 pT q ´K

˘`
´ µ̄

psprq
n

¯2

` c2
´

`

CS
piq
1 pT q ´ CS

piq
2 pT q

˘`
´

µ̄cv

¯2

` 2c
´

`

S
piq
1 pT q ´ S

piq
2 pT q ´K

˘`
´ µ̄

psprq
n

¯´

`

CS
piq
1 pT q ´ CS

piq
2 pT q

˘`
´ µ̄cv

¯)

1´ α confidence interval of option value:
CIpsprq “

“

θ
psprq
cv ´ zα

σ̄?
n
, θ
psprq
cv ` zα

σ̄?
n

‰

Using the same hardware specifications of Section 4.3.1, the experimental results of

the control variate estimator for are:
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Table 5.3.2: Control variate MC of spread option by E-M

N M θn Variance 95% CI 99% CI Compute
of θn of θn of θn Time

1000 1000 0.6654 0.4585 p0.6234, 0.7074q p0.6102, 0.7206q 928.132601
1000 2000 0.7080 0.3891 p0.6694, 0.7467q p0.6572, 0.7589q 1660.219954
1000 5000 0.6872 0.4403 p0.6461, 0.7284q p0.6332, 0.7413q 4409.007364
2000 1000 0.6949 0.4349 p0.6660, 0.7238q p0.6569, 0.7329q 1630.974633
2000 2000 0.6908 0.3729 p0.6640, 0.7176q p0.6556, 0.7260q 3248.058178
2000 5000 0.6654 0.4075 p0.6374, 0.6934q p0.6286, 0.7022q 8307.109659
5000 1000 0.6781 0.4997 p0.6585, 0.6977q p0.6585, 0.6977q 4165.095556
5000 2000 0.6792 0.4045 p0.6615, 0.6968q p0.6560, 0.7023q 8326.471157
5000 5000 0.6790 0.4150 p0.6611, 0.6968q p0.6555, 0.7024q 21638.734037
Note: the option parameters used are S1p0q “ 60, S2p0q “ 80, K “ 4, T “ 0.5, t “ 0,

σ1 “ 0.4, σ2 “ 0.2, ρ “ 0.5 and r “ 0.05.

Of course, the controlled variate estimator yields a more attractive result. However,

the controlled variate is not as effective compared to the effect on FLMM Exchange

Option. This result is not surprising because the Margrabe Option is more correlated

with FLMM Exchange Option.
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Chapter 6

Deep Learning Methods

6.1 Feed Forward Network

Artificial neural networks have powerful predictive capabilities, one of the first version

is the feed forward network(FFN). This network is structured as a sequence of layers, with

various number of neurons embedded in each layer.

Figure 6.1.1: A Feed-Forward Network

We shall use N to denote the number of layers, and ni to denote the number of

neurons in the i-th layer. In a fully connected FFN, each neuron in the current layer has

a connection with each neuron in the subsequent layer. The strength of these connection

are known as weights, we denote the weights connected to the j-th neuron in the i-th layer

as w
ris
j . Each neuron also carries a unique bias term b

ris
j , this term has a similar effect as

the regression intercept. The final component of a neuron is the activation function σpzq,
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similar to linking functions of non-linear regression, its purpose is to add non-linearity.

The table below contains some of the widely used activation functions:

Table 6.1.1: Neuron Activation Functions and Derivatives

Type Activation Function Derivative Function
Linear σpxq “ x σ1pxq “ 1

Sigmoid σpxq “ 1
1`e´x

σ1pxq “ σpxq
`

1´ σpxq
˘

ReLU σpxq “ maxpx, 0q σ1pxq “ 1pxą0q

Gaussian σpxq “ e´x
2

σ1pxq “ 2xe´x
2

The operation of a neuron can be expressed as:

z
ris
j “ w

ris
j hri´1s

` b
ris
j ,

h
ri´1s
j “ fpz

ris
j q.

We also provide a computation graph on the j-th neuron in the i-th layer:

h
ri´1s
1

h
ri´1s
2

h
ri´1s
3

h
ri´1s
n

w
ris
i1

w
ris
i2

w
ris
i3

w
ris
ini

σ
`

z
ris
j

˘ h
ris
j

This process is repeated for every single neuron, which allows us transverse through

the network and arrive at the output layer hrNs “ ŷ(For the purpose of option pricing,

we have a single output hrNs, but in general hrNs is a vector). This entire process is

often refereed to as forward propagation. The figure below describes the FFN architecture

deployed to price Exchange option under FLMM:
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The loss function measures the goodness of fit. We will use it to evaluate the result

of the forward propagation. This evaluation is preformed for every B inputs; B is known

as the batch size. Some commonly used loss functions are:

Table 6.1.2: Neural Network Loss Functions

Type Loss Function

Mean Squared Error Lp~y, ~̂yq “ 1
n

řn
i“1pyi ´ ŷiq

2

Mean Absolute Error Lp~y, ~̂yq “ 1
n

řn
i“1 |yi ´ ŷi|

Cross Entropy Lp~y, ~̂yq “ ´ 1
n

řn
i“1

`

yn logpŷnq ´ p1´ ynq logp1´ ŷnq
˘

In this thesis, we use the mean squared error(MSE) loss function. The minimizing of

the loss function follows the steepest descent idea, so one has to compute gradient fields

with respect to the weights and biases. This is often accomplished through algorithmic

differentiation and a process called back propagation. Then, the weights and biases are

updated in the direction of gradient field, hoping of the discovery of a “good enough”

local minimum. The common methodology is the batch gradient descent :

w
ris,pnewq
j “ w

ris,poldq
j ´ α

BL
Bw

ris,poldq
j

,

b
ris,pnewq
j “ b

ris,poldq
j ´ α

BL
Bb

ris,poldq
j

,

for j “ 1, 2, ...ni, and i “ 1, 2, ...N.

In the above expression, α is the learning rate.

One batch of forward propagation combined with one instance of back propagation

is considered as one iteration of batch training. An epoch encompasses a series of batch

training that exhausts the entire data set. Normally, the training is either repeated for
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a fixed number of epochs, or stopped early when the loss function cease to to decrease

further.

The most famous theorem in neural networks is the universal approximation theorem, it

highlights the approximation power of feed forward networks. Hornik (1989) [26] establish

the fact deep forward network are universal approximators, in other words, any function

can be accurately approximated by some deep feed forward network. Since option prices

are smooth solutions of PDEs, then it should be feasible to predict these solutions with

feed forward networks.

6.2 Predicting Exchange Option Price with Feed For-

ward Network

Options pricing are very computational expensive tasks. This becomes especially true

under practical settings due to complexities of the underlying yield curve, volatility surface

and the payoff function itself. Some methods typically used for option pricing are Monte

Carlo and finite difference, these methods slows down drastically as sample size and grid

space gets finer. Feed forward networks can be used to predict option prices much faster

and up to a certain degree of accuracy. Ferguson and Green (2018) [17] have employed

this method to price basket options. However, as they mentioned, there are initial costs

from generating the option price data set and training the network. Nevertheless, this

strategy could be reasonably implemented by large financial institutions and in theory,

should integrate well with their current operations. This is largely due to the following

reasons:

• The data set generation and training can be done offline while the markets are

closed.

• Trading operations in the front office requires the option pricing models to be accu-

rate. However, the performance speed is just as important.

To demonstrate option pricing with FFN, we take the MC approach of pricing

FLMM Exchange Option from subsection 4.3.1. In this case, the input space has 7

dimensions, that is x “ ps1, s2, r, ρ, σ1, σ2, τq. By selecting an appropriate range for each

dimension, we can generate the input data from which the output data can be calculated

from. In this case, the output data are the option price computed from Algorithm 4.3.1.

It is important to emphasize the distribution used to generate each parameter in the input

space is completely problem dependent. Some factors could be considered when choosing

the distributions are:
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• The physical meaning of each undying parameter.

• The payoff function itself should be considered because it is pointless to generate a

bunch of out of money MC path.

• The Margrabe Greeks should also be considered given its high correlation to our

model. The Greeks will provide valuable insights on option price sensitivity due

to each underlying parameter. Presence of certain large Greeks in some option

parameter sub-spaces indicates a higher sensitivity of the pricing function to the

parameters in that sub-space. Without a doubt, a higher concentration of sample

points should be chosen from that sub-space.

Doing this will not only help the error to converge faster, but also help the FFN to ap-

proximate a more meaningful solution. The implementation of Deeply Learning Derivative

method can be summarized by the following programming architectural graph:

Figure 6.2.1: Architecture for Exchange option price

Data Generation
Method 1
Method 2

MC Engine

Milstein
Control Variate

Deep Feed Forward Network
Training

Validation
Testing

Export to Production

To demonstrate this method, we will first consider the Exchange Option under BSM

and FLMM. We used two different schemes to generate the training/testing data set.

