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Public Abstract

The finite size of the nucleus shifts the bound-state energy of electrons (or
muons) in atoms. Although these effects had been captured through a large
number of nuclear-model independent “nuclear moments” closely related
to the extent of the nucleus in the past, they introduce large uncertainties
into theoretical predictions, which hinders testing fundamental subatomic
processes in spectroscopic measurements. In this work it is shown that
there is a more manageable number of parameters that control these effects
because the above moments always appear in specific combinations. This
allows for trading these combinations for differences between experimental
values and their theoretically expected ones that assume the nucleus to have
no size, which is the key in making predictions for atomic transitions that
do not suffer from the large nuclear errors. A large set of such predictions
are made for Hydrogen and the principles are applied to its muonic cousin
as well.
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Abstract

This work details how to use the Point-Particle Effective Field Theory
(PPEFT) framework to make predictions for the nuclear-size contributions
to spectroscopic transitions of atoms without the overbearing large uncer-
tainties generally associated with such effects. After a lightning review of
Quantum Field Theories, Effective Field Theories and their model-building
algorithms, the backbones of the PPEFT formalism are laid down by con-
sidering the low-energy effective theories of lumps. Then, by drawing an
analogy between a certain type of lumps and a freely propagating point-
particle we build a PPEFT for nuclei, which we gradually couple to gauge
and fermionic fields. We find that the consequences of having a nucleus in
our theory are captured by a set of new near-nucleus boundary conditions
its action implies for the surrounding fields, set up on a Gaussian spherical
boundary with arbitrary radius, ε. Afterwards, we use this formalism to
derive the effects of the finite size of the nucleus on bound-state energies
in terms of Renormalization Group (RG)-invariant parameters that char-
acterize the running of the PPEFT couplings in ε, implied by these new
boundary conditions in order to keep physical quantities independent of
this fictitious scale. Surprisingly, when comparing to formulae from the
literature that express these same energy shifts in terms of nuclear mo-
ments there always appear to be fewer RG-invariants than moments. By
fitting these handful of parameters using experimental data we then reduce
the errors in nuclear-size effect predictions for other transitions by writing
them in terms of differences between spectroscopic measurements and their
corresponding energy differences predicted by those bound-state Quantum
Electrodynamics calculations that assume nuclei to be point-like. Finally,
we apply this algorithm to the systems: 4

2He+, µ 4
2He+, H, and µH, where

we make such predictions.
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ĝi, f̂i Effective nuclear moments

ε?, y? The RG-invariant parameters controlling the
RG-flow of the spin-independent fermion-nucleus
effective couplings

A(x),Anuc(x) The electromagnetic vector-potential and the
dipole-field

Lint Perturbation around the Dirac-Coulomb system

s := emµN/4π Small parameter controlling the perturbations
caused by the magnetic-dipole field of the nu-
cleus

xx



Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

F,Fz Operators of the total atomic angular momentum
and its projection with eigenvalues, F, Fz

I,J The nuclear spin operator and the total lep-
tonic angular momentum operator with eigenval-
ues I, j

εF The RG-invariant scale controlling the spin-
dependent finite-size effects

xxi



Declaration of Authorship

I have always admired science for its unique encouragement of the sharing
and seeking of knowledge in a collaborative attempt to further our under-
standing of the world. As such, I believe it is most difficult to declare and
claim in all honesty any one work to be the result of any one person’s ef-
forts. In light of this, I would like to point out the following contributions
to the works contained in this thesis:

• PPEFT as a framework was conceived by Cliff Burgess and its appli-
cation to Dirac fermions was concurrently developed mainly by him
and Markus Rummel in the first paper presented. Peter Hayman and
myself checked and confirmed all of the calculations in this paper,
and vastly improved the accuracy of the conclusions by pointing out
that the poles of the gamma functions in the large-r normalizability
condition used to determine the energy due to finite size were very
close to each other and so these functions both had to be expanded
around these values in what we had dubbed the “double-pole approx-
imation”. Peter Hayman and I have also developed the numerics to
test these approximations, particularly on the examples provided in
the appendices and compared them to what could be found in the
literature. Additionally, a completely model-independent term in the
mode-function ratios in the appendix of −1/6n2 was found by me,
which made these numerical tests possible.

• Although Cliff Burgess and Markus Rummel have provided many
useful insights and guidance during its devlopment, the second paper
is almost entirely the work of Peter Hayman but its contents form
an integral part of the third paper and so could not be dispensed. I
have worked on this paper in its very early stages and helped derive
the nuclear-size independent combinations of spectroscopic data and
have checked some of the calculations.

• The last paper is a work of my own that has benefited from the
scrutiny and physical insight of Cliff Burgess, Markus Rummel and
Peter Hayman. Additionally, Peter Hayman has to be credited for
relating the new RG-invariant parameter appearing in this work to
the Zemach moment. Furthermore, it has to be noted that the di-
mensional regularization used for tracking the divergent integrals in
matrix elements in Chapter 4 was a joint effort between Cliff Burgess

xxii



Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

and I, and that it is thanks to Cliff Burgess that the final wording of
this work delivers such a clear message.

xxiii



Chapter 1

Introduction

1.1 Objective and Outline of Thesis

The main objectives of this thesis are to show that when applying the re-
cently developed Point-Particle Effective Field Theory (PPEFT) framework
[1]-[10] to atomic systems the effects of nuclear-size on the energy levels of
the orbiting leptons are controlled by fewer parameters than naively ex-
pected from other calculations; and to leverage this fact in making predic-
tions for such effects in spectroscopic measurements of the spinless Helium
ion (4

2He+), muonic spinless Helium ion (µ4
2He+), Hydrogen (H) and muonic

Hydrogen, µH.
To this end, three publications will be presented and the thesis will be

organized as follows. Since PPEFT is an Effective Field Theory (EFT) we
will begin by reviewing the bare minimum of concepts required to appreci-
ate the differences between Quantum Field Theories (QFTs) and Effective
Field Theories (EFTs), including their general model building procedure.
Afterwards, we will develop an effective theory of lumps, which we will use
to describe nuclei and build up an effective theory of atoms, commenting
on the intricacies that arise, which will be addressed in detail in the main
text. This will be followed by a brief introduction to the history and current
status of finite-size effects in atomic energy levels. As such, the discussion
presented in this chapter is aimed to introduce our formalism with enough
technicality and clarity that the reader would feel comfortable in jumping
right into reading the culminated works.

The second chapter presents the first paper, which details the construc-
tion of a PPEFT for atomic systems. In our formalism we model spinless
nuclei as charged lumps of size R ∼ 1 fm, mass, M and charge Ze with its
only low-energy field being its centre-of-mass coordinates, yµ(s) where s is
an arbitrary parameter along the nuclear world-line. The orbiting leptons
are taken to be Dirac fermions, Ψ(x) of mass, m and charge (−e) bound
to the nucleus by an electromagnetic field, Aµ(x) at orbits of size of the
leptonic Bohr radii, aB ∼ (mZα)−1, where α := e2/4π is the fine-structure
constant. The effects of the nucleus on the surrounding fields are shown
to be a set of alternative near-origin boundary conditions for the fields in
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question and consistency of these new boundary conditions with the large-
r normalizability condition of the leptonic bound-states are shown to lead
to nuclear-size related energy shifts. This paper presents how the leading
such effect – known as the proton charge radius term – can be captured
through a single parameter in the PPEFT formalism. Additionally, the
procedure necessary to obtain subleading size-related energy shifts using a
set of parameters is outlined and these are explicitly matched to the lead-
ing and subleading nuclear-size predictions of some simpler nuclear models
(i.e. UV completions in the field theory language).

In the third chapter, the second paper incorporates subleading interac-
tions between the same nucleus and its surrounding fields to investigate in
detail how the subleading nuclear-size effects can be captured in a PPEFT.
This is achieved by taking into account higher-order operators in the nuclear
action that arise suppressed by an additional power of R/aB ∼ (mRZα)
with respect to those responsible for the charge-radius term of the first
paper. The importance of this paper cannot be overstated, as it reveals
that despite the inclusion of these new interactions, no new effective pa-
rameters appear, rather the one responsible for the leading energy shift
becomes more refined. We show in detail that comparing the size-related
energy shifts written in terms of our effective parameter with that writ-
ten as a function of the popular nuclear moments reveals that it is only
ever certain linear combinations of these nuclear moments that enter en-
ergy shifts. Building on this finding, linear combinations of spectroscopic
measurements of electronic and muonic atoms with spinless nuclei are de-
vised in which to the accuracy of the first subleading finite-size effects these
shifts either cancel, or can be written in terms of differences between ex-
perimental values of transitions and those theoretical contributions of their
associated energy shifts that assume a point-like nucleus.

The fourth chapter constitutes the bulk of the thesis, presenting the
paper that describes the algorithm used to extend the atomic PPEFT to
include sources with arbitrary quantum-mechanical spin through the addi-
tion of a set of classically anti-commuting low-energy degrees of freedom,
ξµ(s) to the nuclear action; thereby making it applicable to a much wider
array of systems. To make the application of the PPEFT clear the rest
of this paper focuses on the bound-states of atomic and muonic Hydrogen,
and we find that to the precision of current experiments in these systems (1
kHz and 10−3 meV respectively) we only need to introduce a single new pa-
rameter in order to be able to account for spin-dependent finite-size effects.
We then apply our previous techniques to fit the existing two parameters
of the problem and find that in atomic Hydrogen it is possible to use these
fitted values to compute the finite-size contributions to a number of pre-
viously measured transitions, which could potentially be improved in the
future and act as a testing ground for fundamental theory. On the other
hand, due to the extremely high precision of muonic hydrogen measure-
ments and the large mass of the muon we see that in this system both
further spin-independent and spin-dependent subleading finite-size effects
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need to be captured in the PPEFT in order to be able to make predictions
similar to those in atomic Hydrogen.

Finally, in the last chapter the main lessons from reading the atomic
physics story through the PPEFT lens are summarized and a good number
of possible directions for future research are discussed.

Note that throughout the entire thesis the spacetime metric is assumed
to be flat with mostly positive entries ηµν = diag(−,+,+,+) and the units
are assumed to be natural, c = ~ = kB = 1, unless otherwise stated.

1.2 Of QFTs and EFTs

In this section we recap what we mean by an EFT, as it is vital to under-
stand the emergence of this class of theories going forward.

First, the phenomena of decoupling is introduced through a few exam-
ples, followed by a hitch-hiker’s guide to the general model-building proce-
dures of field theories. Second, the mathematical description of QFTs, path
integrals are introduced and we combine this description with the essence
of decoupling to show how EFTs emerge via Wilsonian renormalization.
Lastly, the key differences between QFTs and EFTs in terms of their con-
struction and predictive powers are summarized and are used as a segue
into the effective theory of lumps.

1.2.1 The principle of decoupling

Let us begin by thinking about a multi-tiered cake with each layer boasting
a different flavour. As we sample this cake tier by tier from the bottom
up we notice that each level tastes different. Although we do not eat the
whole of any one layer we can safely assume that the layers are homogeneous
inasmuch that one flavour can only be found in a single level. Then, in order
to appreciate any given one of the levels we do not need to know much if
anything at all about other layers and flavours. As we munch on, there
are various things we can notice: the texture of sponginess or creaminess;
the overall taste such as sweet or savoury; the particular taste of chocolate
or strawberry; and if we have a really fine palette probably most of the
ingredients too. However, in order to appreciate any given layer of the cake
we do not need to know anything about the others. We will now argue that
this image of a cake is not so different from the world as we know it.

In this analogy, the various levels of the cake correspond to the differ-
ent length-scales that can be physically probed one way or another, and
the flavours represent the different physics needed to describe the given
level. At the largest distances mankind can probe (say, the bottom layer
of the cake) lies the observable universe, exhibiting some random struc-
ture. Zooming in on these structures corresponds to climbing up the cake’s
layers, and as we do this we start to see emergence of smaller structures
such as galaxy superclusters (the second tier). Zooming in on these we no-
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tice galaxy clusters (third tier), then galaxies (fourth tier and so on), solar
systems, stars, planets, continents and oceans, landscapes, cities, neigh-
bourhoods, houses, people, dogs, insects, tissues, cells, atoms and finally
quarks and other fundamental particles. Each of these structures tend to
come with their own set of unique physical laws that help describe them
and their interactions at the given length scale; this is what the flavours
represent. At any given length scale, these physical laws can go from cap-
turing very simple to very complex phenomena; this is the texture and
flavour profile of the levels. What is surprising however is that just like
appreciating the different levels of the cake in our example did not require
prior knowledge of what all the other layers contain, we do not need to
know what all these physical laws are and how they interplay with each
other in order to make reliable predictions and describe the world at a
given length scale. For example, in order to accurately describe projectile
motion on Earth we do not need to know how our planet orbits the Sun
nor that everything is made of atoms.

This ubiquitous phenomenon of Nature, whereby the sets of laws that
provide precise descriptions of the world separate and become distinct de-
pending on the length scales probed is known as decoupling. It is a uniquely
interesting and useful feature of the universe as it allows for the construction
of testable physical laws – effective theories – compartmentalized through
the distance ranges over which they apply without prior knowledge of what
is happening at all the other length scales.

As a more everyday example of decoupling, imagine driving in a very flat
region (much like the Canadian Prairies) at night. At first, an extremely
dim, tiny source of light somewhere very far away becomes observable. As
time passes, the light seems to become brighter and its source bigger. Some
time later the distance to the source becomes small enough that what was
initially believed to be a single object splits into two distinct beams that
approach at what seems to be the same speed. After some more time passes
and once the light sources are very close it becomes clear that what was
initially thought to be one single object – at first with one and later with
two sources of light – had actually been two motorcycles travelling close
together all along. The point is that at each step of separation from the
motorbikes the effective description of the light source changes.

On a more physical note, two of the last century’s most cherished theo-
ries demonstrate decoupling in a beautiful way. On the one hand, General
Relativity (GR) describes the physics of very massive and large-scale ob-
jects interacting under gravity; it conceives of the universe as an inherently
4-dimensional spacetime which curves under the influence of matter. GR
is absolutely vital in describing how gravitation works in regions where
the gravitational force is strong, such as at the orbital distance of Mercury
from the Sun or near inspiralling binary systems that produce gravitational
waves, yet in regions where gravity is much weaker such as on the surface
of the Earth, the Newtonian description of gravity is perfectly sufficient
to predict how apples fall from trees. Furthermore, GR is supposed to be
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superseded by a quantum description of gravity in regions of ultra-strong
gravitational forces such as inside black holes or ultra-short distances and
even though a working theory of such a formalism does not yet exist, it
is clear that it should match onto GR in some limit. In this sense, GR
decouples from quantum gravity and in turn Newtonian gravity decouples
from GR as the gravitational force becomes weaker and weaker.

On the other hand, QFT governs the interactions of subatomic, rela-
tivistic particles. At the time of writing, this formalism is believed to be
the language in which the very short-distance laws of the world had been
written and the foundation of this belief is the immense success of theories
such as the Standard Model (SM) of particle physics and Quantum Elec-
trodynamics (QED), extensively tested at colliders and in precision atomic
spectroscopy experiments. However, even at distance scales probed today
there is phenomenological evidence for Beyond the Standard Model (BSM)
physics such as dark matter, neutrino masses, etc., which indicate that the
SM is not a complete story either, rather it is the theory obtained at some
length scales as a decoupled effective description of the underlying theory
of BSM. As an example of decoupling in the Standard Model consider the
theory of weak interactions. The theory that describes weak decays at very
short distances (equivalently, high-energies) is the full electroweak sector
of SM with its symmetry breaking properties, in which these processes are
mediated by the W and Z vector bosons. Nevertheless, on larger distance
scales (i.e. at energies below the masses of these particles) weak phenom-
ena had been very effectively described by 4-Fermi interactions, making
powerful predictions for proton- and radioactive β-decay long before the
Standard Model came to life. Decoupling in QED can be seen from the
fact that in order to accurately predict the energy levels of the Hydrogen
atom today one needs to use the full Dirac equation with its full QFT de-
scription, whereas in the early days it was sufficient to use the quantum
mechanics of the non-relativistic (or large-distance) version of the Dirac
description, the Schrödinger equation.

The general lesson to be learned here is that depending on the length
scale a certain set of objects (be they fields, planets or others) are observed,
or equivalently the energies at which their interactions are tested, the ef-
fective description of their interplay changes and becomes a theory unto
itself. This is the phenomenon of decoupling.

1.2.2 The QFT LEGO and Predictive Power

Having described a few qualitative examples of theories decoupling from
each other into effective descriptions at different scales, it is now time to
elaborate on this process and make it more precise by studying its mathe-
matical foundations. The first step towards this purpose is to discuss how
theories are generated in the first place.

Based on empirical evidence, almost every QFT starts with a dimen-
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sionless, Lorentz-invariant, local action,

S[φa(x), ∂φa(x)] =

∫
d4xL[φa(x), ∂φa(x)], (1.1)

where L is the Lagrangian (density) of the theory and φa(x) denotes a
general set of fields. The action contains information about the dynamics
and the interactions of the fields, which correspond to physical processes of
the particles associated with these fields – such as propagation, scattering,
etc. – calculable through Feynman diagrams once the fields have been
quantized. These diagrams can be obtained from the generating functional
of a QFT, which in very simple terms is merely the functional integral
over the exponential of the action as we will define it below shortly. What
is important for now is the observation that actions are the fundamental
objects one needs to find in order to compute any observables and at a
basic level there are three main ingredients that need to be combined in
order to build them.

The first ingredient is known as the field content of the theory. It is the
collection of the types of fields and corresponding particles such as scalars,
fermions, vector bosons, etc. that the QFT should contain. In a very
simple, yet abstract way these fields, φa(x) can be thought of as different
types of LEGO bricks that are available to the model builder.

Second, the underlying symmetries of the theory (and their possible
spontaneous- or explicit breaking), such as C, P, T, Zn, etc. invariance
and gauge symmetries like SUC(3)×SUL(2)×UY (1) need to be defined un-
der whose transformations the theory will remain invariant. At the same
time the representations such as fundamental, adjoint, conjugate, etc. of
the fields under these symmetries, i.e. how they behave under the symme-
try transformations need to be chosen. Along with locality and Lorentz-
invariance, imposing the symmetries is extremely restrictive, as it confines
the possible combinations of the fields to structures that remain invariant
under all symmetry transformations. These structures can be divided into
three groups: kinetic terms, recognized by single spacetime derivatives act-
ing on the fields ∼ ∂φa(x); mass terms, which are quadratic in a given
field and contain no derivatives ∼ φa(x)φa(x); and interaction terms mix-
ing more than two fields with or without derivatives ∼ φa(x)φb(x)φc(x).
Incidentally, the invariance of these objects under the symmetries means
that the action built from them will transform in the trivial representa-
tion of all the symmetries and will have a vanishing variation under their
transformations, δSsym. = 0, leading to conserved currents. Following the
analogy above, the set of symmetries under which the action needs to be
invariant is like the set of instructions that come with the LEGO, outlining
where each piece should go in order to be able to build something bigger.

Although establishing the field content, the symmetries and the repre-
sentations is a restrictive process there are still infinitely many operators
that can be formed that satisfy the above transformation criteria. As such,
the last ingredient of building a QFT is cherry-picking those structures
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that have desirable properties for a given theory. These qualities include
particular interaction channels that feed certain types of processes, and
renormalizability, which will be introduced momentarily. The final set of
chosen interactions is entirely motivated by what combinations the model-
builder thinks will accurately describe the physical system under study.
Further tangling the LEGO analogy, although the pieces themselves and
even their combinations are very versatile and can be combined in a huge
number of ways, to build a QFT it is sufficient to chose only a handful of
all the possibilities.

With the action in hand, the generating functional of a theory is defined
as,

Z[Ja] :=

∫
DφaeiS[φa,∂φa]+

∫
d4x Ja(x)φa(x), (1.2)

where Ja(x) is known as a current term that sources a particle of type a at
spacetime point x, and Dφa is known as the functional measure of the fields.
Functional derivatives of this object can be related to physical observables
such as correlation functions, decay rates, cross-sections and others and as
such it is often referred to as the “Holy Grail” of a QFT, since once it is
known in a closed form the observables fall right out.

Unfortunately, the generating functional only has a closed form for very
few types of actions (we will call these parts of S “integrable” in the future),
of which most notable are those of free theories where particles are only
allowed to move around without affecting each other in any way, meaning
that nothing interesting ever happens in these theories. The possibility of
a closed expression for the generating functional of these theories lies in
the fact that the only structures available to the model-builder from the
previous paragraphs are the kinetic and mass terms, both of which are at
most quadratic in the fields and as such lead to Gaussian integrals over the
dummy integration variable, φa(x). In a little bit more detail what happens
is that by integrating by parts we can bring the action into the form

iS0[φa, ∂φa] =

∫
d4xφa(x)∆φa(x), (1.3)

where S0 is the free-field action and ∆ is an operator, and this schematically
leads to a generating functional proportional to the root of the inverse of
the determinant of the operator ∆,

Z[Ja] =

∫
Dφae

∫
d4x {φa∆φa+Ja(x)φa(x)} ∝

√
det(∆)−1. (1.4)

We emphasize this because it will be an important point later when we
look at the low-energy effective theory of lumps.

Of more phenomenological importance are interacting theories, where
particles are allowed to talk to each other through the various channels en-
coded by the interaction terms of the action, although in most models these
features spoil the integrability of the theory in the sense that the generating
functional cannot be obtained in a closed form. However, not all is lost; if
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the interactions between the particles can be assumed to be weak, it is pos-
sible to split the total action into two parts, S = S0[φa, ∂φa] + Sint[φa, ∂φa]
and evolve the field operators in the interaction picture around the inte-
grable part of the theory, S0[φa, ∂φa] and treat the non-integrable parts,
Sint[φa, ∂φa] as perturbations, allowing for the calculation of observables to
arbitrarily high accuracy.

These calculations are carried out with the machinery of Feynman di-
agrams and they get increasingly more challenging as one includes higher
and higher orders in the interactions of the perturbation. In addition to
the computational obstacles posed by loops of virtual particles in these dia-
grams, they often also lead to infinities, which need to be regulated. Large-
distance (a.k.a. low energy, a.k.a. infrared or IR) divergences can be often
taken care of using infrared regulators such as the size of atomic spacing
in a lattice or the low-energy sensitivity of detectors, while short-distance
(a.k.a. high-energy, a.k.a ultraviolet or UV) divergences are usually dealt
with using renormalization techniques, whereby infinities are removed from
physical observables, such as the masses of particles for example. Dealing
with these pathologies through renormalization is closely related to the
renormalizability of a theory.

In essence, renormalizability refers to how hard one has to work in or-
der to make sense of all these infinities and it is determined by analyzing
the superficial degree of divergence of a theory’s Feynman diagrams to see
how many of them fundamentally diverge. Under this umbrella, QFTs are
divided into 3 categories: super-renormalizable theories, where interaction
vertices reduce the divergence of diagrams; renormalizable theories, where
vertices do not improve nor do they worsen the divergences of graphs and
so only the types and number of external legs and the spacetime dimension
of the theory matter for the divergence of any given diagram; and non-
renormalizable theories, where interaction vertices increase the degree of
divergence and so all amplitudes start to diverge if a sufficiently high num-
ber of the interaction terms are included. For super-renormalizable and
renormalizable theories, one can measure a finite number of physical pa-
rameters through experiments and make predictions for observables to all
orders in perturbation theory, provided that the loops do not pose a math-
ematical challenge. Although for non-renormalizable theories one formally
needs to measure an infinite number of parameters to be able to make such
predictions, to any given order in perturbation theory these theories still
have predictive power, provided there is a sufficient number of measure-
ments that the finite-number of parameters appearing to that order can
be fixed. This is an important point, because all EFTs will technically be
non-renormalizable as will be explained in the next section.

The general model-building algorithm for QFTs should now be clear.
First the field content is established, then the theory’s symmetries are laid
down and representations are chosen. This is followed by picking desirable
interactions between the fields that obey all the symmetries and to ensure
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appropriate predictive power often only the renormalizable interactions are
included in the model’s action. As an example, imagine constructing φ4

theory from scratch. The field content is a single, real scalar field, φ(x)
of mass, mφ, with only local interactions, and the symmetries comprise
Lorentz-invariance and Z2 symmetry of the fields, i.e. the action should
be invariant under φ → −φ. After a little thought one realizes that the
only possible, renormalizable theory that can be built with these criteria is
given by,

Sφ4 = −
∫

d4x
1

2
(∂µφ)(∂µφ) +

1

2
m2
φφ

2 +
λ

4!
φ4, (1.5)

where λ is the dimensionless coupling constant of the interaction, assumed
to be small for the purposes of perturbation theory.

1.2.3 Wilsonian Actions and EFTs

A common theme in the above examples of decoupling was the emergence of
the effective theory as a large-distance limit of some other underlying theory
– known as the UV completion – whose domain of validity encompasses
shorter distance scales.

The QFTs built using the procedure outlined in the previous section are
all UV complete in the sense that although they are not necessarily expected
to be valid at arbitrarily short distances where new physics may come
into play (known as the cut-off of the theory, Λ), they are assumed to be
accurate and indisputably correct down to those scales. This is because by
freely choosing the field content, the representations and the interactions,
and turning a blind eye to everything else one explicitly excludes all other
possible explanations of the system in a given distance regime. This is
one of the crucial differences between EFTs and QFTs as will be explained
shortly.

The emergence of an effective field theory can be understood through
the renormalization group arguments developed by Wilson [11]. Starting
on familiar ground, first let us build a QFT with high-energy cut-off, Λ and
generating functional,

Z[Ja] =

∫
DφaeiS0+iSint+ i

∫
d4xJa(x)φa(x) (1.6)

that is hypothesized to accurately describe the physics of a given system
down to distance scales much shorter than what is accessible to the current
generation of experiments running at energies, E. Notice that as prescribed
above we have split the action into an integrable part, S0[φa, ∂φa] and an
interaction part, Sint[φa, ∂φa] that comprises of all the selected interaction
terms.

To make contact with the experiments looking to find evidence that
supports this particular model one needs to know what it looks like at the
typical energy scales of said experiments, E � Λ which can be worked out
by coarse-graining the theory. This process starts with splitting the fields
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into low-energy modes, φl
a(x) that are still accessible by the experiments

and high-energy ones, φh
a(x) that are not, such that φa(x) = φl

a(x) +φh
a(x).

Doing so divides the measure, Dφa → Dφl
aDφh

a and also complicates the
originally simple-looking action as it gets cluttered with all sorts of high-
and low-energy field interactions. In general, the action resulting from this
mode-separation is of the form

S0[φa, ∂φa] + Sint[φa, ∂φa] =
{
S l

0[φl

a, ∂φ
l

a] + S l

int[φ
l

a, ∂φ
l

a]
}

+

+
{
Sh

0 [φh

a, ∂φ
h

a] + Sh

int[φ
h

a, ∂φ
h

a]
}

+ Smix[φl

a, φ
h

a, ∂φ
l

a, ∂φ
h

a], (1.7)

where terms combine in such a way that the original form of the action
(with integrable and interaction parts) appears for both the low- and high-
energy modes separately (enclosed in braces) with additional interactions
between these two types of modes, collected in Smix. Although the func-
tional measure now runs over the field configurations of both energy modes,
the experiment is only able to excite the low-energy components of the
fields, meaning that the current term for the high-energy modes can be
turned off and set to zero. As a result of these artificial splittings, the
generating functional morphs into

Z[Ja] =

∫
Dφl

ae
iSl

0+iSl
int+i

∫
d4xJa(x)φl

a(x)

∫
Dφh

ae
iSh

0 +iSh
int+iSmix ,

=

∫
Dφl

ae
iSl

0+iSl
int+i

∫
d4xJa(x)φl

a(x)

[∫
D
(
φh′

a

)
eiS

h′
0

] ∫
Dφh

ae
iSh

0 +iSh
int+iSmix∫

D (φh′
a ) eiS

h′
0

,

=

∫
D̃φl

ae
iSl

0+iSl
int+i

∫
d4xJa(x)φl

a(x)

{∫
Dφh

ae
iSh

0 +iSh
int+iSmix∫

Dφh
ae
iSh

0

}
(1.8)

where in the second line unity had been written in a funny way as the path
integral over the integrable-theory action of the dummy variable, φh′

a . The
reason for doing so is that after a simple relabelling of the dummy high-
energy modes in the denominator, the braces on the third line enclose the
expectation value of the operator that is the exponential of Sh

int + Smix on
the interacting vacuum state, |Ω〉 such that{∫

Dφh
a e

iSh
0 × eiSh

int+iSmix∫
Dφh

a e
iSh

0

}
= 〈eiSh

int+iSmix〉Ω, (1.9)

which can be evaluated to arbitrary order in perturbation theory using
Feynman diagrams. Simultaneously, the functional integral over the integrable-
theory action in the numerator of unity (i.e. the square bracket on the sec-
ond line) can be evaluated to a constant by the definition of integrability
and in the above case this had been absorbed into the functional measure
of the low-energy modes on the third line, Dφl

a → D̃φl
a.

Notice that it is only the high-energy modes that are integrated out in
this way, while the low-energy modes are held fixed. What this means is

10
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that the low-energy parts in the braces coming from Smix factorize from
the expectation value, while the high-energy modes are contracted, lead-
ing to calculable loops, whose results are finite. In this way, the oper-
ator eiSmix containing the interactions between the low- and high-energy
modes effectively introduces higher and higher powers of φl

a(x) and ∂φl
a(x)

on the external legs of the calculated Feynman diagrams, generating all
the possible interactions of these modes allowed by the initial symmetries
imposed on the QFT. After the high-energy mode contributions are evalu-
ated, these newly generated interactions gain non-zero coefficients and can
be resummed into exponentials, leading to the generating functional of the
effective low-energy theory,

Z[Ja] =

∫
Dφl

a e
iSeff [φl

a,∂φ
l
a,∂∂φ

l
a,··· ]+i

∫
d4xJa(x)φl

a(x), (1.10)

where Seff [φl
a, ∂φ

l
a, ∂∂φ

l
a, · · · ] is the effective action that contains all possible

interactions between the low-energy fields and their derivatives. There
is more to the renormalization group story as detailed in [11] and many
standard texts on QFT such as [12, 13, 14] but for the purposes of this
discussion the above cartoon should suffice.

From a model-building perspective, constructing such a low-energy ef-
fective action is only marginally different from constructing a UV-complete
QFT. The initial step is again to come up with a field content that is most
likely to describe the physical system at the energy scales probed, followed
by imposing symmetries and choosing representations. However, instead of
cherry-picking any particularly appealing interactions like for a QFT, in an
EFT all of the possible interactions between the fields and their derivatives
are kept, making these theories necessarily non-renormalizable.

Of course, as to any good rule, there are exceptions to this one too [15].
First, total derivatives result in boundary terms that can be ignored given
that the spacetime has no boundaries, and the fields remain finite near
infinity and hide no topological surprises there and so writing these down
is unnecessary. Second, we are only obliged to include at most (NIBP − 1)
of NIBP interactions related to each other through integrations by parts as
these contribute to any processes in exactly the same way and including
more of them than necessary only redefines the coefficients of the related
terms. Lastly, we don’t need to write down terms that are proportional to
the field equations because these can be removed by field redefinitions.

In summary then, although EFTs naturally emerge as low-energy de-
scriptions of given high-energy theories and these can be calculated in de-
tail using the coarse-graining procedure outlined above, it is also possible
to build EFTs provided the low-energy field content, representations and
symmetries are known. This proceeds much the same way as the model-
building algorithm for QFTs, however instead of a fixed set of interactions,
all terms that are non-removable in the sense of the exceptions just listed
must be included in the action. One then puts this polished low-energy
action into a generating functional such that the theory is described in the

11
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form (1.10). Note that the inclusion of all possible interactions forces EFTs
to be non-renormalizable, however not all interactions in the effective the-
ory are equally relevant for experiments, and in fact to a given precision
only a certain number of them matter, as we will now argue.

1.2.4 Dimensional Analysis and the Robustness of
EFTs

The easiest way to understand why not all EFT interactions are created
equal is to carry out dimensional analysis on the Lagrangian of the effective
model,

Leff = L0 +
∑
i

ciOi[φa, ∂φa, · · · ], (1.11)

as opposed to working directly with its action, where L0 is the integrable
part of the Lagrangian containing the canonically normalized single deriva-
tives and the mass terms of the fields, ci are coupling constants and Oi are
local functional operators of the fields and their derivatives. When working
in natural units, every quantity is assigned a mass (or equivalently energy)
dimension: the mass dimension of a mass is of course, [m] = 1; distances
have [dx] = −1; derivatives, ∂µ ∼ d/dxµ have [∂µ] = +1 (this inverse rela-
tionship is why long distances can also be interpreted as small energies and
vice versa); as previously mentioned, the action in these units needs to be
dimensionless, i.e. [S] = 0; and last but not least, using the fact that the
action is the integral of the Lagrangian density, S =

∫
d4xL one finds that

[L] = 4. Then, using the canonically normalized kinetic terms it is also
possible to determine the mass-dimensions of the fields, φa(x); for example
the kinetic term for a real scalar field is 1

2
∂µφ∂

µφ which implies [φ(x)] = 1,

while that of a Dirac fermion is Ψ/∂Ψ leading to [Ψ(x)] = 3/2.
Having found the dimensions of all the fields in this way, it becomes

possible to work out the dimensionality of the operators, Oi and through
these also that of the coupling constants, [ci] = 4− [Oi]. For all of these ci
the natural mass scale is the UV cutoff, Λ, which can be explicitly factorized
in order to trade them for dimensionless couplings, gi,

ci := Λ4−[Oi]gi, (1.12)

while for the fields the natural energy scale is that of the experiment, E � Λ
which excites them and produces their particles and so can be traded for
dimensionless fields, φ̄a(x) as

φa(x) := E[φa]φ̄a(x) . (1.13)

Similarly, the derivatives acting on the fields in a given operator of L pro-
duce factors of the experimental energy as well, because they tend to cre-
ate plane-wave like configurations of the fields, φa(x) ∼ eik·x such that

12
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∂φa(x) ∼ kφa(x) where |k| ∼ E. Finally, this allows for writing all the
operators in L in terms of dimensionless operators,

Oi[φa, ∂φa, · · · ] := E[Oi]Ōi

[
φ̄a
]
. (1.14)

Having traded all the couplings and fields for dimensionless ones and
explicitly written the powers of the cut-off and the experimental energy
scales in L one can further trade the spacetime segment of the experiment
for its Fourier space equivalent in terms of the experimental energy such

that
∫

d4x ∼ (2π)4

E4 , which grants writing the action schematically as,

Seff =

∫
d4xLeff ∼ φ̄a(x)φ̄a(x)

{
1 +

(mφ̄a

E

)
δSa,n/2 +

(mφ̄a

E

)2

δSa,n

}
+

+
∑
i

(
E

Λ

)[Oi]−4

gi Ōi[φ̄a(x)]. (1.15)

where Sa is the spin of the field, φa(x) and n ∈ N0 is an integer. The
benefit of writing the action in this form is that it makes transparent that
the effective interactions can be organized as a power series of the small,
dimensionless quantity, E/Λ � 1 and as such is essentially a multipole
expansion of operators where more complicated terms come suppressed by
increasing powers of E/Λ.

Organizing Seff this way divides the interactions into three categories
depending on how they behave in the low-energy limit that is as E → 0.
Terms in effective actions accompanied by a negative power of E such as
the mass terms and interactions with [Oi] < 4 become increasingly more
important at lower energies and are called relevant ; those interactions that
appear independently from the E/Λ ratio and so have [Oi] = 4 are known
as marginal and may or may not become important depending on their
quantum corrections; and lastly there are the irrelevant terms in Seff , which
have [Oi] > 4 and are interactions that matter less and less as E is dialled
down.

Thinking about these irrelevant operators naively we can realize that
these are the interactions responsible for the non-renormalizability of EFTs
because higher-order irrelevant operators contain increasingly more powers
of the fields, which lead to increasingly more loops, always raising the
superficial degree of divergence of any Feynman graphs they contribute to.
However, this is no cause for alarm because thanks to the robustness of the
effective action through the expansion in E/Λ� 1, to a given experimental
accuracy with which observables of the theory can be probed it is only ever
a finite number of effective interactions that contribute, and given enough
measurements their couplings can be fit, retaining the predictive power of
EFTs.

In this section we have applied dimensional analysis to establish that
EFT actions are essentially multipole expansions of local functionals of field
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operators, where higher-dimensional operators are suppressed by increas-
ing powers of the small ratio, E/Λ � 1 between the large UV cut-off, Λ
and the energy scale available to experiments, E. Furthermore, this anal-
ysis has helped us understand why the inclusion of all allowed interactions
between the low-energy fields and their derivatives allowed by the symme-
tries makes EFTs non-renormalizable, but has also revealed that due to
the robust expansion of Seff in powers of E/Λ � 1, to a given accuracy
of experimental probes it is sufficient to include the effects of only a finite
number of effective operators. Then, by finding enough measurements to
fit the couplings of these interactions with sufficient accuracy, EFTs can
become efficient machines for grinding out predictions for a given energy
regime of experiments.

This brings our short discussion of EFT methods to a close. We have
found that in order to build an EFT one needs a high-energy scale, Λ and
a low-energy scale, E with which the theory is probed in experiments and
these scales need to be well separated such that E � Λ. Establishing
a suitable low-energy field content, symmetries and representations then
allows us to construct the most general, Lorentz-invariant effective local
action by writing down all possible non-removable interactions between
the fields and their derivatives that are allowed by the symmetries. Such
an action comes in the form of a multipole expansion of the operators where
terms of successive dimensions are suppressed by increasing powers of the
ratio, E/Λ� 1, which makes the EFT robust in the sense that to any given
experimental accuracy it is only a finite number of the effective interactions
that play a role. In the next section we will use what we had learned here
to find effective low-energy descriptions for compact objects.

1.3 The PPEFT Framework

Now you might say, “Wow! Good for us that we can build such effective
theories thanks to decoupling and all, but what does this have to do with
atoms and nuclear physics?”.

The point is that to a large extent modern measurements of atomic
spectra rely on a considerable amount of guesswork, because although the
experiments are precise enough that nuclear effects need to be taken into
account, there is no reliable UV theory for nuclei that predicts these effects.
This necessitates modelling the nucleus in various ways, which introduces
unwanted errors (we will say more about this in the coming sections).

Therefore, it would be really great if we could parameterize the effects
of the nucleus without having to develop a working UV theory of nuclei
and this is where EFTs can help, since they are specially designed to hide
our ignorance of UV physics by using an appropriate low-energy description
that systematically includes its effects to any desired experimental accuracy.

Atomic systems occupy a special place among EFTs in that there is an
omnipresent, heavy, charged object of typical nuclear-scale size, R ∼ 1 fm
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in the theory that generates a background for the dynamics of all other
particles, which is experimentally sampled at the much larger scale of the
orbiting, bound fermion’s Bohr radius, aB ∼ (mZα)−1 � R, where m is the
lepton mass, Z is the atomic number and α the fine-structure constant1.
The good thing about the EFT formalism is that we need not understand
how this object got there, meaning that a full second-quantized treatment
of the nucleus is overkill since we are not interested in its creation nor its
possible destruction. It suffices to know what the low-energy degrees of
freedom and the symmetries of the nucleus are to form a working EFT of
atoms with an action organized into a multipole expansion of operators in
powers of R/aB.

In the proceeding sections then, we will briefly explore the effective
theory of lumps following [15], because as we will see later they serve as
the perfect candidates for what a nucleus is supposed to be, especially
once they are coupled to the electromagnetic gauge field. We will begin by
exploring what the low-energy degrees of freedom of such lumps can be and
then look at what their presence implies for the other fields in the theory
they are coupled to.

1.3.1 Lumps and Their Low-energy Degrees of Free-
dom

Background field configurations (a.k.a. “lumps” or “central objects”) nat-
urally emerge in field theories as solutions to field equations that localize
the energy density in some way, known as solitons. Usual examples of such
solutions are one-dimensional kinks, domain walls and vortices. The wis-
dom of these examples is that the general picture we should have in mind
is that a given field in the UV theory is subjected to interactions that alter
the minimum-energy configurations for the field in some way.

To keep the discussion somewhat general, imagine building a renor-
malizable QFT as prescribed in the previous sections with Lagrangian
L[φa, ∂φa] that has the corresponding Hamiltonian,

H =

∫
d4x φ̇a

(
∂L

∂ (∂tφa)

)
− L, (1.16)

and varying the fields results in the field equations

δL
δφa

= ∂ν

(
∂L

∂(∂νφa)

)
− ∂L
∂φa

= 0. (1.17)

For later convenience let us also note the equation the derivative of the

1In terms of the earlier discussion of EFTs, R corresponds to the high-energy cut-off
where we no longer trust the description of the nucleus as a single charged particle, and
aB is related to the low energies at which the experiment runs.
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fields obey by differentiating this equation,

∂µ
δL
δφa

= 0 = ∂µ

[
∂ν

(
∂L

∂(∂νφa)

)
− ∂L
∂φa

]
,

=

{
∂ν

(
∂2L

∂φb∂(∂νφa)

)
+ ∂ν

(
∂2L

∂(∂νφb)∂(∂ρφa)

)
∂ρ

+

(
∂2L

∂(∂νφb)∂(∂ρφa)

)
∂ν∂ρ −

(
∂2L

∂φb∂φa

)}
(∂µφb), (1.18)

where we have first commuted the partial derivatives on the first term
and then used the fact that L only depends on the fields and their first
derivatives when acting on it with ∂µ and applying the chain rule. Lastly,
let us note that the field theory we had written down was invariant under
spacetime translations and so are the resulting equations of motion, which
will become important momentarily.

Now, to minimize H we could proceed in one of two ways: we could
try to find solutions to (1.17) that minimize the energy everywhere; or we
could require them to minimize the energy on some boundary.

The first class of solutions corresponds to constant field configurations,
φa(x) = v much like the vacuum expectation values of fields in scenarios
containing spontaneous symmetry breaking, while the second one involves
some non-trivial distribution of energy density in spacetime, φa(x) = ϕa(x).
Pondering the implications of this second class a little more, we can realize
that having a lump somewhere in the system is precisely such a solution
with the two caveats: the surface we wish to minimize the energy on lies
at infinity so that the lump exists somewhere in the bulk; and the energy
is localized to a single region, say, a spatial ball BR of radius R.

The consequences of having translation-invariant equations of motion
are that the solutions to these equations will depend on constants that
describe where most of the energy is localized. Then, similarly to how
rolling around the gutter of Mexican hat potentials does not change the
vacuum expectation value of the fields, spacetime translations do not alter
the profile of lump solutions but change these constants instead, which can
therefore be thought of as the centre-of-mass coordinates, yµ of the lumps,
now written as ϕa = ϕa(y − x).

Having found the solutions that minimize the energy of the system
in this way we can now consider small fluctuations around it to develop
the quantum theory and so we split the field into its classical background
function plus small oscillations around it, φa(x) = ϕa(y−x)+ φ̂a(x), where
φ̂a/ϕa � 1. Taylor-expanding the Lagrangian in the small variable φ̂a(x)
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and its derivative then gives,

L
[
ϕa + φ̂a, ∂(ϕa + φ̂a)

]
= L[φa, ∂φa]ϕa + φ̂a

[
∂L
∂φa

]
ϕa

+ (∂νφ̂a)

[
∂L

∂(∂νφa)

]
ϕa

+
1

2!

{
φ̂2
a

[
∂2L
∂φ2

a

]
ϕa

+ 2φ̂a(∂νφ̂a)

[
∂L

(∂φa)∂(∂νφa)

]
ϕa

+(∂ρφ̂a)(∂νφ̂a)

[
∂2L

∂(∂ρφa)∂(∂νφa)

]
ϕa

}
+O

[
φ̂3
a, φ̂

2
a(∂φ̂a), φ̂a(∂φ̂a)

2, (∂φ̂a)
3
]
,

(1.19)

where the ϕa subscript means that all quantities in the accompanying brack-
ets are evaluated on the background solution, ϕa(y − x). Integrating by
parts on the third term 2 reveals,

(∂νφ̂a)

[
∂L

∂(∂νφa)

]
ϕa

+ φ̂a

[
∂L
∂φa

]
ϕa

= −φ̂a
[
∂ν

(
∂L

∂(∂νφa)

)
− ∂L
∂φa

]
ϕa

, (1.20)

that the linear terms of φ̂a and its derivative combine such that the coeffi-
cient of φ̂a becomes the equations of motion of ϕa(y − x), i.e. (1.17) and
so vanish in L, pushing the appearance of the oscillations φ̂a to quadratic
order in the action.

By rewriting the mixed φ̂a(∂νφ̂a) term in (1.19) using

2 φ̂a(∂νφ̂a)

[
∂L

(∂φa)∂(∂νφa)

]
ϕa

= ∂ν

{
φ̂2
a

[
∂L

(∂φa)∂(∂νφa)

]
ϕa

}

− φ̂2
a ∂ν

[
∂L

(∂φa)∂(∂νφa)

]
ϕa

, (1.21)

and dropping the total derivative, and integrating by parts on the two-
derivative-term, (∂ρφ̂a)(∂νφ̂a) of the same expression, the quadratic piece
in L can be brought into the following symmetric form,

φ̂aO[ϕa, ∂ϕa]φ̂a := φ̂a

{
−1

2

(
∂ν

[
∂2L

(∂φa)∂(∂νφa)

]
ϕa

+ ∂ν

[
∂2L

∂(∂νφa)∂(∂ρφa)

]
ϕa

∂ρ

+

[
∂2L

∂(∂νφa)∂(∂ρφa)

]
ϕa

∂ν∂ρ −
[
∂2L
∂φ2

a

]
ϕa

)}
φ̂a, (1.22)

where the equality defines the O[ϕa, ∂ϕa] operator that depends on the
classical background configuration as the expression enclosed in braces on
the right-hand side and this is used to quantize the fluctuations, φ̂a(x).

Now comes the important point: we can split the fluctuations into
modes that oscillate in the directions of the centre-of-mass coordinates of

2We can do this with impunity because L appears under a spacetime integral in the
action, S and we assume boundary terms to vanish.
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the lump, translating it in these directions such that φ̂a,0 := yµ∂µϕa and
ones that are orthogonal to these directions. The utility of this decompo-
sition lies in the fact that by virtue of (1.18) φ̂a,0 are zero-modes of the
operator O[ϕa, ∂ϕa] and as a result cannot be coarse-grained out of the
theory when we test it at the low-energy regimes accessible to experiments
that correspond to spatial scales, aexp.

To see this, imagine that to leading order the φ̂3
a terms can be ignored

in the action, which means that the path-integral can, in principle, be
evaluated since it only involves Gaussian integrals in this case. However,
as we had seen in (1.4) the result of these integrals involves the inverse
of the determinant of the operator O[ϕa, ∂ϕa], which diverges if the zero
modes are also included, and hence these modes cannot be integrated over
and remain in the theory at lower energies as well.

Through these general considerations we see that effective theories in-
volving lumps can be built by conceiving of the low-energy degrees of free-
dom of these background configurations such as the centre-of-mass coor-
dinates, spin, etc. as fields in their own rights that interact with their
surroundings. These surviving interactions come from couplings between
the original fields in the high-energy theory, of which one has been as-
sumed to be in its classical background configuration that asymptotically
minimizes the system’s Hamiltonian, localizing the energy to a region, BR,
and then integrating out all fluctuations around these solutions that are
orthogonal to the low-energy degrees of freedom describing their energy-
distribution. The physics of such backgrounds can then be probed at scales,
aexp � R, which warrants a multipole expansion of their effective action,
where higher-order operators are systematically suppressed by increasing
powers of R/aexp once the symmetries of the low-energy theory have been
established.

As the name “Point-Particle Effective Field Theory” suggests, we will
be concentrating on the special class of such lumps that are one-dimensional
in the low-energy theory and so behave as point-like objects3. These kinds
of background solutions trace out a curve in spacetime, P : s → yµ(s) –
known as the world-line – that can be described by a single parameter, s
mapping R to the target space M4 through the centre-of-mass coordinates,
yµ(s).

In essence then, what we will mean by a PPEFT is this: there exists a
localized (to a ball, BR of radius R) blob of energy somewhere in spacetime,
whose interactions with its environment (at the experimental scale, aexp �
R) can be captured by assuming it to be a one-dimensional object with
world-line, P parameterized by a single variable s and a low-energy field
content of centre-of-mass coordinates, yµ(s) and other integral degrees of
freedom such as spin, ξµ(s) coupling the bulk fields (i.e. the ones still in the
path-integral) to its world-line through generic EFT interactions organized
into a series of R/aexp.

3As opposed to multi-dimensional ones such as strings, membranes, etc.
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1.3.2 Implications of Lumps

Having found the low-energy degrees of freedom of a background solution,
we are now ready to explore what the consequences of having such a solution
are. For this discussion we will assume that the symmetries of the theory
are known, which allows us to write the general low-energy effective action
for a free blob as,

Sp,0 =

∫
dsLp,0[ypt(s), ẏpt(s), · · · ], (1.23)

where ypt(s) is a general set of low-energy fields that by the arguments
of the previous section will always include the centre-of-mass coordinates,
yµ(s), the overdot represents differentiation with respect to the world-line
parameter, s and the ellipses contain possible higher derivatives of these
fields.

In cases where Lp,0 is not too complicated it is now possible to figure
out what physical parameters of the lump the lowest-order coefficients in
Lp,0 stand for by deriving the constraints on this theory. This proceeds
[16, 17, 18] by finding the conjugate momenta for the internal degrees of
freedom defined as,

p(ypt) :=
∂Lp,0
∂ẏpt

, (1.24)

and then attempting to rearrange the result to find the velocities, ẏpt(s)
as functions of these momenta. When this procedure fails, we obtain pri-
mary constraints that the theory has to obey, and it is in these primary
constraints that one may easily relate the EFT couplings to physical param-
eters, such as mass for example. We will see this procedure more explicitly
in the next section where we look at the physics of a free, scalar lump with
no additional internal degrees of freedom apart from the centre-of-mass
coordinates, yµ(s).

A freely propagating blob is not too exciting on its own so to get some
more interesting phenomena we introduce a general set of external fields,
φa(x) into the bulk of the theory via the bulk action,

SB =

∫
d4xLB[φa, ∂φa, · · · ]. (1.25)

Here, if we want to consider a particular QFT, the bulk Lagrangian, LB
can be a function of the fields and their first-derivatives only; but if we
would rather have an EFT, SB can be an effective action depending on
the fields and all their derivatives. Now, to couple these new fields to the
lump, we write down the most general PPEFT action consistent with the
symmetries to a given order in the ratio R/aexp by building interaction
terms between the low-energy fields of the lump, the bulk fields, and all
the possible derivatives of these. The lump action therefore modifies to an
interacting one,

Sp =

∫
dsLp[ypt, ẏpt, φa, ∂φa, · · · ], (1.26)
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where the bulk fields, φa(x) and their derivatives are evaluated on the
world-line of the blob. The physical significance of some of the effective
couplings in this interacting lump action can also be revealed by finding its
Hamiltonian,

H := ẏpt · p(ypt) − Lp, (1.27)

for example the magnetic moment of an atom can be identified in this way,
as will be shown in the appendices of Chapter 4.

Notice that SB and Sp describe different sectors of the theory and so
need to be combined to form the full theory with the complete action,

S = Sp + SB =

∫
d4 xLB[φa, ∂φa] +

∫
dsLp[ypt, ẏpt, φa, ∂φa, · · · ],

=

∫
d4 x

{
LB[φa, ∂φa] +

∫
ds δ4(x− y)Lp[ypt, ẏpt, φa, ∂φa, · · · ]

}
,

(1.28)

where in the second line we have introduced a 4-dimensional delta-function
to place the two actions on the same footing; or said another way, to embed
the lump world-line in the target-space of the bulk theory.

To see how the presence of the background solution affects the physics
of the bulk fields in a simple setting, let us assume that Lp only depends
on the bulk fields but not their derivatives and require the total action to
remain stationary under variations with respect to these fields, δS/δφa = 0.
This procedure leads to

δS

δφa
=

∫
d4x

{
∂LB
∂φa

− ∂µ
(

∂LB
∂(∂µφa)

)
+

∫
ds δ4(x− y)

∂Lp
∂φa

}
= 0, (1.29)

and consequently gives rise to the equations of motion,

∂µ

(
∂LB

∂(∂µφa)

)
=
∂LB
∂φa

+

∫
ds δ4(x− y)

∂Lp
∂φa

, (1.30)

which contains our artificially introduced 4-dimensional delta-function. This
can be further simplified by imposing a set of conditions on the centre-of-
mass coordinates, namely by assuming the blob’s world-line to be param-
eterized using proper time, τ we can set −ẏ2 = −ẏµẏµ = 1, then we can
boost to the rest-frame of the lump, which yields ẏµ = δµ0 with all higher
derivatives vanishing and finally we can translate the background solution
such that most of its energy is concentrated near the origin, which leads
to yµ = τδµ0 . The idea behind these manipulations is that we can now get
rid of the world-line integral in (1.30) and turn the interactions between
the bulk fields and the centre-of-mass coordinates of the lump into specific
components of the fields interacting at the origin,

∂µ

(
∂LB

∂(∂µφa)

)
=
∂LB
∂φa

+ δ3(x)
∂Lp
∂φa

∣∣∣∣∣
yµ=τδµ0

. (1.31)
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Next, we turn to solving these equations to see what kind of fields can
live outside the lump. When we exclude the origin from the problem, the
field equations reduce to the usual equations of motion for the fields,

∂µ

(
∂LB

∂(∂µφa)

)
=
∂LB
∂φa

, (1.32)

which are usually some sort of first- or second-order differential equations
that are generally solved by mode-expansions of the form,

φa(t, r, θ, φ) =
∑
β

e−iωβtYL(θ, φ)
{

CLRC ,L(r) + DLRD,L(r)
}
, (1.33)

where β is a set of quantum numbers that completely identify the state
and its energy, ωβ, YL(θ, φ) is a set of angular functions appropriate for the
field, L is a set of accompanying angular momentum labels4, and CL and DL

are the integration constants multiplying the near-origin convergent radial
solution, RC ,L(r) and the near-origin divergent radial solution, RD,L(r)
respectively.

Now, with our feet securely planted on the completely general solution
to the equations of motion in the form (1.33), we can dive into finding the
specific solutions that obey the full equation in (1.31), including the origin.
This is achieved by imposing an adequate set of boundary conditions on
the field that determine the integration constants CL and DL. We have
previously required that fields fall-off sufficiently fast in the r → ∞ limit
that they remain finite and we can certainly stand by this requirement and
impose it as a boundary condition at large-r. This will generally either
kill the near-origin convergent solution by setting CL = 0 or turn into
a constraint on the ratio of the integration constants, DL/CL. Another
popular choice for boundary conditions, which is certainly familiar from
lectures on quantum mechanics is boundedness at the origin, i.e. also
requiring the solutions in (1.33) to be finite in the r → 0 limit. We have
shown in previous work [1, 2] that such a condition cannot be the correct
one for non-relativistic Schrödinger fields moving in a 1/r2 potential or for
charged, relativistic scalar fields moving in a Coulomb potential because
both radial solutions can diverge in these scenarios. This suggests that we
should also find an alternative for the general case now at hand.

So what condition should we impose and where? This is where the delta-
function term derived from the lump action comes in, since one learns early
on that to deal with such potentials one needs to integrate the equation
they are involved in. Then, integrating (1.31) over a ball, Bε of vanishingly

4For example, in three spatial dimensions YL(θ, φ) are the scalar spherical harmonics
for energy eigenstates of scalar fields obeying the Laplace equation, spinor spherical
harmonics for fermions obeying the Dirac equation with a central field, etc. and the
accompanying labels are: {l, lz} with orbital angular momentum quantum number l
and projection lz for the scalars; and {j, jz, $} with total angular momentum (orbital
plus spin) quantum number, j, its projection jz and the state’s parity, $ = ± for the
spin-half fields.
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small radius, ε (see Fig. 1.1 for an illustration) and so dropping all but the
spatial-derivative and delta-function terms yields,∫

Bε

d3x ∂i

(
∂LB

∂(∂iφa)

)
=

∫
∂Bε

d2x n̂i

(
∂LB

∂(∂iφa)

)
=

∫
d2Ω2 ε

2

(
∂LB

∂(∂rφa)

) ∣∣∣
r=ε

=
∂Lp
∂φa

∣∣∣∣∣
ẏµ=δ

µ
0

x=0

,

=⇒
∫

d2Ω2 ε
2

[(
∂LB

∂(∂rφa)

)
− 1

4πε2

(
∂Lp
∂φa

)]
ẏµ=δ

µ
0

r=ε

= 0, (1.34)

where in the first equality we have used Gauss’ theorem to trade the volume
integral over Bε to one on its surface, ∂Bε with unit normal vector, n̂
(taken to be r̂ in the second equality as is appropriate for a sphere), and
on the third line we have assumed that the value of the field inside Bε is
approximately equal to its value on the boundary such that φa(ε) ≈ φa(0).
Since the size of the Gaussian surface we have integrated over was arbitrary,
we must have that(

∂LB
∂(∂rφa)

) ∣∣∣
r=ε

=
1

4πε2

(
∂Lp
∂φa

) ∣∣∣
ẏµ=δ

µ
0

r=ε

(1.35)

is the new near-source boundary condition we must impose on the fields.
Notice that the left-hand side of (1.35) contains contributions from those
terms in the bulk action SB that required integrations by parts on the
field when finding its equations of motion and the right-hand side only
involves terms from the lump-action, Sp. As such, this condition relates the
integration constants of (1.33) to the effective couplings appearing in Sp
and its consistency with the large-r boundary conditions fully determines
the solution to (1.31). Hence, it is only through these alternative near-
source boundary conditions that the bulk fields learn about the presence of
the lump in the theory and their knowledge of the background is reflected
in the values of their integration constants.

All is not as well as it seems however, because there are two blatant
problems with the above procedure, which we will address now.

Boundary Action

First, we had obtained from Sp a delta-function potential, which is not only
ill-defined in three dimensions, it also forces us to evaluate the bulk fields at
the origin; a region that exists inside the lump of size, R and so is a regime
where we trust neither our effective description of this background solution
nor the bulk field solutions valid external to R anymore. How then, can we
make sense of the derivation of (1.35)?

A better argument has been developed in our earlier work [1] where
we have first encountered this issue and we recount here the discoveries
made there. Notice that the real implication of Sp is a condition on the
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Gaussian surface, ∂Bε that relates the terms from the bulk action that
contained spatial-derivatives of the fields to values of the fields themselves,
both evaluated at r = ε. This suggests that what we are really after is some
data on this boundary that determines the fields and their derivatives on
∂Bε in a way that leads to the correct behaviour of the bulk fields outside
of the source as inferred from Sp.

However, fixing the values of the fields and their derivatives on ∂Bε is
risky business because these values need to be consistent with similar ones
on other boundaries in the problem and they also depend on any possible
sources outside of this surface not just the ones enclosed in it. This suggests
that we should impose this data in a dynamical way that is allowed to
change depending on the positions of all the sources and boundaries of the
problem and this is precisely what can be achieved by an action principle.
Motivated by this line of argument we introduce in place of Sp an effective
boundary action, S∂Bε – with new, effective boundary couplings – whose
sole purpose is to yield boundary conditions on ∂Bε that give rise to physics
consistent with the presence of the lump under variation with respect to
the fields. This boundary action can then be written as,

S∂Bε :=

∫
dt

∫
d2Ω2 ε

2 L∂Bε [ypt, ẏpt, φa(ε), · · · ] (1.36)

where L∂Bε is defined to have the same functional derivative under variations
of φa as Lp but with different effective couplings and all bulk fields evaluated
at r = ε, and the ellipses represent higher derivatives of the lump fields.

Then, the total action is again given by two parts, S = SB +S∂Bε and as
far as the region exterior to Bε is concerned there is a physical boundary at
∂Bε. The fields that correctly take the effects of the lump into account can
be found by requiring stationarity of the action SB with respect to variations
of the fields also satisfying the conditions obtained by requiring stationarity
of the boundary action with respect to such variations. The variation of
terms in SB with respect to the fields that involve integrations by parts
yield additional contributions to the boundary conditions not explicitly in
S∂Bε through their boundary terms, which now don’t all vanish thanks to
the physical boundary, ∂Bε, that is to say,

δS ⊃
∫

d4x
∂LB

∂(∂µφa)
∂µ(δφa) = −

∫
d4x ∂µ

(
∂LB

∂(∂µφa)

)
δφa

+

∫
dt

∫
d2Ω2 ε

2δφa
∂LB

∂(∂rφa)
. (1.37)

The term on the second line combines with S∂Bε under variation, yielding,

δS = δ(SB + S∂Bε) = −
∫

d4x δφa

[
∂µ

(
∂LB

∂(∂µφa)

)
− ∂LB
∂φa

]
+

∫
dtd2Ω2 δφa

[
∂LB

∂(∂rφa)
+
∂L∂Bε
∂φa

]
r=ε

,

(1.38)
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and requiring stationarity of the action under such variations, δS/δφa = 0
forces the two terms on the right-hand side of the second equality to vanish
separately, since they are on disjoint domains of the theory and so the fields
must satisfy both

0 = ∂µ

(
∂LB

∂(∂µφa)

)
− ∂LB
∂φa

, and 0 =

[
∂LB

∂(∂rφa)
+
∂L∂Bε
∂φa

]
r=ε

, (1.39)

leading to the usual bulk field equations of motion and the boundary con-
ditions on ∂Bε needed for them to correctly take into account the presence
of the background solution.

This way of thinking about the problem has the added benefit that it
avoids the evaluation of the fields inside the region where the microscopic
details of the lump background solution become important, excluding in
particular the origin, where parts of the bulk solutions (1.33) diverge. In
this sense, Sp and its delta-function serve merely as a computational crutch
that lets us identify the correct local interactions between the lump and
the bulk fields that need to be translated into S∂Bε in order to capture the
correct physics far away from the blob. Nevertheless, the couplings of the
two actions, Sp and S∂Bε can be matched to one another5 by calculating
the same physical observables at aexp � R from both, if this should be
required.

This is a nicer story, but the question of where we should impose these
conditions, i.e. what radius, ε we should choose for the surface on which
we define S∂Bε still remains, since this was arbitrarily introduced into the
theory. In order to escape sensitivity to boundary effects and have a well-
controlled operator expansion in the usual sense of EFTs, we will choose
ε � R as this will allow us to organize our lump-bulk interactions as a
series in R/ε. To avoid similar issues with the observables calculated at
aexp we also choose ε� aexp.

Therefore, when we talk about PPEFT and its action what we really
mean is that there exists a lump of size R probed at a scale aexp surrounded
by a spherical shell of size ε that obeys R � ε � aexp on which we set
up a boundary action whose variation combined with the boundary terms
coming from the bulk action yield the boundary conditions required for the
bulk fields to learn how they should behave around the given background
solution; a condition inferred from the point-particle action, Sp.

Renormalization

The other issue that arises from (1.35) is that since both the fields and
their derivatives are evaluated at the fictitious scale, ε, rearranging the
equations to find the integration constants as functions of the PPEFT –
or more precisely boundary action – couplings we find that these constants

5In the simple cases we will consider the point-particle couplings, ci will be dimen-
sional reductions of the boundary action couplings, ĉi such that the two are related by
ĉi := ci/4πε

2.
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also explicitly depend on ε. This is a problem because physical quantities of
interest often depend on the integration constants of the solutions in (1.33)
and so by proxy appear to be functions of the unphysical parameter, ε.
This would imply that observable quantities, such as the energies of atomic
bound-states for example change, depending on what radius we choose
for the imaginary boundary, ∂Bε. Clearly this is completely absurd and
unacceptable from a physical point of view and therefore it is imperative
that we keep the integration constants independent of this artificial scale;
the only question is how?

The way out is to realize that the ε-dependence of CL and DL is merely
an illusion because any explicit terms of ε that may appear when we write
them as functions of the PPEFT couplings using (1.35) get cancelled by
implicit ε-dependences of these effective coupling constants. In this sense,
the lump-bulk couplings exhibit a classical version of the renormalization
group flow familiar from QFTs [12, 13, 14], in which the values of the
coupling constants change depending on the size of ∂Bε.

To find meaningful values of the integration constants then, we can an-
alyze this RG-flow by rearranging the newly discovered near-source bound-
ary conditions such as (1.35) or (1.39) for the coupling constants instead of
the integration ones, and differentiating these with the operator ε d

dε
, while

keeping CL and DL fixed in the sense that

ε
d

dε
CL = ε

d

dε
DL = 0. (1.40)

Following this differentiation we integrate the result in order to tease out
constants known as RG-invariants that pin-point which curve in the space
of couplings our theory evolves on, but do not flow themselves. Comparing
the result of the integration – written in terms of the RG-invariants –
with the original ε-dependent function of the couplings we had started
with (by rearranging conditions such as (1.35) and (1.39)) we find that
the integration constants are actually only functions of the RG-invariant
constants but not the fictitious scale, ε.

In this way, observables are saved from the threat of ever becoming
functions of the unphysical quantity, ε and they turn out out to be func-
tions of the RG-invariant parameters themselves; a phenomenon known
as dimensional transmutation. These constants are then possible to fit
experimentally and using these fitted values it becomes possible to make
predictions for other measurements, which we will heavily exploit when we
look at atomic systems in Chapters 3 and 4.

To summarize, in this section we have discovered that the main impli-
cations of lump solutions lie in the boundary conditions they impose on the
external fields on a Gaussian sphere of radius, R � ε � aexp in the form
of (1.35). Figure 1.1 illustrates these relevant scales in the problem and
we should always have this image in the back of our mind going forward
when we talk about EFTs of lumps. Strictly speaking these boundary
conditions emerge in the form of (1.39) from an effective boundary ac-
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R ϵ aexp

Figure 1.1: This picture shows the three relevant scales in an effective
theory of lumps: R the size of the blob where its energy is concentrated; ε
where the boundary conditions the lump implies for the bulk fields is set
up; and aexp the scale at which experiments probe the lump. These scales
obey R � ε � aexp and the fuzzy blob in the middle represents the lump
that can be the result of very complicated physics.

tion S∂Bε that allows these boundary conditions to change in a dynamical
way in response to the presence of all sources pertaining to the fields, and
whose construction relies on inferring the correct local interactions between
the blob background and the bulk fields from the effective one-dimensional
point-particle action, Sp, which is relatively easy to build. Furthermore, we
have found that the coupling constants of these actions need to run in the
renormalization group sense in order to keep observables that depend on
the integration constants of (1.33) physical, and through dimensional trans-
mutation these observables turn out to depend only on the RG-invariant
parameters of this running. With these general ideas in mind we will now
move onto finding the PPEFT of real atomic systems.

1.4 PPEFT for Atoms

So far we have seen that at low energies certain fields can develop back-
ground solutions that concentrate some energy to a centre-of-mass posi-
tion, yµ(s) in a ball of radius, R. We have christened these solutions
“lumps/blobs” and found through general arguments that when they are
probed at experimental scales of aexp they interact with their surroundings
through their low-energy degrees of freedom such as the coordinate fields,
yµ(s), their spin6, ξµ(s) and other internal degrees of freedom and these
interactions can be conveniently captured by an effective action organized

6For simplicity of presentation we assume this nuclear spin, ξµ(s) to be zero for now.
However, a major part of this thesis presented in Chapter 4 exhaustively discusses the
inclusion of spinning nuclei in the PPEFT formalism and we comment on where this
will be relevant at certain places in what follows.
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into a multipole expansion of operators where higher-order interactions are
suppressed by increasing powers of the ratio R/aexp � 1. This action
can then be used to construct a similar boundary action that dynamically
imposes the necessary boundary conditions on the fields external to these
backgrounds to allow them to adjust their behaviour to be consistent with
the presence of such lumps.

In this section, we will explore the PPEFT for a simple class of blobs
that have no low-energy degrees of freedom other than their centre-of-mass
coordinates, yµ(s) and will see that it is possible to conceive of such a
theory as describing an atomic system with a spinless nucleus. We will
proceed starting with the theory of a free lump (in what follows the names
“lump/blob/nucleus/background solution” will be used interchangeably)
and use it to infer the symmetries obeyed by such simple objects and then
couple our blob to an electromagnetic field, which will allow us to demon-
strate how the above formalism works in the familiar setting of electro-
statics. In the last section we will further complement this system with
fermionic bulk fields and see how these fields learn about the presence of
the nucleus.

1.4.1 Relativistic, Free, Scalar Particle and Symme-
tries

Let us begin by studying a freely propagating, possibly relativistic spinless
point-particle; a system well-studied in the gravitational literature [19, 20,
21]. The action for such a system is given by

Sp,0 =

∫
dsLp,0 = −

∫
ds
√
−ẏ2M, (1.41)

where ẏ2 = ηµν ẏ
µẏν and as before, s is a parameter along the particle’s

world-line, while yµ(s) are the particle’s centre-of-mass coordinates, the
overdot means differentiation with respect to the world-line parameter and
M is a constant that will turn out to be the mass of the particle. This
is a good starting point for us because a spinless nucleus has size, R ∼
1 fm and when viewed from afar, say from a scale aexp � R it appears
to be exactly such a particle and so has a low-energy effective description
akin to this system: its field-content consists of only the centre-of-mass
coordinates, yµ(s); and its only physically observable characteristic is its
mass. Therefore, by studying the properties of this system we can learn
surprisingly much about what the PPEFT corresponding to a nuclear lump
should be like and can – in addition to the field content – also establish its
symmetry properties.

The first symmetry that is readily apparent in this action is that of
translation invariance. Moving the particle over by a constant, aµ means
translating its centre-of-mass coordinates such that y′µ(s) = yµ(s) + aµ

and this leaves the theory invariant thanks to the action only depending
on the derivative ẏ′µ = ẏµ. The emergence of this may seem surprising
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but recall from our earlier discussion of lumps that we had started with
a translation-invariant action before we integrated out the high-energy de-
grees of freedom. Once the blob had come to life, this symmetry was broken,
because moving the lump around corresponded to physically distinct set-
ups, leading to the translation-invariance of the high-energy theory becom-
ing non-linearly realized as shifts in the coordinate fields, yµ(s). To respect
this symmetry, it then had to be true that the fields yµ(s) only appear
differentiated, i.e. through ẏµ in the effective actions for point-particles.

Another closely related and equally transparent symmetry of Sp,0 is
Lorentz invariance, which can be seen by the contraction of all spacetime
indices. This symmetry is inherited from the high-energy theory of the
point-particle and is the unbroken subgroup of the full Poincaré group
in the low-energy lump theory, SO+(1, 3) ⊂ ISO+(1, 3). Again, a simple
way to see that this symmetry survives the point-particle limit is that it
is linearly realized on the low-energy degrees of freedom, since both the
centre-of-mass coordinates, yµ(s) → Λµ

νy
ν(s) and spin, ξµ(s) → Λµ

νξ
ν(s)

transform in the fundamental representation of the group, where Λµ
ν is a

proper, orthochronous Lorentz transformation.
The action of the other parts of the Lorentz group i.e. parity and time-

reversal also leave this action invariant. This can be seen from the fact that
the four-vectorial quantity ẏµ that changes under these transformations as

P :

{
ẏ0 → ẏ0,
ẏi → −ẏi, T :

{
ẏ0 → −ẏ0,
ẏi → ẏi,

(1.42)

only appears contracted with another four-vectorial quantity – namely it-
self, ẏµ – that transforms the same way, leaving the resulting quantity
invariant. Then, by the CPT-theorem the PPEFT action that is symmet-
ric under P and T will also have to be symmetric under charge conjugation,
C once the point-particle becomes charged under some gauge field.

A less obvious symmetry of the action of the free scalar particle is repa-
rameterization invariance. This is the symmetry whereby choosing a dif-
ferent parameter to describe the trajectory of the particle the action is left
unchanged and looks the same as in the old variable. This transformation
is effected by taking s → f(s) for some arbitrary, well-behaved function,
f(s) and is most easily seen by explicitly writing out the transformation,

ds
√
−ẏ2 → df

(
∂f

∂s

)(
∂f

∂s

)−1
√
−
(

dy

df

)2

= df

√
−
(

dy

df

)2

. (1.43)

The last quality of the low-energy effective description of the nucleus we
can extract from the action of the point-particle comes from the interpre-
tation of the constant, M . To find what this parameter corresponds to we
need to derive the constraints on the theory, and as we have advertised in
the previous section this proceeds by way of finding the conjugate momenta
to yµ given by

pµ =
∂Lp,0
∂ẏµ

= M
ẏµ√
−ẏ2

(1.44)
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and then trying to rearrange this result to find the velocity, ẏµ as a func-
tion of pµ. We run into an obstacle during this last manipulation due to
the presence of the square-root, which necessitates calculating p2 = pµp

µ

instead,
p2 = −M2 (1.45)

from which ẏµ disappears, preventing us from writing it as function of pµ.
The result then is the constraint p2 + M2 = 0, which is no other than
the correct dispersion relation for a relativistic particle, provided that the
parameter M is associated with the mass of the particle. Since this last
condition is a constraint, the free point-particle is forced to move on its
mass-shell, as is worthy of a real particle. Furthermore, since M is a real
quantity, we learn that the action has to be hermitian if it is to describe a
unitary system7.

In summary, by studying the symmetry properties of the action of a
relativistic scalar point-particle we have learned that the PPEFT action
describing a nucleus has to be hermitian; translation and Lorentz-invariant;
unaffected separately under P, T and consequently C transformations; and
unchanged by reparameterizations of the world-line. Going forward, this
will be a basic set of symmetries that we require from the low-energy actions
of our one-dimensional lump.

1.4.2 Coupling to the photon

Next, we look at how a point-like-appearing object in our theory with the
PPEFT properties just established couples to a U(1) gauge field. The rea-
son for investigating this is twofold: it shows us how gauge symmetries
can be incorporated into the PPEFT formalism, which is of practical im-
portance to us since although atoms are neutral objects overall, nuclei are
a collection of strongly bound neutrons and protons and therefore corre-
spond to charged background solutions; and also reveals how the presence
of a charged one-dimensional lump affects the surrounding electromagnetic
gauge field through the near-nucleus boundary conditions it implies for this
field.

Now then, let us imagine that there is a U(1) gauge field, Aµ(x) that
lives in the bulk and that our point-particle is charged under this field with
a total charge of Q. The dynamics of such a gauge field are described by
the usual Maxwell action,

SM = −1

4

∫
d4xFµνF

µν , (1.46)

where Fµν = ∂µAν − ∂νAµ is the anti-symmetric field-strength tensor. As
usual, this bulk action is invariant under gauge transformations of the form
Aµ(x) → Aµ(x) + ∂µh(x) for an arbitrary scalar function, h(x) and this

7This condition can be relaxed depending on the physical situation, such as is the
case when studying systems with sinks or sources of probability [8].
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means that under such transformations the change in the Lagrangian can
at most be a total derivative, since these leave the action and consequently
the physics unchanged.

Recall, that for a PPEFT, SM alone cannot be the whole story since
it only describes the dynamics present in the bulk but says nothing about
the existence of the lump and hence the total action of a charged lump
with a U(1) gauge field will have to include an appropriate point-particle
contribution as well in the form of the coupled nuclear action, Sp,M . If
the point-particle was uncharged under the U(1) group, the total action
would be S = SM + Sp,0; an example of a boring free theory where nothing
ever happens. The question to ask then is: what is Sp,M , the action for a
one-dimensional lump charged under a U(1) group?

We can answer this using the model-building procedure developed in
the earlier sections since we know that the low-energy field content is
{yµ(s), Aµ(x)} and the symmetries are gauge invariance and the symme-
tries of a nuclear PPEFT we had inferred from Sp,0. Then, following our
algorithm for building EFTs we find that the action for a charged spinless
blob of size, R probed at a length scale, aexp � R is

Sp,M = −
∫

ds
{√
−ẏ2M −QẏµAµ(y) + · · ·

}
, (1.47)

where the bulk field, Aµ(x) is evaluated on the world-line, Q is a coupling
constant that turns out to be the charge of the lump8 and the ellipses encode
possible higher-dimensional operators suppressed by increasing powers of
the ratio, R/aexp that act as sources for the rest of the terms in a multipole
expansion of the vector-potential9.

Note that Sp,M is gauge-invariant, which can be easily established by
looking at the last term under a gauge transformation with δAµ(x) =
∂µh(x), resulting in

δS = δ

(
Q

∫
ds ẏµAµ(y)

)
= Q

∫
ds ẏµ∂µh(x)

∣∣∣
x=y

= Q

∫
ds

d

ds
h(y) ,

(1.48)
which evaluates to a constant without physical significance.

The moral of this exercise then is that lumps can be charged under
gauge fields by introducing gauge-invariant interactions between the low-
energy degrees of freedom of the blob and the electromagnetic field, Aµ(x)
and its various derivatives, evaluated on the world-line of the point-particle,
just as we had claimed in the last section.

8One way to assert this is again by finding the constraints on the theory, which work
out to be P 2

A + M2 = 0, where PµA = pµ − QAµ; the usual dispersion relation for a
charged, relativistic scalar particle provided that M is interpreted as its mass and Q as
its charge.

9For instance, as we will see later a lump with spin can interact with Aµ(x) through
a term Sp ⊃ i b ξµξνFµν that sources a magnetic-dipole field, where b is proportional to
the blob’s magnetic moment and as before, ξµ(s) is the spin of the lump.
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Now that we know how to couple the gauge field to the point-particle,
we can investigate how the charged lump affects the vector potential, i.e.
what kind of potentials does the total action give rise to at the length scales
of our experimental probes, aexp that are much larger than the inherent size
of the blob, R. In order to do this we need to work out the equations of
motion for the gauge field as derived from S = SM + Sp,M ,

S = −
∫

d4x

{
1

4
FµνF

µν +

∫
ds
(√
−ẏ2M −QẏµAµ

)
δ4(x− y)

}
,

(1.49)
where we have inserted a 4-dimensional delta-function to place SM and Sp,M
under the same integral. Varying with respect to Aµ(x) leads to the field
equation

∂µF
νµ = ∂µ∂

νAµ −�Aν = Q

∫
ds ẏνδ4(x− y), (1.50)

which can be simplified by exercising our freedom to choose Coulomb gauge
i.e. to set ∂µA

µ = 0, assuming the solutions to be time-independent (and
so ∂0Aµ = 0 and ∂0∂µh(x) = 0) and utilizing the symmetries of the system
to parameterize the nuclear world-line via its proper time, τ such that
ẏ2 = −1, then boost to the point-particle’s rest frame (this sets ẏµ = δµ0 )
and finally translate the nucleus to the origin (which further picks out
yµ = τδµ0 ), which all come together to yield

∇2Aν = −Qδν0δ3(x). (1.51)

Following our procedure for finding the nuclear influence on the external
fields we look for a solution to this differential equation away from the origin
first, which turns out to be a sum over all angular momentum and radial
modes allowed by the Laplace equation, ∇2A0 = 0 [22],

A0(r, θ, φ) =
∞∑
l=0

l∑
lz=−l

Y lz
l (θ, φ)

{
Cl,lzr

l + Dl,lzr
−l−1

}
(1.52)

where Cl,lz and Dl,lz are the integration constants of the near-origin con-
vergent and divergent parts of the solution respectively, l is the angular
momentum quantum number and lz is its projection, while Y lz

l (θ, φ) are
the usual scalar spherical harmonics.

Although, this is the general form of the solution to (1.51), it is not
the solution, since specifying the result completely requires fixing the in-
tegration constants and this is achieved by choosing boundary conditions
on various surfaces. As we had discussed before we require there to be
a boundary condition at r → ∞ that asks the fields to remain finite in
this limit, and imposing this large-r boundary condition on A0(r, θ, φ) sets
Cl,lz = 0 for all of the angular momentum modes.

As we have learned from the last section the appropriate next step is
integrating (1.51) over a ball, Bε of small radius, ε that obeys R� ε� aexp
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which by using Gauss’s theorem leads us to∫
Bε

d3x∇2A0 =

∫
∂Bε

d2x n̂ · ∇A0 =

∫
d2Ω2 ε

2∂rA
0
∣∣∣
r=ε

= −
∑
`,`z

(`+ 1)D`,`zε
−`
∫

d2Ω2 Y
`z
` = −Q,

=⇒ D`,`z =
Q√
4π
δ`,0δ`z ,0 , (1.53)

where n̂ is the unit normal vector of the surface ∂Bε that we have taken to
be r̂ for the spherically symmetric Gaussian pillbox of our choosing. Hence,
by integrating the delta-function piece in (1.51) to find an alternative near-
origin boundary condition to boundedness we fix the second integration
constant, which in turn yields the specific, spherically symmetric, time-
independent solution to (1.51),

A0(r) =
Q

4πr
, (1.54)

which we recognize as the electromagnetic potential of a spherically sym-
metric charge-distribution with total associated charge, Q. For our PPEFT
of a charged nucleus this is no other than the Coulomb-field of the nucleus
with Q = Ze, where Z is the atomic number and e is the electric charge
unit.

