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Lay Abstract

Predicting what will happen to a habitat after a disturbance is critical for conservation

and management. Species specific information is useful for building a mechanistic

understanding of ecology. Predictions that include underlying processes (mechanisms)

may be more robust to a changing environment than predictions based on correlations.

Eutrophication, the addition of excess nutrients, is a common problem in freshwater

habitats. Being able to predict the effects of nutrient addition is critical for ensuring the

health of freshwater ecosystems. By using species-specific life history and morphological

information and a simple lab system, I test different methods of predicting and

understanding the consequences of eutrophication. I find that the ramifications of

eutrophication are not easily predicted by species’ categorizations or with a more

detailed mechanistic model.
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Abstract

Ecologists try to understand how changing habitats alter the populations of organisms

living within them, and how, in turn, these changing populations alter the environment.

By linking individual or cellular (physiological) processes to system level responses,

mechanistic models can help describe the feedback loops between organisms and the

environment. Aquatic systems have long used mechanistic models, but increasing

model complexity over the last 50 years has led to difficulty in parameterization. In fact,

it is often unclear how researchers are choosing parameters at all, even though small

changes in parameters can change qualitative predictions. I explore the challenges

in parameter estimation present in even an ideal situation. Specifically, I conduct

individual experiments for all of the needed parameters to describe a simple lab-based,

aquatic system; estimate those parameters using the results from these experiments

supplemented with literature data; and run a large experiment designed to test how

well the lab-estimated parameters predict actual zooplankton populations and nutrient

changes over time. I document best practices for finding and reporting parameter

choices and show whole ecosystem level consequences of a variety of decisions. To get the

best predictions I find that a mix of parameter estimation methods are necessary. Trait-

based approaches are another method to understand species-environment interactions.

Trait-based methods aggregate species into functional traits, perhaps making qualitative

predictions easier. Theory suggests that more functionally diverse systems will be

more resilient. I test this prediction in a simple aquatic system but am unable to

find consistent support for this hypothesis, and instead finding that results are highly

dependent on what measures of ecosystem recovery are used. Overall, more species-

specific information is critical to building better models for both mechanistic and

trait-based approaches. I expand species-specific data by providing new information,
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and collating information from literature on a small, tropical Cladocera.

v



PhD Thesis — Jo A. Werba McMaster University — Biology

Acknowledgements

I would like to thank my advisor, Dr. Jurek Kolasa, for allowing me free reign to

explore topics that interested me and for always being excited to talk about big picture

science. I would also like to thank my committee members. Dr. Ben Bolker for

his patience, guidance and help throughout this process and Dr. Ben Evans for his

kindness and always welcoming me into his lab when I was tired of being alone in

mine.

This thesis would not have been possible without the help, constant encouragement,

and support of Morgan Kain. Finally, I’d like to thank my family for always believing

in me and their unconditional love.

v



PhD Thesis — Jo A. Werba McMaster University — Biology

Table of Context
1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1

2. Links between data and models: cautionary notes and limits . . . . . . . . . 13
2.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Nutrient-Phytoplankton-Zooplankton(NPZ) models . . . . . . . . . . . . . . . . . .17
2.3.2 Lab experiments for parameter estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.3 Estimating parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
2.3.4 Literature search for parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
2.3.5 Full lab experiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35

2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
2.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3. Increasing functional diversity increases some, but not all, measures
of resilience in an aquatic system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
3.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.3.1 Experimental Set-Up . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61
3.3.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62

3.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.1 Chlorophyll-a concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.4.2 Ammonium concentrations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
3.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
3.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4. The challenge of life history traits- a small cladoceran, Ceriodaphnia
rigaudi . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.1 Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.2 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.3 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.3.1 Lab Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .89
4.3.2 Feeding rates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
4.3.3 Population growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.4 Literature search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
4.3.5 Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
4.3.6 Jamaican data and habitat . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

vi



PhD Thesis — Jo A. Werba McMaster University — Biology

4.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
4.6 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5. Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

Appendix A: Additional tables and figures for Chapter 2 . . . . . . . . . . . . . . .107

Appendix B: Additional tables and figures for Chapter 3 . . . . . . . . . . . . . . . 109

Appendix C: Additional tables and figures for Chapter 4 . . . . . . . . . . . . . . . 116

vii



PhD Thesis — Jo A. Werba McMaster University — Biology

List of Figures and Tables

Chapter 2
Figure 1: D. magna birth rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Figure 2: Adult D. magna feeding rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
Figure 3: Adult D. magna excretion rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Figure 4: Adult D. magna death rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
Figure 5: D. magna maturation rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 6: Juvenile D. magna feeding and excretion rate . . . . . . . . . . . . . . . . . . . . . . . . . 31
Figure 7: Algae-ammonium parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Figure 8: Algae-ammonium model fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33
Figure 9: Model predictions: best parameter set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Figure 10: Model predictions: literature only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Figure 11: Model predictions: lab data only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
Figure 12: Model predictions: disturbance best parameter set only . . . . . . . . . . . . . . . 40
Figure 13: Model predictions: disturbance lab only . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
Figure 14: Model predictions: disturbance literature only . . . . . . . . . . . . . . . . . . . . . . . .42
Figure 15: Sobol sequence fits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
Figure 16: Food source addition exploration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
Figure 17: Juvenile D. magna death parameter exploration . . . . . . . . . . . . . . . . . . . . . 48
Table 1: NPZ model parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19
Table 2: Parameter values of best fit set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

Chapter 3
Figure 1: Final chlorophyll-a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
Figure 2: Maximum chlorophyll-a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Figure 3: Final ammonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67
Figure 4: Maximum ammonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
Figure 5: Sediment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68
Figure 6: Ephippia production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
Figure 7: Final and maximum D. magna populations . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
Figure 8: Proportional change in D. magna Final Populations D. magna populations
71
Figure 9: Proportional change in D. magna maximum Populations D. magna popula-
tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
Figure 10: Physa sp. survival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
Figure 11: Physa sp. eggmass . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 12: Physa sp. eggmass and disturbance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
Figure 13: Algal PCoA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75

vii



PhD Thesis — Jo A. Werba McMaster University — Biology

Chapter 4
Figure 1: C. rigaudi feeding rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
Figure 2: r and k estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
Figure 3: Environmental factors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
Figure 4: C. rigaudi occurrence map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Appendix A
Table A.1: Starting food conditions for feeding and recycling . . . . . . . . . . . . . . . . . . . 107
Table A.2: Starting food conditions for birth and maturation . . . . . . . . . . . . . . . . . . . 107
Table A.3: Starting ammonium conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
Table A.4: Parameter estimates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Appendix B
Figure B.1: Final chlorophyll-a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .112
Figure B.2: Maximum chlorophyll-a . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
Figure B.3: Final ammonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure B.4: Maximum ammonium . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Figure B.5: Final sediment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .114
Figure B.6: Algal community composition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
Table B.1: Model estimates: resilience . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110
Table B.2: Model estimates: D. magna population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Table B.3: Model estimates: Physa sp. population . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Appendix C
Figure C.1: C. rigaudi population curves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

viii



PhD Thesis — Jo A. Werba McMaster University — Biology

List of Abbreviations and Symbols

NPZ Nutrient-phytoplankton-zooplankton

ODE Ordinary Differential Equation

PCoA Principal Coordinates Analysis

PERMANOVA Permutational multivariate analysis of variance

ix



PhD Thesis — Jo A. Werba McMaster University — Biology

Declaration of Academic Achievement

This standard thesis contains an introduction (Chapter 1), a manuscript in revision

(Chapter 3), two drafts of a manuscript in the early stages of preparation for publication

(Chapter 2, 4), and a conclusion (Chapter 5). Chapters 1 and 5 were wholly written

by me. Drs. Ben Bolker and Jurek Kolasa are co-authors for chapter 2. We all

conceived of the idea. Dr. Bolker and I did the analyses. I ran the experiments and

wrote the manuscript with edits from Dr. Kolasa and Dr. Bolker. Chapter 3 is a

collaborative project with four undergraduate students. Dr. Kolasa and I conceived of

the experiment. Alexander Phong, Lakhdeep Brar, Acacia Frempong, Ofure Oware

and I ran the experiments. Mr. Phong and Ms. Frempong identified all of the algal

communities, and Mr. Phong ran preliminary analysis on community structure. Mr.

Brar ran preliminary analyses for Daphnia magna populations. I ran all final analyses.

I wrote the manuscript with edits from all co-authors. Chapter 4 was co-written by

myself and Dr. Kolasa. I ran the lab experiments and gathered the literature data. Dr.

Kolasa collected the field data. I wrote the manuscript with edits from Dr. Kolasa.

ix



PhD Thesis — Jo A. Werba McMaster University — Biology

Chapter 1: Introduction

Functional trait-based approaches help answer fundamental ecological questions about

species distributions and ecosystem functioning (e.g. Bremner, 2008; Cadotte et al.,

2011; Cardinale et al., 2000) by focusing on mechanisms of species-environment

interactions. Functional traits are a measurable aspect of a species that directly

impact a particular piece of the ecosystem. This approach places less emphasis

on species-species interactions and steps away from metrics like species richness,

instead focusing on functional diversity. Functional diversity is a part of biodiversity

that specifically relates to what traits, rather than what species, are present. Thus,

functional trait-based approaches examine how species’ functional traits interact with

that species’ niche. In doing so, these approaches are well suited for describing how

species impact ecosystem function (e.g. Srivastava and Vellend 2005; biogemochemical

cycles (Srivastava, 2002); productivity (Cardinale et al., 2000); and resilience (Peterson

et al., 1998)).

While not new, trait-based approaches have increased in usage since 2006, partially

because they help describe species-environment interactions across gradients (McGill

et al., 2006). For example, Kunstler et al. (2012) used traits to determine tree species

distribution and found that differences in trait values (e.g. leaf mass area) were the

best determinants of species presence. Similarly, following large scale fire events,

Spasojevic et al. (2016) found that which sites were able to recover depended on the

traits (e.g. seed type) of trees nearby and in the plots pre-fire. Beyond predicting

what type of species will be present after a disturbance or across an environmental

gradient, using functional traits instead of taxonomy has led to better predictions of

ecosystem functioning over space and time (Mouillot et al. 2013; Mori et al. 2013, but

1
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see Cadotte et al. 2009). Importantly, trait-based approaches suggest that either a

single trait or a group of traits affect a specific part of the ecosystem and that this

effect will be clear and predictable.

Methods that incorporate environmental gradients, like trait-based approaches, are

increasingly important given the accelerating rate of anthropogenic disturbance. A

changing environment leads to shifts in species’ populations and distributions, which

in turn leads to further changes in the environment. However, most trait-based studies

emphasize the explanatory power of a focal trait on a specific ecosystem service (McGill

et al., 2006). Thus, when ecologists want to ask questions about feedback loops between

habitat change and shifting species demographics, a different approach than classic

statistical regression or variance partitioning between traits and environmental factors

is necessary.

A way to approach questions about the feedback loops between habitat and species

demographics is through mechanistic models that incorporate species traits. Mecha-

nistic models are mathematical models that link individual or cellular (physiological)

level processes or interactions to whole system dynamics. Mechanistic models are

used throughout ecology for a variety of purposes (e.g. to study disease transmission

(Grassly and Fraser, 2008); to calculate sustainable harvests (Olmsted and Alvarez-

Buylla, 1995; Kokko and Lindström, 1998; Beissinger and Bucher, 1992); and to gain

insight to understand population dynamics such as periodicity (McCauley et al., 2008a)

or predator-prey cycles (Shertzer et al., 2002)). Like classical trait-based approaches,

mechanistic models are suited to asking questions about the impact of individual species

on their environment. However, unlike trait-based methods, mechanistic models have

the capacity to explicitly explore feedback loops and make projections into the future

and into new conditions. Population and ecosystem mechanistic models in aquatic

systems have led to insights about when predictions are most likely to be accurate

2
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(e.g. when physical rather than chemical or ecological factors drive observed patterns

(Robson, 2014b), the effects of climate change on population dynamics (Hart and

Gotelli, 2011), and nutrient-consumer feedback loops (Nisbet et al., 1991)).