Scheme 1 is a simple sampling method, while scheme 2 is a sophisticated method that

attempts to capture more realistic scenarios.
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Table 6.2.1: Data Generation Scheme 1

Parameter Distribution
s1 Up0, 100q
s2 Up0, 100q
σ1 Up0, 0.5q
σ2 Up0, 0.5q
r Up0, 0.1q
ρ Up1,´1q
τ Up0, 2q

Table 6.2.2: Data Generation Scheme 2

Parameter Distribution
s1 50 exppX1q, X1 „ N p0.5, 0.25q
s2 50 exppX1 ´X2q, X2 „ N p0.5, 0.25q
σ1 Up0, 0.5q
σ2 Up0, 0.5q
r Up0, 0.1q
ρ 2pX3 ´ 0.5q, X3 „ βp5, 2q
τ Up0, 2q

We set up our network in Tensorflow [2]. The FFN has 4 fully connected deep layers

with 300 ReLu neurons per layer. The output layer contains a single SoftPlus Neuron

to make sure the prediction would be positive definite. We generated 1 million inputs

and uses a relatively inaccurate MC engine (N=100, M=100) to construct the training

set. The reason behind this choice is, in practice, a well-trained deep FFN has the ability

to remove the inaccuracy of weak MC estimators. We trained the FNN with mini-batch

size of 1024, and updated the gradient with ADAM optimizer (2015) [17]. We performed

validation with samples created from a highly accurate MC engine (N=100k, M=100), at

a 100/1 ratio. Initially, the FFN was set to train for 1000 epochs. After 850 epochs of

training, the loss function ceases to decreases further significantly. To prevent overfitting,

it is justifiable to apply early stopping and make validation conclusions based on MAE

and MSE.
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Figure 6.2.2: Exchange option MAE

Figure 6.2.3: Exchange option MSE

We observe both of the MAE and MSE of the testing data oscillate around the MAE
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and MSE of the training data for all 4 cases. Furthermore, the amplitude of the oscillation

decreases as the Epoch index increases. This shows all predictive models built from

the training data are good predictive model for each respective testing data. Another

important result to notice is that the models were more attractive in terms of MSE. This

would imply the bigger errors matched up more consistently between training and testing

datasets.

In the testing phase, we generated 1000 highly accurate samples with MC engine

specifications (N=100k, M=100). We test our trained network and came to the following

testing results:

Figure 6.2.4: Exchange option predicted value vs true value
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Figure 6.2.5: Exchange option prediction error frequency

We performed our final analysis on the testing data. It can be clearly observed there is

a strong linear relationship between each set of true values and predicted value. Further-

more, by examining frequencies of the prediction errors, we observe normality in each case.

6.3 Predicting Spread Option Greeks

Similarly, feed-forward nets can be used to determine Spread Option Greeks. This can

be achieved by replacing the Monte Carlo step in 6.1.1 with the respective FFT Scheme

from the theoretical Greeks of 2.2.2.
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Figure 6.3.1: Architecture for spread option sensitivities
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FFT Engine
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Training

Validation
Testing

Export to Production

We generated a sample batch of 100,000 points by uniform sampling. The samples

were divided into a 90{10{10 manner for training/validation/testing. The nets were set

up to have 4 fully connected hidden layers with 300 ReLu neurons in each layer. The

output layer has a single linear neuron. We used the ADAM optimizer with a learning

rate α “ 0.0001. After 2000 epochs of training, we validated our model by comparing

training MAE/MSE against validation.

We observe both of the MAE and MSE of the validation data is higher than that of

the training data for all Greeks. Furthermore, there is some evidence of over-fitting as the

training error deviates from validation error. The deviation is most clear in the case of

Theta. To avoid over-fitting, one could incorporate early-stopping or regularization. The

error seems to converge well for Deltas, while only converging to a satisfactory level for

Theta and Gammas. This shows the predictive models for Delta will be accurate, while

the rest might produce unsatisfactory predictions.
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Figure 6.3.2: Spread Greeks MAE
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Figure 6.3.3: Spread Greeks MSE

By comparing the true Greek values against the predicted values, we can conclude the

networks for Deltas will produce accurate predictions. The Theta network will produce

somewhat satisfactory predictions, and the Gamma networks will be inaccurate.
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Figure 6.3.4: Spread Greeks true value vs predicted value

The Delta error frequency plots resemble normal distributions very well. The Theta

error frequency plot somewhat resembles a normal distribution. While the Gamma error

frequency plots resemble Student’s t distribution. A t-distributed error frequency plot

could be caused by a lack of sample size. In other words, we might be able to fix this

problem by generating more option data.
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Figure 6.3.5: Spread Greeks prediction error frequency

This procure of combining FFN and FFT provides an interesting new way to Spread

Option obtain Spread Option sensitivities. From our experiments, we conclude the first

order Greeks can be accurately trained with 100k sample points. The second-order Greeks

cannot be sufficiently trained with 100k points.
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6.4 Recurrent Neural Network

Recurrent neural networks (RNN) are artificial neural networks with embedded looping

structures. This allows RNN to store information in its memory. A rolled up architecture

is referred to the RNN architectural form with the loops present, as shown in Figure 6.4.1.

Figure 6.4.1: Rolled up Recurrent Neural Network

X

Memory Neuron

Y

Observed in the above diagram, the looping structures allow the information present

in the current state of the memory neuron be relevant to the next state.

As compact as the rolled-up architectural form of RNN is, sometimes it could be

confusing to the reader. The unrolled form of RNN is essentially an expansion of the

looping structure, as shown in Figure 6.4.2.

Figure 6.4.2: Unrolled Recurrent Neural Network

Xt´1

Memory Neuron

Yt´1

Xt

Memory Neuron

Yt

Xt`1

Memory Neuron

Yt`1

The unrolled structure of RNN has a close resemblance to linked lists. This is the

reason behind the promising results of certain sub-family of RNN in the field of translation

and speech recognition [42,46].
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6.5 Deep Galerkin Method

The curse of dimensionality is a common issue when attempting to solve high di-

mensional PDEs (include some literature). In high dimensions, methods such as finite-

difference not only become costly but are often unstable. Muti-asset option pricing PDEs

are affected by the curse of dimensionality. The Deep Galerkin Method (DGM), devel-

oped by Sirignano and Spiliopoulos (2018) [45], have the potential to address these issues.

DGM takes advantage of the approximation power of the neural network and solves PDEs

numerically. Consider a two-asset option pricing PDE:
$

’

’

&

’

’

%

LV pt, s1, s2q “ 0, pt, s1, s2q P r0, T s ˆ pR
`
q
2, pinteriorq

V pT, s1, s2q “ hps1, s2q, ps1, s2q P pR
`
q
2, pterminalq

V pt, s1, s2q “ gpt, s1, s2q, pt, s1, s2q P r0, T s ˆ B pboundaryq.

(6.5.1)

For the Sobolev spaceH1
0 “ H1

0

`

r0, T sˆpR`q2
˘

, the equivalent weak formulation of (6.5.1)

is:
$

’

’

&

’

’

%

xLV, uy “ 0 @u P H1
0,

xV ´ h, vy “ 0 @v P H̄1
0,

xV ´ g, wy “ 0 @w P BH1
0.

(6.5.2)

The regular Galerkin Method would require the careful selection of a set of basis

functions pφ1, φ2, ..., φNq, that characterizes a finite approximation space EN Ă H1
0. A

unique best approximation, V̂N of V , can be determined by projecting the PDE onto

EN . By increasing the dimension of approximation space, the projection theorem gives a

unique best approximation V̂i in each approximation space Ei. The result is a sequence

of approximators
 

V̂i
(

i“N,N`1,..
, that converges to V by the completeness of H1

0. The

rigorous formulation of this method can be found in [28].

DGM deviates from the regular Galerkin Method by assuming a neural network

fpt, s1, s2; θq : R3 Ñ R has the potential to capture the behavior of V . The network

is subsequently initialized and trained with information gathered from the domain of V .

This requires the selection of a meaningful objective function. The suggested objective

function in [45] closely resembles the weak formulation of (6.5.2) with the L2 inner prod-

uct. The choice of L2 norm can be supported by literature such as [8]. The construction

of the objective function proceeds as follows. For unit vectors u P H1
0, v P H̄1

0, and BH1
0,

we apply the Cauchy-Schwartz Inequality to the weak formulation equations in (6.5.2).

Next, we sum the resulting terms, thus producing the objective function defined by

J “ }LV }2r0,T sˆpR`q2 ` }V ´ h}2pR`q2 ` }V ´ g}2r0,T sˆpR`q2 . (6.5.3)
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During the implementation stage, distributions are selected to generate points in the

domain. This gives rise to a L2 distributional norm }fpxq}2D,φ “
ş

D |fpxq|
2φpxqdx, where

φpxq is a probability density function on the domain. Thus, the choice of φpxq will

significantly impact the performance of this method. A suitable objective function can

be reformulated for our option pricing problems as:

Jpθq “ J1pθq ` J2pθq ` J3pθq, (6.5.4)

where Jipθq, for i “ 1, 2, 3, are defined as follows:

J1pθq “ }Lfpt, s1, s2; θq}2r0,T sˆpR`q2,φ1 . (6.5.5)

This objective function measures how well the network satisfies the pricing PDE’s differ-

ential operator.

J2pθq “ }fpT, s1, s2; θq ´ hps1, s2q}
2
pR`q2,φ2

. (6.5.6)

This objective function measures how closely the network resembles the payoff function

at maturity.