The same field can be derived by using the boundary action,

S∂Bε,M =

∫
dt

∫
d2Ω2 Q̂A

0(ε), (1.55)

in place of Sp,M , where Q̂ is an effective coupling related to but not the
same as Q. Varying the total action we find,

δS = δ(SM + S∂Bε,M) = −1

2

∫
d4xFµνδF

µν +

∫
dt

∫
d2Ω2 ε

2Q̂δA0,

= −
∫

d4x (δAµ)∂νFµν +

∫
d3x n̂νFµνδA

µ +

∫
dt

∫
d2Ω2 ε

2Q̂δA0,

= −
∫

d4x (δAµ)∂νFµν +

∫
dt

∫
d2Ω2 ε

2
[
F0r + Q̂

]
r=ε
δA0

+

∫
dt

∫
d2Ω2 ε

2Fjr

∣∣∣
r=ε
δAj,

(1.56)

from which we can read off the boundary condition for A0(ε) to be ,

F0r

∣∣∣
r=ε

= ∂0Ar

∣∣∣
r=ε
− ∂rA0

∣∣∣
r=ε

= ∂rA
0
∣∣∣
r=ε

= −Q̂. (1.57)

Now using the bulk solution from (1.52) with Cl,lz = 0 we get,∑
l,lz

(l + 1)Dl,lzε
−l−2Y lz

l (θ, φ) = Q̂, (1.58)
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from which we obtain,

Dl,lz = δl,0δlz ,0
√

4πε2Q̂, (1.59)

by realizing that there is no angular-dependence on the right-hand side,
and equating this to our earlier result from (1.53) also reveals,

Q̂ =
Q

4πε2
, (1.60)

and with this boundary coupling we recover the Coulomb field in (1.54).
The most important take-away from finding the solution to (1.51) is that

the presence of the charged lump contributed to the gauge field equations
of motion a delta-function potential, which eventually lead to a boundary
condition on the Gaussian sphere of radius ε. This condition related the
remaining integration constants D`,`z to the coupling constant, Q in Sp,M ,
and this is how the exact solution to (1.51) was found to be (1.54). We
have also seen that we can avoid talking about what happens at the origin
by introducing the boundary action, S∂Bε,M with new effective couplings
that upon variation lead to boundary conditions akin to those coming from
integrating the equations of motion with the delta-function potential, and
more importantly, when properly treated lead to the same specific external
fields through a simple relation between the coupling of Sp,M and S∂Bε,M .

In this section then, we have seen how to couple lump solutions to U(1)
gauge fields via introducing gauge-invariant interactions on the world-line
of the lump between the low-energy degrees of freedom of the blob and the
gauge field, Aµ(x) and its derivatives. We have also shown that the effect
of the presence of the charged lump in the theory on Aµ(x) is to induce a
boundary condition on a Gaussian sphere of radius R� ε� aexp near the
origin that helps determine the specific solution to its field equations. It
is only through this boundary condition that the bulk field learned about
the existence of the lump and as argued before this turns out to be true for
other types of external fields as we will now show for fermions.

1.4.3 Coupling to the Electron

Now that we can create charged lumps we are in a good position to start
studying atoms, because we can now create electromagnetically bound-
states between the blob and other oppositely charged fields. Of particular
interest to us is when these orbiting particles are Dirac fermions, Ψ(x) of
mass m and charge (−e) such as electrons and muons that interact with
the nucleus at the scales of their Bohr radii, aexp := aB ∼ (mZα)−1, where
α := e2/4π is the fine-structure constant and aB � R.

Chalking up everything we have learned in the previous sections we see
that atoms can be described in our newly developed formalism by a PPEFT
with field content {Aµ(x),Ψ(x), yµ(s), ξµ(s), · · · }, where the ellipses rep-
resent other possible internal nuclear degrees of freedom. Furthermore,
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the symmetries of such a bound system comprise of Poincaré-, gauge- and
reparameterization-invariance, C, P and T conservation and hermiticity;
and the effective action of the nucleus can be systematically organized into
a multipole expansion of operators between the low-energy fields allowed
by these symmetries with higher-order terms suppressed by increasing pow-
ers of the ratio, R/aB ∼ (mRZα) and resolving increasingly finer nuclear
details. In fact, the utility of the PPEFT formalism lies precisely in this
statement, because it shows that the nuclear-size-related effects can be ef-
ficiently tracked by a robust low-energy effective action whose implications
are simple (relative to the increasingly difficult QED calculations, which we
will discuss in the later sections) boundary conditions that can be imposed
in a first-quantized language on the fermion fields, instead of having to rely
on complicated processes involving their second-quantized versions.

In the last section we have worked out how the presence of the nu-
cleus affects the gauge field and found that Aµ(x) learns about its presence
through a near-nucleus boundary condition that helps determine what kind
of electromagnetic potential arises around such a background. In detail, this
condition related the PPEFT couplings to the integration constants that
arose in the solutions to the Maxwell equations; specifying them to yield
the correct Aµ(x) around the charged blob. The final piece of the puzzle in
describing atoms as a PPEFT is throwing the fermion field at this system
and finding their bound-state solutions along with their new near-nucleus
boundary conditions.

First, let us introduce the charged fermions to the bulk of the theory
via the action,

SD,M = −
∫

d4xΨ
[
/D +m

]
Ψ , (1.61)

where the slash denotes contraction with the Dirac gamma matrices /∂ =
γµ∂µ with DµΨ(x) = [∂µ + ieAµ(x)]Ψ(x) the covariant derivative for a
field of charge (−e) that minimally couples the electron to the photon,
and where Ψ = Ψ†(iγ0) is the Dirac conjugate to the field, Ψ(x). The
combination of the free dynamics of the Maxwell field described by SM and
this minimally coupled Dirac action form the renormalizable bulk theory
of Quantum Electrodynamics (QED),

SB = SD,M + SM = SQED = −
∫

d4x

{
1

4
FµνF

µν + Ψ
[
/D +m

]
Ψ

}
, (1.62)

central to the modern theory of atoms.
So much for the bulk, but what about the nucleus? As before, to include

the presence of the nuclear background configuration we need to couple its
low-energy degrees of freedom to the bulk fields in a way that preserves all
the symmetries we have mentioned above and form the low-energy effective
action, Sp,QED. The most general Poincaré-, gauge- and reparameterization-
invariant, hermitian, C, P, T conserving action we can write down for the
theory of a charged spinless nucleus with field content {yµ(s), Aµ(x),Ψ(x)}
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is then

Sp,QED = −
∫

ds
{
M
√
−ẏ2 − (Ze)ẏµAµ

+Ψ
[
cs
√
−ẏ2 + icvẏ

µγµ

]
Ψ + · · ·

}
, (1.63)

where cs and cv are effective couplings of dimension, (length)2 and the
ellipses denote interactions with higher-dimensional couplings that – thanks
to the robustness of EFTs – are suppressed by more powers of R/aB than
those written. The total action of this system is then given by the sum of
SQED and Sp,QED,

S = SQED + Sp,QED = −
∫

d4x
{1

4
FµνF

µν + Ψ
[
/D +m

]
Ψ

+

∫
ds δ4(x− y)

(
M
√
−ẏ2 − (Ze)ẏµAµ

+Ψ
[
cs
√
−ẏ2 + icvẏ

µγµ

]
Ψ + · · ·

)}
, (1.64)

where we have again introduced a 4-dimensional delta-function to place all
contributions on the same footing.

Again, to see what new near-nucleus boundary conditions the charged
central object imposes on the bulk fields thereby asserting its presence,
we need to find their equations of motion and we start with that of the
gauge-field,

∂µF
νµ = (Ze)

∫
ds δ4(x− y)ẏν − ieΨγνΨ. (1.65)

The second term here, ieΨγνΨ comes from the interaction between the
fermionic and the gauge fields and so should be accounted for in a pertur-
bative second-quantized treatment of the fields with the use of Feynman
graphs. Put another way, we wish to include the first term coming from the
nucleus in the interaction-picture evolution of the gauge-field, i.e. use it to
determine the classical solution around which Aµ(x) is quantized, while we
retain its coupling to the electron field as a dynamic interaction that allows
for processes that change particle number, which gives rise to radiation-field
components, Aµrad(x) in the solutions (c.f. the discussion below (1.4)). The
position-space solution to (1.65) in the nuclear rest-frame placed at the ori-
gin at zeroth-order in the radiation field is then given by the Coulomb-field
familiar from (1.54)

A0(r) =
Ze

4πr
, (1.66)

and so not much changes due to the inclusion of the electrons as far as this
field is concerned.

On the other hand, varying the total action with respect to Ψ to find
the equations of motion for Ψ yields,[

/D +m
]

Ψ +

∫
ds δ4(x− y)

[
cs
√
−ẏ2 + icvẏ

µγµ

]
Ψ = 0, (1.67)
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which can be simplified to[
/D +m

]
Ψ + δ3(x)

[
cs − icvγ0

]
Ψ = 0, (1.68)

by parameterizing the lump’s world-line with proper-time, boosting to the
nuclear rest-frame and translating it to the origin, as is our go-to procedure
by now.

For atomic applications we are interested in bound-state solutions to
these equations, which are energy eigenstates with the standard unitary
time-evolution factor, Ψ(t,x) = e−iωtψ(x), where ω is the energy of the
state and for these solutions the equations of motion become,[
−iγ0 (ω − eA0) + γi∂i + ieγiAi +m

]
ψ(x)

+ δ3(x)
[
cs − icvγ0

]
ψ(x) = 0. (1.69)

Away from the effects of the nucleus (1.69) reduces to[
−iγ0 (ω − eA0) + γi∂i + ieγiAi +m

]
ψ(x) = 0, (1.70)

which for central potentials such as the one in (1.66) is solved by the ansatz
[23],

ψnjjz$(r, θ, φ) :=

(
Ωjljz$(θ, φ) fnj$(r)

iΩjl′jz−$(θ, φ) gnj$(r)

)
, (1.71)

where n = 1, 2, · · · is the principal quantum number, j = 1/2, 3/2, · · ·
is the total angular momentum quantum number with projection jz =
−j,−j + 1, · · · , j − 1, j, l = j − $/2 and l′ = j + $/2 are the orbital
angular momentum quantum numbers, while $ = ± is the state’s parity
quantum number. The spinor harmonics, Ωjljz$ are defined in terms of the
scalar spherical harmonics as,

Ωjljz$ :=

 $

√
l+$jz+ 1

2

2l+1
Yl,jz− 1

2
(θ, φ)√

l−$jz+ 1
2

2l+1
Yl,jz+ 1

2
(θ, φ)

 , (1.72)

while the radial solutions specific to the Coulomb potential sourced by the
spinless nucleus in (1.66) work out to be,

fnj$(r) =
√
m+ ω e−ρ/2

{
Cj,$ρ

ζ−1
[
M1 −

(a
c

)
M2

]
+ Dj,$ρ

−ζ−1

[
M3 −

(
a′

c

)
M4

]}
,

gnj$(r) = −
√
m− ω e−ρ/2

{
Cj,$ρ

ζ−1
[
M1 +

(a
c

)
M2

]
+ Dj,$ρ

−ζ−1

[
M3 +

(
a′

c

)
M4

]}
,

(1.73)
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where Cj,$ and Dj,$ are integration constants and the functions Mi are
given in terms of confluent hypergeometric functions10M(β, γ; z) := 1F1[β; γ; z]
with different arguments:

M1 :=M (a, b; ρ) , M2 :=M (a+ 1, b; ρ) ,

M3 :=M (a′, b′; ρ) , M4 :=M (a′ + 1, b′; ρ) . (1.74)

The various parameters appearing in (1.73) and (1.74) are defined by

a := ζ − Zαω

κ
, a′ := −

(
ζ +

Zαω

κ

)
, b := 1 + 2ζ, b′ := 1− 2ζ,

c := K− Zαm

κ
, ρ := 2κr, κ :=

√
m2 − ω2, ζ :=

√
K2 − (Zα)2 ,

(1.75)

where K is the Dirac quantum number, defined by

K := ∓
(
j +

1

2

)
for parity ± states . (1.76)

The completely general solution to (1.68) with potential (1.66) away from
the origin is then,

Ψ(x) =
∞∑
n=1

n− 1
2∑

j= 1
2

j∑
jz=−j

∑
$=±

e−iωnjjz$tψnjjz$(r, θ, φ), (1.77)

where we have now also affixed the quantum numbers to the mode-energy,
ωnjjz$.

Note that this form of the solution assumes the standard representation
of the Dirac gamma matrices [23, 24],

γ0 = −i
(

1 0
0 −1

)
, γi = −i

(
0 σi

−σi 0

)
, (1.78)

with the fifth gamma matrix defined as γ5 := −iγ0γ1γ2γ3 = −
(

0 1

1 0

)
and its related matrices given by

γ5γ
0 = −i

(
0 1

−1 0

)
, γ5γ

i = −i
(
σi 0
0 −σi

)
, (1.79)

while the Lorentz-algebra generators are defined as γµν := − i
4

[γµ, γν ], ex-
plicitly written as,

γ0i =
i

2

(
0 σi

σi 0

)
, γij =

1

2
εijk
(
σk 0
0 σk

)
, (1.80)

10These are discussed in more detail and generality in the appendices of Chapter 4, and

are defined as the series 1F1[β; γ; z] :=
∑∞

i=0
(β)i
i!(γ)i

zi, where (a)i = a(a+ 1) · · · (a+ i− 1)

with (a)0 := 1 are the Pochhammer symbols.
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where 1 is the 2×2 identity matrix and the σi are the usual Pauli matrices,

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (1.81)

All of the mode-functions in (1.77) obey the equation (1.68) indepen-
dently and since they all couple to the nucleus differently through their
angular momenta they must also individually satisfy their own set of large-
r and near-nucleus boundary conditions. In the r → ∞ limit any bound-
state mode with fixed quantum numbers {n, j, jz, $} must be normalizable,
which translates to the following constraint on their integration constant
ratios,

−
(

Dj,$

Cj,$

)
=

Γ[1 + 2ζ] Γ [−ζ − (Zαω/κ)]

Γ[1− 2ζ] Γ [ζ − (Zαω/κ)]
, (1.82)

arising purely from the need for the combination of radial functions in
(1.73) to be well-behaved in this limit.

For later use we note that the standard near-nucleus condition that is
normally imposed – appropriate only for truly point-like nuclei – is finite-
ness at the origin, which demands the near-nucleus divergent solutions in
(1.73) to be killed by setting Dj,$ = 0. Consistency of this condition with
(1.82) leads to the Dirac-Coulomb energy levels,

ωDnj = m

√
1−

(
κDnj
m

)2

(1.83)

with

κDnj =
mZα

N
and N = n

√
1− 2(n− |K|)(Zα)2

n2(ζ + |K|)
, (1.84)

found as the locations of the poles of the mode-energy dependent Gamma
function in the denominator of (1.82), which show that the point-like ener-
gies of the Dirac-Coulomb modes are actually degenerate in their parity and
jz quantum numbers. This is important because as we will see in the com-
ing chapters these are the values we will perturb around by assuming the
nucleus to have a finite size, and these perturbations break the degeneracy
in $.

Proceeding with our program, we next have to find the alternative
boundary conditions for the modes ψnjjz$(x) near the nucleus by integrat-
ing (1.69) over a ball, Bε of radius, ε satisfying R � ε � aB. By ignoring
all but the derivative and delta-function terms this calculation gives∫

d3x
{
γ · ∇ψ

}
=

∫
∂Bε

d2x n̂ · γψ =

∫
d2Ω2 ε

2γrψ(ε) = −[cs − iγ0cv]ψ(0),

=⇒
∫

d2Ω2 ε
2
[
γr +

cs
4πε2

− iγ0 cv
4πε2

]
ψ(ε) =

∫
d2Ω2 ε

2 Bε ψ(ε) = 0,

(1.85)
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where on the second line we have assumed that inside Bε the value of the
field is approximately equal to its value on the boundary such that ψ(ε) ≈
ψ(0). Since our choice of a Gaussian surface was completely arbitrary we
have also defined the matrix operator Bε := [γr+cs/4πε

2−iγ0cv/4πε
2] that

encodes the near-source boundary conditions on the Gaussian pillbox, ∂Bε
in a compact way

Bεψnjjz$(ε) =

(
cs

4πε2
− cv

4πε2
−iσr

iσr cs
4πε2

+ cs
4πε2

)(
Ωjljz$(θ, φ) fnj$(r)

iΩjl′jz−$(θ, φ) gnj$(r)

)
= 0,

(1.86)
where in the first equality we have made use of the explicit representation
in eqs. (1.78) through (1.80) and used (1.71) for the form of the mode-
functions.

Since we would like to avoid evaluating Ψ(x) at the origin, where its
solutions external to the boundary ∂Bε are no longer valid and we do not
trust our low-energy effective description of the nucleus, we can arrive at
the same boundary condition for this mode and others by defining the
boundary action,

S∂Bε,QED :=

∫
dt

∫
d2Ω2 ε

2 Ψ(ε)

[
ĉs
2
− iγ0 ĉv

2

]
Ψ(ε), (1.87)

where ĉs and ĉv are new effective couplings. Notice that this definition does
not contain the γr term and to obtain that piece we need to realize that for
Ψ to really be the conjugate field to Ψ we need the bulk derivative term in
SB,QED to have a symmetric form which we obtain by the replacement

SD,M → SsymD,M = −
∫

d4xΨ

[−→
/D

2
−
←−
/D

2
+m

]
Ψ, (1.88)

where the arrows indicate the direction of differentiation, because upon
variation with respect to Ψ the derivative acting on this field will yield

δSsymD,M ⊃ δ

{∫
d4xΨ

←−
/D

2
Ψ

}
=

∫
d4x

∂µ
2

(
γµ
(
δΨ
)

Ψ
)
−
∫

d4x
(
δΨ
) /∂

2
Ψ,

=

∫
d3x

(
δΨ
) n̂µ

2
γµΨ

)
−
∫

d4x
(
δΨ
) /∂

2
Ψ,

=

∫
dt

∫
d2Ω2 ε

2
(
δΨ
) 1

2
γrΨ

)
−
∫

d4x
(
δΨ
) /∂

2
Ψ, (1.89)

where n̂µ is the unit normal vector to the spherical Gaussian surface, ∂Bε of
our choosing; containing the γr term we are after. With this new symmetric
set-up the total PPEFT action becomes S = SM + SD,M,sym + S∂Bε,QED and
takes the form

S = −
∫

d4x

{
1

4
FµνF

µν + Ψ

[−→
/D

2
−
←−
/D

2
+m

]
Ψ

}

+

∫
dt

∫
d2Ω2 ε

2 Ψ

[
ĉs
2
− i ĉv

2
γ0

]
Ψ, (1.90)
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and varying it with respect to Ψ leads to

δSΨ = −
∫

d4x
(
δΨ
) [

/D +m
]

Ψ

+
1

2

∫
dt

∫
d2Ω2 ε

2
(
δΨ
) [
γr + ĉs − iĉvγ0

]
Ψ. (1.91)

Requiring the action to be stationary under such variations forces the two
terms on the right-hand side to vanish separately since they live on different
domains of the theory, giving us the far-field (that is excluding the origin)
equations of motion familiar from (1.68)[

/D +m
]

Ψ(x) = 0, (1.92)

and the boundary condition,

BεΨ(x) =

(
ĉs − ĉv −iσr
iσr ĉs + ĉv

)
Ψ(x) = 0, (1.93)

which both individually vanish for the different Dirac-Coulomb modes.
Lastly, notice that the forms of the two boundary conditions in (1.86)
and (1.93) are so similar that calculating the same physical quantities from
both will result in the identification ĉs = cs/4πε

2, ĉv = cv/4πε
2.

The alternative near-nucleus boundary condition in (1.93) written using
the explicit representation of the Dirac matrices suggests that for every
bound-state mode we could obtain two conditions relating the integration
constant ratio Dj$/Cj$ present in the radial solutions of (1.73); one for
the top and one for the bottom component of (1.93). However, notice
that if the matrix encoding these boundary conditions, Bε is invertible it
is possible to multiply (1.93) by this inverse and this would enforce the
radial solutions to be trivial. Then, to avoid such solutions Bε must be
non-invertible, i.e. it has to have a vanishing determinant, which in the
standard gamma matrix representation can be read off from (1.93) to be,

det(Bε) = (ĉs − ĉv) (ĉs + ĉv)− 1 = 0. (1.94)

This relationship between the coupling constants informs us that the two
conditions obtained from the top and bottom components of (1.93) are in
fact not independent and so it is enough to take into account either one of
them.

Now, we could use (1.93) to find Dj$/Cj$ in terms of the coupling
constants ĉs, ĉv, and the fictitious scale, ε. We would then need to find
how the coupling constants run in this parameter in order to keep the
integration constant ratio physical, depending on at most the RG-invariant
parameters of this coupling flow. Then, we would perturb (1.82) around
the Dirac-Coulomb energies of (1.83) to find the energy shift associated
with the new value of Dj$/Cj$ acquired through the new near-nucleus
boundary condition in (1.93), and would be able to write this energy shift
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also as a function of the RG-invariant parameters, which we could in turn
fit using experimental data to make predictions for the same energy shift in
other levels. This is precisely the topic of the papers presented in the rest
of the thesis and so we will not prod this problem any further at present.

In this section, we have seen that lumps of size R that have no other
internal degrees of freedom than their centre-of-mass coordinates, yµ(s) can
be effectively described as point-particles at the large experimental scales,
aexp � R. Capitalizing on this analogy we have explored the symmetry
properties of such blobs by looking at the well-studied action of the rela-
tivistic free particle and found that the PPEFT action of such simple blobs
must be Poincaré- and reparameterization-invariant, separately C, P and
T conserving and hermitian. We then charged these blobs under a U(1)
gauge field by appending the PPEFT action with gauge-invariant interac-
tions between the low-energy degrees of freedom of the lump and the gauge
field, Aµ(x) that preserve all the other symmetries of the theory and found
the alternative near-source boundary conditions for the field implied by
the presence of the lump. This condition picked out the specific allowed
solution around the lump by relating the integration constants appearing
in the solutions to the field equations of Aµ(x) to the PPEFT couplings
of the lump action. Lastly, we have introduced fermions into the theory
and found the near-nucleus boundary conditions the charged blob implied
for them and outlined what we intend to do with these conditions in the
presented work to turn them into physical predictions for energy shifts of
leptonic bound-states related to the finite size of the nucleus.

1.5 Nuclear-Size Effects in Atomic Bound-

States

In the previous section we have seen that atoms can be described as theories
that involve a charged lump (namely, the nucleus) of size R ∼ 1 fm giving
rise to a Coulomb potential with which it binds oppositely charged fermions
to itself at scales of the Bohr radii of these fermions, aB ∼ (mZα)−1.
The influence of this background solution on the fermions in addition to
the Coulomb potential it sources for them can be captured through a
boundary action that is a result of a multipole expansion in powers of
R/aB ∼ (mRZα) of the ever-more intricate interactions between the low-
energy degrees of freedom of the nucleus and the surrounding bulk fields.
Varying the total action with respect to the fermion fields reveals that the
presence of the nucleus asserts a new set of near-source boundary condi-
tions on these fields that relates the integration constants in the solutions
to their equations of motion to the couplings of the boundary action and
thereby takes into account the finite size of the nucleus. This is apparent in
two ways: the couplings of the effective action come with increasing powers
of (mRZα) and so trading them for the integration constants introduces
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terms in the physical observables that are also expanded in powers of this
combination; and the standard boundary condition that the new one re-
places assumes a point-like nucleus and so deviating from such a condition
takes into account that the nucleus had a finite size. It is worth empha-
sizing this point again: PPEFT provides a low-energy effective description
of nuclei that systematically computes the finite-size effects of these objects
on physical observables in a first-quantized language.

So far so good, but before we dive into exploring how this works in
detail it is worthwhile to recount how such effects have been calculated in
the past and explain why our way of computing them is useful. In order to
do this we will take a short detour to marvel at the beauty and success of
QED and by extension the Standard Model and then study the history of
finite-size effects on atomic spectroscopy.

1.5.1 The success of QED

Quantum Electrodynamics is the renormalizable QFT of an electromagnet-
ically interacting fermion field, Ψ(x) with action presented in the previous
section in (1.62), repeated here for convenience,

SQED = −
∫

d4x

{
1

4
FµνF

µν + Ψ
[
/D +m

]
Ψ

}
, (1.95)

with Fµν the field strength of the electromagnetic gauge field, Aµ(x). It
is one of the most successful theories of modern physics and one of the
roots of its success lies in its renormalizability, since it means that there
is a finite number of Feynman diagrams that lead to infinities, which can
therefore all be absorbed into the physical mass, m of the fermion and the
photon-fermion coupling, (−e), a.k.a. the charge of the fermion. The facts
that it has such few parameters and that we are well-suited to construct
experiments that can probe its predictions are added bonuses that also
contributed to the hype around this theory. By measuring these quantities
in the laboratory one can make – in principle arbitrarily – accurate pre-
dictions for the consequences of all sorts of matter-light interactions, such
as the cross-sections for scattering processes, the anomalous magnetic mo-
ments of leptons, atomic bound-state energies and many more, and these
calculations can be found in most standard textbooks on the subject of
QFT [12, 13, 14, 23, 24].

One could argue that the study of QED began with the birth of Quan-
tum Mechanics (QM), because at low-energies where the excitations of the
fermion fields are non-relativistic particles QM emerges as an effective the-
ory of QED through an expansion of the Dirac fields in v/c � 1, where v
is the velocity of the fermion and c the speed of light [23]. This effective
theory of QED has taught us many surprising features of Nature, starting
with an accurate model of the quantization of atomic bound-states and ex-
plaining the spectrum of the Hydrogen atom using the Bohr model. Since
that early golden era the theory of bound-states as described by QM had
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been overtaken by the more superior theory of QED, which was able to
explain the famous Lamb shift of the 2P 1

2
and 2S 1

2
states due to vacuum

polarization using the QFT framework. After the QFT revolution both
the experimental and theoretical fields of bound-states had undergone an
impressive evolution as a result of which people today can predict and mea-
sure energy levels with such unprecedented precision that their calculations
need to rely on the full theory of the Standard Model11. For a review of
the modern treatment of atomic bound-states see [25] as an example.

However, with high precision comes big responsibility; at the high-
energy frontier, due to this unparalleled accuracy of modern laser spec-
troscopy techniques atomic bound-states have become the testing ground
for fundamental theories. The exciting aspect of these experiments is that
as technology progresses and physical quantities are measured to ever-
increasing precision, any deviations from QED and the Standard Model
would signal that our understanding of Nature is somehow incomplete,
opening the door to the wildest dreams of model-builders. However, so far
any inconsistencies between bound-state QED and experiments have been
resolved either by invoking the full machinery of the Standard Model and/or
by finding more accurate values for the natural constants, such as the fine-
structure constant, α or the Rydberg constant, Ry. In this sense, QED
and the Standard Model have withstood the tests of time and live on to
make valuable predictions that can either be proven wrong by experiments,
which would no doubt please many Beyond the Standard Model theorists;
or proven right, bringing everyone who has ever understood QED the joy
of knowing that we can accurately describe some aspect of Nature to a new
decimal place.

This gleeful outlook is overshadowed by the fact that our understanding
of the strong interactions that make up nuclei is – ironically – rather weak.
There are no ab initio calculations that people can perform that would
accurately describe nuclei and yield testable predictions for the structure
of such objects. This is a major roadblock in using atomic spectroscopy
as a test of fundamental physics because at the experimental level of pre-
cision attainable today the effects of nuclear forces and substructures are
measurable and important. Without such predictions people are forced to
model nuclei in various ways, introducing parameters that in turn need to
be fit using experimental data. In and of itself this would not be a problem,
however as we will show in the next section there is a large amount of these
parameters and there are far fewer measurements that can be used to fit
them to the accuracy required to test the predictions of fundamental the-
ory. This mismatch between parameters and accurate measurements leads
to large uncertainties associated with these nuclear structure contributions
to the extent that their uncertainties cloud the effects we would like to

11As far as “low” energies are concerned QED is a great theory, however we know
that it is the full theory of the Standard Model that rules particle physics and as exper-
imentalists become able to probe energy levels to higher-and-higher accuracies the full
machinery of this UV completion to QED becomes necessary to take into account.
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measure. Let us now look at just how dire this situation is.

1.5.2 Moments...Moments Everywhere!

For the longest time, only numerical studies possessed the computational
power necessary to incorporate nuclear-substructure effects – such as those
related to the finite sizes of nuclei – into atomic energy shift calculations,
because closed forms for such phenomena exist only in a few cases. This
was problematic because the calculation of such effects rested in the hands
of a few select groups of physicists, who themselves always had to commit
to specific nuclear models (not necessarily the same one between the various
teams) and their calculations involved the nuclear structure to all orders in
small quantities such as α, making it impossible to discern at what orders
in these quantities the effects of finite size played a role. The nuclear
models devised and used consisted of specific charge- and magnetization-
distributions ρc(x) and ρm(x) that in our conventions we normalize as

Ze =

∫
d3x′ ρc(x

′), µN =

∫
d3x′ ρm(x′), (1.96)

where the integrals run over the expanse of these distributions and µN is
the size of the nuclear magnetic moment with the nuclear g-factor included
(and so is not simply the nuclear magneton for Hydrogen for example).

Naturally, this was quite upsetting and people were hard at work to
find some way to characterize these nuclear-structure contributions with-
out relying on any given model. The first such model-independent param-
eterization of a finite-size effect was written down by Karplus, Klein and
Schwinger for Hydrogen in [26], where the energy shift of the nS 1

2
state due

to the finite size of the nucleus was written as,

δEKKS

nS1/2
≈ 2

3n3
(Zα)4m3

r〈r2〉c, (1.97)

where mr = mM/(m + M) is the reduced mass with m the leptonic and
M the nuclear masses respectively and 〈r2〉c is what is known as a nuclear
charge moment that in today’s folklore is referred to as the charge-radius
squared. The importance of this result was to show that nuclear-size effects
can be captured in terms of such nuclear moments as 〈r2〉c, which are
defined to be weighted integrals over ρc(x) and ρm(x) and in our conventions
are given by

〈rk〉c =
1

Ze

∫
d3x′ rkρc(x

′), 〈rk〉m =
1

µN

∫
d3x′ rkρm(x′), (1.98)

where 〈rk〉m is the kth magnetic moment of the nucleus.
Followed by the calculation in [26] another exception to the model-

specific computations was produced by Zemach in [27], where he had writ-
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ten12 the nuclear-size correction to the hyperfine splitting of nS 1
2

levels of
Hydrogen as,

δEZem

nS1/2
≈
[(

8

3n3

)
gpm

2(Zα)4

2M

(mr

m

)3
]

(−2)mr(Zα)〈r〉cm, (1.99)

including a weighted integral over the convolution of the charge and mag-
netization distributions known today as the first Zemach moment. These
Zemach-type convoluted integrals are given in terms of the charge and
magnetization distributions by

〈rk〉cm =
1

µN(Ze)

∫
d3x′

∫
d3y′ |x′ − y′|kρc(x′)ρm(y′), (1.100)

and can be generalized to include any pair of distributions with appropriate
changes to the denominator.

Finally, inspired by these calculations some 20 years later Friar system-
atically categorized spin-independent finite-size effects in [28], through an
impressive calculation of third-order perturbation theory for low-Z atoms,
controlled by the small parameter (Zα) � 1 as a function of such model-
independent nuclear moments and showed that to accurately capture finite-
size related energy shifts to a given order in this parameter it is sufficient
to include only a certain number (rapidly increasing with factors of Zα) of
these nuclear moments. In our conventions his result out to and including
terms proportional to (Zα)6 (but ignoring higher-order contributions) for
the positive-parity nS 1

2
states reads,

δEFr

nS1/2
≈ 2

3
(Zα)4m

3
r

n3

{
〈r2〉c −

1

2
mr(Zα)〈r3〉cc − (Zα)2

[
〈r3〉c〈r−1〉c

3
− IREL

2

− IREL
3 + 〈r2〉c

(
Hn−1 + γ − 13n2 + 4n− 9

4n2
+
〈

ln

[
2mr(Zα)r

n

]〉
c

)]

+m2
r(Zα)2

[
INR

2 + INR
3 + 〈r5〉c〈r−1〉c + 〈r3〉c〈r〉c +

〈r4〉c
10n2

+
2

3
〈r2〉c

(〈
r2 ln

[
2mr(Zα)r

n

]〉
c

+ 〈r2〉c
{
Hn−1 + γ − 4n+ 3

3n

})]}
,

(1.101)

for the negative parity nP 1
2

states reads,

δEFr

nP1/2
≈ n2 − 1

3n5
(Zα)4m3

r

{
1

2
(Zα)2〈r2〉c +

1

15
(Zα)2m2

r〈r4〉c
}
, (1.102)

12Zemach’s original paper presented this effect for the ground-state of Hydrogen and
without any reduced mass factors. Here we are paraphrasing his result based on [25] to
include such reduced mass factors and generalize it to arbitrary nS 1

2
states of Hydrogen.
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and for the nP 3
2

state is given by,

δEFr

nP3/2
≈
(
n2 − 1

45n5

)
(Zα)6m5

r〈r4〉c . (1.103)

Here, Hn are the harmonic numbers defined as Hn :=
∑n

k=1 1/k, γ is Euler’s
constant, and INR

2 , INR
3 , IREL

2 , IREL
3 are parametric integrals that contain

further moments. Although the particular forms of these integrals can be
found in [28], their only contribution to our current discussion is that they
yield previously unwritten moments and so we do not repeat them here but
rather make the conservative assumption that they each contribute only a
single insofar unmentioned moment to the energy shift, δEFr

nS1/2
.

Note that these results are purely quantum mechanical and as such do
not yet take into account nuclear polarizabilities, non-trivial nuclear recoil13

and effects of second-quantization such as vacuum polarization and self-
energy corrections. For a long time these effects were included in bound-
state QED calculations as perturbations around these above results that
appeared suppressed by extra powers of α (without Z) due to loop processes
[25, 29, 30], and as such did not result in any new nuclear moments. Then,
because for our discussion only the astounding number of these moments
matters, we do not discuss these contributions here in detail, but will do so
in Chapters 3 and 4 when we compare our RG-invariants to these moments.
This old-fashioned approach then predicts there to be upward of a total of
14 nuclear moments that need to be experimentally determined in order to
accurately predict finite-size energy shifts at order (Zα)6.

In more modern approaches that dominate the recent literature [31,
32, 33, 34] nuclear-structure effects are calculated in one fell-swoop using
all the bells and whistles of bound-state QED. This momentum-space ap-
proach uses diagrammatic techniques to compute Feynman diagrams that
exchange two or more Coulomb photons (these are particular types of
graphs whose all-order sum results in the dominant Coulomb interaction of
the atomic system) between the nucleus and the orbiting lepton and then
artificially splits the resulting integrals into elastic and inelastic parts. The
elastic contributions assume the nucleus to remain unexcited during the
Coulomb exchange and constitute the parts of the nuclear-structure shifts
that are traditionally referred to as finite-size effects such as those of (1.97)
and (1.99), and eqs. (1.101) through (1.103); certain recoil corrections; and
mixtures of the two. On the other hand, the inelastic parts of the structure
effects take into account nuclear polarizability by summing over the excited
nuclear states. The reason this splitting between the two types of correc-
tions is arbitrary is that as can be seen from the discussion of these effects
for deuterium in [35, 34] some inelastic contributions are also related to cer-

13By “non-trivial nuclear recoil” we mean contributions other than those that arise
as a result of the replacement of the lepton mass, m by its reduces mass, mr. It should
be noted though that [28] does include a contribution for the leading such non-trivial
effect.
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tain weighted integrals of charge distributions and as such should always
be considered together.

Then, in our work here we will adopt the results of this more modern
approach and following [34, 36, 25] we write the spin-independent energy
shifts that take into account finite-size effects along with their recoil- and
polarizability corrections for nS 1

2
states out to and including terms of order

(Zα)6 as,

δECPE

nS1/2
≈ 2

3
(Zα)4m

3
r

n3

{
〈r2〉c −

1

2
mr(Zα)〈r3〉eff

cc − (Zα)2〈r2〉c

[
Hn−1 + γ − 1

n

+
9

4n2
− 3 + ln

[
2mr(Zα)

n

]
+ ln[〈rC2〉]

]
+m2

r(Zα)2

[
〈r4〉c
15n5

+
2

3
〈r2〉c〈r2〉c

(
Hn−1 + γ − 1

n
+ 2 + ln

[
2mr(Zα)

n

]
+ ln[〈rC1]

)]}
,

(1.104)

where 〈r3〉eff
cc is an effective radius that takes into account the inelastic

contributions of the two-photon Coulomb exchange14, and 〈rC2〉, 〈rC1〉 are
again other nuclear moments, whose definitions from [34] we do not repeat
here as they do not qualitatively contribute to our discussion.

It is important to note that [34] primarily focuses on deuterium but
makes several useful comments for other nuclei such as atomic- and muonic-
Hydrogen. It turns out that these latter systems are special in that the α6

polarizability corrections to their finite-size effects vanish, which is not true
for other nuclei such as deuterium, and the form of these corrections can
be found in [34]. We do not write these here for two reasons: the systems
we will be interested in in this thesis are 4

2He+, µ4
2He+, H and µH and as

we have just mentioned for the latter two these corrections vanish, while
for the former two they turn out to be too small to contribute to current
experiments; and these effects turn out to depend on the principal quantum
number the same way as do the other finite-size effects, which means that
we could group them together into effective moments the same way we had
done so for 〈r3〉eff

cc . At the same time, the polarizability contributions to
nP 1

2
and nP 3

2
states in the systems of interest to us are also too small and

as such the finite-size effects in these states preserve their form from (1.102)
and (1.103).

Similarly, the spin-dependent finite-size effects have also been calculated
for Hydrogen using this more modern approach and they have been written
in terms of momentum-space integrals over the proton form-factors in [37],

14There is a cancellation between the original 〈r3〉cc term in (1.101) (known as the
Friar moment) and a certain part of the polarizability [35] but since the inelastic contri-
butions at this order depend on the lepton quantum numbers the same way as the elastic
contributions they can be combined to define the effective nuclear moment, 〈r3〉eff

cc .
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and a position-space equivalent has been recently presented in [38] to be

δECPE

spin =

(
8

3n3

)
gpm

2(Zα)4

2M

(mr

m

)3
{

(−2)mr(Zα)〈r〉cm +
4

3
(Zα)2m2〈r2〉c

×
[
− 1

n
+ γ +Hn−1 + ln

[
2(Zα)m〈rpp〉

n

]
+
〈r2〉m

4〈r2〉cn2

]}
+ · · · ,

(1.105)

with the ellipses standing for terms of (Zα)7 or higher and where 〈rpp〉 is
again some moment from [38] whose definition does not add to our discus-
sion and so we do not repeat it here.

As we can see, although these more compact photon-exchange calcu-
lations depend on fewer model-independent nuclear parameters, they still
require upward of 8 nuclear moments to be fitted experimentally in order
to be able to predict finite-size effects at order (Zα)6. The issue with this
is that accurate enough measurements for fitting these parameters accu-
rately enough not to introduce large uncertainties in the predictions are
few and far between with only 3 available in H [25, 39, 40] and only 2 in
µH [41] for example. What makes matters worse is that fitting the 〈r2〉c
term of (1.104) using the more precise measurements of muonic atoms of
the past decade [42] has initially lead to a different value than the one sug-
gested by CODATA derived from experiments using electrons [43]. This
became known as the proton charge radius puzzle – for some recent reviews
see for example [44, 45, 46] – and has ignited a lively reevaluation of all
the effects of bound-state QED as well as the proposition of many Beyond
the Standard Model Physics models. However, it must be noted that as
new electronic experiments seemed to start yielding results conforming to
the muonic measurements, the CODATA group recently has adjusted their
recommended value for the proton charge radius [47].

1.5.3 How PPEFT Can Help

All in all, we see that while using nuclear moments is certainly a viable way
for characterizing finite-size effects, the large number of these moments that
need to be inferred experimentally due to a lack of first-principles calcu-
lations makes using them somewhat unreliable when it comes to nuclear
errors. It would be great then, if we could reduce the number of these pa-
rameters, preferably to such an extent that the few accurate measurements
we have would be enough to fit them in such a way that their implied pre-
dictions would be unclouded by the large uncertainties of nuclear structure.

This is where EFT methods, and in particular the above developed
PPEFT formalism can help. As we had seen, we can describe atoms as
a system of a lump of size, R ∼ 1 fm, mass, M and charge Ze binding
fermions, Ψ(x) of mass, m and charge (−e) to itself through electromag-
netic interactions mediated by a U(1) gauge field, Aµ(x) at orbits of size,
aB ∼ (mZα)−1. This theory contains as a bulk action, the dynamics of
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QED and a one-dimensional effective action that contains all possible in-
teractions between the low-energy degrees of freedom of the nucleus and
the bulk fields that are hermitian and symmetric under Poincaré-, gauge-,
reparameterization-, C-, P- and T-transformations. Through the magic of
EFTs such an effective action comes organized into a multipole expansion of
operators where higher-order operators are suppressed by increasing pow-
ers of the small ratio, R/aB ∼ (mRZα); and through it the nucleus affects
the surrounding bulk fields only through a set of new near-nucleus bound-
ary conditions that tie its effective couplings to the integration constants
of the solutions to the bulk field equations of motion. Since the effective
nuclear action appears as an expansion in powers of (mRZα) it is clear
that the effective couplings of this action are related to the finite size of
the nucleus, and by writing physical observables in terms of the integration
constants and using the implied near-source boundary conditions to trade
these constants for the effective couplings, we can capture the effects of
finite nuclear-size on the observables of interest.

Of particular importance for bound-states are the energies of the or-
biting leptons. Writing shifts of these levels in terms of the integration
constants of the bulk fields and then trading these constants for the cou-
plings as outlined in the previous sections will introduce a dependence of
this observable not just on the PPEFT couplings but also the fictitious
scale, ε where the new boundary conditions are set up. Then, to ensure
that the bound-state energies remain physical the effective couplings will
rush to the rescue and assume an implicit dependence on ε that is exactly
right to cancel these apparent dependences. The running of the couplings
will then turn out to be characterized by a handful of RG-invariant param-
eters, which will therefore enter physical observables through dimensional
transmutation. By inspection we will then be able to relate these RG-
invariant scales to the nuclear moments of the previous section and see
that it is only ever certain combinations of the many moments shown that
enter into energy shifts and so they depend on fewer parameters than when
written in terms of nuclear moments.

Since the nuclear-size dependent energy shifts turn out to depend on
only a few parameters it will be possible to devise linear combinations of
spectroscopic measurements from which the finite-size effects cancel to the
accuracy we will work. Alternatively, it becomes possible to fit these hand-
ful of parameters and use them to make predictions for the finite-size energy
shifts of other transitions, which therefore only depend on the precision of
the experimental data we had used for the fitting and the accuracy of the
theoretical contributions to these measurements that assume a point-like
nucleus. As such, by designing more accurate experiments and calculating
point-like bound-state QED effects to higher precision will only improve our
predictions over time, diminishing the large nuclear-structure uncertainties
of the past.

In summary, PPEFT revels that nuclear-size contributions to energy
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shifts are governed by fewer parameters than naively believed, which plays
to the benefit of reducing the large uncertainties associated with these
effects that have been stumping the progress of tests of fundamental theory
in ultra-precise spectroscopic measurements. On this note, let us now dive
in and see how all of this works out in detail.
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Summary

In this paper we continue the initiated efforts in [1, 2] to apply the PPEFT
framework to various systems. While the motivation for studying the
Schrödinger equation with a 1/r2 potential in [1] and the equations of
motion of a charged relativistic scalar field in a Coulomb potential in [2]
were purely technical, in this paper we apply PPEFT to our first physi-
cally well-motivated system: atoms. This is made possible by the fact that
nuclei are charged, heavy, compact objects of size R ∼ 1 fm that lend them-
selves well to a PPEFT treatment since from the scales of atomic orbits,
aB ∼ (mZα)−1 they appear to be point-like objects and can therefore be
described through the effective theory of one-dimensional lumps we have
developed above in Section 1.4. On the other hand, the bulk of the theory
contains (for the first time for us) a fermionic field, Ψ(x) with mass, m and
charge, (−e) bound to this nucleus through the effects of a U(1) gauge field,
Aµ(x), whose dynamics are assumed to be described by the QED action of
(1.62), as is appropriate in modern treatments of atomic bound-states.

In such an EFT, general nuclei correspond to background solutions with
mass, M , charge, Ze, magnetic dipole moment, µN and higher-order elec-
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tromagnetic moments, interacting with their surroundings only through
their centre-of-mass coordinates, yµ(s), their spin, ξµ(s), and other in-
ternal degrees of freedom. Their trajectory in spacetime is given by a
one-dimensional path that maps R to M4, P : s → yµ(s), where s is an
arbitrary parameter along the nuclear world-line. The effective low-energy
action, Sp of such a nucleus contains the most general interactions between
its low-energy degrees of freedom and the surrounding bulk fields that are
hermitian and allowed by Poincaré-, gauge-, reparameterization-, C-, P-
and T-transformations, and comes organized into a multipole expansion of
operators with higher-order terms suppressed by increasing powers of the
small ratio, R/aB ∼ (mRZα) and resolving ever-finer nuclear-size related
details.

Since in [1, 2] we had already observed that the presence of the nucleus
induces alternative near-source boundary conditions for the bulk fields and
have already treated the electromagnetic field under the assumptions that
the source only has charge but no other multipole moments, our current
purpose is to understand how the presence of a nucleus with similar restric-
tions affects the fermion field and what new fermionic boundary conditions
its existence leads to. Therefore, in this paper we take the nucleus to have
zero spin, ξµ(s) = 0 and no other electromagnetic properties other than
its charge, which restricts our attention to systems such as 4

2He+ and other
Hydrogen-like systems with doubly magic nuclei.

To a large extent we have already summarized the set-up of this paper in
our discussion of coupling a scalar nucleus to fermions in Section 1.4.3. The
electromagnetic field sourced by the nucleus is found to be the Coulomb
field in (1.66), while the solution to the Dirac-equation with this potential
is given by (1.71) with the radial functions written in (1.73). The large-r
boundary condition on these modes turns out to be (1.82) by normalizabil-
ity, while the traditional near-nucleus boundary condition of boundedness
at the origin forces Dj$ = 0, yielding the Dirac-Coulomb energies, ωD of
(1.83). The alternative boundary conditions that emerge due to the pres-
ence of the nucleus are given in (1.86) and these introduce a perturbation
around ωD related to finite-nuclear size that can be calculated from (1.82)
by taking ω = ωD + δω, while keeping Dj$/Cj$ 6= 0. We concentrate on
such energy shifts of the j = 1/2 states as these are located closest to the
nucleus and feel the effects of its finite size the most.

We use the boundary conditions in (1.86) to find this ratio of integration
constants as a function of the effective fermion-nucleus couplings. This
inadvertently introduces a dependence on the fictitious parameter, ε – the
radius of the boundary on which the alternative boundary conditions have
been set up – of the energy shift. Then to keep this energy perturbation
physical we analyze (1.86) as if it was a running equation that told us how
the PPEFT couplings have to depend on ε in order to achieve this.

In this paper, instead of using the RG-invariant parameters to charac-
terize the running and then trading the apparent ε-dependence of Dj$/Cj$

for a dependence on these parameters, we write it as a function of “effective
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moments”, ĝi, f̂i in a double series expansion of ε/aB ≈ mεZα and (Zα)2,
using gn 1

2
+/fn 1

2
+ ≈ (Zα) [ĝ1 + ĝ2(mεZα) + ĝ3(Zα)2 + · · · ] and a similar ex-

pression for the negative-parity modes in the boundary condition.
Lastly, we compare our leading energy shift result written as a function

of these effective moments to that written in terms of nuclear moments,
namely the shift in (1.101) and find that (1 + 2ĝ1)ε2 = 〈r2〉c/3 and also
compare our predictions for subleading effects in terms of ĝi, f̂i to those
made by specific nuclear models.
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1 Introduction

Nature is full of examples where small but massive compact objects (of linear size R) inter-

act with and control the motions of lighter neighbours within a much larger surrounding

domain (of size a� R). Examples include nuclei and atoms, stars and solar systems as well

as legions of others. For such systems familiar arguments (such as the multipole expansion)

show that only a few features of the compact object are often relevant to understanding

motions in their larger environment. This simplicity usually emerges once observables are

expanded in powers of small ratios like R/a.

Effective field theories [1–4] are the natural language for exploiting this kind of sim-

plicity, though these are usually only formulated in a second-quantized language with all

species of particles represented by their respective quantum field. For instance two-body

contact interactions between two species of particles in a fully second-quantized framework

would be represented in terms of their respective fields by terms like g(ψ∗ψ)(χ∗χ) in an

effective Lagrangian.

Our companion papers [5, 6] explore how to formulate such effective theories using

instead a first-quantized language for the heavy compact object, reserving the second-

quantized language for the lighter particles with which it interacts.1 In this mixed first-

quantized/second-quantized (one-two) language, if the heavy (χ) particle is in a position

eigenstate situated at x = 0 then the two-body contact interaction mentioned above instead

has the form g(ψ∗ψ) δ3(x). This kind of formulation would be appropriate when the mass

of the compact object is sufficiently large. In such situations all information about the

source enters observables through the boundary conditions that are implied for the light

fields at the position of the heavy compact object; boundary conditions that are completely

determined by the source’s first-quantized effective action.

This type of one-two formulation can have several advantages. One of these is the

more direct connection it provides to the study of particle motion within a central (e.g.

Coulomb or gravitational) potential, for which many useful tools are known (particularly

for bound states). In this they are complementary to a fully second-quantized (two-two)

formulation, such as for NRQED or NRQCD [13–19], in which induced quantities — like

the nuclear Coulomb potential or solar gravitational field — arise as a resummation of a

particular class of interactions that dominate in some limits. By contrast, in the mixed

one-two framework such classical fields are included into the zeroth order description about

which one perturbs.

Furthermore, relating the near-source boundary conditions to the source action takes

the guesswork out of small-r boundary conditions, and shows in particular why linear

‘Robin’ boundary conditions are so generic at low energies (see also [20, 21]). More gener-

ally, they show how to handle singular potentials (like V (r) ∝ rp with p ≤ −2) unambigu-

ously, despite the generic absence in these cases (for a clear introduction to the ambiguities

1Similar methods have been developed to handle compact gravitating systems, such as for gravitational-

wave emission by inspiralling compact objects [7] and gravitational back-reaction in extra-dimensional

models to [8–12].
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otherwise hit for the inverse-square potential, see for example, [22]) of smooth solutions at

the origin.

The study in [5, 6] considered both nonrelativistic and spinless relativistic particles

orbiting the massive compact object, focussing in particular on unusual effects that arise

if the compact source size, R, is small enough that relativistic kinematics is relevant for

the matching problem to the interior physics of the source even for bound states whose

total energy, ω, is nonrelativistic: m − ω � m. This mixed relativistic/nonrelativistic

regime occurs when mR � v � 1, where v ∼ Zα is the speed of the orbiting particle

(whose mass is m). (Here we take the source charge to be Ze and α = e2/4π is the usual

fine-structure constant.)

In particular, for relativistic spinless particles an interesting regime was identified for

which energy shifts of S-wave states due to the source’s finite size scale as

δωKG ∼
(Zα)2R

m

(
mZα

n

)3

∝ (Zα)5m2R , (1.1)

where the last factor is the S-wave Schrödinger-Coulomb wave-function at the origin

|ψ(0)|2 ∝ (mZα/n)3. Effects like this, scaling linearly with R, are unusual and so lead

to the question of whether similar shifts occur for the spin-half electrons and muons that

arise in conventional and muonic atoms.

We here address this question by extending the discussion of [5, 6] to spin-half systems,

finding that although many of the features of the Klein-Gordon problem of [6] also carry

over to the Dirac field studied here the scaling of (1.1) does not: the corresponding leading

Dirac expression instead gives the standard result:

δωD ∼ ZαR2

(
mZα

n

)3

∝ (Zα)4m3R2 . (1.2)

At first sight this difference in scaling may seem surprising, since spin-dependent ef-

fects in orbital energies might be expected to be suppressed by v ∼ Zα leading one to

expect Dirac and Klein-Gordon predictions to agree at leading order in Zα. Although this

expectation is true for most observables, it proves not to be true when tracking finite-size

effects because relativistic effects are not small at radii r ∼ R once R <∼ Zα/m ∼ (Zα)2aB

(where aB is the Bohr radius). Indeed the ratio of δωKG and δωD given above is of order

Zα/mR, which is order unity for electrons (for which mR ∼ Zα even though both are

separately small).

Along the way we show how to formulate the near-source boundary condition for

fermions, and why these differ from those that arise for bosons. We identify how the

couplings for two-body contact interactions run, even at the classical level, and how this

running goes over to the running found in [5, 6] in the non-relativistic limit. This running

properly captures how effective theories can sometimes generate scattering lengths that are

much larger than the size R of the underlying object, and corresponds to the first-quantized

version of a similar discussion found in [15–19].

Another result from [5, 6] carries over to fermions: the fixed point of the running is

not at cs = cv = 0 for charged sources (for which Zα 6= 0). It turns out this nontrivial

– 3 –
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fixed point is precisely what is required in order for the fixed point to reproduce standard

results for the Dirac equation in the presence of specific nuclear charge distributions. That

is, when we compare the PPEFT approach to explicit solutions to the Dirac equation in

the presence of a finite-size charge distribution, we find that matching produces contact

interactions for the PPEFT that sit precisely at the infrared fixed point of the RG flow. This

shows why energy-level shifts take on a particular model-independent form (proportional

to the charge-radius r2
p = 〈r2〉 and higher moments [23, 24] — see also [25]) in the special

case where the nucleus is modelled as a specific charge distribution.

In what follows we specialize for simplicity to parity-preserving interactions and spin-

less compact central objects, and so strictly speaking the interactions we find suffice in

themselves to describe finite-size effects in the He+ ion or muonic states in even-even nu-

clei [24, 26–45]. The effects we find also apply to nuclei with spin (such as hydrogen) once

the effective theory of the first-quantized source is supplemented by the extra interactions

that a nuclear spin allows. (We intend to return to discuss spinning sources more fully in

a later paper.)

In section 2 we set the stage by introducing the point-particle effective action in the

context of Dirac fermions. In section 3 we derive the boundary condition and the induced

renormalization group running in the presence and absence of a Coulomb potential. This

leads to the discussion of bound state energy shifts implied by the boundary condition in

section 4. We discuss applications of PPEFT for fermions in section 5 and conclude in

section 6. We discuss various technicalities in the appendix.

2 Action and field equations

To make things concrete we focus on describing a relativistic spin-half charged particle in-

teracting with a small charged source. The system of interest consists of a 3+1 dimensional

‘bulk’ action coupled to a 0+1 dimensional ‘point-particle’ action representing the small

source (e.g. the nucleus of an atom),

Stot =

∫
d4x LB +

∫
W

dτ Lp =

∫
d4x

[
LB +

∫
W

dτ δ4(x− y(τ))Lp

]
, (2.1)

where W indicates the integration is over the world-line, yµ(τ), of the source. In the final

equality LB and Lp are both regarded as being functions of the bulk fields evaluated at

an arbitrary spacetime point, xµ. Lp is also a function of the ‘brane-localized’ position

field, yµ(τ).

2.1 Action and field equations

Taking the bulk dynamics to be QED with a fermion of charge −e, the bulk action becomes

SB = −
∫

d4x

[
1

4
FµνF

µν + ψ( /D +m)ψ

]
, (2.2)

with Dµψ = (∂µ + ieAµ)ψ. This should be considered in the spirit of a Wilson action, and

so in principle also includes an infinite series of subdominant local terms involving more

powers of the fields and their derivatives (whose effects are not important in what follows).
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The point-particle action is similarly given by an expansion in these fields, for which

(for a spinless, parity-preserving source) the leading parity-even terms are2

Sp = −
∫
W

dτ
[
M −QAµẏµ + cs ψ ψ + icv ψ γµψ ẏ

µ − h̃∇ ·E + · · ·
]
, (2.3)

where the over-dot denotes differentiation with respect to proper time, the coefficients

cs, cv and h̃ all have dimension length-squared and the ellipses indicate terms suppressed

by more than two powers of length. Notice that terms involving more than two powers

of ψ first arise suppressed by a coupling with dimension (length)5, and so are nominally

subdominant to several terms involving only two powers of ψ but more derivatives than

those written above.

Specializing to the rest frame for a motionless source, ẏµ(τ) = δµ0 , with charge Q = Ze

the bulk field equations become

( /D +m)ψ + J = 0 and ∂µF
µν − ie ψγνψ + jν = 0 , (2.4)

where

J := −∂Lp
∂ψ

=
(
cs + icvγ

0
)
ψ δ3(x) + · · · , (2.5)

and

jν :=
∂Lp
∂Aν

= Ze

(
1 +

r2
p

6
∇2

)
δ3(x) δν0 . (2.6)

This last equality trades the parameter h̃ for the mean-square charge radius: r2
p = 〈r2〉 of

the source charge distribution using h̃ = 1
6 Ze r

2
p.

2.2 Bulk solutions

We seek solutions to the bulk equations with a motionless point charge situated at the

origin. The Maxwell equation is straightforwardly solved for the given source by choosing

A = 0 and electrostatic potential

A0 = Ze

[
1

4πr
−
r2
p

6
δ3(x)

]
. (2.7)

Here the first term is the usual homogeneous solution to the Poisson equation, normalized

using the boundary condition at small radial distance, r = ε, corresponding to nonzero

electric flux ∮
r=ε

d2Ω n ·E = Ze . (2.8)

This boundary condition can be obtained by integrating the Maxwell equation over a small

Gaussian pillbox of vanishingly small radius r = ε. By contrast, the second term in (2.7)

is the particular integral arising when solving ∇ ·E = −∇2A0 = 1
6 Ze r

2
p∇2δ3(x).

2Our metric is mostly plus and our Dirac conventions in rectangular and polar coordinates are given in

appendix A.
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We wish to repeat the above arguments for the Dirac field, whose field equation is

0 = ( /D +m)ψ +
(
cs + icvγ

0
)
ψ δ3(x)

=

[
−iγ0

(
ω +

Zα

r

)
+ ~γ · ∇+m

]
ψ +

(
cs + icv totγ

0
)
ψ δ3(x) , (2.9)

where the second line specializes to energy eigenstates,3 ψ(t) = ψ e−iωt, and to gauge

potentials of the form (2.7). The parameter cv tot denotes the total localized combination

cv tot := cv +
Ze2

6
r2
p = cv +

2π

3
Zα r2

p . (2.10)

This implies ψL and ψR are related by[
−
(
ω +

Zα

r

)
− iσk∂k

]
ψR +mψL +

(
cs ψL + icv totγ

0ψR

)
δ3(x) = 0

and

[
−
(
ω +

Zα

r

)
+ iσk∂k

]
ψL +mψR +

(
cs ψR + icv totγ

0ψL

)
δ3(x) = 0 . (2.11)

Outside the source these equations become ( /D+m)ψ = 0 which (see appendix B for a

summary in the present conventions) for rotationally and parity invariant situations have

solutions of the parity-even form

Ψ+ =

(
ψ+

L

ψ+
R

)
=

(
f+(r)U+(θ, φ) + ig+(r)U−(θ, φ)

f+(r)U+(θ, φ)− ig+(r)U−(θ, φ)

)
, (2.12)

and parity-odd form

Ψ− =

(
ψ−L
ψ−R

)
=

(
f−(r)U−(θ, φ) + ig−(r)U+(θ, φ)

f−(r)U−(θ, φ)− ig−(r)U+(θ, φ)

)
. (2.13)

Here U± are the spinor harmonics that combine the particle’s spin-half with orbital angular

momenta ` = j ∓ 1
2 to give total angular momentum j = 1

2 ,
3
2 , · · · .

The functions f±(r) and g±(r) are found by explicitly solving the radial part of the

Dirac equation in the presence of a potential A0(r). For a Coulomb potential with source

charge Ze these radial equations are (see appendix B for details)

f ′+ =

(
m+ ω +

Zα

r

)
g+ and g′+ +

2g+

r
=

(
m− ω − Zα

r

)
f+ , (2.14)

together with

g′− =

(
m− ω − Zα

r

)
f− and f ′− +

2f−
r

=

(
m+ ω +

Zα

r

)
g− . (2.15)

3Speaking of ‘energy eigenstates’ for a relativistic field is shorthand for evaluating matrix elements of

the form 〈0|ψ(x)|n〉, between the vacuum and an energy eigenstate. The energy ω is the energy of |n〉
(relative to the vacuum) and can be found in the usual way from the poles in the correlation functions like

〈ψ(x)ψ(y)〉.
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These have as their general solutions

f± =
√
m+ ω e−ρ/2ρζ−1

×
{
A±M

[
ζ − Zαω

κ
, 2ζ + 1; ρ

]
+ C±ρ

−2ζM
[
−ζ − Zαω

κ
,−2ζ + 1; ρ

]
−A±

(
ζ − Zαω/κ
K − Zαm/κ

)
M
[
ζ − Zαω

κ
+ 1, 2ζ + 1; ρ

]
(2.16)

+C±

(
ζ + Zαω/κ

K − Zαm/κ

)
ρ−2ζM

[
−ζ − Zαω

κ
+ 1,−2ζ + 1; ρ

]}
,

and

g± = −
√
m− ω e−ρ/2ρζ−1

×
{
A±M

[
ζ − Zαω

κ
, 2ζ + 1; ρ

]
+ C±ρ

−2ζM
[
−ζ − Zαω

κ
,−2ζ + 1; ρ

]
+ A±

(
ζ − Zαω/κ
K − Zαm/κ

)
M
[
ζ − Zαω

κ
+ 1, 2ζ + 1; ρ

]
(2.17)

−C±
(
ζ + Zαω/κ

K − Zαm/κ

)
ρ−2ζM

[
−ζ − Zαω

κ
+ 1,−2ζ + 1; ρ

]}
.

Here A± and C± are integration constants, M[a, b; z] = 1 + (a/b)z + · · · are the standard

confluent hypergeometric functions, ω is the mode energy and κ and ζ are defined by

κ =
√

(m− ω)(m+ ω) and ζ =

√(
j +

1

2

)2

− (Zα)2 , (2.18)

with κ real because of our focus on bound states: m > ω. The parity of the solution enters

the above formulae only through the parameter K = ∓(j+ 1
2) where (perversely) standard

conventions match negative (positive) K to parity-even (parity-odd) states.

3 Fermionic boundary conditions and the point-particle action

The next step is to formalize the boundary conditions at the surface of a spherical Gaussian

pillbox of radius r = ε, along the lines of what is done in (2.8) for the Maxwell field. We now

show how these relate the constants cs and cv of the source action to the ratios g+/f+ and

f−/g− at r = ε. These boundary conditions are again obtained from the source action by

integrating the equations of motion over the interior of the pillbox using the delta-function.

3.1 Source-bulk matching

That is, given the action

S = −
∫
P

d4x
[√
−g ψ( /D +m)ψ +

√
−ĝ ψNψ δ3(x)

]
, (3.1)

where ĝab = gµν∂ax
µ∂bx

ν is the induced metric on the world-volume of the source and

N = cs + icv totγ
0 is the Dirac matrix specified by the source action Sp, the equation of

motion satisfied by ψ is

√
−g ( /D +m)ψ +

√
−ĝ Nψ δ3(x) = 0 , (3.2)
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so integrating over the small Gaussian pillbox, P , of radius ε centred on the source then

gives (in the limit ε→ 0 of vanishingly small pillbox)

lim
ε→0

∫
∂P

d2x
√
−g nµγµψ = lim

ε→0

∫
dθdφ ε2 sin θ γr ψ = −

√
−ĝ Nψ(0) . (3.3)

Here nµ is an outward-pointing unit normal to the pillbox so nµdxµ = dr, and the integral

of themψ term vanishes as ε→ 0. Our conventions on gamma-matrices in polar coordinates

are given in appendix A.

For spherically symmetric configurations (in the limit where ε is much smaller than all

other scales of interest) this implies the boundary condition∫
r=ε

d2Ω

[
ε2γr +

1

4π

(
cs + icv totγ

0
)]
ψ = 0 . (3.4)

Notice this boundary condition is trivially satisfied pretty much anywhere in the absence

of a source, for a small enough pillbox. This is because no source means cs = cv = rp = 0

and ψ varies slowly enough to be approximately constant across the pillbox. In this case

the integral over all directions for γr on the surface of the pillbox gives zero trivially.

The boundary condition on the Gaussian pillbox can be written as
∫

d2Ω Bε ψ(ε) = 0

where

Bε := γr + ĉs + iĉvγ
0 =

(
ĉs ĉv − iσr

ĉv + iσr ĉs

)
. (3.5)

The dimensionless coefficients ĉs = cs/(4πε
2) and ĉv = cv tot/(4πε

2) can be interpreted as

the coefficients of a term in a ‘boundary action’ defined on the codimension-one surface of

the Gaussian pillbox,

Sbound = −
∫
∂P

d3x ψ
(
ĉs + iĉv γ

0 + · · ·
)
ψ . (3.6)

The subscript ε on Bε is meant to emphasize that the constants ĉa (and in general also

the original couplings ci themselves) also must carry an implicit ε-dependence if physical

quantities are to remain unchanged as ε is varied (more about which below).

To see what these boundary conditions mean we write them out separately for ψL and

ψR, leading to

−ĉs
∫
ε
d2Ωψ±L =

∫
ε
d2Ω

(
ĉv−iσr

)
ψ±R and −

∫
ε
d2Ω

(
ĉv+iσ

r
)
ψ±L = ĉs

∫
ε
d2Ωψ±R . (3.7)

Notice that these can be found from one another by making the replacements ψL ↔ ψR

together with (ĉv, ĉs) ↔ (−ĉv,−ĉs). Acting on bulk solutions (2.12) and (2.13) and

evaluating the angular integrations, these give

ĉs + ĉv =
cs + cv tot

4πε2
=

(
g+

f+

)
r=ε

and ĉs − ĉv =
cs − cv tot

4πε2
=

(
f−
g−

)
r=ε

. (3.8)

In what follows we determine cs(R) and cv(R) from several hypothetical UV comple-

tions for the structure of the source of size R, and then regard (3.8) as a boundary condition

that selects the exterior solution appropriate for the source of interest. This emphasizes

that it is only through boundary conditions like (3.8) that the physics of a specific source

can influence the exterior solution, and so enter into physical observables.
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3.2 RG evolution

The radius of the Gaussian pillbox, r = ε, is not a physical scale and so must drop out

of predictions for observables (unlike the physical size, R, of the underlying source, say).

In detail, this happens because any explicit ε-dependence arising in a calculation of an

observable cancels an implicit ε-dependence buried within the ‘bare’ quantities cs and cv.

Following the procedure of [5, 6] (which in turn builds on [46–50]), we next determine what

the ε-independence of observables implies for the ε-dependence of cs and cv.

First we establish what is needed to ensure physical quantities remain independent

of ε. Boundary conditions like (3.8) affect observables by determining the ratio of the

integration constants that arise when integrating the bulk field equations. For instance,

writing the general solutions, (2.16) and (2.17), to the radial part of the Dirac field equation

in the form

f±(r) = A±f1±(r) + C±f2±(r) and g±(r) = A±g1±(r) + C±g2±(r) , (3.9)

it is the two ratios C+/A+ and C−/A− that are determined by a boundary condition like

the specification of (g±/f±)r=ε. Energy levels for states of either parity are determined by

demanding the resulting value for the appropriate C/A be consistent with what is required

for C/A by normalizability of the modes at infinity. Scattering amplitudes are similarly

determined by C/A. It follows that physical predictions are ε-independent if cs(ε) and cv(ε)

are chosen to ensure C/A is ε-independent for both parity choices.

At some level (3.8) says it all. Rather than reading (3.8) as fixing f±/g± at a specific

radius given known values of cs and cv we can instead read the equations

cs(ε) =

[
g+(ε)

f+(ε)
+
f−(ε)

g−(ε)

]
2πε2 and cv tot(ε) =

[
g+(ε)

f+(ε)
− f−(ε)

g−(ε)

]
2πε2 , (3.10)

as giving cs(ε) and cv tot(ε) for known functions f±(r) and g±(r). This means that the

ε-dependence of the right-hand-side of (3.10) is simply given by the r-dependence of f±(r)

and g±(r) using (3.9), with r = ε. Because C± and A± are r-independent the above

conditions tell us what cs and cv tot must do to keep them also ε-independent.

Our greatest interest is when ε is much smaller than the typical scale a of the external

problem (such as the Bohr radius, for applications to atoms), and in this limit it suffices to

use the leading small-r form of the solutions f± and g± when computing the ε-dependence

of cs and cv tot. In this regime solutions are usually well described by power laws, with (3.9)

reducing to

f±(r) = A±

(
r

a

)ζ−1

+ C±

(
r

a

)−ζ−1

and g±(r) = A±

(
r

a

)ζ−1

+ C±

(
r

a

)−ζ−1

.

(3.11)

For such solutions the choice of C±/A± controls the precise radius at which one of these

solutions dominates the other one, and as a result the RG evolution of the couplings implied

by (3.10) in this regime describes the cross-over between these two types of evolution.
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3.2.1 Non-relativistic limit

We start by examining this running for parity-even states in the nonrelativistic limit, which

corresponds to the evolution found in [5, 6] using the Schrödinger equation.

The radial equations for parity-even states are given by (2.14) which imply in the

nonrelativistic limit (for which the energy and mass are approximately equal, ω ' m, and

much larger than all other scales) that g+ ' f ′+/(2m) � f+. Using this in the second

of eqs. (2.14) and dropping subdominant terms gives the Schrödinger equation (in the

presence of a Coulomb potential), with Schrödinger field ϕ(r) = f+(r).

In this limit the Dirac spinor is approximately given by

ψ ' 1√
2

(
ϕ

ϕ

)
, (3.12)

so in the nonrelativistic limit the combination appearing in the source action is

cvψ ψ + icvψγ
0ψ ' (cs + cv)ϕ

∗ϕ =: hϕ∗ϕ , (3.13)

where h = cs+cv is the coupling for the analogous effective Schrödinger contact interaction.

Defining the quantity λ := 2mhtot = 2m
(
h+ 2π

3 Zα r2
p

)
, the nonrelativistic limit of

the boundary condition (3.8) therefore is

λ = 2mhtot = 2m(cs + cv tot) = 8πmε2
(
g+

f+

)
r=ε

' 4πε2
(
ϕ′

ϕ

)
r=ε

, (3.14)

in agreement with the boundary condition found for a Schrödinger field coupled to a source

with Lagrangian density Lp = −hϕ∗ϕ δ3(x) [5, 6]. These references also show that restrict-

ing to s-wave (` = 0) configurations and using the small-r asymptotic form ϕ1(r) ∝ r` and

ϕ2(r) ∝ r−`−1 implies that for small ε the evolution of h given in (3.14) satisfies the

differential RG equation

ε
dλ̂

dε
=

1

2

(
1− λ̂2

)
where λ̂ :=

λ

2πε
+ 1 =

mh

πε
+ 1 , (3.15)

in which the last equalities define λ̂.

The evolution of λ̂ evidently has two fixed points, at λ̂? = ±1, and these respectively

correspond to λ? = 0 and λ? = −4πε. Comparing with (3.14) shows these forms for λ? are

equivalent to having ϕ(r) ∝ r0 and ϕ(r) ∝ r−1 (i.e. r` and r−`−1 for ` = 0), showing the

crossover described below (3.11).

3.2.2 Relativistic running when Zα = 0

A similar story relates the solutions f and g to solutions of the Klein-Gordon equation

in the relativistic case, as is most easily seen in the absence of the Coulomb interaction

(Zα = 0), as we now show.
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Parity-even case. When Zα = 0 the first of eqs. (2.14) again gives g+ as the derivative

of f+:

g+ =
f ′+

m+ ω
, (3.16)

for a mode of energy ω. Using this in the second equation then shows f+ satisfies the Klein-

Gordon equation. This shows that the r-dependence of the ratio g+/f+ is proportional to

the ratio χ′/χ for a Klein-Gordon field:(
g+

f+

)
r=ε

=
1

m+ ω

(
χ′

χ

)
r=ε

. (3.17)

But refs. [5, 6] show (even for Zα 6= 0) that if we define the quantity

λ = 4πε2
(
χ′

χ

)
r=ε

, (3.18)

for χ a general ` = 0 solution to the Klein-Gordon equation, then λ̂ := (λ/2πε)+1 satisfies

the RG equation

ε
d

dε

(
λ̂

ζs

)
=
ζs
2

[
1−

(
λ̂

ζs

)2 ]
(3.19)

for ε small enough to use the small-r asymptotic solution for χ(r). Here ζs :=
√

1− 4(Zα)2.

As Zα→ 0 it follows λ as defined in (3.18) again satisfies the RG equation (3.15).

These considerations show that when Zα vanishes, if we define the quantity

λ+
D := (m+ ω)(cs + cv) = (m+ ω)4πε2

(
g+

f+

)
= 4πε2

(
χ′

χ

)
, (3.20)

for parity-even j = 1
2 states, then λ̂+

D := (λ+
D/2πε) + 1 satisfies the same RG equation,

eq. (3.15), as does λ̂ in the Klein-Gordon case. Notice that in the nonrelativistic limit we

have λ+
D → 2m(cs + cv) in agreement with the Zα→ 0 limit of (3.14).

Parity-odd case. A similar argument goes through for the parity-odd j = 1
2 states.

Parity-odd states satisfy the radial equations (2.15) and so when Zα = 0 we have

f− =
g′−

m− ω
. (3.21)

Repeating the arguments of the parity-odd case then shows that g− = χ satisfies the Klein-

Gordon equation and so implies that λ̂−D = (λ−D/2πε) + 1 satisfies (for small ε) the same

RG equation, (3.15) as do the parity-even and Klein-Gordon cases, provided we define

λ−D := (m− ω)(cs − cv) = (m− ω)4πε2
(
f−
g−

)
= 4πε2

(
χ′

χ

)
. (3.22)
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Figure 1. Plot of the RG flow of λ̂±D (as defined in the main text) vs ln ε/ε? when Zα = 0. A

representative of each of the two RG-invariant classes of flows is shown, and ε? is chosen as the

place where λ̂ = 0 or λ̂→∞, depending on which class of flows is of interest.

Flow patterns. The flow obtained by integrating (3.15) is given (for ε small enough that

f and g are dominated by their near-source asymptotic forms) by

λ̂±D(ε) =
λ̂±0 (ε+ ε0±) + (ε− ε0±)

(ε+ ε0±) + λ̂±0 (ε− ε0±)
=

(
ε+ ε?±
ε− ε?±

)η±
, (3.23)

a flow that is shown in figure 1. In the first equality the integration constant is chosen

using the initial condition λ±D(ε0±) = λ±0 , while in the second equality η± = sign(|λ̂±D | − 1)

and the RG-invariant quantities ε?± are defined as the scales where the λ̂±D approach zero

(or diverge). Which of these one uses depends on whether the RG trajectory of interest

has |λ̂±D | greater than or smaller than 1. In either case ε?± is given explicitly by inverting

the first equality of (3.23):

ε?±
ε0±

= lim
λ±D→

0
∞

λ̂±D λ̂
±
0 − 1− (λ̂±D − λ̂±0 )

λ̂±D λ̂
±
0 − 1 + (λ̂±D − λ̂±0 )

= η±

(
λ̂±0 − 1

λ̂±0 + 1

)
. (3.24)

As shown in detail in [5, 6], the ε-independence of physical quantities implies they depend

only on λ±D(ε) and ε through RG-invariant quantities like ε?±.

For ε� ε?± (though ε not so large as to invalidate the small-r expansion of the mode

functions at r = ε) the flow approaches the fixed point at λ̂±D = +1, with λ̂±D − 1 ∝ ε?±/ε.

Because λ̂±D − 1 ∝ (cs ± cv)/ε this implies cs and cv simply become independent of ε in

this limit.

For small ε the flow emerges from the repulsive fixed point at λ̂±D = −1 with λ̂±D + 1 '
−2η±(ε/ε?±) with (as before) η± = sign(|λ̂±D | − 1). Consequently for small ε the couplings

cs and cv evolve linearly with ε (as opposed to the naive quadratic behaviour expected on
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dimensional grounds):

cs(ε) =
1

2

(
λ+

D

m+ ω
+

λ−D
m− ω

)
= − 4πmε

m2 − ω2
+O(ε2)

and cv(ε) =
1

2

(
λ+

D

m+ ω
− λ−D
m− ω

)
=

4πωε

m2 − ω2
+O(ε2) . (3.25)

The flow describes the transition between these two asymptotic states, and clearly no source

coupling (cs = cv = 0) is an RG-invariant fixed point, and it is also RG-invariant to have

cv = 0 while cs runs (corresponding to ε?+ = ε?−).

As a concrete example, suppose matching to a UV completion were to give the

predictions

cv = gvR
2 and cs = gsR

2 at ε = R, (3.26)

for a microscopic scale 1/R� ω ≥ m and dimensionless constants |gv|, |gs| <∼ O(1) . Then

λ±D(R) = (m± ω)(gs ± gv)R2 while the signs η± = sign(λ̂±D − 1) are η+ = sign(gs + gv) and

η− = sign (gv − gs). Then the RG-invariant scales are ε?±/R = η±(λ̂±D−1)/(λ̂±D +1) and so

ε?±
R

= η±

[
(m± ω)(gs ± gv)R/4π

1 + (m± ω)(gs ± gv)R/4π

]
, (3.27)

hence ε?± � R requires (gs±gv)R ' −4π/(m±ω). Unlike for the nonrelativistic case there

is always an ω for which this can be satisfied, but because ωR� 1 this is only possible in

the effective theory if gs ± gv is sufficiently large and has the right sign.

For general ε the running couplings are

λ̂±D(ε) =

(
ε+ ε?±
ε− ε?±

)η±
=
ε+ (ε+R)(m± ω)(gs ± gv)R/4π
ε+ (ε−R)(m± ω)(gs ± gv)R/4π

, (3.28)

which has the right limits for both large and small ε. Consequently

cs(ε)± cv(ε) =
2πε

m± ω

(
λ̂±D − 1

)
=

(gs ± gv)R2

1 + (1−R/ε)(m± ω)(gs ± gv)R/4π
, (3.29)

which shows how the flow for ε� ε?± is towards constant cs and cv, asymptoting to limits

renormalized relative to their values at ε = R.

3.2.3 Relativistic running when Zα 6= 0

We repeat the analysis of section 3.2.2 this time for the case Zα 6= 0 as is relevant to the

Coulomb problem.

Parity even. The running in the parity even case is determined by equation (3.8). The

small radius expansion of the mode functions f (2.16) and g (2.17) yields to leading order

ĉs + ĉv =

(
g+

f+

)
r=ε

(3.30)

' −
√
m− ω
m+ ω

[(1− ζ)κ+ (m+ ω)Zα] (2κε)2ζ + [(1 + ζ)κ+ (m+ ω)Zα] C+

A+

[(1 + ζ)κ+ (m− ω)Zα] (2κε)2ζ + [(1− ζ)κ+ (m− ω)Zα] C+

A+

.
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The RG running can be found by calculating the derivative d(ĉs + ĉv)/dε and after invert-

ing (3.30) inserting ε2ζ as a function of ĉs + ĉv:

ε
d(ĉs + ĉv)

dε
= −Zα

[(
ĉs + ĉv +

1

Zα

)2

−
(
ζ

Zα

)2
]
. (3.31)

Defining the quantity

λ̂+
D := Zα(ĉs + ĉv) + 1, (3.32)

the RG equation (3.31) takes the form

ε
d

dε

(
λ̂+

D

ζ

)
= ζ

1−

(
λ̂+

D

ζ

)2
 , (3.33)

which has the solution

λ̂+
D

ζ
=

λ̂+
D0/ζ + tanh[ζ ln(ε/ε0)]

1 + (λ̂+
D0/ζ) tanh[ζ ln(ε/ε0)]

=
(λ+
D0 + ζ)(ε/ε0)2ζ + (λ+

D0 − ζ)

(λ+
D0 + ζ)(ε/ε0)2ζ − (λ+

D0 − ζ)
. (3.34)

Parity odd. Similarly to the parity even case we can write (3.8) as

ĉs − ĉv =

(
f−
g−

)
r=ε

(3.35)

' −
√
m+ ω

m− ω
[(1− ζ)κ− (m− ω)Zα] (2κε)2ζ + [(1 + ζ)κ− (m− ω)Zα] C−A−

[(1 + ζ)κ− (m+ ω)Zα] (2κε)2ζ + [(1− ζ)κ− (m+ ω)Zα] C−A−

.

Repeating the procedure of the previous subsection we then find the running to be

ε
d(ĉs − ĉv)

dε
= Zα

[(
ĉs − ĉv −

1

Zα

)2

−
(
ζ

Zα

)2
]
. (3.36)

Again, one can define the quantity

λ̂−D := Zα(ĉs − ĉv)− 1, (3.37)

in terms of which the RG equation (3.36) takes the form

ε
d

dε

(
λ̂−D
ζ

)
= −ζ

1−

(
λ̂−D
ζ

)2
 , (3.38)

which has the solution

λ̂−D
ζ

=
λ̂−D0/ζ − tanh(ζ ln(ε/ε0))

1− (λ̂−D0/ζ) tanh(ζ ln(ε/ε0))
=

(λ−D0 + ζ) + (λ−D0 − ζ)(ε/ε0)2ζ

(λ−D0 + ζ)− (λ−D0 − ζ)(ε/ε0)2ζ
. (3.39)
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Fixed points. From the running equations (3.33) and (3.38), it is clear that there are

fixed points when λ̂+
D = ±ζ, and when λ̂−D = ±ζ. However, from the solutions (3.34)

and (3.39), we see that the fixed points of λ±D are coupled. The fixed point obtained in the

limit ε→∞ (which we call the IR fixed point) corresponds to λ+
D = +ζ and λ−D = −ζ, so

that

ĉs = 0 and ĉv =
ζ − 1

Zα
(IR). (3.40)

The UV fixed point is similarly defined as the limit ε → 0 and is given by λ+
D = −ζ and

λ−D = +ζ, so that

ĉs = 0 and ĉv = −
(
ζ + 1

Zα

)
(UV). (3.41)

For later purposes (when comparing to results for specific nuclear charge distributions)

we remark that the IR fixed point implies the following linear combination of the couplings

cs and cv evaluates at ε = R to

(cs + cv)IR ' −2πZαR2 , (3.42)

which uses ζ ' 1− 1
2(Zα)2.