While trait-based approaches can answer broad questions about habitat change

(e.g. what types of traits do we expect to see post disturbance?), mechanistic models

can answer specific questions such as: “how long until species X is extinct?”; or, “how

will changes in the population of species Y affect species X or ecosystem function

Z?”. Answers to both types of questions are critical for moving toward a broader

understanding of ecology.

In this thesis I combine trait-based ecology with mechanistic approaches to address

questions about aquatic systems post-perturbation. While most work in trait-based

ecology has been done in plants (e.g. Ackerly, 2003; Lavorel and Garnier, 2002;

Funk and Wolf, 2016; Funk et al., 2017) recent studies have gathered species-specific

information in order to increase the use of trait-based methods in aquatic systems (e.g

Litchman et al., 2010; Hébert et al., 2016). Connecting effect traits,that is, traits that

directly effect the ecosystem, such as nutrient recycling, to ecosystem functioning is

the next step in trait-based frameworks.

One of the major perturbations in aquatic systems is eutrophication. Therefor, I use

a eutrophication event to explore the utility of trait-based approaches and mechanistic

models in predicting responses to changes in aquatic systems. Cultural eutrophication

occurs when run-off from farms, factories, or other anthropogenic sources add nutrients

to a water body leading to algal blooms and hypoxic conditions. The most effective way

of stopping cultural eutrophication is by stopping phosphorus inputs. However, many

phosphorus inputs are from non-point sources and are therefore difficult to control

(e.g. Scavia et al., 2014). Studying eutrophication is difficult because some of the

consistent results found from field studies, for example, that phosphorous reductions
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alone can reverse eutrophication, cannot be replicated in small scale nutrient addition

experiments (Smith and Schindler, 2009; Schindler et al., 2016). Therefore, interactions

between nutrients, algae and primary consumers remain poorly understood (Schindler

et al., 2016). I determine if a mechanistic model can make reasonable predictions

about nutrient, algal, and primary consumer concentrations after a eutrophication

event in a simple system in Chapter 2. Additionally, functional diversity is thought to

help stabilize systems and increase resilience after a perturbation. In Chapter 3 I ask

if trait diversity can lessen the impact of eutrophication.

Resilience is an important measure of an ecosystem in regards to disturbance.

Resilience was originally defined by Holling (1973) as the amount of disturbance a

system can absorb without changing states. Understanding resilience and predicting

when a system may be resilient is an important because as the world changes deciding

which areas to preserve, how to increase the natural world’s capacity to ”bounce back”,

or resist change is an important conservation mandate. However, in practice, resilience

has been defined in several different ways: the amount of perturbation a system can

sustain (Gunderson, 2000; Ludwig et al., 1997), a measure of time until return to a

state pre-disturbance (elasticity e.g. sensu Hodgson et al., 2015), or a combination of

both (Hodgson et al., 2015; Yeung and Richardson, 2016; Hodgson et al., 2016; Côté

and Darling, 2010). Despite the relatively simple idea, the variety of definitions of

resilience and the difficulty in measuring resilience has led to inconclusive and often

contradictory findings about what makes a system more likely to be resilient (Todman

et al., 2016; Ingrisch and Bahn, 2018). And since resilience is often a conservation

goal, contradictory evidence and vague definitions leave policy and planning difficult

(Newton, 2016). Resilience is often thought to increase with functional diversity due

to insurance; that is, multiple species may perform the same function, so that if one is

extirpated another can take its place. However, this may not be accurate: resilience may
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increase with biodiversity itself or may be mediated through more complex pathways

(Downing and Leibold, 2010). In Chapter 3, I aim to distinguish between functional

diversity and species diversity itself by setting up treatments that either increased

in both richness and in trait diversity, or only in richness. Unfortunately, one of our

filter feeding species was unable to survive and as such I was unable to perform the

experiment as planned. I do however, find that resilience is not simply a function of

diversity and is highly dependent on what ecosystem measures are tracked. These

results further lend support to the idea that for policy in particular, goals and outcomes

need to be specific.

To continue to explore the relationship, and particularly feedback loops, between

species’ traits and resilience in an aquatic system I built a mechanistic model that

includes species-specific information for the three non-microbial components of a simple

aquatic system: algae, zooplankton and nitrogen. The foundation for the mathematical

part of this model is well understood, as aquatic systems have a long history of mecha-

nistic modeling. Some of the earliest aquatic mechanistic are Nutrient-Zooplankton-

Phytoplankton (NPZ) models that have been used since the 1930s (Robson, 2014a;

Fleming, 1939). There has been extensive work on understanding model behavior and

the effects of various functional forms (e.g. Fulton et al., 2003). Simple versions have

been used to explore population dynamics and periodicity (e.g. McCauley et al., 1999,

2008b). However, aquatic mechanistic models have greatly increased in complexity over

the past twenty years. As a result these models require a large number of parameters,

but there has not been a concurrent increase in new data (Silberstein, 2006). Thus,

these models’ many assumptions are rarely well explored, nor are their predictions

routinely checked. Due to the high dimensionality of ecosystem mechanistic models

they are often either highly specific to a location (e.g. parameters are meaningless

outside of the very specific system (Franks, 2009)), difficult to explore mathematically,
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hard to verify, or it is difficult to gain any insight and results in being more descriptive

than actually mechanistic (Franks, 2009).

Simple NPZ models have been extended to full ecosystem models including mul-

tiple functional groups of phytoplankton and zooplankton as well as microbes and

biogeochemical processes. Comprehensive reviews of aquatic mechanistic models were

published in Franks (2002), Franks (2009) and Robson (2014b). The primary take-

aways from these reviews are: 1) use of mechanistic models requires better justification,

because there currently is no evidence that they do a better job at predictions than

statistical models; 2) mechanistic models should be used primarily to test specific

hypotheses or when there are clear feedback loops; 3) most papers do not give quantita-

tive measures of goodness of fit of their models; 4) better parameterization is necessary

to improve these models and 5) uncertainty in parameters and model results needs to

be thought through more carefully and reported. The bulk of my thesis attempts to

address the final two problems highlighted in these reviews. My thesis largely agrees

with point one, in that predictions I find from simple mechanistic models fail to match

experimental data well. Parameterization is a particular problem because, frighteningly

often, a parameter’s source is not reported or single values are used or perpetuated

from study to study without rigorous experiments. Even if a parameter is reported

confidently, there is often variation in both the units in which a parameter is measured

and in the actual reported value of the parameter (Robson et al., 2018). In large,

multi-species or multi-functional group aquatic models (Blackford et al., 2004) this

problem is exacerbated by the sheer number of unknowns, creating enough uncertainty

in each step that making predictions outside of the original conditions (one of the

goals of mechanistic models) problematic.

One promising avenue for improving parameter estimates is the use of Bayesian

approaches. Since 2014 there has been a rise in the use of Bayesian methods in ecology
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(e.g. Obenour et al., 2014). Bayesian approaches can account for different types of

uncertainty (Schartau et al., 2017) and incorporate data from multiple different sources,

hopefully making parameter estimates more accurate, or at the very least, making

the source of variation more clear (Robson et al., 2018). Statistical advances (largely

through improved technology) and the creation of large data amalgamations (e.g.

Hébert et al., 2016; Robson et al., 2018) make it possible to make better parameter

estimates and thus better predictive mechanistic models. In Chapter 2 I use a mix of

approaches, including Bayesian approaches, to make parameter estimates and determine

parameter uncertainty. This chapter highlights best practices for parameter estimation

and documentation that need to become commonplace if aquatic mechanistic models

are to be useful moving forward. While the resulting mechanistic model fails make

good predictions post-perturbation, the methods I lay out show what needs to happen

for mechanistic models to be more robust.

Finally, in Chapter 4, I provide life-history data from laboratory experiments and

distributions from a literature search for a widespread, tropical zooplankton species,

Ceriodaphnia rigaudi, in an effort to expand the available data sources on species-

specific traits in zooplankton (as captured by the growing literature of zooplankton

traits (Hébert et al., 2016; Barnett et al., 2007)).

7



PhD Thesis — Jo A. Werba McMaster University — Biology

Bibliography
Ackerly, D. D. 2003. Community assembly, niche conservatism, and adaptive evolution

in changing environments. International Journal of Plant Sciences 164 (S3), S165–
S184.

Barnett, A. J., K. Finlay, and B. E. Beisner 2007. Functional diversity of crus-
tacean zooplankton communities: towards a trait-based classification. Freshwater
Biology 52 (5), 796–813.

Beissinger, S. R. and E. H. Bucher 1992. Can parrots be conserved through sustainable
harvesting? BioScience 42 (3), 164–173.

Blackford, J., J. Allen, and F. J. Gilbert 2004. Ecosystem dynamics at six contrasting
sites: a generic modelling study. Journal of Marine Systems 52 (1-4), 191–215.

Bremner, J. 2008. Species’ traits and ecological functioning in marine conservation
and management. Journal of Experimental Marine Biology and Ecology 366 (1-2),
37–47.

Cadotte, M. W., K. Carscadden, and N. Mirotchnick 2011. Beyond species: functional
diversity and the maintenance of ecological processes and services. Journal of applied
ecology 48 (5), 1079–1087.

Cadotte, M. W., J. Cavender-Bares, D. Tilman, and T. H. Oakley 2009. Using phylo-
genetic, functional and trait diversity to understand patterns of plant community
productivity. PloS one 4 (5), e5695.

Cardinale, B. J., K. Nelson, and M. A. Palmer 2000. Linking species diversity to the
functioning of ecosystems: on the importance of environmental context. Oikos 91 (1),
175–183.

Côté, I. M. and E. S. Darling 2010. Rethinking ecosystem resilience in the face of
climate change. PLoS biology 8 (7), e1000438.

Downing, A. L. and M. A. Leibold 2010. Species richness facilitates ecosystem
resilience in aquatic food webs. Freshwater Biology 55 (10), 2123–2137.

Fleming, R. H. 1939. The control of diatom populations by grazing. ICES Journal of
Marine Science 14 (2), 210–227.

Franks, P. J. 2002. NPZ Models of Plankton Dynamics: Their Construction, Coupling
to Physics, and Application. Journal of Oceanography 58 (2), 379–387.

Franks, P. J. S. 2009. Planktonic ecosystem models: Perplexing parameterizations
and a failure to fail. Journal of Plankton Research 31 (11), 1299–1306.

8



PhD Thesis — Jo A. Werba McMaster University — Biology

Fulton, E. A., A. D. Smith, and C. R. Johnson 2003. Mortality and predation in ecosys-
tem models: Is it important how these are expressed? Ecological Modelling 169 (1),
157–178.

Funk, J. L., J. E. Larson, G. M. Ames, B. J. Butterfield, J. Cavender-Bares, J. Firn,
D. C. Laughlin, A. E. Sutton-Grier, L. Williams, and J. Wright 2017. Revisiting the
holy grail: using plant functional traits to understand ecological processes. Biological
Reviews 92 (2), 1156–1173.

Funk, J. L. and A. A. Wolf 2016. Testing the trait-based community framework: Do
functional traits predict competitive outcomes? Ecology 97 (9), 2206–2211.

Grassly, N. C. and C. Fraser 2008. Mathematical models of infectious disease
transmission. Nature Reviews Microbiology 6 (6), 477–487.