J3pθq “ }fpt, s1, s2; θq ´ gpt, s1, s2q}
2
r0,T sˆB,φ3 . (6.5.7)

The last objective function characterizes boundary conditions, or artificially created bound-

aries from asymptotics. For European style option pricing PDEs, these boundaries exist

when underlying prices reach 0. The asymptotic appears when a price cap is impose on

the underlings.

The training data are generated as a tuple pxpiq, xpT q, xpbqq, where xpiq “ pt, s1, s2q „ φ1,

xpT q “ pT, s1, s2q „ φ2 and xpbq “ pt, s
pbq
1 , s

pbq
2 q „ φ3. In particular, xpiq, xpT q and xpbq are

generated from the interior, terminal and boundary (or artificial boundary) of the PDE

respectively. The generated data are used to compute the objective function (6.5.4).

In the next phase, we apply a gradient descent algorithm, in hope of eventually finding

a set of parameters θ for fpt, s1, s2; θq that will produce a minima for the objective function.

In fact, Correia et al. (2019) [4] mentioned DGM is strictly an optimization problem.

Validation is unnecessary because the objective function directly characterizes the weak

formulation of the PDE. This also means a network that produces zero-valued objective

function is the analytical solution of the PDE.

The network architecture adopted in [45] contains 1 dense layer and 3 DGM layers, all

embedded with tanh activation function. We modify the structure and incorporate the

swish activation function [40]. Detailed arguments on the effectiveness of using swish
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may be found in [12]. A summary of different types of activation function used in our

network architecture is included in Table 6.5.1.

Table 6.5.1: Activation Functions

Sigmoid σpxq “ 1
1`e´x

Tanh σpxq “ ex´e´x

ex`e´x

Swish σpxq “ x
1`e´x

Figure 6.5.1 captures the DGM network structure.

Figure 6.5.1: DGM network architecture
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Our modified DGM layer is inspired by Gated Recurrent Unit by Chung et al. [13]

(2014). Figure 6.5.2 captures the structure of each modified DGM layer.

Figure 6.5.2: Modified DGM layer

Hi Hi`1

X

F

U Q

O

`

ˆ

ˆ
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`

Tensor Addition

ˆ

Hadamard Product

The mathematical operation behind our entire DGM network can be represented by
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the following set of equations:

H1 “ Swish
`

W0X ` b0

˘

,

Fl “ Sigmoid
`

Wfx,lX `Wfh,lHl ` bf,l
˘

, for l “ 1, 2, 3,

Ul “ Sigmoid
`

Wux,lX `Wuh,lHl ` bu,l
˘

,

Ql “ Tanh
`

Wqx,lX `Wqh,lHl ` bq,l
˘

,

Ol “ Swish
`

Wox,lpUl ˝Olq ` bo,l
˘

.

Hl`1 “ Fl ˝Hl `Ol,

Y “ H4Wy ` by,

where W are the weights, b are the biases and ˝ is the Hadamard product.

For iteration size I and batch size B, we provide a general overview of the implemen-

tation of DGM in Algorithm 6.5.1.

Algorithm 6.5.1 Deep Galerkin Method for option pricing

Initialize learning rate α and network parameters θ
for i “ 1 to I do

Generate interior sample point x
piq
i “ rx

piq
i1 , x

piq
i1 , ..., x

piq
iBs from φ1

Generate terminal sample point x
pT q
i “ rx

pT q
i1 , x

pT q
i1 , ..., x

pT q
iB s from φ2

Generate boundary sample point x
pbq
i “ rx

pbq
i1 , x

pbq
i1 , ..., x

pbq
iB s from φ3

Compute the loss function:
Jpθq “ }Lfpxpiqi ; θq}2 ` }fpx

pT q
i ; θq ´ hpx

pT q
i q}2 ` }fpx

pbq
i ; θq ´ gpx

pbq
i q}

2

Take a descent step:
θpnewq “ θpoldq ´ α BJpθq

Bθpoldq

Apply decay to the learning rate α
end for

6.6 Approximating Solution of Finite Liquidity Par-

tial Differential Equation

If an undergraduate student is given the task of learning graduate material. It is

unlikely the student will do very well. However, if that same student were to learn the

prerequisites knowledge beforehand, and attempt again. That student certainly stands a

better chance. In machine learning, this concept is often called transfer learning. It is

the method of applying prior knowledge to related problems but often difficult to solve

directly. Bengio (2012) [9] goes into extensive detail on transfer learning. Weiss et al.

(2016) [48] provides a formal definition for this method in terms of a domain D “
 

X , φX
(
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and learning task T “
 

Y , fp¨q
(

(X -feature space, φX -feature distribution, Y-label space,

fp¨q-predictive function).

Definition 2. (Transfer Learning by Weiss et al.)

For a pair of domain and learning task Ds “
 

Xs, φXs
(

, Ts “
 

Ys, fsp¨q
(

. Consider a

target domain and learning task Dt “
 

Xt, φXt
(

, Tt “
 

Yt, ftp¨q
(

. Transfer learning is the

process of using relevant information of fsp¨q to improve the predictive ability of ftp¨q.

By adopting transfer learning, we may train DGM nets to learn the FLMM pricing

PDEs (3.4.1). The aforementioned PDEs are special cases of the 2-dimensional BS PDE

(1.4.3). Therefore, we should train an initial DGM net to learn this relatively simpler.

Subsequently, we may modify the objective function (6.5.4) in accordance to the more

complicated PDE with price impacts (3.4.1), and further train the network.

For some asset price cap C, we restrict the domain to the finite cube r0, T s ˆ r0, Cs2.

This will allow us to impose asymptotics as boundary conditions (see (6.6) for more

details), and in turn get a faster convergence. During implementation, we use mean

squared error (MSE) as an estimator for the L2 norms in (6.5.4). In the calculation of

MSE, N is the mini-batch size for training, it should be large to ensure the accuracy of

the estimator.

The sampling method is completely problem depended, user should focus sampling

from a sub-region of likely option input parameters. In the case of Spread Option, we

noticed the DGM net convergence faster when we choose sampling distribution that pro-

duce more non-zero option value. We present details on our sampling distributions for

each scenario in Table 6.6.1.

Table 6.6.1: Sampling method

Domain Variables Distribution
r0, T s ˆ r0, Cs2 pt, s1, s2q t „ Up0, T q, s1 „ Cβp3, 10q, s2 „ Cβp2, 10q

r0, Cs2 ps1, s2q s1 „ Cβp3, 10q, s2 „ Cβp2, 10q
r0, T s ˆ r0, Cs pt, s1q t „ Up0, T q, s1 „ Cβp3, 10q
r0, T s ˆ r0, Cs pt, s1q t „ Up0, T q, s1 „ Cβp3, 10q
r0, T s ˆ r0, Cs pt, s2q t „ Up0, T q, s2 „ Cβp2, 10q
r0, T s ˆ r0, Cs pt, s2q t „ Up0, T q, s2 „ Cβp2, 10q

We present histograms for our sampling method in Figure 6.6.1. One may notice we

sample t uniformly, this because we desire to learn the option price function evenly across

a span of time to maturities. For the assets, we adopted two beta distributions, one

slightly more centred than the other. The reason is that we desire the option value to
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be non-zero, therefore the first asset should be greater than the second asset with a high

probability.

Figure 6.6.1: Sampling method

For Spread Option under BSM and FLMM, the shared option parameters we used

are: k “ 4, r “ 0.05, ρ “ 0.5, σ1 “ 0.4, σ2 “ 0.2 and T “ 1. We are interested in having

a model that works well in the input region ps1, s2q P r0, 100s2, then the asset price cap is

set to C “ 600. We set up the loss function in the following manner:

Spread Option under 2-dimensional BS model

J1pθq “ }Lfpt, s1, s2; θq}2r0,T sˆr0,Cs2 ,

L “ B

Bt
`

1

2

ÿ

i,j“1,2

ρijσiσjsisj
B2

BsiBsj
` r

ÿ

i“1,2

si
B

Bsi
´ r,

J2pθq “ }ps1 ´ s2 ´ kq
`
´ fpT, s1, s2; θq}2r0,Cs2 ,

J3pθq “ }C ´ s2 ´ ke
´rpT´tq

´ fpt, C, s2; θq}2r0,T sˆr0,Cs

` }s1pd`q ´ ke
´rpT´tq

pd´q ´ fpt, s1, 0; θq}2r0,T sˆr0,Cs

` }fpt, 0, s2; θq}2r0,T sˆr0,Cs ` }fpt, 0, C; θq}2r0,T sˆr0,Cs.

After training the first DGM network with the loss function above, we illustrate the

results in Figure 6.6.2.
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Figure 6.6.2: Spread option (BS model)

*Benchmarked against FFT [29] with grid size N=512.

As we see, the results from the trained net match extremely well with the FFT results.

Furthermore, we observe our modified DGM net outperforms the canonical DGM net for

this particular pricing PDE. An important cautions note is although the trained net

performs well on r0, 100s2, we should not expect the same level of performance will extend

to pR`q2.