The attentive reader may also be puzzled as to why the running for Zα→ 0 does not

coincide with the Zα = 0 running found earlier. The reason for this is the observation

that the limits ε → 0 and Zα → 0 do not commute, due to the appearance of factors of

1/(1− ζ) ' 1/(Zα)2 within the hypergeometric functions that furnish the Dirac-Coulomb

solutions. (Related to this, mode functions can asymptote to rp at small r where p ∝ (Zα)2,

again displaying non-commuting small-r and Zα→ 0 limits.) As discussed in later sections,

this makes the evaluation of energy shifts for bound states for specific values for Zα and

nuclear size R somewhat subtle, since care must be taken to work to a consistent order in

small quantities.

3.3 Higher-order interactions

For some applications it is insufficient to work only to lowest order in the nuclear size,

and so we pause here to classify some of the next-to-leading interactions according to their

dimension:

Sp =

∫
d4x
[
L0 + L1 + L3 + L4 + L5 + · · ·

]
, (3.43)

where the operators appearing in Ln have engineering dimension (mass)n. In this nota-

tion L0 + L1 + L3 represent the terms already written in (2.3), so we now enumerate the

dimension-4 interactions. At this order the operators consistent with invariance under rota-

tions, gauge transformations and C, P and T are E2, B2 and4 ψ γ0D0ψ. We therefore take

L4 = −
[

1

2

(
h̃E E2 + h̃B B2

)
+ chψ̄D0ψ + ict ψ γ

0D0ψ

]
δ3(x) , (3.44)

4A spatial derivative, ψ~γ · ∇ψ, need not be included separately since it is redundant — i.e. it can be

recast in terms of one of those already written by a field redefinition and/or an integration by parts.
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where ct, ch and the ‘polarizabilities’ h̃E and h̃B are new effective couplings having di-

mension (length)3. For instance the time derivative appearing in the last of these terms

contains contributions to the Dirac equation that resemble a correction to cv by an amount

δcv ∝ ctω. For nonrelativistic bound states and for cv ∝ R2 and ct ∝ R3 such corrections

look like mR3|φ(0)|2 contributions to the energy shift, and so contribute to some of the

subleading corrections discussed below.

One can continue in this way to as high a dimension as one wishes. Notice that the first

interaction to involve more than two Dirac fields — such as ‘three-body’ interactions, like

c3b (ψ ψ) (ψ ψ) δ3(x) — arises once we consider effective couplings with dimension (length)5.

Effectively, we can parametrize the boundary condition as(
g+

f+

)
r=R

= ξg Zα with ξg = ĝ1 + ĝ2(mRZα) + ĝ3(Zα)2 + · · · . (3.45)

Any microscopic source physics can only influence parity-even physical observables through

their contributions to the constants ĝi, only a few of which are relevant to any given order

in the small expansion parameters. This makes these parameters useful proxies for specific

models of source physics, and their values are computed in appendix B for several simple

examples. Although quantities like ĝ2 can be traded for parameters like ct and/or hE we

do not pursue this connection explicitly here.

4 Bound-state energy shifts

With a view to computing nuclear-size effects on atomic energy levels we next turn to

the implications source contact interactions have for the energy of states bound to the

source. Our assumptions of rotation invariance in Sp restricts us for simplicity to atoms

with spherically symmetric nuclei. What we find also applies to nuclei with spin but must

be supplemented by spin-dependent nuclear-size effects (such as nuclear-size effects for

hyperfine splitting [23]).

4.1 Energy-shift calculations

Bound-state energies are computed by reconciling the implications for the integration con-

stants, C±/A±, appearing in (3.9) (or in more detail (2.16) and (2.17)) as imposed by

the small-r and large-r boundary conditions. At small r the relevant boundary conditions

are (3.8), which we repeat here for convenience

ĉs + ĉv =
cs + cv tot

4πε2
=

(
g+

f+

)
r=ε

and ĉs − ĉv =
cs − cv tot

4πε2
=

(
f−
g−

)
r=ε

, (4.1)

and the implications of these for C±/A± — as found using (2.16) and (2.17) — must be

consistent with normalizability at large r, which implies

− C±
A±

=
Γ(1 + 2ζ)

Γ(1− 2ζ)

Γ(−ζ − Zαω/κ)

Γ(ζ − Zαω/κ)
. (4.2)
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Figure 2. The black curve plots the right-hand side of eq. (4.2) f(Zαω/κ) = Γ(1 + 2ζ)Γ(−ζ −
Zαω/κ)/(Γ(1− 2ζ)Γ(ζ − Zαω/κ)) vs Zαω/κ, with the zero of energy chosen to be the eigenvalue

of the n = 2 and j = 1
2 states. Standard Dirac energy levels correspond to places where the plotted

quantity vanishes, while finite-size effects of the source correspond to those energies for which (4.2)

instead equals a specified nonzero (positive) value. The dashed curves show two approximations

to (4.2) that provide useful analytic expressions for energy shifts. The blue (red) curve shows the

single-pole (double-pole) approximation to (4.2), described in the main text. In order to better

display the shape of these curves, for plotting purposes we use ζ = 0.9 (and so Zα ∼ 0.45) and for

concreteness expand about the pole at n = 2.

In the absence of a source the Dirac energy eigenvalues are given by solutions to

C±/A± = 0, which (4.2) shows is satisfied when ζ − Zαω/κ = −N with N = 0, 1, 2, · · · .
This returns the standard Dirac energy eigenvalues

ωN = m

[
1 +

(Zα)2(
n+ ζ − j − 1

2

)2
]−1/2

' m

[
1− (Zα)2

2n2
− [4n− 3(j + 1/2)]

8n4(j + 1/2)
(Zα)4 +O[(Zα)6

]
, (4.3)

where n = N +
(
j + 1

2

)
= 1, 2, 3, · · · is the usual principal quantum number.

In the presence of a finite-sized source we instead solve for ω by equating the right-

hand side of (4.2) to the nonzero value of C/A obtained by fixing f/g using the boundary

condition (3.8) at nonzero r = ε. In practice this is done in two steps: (i) computing the

value of C/A implied from the microscopic physics of the source (as parametrized by Sp,

say); and (ii) solving (4.2) for ω as a function of nonzero C/A, given a known form for

C/A. We next consider each of these steps in turn.

Solving for δω. Solving for δω = ω−ωN with given C/A requires no knowledge of source

structure since the right-hand side of (4.2) is dictated purely by the known solutions to the

Coulomb-Dirac equation. Although this is easily done numerically, there are also accurate

analytic approximations that are very useful (particularly when tracking the dependence

of the result on external parameters), which are summarized briefly here.

– 17 –

Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

71



J
H
E
P
0
9
(
2
0
1
7
)
0
0
7

������ ����

������ ����

����� ����� ����� � ��

��-�

��-�

��-�

�����

�����

�����

�

��

|
(
�
�
��
-
�
�
�
�
)
/
�
�
�
�
|

Figure 3. A plot of the relative error made when computing δω/|ψ(0)|2 for nonzero C/A using two

analytic approximations single pole (black solid) and double-pole (blue dashed) to the right-hand

side of eq. (4.2) as described in the main text. The plot’s horizontal axis is mR, where m is the mass

of the orbiting fermion and R is the size of the source. For plotting purposes we use Zα = 1/137

and compute the shifts to the parity-even j = 1
2 state with n = 2 assuming the source to be a shell

of positive charge with radius R.

Figure 2 plots the right-hand side of (4.2) against energy with the zero of energy chosen

to be the Dirac energy eigenvalue for a point-like source corresponding to a particular whole

number N . Also plotted are two approximate forms, corresponding to approximating

Γ(−N + δz) ' (−)N/[N ! δz] in just the denominator (single-pole approximation) or in

both the denominator and numerator (double-pole approximation). As the figure shows,

because of the presence of a nearby pole in the numerator the first of these approximations

turns out only to have a radius of convergence of order (1 − ζ) ∼ (Zα)2 and so is only of

use for extremely small δz.

The double-pole approximation turns out to be much better than the single-pole one

(particularly given that the left-hand side, Q := −(C/A), of (4.2) turns out to be positive

for small δz), and suffices for identifying the leading energy shift and its first subleading

correction. This can be seen in figure 3, which compares the solution obtained for δω using

these approximate formulae to numerical results. For the purposes of these comparisons

the source is assumed to be a fixed charged shell of radius R, whose energy eigenvalues can

be computed exactly, and the state whose energy is perturbed is taken to be a parity-even S

state (similar results obtain for parity-odd states). The plots show that the error obtained

when using the double-pole approximation is order (Zα)2 out to mR <∼ O(1), for reasons

identified below when we seek to compute O(Zα)2 terms.

Concretely, the double-pole approximates the right-hand side of (4.2) using the leading

Laurent expansion near the poles of the Gamma functions,

G(xN + δx) :=
Γ(1 + 2ζ)

Γ(1− 2ζ)

Γ [y(x)− 2ζ]

Γ [y(x)]
' 4(1− ζ) δx

(N + 2)(N + 1)(2− 2ζ − δx)
, (4.4)
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which uses y(x) = ζ − x and x = Zαω/κ and so y(xN + δx) = −N + δy = −N − δx where

xN = N + ζ corresponds to the Dirac-Coulomb energy eigenvalue (4.3) for a point source.

To proceed we regard Q := −(C/A) as a function of f(ε)/g(ε) and ω and evaluate it at

ω = ωN , equating the result to (4.4). This allows δx (and hence also δω) to be solved for

explicitly as

δx =
Zαm2δω

(m2 − ω2
N)3/2

' n(n+ 1)Q/2
1 + n(n+ 1)Q/[2(Zα)2]

, (4.5)

where (because our later focus is on j = 1
2) we trade N for the principal quantum number,

n = N+1, and write 1−ζ ' 1
2(Zα)2. (The single-pole approximation differs from the above

by taking the denominator to be unity, and only gives the leading contribution reliably in

the limit mR� 1, if R is the typical size of the source.)

It is useful to extract the naive Coulomb wave-function at the origin from δω by writing

δω =
heff

π

(
mZα

n

)3

, (4.6)

where tracking through the definitions gives

heff =
πc

3/2
n δx

Zαm2
' πc

3/2
n

Zαm2

[
1
2 n(n+ 1)Q

1 + 1
2 n(n+ 1)Q/(Zα)2

]
, (4.7)

where we write m2 − ω2
N = cn(Zαm/n)2 and so

c3/2
n = 1 +

3(n− 1)(Zα)2

2n2
+O(Zα)4 , (4.8)

which can be taken as unity for the leading and O(Zα) correction but not once order

(Zα)2 contributions are required. As we shall see, for O(Zα)2 corrections (4.4) must also

be revisited to include also subleading terms in δx.

Determining Q = −C/A. To use the above formulae in practice we require an expres-

sion for how Q = −C/A depends on the properties of the source. If the UV completion

were a specific classical distribution, ρ(r), of radius R then C/A would be fixed by de-

manding continuity of f/g between the exterior and interior solutions at r = R (examples

of this are discussed in more detail below). In general, knowledge of C/A is equivalent to

knowledge of f/g at some radius, since this is ultimately the only way the physics of the

source influences exterior phenomena.

What is required then is an explicit expression for C±/A± as a function of f±(ε)/g±(ε).

In principle this is obtained by taking the ratio of expression (2.16) and (2.17) for the

exterior solution (for each parity) and solving the resulting equations for C+/A+ and

C−/A−. This is efficient and easy to implement numerically and once this is done f±/g±
at r = ε can be traded for constants in the source action through boundary conditions

like (3.8).

Analytic expressions5 for the required relation for C±/A± can also be found when ε is

small enough to justify keeping only the leading small-r asymptotic form for the confluent

5Such analytic expressions are useful (even when numerical results are easy) for tracking the leading

parametric dependence of energy shifts on external variables.

– 19 –

Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

73



J
H
E
P
0
9
(
2
0
1
7
)
0
0
7

hypergeometric functions in (2.16) and (2.17). Specializing to states with j = 1
2 — i.e.

parity-even (S) states f+ and g+ and parity-odd (P ) states f− and g− — since these are

the states most sensitive to finite-size effects of the source, we find the leading small-ε form

C±
A±

=
[ζ ± 1 + ZαX]− [(ζ ∓ 1)X − Zα](f±/g±)

[ζ ∓ 1− ZαX]− [(ζ ± 1)X + Zα](f±/g±)
(2κε)2ζ , (4.9)

where f±/g± is evaluated at r = ε and X is defined by X :=
√

(m− ω)/(m+ ω). As we

shall see, it is the factor of 2 in the exponent of (2κε)2ζ that is responsible for the main

differences between the Dirac case and the Klein-Gordon problem studied in [6] (for which

instead (2κε)ζs appeared). This factor has its origins in the spin-orbit coupling that mixes

two different orbital angular momenta into each state having fixed j.

4.2 Leading and first-subleading energy shifts

For detailed studies of the influence of nuclei on atomic energy levels one expands all

contributions to bound state energies as a dual series in the small parameters (Zα)2 and

mεZα ∼ ε/aB, where aB = 1/(mZα) is the Bohr radius and ε ' R where R ' 1 fm is

a typical nuclear size. In practice, comparison with experiments on atomic energy levels

requires both the leading contribution and its subleading O(mRZα) correction, and for

electronic atoms (Zα)2 corrections are also required since for R of order a Fermi these are

comparable in size to (mRZα) corrections. Our purpose in this section is to identify as

generally as possible how these terms depend parametrically on the properties of the source.

Although (4.9) is sufficient for some applications, a more accurate approximation

turns out to be required in order to track the leading subdominant coefficients in this

kind of expansion. Increased accuracy is required for bound-state calculations because

nominally independent variables like κ and X become specific powers of Zα once evalu-

ated at the lowest-order bound-state energies ω = ωN . For instance, using (4.3) in the

definitions implies

ρnj = 2κNε =
2mεZα

n

[
1 +O(Zα)2

]
and Xnj =

Zα

2n

[
1 +O(Zα)2

]
, (4.10)

and so higher powers of these compete with powers of Zα arising elsewhere (such as from

the expansion of ζ). Extracting a particular order in Zα is further complicated by the

appearance of factors of (1 − ζ)−1 ∝ (Zα)−2 in the expansion of the confluent hyperge-

ometric functions M[a, 1 − 2ζ; ρ], due to the singularity of M[a, b; z] as b approaches a

nonpositive integer.

We next identify the leading and subleading O(mRZα) and O(Zα)2 contributions to

the energy shift. To do so we use the exact expressions, (2.16) and (2.17), for the general

Dirac-Coulomb solution and solve for the integration constants Q = −(C/A) in terms of

f/g evaluated at r = ε = R, finding

Q = − C

A
=

{[
(Q20 +Q10)g +X(−Q20 +Q10)f

(Q21 +Q11)g +X(−Q21 +Q11)f

]
ρ2ζ

}
r=R

(4.11)
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where (as before) X :=
√

(m− ω)/(m+ ω) and

Q10 := M (ζ − x, 1 + 2ζ; ρ) , Q11 :=M (−ζ − x, 1− 2ζ; ρ) ,

Q20 := −
(
ζ − x
K − x̂

)
M (ζ − x+ 1, 1 + 2ζ; ρ) (4.12)

and Q21 :=

(
ζ + x

K − x̂

)
M (−ζ − x+ 1, 1− 2ζ; ρ) ,

with x = Zαω/κ while x̂ = Zαm/κ. These are to be evaluated at the lowest-order

solution, x = xN = N + ζ, where N = n − 1 and ζ ' 1 + 1
2(Zα)2 for j = 1

2 states, and

we work only to subdominant order in mRZα and (Zα)2. Eq. (4.11) agrees with (4.9) at

lowest order in ρ, for which M[a, b; ρ] = 1.

Since ρ = 2κNR ∝ mRZα working to fixed order in Zα allows us to expand M in

powers of ρ, but when doing so must be careful about factors of 1/(1 − ζ) ∝ (Zα)−2

appearing in the coefficients of the hypergeometric series. Such terms only arise when

b of M[a, b; ρ] is a negative integer and so only are a factor in Q11 and Q21. Since all

powers of ρ involve the factor mR our guiding principle when expanding in ρ is to keep

terms involving only a single subdominant power of Zα. This also allows us to neglect all

subdominant powers of 1 − ζ ∝ (Zα)2 in any ρ-dependent terms. Using ζ ' 1 − 1
2(Zα)2

and x ' xN = N + ζ ' N + 1 one finds

Q10 := M (ζ − x, 1 + 2ζ; ρ) ' 1−
(
N

3

)
ρ+

N(N − 1)

24
ρ2 + · · · , (4.13)

and

Q20 := −
(
ζ − x
K − x

)
M (ζ − x+ 1, 1 + 2ζ; ρ)

' −
(

N

N + 1−K

)[
1−

(
N − 1

3

)
ρ+

(N − 1)(N − 2)

24
ρ2 + · · ·

]
, (4.14)

while

Q11 := M (−ζ − x, 1− 2ζ; ρ) (4.15)

' 1 + (N + 2) ρ−
[

(N + 2)(N + 1)

2(1− ζ)

]
ρ2

2
+

[
N(N + 2)(N + 1)

2(1− ζ)

]
ρ3

3!
+ · · · ,

and

Q21 :=

(
ζ + x

K − x

)
M (−ζ − x+ 1, 1− 2ζ; ρ) (4.16)

' −
(

N + 2

N+1−K

){
1+(N+1) ρ−

[
(N+1)N

2(1−ζ)

]
ρ2

2

[
N(N+1)(N−1)

2(1− ζ)

]
ρ3

3!
+ · · ·

}
.

Parity-even leading energy shifts. Collecting results and specializing to the parity-

even j = 1
2 S states (i.e. those with K = −1) gives the leading contribution (unsuppressed

by any additional powers of Zα)

1

2
n(n+ 1)Q+ '

[
2(1 + 2ξg)

1− 2(1 + 2ξg)(mR)2

]
(mRZα)2 (leading order) (4.17)

where ξg contains the entire contribution of the physics of the source, through (3.45).
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Using (4.17) in the double-pole approximation (4.7) then gives

h+
eff '

π

Zαm2

[
1
2n(n+ 1)Q+

1 + 1
2n(n+ 1)Q+/(Zα)2

]

= 2π ZαR2(1 + 2ĝ1) (leading order) , (4.18)

where we use ξg ' ĝ1 because at leading order consistency requires also dropping subleading

terms in ξg. Notice the cancellation here of the spurious (mR)2 terms in the denominator

of (4.17); a cancellation that is missed if only the single-pole approximation is used (thereby

showing that physical energy shifts lie beyond its domain of validity).

Parity-even subleading O(mRZα) energy shifts. Including also subdominant

terms linear in Zα requires keeping corrections coming from the expansion of the higher

orders in ρ, leading to

1

2
n(n+ 1)Q+ '

[
1 + 2ξg −∆+

1

1− 2(1 + 2ξg −∆+
1 )(mR)2 + ∆+

2

]
2 (mRZα)2 (subleading order)

(4.19)

where we use ξg = ĝ1 + ĝ2(mRZα) in the explicitly written terms, but it suffices to use

only ξg = ĝ1 in the quantities

∆+
1 := 2(n− 1)

(
ĝ1 +

2n− 1

6n

)
mRZα

n

and ∆+
2 :=

[
1 + 2n(1 + ĝ1)

]mRZα
n

. (4.20)

Consequently the double-pole approximation gives

h+
eff '

π

Zαm2

[
1
2n(n+ 1)Q+

1 + 1
2n(n+ 1)Q+/(Zα)2

]
' 2π ZαR2

[
(1 + 2ĝ1)(1−∆+

2 ) + 2ĝ2(mRZα)−∆+
1

]
(4.21)

= 2π ZαR2

{
1 + 2ĝ1 + 2ĝ2(mRZα)−

[
1 + 8n2

(
1 +

3

2
ĝ1(ĝ1 + 2)

)]
mRZα

3n2

}
,

which includes all corrections that are down only by a single power of Zα (but drops (Zα)2

everywhere). Later sections verify that this expression captures specific special cases in the

literature.

Parity-odd leading energy shift. We next turn to parity-odd j = 1
2 P states (for

which K = +1). In this case following the same steps reveals the leading contribution

to be

Q− ' −
(
n− 1

2n

)[
ξf −

2

3
(mRZα)

](
2mRZα

n

)2

(leading order) (4.22)

where the entire contribution of source physics is through

X

(
f−
g−

)
r=R

=
ξf
2n

with ξf = f̂1(mRZα) + f̂2(mRZα)2 + f̂3(Zα)2 + · · · . (4.23)

with (as before) X =
√

(m− ω)/(m+ ω).
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Dropping all subdominant powers of Zα (and for consistency restricting the source

contribution to ξf ' f̂1(mRZα) gives the leading parity-odd energy shift

h−eff ' −
π(n2 − 1)

n2

(
f̂1 −

2

3

)
(Zα)2mR3 (leading order) . (4.24)

As usual, this is smaller than the parity-even result because it is suppressed by the spin-

orbit coupling required to link the P states to ` = 0 orbital angular momentum.

Parity-odd subleading O(mRZα) energy shift. Even though small, for some special

cases (such as the charged shell described below) it happens that f̂1 = 2
3 and so the leading

contribution to parity-odd states vanishes. Such cases are dominated by the subleading

contribution, for which

1

2
n(n+ 1)Q− ' −

n2 − 1

n2

[
ξf − 2

3(mRZα) + ∆−1
1 + (n2 − 1)(mR/n)2[ξf − 2

3(mRZα)]−∆−2

]
(mRZα)2

(4.25)

where we can use ξf = f̂1(mRZα) + f̂2(mRZα)2 in the explicitly written factors, but stop

at ξf ' f̂1(mRZα) in

∆−1 '
[
(n− 2)− (2n− 3)f̂1

](mRZα)2

3n
(4.26)

and ∆−2 =
1

2

[
f̂1 −

2(n+ 1)

n

]
(mRZα) ,

leading to

h−eff '
π

Zαm2

[
1
2n(n+ 1)Q−

1 + 1
2n(n+ 1)Q−/(Zα)2

]

' − π(n2 − 1)

n2
ZαR2

[
ξf − 2

3(mRZα) + ∆−1
1−∆−2

]
(subleading order) (4.27)

' − π(n2 − 1)

n2
(Zα)2mR3

{(
f̂1 −

2

3

)[
1 +

(
f̂1

2
− 5

3

)
(mRZα)

]

+

(
f̂2 −

1

9

)
(mRZα)

}
.

4.3 Subleading (Zα)2 energy shifts

This section computes the subdominant O(Zα)2 energy shifts for parity even and parity

odd cases. Because factors of mR do not accompany the subleading powers of Zα it suffices

to drop all nontrivial powers of ρ from the get-go and instead focus on the subdominant

powers of (Zα)2. Because of this we can evaluate Q directly using (4.9), which is repeated

here for convenience

Q ' [K − ζ − ZαX]g + [(K + ζ)X − Zα]f

[K + ζ − ZαX]g + [(K − ζ)X − Zα]f
(2κR)2ζ . (4.28)
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N 0 1 2 3 4 5 6 7 8

HN 0 1 3/2 11/6 25/12 137/60 49/20 363/140 761/280

Table 1. First few harmonic numbers.

This is to be expanded to order (Zα)2, using ζ ' 1− 1
2(Zα)2 and

ω → ωN = m

[
1 +

(Zα)2

(N + ζ)2

]−1/2

' m

[
1− (Zα)2

2n2
− (4n− 3)(Zα)4

8n4
+O[(Zα)6

]
, (4.29)

and

κ→ κN =
√

(m− ωN)(m+ ωN) ' m
[
Zα

n
+

(n− 1)(Zα)3

2n3
+O[(Zα)5]

]
, (4.30)

so in particular

(2κNR)2 '
[
1 +

(n− 1)(Zα)2

n2
+O[(Zα)4]

](
2mRZα

n

)2

. (4.31)

Similarly

X → XN =

√
m− ωN

m+ ωN

' Zα

2n
+

(2n− 1)(Zα)3

8n3
+O[(Zα)5] . (4.32)

Using the corresponding terms in the source expansion ξg ' ĝ1 + ĝ3(Zα)2 then gives Q+

for parity-even (K = −1) states as

n(n+ 1)Q+

2
' (mRZα)2

{
2(1 + 2ĝ1)

[
1− (Zα)2 ln

(
2mRZα

n

)]
+

[
(6n2−n−3)− (2n3−4n2+n+ 3)2ĝ1−4n2(n+1)ĝ2

1

2n2(n+ 1)

]
(Zα)2

+4ĝ3(Zα)2 +O[(Zα)4]

}
. (4.33)

To work systematically to relative order (Zα)2 we must keep track of the factor of cN
in heff

heff '
πc

3/2
N δx

Zαm2
' πδx

Zαm2

[
1 +

3(n− 1)(Zα)2

2n2

]
, (4.34)

and it is also necessary to refine the double-pole approximation, by keeping subdominant

terms in the Gamma-function expansion:

Γ(y) = Γ(δy −N) ' (−)N

N !

[
1

δy
+HN − γ +O(δy)

]
, (4.35)

where the harmonic numbers (see also table 1) are defined by

HN =

N∑
k=1

1

k
=

∫ 1

0
dx

1− xN

1− x
, (4.36)
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and the integral representation shows in particular that H0 = 0. γ is the Euler-Mascheroni

constant

γ = lim
N→∞

[
HN − lnN

]
= 0.57721 56649 01532 86060 65120 . . .

Tracking only the m-independent (Zα)2 terms the leading contributions then are

h+
eff ' πZαR2

{
2(1 + 2ĝ1)

[
1− (Zα)2

[
ln

(
2mRZα

n

)
+Hn+1 + γ

]]
(4.37)

+

[
4ĝ3 + 5 + 8ĝ1 − 2ĝ2

1 + (1 + 2ĝ1)
12n2 − n− 9

2n2(n+ 1)

]
(Zα)2 +O[(Zα)4]

}
.

The first term agrees with the leading result found earlier, and to these can be added the

subleading (mRZα) corrections found in eq. (4.21) above.

Some implications of these formulae are explored in the next sections.

5 Examples

As ever, the power in using an effective action to describe the short-distance properties

of the source lies in its generality. That is, coefficients like cs, rp and cv can be used to

describe the leading contributions due to any localized source physics, provided only that

this physics arises over small enough scales, R, to make an expansion in powers of R/a useful

(where a is a typical macroscopic scale — such as the Bohr radius of an exterior orbit).

This ensures the model-independence of parametrizing physical quantities like energy shifts

in terms of these parameters.

This section emphasizes this point by indicating how several kinds of microscopic

source physics contribute to effective couplings in the source action, Sp, and how the above

expressions reproduce familiar results in specific instances.

5.1 Explicit charge distributions

Perhaps the simplest example of microscopic source physics that can be parametrized by

Sp is the situation where the source is an explicit static charge distribution, ρ(x), rather

than a point charge. Examples of this form are studied in the literature, with sensitivity

to source structure often estimated by tracking how energy shifts alter as ρ(x) is varied

through a plausible range of configurations [24, 26–37, 51, 52].

5.1.1 Relations to moments

The leading terms in the source-dependent energy shift in this case have been calculated

by perturbing the interior solution around the Coulomb problem and are known6 to be

given by [24]

heff =
2π

3
Zα

[
r2
p −

Zαµ

2
〈r3〉(2) + (Zαµ)2FNR + (Zα)2FREL

]
, (5.1)

6See also [25] for a discussion of the limits of this expansion.
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where µ is the reduced mass (so µ→ m in the infinite-source-mass limit used here) and

〈r3〉(2) =

∫
d3x d3y |x|3ρ(y − x)ρ(y) , (5.2)

while FNR and FREL are given in terms of various charge moments in [24].

This result is model-independent inasmuch as the expressions for the coefficients of

the series are universal functions of these moments, with the energy shift due to various

charge distributions just differing in the values these distributions predict for the moments

themselves. This is a more limited sense of ‘model-independence’ than we use here, since the

model-independence of the predictions of the effective action apply not just to static charge

distributions, but essentially to any kind of source physics that is sufficiently localized.

(This model-independence of EFT methods for atomic measurements is emphasized within

the 2nd-quantized framework in [41–45, 53].)

We verify in appendix B that for a general static charge distribution, ρ(x), the quantity

ĝ1 that dominates how source physics appears in g+/f+ is related to the rms charge density,

r2
p = 〈r2〉, by

(1 + 2ĝ1)R2 =
r2
p

3
, (5.3)

which implies that the leading energy shift given by (4.18) becomes

h+
eff '

2π

3
Zα r2

p , (5.4)

as required for consistency with (5.1). On the other hand, the boundary condition (3.8)

shows how the parameter ĝ1 is also interchangeable with one combination of cs and

cv tot through(
cs + cv tot

)
ε=R

= cs + cv +
2π

3
Zα r2

p = 4πR2

(
g+

f+

)
r=R

= 4πĝ1 ZαR
2 . (5.5)

This implies

cs + cv = −2πZαR2 , (5.6)

i.e. the infrared fixed point found in (3.42). Note the difference from the Schrödinger

running where we found that h = 0 is a fixed point that parametrizes a trivial bound-

ary condition.

The subdominant (mRZα) contribution also provides a relation between ĝ2 and the

higher moment 〈r3〉(2). Comparing (4.21) with (5.1) and using (5.3) shows

〈r3〉(2) ' −6R3

{
2ĝ2 −

[
1 + 8n2

(
1 +

3

2
ĝ1(ĝ1 + 2)

)]
1

3n2

}
. (5.7)

Although we do not have a general proof of this result, we can verify it for specific charge

distributions. These higher terms can be related to higher-dimension interactions — such

as those of (3.44) — in Sp, using matching conditions similar to (5.5), although we do not

pursue this here.
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5.1.2 Specific charge distributions

The detailed calculations done for specific charge distributions [24, 51, 52] provide useful

checks on the higher-order terms, since these must agree on the series coefficients for the

specific charge distributions studied. To provide this check we compute the couplings ĝi
and f̂i for various charge distributions in appendix B, and we here use these in the above

expressions for heff to verify agreement where overlap is possible.

Spherical charged shell. The simplest such example is that of a charged shell, for which

ρ = σ δ(r −R) =
Ze

4πR2
δ(r −R) (5.8)

which is convenient since the interior solution can be solved exactly in closed form. (We

have checked that our numerical results for this case agree with those of [52].) For this

distribution the rms charge radius is r2
p = R2 and 〈r3〉(2) = 16R3/5.

For the parity-even state the boundary parameters appearing in g+(R)/f+(R) work

out to be

ĝ1 = − 1

3
, ĝ2 = − 2

45
+

1

6n2
and ĝ3 = − 1

45
, (5.9)

while for the parity-odd state the analogous parameters are

f̂1 = +
2

3
, f̂2 = +

2

45
and f̂3 = +

1

3
. (5.10)

Using these values to compute the leading and subleading (mRZα) and (Zα)2 energy

shifts then gives

h+
eff ' πZαR2

{
2(1 + 2ĝ1)

[
1− (Zα)2

[
ln

(
2mRZα

n

)
+Hn+1 + γ

]]
+4ĝ2(mRZα)−

[
1 + 8n2

(
1 +

3

2
ĝ1(ĝ1 + 2)

)]
2mRZα

3n2

+

[
4ĝ3 + 5 + 8ĝ1 − 2ĝ2

1 + (1 + 2ĝ1)
12n2 − n− 9

2n2(n+ 1)

]
(Zα)2

+O[(mRZα)2, mR(Zα)2, (Zα)4]

}
→ 2πZαR2

3

{
1− 8

5

(
mRZα

)
−
[

ln

(
2mRZα

n

)
+Hn+1 + γ − 91

30
− 12n2 − n− 9

4n2(n+ 1)

](
Zα
)2

+ · · ·
}

(charged shell) , (5.11)

for parity-even states. Notice the correct result for r2
p and the cancellation of the n-

dependence (and agreement with) the second moment 〈r3〉(2) for this distribution. This

expression also agrees well with numerical evaluation (as illustrated in figure 3).

In this case, because f̂1 = 2
3 , the leading parity-odd energy shift vanishes, leaving a

result that is smaller than would naively be expected. The energy shifts predicted by the
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parameters f̂i in this case are

h−eff ' −
π(n2 − 1)

n2
(Zα)2mR3

{(
f̂1 −

2

3

)[
1 +

(
f̂1

2
− 5

3

)
(mRZα)

]

+

(
f̂2 −

1

9

)
(mRZα)

}

→ +
π(n2 − 1)

45n2
(Zα)3m2R4 (charged shell) . (5.12)

Both of these results also depend on n in the way indicated by numerical evaluation.

Uniform spherical distribution. A second go-to example is the case of a uniform

charge distribution, although in this case the interior solution cannot be computed in

closed form. We have verified that our solutions agree in this case with the numerical

results given in [52]. Analytic expressions for the series expansion of the energy shifts are

also given in [51], and we have verified that our results agree with these (and with [24]) in

this case.

Evaluating the boundary condition g+(R)/f+(R) using the interior solutions returns

the following values

ĝ1 = − 2

5
, ĝ2 = − 116

1575
+

1

6n2
and ĝ3 = − 736

17325
, (5.13)

while the same calculation for the parity-odd states gives

f̂1 =
2

3
, f̂2 = +

32

315
and f̂3 = +

2

5
. (5.14)

Used in the parity-even energy shift, these values return the leading and sub-leading results

h+
eff ' πZαR2

{
2(1 + 2ĝ1)

[
1− (Zα)2

[
ln

(
2mRZα

n

)
+Hn+1 + γ

]]
+4ĝ2(mRZα)−

[
1 + 8n2

(
1 +

3

2
ĝ1(ĝ1 + 2)

)]
2mRZα

3n2

+

[
4ĝ3 + 5 + 8ĝ1 − 2ĝ2

1 + (1 + 2ĝ1)
12n2 − n− 9

2n2(n+ 1)

]
(Zα)2

+O[(mRZα)2, mR(Zα)2, (Zα)4]

}
→ 2πZαR2

5

{
1− 80

63

(
mRZα

)
−
[

ln

(
2mRZα

n

)
+Hn+1 + γ − 22697

6930
− 12n2 − n− 9

4n2(n+ 1)

](
Zα
)2

+ · · ·
}

(uniform sphere) . (5.15)

These agree with the coefficients given explicitly in [51]. The first two terms also agree

with [24] since the rms radius is r2
p = 3

5 R
2 for this distribution, while the second moment

is 〈r3〉(2) = 32
21 R

3 and so

Zαm〈r3〉(2)

2r2
p

=
1

2

32

21

5

3
(mRZα) =

80

63
(mRZα) . (5.16)
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5.2 Other applications

A point-particle effective action like Sp can be used to parametrize any short-range source

physics and so need not be limited to describing the effects of finite nuclear size. This

section summarizes a few such examples.

Vacuum polarization. A standard contribution to atomic energy levels that also can

be captured using Sp is the contribution (or parts of the contribution) due to vacuum

polarization. It is well-known that the effects of vacuum polarization on the field of a point

charge, Ze, can be described by the Uehling potential [54–57], of the form

U(r) =
2αZe

3πr

∫ ∞
1

du

u2

√
u2 − 1

(
1 +

1

2u2

)
e−2ur/α , (5.17)

in which m is the mass of the particle circulating within the loop. Since the range of this

interaction is of order R ∼ m−1 the electron and muon vacuum polarizations fall into the

category of physical effects acting over much smaller distances than typical sizes of orbits

in ordinary atoms. The same is true for the influence of the muonic vacuum polarization

within muonic atoms (but because me ∼ αmµ it is not true for the shifts on muonic atom

energies due to electron vacuum polarization).

Such a potential shifts the energy of atomic states with low angular momentum that

sample the potential near the nucleus, by an amount that is proportional (in the Schrödinger

limit) to the wave-function at the origin: |ϕ(0)|2. Using the notation of earlier sections,

the resulting energy shift has size

heff = − 4Zα2

15m2
, (5.18)

where m is the mass of the particle in the loop. Since the photon line of the vacuum

polarization does not flip helicity, the arguments of earlier sections imply that this leading

energy shift is correctly captured (at order (Zα)2/m2) in all low-energy observables through

a contribution to the effective couplings in (2.3) of size

cs = 0 and cv tot = − 4Zα2

15m2
. (5.19)

Strong interactions and anti-protonic atoms. When the particle orbiting a nucleus

is affected by the strong interaction (such as for a π−, K− or p̄) then it experiences a short-

range (R ∼ m−1
π ) strong interaction with the nucleus in addition to the usual Coulomb

potential. These are often described in the literature in terms of explicit nuclear potentials,

which though concrete introduce an element of model-dependence into the treatment.

For such situations a more model-independent approach is to use the contact interac-

tions appearing in (2.3) to capture the effects of these strong interactions on energy shifts

and nuclear scattering amplitudes. This has the advantage of using only the short range of

the force to organize the calculation, and so allows the disentangling of effects that rely only

on this from those that instead depend on the detailed form assumed for any hypothetical

nuclear potential.
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Ref. [6] shows how parametrizing these strong interactions in terms of the lowest-

dimension contact interaction allows the derivation of a relation between the strong-

interaction induced shifts in atomic energy levels and the scattering length for collisions

with the nucleus, that reproduce the standard Deser formula [58] (derived using nuclear

potentials in the 1950s).

The leading effects of the nuclear force on antiprotons in protonium [59, 60] can sim-

ilarly be captured through the contact interactions of (2.3), though for protonium the

existence of a relatively quick annihilation channel reduces the practical utility of using

measurements of the energy shifts to learn about the nuclear interaction. But because this

annihilation can also be described in the effective point-source action through the addition

of imaginary parts to the effective couplings cs and cv one use for Sp in this case is to

compute the dependence of the annihilation rate on the principal quantum number n for

S and P states. Thinking of the annihilation rate as the imaginary part of the energy

eigenvalue shows that this n-dependence should be the same as for the energy shifts found

in earlier sections, and this indeed reproduces what is found when modelling annihilation

using nuclear potentials [61].

The virtue of rederiving this result using Sp is that the effective field theory shows why

the result is robust, and not an artefact of model-dependent details.

Exotic interactions. A fairly obvious use for contact interactions in the point-particle

action is to parametrize the effects of any hypothetical new forces acting between nuclei

and electrons or muons, and in particular forces that differ in strength between these two

(since these can be captured through species-dependent values for cs and cv, unlike for

rp). Indeed the observation that the existence of such short-range interactions could, in

principle, explain the proton radius puzzle [38–40] has led to efforts to better understand

their size [53] and to the proposal of exotic interactions of this type [62–65].

6 Summary

In this paper, we introduce the PPEFT of Dirac fermions using a first-quantized language

for the heavy compact object and a second-quantized language for the lighter fermion

with which it interacts. This formalism can be advantageous to the fully second-quantized

framework in the limit of the compact object being much heavier than the light interacting

particle, i.e. the heavy compact object can be regarded as being in a position eigenstate to

first approximation.

This formalism was previously introduced for bosons [5, 6] where it was found that

energy shifts due to the finite size R of the source scale linearly in R which is unusual.

This does not carry over to fermions, i.e. energy shifts scale as R2. The absence of such

unusual energy shifts means that there is no additional term that could account for the

proton-radius-puzzle.

Our PPEFT allows one to parametrize the currently measurable energy shifts and their

leading corrections due to the finite size of the nucleus for nuclei with zero nuclear spin.

Other applications include parametrizing strong interactions between the orbiting particle

and the nucleus and anti-protonic atoms as well as hypothetical new forces acting between

nuclei and electrons or muons.
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In general, energy shifts are found by comparing the ratio of integration constants,

C/A, appearing in the mode expansions (2.16) and (2.17) for the radial solutions to the

Dirac equation found in two ways. On one hand normalizability at large r implies C/A

is given by (4.2), while on the other hand it is fixed by the boundary condition for the

ratio of radial functions, f/g, evaluated at a small radius r = ε near where the small

source intervenes. The expression for C/A given f/g|r=ε can be found either by working

numerically with the exact mode functions, or analytically using (4.9) if ε is small enough

that the mode functions are well-approximated by their small-r asymptotic forms.

The main contribution of the PPEFT construction given here is to express f/g at

r = ε in terms of general effective couplings, such as cs and cv using the conditions given

in eqs. (3.8). This leads to a low-energy expansion applicable to generic source physics

provided only that the size of the source is sufficiently small. In the explicit calculations

presented here ‘generic’ is in practice restricted for simplicity to parity conserving and

rotationally invariant sources, rather than considering different source models one at a

time. Results for specific models of the source can then be found by evaluating cs and

cv explicitly using the model, such as along the lines as was done in the text for specific

charge distributions.

What sets the size of ε? The above procedure works for boundary conditions at any

small radius r = ε, provided that ε is much smaller than the applications of interest (such

as the Bohr radius, for atomic examples) while also being larger than the actual size R

of the source. The effective couplings — e.g. cs and cv — themselves also depend on ε in

precisely the way required to ensure that physical quantities do not; an evolution computed

for cs and cv explicitly in section 3.2. Once cs and cv are specified by matching to a specific

model at r = R, their size at larger r = ε is dictated by this evolution.

Finally, we give explicit formulae for energy shifts in the Dirac-Coulomb case as a

double series in powers of mRZα and (Zα)2, given a similar expansion for the boundary

conditions f/g of the form

1

Zα

(
g+

f+

)
r=R

= ĝ1 + ĝ2(mRZα) + ĝ3(Zα)2 + . . . , (6.1)

and

2n

√
m− ω
m+ ω

(
f−
g−

)
r=R

= f̂1(mRZα) + f̂2(mRZα)2 + f̂3(Zα)2 + . . . , (6.2)

with ‘plus’ and ‘minus’ referring to positive and negative parity eigenstates. The parameters

f̂i and ĝi can be determined directly from a particular model of the underlying source and

can be traded for parameters in the effective Lagrangian (like cs and cv, with higher orders

also depending on their higher-dimensional counterparts).

Given such a boundary condition we write the energy shift to electrostatic bound states

in terms of an effective δ-function potential:

δω± =
h±eff

π

(
mZα

n

)3

, (6.3)
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where the effective coupling h±eff is given order by order in (Zα)2 and (mRZα) by:

h+
eff ' πZαR2

{
2(1 + 2ĝ1)

[
1− (Zα)2

[
ln

(
2mRZα

n

)
+Hn+1 + γ

]]
+

[
4ĝ3 + 5 + 8ĝ1 − 2ĝ2

1 + (1 + 2ĝ1)
12n2 − n− 9

2n2(n+ 1)

]
(Zα)2 (6.4)

+

[
2ĝ2 −

1

3n2

[
1 + 8n2

(
1 +

3

2
ĝ1(ĝ1 + 2)

)]]
(mRZα) + . . .

}
,

and

h−eff ' −
π(n2 − 1)

n2
(Zα)2mR3

{(
f̂1 −

2

3

)[
1 +

(
f̂1

2
− 5

3

)
(mRZα)

]

+

(
f̂2 −

1

9

)
(mRZα) + . . .

}
. (6.5)

These expressions apply for general f̂i and ĝi out to subdominant order mRZα and (Zα)2,

and so suffice for modern comparisons with precision measurements. As such they provide a

model-independent description of source effects, allowing them to be efficiently parameter-

ized when comparing modern measurements (for an example of the precision now possible,

see [66]) with other precision corrections, such as those of QED.

Finally, we have verified explicitly that these expressions reproduce those in the lit-

erature when specialized to the case where the source is modelled as an explicit charge

distribution, and for comparison purposes give expressions for the leading values of f̂i and

ĝi for several simple models considered elsewhere.
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A Gamma-matrix conventions

When necessary we use the following representation for the tangent-frame gamma matrices:

γ0 = −iβ = −i

(
0 I

I 0

)
, γk = −i

(
0 σk
−σk 0

)
, (A.1)
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where σk are the Pauli matrices,

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =

(
1 0

0 −1

)
, (A.2)

and I is the 2-by-2 unit matrix. The gamma matrices are defined to satisfy the Dirac

algebra {γµ, γν} = 2 ηµν where ηµν is the inverse Minkowski metric, given (in rectangular

coordinates) by diag(−+ ++).

Similarly

γ5 = −iγ0γ1γ2γ3 =

(
I 0

0 −I

)
, (A.3)

and ψ := ψ†β = iψ†γ0. The chirality projection matrices are

γL =
1

2
(1 + γ5) and γR =

1

2
(1− γ5) so ψ =

(
ψL

ψR

)
. (A.4)

As usual, the Pauli matrices satisfy

{σi, σj} = 2 δij and [σi, σj ] = 2i εijkσk , (A.5)

and so defining γµν := 1
2 [γµ, γν ] we have

γ0k =
1

2
[γ0, γk] =

1

2

(
−2σk 0

0 2σk

)
=

(
−σk 0

0 σk

)
, (A.6)

while

γjk =
1

2
[γj , γk] =

1

2

(
[σj , σk] 0

0 [σj , σk]

)
= iεjkl

(
σl 0

0 σl

)
. (A.7)

Consequently the spin parts of the boost and rotation generators are block-diagonal in this

basis, since

Bj := − i
2
γ0j =

i

2

(
σj 0

0 −σj

)
and Σj := − i

4
εjklγ

kl =
1

2

(
σj 0

0 σj

)
. (A.8)

A.1 Polar coordinates

Our conventions for spherical polar coordinates {r, θ, φ} are standard, with (as usual)

x = r sin θ cosφ , y = r sin θ sinφ and z = r cos θ . (A.9)

The differentials therefore satisfy dx

dy

dz

 =

 sin θ cosφ cos θ cosφ − sinφ

sin θ sinφ cos θ sinφ cosφ

cos θ − sin θ 0


 dr

r dθ

r sin θ dφ

 (A.10)

in terms of which the flat 3D metric is

gij dxidxj = dx2 + dy2 + dz2 = dr2 + r2(dθ2 + sin2 θdφ2) =: (er)2 + (eθ)2 + (eφ)2 . (A.11)
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This last equality defines the normalized frame of basis 1-forms, er, eθ and eφ, so that an

orthonormal frame is given by

er = dr , eθ = r dθ and eφ = r sin θ dφ . (A.12)

We implicitly work in a gauge with ∂µA
µ = 0. For later use notice the inverse of (A.10) is dr

r dθ

r sin θ dφ

 =

 sin θ cosφ sin θ sinφ cos θ

cos θ cosφ cos θ sinφ − sin θ

− sinφ cosφ 0


 dx

dy

dz

 . (A.13)

The radial gamma matrices are then defined by

γθ = γ1ex
θ + γ2ey

θ + γ3ez
θ

=
1

r

[
(γ1 cosφ+ γ2 sinφ) cos θ − γ3 sin θ

]
(A.14)

= − i
r

(
0 σθ

−σθ 0

)
,

with

σθ := (σx cosφ+ σy sinφ) cos θ − σz sin θ =

(
− sin θ e−iφ cos θ

eiφ cos θ sin θ

)
. (A.15)

Similarly

γφ = γ1ex
φ + γ2ey

φ + γ3ez
φ

=
1

r sin θ

[
−γ1 sinφ+ γ2 cosφ

]
= − i

r sin θ

(
0 σφ

−σφ 0

)
,

with

σφ := −σx sinφ+ σy cosφ =

(
0 −ie−iφ

ieiφ 0

)
, (A.16)

and (for completeness)

γr = γ1ex
r + γ2ey

r + γ3ez
r

= (γ1 cosφ+ γ2 sinφ) sin θ + γ3 cos θ (A.17)

= −i

(
0 σr

−σr 0

)
,

with

σr := (σx cosφ+ σy sinφ) sin θ + σz cos θ =

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)

=
1

r

(
z x− iy

x+ iy −z

)
=

r

r
· ~σ . (A.18)
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Finally

σθσφ = −σφσθ = i

(
cos θ e−iφ sin θ

eiφ sin θ − cos θ

)
= iσr , (A.19)

and so

γθφ = γθγφ = −γφγθ =
1

r2 sin θ

(
σθσφ 0

0 σθσφ

)
=

i

r2 sin θ

(
σr 0

0 σr

)
, (A.20)

which also implies

γθφ = gθθgφφγ
θγφ = ir2 sin θ

(
σr 0

0 σr

)
. (A.21)

For future reference notice also that with the convention ε0rθφ = + det ea
µ = +1/(r2 sin θ)

the above imply

γ0r = −γr0 = γ0γr =

(
σr 0

0 −σr

)
and γθφγ5 = ir2 sin θ

(
σr 0

0 −σr

)
, (A.22)

and so

γµν = − i
2
εµνλρ γλργ5 . (A.23)

Solutions to the Dirac equation, ( /D +m)ψ = 0 also solve

0 = ( /D −m)( /D +m)ψ = ( /D
2 −m2)ψ =

[
DµD

µ −m2 +
ie

2
γµνFµν

]
ψ , (A.24)

which is the Klein-Gordon equation supplemented by a spin term, whose explicit form is

+
ie

2
γµνFµν = +ie γr0Fr0 = − iZα

r2

(
σr 0

0 −σr

)
, (A.25)

and we use the definition of the fine-structure constant: α := e2/(4π). Once a solution,

χ, to (A.24) is found, then the corresponding electron-type solution to the Dirac equation

( /D+m)ψ = 0 is ψ = ( /D−m)χ [and similarly the corresponding positron-type solution to

( /D −m)ψ = 0 would be ψ = ( /D +m)χ].

A.2 Spinor harmonics

When solving the Dirac equation we define quantities having definite quantum numbers (j

and jz) for J and Jz, leading to the following 2-component spinors

U+
j jz

(θ, φ) :=

[√
(j + jz)/(2j) Yj− 1

2
jz− 1

2
(θ, φ)√

(j − jz)/(2j) Yj− 1
2
jz+ 1

2
(θ, φ)

]

and U−j jz(θ, φ) :=

[ √
(j + 1− jz)/[2(j + 1)] Yj+ 1

2
jz− 1

2
(θ, φ)

−
√

(j + 1 + jz)/[2(j + 1)] Yj+ 1
2
jz+ 1

2
(θ, φ)

]
. (A.26)

Notice that the property Y` `z(π − θ, φ + π) = (−)`Y` `z(θ, φ) implies parity acts on these

combinations oppositely: Π̂U±j jz = (−)j∓
1
2U±j jz . Furthermore, notice also that σr U±j jz =
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U∓j jz . Indeed the result σr U±j jz = η U∓j jz with η2 = 1 is a consequence of the properties (i)

σr = r̂ · σ is parity odd; (ii) (σr)2 = 1; and (iii) [J, σr] = 0, so only a direct calculation

determines η = 1 rather than η = −1.

We directly evaluate for the case of most interest: j = 1
2 . For this purpose we use the

explicit forms

Y00 =
1√
4π

, Y10 =

√
3

4π
cos θ =

√
3

4π

z

r

Y1±1 = ∓
√

3

8π
e±iφ sin θ = ∓

√
3

8π

x± iy
r

, (A.27)

in the definitions of the U±1
2
jz

to find

U+
1
2

1
2

(θ, φ) :=

[
Y00(θ, φ)

0

]
=

1√
4π

[
1

0

]

U+
1
2
− 1

2

(θ, φ) :=

[
0

Y00(θ, φ)

]
=

1√
4π

[
0

1

]
, (A.28)

and

U−1
2

1
2

(θ, φ) :=
1√
3

[
Y10(θ, φ)

−
√

2 Y11(θ, φ)

]
=

1√
4π r

[
z

x+ iy

]
=

1√
4π

[
cos θ

eiφ sin θ

]

U−1
2
− 1

2

(θ, φ) :=
1√
3

[√
2 Y1−1(θ, φ)

−Y1 0(θ, φ)

]
=

1√
4π r

[
x− iy
−z

]
=

1√
4π

[
e−iφ sin θ

− cos θ

]
,

(A.29)

which are also what is found explicitly by acting on U+
1
2
jz

with the explicit matrix

σr =
r

r
· ~σ =

1

r

(
z x− iy

x+ iy −z

)
. (A.30)

Similarly, acting with σr on U−1
2
jz

gives

σrU−1
2

1
2

(θ, φ) :=
1√

4π r2

(
z x− iy

x+ iy −z

)[
z

x+ iy

]
=

1√
4π

[
1

0

]
= U+

1
2

1
2

σrU−1
2
− 1

2

(θ, φ) :=
1√

4π r2

(
z x− iy

x+ iy −z

)[
x− iy
−z

]
=

1√
4π

[
0

1

]
= U+

1
2
− 1

2

.

(A.31)

For later purposes we also evaluate the spatial derivatives explicitly using ~σ · ∇ =

σk ∂k = σx∂x + σy∂y + σz∂z as well as ~σ · ∇f(r) = f ′(r)~σ · ∇r = f ′(r)~σ · r/r = f ′(r)σr.

This trivially gives

σk∂k U
+
1
2
jz

= 0 , (A.32)

while

σk∂k U
−
1
2

1
2

=
2

r
U+

1
2

1
2

and σk∂k U
−
1
2
− 1

2

=
2

r
U+

1
2
− 1

2

, (A.33)

in agreement with an algebraic evaluation.
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B Dirac solutions

This appendix collects several exact and approximate solutions to the Dirac equation that

are used in the main text.

B.1 Exterior (Coulomb) solutions

Bound states for the Dirac equation are found as usual by demanding that the bound-

ary condition (normalizability) at infinity be compatible with the boundary condition at

the origin.

Energy eigenvalues. If the boundary condition at the origin is the usual one (for which

we discard the singular solution to the radial equation — see below) the energy eigenval-

ues are

ωN = m

[
1 +

(Zα)2

(N + ζ)2

]−1/2

= m

1 +
(Zα)2[

N +

√(
j + 1

2

)2 − (Zα)2

]2


−1/2

= m

[
1 +

(Zα)2(
n+ ζ − j − 1

2

)2
]−1/2

, (B.1)

where j = 1
2 ,

3
2 , · · · and the principal quantum number is defined by n = N +

(
j + 1

2

)
=

1, 2, 3, · · · . We define ζ = 1
2

√
1 + 4j(j + 1)− 4(Zα)2 or

ζ :=

√(
j +

1

2

)2

− (Zα)2 , (B.2)

so ζ → 1 as Zα→ 0 when j = 1
2 . This implies(

j +
1

2
+ ζ

)(
j +

1

2
− ζ
)

=

(
j +

1

2

)2

− ζ2 = (Zα)2 . (B.3)

The standard derivation shows that for N 6= 0 (that is, except for n = j + 1
2) each

state with fixed n and j comes with two-fold degeneracy corresponding to parity s = ±.

The most famous example is N = 1 and j = 1
2 , which corresponds to n = 2 and j = 1

2 in

which case the degeneracy is between the 2S1/2 and 2P1/2 states that get split by the Lamb

shift. This two-fold degeneracy does not occur for N = 0, corresponding to the n = j + 1
2

states like 1S1/2 (the ground state), 2P3/2, 3D5/2 and so on. (Notice that here S, P and

D do not strictly correspond to specifying ` but instead give the parity value s for the

corresponding state.)

Parity eigenstates. Normally, atomic states are given as parity eigenstates, which in-

volves combining ψL and ψR since the action of parity is

P

[
ψL(θ, φ)

ψR(θ, φ)

]
P−1 =

(
0 i

i 0

)[
ψL(π − θ, φ+ π)

ψR(π − θ, φ+ π)

]
. (B.4)
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We expect a unique solution for each choice of parity, j and jz quantum numbers, while

the above just relates the radial functions for left- and right-handed fields to one another.

The Dirac equation reads

− i(D0 + σkDk)ψR +mψL = 0 and − i(D0 − σkDk)ψL +mψR = 0 , (B.5)

and so

iσk∇kψL =

(
ω +

Zα

r

)
ψL −mψR and iσk∇kψR = −

(
ω +

Zα

r

)
ψR +mψL . (B.6)

To identify the parity eigenstates we expand in terms of the spinor harmonics U+ and

U− of appendix A and define the radial functions f(r) and g(r) using the following ansätze:

ψ+
L = f+(r)U+

j jz
(θ, φ) + ig+(r)U−j jz(θ, φ)

and ψ+
R = f+(r)U+

j jz
(θ, φ)− ig+(r)U−j jz(θ, φ)

ψ−L = f−(r)U−j jz(θ, φ) + ig−(r)U+
j jz

(θ, φ)

and ψ−R = f−(r)U−j jz(θ, φ)− ig−(r)U+
j jz

(θ, φ) , (B.7)

where the superscript on ψ and subscripts on f and g are the parity eigenlabel p = ±.

Using this in either of (B.6) gives the same conditions relating g and f . For the parity even

states the relations are

f ′+ =

(
m+ ω +

Zα

r

)
g+ and g′+ +

2g+

r
=

(
m− ω − Zα

r

)
f+ , (B.8)

while for parity odd states these relations instead become

g′− =

(
m− ω − Zα

r

)
f− and f ′− +

2f−
r

=

(
m+ ω +

Zα

r

)
g− , (B.9)

as used in the main text.

Coulomb-Dirac solutions. To solve the radial Dirac equations, (B.8) and (B.9), for

general radius we introduce the two functions

Q1 =
1

2
eρ/2ρ1−ζ

(
f√

m+ ω
− g√

m− ω

)
Q2 =

1

2
eρ/2ρ1−ζ

(
f√

m+ ω
+

g√
m− ω

) (B.10)

where ρ = 2κr and κ =
√
m2 − ω2. Some manipulation shows that these satisfy the

following second-order linear ODEs

ρQ′′1 + (2ζ + 1− ρ)Q′1 −
(
ζ − Zαω

κ

)
Q1 = 0

ρQ′′2 + (2ζ + 1− ρ)Q′2 −
(
ζ + 1− Zαω

κ

)
Q2 = 0 ,

(B.11)
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which hold for either sign of the parity quantum number. The parameter ζ is as defined

in (B.2). The most general solutions to these equations are given as linear combinations

of confluent hypergeometric functions M(a, b; ρ) = 1 + (a/b)ρ+ · · · , thereby introducing a

total of four integration constants.

The Dirac equation imposes two relations between the four constants. Hence, we can

express the solutions Q1 and Q2 as

Q1 = AM
[
ζ − Zαω

κ
, 2ζ + 1; ρ

]
+ C ρ−2ζM

[
−ζ − Zαω

κ
,−2ζ + 1; ρ

]
(B.12)

Q2 = −A
(
ζ − Zαω/κ
K − Zαm/κ

)
M
[
ζ − Zαω

κ
+ 1, 2ζ + 1; ρ

]
+C

(
ζ + Zαω/κ

K − Zαm/κ

)
ρ−2ζM

[
−ζ − Zαω

κ
+ 1,−2ζ + 1; ρ

]
, (B.13)

where K = ∓(j+ 1
2) for states with parity ±1. A and C are the two remaining integration

constants, and are chosen so that the function multiplying A is bounded as ρ → 0 while

the function multiplying C diverges there.

The corresponding expressions for f and g are then given by

f =
√
m+ ω e−ρ/2ρζ−1

{
AM

[
ζ − Zαω

κ
, 2ζ + 1; ρ

]
+ Cρ−2ζM

[
−ζ − Zαω

κ
,−2ζ + 1; ρ

]
−A

(
ζ − Zαω/κ
K − Zαm/κ

)
M
[
ζ − Zαω

κ
+ 1, 2ζ + 1; ρ

]
(B.14)

+C

(
ζ + Zαω/κ

K − Zαm/κ

)
ρ−2ζM

[
−ζ − Zαω

κ
+ 1,−2ζ + 1; ρ

]}
,

and

g = −
√
m− ω e−ρ/2ρζ−1

{
AM

[
ζ−Zαω

κ
, 2ζ+1; ρ

]
+Cρ−2ζM

[
−ζ − Zαω

κ
,−2ζ+1; ρ

]
+ A

(
ζ − Zαω/κ
K − Zαm/κ

)
M
[
ζ − Zαω

κ
+ 1, 2ζ + 1; ρ

]
(B.15)

−C
(
ζ + Zαω/κ

K − Zαm/κ

)
ρ−2ζM

[
−ζ − Zαω

κ
+ 1,−2ζ + 1; ρ

]}
.

Normalisation of the state for ρ→∞ demands A and C must be related by

A

C
= − Γ(1− 2ζ)

Γ(1 + 2ζ)

Γ(ζ − Zαω/κ)

Γ(−ζ − Zαω/κ)
(B.16)

which follows from the large-ρ form of the confluent hypergeometric functions M. When

C = 0 this condition reproduces the energy eigenvalue given in (B.1). Alternative bound-

ary conditions at r → 0 change the bound state energy levels (and any other physical

implications) entirely by changing what they imply for A/C.

As the above formulae attest, such alternative boundary conditions governing A/C can

be imposed by demanding that the ratio f/g take a specific value at a particular radius

r = ε. (For instance, for particles orbiting a known charge distribution that extends out
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to radius r = R, it is continuity of the internal with the external solution at r = R that

imposes the required condition:

gout(R,K)

fout(R,K)
=
gin(R,K)

fin(R,K)
(B.17)

where fout and gout are the Coulomb solutions described above, valid for r > R, and fin and

gin are given by the solution to the Dirac equation for the charge distribution for r ≤ R.

The next sections provide several representative solutions for simple charge distributions.

B.2 Interior solutions for given charge distributions

This section collects several simple solutions appropriate to the interior for several kinds

of charge distributions, and gives the approximate series solutions in the general case.

B.2.1 Charged-shell model

In this case consider an exactly solvable model of a charge distribution against which

later results can be compared. The model assumes a charge distribution that makes up a

spherical shell, with surface density σ. That is,

ρ = σ δ(r −R) =
Ze

4πR2
δ(r −R) (B.18)

where R is the radius of the shell, and the second equality assumes the total charge is

Ze. The corresponding electromagnetic potential found by integrating Maxwell’s equations

then is

A0 =
Ze

4πr
if r > R and A0 =

Ze

4πR
if r < R . (B.19)

The Dirac equation outside the shell therefore sees only the Coulomb potential and

so is the one whose solutions are given above. The solution inside the shell is essentially

the free Dirac equation, though in the presence of a nonzero constant A0. That is, it is

equivalent to (A.24), which now reads

0 = ( /D −m)( /D +m)ψ =

[
DµD

µ −m2 +
ie

2
γµνFµν

]
ψ =

[
DµD

µ −m2
]
ψ , (B.20)

where the spatial derivatives are Di = ∂i while the time derivative (acting on an energy

eigenstate) is

D0 = ∂t + ieA0 = −i
(
ω +

Zα

4πR

)
. (B.21)

This has as solutions the usual spherical Bessel functions

Aj`(kr) +B y`(kr) , (B.22)

and B = 0 if we demand ψ be bounded at r = 0. Specializing to j = 1
2 the appropriate

solutions are f+ = A+j0(kr), f− = B−j1(kr), g+ = B+j1(kr) and g− = A−j0(kr). Since

f ′+ and g′− vanish at the origin it follows that g+ and f− must vanish there and this is

automatic because these only involve ` = 1. When evaluated at r = R then

g+(R)

f+(R)
=

(
B+

A+

)
j1(kR)

j0(kR)
, (B.23)
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and
f−(R)

g−(R)
=

(
B−
A−

)
j1(kR)

j0(kR)
. (B.24)

Finally, the Dirac equation says f ′+ = (m + W )g+ and g′− = (m − W )f− where

W = ω + Zα/R. Using

j0(x) =
sinx

x
' 1 +O(x2) and j1(x) =

sinx

x2
− cosx

x
' x

3
+O(x3) , (B.25)

so j′0(x) = −j1(x) we find f ′+ = (m + W )g+ implies −kA+ = (m + W )B+ and g′− =

(m − W )f− implies −kA− = (m − W )B−. This allows the boundary condition to be

written

g+(R)

f+(R)
= −

(
k

m+W

)
j1(kR)

j0(kR)
= −

√
W −m
W +m

[
sin(kR)− kR cos(kR)

kR sin(kR)

]
= −1

3
(W −m)R

[
1 +

(kR)2

15
+

2(kR)4

315
+ · · ·

]
, (B.26)

where we use (sin x− x cosx)/(x sinx) = 1
3 x+ 1

45 x
3 + 2

945 x
5 + · · · .

To make contact with the series in powers of (Zα)2 and mRZα we evaluate at a

bound-state energy and use

(kR)2 =
[
(ω +m)R+ Zα

][
(ω −m)R+ Zα

]
' (2mR+ Zα)Zα+O[(mRZα)2 or (Zα)3mR] ,

and

(W −m)R = (ω −m)R+ Zα

' − 1

2n2
(Zα)2mR+ Zα = Zα

[
1− mRZα

2n2
+O[(Zα)3mR]

]
, (B.27)

so that
g+(R)

f+(R)
' −Zα

3

[
1 +

(
2

15
− 1

2n2

)
(mRZα) +

(Zα)2

15
+ · · ·

]
, (B.28)

which drops terms in the brackets that are of order mR(Zα)3, (mRZα)2 and (Zα)4.

Similarly, for the parity-odd case

f−(R)

g−(R)
= −

(
k

m−W

)
j1(kR)

j0(kR)
= +

√
W +m

W −m

[
sin(kR)− kR cos(kR)

kR sin(kR)

]
=

(W +m)R

3

[
1 +

(kR)2

15
+

2(kR)4

315
+ · · ·

]
, (B.29)

and so again using the bound-state energy and the above approximate expressions we have√
m− ω
m+ ω

[
f−(R)

g−(R)

]
'
(
Zα

2n

)
1

3
(2mR+ Zα)

[
1 +

Zα

15
(2mR+ Zα) + · · ·

]
' 1

3n
(mRZα) +

2

45
(mRZα)2 +

(Zα)2

6n
+O[mR(Zα)3; (Zα)4] .

(B.30)
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These imply g+/f+ ' −1
3(W −m)R ' −1

3(Zα) in the parity-even case for both the

nonrelativistic and relativistic limits, while f−/g− ' 2
3 mR in the nonrelativistic limit

(mR � Zα) while in the relativistic limit (for which Zα/R � ω ' m) we instead find

f−/g− ' 1
3 Zα.

Expansion coefficients. For comparison with the results for other charge distributions

used in the main text it is useful to quote the above results in terms of parameters ĝi and

f̂i appearing in the expansion(
g+

f+

)
r=R

= Zα
[
ĝ1 + ĝ2(mRZα) + ĝ3(Zα)2 + · · ·

]
, (B.31)

and √
m− ω
m+ ω

(
f−
g−

)
r=R

=
1

2n

[
f̂1(mRZα) + f̂2(mRZα)2 + f̂3(Zα)2 + · · ·

]
. (B.32)

With these definitions the above calculation shows that the charged shell predicts for the

parity-even state we have

ĝ1 = − 1

3
, ĝ2 = − 2

45
+

1

6n2
and ĝ3 = − 1

45
, (B.33)

while for the parity-odd state the parameters are

f̂1 = +
2

3
, f̂2 = +

2

45
and f̂3 = +

1

3
. (B.34)

B.2.2 General charge distribution

Next, we evaluate the interior solution for a general distribution ρ(r) for r ≤ R by evalu-

ating as a series in kR. This is generally sufficient since kR ' mRZα or Zα in the cases

mR � Zα and mR � Zα. The goal will be to determine f/g at r = R as a function of

the first few derivatives of ρ at r = 0.

To this end assume a charge distribution of the form

ρ = ρ(r) with ρ(R) = 0 for r ≥ R , (B.35)

where R is the radius of the distribution and

4π

∫ ∞
0

dr r2ρ(r) = Ze . (B.36)

The corresponding electromagnetic potential satisfies E = −∇A0 and so ∇·E = −∇2A0 =

ρ and so

∇2A0 =
1

r2
∂r

(
r2∂rA0

)
= ρ (B.37)

and so

A0 =
Ze

4πr
if r > R . (B.38)

For r < R we use dimensionless variable u = r/R so A0(u) satisfies

1

u2

(
u2A′0

)′
= R2 ρ , (B.39)

– 42 –

Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

96



J
H
E
P
0
9
(
2
0
1
7
)
0
0
7

and if we demand that ρ and A0 must be analytic at u = 0 we may impose ρ(−u) = ρ(u)

(and similarly for A0(u)) and so write (with a small abuse of notation)

ρ(u) =
3Ze

4πR3

[
ρ0 + ρ2 u

2 + ρ4 u
4 + · · ·

]
A0(u) = A0(0) + A2 u

2 +A4 u
4 + · · · . (B.40)

Note that the coefficients ρ2k are not completely independent of each other, since the charge

density must satisfy Ze =
∫

d3x ρ(r), and so we must have

1

3
=

∞∑
k=0

ρ2k

2k + 3
. (B.41)

Inserting (B.40) into the Maxwell equation leads to

6A2 + 20A4u
2 + · · ·+ k(k+ 1)Aku

k−2 + · · · = 3Ze

4πR

[
ρ0 + ρ2u

2 + · · ·+ ρku
k + · · ·

]
, (B.42)

and so

A2 =
Zeρ0

8πR
, A4 =

3Zeρ2

80πR
and Ak =

3Zeρk−2

4πk(k + 1)R
, (B.43)

while continuity at r = R demands

A0(0) +A2 +A4 + · · · = − Ze

4πR
, (B.44)

and so

eA0(r) = eA0(0) +
Zα

R

[
ρ0

2
u2 +

3ρ2

20
u4 + · · ·+ 3ρk−2

k(k + 1)
uk + · · ·

]
=
Zα

R

[
−1 +

ρ0

2

(
u2 − 1

)
+

3ρ2

20

(
u4 − 1

)
+ · · ·+ 3ρk−2

k(k + 1)

(
uk − 1

)
+ · · ·

]
,

(B.45)

where u = r/R. These identify the parameters — i.e. A0(0), ρ0, ρ2 and so on — that

govern the leading form of the interior solutions to the Dirac equation.

We now solve the Dirac equation explicitly. The solution outside the shell sees only

the Coulomb potential and so is the one given in earlier appendices. The solution inside

the shell we solve in the presence of the above nonzero potential A0(u), perturbatively in u.

Parity-even states. For parity-even states the functions f+ and g+ satisfy (B.8),

which reads

∂rf+ =
[
m+ ω − eA0(r)

]
g+ and ∂rg+ +

2g+

r
=
[
m− ω + eA0(r)

]
f+ , (B.46)

so in terms of u = r/R we find

f ′+ = R
[
m+ ω − eA0(u)

]
g+ (B.47)

=

{
(m+ ω)R− eA0(0)R− Zα

[(ρ0

2

)
u2 +

(
3ρ2

20

)
u4 + · · ·

]}
g+ ,
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and (
g′+ +

2g+

u

)
= R

[
m− ω + eA0(u)

]
f+ (B.48)

=

{
(m− ω)R+ eA0(0)R+ Zα

[(ρ0

2

)
u2 +

(
3ρ2

20

)
u4 + · · ·

]}
f+ .

Writing

f+ = f+0 +
1

2
f+2 u

2 +
1

4
f+4 u

4 + · · ·

g+ = g+
1 u+

1

3
g+

3 u
3 +

1

5
g+

5 u
5 + · · · , (B.49)

then (B.47) implies

f+2 u+ f+4 u
3 + · · · =

{
(m+ ω)R− eA0(0)R− Zα

[(ρ0

2

)
u2 +

(
3ρ2

20

)
u4 + · · ·

]}
×
[
g+

1 u+
1

3
g+

3 u
3 + · · ·

]
, (B.50)

and so

f+2 =
[
(m+ ω)R− eA0(0)R

]
g+

1 = M+g
+
1

f+4 =
[
(m+ ω)R− eA0(0)R

]g+
3

3
−
(
Zαρ0

2

)
g+

1 =

(
M+

3

)
g+

3 −
(
Zαρ0

2

)
g+

1

f+6 =
[
(m+ ω)R− eA0(0)R

]g+
5

5
− Zα

2

(
ρ0 g

+
3

3
+

3ρ2 g
+
1

10

)
, (B.51)

and so on, where we define

M± :=
[
m±

(
ω − eA0(0)

)]
R . (B.52)

Similarly (B.48) implies

3g+
1 +

5

3
g+

3 u
2 +

7

5
g+

5 u
4 + · · · =

{
M− + Zα

[(ρ0

2

)
u2 +

(
3ρ2

20

)
u4 + · · ·

]}
×
[
f+0 +

1

2
f+2 u

2 + · · ·
]

(B.53)

and so

g+
1 =

(
M−

3

)
f+0

g+
3 =

3

10

(
M− f+2 + Zαρ0f

+
0

)
(B.54)

g+
5 =

5

7

[(
M−

4

)
f+4 +

(
Zαρ0

4

)
f+2 +

(
3Zαρ2

20

)
f+0

]
,

and so on.
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These equations fix all coefficients in terms of the unknown normalization f+0 as well

as A0(0) and the ρi which are assumed to be known. The series for the solution at r = R

then takes the form

f+(R) = f+0

[
1 +

f+2
2 f+0

+
f+4

4 f+0
+ · · ·

]
and g+(R) = f+0

[
g+

1

f+0
+

g+
3

3 f+0
+

g+
5

5 f+0
+ · · ·

]
,

(B.55)

where

g+
1

f+0
=
M−

3

f+2
2f+0

= M+

(
g+

1

2f+0

)
=
M+M−

6
= −1

6
(k0R)2

g+
3

3f+0
=

(
M−

5

)
f+2
2f+0

+
Zαρ0

10
=
Zαρ0

10
+
M+M

2
−

30
=
Zαρ0

10
− M−

30
(k0R)2

f+4
4f+0

=

(
M+

12

)
g+

3

f+0
−
(
Zαρ0

8

)
g+

1

f+0
=
Zαρ0

8

(
M+

5
− M−

3

)
+

(k0R)4

120
(B.56)

g+
5

5f+0
=

(
M−

7

)
f+4
4f+0

+

(
Zαρ0

14

)
f+2
2f+0

+
3Zαρ2

140

= −
Zαρ0M

2
−

168
+
M−
840

(k0R)4 − 13Zαρ0

840
(k0R)2 +

3Zαρ2

140
f+6
6f+0

=

(
M+

6

)
g+

5

5f+0
−
(
Zαρ0

12

)
g+

3

3f+0
+

(
Zαρ2

40

)
g+

1

f+0

=
Zαρ2

40

(
M+

7
+
M−

3

)
− (Zαρ0)2

120
+
Zαρ0

5040
(k0R)2

(
19M− − 13M+

)
− (k0R)6

5040

and so on. These last equalities define

k2
0 :=

[
ω − eA0(0)

]2
−m2 so that (k0R)2 = −M+M− , (B.57)

and because M− ∼ O(Zα) and M+ ∼ O[mR+Zα] we see that the expansion is controlled

by powers of mRZα and (Zα)2.

The boundary condition of interest in this case is g+(R)/f+(R) which is given by(
g+

f+

)
r=R

=
g+

1 + 1
3g

+
3 + 1

5g
+
5 + · · ·

f+0 + 1
2 f

+
2 + 1

4 f
+
4 + · · ·

(B.58)

'
[
g+

1

f+0
+

g+
3

3f+0
+

g+
5

5f+0
+ · · ·

] [
1−

(
f+2
2f+0

+
f+4
4f+0

+
f+6
6f+0

+ · · ·
)

+ · · ·
]
.

Consequently(
g+

f+

)
r=R

=

{
M−

3

[
1− (k0R)2

10

]
+
Zαρ0

10

[
1−

5M2
−

84
− 13(k0R)2

84

]
+

3Zαρ2

140

[
1 + · · ·

]
+ · · ·

}
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×
{

1 +
1

6
(k0R)2 +

Zαρ0

8

(
M−

3
− M+

5

)
− Zαρ2

40

(
M+

7
+
M−

3

)
+

(Zαρ0)2

120
+ · · ·

}
=
M−

3

[
1+

(k0R)2

15

]
+
Zαρ0

10

[
1+

5M2
−

63
+

2(k0R)2

21

]
+

(Zαρ0)2

8

(
M−
18
− M+

50

)
+Zαρ2

[
1 + · · ·

]
+ · · · . (B.59)

where (k0R)2 = −M+M− with M− ∼ O(Zα) and M+ ∼ O[mR+Zα] and drop any terms

that are suppressed by more than just mRZα or (Zα)2 relative to the leading term.

Notice in particular that higher coefficients ρi enter suppressed only by Zα. We now

show that these terms of order Zα sum to give the result required to have the energy shift

be controlled by the mean-square charge distribution

r2
p :=

1

Ze

∫
d3x r2ρ(x) = 3R2

∞∑
k=0

ρ2k

2k + 5
. (B.60)

To see if this is so we track these terms explicitly using

g+
k

kf+0
=

3Zαρk−3

k(k − 1)(k + 2)
+ (other terms) for k = 3, 5, 7, · · · . (B.61)

The leading contribution to g+/f+ then is

g+

f+
=
M−

3
+ Zα

∞∑
k=0

3ρ2k

(2k + 2)(2k + 3)(2k + 5)
+ · · ·

=
eA0(0)R

3
+ Zα

∞∑
k=0

3ρ2k

(2k + 2)(2k + 3)(2k + 5)
+ · · · (B.62)

so using

eA0(0)R = −Zα

[
1 +

∞∑
k=0

3ρ2k

(2k + 2)(2k + 3)

]
, (B.63)

we have

g+

f+
= Zα

[
−1

3
+

∞∑
k=0

(
3ρ2k

(2k + 2)(2k + 3)(2k + 5)
− ρ2k

(2k + 2)(2k + 3)

)]
+ · · ·

= Zα

[
−1

3
−
∞∑
k=0

ρ2k

(2k + 3)(2k + 5)

]
+ · · · (B.64)

This contributes to the effective coupling h+
eff the amount

h+
eff ≈ 2πZαR2

{
1 +

2

Zα

(
g+

f+

)}
= 2πZαR2

{
1

3
− 2

∞∑
k=0

ρ2k

(2k + 3)(2k + 5)

}

= 2πZαR2
∞∑
k=0

ρ2k

2k + 3

{
1− 2

2k + 5

}
= 2πZαR2

∞∑
k=0

ρ2k

2k + 5
(B.65)

=
2π

3
Zα r2

p .
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Parity-odd states. For parity-odd states the functions f− and g− satisfy (B.9), which

reads

∂rg− =
[
m− ω + eA0(r)

]
f− and ∂rf− +

2f−
r

=
[
m+ ω − eA0(r)

]
g− , (B.66)

which has the same form as did the parity-even case if we make the replacements f+ ↔ g−,

f− ↔ g+ and ω − eA0 ↔ −(ω − eA0). This implies the solutions have the same form with

g±i ↔ f∓i as well as M+ ↔M− and ρi ↔ −ρi.
Consequently for parity-odd states we have(
f−
g−

)
r=R

=
f−1 + 1

3 f
−
3 + 1

5 f
−
5 + · · ·

g−0 + 1
2g
−
2 + 1

4g
−
4 + · · ·

'
[
f−1
g−0

+
f−3

3g−0
+

f−5
5g−0

+ · · ·
] [

1−
(

g−2
2g−0

+
g−4
4g−0

+ · · ·
)

+ · · ·
]

=
M+

3

[
1+

(k0R)2

15

]
−Zαρ0

10

[
1+

5M2
+

63
+

2(k0R)2

21

]
+

(Zαρ0)2

8

(
M+

18
− M−

50

)
−Zαρ2

[
1 + · · ·

]
+ · · · . (B.67)

B.2.3 Uniform charge distribution

A special case of the previous section is the case of a constant charge distribution

ρ =
3Ze

4πR3
for r ≤ R , (B.68)

and so represents the special case ρ0 = 1 and ρk = 0 for all k 6= 0. For this distribution

the rms radius and the moment 〈r3〉(2) are given explicitly by

r2
p =

1

Ze

∫
d3x r2ρ(x) =

3

R3

∫ R

0
dr r4 =

3R2

5
, (B.69)

and

〈r3〉(2) =
1

(Ze)2

∫
d3x d3y |x|3ρ(y − x)ρ(y) =

1

(Ze)2

∫
d3z d3y |z + y|3ρ(z)ρ(y)

=
1

2

(
3

R3

)2 ∫ R

0
dz

∫ R

0
dy

∫ 1

−1
d cos θ y2z2

(
y2 + z2 + 2yz cos θ

)3/2

=
1

10

(
3

r3

)2 ∫ R

0
dz

∫ R

0
dy yz

(
|y + z|5 − |y − z|5

)
=

1

5

(
3

r3

)2 ∫ R

0
dz z

{∫ z

0
dy
[
5y2z4+10y4z2+y6

]
+

∫ R

z
dy
[
5y5z+10y3z3+yz5

]}
=

1

5

(
3

r3

)2 ∫ R

0
dz z

[
− 1

42
z8 +

1

2
R2z6 +

5

2
R4z4 +

5

6
R6z2

]
=

32

21
R3 . (B.70)

The electrostatic potential coefficients for this charge distribution are

A2 =
Ze

8πR
and Ak = 0 for k > 2 , (B.71)
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and so in the continuity condition this gives

A0(0) + A2 = − Ze

4πR
and so eA0(0) = −3Zα

2R
. (B.72)

The complete electrostatic potential therefore is

eA0(r) =
Zα

R

[
−1 +

1

2

(
u2 − 1

)]
, (B.73)

where u = r/R. Consequently

M± = mR±
(
ωR+

3Zα

2

)
= (m±W )R± Zα

2
, (B.74)

and so

(k0R)2 = −M+M− =

(
WR+

Zα

2

)2

− (mR)2 . (B.75)

Finally, evaluating at bound-state energies ω ' m
[
1− 1

2(Zα/n)2 + · · ·
]
, we

have M− ' −3
2Zα + 1

2 mR(Zα/n)2 + O[mR(Zα)4] and M+ ' 3
2Zα +

2mR
[
1− (Zα/2n)2 +O[(Zα)4]

]
so their product is (k0R)2 = −M+M− ' 9

4(Zα)2 +

3mRZα
[
1 +O[(Zα)2]

]
. The boundary condition therefore becomes(

g+

f+

)
r=R

=
M−

3

[
1 +

(k0R)2

15

]
+
Zα

10

[
1 +

5M2
−

63
+

2(k0R)2

21

]
+

(Zα)2

8

(
M−
18
− M+

50

)
. . .