Gunderson, L. H. 2000. Ecological resilience—in theory and application. Annual
review of ecology and systematics 31 (1), 425–439.

Hart, E. M. and N. J. Gotelli 2011. The effects of climate change on density-dependent
population dynamics of aquatic invertebrates. Oikos 120 (8), 1227–1234.

Hébert, M.-P., B. E. Beisner, and R. Maranger 2016. Linking zooplankton communities
to ecosystem functioning: toward an effect-trait framework. Journal of Plankton
Research 00, 1–10.

Hébert, M.-P., B. E. Beisner, R. Maranger, and G. de Recherche Interuniversitaire
en Limnologie et en environnement aquatique (GRIL) 2016. A meta-analysis of
zooplankton functional traits influencing ecosystem function. Ecology.

Hodgson, D., J. L. McDonald, and D. J. Hosken 2015. What do you mean,‘resilient’?
Trends in ecology & evolution 30 (9), 503–506.

Hodgson, D., J. L. McDonald, and D. J. Hosken 2016. Resilience is complicated, but
comparable: a reply to yeung and richardson. Trends in ecology & evolution 31 (1),
3–4.

Holling, C. S. 1973. Resilience and stability of ecological systems. Annual review of
ecology and systematics 4 (1), 1–23.

Ingrisch, J. and M. Bahn 2018. Towards a comparable quantification of resilience.
Trends in ecology & evolution 33 (4), 251–259.

Kokko, H. and J. Lindström 1998. Seasonal density dependence, timing of mortality,
and sustainable harvesting. Ecological Modelling 110 (3), 293–304.

9



PhD Thesis — Jo A. Werba McMaster University — Biology

Kunstler, G., S. Lavergne, B. Courbaud, W. Thuiller, G. Vieilledent, N. E. Zimmer-
mann, J. Kattge, and D. A. Coomes 2012. Competitive interactions between forest
trees are driven by species’ trait hierarchy, not phylogenetic or functional similarity:
implications for forest community assembly. Ecology letters 15 (8), 831–840.

Lavorel, S. and E. Garnier 2002. Predicting changes in community composition
and ecosystem functioning from plant traits: revisiting the holy grail. Functional
ecology 16 (5), 545–556.

Litchman, E., P. de Tezanos Pinto, C. A. Klausmeier, M. K. Thomas, and
K. Yoshiyama 2010. Linking traits to species diversity and community struc-
ture in phytoplankton. In Fifty years after the “Homage to Santa Rosalia”: Old
and new paradigms on biodiversity in aquatic ecosystems, pp. 15–28. Springer.

Ludwig, D., B. Walker, and C. S. Holling 1997. Sustainability, stability, and resilience.
Conservation ecology 1 (1).

McCauley, E., W. A. Nelson, and R. M. Nisbet 2008a. Small-amplitude cycles emerge
from stage-structured interactions in daphnia–algal systems. Nature 455 (7217),
1240–1243.

McCauley, E., W. A. Nelson, and R. M. Nisbet 2008b. Small-amplitude cycles emerge
from stage-structured interactions in Daphnia-algal systems. Nature 455 (7217),
1240–3.

McCauley, E., R. M. Nisbet, W. W. Murdoch, A. M. de Roos, and W. S. C. Gurney
1999. Large-amplitude cycles of Daphnia and its algal prey in enriched environments.
Nature 402 (December), 653–656.

McGill, B. J., B. J. Enquist, E. Weiher, and M. Westoby 2006. Rebuilding community
ecology from functional traits. Trends in ecology & evolution 21 (4), 178–185.

Mori, A. S., T. Furukawa, and T. Sasaki 2013. Response diversity determines the
resilience of ecosystems to environmental change. Biological reviews 88 (2), 349–364.

Mouillot, D., N. A. Graham, S. Villéger, N. W. Mason, and D. R. Bellwood 2013. A
functional approach reveals community responses to disturbances. Trends in ecology
& evolution 28 (3), 167–177.

Newton, A. C. 2016. Biodiversity risks of adopting resilience as a policy goal.
Conservation Letters 9 (5), 369–376.

Nisbet, R., E. McCauley, A. De Roos, W. Murdoch, and W. Gurney 1991. Population
dynamics and element recycling in an aquatic plant-herbivore system. Theoretical
Population Biology 40 (2), 125–147.

10



PhD Thesis — Jo A. Werba McMaster University — Biology

Obenour, D. R., A. D. Gronewold, C. A. Stow, and D. Scavia 2014. Using a Bayesian
hierarchical model to improve Lake Erie cyanobacteria bloom forecasts. Water
Resources Research 50, 7847–7860.

Olmsted, I. and E. R. Alvarez-Buylla 1995. Sustainable harvesting of tropical
trees: demography and matrix models of two palm species in mexico. Ecological
Applications 5 (2), 484–500.

Peterson, G., C. R. Allen, and C. S. Holling 1998. Ecological resilience, biodiversity,
and scale. Ecosystems 1 (1), 6–18.

Robson, B. J. 2014a. State of the art in modelling of phosphorus in aquatic systems:
Review, criticisms and commentary. Environmental Modelling and Software 61,
339–359.

Robson, B. J. 2014b. When do aquatic systems models provide useful predictions,
what is changing, and what is next? Environmental Modelling and Software 61,
287–296.

Robson, B. J., G. B. Arhonditsis, M. E. Baird, J. Brebion, K. F. Edwards, L. Geoffroy,
M. P. Hébert, V. van Dongen-Vogels, E. M. Jones, C. Kruk, M. Mongin, Y. Shimoda,
J. H. Skerratt, S. M. Trevathan-Tackett, K. Wild-Allen, X. Kong, and A. Steven
2018. Towards evidence-based parameter values and priors for aquatic ecosystem
modelling. Environmental Modelling and Software 100, 74–81.

Scavia, D., J. D. Allan, K. K. Arend, S. Bartell, D. Beletsky, N. S. Bosch, S. B.
Brandt, R. D. Briland, I. Daloğlu, J. V. DePinto, et al. 2014. Assessing and
addressing the re-eutrophication of lake Erie: Central basin hypoxia. Journal of
Great Lakes Research 40 (2), 226–246.

Schartau, M., P. Wallhead, J. Hemmings, U. Löptien, I. Kriest, S. Krishna, B. A. Ward,
T. Slawig, and A. Oschlies 2017. Reviews and syntheses: Parameter identification
in marine planktonic ecosystem modelling. Biogeosciences 14 (6), 1647–1701.

Schindler, D. W., S. R. Carpenter, S. C. Chapra, R. E. Hecky, and D. M. Orihel
2016. Reducing phosphorus to curb lake eutrophication is a success.

Shertzer, K. W., S. P. Ellner, G. F. Fussmann, and N. G. Hairston Jr 2002. Predator–
prey cycles in an aquatic microcosm: testing hypotheses of mechanism. Journal of
Animal Ecology 71 (5), 802–815.

Silberstein, R. 2006. Hydrological models are so good, do we still need data?
Environmental Modelling & Software 21 (9), 1340–1352.

Smith, V. H. and D. W. Schindler 2009. Eutrophication science: where do we go
from here? Trends in ecology & evolution 24 (4), 201–207.

11



PhD Thesis — Jo A. Werba McMaster University — Biology

Spasojevic, M. J., C. A. Bahlai, B. A. Bradley, B. J. Butterfield, M.-N. Tuanmu,
S. Sistla, R. Wiederholt, and K. N. Suding 2016. Scaling up the diversity–
resilience relationship with trait databases and remote sensing data: the recovery of
productivity after wildfire. Global change biology 22 (4), 1421–1432.

Srivastava, D. 2002. The role of conservation in expanding biodiversity research.
Oikos 98 (2), 351–360.

Srivastava, D. S. and M. Vellend 2005. Biodiversity-ecosystem function research: is it
relevant to conservation? Annu. Rev. Ecol. Evol. Syst. 36, 267–294.

Todman, L., F. Fraser, R. Corstanje, L. Deeks, J. A. Harris, M. Pawlett, K. Ritz,
and A. Whitmore 2016. Defining and quantifying the resilience of responses to
disturbance: a conceptual and modelling approach from soil science. Scientific
reports 6, 28426.

Yeung, A. C. Y. and J. S. Richardson 2016. Some Conceptual and Operational
Considerations when Measuring ’Resilience’: A Response to Hodgson et al. Trends
in Ecology and Evolution 31 (1), 2–3.

12



PhD Thesis — Jo A. Werba McMaster University — Biology

Chapter 2: Links between data and models: cau-
tionary notes and limits

2.1 Abstract

Mechanistic models represent biological systems with mathematical equations that

link individual level processes to whole system dynamics. Aquatic systems have a

long history of mechanistic modelling for the purpose of prediction. However, these

models have steadily increased in complexity, outpacing data capacity and model

verification. One of the ongoing issues in aquatic modelling is the propagation of

unverified parameters and lack of incorporation of parameter uncertainty. In this

chapter we demonstrate ways to incorporate lab and literature data into parameter

estimates and how to include uncertainty. We evaluate different possible decisions

for each process and how each decision affects the final mechanistic predictions. We

find that for best results a mixed approach for obtaining and estimating parameters is

necessary.
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2.2 Introduction

Mechanistic models are mathematical descriptions of biological processes that link

interactions at the individual or cellular (physiological) level to whole-system dynamics

(population growth, disease transmission, energy flows, and other features of interest)

(Flynn et al., 2014; Robson, 2014b). Mechanistic models can be used to describe, for

example, predator-prey dynamics or disease transmission (Keeling and Rohani, 2011),

or used to make land management decisions (e.g. harvest rates: Merganičová et al.,

2005; Johnston et al., 2015; Xie et al., 1999), using parameters such as the rates of

cellular uptake of nitrogen, individual contact or organism death rates. Mechanistic

modeling is sometimes used as a tool to reveal unknown properties of systems, narrow

the plausible range of some process, or study emergent proprieties of complex biological

systems resulting from feedback loops and non-linearities (e.g. McCauley et al.,

2008). However, because mechanistic models are built upon fundamental biological

interactions, in ecology they are often used to predict system-level processes in new

environments (e.g. population growth (Scherrer et al., 2019) or habitat shifts with

climate change (Thomas et al., 2016)).

In this context, the usefulness of a mechanistic model depends on how well the

underlying biological processes are known. For example, mechanistic models can be

poorly suited to describing systems where individual behavior does not translate to

ecosystem and community level processes cleanly (e.g. Peckarsky et al., 1997), or where

many of the interactions underlying observed dynamics are unknown (e.g. communities

are made up of many understudied groups (Fulton et al., 2003)). When the goal is

to predict system-level processes with a mechanistic model but underlying processes

are unknown, it is inadvisable to rely on mechanism; if used, results from mechanistic

models could be misleading and must be approached with skepticism (Anderson, 2005).

14



PhD Thesis — Jo A. Werba McMaster University — Biology

In complex aquatic systems, for example, there is no evidence that mechanistic models

are better at making predictions than other methods (e.g. using statistical models to

estimate correlations from observational data (Pennekamp et al., 2017)).

Aquatic systems models have forged ahead into increasingly complex models without

careful attention to what is known of underlying processes (Flynn, 2005). The

aquatic system literature is full of mechanistic models, with nutrient-phytoplankton-

zooplankton (NPZ) models appearing as early as the 1930s. Over time aquatic models

have steadily increased in complexity (with many recent models having over 100

parameters (see Fulton et al., 2003)). Yet, it remains unclear if these models are

able to describe aquatic systems in the present, predict responses in new locations,

or forecast into the future (Anderson, 2005). These outcomes remain unclear due

to a widespread lack of validating models or reporting any goodness of fit metrics

(Robson, 2014a). When validation or goodness of fit metrics do exist, models are do

not predict population cycles of zooplankton and phytoplankton populations (Robson,

2014a; Arhonditsis and Brett, 2004; Arhonditsis et al., 2006). Therefore, when making

predictions for large systems (whole lakes or oceans) our confidence in those predictions

should not be high; yet they are often treated as “true” (e.g. highly cited with parameter

estimates propagated through the literature and time (Robson, 2014a)).