Next, we take the previously trained model and apply transfer learning by switching

the loss function to Lppqpθq.
Spread Option under Partial Impact FLMM

J1pθq “ }Lppqfpt, s1, s2; θq}2r0,T sˆr0,Cs2 ,

Lppq “ B

Bt
`
σ2

1s
2
1 ` σ

2
2s

2
2λ

2pV
pBSq
s1s2 q

2 ` 2ρσ1σ2s1s2λV
pBSq
s1s2

2p1´ λV
pBSq
s1s1 q

2

B2

Bs2
1

`
ρσ1σ2s1s2 ` σ

2
2s

2
2λV

pBSq
s1s2

1´ λV
pBSq
s1s1

B2

Bs1Bs2

`
1

2
σ2

2s
2
2

B2

Bs2
2

` rs1
B

Bs1

` rs2
B

Bs2

´ r,

It is clear from (3.4.1) that J2pθq and J3pθq will be the same as the ones from 6.6.

Results of the trained network is illustrated in Figure 6.6.3.
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Figure 6.6.3: Spread option (Partial Impact FLMM)

*Benchmarked against FFT [29] with grid size N=512.

With the aid of transfer learning, we were able to get convergence in less than 5000

batches. A nearly impossible task for a network directly due to the PDE’s complexity.

From the result, we observe the liquidity valuation adjustment more prominent for at the

money option with higher underlying.
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Chapter 7

Summary and Future Work

In this thesis, we developed a mathematical framework for FLMM. By implementing

various numerical methods, we were able to not only accurately calculate the options

values, but also achieve satisfactory computation time.

The first option we examined under FLMM is the Exchange Option, for which we

constructed 3 separate Monte Carlo estimators: Naive, Antithetic and Controlled. For

each of the aforementioned MC estimators, we simulated the paths of S1ptq and S2ptq under

Euler-Maruyama and Milstein schemes. In conclusion, the Controlled estimator performed

the best when Margrabe Option was chosen as the controlled variate. We also concluded

sampling with Milstein will achieve similar variance but at taking approximately 5% the

compute time as E-M.

Then, we looked at the Spread Option under FLMM. For this option, We only con-

structed the Naive and Controlled MC estimator. During the implementation of the es-

timators, we simulated the paths of S1ptq and S2ptq only under E-M. The Spread Option

Greeks required in the simulation were solved numerically from Fast Fourier Transform,

the interpolated. In conclusion, the Controlled estimator was superior. The Margrabe

Option was chosen as the controlled variate once again. We also concluded Margrabe

Option as the control variate has a diminishing effect compared to the Exchange Option.

In the final chapter, we showed the Exchange Option value from FLMM can be accu-

rately predicted by a Feed-Forward network. Then, we realized Feed-Forward networks

tend to struggle more in its predictive capability as the order of the Greeks increase. We

also implemented DGM net and able to numerically approximate the pricing PDE for

Spread Option.

Moving forward, I would like to spend more time on the development of asset pricing

models, on a wider variety of exotic options. I would also like to adopt more diversity

machine learning methods into my work (such as Gradient Boasted Machines, Reinforce-
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ment Learning), then take a deeper dive into pricing and hedging methodologies. At last,

I would like to validate and back test some of these models on real world data.
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Appendix A

Greek Computations

A.1 Exchange Option Greeks

A.1.1 Delta

Proof:

∆1ptq “
BV

`

t, s1, s2

˘

Bs1

“ Npd`q ` s1N
1
pd`q

Bd`
Bs1

´ s2N
1
pd´q

Bd´
Bs1

“Npd`q `N
1
pd`q

1

σ
?
T ´ t

´
s2

s1

N 1
pd` ´ σ

?
T ´ tq

1

σ
?
T ´ t

“Npd`q `N
1
pd`q

1

σ
?
T ´ t

´
s2

s1

1
?

2π
exp

!

´
1

2
d2
` ` d`σ

?
T ´ t´

1

2
σ2
pT ´ tq

) 1

σ
?
T ´ t

“Npd`q `N
1
pd`q

1

σ
?
T ´ t

´
s2

s1

1
?

2π
exp

!

´
1

2
d2
` ` log

`s1

s2

˘

) 1

σ
?
T ´ t

“Npd`q `N
1
pd`q

1

σ
?
T ´ t

´N 1
pd`q

1

σ
?
T ´ t

“ Npd`q.

∆2ptq “
BV

`

t, s1, s2

˘

Bs2

“ s1N
1
pd`q

Bd`
Bs2

´ s2N
1
pd´q

Bd´
Bs2

´Npd´q

“ ´
s1

s2

N 1
pd´ ` σ

?
T ´ tq

1

σ
?
T ´ t

`N 1
pd´q

1

σ
?
T ´ t

´Npd´q

“ ´
s1

s2

1
?

2π
exp

!

´
1

2
d2
´ ´ d´σ

?
T ´ t´

1

2
σ2
pT ´ tq

) 1

σ
?
T ´ t

`N 1
pd´q

1

σ
?
T ´ t

´Npd´q

“ ´
s1

s2

1
?

2π
exp

!

´
1

2
d2
´ ´ log

`s1

s2

˘

) 1

σ
?
T ´ t

`N 1
pd´q

1

σ
?
T ´ t

´Npd´q

“ ´N 1
pd´q

1

σ
?
T ´ t

`N 1
pd´q

1

σ
?
T ´ t

´Npd´q “ ´Npd´q.
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A.1.2 Theta

Proof:

Θptq “
BV

`

t, s1, s2

˘

Bτ
“ s1N

1
pd`q

Bd`
Bτ

´ s2N
1
pd´q

Bd´
Bτ

“s1N
1
pd`q

Bd`
Bτ

´ s2N
1
pd` ´ σ

?
T ´ tq

Bd´
Bτ

“s1N
1
pd`q

Bd`
Bτ

´ s2
1
?

2π
exp

!

´
1

2
d2
` ` d`σ

?
T ´ t´

1

2
σ2
pT ´ tq

)

Bd´
Bτ

“s1N
1
pd`q

Bd`
Bτ

´ s2
1
?

2π
exp

!

´
1

2
d2
` ` log

`s1

s2

˘

)

Bd´
Bτ

“s1N
1
pd`q

`Bd`
Bτ

´
Bd´
Bτ

˘

“
σ

2
?
T ´ t

s1N
1
pd`q or ´

σ

2
?
T ´ t

s2N
1
pd´q.

A.1.3 Gamma

Proof:

Γ11ptq “
B∆1ptq

Bs1

“ N 1
pd`q

Bd`
Bs1

“
1

σ
?
T ´ t

N 1pd`q

s1

.

Γ22ptq “
B∆2ptq

Bs2

“ ´N 1
pd´q

Bd´
Bs2

“
1

σ
?
T ´ t

N 1pd´q

s2

.

Γ12ptq “
B∆1ptq

Bs2

“ N 1
pd`q

Bd`
Bs2

“ ´
1

σ
?
T ´ t

N 1pd`q

s2

“ ´
1

σ
?
T ´ t

N 1pd´ ` σ
?
T ´ tq

s2

“´
1

σ
?
T ´ t

1

s2

1
?

2π
exp

!

´
1

2
d2
´ ´ d´σ

?
T ´ t´

1

2
σ2
pT ´ tq

)

“´
1

σ
?
T ´ t

1

s2

1
?

2π
exp

!

´
1

2
d2
´ ´ log

`s1

s2

˘

)

“´
1

σ
?
T ´ t

N 1pd´q

s1

“ Γ21ptq.
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A.1.4 Charm

Proof:

Charm1ptq “
B∆1ptq

Bτ
“ N 1

pd`q
Bd`
Bτ

“ N 1
pd`q

´

´
log

`

s1
s2

˘

2σpT ´ tq
3
2

`
σ

4
?
T ´ t

¯

.

Charm2ptq “
B∆2ptq

Bτ
“ ´N 1

pd´q
Bd´
Bτ

“ N 1
pd´q

´ log
`

s1
s2

˘

2σpT ´ tq
3
2

`
σ

4
?
T ´ t

¯

.

A.1.5 Speed

Proof:

Speed111ptq “
BΓ11ptq

Bs1

“
1

σ
?
T ´ t

N2pd`q
Bd`
Bs1
´N 1pd`q

s2
1

“
1

σ
?
T ´ t

´
2d`N 1pd`q

σs1
?
T´t

´N 1pd`q

s2
1

“´
N 1pd`q

σs2
1

?
T ´ t

` 2d`

σs1

?
T ´ t

` 1
˘

.

Speed222ptq “
BΓ22ptq

Bs2

“
1

σ
?
T ´ t

N2pd´q
Bd´
Bs2
´N 1pd´q

s2
2

“
1

σ
?
T ´ t

´
2d´N 1pd´q

σs2
?
T´t

´N 1pd´q

s2
2

“´
N 1pd´q

σs2
2

?
T ´ t

` 2d´

σs2

?
T ´ t

` 1
˘

.

Speed112ptq “
BΓ11ptq

Bs2

“
1

σ
?
T ´ t

N2pd`q
Bd`
Bs2

s1

“ ´
2d`N

1pd`q

σ2pT ´ tqs1s2

.

Speed221ptq “
BΓ22ptq

Bs1

“
1

σ
?
T ´ t

N2pd´q
Bd´
Bs1

s2

“ ´
2d´N

1pd´q

σ2pT ´ tqs1s2

.