= −Zα
[

2

5
+

(
116

1575
− 1

6n2

)
mRZα+

736

17325
(Zα)2 + · · ·

]
. (B.76)

Similarly, the parity-odd expression is(
f−
g−

)
r=R

=
M+

3

[
1 +

(k0R)2

15

]
− Zαρ0

10

[
1 +

5M2
+

63
+

2(k0R)2

21

]
+

(Zαρ0)2

8

(
M+

18
− M−

50

)
+ · · ·

=
2mR

3
+

2Zα

5
+ · · · . (B.77)

Expansion coefficients. For comparison, in terms of the parameters ĝi and f̂i found in(
g+

f+

)
r=R

= Zα
[
ĝ1 + ĝ2(mRZα) + ĝ3(Zα)2 + · · ·

]
, (B.78)

and √
m− ω
m+ ω

(
f−
g−

)
r=R

=
1

2n

[
f̂1(mRZα) + f̂2(mRZα)2 + f̂3(Zα)2 + · · ·

]
, (B.79)

we have

ĝ1 = − 2

5
, ĝ2 = − 116

1575
+

1

6n2
and ĝ3 = − 736

17325
, (B.80)

while for the parity-odd state the parameters are

f̂1 =
2

3
, f̂2 = +

32

315
and f̂3 = +

2

5
. (B.81)
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Summary

This paper builds on the PPEFT of atoms with scalar nuclei developed in
Section 1.4 and used to capture the leading finite-size effects of the nucleus
on leptonic bound-states in the paper presented in Chapter 2. It expands
the PPEFT action to one higher order in the small ratio, R/aB ∼ (mRZα),
thereby capturing all interactions between the centre-of-mass coordinates
of the nucleus and the bulk fields that obey the atomic symmetries and
come with effective couplings of dimension, (length)3.

This inclusion allows us to investigate the finite-size effects of the nu-
cleus on the fermionic bound-states to relative order (mRZα) and (Zα)2

with respect to that of the leading term explored in the previous chapter.
In terms of the nuclear structure corrections of the literature presented in
(1.104) and (1.102) this corresponds to being able to capture the Friar-
moment, nuclear polarizability and relativistic corrections to the charge-
radius term. The phenomenological importance of this expansion is that
it enables us to take into account all nuclear-size related energy shifts nec-
essary to match the current experimental precision in both electronic and
muonic 4

2He+.
The new terms in the action involve derivatives of the lepton fields and
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in order to get a sensible low-energy limit we extract the rapidly oscillating
mass term from the energy eigenstates, which allows us to write down
a controlled low-energy PPEFT action. Following this, we examine the
alternative near-source boundary conditions of fermions implied by this
updated nuclear action and analyze the running of the effective couplings
in the small parameter, ε – the radius of the Gaussian sphere on which the
new boundary conditions had been set up – required to keep observables
such as the energy shift independent of this fictitious parameter. We find
that the RG-flow of the higher-order couplings is controlled by the same
RG-invariant parameters, {ε?, y?} as that of the leading-order ones, where
ε? is a length-scale where the appropriate combinations of PPEFT couplings
either blows up or vanishes, depending on the value of y? = ±. In this way,
y? distinguishes between two types of flows, while ε? picks out a specific
curve among those that share the same value of y?. Now, since there is
no new RG-invariant parameter in the running of the new couplings, these
equations simply help us determine the existing ones to a higher accuracy.

Committing to writing all energy shift formulae in terms of RG-invariant
parameters, we use the running equations to determine the ratio of integra-
tion constants, Dj$/Cj$ in terms of these quantities. During this analysis,

we make contact with the effective moments ĝi, f̂i that we have used as
proxies for capturing the subleading nuclear-size effects in the previous
paper, and write them as ε-dependent functions of the RG-invariants. Sub-
stituting these functions into the energy shift formulae of Chapter 2 that
captured subleading effects we find that the energy shift to this improved
accuracy depends purely on ε? and y?.

Comparing energy shift formulae as written in terms of our RG-invariants
with those written in terms of nuclear moments from the literature reveals
that in order for ε? to be interpreted as a length-scale we must have y? = +1
and it also allows us to infer what combination of nuclear moments ε? cor-
responds to at the given accuracy.

Finally, using our RG-invariant-dependent energy shift expressions we
devise linear combinations of spectroscopic measurements in atomic and
muonic Hydrogen-like atoms with scalar nuclei from which the finite-size
effects cancel to the accuracy we work. Additionally, we also detail the
procedure for fitting ε? as a function of the difference between an experi-
mentally measured transition and its corresponding energy shift associated
with theoretical bound-state QED contributions that assume a point-like
nucleus. We then describe how this value can be used to make predictions
for the nuclear-size effects of other spectroscopic transitions.

Through the PPEFT formalism then, we can see that finite-size effects
in leptonic bound-state energies to subleading (mRZα) and (Zα)2 orders
relative to the charge-radius squared term are captured by a single pa-
rameter instead of the numerous nuclear moments used in the literature.
This allows us to make predictions for energy shifts in which the uncer-
tainty associated with nuclear-size effects are minimized because they are
controlled only by the smallest experimental and point-nucleus theoretical
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errors, which will certainly improve with time.
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We apply point-particle effective field theory to electronic and muonic 4He+ ions, and use it to identify linear
combinations of spectroscopic measurements for which the theoretical uncertainties are much smaller than for
any particular energy levels. The error is reduced because these combinations are independent of all short-range
physics effects up to a given order in the expansion in the small parameters R/aB and Zα (where R and aB are
the ion’s nuclear and Bohr radii). In particular, the theory error is not limited by the precision with which nuclear
matrix elements can be computed, or compromised, by the existence of any novel short-range interactions, should
these exist. These combinations of 4He measurements therefore provide particularly precise tests of quantum
electrodynamics. The restriction to 4He arises because our analysis assumes a spherically symmetric nucleus,
but the argument used is more general and extendable to both nuclei with spin, and to higher orders in R/aB

and Zα.

DOI: 10.1103/PhysRevA.98.052510

I. INTRODUCTION

Atomic systems have historically been an important testing
ground for quantum electrodynamics (QED), even providing
one of the very first observations of a relativistic quantum
effect with the Lamb shift [1]. Muonic atoms have fur-
ther proved an excellent means of honing our understanding
of QED by contrasting with electronic measurements. For
muonic atoms, the leading QED radiative correction is due
to electron-loop vacuum polarization [2] in contrast to the
electron’s leading self-energy correction, and finite-size ef-
fects are enhanced by a factor (mμ/me )3 ∼ 8×106. Indeed,
experiments in the 1970’s found a discrepancy between the-
oretical and measured values for certain transitions in heavy
muonic atoms [3,4]. This motivated much research, and after
a few years improvements in the theory [5–8] and in ex-
periments [9,10] resolved the discrepancy and improved our
understanding of QED [11]. Today, a very similar situation
can be found in the “proton-radius” problem [12], wherein
the root-mean-squared charge radius inferred from the leading
nuclear contributions to atomic energy shifts in hydrogen
and muonic hydrogen appears to depend on the flavor of the
orbiting lepton.

Recent laser spectroscopy of muonic atoms [13] has
opened the door to new high-precision tests of QED, con-
stituting tests of the theory at the two- and three-loop levels
[14]. However, the small size of these higher-order QED
corrections to atomic levels makes them compete with more
mundane energy shifts, such as those due to the finite size of

*cburgess@perimeterinstitute.ca
†haymanpf@mcmaster.ca
‡rummelm@mcmaster.ca
§zalavarl@mcmaster.ca

the nucleus. Consequently, uncertainties in computing nuclear
contributions to atomic energy shifts are important compo-
nents of the theoretical error budget when comparing with
experiments. These theoretical uncertainties are made even
worse if there should also be new short-range interactions
between the nucleus and muon, such as have been motivated
[15] by the proton-radius problem. Until it is understood
whether this problem is solved by a better understanding
of the experimental errors or through the existence of new
physics, this discrepancy must be treated as an unknown
unknown when assessing the theory error.

A better understanding of the nature of short-distance
nucleus-lepton interactions is therefore an important prereq-
uisite for exploiting the precision of spectroscopic measure-
ments, both for the extraction of the best value of the Rydberg
and to test QED. This is where effective field theory (EFT) in
general [16,17], and the point-particle effective field theory
(PPEFT) framework in particular, can help [18–20]. EFTs
allow one to write a small set of effective interactions that
capture the effects of all short-distance contributions to atomic
energy levels (including both nuclear-scale physics and any
hypothetical new short-range forces), order by order in powers
of the relevant small size R of the physics in question. For
nuclear physics R would be of order the nuclear radius, while
for a new short-range force it would instead be the force’s
range. The existence of these effective interactions allows a
robust parametrization of the contributions of short-distance
physics to atomic energy levels, without having to understand
the details of its microscopic origin.

Of course, knowing the underlying microscopic physics
in question (such as the structure of the relevant nucleus), it
becomes possible to compute the size of these effective inter-
actions from first principles. In this language, the uncertainties
in nuclear-structure calculations enter into predictions through
any inaccuracy in the values so inferred for the effective
interactions. One of the points of this paper is to show how
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to relate such calculations to the effective couplings of the
PPEFT framework in particular.

We also take an entirely different tack. Instead of trying
to reduce the inaccuracy of these effective couplings through
more precise nuclear calculations, in this paper we also use
the generality of the EFT parametrization to identify combi-
nations of spectroscopic measurements from which all of the
relevant short-distance effective couplings drop out to a fixed
order in the expansion in R/aB = mεZα and Zα (where m is
the mass of the orbiting particle, Z is the nuclear charge, α is
the fine-structure constant, and aB is the relevant Bohr radius).
These combinations are particularly interesting because the
absence of short-distance contributions to them means that the
theoretical error for these observables is controlled by powers
of R/aB or Zα rather than by the larger uncertainties arising
from (say) nuclear physics. A similar approach has been used
to cancel dependence on nuclear effects for the hyperfine
splitting in hydrogen [21] (as well as to highlight nuclear
isotope dependence, among other reasons [13,22]), however
our approach has the advantage of being systematic, and can
be applied in principle to any spinning or spinless nucleus. We
can also extend our results to higher orders, as we illustrate by
identifying nuclear-free combinations to higher order in Zα

than has been done previously.
The key observation of this work is that the short-distance

PPEFT couplings only enter into spectroscopic measurements
through a single (mass-dependent) length scale ε�e,μ (where
the e and μ are used to distinguish between the scale that
applies to electrons versus muons). As a result, a single
spectroscopic measurement for each fermion-type suffices
to predict the finite-size contribution to all other energy
shifts. Working to order m4R3(Zα)5 ≈ 10−2 eV ≈ 103 GHz
for muonic atoms (as is relevant for the newest generation
of muonic helium experiments [12]), we use this approach to
predict

�̂EnS1/2-nP1/2 = 8
[
2 + α

(
η

(μ)
n0 − η

(μ)
n1

)]
n3

[
2 + α

(
η

(μ)
20 − η

(μ)
21

)] �̂E2S1/2-2P1/2 (1)

and

�̂En1S1/2-n2S1/2

= 2�̂E2S1/2-2P1/2

(
2 + αη

(μ)
n10

n2
1

− 2 + αη
(μ)
n20

n2
2

)
, (2)

where

�̂E1→2 := �E1→2 − �EEM
1→2 = �EPP

1→2 + �E
PP QED
1→2 (3)

is the difference between the total n1Xj1-n2Yj2 transition
(�E1→2) and the purely pointlike contributions to the same
difference (�EEM

1→2). [Equivalently, this is the difference be-
tween the finite-size correction to the n1Xj1 and n2Yj2 states
(�EPP

1→2), plus the difference between the combined finite-
size-QED corrections to the same states (�E

PPQED
1→2 )]. Here,

ηn� are computable n- and �-dependent coefficients associ-
ated with the combined finite-size-QED contributions given
explicitly for electrons in (64) below.

For electrons, we also work to order m4R3(Zα)5, but now
this is closer to 10−12 eV ≈ 100 kHz, and so we must also in-
clude terms of order m3R2(Zα)6 ≈ 10−11 eV ≈ 10 kHz since

the smaller electron mass makes those scales comparable. In
this case, we predict for the same transitions

�̂EnS1/2-nP1/2

= 8

n3
�̂E2s1/2-2p1/2

{
1 + (Zα)2

[
N (n) − n2 − 1

4n2

]}
(4)

and
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= �̂E2S1/2-2P1/2

{
1

n3
1

− 1

n3
2

+ (Zα)2

[
N (n1)

n3
1

− N (n2)

n3
2

]}
,

(5)

in which we define

N (n) := 12n2 − n − 9

4n2(n + 1)
− Hn+1 + 5

4
+ η

(e)
n0

2Z

− η
(e)
20

2Z
− ln

(
2

n

)
. (6)

Moreover, even without solving for ε� explicitly, our
knowledge of how this one parameter enters into energy shifts
allows us to write linear combinations of measurements from
which it cancels altogether, thus defining relations between
energy shifts that are entirely free of nuclear physics. For
muons, we identify

n2
1

2 + α
(
η

(μ)
n10 − η

(μ)
n21

)�̂En1S1/2-n1P3/2

= n2
2

2 + α
(
η

(μ)
n20 − η

(μ)
n21

)�̂En2S1/2-n2P3/2 , (7)

while for electrons,

24n5
1

n2
1 − 1

�En1P1/2-n1P3/2

= 1

F [n1] − F [n2]

(
n3

1�En1S1/2-n1P1/2 − n3
2�En2S1/2-n2P1/2

)
,

(8)

where

F [n] := 12n2 − n − 9

2n2(n + 1)
− n2 − 1

24n2
+ 2 ln n − 2Hn+1 + η

(e)
n0

Z
.

(9)

We organize our presentation as follows. Section II sets
up the PPEFT framework required to draw the above conclu-
sions, starting with a summary of the relevant near-nucleon
boundary conditions and how these are related to the PPEFT
effective description of the nucleus. This section also deals
with various conceptual issues, such as deriving the appro-
priate renormalization-group- (RG-) invariant nuclear length
scale ε�. Next, Sec. III computes how this RG-invariant pa-
rameter captures various microscopic models for nuclei, in-
cluding the moments of fixed charge distributions and nuclear
polarizabilities. Once it is established how these contribute
to atomic energy levels only through the one RG-invariant
combination ε�, we identify combinations of atomic transition
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frequencies from which this one nucleus-sensitive parameter
cancels out. There are a great many such combinations, and
each represents a quantity for which nuclear uncertainties are
negligible at the level of present-day experimental measure-
ments. Section IV applies the formulas of the previous sec-
tions to the helium ion using the only available experimental
data, the 2S1/2-2P1/2 transition. The result is a prediction for
the 1S-2S transition of ν1S-2S = 9.868 561 009 (1)×109 MHz,
which is roughly four times less precise than predictions in the
literature [23]. Our precision is, however, entirely dominated
by the experimental error, and so can only improve with future
experiments, while never relying on the inherently uncertain
choice of a particular model of the nucleus. Finally, some
conclusions are briefly summarized in Sec. V.

II. PPEFT FOR SPINLESS NUCLEI

We present in this section a brief summary of EFT meth-
ods, as needed to discuss nuclear effects on the energy levels
of electrons and muons orbiting spinless nuclei, such as 4He.
EFTs are designed to exploit any hierarchies of scales in a
problem to most efficiently compute a system’s properties. As
applied to atoms, EFTs such as nonrelativistic QED (NRQED)
[16] are usually used to exploit the hierarchy between the
electron-muon mass and the much smaller size of typical
bound-state energies. For PPEFT the hierarchy exploited is
the large ratio between the small size R of the nucleus and
the much larger size aB of the atomic Bohr radius. The
expansion of observables in powers of R/aB reveals them
not to depend on most of the nuclear details, but only on a
set of “generalized multipole moments,” similar to the way
that ordinary multipole moments control the expansion of the
electrostatic field of a compact charge distribution.

A. PPEFT including subleading order

This section reviews how to set up and solve for atomic
energies within the PPEFT framework.

1. Bulk system

Before describing the nuclear degrees of freedom, we start
by defining the long-distance, “bulk,” fields whose properties
the nucleus perturbs. We take the bulk system to be defined
by QED, describing the renormalizable coupling of charge −e

fermions to photons,1

SB = −
∫

d4x

[
�( /D + m)� + 1

4
FμνF

μν

]
, (10)

where /D = γ μDμ with γ μ denoting the usual Dirac gamma
matrices and Dμ� = (∂μ + ieAμ)�, as appropriate for
fermions of charge −e, while Fμν = ∂μAν − ∂νAμ. It is often
useful to zoom in on the nonrelativistic limit of this bulk
physics by taking m to be much larger than the energies of
interest, and NRQED is the natural field-theoretic language
for doing so. For later purposes it suffices to notice that this

1Our metric has (− + ++) signature, so γ 0 is anti-Hermitian while
the spatial γ i are Hermitian.

limit can be formally derived by performing a field redefini-
tion that simplifies the large-m limit. This is done for electrons
and muons by redefining � → exp[mtγ 0]�, and assuming �

to vary appreciably only over distances and times much larger
than 1/m. The point of this redefinition is to ensure SB has
a well-defined large-m limit since the term m�� = m � �

then precisely cancels the rest-mass part of the time derivative
�γ 0∂t� = −m � � + · · · , leaving interactions that can be
expanded in powers of derivatives divided by m.

2. Nuclear properties

If proceeding in the spirit of NRQED, nuclear properties
could be included into the theory by adding its field �,
preferably already within a nonrelativistic framework that
exploits expansions in inverse powers of the nuclear mass M .

Within PPEFT, however, nuclear properties are instead
identified by writing the first-quantized action for the nucleus
that includes all possible local interactions between its center-
of-mass coordinate yμ(τ ) and the “bulk” fields Aμ(x) and
�(x), respectively describing the electromagnetic potential
and the Dirac field of the orbiting particle. This first-quantized
framework is completely equivalent to the second-quantized
one restricted to single-particle states and is more convenient
when working purely within the single-nucleus sector, such
as when describing an atom, for which most of the bells and
whistles of quantum field theory for the nucleus are overkill.

For a spherically symmetric nucleus such as helium (or
other doubly magic nuclei) restricted to parity-preserving
interactions, this leads to [20]

Sp = −
∫
W

dτ

[
M − Ze Aμẏμ + cs � � + icv � γμ� ẏμ

+ h̃ ẏμ∂νFμν + ids ẏμ� Dμ� + dv ẏμẏν� γμDν�

+ 1

2
(dE + dB )ẏμẏνFμλFν

λ + 1

4
dBFμνF

μν + · · ·
]
.

(11)

Here, W denotes the world line yμ(τ ) of the nuclear center of
mass, along which τ is its proper time with derivative ẏμ :=
dyμ/dτ , at which all bulk fields are evaluated; as above,
Dμ� = (∂μ + ieAμ)�.

The first line describes the physics of a point source with
mass M and charge Ze. The couplings cs , cv , and h̃ in the
second line have dimensions of [length]2, and so are expected
to be order R2 in size, up to dimensionless O(1) coefficients.
Similarly the couplings ds , dv , dE , and dB have dimension
[length]3 and should be order R3 and so on, with the ellipses
containing all terms suppressed by more than three powers
of R.

Since our focus is on energy shifts due to finite nuclear
size, for simplicity of presentation we neglect kinematic
nuclear recoil effects since the suppression of these correc-
tions by powers of m/M make their contributions to nuclear
size effects smaller than the order to which we work. This
amounts to assuming the nucleus to be at rest within the
atomic rest frame: ẏμ = δ

μ
0 . Recoil corrections are, however,

easily included within this framework by instead using (and
quantizing) the full nuclear 4-velocity ẏμ = γ {1, v}, where
γ = (1 − v2)−1/2.
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With a static nucleus the above action becomes

Sp = −
∫
W

dt

[
M − Ze A0 + cs � � + icv � γ0�

− h̃ ∇ · E + ids � D0� + dv � γ0D0� + 1

2
dEE2

+ 1

2
dBB2 + · · ·

]
. (12)

In the absence of any � terms, the four pure electromag-
netic interactions would establish the particle to have electric
charge Ze, charge radius rp with h̃ = 1

6 Ze r2
p, and so on.

The complete response of the atom to the nucleus, including
nuclear polarizabilities [24], also requires direct couplings to
�, however, we see below how to relate these couplings to
other nuclear properties, such as the polarizabilities and order-
R3 Friar moment contributions to the nuclear electrostatic
form factor [25].

Because our interest is in largely nonrelativistic applica-
tions for which kinematic effects arise as powers of 1/m,
just as for the bulk it can be convenient to rescale � =
exp[mtγ 0]�, to remove the rapidly oscillating phase associ-
ated with the rest mass. Having a reasonable large-m limit
after doing so requires the coefficients cs and cv to contain
contributions proportional to m that cancel those terms in Sp

involving time derivatives ∂t� = mγ 0� + · · · , leading to

cs � � + icv � γ0� + ids � D0� + dv � γ0D0�

= (cs − dvm) � � + i(cv + dsm) � γ0� + · · · , (13)

and so suggesting writing cs = dvm + c̃s and cv = −dsm +
c̃v , and so on. In what follows, we make these replacements
but drop the “tilde” on cs and cv to avoid notational clutter.
Once this is done, all time derivatives acting on � in Sp can
be treated as giving ∂t� → −i(ω − m)�.

3. Electromagnetic response

The purely electromagnetic terms in (12) influence atomic
energy levels through the change they introduce in the electro-
magnetic field sourced by the atomic nucleus. The naive way
to compute the modified electric field represents the action
(12) as a delta function, leading to the formal perturbative
modification

E � Ec + h̃ ∇δ3(r) + dEEc δ3(r), (14)

in which Ec = (Ze/4πr2)r̂ denotes the lowest-order
(Coulomb) field, with r̂ = r/r being the radial unit vector.

What makes the above expression naive is the divergence
of Ec at the support of the delta function. A more precise way
to formulate this (for which the PPEFT formalism is designed
[18–20]) is to recast the influence of Sp on Aμ in terms of
a boundary condition at a regularization surface at small but
nonzero radius r = ε. The couplings h̃ and dE are regarded
as depending implicitly on ε in such a way as to ensure that
physical quantities do not depend on the precise value chosen
for ε.

What counts for energy shifts is the scalar potential
implied by (14). Keeping the regularization in mind, the

result is

A0(r ) = − Ze

4πr
+ h̃ δ(3)(r) + dEZe

(4π )2ε2
fε (r ), (15)

where the function fε (r ) is any regularization consistent
with ∇fε = 4π r̂ δ3(r) in the small-ε limit [such as fε (r ) =
−�(ε − r )/ε2 where �(x) is the Heaviside step function].

A similar story goes through for the magnetic field, for
which the Maxwell equation gets modified by Sp to become

∇×B = dB ∇×[B δ(3)(x)]. (16)

Because of the absence of nuclear spin (and so also magnetic
moment) dictated by our spherical-symmetry assumption,
nontrivial solutions to this arise only suppressed by powers
of v/c ∼ Zα and so are negligible to the order we work. This
allows the neglect of the vector potential A in the calculations
described below, in particular ensuring the magnetic polariz-
ability dB contributes negligibly to atomic energies at the order
we work.

To these must be added the corrections to the Dirac
field due to the boundary-condition change it also
experiences.

4. Fermion response

To study atomic helium in this framework, we examine
QED involving the Dirac and electromagnetic quantum fields,
subject to the boundary conditions implied [18–20] by the
presence of Sp. In this language, it is only through these
boundary conditions, and the modification (15), that the nu-
cleus affects atomic energy levels. More and more detailed
nuclear contributions correspond to adding more and more
complicated interactions to Sp, in what amounts to a “gen-
eralized multipole expansion” of the nucleus.

In this framework, QED interactions are included per-
turbatively as usual, with bound-state energies obtained
from the positions of poles of the two-point function
〈0|T �(x)�(x ′)|0〉. These are determined in part by comput-
ing the modes ψn(x) = 〈0|�(x)|n〉 everywhere away from
the nucleus. Perturbation theory is set up as usual, with the
unperturbed system neglecting QED and nuclear corrections
to A0, i.e., using for ψn solutions to the Dirac equation with a
Coulomb potential:

( /D + m)ψ =
[
−γ 0

(
ω + Zα

r

)
+ 	γ · 	∇ + m

]
ψ = 0,

(17)

for energy eigenstates ψ ∝ e−iωt .
This has well-known solutions of definite parity and total

angular momentum given by

ψ± =
(

f±(r ) U±
jjz

(θ, φ) + ig±(r ) U∓
jjz

(θ, φ)

f±(r ) U±
jjz

(θ, φ) − ig±(r ) U∓
jjz

(θ, φ)

)
, (18)

where ψ+ and ψ− denote parity eigenstates, U±
jjz

are the
Dirac spinor harmonics with definite total angular mo-
mentum j = � ± 1

2 , and the parity eigenvalue is �̂U±
jjz

=
(−)j∓ 1

2 U±
jjz

.
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To lowest order the functions f±(r ) and g±(r ) solve the radial part of the Dirac-Coulomb equation, and for a source with
charge Ze have the form

f± = √
m + ω e−ρ/2ρζ−1

{
A± M

[
ζ − Zαω

κ
, 2ζ + 1; ρ

]
+ C±ρ−2ζM

[
− ζ − Zαω

κ
,−2ζ + 1; ρ

]
− A±

(
ζ − Zαω/κ

K − Zαm/κ

)
M

[
ζ − Zαω

κ
+ 1, 2ζ + 1; ρ

]
+ C±

(
ζ + Zαω/κ

K − Zαm/κ

)
ρ−2ζM

[
− ζ − Zαω

κ
+ 1,−2ζ + 1; ρ

]}
(19)

and

g± = −√
m − ω e−ρ/2ρζ−1

{
A± M

[
ζ − Zαω

κ
, 2ζ + 1; ρ

]
+ C±ρ−2ζM

[
− ζ − Zαω

κ
,−2ζ + 1; ρ

]
+ A±

(
ζ − Zαω/κ

K − Zαm/κ

)
M

[
ζ − Zαω

κ
+ 1, 2ζ + 1; ρ

]
− C±

(
ζ + Zαω/κ

K − Zαm/κ

)
ρ−2ζM

[
− ζ − Zαω

κ
+ 1,−2ζ + 1; ρ

]}
,

(20)

where A± and C± are integration constants, M[a, b; z] =
1 + (a/b)z + · · · are the standard confluent hypergeometric
functions, ω is the mode energy, while ρ = 2κr where κ and
ζ are defined by

κ =
√

(m − ω)(m + ω) and

ζ =
√(

j + 1
2

)2 − (Zα)2. (21)

In what follows, κ is real because we study atomic bound
states which satisfy m > ω. The parity of the state often
enters through the parameter K = ∓(j + 1

2 ) where the upper
(lower) sign in K corresponds to state ψ+ (or ψ−).

In this language, the entire influence of nuclear-scale
physics on the orbiting fermion arises through the boundary
condition implied by the point-particle action (12) for the bulk
fields � and Aμ near the origin [18–20]. Nuclear contributions
to QED corrections similarly enter through the boundary
conditions satisfied by the propagators built from these modes
in the relevant graphs.

5. Near-nucleus boundary conditions

The main result (explained in some detail for the Dirac
equation in [20]) governing how nuclear properties perturb
atomic levels relates the parameters of Sp to the near-nucleus
value of the ratios (g+/f+)r=ε and (f−/g−)r=ε of the radial
modes evaluated at a small (but arbitrary) distance r = ε

outside the nucleus: R � ε 
 aB (with R the smallest radius
where an external extrapolation is valid and aB denoting the
relevant atomic Bohr radius). The ratios g+/f+ and f−/g− at
r = ε determine the physical integration constant that arises
in the general solution to the radial equation, which in turn
controls the dependence of atomic observables.2

2Notice that specifying f±/g± at r = ε generically implies the
radial functions need not remain bounded at the origin, which is
the traditional choice for boundary conditions there. But, this is
not a fundamental worry because the growth of the radial solution
eventually gets cut off once the interior of the nucleus is reached and
the asymptotic solution of the Coulomb-Dirac equation no longer
approximates the real physics.

It is convenient when stating the boundary conditions to
write the ratios (g±/f±)r=ε in a way that makes manifest
the small parameters in the problem: the two small quantities
ε/aB = mεZα and (Zα)2. This is most conveniently done by
writing

(
g+
f+

)
r=ε

= ξg Zα and X

(
f−
g−

)
r=ε

= ξf

2n
, (22)

where X := √
(m − ω)/(m + ω) is included for later nota-

tional simplicity, while n is the state’s principal quantum num-
ber and/or atomic energy levels ω = m − (Zα)2m/(2n2) +
· · · . The quantities ξf and ξg then have the expansions

ξg := ĝ1(ε) + (mεZα)ĝ2(ε) + (Zα)2ĝ3(ε) + · · · ,

ξf := (mεZα)f̂1(ε) + (mεZα)2f̂2(ε) + (Zα)2f̂3(ε) + · · · ,

(23)

where the ellipses involve terms involving more powers of
(mεZα) and/or (Zα)2 than those written, and the depen-
dence on n follows directly from the ω dependence of the
radial Dirac equation. The dimensionless coefficients ĝi (ε)
and f̂i (ε) are normalized in (22) so as to ensure that ĝ1 are
order unity in applications to atomic energy levels.

6. Energy shifts

Before determining how f̂i and ĝi depend on nuclear
parameters, we briefly summarize how these quantities are
related to shifts in atomic energy levels. As shown in detail
in [20], the ratio of integration constants A±/C± appearing
in the solutions (19) and (20) can be determined if f±/g± is
regarded as being specified at r = ε. For bound states, impos-
ing normalizability at infinity overdetermines the eigenvalue
problem in the usual way, leading to standard predictions
for the bound-state energy levels. Writing the shift in these
energies relative to the standard Dirac energies (obtained
when C± = 0) due to the deviations in f̂i and ĝi [20] as δE
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gives the nucleus-dependent shift to the j = 1
2 positive- and negative-parity energy levels as

δE+
1/2 � m3ε2(Zα)4

n3

{
2(1 + 2ĝ1) +

[
2ĝ2 − 8

3
− 4 ĝ1(ĝ1 + 2)

]
(mεZα) +

[
4ĝ3 + 5 + 8ĝ1 − 2ĝ2

1

+ (1 + 2ĝ1)

{
12n2 − n − 9

2n2(n + 1)
− 2 ln

(
2mεZα

n

)
− 2Hn+1 − 2γ

}]
(Zα)2 + · · ·

}
(24)

for parity-even states and

δE−
1/2 � − (n2 − 1)

n5
m4ε3(Zα)5

(
f̂1 − 2

3

)
+ n2 − 1

2n5
m3ε2(Zα)6(1 − 2f̂3) + · · · (25)

for parity-odd states. In these expressions, the ellipses contain
terms suppressed by higher powers of (mεZα) and (Zα)2.
Here, γ is the Euler-Mascheroni constant and Hn are the
harmonic numbers Hm = 1 + 1

2 + 1
3 + · · · + 1

m
, and so H1 =

1, H2 = 3
2 , H3 = 11

6 , and so on.
We include in the above all contributions relevant to

the current generation of experiments involving electrons
and muons orbiting a 4He nucleus. Recall that for muons,
(mεZα) � (Zα)2 when ε is a typical nuclear size, but for
electrons (mεZα) � (Zα)2. Consequently, for muonic atoms
it suffices to keep terms of order m4ε3(Zα)5 while dropping
terms of size m3ε2(Zα)6, but for electrons these terms must
both be kept. This means the coefficients ĝ1, ĝ2, and f̂1 are in
principle of interest for muonic He, while all of ĝ1, ĝ2, ĝ3, f̂1,
and f̂3 are relevant for electrons. It is for this reason that the
contribution to δE− from f̂2 is not written in (25). Similarly,
the leading contributions for j = 3

2 are the same size as terms
neglected above, and so can be dropped in what follows.

Later sections evaluate these formulas using f̂i and ĝi as
computed with several simple specific models of nuclei, and
in this way we verify that they include the results of stan-
dard calculations in the literature. In particular, they contain
the various moments encountered when doing so with the
nucleus modeled as a static charge distribution, reducing to
well-known formulas for finite-size corrections to the Dirac-
Coulomb energies [2,20,25–29]. However, as we see below,
the real power of the above expressions (24) and (25) is in their
generality since once computed in terms of the parameters in
Sp they capture the effects of arbitrary short-distance physics
localized at the nucleus.3

B. Matching and RG invariance

The influence of the nucleus on atomic levels (or on low-
energy lepton scattering) is completely determined by the
near-nucleus boundary condition for the modes ψ at r = ε,
and so is ultimately parametrized by the dependence of the co-
efficients ĝi (ε) and f̂i (ε) on nuclear parameters. The mapping
of nuclear physics to atomic physics is completely captured

3The interactions of Sp specialize to rotational and parity invari-
ance, but nothing in principle forbids extending these interactions to
include nuclear spin and parity-violating interactions.

by describing this dependence, and the point of the PPEFT
formalism is to parametrize this dependence efficiently so as
to exploit the hierarchy of scales R � ε 
 aB .

1. Connecting boundary conditions to Sp

The main consequence of Sp for atomic levels comes from
the boundary condition it implies at r = ε for the radial
functions f±(r ) and g±(r ). These are worked out at leading
nontrivial order in [20], and the result is extended to include
the subdominant interactions of (12) in [30]. The boundary
conditions that follow from these references are

ĉ′
s + ĉ′

v tot − (Zα)

2n2
(d̂s + d̂v )(mεZα)

=
(

g+
f+

)
r=ε

= Zα[ĝ1(ε)+(mεZα)ĝ2(ε)+(Zα)2ĝ3(ε) + · · · ] (26)

for the parity-even states and

ĉ′
s − ĉ′

v tot − (Zα)

2n2
(d̂s − d̂v )(mεZα)

=
(

f−
g−

)
r=ε

= 1

2nX
[(mεZα)f̂1(ε) + (mεZα)2f̂2(ε)

+ (Zα)2f̂3(ε) + · · · ] (27)

for the parity-odd states. Here, the hatted quantities are
ĉ′
s,v tot := c′

s,v tot/4πε2 while d̂s,v := ds,v/4πε3, and so are di-
mensionless. Primes denote the combinations

c′
s,v := cs,v − (Zα)ds,v

ε
. (28)

Finally, the subscript “tot” represents the combination

cv tot := cv − eh̃ − dEZα

3ε
. (29)

The parameters cv and eh̃ naturally combine in this way since
both of these effective interactions introduce a delta-function
potential in the nonrelativistic Schrödinger limit [18,20].

The final step is to solve the above boundary condition to
relate the quantities f̂i and ĝi to the parameters cs , cv , ds ,
dv , h̃, and dE . This allows a determination of which nuclear
parameters govern which atomic energy shifts. Before doing
so, we first show how to deal with the apparent arbitrariness
associated with the ubiquitous ε dependence of the boundary
conditions. Doing so allows an efficient identification of the
physical quantities, and in particular allows a clean counting
of the number of nuclear parameters that enter into energy
shifts at any given order.
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2. Renormalization-group running

Recall that the position r = ε, where the boundary con-
ditions (26) and (27) are imposed, is basically arbitrary, so
long as it lies outside the nucleus and is much smaller than
the atomic Bohr radius. This makes it odd that expressions
like (24) and (25) for physical energy shifts appear to make
them depend on ε. The purpose of this section is to show why
this dependence is really an illusion because it is canceled by
an ε dependence that is implicit in the effective couplings cs ,
cv , and so on. This section develops renormalization-group
(RG) tools for determining this dependence explicitly, thereby
allowing a determination of the physical RG-invariant content
of the effective couplings.

To this end, it is important to realize that equations like (26)
and (27) can be read in two ways. First, they can be read as
giving the ε dependence required of the effective couplings in
order to ensure that physical quantities remain ε independent.
This is done by equating it to the ε dependence that is explicit
on the right-hand side (through the evaluation of the bulk
solution for f±/g±). The condition that physical quantities be
independent of ε in this language corresponds to demanding
that the ratio of integration constants A±/C± be ε independent
(and so RG invariant as ε is varied).

Once this is done, the ε dependence on both sides of
Eqs. (26) and (27) becomes identical, and then the second
way to read these equations is to equate the RG-invariant

coefficients on both sides. This then gives the ratio of integra-
tion constants A±/C± in terms of RG-invariant parameters.
But, because energy shifts can be computed from A±/C±,
this also gives predictions for the energy shifts in terms of
the RG-invariant characterizations of the coupling flow.

To start this off, we take the small-r asymptotic form of
the solutions given in (19) and (20) and use these to evaluate
g+/f+ and f−/g− on the right-hand sides of Eqs. (26) and
(27). This leads to the following expressions:

ĉ′
s + ĉ′

v tot − (Zα)

2n2
(d̂s + d̂v )(mεZα)

= −X

{
(g+

02 + g+
03ρ) + (g+

12 + g+
13ρ) C+

A+
ρ−2ζ

}{
(f +

02 + f +
03ρ) + (f +

12 + f +
13ρ) C+

A+
ρ−2ζ

} (30)

and

ĉ′
s − ĉ′

v tot − (Zα)

2n2
(d̂s + d̂v )(mεZα)

= − 1

X

{
(f −

02 + f −
03ρ) + (f −

12 + f −
13ρ) C−

A−
ρ−2ζ

}{
(g−

02 + g−
03ρ) + (g−

12 + g−
13ρ) C−

A−
ρ−2ζ

} , (31)

where (as before) X := √
(m − ω)/(m + ω) while ρ =

2κε = 2mε
√

1 − ω2/m2 � 2mεZα/n. Finally, the coeffi-
cients are given by

g+
02 := −

(
j + 1

2

)
+ ζ − Zα

X
, g+

12 := −
(

j + 1

2

)
− ζ − Zα

X
,

f +
02 := −

(
j + 1

2

)
− ζ − ZαX, f +

12 := −
(

j + 1

2

)
+ ζ − ZαX, (32)

and

f −
02 :=

(
j + 1

2

)
− ζ − ZαX, f −

12 :=
(

j + 1

2

)
+ ζ − ZαX,

g−
02 :=

(
j + 1

2

)
+ ζ − Zα

X
, g−

12 :=
(

j + 1

2

)
− ζ − Zα

X
, (33)

and

g+
03 := (ζ − Zαω/κ )(ζ − Zα/X)

2ζ + 1
, g+

13 := (ζ + Zαω/κ )(ζ + Zα/X)

−2ζ + 1
,

f +
03 := (ζ − Zαω/κ )(−ζ − ZαX − 2)

2ζ + 1
, f +

13 := (ζ + Zαω/κ )(−ζ + ZαX + 2)

−2ζ + 1
,

f −
03 := (ζ − Zαω/κ )(−ζ − ZαX)

2ζ + 1
, f −

13 := (ζ + Zαω/κ )(−ζ + ZαX)

−2ζ + 1
,

g−
03 := (ζ − Zαω/κ )(2 + ζ − Zα/X)

2ζ + 1
, g−

13 := (ζ + Zαω/κ )(−2 + ζ + Zα/X)

−2ζ + 1
. (34)

These equations show that it is the series in integer powers of ρ on the right-hand side that corresponds to the expansion in
powers of mεZα on the left-hand side. Temporarily working to lowest order in this expansion leads to the expression found in
[20] for the running of the couplings ĉs and ĉv, tot:

ĉs + ĉv, tot = −X

(
g+

02 + g+
12

C+
A+

ρ−2ζ

f +
02 + f +

12
C+
A+

ρ−2ζ

)
, (35)
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with coefficients given in (32). Similarly,

ĉs − ĉv, tot = − 1

X

(
f −

02 + f −
12

C−
A−

ρ−2ζ

g−
02 + g−

12
C−
A−

ρ−2ζ

)
, (36)

with coefficients given in (33).
These expressions give the RG evolution of ĉ′

s ± ĉ′
v, tot as

functions of ε. It is convenient to rewrite the result as

ĉ′
s ± ĉ′

v, tot = λ̄±, (37)

where the λ̄± are given by

λ̄± := 1

Zα

[
±ζ

(ε/ε±
� )2ζ + η±

(ε/ε±
� )2ζ − η±

+ K

]
, (38)

where K := ∓(j + 1
2 ), with upper (lower) sign correspond-

ing to parity even (odd). Equation (38) defines two types
of RG evolution, distinguished by the parameter η± :=
sgn[|(Zα)λ̄± − K| − 1]. η± = 1 corresponds to a class of
evolution for which λ̄± never passes through −K/Zα and
is unbounded (diverging at ε = ε±

� ). η± = −1 represents a
class of evolution for which λ̄± is bounded and passes through
−K/Zα once (at ε = ε±

� ).
This evolution can also be recast in differential form by

differentiating while requiring C±/A± to be ε independent,
and reexpressing the result in terms of λ̄±. Equation (38)
trades the constants C±/A± for convenient RG-invariant in-
tegration constants ε±

� , obtained by integrating the differential
evolution.

How is this picture changed once we include the mεZα

corrections? It turns out that the functions λ̄±(ε) are very
useful in this case too because the functional form (38)
appears in the coefficients of each power of ρ in (30) and (31).
In particular, the generalization of (35) and (36) to next order
in mεZα has the form

ĉ′
s ± ĉ′

v tot − (Zα)

2n2
(d̂s ± d̂v )(mεZα)

= λ̄± + 1

n

[
C±

0 + C±
1 λ̄± + C±

2 λ̄2
±
]
(2mεZα), (39)

where, evaluating X and κ using the lowest-order Coulomb
energy, ω/m ≈ 1 − 1

2 (Zα/n)2,

C+
0 := X(g+

02g
+
13 − g+

03g
+
12)

f +
02g

+
12 − f +

12g
+
02

≈ 8n2 + 1

12n
(Zα) + . . . ,

C+
1 := f +

02g
+
13 − f +

03g
+
12 − f +

12g
+
03 + f +

13g
+
02

f +
02g

+
12 − f +

12g
+
02

≈ 2n + . . . ,

C+
2 := f +

02f
+
13 − f +

03f
+
12

X(f +
02g

+
12 − f +

12g
+
02)

≈ n

Zα
+ 8n2 − 2n + 1

4n
(Zα) + . . . , (40)

and

C−
0 := f −

02f
−
13 − f −

03f
−
12

X(g−
02f

−
12 − g−

12f
−
02 )

≈ n

3(Zα)
+ · · · ,

C−
1 := g−

02f
−
13 − g−

03f
−
12 − g−

12f
−
03 + g−

13f
−
02

g−
02f

−
12 − g−

12f
−
02

≈ 2n

3
+ · · · ,

C−
2 := X(g−

02g
−
13−g−

03g
−
12)

g−
02f

−
12−g−

12f
−
02

≈−8n2−3

12n
(Zα) + · · · . (41)

Here, ellipses indicate higher powers of Zα.
Equating the coefficients of each power of mεZα in (39)

dictates separately the running of ĉ′
s , ĉ′

v, tot [given by (37)],
and d̂s and d̂v . The running of d̂s and d̂v is given by

Zα(d̂s + d̂v ) = −8n2 + 1

3
(Zα) − 8n2λ̄+

−
(

4n2

Zα
+ (8n2 − 2n + 1)(Zα)

)
λ̄2

+ (42)

and

Zα(d̂s −d̂v )=− 4n2

3(Zα)
− 8n2

3
λ̄− + 8n2 − 3

3
(Zα)λ̄2

−. (43)

Interestingly, the running of all of the effective couplings
are controlled by the two functions λ̄±(ε). As a result, the
flow of all couplings is described in principle by the same
two RG-invariant constants ε±

� . These two parameters encode
the information contained in C±/A± in the solutions f±
and g±. As we see below, only one of these two quan-
tities is independent for a parity-preserving nucleus since
ε+
� = ε−

� =: ε�.
These functions are plotted in Figs. 1 and 2 (for parity

even) and in Figs. 3 and 4 (for parity odd). In each case, the
two classes of flows identified by η± :=sgn[|(Zα)λ̄±−K|−1].
These figures show that the RG-invariant quantities ε±

� give
the value of ε for which (Zα)λ̄± ∓ K approaches infinity
(when η± = +1) or 0 (when η± = −1).

III. NUCLEAR UNCERTAINTIES

Having established in the previous section why the precise
value of ε carries no physical information, we turn in this
section to connecting the RG-invariant parameters ε±

� to ex-
plicit nuclear properties. This is done in the first subsection

−4 −2 0 2 4

−10

−5

0

5

ln / ∗

FIG. 1. Plot of the RG flow of B = (Zα)4(d̂s + d̂v )/4 (solid
blue) and B = (Zα)(ĉ′

s + ĉ′
v tot ) (dashed orange) vs ln ε/ε�, with

η+ = +1.
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−2

−1

0

ln / ∗

FIG. 2. Plot of the RG flow of B = (Zα)4(d̂s + d̂v ) (solid blue)
and B = (Zα)(ĉ′

s + ĉ′
v tot ) (dashed orange) vs ln ε/ε�, with η+ = −1.

by computing the energy shift as a function of ε±
� , and then

comparing this result to the results of explicit simple models
of the nucleus. The upshot of this section is the observation
that a single parameter ε� := ε+

� = ε−
� accounts for the energy

shifts found using explicit calculations with these models,
with η+ = η− = +1.

Furthermore, the parameter ε� required to obtain this agree-
ment does not depend on the quantum numbers {n, l,m} of
the state whose energy is being computed, as is intuitively
plausible given that ε� captures the properties of the nucleus
and these should not depend on which particular electron (or
muon) state that is used to probe them.

Finally, the above statements are equally true at lowest
order and when higher-order contributions are included in
powers of Zα and/or mRZα. Working to subdominant order
does not introduce new parameters beyond ε� into the result,
it just determines the value of ε� with more precision than at
lower order.

−4 −2 0 2 4

−6

−4

−2

0

2

4

6

ln / ∗

FIG. 3. Plot of the RG flow of B = (Zα)4(d̂s − d̂v ) (solid
blue) and B = (Zα)(ĉ′

s − ĉ′
v tot ) (dashed orange) vs ln ε/ε−

� , with
η− = +1.
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2
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ln / ∗

FIG. 4. Plot of the RG flow of B = (Zα)4(d̂s − d̂v )/4 (solid
blue) and B = (Zα)(ĉ′

s − ĉ′
v tot ) (dashed orange) vs ln ε/ε−

� , with
η− = −1.

The upshot to the order we work is that all calculations
are captured by an RG-invariant scale ε� of the following
form:

ε2
� = (Zα)2

[
R2

0 + R2
1 (Zα) + R2

2 (Zα)2 + · · · ]. (44)

The length scales Ri are generalized nuclear moments whose
values can weakly depend on m (e.g., logarithmically), and
are computed below for several models of interest. Notice in
particular that the overall factor (Zα)2 ensures ε� is much
smaller than the Ri , which turn out to be typical nuclear
scales.

Finally, the second subsection in this part of the paper
asks for observable combinations of energy levels from which
ε� drops out. Such combinations must always exist when
there are more observables than there are nuclear parameters.
What is crucial is that the numbers R0, R1, and R2 above
are not independent parameters in this sense since they enter
into all observables, for both electronic and muonic atoms,
purely through the single combination ε�. Because of the
explicit appearance of m, and the implicit dependence of the
Ri on lepton mass, ε� will be numerically different between
electronic and muonic atoms.

A. Moments and polarizabilities

We start by making contact with nuclear models, com-
puting the value of ε±

� required to reproduce energy-shift
calculations in the literature [and justifying Eq. (44)].

1. RG-invariant energy shifts

Consider first the energy shifts for atomic energy levels
as a function of the RG-invariant parameters ε±

� and η±.
The calculation is greatly simplified given the knowledge
that ε±

� proves to be much smaller than typical nuclear sizes
[in retrospect due to the explicit factor ε� ∝ Zα implied
by (44)].
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Expanding Eqs. (37), (38), (42), and (43) in the limit of
small ε�/ε, and specializing to j = 1

2 , we have

ĝ1 = −1

2
+ 2η+

(Zα)2

(
ε+
�

ε

)2

,

ĝ2 = −n2 − 1

6n2
+ 4η+

(Zα)2

(
ε+
�

ε

)2

+ 8

(Zα)4

(
ε+
�

ε

)4

,

ĝ3 = −1

8
− η+

(Zα)2

(
ε+
�

ε

)2

[1 + 2 ln(ε+
� /ε)]

+ 2

(Zα)4

(
ε+
�

ε

)4

, (45)

while

f̂1 = 2

3
,

f̂3 = 1

2
− 2η−

(Zα)2

(
ε−
�

ε

)2

. (46)

Using these in the energy shifts, Eqs. (24) and (25), then
gives the parity-even j = 1

2 shift

δEnS1/2 � 4m3(Zα)2

n3
η+(ε+

� )2

{
2 +

[
12n2 − n − 9

2n2(n + 1)

− 2 ln

(
2mε+

� Zα

n

)
− 2Hn+1 − 2γ + 4

]
× (Zα)2 + · · ·

}
, (47)

while the parity-odd j = 1
2 state shifts by

δEnP1/2 � 2
n2 − 1

n5
m3(Zα)4η−(ε−

� )2(1 + · · · ) . (48)

As mentioned earlier, the nuclear shifts to j = 3
2 states and

higher are smaller than the order to which we work.

2. Fixed charge distributions

The simplest nuclear model treats it as a simple static
charge distribution ρ(r) and energy shifts for Dirac fermions
orbiting such distributions have been computed in the limit
where the radius R of the distribution is much smaller than
atomic size aB [2,20,25–29].

For such models in the limit R 
 aB , the finite-size energy
shift to leading and subleading order in R/aB is parametrized
by just three moments of the charge distribution. Expressions
for this shift (as found by Refs. [2,20,25–29]) agree with
(47) and (48) when η := η+ = η− = +1 and the RG-invariant
parameter ε+

� = ε−
� =: ε� is given by

ε2
� = (Zα)2

12

(
r2
p + 1

2
r3

F
mZα + a2

rel(Zα)2

)
, (49)

which corresponds to the generalized moments

R2
0 = r2

p

12
, R2

1 = m
r3

F

24
, and R2

2 = a2
rel

12
. (50)

The nuclear moments r2
p, r3

F
, and a2

rel above are defined as
follows.

At order m3R2(Zα)4, the only moment that appears is the
charge radius

r2
p := 1

Ze

∫
d3r r2ρ. (51)

At order m4R3(Zα)5 only the Friar (or third Zemach) moment
appears

r3
F

:= 1

(Ze)2

∫
d3r d3r′ ρ(r)ρ(r′)|r − r′|3. (52)

Finally, at order m3R2(Zα)6, there is one more moment that
arises which we call arel. This moment has a more complicated
structure, for which several authors have presented different
but equivalent formulations [25,28,31]. Following [31], we
write

a2
rel = r2

p

[
1 + 1

2
ln(12) − ln(Zα) + ln

(
rC1

rp

)]
, (53)

with the parameter rC1 [cf. Eq. (66) in [31]] given by

ln
rC1

rp

− 1 = 6

r2
p

∫ ∞

0
dr ln(r/rp )

d

dr
r3

×
{

2πρ(r )[V (2)(r )]2 − [V (r )]2V (2)(r )

− 1

r2

[
r

2
+ r2

p

6r

]}
, (54)

where V (r ) ≈ 1/r , V (2)(r ) ≈ −r/2 − r2
p/6r , and ρ(r ) is the

nuclear charge distribution.
This example illustrates several things. First, it shows that

agreement with calculated energy shifts requires the parity-
even and parity-odd RG invariants to be the same. This seems
a reasonable consequence of the assumed parity invariance
of the nuclear couplings: odd- and even-parity electrons (or
muons) see the same nucleus. Furthermore, this example
shows how moving past leading order does not introduce new
independent RG-invariant parameters into the energy shifts.
Instead, it provides a more accurate determination of the value
of the single RG invariant ε�. Finally, ε� is independent of the
lepton-state quantum numbers jjz�.

3. Nuclear polarizability

In general, nuclear contributions to atomic energy shifts
arise that cannot be simply parametrized in terms of a static
nuclear charge distribution, such as those due to “inelastic”
Coulomb exchanges. These typically involve sums over in-
termediate nuclear states and so sample nuclear degrees of
freedom outside of their ground state, and contain the effects
of nuclear polarizability. A representative example of how
such a calculation proceeds is sketched in Appendix A.

The upshot of these calculations is that they contribute (to
within the accuracy we work here) to atomic energy shifts in a
way that depends on the quantum numbers of the atomic state
in the same way as does the charge-radius contribution. As a
result, these contributions can also be captured by a shift in
the value of the RG-invariant scale ε� with η = +1.

In terms of the parametrization of Eq. (44) the calculations
of Refs. [24,31–34] give contributions that first arise at order
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m3R2(Zα)5 for muonic atoms, and m4R3(Zα)5 for elec-
tronic atoms. For muons, the inelastic two-photon exchange
introduces a new contribution R2

1 ⊃ −α̃′
pol/6, where α̃′

pol is a
generalized (mass-dependent) nuclear polarizability given by
[35,36]

α̃′
pol :=

∫
ET

dE

√
m

2E
|〈φN | 	d|E〉|2, (55)

where |φN 〉 is the nuclear ground state, |E〉 is the nuclear
excited state with energy E − M , 	d is the nuclear dipole
operator (divided by the elementary charge), and ET is the
nuclear threshold excitation energy (which for helium [37]
is ∼20 MeV). Furthermore, at order m4R3(Zα)5, the nuclear
polarizability also adjusts the value of R2

1 , so that R2
1 ⊃

mr̃3
F /24, where now r̃3

F is a generalized Friar moment. For
muonic atoms [24],

r̃3
F,μ = − 1

(Ze)2

∫
d3r

∫
d3r ′|r − r ′|3〈φN |ρ̂†(r )ρ̂(r ′)|φN 〉,

(56)

where ρ̂(r ) is the (un-normalized) nuclear charge density
operator, and |φN 〉 is again the nuclear ground state [note
that the matrix element 〈φN |ρ̂†(r )ρ̂(r ′)|φN 〉 is distinct from
ρ(r )ρ(r ′) = 〈φN |ρ̂†(r )|φN 〉〈φN |ρ̂(r ′)|φN 〉, which appears in
(52)]. For electronic atoms, the static dipole polarizability also
arises at this order, and so [36]

r̃3
F,e = − α̃pol

6
− 1

(Ze)2

∫
d3r

×
∫

d3r ′|r − r ′|3〈φN |ρ̂†(r )ρ̂(r ′)|φN 〉, (57)

where

α̃pol = 2

3

∫
dE

{
19

6
|〈φN | 	d|E〉|2+5|〈φN | 	d ln(2E/m)|E〉|2

}
(muons) (58)

is the weighted static electric nuclear polarizability. Finally,
R2

2 is also altered, although in this case the exact form of the
inelastic exchange is not known for helium [31]. However, for
both electrons and muons it is expected to be well described
by a local interaction due to the high excitation energy of the
4He nucleus relative to atomic scales, and so should appear
as some generalized arel which we denote ãrel, in analogy
with the generalized Friar moment. Altogether, inclusion of
nuclear polarizability effects can be encoded simply by the
contributions

R2
0 = r2

p

12
, R2

1 =− α̃′
pol

6
+ m

r̃3
F

24
, and R2

2 = ãrel

12
, (59)

where α̃′
pol is defined in (58) for muons, and is 0 for electrons.

The bottom line is again that these contributions represent
particular kinds of contributions to ε�, and are not contributing
to atomic energy shifts as independent parameters. Conse-
quently, assessments of nuclear errors involved in each of
these kinds of processes can be interpreted as contributions
to the total theoretical uncertainty in microscopic predictions
for ε�.

However, the real power of the above expressions in terms
of ε� is in their very broad generality. Although specific
kinds of nuclear physics contribute to the value of ε�, the
same would also be true for arbitrary short-distance physics,
regardless of whether this has nuclear origins or not. Because
the PPEFT framework parametrizes all possible interactions
localized at the nucleus consistent with symmetries, the con-
tribution to atomic energies of these couplings (through their
RG-invariant parametrizations ε� and η) are guaranteed to
capture any short-distance physics that shares these symme-
tries to the given order in R/aB , regardless of the details of
how that physics might be modeled.

B. Nucleus-independent combinations

Exploitation of more precise measurements of atomic level
spacings is currently hampered by theoretical uncertainties
associated with predicting the energy shifts due to nuclear
physics. Ongoing efforts are underway to improve the theo-
retical prediction for these nuclear shifts, and in the language
of PPEFT these can be regarded as improving the theoretical
prediction for the RG-invariant parameter ε�. In this view,
the various individual contributions to nuclear level shifts,
e.g., charge radius, Friar moment, polarizability, and so on,
all enter together only through this single parameter.4

The fact that the nucleus can only influence atomic levels
through ε� suggests another approach towards reducing theo-
retical error for precision atomic measurements. Rather than
trying to reduce the theoretical error by computing this param-
eter more accurately, why not instead identify combinations
of observables from which the parameter ε� cancels out? Any
such combination is a quantity for which the theoretical error
is much smaller since it does not depend at all on any nuclear
uncertainties.

To formalize this, we write the energy levels of hydrogenic
atoms as

Enj± = EDirac
nj + δE

QED
nj± + δEPP

nj± + δE
PPQED
nj± , (60)

where quantum numbers n, j and parity ± are used as labels.
Here, EDirac is the energy eigenvalue predicted by the Dirac-
Coulomb solution, and δEQED contains all QED radiative
corrections in the limit of a point nucleus. δEPP is the nucleus-
dependent contribution given above, and δEPPQED contains
the influence of nonzero nuclear size on all QED radiative
corrections.

When comparing to the literature, such as the three-
photon contributions evaluated in Ref. [31], it is the “high-
energy” parts of graphs whose effects can be captured by a
shift in the parameters of the effective theory, which in the
present instance means shifting the value of ε2

� in δEPP
nj±.

The same cannot be done for the “low-energy” parts that
correspond to graphs evaluated within the effective theory us-
ing nucleus-modified propagators and so these contributions

4Since ε� depends explicitly on the lepton mass [cf. the R3
2 term

in (44)], strictly speaking there is a single parameter controlling
electron-type atoms and another one for muonic atoms, and any
evidence for a difference in these parameters for electrons and muons
is evidence for the presence of a nonzero size for the parameter R3

2 .
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are either already included in the perturbative expansion of
the energy shifts [Eqs. (24) and (25)], or else grouped into
δE

PPQED
nj± .
Both of δEPP and δEPPQED suffer from systematic uncer-

tainties arising from nuclear physics (and the proton radius
problem, should this prove not to be due to experimental
error). But, because δEPPQED starts out with higher powers
of α it only depends on the lowest-order R2

0 contributions5

to ε�, unlike δEPP which in principle depends on all of the
parameters R2

0 through to R2
2 of Eq. (44).

However, it is differences �E1→2 := En1,j1,±1 − En2,j2,±2

between energy levels that are measured spectroscopically.
For these quantities we therefore write

�E1→2 = �EEM
1→2 + �EPP

1→2 + �E
PP QED
1→2 , (61)

in which the Dirac-Coulomb and point-source QED effects
are grouped together into the term labeled “EM.” Because
�EEM

1→2 is calculable with negligible error, we focus below on
the nucleus-dependent combination

�̂E1→2 :=�E1→2−�EEM
1→2 =�EPP

1→2+�E
PPQED
1→2 . (62)

Our goal is to identify linear combinations of these observ-
ables from which the parameter ε� cancels. With upcoming
experiments in mind we do so explicitly here for muonic
atoms up to the accuracy of m4R3(Zα)5 required to see the
Friar moment. For electrons we go to the same accuracy,
which is slightly more involved due to the necessity of keeping
terms at both order m4R3(Zα)5 and m3R2(Zα)6 since these
are similar in size (due to the numerical coincidence meR ∼
Zα).

1. Predicted energy differences

In order to pursue this program, we need complete expres-
sions for the ε� dependence of all relevant levels, including
both the δEPP and δEPPQED contributions. Since to the de-
sired accuracy ε� does not appear at all within δEPP for the
energies of j > 1

2 states, we focus on itemizing all relevant
contributions for j = 1

2 .
The mixed nuclear-QED contribution has been evaluated

at the order required, and we simply quote the result here.
For both electrons and muons the leading result is given by
[38,39]

δEPPQED = 4η
(e)
nl

n3
m3

μα(Zα)2ε2
�μ (muons)

= 4η
(μ)
nl

n3
m3

eα(Zα)3ε2
�e (electrons), (63)

with the dimensionless coefficients η
(a)
nl depending on the

quantum numbers of the lepton state. In these expressions, the
subscripts “a = μ , e” on ε�μ is meant to underline that it is
evaluated using the muon mass in its R3

2mZα contribution.

5Apart from logarithms (see, e.g., [31]) inasmuch as other nuclear
scales aside from R0 can appear logarithmically in low-energy con-
tributions. When this occurs, we write a contribution of the form
ln(mRx ) as ln(mR0 ) + ln(Rx/R0 ) and absorb the m-independent
factor ln(Rx/R0 ) into the R2

2 term of (44).

We identify the ε� dependence by trading the dependence on
r2
p given in the literature for ε� using only the leading R2

0

contribution from Eq. (49): ε2
� = 1

12 (Zα)2r2
p.

For electronic atoms ηnl is given by [38]

η
(e)
nl := (8 ln 2 − 10)δl0 (electron), (64)

which vanishes for l �= 0 since the wave function must have
support at the position of the nucleus because the Bohr radius
for the orbit aB ∼ (Zαme )−1 is much larger than the Compton
wavelength λc ∼ m−1

e of the virtual electrons in the QED
loop. The same is not true for muons since αmμ is comparable
to me, and so for muonic atoms η

(μ)
nl need not vanish for l �= 0.

The precise value of η
(μ)
nl , given in [39], is not required in what

follows.
Collecting results we have the following:
Muons. Here, we have the nonzero nuclear-dependent en-

ergy shifts to the desired order6

δEPP
nS1/2

+ δE
PPQED
nS1/2

= 4m3
μ(Zα)2

n3

(
2 + η

(μ)
n0 α

)
ε2
�μ (65)

while

δEPP
nP1/2

+ δE
PPQED
nP1/2

= m3
μ(Zα)2η

(μ)
n1 α ε2

�μ (66)

and

δEPP
nP3/2

+ δE
PPQED
nP3/2

= m3
μ(Zα)2η

(μ)
n1 α ε2

�μ. (67)

Combining these expressions provides the following ex-
pressions for the measurable energy differences for the lowest
angular momentum states:

�̂EnS1/2-nP1/2 = 4m3
μ(Zα)2

n3

[
2 + (

η
(μ)
n0 − η

(μ)
n1

)
α
]
ε2
�μ , (68)

�̂EnS1/2-nP3/2 = 4m3
μ(Zα)2

n3

[
2 + (

η
(μ)
n0 − η

(μ)
n1

)
α
]
ε2
�μ, (69)

while

�̂EnP1/2-nP3/2 = 0. (70)

Electrons. The corresponding formulas for electrons
are

δEPP
nS1/2

+ δE
PPQED
nS1/2

= 4m3
e (Zα)2

n3
ε2
�e

{
2 +

[
12n2 − n − 9

2n2(n + 1)
− 2 ln

(
2meε�eZα

n

)
−2Hn+1 − 2γ + 4 + η

(e)
n0

Z

]
(Zα)2

}
, (71)

as well as

δEPP
nP1/2

+ δE
PPQED
nP1/2

= 2

(
n2 − 1

n5

)
m3

e (Zα)4ε2
�e, (72)

but now δEPP
nP3/2

= δE
PPQED
nP3/2

= 0 to the order of interest.

6We switch to spectroscopic notation where states are labeled by
j and parity, so the labels S, P,D, F, . . . are proxies for parity.
Thus, S (or P ) are parity-even (-odd) states with spin j = 1

2 , while D

(or F ) are parity-even (-odd) with spin j = 3
2 and so on.
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The corresponding energy differences for electrons are therefore

�̂EnS1/2-nP3/2 = 4m3
e (Zα)2

n3
ε2
�e

{
2 +

[
12n2 − n − 9

2n2(n + 1)
− 2 ln

(
2meε�eZα

n

)
− 2Hn+1 − 2γ + 4 + η

(e)
n0

Z

]
(Zα)2

}
, (73)

as well as

�̂EnS1/2-nP1/2 = 4m3
e (Zα)2

n3
ε2
�e

{
2 +

[
12n2 − n − 9

2n2(n + 1)
− 2 ln

(
2meε�eZα

n

)
− 2Hn+1 − 2γ + 4 + η

(e)
n0

Z
− n2 − 1

2n2

]
(Zα)2

}
(74)

and

�̂EnP1/2-nP3/2 = 2

(
n2 − 1

n5

)
m3

e (Zα)4ε2
�e. (75)

In essence, these expressions imply that the nuclear-size
contributions to a great many energy electronic and muonic
levels can be parametrized in terms of just two parame-
ters, ε�e and ε�μ. By eliminating these parameters, we can
derive relations that directly connect measurable quantities.
The relations derived in this way are therefore known with
smaller theoretical errors since they are entirely independent
of nuclear uncertainties.

2. Levels with n = 2

We start by concentrating on the energy levels that have
already been measured, and so restrict our attention to the
special case n = 2.

Focusing first on muonic atoms, the nuclear contribution
to the differences between the three levels 2S1/2, 2P1/2, and
2P3/2 is controlled by the single parameter ε�μ. This means
there must be a nucleus-independent combination relating the
two independent energy differences. This can be taken to be
(70): �̂EnP1/2-nP3/2 = 0 is a statement unclouded by nuclear
uncertainties, in particular for n = 2.

Alternatively, (68) provides an accurate experimental de-
termination of ε� for muonic helium:

ε2
�μ = �̂E2S1/2-2P1/2

m3
μ(Zα)2

[
1 + 1

2

(
η

(μ)
20 − η

(μ)
21

)
α
] + O[(Zα)4]. (76)

Turning now to the 4He+ ion, the nuclear contribution to the
two independent differences between the 2S1/2, 2P1/2, and
2P3/2 levels is controlled by the single parameter ε�e, again
suggesting there is a nucleus-independent combination.

This can be found by using (74) to eliminate ε�e and using
the result in (75) to predict the 2P1/2-2P3/2 transition in terms
of the 2S1/2-2P1/2 transition:

�̂E2P1/2-2P3/2 = 3

16
(Zα)2�̂E2S1/2−2P1/2 + O[(Zα)7]. (77)

We write the error in this expression as (Zα)7 rather than
(Zα)8 because the corrections to (75) arise at relative order
(mRZα), though for electrons this is numerically closer to
order (Zα)8. Alternatively, using the 2S1/2-2P1/2 to predict
the 2S1/2-2P3/2 difference leads to the equivalent prediction

�̂E2S1/2-2P3/2 = �̂E2S1/2-2P1/2

[
1 + 3

16 (Zα)2 + O((Zα)4)
]
.

(78)

While naively ε�e might be obtained from (75), leading to

ε2
�e = 16

3m3
e (Zα)4

�̂E2P1/2-2P3/2 + O((Zα)4) , (79)

this determines it with larger relative error than it would have
been by solving for ε�e from one of the other two energy
differences. Taking this latter approach instead leads (see
Appendix B, including the result for general n) to

m2
eε

2
�e � 1

me(Zα)2
�̂E2S1/2-2P1/2

×
{
1+ (Zα)2

2

[
ln

(
�̂E2S1/2-2P1/2

me

)
−3

2
+2γ−η20

Z

]}

+O
(

(Zα)2 �̂E2S1/2-2P1/2

me

)
, (80)

and the correction is now down by (Zα)4 relative to the
leading term.

3. More general n

The relations found above for the special case n = 2 might
not be all that surprising. However, should experiments access
transitions with higher n, the fact that all nuclear contributions
are controlled by the single parameter ε� becomes ever more
predictive. This section makes a start at some of the nuclear-
free relations that can be derived in this way for general n.

Muons. We start with muons, which are simpler. A start is
the prediction for the general nS1/2-nP1/2 shift for any n given
measurements of this shift for n = 2. For n = 2, we use (69)
to infer the value of ε�μ, which when substituted into (68) for
general n, gives

�̂EnS1/2-nP1/2 = 8
[
2 + α

(
η

(μ)
n0 − η

(μ)
n1

)]
n3

[
2 + α

(
η

(μ)
20 − η

(μ)
21

)] �̂E2S1/2-2P1/2 . (81)

Similarly, generic muonic S-S transitions become

�̂En1S1/2-n2S1/2 = 2

(
2 + αη

(μ)
n10

n2
1

− 2 + αη
(μ)
n20

n2
2

)
�̂E2S1/2-2P1/2 .

(82)

A similar argument relates the S1/2-P3/2 transitions for general
n:

n2
1

2 + α
(
η

(μ)
n10 − η

(μ)
n21

)�̂En1S1/2- n1P3/2

= n2
2

2 + α
(
η

(μ)
n20 − η

(μ)
n21

)�̂En2S1/2-n2P3/2 . (83)
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Electrons. Similar expressions hold for electronic atoms.
The prediction for the nS1/2-nP1/2 shift for any n in terms of
this shift for n = 2 obtained by using (80) to infer the value of
ε�e used in (74) gives

�̂EnS1/2-nP1/2 = 8

n3
�̂E2s1/2-2p1/2

×
{

1 + (Zα)2

[
N (n) − n2 − 1

4n2

]}
, (84)

in which we define

N (n) := 12n2 − n − 9

4n2(n + 1)
− Hn+1 + 5

4
+ η

(e)
n0

2Z

− η
(e)
20

2Z
− ln

(
2

n

)
. (85)

The predictions for electronic S-S transitions is similarly

�̂En1S-n2S

= �̂E2S1/2-2P1/2

{
1

n3
1

− 1

n3
2

+ (Zα)2

[
N (n1)

n3
1

− N (n2)

n3
2

]}
.

(86)

The nucleus-free prediction for the difference between the P

states for electronic atoms becomes

n5
1

n2
1 − 1

�̂En1P1/2-n1P3/2 = n5
2

n2
2 − 1

�̂En2P1/2-n2P3/2 . (87)

This situation is somewhat more complicated for electronic
S-wave states, but using

n3
1�̂En1S1/2-n1P1/2 − n3

2�̂En2S1/2-n2P1/2

= 4m3
e (Zα)4ε2

�e(F [n1] − F [n2]), (88)

where

F [n] := 12n2 − n − 9

2n2(n + 1)
− n2 − 1

24n2
+ 2 ln n − 2Hn+1 + η

(e)
n0

Z
,

(89)

the difference becomes
1

F [n1] − F [n2]

(
n3

1�̂En1S1/2-n1P1/2 − n3
2�̂En2S1/2-n2P1/2

)
− 24n5

1

n2
1 − 1

�̂En1P1/2-n1P3/2 = 0, (90)

which is again free of nuclear uncertainties. It is clear that a
great many such relations can be derived in the same way.

IV. NUMERICAL EXAMPLE

At the moment, data [40] are only available for the
2P1/2-2S1/2 transition in 4He+. With this transition, we can
use (86) to predict the 1S-2S transition in hydrogenic helium,
which is relevant for upcoming experiments [41]. Subtracting
the pointlike physics listed in [23], we compute

�̂E
(exp)
2S1/2-2P1/2

= −2.58 (5)×10−9 Ry, (91)

in units of the Rydberg energy. Here, the number in parenthe-
ses is the error on the last digit. The predicted 1S-2S transition

is then

�E2S-1S = 2.999 706 711 8 (4) Ry

= 9.868 561 009 (1)×109 MHz, (92)

where in the last line, we used Ry = 3.289 841 960 355 ×
1015 Hz from the 2014 CODATA review [13]. Our prediction
agrees with [41] and [23], however, the error we report is
nominally a few times larger than they report (three times [41]
and four times [23]). What is important in our case is that
the error is completely independent of nuclear uncertainties,
and is dominated by the experimental error. Our result will
therefore only improve as future experiments improve their
precision, and will never be hindered by a particular choice of
nuclear model.

V. CONCLUSION

We here apply the PPEFT framework to muonic and elec-
tronic atoms with spinless nuclei, which produce systematic
parametrizations of the energy level shifts due to all short-
range physics, including (but not limited to) uncertainties in
evaluating nuclear contributions. Our parametrization cleanly
identifies a single mass-dependent length scale ε� that encodes
the effect of all nuclear physics on atomic energy levels.

That is, in discussions of finite-size contributions to atomic
energy shifts, one often writes (see, e.g., [24])

�E = δQED + δFS r2

〈
r2
p

〉 + δFS Other, (93)

where δQED is all of the non-finite-size-dependent contribu-
tions, δFS r2〈r2

p〉 is all the finite-size terms that are proportional
to the squared charge radius, and δFS Other is all the other
finite-size contributions. Our observation is that at the level
of atomic energy shifts, this division is artificial. The real
division is

�E = δQED + δε�
, (94)

where δQED is all point-nucleus contributions (as above), and
δε�

is all finite-size contributions, which is a known function
of the one length scale ε�. The separation of ε� into different
sources (such as moments of the nuclear charge distribution,
and nuclear polarizability) is a theoretical exercise (although
certainly a worthy one) that always needs supplementary
information, such as input from theoretical models and scat-
tering data. However, ε� is just one number, so once it is
determined from a single measurement, it can be used to
predict the finite-size contribution of all other measurements.

As a practical application of this observation, we use two
different strategies to make predictions about spectroscopic
transition for electronic and muonic atoms that are free of ε�.
For these observables our formulas reduce the theoretical error
in tests of QED by eliminating any uncertainties arising from
explicit models of the nucleus. The same predictions are also
independent of any potential short-range new physics (should
this prove to be responsible for the proton-radius problem)
allowing tests of QED using only muonic 4He whose validity
is undiminished by the existence of such forces.

Our first strategy is using a single measurement to solve for
ε�, and then use that to predict all other measurements. Doing
so, we find explicitly predictions for the following transitions:
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For muonic atoms, we find

�̂EnS1/2-nP1/2 = 8
[
2 + α

(
η

(μ)
n0 − η

(μ)
n1

)]
n3

[
2 + α

(
η

(μ)
20 − η

(μ)
21

)] �̂E2S1/2-2P1/2 (95)

and

�̂En1S1/2-n2S1/2 = 2

(
2 + αη

(μ)
n10

n2
1

− 2 + αη
(μ)
n20

n2
2

)
�̂E2S1/2-2P1/2 ,

(96)

while electronic atoms produce

�̂EnS1/2-nP1/2 = 8

n3
�̂E2s1/2-2p1/2

{
1 + (Zα)2

×
[
N (n) − n2 − 1

4n2

]}
(97)

and

�̂En1S-n2S = �̂E2S1/2-2P1/2

{
1

n3
1

− 1

n3
2

+ (Zα)2

×
[
N (n1)

n3
1

− N (n2)

n3
2

]}
, (98)

with N (n) defined in (85).
Our second approach is to avoid solving for ε� altogether,

and instead find general linear combinations of measurements
for which it falls out. In this way, we predict the following:
For muonic systems,

n2
1

2 + α
(
η

(μ)
n10 − η

(μ)
n21

)�̂En1S1/2-n1P3/2

= n2
2

2 + α
(
η

(μ)
n20 − η

(μ)
n21

)�̂En2S1/2-n2P3/2 , (99)

while for electronic systems,

1

F [n1] − F [n2]

(
n3

1�En1S1/2-n1P1/2 − n3
2�En2S1/2-n2P1/2

)
− 24n5

1

n2
1 − 1

�En1P1/2-n1P3/2 = 0, (100)

where F [n] is defined in (89).
Using the only available data for the helium ion (the

2S-2P Lamb shift in ordinary 4He+), we use (86) to pre-
dict a 1S-2S transition ν1S-2S = 9.868 561 009 (1)×109 MHz.
While our uncertainty in this prediction is roughly four times
the uncertainty in the literature, our error is dominated by the
experimental precision of the 2S-2P measurement. Conse-
quently, our predictions will become more and more precise
as experiments improve, and remain unencumbered by the
inherent uncertainty in choice of nuclear model.

Although we here address only spinless nuclei, it is cer-
tainly possible to include nuclei with spin in the PPEFT
framework, and work is ongoing to do so. Although nuclear
spin changes the counting of parameters in the energy shift
formulas above, the principle remains exactly the same and
we expect in this case also to be able to build observables
from which short-range contributions completely drop out.
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APPENDIX A: POLARIZABILITY IN A NUCLEAR MODEL

To illustrate how nuclear polarizabilities enter into the
PPEFT framework, this appendix considers a relatively simple
nuclear model, following Refs. [24,34]. The model works with
nucleons and leptons with states |NJJz; njjz〉 representing
the nuclear (upper case) quantum numbers and lepton (lower
case) quantum numbers. The Hamiltonian of the system is

H = HN + Hf + �H, (A1)

where HN is the Hamiltonian of the nucleus (whose details
never need be explicitly written, with the basis of nuclear
states |NJJz〉 assumed known), Hf is the Schrödinger or

Dirac-Coulomb Hamiltonian for the lepton interacting with a
point-source Coulomb potential, and �H is given by

�H = Zα

r
− Zα

∫
d3r ′ �̂(r′)

|r − r′| , (A2)

where �̂ is the electric charge operator written in terms of
the quantum nuclear degrees of freedom (such as the nu-
cleon positions and charges). The perturbation subtracts out
the point-source Coulomb interaction appearing in Hf and
replaces it with the more realistic nuclear electromagnetic
source distribution.

Working perturbatively in �H leads to a graphical expan-
sion that includes those of Fig. 5. Of these, the leftmost graph
is linear in the nonpointlike Coulomb-nuclear coupling �H ,
and involves one factor of the nuclear charge-density operator
�̂ evaluated within the nuclear ground state 〈0|�H |0〉. It
is this type of graph that gives the contributions that look
like the charge radius r2

p of the nuclear charge distribution
ρ(r) = 〈0|�̂(r)|0〉.

Terms quadratic in this same nuclear charge distribution,
such as the Friar moment r3

F
of (52), arise from the second

graph in Fig. 5 that are quadratic in �H but also only
involve the nucleus in its ground state. The first two types
of graphs therefore have counterparts for leptons interacting
with a specified charge distribution and so can be expected
to contribute to energy shifts in the same way, leading to
contributions to ε� of the form given in (49).

It is the final graph of Fig. 5 (and its crossed counterpart)
that contains the nuclear polarizability and so is not simply
captured by static moments of a given nuclear distribution
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+

+

FIG. 5. Graphs arising from the perturbative expansion of nu-
clear electromagnetic interactions. The upper solid line represents
the atomic lepton, dotted lines represent the Coulomb part of the
electromagnetic field, and the lower solid line represents the nu-
cleus in its ground state. The fat dot vertex includes a nonpointlike
momentum-dependent correction to the Coulomb vertex, while the
fat solid line represents the propagation of an excited nuclear state.
Crossed graphs are also present even though they are not drawn.

ρ(r) = 〈0|�̂(r)|0〉. For the nuclear sector, this graph con-
tributes a contribution involving a sum over nuclear states
involving the off-diagonal matrix elements |〈N |�̂(r)|0〉|2.

Explicitly, in [34] Friar gives the following expression for
the atomic energy shift due to such a polarizability:

δEpol = −4π

3
(Zα)2|φn(0)|2

∑
N �=0

[√
2m

ωN

|〈N |D|0〉|2

+m

4

∫
d3x

∫
d3y〈0|ρ(y)|N〉〈N |ρ(x)|0〉|x − y|3

]
,

(A3)

where D is the nucleon electric dipole operator D =∫
d3x xρ(x), and ωN is the excitation energy of the interme-

diate nuclear state while φn(0) is the lepton’s wave function at
the origin.

For the main text what is important about this calculation
is that it depends on the lepton quantum numbers in precisely
the same way as does the charge radius r2

p, and so can be
interpreted as a shift in the value of ε�. The leading (dipole)
polarizability term goes as (Zα)2|φn(0)|2R2 and so is a con-
tribution to the R2

1 contribution of ε� in the parametrization of
(44).

By comparison, the second term (and Friar moment cor-
rection) can be seen to go as relative order (mRZα) and so
are also contributions to R2

1 in (44). Contributions to R2
2 in

(44) also arise in explicit calculations, typically as relativistic
kinematic corrections to lower-order terms.

APPENDIX B: SOLVING FOR ε�

This Appendix fills in the details that give the expression
for ε� in situations where the energy shifts also depend log-
arithmically on ε�. This arises in the main text when writing
an expression for ε� in terms of the 2S1/2-2P1/2 level shift, for
example. We do so in this appendix for general n.

We start by writing the nS1/2-nP1/2 shift as

�̂EnS1/2-nP1/2 = 4m3
e (Zα)4

n3
ε2
�e{χn − ln[(meε�e )2]}, (B1)

where

χn := 2

(Zα)2
− 2 ln

(
2Zα

n

)
+ 12n2 − n − 9

2n2(n + 1)
− 2Hn+1

− 2γ + 4 + η
(e)
n0

Z
− 2(n2 − 1)

n2
, (B2)

and rearrange to obtain

n3

4me(Zα)4
�̂E2S1/2-2P1/2 = m2

eε
2
�e{χn − ln[(meε�e )2]}. (B3)

We wish to solve this equation for ε�e, but it has no closed-
form solution. However, the solution does have a name: it is
called the Lambert W function. In terms of this we have

m2
eε

2
�e = exp

[
W

(
− n3

4me(Zα)4
�̂E2S1/2-2P1/2e

−χn

)
+ χn

]
.