One reason that these models fall short is due to the large number of parameters

and the volume of data needed to parameterize. This quantity of parameters introduces

ambiguity because different parameters can lead to different predictions (e.g Jiang

et al., 2018); it is difficult to determine where models fail if parameters are unknown

and it is unclear what contributes uncertainty in models is coming from (Robson,

2014a). Even with qualitative matching of ordinary differential equations (ODE)

predictions and reality, large systems can notoriously give the same dynamics with

different parameter combinations, which can lead to erroneous conclusions about a

15



PhD Thesis — Jo A. Werba McMaster University — Biology

biological system, possibly resulting in mismanagement or inappropriate interventions

(Kao and Eisenberg, 2018).

Here we create a simple system where we know all of the parameters in order to

determine if a simple NPZ model can predict ecosystem level process (ammonium

cycling). We use this simple system to demonstrate that parameterization and fitting

decisions at every level changes an ODEs predictions. We systematically document

best-practices for picking and fitting parameters, and show how each step involves

many researcher degrees of freedom (e.g. a garden of forking paths Gelman and Loken,

2014) that will ultimately affect final model predictions.

Choosing functional forms and parameter units is difficult; ideally the functions

would be based on cellular activity (Bonachela et al., 2011; Allen and Polimene, 2011),

but these processes are unknown. This difficulty is especially true if current mechanistic

forms assume biological processes that are not the reality (e.g. trade-offs that don’t do

not exist Fiksen et al., 2013); since most researchers are not parameterize their models

themselves and instead take data from the literature, often only old functional forms,

like michaelis-menten, that are biologically less accurate, are the only parameters that

are available (Fiksen et al., 2013). But getting the right parameters and functional

form can greatly increase the accuracy of a model (e.g. Hararuk et al., 2015; Lignell

et al., 2013).

Part of getting better parameter estimates is being able to use as much data as

possible in order to reduce the number of true free parameters. Unfortunately, many

obstacles get in the way of acquiring parameter values. Robson et al. (2018) outline

several key issues: finding appropriate literature values is difficult, and often, even

if there is literature, it is difficult to get the correct units or the magnitude varies

hugely between studies; the process of parameterization is often poorly documented;

and parameter uncertainty is not well understood. This type of uncertainty makes
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it difficult to figure out where the model is wrong; a model with a large number of

parameters can lead to over-fitting, where the model appears to perform well but

be biologically incorrect (e.g. Mitra et al., 2007). Bayesian approaches are able to

address some of these problems (Arhonditsis et al., 2008) because these approaches

allow incorporation of multiple data sources (e.g. Obenour et al., 2014) and allow

parameters to be constrained to biologically probable ranges (Zhang and Arhonditsis,

2009; Schartau et al., 2017). Despite difficulties with methods (e.g. sensitivity to prior

choice), hierarchical Bayesian models can produce improved parameter estimates and

predictions (Norros et al., 2017).

By carefully documenting our parameterization methods and using hierarchical

Bayesian methods we hope to highlight options for researchers building their own

models and demonstrate how decisions around parameterization should be documented

so as to be able to critically evaluate the accuracy and implications of a given model.

Furthermore, we are able to give uncertainty on each parameter itself. In this chapter

we determine if a simple mechanistic model can predict a simple lab system.

2.3 Methods

2.3.1 Nutrient-Phytoplankton-Zooplankton (NPZ) models

Early NPZ models had three state variables (Franks, 2002), but have since been

extended to include multiple species or functional groups at both the zooplankton (e.g.

Hinckley et al., 2009) and phytoplankton levels (e.g Banas, 2011). Classically these

models are constructed with respect to biomass, as each state variable can contain

multiple species. Recent models often include microbial or detritus state variables and

geographical structure as well (e.g. Schartau and Oschlies, 2003). For a comprehensive
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review of how NPZ models are built see Franks (2002).

Using these models as a foundation, we write our NPZ model with two size classes

of Daphnia magna, but follow Daphnia by individual and not biomass. Our full model

is as follows:

dN

dt
= − (aN)

(k +N)A+ d1lA− cN + xahaDa + xjhjDj (2.1)

dA

dt
= (aN)

(k +N)fA− d1A− haADa − hjADj (2.2)

dDa

dt
= gDj − d2Da (2.3)

dDj

dt
= b1A

(b2A)Da − d3Dj (2.4)

where, dN
dt

describes the change in ammonium per unit time, and dA, dDa, and

dDj referring to algae, individual adult Daphnia, and individual juvenile Daphnia

respectively. All parameters are described in Table 2.1.
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Table 2.1: NPZ model parameters.

Parameter Description Unit
a algal maximum uptake of NH4 mg N/(µg chl a*day)
k algal half-saturation point for uptake of NH4 mg N
l amount of NH4 released upon algal death mg N/ µg chl a
d1 proportional death of algae 1/day
c proportion ammonium lost to air or to other

forms of N
1/day

xa adult daphnia excretion mgN/µg chl a
xj juvenile daphnia excretion mg N/ µg chl a
f proportional algal growth given uptake µg chl a/mgN
ha feeding rate of adult daphnia µg chl a/(daphniaa*day)
hj feeding rate of juvenile daphnia µg chl a/(daphniaj*day)
g growth 1/day
d2 adult daphnia death 1/day
b1 maximum birth rate daphniaj/(daphniaa*day)
b2 food concentration at which half-maximum

daily birth is achieved
µg chl a

d3 juvenile death rate 1/day

2.3.2 Lab experiments for parameter estimation

We sought to experimentally estimate all of the parameters in our NPZ model (Table 2.1)

so that it was fully calibrated to our lab conditions and organism lineages.

Experiments for Daphnia magna-associated parameters

Feeding and ammonium recycling rates: To determine the uptake rate of

Haematococcus sp. by Daphnia magna (ha), as well as the rate at which Daph-

nia magna recycled ammonium (xa), we ran an experiment with seven treatments or

algal concentrations (Table A.1) in which we measured starting algae and ammonium

and then measured both again after six hours. Each treatment was replicated five
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times. Each replicate contained approximately 15 individual Daphnia magna (counted

at the end to avoid stressing the individuals prior to the experiment and potentially

biasing estimates); changes in algae and ammonium were scaled to per capita estimates.

We included three replicates for each treatment that did not contain any D. magna

to account for any growth or death of Haematococcus sp. unrelated to grazing. This

experiment was repeated for both D. magna size classes (<1mm or >1mm).

Na = aTNP

1 + aThN
(2.5)

Equation 2.5: where N is prey (here algae) density, a is attack rate, T is total search

time,P is predator, here D.magna, density, and Th is handling time.

While there is general support for a Holling type II functional response (Equation

2.5 of zooplankton consumption of phytoplankton (Mccauley et al. 1990; Paloheimo

et al. 1982; but see Morozov 2010), this relationship varies for different resources

(e.g. Gentleman et al., 2003; Jeschke et al., 2004, support a type I response). In

our experiment D.magna food consumption remained linear over the range of algal

concentrations we used; thus we assumed a linear relationship.

Birth, growth and death rates: From a lab maintained stable population of

Daphnia magna, we haphazardly sub-sampled 73 individuals. Each individual was

transferred into her own container and provided a constant food environment (Ta-

ble A.2); replicate numbers varied because some adults from the lab-maintained

population died prior to giving birth. We followed each individual until she had her

first clutch, and then removed the adult and all but one randomly chosen juvenile. We
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then followed the single juvenile D. magna, maintaining the constant food environment,

until it grew to the second size class (>1mm), and then until death. All offspring were

removed and counted over the lifespan of all tracked individuals.

Algae-associated parameters

Nitrogen uptake and population growth: To determine the growth rate of

phytoplankton (Haematococcus sp.) at different nitrogen concentrations we used

six treatments with different starting ammonium concentrations (Table A.3). Each

treatment was replicated five times. We used a Miracle-Gro r mixture that had an

N:P ratio of 20:8, well above the required ratio needed for Haematococcus sp. (Fábregas

et al., 2000). We therefore assume that nitrogen is the only limiting nutrient. Each

replicate began at 46.19 ± 0.569 µg/L of chlorophyll-a. We measured chlorophyll-a, as

a proxy for cell density and ammonium daily for twelve days. We assumed a saturating

relationship between phytoplankton growth and nitrogen (Franks, 2002, see equation

4).

2.3.3 Estimating Parameters

In many ODE models a single value from the literature is used as a point estimate for

parameter value, without accounting for variation in the parameter either in the actual

biological response or from measurement error. This lack of variation is a problem

because parameters can vary widely over space and time; even in a single instance

there is uncertainty in a single parameter because of the estimation process (Robson,

2014a). Models can also be parameterized with local experimental data, but just using

local data is still using only one measurement; incorporating previous knowledge about

the system or species may be desirable. Depending on the choices a researcher makes,
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predictions may differ substantially. Here we show strategies for fitting each of these

techniques and implications for final outcomes. All models were fit in R (R Core Team,

2019) using the package stan (Carpenter et al., 2017; Stan Development Team, 2020).

All Bayesian models were run using four chains; mixing was tested for by ensuring the

Gelman-Rubin R̂ statistic was < 1.01, that there were no divergent transitions in the

accepted chains, and that Effective Sample Size (ESS) was greater than 10% of the

total sample size.

For each parameter we outline each method we used to fit that parameter. We start

with methods that only use our lab data, then expand into methods that incorporate

literature data. The parameter estimates for each method are available in Table A.4 and

fits with each method are found in the graphs listed in the description of the parameter.

All code and data can be found on github at https://github.com/jwerba14/Species-

Traits.

Fecundity: We model the relationship between daily fecundity and food availability

(Chlorophyll-a: Chl) using a saturating relationship, represented with a Michaelis-

Menten equation (Equation 2.6)

b1 · Chl
b2 + Chl

(2.6)

We fit b1 and b2 using the following methods:

1. First, we used only our lab data and fit the Michealis-Menten equation using

non-linear least squares. This fit is shown in Figure 2.1A.

2. For our second fit we used a Bayesian framework with wide priors. We assumed

a half-normal prior, to restrict values to positive numbers, for b1, b2, and daily
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fecundity, all with mean 0 and standard deviation 100 (Figure 2.1B.). Based on

literature values daily birth rate is between 1.5 and 6.5, so this prior distribution

is sufficiently wide to be relatively uninformative.

3. We incorporated literature values in mixed model framework fit in stan. We

treat each study, including our own, as a replicate, allowing parameters b1 and b2

to vary by study (a random effect of study). We had five studies that reported

food environment. Unfortunately, the food environment in the studies we found

were measured by cell count. It is difficult to translate between cell count and

chlorophyll-a because the relationship is species- specific and depends on the stage

of the growth cycle. We found a possible conversion equation from (Ferreira

et al., 2016). However, it is unclear how accurate this conversion is. Using

this conversion puts most of the literature’s algal data in the far low end of

our experiments. Priors on b1 and b2 were relatively wide (half-normal(0,10)).

(Figure 2.1C).

4. Since we were not confident of the conversion our food environments, for our

fourth fit we used a prior on daily fecundity itself based on the distribution of

daily fecundity from 11 papers (lognormal(1.4,0.6)); priors on b1 and b2 were

half-normal(0,100). We constructed the prior distribution using all literature

values with the package fitdist (Delignette-Muller and Dutang, 2015). Using

this type of prior constrains the mean fecundity equally across all food types.