A.1.6 Colour

Proof:

Colour11ptq “
BΓ11ptq

Bτ
“

1

σs1

´

´
1

2pT ´ tq
3
2

N 1
pd`q ´

1

pT ´ tq
1
2

N 1
pd`qd`

Bd`
Bτ

¯

“
N 1pd`q

2σpT ´ tq
3
2 s1

!

´ 1` d`

´

logp
s1

s2

q
1

σ
?
T ´ t

´
1

2
σ
?
T ´ t

¯)

“´
N 1pd`q

23σ3pT ´ tq
5
2 s1

´

σ4
pT ´ tq2 ` 4σ2

pT ´ tq ´ 4 log2
p
s1

s2

q

¯

,
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Colour22ptq “
BΓ22ptq

Bτ
“

1

σs2

´

´
1

2pT ´ tq
3
2

N 1
pd´q ´

1

pT ´ tq
1
2

N 1
pd´qd`

Bd´
Bτ

¯

“´
N 1pd´q

23σ3pT ´ tq
5
2 s2

´

σ4
pT ´ tq2 ` 4σ2

pT ´ tq ´ 4 log2
p
s1

s2

q

¯

,

Colour12ptq “
BΓ12ptq

Bτ
“

1

σs2

´ 1

2pT ´ tq
3
2

N 1
pd`q `

1

pT ´ tq
1
2

N 1
pd`qd`

Bd`
Bτ

¯

“
N 1pd`q

23σ3pT ´ tq
5
2 s2

´

σ4
pT ´ tq2 ` 4σ2

pT ´ tq ´ 4 log2
p
s1

s2

q

¯

“
N 1pd´q

23σ3pT ´ tq
5
2 s1

´

σ4
pT ´ tq2 ` 4σ2

pT ´ tq ´ 4 log2
p
s1

s2

q

¯

“Colour21ptq.

A.1.7 Acceleration

Proof:

Acceleration1111ptq

“
BSpeed111ptq

Bs1

“ ´

´B Γ11

s1
ptq

Bs1

` 2d`

σs1

?
T ´ t

` 1
˘

`
Γ11ptq

s1

2

σ
?
T ´ t

B
d`
s1
ptq

Bs1

¯

“ ´

´Speed111ptqs1 ´ Γ11ptq

s2
1

` 2d`

σs1

?
T ´ t

` 1
˘

`
Γ11ptq

s1

2

σ
?
T ´ t

`

1
σ
?
T´t

´ d`

s2
1

˘

¯

“ ´
2Γ11ptq

σ
?
T ´ ts3

1

´

d`
` 2d`

σ
?
T ´ ts1

` 1
˘

`
` 1

σ
?
T ´ t

´ d`
˘

¯

“ ´
2Γ11ptq

σ2pT ´ tqs3
1

`2d2
`

s1

` 1
˘

,

Acceleration1112ptq

“
BSpeed111ptq

Bs2

“ ´

´ 1

s1

BΓ11

Bs2

` 2d`

σs1

?
T ´ t

` 1
˘

`
Γ11ptq

s1

2

σ
?
T ´ ts1

Bd`
Bs2

¯

“ ´

´Speed112ptq

s1

` 2d`

σ
?
T ´ ts1

` 1
˘

´
Γ11ptq

s1

2

σ
?
T ´ ts1

1

σ
?
T ´ ts2

¯

“
2Γ11ptq

σ
?
T ´ ts1s2

` 2d2
`

σ
?
T ´ ts1

` d` `
1

σ
?
T ´ ts1

˘

,
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Acceleration1122ptq

“
BSpeed112ptq

Bs2

“
2

σ
?
T ´ ts1

`Bd`
Bs2

ptqΓ12ptq ` d`
BΓ12

Bs2

ptq
˘

“
2Γ12

σ2pT ´ tqs1s2

`

d`d´ ´ 1
˘

,

Acceleration1222ptq

“
BSpeed222ptq

Bs1

“ ´

´ 1

s2

BΓ22

Bs1

` 2d´

σs2

?
T ´ t

` 1
˘

`
Γ22ptq

s2

2

σ
?
T ´ ts2

Bd´
Bs1

¯

“ ´

´Speed122ptq

s2

` 2d´

σ
?
T ´ ts2

` 1
˘

`
Γ22ptq

s2

2

σ
?
T ´ ts2

1

σ
?
T ´ ts1

¯

“
2Γ22ptq

σ
?
T ´ ts1s2

` 2d2
´

σ
?
T ´ ts2

` d´ ´
1

σ
?
T ´ ts2

˘

,

Acceleration2222ptq

“
BSpeed222ptq

Bs2

“ ´

´B Γ22

S2
ptq

Bs2

` 2d´

σs2

?
T ´ t

` 1
˘

`
Γ22ptq

s2

2

σ
?
T ´ t

B
d´
s2
ptq

Bs2

¯

“ ´
2Γ22ptq

σ2pT ´ tqs3
2

`2d2
´

s2

` 1
˘

.

A.2 Spread Option Greeks

A.2.1 Delta

Proof: Since x “ logpsq and

∆ptq “
BVsprpt, sq

Bx
“
Bx

Bs

BVsprpt, sq

Bx
,

if we let

H “ Bx
Bs
“

„

1
s1

0

0 1
s2



,

then by taking the matrix derivative of (2.2.2), we have

∆ptq “ p2πq´2e´rτKH B

Bx

´

ż ż

R2`iε

eiu
1XptqΦpu, τqP̂ puqdu

¯

.
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By Dominated Convergence theorem, the order of differentiation and integration can be

switched, and it follows

∆ptq “ p2πq´2e´rτKH
ż ż

R2`iε

B

Bx

´

eiu
1Xptq

¯

Φpu, τqP̂ puqdu

“ p2πq´2e´rτKH
ż ż

R2`iε

iueiu
1XptqΦpu, τqP̂ puqdu,

if we let

s∆ptq “

ż ż

R2`iε

iueiu
1XptqΦpu, τqP̂ puqdu,

then we have

∆ptq “ p2πq´2e´rτKH s∆ptq “ p2πq´2e´rτK

„

1
s1

∆̄1
1
s2

∆̄2



ptq.

A.2.2 Theta

Proof:

Θptq “
BVsprpt, sq

Bτ
“ p2πq´2K

 

e´rτ
ż ż

R2`iε

eiu
1Xptq B

Bτ
Φpu, τqP̂ puqdu

´ re´rτ
ż ż

R2`iε

eiu
1Xptq B

Bτ
Φpu, τqP̂ puqdu

(

“ p2πq´2Ke´rτ
ż ż

R2`iε

´

iu1
`

r1´
1

2
pσ2

1 ` σ
2
2q
˘

´
1

2
u1Σu´ r

¯

eiu
1XptqΦpu, T qP̂ puqdu,

let

sΘptq “

ż ż

R2`iε

´

iu1
`

r1´
1

2
pσ2

1 ` σ
2
2q
˘

´
1

2
u1Σu´ r

¯

eiu
1XptqΦpu, τqP̂ puqdu,

then we have

Θptq “ p2πq´2Ke´rτ sΘptq.

A.2.3 Gamma

Proof:

Γptq “
B∆ptq

Bs
“ p2πq´2e´rpT´tqK

´

BH
Bs

s∆ptq `HB
s∆ptq

Bx

Bx

Bs

¯

,
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let

sΓptq “

ż ż

R2`iε

pub̄uqeiu
1XptqΦpu, τqP̂ puqdu, and

T p3q “
„ 1
s21

0

0 0



b

„

0 0
0 1

s22



,

then we have

Γptq “ p2πq´2e´rpT´tqK
!

´ T p3q
ż ż

R2`iε

iueiu
1XptqΦpu, τqP̂ puqdu

´H
´

ż ż

R2`iε

pub̄uqeiu
1XptqΦpu, τqP̂ puqdu

¯

H
)

“ ´p2πq´2e´rpT´tqK
´

T p3q s∆ptq `HsΓptqH
¯

“ ´p2πq´2e´rpT´tqK

«

1
s21
p∆̄1 ` Γ̄11q

1
s1s2

Γ̄12

1
s1s2

Γ̄21
1
s22
p∆̄2 ` Γ̄22q

ff

ptq

A.2.4 Charm

Proof:

Chmptq “
B∆ptq

Bτ
“ p2πq´2KH B

Bτ

´

e´rτ
ż ż

R2`iε

eiu
1XptqΦpu, τqP̂ puqdu

¯

“ p2πq´2e´rpT´tqKH
ż ż

R2`iε

´

iu1
`

r1´
1

2
pσ2

1 ` σ
2
2q
˘

´
1

2
u1Σu´ r

¯

ˆ iueiu
1XptqΦpu, τqP̂ puqdu,

let

ĞChmptq “

ż ż

R2`iε

´

iu1
`

r1´
1

2
pσ2

1 ` σ
2
2q
˘

´
1

2
u1Σu´ r

¯

iueiu
1XptqΦpu, τqP̂ puqdu,

then we have

Chmptq “ p2πq´2e´rpT´tqKHĞChmptq “ p2πq´2e´rpT´tqK

„

1
s1
ĘChm1

1
s2
ĘChm2



ptq.

A.2.5 Speed

Proof:

Spdptq “
BΓptq

Bs
“ ´p2πq´2e´rpT´tqK

!