(B4)

To turn this into something useful, we use some approx-
imate forms for W in various limits. The first observation is
that the argument of the W function is order e−1/(Zα)2

(coming
from the χn) and so is very small. Also, the energy shift in
question is positive, so this argument is negative. In this limit,
W [z] is double valued, and the branch of interest is the one
satisfying W [z] < −1, denoted by Wm[z]. In the limit of small
negative argument,

Wm[z] � − ln

(
−1

z

)
− ln

[
ln

(
−1

z

)]
− ln[ln(−1/z)]

ln(−1/z)
. . . ,

(B5)

so that

W

(
− n3

4me(Zα)4
�̂EnS1/2-nP1/2e

−χn

)
+ χn

� ln

(
n3

4me(Zα)4
�̂EnS1/2-nP1/2

)
− ln

[
χn − ln

(
n3

4me(Zα)4
�̂EnS1/2-nP1/2

)]
− (Zα)2

2
ln

(
2

(Zα)2

)
+ · · · , (B6)

where the dots contain terms suppressed by order (Zα)4 and
higher. Consequently,

m2
eε

2
�e � n3

8me(Zα)2
�̂EnS1/2-nP1/2

×
{

1+(Zα)2

[
χ̂n+ 1

2
ln

(
n3

4me(Zα)4
�̂EnS1/2-nP1/2

)]}

+O

(
(Zα)2 n3�̂EnS1/2-nP1/2

4me

)
, (B7)
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where

χ̂n := 1

2
ln[2(Zα)4/n2] − 12n2 − n − 9

4n2(n + 1)
+ Hn+1 + γ − 2 − ηn0

2Z
+ n2 − 1

4n2
(B8)

(defined by χn = [2/(Zα)2](1 − χ̂n)), and the correction is down by (Zα)4 relative to the leading term.
Finally, plugging this into (73) for the nS1/2-nP3/2 shift, we predict

�̂EnS1/2-nP3/2 ≈ �̂EnS1/2-nP1/2

{
1 + (Zα)2

[
χ̂n + 1

2
ln

(
n3

4me(Zα)4
�̂EnS1/2-nP1/2

)]}

×
{

1 + (Zα)2

[
12n2 − n − 9

4n2(n + 1)
− 1

2
ln

(
n�̂EnS1/2-nP1/2

2me

)
− Hn+1 − γ + 2 + ηn0

2Z

]}

= �̂EnS1/2-nP1/2

{
1 + (Zα)2

[
n2 − 1

4n2

]
+ O((Zα)4)

}
, (B9)

which is exactly the result (77) used in the main text.
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Chapter 4

Leading Spin-Dependent
Finite-Size Effects in Hydrogen

Paper presented

L. Zalavari, C. P. Burgess, P. Hayman and M. Rummel

“Precision Nuclear-Spin Effects in Atoms: EFT Method for Reducing The-
ory Errors”,

Submitted to Physical Review A for publication,

arXiv:2008.09718 [hep-ph].

Summary

In this latest instalment of the atomic PPEFT odyssey we address one
of the major missing components of the formalism developed so far; the
extension to nuclei with spin. A slightly more involved summary of the
results of the paper we are about to present can be found in [9].

Inspired by supersymmetric treatments of spinning point-particles, as
done for instance in [48], we capture the effects of nuclear spin by append-
ing the field content of the nucleus by a set of classically anti-commuting
Grassmann fields, ξµ(s) that satisfy {ξµ, ξν} = 0. Classically, the inclusion
of these internal low-energy degrees of freedom leads to new primary con-
straints on the theory and once the point-particle degrees of freedom are
quantized the quantum operators associated with these Grassmann fields,

ξ̂µ satisfy anticommutation relations of the form
{
ξ̂µ, ξ̂ν

}
∝ ηµν and turn

out to span a multi-dimensional Hilbert space, whose dimension is cho-
sen when particular representations of their anticommutation algebra are
assumed. Then, in order to capture fermionic nuclei we choose a represen-
tation of this algebra in terms of Dirac matrices and later project out the
anti-particle sector of the Hilbert-space.

Next, in order to capture the leading spin-dependent finite-size correc-
tions to leptonic bound-states we append the PPEFT action derived in
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Chapter 3 with all Grassmann-even interactions between the new fields
and the already existing fields of the problem, {ẏµ(s), Aµ(x),Ψ(x)} that
obey atomic symmetries and have coupling dimension up to and including
(length)2. We find only a single new interaction between ξµ(s) and Aµ(x)
with coupling dimension (length), and four others at (length)2 including
couplings to the leptons.

The rest of the paper works out various consequences of the nuclear
spin, assuming a nucleus at rest, which automatically projects out the anti-
nucleus solutions and effectively halves the dimensionality of the nuclear
Hilbert-space. In this frame, there are only two new interactions relative
to the ones included in Chapter 4: the operator with dimension (length)
between the spin and gauge fields; and one (length)2 term contracting the
nuclear spin with that of the fermion’s.

The new interaction between spin and Aµ(x) sets up new near-nucleus
boundary conditions for A(x) that result in a magnetic dipole field, Anuc(x),
whose effects we treat perturbatively around the Dirac-Coulomb problem
with perturbation Lint = −eγ0γ ·Anuc, expanding our calculations to lin-
ear order in the small quantity, s := meµN/4π � 1. In order to do
this efficiently, we couple the spin of the nucleus, I to the total angular
momentum of the lepton, J to form the total atomic angular momentum
F = I + J, whose eigenfunctions diagonalize the fixed-j subspaces of the
Dirac-Coulomb modes degenerate under the perturbation. We then create
the coupled nuclear-Dirac-Coulomb modes that have the same form of ra-
dial functions as in (1.73) (though their energies and integration constants
can now depend on the F quantum number of the F2 operator) but instead
of the previously obtained spherical spinor harmonics in (1.71) their angu-
lar dependence is instead given by eigenfunctions of the operators, F2 and
Fz.

It turns out that spin-dependent finite-size effects arise in two places:
coming from matrix elements of Lint between the coupled nuclear-Dirac-
Coulomb modes; but also coming from expanding the physical integration
constant ratio, DFj$/CFj$ in powers of s in the energy shift formulae de-
rived from (1.82) in the previous papers. The first of these results in di-
vergent integrals, whose behaviour we track through dimensional regular-
ization, while the second allows these divergences to be absorbed into the
new fermionic PPEFT coupling constant using the boundary conditions,
and also gives rise to a new RG-invariant parameter, εF that turns out to
account for the leading spin-dependent finite-size energy shifts.

The expansion of the ratio of integration constants in powers of s also
allows for the near-source boundary conditions implied by the presence of
the nucleus on the nuclear-Dirac-Coulomb modes set up on the usual Gaus-
sian surface at fictitious radial scale, ε to be expanded in this parameter.
The O(s) boundary condition relates the first correction of the integration
constant ratio to the new spin-dependent fermion-nucleus coupling. As
such, the new coupling is not only burdened by having to absorb the infini-
ties coming from matrix elements but also by an ε-dependence necessary to
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keep the energy shifts at leading order in s independent of this unphysical
scale. The RG-flow of this parameter turns out to depend on the old (spin-
independent) RG-invariant parameters as well and is further complicated
by the first-order state-corrections to the nuclear-Dirac-Coulomb modes.

Having dealt with all of the issues regarding infinities and unphysical
parameter dependences we use the new RG-invariant scale to compute how
the leading spin-dependent finite-size energy shift depends on εF , which
we then also compare to expressions that use nuclear moments to capture
these effects and find that εF is related to the first Zemach-moment, 〈r〉cm
of (1.99). Combining this result with that of Chapter 3 we now see that in
cases of nuclei with spin, it is sufficient to use two RG-invariant parameters
to capture all finite-size related energy shifts to relative subleading spin-
independent contributions of (mRZα) and (Zα)2 to the charge-radius term
and leading order in the spin-dependent ones.

This number is still significantly lower than that of nuclear moments
and hence allows us to use the handful of extremely precise measurements
available in any given system to fit the “true” nuclear parameters with
the same methods as outlined in the previous chapter, and the errors of
these parameters will be controlled by the uncertainties of the most pre-
cise experimental values and the theoretical contributions to the measured
transitions that assume a point-like nucleus.

Carrying out this fitting for atomic Hydrogen we make a large number
of predictions for existing measurements, whose uncertainty is dominated
by the uncomputed terms of point-like bound-state QED effects and in
this way we push past the error floor presented by nuclear-size effects,
making these transitions good targets for tests of fundamental theory once
more. We do a similar fitting for muonic Hydrogen, although due to the
large mass of the muon further subleading nuclear-size effects need to be
calculated than has been done here and therefore show that our predictions
are only competitive with current ones using nuclear moments but are not
necessarily superior, except in that our formalism makes it easier to improve
on these results.
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Abstract: We use effective field theory to compute the influence of nuclear structure

on precision calculations of atomic energy levels. As usual, the EFT’s effective cou-

plings correspond to the various nuclear properties (such as the charge radius, nuclear

polarizabilities, Friar and Zemach moments etc.) that dominate its low-energy electro-

magnetic influence on its surroundings. By extending to spinning nuclei the arguments

developed for spinless ones in arXiv:1708.09768, we use the EFT to show – to any fixed

order in Zα (where Z is the atomic number and α the fine-structure constant) and the

ratio of nuclear to atomic size – that nuclear properties actually contribute to electronic

energies through fewer parameters than the number of these effective nuclear couplings

naively suggests. Our result is derived using a position-space method for matching

effective parameters to nuclear properties in the EFT, that more efficiently exploits the

simplicity of the small-nucleus limit in atomic systems. By showing that precision calcu-

lations of atomic spectra depend on fewer nuclear uncertainties than naively expected,

this observation allows the construction of many nucleus-independent combinations of

atomic energy differences whose measurement can be used to test fundamental physics

(such as the predictions of QED) because their theoretical uncertainties are not limited

by the accuracy of nuclear calculations. We provide several simple examples of such

nucleus-free predictions for Hydrogen-like atoms.
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1 Introduction

Modern experimental techniques allow exquisitely accurate measurements of atomic

transition frequencies. For simple atoms it is hoped that these measurements can be

turned into a test of fundamental theory by comparing with equally precise predictions;

modern alternatives to the classic comparisons between theory and experiment for the

Lamb shift in Hydrogen [1] – [26].

The sad fact that atomic nuclei are not point charges is a major obstruction to this

program, because atomic energy shifts due to nuclear structure can be larger than the

fundamental corrections to be measured. Furthermore, the intricacies of the strong in-

teractions make ab initio predictions of nuclear properties necessarily inaccurate, often

making nuclear uncertainties the dominant theoretical error when predicting atomic

energy levels [27] – [62].

In this paper we provide the details for (and provide broader applications of the

results of) [63], which aims to push past this floor in theoretical error by systematically

identifying combinations of energy differences from which all of the effects of nuclear

physics cancel. Because the accuracy with which such observables can be predicted is

not limited by nuclear uncertainties (by construction), their measurement can provide

a potentially telling test of fundamental theory. Given Nexp well-measured transitions

involving a specific type of atom and Nnuc parameters governing nuclear contributions

to atomic energies, there are Nexp−Nnuc independent observables for which a nucleus-

free prediction can be made.

While this counting is not so remarkable an observation in itself, what is perhaps

more surprising is how small Nnuc turns out to be. In the applications made here,

for instance, precisely two nuclear parameters suffice even though our predictions are

accurate enough to include the effects of the nuclear charge radius, nuclear Friar and

Zemach moments, nuclear polarizabilities, effects of multiple photon exchange, and so

on. Only two parameters turn out to capture all of these different nuclear effects in our

examples because atomic energy shifts only sample nuclear physics at extremely low

energies relative to typical nuclear scales.

The precise value for Nnuc depends on the accuracy that is required. This accuracy

is most precisely specified when atomic energy levels are expressed as a perturbative

expansion about the leading Bohr formula (for the binding energy of a nonrelativistic
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point-like lepton1 to a static, charge Ze point nucleus),

εn = −(Zα)2mr

2n2
, (1.1)

where mr = mM/(m+M) = m+O(m2/M) is the reduced mass, with M the nuclear

mass and m the relevant lepton mass, while n = 1, 2, · · · is the usual principal quantum

number. This expansion comes in powers of four small quantities: the lepton speed

ve ∼ Zα; the fine-structure constant2 α = e2/4π (which enters without Z in QED

radiative corrections, for instance); the ratio of lepton to nuclear mass, m/M ; and the

ratio R/aB ∼ mRZα of nuclear and atomic length scales, where R ∼ 1 fm is a measure

of nuclear radius (more about which below) and aB ∼ (Zαm)−1 is the Bohr radius.

In terms of this expansion Ref. [64] found when working out to order m3R2(Zα)6

and m4R3(Zα)5 that only Nnuc = 1 parameter was required (for each type of nucleus)

to capture all dependence of leptonic energy levels on nuclear substructure, at least for

spinless nuclei.3 In this paper we extend this analysis to include nuclear-spin effects

to the same order, and find all effects of nuclear substructure require only a single

new parameter (so Nnuc = 2). Furthermore, since this accuracy provides a precision of

about 0.01 kHz it is sufficient (with two exceptions) for current measurement precision

with elemental Hydrogen. The corresponding precision for muonic Hydrogen is about

10−3 meV, and so is close to (but, as discussed at length in §4.3, not quite) accurate

enough for these measurements as well. A summary of this parameter counting as a

function of expansion order can be found in Table 1.
Our construction of nucleus-free combinations relies on identifying combinations of

observables for which the R/aB corrections cancel order-by-order in α and Zα, and our

tool for finding these exploits the fact that the expansion in R/aB is most efficiently

captured using an appropriate effective field theory (EFT), described in detail below.

1.1 The EFT framework

It has long been known that these expansions are efficiently organized using EFT meth-

ods, since both the expansion in powers of ve and R/aB arise as low-energy approxima-

tions. In quantum field theory the expansion in powers of ve ∼ Zα can be systematized

1For simplicity of language we speak in the main text about ordinary atoms – i.e. electrons orbiting

nuclei – but our analysis applies equally well to muonic atoms. At various points in the text we point

out how the larger muon mass changes the relative size of different contributions.
2Unless otherwise stated we use fundamental units, for which ~ = c = kB = 1.
3More precisely, although one parameter captures all nuclear effects for either an electron or a

muon orbiting a spinless nucleus, the parameter differs for the two so measurements of electrons

cannot be used to infer nuclear contributions to muonic atoms without additional information from

nuclear models.
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Abs. order Rel. order j = 1/2 j = 3/2 H (kHz) muonic H (meV)

m3R2(Zα)4 chg. rad. 3 5 1.7× 103 6.1× 101

m4R3(Zα)5 (mRZα) 3 5 2.6× 10−2 2.0× 10−1

m5R4(Zα)6 (mRZα)2 3 3 4.2× 10−7 6.6× 10−4

m3R2(Zα)6 (Zα)2 3 5 8.9× 10−2 3.2× 10−3

m4R3(Zα)7 (mRZα)(Zα)2 3 5 1.4× 10−6 1.1× 10−5

m3R2(Zα)8 (Zα)4 3 5 4.7× 10−6 1.7× 10−7

ms(Zα)3 hfs 3 3 5.3× 105 9.4× 101

m2Rs(Zα)4 LO 3 5 1.1× 101 4.0× 10−1

m3R2s(Zα)5 (mRZα) 3 5 2.2× 10−4 1.7× 10−3

m4R3s(Zα)6 (mRZα)2 3 3 4.6× 10−9 7.1× 10−6

m2Rs(Zα)6 (Zα)2 3 5 5.8× 10−4 2.1× 10−5

m3R2s(Zα)7 (mRZα)(Zα)2 3 5 1.2× 10−8 9.0× 10−8

m2Rs(Zα)8 (Zα)4 3 5 3.1× 10−8 1.1× 10−9

ms2(Zα)4 hfs2 3 3 4.3× 10−2 1.6× 10−3

m2Rs2(Zα)5 LO 3 5 8.8× 10−7 6.7× 10−6

m3R2s2(Zα)6 (mRZα) 3 5 1.8× 10−11 2.8× 10−8

m4R3s2(Zα)7 (mRZα)2 3 3 3.7× 10−16 1.2× 10−10

m2Rs2(Zα)7 (Zα)2 3 5 4.7× 10−11 3.6× 10−10

m3R2s2(Zα)8 (mRZα)(Zα)2 3 5 9.6× 10−16 1.5× 10−12

m2Rs2(Zα)9 (Zα)4 3 5 2.5× 10−15 1.9× 10−14

Table 1: The order of magnitude of various nuclear contributions to atomic energy

shifts. Double lines separate blocks involving different powers of nuclear moments, µN ,

where s ∼ O(meµN/4π) ∼ O(mRZα) – with m the lepton mass, R a measure of

nuclear size and α the fine-structure constant – is more precisely defined in eq. (2.35).

The checks and crosses indicate if a term of the given order actually arises (excluding

recoil effects and QED radiative corrections, which do not introduce new parameters)

for lepton states with j = 1
2

and j = 3
2
. New parameters enter when integration

constants for new modes are required, and cyan shading indicates the order where this

first arises, for different choices for j and powers of s. The final two columns evaluate

the numerical size implied by the powers of s, Zα and mRZα, for ordinary Hydrogen

(electrons) and for muonic Hydrogen, using assumptions spelled out in the text below.

Green boxes flag terms required to achieve an accuracy of order 0.001 kHz for Hydrogen

(or 10−3 meV for muonic Hydrogen). The yellow square flags a term not computed

here, which is likely to be relevant to muonic Hydrogen experiments.
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using non-relativistic quantum electrodynamics (NRQED) [65], and efficiently allows

the inclusion of second-quantized radiative corrections with the standard Schrödinger

treatment of Coulomb bound states. One way to think about our formalism is as

a version of NRQED where the projection onto the single-nucleus sector is achieved

using first-quantized methods. This allows the matching of the nuclear-size effective

couplings to be performed very efficiently, using a near-nucleus boundary condition.

We do not explicitly start from NRQED here (though our formalism is also easily

adapted to the non-relativistic fields of NRQED), since it is equally easy to treat the

light lepton relativistically. So we instead choose to perturb around the relativistic

Dirac-Coulomb system, rather than the nonrelativistic Schrödinger-Coulomb system.

We do so because our main EFT focus is on those interactions that capture the R/aB
expansion.

If the nucleus4 were a point particle its leading relativistic electromagnetic in-

teractions with leptons and photons would be described by the renormalizable QED

lagrangian

SΦQED = −
∫

d4x

{
1

4
FµνF

µν + Ψ
[
/D +m

]
Ψ + Φ

[
/D +M

]
Φ

}
, (1.2)

for electromagnetic field strength Fµν = ∂µAν − ∂νAµ, Dirac lepton field Ψ and spin-

half nucleus field Φ (with DµΨ = ∂µΨ + ieAµΨ and DµΦ = ∂µΦ − iZeAµΦ). Here

M � m is the mass of the nucleus where (as above) m is the lepton mass. In reality

(1.2) gets supplemented by additional renormalizable terms involving other light fields

(such as any other light leptons), as well as by nonrenormalizable terms describing

shorter-wavelength physics that is already integrated out (such as those describing the

weak interactions and so on).

From an EFT perspective the R/aB expansion is captured by a subset of the higher-

dimensional terms not listed explicitly in (1.2). The ones that are relevant are those

— see e.g. [66–69] — consistent with the symmetries of the strong interactions (like

electromagnetic gauge invariance, parity, and so on), that couple Φ to Ψ and Aµ non-

minimally, such as

Snuc = −
∫

d4x

{
c̃d
2

(ΦγµνΦ)Fµν + c̃s(ΨΨ) (ΦΦ) + c̃v(Ψγ
µΨ) (ΦγµΦ) + · · ·

}
. (1.3)

Here γµν := − i
4

[γµ, γν ] and effective couplings like c̃d and c̃v have dimensions (length)p

for positive p. EFT methods exploit the fact that such interactions capture the low-

energy effects obtained by integrating out any kinds of nuclear degrees of freedom

besides the nucleus’ overall spin and position.

4For concreteness this discussion proceeds assuming a spin-half nucleus but our effective theory

works for arbitrary nuclear spin.

– 5 –

Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

136



The effective couplings obtained in this way dominate the low-energy interactions

of finite-sized nuclei at wavelengths much longer than nuclear size. Of the couplings

given above c̃d ∝ R captures the anomalous nuclear magnetic moment, c̃v ∝ R2 is

related to its electromagnetic charge radius and so on. The precise interpretation of

parameters like c̃d, c̃s and c̃v is found using matching calculations that compare the

predictions of SΦQED + Snuc for lepton-nucleus and photon-nucleus scattering, either

with measurements or (in principle) with ab initio predictions of the Standard Model

(in practice this is where calculations using nuclear models come in).

The arguments of this paper are easiest to make using a variant of the above EFT

that is better adapted to atomic calculations. Rather than treating the nucleus using

the second-quantized field Φ the variant we prefer instead uses a first-quantized de-

scription (described in more detail in refs. [70–72]). A first-quantized EFT description

of the nucleus is more efficient because an atom includes only a single nucleus, making

the rest of the multi-particle Fock space accessed by Φ unnecessary. In principle one in-

tegrates out all multi-particle degrees of freedom to arrive at an EFT that contains only

nuclear collective coordinates: its centre-of-mass position and nuclear spin, interacting

with the second-quantized fields Ψ and Aµ.

The resulting EFT is worked out for spinless nuclei in refs. [64, 72], where the only

relevant nuclear degree of freedom is the position operator that describes the nucleus’

world-line, P: xµ = yµ(s). In this effective theory the remaining second-quantized

degrees of freedom are described by

SQED = −
∫

d4x

{
1

4
FµνF

µν + Ψ
[
/D +m

]
Ψ

}
, (1.4)

to which one adds the action describing couplings to the nuclear degrees of freedom:

Sp = −
∫

P

ds
{√
−ẏ2 M − Ze ẏµAµ + cs

√
−ẏ2 (ΨΨ) + icv ẏ

µ (ΨγµΨ) + · · ·
}

= −
∫

d4x

∫
P

ds

{√
−ẏ2 M − Ze ẏµAµ + cs

√
−ẏ2 (ΨΨ) (1.5)

+ icv ẏ
µ (ΨγµΨ) + · · ·

}
δ4[x− y(s)], ,

where the second line emphasizes that in the first line the ‘bulk’ fields Ψ(x) and Aµ(x)

are evaluated along the nuclear world-line xµ = yµ(s). ẏµ here represents dyµ/ds where

s is an arbitrary parameter along the world-line. Quantization proceeds by evaluating

the functional integral of exp[i(SQED + Sp)] with respect to yµ(s) (which in particular

captures the response of nuclear recoil – more about which below) as well as Ψ(x) and

Aµ(x).
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In this language the Φ-dependent part of eqs. (1.2) and (1.3) are replaced by Sp, and

the spin-independent part of effective couplings — e.g. c̃s, c̃v of (1.3) — are captured

by the effective couplings — e.g. cs, cv of (1.5) — within Sp. For this to be possible Sp
is again required to be the most general local action consistent with the field content

and symmetries, which in this case now also include arbitrary reparametrizations of the

world-line parameter s. On dimensional grounds the effective couplings cs and cv are of

order R2, and the ellipses in (1.5) contain interactions with couplings having dimension

(length)p for p > 2, with those – like the ones describing nuclear polarizability – arising

at order R3 (but not involving nuclear spin) considered in detail in [64].

Physical interpretation is simpler if the world-line parameter s is chosen to be

proper time, τ (in which case ẏ2 = ηµν ẏ
µẏν = −1). With this choice then ẏµ = γ(1,v)

with γ := dt/dτ = (1 − v2)−1/2 and v := dy/dt, so once evaluated in the atomic

center-of-mass frame (1.5) becomes

Sp = −
∫

P

dτ

{
M − Ze γ(A0 + v ·A) + cs (ΨΨ)

+ icv γ
[
(Ψγ0Ψ) + v · (ΨγΨ)

]
+ · · ·

}
= −

∫
d4x

{√
1− v2

[
M + cs (ΨΨ)

]
− Ze (A0 + v ·A) (1.6)

+ icv

[
(Ψγ0Ψ) + v · (ΨγΨ)

]
+ · · ·

}
δ3[x− y(τ)] .

The terms of (1.5) and (1.6) involving M and Ze are recognizable as describing the

rest mass and Coulomb coupling of a point nucleus, while the subsequent terms carry

the leading information about nuclear substructure.

The v-dependent terms of (1.6) contain the nuclear recoil effects, with M
√

1− v2

capturing the usual relativistic kinematics E =
√

p2 +M2. v-dependent terms that

also involve cs or cv contain mixed nuclear-size/recoil contributions. Their size can be

estimated given that, in atoms, the nuclear momenta are of order |p| ∼ Zαm, and so

|v| ∼ Zαm/M . Similarly the leptonic matrix element 〈ΨγΨ〉 ∼ |ψ(0)|2ve is of order

(Zαm)3(Zα) and so cvv · ΨγΨ contributes to energies a shift of order cv(Zα)5m4/M .

Given that the non-recoil term implies cv ∼ ZαR2 is a measure of the nuclear charge

radius, the energy shift is m4R2(Zα)6/M . Since we work here to an accuracy of order

m4R3(Zα)5 and m3R2(Zα)6, we must keep the leading mixed recoil/nuclear-size effects

in what follows.5 Because recoil effects do not change the parameter counting given

below, we put them aside temporarily and return to them in §4.

5Recoil effects for point nuclei must of course also be included, as we do in what follows.
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Dropping recoil effects, in the nuclear rest frame (with the nucleus situated at the

origin) one finds

Sp = −
∫

d4x
{
M − ZeA0 + cs (ΨΨ) + icv (Ψγ0Ψ) + · · ·

}
δ3(x) . (1.7)

This first-quantized, point-particle EFT (or PPEFT) treatment of the central object

has been tested in a variety of other systems with compact central sources [64, 73–75],

and found to reproduce in a simpler way many standard results. In particular, ref. [64]

shows that its application to spinless nuclei – including some of the order-R3 terms

shown as ellipses in (1.5) and (1.7) – correctly captures the nuclear charge radius, Friar

moment, polarizability etc. that provide the leading contributions to shifts in atomic

energy levels.

A major purpose of the present paper is to extend the action (1.6) to include nuclear

spin — leading e.g. to eq. (2.5) — and to explore the consequences of new terms for

atomic energies.

1.2 Parameter counting for atomic energy shifts

In principle, the above discussion allows existing calculations of atomic energy shifts

due to nuclear size to be described in two steps. First use an explicit nuclear model to

compute effective couplings like cs or cv (which can be mapped to the various nuclear

moments encountered in the literature). Second, compute the dependence of atomic

energies on these effective couplings. Ref. [64] elaborates on this process in the special

case of spinless nuclei.

A virtue of proceeding in this way is its economy of effort: for a specific nuclear

model the first step need be taken only once, with the results usable in the second

step for any number of different type of observables (provided these are at low enough

energies to allow the assumed expansion in powers of R). Alternatively the second

step can be done once to obtain how a specific observable depends on the effective

couplings, with only the first step needing to be repeated to calculate these couplings

using a variety of different nuclear models.

For the present purposes, however, we focus specifically on step two (which we

generalize to include nuclei with spin). We do so because the PPEFT formulation of the

nucleus provides insight into the number of independent ways that nuclear structure

(or, equivalently, the effective couplings, cs, cv and so on) can contribute to atomic

energy shifts. In particular it provides a systematic way to identify observables that

do not depend at all on the nuclear effective couplings.

Tracing how effective couplings appear in low-energy atomic observables is partic-

ularly transparent in the first-quantized language. This is because in this formalism

– 8 –

Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

139



observables like energy shifts turn out to acquire their dependence on nuclear properties

purely through the near-nucleus boundary conditions satisfied by the external fields Ψ

and Aµ, which in turn depends on the effective couplings like cs, cv. This boundary con-

dition is found by integrating the equations of motion for these fields over a small ball

centred at the nuclear position (possibly weighted by spherical harmonics). It is only

because these boundary conditions depend on couplings like cs and cv that observables

like atomic energy levels are sensitive to nuclear structure.

For a familar example of this general argument, consider the field equations for A0

obtained from the action SQED + Sp as given in (1.4) and (1.7). The field A0 satisfies

(in Coulomb gauge: ∇ ·A = 0)

∇2A0 − ieΨγ0Ψ = Ze δ3(x) . (1.8)

Treating the AµΨγµΨ term of SQED — as well as all but the first two terms on the

right-hand side of (1.7) — as perturbations then allows (to leading order) the dropping

of the Ψγ0Ψ term in (1.8). Integrating what’s left over a small Gaussian pillbox centred

at the origin gives the standard Gaussian boundary condition6∫
d2Ω

(
er · ∇A0

)∣∣∣
r=0+

= 4π lim
r→0+

r2∂rA0 = Ze , (1.9)

where er denotes the outward-pointing radial unit normal. This boundary condition

fixes an integration constant of the Coulomb solution in the usual way to ensure A0 =

Ze/(4πr). (Higher electromagnetic multipole moments are similarly found from higher-

derivative terms in Sp that are linear in Aµ [76].)

Now comes the main point. The argument just given applies equally well for the

field Ψ, and also once interactions are included in the equations of motion.7 By changing

the boundary conditions at the origin the presence of the interactions in Sp necessarily

alters the mode functions and energy eigenvalues of the fields Ψ and Aµ, and this is how

effective couplings like cs or cv end up affecting electronic properties. This observation

is useful because it means that many effective couplings can only appear in observables

in a limited way, as is now argued.

To see why parameters like cs or cv (and by extension the various nuclear moments)

only appear in specific combinations in observables, imagine finding the mode functions

for Ψ by separating variables in its field equation in spherical coordinates. One then

seeks a basis of solutions of the form uL(t, r, θ, ϕ) = RL(κr)YL(θ, ϕ) e−iωt, where κ is

6In our metric conventions the usual electrostatic potential is A0 = −A0.
7As explored in more detail in [70–72, 76], once Sp is not linear in the bulk fields this procedure nec-

essarily involves regularizing coincident divergences at the source position, and renormalizing effective

couplings in Sp. (See also [77–82] for similar discussions in another context.)
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a function of the mode’s energy, ω, while YL(θ, ϕ) represent appropriate spherical har-

monics for which L denotes the collection of angular-momentum labels relevant to the

problem (e.g. for spinless fields L = {l, lz} is a pair of integers in three spatial dimen-

sions). The radial mode then satisfies an ordinary second-order differential equation,

whose general solution has the form

RL(κr) = CLRC

L (κr) + DLRD

L (κr) , (1.10)

with two integration constants, CL and DL, corresponding to the two basis solutions,

RC
L (κr) andRD

L (κr), for each value of κ and each choice of angular-momentum quantum

numbers L. The boundary condition at the origin fixes the value of DL/CL and once

the interactions in (1.7) are included in the action this value also depends on effective

couplings like cs and cv. This is in practice how effective interactions localized at the

nucleus ultimately modify physics far from the nucleus, and in particular influence

the shapes and energies of the electronic energy eigenmodes. Furthermore, it is only

through such boundary conditions that these eigenmodes ‘learn’ about non-pointlike

nuclear-physics effects.

The above discussion is important because it shows that effective couplings typically

only enter into electronic energy shifts through the values they imply for the ratio

DL/CL for each choice for L. Furthermore, at low orders in the R/aB expansion only a

few angular momenta contribute at all, because of the suppression near the nucleus of

higher-L wave-functions. This leads to one of our main points:

If there are more effective couplings in Sp than there are relevant integra-

tion constants CL,DL, then the effective couplings cannot all appear inde-

pendently in observables: all that matters for experiments are the values of

DL/CL.

For spinless nuclei ref. [64] shows that out to orders m4R3(Zα)5 and m3R2(Zα)6

(but not including order m5R4(Zα)6) all nuclear-size contributions — i.e. the charge

radius, the Friar moment [29], the electromagnetic nuclear polarizabilities, leading recoil

corrections and a few others — contribute to atomic energy shifts only through their

contributions to one parameter: the value of DL/CL for S-wave modes. This is only

one parameter because this ratio has a predictable dependence on κ (and so also on the

principal quantum number n = 1, 2, · · · ). Because the couplings ci capture all possible

nuclear-size effects, it follows that (to this order in Zα and R/aB = mRZα) all nuclear

finite-size effects can enter into atomic energy levels only through a single independent

parameter: the S-wave value of DL/CL (for details see [64]).

A similar statement applies at higher orders. Starting at order m5R4(Zα)6 the ratio

DL/CL for the P -wave modes is also required when computing atomic energies, so to
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this order (for spinless nuclei) all nuclear effects only enter atomic energies through two

independent parameters. One can continue on in this way to any order and identify the

number of independent nuclear contributions that can robustly arise. In all cases there

are fewer contributions than would be naively expected by counting nuclear effective

couplings (like cs, cv, etc) allowed at this order in R (or by counting nuclear ‘moments’

within specific nuclear models, as is the usual calculational practice).

This paper

With the above logic in mind, we now can state what the present paper achieves.

We first extend the analysis of [64] to include nonzero nuclear spin. This allows us

to broaden the applicability of these conclusions to general single-lepton atoms and

ions, and in particular to those of most practical interest: Hydrogen (and muonic

Hydrogen). We find that the inclusion of spin introduces additional constants, but

to any fixed order it remains true that nuclear-size effects enter into atomic energies

through fewer parameters than might be expected based on nuclear modelling. Our

more detailed conclusions regarding the number of relevant parameters at any given

order are summarized in Table 1, which contains a list of contributions to atomic

energy shifts due to nuclear finite-size effects. The Table is organized into three blocks,

each containing terms that involve specific powers of the nuclear magnetic moment,

µN (which enters through the small dimensionless parameter s ∝ meµN). Successive

rows in each block list higher-order terms additionally suppressed by powers of Zα or

R/aB = mRZα. (The first block – independent of magnetic moments – reproduces in

particular the results of [64] for spinless nuclei.)

The Table’s 2nd column gives the suppression of each term relative to the leading-

order contribution that shares the same power of s. The leading contribution indepen-

dent of s is the usual charge-radius term. For terms involving at least one power of s

the entry marked ‘LO’ contains the leading dependence on finite nuclear size R at this

order in s. (The term before this one depends on nuclear size only through µN , which

need not vanish even for a point nucleon).

The third and fourth columns of Table 1 indicate with a check or a cross whether or

not this size a contribution actually arises when computed using Dirac-Coulomb wave-

functions (and neglecting QED radiative corrections8 that are suppressed by additional

powers of α). These two columns differ in the value they assume for the lepton’s total

angular momentum quantum number, j, with column 3 giving the dominant result for

8These radiative corrections are included within our formalism, as are recoil corrections, because

all of Ψ, Aµ and yµ are fully dynamic quantum operators. We discuss radiative and recoil corrections

in more detail in §4, but what is important is this: they do not introduce any new parameters (though

they do of course depend on the bulk-field mode functions, and so on the existing parameters, DL/CL).
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j = 1
2

and column 4 giving the same for j = 3
2
. Comparing these columns shows the

angular-momentum suppression expected for nuclear effects due to the suppression of

the wave-function outside the nucleus near the origin. For instance j = 3
2

states are

irrelevant for contributions lower-order than m5R4(Zα)6, but once this order is reached

a new constant enters because the value of DL/CL for j = 3
2

contributes observably.

The final two columns give an indication of the numerical size of each term, with

column 5 providing the numbers for ordinary (electronic) Hydrogen while column 6

does so for muonic Hydrogen. Electronic and muonic Hydrogen differ only in the value

of the lepton mass that is used in the corresponding estimate, which implies that the

combination mR is not particularly small for muonic Hydrogen (and so R/aB ∼ Zα,

rather than being much smaller). For illustration purposes squares are shaded green

if the resulting estimate is of order 0.001 kHz or larger (for Hydrogen) or of order

10−3 meV or more for muonic Hydrogen. The given numerical values evaluate R using

the charge radius, R = rp = 0.84087 fm, for s-independent contributions, but use

the Zemach radius, R = rz = 1.082 fm for s-dependent contributions [13]. The yellow

square flags a term not computed here that might also contribute observably for muonic

Hydrogen.

Only terms on rows shaded green are required if one works only to this accuracy,

and Table 1 shows that in this case nuclear finite-size effects enter through just two in-

dependent constants. One controls the contributions independent of nuclear spin (and

contains in particular the contributions of the charge radius, Friar moment, nuclear po-

larizabilities, leading recoil corrections and more [64]) and the second, spin-dependent,

parameter captures the nuclear Zemach moment. The nuclear magnetic moment also

enters into atomic energies at this order, though we do not count this as an unknown

nuclear parameter because its value is accurately determined by other means.

We see from the Table that the conclusions of [64] also apply for spinning nuclei,

though with one additional constant required at the accuracy discussed above. This is

so despite there being many more parameters apparently relevant in the first-quantized

action, Sp, and in explicit calculations using nuclear models [29]. Of course, this does

not mean that the parameters of nuclear models are not intrinsically independent; what

it says is that only a small number of combinations of them ever appear in observables

at the extremely low energies relevant to atomic energy levels. As discussed below,

the two constants through which they appear to this order for spin-half nuclei can

be captured by DL/CL for S-wave modes for the two different values of total atomic

angular momentum quantum number: F (where F = I + J as usual combines nuclear

spin and electronic total angular momentum).

Why care that the many moments of nuclear models (or parameters in the action

Sp) can only enter atomic energies through their contributions to the (comparatively
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fewer) mode constants DL/CL? This observation is useful because theoretical calcu-

lations of nuclear moments are notoriously difficult and in some cases introduce the

dominant theoretical uncertainties in calculations of atomic energy levels. These un-

certainties can be larger than the size of other small effects whose measurement might

ultimately provide new tests of fundamental physics. Robustly knowing that these un-

certainties only enter atomic levels in a small number of independent ways opens up

ways to remove nuclear uncertainties from some precision atomic measurements. This

can be done in several ways: simply use experiments to determine the relevant nuclear

parameters (which, as argued above, are fewer than the naive number of nuclear mo-

ments); or combine observables in such a way that nuclear contributions completely

cancel, whose results are not subject at all to uncertainties associated with nuclear (or

other short-distance) physics.

We illustrate how this can be done in practice by identifying the values of the two

independent nuclear parameters using two particularly well-measured atomic energy-

level differences, with results for these parameters summarized in Table 2 for atomic

Hydrogen and Table 4 for muonic Hydrogen. These values are then used to predict

the nuclear component of other transition frequencies working at the order indicated

by green entries in Table 1. These predictions are presented for the best-measured

transitions of atomic Hydrogen in Table 3, while results for the much broader list of

transitions compiled in [6] are given in Tables 5 through 7. Each of these tables gives

the finite-nuclear-size contribution as computed for these transitions, together with an

estimate of the errors involved, at the orders listed in green in Table 1, as summarized

in §4.

As these tables show, at present the largest uncertainty comes from the error in

the theoretical prediction for the two reference transitions as computed using a point-

like nucleus (or the ‘point-like’ theory, for short). What is important is that the size

of all of these errors can improve in a way that does not depend on nuclear physics.

Although the required calculations are challenging in practice, improved computations

for a point-like nucleus are in principle straightforward to perform. The same is true

for the ‘truncation’ error given in Column 5 of the Tables, and of course experimental

errors do not require improvements in nuclear-physics calculations. As these errors

improve, so do the overall theoretical errors in the predictions like those in Column 2

of the Tables. Errors in nuclear calculations play no role in our predictions because all

relevant nuclear parameters are taken directly from atomic observations.

We find in this way a broad and robust class of predictions whose intrinsic error is

not set by our ability to compute with nuclear models. In the language of earlier para-

graphs, given precise measurements for Nexp leptonic energy differences (for a specific

nucleus), we make Nexp − 2 model-independent predictions for how nuclei shift atomic
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energies, essentially by eliminating the two independent nuclear parameters. What is

important is that the error in these predictions is controlled only by the accuracy of the

experiments used to determine the two parameters, plus the error implied by working

only to a fixed order in the small quantities Zα and s ∼ R/aB = mRZα in both the

‘point-like’ theory contributions and the effective couplings.

The rest of this paper is organized as follows. §2 derives the point-particle effective

action for central sources with spin, keeping effective interactions with couplings out

to dimension (length)2. To the order we work the main difference relative to [64] is the

presence of the dipole nuclear magnetic field, and we use standard perturbation theory

to establish its consequences for atomic energy levels.

In particular, §2.4 then explores the near-nucleus boundary conditions implied

for the electron field by the relevant contact interactions at the nucleus, §3 gives a

discussion of the associated divergences in these calculations in the near-nucleus limit,

and derives the renormalization-group (RG) evolution of the new effective couplings.

These contact interactions also shift electronic energy levels in a way that competes

with the effects of the nuclear magnetic dipole field. These sections show in detail why

(for each nuclear isotope) only two parameters (plus the nuclear magnetic moment) are

required to describe all nucleus-dependent shifts to the order we work.

Next, §4 collects expressions for nucleus-dependent atomic energy shifts. §4.2 uses

the existing experimental data for Hydrogen to fit the two relevant nuclear parame-

ters, and applies these to make predictions for nuclear-size effects for other transitions,

with prediction errors that are independent of the limitations of nuclear models. §4.3

briefly discusses the same steps for muonic Hydrogen. Finally, §5 summarizes our con-

clusions and comments on possible future directions. Several appendices outline useful

calculational details, and in particular Appendix G provides a list of notation used.

2 PPEFT for sources with spin

To set up the position-space point-particle effective theory (PPEFT) for spinning nuclei

we couple second-quantized electron and photon fields to the first-quantized nuclear

centre-of-mass and spin degrees of freedom. The resulting action is the sum of a ‘bulk’

part and a ‘point-particle’ part, S = SB + Sp, where the bulk part consists of standard

quantum electrodynamics (QED), as in (1.4) (repeated here, for convenience),

SB = −
∫

d4x

{
1

4
FµνF

µν + Ψ
(
/D +m

)
Ψ

}
. (2.1)

As before, Fµν is the field strength for the electromagnetic gauge potential Aµ(x), and

Ψ(x) is the spin-half Dirac field of the orbiting lepton with mass m and charge q = −e
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(with covariant derivative Dµ = ∂µ + ieAµ).

Our main focus here is in the formulation of Sp for the first-quantized nucleus,

with the new feature relative to refs. [64, 70–72] being the inclusion of the nuclear spin

degrees of freedom in the first-quantized nuclear action, Sp.

2.1 Spin on a world-line

The classical and quantum dynamics of first-quantized spinless relativistic particles

propagating in spacetime is discussed in many textbooks [83–85]. The extension to first-

quantized spinning particles started in the early days of supersymmetry where it was

found that first-quantized supersymmetric systems built using Grassmann (classically

anti-commuting) fields described spinning particles [86–91].

Classical Grassman variables naturally arise when describing spin because on quan-

tization they furnish finite-dimensional representations of rotations in the quantum

Hilbert space (as is seen explicitly below). The particle’s total spin quantum number,

s, is then fixed in terms of the dimension, 2s+ 1, of this representation. We here follow

this lead and use such a Grassmann field to describe nuclear spin, introducing a 4-vector

of new Grassmann fields, ξµ(s), on the nuclear world-line, which at the classical level

satisfies {ξµ, ξν} = 0.

Kinematics

Supplementing the unperturbed action for the centre-of-mass motion of the nucleus

with the free action for ξµ gives

Sp0 = −
∫

ds
{√
−ẏ2 M + iξµξ̇µ − (Ze)ẏµAµ

}
, (2.2)

where s is an arbitrary world-line parameter.

Once quantized, the classical anticommutation relation becomes modified9 to be-

come [89]: {
ξ̂µ, ξ̂ν

}
= −1

2
ηµν . (2.3)

A technical complication arises when quantizing because this is a constrained classical

system, whose canonical positions and momenta are not all independent of one another.

Quantization requires the toolkit put together by Dirac in [92] and others [84, 93–95] for

constrained systems, combined with standard techniques for anti-commuting objects

summarised (for instance) in [96, 97].

The system’s Hilbert space (as usual) furnishes a representation of this algebra, and

we choose the spin of the nucleus when we choose the dimension of the representation

9See Appendix A for more details and for our Dirac matrix conventions.

– 15 –

Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

146



that is of interest. For spin-1
2

fermions, we use a 4-dimensional10 representation in

terms of Dirac matrices,

ξ̂µ =
i

2
Γµ, (2.4)

since the Clifford algebra identity {Γµ,Γν} = 2ηµν then ensures (2.3) is satisfied. We

use the notation Γµ (rather than γµ) here to emphasize that these matrices act in the

spin-space of the nucleus and reserve γµ for the matrices that act on the bulk electron

field Ψ.

Interactions

The EFT program for a first-quantized and spinning nucleus then asks for all possible

local interactions on the world-line that can be written using the fields yµ(s), ξµ(s)

as well as the ‘bulk’ fields Aµ(x = y(s)) and Ψ(x = y(s)). One must write down all

allowed operators to a given order to capture all spin-dependent effects consistent with

the assumed symmetries (which for the applications below we take, as before, to be the

symmetries of the strong and electromagnetic interactions).

We require the point-particle localized interactions to be hermitian (this is not

always required for localized sources, see e.g. [73], but is appropriate for the present

application); to be Grassmann-even; to be invariant under Poincare transformations; to

be electromagnetic gauge-invariant; to preserve separately C, P and T transformations;

and arbitrary reparameterizations of the nuclear world-line: s → s′ = f(s). Then,

keeping only interactions out to order (length)2, the most general interactions work out

to be

Sp = Sp0 +

∫
ds
{
iµN
√
−ẏ2 ξµξνFµν + icemẏ

µξρξσ∂µFρσ

−Ψ
[√
−ẏ2

(
cs + ic2εαβγδξ

αξβξγξδγ5 + icFξ
µξνγµν

)
(2.5)

+iẏµ
(
cvγµ + c3εαβγδξ

αξβξγξδγ5γµ
) ]

Ψ + · · ·
}
,

where Sp0 is as given in (2.2) and (as above) yµ(s) is the bosonic centre-of-mass posi-

tion of the source, ξµ(s) is the Grassmann coordinate representing nuclear spin, while

overdots denote derivatives with respect to the world-line parameter. The quantities

µN , cem, cs, c2, cv, cF , c3 and so on are the effective couplings that arise to this order,

where µN has dimension (length) and the rest have dimension (length)2.

We next turn to the boundary conditions for Aµ and Ψ that are implied by this

action, starting first with the electromagnetic field. We specialize when doing so to spin-

half nuclei (both for concreteness’s sake and with a view to applications to Hydrogen).

10This becomes two-dimensional once antiparticle states are projected out.
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2.2 Implications for the electromagnetic field

Varying Aµ in the action SB + Sp yields the field equation

∂νF
µν = −ieΨγµΨ + Ze

∫
ds ẏµδ4[x− y(s)] + iµN ∂ν

∫
ds
√
−ẏ2

[
ξ̂µ, ξ̂ν

]
δ4[x− y(s)]

−icem∂σ∂ν

∫
ds
[
ξ̂µ, ξ̂ν

]
ẏσδ4[x− y(s)] (2.6)

= −ieΨγµΨ + Ze δµ0 δ
3(x) + µN Γµν ∂νδ

3(x)− cemΓµν∂0∂νδ
3(x) ,

where the second line uses the spin-half version of (2.4) as well as the definition Γµν :=

− i
4

[Γµ,Γν ]; we specialize to the nuclear rest-frame with nucleus situated at the origin –

i.e. ẏ(s) = y(s) = 0 – and we parameterize the world-line using proper time (i.e. s = τ ,

with −ẏ2 = 1 and ẏµ = δµ0 ). Specialization to the rest frame simplifies the discussion

by excluding nuclear recoil effects that are suppressed by inverse powers of the nuclear

mass, since these are not required for the applications we have in mind. But there is no

reason why such effects cannot also be included as corrections to the second equality of

(2.6), which would instead be obtained by evaluating the first equation in the atomic

centre-of-mass frame.

Neglect of inverse powers of nuclear mass also simplifies the above by allowing the

removal of its antiparticle states, leaving the two spin states of the non-relativisitic

nucleus at the origin, familiar from atomic physics. This is achieved by projecting

out the anti-particle solutions from the nuclear states (as described in Appendix A).

Together with dropping nuclear recoil this also means the only matrices to survive

unsuppressed by nuclear velocity are

Γ0 → −i1 and Γ5Γk → −iτk and Γij → 1

2
εijkτk , (2.7)

which are 2 × 2 matrices acting in nuclear spin-space, for which our conventions use

τk to denote the Pauli matrices (with the same matrices acting in electron-spin space

being denoted σk).

With these choices the electromagnetic field equations (2.6) become

∇ · E = ∂νF
0ν = −ieΨγ0Ψ + Ze δ3(x) ,

(−∂tE +∇×B)i = ∂νF
iν = −ieΨγiΨ + µN ε

ilkIk∂lδ
3(x) , (2.8)

where I := 1
2
τ denotes the nuclear spin vector, which is an operator in the space of

nuclear spins. These show that the nuclear part of the electromagnetic current 4-vector

is:

j0 = Ze δ3(x) , ji = µN ε
ilkIk ∂lδ

3(x) . (2.9)

– 17 –

Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

148



Following standard practice, we work perturbatively in quantum-field interactions

like eAµΨγµΨ, whose contributions can be tracked by evaluating the appropriate Feyn-

man graphs for QED. In principle we would like also not to perturb in the nucleus-

generated electromagnetic fields, and so include these in the evolution of interaction-

picture fields. The boundary conditions for the interaction-picture fields therefore are

derived by following the arguments leading to (1.9), but using the contributions of both

the currents j0 and ji of (2.9) on the right-hand side of eqs. (2.8).

In interaction picture (and in Coulomb gauge) the solution to the Maxwell equa-

tions that satisfy the nucleus-dependent boundary conditions generated by the right-

hand side of (2.8) gives (1.9) as before (for the electrostatic potential), while use of the

ji boundary condition11 generates the standard magnetic dipole field [98, 99],

A0 = A0
nuc =

Ze

4πr
, A = Anuc + Arad =

µ× r

4πr3
+ Arad , (2.10)

where12 µ := µNI is the nuclear magnetic moment13 and Arad(r, t) denotes the operator-

valued radiation component of the interaction-picture electromagnetic field (whose

boundary conditions are the standard, nucleus-independent, ones).

2.3 Lepton mode functions

The previous sections show that the Aµ-dependent terms in the action (2.5) alter the

interaction-picture electromagnetic field only by capturing the nuclear magnetic mo-

ment (and by doing so give a physical interpretation for the effective coupling µN).

Repeating the above exercise for the electron field reveals more information, however,

leading to the field equation:

0 =
(
/D +m

)
Ψ +

∫
ds δ4[x− y(s)]

{√
−ẏ2

(
cs + ic2εµνρσ ξ̂

µξ̂ν ξ̂ρξ̂σγ5 + icF ξ̂
µξ̂νγµν

)
+iẏµ

(
cvγµ + c3εµνρσ ξ̂

µξ̂ν ξ̂ρξ̂σγ5γµ

)}
Ψ, (2.11)

where, as before, the lepton covariant derivative is DµΨ = (∂µ + ieAµ)Ψ. Using again

the representation (2.4) and specializing to the nuclear rest frame (and parameterizing

11In detail, the A0 boundary condition is obtained as before by straight-up integration of the field

equation over a small spherical Gaussian pillbox of radius ε, while the boundary condition for A comes

from a similar integration, but weighted by an l = 1 spherical harmonic [76].
12Notice µN here denotes the nuclear magnetic moment (not the nuclear magneton) including the

nuclear g-factor.
13That is, (2.10) is the classical solution obtained using the boundary condition that formally follows

from (2.8) with I regarded as a specified function. For first-quantized nuclei we may treat I as an

operator in the knowledge that Anuc ultimately appears within an expectation value between two

nuclear spins (as we see explicitly below).
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using proper time) then gives

0 =
[
γ0 (∂0 + ieA0) + γi (∂i + ieAi) +m

]
Ψ + δ3(x)

[
cs − icvγ0 +

cF
2
εijkIkγij

]
Ψ ,

(2.12)

where the terms involving c2 and c3 are proportional to Γ5 := −iΓ0Γ1Γ2Γ3 and so vanish

in the nuclear rest frame – c.f. eqs. (2.7) – and (as above) I := 1
2
τ is the nuclear spin

(acting in nuclear-spin space).

As above, our perturbative treatment of quantum-field interactions allows the term

Arad ·ΨγΨ to be dropped in the interaction-picture evolution of the fields, though the

nucleus-generated Coulomb and magnetic-dipole fields do appear in the interaction-

picture evolution of the field operator Ψ. Away from the nuclear position eq. (2.12)

then boils down to the Dirac equation in the presence of a Coulomb potential and a

dipole magnetic field:

0 =
[
−iγ0 (ω − eAnuc

0 ) + γ · ∇+m
]
ψ + ieγ ·Anucψ , (2.13)

whereAnuc
0 and Anuc are the Coulomb and magnetic-dipole contributions given in (2.10).

The delta-function terms in (2.12) contribute once the equation is integrated over

a small sphere of radius ε that includes the nucleus (possibly weighted by spherical

harmonics14). For example (as described in more detail in Appendix B), for S-wave

modes integrating over a small sphere (of radius ε) about the position of the delta

function implies a boundary condition

0 =

∫
d2Ω2 ε

2
[
γr + ĉs − iγ0ĉv + ĉF I ·Σ

]
ψ(ε) , (2.14)

for fields at r = ε, where the couplings ĉi are related to the couplings appearing in Sp
by ĉi = ci/(4πε

2) and Σk is defined by γij = εijkΣk, where γµν := − i
4
[γµ, γν ]. This

near-nucleus boundary condition fixes some of the integration constants that arise when

integrating (2.13), and thereby allows them to depend on cs, cv and cF . It is through

this dependence that nuclear properties alter atomic energy levels.

Two new steps are required in order to compute the effects of the nucleus on elec-

tronic levels. First the Dirac equation (2.13) must be solved away from the nucleus in

the presence of the dipole magnetic field, which is done in this section by perturbing

in the magnetic moment µN . The second step (performed in §2.4 below) takes these

solutions and imposes the near-nucleus boundary conditions implied by (2.14) to deter-

mine some of the integration constants found when solving (2.13). In particular these

14For the S-wave modes of later interest no weighting by spherical harmonics is necessary.
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solutions are not assumed to be bounded at the origin, and indeed the boundary con-

ditions following from (2.14) are only consistent with boundedness when the effective

couplings cs, cv, etc. all vanish. The full effect of spin-dependent finite-size nuclei on

atomic energy levels receives contributions from both of these two steps, as we now see.

2.3.1 Dirac-Coulomb modes

We start by reviewing the properties of modes, u(x, t), of the Dirac equation in the

presence of a Coulomb potential but without a dipole magnetic field. Denoting mode

energy by ω one seeks solutions of the form u(x, t) = e−iωtψ(x). Away from the origin

the function ψ satisfies:

0 =
[
−iγ0 (ω − eAnuc

0 ) + γ · ∇+m
]
ψ . (2.15)

where (as above) Anuc
0 is the Coulomb potential of eq. (2.10).

The standard Dirac-Coulomb Hamiltonian mode functions separate in polar coor-

dinates, and are labelled by the quantum numbers |njjz$〉 where n is the principal

quantum number, j = 1
2
, 3

2
, · · · and jz = −j,−j + 1, · · · , j − 1, j, stand for total elec-

tronic angular momentum, and $ = ± is the parity quantum number.15 Working in

a basis for which γ0 is diagonal, the corresponding mode functions are Dirac spinors

[72, 100]:

ψ =

(
Ωjljz$(θ, φ) fnj(r)

iΩjl′jz$(θ, φ) gnj(r)

)
, (2.16)

where Ωjljz$ denotes a 2-component spinor spherical harmonic,

Ωjljz$ :=

$

√
l+$ jz+ 1

2

2l+1
Yl,jz− 1

2
(θ, φ)

√
l−$ jz+ 1

2

2l+1
Yl,jz+ 1

2
(θ, φ)

 , (2.17)

with total, orbital and projected total angular momentum quantum numbers (j, l, jz).

Here the orbital quantum numbers l and l′ are related to j and parity by l = j − 1
2
$

and l′ = j + 1
2
$. Yllz(θ, φ) are the usual scalar spherical harmonics.

The functions fnj(r) and gnj(r) are the solutions to the radial part of the Dirac

equation (more about which below). Skipping details – see [64] for an enumeration of

more steps using much the same formalism, but for spinless nuclei – the radial functions

15Strictly speaking the parity of a state is (−)l where l := j − 1
2 $, so $ determines the parity, but

need not be equal to it for all j. This distinction does not matter in practice for the states of most

interest, for which j = 1
2 .
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are given by

fnj(r) =
√
m+ ω e−ρ/2

{
C ρζ−1

[
M1 −

(a
c

)
M2

]
+ Dρ−ζ−1

[
M3 −

(
a′

c

)
M4

]}
,

gnj(r) = −
√
m− ω e−ρ/2

{
C ρζ−1

[
M1 +

(a
c

)
M2

]
+ Dρ−ζ−1

[
M3 +

(
a′

c

)
M4

]}
,

(2.18)

where C and D are integration constants and the functions Mi are given in terms of

confluent hypergeometric functions – defined in (E.16) –M(β, γ; z) := 1F1[β; γ; z] with

different arguments:

M1 :=M (a, b; ρ) , M2 :=M (a+ 1, b; ρ) ,

M3 :=M (a′, b′; ρ) , M4 :=M (a′ + 1, b′; ρ) . (2.19)

The various parameters appearing in (2.18) and (2.19) are defined by

a := ζ − Zαω

κ
, a′ := −

(
ζ +

Zαω

κ

)
, b := 1 + 2ζ, b′ := 1− 2ζ,

c := K− Zαm

κ
, ρ := 2κr, κ :=

√
m2 − ω2, ζ :=

√
K2 − (Zα)2 , (2.20)

where K is the Dirac quantum number, defined by

K := −$
(
j +

1

2

)
= ∓

(
j +

1

2

)
for parity ± states . (2.21)

For later purposes we note that onlyM1 andM2 are bounded at the origin, and so the

the radial functions are bounded at the origin only when D = 0, as is usually chosen

when working with a point-like spinless nucleus.

Bound states have ω < m and for these normalizability at large r requires the

integration constants to be related by

−
(

D

C

)
=

Γ[1 + 2ζ] Γ [−ζ − (Zαω/κ)]

Γ[1− 2ζ] Γ [ζ − (Zαω/κ)]
. (2.22)

The Dirac-Coulomb bound-state energies are then determined by choosing ω to ensure

that (2.22) is consistent with the condition on D/C that comes from the near-nucleus

boundary condition (described in more detail in §2.4).

As mentioned earlier, for a point-like spinless nucleus – i.e. in the absence of the

nucleus-dependent δ3(x) terms in (2.12) – these boundary conditions simply state that
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the solution is bounded at the origin, which implies D = 0. Using D = 0 in (2.22) then

implies the standard point-nucleus Dirac-Coulomb energy spectrum ω = ωDnj, where

ωDnj = m

√
1−

(
κDnj
m

)2

(2.23)

with

κDnj =
mZα

N
and N = n

√
1− 2(n− |K|)(Zα)2

n2(ζ + |K|)
. (2.24)

Here n = 1, 2, · · · is the usual principal quantum number.

More generally, when D/C is nonzero but small the solution obtained by solving

(2.22) for ω becomes16 ωnFj$ = ωDnj + δωnFj$ with δωnFj$ given [64] by eq. (C.10) of

Appendix C.

In what follows it is important to keep in mind that the mode energy, ω, is not

the same as the physical single-particle energy measured in atomic systems. The entire

energy relevant to experiments includes many corrections, and (to the order required

here) takes the form

ωnFj$ = ωDnj + δωnFj$ + εmag
nFj$ + εQEDnFj$ + εrec

nFj$ . (2.25)

The first of these is the single-particle Dirac-Coulomb spectrum of (2.23), while δωnFj$
denotes the shift in the mode spectrum coming from having D/C 6= 0 when solving

eq. (2.22). As we see explicitly below, nonzero values for D/C arise when nuclei are not

point-like, and so provide part of the influence of nuclear structure on atomic spectra.

The contribution εmag
nFj$ = ε

(1)
nFj$ + ε

(ho)
nFj$ contains the influence of the nuclear mag-

netic field, Anuc, which to the accuracy desired here can be computed perturbatively.

The first-order effects we denote by ε
(1)
nFj$, whose calculation is described at length be-

low. This term contains both spin-dependent point-nucleus contributions (such as the

hyperfine splitting) and spin-dependent finite-size nuclear effects. Higher-order contri-

butions, denoted ε
(ho)
nFj$, are also relevant [116], though for current precision their form

for point nuclei is sufficient.

The next contribution arises when perturbing in the radiation component of the

electromagnetic field, εQED = εpt−QED
nFj$ +εN−QEDnFj$ , with εpt−QED

nFj$ describing standard QED

corrections (such as the Lamb shift) as computed for point nuclei, and εN−QED describing

nuclear-size effects in these QED corrections.

16The subscript F anticipates that δω depends on the total atomic angular momentum quantum

number, F , through its dependence on the quantity D/C .
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The final contribution in (2.25) contains recoil corrections (those terms suppressed

by powers of m/M that are not simply the result of using the reduced mass in the non-

relativistic problem). As described above – c.f. the discussion surrounding eq. (1.6)

– this also divides into point-nucleus and a nuclear-structure piece, εrec
nFj$ = εpt−rec

nFj$ +

εN−rec
nFj$ , both of which contribute at the order we work.

The next two sections compute the energy shifts δω and ε(1) in some detail, with a

view to counting systematically the number of relevant nuclear parameters. While both

types of QED corrections are relevant to modern experiments, as are recoil corrections,

we argue in §4 why these contribute only to predictions for the value of the two nuclear

parameters, rather than introducing new independent parameters themselves. As such

they are not conceptual obstacles to identifying nucleus-free observables.

2.3.2 Effects of the nuclear magnetic dipole

This section reviews the form of Dirac mode functions in the presence of the nuclear

dipole magnetic field, with the magnetic field treated perturbatively. Discussions of

this perturbation expansion are given in the literature [101–103], though for point-like

nuclei (i.e. where the unperturbed radial-mode integration constants satisfy D/C = 0).

We redo these calculations here explicitly however because nonzero D/C is required by

finite-size nuclear effects. Because this is conceptually straightforward (though tedious)

only the main features of the calculations are described here, with more details given

in Appendix D.

As described below, for the present purposes we need work only to linear order

in the nuclear spin-dependent effects. For the point nucleus it would therefore suffice

to compute the linear-order energy shift without also needing the first-order change to

the Dirac mode functions. An important change relative to the point-nucleus prob-

lem is that the determination of D/C to first-order also requires knowing the leading

perturbative corrections to the mode functions as well.

We choose a basis of zeroth-order energy eigenstates, |nFFzj$〉, that also diago-

nalize total atomic angular momentum, F = J + I, that sums nuclear spin I with the

total leptonic angular momentum J. We do so by combining the Dirac-Coulomb states

described above with nuclear spin states to make states that take definite values for F2

and Fz,

ψnFj$(r, θ, φ) := 〈r, θ, φ|nF fz; I, j;$〉0 =

(
Yj,$Ffz fnj$(r)

iYj,−$Ffz
gnj$(r)

)
, (2.26)
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where the functions Yj,±$Ffz
are defined in eq.(D.20) to be

Yj,$F=j+α
2
,fz

=

α√ j+ 1
2

+αfz
2j+1

Ωj,l,fz− 1
2
,$√

j+ 1
2
−αfz

2j+1
Ωj,l,fz+ 1

2
,$

 . (2.27)

with Ωjljz$ defined in (2.17) and the nuclear 2-component spinors defined by

η 1
2
,+ 1

2
=

[
1

0

]
and η 1

2
,− 1

2
=

[
0

1

]
. (2.28)

To avoid confusion we use square brackets to denote spinors in nuclear-spin space and

round brackets to denote the same in electron-spin space.

First-order energy shift

States with different Fz are degenerate at zeroth-order in the magnetic-moment field,

necessitating the use of degenerate perturbation theory. Consequently one seeks a basis

that diagonalizes the perturbing interaction Lint = −eγ0γ ·Anuc within the degenerate

subspace of interest. For a degenerate eigenspace with fixed j the states with definite

values of F and Fz provide precisely the required basis.17

The first-order energy shift for these states becomes

ε
(1)
nFj$ = −

( e

4π

) ∫ d3x r−2 ψ†γ0γ · (µ× r̂)ψ∫
d3xψ†ψ

, (2.29)

=
(eµN

4π

) 1

D

∫
d2Ω2

[(
Yj,$
F ,fz

)†
ΣYj,−$

F ,fz
−
(
Yj,−$
F ,fz

)†
ΣYj,$

F ,fz

] ∫
dr f · g ,

where

Σ := i (I× r̂) · σ and D :=

∫
dr r2

(
f2 + g2

)
, (2.30)

and we suppress the quantum numbers {n, F, j,$} on ψ and the radial functions to

avoid notational clutter.

This can be further simplified using the property Yj,−$
F ,fz

= −σrYj,$
F ,fz

, where σr :=

r̂ · σ is the radially-pointing Pauli matrix acting on the leptonic spin space, and a

17This is not to say that eigenstates with fixed F, Fz, j, jz diagonalize the entire perturbing Hamilto-

nian, since mixing between opposite parity states that share the same values of F, Fz but with different

j quantum numbers, can still occur, as has been known for some time [104, 105]. This mixing first

appears in the energy at second order in the magnetic moment, and at first-order in the corrections to

the wave-functions (as we describe in more detail later). Because its contributions to nuclear finite-size

energy shifts are smaller than the precision to which we work in this paper, we do not calculate them

in detail.
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(2I + 1) × (2I + 1) = 2 × 2 unit matrix acting in nuclear-spin space is not written

explicitly. Additionally, using

σσr =
{
1 ,−iσφ , iσθ

}
, σrσ =

{
1 , iσφ ,−iσθ

}
,

(I× r̂) · (σσr − σrσ) = −2i
(
Iθσθ + Iφσφ

)
, (2.31)

the first-order mode-energy shift simplifies to

ε
(1)
nFj$ =

(eµN
4π

)
KXF

{ ∫
dr f · g∫

dr r2 (f2 + g2)

}
. (2.32)

This expression evaluates the angular integration as in the literature [102]

2

∫
d2Ω2

(
Yj,$
F ,fz

)† (
Iθσθ + Iφσφ

)
Yj,$
F ,fz

= −KXF , (2.33)

where the variable XF is defined by

XF :=
F (F + 1)− j(j + 1)− I(I + 1)

j(j + 1)
=

{
(j + 1)−1 if F = j + 1

2

−j−1 if F = j − 1
2

, (2.34)

and the final equality specializes to I = 1
2
.

The numerator of (2.34) arises ubiquitously in what follows because it is the eigen-

value of 2 I · J = (I + J)2− J2− I2 evaluated in a state with definite nuclear, electronic

and total atomic angular momentum quantum numbers I, j and F . In all of the energy

shifts discussed below the dependence on F appears through this combination, as is

ultimately required by rotational invariance.

It is convenient to extract the dimensionless combination

s :=
meµN

4π
� 1 , (2.35)

where m is (as usual) the lepton mass, because this is the small quantity that controls

the size of nuclear-spin effects. Because our focus is on nuclear finite-size effects, and

because current experimental precision for both atomic and muonic Hydrogen is insen-

sitive to finite-size effects at order s2, for our purposes it suffices in what follows to

work to linear order in s. At this order (2.32) implies the energy shift is

ε
(1)
nFj$ =

sKXF

m

{ ∫
dr f · g∫

dr r2 (f2 + g2)

}
=: −4sKXF

(
κ3

m2

)(
N

D

)
. (2.36)

The last equality of (2.36) evaluates the radial matrix elements inside the braces,

for which both numerator and denominator naturally divide up into three parts. That

is, defining ∫ ∞
0

dr f · g =: −C 2

2
N (2.37)
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one finds

N = Npt +

(
D

C

)
N1 +

(
D

C

)2

N2 , (2.38)

and defining D as in (2.30),

D :=

∫
dr r2

(
f2 + g2

)
=

C 2m

(2κ)3
D , (2.39)

implies it can be written

D = Dpt +

(
D

C

)
D1 +

(
D

C

)2

D2 . (2.40)

In these expressions the subscript ‘pt’ labels the contribution of a point-like nucleus

(i.e. one for which the radial mode functions have D = 0) and the remaining D-

dependent terms represent the nuclear-size dependent contributions (described in more

detail below). An explicit factor of the integration constant C 2 is factorized out of

these definitions to emphasize how the energy shift depends only on the ratio D/C ,

and not on each of these constants separately.

The contributions to (2.38) and (2.40) are given in terms of a basic class of integrals

of the form,

I(p)
ij :=

∫ ∞
0

dρ e−ρρpMiMj, (2.41)

where i, j = 1, 2, 3, 4, corresponding to the functions Mi defined in (2.19), and p is a

real number that depends on which of the Mi appearing in (2.18) are relevant. For

some of the choices of p encountered below the integrals I(p)
ij diverges at the ρ → 0

limit, a divergence that below gets renormalized into the effective coupling cF .

Explicit formulae for N and D obtained by performing these integrals are given in

eqs. (E.14) and (E.15) of Appendix §E, which state

Npt =

[
I(2ζ−2)

11 −
(a
c

)2

I(2ζ−2)
22

]
, (2.42)

and

N1 = 2

[
I(−2)

13 −
(
aa′

c2

)
I(−2)

24

]
N2 = I(−2ζ−2)

33 −
(
a′

c

)2

I(−2ζ−2)
44 , (2.43)

while

Dpt =

[
2I(2ζ)

11 −
4ω

m

(a
c

)
I(2ζ)

12 + 2
(a
c

)2

I(2ζ)
22

]
, (2.44)
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and

D1 = 2

[
2I(0)

13 −
2ω

m

(
a′

c

)
I(0)

14 −
2ω

m

(a
c

)
I(0)

23 + 2

(
aa′

c2

)
I(0)

24

]
(2.45)

D2 = 2

[
I(−2ζ)

33 − 2ω

m

(
a′

c

)
I(−2ζ)

34 +

(
a′

c

)2

I(−2ζ)
44

]
.

The integrals appearing in N1, N2, D1 and D2 are the ones that can diverge as ρ→ 0,

and when present this divergence is regularized by restricting the integration to ρ > η

(or, more simply, using dimensional regularization) as described in Appendix E.

As a check, consider first the point-nucleus contributions, Npt and Dpt. These

involve only the confluent hypergeometric profiles, M1 and M2 and converge in the

limit ρ→ 0, making them easy to evaluate (for details see Appendix E), leading to

Npt =
(−2) [Γ[1 + 2ζ]]2 Γ

[
1− ζ + Zαω

κ

] (
Zαm
κ

)
(4ζ2 − 1)(2ζ)Γ

[
1 + ζ + Zαω

κ

] (
K− Zαm

κ

) (1− 2Kω

m

)
,

Dpt = −
4 [Γ(1 + 2ζ)]2 Γ

(
1− ζ + Zαω

κ

) (
Zαm
κ

)
Γ
(
1 + ζ + Zαω

κ

) (
K− Zαm

κ

) . (2.46)

Using these, the energy shift for a point-like spin-half nucleus obtained from (2.36) by

using (2.46) and D = 0 in (2.38) and (2.40) is

εhfs
nFj$ = −sKXF

(
κ3

m2

)
(1− 2Kω/m)

ζ (4ζ2 − 1)
(2.47)

= −KXF

gpm
2(Zα)4

2M

(mr

m

)3
[

1− 2K
√

1− (Zα)2/N 2

N 3ζ (4ζ2 − 1)

]
(Hydrogen),

where the second line specializes to Hydrogen and evaluates κ using κ = mrZα/N
with reduced mass mr = mM/(m + M) (where M is the nuclear mass) and N as

defined in (2.24) with K given in (2.21). Also used are the definition (2.35) of s and

µp = gp(Ze/2M) with gp the proton’s g-factor. When evaluated to compute the energy

difference between the nSF=1
j=1/2 and nSF=0

j=1/2 states in Hydrogen, this expression agrees

with standard results for relativistic hyperfine splitting [102, 103, 106].

So far so good, but what about non-point-like nuclei? To capture the finite-size

effects we must use the modified near-nucleus boundary condition for Ψ implied by

the nuclear effective interactions in Sp (which imply D/C 6= 0). This also requires

dealing with the divergent integrals that appear in expressions (2.43) and (2.45) for the
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magnetic-moment dependent energy shift, whose explicit form becomes

ε
(1)
nFj$ = εhfs

nFj$

[
1 + (D/C )(N1/Npt) + (D/C )2(N2/Npt)

1 + (D/C )(D1/Dpt) + (D/C )2(D2/Dpt)

]
(2.48)

' −sKXF

(
κ3

m2

)
(1− 2Kω/m)

ζ (4ζ2 − 1)

[
1 + Cη −

c

n
+ · · ·

]
,

and in the second line c and Cη are n-independent constants. Of these c is defined

below in (3.9) and so contains the various nuclear effective couplings. Unlike c, the

constant Cη depends on the regularization parameter, η, associated with the near-

nucleus divergences described above. In practice the detailed form of Cη does not

matter in what follows because it gets absorbed into the nuclear effective coupling cF .

What makes possible the absorption of Cη into a counterterm is the fact that

neither c nor Cη depend on the principal quantum number and so the n-dependence in

(2.48) is either explicit or contained within the standard expressions (2.23) and (2.24)

for κ and ω. As shown in detail in §3, it is only because Cη does not come together

with additional n dependence that its contribution to the energy is proportional to

1/n3 and so can be absorbed into a counterterm like cF for an interaction localized at

the nucleus’ position (whose contribution to the energy is proportional to |ψ(0)|2 and

so is also ∝ 1/n3).

The same is not true of the term c/n in (2.48), whose n-dependence is a genuine

prediction. As argued below (see also Appendix E) matching to nuclear properties

implies c ∼ O[(mRZα)2] and so given that εhfs ∼ O[(Zα)4(m2/M) ∼ O[(Zα)4m2R –

with M ∼ 1/R being the nuclear mass, see e.g. (E.40) – the constant c turns out to

contribute to the energy at order m(Zα)3(mRZα)3. For electrons this is smaller than

the O[m(Zα)4(mRZα)2] and O[m(Zα)2(mRZα)3] contributions computed here.18

First-order mode-function correction

As described above, eq. (2.48) is not the whole story. Previously we have mentioned

– c.f. (2.25) – that at the accuracy of interest here finite nuclear size contributes to

electron energies in two different ways: through the contributions of D/C to19 δωnFj$
and to ε

(1)
nFj$.

In both of these contributions nuclear properties enter through the values implied

for D/C by the near-nucleus boundary conditions – such as (2.14). Since it turns

18This also makes this contribution competitive with the O[m(Zα)2(mRZα)4] contributions that

are also not computed here, but which can be important for muonic Hydrogen.
19Because we compute by perturbing using zeroth-order Coulomb bound-state wave-functions, each

of which satisfies (2.22), the new eigenstates found by perturbing with Anuc are automatically nor-

malizable assuming only that (2.22) is satisfied.
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out that calculating the implications of (2.14) for D/C requires knowing the first-

order correction to the radial wave-functions, f and g, due to the magnetic moment

interaction, we now pause to compute this.

Using standard first-order Rayleigh-Schrödinger perturbation theory, we find the

following leading correction to the relativistic Dirac state due to the nuclear magnetic

field:

|nFFzj$〉1 =
∑
ñ6=n

CñnFFzj$
E

(0)
nFj$ − E

(0)
ñFj$

|ñFFzj$〉0 + (j̃ terms) , (2.49)

where ‘(j̃ terms)’ denote contributions coming from summing states with j̃ 6= j; terms

that can be neglected in what follows as explained in Appendix E. The displayed sum is

only over principal quantum numbers that differ from that of the state being perturbed,

and the coefficients are

CñnFFzj$ = −
(

e

4πD̃

)∫
d3x r−2 ψ̃†

ñF j̃$̃
γ0γ · (µ× r̂)ψnFj$, (2.50)

= −
(

s

mD̃

)∫
dΩ2

(
Y j̃$̃
F ,fz

)† (
Iθσθ + Iφσφ

)
Yj$
F ,fz

∫
dr
(̃
f g + g̃ f

)
,

with

D̃ :=

∫
dr r2

(̃
f2 + g̃2

)
=

C̃ 2m

(2κ̃)3
D̃ . (2.51)

defined in the same way as is D – in eq. (2.30) – but evaluated for the state ψ̃ (for more

detail see Appendix D).

Notice that the integrals D̃pt, D̃1 and D̃2 appearing in D̃, are defined in terms of

D̃ using (2.39) and (2.40) – i.e. with C → C̃ , κ→ κ̃, n→ ñ and so on – the only new

quantity here is the radial integral in the numerator. Defining

Ns := − 1

C C̃

∫ ∞
0

dr
(̃
f g + g̃ f

)
= m(2κ̃)ζ̃−1(2κ)ζ−1 (κ̃+ κ)1−ζ̃−ζ (2.52)

×

{
Ns

pt +

(
D

C

)
Ns

1 +

(
D̃

C̃

)
Ñs

1 +

(
D̃D

C̃ C

)
Ns

2

}
,

and evaluating the angular integral for (j̃, $̃) = (j,$) the first-order state correction

given in (2.49) becomes

|nFFzj$〉1 = −
∑
ñ6=n

s(2κ̃)3KXF

2m2
(
E

(0)
nFj$ − E

(0)
ñFj$

) (CNs

C̃ D̃

)
|ñFFzj$〉0 + (j̃ terms)

=: sXF

∑̂
ñ

|ñFFzj$〉0 + (j̃ terms) , (2.53)
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where the last equality defines the
∑̂

operator, which is therefore given by∑̂
ñ

|ñFFzj$〉0 := −
∑
ñ6=n

4κ̃3K(4κ̃κ)ζ−1 (κ̃+ κ)1−2ζ

m
(
E

(0)
nFj$ − E

(0)
ñFj$

) (
CNs

pt

C̃ D̃pt

)
(2.54)

×


1 +

(
D
C

)
Ns

1/N
s
pt +

(
D̃

C̃

)
Ñs

1/N
s
pt +

(
D̃D

C̃ C

)
Ns

2/N
s
pt

1 +
(

D̃

C̃

)
D̃1/D̃pt +

(
D̃

C̃

)2

D̃2/D̃pt

 |ñFFzj$〉0 .
The integrals Ns

pt,N
s
1, Ñ

s
1 and Ns

2 appearing here are given explicitly in terms of in-

tegrals similar to I(p)
ij in Appendix E, in eqs. (E.87) and (E.89) and subsequent para-

graphs.

The solution to the leptonic equations of motion correct to first order in s then is,

ψnFj$ =

 Yj,$F ,fz (f(0)
nj$(r) + sXF f

(1)
nj$(r) + · · ·

)
iYj,−$

F ,fz

(
g

(0)
nj$(r) + sXF g

(1)
nj$(r) + · · ·

) (2.55)

with the ellipses representing terms of order O(s2) or higher and the first-order function

corrections are given by

f
(1)
nj$(r) :=

∑̂
ñ

f
(0)
ñj$(r) and g

(1)
nj$(r) :=

∑̂
ñ

g
(0)
ñj$(r) . (2.56)

This concludes our perturbative calculations of the lepton modes to linear order in s.

2.4 Near-nucleus fermion boundary conditions

We next determine the values of D/C required by the fermionic boundary conditions,

obtained by a more careful treatment of the delta-function terms in the fermionic

field equation (2.12). This section quotes the main results, with more details given

in Appendix B. Because it happens that the dominant effects arise from boundary

conditions for j = 1
2

modes, we focus here on these. The relevant near-nucleus boundary

condition – applied at distance r = ε from the nucleus – is given in (2.14), repeated

here for convenience

0 =

∫
d2Ω2 ε

2
[
γr + ĉs − iγ0ĉv + ĉF I ·Σ

]
ψnFj$(ε) , (2.57)

where (as before) ĉi = ci/(4πε
2).

As applied to the positive parity j = 1
2

state, performing the angular integration

implies the boundary condition for the radial function becomes

ĉs − ĉv + ZF ĉF =
gn 1

2
+(ε)

fn 1
2

+(ε)
, (2.58)
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where ZF := 1
2

[
F (F + 1)− 3

2

]
= ZF+ where ZF$ is defined for j = 1

2
states as (see

Appendix B)

ZF$ :=
2$ + 1

6

[
F (F + 1)− I(I + 1)− 3

4

]
=

2$ + 1

8
XF , (2.59)

where the last equality uses the definition (2.34) of XF . Repeating the same exercise

for the negative parity, j = 1
2

state similarly gives (see Appendix B)

ĉs + ĉv + ZF ĉF =
fn 1

2
−(ε)

gn 1
2
−(ε)

. (2.60)

As elaborated in Appendix B, both eqs. (2.58) and (2.60) use a compact notation that

suppresses an implicit dependence of the couplings on both F and$ (see e.g. eq. (2.61)).

As usual, there are two equivalent ways to read these last two equations. The

simplest way is to evaluate the right-hand side of these equations using the solutions

(2.18) to the radial equation, and regard them as being solved for D/C as a function

of the ĉi. This shows explicitly how the integration constants are determined by the

effective nuclear couplings. Because physical quantities (like leptonic energy levels) can

be expressed as functions of D/C they also acquire a dependence on the ĉi.

The other way to interpret these equations is as renormalization-group equations

that define the running of the renormalized couplings, ĉi. That is, if the value of ε is to

be changed without modifying physical quantities (like electron energy levels), then the

explicit ε-dependence visible in (2.58) and (2.60) must cancel against an ε-dependence

that is implicit in the couplings ĉi [64, 70–72].

The remainder of this section focuses on the first of these two points of view, and

we return to the second approach in §3 below.