(Figure 2.1D).

5. As another method to adjust our estimation process for the mismatched units

of algal abundance we incorporated the literature only as a means to restrict

maximum birthrate (b1). To set a maximum birth rate we use the highest

four fecundity numbers and assumed a fixed high food environment. We then
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incorporated these studies in the same way as the mixed model framework above.

Priors on b1 and b2 were half-normal(0,10). (Figure 2.1E).

6. Finally, we parameterized fecundity using only literature data. We fit these data

in stan with a lognormal prior on b2 to restrict it to being positive. (Figure 2.1F).

0.0

2.5

5.0

7.5

10.0

12.5

0 25 50 75 100
Chlorophyll a (ug/L)

D
ai

ly
 F

ec
un

di
ty

A. Non−Linear Least Squares

0.0

2.5

5.0

7.5

10.0

0 25 50 75 100
Chlorophyll a (ug/L)

D
ai

ly
 F

ec
un

di
ty

B. Wide Priors

0.0

2.5

5.0

7.5

10.0

12.5

0 25 50 75 100
Chlorophyll a (ug/L)

D
ai

ly
 F

ec
un

di
ty

C. Bayesian Heirarchical Model

0.0

2.5

5.0

7.5

10.0

12.5

0 25 50 75 100
Chlorophyll a (ug/L)

D
ai

ly
 F

ec
un

di
ty

D. Hyper Priors

0.0

2.5

5.0

7.5

10.0

12.5

0 25 50 75 100
Chlorophyll a (ug/L)

D
ai

ly
 F

ec
un

di
ty

E. Constrain B1

0.0

2.5

5.0

7.5

10.0

12.5

0 25 50 75 100
Chlorophyll a (ug/L)

D
ai

ly
 F

ec
un

di
ty

F. Literature Only

Figure 2.1: Fecundity predictions plotted with our lab collected data.
Dotted lines and envelope represent 95% confidence intervals. In
panel C. the blue ”Xes” are literature values and error bars are
reported standard deviations.

Feeding and Excretion: We modelled adult feeding as a linear relationship to food

available based on our lab generated data:

ha · Chl0 (2.7)
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Because the literature used a per hour scale we also fit on the hour scale and adjusted

to a daily rate for the final model. As with fecundity, most literature reports algal

concentrations in cell counts, while our data is in units of chlorophyll-a. So again, the

literature values fall only in the lower end of our experimental data.

We only modelled excretion with our lab data. Excretion is a function of uptake.

The relationship between excretion and uptake is often accomplished, in theory, by a

parameter that represents how much nitrogen assimilation occurs; however, this is not

measurable in our lab. Instead we fit a strict proportion to what was eaten:

xa · ha · Chl (2.8)

Additionally, none of the literature values we found for excretion reported anything

about food availability, uptake or assimilation so we could not incorporate literature

values to constrain our estimates. Because excretion is directly dependent on feeding

we fit both parameters simultaneously, in five different ways:

1. We used a Bayesian models with wide priors (prior on xa ∼ normal(0,10), ha ∼

normal(0,10)). See Figure 2.2A.

2. We ran a mixed model in stan. Only three studies reported error on their

estimates of feeding rate, so only those were included here. The three literature

values and our data are used to estimate a distribution of feeding rate, where

feeding rate is allowed to vary by study (random effect of study). Due to the

paucity of data, priors on error had to be fairly tight in order for this to meet our

mixing guidelines outlines above. When there is little data, or the data are not

very informative, determining the posterior is difficult and the answer depends

strongly on the prior. (Figure 2.2B).
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3. Alternatively, we used all the feeding literature data but estimated the standard

deviations of all literature values where standard deviations were not reported.

We estimated the un-reported standard deviations based on the distribution of

reported standard deviations. (Figure 2.2C).

We then estimated the feeding rate with only literature values using either:

4. including estimates of standard deviations for each study (i.e. accounting for

measurement error) but assuming the parameters were the same for every study

(i.e. no random effect of study) (Figure 2.2D) or,

5. without measurement error (did not include standard deviation) but allowing

estimates to vary by study (kept a random effect of study). (Figure 2.2E).
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Figure 2.2: Feeding predictions plotted with our lab collected data.
Dotted lines represent 95% confidence intervals. In panel C. the blue
dots are literature values

The estimates for excretion were consistent across models (Figure 2.3).
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Figure 2.3: Predicted excretion per D.magna per
hour predictions plotted with our experimental data.
Dotted lines are 95% CI

Adult Death: We assumed exponential decay for death:

e
− days

d2 (2.9)

Where 1
d2

is the rate and d2 is the e-folding time, or the number of days until a fraction
1
e
≈ 37% of the original population is left. We didn’t include food environment as a

predictor for time until death, even though food certainly has an effect on longevity.

In particular we see (and expect) that in low food environments individuals live longer

(up until a point of starvation). We do not include food environment for simplicity

and because the effect doesn’t appear large in our data and often doesn’t correspond

to many, if any, new births in the extra days of life.
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We modelled death in stan using just our data with a wide prior on death rate,

(normal(0,100)) (Figure 2.4A). The data for this parameter was the most straight-

forward since most papers actually report the parameter itself. To incorporate the

literature values we used a prior distribution based on the distribution of the literature

values, fit using the R package fitdistplus (Delignette-Muller and Dutang, 2015)

(normal(55,22)) (Figure 2.4B). For the literature only estimates we took the mean

of the literature values in three different ways: weighted by 1/standard deviation,

weighted by sample size, or unweighted (Figure 2.4C). Weighting by sample size

assumes that the underlying variance is equivalent across studies, therefore, the inverse

variance of the parameter is proportional to n.
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Figure 2.4: Proportion of D.magna surviving over time. Dot-
ted lines in panels A and B are 95% CI. Panel C shows the
three estimates from using literature values only.

Juvenile parameters: Because our measurement for our size classes was based on

a filter (i.e. a size criterion) and not on molting stage it was difficult to find literature

that matched our data well. Therefore, for all juvenile parameter estimates we only

used our lab data.

Juvenile time to maturation: We fit juvenile maturation as an exponential func-

tion of time (the same model as time to death). This could likely be improved by
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including different feeding environments, though there wasn’t a clear difference between

feeding groups in maturation time except for at the very lowest feeding conditions

(Figure 2.5).
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Figure 2.5: Predicted proportion of juveniles that move size
classes by a given day plotted with our lab collected data,
dotted lines represent 95% CI (A) and median days ± sd of
days until death by treatment (B.)

Juvenile Feeding and Excretion rates: We fit juvenile feeding and excretion

simultaneously with the same model we used for the adults (with wide priors, no

literature values were incorporated)(Figure 2.6). We force juvenile excretion to be

greater than zero by placing a lognormal prior on the slope parameter (xj). We have

to do this because our data is not sufficient to distinguish xj from zero, which it must
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be biologically.
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Figure 2.6: Predicted feeding rate (A) and excretion rate
(B) for juvenile D.magna per hour. Dots are our lab data.
Dotted lines are 95% CI.

Ammonium and algal growth and uptake: Because algal growth and nutrient

uptake are occurring concurrently and depend on each other we fit these parameters

simultaneously. We created a 500000 entry Sobol sequence (a sampling algorithm

known to cover sampling space more efficiently than Latin Hypercube (Burhenne et al.,

2011)) using a function from the R package pomp (King et al., 2020). We built the Sobol

sequence using a range of parameters based on the range of literature values we found.

We looked for the parameter combination with the highest negative log likelihood for

each treatment. To find confidence intervals for the parameters we used a weighted

31



PhD Thesis — Jo A. Werba McMaster University — Biology

quantile function in the package hmisc (Frank E Harrell Jr, 2020), where weights were

set as exponential decay of the likelihoods (Figure 2.7). Fits for parameters can be

seen in Figure 2.8.
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Figure 2.8: Best fit parameter estimates and CI for all nitrogen-algae pa-
rameters for each starting ammonium treatment. These parameters were fit
simultaneously. The black line is the best log likelihood prediction and the red
line is the median predictions based on our method of calculating quantiles.

2.3.4 Literature search for parameters

We paired our lab-estimated parameters with parameters obtained from published

literature to build appropriate priors for each parameter. We were not trying to
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complete a comprehensive literature review for each parameter. We were trying instead

to gather enough information to construct informative priors.

For Daphnia magna parameters, we searched on July 1, 2019 using Google Scholar

for: “daphnia magna” and “growth” and “survival” and “reproduction”, which

resulted in 19600 hits. For this and all other searches we looked at the first 50 papers.

We only downloaded the paper if it was clearly aboutDaphnia magna, which resulted

in 31 downloads of which 16 had data we could use. We then searched Google Scholar

again on September 10, 2019 for: “ammonium excretion" and "daphnia magna"

which resulted in 5,310 results. We downloaded 29 articles that were clearly about

Daphnia magna, five of which had appropriate data. For our final Google Scholar

search we used the terms “daphnia magna” and “grazing rates” (on September

12, 2019), which resulted in 7790 hits. We downloaded any papers about Daphnia

magna that hadn’t previously been found, which resulted in 38 hits. We downloaded

these, and one additional paper that was cited in one of the others, for a total of 39;

15 of these had appropriate data.

For algal parameters we searched Google Scholar on May 29, 2019 for:

"algae death rates" which resulted in 190,000 hits. We removed any papers

about blue-green algae, any saline/marine species, or if the paper was about another

organisms’ reaction to different algal types. We only took articles that were looking

at actual algal populations and not humans/cancer etc. or otherwise obviously not

about freshwater algae. We excluded books. We looked at the first 200 papers of

which we downloaded 55. From those 55 we found nine additional papers. From the

total of 64 papers 21 had data we could use. We also used the same search strategy

for “algal growth rate” for which we downloaded 56 papers and took data from 18;

we also searched “algal nitrogen uptake” for which we downloaded 63 and took

data from 16 papers.

34



PhD Thesis — Jo A. Werba McMaster University — Biology

Many papers had information on more than one parameter; for the actual number

of data points per parameter see each particular model. A full list of downloaded

papers and notes about data that we did or did not extract (including extracted data)

can be found in the github repository. When data was presented in a graph we used

Data Thief (Tummers, 2006) to extract the data.

2.3.5 Full lab experiment

We designed an experimental lab system to conform to the NPZ equation presented

previously. Then, using the a priori estimated parameters we compare model results

to experimental results.

Experimental Design: The experiment ran for six weeks. All tanks began with

algal concentrations of 14.5 ± sd 2.3 µg Chlorophyll-a/L. We filled tanks with 1 L of

water and either with (20 tanks) or without (20 tanks) 20 adult (>1 mm) Daphnia

magna. We measured chlorophyll-a daily (using an AquaFlor flourimeter) and measured

ammonium (mg/L) twice a week (using a YSI Pro Plus). We counted Daphnia magna

populations twice a week by using four 10 mL sub-samples. D. magna were counted

in two separate size classes: < 1 mm and > 1 mm. Tanks were kept at a median

temperature of 19°C. After three weeks, half of the tanks received a one-time influx of

nutrients (100 mL of 1g/L concentration of Miracle Gror) as a single perturbation

event. We then continued data collection for an additional three weeks.

Experiment and Model Evaluation: We ran the full ODE over all 375 param-

eter combinations and evaluated fit using log likelihood. We did this separately for

model/treatments with and without a perturbation and for the treatments with and

without Daphnia magna. Because we have no data for juvenile death we ran the best
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fit sets over a range of possible juvenile death parameters.

Additionally, we created a 500000 entry Sobol sequence over a biologically reasonable

range of all parameters to find the best parameter fit and then compared those

parameters to our data.

To calculate confidence intervals on the full model we used the posterior distributions

for the parameters that were estimated in stan. For the algal-ammonium parameters

(a, k, l, f, d1) we created a weighted distribution by likelihood from the original fits.