BT p3q

Bs
s∆ptq ` T p3qB

s∆ptq

Bx

Bx

Bs

`
BH
Bs

sΓptqH `H
´

BsΓptq

Bx

Bx

Bs
H ` sΓptq

BH
Bs

¯)

,
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let

ĘSpdptq “

ż ż

R2`iε

ipub̄ub̄uqeiu
1XptqΦpu, τqP̂ puqdu, and

T p4q “
´

„ 1
s31

0

0 0



b

„

0 0
0 0



¯

b

´

„

0 0
0 0



b

„

0 0
0 1

s32



¯

,

then we have,

Spdptq “ ´p2πq´2e´rpT´tqK
!

´ 2T p4q s∆ptq ` T p3qsΓptqH ´ T p3qsΓptqH

`H
´

`

ż ż

R2`iε

ipub̄ub̄uqeiu
1XptqΦpu, τqP̂ puqdu

˘

H2
´ sΓptqT p3q

¯)

“ p2πq´2e´rpT´tqK
´

2T p4q s∆ptq `HsΓptqT p3q ´HĘSpdptqH2
¯

“p2πq´2e´rpT´tqK
!

«

1
s31
p2∆̄1 ` Γ̄11 ´

ĞSpd111q ´ 1
s21s2

ĞSpd121

1
s21s2
pΓ̄21 ´

ĞSpd211q ´ 1
s1s22

ĞSpd221

ff

b

«

´ 1
s21s2

ĞSpd112
1

s21s2
pΓ̄12 ´

ĚSpd122q

´ 1
s1s22

ĞSpd212
1
s32
p2∆̄2 ` Γ̄22 ´

ĚSpd222q

ff

)

ptq

A.2.6 Acceleration

Proof:

Accptq “
BSpdptq

Bs
“ p2πq´2e´rpT´tqK

!

2
´

BT p4q

Bs
s∆ptq ` T p4qBx

Bs

B s∆ptq

Bx

¯

`
BT p3q

Bs
HsΓptq ` T p3q

´

BH
Bs

sΓptq `HBx
Bs

BsΓptq

Bx

¯

´
BH3

Bs
ĘSpdptq ´H3Bx

Bs

BĘSpdptq

Bx

)

,

let

ĚAccptq “

ż ż

R2`iε

pub̄ub̄ub̄uqeiu
1XptqΦpu, τqP̂ puqdu, and

T p5q “
!´

„ 1
s41

0

0 0



b

„

0 0
0 0



¯

b

´

„

0 0
0 0



b

„

0 0
0 0



¯

,

„

0 0
0 0



b

„

0 0
0 0



¯

b

´

„

0 0
0 0



b

„

0 0
0 1

s42



¯)

,
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then we have,

Accptq

“ p2πq´2e´rpT´tqK
!

2
´

´ 3T p5q s∆ptq ` T p4qHsΓptq
¯

´ 2T p4qHsΓptq

` T p3q
´

´ T p3qsΓptq ´H2
ĘSpdptq

¯

` 3T p3qH2
ĘSpdptq ´H4

ĚAccptq
)

“ p2πq´2e´rpT´tqK
!

´ 6T p5q s∆ptq ´ T p4qHsΓptq ` 2T p3qH2
ĘSpdptq `H4

ĚAccptq
)

“ p2πq´2e´rpT´tqK

!´

«

1
s41
p´6∆̄1 ´ Γ̄11 ` 2 ĞSpd111 ` ĞAcc1111q

1
s41
p´Γ̄12 ` 2 ĞSpd121 ` ĞAcc1211q

1
s42

ĞAcc2111
1
s42

ĞAcc2211

ff

b

«

1
s41

ĞAcc1121
1
s41

ĞAcc1221

1
s42
p2 ĞSpd211 ` ĞAcc2121q

1
s42
p2 ĞSpd221 ` ĞAcc2221q

ff

¯

b

´

«

1
s41
p2 ĞSpd112 ` ĞAcc1112q

1
s41
p2 ĞSpd122 ` ĞAcc1212q

1
s42

ĞAcc2112
1
s42

ĞAcc2212

ff

b

«

1
s41

ĞAcc1122
1
s41

ĞAcc1222

1
s42
p´Γ̄21 ` 2 ĞSpd212 ` ĞAcc2122q

1
s42
p´6∆̄2 ´ Γ̄22 ` 2 ĞSpd222 ` ĞAcc2222q

ff

¯)

ptq
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Appendix B

Existence and Uniqueness Proofs

B.1 Finite Liquidity Existence and Uniqueness The-

orem I

In this section, } ¨ } and ||| ¨ ||| represents the supremum norms:

}f} “ sup
ps1,s2qPD1

|fpt, s1, s2q|, where D1 “
`

R
`
˘2
,

|||f ||| “ sup
pt,s1,s2qPD2

|fpt, s1, s2q|, where D2 “ r0, T s ˆ
`

R
`
˘2
,

The following combination of conditions p1q´p6q will guarantee existence and uniqueness

of a strong solution for FLMM.

p1q }λps1fs1s1 ` s1fs1s2 ` fs2 ` s2fs2 ` s2fs1s1 ` s2fs1s2 ` s2fs2s2q} ă 8. (B.1.1)

p2q }
`

λs1 ` λs2
˘`

s1fs1 ` s2fs1 ` s2fs2
˘

} ă 8. (B.1.2)

p3q |||1´ λfs1 ||| ą δ0, for some δ0 ą 0. (B.1.3)

p4q }pλ` λs1 ` λs2qpft ` fs1 ` fs2 ` fs1s1 ` fs1s2 ` fs2s2 ` fs1s1s2 ` fs1s2s2q} ă 8.

p5q }λpfts1 ` fts2 ` fs1s1s1 ` fs2s2s2q ` λs1fs1s1s1 ` λs2fs2s2s2} ă 8. (B.1.4)

p6q }s1fs1s1 ` s1fs1s2 ` s2fs1s2 ` s2fs2s2 ` s
2
1fs1s1s2 ` s

2
1fs1s2s2 ` s1s2fs1s1s2 (B.1.5)

` s1s2fs1s2s2 ` s
2
2fs1s2s2 ` s

2
2fs2s2s2} ă 8.

Proof: Recall the SDE system has the form

dS1ptq “ µ̄1

`

t,Sptq
˘

S1ptqdt` σ̄11

`

t,Sptq
˘

S1ptqdW1ptq ` σ̄12

`

t,Sptq
˘

S1ptqdW2ptq,

dS2ptq “ µ2S2ptqdt` σ2ρS2ptqdW1ptq ` σ2

a

1´ ρ2S2ptqdW2ptq,

dDptq “ ´rDptqdt.

105



and the SDE system under risk neutral measure is:

dS1ptq “ rS1ptqdt` σ̄11

`

t,Sptq
˘

S1ptqdĂW1ptq ` σ̄12

`

t,Sptq
˘

S1ptqdĂW2ptq,

dS2ptq “ rS2ptqdt` σ2ρS2ptqdĂW1ptq ` σ2

a

1´ ρ2S2ptqdĂW2ptq,

dDptq “ ´rDptqdt.

where

σ̄11pt, s1, s2q “
σ1

1´ λpt, s1, s2q
Bf
Bs1

,

σ̄12pt, s1, s2q “
σ2

s2
s1
λpt, s1, s2q

Bf
Bs2

1´ λpt, s1, s2q
Bf
Bs1

.

µ̄1pt, s1, s2q “
1

1´ λpt, s1, s2q
Bf
Bs1

´

µ1 `
1

s1

λpt, s1, s2q
Bf

Bt
` µ2

s2

s1

λpt, s1, s2q
Bf

Bs2

`
1

2

B2f

Bs2
1

1
`

1´ λpt, s1, s2q
Bf
Bs1

˘2

`

σ2
1s1 ` σ

2
2

s2

s1

λ2
pt, s1, s2q

` Bf

Bs2

˘2
` 2ρσ1σ2s2λpt, s1, s2q

Bf

Bs2

˘

`
B2f

Bs1Bs2

1

1´ λpt, s1, s2q
Bf
Bs1

`

ρσ1σ2s2 ` σ
2
2

s2
2

s1

λpt, s1, s2q
Bf

Bs2

˘

`
1

2
σ2

2

s2
2

s1

B2f

Bs2
2

¯

.

To show s1µ̄1pt, s1, s2q, s1σ̄11pt, s1, s2q and s1σ̄12pt, s1, s2q are uniformly Lipschitz contin-

uous in ps1, s2q, it is sufficient to show their respective partial derivatives are bounded.

The derivatives of s1σ̄11pt, s1, s2q and s1σ̄12pt, s1, s2q are:

“

σ̄11s1

‰

s1
“ σ1

` 1

1´ λfs1
`
s1pλs1fs1 ` λfs1s1q

p1´ λfs1q
2

˘

,

“

σ̄11s1

‰

s2
“ σ1s1

λs2fs1 ` λfs1s2
p1´ λfs1q

2
,

“

σ̄12s1

‰

s1
“ σ2s2

`pλs1fs2 ` λfs1s2q

1´ λfs1
`
λfs2pλfs1s1 ` λs1fs1q

p1´ λfs1q
2

˘

,

“

σ̄12s1

‰

s2
“ σ2

`λfs2 ` s2pλs2fs2s2 ` λfs2s2q

1´ λfs1
` λ

s2fs2pλs2fs1 ` λfs1s2q

p1´ λfs1q
2

˘

.