2.4.1 Solution for D/C

The goal is to solve eqs. (2.58) and (2.60) for the integration constant D/C , to linear

order in s. Because the explicitly calculable terms of eqs. (2.58) and (2.60) depend

on nuclear spin only through the spin-dependance of XF this suggests that the same

should also be true for the couplings ĉs,v and integration constants D/C at O(s). This

leads to the ansatz

ĉs,v = ĉ(0)
s,v + sXF ĉ

(1)
s,v +O(s2) , (2.61)

where the first terms are the couplings found in [64] for spinless nuclei that are indepen-

dent of the total atomic angular momentum, F . The second terms are the first-order

corrections whose F -dependence is guaranteed by rotation invariance to be propor-

tional to [F (F + 1)− j(j + 1)− I(I + 1)]. The integration constants are then solved

– 31 –

Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

162



perturbatively in s, using(
D

C

)
=

(
D

C

)(0)

+ sXF

(
D

C

)(1)

+ · · · , (2.62)

where the F -independent part of eqs. (2.58) and (2.60) determine (D/C )(0) and (D/C )(1)

is fixed by their XF -dependent terms.

With this in mind we also expand the right-hand side of these boundary conditions

to linear order in s, using the state-correction result from first-order perturbation theory

in (2.55), to write it as,

g$
f$

=
g

(0)
$ + sXF g

(1)
$ + · · ·

f
(0)
$ + sXF f

(1)
$ + · · ·

' g
(0)
$

f
(0)
$

[
1 + sXF

(
g

(1)
$

g
(0)
$

− f
(1)
$

f
(0)
$

)
+O

(
s2
)]

, (2.63)

where $ = ± is the electron state’s parity, g
(0)
$ , f

(0)
$ are given by (2.18) and g

(1)
$ , f

(1)
$ are

given by (2.56). Because the functions g
(0)
$ , f

(0)
$ and g

(1)
$ , f

(1)
$ are themselves functions

of the ratio D$/C$, which itself can depend on nuclear spin – c.f. (2.62) – to find all

terms that appear at O(s) requires using (2.62) in (2.63), expanding in powers of s and

grouping terms.

What is important when doing so is this: because all of the O(s) terms in (2.63)

are proportional to XF both sides of eqs. (2.58) and (2.60) share the same dependence

on nuclear spin out to linear order in s. This is no accident because, to linear order,

rotation invariance implies the nuclear spin appears only through the combination I ·J,

whose matrix elements give the spin-dependence in both XF and ZF$ ∝ XF . This

shows how (D/C )(0) is determined in terms of the coefficients ĉ
(0)
s and ĉ

(0)
v and by

f
(0)
$ /g

(0)
$ – as in [64]. Similarly (D/C )(1) is given in terms of the O(s) parts of ĉF , ĉ

(1)
s

and ĉ
(1)
v together with (f

(1)
$ /f

(0)
$ )− (g

(1)
$ /g

(0)
$ ) and f

(0)
$ /g

(0)
$ .

The details of this calculation can be found at the end of Appendix F and here we

only quote the results, separately for each parity choice $ = ±.

Positive parity states

Using the small-r asymptotic form for the radial solutions of eqs. (2.18) in the parity-

even boundary condition (2.58) then gives, at zeroth order in s,

ĉ(0)
s − ĉ(0)

v = −χ

[
(c+ a) + (c+ a′) (D+/C+)(0) (2κε)−2ζ

(c− a) + (c− a′) (D+/C+)(0) (2κε)−2ζ

]
, (2.64)

where the parameters on the right-hand side are given in eqs. (2.20) and

χ :=

√
m− ω
m+ ω

. (2.65)
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Inverting (2.64) then gives the integration constants in terms of ĉ
(0)
s − ĉ(0)

v :

(
D+

C+

)(0)

= −


(
ĉ

(0)
s − ĉ(0)

v

)
(c− a) + χ(c+ a)(

ĉ
(0)
s − ĉ(0)

v

)
(c− a′) + χ(c+ a′)

 (2κε)2ζ , (2.66)

as is also found in [64] for spinless nuclei.

Next, consider the O(s) terms on both sides of the boundary condition (2.58) which

reads – using ZF = ZF+ = 3
8
XF ,

s
(
ĉ(1)
s − ĉ(1)

v

)
+

3

8
ĉF (2.67)

= s

 (−2)χc (a′ − a) (2κε)−2ζ[
(c− a) + (c− a′) (D+/C+)(0) (2κε)−2ζ

]2

(
D+

C+

)(1)

+ Λ+

 ,

where Λ+ is given by

Λ+ = −
√
m+ ω̃

m+ ω

∑̂
ñ

[
C̃+(2κ̃ε)ζ−1c

C+(2κε)ζ−1c̃

](c̃− ã) + (c̃− ã′)
(
D̃+/C̃+

)(0)

(2κ̃ε)−2ζ

(c− a) + (c− a′) (D+/C+)(0) (2κε)−2ζ


×

χ̃
 (c̃+ ã) + (c̃+ ã′)

(
D̃+/C̃+

)(0)

(2κ̃ε)−2ζ

(c̃− ã) + (c̃− ã′)
(
D̃+/C̃+

)(0)

(2κ̃ε)−2ζ

 (2.68)

− χ

[
(c+ a) + (c+ a′) (D+/C+)(0) (2κε)−2ζ

(c− a) + (c− a′) (D+/C+)(0) (2κε)−2ζ

]}
,

and comes from evaluating the terms involving g
(1)
+ and f

(1)
+ in the square bracket of

(2.63). In particular, Λ+ does not depend on (D+/C+)(1).

As shown in detail in the paragraph surrounding (3.9) below, the two quantities in

the final braces in (2.68) cancel one another – at least to leading order in (Zα)2 – which

in turn ensures that Λ+ vanishes to the order we require. This simplifies enormously

the above boundary condition, whose solution for D+/C+ becomes

s

(
D+

C+

)(1)

= −

[
s
(
ĉ

(1)
s − ĉ(1)

v

)
+ 3

8
ĉF

]
4χc (a′ − a)

(2.69)

×

[
(c− a) + (c− a′)

(
D+

C+

)(0)

(2κε)−2ζ

]2

(2κε)2ζ .
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Eqs. (2.66) and (2.69) solve the problem of obtaining the integration constant ratio

D/C as functions of the effective couplings, cs, cv and cF , for positive-parity j = 1
2

states. The next step, in prinicple, is to use these expressions in formulae like (2.36)

and (C.10) for atomic energy shifts to predict how these are influenced by finite nuclear

size. Before taking this step we first repeat the above exercise for parity-odd j = 1
2

states.

Negative parity states

Returning now to the boundary condition (2.60), repeating the same steps as before

(i.e. expanding the radial functions and integration constants to linear order in s) leads

to two separate relations that determine (D−/C−)(0) and (D−/C−)(1) in terms of ĉs, ĉv
and ĉF . The parity-odd counterpart to (2.64) is given by

ĉ(0)
s + ĉ(0)

v = − 1

χ

[
(c− a) + (c− a′) (D−/C−)(0) (2κε)−2ζ

(c+ a) + (c+ a′) (D−/C−)(0) (2κε)−2ζ

]
, (2.70)

which, when solved for the integration constants, gives(
D−
C−

)(0)

= −

 χ
(
ĉ

(0)
s + ĉ

(0)
v

)
(c+ a) + (c− a)

χ
(
ĉ

(0)
s + ĉ

(0)
v

)
(c+ a′) + (c− a′)

 (2κε)2ζ . (2.71)

as the counterpart to eq. (2.66).

Similarly, the O(s) terms of the parity-odd boundary condition (2.60) are, again

using ZF = 3
8
XF ,

s
(
ĉ(1)
s + ĉ(1)

v

)
+

3ĉF
8

= s

 2χ−1c (a′ − a) (2κε)−2ζ[
(c+ a) + (c+ a′) (D−/C−)(0) (2κε)−2ζ

]2

(
D−
C−

)(1)

+ Λ−

 ,

(2.72)

with Λ− given by

Λ− = −
√
m− ω̃
m− ω

∑̂
ñ

[
C̃−e−κ̃ε(2κ̃ε)

ζ−1c

C−e−κε(2κε)ζ−1c̃

](c̃+ ã) + (c̃+ ã′)
(
D̃−/C̃−

)(0)

(2κ̃ε)−2ζ

(c+ a) + (c+ a′) (D−/C−)(0) (2κε)−2ζ


×

 1

χ̃

(c̃− ã) + (c̃− ã′)
(
D̃−/C̃−

)(0)

(2κ̃ε)−2ζ

(c̃+ ã) + (c̃+ ã′)
(
D̃−/C̃−

)(0)

(2κ̃ε)−2ζ

 (2.73)

− 1

χ

[
(c− a) + (c− a′) (D−/C−)(0) (2κε)−2ζ

(c+ a) + (c+ a′) (D−/C−)(0) (2κε)−2ζ

]}
,
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coming from evaluating the terms involving g
(1)
− and f

(1)
− in the square bracket of (2.63).

As before, Λ− does not depend on (D−/C−)(1) and, as argued in the discussion sur-

rounding (3.13), the two terms in the final braces of (2.73) cancel to leading order,

ensuring that Λ− vanishes to the order we require. This allows the solution

s

(
D−
C−

)(1)

=
χ
[
s
(
ĉ

(1)
s + ĉ

(1)
v

)
+ 3

8
ĉF

]
2c (a′ − a)

(2.74)

×

[
(c+ a) + (c+ a′)

(
D−
C−

)(0)

(2κε)−2ζ

]2

(2κε)2ζ .

3 Renormalization

So far so good. But as things stand it looks like all predictions of nucleus-induced shifts

on atomic energy levels depend explicitly on the arbitrary parameters ε (the position

where the boundary conditions (2.58) and (2.60) are imposed) and η (the regularization

scale associated with the divergent integrals N1, N2, D1 and D2 – introduced e.g. below

eq. (E.42)). We now address how sensible predictions are possible despite the presence

of these arbitrary scales.

Physical predictions are possible because all of the dependence on these arbitrary

scales can be renormalized into the definitions of effective couplings like cs, cv and cF .

That is to say: what counts are physical predictions that relate observables to other

observables, and effective couplings just play a role in intermediate steps when making

these relations. For instance, in practice measurements of some observables are usually

used to determine the values of the effective couplings, and any real physical content

only emerges once these values are used to infer the numerical size of other observables

(that can themselves be measured). What is important is that all of the arbitrary

dependence on ε and η cancels out once observables are related to observables. In

detail, this cancellation happens because any explicit dependence on ε and η cancels

with an implicit dependence that is hidden in the values that are used for ĉs(ε, η),

ĉv(ε, η) and ĉF (ε, η). If ε and η were varied then the inferred values these couplings

acquire on comparison to measurements also change, and they do so (by construction)

in precisely the way that is required to keep physical observables fixed.

3.1 Cancellation of ε-dependence

To see how this works, start first with the cancellation of ε-dependence. We do so first

for those nuclear finite-size contributions that do not depend on nuclear spin and then

repeat the exercise at linear order in nuclear spin.
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3.1.1 Contributions independent of nuclear spin

At one level the dependence on ε that is required of the couplings ĉ
(0)
s and ĉ

(0)
v is simply

given by the boundary condition itself: eq. (2.58), provided this is interpreted as giving

the left-hand side as a function of ε, with the parameter (D+/C+)(0) held fixed. In

this point of view most of the information contained in (2.58) specifies the class of

trajectories along which any couplings like ĉ
(0)
s and ĉ

(0)
v must evolve in order to keep

observables independent of ε. The constant (D+/C+)(0) is then regarded as specifying

precisely which trajectory within this class the couplings of a particular nucleus lie.

-�� -� � � ��
-�

-�

�

�

�

��[ϵ/ϵ*]

�(ϵ)

Figure 1: Illustration of the two categories of RG flow described by the solutions

(F.13) to the evolution equation (F.11). This figure plots the universal variable v(ε)

against the logarithmic variable ln(ε/ε?). An example of each of the two categories of

flow is shown.

This picture is laid out in more detail in [64, 70–73] and briefly summarized for

convenience in Appendix F. The upshot is that relations like (2.64) and (2.70) can all

be regarded as special cases of equations of the form:

g(ε) =
A(2κε)2ζ +B

C(2κε)2ζ +D
, (3.1)

where A,B,C and D are known parameters and g is a representative coupling (i.e. a

specific combination of the couplings cs, cv and cF ). For any such evolution it is possible
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to define a universal coupling v(ε), such that

g(ε) =
1

2

(
A

C
− B

D

)
v(ε) +

1

2

(
A

C
+
B

D

)
. (3.2)

and for which the evolution of v with ε is simple. As is easily shown (e.g. in Appendix

F), eqs. (3.1) and (3.2) ensure that v satisfies

ε
dv

dε
= ζ(1− v2) . (3.3)

whose general solution is

v(ε) =
(v0 + 1)(ε/ε0)2ζ + (v0 − 1)

(v0 + 1)(ε/ε0)2ζ − (v0 − 1)
=

(ε/ε?)
2ζ + y?

(ε/ε?)2ζ − y?
. (3.4)

Here the first equality chooses the integration constant to ensure v(ε0) = v0, and the

second equality instead chooses v(ε?) = 0 (if y? = −1) or v(ε?) =∞ (if y? = +1), where

y? = sign(|v| − 1) = ±1 is a universal constant along the trajectory (in the sense that

it does not depend on ε).

For ζ > 0 eq. (3.4) describes a universal flow that runs from v0 = −1 to v∞ = +1

as ε flows from 0 to ∞, corresponding to the initial variable flowing from g0 = B/D

when ε = 0 to g∞ = A/C as ε → ∞. Plots of these flows for each choice of y? = ±1

are given explicitly in Fig. 1. Physically, this flow describes the crossover between

the two independent solutions to the radial mode equation with increasing distance

from the source at the origin [73] (i.e. in the present case, from the nucleus). This

crossover happens because the two radial solutions have different small-r asymptotic

forms (typically power laws, with powers related to the two fixed points of the above

flow equation), with one solution or the other dominating at large or small radius.

To keep things concrete we next show how things work for positive-parity j = 1
2

states, and then return to describe the extension to negative-parity states.

Positive parity

For the specific case of j = 1
2

parity-even states the evolution equation predicted by

(2.58) has the form of (3.1) if we identify g = −
(
ĉ

(0)
s − ĉ(0)

v

)
/χ and use ζ =

√
1− (Zα)2

and

A

C
=
c+ a

c− a
=
−1 + ζ − (m+ ω)Zα/κ

−1− ζ − (m− ω)Zα/κ
' n+ · · ·

B

D
=
c+ a′

c− a′
=
−1− ζ − (m+ ω)Zα/κ

−1 + ζ − (m− ω)Zα/κ
' 4n

(Zα)2
+ · · · . (3.5)
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The approximate equalities here specialize to the leading Coulomb expression m−ω '
(Zα)2m/(2n2) + · · · and so κ ' Zαm/n + · · · as well as ζ ' 1 − 1

2
(Zα)2 + · · · , with

ellipses describing contributions suppressed by additional powers of (Zα)2.

Applying these expressions – as well as χ =
√

(m− ω)/(m+ ω) ' Zα/(2n) + · · ·
– to (3.2) then shows that the evolution of the quantity

λ̄
(0)
+ := ĉ(0)

s − ĉ(0)
v = −χ

[
(c+ a) + (c+ a′) (D+/C+)(0) (2κε)−2ζ

(c− a) + (c− a′) (D+/C+)(0) (2κε)−2ζ

]
, (3.6)

has the equivalent form

λ̄
(0)
+ = −χ

2

(
c+ a

c− a
− c+ a′

c− a′

)
v

(0)
+ (ε)− χ

2

(
c+ a

c− a
+
c+ a′

c− a′

)
= −χ

2

(
c+ a

c− a
− c+ a′

c− a′

)[
(ε/ε?+)2ζ + y?+

(ε/ε?+)2ζ − y?+

]
− χ

2

(
c+ a

c− a
+
c+ a′

c− a′

)
. (3.7)

Using the values given in (2.20) for the parameters a, a′ and c then gives

λ̄
(0)
+ '

1

Zα

(
v

(0)
+ − 1

)
=

1

Zα

{[
(ε/ε?+)2ζ + y?+

(ε/ε?+)2ζ − y?+

]
− 1

}
, (3.8)

which drops terms suppressed by (Zα)2 relative to those shown.

Comparing eqs. (3.6) and (3.7) reveals something interesting. Although the inte-

gration constant (D+/C+)(0) appears in both B and D, it completely cancels out of

the differential evolution equations, which depend only on the ratios A/C and B/D.

This shows that (D+/C+)(0) can also be regarded as the integration constant obtained

when integrating (3.3), and so carries the same information as do the parameters ε?+
and y?+. Rewriting (3.7) to have the form eq. (3.6) makes this explicit:(

D+

C+

)(0)

= −y?+
(
c− a
c− a′

)
(2κε?+)2ζ ' −16y?+(mε?+)2

n(n+ 1)

(
2Zαmε?+

n

)2ζ−2

+ · · ·

=: − c

n(n+ 1)
+O[(Zα)2] , (3.9)

where the last equality defines the n-independent constant c = 16y?+(mε?+)2. Since

observable quantities (like electron energy shifts) depend on the boundary conditions

only through the value D/C , eq. (3.9) shows that observables also only depend on the

renormalization-group invariant parameters, like (ε?, y?), that characterize the effective

couplings.

Another important property of (3.8) is its n-independence, at least at leading order

in (Zα)2. This considerably simplifies the O(s) renormalization story, starting with
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being responsible for the vanishing of Λ+ as defined in (2.68). In particular, notice that

the contents of the final braces in (2.68) have the form λ̄
(0)
+ − ˜̄λ(0)

+ where ˜̄λ(0)

+ and λ̄
(0)
+

differ only by being evaluated using different quantum numbers – such as ñ and j̃ as

opposed to n and j and so on. But because (3.8) is independent of these state quantum

numbers it follows that ˜̄λ(0)

+ = λ̄
(0)
+ to the accuracy to which we work. Furthermore, as

mentioned above (and is seen explicitly below), the n-dependence appearing in (3.9) is

precisely what is required to reproduce the proper energy shifts found in the literature

for non-Coulomb nuclear structure related energy shifts [29, 106].

Negative parity

We next repeat the above story for nuclear-spin independent interactions, but for j = 1
2

negative-parity states. At zeroth order in s the relevant boundary condition [64, 72] is

as given in (2.70)

λ̄
(0)
− := ĉ(0)

s + ĉ(0)
v = − 1

χ

[
(c− a) + (c− a′) (D−/C−)(0) (2κε)−2ζ

(c+ a) + (c+ a′) (D−/C−)(0) (2κε)−2ζ

]
, (3.10)

which defines the variable λ̄
(0)
− . This again shows how ĉ

(0)
s + ĉ

(0)
v must depend on ε

to ensure that physical quantities do not. It also falls into the category of evolution

considered in (3.1), with g = −λ̄(0)
− χ = −

(
ĉ

(0)
s + ĉ

(0)
v

)
χ and

A

C
=
c− a
c+ a

=
1− ζ − (m− ω)Zα/κ

1 + ζ − (m+ ω)Zα/κ
' − 1

4n
(Zα)2 + · · ·

B

D
=
c− a′

c+ a′
=

1 + ζ − (m− ω)Zα/κ

1− ζ − (m+ ω)Zα/κ
' − 1

n
+ · · · . (3.11)

The universal evolution equivalent to (3.10) then is

λ̄
(0)
− = − 1

2χ

(
c− a
c+ a

− c− a′

c+ a′

)
v

(0)
− (ε)− 1

2χ

(
c− a
c+ a

+
c− a′

c+ a′

)
(3.12)

= − 1

2χ

(
c− a
c+ a

− c− a′

c+ a′

)[
(ε/ε?−)2ζ + y?−

(ε/ε?−)2ζ − y?−

]
− 1

2χ

(
c− a
c+ a

+
c− a′

c+ a′

)
,

whose leading form for small Zα is

λ̄
(0)
− ' −

1

Zα

(
v

(0)
− − 1

)
= − 1

Zα

{[
(ε/ε?−)2ζ + y?−

(ε/ε?−)2ζ − y?−

]
− 1

}
, (3.13)
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which again drops terms suppressed by (Zα)2 relative to those shown. Rewriting (3.12)

to have the form eq. (3.10) allows (D−/C−)(0) to be expressed in terms of ε?− and y?−,

giving (
D−
C−

)(0)

= −y?−
(
c+ a

c+ a′

)
(2κε?−)2ζ (3.14)

' −4y?−

(
n− 1

n3

)
(Zαmε?−)2

(
2Zαmε?−

n

)2ζ−2

+ · · · .

Note the O[(Zα)2] suppression of this relative to the corresponding result (3.9) in the

parity-even case, as expected due to the near-nucleus suppression of l = 1 electronic

states relative to l = 0 wave functions.

3.1.2 Nuclear-spin dependent contributions

The arguments made to this point are special cases of those used for spinless nuclei in

[64]. This section now extends these considerations to include terms at linear order in

s, focussing in turn on j = 1
2

states with even and odd parity.

Positive parity

Consider first the apparent ε-dependence coming from the O(s) part of the boundary

condition (2.58), as given explicitly in (2.67). As in previous sections the ε-dependence

of the couplings can be read off directly from the boundary condition, which in this

case states that

λ̄
(1)
+ := ĉ(1)

s − ĉ(1)
v +

3

8

(
ĉF
s

)
(3.15)

= −χ
(

D+

C+

)(1)
2c (a′ − a) (2κε)−2ζ[

(c− a) + (c− a′) (D+/C+)(0) (2κε)−2ζ
]2 .

This expression uses the positive-parity results $ = +1 and 2$+ 1 = 3. It is useful to

trade the dependence on (D+/C+)(0) in this expression for ε?+ using (3.9), leading to

λ̄
(1)
+ = −

[
2χc(a′ − a)

(c− a)2

]
(ε/ε?+)2ζ

[(ε/ε?+)2ζ − y?+]2

(
D+

C+

)(1)

(2κε?+)−2ζ . (3.16)

Just like in previous sections, the requirement that observables remain ε-independent

requires λ̄
(1)
+ (and so also its particular combination of ĉ

(1)
s , ĉ

(1)
v and ĉF ) must vary with

ε as indicated in this expression, with (D+/C+)(1) held fixed. Notice, in particular, that

this coupling evolution does not require any new invariant parameters beyond ε?+ and
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Figure 2: A plot of how λ̄
(1)
+ (ε, η) runs as a function of ε (with η fixed), based on (3.16).

The RG-invariant scale ε?+ appearing here is the same one that also labels the running

of the spin-independent interactions in λ̄
(0)
+ . The vertical scale is arbitrary because this

depends on choices made for the value of η, as described in the main text.

y?+ already encountered in the running of λ̄
(0)
+ . With these definitions the expression

(2.69) for (D+/C+)(1) becomes

s

(
D+

C+

)(1)

= −(c− a)2(2κε?+)2ζ

2χc (a′ − a)

[(
ε

ε?+

)2ζ

− y?+

]2 (ε?+
ε

)2ζ
[
s
(
ĉ(1)
s − ĉ(1)

v

)
+

3ĉF
8

]
,

' −8Zα(mε?+)2

n(n+ 1)

(
2Zαmε?+

n

)2ζ−2
[(

ε

ε?+

)2ζ

− y?+

]2 (ε?+
ε

)2ζ

(3.17)

×
[
s
(
ĉ(1)
s − ĉ(1)

v

)
+

3ĉF
8

]
.

There is an important difference between this expression and previous discussions.

The difference is that s
(
ĉ

(1)
s − ĉ(1)

v

)
+ 3

8
ĉF = λ̄

(1)
+ = λ̄

(1)
+ (ε, η) must also depend on

the other regularization parameter, η, in order to cancel the explicit η-dependence

hidden in Cη in expressions like (2.48). This η-dependence is hidden in the couplings

ĉ
(1)
s , ĉ

(1)
v and ĉF since these are the parameters whose renormalization absorbs this

particular dependence. So although the ε-dependence of s
(
ĉ

(1)
s − ĉ(1)

v

)
+ 3

8
ĉF cancels

the explicit ε-dependence in (3.17), the same cannot be true for the η dependence,

implying (D+/C+)(1) is implicitly a function of η. The ultimate cancellation of this
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η-dependence is described below after first summarizing how the ε-dependence cancels

for parity-odd states at O(s).

Negative parity

Consider first the apparent ε-dependence coming from the O(s) part of the boundary

condition (2.60), as given explicitly in (2.72). For negative parity this states that

λ̄
(1)
− := ĉ(1)

s + ĉ(1)
v +

3

8

(
ĉF
s

)
(3.18)

=
1

χ

(
D−
C−

)(1)
2c (a′ − a) (2κε)−2ζ[

(c+ a) + (c+ a′) (D−/C−)(0) (2κε)−2ζ
]2 .

Trading the dependence on (D−/C−)(0) in this expression for ε?− using (3.14) then gives

λ̄
(1)
− =

[
2c(a′ − a)

χ(c+ a)2

]
(ε/ε?−)2ζ

[(ε/ε?−)2ζ − y?−]2

(
D−
C−

)(1)

(2κε?−)−2ζ . (3.19)

-��� -��� ��� ��� ���
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Figure 3: The running of λ̄
(1)
− as a function of ε, based on (3.19). The RG-invariant

scale ε?− is the same as the scale controlling the running of λ̄
(0)
− . For plotting purposes

we hold η fixed and so the vertical axis has an arbitrary scale that depends on the

precise values chosen for η.

As before, this shows how λ̄
(1)
− (and so also the particular combination of ĉ

(1)
s , ĉ

(1)
v

and ĉF characteristic of negative parity states) must vary with ε, with (D−/C−)(1) held
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fixed, in order to keep observables ε-independent. The solution, (2.74), for (D−/C−)(1)

then becomes

s

(
D−
C−

)(1)

=
χ(c+ a)2(2κε?−)2ζ

2c (a′ − a)

[(
ε

ε?−

)2ζ

− y?−

]2 (ε?−
ε

)2ζ
{
s
[
ĉ(1)
s + ĉ(1)

v

]
+

3ĉF
8

}
,

' 2(n− 1)(Zα)3(mε?−)2

n3

(
2Zαmε?−

n

)2ζ−2

(3.20)

×

[(
ε

ε?−

)2ζ

− y?−

]2 (ε?−
ε

)2ζ
{
s
[
ĉ(1)
s + ĉ(1)

v

]
+

3ĉF
8

}
,

again exhibiting a P -wave (Zα)2 suppression relative to the parity-even case. This

evolution is shown in Figure 3.

3.2 Cancellation of η-dependence

We now return to describing how divergent η-dependence found in earlier sections gets

renormalized.

To this end recall that to linear order in s the nuclear-structure contribution to

electronic energy levels has the form given in (2.25), of which the main focus in this

section is on the first two terms on the right-hand side:

δωnFj$ + ε
(1)
nFj$ =

(
δω

(0)
nFj$ + δω

(1)
nFj$

)
+
(
εhfs
nFj$ + δε

(1)
nFj$

)
. (3.21)

Here δω
(0)
nFj$ and δω

(1)
nFj$ are the spin-independent and O(s) contributions to δωnFj$,

given by using D/C = (D/C )(0) + s(D/C )(1) in the energy expression (C.10), while

εhfs
nFj$ is the hyperfine (point-nucleus but nuclear-spin dependent) energy shift of eq. (2.47)

and

δε
(1)
nFj$ = εhfs

nFj$

[
1 + (D/C )(N1/Npt) + (D/C )2(N2/Npt)

1 + (D/C )(D1/Dpt) + (D/C )2(D2/Dpt)
− 1

]
= εhfs

nFj$

[(
D

C

)(0)(
N1

Npt

− D1

Dpt

)
+ · · ·

]
(3.22)

' εhfs
nFj$

[
Cη −

c

n
+ · · ·

]
,

is the nuclear-structure part of the contribution to ε
(1)
nFj$ of eq. (2.48) once εhfs

nFj$ has

been subtracted out.

The issue to be addressed arises because the integrations appearing in δε
(1)
nFj$ di-

verge in the near-nucleus (r → 0) limit; a divergence that is dealt with using a regulation
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parameter η. This section traces how this unphysical η-dependence is renormalized by

the effective couplings ĉ
(1)
s , ĉ

(1)
v and ĉF that appear in δω

(1)
nFj$ through its dependence

on (D/C )(1) (such as, e.g., eq. (3.17)).

To display this cancellation explicitly we require the dependence of δω
(1)
nFj$ on

(D+/C+)(1). This is found by expanding the general result (C.10) of Appendix C –

found by solving (2.22) for nonzero D/C . Specializing (C.10) to positive-parity, j = 1
2

states one finds

δω
(0)

n 1
2

+
' −

κ3
Dn(n+ 1) (D+/C+)(0)

[
1− (2− 2ζ) (Hn+1 + γ)

]
2m2ZαH

' 8y?+(Zα)2m(mε?+)2

n3H

(
2Zαmε?+

n

)2ζ−2

+ · · · , (3.23)

and

δω
(1)

nF 1
2

+
' −sXF

[
κ3
Dn(n+ 1)

2m2Zα

(
D+

C+

)(1)

+ · · ·

]

' 4(Zα)3m(mε?+)2

n3

(
2Zαmε?+

n

)2ζ−2

(3.24)

×

[(
ε

ε?+

)ζ
− y?+

(ε?+
ε

)ζ]2 [
s
(
ĉ(1)
s − ĉ(1)

v

)
+

3ĉF
8

]
XF + · · · ,

where the second lines of (3.23) and (3.24) respectively use (3.9) and (3.17), as well as

H := 1− n(n+ 1) (D+/C+)(0) [1− 4(1− ζ) (Hn+1 + γ)]

4(1− ζ)
− 5(1− ζ) + · · ·

' 1 +
4y?+(mε?+)2

(Zα)2
+ · · · , (3.25)

with Hn =
∑n

k=1 1/k being the harmonic numbers and γ being Euler’s constant. As we

shall see, matching implies mε?+ ∝ mRZα and so the ratio mε?+/(Zα) proves to be

small for electrons (though only order 1
2

for muons). The ellipses in these expressions

represent terms that involve additional powers of one or both of the small quantities

(D+/C+)(0) or (Zα)2.

The η-dependence of the couplings is now determined by requiring physical quan-

tities not depend on η. This implies

d

dη

[
−sXF

(Zα)2m(n+ 1)

2n2

(
D+

C+

)(1)

+ δε
(1)

nF 1
2

+
+ · · ·

]
= 0 , (3.26)

– 44 –

Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

175



and so, using (3.22)

d

dη

(
D+

C+

)(1)

XF '
2n2

(Zα)2(n+ 1)

(
εhfs
nF 1

2
+

sm

)
dCη
dη
' 2XFZα

n(n+ 1)

dCη
dη

. (3.27)

Since Cη is n-independent (at leading order in Zα) and since eq. (3.17) implies

the same is also true of n(n + 1)(D+/C+)(1), it follows that the η-dependence can be

cancelled by performing an η-dependent but n-independent shift of the combination

s
(
ĉ

(1)
s − ĉ(1)

v

)
+ 3

8
ĉF . The integral of (3.27) then is(
D+

C+

)(1)

=

(
D+

C+

)(1)

phys

+
2n2

(Zα)2(n+ 1)

(
εhfs
nF 1

2
+

sXFm

)
Cη

'
(

D+

C+

)(1)

phys

+
2Zα

n(n+ 1)
Cη , (3.28)

where the first term is both ε- and η-independent and inversely proportional to n(n+1).

Although the above discussion cancels the η-dependent part of δε
(1)

nF 1
2

+
, there is (as

always) clearly considerable freedom in choosing the finite parts of the counterterms.

We here use this freedom to define the new n-independent RG-invariant parameter εF+,

through the definition (notice the resemblance to (3.9), apart from overall sign)(
D+

C+

)(1)

phys

:=

(
c− a
c− a′

)(
2ZαmεF+

n

)2ζ

' 16(mεF+)2

n(n+ 1)

(
2ZαmεF+

n

)2ζ−2

. (3.29)

With this definition the net spin-dependent energy shift at this order simply becomes,

δω
(1)

nF 1
2

+
+ δε

(1)

nF 1
2

+
' −sXF

κ3
Dn(n+ 1)

2m2Zα

(
D+

C+

)(1)

+ εhfs
nF 1

2
+

(
Cη −

c

n

)
= −sXF

(
κ3
D

m2

)[
n(n+ 1)

2Zα

(
D+

C+

)(1)

phys

+
c

n

]
(3.30)

' −sXF

[
(Zα)2m

n3

]
8(mεF+)2

(
2ZαmεF+

n

)2ζ−2

+ · · · ,

where the last line drops the c/n term, as appropriate at the order we work. This is to

be compared, say, with (3.23) for δω
(0)

nF 1
2

+
.

A similar story goes through as well for j = 1
2

negative parity states, in principle

involving the definition of a new parameter εF−, however we do not pursue this further

because the additional (Zα)2 suppression of P -wave states makes the contribution of

this new parameter to atomic energy shifts too small to be relevant to the order we

work. We therefore drop the parity label and in what follows simply use εF := εF+ to

denote the parameter relevant to nuclear spin-dependence.
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3.3 Matching to nuclear moments

The previous sections show that without loss of generality all nuclear finite-size effects

can be described – at least out to contributions with dimension (length)3 – in terms of

the three RG-invariant parameters ε?+, ε?− and εF .

In this section our goal is to illustrate how the values of these parameters can in

principle be calculable in terms of known nuclear moments from an underlying nuclear

model. Later sections describe how our parameters can also be obtained from precision

measurements of atomic energy levels. Besides providing some intuition for how big our

parameters should be, relating them to nuclear moments allows a check on our energy-

level calculations, which must reproduce those of specific models once specialized to

the model’s assumptions.

3.3.1 Nuclear moments

Perhaps the simplest nuclear models replace the nucleus with specified charge and

magnetization distributions, ρc and ρm, and although these are over-simplifications of

the real quantum systems, they do allow explicit calculation of finite-size effects in the

nucleus’ electromagnetic response. These distributions are normalized such that

Ze =

∫
d3x′ ρc(x

′), µN =

∫
d3x′ ρm(x′), (3.31)

where (as in earlier sections) Ze is the total nuclear charge and µN is the nuclear mag-

netic moment (including the g-factor). Because atoms are so much larger than nuclei,

atomic observables tend to sample only the first few moments of these distributions,

defined by

〈rk〉c =
1

Ze

∫
d3x′ rkρc(x

′) , 〈rk〉m =
1

µN

∫
d3x′ rkρm(x′) . (3.32)

For instance, the first model-independent parameterization of a nuclear-size atomic

energy shift was written down by Karplus, Klein and Schwinger for Hydrogen in [27]

for the nS1/2
20 state, giving

δω
(0)

n 1
2

+
' 2

3
(Zα)4m3

r〈r2〉c , (3.33)

where mr is the reduced mass.

20Here, and in the rest of the paper we use the spectroscopic notation, nLF
j , where n is the principal

quantum number, L is the orbital angular momentum quantum number, j is the total angular momen-

tum quantum number of the orbiting lepton and F is the total atomic angular momentum quantum

number (if appropriate and necessary).
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A further step was taken by Zemach in [28], who computed the influence of the

magnetization distribution to find (for total atomic spin F = 0, 1)

δω
(1)

1F 1
2

+
' −2 sXF

(mr

m

)3

(Zα)4m2〈r〉cm + · · · , (3.34)

with s as defined in (2.35) and the first Zemach moment, 〈r〉cm, being one of many such

moments defined by

〈rk〉cm =
1

ZeµN

∫
d3x′

∫
d3y′ rkρc(x

′)ρm(y′) . (3.35)

Friar categorized finite-size effects [29] out to third-order perturbation theory in Zα

as a function of nuclear moments and showed (among other things) that for positive-

parity j = 1
2

(i.e. nS1/2) states they can be written as,

δω
(0)

n 1
2

+
=

2

3
(Zα)4m

3
r

n3

{
〈r2〉c −

1

2
mr(Zα)〈r3〉cc − (Zα)2

[
〈r3〉c〈r−1〉c

3
− IREL

2 − IREL
3

+〈r2〉c
(
Hn−1 + γ − 13n2 + 4n− 9

4n2
+

〈
ln

[
2mr(Zα)r

n

]〉
c

)]
+m2

r(Zα)2

[
INR

2 + INR
3 +

2

3
〈r2〉c

(〈
r2 ln

[
2mr(Zα)r

n

]〉
c

(3.36)

+〈r2〉c
(
Hn−1 + γ − 4n+ 3

3n

))
+ 〈r3〉c〈r〉c +

〈r4〉c
10n2

+ 〈r5〉c〈r−1〉c
]}

+ . . . ,

where Hn are again the harmonic numbers – defined below (3.25) – while γ is Euler’s

constant, the ellipses represent terms of order (Zα)7 or higher, and INR
2 , INR

3 , IREL
2 , IREL

3

are parametric integrals whose detailed form plays no role in what follows (but, for those

interested, can be found in [29]).

Calculations like these based on fixed distributions of charge and magnetization

miss dynamical effects, such as those due to nucleon motion and polarizability (that

are not included in [29]). These effects are included in the modern approaches to pre-

cision atomic calculations that dominate the more recent literature [50, 52, 55, 57],

which involve more detailed modelling of nucleon substructure, nucleon motion and

inter-nucleon interactions. Some of the results of these more sophisticated calcula-

tions nonetheless overlap with eqs. (3.36) and (3.38), typically when describing ‘elastic’

contributions (for which the nucleus is assumed to remain unexcited within internal

lines when evaluating the relevant Feynman graphs – such as those describing virtual

photon exchange with the orbiting lepton). Other contributions fall outside the above

expression, such as those inelastic contributions that sum over excited nuclear states

and are related to the electric and magnetic polarizabilities of the nucleus. As can be
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seen in calculations for deuterium in [45, 57], the split between elastic and inelastic

contributions can be artificial, and they are better considered together.

Combining these dynamical effects [57] with the results given above then gives (for

the nuclear-spin independent shift of nS1/2 states),

δω
(0)

n 1
2

+
=

2

3
(Zα)4m

3
r

n3

{
〈r2〉c −

1

2
mr(Zα)〈r3〉eff

cc − (Zα)2〈r2〉c
(
Hn−1 + γ +

9

4n2
− 1

n

−3 + ln

[
2mr(Zα)

n

]
+ ln[〈rC2〉]

)
+m2

r(Zα)2

[
〈r4〉c
15n5

(3.37)

+
2

3
〈r2〉c〈r2〉c

(
Hn−1 + γ − 1

n
+ 2 + ln

(
2Zαmr〈rC1〉

n

))]}
+ . . . ,

where the ellipses now only denote terms of order O ((Zα)7) or higher, 〈r3〉eff
cc is an

effective radius that takes into account the inelastic contributions of the two-photon

Coulomb exchange21, and 〈rC2〉, 〈rC1〉 are again other nuclear moments, whose defini-

tions from [57] we do not repeat here as they do not qualitatively contribute to our

discussion.

For some purposes it is also necessary to know similar results for the nucleus-

induced energy shift for parity-negative j = 1
2

states (nP1/2). These are suppressed by

the small size of the wave-function at the nucleus, which introduces two more powers

of Zα, with the result coming from a static nuclear charge distribution [29] to order

O [(Zα)6] given by

δω
(0)

n 1
2
− =

n2 − 1

3n5
(Zα)4m3

r

{
1

2
(Zα)2〈r2〉c +

1

15
(Zα)2m2

r〈r4〉c
}

+ . . . , (3.38)

where the ellipses again denote terms higher order in (Zα). Nuclear finite-size related

polarizability contributions for Hydrogen do not yet contribute at order (Zα)6 for P -

states and so can be ignored. (Even if present, such terms would not change the

arguments made below.)

Energy shifts sensitive to nuclear spin – such as (3.34) – are also relevant at order

(Zα)6, since – c.f. eq. (2.35) – for Hydrogen s ∼ (m/M)(Zα). Since m/M ∼ Zα

for electrons the result (3.34) suffices to present experimental accuracy for ordinary

Hydrogen, but the larger muon mass (and high experimental precision) implies that

corrections involving both nuclear structure and spin can also be important for muonic

Hydrogen. These are written in terms of momentum-space integrals over the proton

21There is a cancellation between the original 〈r3〉cc term in (3.36) (known as the Friar moment)

and a certain part of the polarizability [45] but since the inelastic contributions at this order depend

on the lepton quantum numbers the same way as the elastic contributions they can be combined to

define the effective nuclear moment, 〈r3〉eff
cc .

– 48 –

Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

179



form-factors in [107], and a position-space equivalent is calculated in [56] as a part

of elastic nuclear-structure corrections, leading (in our notation – see eq. (2.25) and

(3.21)) to the total spin-dependent result

δω
(1)

nF 1
2

+
+ δε

(1)

nF 1
2

+
' −sXF

n3

{
2
(mr

m

)2

(Zα)4m2
r〈r〉cm −

4

3
(Zα)5m3

r〈r2〉c
[
− 1

n
+ γ +Hn−1

+ ln

(
2Zαm〈rpp〉

n

)
+
〈r2〉m

4n2〈r2〉c

]}
+ · · · (3.39)

with atomic spin F = 0, 1 and with ellipses representing terms of (Zα)7 or higher. Here

〈rpp〉 is yet another nuclear parameter (whose detailed form is found in [56], but whose

precise definition is not needed in what follows).

3.3.2 Matching to RG-invariants

Eqs. (3.37), (3.38) and (3.39) seem to involve a lot of nuclear parameters. But while it is

true that these parameters all capture something different (and in principle measurable)

about the electromagnetic properties of nuclei, a major point in this paper (and of [64])

is that these nuclear parameter do not all appear independently if one’s interest is only

the very low energies accessed by atomic energy shifts.

The formalism used in this paper captures nuclear effects using dramatically fewer

parameters, and can do so because it expands from the get-go in powers of the small

ratio of nuclear to atomic size. It is the timely use of this low-energy approximation that

underlies its simplicity. Furthermore, it does not make assumptions about the validity

of any particular nuclear models (including dynamical effects, such as polarizabilities).

It is therefore guaranteed to capture all possible nuclear effects for atomic levels, and

must in particular include the predictions of any specific model. In particular, this

means that the energy-shift formulae (3.37), (3.38) and (3.39) must agree with those

computed in earlier sections, for some choice of the parameters ε?+, ε?− and εF .

In this section we compare our predictions for the nucleus-generated nS1/2 and

nP1/2 energy shifts to the above results and by doing so identify (or ‘match’) how the

parameters ε?+, ε?− and εF are related to the various moments appearing in (3.37),

(3.38) and (3.39). Doing so also shows that the traditional moments always appear

together in these three combinations, so for the purposes of calculating atomic energy

shifts there are fewer independent ‘effective’ nuclear moments than one might naively

think.

To this end, the energy shift computed for nS1/2 and nP1/2 states using the steps

above starting from (C.10), for the spin-independent nuclear-size contribution – accu-

rate to order (Zα)5m4R3 and (Zα)6m3R2 – written using the RG-invariant ε?± is given
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by [64]

δω
(0)

n 1
2

+
=

8(Zα)2

n3

(mr

m

)2

m3
r y?+ε

2
?+

{
1 + (Zα)2

[
12n2 − n− 9

4n2(n+ 1)
(3.40)

− ln

(
2Zαmrε?+

n

)
+ 2− γ −Hn+1

]}
+ · · ·

δω
(0)

n 1
2
− = +2

(
n2 − 1

n5

)
(Zα)4

(mr

m

)2

m3
rε

2
?− + . . . , (3.41)

where the ellipses represent terms of higher order in (Zα)2 and (mε?) than those written.

In this expression we evaluate κDnj = Zαmr/N ' Zαmr/n+ · · · , with mr = mM/(m+

M) being the system’s reduced mass.

Earlier sections in this paper also compute the nuclear-size-related effects at linear

order in the nuclear spin – i.e. linear in s – using the effective couplings with dimension

(length)2 in Sp. The result obtained from (3.30) and (3.29) gives,

δω
(1)

nF 1
2

+
= −sXF

8(Zα)2

n3

(mr

m

)2

m3
r ε

2
F + · · · , (3.42)

where ellipses represent terms higher order in mεF and (Zα)2 than those written (such

as the mixed hyperfine, finite-size effects for negative-parity, j = 1
2

states found in [30]).

To this same accuracy no finite-size corrections enter into the j = 1
2

negative-parity

energy shift.

We now can compare formulae to read off expressions for the RG-invariant scales ε?±
and εF . We do so starting with the parity-even spin-independent shifts – i.e. equating

(3.37) to (3.40), excluding the terms suppressed relative to the leading one by (R/aB)2,

– which requires the following terms to agree for all n:

8(Zα)2

n3

(mr

m

)2

m3
r y?+ε

2
?+

{
1 + (Zα)2

[
12n2 − n− 9

4n2(n+ 1)

+2− γ −Hn+1 − ln

(
2Zαmrε

+
?

n

)]}
=

2

3
(Zα)4m

3
r

n3
〈r2〉c

{
1 + (Zα)2

[
1

n
+ 3−Hn−1 − γ −

9

4n2
(3.43)

− ln

(
2Zαmr〈rC2〉

n

)]}
− m4

r

3n3
(Zα)5〈r3〉eff

cc .

First off, agreement on the overall sign requires y?+ = +1. Second, although these

at first sight appear to differ in their n dependence, writing Hn+1 in terms of Hn−1

(and a little algebra) shows this to be an illusion. They agree provided only that the
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RG-invariant ε?+ is chosen to be (at this order)

ε2?+ :=
(Zα)2

12

(
m

mr

)2
{
〈r2〉c

[
1 + (Zα)2

(
1 +

1

2
ln

[(
m

mr

)2
(Zα)2〈r2〉c

12〈rC2〉2

])]
−

−1

2
mr(Zα)〈r3〉eff

cc

}
. (3.44)

A similar exercise for the parity odd states compares the leading term in (3.38) to

(3.41), giving agreement when

ε2?− :=
(Zα)2

12

(
m

mr

)2

〈r2〉c , (3.45)

to the order required. Several things are noteworthy about these expressions

• First, notice that to the order we work this also implies

ε?+ = ε?− =: ε? , (3.46)

as perhaps might have been expected for a parity-preserving nucleus. In particu-

lar, to the order we work only a single parameter controls the entire contribution

to spin-independent nuclear-size-related energy shifts.

• Second, nuclear effects ultimately enter through so few parameters because they

can only influence atomic properties by changing the value of the integration

constant D/C arising when integrating the radial mode equation. The total

number of independent parameters necessary is therefore given by the number

of integration constants available. Although each partial wave contributes an

independent integration constant, each partial wave is also suppressed at the

nuclear position by additional powers of Zα. Constants associated with higher

partial waves can only enter energy shifts once a minimal precision is required in

powers of Zα.

• Third, notice that matching implies the overall size ε? ∼ ZαR, where R ∼ 1 fm

is a typical nuclear-physics scale (that arises from 〈r2〉c ∼ R2). This shows how

ε? encodes both the nucleus’ intrinsic size, but also the strength with which this

size is probed. Because electromagnetic forces are weak it follows that ε? � R.

• Finally, matching shows that the independent parameters ε? and εF depend explic-

itly on the lepton mass, and so parameters as measured using atomic Hydrogen do

not directly apply to muonic Hydrogen. Although in principle this mass depen-

dence can be computed, its calculation involves more detailed information about
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the nuclear moments. From the point of view of minimizing nuclear-physics re-

lated errors we therefore treat parameters like ε? as being independent for muonic

and electronic Hydrogen.

A similar comparison can be done for the spin-dependent nuclear-size contributions

– i.e. eqs. (3.42) and (3.39). Since (3.42) only works to leading-order accuracy we

restrict to comparing only with the first term in (3.39) when inferring the value for ε+F .

Doing so shows they agree provided we identify

ε2F =
(Zα)2〈r〉cm

4mr

+ · · · . (3.47)

The ellipses show that this comparison can receive corrections once the matching is

done at higher orders in the ratio of nuclear to atomic size (R/aB), or of α.

4 Predictions for energy shifts

This section takes the previous section’s results for how atomic energy levels depend on

finite nuclear size, and uses them to identify observables from which nuclear effects can

be eliminated. Most of the discussion is aimed at electrons orbiting a proton (ordinary

Hydrogen), but (motivated by the prospects of improving measurements) implications

are also explored for muonic Hydrogen.

4.1 Isolating finite-nucleus effects

The main idea is simple: electronic energy levels are given (to the accuracy needed

here) by (2.25) – and the discussion immediately following (2.25) – using also (3.21).

The result is rewritten here as

ωnFj$ = ωpt
nFj$ + ωNSnFj$ , (4.1)

where

ωpt
nFj$ = ωDnj + εhfs

nFj$ + ε
(ho)
nFj$ + εQEDnFj$ + εpt−rec

nFj$

ωNSnFj$ = δω
(0)
nj$ + δω

(1)
nFj$ + δε

(1)
nFj$ + εN−QEDnFj$ + εN−rec

nFj$ . (4.2)

Here ωpt
nFj$ contains all terms that would be present for a spinning point nucleus: ωDnj

being the Dirac-Coulomb energy levels of (2.23) and (2.24); εhfs
nFj$ given by the hyperfine

structure (2.47) caused by the point-nucleus’s magnetic moment; ε
(ho)
nFj$ containing the

higher-order magnetic moment effects for a point nucleus; εQEDnFj$ describing the series

in powers of α that give all the QED corrections to the first two (including the Lamb
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shift), also computed for a point nucleus; and εpt−rec
nFj$ containing all point-nucleus recoil

corrections [108] to the assumed order. All of these contributions are under good

theoretical control and can be calculated in principle with very high precision. For our

purposes all these contributions are conveniently summarized to our assumed precision

in [105] for electronic Hydrogen and in [116] for its muonic counterpart.

All of the influence of nuclear size resides in ωNSnFj$ of (4.2). Of these, the first two

terms, δω
(0)
nj$ + δω

(1)
nFj$, give the change of energy – c.f. eq. (C.10) – induced by the

change in the small-r boundary condition that the presence of the nucleus generates.

The superscripts on these expressions indicate their dependence on nuclear spin, with

δω(k) being proportional to sk, with s given in (2.35). For nS1/2 and nP1/2 states these

are given explicitly by eqs. (3.40), (3.41) and (3.42). The contribution δε
(1)
nFj$, on the

other hand, describes the nuclear-structure modifications to the hyperfine energy, given

by the εF -dependent (and, in principle, c-dependent) terms in (3.30).

The rest of this section exploits the fact that nuclear effects enter into these quan-

tities (to the order computed here) only through the two independent parameters ε?
and εF .

The remaining nuclear terms, εN−QEDnFj$ and εN−rec
nFj$ , complicate the details (but not

the logic) of this exploitation, by complicating the formulae involved. These terms

represent the non-pointlike nuclear finite-size contributions to the QED corrections

and to recoil corrections, which are calculable (see below) but only depend on the value

of ε? (or change the relationship between ε?, εF and nuclear moments), but do not

introduce any new parameters of principle.

4.1.1 Nuclear corrections to QED contributions

There are several ways that QED corrections enter into the above story. The most direct

way is as the perturbative expansion in the bulk interaction LQED int = ieAµΨγµΨ of

the bulk lagrangian (1.4). For graphs involving only electrons and photons these may

be evaluated in the usual way, with the usual results.

What is unusual about the QED Feynman rules obtained from the action given

in (1.4) and (1.5) is the Feynman rules for the nuclear degrees of freedom. In the

effective theory used here the only nuclear degrees of freedom are its first-quantized

center-of-mass position, yµ(τ), and its spin, ξµ(τ). In deriving this action all other

nuclear degrees of freedom are integrated out, leaving them to contribute to low-energy

observables only through their contributions to effective interactions like cs, cv, cF and

so on. But the graphs can nonetheless be evaluated, with the functional integration

over yµ capturing in particular nuclear-recoil effects associated with the nucleus’ motion

in response to electron/photon interactions.
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From this point of view the nuclear finite-size corrections to long-distance QED

effects are calculated by evaluating Feynman graphs involving the nuclear effective cou-

plings cs, cv and so on. No new independent constants enter in these corrections because

they are explicitly built from the same couplings that are used to define the parameters

ε? and εF , implying the existence of a formula of the form εN−QEDnFj$ = εN−QEDnFj$ (ε?, εF ),

whose explicit form we require in the steps outlined below.

Rather than evaluating the ci-dependent Feynman graphs (with i = s, v, F ) to

compute this function ab-initio, we instead are able to infer the result using standard

evaluations of nuclear corrections to QED effects found in the literature. The procedure

is very different for electrons and muons, so we treat them separately in what follows.

Electrons

For atomic Hydrogen one-loop QED corrections involve a vacuum polarization loop

as well as one-loop vertex corrections for both the electron and nuclear couplings.

The energy shift obtained by evaluating these graphs in a second-quantized theory of

nucleons coupled to QED gives the following nucleus-dependent QED energy corrections

[106],

εN−QED
nF 1

2
+

(e) =
2

3
(4 ln 2− 5)α(Zα)5m

3
r

n3
〈r2〉c (4.3)

+sXF

(mr

m

)2 α(Zα)4

πn3
m2
r〈r〉cm

{
5

2
− 4

3

[
ln

(
Λ2

m2

)
− 317

105

]}
.

Here Λ is a nuclear energy scale related to the dipole parameterization of the nuclear

form factors used when evaluating the nuclear electromagnetic vertices in these graphs.

To translate this into a useful form for the present purposes, all of the model-dependent

variables – like Λ and the moments 〈r2〉c and 〈r〉cm – must be traded for a dependence

on the existing variables ε? and εF (as we know must be possible).

This is a particularly simple process for electrons, and it is simple because the

important scales circulating within the QED loops have energies of order the electron

mass. As a result they involve very high energies relative to the scales allowed in

our low-energy effective description. Because of this any QED loop-generated effects

that explicitly involve nuclear properties can only influence physics within a Compton

wavelength of the nucleus, and so from the point of view of the EFT can be described

by a local operator localized at the nuclear position. But because the action Sp of

(1.5) and (2.5) contains the most general local interactions involving the given degrees

of freedom, any nucleus-dependent QED loops can simply be regarded as shifting the

values of the effective couplings that are conceived to be functions of nuclear properties,

and so correcting the formulae (3.44) and (3.47).
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Because of this the nucleus-dependent energy shift contributed by QED loops are

given by precisely the same formulae as above – i.e. eqs. (3.40) and (3.39). Within this

picture the spin-independent and spin-dependent parts of (4.3) are completely captured

by omitting εN−QED
nF 1

2
+

and then simply by using the modified results

ε2? =
(Zα)2

12

(
m

mr

)2
{
〈r2〉c

[
1 + (Zα)2

(
1 +

1

2
ln

[(
m

mr

)2
(Zα)2〈r2〉c

12〈rC2〉2

])
+

+ α(Zα)
(

4 ln 2− 5
)]
− 1

2
mr(Zα)〈r3〉eff

cc + . . .

}
, (4.4)

and

ε2F :=
(Zα)2〈r〉cm

4mr

{
1 +

α

π

(
2

3

[
ln

(
Λ2

m2

)
− 317

105

]
− 5

4

)
+ · · ·

}
(4.5)

instead of (3.44) and (3.47) in the remainder of the energy shifts: eqs. (3.40), (3.41)

and (3.42).

Muons

Incorporation of nucleus-dependent one-loop QED corrections can be done in a similar

way for muonic Hydrogen, though with an important difference. The explicit one-loop

calculation has been done for muonic Hydrogen, with the result [30, 106, 109, 110]

εN−QED
nF 1

2
+

(µ) =
2

3
(4 ln 2− 5)α(Zα)5m

3
r

n3
〈r2〉c (4.6)

+XFs
(mr

m

)2 α(Zα)4

πn3
m2
r〈r〉cm

{
5

2
− 4

3

[
ln

(
Λ2

m2

)
− 317

105

]}
+

4

9n3

[
α(Zα)4

π

]
m3
r

{
〈r2〉c −

1

2
Zαmr〈r3〉eff

cc

}
Ξn 1

2
+,

and

εN−QED
nF 1

2
− (µ) = +

4

9n3

[
α(Zα)4

π

]
m3
r

{
〈r2〉c −

1

2
Zαmr〈r3〉eff

cc

}
Ξn 1

2
− . (4.7)
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The quantity Ξnj$ appearing here vanishes (to the order we work) for j 6= 1
2
, and is

given for j = 1
2

by

(Zα)2 Ξ
n

1
2
$

:=

{(
me

mr

)2
n(n− l − 1)!

[(n+ l)!]3

∫ ∞
0

dρ0 e
−ρ0ρ2l+1

0

[
L2l+1
n−l−1(ρ0)

]2
×
∫ ∞

1

dx e−( me
mr

) nx
(Zα)

ρ0

(
1 +

1

2x2

)√
x2 − 1

}
+

{
(n− 1)!

n [(n)!]3

(
n

2mr

)3(
2Zαmr

n

)
×
∫

d3ρ0

ρ0

e−ρ0L1
n−1(ρ0)G′(ρ0, 0)L1

n−1(0) (4.8)

×
∫ ∞

1

dx e−( me
mr

) nx
(Zα)

ρ0

(
1 +

1

2x2

) √
x2 − 1

x2

}
δ$+ ,

in which the factor of (Zα)2 is extracted so that Ξn 1
2
$ is order unity.22

In these expressions m and mr denote, as usual, the muon mass and the muon-

proton reduced mass, mr = mM/(m + M). The electron mass is here (and only

here) denoted me to emphasize that it is not the orbital lepton’s mass, and enters

through the contribution of electrons in virtual loops. The orbital-angular momentum

quantum number l is the unique one consistent with j = l ± 1
2

and $ = (−)l, while

ρ0 = 2mrZαr/n is the non-relativistic dimensionless radial variable of the Schrödinger-

Coulomb problem and Lkn(x) are the associated Laguerre polynomials,

Lkn(x) =
n∑
p=0

(−1)p
(n+ k)!

(n− p)!(k + p)!p!
xp . (4.9)

Finally G′(x, 0) is the reduced Schrödinger-Coulomb Green’s function for nS1/2 states,

which is not known for general n but is computed for n = 2 in [110] to calculate the

above radiative corrections for the 2P − 2S Lamb shift in muonic Hydrogen.

All of the terms in (4.6) that do not involve Ξn 1
2
$ come from the contributions of

virtual muon loops, and so have the same functional form as did the electron loops for

electronic Hydrogen. Because the important loop momenta for these graphs is set by

the muon mass, their contribution to nucleus-dependent effects can also be captured

by modifying the effective nuclear couplings. They consequently contribute to a shift

in ε? and εF of the same form as in eqs. (4.4) and (4.5), but with m and mr denoting

the muon mass and the muon-proton reduced mass.

22This factor of (Zα)2 can be displayed more explicitly by rescaling the integration variable x →
x̂ := x/(Zα).
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It is the Ξn 1
2
$ terms that are the key difference between the result (4.4) for elec-

tronic Hydrogen and (4.6) for muonic Hydrogen. These terms come from the vacuum

polarization graph, in which virtual electrons circulate within the loop. Although the

dominant momenta in this loop still have magnitudes of order the electron mass, the

electron Compton wavelength is not much smaller than the muonic Bohr radius. This

precludes absorbing this graph into the value of an effective coupling like ε? or εF .

To summarize, the full calculation of nucleus-induced energy shifts in muonic Hy-

drogen, including QED contributions [59, 106, 110], is captured by using the modified

parameters ε? and εF of (4.4) and (4.5) in the energy shift (3.40), (3.41) and (3.42),

and including only the electron loop separately, using

εN−QED
nF 1

2
+

(µ) =
16

3n3

[
α(Zα)2

π

](mr

m

)2

m3
r ε

2
? Ξn 1

2
+ . (4.10)

For electronic Hydrogen this last contribution is not separately required.

4.1.2 Structure-dependent recoil corrections

The arguments used above for QED corrections apply equally well to recoil corrections.

Recoil corrections for a point nucleus are well-known, εpt−rec
nFj$ , εN−rec

nFj$ [111–114] as are

many explicit nuclear-size contributions, the leading ones of these that are not simply

due to substitutions of reduced mass into the charge-radius term give [29, 52, 108, 109]

εN−rec
nFj$ = −(Zα)5

n3

(
m3
r

M

)
〈r〉cm , (4.11)

where we see the Zemach radius, 〈r〉cm emerge in a spin-independent context.

What matters is that to this order the n-dependence of this result is precisely the

same as that of eqs. (3.40), and so it can be absorbed into δω
(0)
nFj$ by shifting ε? from

the value given in (4.4) by adding the new contribution

δε2? = −(Zα)3

12

(
m

mr

)2 〈r〉cm
M

. (4.12)

The upshot is that these nuclear recoil terms, though numerically significant, only

modify the relationship between ε? and nuclear properties; what they do not change is

the functional form of (3.40) as a function of ε?.

4.1.3 Observables

The above sections use a first-quantized EFT to compute all spin-independent nuclear-

size contributions to atomic energy levels that arise at orders (Zα)4m3R2, (Zα)5m4R3
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and (Zα)6m3R2, plus all contributions linear in nuclear spin out to order sm2R(Zα)4.

We show that the results agree with the extant calculations in the literature [105, 106,

116]. Most importantly these calculations show that, on very general grounds, the many

nuclear moments that arise in standard calculations are all captured as contributions

to only two independent effective parameters, our ε? and εF . In this section we use

these results to predict the size of numerous atomic transition energies. By fitting the

two parameters ε? and εF themselves from well-measured atomic transitions we remove

the usual nuclear uncertainties from these calculations.

We focus first on atomic Hydrogen, since for this many more transitions are mea-

sured, but these same techniques can equally well be applied to muonic Hydrogen. The

main difference for muonic Hydrogen is the relative scarcity of measured transitions,

though those that have been measured have been done with spectacular accuracy. We

provide a single prediction for a soon-to-be-measured muonic Hydrogen transition at

the end of this section.

As ever, our starting point is the energy-level expressions (4.1) and (4.2), repro-

duced again here:

ωnFj$ = ωpt
nFj$ + ωNSnFj$ , (4.13)

where (4.2) gives the point-nucleus contribution, and is regarded here to be a known

quantity (since our focus is on nuclear contributions), evaluated to any desired accuracy.

Eq. (4.2) also gives the nuclear-size part of the level shifts as

ωNSnFj$ := δω
(0)
nj$ + δω

(1)
nFj$ + δε

(1)
nFj$ + εN−QEDnFj$ , (4.14)

where the first three terms are considered in detail in this paper given by (3.40), (3.41),

(3.42) and (3.22), in which the parameters y?+ = +1, as well as ε? and εF first arise.

The final term is the nuclear QED radiative correction εN−QEDnFj$ of (4.10), that only

need be considered for muonic Hydrogen (because, as shown above, all of the other

nucleus-dependent QED effects can be absorbed into (3.40), (3.41) and (3.42) when

one uses (4.4) and (4.5) for ε? and εF rather than (3.44) and (3.47)). εN−rec
nFj$ is omitted

from this formula because it can also be absorbed into (3.40) through the shift (4.12).

In practice the nuclear corrections of interest here are only important for j = 1
2

states;

the case to which we specialize below.

Of course, the observables of experimental interest are not atomic energies, they

are the frequencies, ν
(
nLFj − n′L′j′F

′)
, of radiation emitted in a transition between an

initial state nLFj and a final state n′L′j′
F ′ . These are what can be measured with great

precision, and are given in terms of energy differences of the initial and final states,

ν
(
nLj

F − n′L′j′F
′
)

=
(
ωpt
nFj$ − ω

pt
n′F ′j′$′

)
+
(
δωNS

nFj$ − δωNS

n′F ′j′$′

)
+
(
εN−QEDnFj$ − εN−QEDn′F ′j′$′

)
.

(4.15)
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The next two sections use the two best-measured values for these frequencies to

determine ε? and εF , from which predictions can be made for all other levels without

introducing any uncertainties associated with the model-dependence of explicit nuclear

calculations. What makes this strategy work is the observation that only these two

parameters are needed, to the accuracy we work. All of the many potentially relevant

nuclear moments that are naively needed to this accuracy actually only appear in

atomic energy shifts through the two formulae (4.4) and (4.5) that predict the values

for the two parameters ε? and εF . But one never need compute these two parameters

from moments if one instead infers them directly from atomic experiments.

Precisely how many parameters are required for any given accuracy? The answer

depends on the number of powers of Zα and in R/aB one wishes to keep (where aB
is the relevant Bohr radius and R ∼ 1 fm is a typical nuclear length scale), since this

controls when the values of new integration constants like D/C for higher spherical

harmonics become needed. Table 1 gives the size of various nuclear contributions to

energy levels, obtained by estimating the size of nuclear moments to be 〈rk〉 ∼ Rk. For

each order in the expansion in powers of Zα and R/aB ∼ mRZα, this table also shows

how many parameters are in principle required.

Estimates for the numerical size of each contribution is given in Table 1 for both

atomic Hydrogen (for which mRZα � Zα), and for muonic Hydrogen (for which

mRZα ∼ Zα). We consider each of these two cases in turn.

4.2 Atomic Hydrogen

In atomic Hydrogen the three most accurately measured transitions are [6, 8, 105]

ν
(

1SF=1
1
2
− 1SF=0

1
2

)
=: ν1Shfs = 1 420 405.751 768 (1) kHz,

ν
(

2SF=1
1
2
− 2SF=0

1
2

)
=: ν2Shfs = 177 556.834 3 (67) kHz, (4.16)

ν
(

2SF=1
1
2
− 1SF=1

1
2

)
=: ν21 = 2 466 061 102 474.806 (10) kHz,

which have experimental errors of size 10−6 kHz, 6.7 × 10−3 kHz and 10−2 kHz respec-

tively. A large library of other measured transitions having experimental errors of 1

kHz or worse is given in [6], and similar precision also arises in more recent experiments,

such as the recent 3SF=1
1
2

− 1SF=1
1
2

and Lamb shift measurements of atomic Hydrogen

in [25] and [26] respectively. Many of these transitions are reproduced here in Tables 5

through 7.

As Table 1 shows, for atomic Hydrogen the two parameters ε? and εF suffice to

describe nuclear contributions to atomic energy shifts down to an accuracy of about

10−3 kHz, which is much smaller than the ∼ 1 kHz experimental accuracy listed [6]
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for most of the transitions appearing in Tables 5 through 7. For ease of comparison,

contributions of order 10−3 kHz are shaded in green in Table 1. Notice in particular

that these estimates show that the contributions of δε
(1)
nFj$ coming from c in (2.48),

which first arise at order sm3R2(Zα)5, are too small to be relevant at an accuracy of

a Hz, and so can be neglected in what follows.

Fitting for ε? and εF

Before providing more precise numerical estimates for nuclear transitions we provide the

explicit formulae to be used to obtain them. Recalling that all ε? and εF dependence

appears in eqs. (3.40), (3.41) and (3.42) and that (3.22) can be neglected, and that

we can set y?+ = +1 and (for electrons) εN−QEDnFj$ = 0, the nucleus-dependence of the

parity-even j = 1
2

levels is

δωNS

nF 1
2

+
(e) =

8

n3

(
mr

me

)2

(Zα)2m3
r

{
ε2?,e

[
1 + (Zα)2

(
2− γ −Hn+1

− ln

(
2Zαmrε?,e

n

)
+

12n2 − n− 9

4n2(n+ 1)

)]
−
(gNme

2M

)
Zα ε2F ,eXF

}
(4.17)

where the subscript ‘e’ again emphasizes that this expression applies only for electronic

(and not muonic) Hydrogen-like atoms with spin-half nuclei. Here XF is defined in

(2.34) and we leave factors of nuclear charge, Z, explicit in the answer (for applications

to general spin-half nuclei), although take Z = 1 for our numerical applications to

Hydrogen. As above, M denotes the nuclear mass and we write its magnetic moment

as µN = ZegN/(2M) (specializing to Hydrogen via the replacement gN → gp). The

analogous formula for parity-odd j = 1
2

states is

δωNS

nF 1
2
−(e) = 2(Zα)4

(
n2 − 1

n5

)(
mr

me

)2

m3
r ε

2
?,e . (4.18)

Since terms not proportional to XF cancel from any hyperfine interval, we fix εF ,e
using the experimentally measured 2S hyperfine splitting frequency (4.17). Using (for

j = 1
2

states) XF = +2
3

for F = 1 and XF = −2 for F = 0, gives

ν2Shfs =
(
ωpt

21 1
2

+
− ωpt

20 1
2

+

)
− 8

3

(
mr

me

)2 (gNme

2M

)
(Zα)3m3

rε
2
F ,e . (4.19)

It is convenient to group together the experimentally measured value and the theoretical

point-nucleus effects, since these are both regarded as given when effects related to
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nuclear size are of interest. Define therefore the precisely known quantity

∆̂ωnShfs :=
(
ωpt

n1 1
2

+
− ωpt

n0 1
2

+

)
− νnShfs , (4.20)

in terms of which εF ,e is accurately determined by

∆̂ω2Shfs =
8

3

(
mr

me

)2(gNme

2M

)
(Zα)2m3

r ε
2
F ,e . (4.21)

Notice also that these formulae also predict the nuclear-size contributions to the two

hyperfine transitions given in (4.16) are related by

∆̂ω1Shfs = 8 ∆̂ω2Shfs . (4.22)

We similarly use ν21 to fix ε?,e, while using (4.21) to eliminate εF ,e, and so

ν21 =
(
ωpt

21 1
2

+
− ωpt

11 1
2

+

)
+(Zα)2

(
mr

me

)2

m3
rε

2
?,e

{
1 + (Zα)2

[
2− γ − 17

16
− ln

(
Zαmrε?,e

)]}
−8(Zα)2

(
mr

me

)2

m3
rε

2
?,e

{
1 + (Zα)2

[
2− γ − 5

4
− ln

(
2Zαmrε?,e

)]}
−1

4
∆̂ω2Shfs + 2 ∆̂ω2Shfs , (4.23)

which can be rewritten

∆̂ω21 = −7

4
∆̂ω2Shfs (4.24)

+7(Zα)2

(
mr

me

)2

m3
rε

2
?,e

{
1 + (Zα)2

[
81

112
− γ − 8

7
ln 2− ln

(
Zαmrε?,e

)]}
,

which defines the precisely known quantity

∆̂ω21 :=
(
ωpt

21 1
2

+
− ωpt

11 1
2

+

)
− ν21 . (4.25)

For numerical purposes it is useful to have numerical values for these quantities, which

are [105]

∆̂ω1Shfs
= 58.07(57) kHz , ∆̂ω2Shfs

= 7.22(57) kHz and ∆̂ω21 = 955.31(57) kHz ,

(4.26)

which also shows that (4.22) is satisfied, within the errors.
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Eq. (4.24), has the form

xe = ze (ye − ln ze) = −ze ln
(
e−yeze

)
, (4.27)

with ze := (mr ε?,e)
2 and

xe := 2

(
me

mr

)2

(
∆̂ω21 + 7

4
∆̂ω2Shfs

)
7mr(Zα)4

,

ye :=
2

(Zα)2
− 2 ln(Zα) +

81

56
− 2γ − 16

7
ln 2 . (4.28)

This is to be solved for z, and so has solutions given by branches of the Lambert

W -function23

(mε?,e)
2 = eW with W := W−1

(
−xe e−ye

)
+ ye . (4.29)

The Lambert W -function returns real values only for real arguments in the range

x > −e−1, and is double valued for arguments −e−1 < x < 0. One of the branches

takes values −1 < W0(x) < 0 while the other satisfies W−1 < −1 in this range. We

choose the branch, W−1(x), here because (mrε?,e)
2 is both real and small, and because

Zα � 1 implies ye � 1. These two statements are only consistent with one another,

and with eq. (4.29), if W (x) is order −ye for x near zero. The numerical values inferred

in this way for ε? and εF are given in Table 2.

Given these explicit solutions for ε?,e and εF ,e as functions of the two well-measured

energy differences (combined with well-understood point-nucleus theory contributions)

we may now use these to directly express predictions for the nuclear part of the energy

shift for any other energy levels, without direct reference to nuclear physics. For parity-

even j = 1
2

states this gives

δωNS

nF 1
2

+
(e) =

8

n3
(Zα)2

(
mr

me

)2

mr e
W

×
{

1 + (Zα)2

[
2− γ −Hn+1 − ln

(
2Zα

n

)
− W

2
+

12n2 − n− 9

4n2(n+ 1)

]}
− 3

n3
XF ∆̂ω2Shfs , (4.30)

while for parity-odd j = 1
2

states one instead finds

δωNS

nF 1
2
−(e) = 2

(
n2 − 1

n5

)
(Zα)4

(
mr

me

)2

mr e
W . (4.31)

23W (z) is defined as the solution to W (z) eW (z) = z, and is multiple-valued with branches labelled

by an integer k. The branches relevant for real z are W0(z), which is defined for z > 0, and W−1(z),

whose argument satisfies e−1 < z < 0.
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Transition
(

2SF=1
1/2 − 2SF=0

1/2

) (
2SF=1

1/2 − 1SF=1
1/2

)
Experimental value 177 556.834 3 (kHz) 2 466 061 102 474.806 (kHz)

Experimental error 0.0067 (kHz) 0.010 (kHz)

Pt. nucl. theory 177 564.05 (kHz) 2 466 061 103 430.12 (kHz)

Pt. nucl. error 0.57 (kHz) 0.57 (kHz)

Inferred param. (mεF ,e)
2 (mε?,e)

2

Fitted value 3.71× 10−8 2.1020× 10−11

Prop. exp. error 0.0035× 10−8 0.000034× 10−11

Prop. theory error 0.29× 10−8 0.0025× 10−11

Table 2: The experimental values (row 2), the experimental errors (row 3) and the

point-nucleus theoretical values (row 4) and errors (row 5) for the reference transitions

in atomic Hydrogen used for fixing the values of the two nuclear parameters listed in

row 6. The last 3 rows give the values inferred for these parameters (row 7) and the

errors they inherit due to the experimental uncertainty (row 8) and the precision of the

point-nucleus calculation (row 9).

Transition frequencies are then simply given by differences of the above, for different

choices for n and F .

There are three main sources of error when using expressions (4.30) and (4.31) for

transition frequencies. One of these – the ‘truncation’ error – arises because the above

expressions drop terms beyond a fixed order in Zα and mRZα. For electronic Hydrogen

this truncation puts a floor of about 0.001 kHz to the nuclear contribution to atomic

energy shifts. To this must also be added two other sources of error: the experimental

accuracy with which the input quantities ν21 and ν2Shfs are measured (with current

values given in (4.16)), and the uncertainty with which the point-nucleus prediction for

ωpt
nFj$ is known (which is limited in principle by the persistence of theorists). All three

sources of error can be much smaller than is permitted for explicit calculations of the

nuclear moments using nuclear models, and can also expect to improve into the future

unconstrained by limitations in nuclear modelling.

Table 3 lists several atomic levels (taken from [6] and [25, 26]) that are measured

to better than 10 kHz accuracy, and compares for each the overall size of the nuclear-

structure prediction of eqs. (4.30) and (4.31), as well as the three sources of error in

this prediction described above. Tables 5 through 7 list these similar information for a

larger class of measured transitions given in [6]. In all cases the nuclear error is much

smaller than the current experimental uncertainties. Many rows of these tables share

the same values because the only shift that is larger than 10−3 kHz in size arises from
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Transition νexp ∆Efs ∆Eexp ∆Eth ∆Etrunc

2P F=1
1/2 − 2SF=0

1/2 909 871.7(3.2) −143.70 0.0069 0.57 0.00031

1SF=1
1/2 − 1SF=0

1/2 1 420 405.751 768(1) −57.8 0.054 4.5 0.0033

8SF=1
1/2 − 2SF=1

1/2 770 649 350 012(9) −134.348 0.0014 0.080 0.00010

8DF=2,1
3/2 − 2SF=1

1/2 770 649 504 450(8) −136.481 0.0014 0.081 0.00010

8DF=3,2
5/2 − 2SF=1

1/2 770 649 561 584(6) −136.481 0.0014 0.081 0.00010

12DF=2,1
3/2 − 2SF=1

1/2 799 191 710 473(9) −136.481 0.0014 0.081 0.00010

12DF=3,2
5/2 − 2SF=1

1/2 799 191 727 404(7) −136.481 0.0014 0.081 0.00010

3SF=1
1/2 − 1SF=1

1/2 2 922 743 278 671.5 (2.6) −1051.35 0.011 0.62 0.00079

Table 3: Transitions from [26] (row 2), from [6] (rows 3-8) and [25] (row 9) that are

measured with better than 10 kHz accuracy in atomic Hydrogen. Column 2 gives their

experimental values (with experimental errors in brackets); all values given in kHz.

Column 4 gives the nuclear-finite-size contribution to the transition energy predicted

by eqs. (4.30) and (4.31). Columns 5–7 give the uncertainties in this prediction: column

5 is the error from measurement errors in the reference transitions; column 6 gives the

error due to theoretical uncertainty in the point-nucleus finite-size effects [105]; while

column 7 is the error due to neglect of higher orders in s, Zα and R/aB = mRZα

beyond those given by green squares in Table 1. Uncertainty in values for α and Ry

give errors significantly smaller than those listed.

the shift of the S-wave state, which is common to many transitions in the list.

In our numerical evaluations of these formulae we use the values for binding ener-

gies as given in [105] to fit the two parameters ε?,e, εF ,e. The errors given in [105] for

the point-nucleus parts of the theory are at the 0.1 kHz level (which as these authors

report, is satisfactory for the current experimental precision). The implied uncertainty

for transition energies (and so also for εF ,e) then is effectively twice as large because

transition frequencies involve energy differences. The same large uncertainty inherently

exists for ε?,e, which is found through a different interval of binding energies. Currently

this error dominates both the experimental error and the ‘truncation’ uncertainty men-

tioned earlier. The good news is that the theoretical error in the point-nucleus part

of the energy differences can be made much smaller simply by including higher-order

calculations.
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4.3 Muonic Hydrogen

Lastly, we comment on how the above calculations are adapted for muonic Hydrogen.

The most accurate measurements of transitions in this system are [5, 19, 115]

νt := ν
(
2P F=2

3/2 − 2SF=1
1/2

)
= 206.292 7 (27) meV,

νs := ν
(
2P F=1

3/2 − 2SF=0
1/2

)
= 225.853 6 (43) meV, (4.32)

with an experimental uncertainty of approximately 10−3 meV.

The last column of Table 1 shows the size for muonic Hydrogen of each term in

the expansions in powers of Zα and mRZα, and in particular shows that the same

orders considered above for electronic Hydrogen – i.e. spin-independent contributions

at order m3R2(Zα)4, m4R3(Zα)5 and m3R2(Zα)6 together with the Zemach moment

contribution at m2Rs(Zα)4 – also control nuclear effects in muonic Hydrogen down to

a precision of about 0.01 meV. To this accuracy there are therefore only two nuclear

parameters relevant, ε?,µ and εF ,µ, whose values can be inferred using the experimen-

tal results (4.32). Once a third transition frequency is measured nucleus-independent

predictions can in principle be tested.

Calculations reaching the experimental precision of 10−3 meV, however, likely also

require including contributions at order m5R4(Zα)6 (indicated in yellow in Table 1).

Although these can be computed using the methods in this paper, we do not do so here,

for several reasons. First, proper treatment of boundary conditions to this accuracy

also requires generalizing Sp to include spin-independent effective couplings out to

dimension (length)4, and spin-dependent couplings out to order (length)3. This in turn

involves analyzing the running of the existing couplings out to higher accuracy in ρε
than was performed here. Furthermore, as Table 1 shows, this new term introduces the

additional complication that corrections to the j = 3
2

modes first become relevant at this

order, potentially introducing a new integration constant, D/C , and possibly requiring

the addition of a third RG invariant parameter. Although this requires nothing new

conceptually, it is a considerable complication that we defer to future work.

In what follows we instead work only to the 0.01 meV accuracy that our calculations

above already capture, and identify how the two independent parameters ε?,µ and εF ,µ
are determined by existing observations, and sketch how to use these to predict the

nuclear-structure part of the predictions for any other muonic Hydrogen levels that

might be measured in the future.

Determining ε? and εF

The finite-size effects in muonic Hydrogen, written in terms of RG-invariants and ap-

proximately accurate to order 10−3 meV in the spin-independent sector but only to
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10−2 meV in the spin-dependent sector are captured by the sum of the contributions

from (3.40), (3.41) and (3.42), as applied to the muon, as well as adding (4.10), giving

δωNS

nF 1
2

+
(µ) + εN−QED

nF 1
2

+
(µ) =

8

n3

(
mr

mµ

)2

(Zα)2m3
r

{
ε2?,µ

[
1 +

(
2α

3π

)
Ξn 1

2
+

+(Zα)2

(
2− γ −Hn+1 − ln

(
2Zαmrε?,µ

n

)
+

12n2 − n− 9

4n2(n+ 1)

)]
−
(gNmµ

2M

)
(Zα)ε2F ,µXF

}
(4.33)

which is of almost exactly the same form as in the electronic case, except for the

term proportional to Ξnj$ (defined in (4.8)) which encodes the radiative corrections to

finite-size effects due to electron vacuum polarization. Similarly

δωNS

nF 1
2
−(µ) + εN−QED

nF 1
2
− (µ) = 2

(
n2 − 1

n5

)
(Zα)4

(
mr

mµ

)2

m3
rε

2
?,µ (4.34)

+
16

3n3

[
α(Zα)2

π

](
mr

mµ

)2

m3
rε

2
?,µ Ξn 1

2
−.

We follow ref. [116] and define two useful combinations of the two measurements of

(4.32), which help isolate the complications due to the electronic vacuum polarization.