Then we ran the ODE across the created 4000 parameter sets and selected the 95%

quantities for each state variable.

2.4 Results

We found the best fit parameter set (largest negative log likelihood) uses a mix of

parameter estimation methods (Table 2.2), but even the best set does not predict the

experimental data particularly well (Figure 2.9).

Table 2.2: Set of parameter values that produced the largest negative log-likelihood

Parameter Method Value
b1 mixed model 3.9
b2 mixed model 6.9
ha wide priors 0.09
xa mixed model, varying slopes 53.9
d2 literature only- weighted by replicate 58.8

36



PhD Thesis — Jo A. Werba McMaster University — Biology

1e−37

1e−26

1e−15

1e−04

0 10 20 30 40
time

C
hl

or
op

hy
ll 

a 
(u

g/
L)

A.

1000

3000

10000

0 10 20 30 40
time

A
m

m
on

iu
m

 (
ug

/L
)

B.

1

10

100

0 10 20 30 40
time

A
du

lt 
D

ap
hn

ia

C.

1e−04

1e−02

1e+00

1e+02

0 10 20 30 40
time

Ju
ve

ni
le

 D
ap

hn
ia

D.

Figure 2.9: Predicted outcomes for each of state variable,
algae (A.), ammonium (B.), adult (C.) and juvenile D.magna
(D.) for the best parameter set (black line). Dotted lines are
95% CI.

When we predict with literature only parameters (where available) we get a worse

match (Figure 2.10) than either our best set or a parameter set ( Figure 2.9, ∆

log-likelihood = 61) and from our lab experiments (Figure 2.11 ∆ log-likelihood = 35).
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Figure 2.10: Predicted outcomes for each of state variable,
algae (A.), ammonium (B.), adult (C.) and juvenile D.magna
(D.) using only literature values (black line). Dotted lines
are 95% CI.
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Figure 2.11: Predicted outcomes for each of state variable,
algae (A.), ammonium (B.), adult (C.) and juvenile D.magna
(D.) using only lab values (black line). Dotted lines are 95%
CI.

This is consistent in the disturbed treatments (Figure 2.12, Figure 2.13 ∆ log-

likelihood 12 from greatest negative log-likelihood, and Figure 2.14 ∆ log-likelihood =

24 from greatest negative log-likelihood).
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Figure 2.12: This figure shows our best parameter set when
there is a single eutrophication event. Predicted outcomes
for each of state variable, algae (A.), ammonium (B.), adult
(C.) and juvenile D.magna (D.) (black line). Dotted lines
are 95% CI.
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Figure 2.13: Predictions with a eutrophication event using
only lab values when available. Predicted outcomes for each
of state variable, algae (A.), ammonium (B.), adult (C.)
and juvenile D.magna (D.) are represented by the black line.
Dotted lines are 95% CI.
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Figure 2.14: Predictions with a eutrophication event using
only literature values when available. Predicted outcomes
for each of state variable, algae (A.), ammonium (B.), adult
(C.) and juvenile D.magna (D.) are represented by the black
line. Dotted lines are 95% CI.

2.5 Discussion

Simple mechanistic models are a cornerstone of research in biology. They have advanced

our understanding of many biological processes including, for example, disease spread

(Heesterbeek and Roberts, 2015; Keeling and Rohani, 2011), population dynamics

(e.g. Scherrer et al., 2019), and nutrient cycling (e.g. McMurtrie, 1985). Mechanistic

models are particularly well suited for making predictions in situations where there are

strong feedback loops (Robson, 2014b) or when the environment will be different from

when the initial measurements were made (i.e. out of sample predictions, (e.g. with
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different climate scenarios: Montalto et al., 2016)). In aquatic sciences, management

plans require accurate predictions in the face of large scale environmental problems

(Pace, 2001). However, aquatic mechanistic models have become increasingly more

complex. These complex mechanistic models often make less accurate out-of-sample

predictions than either simpler mechanistic models or statistical models (Robson,

2014b). In aquatic ecology, a recent trend towards more complex models with unvetted

predictions is, at best, reducing the impact of these studies, and at worst, leading to

unsupported management plans or constructing a fragile foundation upon which other

work builds.

In theory, a better understanding of a system should lead to better models and

predictions (Pace, 2001). At the very least, a deeper mechanistic understanding of a

system helps reduce bias in predictions (Schuwirth et al., 2019). However, obtaining a

well-parameterized mechanistic model of a complex aquatic system is difficult, even

if the mechanisms operating in that system are well described, because of the sheer

number of parameters needed to describe the known biological interactions operating

in that system. Finding or estimating each parameter value is difficult: often literature

values for parameters are irrelevant (e.g. only from related species, or from a different

location), in units that are not easily convertible, or the variation in parameter values

found in the literature is very large (Robson et al., 2018). Because of the difficulties in

model parameterization, most mechanistic models often use point estimates, ignoring

uncertainty in these values (Ramin et al., 2011; Arhonditsis et al., 2007). However,

poor parameterization or ignoring uncertainty can lead to biased and overly confident

answers, poor predictions or an inability to accurately account for what mechanisms

are actually driving dynamics. Ultimately, this can result in a deep misunderstanding

of a system (e.g. for disease predictions Kao and Eisenberg, 2018). While this is

problematic for all research, it is especially detrimental for applied research designed
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to make management decisions, as these require risk assessment in order to develop

realistic expectations for different management strategies (Reichert, 2020; Schuwirth

et al., 2019; Ramin et al., 2011).

In this chapter we showed multiple ways to find, fit, and report parameter values,

and illustrated the implications of these choices for predictions in a simple aquatic

system.

Despite careful parameter estimation, not a single state variable’s data from our

full lab experiment was well described by our system of ODEs. In particular, algal

populations were poorly represented across all parameter sets; in all cases model

predictions show algal populations declining to approximately 0 rapidly which causes

D. magna populations to crash, and neither algal nor D.magna populations are able

to recover. Similarly, dynamics of juvenile D.magna were poorly explained by our

model across all parameter sets; in all parameter sets the peak population of juvenile

D.magna occurs almost two weeks before the actual peak and is smaller than what we

observed in the experiment.

There are a number of defensible choices we could have made but didn’t (e.g. change

functional forms such as allowing D. magna feeding with a Hollings type II curve

(Mccauley et al., 1990; Paloheimo et al., 1982), or using a Droop equation for algal

nutrient uptake (Droop, 1974)); this non-exhaustive lists highlight the wide range of

possible dynamics that could be predicted in even a simple system. Importantly, many

alternative decisions would lead to different outcomes. For example, changing the form

of transfer function of feeding by D. magna can cause populations to change from

stable to oscillating (Gentleman and Neuheimer, 2008). In systems where many pieces

are unknown, the number of different possible decisions greatly increases, leading to a

compounding number of possible outcomes. Given the plethora of possible decisions, it

is critical that all research using mechanistic models clarify how parameters are chosen
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(which sadly is rarer than would be expected (Robson, 2014a; Robson et al., 2018)),

incorporate uncertainty, and use as much biologically appropriate data as possible (e.g.

parameter values from the appropriate environment).

There are several other potential reasons why even our best parameter set poorly

described our experimental results. First, the base structure of NPZ models may not

fit our system well. This was unanticipated, because our lab system was designed

to conform to the simplest version of an NPZ model (Franks, 2002). The fact that

our NPZ model was unable to describe the experimental system well raises many

questions. Is leaving out, for example, microbial cycling so detrimental to predictions

of zooplankton and algae populations that standard NPZ models are not worth fitting?

Even in nitrogen limited systems (e.g. oceans) does phosphorus need to be included

in the model (Nelson et al., 2020)? Perhaps algal populations need to be measured

in biomass instead of chlorophyll-a (Nelson et al., 2020) or split into morphological

groups (Kruk et al., 2011)? While it is possible that such a simple model misses some

nuance in the data, the fact that it misrepresents the data this poorly is surprising.

Even if we allow all parameters to vary we are unable to replicate the dynamics of

the lab system particularly well (Figure 2.15). If this were a “real” system (i.e. not

a controlled lab system), we would have successfully shown that our hypothesis, the

NPZ model, did not model the dynamics of our system (Franks, 2002).
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Figure 2.15: Model predictions for the best parameter from
all combinations from our Sobol sequence. Dots are experi-
mental data. Dark line is mean prediction and dotted lines
are 95 % CI on the prediction.

Second, we made several assumptions about D. magna’s interaction with algae

that may have resulted in poor predictions of D. magna populations. We assumed that

D. magna birth rate is only related to algal supply; however, because D. magna eat

bacteria—and we had no way of tracking bacterial populations— perhaps D. magna

won’t stop reproducing as algal concentrations reach low numbers. In our current

model D. magna populations crash earlier than expected and fail to reach expected

population levels. We are able to improve model predictions of D. magna by adding a

single additional food source (Figure 2.16).
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Figure 2.16: Model predictions for each algae (A.), ammo-
nium (B.), adult (C.) and juvenile D.magna across 0.01 to
0.4 for a new food source for D.magna once chlorophyll-a
drops below a specific thresh-hold (0.01 µ g/L).

The type of food may have also caused problems in our predictions. D. magna

interaction with food (algae) from our initial experiments potentially did not translate

well to our full experiment because in our initial lab algal stock species was predomi-

nately Haemetococcus sp. and Scenedesmus sp. and in the main experiment we had

mostly Chlorella sp. and Scenedesmus sp. (see Chapter 3, Figure B.6). These species

composition differences likely led to different interactions with both nitrogen and D.

magna, though all these species would likely be grouped together in most phytoplankton

models as a green algae group (Litchman et al., 2007). Adding either microbial cycles

or more algal groups (Kruk et al., 2011) would be important to accurately model D.

magna or algal populations. However, this would add more parameters to estimate

and more functional forms to consider. With so many caveats and unknowns even in
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a controlled lab system, we expect this problem to be exacerbated in more complex

systems.

A third possible problem is that we could not find nor estimate a juvenile D.magna

death rate. We could not estimate juvenile death rate because in our initial life history

experiments only three juveniles out of over fifty died. This rate is far lower than what

we would expect in an actual population. We did not however, find major differences

in fits across a range of juvenile death parameters (Figure 2.17).
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Figure 2.17: Model predictions for each algae (A.), ammo-
nium (B.), adult (C.) and juvenile D.magna across 0.001 to
0.9 for juvenile death. Pink to orange gradient is small(0.001)
to large (.9) values.

Overall, our models would be greatly improved by ensuring all of our priors are

biologically informed. For example, in situations where we couldn’t find species-specific

parameters in the literature (e.g. juvenile excretion) we could use allometric equations

to determine an expected range for the parameter (e.g. Lignell et al., 2013). While we
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carefully estimated parameters, and calculated parameters based on food environment,

parameters could also change over other environmental gradients (e.g. temperature

Mordecai et al., 2013). Therefor, in our system, particularly the perturbed system,

where nutrients levels changed drastically, it is possible we did not accurately model

species behavior because parameter. More complete simulations of our model’s behavior

would help highlight if changing parameter estimates could account for differences

between model predictions and experimental data (Norros et al., 2017).