We can clearly see the boundedness requirement for
“

σ̄11

‰

s1
,
“

σ̄12

‰

s1
,
“

σ̄11

‰

s2
and

“

σ̄12

‰

s2

can be condensed into:

}λps1fs1s1 ` s1fs1s2 ` fs2 ` s2fs2 ` s2fs1s1 ` s2fs1s2 ` s2fs2s2q} ă 8, (B.1.6)

}
`

λs1 ` λs2
˘`

s1fs1 ` s2fs1 ` s2fs2
˘

} ă 8. (B.1.7)

Furthermore, we will require the denominator terms in the partial derivatives above to

satisfy:

|||1´ λfs1 ||| ą δ0, for some δ0 ą 0. (B.1.8)
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The partial derivative of s1µ̄1pt, s1, s2q with respect to s1 is:

“

µ̄1s1

‰

s1
“µ1

` 1

1´ λfs1
`
s1pλs1fs1 ` λfs1s1q

p1´ λfs1q
2

˘

`
λfts1 ` λs1ft

1´ λfs1
`
λftpλs1fs1 ` λfs1s1q

p1´ λfs1q
2

`µ2s2

`λfs1s2 ` λs1fs2
1´ λfs1

`
λfs2pλs1fs1 ` λfs1s1q

p1´ λfs1q
2

˘

`
1

2
σ2

1

`s2
1fs1s1s1 ` 2s1fs1s1
p1´ λfs1q

3
` 3

s2
1fs1s1pλs1fs1 ` λfs1s1q

p1´ λfs1q
4

˘

`
1

2
σ2

2s
2
2

`λ2f 2
s2
fs1s1s1 ` 2λfs2fs1s1pλs1fs2 ` λfs1s2q

p1´ λfs1q
3

`3
λ2f 2

s2
fs1s1pλs1fs1 ` λfs1s1q

p1´ λfs1q
4

˘

`ρσ1σ2s2

`s1λfs2fs1s1s1 ` s1fs1s1pλs1fs2 ` λfs1s2q ` λfs1s1fs2
p1´ λfs1q

3

`3
s1λfs2fs1s1pλs1fs1 ` λfs1s1q

p1´ λfs1q
4

˘

`ρσ1σ2s2

`fs1s2 ` s1fs1s1s2
p1´ λfs1q

2
` 2

s1pλs1fs1 ` λfs1s1q

p1´ λfs1q
3

˘

`σ2
2s

2
2

`λfs2fs1s1s2 ` fs1s2pλs1fs1 ` λfs1s1q

p1´ λfs1q
2

`
λfs2fs1s2pλs1fs1 ` λfs1s1q

p1´ λfs1q
3

˘

`
1

2
σ2

2s
2
2

` fs1s2s2
1´ λfs1

`
fs2s2pλs1fs1 ` λfs1s1q

p1´ λfs1q
2

˘

.
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The partial derivative of s1µ̄1pt, s1, s2q with respect to s2 is:

“

µ̄1s1

‰

s2
“µ1s1

λs2fs1 ` λfs1s2
p1´ λfs1q

2
`
λs2ft ` λfts2

1´ λfs1
`
λftpλs2fs1 ` λfs1s2q

p1´ λfs1q
2

`µ2

`λfs2 ` s2pλs2fs2 ` λfs1s2q

1´ λfs1
`
s2λfs2pλs2fs1 ` λfs1s2q

p1´ λfs1q
2

˘

`
1

2
σ2

1s
2
1

` fs1s1s2
p1´ λfs1q

3
` 3

fs1s1pλs2fs1 ` λfs1s2q

p1´ λfs1q
4

˘

`
1

2
σ2

2

´λ2fs1s1f
2
s2
` s2

`

λ2 ` fs1s1s2f
2
s2
` fs1s1p2λλs2f

2
s2
` sλ2fs2fs2s2q

˘

p1´ λfs1q
3

`3
s2λ

2fs1s1f
2
s2
pλs2fs1 ` λfs1s2q

p1´ λfs1q
4

¯

`ρσ1σ2s1

´λfs2f
2
s1
` s2

`

λs2fs2f
2
s1
` λpfs2s2f

2
s1
` 2fs2fs1fs1s2q

˘

p1´ λfs1q
3

`3
s2λfs2fs1s1pλs2fs1 ` λfs1s2q

p1´ λfs1q
4

¯

`ρσ1σ2s1

`fs1s2 ` s2fs1s2s2
p1´ λfs1q

2
`
s2fs1s2pλs2fs1 ` λfs1s2

p1´ λfs1q
3

˘

`σ2
2

´2s2
2λfs2fs1s2 ` s

2
2

`

λs2fs2fs1s2 ` λpfs1s2fs2s2 ` fs2fs1s2s2q
˘

p1´ λfs1q
2

`
s2

2λfs2fs1s2pλs2fs1 ` λfs1s2q

p1´ λfs1q
3

¯

`
1

2
σ2

2

`2s2fs2s2 ` s
2
2fs2s2s2

1´ λfs1
`
s2

2fs2s2pλs2fs1 ` λfs1s2q

p1´ λfs1q
2

˘

.

We conclude the partial derivatives of µ̄1pt, s1, s2q will be bonded when |||1´ λfs1 ||| ą δ0

and:

}pλ` λs1 ` λs2qpft ` fs1 ` fs2 ` fs1s1 ` fs1s2 ` fs2s2 ` fs1s1s2 (B.1.9)

`fs1s2s2q} ă 8,

}λpfts1 ` fts2 ` fs1s1s1 ` fs2s2s2q ` λs1fs1s1s1 ` λs2fs2s2s2} ă 8, (B.1.10)

}s1fs1s1 ` s1fs1s2 ` s2fs1s2 ` s2fs2s2 ` s
2
1fs1s1s2 ` s

2
1fs1s2s2 ` s1s2fs1s1s2 (B.1.11)

`s1s2fs1s2s2 ` s
2
2fs1s2s2 ` s

2
2fs2s2s2} ă 8,

The combination of requirements (B.1.6), (B.1.7), (B.1.8), (B.1.9), (B.1.10), (B.1.11)

will guarantee s1µ̄1pt, s1, s2q, s1σ̄11pt, s1, s2q and s1σ̄12pt, s1, s2q are uniformly Lipschitz

continuous in
`

R`
˘2

.

To show the linear growth condition of 3.1, take s̃ “ 0, then from the Lipschitz

condition we just showed, we have

|µpt, sq ´ µpt,0q| ` |σpt, sq ´ σpt,0q| ď c|s|, @s P pR`q2, t P r0, T s.
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By the triangle inequality we have

|µpt, sq| ´ |µpt,0q| ` |σpt, sq| ´ |σpt,0q| ď |µpt, sq ´ µpt,0q| ` |σpt, sq ´ σpt,0q| ď c|s|,

but |µpt,0q| and |σpt,0q| are both zero, then we have the expression

|µpt, sq| ` |σpt, sq| ď c|s|,

which is a stronger condition than the linear growth condition. We can conclude when

the uniform Lipschitz condition hold, linear growth condition will hold as well. By using

Theorem 3.1, the SDE system will emit a unique solution in P sense.

The combination of requirement B.1.6, B.1.7 and B.1.8 will only guarantee the diffusion

functions to be uniform Lipschitz and have the linear growth property. By using Theorem

3.1, the SDE system will emit a unique solution in rP sense.

This completes the proof.
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B.2 Finite Liquidity Existence and Uniqueness The-

orem II

To show the SDE have a unique strong solution, it is sufficient to show that the conditions

p1q ´ p6q in Appendix Section B.1 are satisfied for the particular choice of λpt, s1q and

fpt, s1, s2q “ ∆1ptq.

• Condition (1):

}λps1Spd111 ` s1Spd112 ` Γ12 ` s2Γ12 ` s2Spd111 ` s2Spd112 ` s2Spd122q}

“ }λ
´N 1pd`q

σs1

?
τ

` 2d`
σs1

?
τ
` 1

˘

` s1
2d`N

1pd`q

σ2τs1s2

`
1

σ
?
τ

s2N
1pd`q

s2
1

`
s2

2N
1pd`q

σ
?
τs2

1

`
s2N

1pd`q

σs2
1

?
τ

` 2d`
σs1

?
τ
` 1

˘

`
2d`N

1pd`q

σ2τs1

`
2d´s2N

1pd`q

σ2τs2
1

¯

} ă 8.

Proof: Notice there is a common term of the form N 1pd`q
sn1

. These terms appears

naturally in higher order Greeks. Consider any real number n, we have:

N 1pd`q

sn1
“

1

sn1
?

2π
exp

!

´

´ logp s1
s2
q ` 1

2
σ2τ

σ
?
τ

¯2)

“
1

sn1
?

2π
e

!

´
log2ps1q`logps1q

`

1
2σ

2τ´logps2q

˘

`

`

1
2σ

2τ´logps2q

˘2

σ2τ

)

e´n logps1q

“
1
?

2π
exp

!