The first linear combination of measurements in [116] is largely dominated by the

hyperfine energy contributions and is useful for extracting εF ,µ directly, much in the

same way as was done for the 2S hyperfine splitting in the electronic case, leading to

νs − νt =
(
ωpt

21 3
2

+
− ωpt

20 1
2

+

)
−
(
ωpt

22 3
2

+
− ωpt

21 1
2

+

)
−8

3

(
mr

mµ

)2 (mµeµp
4π

)
(Zα)2m3

rε
2
F ,µ . (4.35)

In this expression the point-nuclear theory terms combine into the hyperfine splitting

combination for the 2S1/2 and the 2P3/2 states, motivating the definition

∆̂ωhfs :=
(
ωpt

21 1
2

+
− ωpt

20 1
2

+

)
−
(
ωpt

22 3
2

+
− ωpt

21 3
2

+

)
−
(
νs − νt

)
, (4.36)

in terms of which a numerical value for εF ,µ can be obtained, since

∆̂ωhfs =
8

3

(
mr

mµ

)2 (mµeµp
4π

)
(Zα)2m3

r ε
2
F ,µ . (4.37)

For later convenience we record the numerical value for the point-nucleus theoretical

expressions, as collected by [116]. For the transitions νs and νt of (4.32) they are

ωpt

21 3
2

+
−ωpt

20 1
2

+
= 209.9450 (26) meV and ωpt

22 3
2

+
−ωpt

21 1
2

+
= 229.6813 (34) meV, (4.38)
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while for the hyperfine intervals one has

ωpt

21 1
2

+
− ωpt

20 1
2

+
= 22.9858 (26) meV and ωpt

22 3
2

+
− ωpt

21 3
2

+
= 3.2480 (2) meV, (4.39)

which also include the state-mixing δ contribution24 [116] that is part of ε
(ho)
nFj$.

The second useful linear combination, 1
4
(νs + 3νt) is defined so that the mixed

hyperfine, finite-size effects tracked by the variable εF ,µ cancel – to the accuracy used

here – and hence for our purposes also allows for a direct fit of the ε?,µ parameter. The

contributions that survive in this second combination are separated by the authors of

[116] into various point-like theory effects including the traditional (2P 1
2
− 2S 1

2
) Lamb

shift, and the nuclear-size dependent piece. In our present notation this second variable

becomes
1

4

(
νs + 3νt

)
=

1

4

(
ωpt

21 3
2

+
− ωpt

20 1
2

+

)
+

3

4

(
ωpt

22 3
2

+
− ωpt

21 1
2

+

)
−
(
mr

mµ

)2

(Zα)2m3
µε

2
?,µ

{
1 + (Zα)2

[
133

48
− γ −H3 − ln

(
Zαmrε?,µ

)]
+

2α

3π

(
Ξ2 1

2
+ − Ξ2 3

2
+

)}
. (4.40)

Some useful numerical values as transcribed from [116] with the help of [115] are

also quoted here for later use,

1

4

(
ωpt

21 3
2

+
− ωpt

20 1
2

+

)
+

3

4

(
ωpt

22 3
2

+
− ωpt

21 1
2

+

)
= 214.8846 (11) meV,

and
2α

3π

(
Ξ2 1

2
+ − Ξ2 3

2
+

)
= 0.0038556. (4.41)

These motivate the following definition

∆̂ωLamb :=
1

4

(
ωpt

21 3
2

+
− ωpt

20 1
2

+
− νs

)
+

3

4

(
ωpt

22 3
2

+
− ωpt

21 1
2

+
− νt

)
, (4.42)

which simplifies solving (4.40) for the value of ε?,e. From here on in the argument

proceeds much as for electrons, defining

xµ = zµ

(
yµ − ln zµ

)
, (4.43)

with parameters

xµ := 2

(
mµ

mr

)2
∆̂ωLamb

(Zα)4mr

,

yµ :=
2

(Zα)2

[
1 +

2α

3π

(
Ξ2 1

2
+ − Ξ2 3

2
+

)]
+

15

8
− 2γ − 2 ln(Zα) , (4.44)

24This is a point-nucleus mixing of the F = 1 levels for j = 1
2 and j = 3

2 that arises at second order

in the nuclear magnetic field.
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Transition νs − νt 1
4
(νs + 3νt)

Exp. value (meV) 19.5609 211.1829

Exp. error (meV) 0.0051 0.0023

Pt. nucl. theory (meV) 19.7363 214.8791

Pt. nucl. error (meV) 0.0030 0.0025

Parameter (mεF,µ)2 (mε?,µ)2

Inferred value 3.51× 10−6 3.30506× 10−8

Prop. exp. error 0.10× 10−6 0.00056× 10−8

Prop. theory error 0.060× 10−6 0.00064× 10−8

Table 4: Measured transitions in muonic Hydrogen and linear combinations of these

measurements (row 2) that are useful for fitting finite-size effects. The experimental

errors are given in row 3, the point-nucleus theoretical contributions in row 4 and the

errors in these in row 5. The parameters that we fit for are given in row 6, their fitted

values are in row 7, and their uncertainty coming from the propagated experimental

error are in row 8, while that coming from propagated point-nucleus theoretical errors

are in row 9.

leads to a solution involving the Lambert W -function

(mrε?,µ)2 = eW where W := W−1

(
−xµe−yµ

)
+ yµ . (4.45)

This last equation, with (4.37), give the required solution for both ε?,µ and εF ,µ
in terms of well-understood point-nucleus parts of the theory and experimental values.

Using these in (4.33) and (4.34) for other energy levels allows other transition energies

to be computed without the usual nuclear uncertainties. Predictions made in this way

are completely independent of nuclear models and their associated inaccuracies.

As an application of the predictivity of these techniques consider the planned mea-

surements of the ground state hyperfine splitting experiment of muonic Hydrogen,

whose precision is expected to be ∼ 10−4 meV [23, 24], and whose value is expected to

provide the Zemach moment of the proton to a higher accuracy. As discussed above,

to obtain this same theoretical accuracy using the techniques pursued here requires

including higher-order terms than have so far been computed. We nonetheless pre-

dict here, for illustrative purposes, the nuclear contribution to this amplitude to the

accuracy possible with the calculations given above, and find

δωNS

11 1
2

+
(µ) + εN−QED

11 1
2

+
(µ)− δωNS

10 1
2

+
(µ)− εN−QED

10 1
2

+
(µ) = −1.415(48) meV, (4.46)

with the total uncertainty resulting from a net experimental error of (0.041) meV, net

point-like theoretical error of (0.021) meV and a truncation error of (0.013) meV. For
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comparison, a similar calculation directly using (3.39) and (4.6), and simply quoting

the values of (and errors for) nuclear moments (and the parameter Λ) estimated from

nuclear models [116] instead gives

δωNS

11 1
2

+
(µ) + εN−QED

11 1
2

+
(µ)− δωNS

10 1
2

+
(µ)− εN−QED

10 1
2

+
(µ) = −1.385(47) meV, (4.47)

which are consistent with comparable quoted errors. Even if one accepts that the errors

in nuclear models used in (4.47) are well-understood, because the errors in (4.46) are

controlled only by experiments and theory calculations using point nuclei, they can

improve dramatically as these are improved, without needing new approaches to nuclear

theory.

Although not yet at an accuracy of 10−4 meV for muonic Hydrogen, we regard the

above exercise to be a proof of principle that nuclear-modelling uncertainties can be

banished for muonic Hydrogen using essentially the same steps as for atomic Hydrogen.

5 Summary and Outlook

To summarize, this paper extends earlier arguments based on first-quantized EFTs

for spinless nuclei (PPEFTs) [64, 72] to include nuclear spin. The response of ‘bulk’

electromagnetic fields and a Dirac lepton field to this point nucleus is computed in

order to capture how nuclear structure alters leptonic energy levels.

Spin is included by supplementing the nuclear center-of-mass coordinate, yµ(τ),

with Grassmann (anti-commuting) classical variables, ξµ(τ), that are also localized on

the nuclear world-line. Once quantized, the Grassmann variables ξµ fill out a finite-

dimensional quantum state space that represents spatial rotations (and thereby encodes

the finite-dimensional space of nuclear spin-states). General EFT principles ensure

that such a first-quantized effective action can capture the low-energy behaviour of any

spinning nucleus provided one includes all possible interactions in the first-quantized

nuclear effective action, subject to the other symmetries of the problem and unitarity.

The effects of the effective nuclear couplings get transferred to electromagnetic and

lepton degrees of freedom through a set of matching boundary conditions [70–72] that

govern the behaviour of bulk modes in the near-nucleus regime r = ε � aB, where aB
is the lepton’s Bohr radius.

Experience with spinless nuclei [64, 72] shows that although there are many effective

couplings (or nuclear moments) these only turn out to contribute to atomic energy shifts

through a limited number of combinations. Ref. [64] showed that when computing

atomic energy shifts for spinless nuclei of size R, and if one is expanding energies

in a powers series in Zα and R/aB ∼ mRZα, then up to and including effects of
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order m4R3(Zα)5 or m3R2(Zα)6 all nuclear moments contribute only through a single

parameter, ε?, that has dimensions of length. Although ε? can depend in a complicated

way on nuclear moments – typically with ε? ∼ (Zα)R – the leptonic energies themselves

are functions of these moments only through their dependence on ε?.

We here show that a similar statement also holds once nuclear spin is included.

Working to the same order in Zα and mRZα, and also including similar sized nuclear-

spin-dependent terms, shows that all nuclear moments appear in atomic energies only

through two parameters, ε? and εF . We verify that we reproduce the explicit nuclear

calculations in the literature (to the order we work) and provide explicit expressions

for how these parameters depend on nuclear moments.

A technical issue that arises in these calculations concerns the divergences that one

finds when computing matrix elements found when perturbing in the nuclear magnetic

fields. These divergences arise because the presence of nonzero nuclear size makes modes

external to the nucleus more singular near the origin. Strictly speaking this divergent

behaviour stops once nuclear structure intervenes, but nuclear structure is not present

to do so within the PPEFT formalism, wherein nuclei are replaced by point objects

with many effective couplings. We show that sensible predictions can nonetheless be

made, because the near-nucleus divergences can be renormalized into the values of the

effective nuclear couplings.

We have carried through this EFT program and applied it to compute nuclear ef-

fects in atomic Hydrogen. We correctly capture existing results for the energy shifts due

to the charge radius, nuclear polarizabilities, Friar and Zemach moments and others,

and thereby verify that these all contribute through only the two independent param-

eters ε? and εF , down to contributions at the 10−2 kHz order in atomic Hydrogen. By

fitting these two parameters to two particularly well-measured transitions, we can pre-

dict the nuclear-size contributions to a large number of energy levels listed in [6, 25, 26].

Our uncertainties are independent of nuclear models, and are currently dominated by

the precision with which pure QED corrections have been computed for point nuclei.

Our errors are reduced by at least one order of magnitude compared to what is reported

in [105] for such finite-size effects. Our results are summarised in Tables 2 and 3 for the

best measured transitions, and in Tables 5 through 7 for a broader class of transitions.

We repeat the exercise for muonic Hydrogen, with results given in Table 4. Again

two parameters suffice to capture finite-size nuclear effects down to errors of order

0.01 meV, although this is not yet competitive with the accuracy of current (and

upcoming) measurements. The required improvement is a straightforward extension

of the methods used here, making them much easier to perform than are traditional

nuclear methods.

We remark that the same techniques apply equally well to nuclear-structure con-
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tributions to energy shifts for heavier and more complicated spinning nuclei such as

deuterium, tritium, various helium isotopes, lithium and beryllium, with convergence

of the low-energy EFT expansion expected to be quickest for those nuclei with the

largest internal gap to exciting internal nuclear degrees of freedom.

In future work we hope to carry out a meta-analysis of available data for most

low-Z electronic and muonic atoms and make predictions of the finite-size effects in

transitions of these system that are relevant for future experiments [23, 24] that are

equally well unclouded by inaccuracies of nuclear moments as they only depend on

non-finite-size theory and experimental measurements.
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Transition ∆Efs (kHz) ∆Eexp (kHz) ∆Eth (kHz) ∆Etrunc (kHz)

2P F=1
1/2 − 2SF=0

1/2 −143.70 0.0069 0.57 0.00031

2P F=1
3/2 − 2SF=0

1/2 −143.70 0.0069 0.57 0.00031

3P F=1
1/2 − 2SF=1

1/2 −136.480 0.0014 0.081 0.00010

3P F=0
1/2 − 2SF=1

1/2 −136.480 0.0014 0.081 0.00010

3P F=2
3/2 − 2SF=1

1/2 −136.481 0.0014 0.081 0.00010

3P F=1
3/2 − 2SF=1

1/2 −136.481 0.0014 0.081 0.00010

8SF=1
1/2 − 2SF=1

1/2 −134.348 0.0014 0.080 0.00010

8DF=2
3/2 − 2SF=1

1/2 −136.481 0.0014 0.081 0.00010

8DF=1
3/2 − 2SF=1

1/2 −136.481 0.0014 0.081 0.00010

8DF=3
5/2 − 2SF=1

1/2 −136.481 0.0014 0.081 0.00010

8DF=2
5/2 − 2SF=1

1/2 −136.481 0.0014 0.081 0.00010

10DF=3
5/2 − 2SF=1

1/2 −136.481 0.0014 0.081 0.00010

10DF=2
5/2 − 2SF=1

1/2 −136.481 0.0014 0.081 0.00010

12DF=2
3/2 − 2SF=1

1/2 −136.481 0.0014 0.081 0.00010

12DF=1
3/2 − 2SF=1

1/2 −136.481 0.0014 0.081 0.00010

12DF=3
5/2 − 2SF=1

1/2 −136.481 0.0014 0.081 0.00010

12DF=2
5/2 − 2SF=1

1/2 −136.481 0.0014 0.081 0.00010

3P F=1
1/2 − 3SF=0

1/2 −42.58 0.0020 0.17 0.000092

3P F=2
3/2 − 3SF=1

1/2 −40.439 0.00042 0.024 0.000031

3P F=2
3/2 − 3SF=0

1/2 −42.58 0.0020 0.17 0.000092

3P F=1
3/2 − 3SF=1

1/2 −40.439 0.00042 0.024 0.000031

3P F=1
3/2 − 3SF=0

1/2 −42.58 0.0020 0.17 0.000092

3DF=2
3/2 − 3SF=1

1/2 −40.439 0.00042 0.024 0.000031

3DF=2
3/2 − 3SF=0

1/2 −42.58 0.0020 0.17 0.000092

3DF=1
3/2 − 3SF=1

1/2 −40.439 0.00042 0.024 0.000031

3DF=1
3/2 − 3SF=0

1/2 −42.58 0.0020 0.17 0.000092

3DF=2
5/2 − 3SF=0

1/2 −42.58 0.0020 0.17 0.000092

Table 5: Finite-nuclear-size effects (column 2) with three sources of errors (columns

3–5) for Hydrogen transitions listed in ref. [6] that can be measured at the 0.01kHz

level. See Table 6 (and main text) for more detailed descriptions of the column entries.
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Transition ∆Efs (kHz) ∆Eexp (kHz) ∆Eth (kHz) ∆Etrunc. (kHz)

4P F=1
1/2 − 4SF=1

1/2 −17.060 0.00018 0.010 0.000013

4P F=1
1/2 − 4SF=0

1/2 −17.962 0.00086 0.071 0.000039

4P F=0
1/2 − 4SF=1

1/2 −17.060 0.00018 0.010 0.000013

4P F=0
1/2 − 4SF=0

1/2 −17.962 0.00086 0.071 0.000039

4DF=2
3/2 − 4SF=1

1/2 −17.060 0.00018 0.010 0.000013

4DF=2
3/2 − 4SF=0

1/2 −17.962 0.00086 0.071 0.000039

4DF=1
3/2 − 4SF=1

1/2 −17.060 0.00018 0.010 0.000013

4DF=1
3/2 − 4SF=0

1/2 −17.962 0.00086 0.071 0.000039

4P F=2
3/2 − 4SF=1

1/2 −17.060 0.00018 0.010 0.000013

4P F=2
3/2 − 4SF=0

1/2 −17.962 0.00086 0.071 0.000039

4P F=1
3/2 − 4SF=1

1/2 −17.060 0.00018 0.010 0.000013

4P F=1
3/2 − 4SF=0

1/2 −17.962 0.00086 0.071 0.000039

4DF=3
5/2 − 4SF=1

1/2 −17.060 0.00018 0.010 0.000013

4DF=3
5/2 − 4SF=0

1/2 −17.962 0.00086 0.071 0.000039

4DF=2
5/2 − 4SF=1

1/2 −17.060 0.00018 0.010 0.000013

4DF=2
5/2 − 4SF=0

1/2 −17.962 0.00086 0.071 0.000039

5P F=1
1/2 − 5SF=1

1/2 −8.7346 0.000091 0.0052 0.0000066

5P F=1
1/2 − 5SF=0

1/2 −9.197 0.00044 0.037 0.000020

5P F=0
1/2 − 5SF=1

1/2 −8.7346 0.000091 0.0052 0.0000066

5P F=0
1/2 − 5SF=0

1/2 −9.197 0.00044 0.037 0.000020

5P F=2
3/2 − 5SF=1

1/2 −8.7348 0.000091 0.0052 0.0000066

5P F=2
3/2 − 5SF=0

1/2 −9.197 0.00044 0.037 0.000020

5P F=1
3/2 − 5SF=1

1/2 −8.7348 0.000091 0.0052 0.0000066

5P F=1
3/2 − 5SF=0

1/2 −9.197 0.00044 0.037 0.000020

Table 6: More nuclear-size effects listed in [6]. Column 2 gives the nuclear-finite-

size contribution to the transition energy predicted by eq. (4.30). Columns 3–5 give

errors inherent in column 2: column 3 is the error due to uncertainty in DL/CL due

to measurement errors in the reference transitions; column 4 gives the uncertainty due

to uncertainty in the unperformed parts of the calculation not associated with nuclear

finite-size effects; column 5 is the error due to neglect of higher orders in s, Zα and

R/aB = mRZα beyond those given by green squares in Table 1. Uncertainty in values

for α and Ry give errors significantly smaller than those listed.
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Linear combination of transitions ∆Efs ∆Eexp ∆Eth ∆Etrunc

(kHz) (kHz) (kHz) (kHz)(
4P F=1

1/2 − 2SF=1
1/2

)
− 1

4

(
2SF=1

1/2 − 1SF=1
1/2

)
102.35 0.0029 0.16 0.00021(

4P F=0
1/2 − 2SF=1

1/2

)
− 1

4

(
2SF=1

1/2 − 1SF=1
1/2

)
102.35 0.0029 0.16 0.00021(

4SF=1
1/2 − 2SF=1

1/2

)
− 1

4

(
2SF=1

1/2 − 1SF=1
1/2

)
119.41 0.0028 0.16 0.00020(

4P F=2
3/2 − 2SF=1

1/2

)
− 1

4

(
2SF=1

1/2 − 1SF=1
1/2

)
102.35 0.0029 0.16 0.00021(

4P F=1
3/2 − 2SF=1

1/2

)
− 1

4

(
2SF=1

1/2 − 1SF=1
1/2

)
102.35 0.0029 0.16 0.00021(

4DF=3
5/2 − 2SF=1

1/2

)
− 1

4

(
2SF=1

1/2 − 1SF=1
1/2

)
102.35 0.0029 0.16 0.00021(

4DF=2
5/2 − 2SF=1

1/2

)
− 1

4

(
2SF=1

1/2 − 1SF=1
1/2

)
102.35 0.0029 0.16 0.00021(

6SF=1
1/2 − 2SF=1

1/2

)
− 1

4

(
3SF=1

1/2 − 1SF=1
1/2

)
131.41 0.0031 0.17 0.00022(

6DF=3
5/2 − 2SF=1

1/2

)
− 1

4

(
3SF=1

1/2 − 1SF=1
1/2

)
126.36 0.0031 0.18 0.00022(

6DF=2
5/2 − 2SF=1

1/2

)
− 1

4

(
3SF=1

1/2 − 1SF=1
1/2

)
126.36 0.0031 0.18 0.00022

Table 7: Contribution of nuclear-size effects and the errors in this prediction for specific

linear combintions of transition energies (whose motivation comes from experimental

considerations), as taken from [6], that are observable at the 0.001 kHz level. See Table

6 for more details on the definitions of each column.

A Spin formalism

This appendix summarizes the quantization procedure for the Grassmann fields, ξµ(s),

and sketches the derivation of the final form for the nuclear action described in the

main text.

Quantization

The free spinning particle has action

S =

∫
dsL = −

∫
ds
[
M
√
−ẏ2 + iξµξ̇µ

]
, (A.1)

where the configuration variables are the bosonic coordinate yµ(s) and the Grassmann

variables ξµ(s). This proves to be a constrained system because the symmetries of the
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problem (such as reparameterization invariance along the world-line) imply that these

variables and their canonical momenta are not independent.

As described in detail in [95] the canonical quantization procedure for systems

with constraints proceeds as follows. First identify the conjugate momenta and the

Hamiltonian, using

δS =

∫
ds
(
δẏµ pµ + δξ̇µ πµ

)
, (A.2)

and so

pµ =
∂L
∂ẏµ

=
Mẏµ√
−ẏ2

and πµ =
∂L
∂ξ̇µ

= iξµ . (A.3)

In principle one wishes to invert these expressions to write the velocities, ẏµ and ξ̇µ

as functions of the momenta, and to use these to construct the Hamiltonian from the

Lagrangian. For constrained systems, like the one considered here, this inversion cannot

be done. For instance, for the Grassmann field the ξ̇µ does not even appear in πµ, while

the bosonic momentum satisfies the identity

pµpµ = −M2 , (A.4)

(which is the correct dispersion relation for a relativistic massive particle). The inability

to solve for velocities in terms of positions and momenta arises because the system’s

positions and velocities are related by the following two primary constraints,

φ1 := p2 +M2 = 0, and Φµ := πµ − iξµ = 0 . (A.5)

It is useful to incorporate the primary constraints into the Lagrangian,

Lc = −M
√
−ẏ2 − iξµξ̇µ − θφ1 −ΘµΦµ , (A.6)

where θ and Θµ are Lagrange multipliers. The variation of L with respect to yµ and

ξµ subject to the constraints (A.5) is equivalent to the unconstrained variation of Lc
provided that the new variables θ and Φµ are also varied. The Hamiltonian of this

theory including the constraints is then:

Hc = ẏµpµ + ξ̇µπµ − Lc,
= θφ1 + ΘµΦµ. (A.7)

Primary constraints like (A.5) need not exhaust all of the constraints because even

if the primary constraints are imposed on any initial conditions, additional constraints

might be necessary to ensure that (A.5) remain true for all times. The time evolution

of any function of canonical variables, A(q, p, t), is given by

dA

dt
=
∂A

∂t
+ (A,H)P = 0, (A.8)
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where (· · · , · · · )P denotes the Poisson bracket, defined for Grassmann even and odd

variables by [96]:

(E1, E2)P =

(
∂E1

∂qα
∂E2

∂pqα
− ∂E2

∂qα
∂E1

∂pqα

)
+

(
∂E1

∂ξα
∂E2

∂πξα
− ∂E2

∂ξα
∂E1

∂πξα

)
,

(E,O)P =

(
∂E

∂qα
∂O

∂pqα
− ∂O

∂qα
∂E

∂pqα

)
+

(
∂E

∂ξα
∂O

∂πξα
+
∂O

∂ξα
∂E

∂πξα

)
,

(O,E)P =

(
∂O

∂qα
∂E

∂pqα
− ∂E

∂qα
∂O

∂pqα

)
−
(
∂O

∂ξα
∂E

∂πξα
+
∂E

∂ξα
∂O

∂πξα

)
,

(O1, O2)P =

(
∂O1

∂qα
∂O2

∂pqα
+
∂O2

∂qα
∂O1

∂pqα

)
−
(
∂O1

∂ξα
∂O2

∂πξα
+
∂O2

∂ξα
∂O1

∂πξα

)
. (A.9)

Any further constraints required to ensures that primary constraints hold for all times

are called secondary constraints.

For the constraints of (A.5) we find:

dφ1

ds
= (φ1, H)P = θ

(
p2 +M2, p2 +M2

)
P

+ Θµ
(
p2 +M2, πµ − iξµ

)
P

= 0 , (A.10)

and

dΦµ

ds
= (Φµ, H)P = θ

(
πµ − iξµ, p2 +M2

)
P
−Θν (πµ − iξµ, πν − iξν)P

= Θν
(
−iδµαδαν − iηβνδβαηµγδαγ

)
= −2iΘµ , (A.11)

and so the evolution of the bosonic constraint yields no new restrictions while preserva-

tion of the fermionic constraint in time constrains the Grassmann Lagrange multiplier

to vanish.

The primary constraints have the following Poisson brackets with one another

(φ1, φ1)P = (φ1,Φ
µ)P = (Φµ, φ1)P = 0 and (Φµ,Φν)P = 2iηµν . (A.12)

Writing these constraints as a 5-component column vector, φα = {φ1,Φµ}, these brack-

ets can be arranged into a matrix,

∆αβ := (φα, φβ)P =

[
0 0T

0 2iηµν

]
. (A.13)

Zero eigenvectors of this matrix are called first-class constraints, and are obstructions

to the program of quantizing by using commutators to replace Dirac brackets, defined

by

(A,B)D = (A,B)P − (A, φα)P
(
∆−1

)
αβ

(φβ, B)P . (A.14)
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Zero eigenvectors are associated with local symmetries for which gauge conditions

must be chosen as supplementary constraints. In the above example ∆ is diagonal

and so its only zero vector corresponds to the bosonic constraint φ1, corresponding

to the freedom to redefine the world-line parameterization. This symmetry can be

removed by choosing a gauge condition and checking its time evolution. The freedom

to reparameterize time can be removed by fixing a coordinate condition like

ϕ := y0 − s = 0 , (A.15)

and the evolution of this new condition now fixes the final Lagrange multiplier, since

dϕ

ds
= −1 + 2θp0 = 0 . (A.16)

With this choice the variable y0 is no longer dynamical and only the spatial components

of the position-vector need be quantized. Their conjugate momenta are

pi =
Mẏi√
1− ẏ2

, (A.17)

which can now be inverted for the velocities:

ẏi =
pi√

pipi +M2
. (A.18)

Finally, quantization proceeds by replacing Dirac brackets with commutators and

anticommutators, so

i (E1, E2)D →
[
Ê1, Ê2

]
, i (O,E)D →

[
Ô, Ê

]
and i (O1, O2)D →

{
Ô1, Ô2

}
.

(A.19)

Using this for the variables {yi, ξµ, pi} in the present instance leads to[
x̂i, p̂j

]
= iδij and

{
ξ̂µ, ξ̂ν

}
= −1

2
ηµν , (A.20)

as used in the main text.

Representations

The bosonic commutators in the previous section are easily represented using posi-

tion and derivative operators, but it remains to choose how to represent the anti-

commutator. Defining ξ̂µ := i
2
Γµ, we see that the anti-commutator goes over to the

Clifford algebra,

{Γµ,Γν} = 2ηµν , (A.21)
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and any representation of this Clifford algebra provides a quantization of the Grassmann

fields.

In the main text we work in the rest-frame of the nucleus, making it convenient

to choose a basis for the matrices that make it simple to distinguish particles from

anti-particles, and so use the 2n× 2n matrices

Γ0 = −i
[
1 0

0 −1

]
and Γk = (−i)

[
0 τ k

−τ k 0

]
(A.22)

and so defining Γ5 := −iΓ0Γ1Γ2Γ3 gives

Γ5Γk = (−i)
[
τ k 0

0 −τ k

]
and Γ5 = −

[
0 1

1 0

]
, (A.23)

while Γµν := − i
4

[Γµ,Γν ] implies

Γ0k =
i

2

[
0 τ k

τ k 0

]
and Γjl =

1

2
εjlk
[
τ k 0

0 τ k

]
. (A.24)

In the above expressions 1 denotes the n× n unit matrix and τ i denotes the n× n
representation of the rotation generators, whose choice determines how nuclear spin is

represented. For spin-half nuclei the τ k are Pauli matrices,

τx =

(
0 1

1 0

)
, τ y =

(
0 −i
i 0

)
, τ z =

(
1 0

0 −1

)
, (A.25)

while for spin-one nuclei the matrices

τx(3) =
1√
2

 0 1 0

1 0 1

0 1 0

 , τ y(3) =
1√
2

 0 −i 0

i 0 −i
0 i 0

 , τ z(3) =

 1 0 0

0 0 0

0 0 −1

 , (A.26)

are instead used, and so on.

In this basis the particle and antiparticle states in the particle rest frame are given

by

|ψ〉 = eip·x
[
α

β

]
, (A.27)

where α and β represent the particle- and anti-particle solutions respectively. It is the

state α for spin-half nuclei that appears in the main text, and for these only Γ0 and Γjl

have nonvanishing matrix elements for nuclei at rest.
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Comparison with second-quantized nuclei

It is instructive to compare the first-quantized action found above with what a second-

quantized field theory with two fermion species would yield. Let us write down the

lowest order terms in each case, assuming the fermions are now also charged under

electromagnetism.

The lowest-order second-quantized effective action that respects all the previously

mentioned symmetries (and a U(1) gauge symmetry) for two charged fermions is:

S = −
∫

d4x

{
1

4
FµνF

µν + Ψ
[
/D +me

]
Ψ + Φ

[
/D +M

]
Φ + aN

(
Φ ΓµνΦ

)
Fµν + · · ·

}
,

(A.28)

where /DΨ = γµ (∂µ + ieAµ) Ψ and /DΦ = Γµ (∂µ − iZeAµ) Φ, for a nucleus with charge

+Ze. This action contains two parameters for each fermion species, the mass and the

electric charge, just as does the leading first-quantized action

S = −
∫

ds
{
M
√
−ẏ2 + iξµξ̇µ − qẏµAµ − iµNξµξνFµν + · · ·

}
, (A.29)

and it contains the same number of parameters.

Notice that writing Fjk = εjklB
l for a magnetic field B turns the last term into

− iµNξjξlFjl = −µN
2

ΓjlFjl = −µN
4
εjlkεjlmB

m

[
τk 0

0 τk

]
=

[
−µ ·B 0

0 −µ ·B

]
, (A.30)

when the Hamiltonian is computed, confirming the identification of µN as the nu-

clear magnetic moment (and once the magnetic-moment contribution is extracted from

Φ( /D+M)Φ it transpires that aN contains the contribution g−2 to the nuclear magnetic

moment µN).

B Fermionic boundary conditions

In the text, the boundary condition (2.14) is described as arising as in the classic

delta-function potential: by integrating the fermion field equations over a sphere of

radius ε, and dropping all but the derivative and delta-function terms. This does not

mean that it requires an explicit extrapolation of Ψ right into the nucleus, however.

Indeed, the PPEFT formalism is designed expressly to avoid dealing with the physics

in the core. Though qualitatively correct, the delta-function description is not really

precisely defined. This appendix outlines the more detailed derivation of this boundary

condition, following the discussion in Appendix A of [70] (and fleshed out in [64, 71–

73, 76]), focussing specifically on the special issues that arise with first-order fermionic

field equations.
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Within the PPEFT approach used here all of the internal degrees of freedom for

the nucleus are integrated out, leaving only the centre-of-mass position, yµ(s), and spin,

ξµ(s). These variables are regarded as collective coordinates: i.e. modes that appear

in the low-energy theory because they are related to the action of Poincaré symmetries

on the nuclear state (which in general is neither translation nor rotation invariant).

The coupling between these two modes and the bulk fields given in the text is found by

writing down the most general action that involves them all while properly realizing the

symmetries, organized in an expansion in interactions of successively higher dimension

– eq. (2.5). We reproduce the important interactions from that action for the electron

field Ψ here for convenience:

Sint
p = −

∫
ds Ψ(y(s))

[√
−ẏ2

(
cs + ic2εαβγδξ

αξβξγξδγ5 + icFξ
µξνγµν

)
+iẏµ

(
cvγµ + c3εαβγδξ

αξβξγξδγ5γµ
) ]

Ψ(y(s)) + · · · . (B.1)

In particular, Ψ is evaluated ‘on the world-line of the nucleus’, but in an EFT sense

wherein spatial resolutions are limited to be only over distances L� R, where R ∼ 1

fm is a representative size of the nucleus. Notice that to the dimensions of interest in

this paper only terms bilinear in Ψ are required, which simplifies the discussion because

it allows the neglect of any two- or higher-body contact interactions.

The task is to make precise how the effective couplings in (B.1) can be translated

into the correct near-nucleus behaviour of Ψ. To this end define the world-tube swept

out by a ball Bε(y) of radius ε that is instantaneously centred on the nucleus. The

radius of this ball is chosen so that R� ε� aB (where, as in the main text, aB is the

electronic Bohr radius). In principle one could imagine specifying the value of Ψ itself,

or of its radial derivative, on the surface of this world-tube, but this is too prescriptive

because the precise value of a bulk field at any particular position on this world-tube

depends not only on the sources situated inside it, but also on any other sources or fields

that are outside (though with an influence that falls off with that source’s distance from

the ball). What is sought is a construction that is dynamical, in that it can respond to

the presence of all sources that play a role in the path integral.

The required dynamical boundary condition is found by defining a ‘boundary’

action, IB, on the surface of a world-tube swept out by Bε(y), defined by the property

that the path integral over Ψ, yµ and ξµ exterior to Bε(y) reproduces all of the results

of the full theory, and thereby makes precise the implications of an action like (B.1).

The formulation of such an action is simplest in the limit where recoil corrections are

neglected, because in this limit the position of Bε(y) does not move.

Concretely, writing the field as a sum over a basis of modes (as in the main text)

Ψ =
∑

β Ψβ, in the nuclear centre-of-mass frame the interactions in the boundary action
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required to work to the same accuracy as (B.1) is

I int
B =

∫
d2Ω ε2

∑
β

Ψβ(ε)
(
ĉs(β; ε)− iĉv(β; ε)γ0 + ĉF (β; ε)I ·Σ

)
Ψβ(ε) (B.2)

where we discard c2 and c3 as in section 2.3 (since they are not relevant for a nucleus

at rest after projecting out the anti-particle solution), and as in the text I = 1
2
τ and Σ

satisfies γij = εijkΣk. For applications to atoms we take β = {n, j, F, . . .} to run over

the mode labels described in the main text.

In principle there is an independent boundary coupling, ĉs, ĉv, and ĉF , for every

mode β [73], and this is required because each eigenmode satisfies slightly different

boundary conditions in the nuclear region. These all separately depend on ε because

the boundary condition required to capture the effects of a nucleus depend on the size

of the ball Bε that is used. In general the couplings in (B.2) are found by matching to

nuclear properties (as usual for EFTs), but for S-wave modes the connection between

the couplings of (B.2) and (B.1) is simply given by dimensional reduction: schematically

4πε2ĉi = ci.

As usual the ε-dependence of these couplings is chosen to ensure nothing physical

depends on the value of ε, and so changes in ε generate a renormalization-group (RG)

flow amongst these couplings. What is important is that the RG-invariant parameters

(like ε? and εF of the main text, on which physical observables depend) do not depend

on the mode label β, for the reasons described in more detail in Appendix F. This

independence of β expresses the fact that the physical effective properties of the nucleus

should not depend on the quantum numbers of the electrons that are used as probes.

The boundary conditions implied by the action IB are found when evaluating the

path integral over Ψ, with the nucleus replaced by IB. In a semiclassical evaluation

this involves computing the saddle point, against which the total action is stationary

against variations of Ψ both away from and on the ball Bε. Stationarity with respect

to variations that vanish at ε leads to the standard bulk field equations, with mode

solutions as given in section 2.3. Stationarity with respect to variations on the boundary

Bε then gives boundary conditions for each mode, of the form[
γr + ĉs(β; ε)− iĉv(β; ε)γ0 + ĉF (β; ε)I ·Σ

]
Ψβ(ε) = 0, (B.3)

where the γr term comes from an integration by parts in the bulk action.

For a second-order field equation (like the Schrödinger or Klein-Gordon equations

discussed in [70, 71]) this would be the whole story, since the analog of (B.3) then

gives a relation between the field and its radial derivative at r = ε. Interpreting (B.3)

is trickier for fermions because it is not a differential condition, and has nontrivial
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solutions for Ψβ(ε) only if the matrix in the square brackets has a zero eigenvalue.

To see the implications of this observation consider how (B.3) constrains the radial

eigenmodes found in the main text.

Radial Boundary Conditions

For convenience, we restate here the eigenmodes given in (2.26). We do so working

in the same Dirac basis for leptons as for nucleons (A.22), reproduced here for ease of

reference:

γ0 = −i
(
12 0

0 −12

)
, and γr = −i

(
0 σr

−σr 0

)
, (B.4)

where 12 is the 2× 2 identity matrix. Writing Ψβ = e−iωβtψβ, we define:

ψnFj$ =

(
Yj,$Ffz fnj$(r)

iYj,−$Ffz
gnj$(r)

)
. (B.5)

These modes satisfy the useful identity for the action of σr,

σrYj,$F,fz = −Yj,−$F,fz
. (B.6)

The action of I ·Σ appearing in (B.3), restricted to a degenerate subspace with specific

electronic angular momentum j, can be evaluated using the projection identity [117]:

ZFj$. := 〈I ·Σ〉 =
〈J · I〉 〈J ·Σ〉
〈J · J〉

, (B.7)

=
1

4j(j + 1)
[F (F + 1)− I(I + 1)− j(j + 1)] [j(j + 1)− l(l + 1) + s(s+ 1)] ,

=
1 +$(2j + 1)

8j(j + 1)

[
F (F + 1)− j(j + 1)− I(I + 1)

]
(s = 1

2
)

=

[
1 +$(2j + 1)

8

]
XF .

Here the first line defines the constant ZFj$, the second-last line specializes to s = 1
2

and l = j − 1
2
$ and the last line uses the definition (2.34) of XF . Specialized to states

with j = 1
2

this gives

ZF$ := Z
F

1
2
$ =

2$ + 1

8
XF , (B.8)

which for I = 1
2

becomes

ZF$ =
2$ + 1

6

[
F (F + 1)− 3

2

]
. (B.9)
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In general, I · Σ is not diagonalized by the states in (B.5) because it turns out

that I · Σ mixes the same opposite parity states as does the hyperfine interaction,

i.e. states whose angular momentum quantum numbers only differ in their value for

j. Consequently the boundary condition needs to be handled with care. However,

for the j = 1
2

states relevant for this paper, the off-diagonal elements are suppressed

by additional factors of mRZα relative to the diagonal elements, and this puts them

beyond the precision with which we work in this paper.25

Restricted to the j = 1
2

eigenspace we may treat I · Σ as if it were diagonal in

the basis (B.5). Using the identity in (B.7) the boundary condition (B.3) for Ψ modes

reads26:(
ĉ$fs + ZF ,$ ĉ$fF − ĉ$fv −iσr

iσr ĉ$fs + ZF ,−$ ĉ$fF + ĉ$fv

) Y
1
2
,$

Ffz
fnF 1

2
$(ε)

iY
1
2
,−$

Ffz
gnF 1

2
$(ε)

 = 0. (B.10)

The superscript on the couplings ĉ$fs,v,F is meant as a reminder that they depend in

principle on the mode’s parity $ = ± and the atom’s total spin27 F = j ± 1
2

= 0, 1.

Coupling constraint

For generic couplings the boundary condition (B.10) implies fnF 1
2
$(ε) = gnF 1

2
$(ε) = 0

whenever the pre-multiplying matrix is invertible. So having a nonvanishing spinor at

r = ε requires the boundary couplings must satisfy

1 +

(
ĉ$fv −

$

3

[
F (F + 1)− 3

2

]
ĉ$fF

)2

=

(
ĉ$fs +

1

6

[
F (F + 1)− 3

2

]
ĉ$fF

)2

, (B.11)

for both F = 0 and F = 1. This shows that the couplings c$fs,v and c$fF are not all

independent of one another.

This relationship amongst the effective couplings can be made explicit order-by-

order in s, keeping in mind that ĉ$fF starts at O(s) while ĉ$,fs,v =
(
ĉ$s,v
)(0)

+ s
(
ĉ$,fs,v

)(1)
+

25This suppression arises because the negative-parity j = 1/2 Dirac-Coulomb mode-functions go as

ρζ−1 ≈ ρ0, which yields diagonal expectation values of 〈I ·Σ〉d ∼ (mRZα)2(j+1/2)−2 ∼ 1 on the I ·Σ
operator, but leads to matrix elements mixing this state with the positive-parity j = 3/2 state that

go as 〈I ·Σ〉off−d ∼ (mRZα)j+j
′−1 ∼ (mRZα). As such, this mixing effect arises at the next order in

the R/aB expansion of the EFT action and is therefore not considered here.
26It might seem unusual to assign an F -dependence to the Dirac mode functions, however this

dependence arises because the integration constants D/C differ for different F , as we see from the

boundary condition derived below.
27We use lower-case f to denote dependence on nuclear spin F due to the unfortunate notational

choice that already uses capital F to label the coupling ĉF .
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· · · . At O(s0) the leading constraint shows that
(
ĉ$s,v
)(0)

satisfy the F -independent

constraint found for spinless nuclei in [64]

1 =
[
(ĉ$s )(0)

]2

−
[
(ĉ$v )(0)

]2

, (B.12)

while at first-order,

s
[
(ĉ$s )(0) (ĉ$fs )(1) − (ĉ$v )(0) (ĉ$fv )(1)

]
= − ĉ

$f
F

6

[
F (F + 1)− 3

2

] [
(ĉ$s )(0) + 2$ (ĉ$v )(0)

]
.

(B.13)

This last expression is consistent with c$F being F -independent while
(
ĉ$fs
)(1)

and(
ĉ$fv
)(1)

are proportional to F (F + 1)− 3
2
.

Boundary condition

To identify more explicitly the implications of the boundary condition for the radial

functions, rewrite (B.10) as the two conditions[(
ĉ$fs + ZF ,$ ĉ$fF − ĉ$fv

)
f$ − g$

]
Y

1
2
,$

Ffz
= 0 (B.14)[

−if$ + i
(
ĉ$fs + ZF ,−$ ĉ$fF + ĉ$fv

)
g$
]
Y

1
2
,−$

Ffz
= 0,

which for brevity writes f$ := fnF 1
2
$(ε) and g$ := gn 1

2
$(ε). Although this looks like two

conditions for each choice of $ and F , they are not independent because of condition

(B.11). The implications for the radial functions then are the ones used in eqs. (2.58)

and (2.60) of the main text:(
ĉ+
s + ZF ĉ+

F − ĉ+
v

)
f+ − g+ = 0, and

(
ĉ−s + ZF ĉ−F + ĉ−v

)
g− − f− = 0, (B.15)

where in both boundary conditions ZF := ZF+ = 1
2

[
F (F + 1)− 3

2

]
.

C Finite-size energy shift

In this section we compute the finite-size energy shifts in terms of D/C , including

its (Zα)2 corrections, which allows us to capture finite-size energy shifts in electronic

atoms of O (m3R2(Zα)6) magnitude.

Energy shift in the single-zero, single-pole approximation to O [(Zα)2]

As described in the main text, the normalizability of the zeroth order wave-functions

requires that the ratio of integration constants in the radial solutions satisfy:

−
(

D

C

)
=

Γ [1 + 2ζ] Γ
[
−ζ − Zαω

κ

]
Γ [1− 2ζ] Γ

[
ζ − Zαω

κ

] . (C.1)
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Our goal in this Appendix is to solve this equation for ω as a function of D/C , following

the steps taken in [64]. In particular, we seek solutions that are nearby to the standard

Coulomb-Dirac expression for ωD and κD =
√
m2 − ω2

D, for a point nucleus, (2.23) and

(2.24), that are the solutions when D/C = 0.

Since ζ =
√
K2 − (Zα)2, it is close to the value of |K| and so |K|−ζ ≈ O

[
(Zα)2]�

1. At the same time, the value of the poles of the gamma functions in the denominator

are slightly shifted due to the nucleus having a finite-size, which we implement by

taking ω = ωDnj + δω and it is δω � ωDnj that this normalizability condition allows us

to find as a function of the ratio of the integration constants. Additionally, as we have

noted in the main text, the Dirac energies have the property that ζ− ωDnj
κD

= −N , where

N is a non-negative integer, related to the principal quantum number, n, through

N = n− |K| . (C.2)

Then, to first order in δω this combination without the subscripts becomes

ζ − Zαω

κ
≈ −N −

(
Zαm2

κ3
D

)
δω, (C.3)

which allows us to write the condition in (C.1) as a function of the small quantities

δy = 2|K| − 2ζ ' O
[
(Zα)2] and δx = −

(
Zαm2

κ3
D

)
δω , (C.4)

as

−
(

D

C

)
=

Γ [2|K|+ 1− δy] Γ [−(N + 2|K|) + δx+ δy]

Γ [−(2|K| − 1) + δy] Γ [−N + δx]
. (C.5)

Now, to capture the energy shift to an accuracy of O
[
(Zα)2] we need to expand

this formula for small δx, δy and keep terms of order O (δx, δy, δxδy) and potentially

O (δy2) but not higher. In general, using the special property of gamma functions that

xΓ[x] = Γ[x+ 1] we can expand them around their poles in the following way,

Γ [−N + δz] =
Γ [−N + 1 + δz]

(−N + δz)
=

Γ [1 + δz]

(−N + δz) (−N + 1 + δz) · · · δz

≈
Γ [1]

(
1 + δz Γ′[1]

Γ[1]
+ · · ·

)
(−1)NN ! δz (1− δzHN + · · · )

, (C.6)
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where the ellipses of (C.6) contain terms higher order in δz. Carrying out this expansion

for each gamma function28 in (C.5) we end up with (after some algebra),

−
(

D

C

)
= −

(2|K| − 1)!(2|K|)!N ! (δxδy)
(

1− δy
2|K|

(
1 + 4|K|H2|K|−1

)
+ · · ·

)
(N + 2|K|)!

(
δx
[
1− 2δy

(
HN+2|K| + γ

)]
+ δy − δy2

[
HN+2|K| + γ

]) ,
(C.7)

which uses the identities:

Γ′[1]

Γ[1]
= −γ, Γ′[2|K|+ 1]

Γ[2|K|+ 1]
= H2|K| − γ, H2|K| +H2|K|−1 =

1

2|K|
(
1 + 4|K|H2|K|−1

)
.

(C.8)

Pulling out a factor of δy from the denominator yields

(
D

C

)
=

(2|K| − 1)!(2|K|)!N ! (δx)
[
1− δy

2|K|

(
1 + 4|K|H2|K|−1

)
+ · · ·

]
(N + 2|K|)!

(
1 + δx

[
1
δy
− 2

(
HN+2|K| + γ

)]
− δy

(
HN+2|K| + γ

)
+ · · ·

) ,
(C.9)

and rearranging this for δω (hidden inside δx) and writing it in terms of the principal

quantum number n gives the desired result for the finite-size energy shift to order

O (Zα2) as a function of the small parameter D/C :

δω ' −
κ3
DB (D/C )

[
1− δy

(
Hn+|K| + γ

)]
m2(Zα)

[
1−B (D/C )

[
(δy)−1 − 2

(
Hn+|K| + γ

)]
− δy

2|K|

(
1 + 4|K|H2|K|−1

)
+ · · ·

] ,
(C.10)

where the ellipses represent terms that involve higher powers of δx and

B :=
(n+ |K|)!

(n− |K|)!(2|K|)!(2|K| − 1)!
. (C.11)

D Perturbing in the magnetic dipole

This appendix derives the contributions to lepton-mode energy shifts due to the nuclear

magnetic-dipole electromagnetic field. This is to be combined with the effects of finite-

size nuclear effects in the main text. For the applications there we work to first order

in the leptonic wave-functions, and energy shifts.

28Note that the arguments of the gamma functions in (C.5) that depend on N in both numerator

and denominator simultaneously approach negative integers in the limit δx, δy → 0 and this necessi-

tates expanding both gamma functions around their poles, hence the name “single-zero, single-pole”

approximation.
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Degenerate perturbation theory

The discussion of the main text shows that the leptonic mode functions satisfy the

equation of motion (2.13), reproduced here (after multiplying through by iγ0) as

ωψ =
[
iγ0γ · ∇+ iγ0m+ eAnuc

0

]
ψ −

(
eγ0γ ·Anuc

)
ψ , (D.1)

where Anuc
0 and Anuc are given by (2.10), also reproduced here:

Anuc
0 ' − Ze

4πr
, Anuc '

µ× r

4πr3
. (D.2)

This is to be solved perturbatively in Anuc. To do so we regard (D.1) as a special

instance of the eigenvalue condition,

[H0 + λV ] |ψA〉 = ωA |ψA〉 , (D.3)

with

H0 = iγ0γ · ∇+ iγ0m+ eAnuc
0 and V = −eγ0γ ·Anuc , (D.4)

and λ being a parameter that formally helps keep track of the order in V (but that is

set to unity at the end) [118, 119]. Seeking eigenstates and eigenvalues order by order

in λ,

ω = ω(0) + λω(1) + λ2ω(2) + . . . and |ψ〉 = |ψ〉0 + λ |ψ〉1 + λ2 |ψ〉2 + . . . , (D.5)

gives the hierarchy of conditions,

O(1) : H0 |ψ〉0 = ω(0) |ψ〉0
O (λ) : H0 |ψ〉1 + V |ψ〉0 = ω(0) |ψ〉1 + ω(1) |ψ〉0 ,
O
(
λ2
)

: H0 |ψ〉2 + V |ψ〉1 = ω(0) |ψ〉2 + ω(1) |ψ〉1 + ω(2) |ψ〉0 ,

and so on.

Zeroth order

The leading equation is:

H0 |ψ〉0 = ω(0) |ψ〉0 , (D.6)

which in the present instance is the Dirac-Coulomb equation, whose eigenvalues, ω
(0)
nj =

ωDnj are given in (2.23), and whose eigenstates are labelled by the electronic principal,

angular-momentum and parity quantum numbers described in the main text, and by

the nuclear spin. That is, the zeroeth-order eigenstates are

|njjz$ ; IIz〉0 = |njjz$〉0 ⊗ |IIz〉0 , (D.7)
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where j = 1
2
, 3

2
, · · · and jz = −j,−j + 1, · · · , j − 1, j and Iz = −I,−I + 1, · · · , I − 1, I

and $ = ±.

Notice that these energy levels are degenerate, with (2I + 1)(2j + 1) states distin-

guished by jz and Iz sharing the same energy. This makes it necessary to use degenerate

perturbation theory in what follows. That is, within any degenerate eigenspace a basis

|E, a〉0 of energy E the zeroth-order eigenstates should be chosen to ensure that V is

diagonal:

0〈E, b |V |E, a〉0 = V(E, a)δab . (D.8)

In practice the required basis are the states that are eigenstates of the total (combined

nuclear and leptonic) angular momentum F = J + I (see below for details).

First order

At first order in λ the eigenvalue equation is[
H0 − ω(0)

]
|ψ〉1 =

[
ω(1) − V

]
|ψ〉0 . (D.9)

Following the usual steps this implies the first-order energy shift for a state |ω(0), a〉0 is

ω(1) = V(ω(0), a) =
0〈ω(0), a|V |ω(0), a〉0

0〈ω(0), a|ω(0), a〉0
, (D.10)

and the corresponding zeroth-order energy eigenstate at this order is |ω(0), a〉0.

The first-order correction to this energy eigenstate implied by (D.9) is then

|ω(0), a〉1 = D̄
1

[ω(0) −H0]
D̄V |ω(0), a〉0 , (D.11)

where D̄ denotes the projection matrix onto all zeroth-order states that are not degen-

erate with the original state |ω(0), a〉0.

Eigenstates of total atomic spin

Although the nuclear magnetic moment splits some of the degeneracy of Dirac-Coulomb

levels, rotational invariance ensures that the resulting states retain a residual (2F + 1)-

dimensional degeneracy where F is the total angular momentum quantum number for

the entire atom (nucleus plus lepton): F = J + I.

This section writes these states out for the special case of a spin-half nucleus, as

is relevant for our main application to muonic and atomic Hydrogen. We would like

these functions to satisfy

F2Yj,$
F ,fz

= F (F + 1)Yj,$
F ,fz

, FzYj,$F ,fz = fzYj,$F ,fz , I2Yj,$
F ,fz

= I(I + 1)Yj,$
F ,fz

,

J2Yj,$
F ,fz

= j(j + 1)Yj,$
F ,fz

, S2Yj,$
F ,fz

= s(s+ 1)Yj,$
F ,fz

, L2Yj,$
F ,fz

= l(l + 1)Yj,$
F ,fz

.

(D.12)
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Any such state also diagonalizes I · J and S · L, with

2I · J =
(
I + J

)2

− I2 − J2 = F (F + 1)− I(I + 1)− j(j + 1)

and 2S · L =
(
S + L

)2

− S2 − L2 = j(j + 1)− s(s+ 1)− l(l + 1) . (D.13)

The electron spinor harmonics, Ωjljz$ satisfy the last three of conditions (D.12)

for s = 1
2
, as well as JzΩjljz$ = jzΩjljz$. These are defined in eqs. (2.16) and (2.17),

repeated here for convenience:

ψ =

(
Ωjljz$(θ, φ) fnj(r)

iΩjl′jz$(θ, φ) gnj(r)

)
with Ωjljz$ :=

$

√
l+$ jz+ 1

2

2l+1
Yl,jz− 1

2
(θ, φ)

√
l−$ jz+ 1

2

2l+1
Yl,jz+ 1

2
(θ, φ)

 ,

(D.14)

where the left-hand equality gives the 4-component electron spinor – in a basis for which

γ0 is diagonal, see (B.4) – in terms of the 2-component electron spinor harmonics Ωjljz

defined in terms of ordinary scalar spherical harmonics in the right-hand equality. In

the right-hand equality $ = ±1 is the parity quantum number and in the left-hand

equality l and l′ are related to j and parity by l = j − 1
2
$ and l′ = j + 1

2
$.

Similarly the nuclear I-states,

η 1
2
,+ 1

2
=

[
1

0

]
and η 1

2
,− 1

2
=

[
0

1

]
, (D.15)

satisfy

I2ηIIz = I(I + 1)ηIIz and IzηIIz = IzηIIz . (D.16)

We adopt the convention where square brackets denote nuclear-spin spinors while round

brackets denote spinors in electron-spin space.

In general, states of definite total spin are built from product states with given j

and I by

|F, fz〉 =
∑
j

∑
jz

∑
Iz

〈j, jz; I, Iz|F, fz〉 |j, jz; I, Iz〉 , (D.17)

for an appropriate set of Clebsch-Gordan coefficients, 〈j, jz; I, Iz|F, fz〉. For a spin-half

nucleus, I = 1
2
, this reduces to [119],∣∣∣∣F = j ± 1

2
, fz

〉
= ±

√
j + 1

2
± fz

2j + 1

∣∣∣∣j, fz − 1

2
;
1

2
,+

1

2

〉
+

+

√
j + 1

2
∓ fz

2j + 1

∣∣∣∣j, fz +
1

2
;
1

2
,−1

2

〉
.

(D.18)
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Using the explicit position-space representation given above the new basis of spinor

harmonics with definite F are the 4-component mixed electron/nuclear spin quantites

Yj,$
F=j± 1

2
,fz

= ±

√
j + 1

2
± fz

2j + 1
Ωjlfz− 1

2
,$ η 1

2
,+ 1

2
+

√
j + 1

2
∓ fz

2j + 1
Ωjlfz+ 1

2
,$ η 1

2
,− 1

2
, (D.19)

and so using (D.15) the explicit 4-component spinors with fixed F are

Yj,$F=j+ ν
2
,fz

=

 ν√ j+ 1
2

+νfz
2j+1

Ωj,l,fz− 1
2
,$√

j+ 1
2
−νfz

2j+1
Ωj,l,fz+ 1

2
,$

 , (D.20)

where ν = ± corresponds to the choice for F = j ± 1
2

= j + ν
2

and $ is the parity of

the electron spinor harmonic, and l = j − 1
2
$.

As a concrete example, consider F = 1, fz = 0,±1 and j = 1
2

states with positive

and negative parity, for which the above give the explicit positive-parity (S-wave)

angular functions,

Y
1
2
,+

1,0 =
1√
2

[
Ω 1

2
,0,− 1

2
,+

Ω 1
2
,0,+ 1

2
,+

]
, Y

1
2
,+

1,+1 =

[
Ω 1

2
,0, 1

2
,+

0

]
, Y

1
2
,+

1,−1 =

[
0

Ω 1
2
,0,− 1

2
,+

]
, (D.21)

while the negative-parity (P -wave) states instead are

Y
1
2
,−

1,0 =
1√
2

[
Ω 1

2
,1,− 1

2
,−

Ω 1
2
,1,+ 1

2
,−

]
, Y

1
2
,−

1,+1 =

[
Ω 1

2
,1, 1

2
,−

0

]
, Y

1
2
,−

1,−1 =

[
0

Ω 1
2
,1,− 1

2
,−

]
. (D.22)

The orthonormality of the spherical spinors and of the nuclear spin states,∫
d2Ω2 Ω†j′,l′,j′zΩj,l,jz = δjj′δll′δjzj′z and η†I,IzηI′,I′z = δIz ,I′z (D.23)

ensure the above spinor harmonics are orthonormal∫
d2Ω2

(
Yj
′,$′

F ′,f ′z

)†
Yj,$
F ,fz

= δFF ′δjj′δf ′zfzδ$$′ . (D.24)

E Evaluation of matrix elements

This section evaluates the radial integrals that arise when evaluating the magnetic-

moment contributions to energy shifts. Some of these integrals diverge due to singu-

larities in the integrands as r → 0, and for these we also evaluate the regularization

procedure we use when separating out the divergent and finite parts. The divergences
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all have a specific dependence on the principal quantum number n, that is consis-

tent with their being renormalized into shifts of the effective coupling ĉF . As a result

the main content of the finite contributions is restricted to those terms that depend

differently on n than do the divergent ones.

We consider in turn the integrals associated with both the first-order energy shift

and the first-order state change.

Energy shift

The first order energy shift due to the nuclear dipole field is given by (2.36),

ε
(1)
nFj$ = −K sXF

m

(2κ)3

2m

(
N

D

)
= −4sKXF

κ3

m2

(
N

D

)
= −4sKXF m

(
Zα

N

)3(
N

D

)
,

(E.1)

where

N = n

√
1− 2(n− |K|)(Zα)2

n2(ζ + |K|)
→ n

√
1− 2(n− 1)(Zα)2

n2(ζ + 1)
, (E.2)

and

s :=
meµN

4π
→ Zα

2

(m
M

)
gp , (E.3)

where gp is the proton g-factor and

XF :=
F (F + 1)− j(j + 1)− I(I + 1)

j(j + 1)
(E.4)

=

{
(j + 1)−1 if F = j + 1

2

−j−1 if F = j − 1
2

→
{

2/3 if F = 1

−2 if F = 0
.

In these expressions the arrows specialize to the positive parity $ = +, j = 1
2

states of

Hydrogen.

The numerator and denominator functions are obtained as matrix elements of the

interaction Hamiltonian (as described in the main text) and so contain the integrals

we seek to evaluate. They both depend on the integration constant ratio, D/C , and

so can be written

N = Npt +

(
D

C

)
N1 +

(
D

C

)2

N2

D = Dpt +

(
D

C

)
D1 +

(
D

C

)2

D2 . (E.5)
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where eq. (3.9) gives the integration constant for parity-even j = 1
2

states as(
D+

C+

)(0)

' −16y?+(mε?+)2

n(n+ 1)

(
2Zαmε?+

n

)2ζ−2

+ · · ·

' − c

n(n+ 1)
+O[(Zα)2] . (E.6)

which defines c = 16y?+(mε?+)2. Since matching reveals that ε?+ ∼ O(RZα) where

R ∼ 1 fm is a typical nuclear scale, we see that c ∼ O[(mRZα)2]. In particular Npt/Dpt

is revealed to be the point-nucleus contribution to the hyperfine energy (which provides

a useful check).

The functions Npt, N1, N2, Dpt, D1 and D2 are given in terms of the following

class of integrals, that the rest of this section evaluates in detail:

I(p)
ij :=

∫ ∞
0

dρ e−ρρpMiMj , (E.7)

where we use the notationM(a; b; z) := 1F1(a; b; z) for confluent hypergeometric func-

tions and the integrands are as given in (2.19)

M1 :=M (a, b; ρ) , M2 :=M (a+ 1, b; ρ) ,

M3 :=M (a′, b′; ρ) , M4 :=M (a′ + 1, b′; ρ) . (E.8)

with parameters defined as in (2.20)

a := ζ − Zαω

κ
, a′ := −

(
ζ +

Zαω

κ

)
, b := 1 + 2ζ, b′ := 1− 2ζ,

c := K− Zαm

κ
, ρ := 2κr, κ :=

√
m2 − ω2, ζ :=

√
K2 − (Zα)2 , (E.9)

and K = −$(j + 1
2
) where $ = ±1 is the state’s parity.

Our main interest is in j = 1
2

and $ = +1 states for which K = −1. For this choice

we have

ζ =
√

1− (Zα)2 = 1 + z (E.10)

where z is order (Zα)2. Similarly, for bound states one has

κ =
√
m2 − ω2 =

Zαm

N
' Zαm

n
+O[(Zα)2] , (E.11)

where n = 1, 2, ... is the principal quantum number, and so

Zαω

κ
= n+ λ and

Zαm

κ
= n+ µ (E.12)
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with λ and µ also order (Zα)2. In this regime the parameters of (E.9) are

a = 1− n+ z− λ , a′ = −1− n− z− λ , b = 3 + 2z

b′ = −1− 2z and c = −1− n− µ . (E.13)

In terms of these quantities we have

Npt = I(2ζ−2)
11 −

(a
c

)2

I(2ζ−2)
22

N1 = 2

[
I(−2)

13 −
(
aa′

c2

)
I(−2)

24

]
(E.14)

N2 = I(−2ζ−2)
33 −

(
a′

c

)2

I(−2ζ−2)
44 ,

and

Dpt = 2I(2ζ)
11 −

4ω

m

(a
c

)
I(2ζ)

12 + 2
(a
c

)2

I(2ζ)
22

D1 = 2

[
2I(0)

13 −
2ω

m

(
a′

c

)
I(0)

14 −
2ω

m

(a
c

)
I(0)

23 + 2

(
aa′

c2

)
I(0)

24

]
(E.15)

D2 = 2

[
I(−2ζ)

33 − 2ω

m

(
a′

c

)
I(−2ζ)

34 +

(
a′

c

)2

I(−2ζ)
44

]
.

Hypergeometric facts

The relevant integrands depend on generalized hypergeometric functions, some of whose

definitions and properties – taken from [120], [121] and online libraries such as [122] –

are summarized here. These functions are defined within the domain of convergence

by the following infinite series

AFB
[
a1, · · · aA
b1 · · · bB

; z

]
:=

∞∑
k=0

(a1)k · · · (aA)k
(b1)k · · · (bB)k

zk

k!

= 1 +
a1 · · · aA
b1 · · · bB

z +
a1(a1 + 1) · · · aA(aA + 1)

b1(b1 + 1) · · · bB(bB + 1)

z2

2
+ · · · (E.16)

and are extended to general complex z by analytic continuation. Here (a)i are the

Pochhammer symbols defined by

(a)i := a(a+ 1) · · · (a+ i− 1) when i ≥ 1 , (E.17)

and (a)0 := 1.
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These definitions show that if any of the a-type arguments is a non-positive integer

then the series expansion terminates after a finite number of terms. Similarly, the coef-

ficients of the series are not well-defined if any of the b-type arguments is a non-positive

integer. Both of these situations actually arise in Dirac-Coulomb wave-functions, which

involve confluent hypergeometric functions (given by the special case A = B = 1). In

particular

3F2

[
a, b,−1

c, d
; ρ

]
= 1−

(
ab

cd

)
ρ and so 3F2

[
a, b,−1

c, d
; 1

]
=
cd− ab
cd

. (E.18)

Also notice that

3F2

[
a, b, d

c, d
; ρ

]
= 2F1

[
a, b

c
; ρ

]
= 2F1(a, b; c; ρ) , (E.19)

is a standard hypergeometric function, and so

3F2

[
a, b, d

c, d
; 1

]
= 2F1

[
a, b

c
; 1

]
= 2F1(a, b; c; 1) =

Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b)

. (E.20)

Strictly speaking the last equality only holds for R(c − a − b) > 0, and is defined for

other values by analytic continuation.

Basic integrals

Because M(a; c; ρ) → 1 as ρ → 0, the basic integral of interest, (E.7), converges at

ρ = 0 if Re p > −1. Although the exponential factor e−ρ might seem to ensure

automatic convergence as ρ→∞, the large-ρ asymptotic expansion

M(a; b; ρ) ∼ eρ ρa−b

Γ(a)

∞∑
k=0

(1− a)k(1− b)k
k!

ρ−k , (E.21)

shows that convergence actually depends on the values of a, b, a′ and b′ and p.

The integral can be evaluated by expanding one of the hypergeometric functions

and formally integrating term-by-term [120]:

Id(a, b; a′, b′) :=

∫ ∞
0

dρ e−ρρd−1M [a; b; ρ]M [a′; b′; ρ] ,

=
Γ(b′)

Γ(a′)

∞∑
k=0

Γ(a′ + k)

k! Γ(b′ + k)

∫ ∞
0

dρ e−ρρd−1+kM(a, b; ρ)

=
Γ(d)Γ(b′)Γ(b′ − d− a′)

Γ(b′ − a′)Γ(b′ − d)
3F2

[
a, d, 1 + d− b′

b, 1 + d+ a′ − b′
; 1

]
(E.22)

=
Γ(d)Γ(b)Γ(b− d− a)

Γ(b− a)Γ(b− d)
3F2

[
a′, d, 1 + d− b
b′, 1 + d+ a− b

; 1

]
,
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where the last equality uses the manifest symmetry of the original integrand under

(a, b) ↔ (a′, b′). A useful special case that arises sometimes is d = b′, in which case

(E.22) simplifies to

Id(a, b; a′, b′) =
Γ(b)Γ(b′)Γ(b− a− b′)

Γ(b− a)Γ(b− b′) 3F2

[
a′, b′, 1 + b′ − b
b′, 1 + b′ + a− b

; 1

]
=

Γ(b)Γ(b′)Γ(b− a− b′)
Γ(b− a)Γ(b− b′) 2F1

[
a′, 1 + b′ − b
1 + b′ + a− b

; 1

]
(E.23)

=
Γ(b)Γ(b′)Γ(b− a− b′)Γ(1 + a+ b′ − b)Γ(a− a′)

Γ(b− a)Γ(b− b′)Γ(1 + b′ − b+ a− a′)Γ(a)
.

Integrals appearing in Npt and Dpt

Consider first the convergent integrals that give the standard hyperfine structure. This

tests that we are evaluating things properly.

The integral Ip11

We start with the integral

I(p)
11 =

∫ ∞
0

dρ e−ρρpM(a, b; ρ)M(a, b; ρ) = Ip+1(a, b; a, b)

=
Γ(p+ 1)Γ(b)Γ(b− a− p− 1)

Γ(b− a)Γ(b− p− 1)
3F2

[
a, p+ 1, p+ 2− b
b, p+ 2 + a− b

; 1

]
, (E.24)

which with

a = ζ − Zαω

κ
, b = 1 + 2ζ , b− a = 1 + ζ +

Zαω

κ
, (E.25)

gives

I(p)
11 =

Γ(p+ 1)Γ(1 + 2ζ)Γ(ζ − p+ Zαω/κ)

Γ(2ζ − p)Γ(1 + ζ + Zαω/κ)
3F2

[
ζ − Zαω/κ, p+ 1, p+ 1− 2ζ

1 + 2ζ, p+ 1− ζ − Zαω/κ
; 1

]
.

(E.26)

This integral arises in Npt and Dpt with the two cases p = 2ζ and p = 2ζ − 2. We

consider each of these cases in turn.

Specializing to p = 2ζ and simplifying the result using (E.20) gives

I(2ζ)
11 =

[Γ(1 + 2ζ)]2Γ(−ζ + Zαω/κ)

Γ(0)Γ(1 + ζ + Zαω/κ)
3F2

[
ζ − Zαω/κ, 1 + 2ζ, 1

1 + 2ζ, 1 + ζ − Zαω/κ
; 1

]
=

[Γ(1 + 2ζ)]2Γ(1− ζ + Zαω/κ)

Γ(1 + ζ + Zαω/κ)
(E.27)
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which survives despite the Γ(0) in the denominator of the prefactor29 because of a

compensating factor of Γ(0) in the numerator coming from using (E.20) in the limit

c = b+ a. Expanding to lowest order in (Zα)2 then gives the result

I(2ζ)
11 =

[Γ(3 + 2z)]2Γ(n− z + λ)

Γ(2 + n+ z + λ)
=

4

n(n+ 1)
+O[(Zα)2] . (E.28)

Specializing next to p = 2ζ − 2 and using (E.18) to simplify the result leads to

I(2ζ−2)
11 =

Γ(2ζ − 1)Γ(1 + 2ζ)Γ(2− ζ + Zαω/κ)

Γ(2)Γ(1 + ζ + Zαω/κ)
3F2

[
ζ − Zαω/κ, 2ζ − 1,−1

1 + 2ζ,−1 + ζ − Zαω/κ
; 1

]
=

Γ(2ζ − 1)Γ(1 + 2ζ)Γ(1− ζ + Zαω/κ)

(1 + 2ζ)Γ(1 + ζ + Zαω/κ)

(
1 +

2Zαω

κ

)
(E.29)

=
2(2n+ 1)

3n(n+ 1)
+O[(Zα)2] .

The integral Ip12

In this case we have the integral

I(p)
12 =

∫ ∞
0

dρ e−ρρpM(a, b; ρ)M(a+ 1, b; ρ) = Ip+1(a, b; a+ 1, b)

=
Γ(p+ 1)Γ(b)Γ(b− a− p− 1)

Γ(b− a)Γ(b− p− 1)
3F2

[
a+ 1, p+ 1, p+ 2− b

b, p+ 2 + a− b
; 1

]
, (E.30)

in which we again use (E.25), leading to

I(p)
12 =

Γ(p+ 1)Γ(1 + 2ζ)Γ(ζ − p+ Zαω/κ)

Γ(2ζ − p)Γ(1 + ζ + Zαω/κ)
3F2

[
1 + ζ − Zαω/κ, p+ 1, p+ 1− 2ζ

1 + 2ζ, p+ 1− ζ − Zαω/κ
; 1

]
.

(E.31)

Specializing to the case p = 2ζ gives in this case

I(2ζ)
12 =

[Γ(1 + 2ζ)]2Γ(−ζ + Zαω/κ)

Γ(0)Γ(1 + ζ + Zαω/κ)
3F2

[
1 + ζ − Zαω/κ, 1 + 2ζ, 1

1 + 2ζ, 1 + ζ − Zαω/κ
; 1

]
=

[Γ(1 + 2ζ)]2Γ(−ζ + Zαω/κ)

Γ(0)Γ(1 + ζ + Zαω/κ)

(
−ζ +

Zαω

κ

)
= 0 , (E.32)

29More precisely, the expression contains the ill-defined quantity Γ(a′ − a)/Γ(b′ − b) → Γ(0)/Γ(0).

This quantity requires regulating, and there is freedom in choosing how to do this. The easiest way is to

choose a′ = a+δa and b′ = b+δb then take the limit that δa, δb → 0, so that Γ(δa)/Γ(δb)→ δb/δa = ±1.

The sign on the ratio depends on how δa and δb are taken to 0 and can be fixed by ensuring the results

for the point-like integrals align with the standard Dirac-Coulomb wavefunctions, which turns out to

require the negative sign.
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which vanishes because of the uncanceled factor of Γ(0) in the denominator.

By contrast, in the case p = 2ζ − 2 one instead finds

I(2ζ−2)
12 =

Γ(2ζ − 1)Γ(1 + 2ζ)Γ(2− ζ + Zαω/κ)

Γ(2)Γ(1 + ζ + Zαω/κ)
3F2

[
1 + ζ − Zαω/κ, 2ζ − 1,−1

1 + 2ζ,−1 + ζ − Zαω/κ
; 1

]
=

2Γ(2ζ − 1)Γ(1 + 2ζ)Γ(1− ζ + Zαω/κ)

(1 + 2ζ)Γ(1 + ζ + Zαω/κ)

(
ζ +

Zαω

κ

)
(E.33)

=
4

3n
+O[(Zα)2] .

The integral Ip22

Next up is

I(p)
22 =

∫ ∞
0

dρ e−ρρpM(a+ 1, b; ρ)M(a+ 1, b; ρ) = Ip+1(a+ 1, b; a+ 1, b)

=
Γ(p+ 1)Γ(b)Γ(b− a− p− 2)

Γ(b− a− 1)Γ(b− p− 1)
3F2

[
a+ 1, p+ 1, p+ 2− b

b, p+ 3 + a− b
; 1

]
, (E.34)

in which we still use (E.25), finding

I(p)
22 =

Γ(p+ 1)Γ(1 + 2ζ)Γ(−1 + ζ − p+ Zαω/κ)

Γ(2ζ − p)Γ(ζ + Zαω/κ)
3F2

[
1 + ζ − Zαω/κ, p+ 1, p+ 1− 2ζ

1 + 2ζ, p+ 2− ζ − Zαω/κ
; 1

]
.

(E.35)

In the case p = 2ζ this becomes

I(2ζ)
22 =

[Γ(1 + 2ζ)]2Γ(−1− ζ + Zαω/κ)

Γ(0)Γ(ζ + Zαω/κ)
3F2

[
1 + ζ − Zαω/κ, 1 + 2ζ, 1

1 + 2ζ, 2 + ζ − Zαω/κ
; 1

]
= − [Γ(1 + 2ζ)]2Γ(−1− ζ + Zαω/κ)

Γ(ζ + Zαω/κ)

(
1 + ζ − Zαω

κ

)
(E.36)

=
4

n(n− 1)
+O[(Zα)2]

where again the Γ(0) in the denominator cancels a similar factor in the numerator.

When p = 2ζ − 2 the result instead is

I(2ζ−2)
22 =

Γ(2ζ − 1)Γ(1 + 2ζ)Γ(1− ζ + Zαω/κ)

Γ(2)Γ(ζ + Zαω/κ)
3F2

[
1 + ζ − Zαω/κ, 2ζ − 1,−1

1 + 2ζ, ζ − Zαω/κ
; 1

]
=

Γ(2ζ − 1)Γ(1 + 2ζ)Γ(−ζ + Zαω/κ)

(1 + 2ζ)Γ(ζ + Zαω/κ)

(
−1 +

2Zαω

κ

)
=

2(2n− 1)

3n(n− 1)
+O[(Zα)2] (if n 6= 1) . (E.37)
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At face value the singularity when n = 1 implies this goes like 1/(Zα)2 for n = 1, but

this doesn’t matter since this integral ultimately appears in the energy shifit premulti-

plied by factors of (n− 1).

Combining results for Npt and Dpt

Using the above integrals in (E.14) finally gives the expressions

Npt = I(2ζ−2)
11 −

(
1− n+ z− λ
−1− n− µ

)2

I(2ζ−2)
22 =

4

(n+ 1)2
+O[(Zα)2] , (E.38)

and

Dpt = 2I(2ζ)
11 −

4ω

m

(
1− n+ z− λ
−1− n− µ

)
I(2ζ)

12 + 2

(
1− n+ z− λ
−1− n− µ

)2

I(2ζ)
22 (E.39)

=
16

(n+ 1)2
+O[(Zα)2] ,

which together imply Npt/Dpt = 1
4

+O[(Zα)2]. Using this in (2.36) or (E.1) gives the

prediction for hyperfine splitting for a point nucleus,

εhfs
nF 1

2
+

= −4sKXF m

(
Zα

N

)3(
Npt

Dpt

)
= −sKXF m

(
Zα

n

)3

+O[(Zα)2]

→ gpm
2

M

[
(Zα)4

2n3

]
XF +O[(Zα)2] , (E.40)

in agreement with the literature.

Integrals appearing in N1 and D1

We next apply the result (E.22) to the integrals appearing in N1 and D1. In this case

it is the cases p = 0 and p = −2 that are of interest, and it proves useful to specialize

the general integral to these two cases for general a, b, a′ and b′, keeping in mind that

b = 1 + 2ζ and b′ = 1− 2ζ imply that b′ = 2− b.
For instance, taking p = 0 (i.e. d = 1) and b′ = 2 − b in (E.22), and simplifying

using (E.20), gives

I1(a, b; a′, 2− b) =
Γ(b)Γ(1)Γ(b− a− 1)

Γ(b− a)Γ(b− 1)
3F2

[
a′, 1, 2− b

2− b, 2 + a− b
; 1

]
=

1− b
1 + a− a′ − b

. (E.41)
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Similarly, taking p = −2 (and so d = −1) and b′ = 2− b in (E.22) gives

I−1(a, b; a′, 2− b) =
Γ(b)Γ(d)Γ(b− a+ 1)

Γ(b− a)Γ(b+ 1)
3F2

[
a′,−1,−b

2− b, a− b
; 1

]
(E.42)

=
Γ(−1)

b(b− 2)

[
(2− b)(a− b) + a′b

]
,

which diverges (for all Zα) due to the Γ(d) factor as d → −1. We regulate this

divergence dimensionally, which in this instance merely means writing d = −1 +η with

the regularization parameter η taken to zero at the end, once the divergence has been

renormalized away. With this in mind we write Γ(−1) = Γ(−1 + η) = Γ(η)/(−1 + η) =

−Γ(0)[1 +O(η)] in what follows, in practice typically dropping the O(η) terms.

The integral Ip13

The general formula applies directly to I(p)
13 , for which

I(p)
13 :=

∫ ∞
0

dρ e−ρρpM(a, b; ρ)M(a′, b′; ρ) = Ip+1(a, b; a′, b′) , (E.43)

in which we use

a = ζ − Zαω

κ
, b = 1 + 2ζ , a′ = −ζ − Zαω

κ
, b′ = 1− 2ζ . (E.44)

and so b′ = 2 − b and a − a′ = 2ζ. Again we require the cases p = 0 and p = −2 (or

d = 1 and d = −1).

Specializing to p = 0 in (E.41) gives a divergent result because 1+a−a′ = 1+2ζ = b.

Regularizing this divergence by deforming a = ζ − (Zαω/κ) + ηa (with ηa → 0 at the

end) we have

I(0)
13 = − 2ζ

ηa
=: −Γa(0) 2ζ = −2Γa(0) +O[(Zα)2] , (E.45)

which defines Γa(0) = η−1
a [1 +O(ηa)]. Similarly using the p = −2 in (E.42) gives

I(−2)
13 =

Γ(−1)

(1− 2ζ)(1 + 2ζ)

(
1 +

2Zαω

κ

)
= −

(
2n+ 1

3

)
Γ(−1) +O[(Zα)2] . (E.46)

The integral Ip14

Next consider

I(p)
14 :=

∫ ∞
0

dρ e−ρρpM(a, b; ρ)M(a′ + 1, b′; ρ) = Ip+1(a, b; a′ + 1, b′) , (E.47)
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evaluated using (E.44), which implies b′ = 2 − b. In this case only p = 0 (or d = 1) is

required and so using (E.41) gives

I(0)
14 = I1(a, b; a′ + 1, 2− b) =

1− b
a− a′ − b

= 2ζ = 2 +O[(Zα)2] . (E.48)

The integral Ip23

The required integral in this case is

I(p)
23 :=

∫ ∞
0

dρ e−ρρpM(a+ 1, b; ρ)M(a′, b′; ρ) = Ip+1(a+ 1, b; a′, b′) , (E.49)

and only p = 0 (or d = 1) is required. Using (E.41) this time gives

I(0)
23 = I1(a+ 1, b; a′, 2− b) =

1− b
2 + a− a′ − b

= −2ζ = −2 +O[(Zα)2] . (E.50)

The integral Ip24

The final integral in this section is I(p)
24 , for which

I(p)
24 :=

∫ ∞
0

dρ e−ρρpM(a+ 1, b; ρ)M(a′, b′; ρ) = Ip+1(a+ 1, b; a′ + 1, b′) , (E.51)

and both p = 0 (or d = 1) and p = −2 (or d = −1) are needed. In the case p = 0,

using (E.41) and noting that I1(a, b; a′, 2 − b) depends on a and a′ only through their

difference, a− a′, implies I(0)
24 = I(0)

13 and so

I(0)
24 = I(0)

13 = −Γa(0) 2ζ = −2Γa(0) +O[(Zα)2] . (E.52)

For p = −2, on the other hand, using (E.42) gives

I(−2)
24 = I−1(a+ 1, b; a′ + 1, 2− b) =

Γ(−1)

b(b− 2)

[
(2− b)(1 + a− b) + (1 + a′)b

]
=

Γ(−1)

(1 + 2ζ)(−1 + 2ζ)

(
1− 2Zαω

κ

)
= −

(
2n− 1

3

)
Γ(−1) +O[(Zα)2] .

Combining results for N1 and D1

These integrals when combined in (E.14) give

N1 = 2I(−2)
13 − 2

(
1− n+ z− λ
−1− n− µ

)(
−1− n− z− λ
−1− n− µ

)
I(−2)

24

= −2

(
2n+ 1

3

)
Γ(−1) + 2

(
n− 1

n+ 1

)(
2n− 1

3

)
Γ(−1) +O[(Zα)2] (E.53)

= −
(

4n

n+ 1

)
Γ(−1) +O[(Zα)2] ,
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while (E.15) similarly becomes

D1 = 4I(0)
13 −

4ω

m

(
−1− n− z− λ
−1− n− µ

)
I(0)

14 −
4ω

m

(
1− n+ z− λ
−1− n− µ

)
I(0)

23

+4

(
1− n+ z− λ
−1− n− µ

)(
−1− n− z− λ
−1− n− µ

)
I(0)

24

= − 16

n+ 1

[
nΓa(0) + 1

]
+O[(Zα)2] . (E.54)

Combining these with (E.38) and (E.39), which say Npt = 4/(n+ 1)2 + · · · and Dpt =

16/(n+ 1)2 + · · · we finally get

N1

Npt

= −n(n+ 1) Γ(−1) +O[(Zα)2]

D1

Dpt

= −(n+ 1)
[
nΓa(0) + 1

]
+O[(Zα)2] . (E.55)

Keeping in mind that
D

C
' − c

n(n+ 1)
(E.56)

where c ∝ (mε?)
2 is defined in (E.6), we see(

D

C

)
N1

Npt

= c Γ(−1) +O[(Zα)2] (E.57)

and (
D

C

)
D1

Dpt

= c

[
Γa(0) +

1

n

]
+O[(Zα)2] . (E.58)

What is important here is the divergent terms are n-independent, as is required for

them to be absorbed into the counter-term cF .