Even though our best parameter set did not fit the experimental data well, when we

used only literature values for parameters all state variable median estimates were worse

and confidence intervals were too small (Figure 2.10). Literature values were regularly

not in an appropriate scale (e.g. hours vs days) or in difficult to convert units (e.g.

cell count to chlorophyll-a). We naively assumed that hourly rates linearly translated

to day, but actual diel cycles of Daphnia sp. are varied (Haney and Hall, 1975; Haney,

1985). This assumption could lead to faster resource depletion. Overall, the differences

in the way physiologists measure life history traits versus ecosystem ecologists leads

to a disconnect between lab experiments and fitting to large scales. For example,

Daphnia sp. physiologists generally measure food particles in cell count over the course

of single hour, in starved Daphnia sp.; but, in a large lake this might not translate

to the way Daphnia sp. eat or excrete over the course of a week (McMahon and

Rigler, 1963). Even though many ecosystem models measure algae with chlorophyll-a,

physiology experiments almost never do. The conversion between cell count and

chlorophyll-a, is complex and possibly impossible (see methods). These mismatches

(Robson et al., 2018) make it difficult to trust parameters for your specific model from

the literature, but using only your own lab generated data is not only not practical

but likely impossible for most models. Even in a well-studied system (Daphnia-algae),

with a huge amount of literature, and in which we had the capacity to run multiple
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experiments, it was still very difficult to find the “right” transfer functions and “right”

parameters, and we ended up with poor fits.

Instead of building increasingly complex aquatic mechanistic models, our results

suggest that more information is needed at the species (i.e. physiological) level in

order to increase the accuracy of predictions of basic biological interactions. However,

the mechanistic models with the best predictive results generally focus on only key

pieces of the system (Pace, 2001; Robson et al., 2018; Chang et al., 2019). Given this

we could deliberately change small pieces one at a time to understand what describes

our system (Franks, 2009), in order to find those “key” pieces for our system (e.g.

Chang et al., 2019). In fact, in systems that are mostly driven by physical forces we

already are able to get reasonably good predictions (Robson, 2014b) so determining if

a system needs biological aspects as part of the model could be a potential first step.

But for systems that aren’t well explained by physical parameters our project suggests

that our current knowledge is likely insufficient to make predictions at large scales

based on species specific information.
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Chapter 3: Increasing functional diversity increases
some, but not all, measures of resilience
in an aquatic system

3.1 Abstract

Biodiversity is valued due to its potential to stabilize the function of natural ecosystems.

Theory suggests that increasing functional rather than taxonomic diversity should have

a greater effect on system-level resilience (recovery following a perturbation). We test

this idea experimentally in a lab system consisting of algae consumed by zooplankton,

snails, or both, using an eutrophication event as a perturbation. We examined sedi-

ment load, algal and ammonium concentration as gauges of resilience. We find that

Daphnia magna increased our measures of resilience. But this effect is inconsistent

across ecosystem measures; in fact D.magna increased the difference between disturbed

and undisturbed treatments in sediment loads. We have some evidence of shifting

reproductive strategy in response to perturbation in D.magna and in the presence

of the pond snail, Physa sp. These shifts correspond with altered population levels

in D.magna, suggesting feedback loops between the herbivore species. While these

results suggest only an ambiguous connection between diversity of species and to

ecosystem resilience, they point to the difficulties in establishing such a link: indirect

effects of one species on reproduction of another and different scales of response among

components of the system, are just two examples of dimensions that can compromise

the power of simple predictions.
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3.2 Introduction

Biodiversity enhances resilience after a perturbation (Oliver et al., 2015). However,

the mechanisms by which biodiversity enhances resilience are poorly understood. For

example, while differences in species response (response diversity- sensu Elmqvist

et al., 2003; Hébert et al., 2016) to a perturbation can cushion its impact on the

aggregate performance of the whole ecosystem, it is unclear what mechanisms help

with the speed of recovery. Beyond the number of species, the diversity of redundant

and complementary functions performed by species (Yachi and Loreau, 1999) also

matters. As a larger number of species implies an increase of complementary functions,

it may be hard to disentangle which aspect of diversity — the number of species or

the number of complementary functions — drives resistance and recovery of a living

community of organisms.

Several empirical studies support the idea that resilience of a system will increase

with increased richness (e.g. Allan et al., 2011; Tilman and Downing, 1994). However,

these findings are not universal. For example, Guelzow et al. (2017) found an increase

in recovery in phytoplankton communities with increased heterogeneity among patches

and with increased connectivity, but did not detect increased recovery with increased

diversity. It could be that different functional groups, not just specific species, are

themselves more resilient to disturbance (e.g. Karp et al., 2011). Functional groups

are likely to differ in their responses, which could be important in nutrient cycling, for

example, because nutrients can be recycled at different rates and in different parts of

the nutrient cycle (e.g. decomposition, herbivory) (Hulot et al., 2014).

Our goal is to gain insights into the role of functional traits in the recovery of a

simple ecosystem from perturbation. We approach this empirically by contrasting a

simple experimental community of primary producers (algae) alone with communities
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that also include one or two consumers with distinct feeding modes. Our working

hypothesis is that treatments with both functional groups will recover more completely

(i.e. be more similar to an undisturbed system) than treatments with only one

functional group or only primary producers.

Because eutrophication of freshwaters is a common threat to biodiversity and

functioning of aquatic communities (Saunders et al., 2002; Carpenter et al., 1999),

we chose it as our experimental perturbation. Eutrophication generally occurs from

run-off from agricultural or mining lands. This run-off leads to algal blooms that can

be toxic, or so excessive as to drastically deplete oxygen in the water body (Smith,

1998), and can even change evolutionary trajectories of species (Brede et al., 2009).

Eutrophication can be difficult to reverse, as the removal of nutrients alone is sometimes

insufficient to reverse all effects (Carpenter et al., 1999; Brede et al., 2009). Thus,

understanding which aspects of a system will increase resilience to eutrophication is

useful.

Our two functional groups of interest are grazers, represented by the snail Physa

sp., and filter feeders represented by the Cladoceran, Daphnia magna. We chose these

species because of their well-known effects on aquatic systems. For example, snails

alter multiple pieces of a freshwater ecosystem including nutrient loads, fish and even

bird communities (Gilioli et al., 2017). Physa acuta tolerates polluted systems with

high nutrient loads and low dissolved oxygen (Kalyoncu et al., 2009) and thus are

able to survive in highly impacted systems. Snails are important for energy inputs

in aquatic systems because they are major decomposers (Brady and Turner, 2010).

Snails also alter periphyton abundance and diversity (Swamikannu and Hoagland,

1989). While snails are likely important for nutrient cycling (even contributing up

to 2/3 of all ammonium in a system) this may be due to their high biomass in many

natural systems rather than high individual efficiency (Hall Jr et al., 2003).
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Cladoceran filter feeders, such as Daphnia magna, are important for several func-

tions in aquatic systems. Daphnia spp. increase pH and available oxygen (Wojtal-

Frankiewicz and Frankiewicz, 2011), alter disease risk (e.g. Kagami et al., 2004), and

increase water clarity (Walsh et al., 2016). They are important in nutrient cycling,

specifically increasing N or NH4 in the water column and reducing P (Paterson et al.,

2002; Mackay and Elser, 1998; Wojtal-Frankiewicz and Frankiewicz, 2011). These

impacts alter cyanobacterial competitive advantage (Mackay and Elser, 1998) (but see

Paterson et al., 2002). However, changes in nutrient loads can in turn change the pop-

ulation dynamics of Daphnia magna (Kleiven et al., 1992; Sterner and Hessen, 1994).

These feedback loops suggests that Daphnia spp. response to a nutrient perturbation

is subtle and thus, greater understanding of these feedback loops could lead to a better

overall understanding of system level recovery.

As recovery from perturbation is only indirectly accessible via signature variables,

we look at several different endpoints: sediment load, ammonium concentration, algal

concentrations, filter feeder (Daphnia magna) populations, grazer (Physa sp.) survival

and reproduction, and algal community composition. We examine sediment loads

because they are important to freshwater health as they block light for macrophyte

growth and sequester nutrients. Additionally, increased sediment loads decreases

gastropod and benthic invertebrate abundance and diversity (e.g. Donohue et al.,

2003) which in turn alters sediment accumulation (James et al., 2000).

In this experiment we thus focus on the differential effects of Physa sp. and

Daphnia magna on ecosystem recovery that follows a eutrophication event. We expect

more complete recovery if the species have differential responses to the perturbation.

Additionally, we expect population cycles of Daphnia magna to be more stable with

two species. We acknowledge that a new stable state is also possible (e.g. colonization

by cyanobacteria) in which case, regardless of diversity, the system will not be able to
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rebound after a disturbance (Standish et al., 2014).

3.3 Methods

3.3.1 Experimental Set-Up

Experiments were run in the greenhouse at McMaster University between January

and March 2019. The herbivores we used, Daphnia magna and Physa sp. and the

mixed algae, predominantly Chlorella spp. (Figure B.6, panel A.), were all from lab

maintained populations.

Our experiment consisted of four herbivore treatments: no herbivores, Daphnia

magna only, Physa sp. only, and both. Tanks were either perturbed with single

eutrophication event or were not disturbed. Each treatment had ten replicates, for a

total of forty tanks.

General Set-Up: Tanks were filled with 1 L of water from the lab cultures of

Daphnia magna. Next, the algal mix was added until starting concentrations of 14.5 ±

sd 2.3 chlorophyll-a µg/L were reached. Tanks began with ammonium concentrations

(mg/L) of 3.86 ± 0.564. Each tank with Daphnia magna received twenty individuals

larger than 1 mm. Each tank with Physa sp. received four individuals with an average

size of 4.6mm ± sd 1 mm. Following the introduction of the organisms, tanks were

left undisturbed for three weeks (at a median temperature of 19 °C during the day, no

shade) and monitored. After three weeks, we added 100 mL of 1g/L concentration of

a nutrient mixture (Miracle-Gro r) to tanks selected for the disturbance treatment.

Data Collection: We measured chlorophyll-a (AquaFlor flourimeter), temperature,

and pH daily (both with HACH Pocket Pro) daily as well as NH4 (YSI Pro Plus) twice

a week. Daphnia magna populations were estimated twice a week by counting four 10
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mL samples of tank water from each tank. We kept track of two separate D. magna

size classes: < 1 mm and > 1 mm. We also recorded snail egg masses and juveniles

when they appeared and at the end of the experiment. We measured snail length at

day 19 or 20 and at the end of the experiment, 39 or 40 days. We also collected 5 mL

water samples for algal identification on the same sampling days as snail measurements.

All algal samples were placed in a cooler for five to seven days before being taken to

the lab to be analyzed. From each five mL sample we extracted a ten µl sub-sample,

which was placed on a hematocytometer for counting. Algae were identified using a

Zeiss Primo Star compound microscope. The program Zen was used to capture and

process each algal image at 10x magnification. We took four pictures of each sample.

Algae captured on each photo were manually counted and identified using Manaaki

Whenua Landcare Research algae guide (2014).

3.3.2 Analysis

All analyses were completed in the R statistical programming environment (R Core

Team (2016) version 3.6.1). Data and code are publicly available at:

https://github.com/jwerba14/Disturbance.

All of the following generalized linear mixed models were run using the lme4 package

(Bates et al., 2015) and included a random effect of start date since our experiment

started over the course of three weeks.

For both chlorophyll-a and ammonium models we ran log transformed linear

models with an interaction term between herbivore treatment and disturbance. We

used the emmeans or multcomp package to compare our a priori contrasts (Lenth,

2020; Hothorn et al., 2008). Specifically our interest is in the difference between

disturbed and undisturbed treatments across herbivore treatments. For example, is
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the difference between D. magna disturbed and undisturbed treatments greater than

or less than the difference between the difference between the Physa sp. only disturbed

and undisturbed treatments? We ran all six possible contrasts. Bonferonni adjustment

for multiple contrasts was used to calculate p-values.

For final chlorophyll-a concentrations we used the final four days of the experiment.

The maximum post-disturbance chlorophyll-a data used for analysis was a mean of

values recorded in a three day window starting one day after the disturbance. For

ammonium we ran the same model as for chlorophyll-a but took a single day maximum

and the final day value because of the lower measurement frequency.