´
log2

ps1q ` o
`

logps1q
˘

σ2τ

)

,

which approaches to 0 as s1 approaches to zero, and approaches to 0 as well as s1

approaches 8. Since n was arbitrary, then all of the functions in Condition p1q are

bounded in s1. With a similar method involving the common term N 1pd`q
sn2

, we can

also show that all of the terms in Condition p1q are bounded in s2. We can ultimately

conclude that the entire function of Condition p1q is bounded in ps1, s2q.

• Condition (2):

}λs1
`

s1Γ11 ` s2Γ11 ` s2Γ12

˘

} ă 8.

Proof: Same proof as Condition (1).

• Condition (3):

|||1´ λΓ11||| ą δ0, for some δ0 ą 0.
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Proof: This condition already holds in the s1, s2 dimension. For t we have limtÑT λ̄pt, s1q “

0 and limtÑT Γ11ptq “ 8 for at the money options. Since λ̄pt, s1q approach to 0 at

a greater rate, then limtÑT λ̄pt, s1qΓ11ptq “ 0. In fact, this ensures the λ̄pt, s1qΓ11ptq

term stays small, which ultimately guarantees the existence of δ0. There is a more

detailed explanation in Pirvu et al (2014) [1].

• Condition (4):

}pλ` λs1qpChm1 ` Γ11 ` Γ12 ` Spd111 ` Spd112 ` Spd122 ` Acc1112

` Acc1122q} ă 8.

Proof: Same proof as Condition (1).

• Condition (5):

}λpCol1 ` Col2 ` Acc1111 ` Acc1222q ` λs1Acc1111 ` λs2Acc1222} ă 8.

Proof: Same proof as Condition (1).

• Condition (6):

}s1Spd111 ` s1Spd112 ` s2Spd112 ` s2Spd122 ` s
2
1Acc1112 ` s

2
1Acc1122

` s1s2Acc1112 ` s1s2Acc1122 ` s
2
2Acc1122 ` s

2
2Acc1222} ă 8.

Proof: Same proof as Condition (1).

Since we have shown Condition p1q to p6q in the Appendix Section B.2 holds for our price

impact trading strategy λ
`

t, S1ptq
˘

df
`

t, S1ptq, S2ptq
˘

. We can conclude the system of SDE

in (4.1.1) has a unique solution.
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B.3 Finite Liquidity Existence and Uniqueness The-

orem III

Proof: To show the SDE emit weak solutions, we need to show the conditions (1)-(3) in

Theorem 3.3 are satisfied for the particular choice of λpt, s1, s2q and fpt, s1, s2q of Spread

Option. Recall from (5.1.2) that all the Greeks are just linear combinations of the form:

To achieve this, first recall from (2.2.6) that all the Greeks are just linear combinations

of the form:

ĞGreekpt, s1, s2q “

ż ż

R2`iε

fbpuqe
iu1xΦpu, τqP̂ puqdu

“ e´ε
1x

ż ż

R2

fbpu` iεqe
i<puq1xΦpu` iε, τqP̂ pu` iεqdu

“
1

sε11 s
ε2
2

ż ż

R2

fbpu` iεqe
i<puq1xΦpu` iε, τqP̂ pu` iεqdu

“
1

sε11 s
ε2
2

ĞGreek
<
pt, s1, s2q.

Here we use ĞGreek
<
pt, s1, s2q to distinguish between contour and real integrals forms.

The term ei<puq
1x lays on the complex unit circle, this results in }ĞGreek

<
pt, s1, s2q} ă 8

for all Greeks. Then proving the regularity conditions only boils down to the terms 1
s
ε1
1 s

ε2
2

.

When we rewrite the counter integral as real integrals and substitute the BS Spread

Greeks into Condition (1), we get:

λpt, s1, s2q
`ke´rτ

p2πq2
˘` s1 ` s2

s3`ε1
1 sε22

p2∆̄<
1 ` Γ̄<

11 ´
ĚSpd

<
111q ´

s1 ` s2

s2`ε1
1 s1`ε2

2

ĚSpd
<
112

´
1` s2

s1`ε1
1 s1`ε2

2

Γ̄<
12 ´

1` s2

s1`ε1
1 s1`ε2

2

ĚSpd
<
122

˘

.

By dropping the constants and bounded real integral terms, we have

λpt, s1, s2q
` s1 ` s2

s3`ε1
1 sε22

´
s1 ` s2

s2`ε1
1 s1`ε2

2

´
1` s2

s1`ε1
1 s1`ε2

2

´
1` s2

s1`ε1
1 s1`ε2

2

˘

“ λpt, s1, s2q

´s2
2 ´ 3s2

1 ´ 2s2
1s2

s3`ε1
1 s1`ε2

2

¯

.

(B.3.1)

Since λpt, s1, s2q is only non-zero between S and S, we conclude Expression (B.3.1) is

bounded.

Substitute the BS Spread Greeks into Condition (2) and adopting real integrals, we

get:

`

λs1 ` λs2
˘`ke´rτ

p2πq2
˘` s1 ` s2

s2`ε1
1 sε22

p∆̄<
1 ` Γ̄<

11q `
s2

s1`ε1
1 s1`ε2

2

Γ̄<
12

˘

.
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By dropping the constants and bounded real integral terms, we have

`

λs1 ` λs2
˘`2s1s2 ` s

2
2

s2`ε1
1 s1`ε2

2

˘

. (B.3.2)

Since λpt, s1, s2q is only non-zero between S and S, then λs1 and λs2 are also only non-zero

in the same range. We can conclude Expression (B.3.2) is bounded.

Condition (3) is bounded in s1 and s2 by the same logic as Condition (1) and (2). For

the t dimension of Condition p3q, Γ11pt, s1, s2q diverges as t Ñ T . By design λpt, s1, s2q

has a higher order decaying that ensures λpt, s1, s2qΓ11pt, s1, s2q to stay finite. Therefore

we can always find a δ0 ą 0 for which Condtion (3) holds.

Since we have showed Condition p1q to p3q in Theorem 3.3 holds for our choice of

λpt, s1, s2q and fpt, s1, s2q in this chapter. We can conclude the system of SDEs (4.1.3)

will emit a unique solution.
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Appendix C

Identities and Operations

C.1 Two-Dimensional Parseval’s Identity

Let fpxq and gpxq be two-dimensional real functions, then
ż ż

R2

fpxqgpxqdx “
1

p2πq2

ż ż

R2

F
“

fpxq
‰

puqF
“

gpxq
‰

puqdu,

where F
“

¨
‰

is the Fourier Transform.

C.2 Tensor Operations

C.2.1 Tensor Product

For vectors a and b, the tensor product is defined to be:

ab b “

„

a1

a2



b

„

b1

b2



“

„

a1 b1

a2 b2



,

the result is a matrix.

For matrices A and B, the tensor product is defined to as:

AbB “

„

a11 a12

a21 a22



b

„

b11 b12

b21 b22



“

„„

a11 a12

a21 a22



,

„

b11 b12

b21 b22



,

the result is a 3-dimensional tensor.

For two 3-dimensional tensor T
p3q
A and T

p3q
B , the tensor product is defined to as:

T
p3q
A bT

p3q
B “

„„

a111 a121

a211 a221



,

„

a112 a122

a212 a222



b

„„

b111 b121

b211 b221



,

„

b112 b122

b212 b222



“

"„„

a111 a121

a211 a221



,

„

a112 a122

a212 a222



,

„„

b111 b121

b211 b221



,

„

b112 b122

b212 b222

*

,

the result is a 4-dimensional tensor.
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C.2.2 Tensor Multiplication

Let T p4qA be a 3-dimensional tensor and b be vector, then define the multiplication oper-

ation to be:

T p3qA ˆ b “

„„„

a1111 a1211

a2111 a2211



,

„

a1112 a1212

a2112 a2212



,

„„

a1121 a1221

a2121 a2221



,

„

a1122 a1222

a2122 a2222



ˆ

„

b1

b2



“

„„

a1111b1 ` a1211b2 a1112b1 ` a1212b2

a2111b1 ` a2211b2 a2112b1 ` a2212b1



,

„

a1121b1 ` a1221b2 a1122b1 ` a1222b2

a2121b1 ` a2221b2 a2122b1 ` a2222b2



Let T p3qA be a 3-dimensional tensor and B be matrix, then define the multiplication oper-

ation to be:

T p3qA ˆB “

„„

a111 a121

a211 a221



,

„

a112 a122

a212 a222



ˆ

„

b11 b12

b21 b22



“

„„

a111b11 ` a121b21 a111b12 ` a121b22

a211b11 ` a221b21 a211b12 ` a221b22



,

„

a112b11 ` a122b21 a112b12 ` a122b22

a212b11 ` a222b21 a212b12 ` a222b22



C.2.3 Outer Product

For vectors a and b, the outer product is defined to be:

ab̄b “

„

a1

a2



b̄

„

b1

b2



“

„

a1b1 a1b1

a2b1 a2b2



,

the result is a matrix.

For matrices A and vector b, the outer product can be defined as:

Ab̄b “

„

a11 a12

a21 a22



b̄

„

b1

b2



“

„„

a11b1 a12b1

a21b1 a22b1



,

„

a11b2 a12b2

a21b2 a22b2



,

the result is a 3-dimensional tensor.
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