The finite contribution in D1 does not cancel but it is small enough to be negligible

for our purposes. To see why, recall that c ∼ (mε?)
2 ∼ (mRZα)2 while the point

hyperfine splitting is order (m2/M)(Zα)4. Taking m/M ∼ mR, the finite part of the

D1 piece contributes to the energy by an amount of order m(Zα)3(mRZα)3. Keeping

in mind that the charge radius contributes at order m(Zα)2(mRZα)2 we see the finite

part of D1 is suppressed relative to the charge radius by a factor of order mR(Zα)2.

For electrons this is smaller than the (Zα)2 ∼ mRZα order to which we work, and

for muons it is comparable to the other (mRZα)2 terms that have been neglected (but

whose size is of practical interest for some experiments).
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Integrals appearing in N2 and D2

Finally, consider the integrals in the (D/C )2 part of the hyperfine energy.

The integral Ip33

The first integral of interest here is

I(p)
33 :=

∫ ∞
0

dρ e−ρρpM [a′; b′; ρ]M [a′; b′; ρ] = Ip+1(a′, b′; a′, b′) (E.59)

=
Γ(p+ 1)Γ(b′)Γ(b′ − a′ − p− 1)

Γ(b′ − a′)Γ(b′ − p− 1)
3F2

[
a′, p+ 1, p+ 2− b′

b′, 2 + p+ a′ − b′
; 1

]
,

in which we use

a′ = −ζ − Zαω

κ
, b′ = 1− 2ζ , b′ − a′ = 1− ζ +

Zαω

κ
. (E.60)

This is most easily obtained from the result for I(p)
11 found above by making the re-

placement ζ → −ζ, leading to

I(p)
33 =

Γ(p+ 1)Γ(1− 2ζ)Γ(−ζ − p+ Zαω/κ)

Γ(−2ζ − p)Γ(1− ζ + Zαω/κ)
3F2

[
−ζ − Zαω/κ, p+ 1, p+ 1 + 2ζ

1− 2ζ, p+ 1 + ζ − Zαω/κ
; 1

]
,

(E.61)

for which we require p = −2ζ and p = −2ζ − 2.

In the case p = −2ζ using (E.20) allows the integral to be written

I(−2ζ)
33 =

[Γ(1− 2ζ)]2Γ(ζ + Zαω/κ)

Γ(0)Γ(1− ζ + Zαω/κ)
3F2

[
−ζ − Zαω/κ, 1− 2ζ, 1

1− 2ζ, 1− ζ − Zαω/κ
; 1

]
= − [Γ(1− 2ζ)]2Γ(1 + ζ + Zαω/κ)

Γ(1− ζ + Zαω/κ)
.

Notice that in this expression the Gamma function Γ(1 − 2ζ) diverges when Zα → 0.

What is important about this singularity is how it depends on n, since this allows it

also to be absorbed into the effective coupling cF . To see this explicitly, notice that for

small Zα the above becomes

I(−2ζ)
33 = −Γ(−1− 2z)]2

[
n(n+ 1) +O[(Zα)2]

]
. (E.62)

The case p = −2ζ − 2 similarly gives

I(−2ζ−2)
33 =

Γ(−1− 2ζ)Γ(1− 2ζ)Γ(2 + ζ + Zαω/κ)

Γ(2)Γ(1− ζ + Zαω/κ)
3F2

[
−ζ − Zαω/κ,−1− 2ζ,−1

1− 2ζ,−1− ζ − Zαω/κ
; 1

]
=

[Γ(1− 2ζ)]2Γ(1 + ζ + Zαω/κ)

2ζ(1 + 2ζ)(1− 2ζ)Γ(1− ζ + Zαω/κ)

(
1 +

2Zαω

κ

)
.
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which as Zα→ 0 becomes

I(−2ζ−2)
33 = [Γ(−1− 2z)]2

[
−1

6
n(n+ 1)(2n+ 1) +O[(Zα)2]

]
.

The integral Ip34

Consider next

I(p)
34 :=

∫ ∞
0

dρ e−ρρpM [a′; b′; ρ]M [a′ + 1; b′; ρ] = Ip+1(a′, b′; a′ + 1, b′) (E.63)

=
Γ(p+ 1)Γ(b′)Γ(b′ − a′ − p− 1)

Γ(b′ − a′)Γ(b′ − p− 1)
3F2

[
a′ + 1, p+ 1, p+ 2− b′

b′, 2 + p+ a′ − b′
; 1

]
,

which becomes

I(p)
34 =

Γ(p+ 1)Γ(1− 2ζ)Γ(−ζ − p+ Zαω/κ)

Γ(−2ζ − p)Γ(1− ζ + Zαω/κ)
3F2

[
1− ζ − Zαω/κ, p+ 1, p+ 1 + 2ζ

1− 2ζ, p+ 1 + ζ − Zαω/κ
; 1

]
.

(E.64)

In the case p = −2ζ this gives

I(−2ζ)
34 =

[Γ(1− 2ζ)]2Γ(ζ + Zαω/κ)

Γ(0)Γ(1− ζ + Zαω/κ)
3F2

[
1− ζ − Zαω/κ, 1− 2ζ, 1

1− 2ζ, 1− ζ − Zαω/κ
; 1

]
=

[Γ(1− 2ζ)]2Γ(ζ + Zαω/κ)

Γ(0)Γ(1− ζ + Zαω/κ)

(
ζ +

Zαω

κ

)
= 0 .

which vanishes due to the uncanceled Γ(0) in the denominator.

The integral Ip44

Finally consider the case

I(p)
44 :=

∫ ∞
0

dρ e−ρρpM [a′ + 1; b′; ρ]M [a′ + 1; b′; ρ] = Ip+1(a′ + 1, b′; a′ + 1, b′)

=
Γ(p+ 1)Γ(b′)Γ(b′ − a′ − p− 2)

Γ(b′ − a′ − 1)Γ(b′ − p− 1)
3F2

[
a′ + 1, p+ 1, p+ 2− b′

b′, 3 + p+ a′ − b′
; 1

]
, (E.65)

which becomes

I(p)
44 =

Γ(p+ 1)Γ(1− 2ζ)Γ(−1− ζ − p+ Zαω/κ)

Γ(−2ζ − p)Γ(−ζ + Zαω/κ)
3F2

[
1− ζ − Zαω/κ, p+ 1, p+ 1 + 2ζ

1− 2ζ, p+ 2 + ζ − Zαω/κ
; 1

]
.

(E.66)

When p = −2ζ the above formula becomes

I(−2ζ)
44 =

[Γ(1− 2ζ)]2Γ(−1 + ζ + Zαω/κ)

Γ(0)Γ(−ζ + Zαω/κ)
3F2

[
1− ζ − Zαω/κ, 1− 2ζ, 1

1− 2ζ, 2− ζ − Zαω/κ
; 1

]
=

[Γ(1− 2ζ)]2Γ(−1 + ζ + Zαω/κ)

Γ(−ζ + Zαω/κ)

(
1− ζ − Zαω

κ

)
. (E.67)
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Expanding around Zα = 0 shows the same divergent pole as for I(−2ζ)
33 , leading to

I(−2ζ)
44 = [Γ(−1− 2z)]2

[
−n(n− 1) +O[(Zα)2]

]
. (E.68)

Next take p = −2ζ − 2 in which case

I(−2ζ−2)
44 =

Γ(−1− 2ζ)Γ(1− 2ζ)Γ(1 + ζ + Zαω/κ)

Γ(2)Γ(−ζ + Zαω/κ)
3F2

[
1− ζ − Zαω/κ,−1− 2ζ,−1

1− 2ζ,−ζ − Zαω/κ
; 1

]
=

[Γ(1− 2ζ)]2Γ(ζ + Zαω/κ)

2ζ(1 + 2ζ)(1− 2ζ)Γ(−ζ + Zαω/κ)

(
−1 +

2Zαω

κ

)
, (E.69)

which expands out to give

I(−2ζ−2)
44 = [Γ(−1− 2z)]2

[
−1

6
n(n− 1) (2n− 1) +O[(Zα)2]

]
. (E.70)

Combining results N2 and D2

These integrals combine to give

N2 = I(−2ζ−2)
33 −

(
−1− n− z− λ
−1− n− µ

)2

I(−2ζ−2)
44 (E.71)

= [Γ(−1− 2z)]2
[
−n2 +O[(Zα)2]

]
,

and

D2 = 2

{
I(−2ζ)

33 − 2ω

m

(
−1− n− z− λ
−1− n− µ

)
I(−2ζ)

34 +

(
−1− n− z− λ
−1− n− µ

)2

I(−2ζ)
44

}
= 2[Γ(−1− 2z)]2

[
−2n2 +O[(Zα)2]

]
. (E.72)

and so
N2

Npt

= [Γ(−1− 2z)]2
[
−n

2(n+ 1)2

4
+O[(Zα)2]

]
, (E.73)

and
D2

Dpt

= −[Γ(−1− 2z)]2
[
n2(n+ 1)2

4
+O[(Zα)2]

]
. (E.74)

Keeping in mind that
D

C
' − c

n(n+ 1)
(E.75)

where c ∝ (mε?)
2 so(

D

C

)2
N2

Npt

= [Γ(−1− 2z)]2
[
−c2

4
+O[(Zα)2]

]
, (E.76)
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and (
D

C

)2
D2

Dpt

= −[Γ(−1− 2z)]2
[
c2

4
+O[(Zα)2]

]
. (E.77)

Combined result

Finally combining all terms gives

N

D
=

Npt

Dpt

[
1 + (D/C )(N1/Npt) + (D/C )2(N2/Npt)

1 + (D/C )(D1/Dpt) + (D/C )2(D2/Dpt)

]
' Npt

Dpt

[
1 + C − c

n
+ · · ·

]
, (E.78)

where C is an n-independent but divergent constant whose precise value does not

matter because it gets absorbed into the renormalization of cF . The prediction beyond

the contribution of cF is completely contained in the c/n term, which is smaller than

the order to which we work.

Radial matrix element of the first-order state correction

In the main text we have anticipated that the first-order wave-function corrections

will lead to a more complicated RG behaviour of the combined PPEFT couplings

ĉs ± ĉv + 〈I · S〉ĉF of j = 1/2 states through the boundary conditions (B.15) (worked

out in detail in Appendix B), repeated here for convenience

(
ĉ+
s + ZF ĉ+

F − ĉ+
v

)
=

g+

f+
, and

(
ĉ−s + ZF ĉ−F + ĉ−v

)
=

f−
g−
. (E.79)

This occurs because the radial functions on the right-hand sides of these conditions

change under the perturbation of the nuclear magnetic dipole field and can be expanded

in a perturbation series as f$ = f
(0)
$ + sf

(1)
$ + · · · and g$ = g

(0)
$ + sg

(1)
$ + · · · , where the

ellipses stand for the second- and higher-order corrections.

These corrections to the radial functions come about as a result of the state cor-

rections, which we had formally calculated in (D.11) and as applied to the eigenstates

of total atomic angular momentum |nFFzj$〉 reads

|nFFzj$〉1 =
CnnFFzj′j(−$)$

ωDnj$ − ωDnj′(−$)

|nFFzj′(−$)〉0 +
∑
ñ6=n

[
CñnFFzjj$$
ωDnj$ − ωDñj$

|ñFFzj$〉0

+
CñnFFzj′j(−$)$

ωDnj$ − ωDñj′(−$)

|ñFFzj′(−$)〉0

]
, (E.80)
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where the coefficients are defined as

CñnFFz j̃j$̃$ := 0 〈ñFFz j̃$̃|V |nFFzj$〉0 = −
(
eµN

4πD̃

)∫
d3x r−2ψ̃†γ0γ · (I× r̂)ψ,

= −
( s

m

)∫
dΩ2

(
Y j̃$̃
F ,fz

)† (
Iθσθ + Iφσφ

)
Yj$
F ,fz

∫∞
0

dr
(̃
fg + g̃f

)
D̃

,

=
(2κ̃)3s

m2

(
C

C̃

)∫
dΩ2

(
Y j̃$̃
F ,fz

)† (
Iθσθ + Iφσφ

)
Yj$
F ,fz

(
Ns

D̃

)
, (E.81)

with

D̃ =

∫ ∞
0

dr r2
(̃
f2 + g̃2

)
=

C̃ 2m

(2κ̃)3
D̃. (E.82)

Notice that a total of three types of terms appear in the first-order wave-function

correction: there are corrections coming from states that have the same angular momen-

tum quantum numbers as the corrected state but that differ from it in their principal

quantum number; there are corrections from states that have the same F, Fz and l

quantum numbers but different n, j values and opposite parity; lastly there is a con-

tribution from a state that shares the same n, F, Fz and l value as the corrected state

and differs from it only in its j-value and parity. This medley of corrections occurs due

to the fact that although the F eigenstates do diagonalize the degenerate subspaces of

the combined nuclear and Dirac-Coulomb modes, they do not diagonalize the actual

perturbation, Lint = −eγ0γ ·Anuc (except for S-states for which J = S); the hyperfine

perturbation is known to mix states that share all their quantum numbers except for j

and $ [104, 105]. This effect manifests in the corrections proportional to CnnFFzj′j(−$)$

and CñnFFzj′j(−$)$, which first appear for the negative-parity, j = 1/2 states that re-

ceive a correction from the positive-parity j = 3/2 states (and so we have j = 1/2,

j′ = 3/2 and $ = − for these mixing corrections).

We can obtain a rough estimate for the sizes of these corrections knowing that

the Dirac-Coulomb modes go as ρζ−1 ∼ (mRZα)|K|−1 and so |n, F, Fz, 1/2,−〉0 ∼
O(1) whereas |n, F, Fz, 3/2,+〉0 ∼ (mRZα), and assuming (as we will show below)

CñnFFz j̃j$̃$ ∼ s(Zα)3, while the energy differences are of size,(
ωDnj$ − ωDñj$

)
∼ (Zα)2,

(
ωDnj$ − ωDñj′(−$)

)
∼ (Zα)2,

(
ωDnj$ − ωDnj′(−$)

)
∼ (Zα)4.

The large size of the last energy difference is due to the Dirac-Coulomb modes having

the same principal quantum number, n but different angular momentum quantum

numbers, j, j′.

Combining these estimates we find that the corrections coming from states with the

same angular momentum quantum numbers but different principal quantum number
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are of order,
CñnFFzjj$$
ωDnj$ − ωDñj$

|ñFFzj$〉0 ∼ s
(Zα)3

(Zα)2
= s(Zα), (E.83)

those coming from states with the same F, Fz and l value but different n, j,$ values

are of size,

CñnFFzj′j(−$)$

ωDnj$ − ωDñj′(−$)

|ñFFzj′(−$)〉0 ∼ s
(Zα)3

(Zα)2
(mRZα) = s(Zα)(mRZα). (E.84)

and those coming from states with the same n, F, Fz but different j,$ quantum numbers

as the corrected state yield a correction of size.

CnnFFzj′j(−$)$

ωDnj$ − ωDnj′(−$)

|nFFzj′(−$)〉0 ∼ s
(Zα)3

(Zα)4
(mRZα) =

s

(Zα)
(mRZα). (E.85)

Looking at these sizes we can see that the corrections coming from mixing states

with different angular momentum quantum numbers are proportional to (mRZα),

which pushes them outside of the scope of this paper as their calculation would re-

quire the PPEFT action to be computed to the next order in R/aB. Nevertheless,

although we ignore these off-diagonal corrections to the negative parity, j = 1/2 state

in what follows, we compute the most general matrix element CñnFFz j̃j$̃$ next.

In the CñnFFz j̃j$̃$ coefficients above, D̃ has the same functional form as D defined

in (E.5) and (E.15) for the first-order energy shift with the parameters taken to be

n → ñ, ζ → ζ̃ , ρ → ρ̃, etc. and so this part does not require further computation.

What is new is the function in the numerator that integrates over the mixtures of the

radial functions of the corrected and the correcting states that can be written in terms

of the various integration constant ratios as,

Ns = m(2κ̃)ζ̃−1(2κ)ζ−1(κ̃+ κ)1−ζ̃−ζ

{
Ns

pt +

(
D

C

)
(2κ)−2ζNs

1 +

(
D̃

C̃

)
(2κ̃)−2ζ̃Ñs

1

+

(
DD̃

C C̃

)
(2κ̃)−2ζ̃(2κ)−2ζNs

2

}
. (E.86)

Furthermore, similarly to the energy shift, the functions Ns
pt,N

s
1, Ñ

s
1 and Ns

2 can

all be written as instances of the integral,

Ip
ĩj

:= (κ̃+ κ)ζ̃+ζ−1

∫ ∞
0

dr e−(κ̃+κ)rrpMiMj̃, (E.87)

where the tilde on the subscript of the hypergeometric function means that in all of its

arguments the parameters are to be transformed as n → ñ, κ → κ̃, ζ → ζ̃ and so on.
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This integral differs from that of the energy shift in (E.7) in that the integration variable

is no longer the same as the argument of either of the hypergeometric functions and

the exponential has a factor multiplying the integration variable and so is proportional

to the more general form of (E.22)

Id(s; a, b, k; ã, b̃, k̃) :=

∫ ∞
0

dr e−srrd−1M[a; b; kr]M[ã; b̃; k̃r],

= s−dΓ[d]
∞∑
q=0

(a)q(k)q(d)q
(b)q q! sq

2F1

[
ã, d+ q;

b̃;

k̃

s

]
, (E.88)

which after taking the limit k̃ = k = s and redefining the integration variable to ρ = kr

becomes proportional to (E.22). The equality on the second line can again be found

by writing out one of the hypergeometric functions in its series form and carrying out

the resulting integral term by term using standard techniques found in [120, 121].

In terms of these integrals the functions of Ns can be written as,

Ns
pt = I(ζ̃+ζ−2)

11̃
S+ −

(
ã

c̃

)
I(ζ̃+ζ−2)

12̃
S− +

(a
c

)
I(ζ̃+ζ−2)

21̃
S− −

(
aã

cc̃

)
I(ζ̃+ζ−2)

22̃
S+,

Ns
1 = I(ζ̃−ζ−2)

31̃
S+ −

(
ã

c̃

)
I(ζ̃−ζ−2)

32̃
S− +

(
a′

c

)
I(ζ̃−ζ−2)

41̃
S− −

(
a′ã

cc̃

)
I(ζ̃−ζ−2)

42̃
S+,

Ñs
1 = I(ζ−ζ̃−2)

13̃
S+ −

(
ã′

c̃

)
I(ζ−ζ̃−2)

14̃
S− +

(a
c

)
I(ζ−ζ̃−2)

23̃
S− −

(
aã′

cc̃

)
I(ζ−ζ̃−2)

24̃
S+,

Ns
2 = I(−ζ̃−ζ−2)

33̃
S+ −

(
ã′

c̃

)
I(−ζ̃−ζ−2)

34̃
S− +

(
a′

c

)
I(−ζ̃−ζ−2)

43̃
S− −

(
a′ã′

cc̃

)
I(−ζ̃−ζ−2)

44̃
S+,

(E.89)

where the dimensionless quantities, S± are defined as

S± :=

√(
1 +

ω̃

m

)(
1− ω

m

)
±

√(
1 +

ω

m

)(
1− ω̃

m

)
∼ O(Zα). (E.90)

In general, the integrals in Ns
1, Ñ

s
1 and Ns

2 will diverge and a more careful analysis of

their divergence structure and the energy shifts is required to see if they can be absorbed

into the PPEFT couplings through boundary conditions such as (B.15). However, the

possible divergences appear along with ratios of integration constants such as (D/C )

and (D̃/C̃ ) and so are suppressed by factors of (mε?)
2ζ ∼ (mRZα)2|K| and (mε̃?)

2ζ̃ ∼
(mRZα)2|K̃|, which makes them negligible to the order we work here and so we do not

explicitly calculate the integrals in Ns
1, Ñ

s
1 and Ns

2.

Then, it is sufficient for our purposes (which is to capture the leading order correc-

tions to the wave-functions) to calculate Ns
pt, which contains integrals that integrate
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over the point-nucleus parts of the radial functions of the Dirac-Coulomb modes. These

evaluate to,

I(ζ̃+ζ−2)

11̃
= (κ̃+ κ)ζ̃+ζ−1I(ζ̃+ζ−1)(κ̃+ κ; a, b, 2κ; ã, b̃, 2κ̃) =

Γ[ζ̃ + ζ − 1]
∞∑
q=0

(a)q(2κ)q(ζ̃ + ζ − 1)q
(b)q q! (κ̃+ κ)q

2F1

[
ã, ζ̃ + ζ − 1 + q;

b̃;

2κ̃

κ̃+ κ

]
,

I(ζ̃+ζ−2)

12̃
= (κ̃+ κ)ζ̃+ζ−1I(ζ̃+ζ−1)(κ̃+ κ; a, b, 2κ; ã+ 1, b̃, 2κ̃) =

Γ[ζ̃ + ζ − 1]
∞∑
q=0

(a)q(2κ)q(ζ̃ + ζ − 1)q
(b)q q! (κ̃+ κ)q

2F1

[
ã+ 1, ζ̃ + ζ − 1 + q;

b̃;

2κ̃

κ̃+ κ

]
,

I(ζ̃+ζ−2)

21̃
= (κ̃+ κ)ζ̃+ζ−1I(ζ̃+ζ−1)(κ̃+ κ; a+ 1, b, 2κ; ã, b̃, 2κ̃) =

Γ[ζ̃ + ζ − 1]
∞∑
q=0

(a+ 1)q(2κ)q(ζ̃ + ζ − 1)q
(b)q q! (κ̃+ κ)q

2F1

[
ã, ζ̃ + ζ − 1 + q;

b̃;

2κ̃

κ̃+ κ

]
,

I(ζ̃+ζ−2)

22̃
= (κ̃+ κ)ζ̃+ζ−1I(ζ̃+ζ−1)(κ̃+ κ; a+ 1, b, 2κ; ã+ 1, b̃, 2κ̃) =

Γ[ζ̃ + ζ − 1]
∞∑
q=0

(a+ 1)q(2κ)q(ζ̃ + ζ − 1)q
(b)q q! (κ̃+ κ)q

2F1

[
ã+ 1, ζ̃ + ζ − 1 + q;

b̃;

2κ̃

κ̃+ κ

]
,

(E.91)

and then combine in Ns
pt to

Ns
pt = Γ[ζ̃ + ζ − 1]

∞∑
q=0

(2κ)q(ζ̃ + ζ − 1)q
(b)q q! (κ̃+ κ)q

×{
S+

(
(a)q2F1

[
ã, ζ̃ + ζ − 1 + q;

b̃;

2κ̃

κ̃+ κ

]
−

(
ãa

c̃c

)
(a+ 1)q2F1

[
ã+ 1, ζ̃ + ζ − 1 + q;

b̃;

2κ̃

κ̃+ κ

])
+

S−

(
a(a+ 1)q

c
2F1

[
ã, ζ̃ + ζ − 1 + q;

b̃;

2κ̃

κ̃+ κ

]
−

ã(a)q
c̃

2F1

[
ã+ 1, ζ̃ + ζ − 1 + q;

b̃;

2κ̃

κ̃+ κ

])}
. (E.92)

A further simplification is possible thanks to a = ζ − Zαω/κ = 1 − n and likewise

ã = ζ̃ − Zαω̃/κ̃ = 1 − ñ being non-positive integers for all values of n, ñ and hence

terminating both the explicit series and the series representation of the hypergeometric

– 109 –

Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

240



functions. Then, using (E.16) and the identities a(a + 1)q = (a)q+1 = (a)q(a + q) and

(a)q(a+ q)t = (a)q+t we can write after a little bit of algebra,

Ns
pt = Γ[ζ̃ + ζ − 1]

∞∑
q=0

∞∑
t=0

(2κ)q(2κ̃)t(ζ̃ + ζ − 1)q+t(a)q(ã)t

(κ̃+ κ)q+t q! t! (b)q (̃b)t c̃c
×{

S+ (c̃c− (a+ q)(ã+ t)) + S− (a− ã+ q − t)
}
,

=
n−1∑
q=0

ñ−1∑
t=0

Γ[ζ̃ + ζ − 1](2κ)q(2κ̃)t(ζ̃ + ζ − 1)q+t(1− n)q(1− ñ)t

(κ̃+ κ)q+t q! t! (1 + 2ζ)q (1 + 2ζ̃)t

(
K̃− Ñ

)(
K−N

) ×
{
S+

[(
K̃− Ñ

)(
K−N

)
− (1− n+ q)(1− ñ+ t)

]
+ S− (ñ− n+ q − t)

}
,

(E.93)

where the last two lines make use of the definitions of the hypergeometric parameters

in (2.20) and κ = mZα/N .

Lastly, let us estimate the size of the coefficients CñnFFz j̃j$̃$. Assuming that the

angular integral and the ratio (C /C̃ ) in (E.81) are O(1) numbers and estimating

Ns ' m(2κ̃)ζ̃−1(2κ)ζ−1Ns
pt ∼ m(2κ̃)ζ̃−1(2κ)ζ−1(κ̃+ κ)1−ζ̃−ζS±,

∼ m(mZα)ζ̃−1(mZα)ζ−1(mZα)1−ζ̃−ζ(Zα) ∼ O(1) (E.94)

and also that D̃ ' D̃pt ∼ O(1). In this case we obtain,

CñnFFz j̃j$̃$ =
(2κ̃)3s

m2

(
C

C̃

)∫
dΩ2

(
Y j̃$̃
F ,fz

)† (
Iθσθ + Iφσφ

)
Yj$
F ,fz

(
Ns

D̃

)
,

∼ ms(Zα)3. (E.95)

It turns out that a more careful calculation of CñnFFz j̃j$̃$ is overkill because the

leading corrections to the diagonal first-order state corrections of interest here (i.e. ig-

noring the corrections coming from mixing different angular momentum modes) vanish

as is calculated in the next section and argued around (2.68) in the main text. As such,

the leading size of the state corrections (or at least the diagonal contributions) gets

suppressed by (Zα)2, making them negligible at the orders we work.

F RG evolution

This Appendix collects useful parts of the renormalization story told in the main text.
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Universal evolution

The boundary conditions of the main text provide examples where the effective cou-

plings are found to satisfy equations of the form

g(ε) =
Aρ2ζ

ε +B

Cρ2ζ
ε +D

, (F.1)

where g is a representative coupling – such as g = −(ĉs − ĉv)/χ in eq. (2.64) or g =

−(ĉs + ĉv)χ in (2.70) – and ε appears on the right-hand side through ρε = 2κε with

κ =
√
m2 − ω2. The power of ρε appearing here is ζ =

√
K2 − (Zα)2 where K =

−$(j + 1
2
). For j = 1

2
parity-even states, for example, comparison with (2.64) shows

that the parameters A,B,C and D are given explicitly by

A = c+a , B = (c+a′)

(
D+

C+

)(0)

, C = c−a and D = (c−a′)
(

D+

C+

)(0)

, (F.2)

with parameters a, a′ and c given in (2.20), and repeated here:

a = ζ − Zαω

κ
, a′ = −

(
ζ +

Zαω

κ

)
, c = K− Zαm

κ
, . (F.3)

For later use, eq. (F.1) also inverts to give

ρ2ζ
ε =

B −Dg
Cg − A

. (F.4)

The goal is to derive a universal differential version of this evolution (see, for

example [64, 70–72] for more details). To start this off directly differentiate (F.1)

holding A,B,C,D fixed, leading to

ε
dg

dε
= 2ζ

[
AD −BC

(Cρ2ζ
ε +D)2

]
ρ2ζ
ε = 2ζ

[
(Cg − A)(B −Dg)

AD −BC

]
, (F.5)

where the second equality uses (F.4) to trade ρ2ζ
ε for g. This evolution equation has

fixed points at g = g∗, where

g∗ =
A

C
or g∗ =

B

D
, (F.6)

which can also be seen as the ρε → 0 and ρε →∞ limits of (F.1).

This equation can be put into a standard form by redefining g to ensure that

g∗ = ±1. To this end write

g(ε) = u(ε) +
1

2

(
A

C
+
B

D

)
, (F.7)
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in terms of which the fixed points are

u∗ = ±1

2

(
A

C
− B

D

)
= ±

(
AD −BC

2CD

)
, (F.8)

and (F.5) becomes

ε
du

dε
= − 2ζCD

AD −BC

[
u−

(
AD −BC

2CD

)][
u+

(
AD −BC

2CD

)]
. (F.9)

Finally rescale

u =

[
AD −BC

2CD

]
v (F.10)

to see that

ε
dv

dε
= ζ(1− v2) (F.11)

is an automatic consequence of (F.1) once one defines

g = u+
AD +BC

2CD
=

1

2

(
A

C
− B

D

)
v +

1

2

(
A

C
+
B

D

)
. (F.12)

These expressions emphasize that although the positions of the fixed points for g

depend on the ratios A/C and B/D, the speed of evolution along the RG flow depends

only on ζ. Indeed the general solution to (F.11) is

v(ε) =
(v0 + 1)(ε/ε0)2ζ + (v0 − 1)

(v0 + 1)(ε/ε0)2ζ − (v0 − 1)
(F.13)

where the integration constant is chosen to ensure v(ε0) = v0. For ζ > 0 this describes

a universal flow that runs from v = −1 to v = +1 as ε flows from 0 to ∞.

Since the trajectories given in (F.13) cannot cross the lines v = ±1 for any finite

nonzero ε there are two categories of flow, distinguished by the flow-invariant sign of

|v| − 1 (see Figure 1). That is, if |v0| − 1 is negative (positive) for any 0 < ε0 < ∞,

then |v(ε)| − 1 is negative (positive) for all 0 < ε < ∞. Every trajectory is therefore

uniquely characterized by a pair of numbers. These can equally well be chosen to be

the pair (ε0, v0) that specifies an initial condition v0 = v(ε0), or it can be taken to be the

pair (ε?, y?) where y? = sign(|v| − 1) = ±1 distinguishes the two classes of trajectories,

and ε? is defined as the value of ε for which v(ε?) = 0 (if y? = −1) or the value for

which v(ε?) = ∞ (if y? = +1). The parameterization using (ε?, y?) is useful because

physical observables turn out to have particularly transparent expressions in terms of

these variables.
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For the specific case of j = 1
2

parity-even states these parameter combinations

become ζ =
√

1− (Zα)2 and

A

C
=
c+ a

c− a
=

1− ζ + (m+ ω)Zα/κ

1 + ζ + (m− ω)Zα/κ

B

D
=
c+ a′

c− a′
=

1 + ζ + (m+ ω)Zα/κ

1− ζ + (m− ω)Zα/κ
(F.14)

Using, in these, the leading Coulomb expression m − ω ' (Zα)2m/(2n2) and so κ '
Zαm/n as well as ζ ' 1− 1

2
(Zα)2 then leads to the approximate forms

A

C
' n+ · · · , B

D
' 2n

(Zα)2
+ · · · , (F.15)

up to terms suppressed by (Zα)2 compared to those shown.

Evolution for positive-parity j = 1
2

states

The importance of calculating the first-order state corrections above is that the al-

ternative boundary conditions in (2.58) and (2.60) set various combinations of the

PPEFT couplings equal to the ratios of the full radial functions, gn 1
2

+(ε)/fn 1
2

+(ε) and

fn 1
2
−(ε)/gn 1

2
−(ε) when applied to j = 1/2 positive- and negative parity states respec-

tively. The new coupling cF sits on the left-hand side of these equations, which we

assume to be of size s and we further anticipate that the couplings present in the case

of spinless nuclei cs, cv also receive spin-dependent corrections that first appear at this

order. Matching powers of s on both sides of the boundary condition then requires us

to compute all O(s) contributions to the radial function ratios, which is what we will

do now for both parities, starting with the positive-parity state. In what follows we will

suppress both the arguments and the quantum number labels of the functions, except

for parity.

Evolution for positive parity j = 1/2 states

On the right-hand side of the positive-parity, j = 1/2 states’ boundary conditions

in (2.58) sits the ratio (g+/f+), which can be expanded to first order in degenerate

perturbation theory schematically as,

g+

f+
=

g
(0)
+ + sg

(1)
+ + · · ·

f
(0)
+ + sf

(1)
+ + · · ·

≈ g
(0)
+

f
(0)
+

+ s

(
g

(1)
+

f
(0)
+

− g
(0)
+

f
(0)
+

f
(1)
+

f
(0)
+

)
+O

(
s2
)
, (F.16)

where g
(0)
+ and f

(0)
+ are given in (2.18) and g

(1)
+ and f

(1)
+ are given in (2.56) using appro-

priate substitutions for the quantum number labels. Before proceeding any further, it
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is important to remember that the superscripts on these functions refer to their order

in degenerate perturbation theory and not necessarily whether or not they are complete

in any order in s. To emphasize, we had defined g
(1)
+ and f

(1)
+ to be the corrections to

the radial solutions of the Dirac-Coulomb problem, g
(0)
+ , f

(0)
+ that come about purely

as a result of degenerate perturbation theory, but not including the expansion of the

integration constant ratios in (2.62) and as such both g
(0)
+ , g

(1)
+ and f

(0)
+ , f

(1)
+ are still

functions of the full (D+/C+). This means that in order to get all the contributions to

O (s) in the ratio (g+/f+) we still need to use (2.62) in g
(0)
+ and f

(0)
+ , but not in g

(1)
+ , f

(1)
+

since these are already O (s). Then, focusing on the first term on the right-hand side

of (F.16) we find

g
(0)
+

f
(0)
+

= −χ

[
M1 + a

c
M2

]
+
(

D+

C+

)(0)

ρ−2ζ
[
M3 + a′

c
M4

]
+
(

D+

C+

)(1)

ρ−2ζ
[
M3 + a′

c
M4

]
[
M1 − a

c
M2

]
+
(

D+

C+

)(0)

ρ−2ζ
[
M3 − a′

c
M4

]
+
(

D+

C+

)(1)

ρ−2ζ
[
M3 − a′

c
M4

] ,

= −χ

[
M1 + a

c
M2

]
+
(

D+

C+

)(0)

ρ−2ζ
[
M3 + a′

c
M4

]
[
M1 − a

c
M2

]
+
(

D+

C+

)(0)

ρ−2ζ
[
M3 − a′

c
M4

]
− s

2
(

D+

C+

)(1)

χρ−2ζ (a′M1M4 − aM2M3)

c

([
M1 − a

c
M2

]
+
(

D+

C+

)(0)

ρ−2ζ
[
M3 − a′

c
M4

])2 . (F.17)

Substituting this into (F.16) along with the explicit functional forms from (2.18) and

making use of (2.56) and (2.62) we can write the ratio of positive parity radial functions
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as

g+

f+
≈ −χ

[
M1 + a

c
M2

]
+
(

D+

C+

)(0)

ρ−2ζ
[
M3 + a′

c
M4

]
[
M1 − a

c
M2

]
+
(

D+

C+

)(0)

ρ−2ζ
[
M3 − a′

c
M4

]

− s

 2
(

D+

C+

)(1)

χρ−2ζ (a′M1M4 − aM2M3)

c

([
M1 − a

c
M2

]
+
(

D+

C+

)(0)

ρ−2ζ
[
M3 − a′

c
M4

])2

+
∑̂√

m− ω̃
m+ ω

(
C̃+e

−ρ̃/2ρ̃ζ−1

C+e−ρ/2ρζ−1

) [M1̃ + ã
c̃
M2̃

]
+
(

D̃+

C̃+

)(0)

ρ̃−2ζ
[
M3̃ + ã′

c̃
M4̃

]
[
M1 − a

c
M2

]
+
(

D+

C+

)(0)

ρ−2ζ
[
M3 − a′

c
M4

]
−
∑̂

χ

[
M1 + a

c
M2

]
+
(

D+

C+

)(0)

ρ−2ζ
[
M3 + a′

c
M4

]
[
M1 − a

c
M2

]
+
(

D+

C+

)(0)

ρ−2ζ
[
M3 − a′

c
M4

]
×
√
m+ ω̃

m+ ω

(
C̃+e

−ρ̃/2ρ̃ζ−1

C+e−ρ/2ρζ−1

) [M1̃ − ã
c̃
M2̃

]
+
(

D̃+

C̃+

)(0)

ρ̃−2ζ
[
M3̃ − ã′

c̃
M4̃

]
[
M1 − a

c
M2

]
+
(

D+

C+

)(0)

ρ−2ζ
[
M3 − a′

c
M4

]
+O

(
s2
)
.

(F.18)

With an eye to the future progression of this calculation in the main text, where the

terms including the sums will cancel (to leading order in ρ), we can massage this into
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the form,

g+

f+
≈ −χ

[cM1 + aM2] +
(

D+

C+

)(0)

ρ−2ζ [cM3 + a′M4]

[cM1 − aM2] +
(

D+

C+

)(0)

ρ−2ζ [cM3 − a′M4]

− s

 2
(

D+

C+

)(1)

χρ−2ζ (a′M1M4 − aM2M3) c(
[cM1 − aM2] +

(
D+

C+

)(0)

ρ−2ζ [cM3 − a′M4]

)2

+
∑̂√

m+ ω̃

m+ ω

(
C̃+e

−ρ̃/2ρ̃ζ−1c

C+e−ρ/2ρζ−1c̃

)
[c̃M1̃ − ãM2̃] +

(
D̃+

C̃+

)(0)

ρ̃−2ζ [c̃M3̃ − ã′M4̃]

[cM1 − aM2] +
(

D+

C+

)(0)

ρ−2ζ [cM3 − a′M4]

×

χ̃
[c̃M1̃ + ãM2̃] +

(
D̃+

C̃+

)(0)

ρ̃−2ζ [c̃M3̃ + ã′M4̃]

[c̃M1̃ − ãM2̃] +
(

D̃+

C̃+

)(0)

ρ̃−2ζ [c̃M3̃ − ã′M4̃]

− χ
[cM1 + aM2] +

(
D+

C+

)(0)

ρ−2ζ [cM3 + a′M4]

[cM1 − aM2] +
(

D+

C+

)(0)

ρ−2ζ [cM3 − a′M4]


 , (F.19)

where the leading small ε expansion (and identically small ρ expansion) yields,

g+

f+
≈ −χ

[c+ a] +
(

D+

C+

)(0)

ρ−2ζ [c+ a′]

[c− a] +
(

D+

C+

)(0)

ρ−2ζ [c− a′]
− s

 2
(

D+

C+

)(1)

χρ−2ζ (a′ − a) c(
[c− a] +

(
D+

C+

)(0)

ρ−2ζ [c− a′]
)2

+
∑̂√

m+ ω̃

m+ ω

(
C̃+ρ̃

ζ−1c

C+ρζ−1c̃

)
[c̃− ã] +

(
D̃+

C̃+

)(0)

ρ̃−2ζ [c̃− ã′]

[c− a] +
(

D+

C+

)(0)

ρ−2ζ [c− a′]

×

χ̃
[c̃+ ã] +

(
D̃+

C̃+

)(0)

ρ̃−2ζ [c̃+ ã′]

[c̃− ã] +
(

D̃+

C̃+

)(0)

ρ̃−2ζ [c̃− ã′]
− χ

[c+ a] +
(

D+

C+

)(0)

ρ−2ζ [c+ a′]

[c− a] +
(

D+

C+

)(0)

ρ−2ζ [c− a′]


+O

(
s2
)
.

(F.20)

Evolution for negative-parity j = 1
2

states

Moving on to the negative parity, j = 1/2 states, the right-hand side of the bound-

ary condition in (2.60) is equivalent to the ratio (f−/g−), which using (2.55) can be
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expanded to first order in s schematically as,

f−
g−

=
f
(0)
− + sf

(1)
− + · · ·

g
(0)
− + sg

(1)
− + · · ·

≈ f
(0)
−

g
(0)
−

+ s

(
f
(1)
−

g
(0)
−
− f

(0)
−

g
(0)
−

g
(1)
−

g
(0)
−

)
+O

(
s2
)
, (F.21)

where f
(0)
− and g

(0)
− are given in (2.18) and f

(1)
− and g

(1)
− are given in (2.56) using ap-

propriate substitutions for the quantum number labels. A before, these functions still

contain the full integration constant ratio (D−/C−), therefore to complete the expansion

of (f−/g−) to linear order in s we need to make use of (2.62) in f
(0)
− /g

(0)
− . Concentrating

on this term on the right-hand side of (F.21) we find

f
(0)
−

g
(0)
−

= −χ−1

[
M1 − a

c
M2

]
+
(

D−
C−

)(0)

ρ−2ζ
[
M3 − a′

c
M4

]
+
(

D−
C−

)(1)

ρ−2ζ
[
M3 − a′

c
M4

]
[
M1 + a

c
M2

]
+
(

D−
C−

)(0)

ρ−2ζ
[
M3 + a′

c
M4

]
+
(

D−
C−

)(1)

ρ−2ζ
[
M3 + a′

c
M4

] ,

= −χ−1

[
M1 − a

c
M2

]
+
(

D−
C−

)(0)

ρ−2ζ
[
M3 − a′

c
M4

]
[
M1 + a

c
M2

]
+
(

D−
C−

)(0)

ρ−2ζ
[
M3 + a′

c
M4

]
+ s

2
(

D−
C−

)(1)

ρ−2ζ (a′M1M4 − aM2M3)

cχ

([
M1 + a

c
M2

]
+
(

D−
C−

)(0)

ρ−2ζ
[
M3 + a′

c
M4

])2 . (F.22)

Substituting this into (F.21) along with the explicit functional forms from (2.18) and

making use of (2.56) and (2.62) we can write the ratio of negative parity radial functions
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as

f−
g−
≈ −χ−1

[
M1 − a

c
M2

]
+
(

D−
C−

)(0)

ρ−2ζ
[
M3 − a′

c
M4

]
[
M1 + a

c
M2

]
+
(

D−
C−

)(0)

ρ−2ζ
[
M3 + a′

c
M4

]

+ s

 2
(

D−
C−

)(1)

ρ−2ζ (a′M1M4 − aM2M3)

cχ

([
M1 + a

c
M2

]
+
(

D−
C−

)(0)

ρ−2ζ
[
M3 + a′

c
M4

])2

−
∑̂√

m+ ω̃

m− ω

(
C̃−e−ρ̃/2ρ̃ζ−1

C−e−ρ/2ρζ−1

) [M1̃ − ã
c̃
M2̃

]
+
(

D̃−
C̃−

)(0)

ρ̃−2ζ
[
M3̃ − ã′

c̃
M4̃

]
[
M1 + a

c
M2

]
+
(

D−
C−

)(0)

ρ−2ζ
[
M3 + a′

c
M4

]
+
∑̂

χ−1

[
M1 − a

c
M2

]
+
(

D−
C−

)(0)

ρ−2ζ
[
M3 − a′

c
M4

]
[
M1 + a

c
M2

]
+
(

D−
C−

)(0)

ρ−2ζ
[
M3 + a′

c
M4

]
×
√
m− ω̃
m− ω

(
C̃−e−ρ̃/2ρ̃ζ−1

C−e−ρ/2ρζ−1

) [M1̃ + ã
c̃
M2̃

]
+
(

D̃−
C̃−

)(0)

ρ̃−2ζ
[
M3̃ + ã′

c̃
M4̃

]
[
M1 + a

c
M2

]
+
(

D−
C−

)(0)

ρ−2ζ
[
M3 + a′

c
M4

]
+O

(
s2
)
.

(F.23)

With an eye to the future progression of this calculation in the main text, where the

terms including the sums will cancel (to leading order in ρ), we can massage this into
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the form,

f−
g−
≈ −χ−1

[cM1 − aM2] +
(

D−
C−

)(0)

ρ−2ζ [cM3 − a′M4]

[cM1 + aM2] +
(

D−
C−

)(0)

ρ−2ζ [cM3 + a′M4]

+ s

 2χ−1
(

D−
C−

)(1)

ρ−2ζ (a′M1M4 − aM2M3) c(
[cM1 + aM2] +

(
D−
C−

)(0)

ρ−2ζ [cM3 + a′M4]

)2

−
∑̂√

m− ω̃
m− ω

(
C̃−e−ρ̃/2ρ̃ζ−1c

C−e−ρ/2ρζ−1c̃

)
[c̃M1̃ + ãM2̃] +

(
D̃−
C̃−

)(0)

ρ̃−2ζ [c̃M3̃ + ã′M4̃]

[cM1 + aM2] +
(

D−
C−

)(0)

ρ−2ζ [cM3 + a′M4]

×

χ̃−1
[c̃M1̃ − ãM2̃] +

(
D̃−
C̃−

)(0)

ρ̃−2ζ [c̃M3̃ − ã′M4̃]

[c̃M1̃ + ãM2̃] +
(

D̃−
C̃−

)(0)

ρ̃−2ζ [c̃M3̃ + ã′M4̃]

− χ−1
[cM1 − aM2] +

(
D−
C−

)(0)

ρ−2ζ [cM3 − a′M4]

[cM1 + aM2] +
(

D+

C+

)(0)

ρ−2ζ [cM3 + a′M4]


 , (F.24)

where the leading small ε expansion (and identically small ρ expansion) yields,

f−
g−
≈ −χ−1

[c− a] +
(

D−
C−

)(0)

ρ−2ζ [c− a′]

[c+ a] +
(

D−
C−

)(0)

ρ−2ζ [c+ a′]

+ s

 2χ−1
(

D−
C−

)(1)

ρ−2ζ (a′ − a) c(
[c+ a] +

(
D−
C−

)(0)

ρ−2ζ [c+ a′]

)2

−
∑̂√

m− ω̃
m− ω

(
C̃−e−ρ̃/2ρ̃ζ−1c

C−e−ρ/2ρζ−1c̃

)
[c̃+ ã] +

(
D̃−
C̃−

)(0)

ρ̃−2ζ [c̃+ ã′]

[c+ a] +
(

D−
C−

)(0)

ρ−2ζ [c+ a′]

×

χ̃−1
[c̃− ã] +

(
D̃−
C̃−

)(0)

ρ̃−2ζ [c̃− ã′]

[c̃+ ã] +
(

D̃−
C̃−

)(0)

ρ̃−2ζ [c̃+ ã′]

− χ−1
[c− a] +

(
D−
C−

)(0)

ρ−2ζ [c− a′]

[c+ a] +
(

D+

C+

)(0)

ρ−2ζ [c+ a′]


 .

(F.25)
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G List of symbols

Z Atomic number of an element

α = e2

4π
Fine-structure constant

Nexp, Nnuc The number of available experimental observables and the

number of nuclear parameters

εn Bohr energy level of a lepton

n Principal quantum number of a leptonic energy level

m Mass of the lepton orbiting the nucleus

M Mass of the nucleus

mr Reduced mass of the nucleus-lepton system

e Electric charge unit

~ Reduced Planck’s constant

c Speed of light in vacuum

kB Boltzmann constant

ve, ve ∼ (Zα) Velocity and speed of the nucleus-orbiting lepton

R A length-scale of approximately nuclear size, i.e. 1 fm

aB = (mZα)−1 Bohr radius of the atom

s = meµN
4π

The small parameter controlling the effects of the hyperfine

interaction

j, jz Quantum numbers of the total leptonic angular momentum

J = L + S and its projection
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SΦQED The renormalizable action of a theory treating the nucleus

as a relativistic point-like particle interacting with photons

and another lepton species

Fµν Field strength of the U(1) gauge field, Aµ(x)

Aµ(x) U(1) vector field

Dµ = ∂µ − iqAµ Covariant derivative of a field charged under the U(1) gauge

group with charge q

Ψ,Ψ Leptonic Dirac field and its Dirac conjugate

Φ,Φ Nuclear Dirac field and its Dirac conjugate

γµ, γ5 Dirac gamma matrices

γµν = − i
4

[γµ, γν ] Lorentz algebra generators for Dirac particles

/D = γµDµ Slashes indicate contraction with Dirac gamma matrices

Snuc The higher-dimensional extension of SΦQED containing non-

renormalizable interactions between the second-quantized

nuclear and leptonic fields and a U(1) gauge field

c̃s, c̃v, c̃d Generic EFT couplings in Snuc that are related to nuclear

properties

P Curve mapping the real line, R to the position of the nucleus

xµ Arbitrary position 4-vector

s Arbitrary parameter along the world-line of the nucleus

yµ(s) 4-vector trajectory of the nucleus, parameterized by s

SQED The standard QED action describing the interaction be-

tween a Dirac particle and a U(1) gauge field

Sp The 1-dimensional action of a point-particle
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S = SQED + Sp Total action of the PPEFT

v ∼ m(Zα)/M Velocity of the nucleus

γ := (1− v2)−1/2 The relativistic conversion factor

cs, cv, cF , cem, c2, c3 Generic EFT couplings in the PPEFT arising at order

(length)2

τ Proper time along the point-particle’s trajectory

ηµν , η
µν Minkowski metric and its inverse with signature (-, +, +,

+)

er Radially pointing unit normal vector

uL(t, r, θ, ϕ) Separable solution to the leptonic field equations

RL(κr) Radial part of the solution to the leptonic field equations

ω Energy of the leptonic field mode

κ A function of the leptonic mode’s energy, ω. It is often

given by the dispersion relation κ =
√
m2 − ω2

L Collection of angular momentum labels specific to the so-

lution of the leptonic field equations

YL(θ, ϕ) The angular part of the solution to the leptonic field equa-

tions

l, lz Quantum numbers of the orbital angular momentum and its

z-component in a solution to 3-dimensional field equations

of spinless fields

CL,DL Integration constants in the solution to the ordinary second-

order differential equation satisfied by the radial component

of the leptonic field multiplying the near-origin convergent

and divergent solutions respectively
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RC (D)
L (κr) What are traditionally thought of as the near-origin conver-

gent (divergent) radial solutions to leptonic field equations

µN Nuclear magnetic moment (not the nuclear magneton) in-

cluding the nuclear g-factor

gN , gl The nuclear and leptonic g-factors

rp, rZ Charge and Zemach radii of the proton as measured by [5]

I Nuclear spin vector

F = J + I Total atomic angular momentum operator

F Quantum number of the total angular momentum of the

atomic system, F = I + J

SB The ‘bulk’ part of the PPEFT action, which for our pur-

poses is the same as the QED action, SB = SQED

ξµ(s) Classical Grassmann field

{A,B} = AB +BA The anticommutator

[A,B] = AB −BA The commutator

Sp0 The lowest-order part of the PPEFT action that describes

the kinematics of the point-particle

Γµ,Γ5 Dirac gamma matrices acting on the Hilbert space of the

nucleus

Γµν = − i
4

[Γµ,Γν ] The Lorentz algebra generators for the Hilbert space of the

nucleus

εµ1µ2···µn n-dimensional totally antisymmetric tensor

1 Identity operator
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τ i The spin-matrices acting on nuclear-spin space

τ = (τ 1 τ 2 τ 3)T The vector of spin matrices acting on nuclear-spin space

E,B The electric and magnetic fields

µ = µNI Nuclear magnetic moment

jµ Electromagnetic 4-current

Anuc
0 ,Anuc Electromagnetic fields directly generated by the nucleus

Arad
0 ,Arad Operator valued quantum field interaction of the electro-

magnetic field

Σ =

[
S 0

0 S

]
The spin-operator for a Dirac-particle with S = 1

2
σ the spin

vector

σi Pauli matrices acting on lepton-spin space

σ = (σ1 σ2 σ3)T Vector of spin-matrices acting on electron spin-space

ψ(x) Spatial part of the solution to the leptonic field equations

l, l′ Quantum numbers of the orbital angular momentum of the

leptons for both parities

$ = ± The parity quantum number, (−)l with l = j − 1
2
$

Ωjljz(θ, φ) 2 component spherical spinors of the Dirac-Coulomb prob-

lem

Yllz(θ, φ) Scalar spherical harmonics

fnj$(r), gnj$(r) Solutions to the radial part of the Dirac-Coulomb field

equations

M[β, γ; z] = 1F1[β; γ; z] Confluent hypergeometric function
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Mi Denotes one of the confluent hypergeometric functions in

fnj(r) and gnj(r) with i = 1, 2, 3, 4

ρ = 2κr Dimensionless radial variable of the Dirac-Coulomb prob-

lem

K = $
(
j + 1

2

)
Eigenvalue of the operator σ ·p in the Dirac-Coulomb prob-

lem, a.k.a. the Dirac quantum number (normally denoted

by K in the literature

p Momentum operator of the Dirac fields

ζ =
√
K2 − (Zα)2 Dimensionless combination appearing in the radial differ-

ential equations of the Dirac-Coulomb problem

a = ζ − Zαω
κ
,

b = 1 + 2ζ
Arguments of the confluent hypergeometric functions that

appear in the near-origin finite parts of fnj(r), gnj(r)

a′ = −
(
ζ + Zαω

κ

)
,

b′ = 1− 2ζ
Arguments of the confluent hypergeometric functions that

appear in the near-origin divergent parts of fnj(r), gnj(r)

c = K− Zαm
κ

Factor appearing in both types of solutions (near-

source convergent and divergent) of the radial functions

fnj(r), gnj(r)

N = n
√

1− 2(n−|K|)(Zα)2

n2(ζ+|K|) Relativistic numerical factor appearing in the point-like

source solutions to the Dirac-Coulomb problem

ωDnj = m
√

1− (Zα)2

N 2 Bound state energy eiegenvalue of Dirac particles in a

Coulomb potential sourced by a point-like nucleus with

charge (Ze)

κDnj = mZα
N Function of the bound state lepton energy of a Dirac parti-

cle in a Coulomb potential sourced by a point-like nucleus

with charge (Ze)

δωnFj$ Energy shifts of a nuclear origin to the leptonic mode func-

tions with quantum numbers n, F, j,$ and Dirac-Coulomb

energy ωDnj
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εmag
nFj$ =

ε
(1)
nFj$

+ε
(ho)
nFj$

The energy shifts generated by the magnetic dipole moment

of the nucleus at first and higher-order in s respectively

εQEDnFj$ =
εpt−QEDnFj$

+εN−QEDnFj$

The energy shifts coming from various QED processes in the

point-nucleus limit and the radiative corrections to finite-

size effects through loop processes respectively

εrec
nFj$ =

εpt−rec
nFj$

+εN−rec
nFj$

The energy shifts coming from nuclear recoil processes in

the point-nucleus limit and the recoil corrections to the

finite-size effects respectively

Yj,$
Ffz

(θ, φ) The new spinors that incorporate the hyperfine structure.

They obey the eigenvalue relation F2YF = F (F + 1)Y and

others found in Appendix D

ψnFj$ := |nFfz; I, j〉0 The correct zeroth-order atomic states that diagonalize the

degenerate subspaces of the mixed electron and nuclear

states under the hyperfine interaction

ηI,Iz The nuclear spin states of a nucleus with spin, I

ε
(1)
nFj$ The first-order energy shift caused by the presence of the

nuclear magnetic dipole field calculated in perturbation the-

ory

D, D̃ The explicit, normalization factor that emerges in the en-

ergy shift and state-corrections for unnormalized states

Σ = i(I× r̂) · σ Angular operator acting on the hyperfine spinors Yj,$
F ,fz

XF A combination of angular momentum quantum numbers

defined in (2.34) that ubiquitously appears at first order in

s due to rotational invariance

N,Ns Collection of dimensionless integrals in the radial matrix

elements appearing in the numerator of the first-order en-

ergy shift and the first-order state corrections respectively,

due to the hyperfine interaction
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D, D̃ Collection of dimensionless integrals appearing in the

denominator of the first-order energy shift and state-

corrections respectively, due to the hyperfine interaction

Npt, N1, N2,

Dpt, D1, D2
Set of dimensionless integrals in N,D split into three cate-

gories: integrals over only near-origin convergent functions

(‘pt’ subscript); integrals accompanied by one power of the

integration constant ratio D/C (labelled by the ‘1’ sub-

script); integrals accompanied by two powers D/C (sub-

script ‘2’)

Ns
pt, Ñ

s
1, N

s
1, N

s
2,

D̃pt, D̃1, D̃2

Set of dimensionless integrals in Ns, D̃ split into the same

categories as those in N,D

E
(0)
n,j = ωDnj + δω

(0)
nj The zeroth-order energies of the atom with degeneracy

(2I + 1)(2j + 1)

CñnFFz j̃j$̃$ Coefficient of the first-order state-correstions

δω
(0)
nj$ The spin-independent, zeroth-order finite-size energy shift

determined by the normalizability condition (2.22). This

is the part of the energy shift that appears in our earlier

work [64, 72] given by the zeroth-order, scalar part of the

integration constant ratio (D/C )(0)

δω
(1)
nFj The spin-dependent, first-order finite-size energy shift com-

ing from the normalizability condition (2.22) through

(D/C )(1)

I(p)
ij Integrals that appear in the radial matrix elements of the

first-order energy shift with i, j ∈ [1, 4] denoting the four

confluent hypergeometric functions in f, g

εhfs
nFj$ The hyperfine-splitting energy shift with relativistic correc-

tions included

Cη A regularization-scale dependent function that needs to be

absorbed into the effective couplings in order to keep ε
(1)
nFj$

physical
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c = 16(mε?+)2 A function of the small dimensionless quantity mε?+ that

controls finite-size effects in the PPEFT language

gp g-factor of the proton

µp Magnetic moment of the proton

nLj
F Spectroscopic notation of an energy level with quantum

numbers n, l, j, F

I(p)

ĩj
Integrals that appear in the Ns matrix-elements of the first-

order state corrections. Here, the tilde signals the fact that

the quantum numbers are different for the two hypergeo-

metric functions in the integrand but the other indices are

defined the same way as in I(p)
ij∑̂

The sum factor of (2.54) over all values of the principal

quantum number that lie outside the degenerate subspace

of the state whose corrections we are looking at

f
(0)
nj$, g

(0)
nj$ The Dirac-Coulomb wave-functions

f
(1)
nj$, g

(1)
nj$ First-order corrections to the Dirac-Coulomb wave-

functions calculated in degenerate perturbation theory

(D/C )(0) The ratio of integration constants found in the case of a

scalar source

(D/C )(1) The first order correction to the ratio of integration con-

stants introduced as a compensation for the lack of new

large-r normalizability conditions for the full states once

the hyperfine interaction is turned on

ε Radius of the Gaussian sphere on which the alternative

boundary conditions implied by the PPEFT are set up

ε?, ε0 RG-invariant scales associated with the finite-size effects of

a scalar source and controlling the running of the PPEFT

couplings cs, cv, cF
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εF RG-invariant scale associated with the mixed finite-size, hy-

perfine effects

ZFj$,ZF$ Another combination of angular momentum quantum num-

bers that appears in the matrix elements of the I ·Σ oper-

ator.

ĉi = ci
4πε2

The generic EFT coupling divided by the surface area of

the sphere on which the new boundary conditions are set

up. Equivalently, these are the dimensionless couplings that

appear in the boundary action of the PPEFT

ĉ
(0)
s , ĉ

(0)
v The coupling coefficients appearing at zeroth order in s

and so whose running is controlled by the spin-independent

parts of the boundary-condition

ĉ
(1)
s , ĉ

(1)
v Corrections to the (length)2 coupling coefficients of scalar

nuclei appearing at first order in s

χ =
√

m−ω
m+ω

A numerical factor that appears in the ratios of radial func-

tions f(r), g(r)

Λ± Contributions to the boundary conditions of leptonic modes

that come from the first-order state-corrections

g(ε), u(ε), v(ε) Functions in terms of which the zeroth-order RG-flow can

be universally determined

A,B,C,D Constants in the universal evolution of coupling constants

y? = ±1 An RG-invariant that determines which type of curve the

couplings flow on in the zeroth-order RG evolution

λ̄
(0)
± The n-independent linear combination of spin-independent

PPEFT couplings ĉ
(0)
s and ĉ

(0)
v that follows from the leading-

order RG behaviour of the couplings

λ̄
(1)
± The linear combination of spin-dependent PPEFT cou-

plings ĉ
(1)
s , ĉ

(1)
v and ĉF that follows from cO(s) RG behaviour

of the couplings
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(D/C )
(1)
phys The physical part of the normalizability compensating ex-

pansion of the ratio of leptonic integration constants at first

order. This quantity controls the actual mixed hyperfine,

finite-size effects coming from the large-r normalizability

condition

δωnFj$ =
δω

(0)
nFj$

+δω
(1)
nFj$

Nuclear-size dependent energy shift coming from the large-

r normalizability condition at zeroth and first orders in s

Hn Harmonic numbers

H A function of D/C appearing in δωnFj$

γ Euler-Mascheroni constant

ρc/m(x′) The electric charge and magnetization densities of the pro-

ton

〈r2〉c, 〈r3〉cc, 〈r〉cm, · · · The charge radius squared, the Friar and the Zemach mo-

ments and other nuclear moments that can be used to pa-

rameterize finite-size effects

〈r3〉eff
cc The effective Friar moment, incorporating the finite-size

parts of the nuclear polarizability contributions

〈rC1〉, 〈rC2〉, 〈rpp〉 Various moments used to capture elastic parts of the

nuclear-structure effects from [57] and [56]

ωpt
nFj$ Theoretical contributions to the energy shift of leptons in

the point-nucleus limit

ωNSnFj$ Nuclear-size related energy shifts to the lepton energies

Λ An arbitrary scale in radiative corrections to the leading

mixed finite-size, hyperfine effects first derived in [30]

Ξnj$ The radiative corrections to finite-size effects for muonic

Hydrogen appearing in the traditional Lamb shift coming

from the electronic vacuum polarization
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Lkn(x) The associated Laguerre polynomials

ρ0 = 2mr(Zα)r
n

The dimensionless radial variable in the Schroedinger-

Coulomb problem

G′(x, 0) The reduced Schrödinger-Coulomb Green’s function for

nS1/2 states

ν
(
nLj

F − n′L′j′F
′)

The experimentally measured value of a transition between

two energy levels

ν1Shfs , ν2Shfs , ν21 The experimentally measured energies of the 1SF=1
j= 1

2

−1SF=0
j= 1

2

,

the 2SF=1
j= 1

2

− 2SF=0
j= 1

2

and the 2SF=1
j= 1

2

− 1SF=1
j= 1

2

transitions in

atomic Hydrogen respectively

νt, νs The experimentally measured 2P F=2
j= 3

2

− 2SF=1
j= 1

2

and the

2P F=1
j= 3

2

−2SF=0
j= 1

2

transitions in muonic Hydrogen respectively

z` = (mr,(`)ε?,`)
2 A dimensionless combination of the RG-invariant ε?,` and

the lepton (` = e, µ) mass. We fit for this parameter in our

numerical calculations

x` An energy scale appearing in the fitting of z for the lepton

` = e, µ

y` A dimensionless constant appearing in the fitting of z for

the lepton ` = e, µ

W (t) The Lambert-W function

W = W−1 (−xe−y) + y The function of the Lambert-W function that determines

(mε?)
2

∆̂ω2Shfs The difference,
[
ωpt

21 1
2

+
− ωpt

20 1
2

+

]
− ν2Shfs between the ex-

perimentally measured value of the hyperfine-splitting of

the 2S state in atomic Hydrogen and the size-independent

contributions to this transition
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∆̂ω21 The finite-size contribution to the 2SF=1
j= 1

2

− 1SF=1
j= 1

2

transi-

tion, expressed as the difference between point-like the-

ory contributions and the experimentally measured value,[
ωpt

21 1
2

+
− ωpt

11 1
2

+

]
− ν21

∆̂ωhfs The first linear combination of experimental values and

point-like theoretical combinations to their measured in-

tervals,
[
ωpt

21 1
2

+
− ωpt

20 1
2

+

]
−
[
ωpt

22 3
2

+
− ωpt

21 3
2

+

]
− [νs − νt] that

can be used to fit εF ,µ in muonic Hydrogen

∆̂ωLamb The second linear combination of experimental values and

point-like theoretical combinations to their measured inter-

vals, 1
4

[
ωpt

21 3
2

+
− ωpt

20 1
2

+

]
− νs + 3

4

[
ωpt

22 3
2

+
− ωpt

21 1
2

+
− νt

]
that

can be used to fit εF ,µ in muonic Hydrogen

∆Efs Finite-size contribution to a given energy shift

∆Eexp Experimental error on the value of ∆Efs

∆Eth Error on ∆Efs generated by the size-independent contribu-

tions to energy shifts

∆Etrunc The truncation error on ∆Efs coming from ignoring terms

in our finite-size series expansion

L The Lagrangian density

pµ Conjugate momentum to yµ

πµ Conjugate momentum to ξµ

φ1 Scalar constraint on the relativistic spinning point-particle

Φµ Grassmann constraint on the relativistic spinning point-

particle

Lc, Hc Constrained Lagrangian and Hamiltonian of the relativistic

spinning point-particle
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θ The scalar Lagrange-multiplier for φ1

Θµ The Grassmann Lagrange multiplier for Φµ

(A,B)P The Poisson bracket, defined for a theory with only

Grassmann-even quantities as (A,B)P = ∂A
∂qi

∂B
∂pi
− ∂A

∂pqi

∂B
∂qi

∆αβ := (φα, φβ)P A matrix built out of the Poisson brackets of constraints

(A,B)D The Dirac bracket

ϕ := y0 − s Imposed gauge condition to get rid of φ1

α, β Spinors of the Dirac field that are interpreted as the particle

and anti-particle solutions in the rest-frame of the particle

with the Dirac representation assumed. β can also be a set

of generic angular momentum labels depending on context

Sint
p The PPEFT action with the lepton field interactions

I int
B Boundary action of nucleus-lepton interacrions

Bε Ball of radius, ε where the boundary conditions are set up

δx = −δω (Zα)m2

(κDnj)
3 Convenient dimensionless quantity that appears when find-

ing the energy shift through the normalizability condition

δy = 2|K| − 2ζ Another convenient difference of dimensionless quantities of

size O ((Zα)2) that appears when finding the energy shift

from the normalizability condition

B A function of the principal and Dirac quantum numbers

appearing in the energy shift implied by the normalizability

condition (2.22)

H0 The zeroth-order Hamiltonian that can be solved exactly
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V, λ The perturbation to H0 and a parameter that formally

helps keep track of the orders in V and is eventually sent

to 1

D̄ Projection operator out of the degenerate subspace of a

given state

µ, λ, z O [(Zα)2] parameters that help us keep track of the reg-

ularization of the divergent integrals in energy shifts and

state-corrections

AFB Hypergeometric function with A numerator-type and B
denominator-type parameters

(a)i Pochhammer symbols

Id(a, b; a′, b′) Generic integral appearing in N,D and D̃

ηa The regularization parameter that controls the divergences

in matrix elements

Id(s; a, b, k; ã, b̃, k̃) Generic integral appearing in Ns

S± :=

√
(1+ ω̃

m
)(1− ω

m
)

±
√

(1+ ω
m

)(1− ω̃
m

)
Frequently appearing numerical factors in the first order

state corrections
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Chapter 5

Summary, Conclusion and
Outlook

Summary and Conclusion

In the first chapter we started our discussion by presenting a review of EFTs
that outlined how such theories emerge at low energies, E well-separated
from some UV scale, Λ. We have seen that EFTs can be built by knowing
the low-energy field content and symmetries of a theory and writing down
all possible symmetry-preserving interactions between these fields and all
their derivatives in an effective action that is essentially a multipole expan-
sion of operators where higher-order terms are suppressed by increasing
powers of the small ratio, E/Λ� 1. As such, these theories turned out to
be non-renormalizable since they contain an infinite number of irrelevant
operators in their actions, however due to the increasing suppression of
terms by E/Λ to any given experimental accuracy it is only ever a finite-
number of terms that enter into predictions of physical observables. These
can be fit using measurements and used to make accurate predictions for
other observables measurable with the same precision.

This was followed by constructing EFTs for lumps that are solutions to
a given field’s equations of motion that concentrate the energy into some
region of spacetime and so have inherent size, R and are probed at some
experimental scale, aexp � R. The resulting EFTs turned out to depend
only on the centre-of-mass coordinates of the lumps and their other internal
degrees of freedom. When these lumps were coupled to external fields, their
presence was shown to impose a set of near-source boundary conditions on
these fields that specified the integration constants in the solutions to their
equations of motion in such a way that the result would take into account
the presence of the blob. Along the way of establishing this result we have
identified PPEFTs as a class of these EFTs, where the lump is assumed to
be a one-dimensional object.

Then, by drawing an analogy between a point-particle with centre-of-
mass coordinates, yµ(s) where s is some arbitrary parameter along the
world-line of the particle, and one-dimensional lumps viewed from far away,
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whose only low-energy fields are also their centre-of-mass coordinates, we
have been able to identify the symmetries of such blobs to be that of
Poincaré- and reparameterization invariance, hermiticity and symmetry
under C-, P- and T-transformations. Afterwards, we charged this point-
like object under a U(1) gauge field, Aµ(x) by introducing gauge-invariant
interactions between the centre-of-mass coordinates of the lump and the
gauge field. This gave rise to a Coulomb potential around the charged
lump, which we have therefore identified to be a nucleus of charge, Ze. In
this way we have found that a PPEFT with low-energy field content of
only yµ(s) governed by the symmetries of free point-particles and that of
gauge-invariance are effective descriptions of spinless nuclei.

We then added the fermion field, Ψ(x) of mass, m and charge (−e)
to the mix by minimally coupling them to the gauge field in the bulk to
form the dynamics of QED and wrote down all their allowed effective in-
teractions with the low-energy degrees of freedom of the nucleus. Then, we
have found the bound-state solutions to the equations of motion of these
fields with a Coulomb-potential that sample the nucleus at their Bohr radii,
aB ∼ (mZα)−1, meaning that the effective low-energy action of the nucleus
for these states appear as a power series in the ratio, R/aB ∼ (mRZα),
revealing that the effective couplings in this action track the effects of the
finite size of the nucleus. Then, we imposed the large-r boundary condi-
tions on these solutions, which constrained the integration constant ratio,
Dj$/Cj$ to satisfy (1.82). Consistency of this boundary condition with
the one implied by the nuclear action lead to finite-size energy shifts as
functions of Dj$/Cj$ 6= 0. Then, it transpired that for these expressions
to describe physical observables the PPEFT couplings had to flow in the
RG sense and the energy shifts really only depended on the RG-invariant
parameters of this running thanks to dimensional transmutation.

In the last section of the introduction we briefly introduced the history
and current status of atomic bound-states with a special focus on finite-
size effects to show that they are traditionally calculated as functions of
numerous model-independent nuclear moments, and explained how these
effects turn out to have such large uncertainties that they forbid accurately
testing fundamental theory.

The first paper, presented in Chapter 2 detailed the above application of
the PPEFT formalism to atomic bound-states of Dirac particles orbiting a
heavy, scalar nucleus such as 4

2He++. The new near-nucleus boundary con-
ditions of Aµ(x) inferred from the nuclear action gave rise to the Coulomb
field, which in turn lead to the Dirac-Coulomb bound-state solutions of
(1.71) with (1.73). Then, by deriving the alternative near-nucleus bound-
ary conditions for the lepton fields we have seen how the finite-size-related
properties of the nucleus encoded by the PPEFT couplings enter bound-
state energy shifts. We have further used these conditions to learn how
these couplings have to depend on the fictitious scale, ε – the radius of the
Gaussian sphere where we set up the boundary conditions – in order to keep
energy shifts physical. Although we have advertised in the introduction
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that it is through the RG-invariant parameters of this dependence that we
should characterize the energy shifts, we instead chose here to parameterize
them using effective moments, ĝi, f̂i. We have taken this parameterization
out to subleading (mRZα) and (Zα)2 orders relative to the leading term,
which we have related to the charge-radius squared of nuclear moments
found in the literature, such as those in eqs. (1.101), (1.102) and others.
Lastly, we have worked out these effective moments for some specific charge
distributions that had good analytical control.

In Chapter 3 we have expanded the nuclear action to include bulk-
lump interactions suppressed by one additional factor of R/aB ∼ (mRZα),
i.e. operators with dimension (length)3 coupling constants. By deriving
the new near-nucleus boundary conditions for the fermionic field we have
seen that trading their integration constant ratios Dj$/Cj$ for the PPEFT
couplings introduced a more refined running of the couplings that was re-
quired to keep energy shifts physical but nevertheless, depended on the ex-
act same RG-invariant parameters as its lower-order counterpart. We then
used this more detailed RG-flow to write all the effective nuclear moments
from the first paper as functions of the RG-invariant parameters, which
in turn allowed us to write the nuclear-size energy shifts to the fermionic
bound-states as a function of only one RG-invariant parameter, ε?. As
such, we have been able to conclude that a single RG-invariant parameter,
ε? is sufficient to capture finite nuclear-size effects in atoms out to and in-
cluding subleading (mRZα) and (Zα)2 orders relative to the leading term.
This realization revealed that the PPEFT approach to these effects leads to
fewer parameters than that of nuclear moments and we have shown what
linear combinations of these moments ε? corresponds to. Finally, we have
devised ways of exploiting the low number of these relevant parameters
to make predictions in atoms with scalar nuclei whose nuclear-size related
uncertainties were controlled by the errors of only the most precise measure-
ments of spectroscopic transitions of the system and their corresponding
theoretical contributions assuming a point-like nucleus, which therefore will
only improve over time.

Lastly, in Chapter 4 we have detailed how to extend the PPEFT for-
malism to capture the effects of nuclei with spin, through the inclusion of
a set of classically anti-commuting low-energy fields, ξµ(s) internal to the
nucleus. This resulted in a small magnetic dipole field in the electromag-
netic sector, which we treated in degenerate perturbation theory for the
leptonic fields controlled by the parameter, s := (meµN)/4π � 1. The
correct zeroth order states that diagonalized this perturbation turned out
to be the eigenstates of the total atomic angular momentum, F = I + J
and their first-order energy shifts and state corrections were computed.
This perturbation approach led to divergent matrix elements of the com-
bined nuclear-Dirac-Coulomb modes, whose infinities we tracked through
dimensional regularization and in the end were able to absorb into an O(s)
combination of PPEFT couplings thanks to the new near-nucleus bound-
ary conditions also appearing at this order. These boundary conditions
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also necessitated the running of this new coupling in the ε-parameter of
the Gaussian sphere where they had been imposed, and we found that
in addition to the familiar RG-invariant, ε? a new RG-invariant param-
eter, εF had to be defined in order to capture spin-dependent finite-size-
related energy shifts. We compared these energy shifts written in terms of
our RG-invariant parameters to the same ones written as functions of the
more traditional nuclear moments and were able to relate εF to the first
Zemach-moment, 〈r〉cm of (1.99). In the end, exploiting the low number
of RG-invariant scales the same way we had done for spinless nuclei we
have used high-precision data for both electronic- and muonic Hydrogen
to fit these parameters and make predictions for the finite-size effects of
transitions in these systems. It so happened that due to the small mass of
the electron we were able to make many predictions in atomic Hydrogen in
which the uncertainties associated with nuclear-size effects were unusually
small thanks to the errors on our parameters only being controlled by the
most accurate measurements and their theoretical QED contributions that
assume a point-like nucleus. While the latter point also applies to muonic
Hydrogen, due to the larger mass of muons there are additional subleading
effects relative to the ones we have included that need to be taken into
account in order to accurately capture all finite-size effects to the accuracy
of current measurements. Nevertheless, by fitting our two parameters we
were able to make a prediction for the nuclear-size effects in the planned
ground-state hyperfine splitting [49] with errors competitive with the same
predictions made using nuclear moments.

In conclusion, we established that an effective description of atomic
systems can be obtained through the low-energy effective theory of one-
dimensional lumps of size, R ∼ 1 fm and its implications for the surrounding
bulk fields that probe its presence at scales of the fermionic Bohr radius,
aB. The interplay between these two components of the theory are captured
by a hermitian one-dimensional effective action along the world-line of the
nucleus that is a multipole expansion in the ratio, R/aB of interactions
between the bulk fields and the low-energy nuclear degrees of freedom. In
line with our model-building algorithms we have found that the field content
of the theory comprises of the bulk fields and the nuclear centre-of-mass
coordinates, yµ(s) and spin, ξµ(s), and that Poincaré, reparameterization,
gauge, C, P and T-invariance make up the symmetries of the system. The
bulk fields learn about the presence of the nucleus through the near-source
boundary conditions this PPEFT action implies for them on a Gaussian
pillbox of size, ε that obeys R � ε � aB and in whose arbitrary radius
the effective nuclear couplings turn out to flow in an RG-sense in order to
keep observables physical. This flow is characterized by a handful of RG-
invariant parameters that actual observables turn out to depend on, and
in particular the bound-state energies depend on these parameters through
requiring consistency between the new near-nucleus boundary conditions
and the one demanding normalizability at large-r. Finally, we used this
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newfound power to reduce the theoretical error floor in nuclear-size effect
predictions of 4

2He+, µ4
2He+ H and µH.

Future Directions

Muonic Hydrogen

In order to capture all finite-size-related energy shifts in muonic Hydrogen
relevant for current experiments we would need to include spin-independent
contributions of (mRZα)2 and spin-dependent finite-size effects of order
(mRZα) relative to their respective leading order terms. This amounts
to expanding the nuclear action to include spin-independent nucleus-bulk
couplings of dimension (length)4 and spin-dependent ones of dimension
(length)3 that, however are still linear in nuclear spin. Then, by also
capturing higher order terms in the energy shift coming from the large-
r normalizability condition in (1.82), and analyzing the running of the
new couplings implied by the alternative near-nucleus fermionic bound-
ary conditions derived from the nuclear action, we could either find new
RG-invariant parameters that account for these effects or find that no new
RG-invariant parameters emerge and the existing ones become more re-
fined, similarly to how it had happened in the work presented in Chapter
3. It should be noted however, that the RG-invariant parameter control-
ling the spin-independent finite-size effects of j = 3/2 states also become
observable once effects of the targeted size are included, thereby enlarging
our number of effective parameters. Nevertheless, this is a worthwhile and
timely endeavour as it would allow for a more accurate prediction of the
finite-size effects in the ground-state hyperfine splitting of this system.

Atoms other than hydrogen

There are many upcoming spectroscopic experiments – particularly on
muonic atoms, such as muonic lithium, beryllium, etc [50] – to which our
methods can be readily applied. Provided that we can capture all the rel-
evant finite-size effects in these alternative systems it becomes possible to
derive a floor on the nuclear-size related uncertainties that is controlled
by the experimental precision and the point-like theoretical contributions
to the energy transitions these experiments measure. With a systematic
search for such systems we could largely expand the scope of PPEFT in
atomic physics and potentially produce this low-error floor for all of them
now that spin is not an obstruction to this program anymore.

Recoil effects

One of the major pieces missing in our calculations of atomic nuclear-size
effects are the nuclear recoil corrections to them. The very leading parts
of these can be easily included (and have been in our numerical studies)
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by trading the lepton masses for their reduced mass counterparts, and the
first non-trivial (i.e. not reproducible by a simple replacement of the lepton
mass by its reduced mass factor) recoil corrections to finite-size effects were
calculated in [28] and accounted for in Chapter 4. A more systematic
inclusion of these mixed effects will involve assuming the nucleus to no
longer be at rest and so ẏµ 6= δµ0 , hence

√
−ẏ2 =

√
1− ẏ2 and tracking the

non-zero velocities ẏ2 will show us where the recoil effects hide.

Bound-states of other and more fields

Another missing piece from our framework is the inclusion of more orbit-
ing leptons. This is a particularly important extension because for many
atoms, obtaining highly ionized nuclei with a single electron is an exper-
imentally difficult task; therefore, by including more orbiting leptons we
could potentially expand our analysis to more experimentally testable sys-
tems.

Experiments that bind particles other than fermions to Hydrogen also
exist and by choosing the bulk action to be different these can also be
included in our PPEFT framework. Of particular importance could be the
pionic and kaonic Hydrogen systems, where it is a spinless meson orbiting
the nucleus, since for these systems we have already made some progress
in [2]. However, note that due to the larger masses of these particles, recoil
effects may feature in a more prominent role than we have given them credit
for in the past.

Radiative corrections

In both the second and third papers, we have captured effects that are of
the same order of magnitude as the radiative corrections to the leading
and subleading finite-size effects. Our strategy to include these for our
prediction algorithms has been to use the matching of the RG-invariants
ε?, εF to nuclear moments from the literature such as 〈r2〉c, 〈r〉cm to write
the radiative corrections written in terms of these moments in terms of the
RG-invariant scales instead. However, since the external electron fields are
assumed to be proper quantum fields in our framework, there is certainly
room to explore the proper inclusion of radiative effects through the com-
putation of loops, with the anticipated result that these will give us exactly
the same energy shifts that we had used in our calculations based on the
matching described above. In other words, in our PPEFT treatments so far
we have modified the interaction picture evolutions of the fields from those
of free fields to the integrable parts of their field equations and by taking
into account Feynman diagrammatic expansions in the remaining interac-
tions will allow us to account for the effects of second-quantization, such
as self-energy and vacuum-polarization of the modified interaction-picture
propagators.

279



Ph.D Thesis – L. Zalavari; McMaster University – Physics and Astronomy

Matching calculations

We have expressly avoided dealing with the specifics of how the background
configurations for which we have developed our EFT methods were gener-
ated. However, this does not mean that such a calculation should not be
done, and in fact this direction should definitely be pursued as it would
tell us how more well-understood interactions of the UV theory lead to the
effective couplings we have introduced by hand. In turn, this may be able
to reveal in what way the RG-invariant parameters depend on the leptonic
quantum numbers for example. At the moment, this is an active area of
research that my esteemed colleague soon-to-be doctor Peter Hayman is
working on, and if you are interested you will be able to read about it in
his future publications.
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