We examined the effect of disturbance on final populations of Daphnia magna

using a generalized linear model, with a negative binomial error perturbation. We

used disturbed (y/n) and herbivore treatment as predictors. Maximum populations

were defined as the mean of all four sub-samples. We log transformed organisms’ max

populations and used a weighting factor of 1/variance of the sub-samples used to

measure their abundance for the linear model.

We ran exploratory analyses to find out if the presence or absence of resting eggs,

ephippia, in Daphnia magna at the end of the experiment were affected by disturbance

and grazer presence (binomial generalized linear mixed model).

Physa sp. survival was modeled as the proportion surviving given day and treatment,

using a generalized linear mixed model with a binomial error perturbation and individual

tank as a random effect. The probability of snails laying eggs by the end of the

experiment was also modeled with a binomial generalized linear model with herbivore

and disturbance treatment as fixed effects.

Algal community turnover between treatments and time were explored using a PCoA

with a Bray-Curtis dissimilarity matrix of algal species abundance. Variation explained

by grazer treatment and time were analyzed using a permutational multivariate analysis
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of variance (PERMANOVA). These analyses were done in the Vegan 2.3.3 package

(Oksanen et al., 2016).

3.4 Results

3.4.1 Chlorophyll-a concentrations

After an eutrophication event, algal spikes are of concern. Thus, the maximum

levels and long term levels of chlorophyll-a are important endpoints to evaluate. We

directly test how herbivore treatments (none, Physa sp. alone, Daphnia magna alone,

or Physa sp. and Daphnia magna in combination) affect the difference between

disturbed systems and undisturbed systems. In particular, does a more diverse

herbivore community treatment reduce the difference between the undisturbed and

disturbed treatments? We find, for both final chlorophyll-a concentration and maximum

chlorophyll-a concentration, that in the presence of Daphnia magna either alone or in

combination with Physa sp., the difference between the undisturbed and disturbed

treatments are smaller than when no herbivore is present (Figures 3.1 and 3.2, for

model estimates Table B.1, for raw data Figures B.1 and B.2). These results suggest

that a filter feeder presence is critical for limiting algal blooms after an eutrophication

event.
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Figure 3.1: Log10 fold change in final chlorophyll-a between undis-
turbed and disturbed treatments by herbivore combination. Distance
from 0 (the dashed vertical line) indicates the magnitude to the change.
This scale is maintained for Figures 3.1 through 3.5. Both treatments
containing Daphnia magna reduced the proportional change between
disturbed and undisturbed treatments when compared to Physa alone
or to no herbivore. Points are means and error bars are 95% CI.
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Figure 3.2: Log10 fold change in maximum chlorophyll-a between
undisturbed and disturbed treatments by herbivore combination.
Both treatments containing Daphnia magna reduced the proportional
change between disturbed and undisturbed treatments when com-
pared to Physa alone or to no herbivore. Points are means and error
bars are 95% CI.

3.4.2 Ammonium concentrations

We are unable to detect any effect in the size of the difference between disturbed and

undisturbed treatments for final (Figure 3.3) or maximum (Figure 3.4) ammonium

concentrations across herbivore treatments. (Model estimates can be found in Table

B.1 and raw data can be found in Figures B.3 and B.4).
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Figure 3.3: Log10 fold change in final ammonium concentrations
between undisturbed and disturbed treatments. None of our herbivore
treatments were statistically different from the others. Points are
means and error bars are 95% CI.

Sediment

We find that Daphnia magna alone increases the difference in sediment between

disturbed and undisturbed treatments when compared to either no herbivore or only

Physa are present (Figure 3.5). But D. magna appear to lower the raw sediment

substantially in disturbed treatments ( Figure B.5, Table B.1 for model estimates).
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Figure 3.4: Log10 fold change in maximum ammonium concentrations
between undisturbed and disturbed treatments. None of our herbivore
treatments were statistically different from the others. Points are
means and error bars are 95% CI.
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Figure 3.5: Log10 fold change in sediment between undisturbed and
disturbed treatments. Daphnia magna only treatments had a larger
change between disturbed and undistured treatments than either no
herbivore or compared to Physa sp only treatments. Physa sp. only
treatments had a smaller change in sediment than the treatment with
both herbivores. Points are means and error bars are 95% CI.
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Daphnia magna reproduction and population

Ephippia production represents a different mode of reproduction for Daphnia magna.

We detected a clear change in reproductive strategy towards ephippia production in

disturbed treatments (Figure 3.6), likely at least partially due to the higher maximum

and final populations of D. magna in disturbed treatments (Figure 3.7).
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Figure 3.6: Daphnia magna were more likely to produce ephippia by
the end of the experiment (three weeks post disturbance) in disturbed
treatments. Points are means and error bars are 95% CI.
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Figure 3.7: Final (A.) and Maximum (B.) Daphnia magna populations
were higher in disturbed treatments. Final populations were also
higher when Daphnia magna was the only herbivore present. Points
are means and error bars are 95% CI.

And while we did not observe a downstream effect on ephippia production we do

detect a reduction in the final populations of Daphnia populations when Physa are

present (Figure 3.7, panel A.). We cannot, however detect a difference in the change

between undisturbed and disturbed treatments in either final (Figure 3.8) or maximum

(Figure 3.9) D. magna populations when Physa are or are not present. All model
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estimates can be found in Table B.2.
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Figure 3.8: Proportional change in final Daphnia magna populations
between undisturbed and disturbed treatments. Distance from 1
(dashed lined) represents the magnitude of the difference between
treatments. Points are means and error bars are 95% CI.
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Figure 3.9: Proportional change in maximum Daphnia magna popu-
lation between undisturbed and disturbed treatments. Distance from
1 (dashed lined) represents the magnitude of the difference between
treatments. Points are means and error bars are 95% CI.
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Physa sp.

We found no significant differences in final snail survival among treatments, though

Physa sp. in tanks without D. magna died more quickly than in tanks with D. magna

(Figure 3.10).
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Figure 3.10: Physa sp. survival over the course of the experiment.
Physa sp. alone (blue and purple lines) died more quickly than when
Daphnia magna were also present (red and green lines). We don’t
detect a difference in survival between disturbed treatments (solid
lines) and undisturbed treatments (dashed lines). Points are means
and error bars and envelope are 95% CI.

Physa sp. egg production also increased when Daphnia were present (Figure 3.11).

72



PhD Thesis — Jo A. Werba McMaster University — Biology

●

●

●

●

0.00

0.25

0.50

0.75

1.00

Daphnia
and

Physa Not
Disturbed

Daphnia
and Physa
Disturbed

Physa Not
Disturbed

Physa
Disturbed

 

P
ro

ba
bl

ity
 E

gg
m

as
s

P
re

se
nt

Figure 3.11: Physa sp. were more likely to lay eggs when Daphnia
magna were present. Points are means and error bars are 95% CI.

Additionally, when Daphnia magna are present there is a larger difference in egg

production between the disturbed and undisturbed treatments (Figure 3.12). All

model estimates can by found in Table B.3.
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Figure 3.12: The difference between disturbed and undisturbed treat-
ments in the likelihood of snails laying eggs increased when Daphnia
magna were present. Points are means and error bars are 95% CI.
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Algal communities

At the beginning of the experiment algal communities were indistinguishable between

treatments (Figure 3.13, panel A). Directly before the disturbance there was some

separation in algal community along the primary PCoA axis between treatments with

or without Daphnia magna (Figure 3.13, panel B). Three weeks post-disturbance the

treatments were clearly delineated into two groups, those with Daphnia magna and

those without. There is minor separation along the secondary PCoA axis between

the disturbed and undisturbed treatments when Daphnia magna is absent (Figure

3.13, panel C). PERMANOVA results suggest that herbivore treatment explained the

most marginal variance in the algal community (R2 = 0.1, p < 0.05), followed by time

(which was modelled as a continuous variable) (R2 = 0.06, p < 0.05). We are unable

to distinguish between disturbance treatments, and the majority of variance in the

community structure was not explained by any of our fixed effects (Residual Variance

= 0.8).
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Figure 3.13: Points represent the centroid of the algal communities.
Error bars show standard deviation. Panels represent different time
points: A) starting structure, B) Mid-point, and C) Final day. Shapes
indicate disturbance treatment: circles show no disturbance, triangles
show disturbed treatments. Colors represent herbivore combination.
Axis are PCoA 1 (x-axis) and PCoA 2 (y-axis).

Only three species made up the majority of the algal community at the start of the

experiment (Figure B.6 panel A.). Shortly before disturbance one species was replaced

by another but still the communities were made primarily of three species (Figure B.6

panel B.). Three weeks post-disturbance the disturbed treatments were slightly more

diverse, with up to five species with > 5 percent of abundance.
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3.5 Discussion

By definition a more resilient system will return to the pre-disturbed state more fully

than a less resilient system. Across most ecosystem level metrics, presence of Daphnia

magna was the only driver of increased resilience, although this was not universal; in

some metrics (snail egg production, sediment) our resilience measure was worsened by

the presence of Daphnia magna (Figures 3.5 and 3.12).

Resilience is expected to be higher in more diverse systems. However, we find in

contrast to our hypothesis, that having two different herbivore functional groups did

not detectably reduce the effects of eutrophication. While the herbivore treatments,

with or without disturbance, had clear and often strong effects on chlorophyll-a, the

effect of ammonium and sediment levels (Figures B.1, B.2, B.3, B.4, and B.5) on

resilience was less clear.

Sediment loads are a problem following eutrophication events. Snails are gener-

ally understood to reduce suspended sediment particle concentrations. As sediment

reduction allows light to penetrate further in the water column and helps support

macrophytes instead of algae, this is one of the primary top-level ecosystem functions

snails perform. The fact that we could not detect the effect of Physa sp. on sediment

loads is likely due to the high snail mortality (Figure 3.10) and low birth rates across

treatments. Indeed, it was not until the end of our experiment that we began to

see newborn snails and egg clutches. D. magna presence decreased the resilience of

sediment as shown by the increased difference between perturbed and recovered system

(Figure 3.5), but the disturbed system when D. magna were present had reduced

sediment compared to undisturbed systems (Figure B.5). This suggests that having a

filter feeder may be critical to reducing the downstream effects of increased sediment.

This reduction could be due to decreased carbonate precipitation through controlling
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algal biomass and decreasing both N and P sedimentation overall (Sarnelle, 1993) but

why this occurs more in a disturbed system is unclear, possibly tied to the increased

population of D. magna in disturbed systems (Figure 3.7).

Daphnia magna are understood to be important in nutrient cycling particularly by

increasing dissolved NH4 (e.g. Paterson et al., 2002). Additionally, it seems that snail

presence increased maximum NH4 concentration in the disturbed treatments (Figure

B.4), which is surprising because our snail populations were small and the effect of snails

on nutrients is expected to be at least partially based on their large populations (Hall Jr

et al., 2003). Evidence suggests that snails can raise NO2 (Mulholland et al., 1991)

and can be an important source of ammonium (Griffiths and Hill, 2014). Additionally,

snails can alter nitrogen availability via selective grazing (Arango et al., 2009; Liess and

Kahlert, 2009), though we do not see evidence of this in the treatments (Figure B.6).

We do see evidence of Daphnia magna altering community composition (Figure 3.13),

which could indirectly alter NH4 concentration. For this ecosystem-level response,

presence of more herbivore functional groups appears to worsen, at least initially,

the effect of eutrophication. The longer term consequences of herbivores are unclear

and are likely to have complex interactions with primary producers. Additionally, no

combination of herbivore species detectably altered the difference between disturbed

and undisturbed treatments (Figures 3.3 and 3.4).

Daphnia magna produce ephippia when daylight is less than 12 hrs, at low food,

when populations exceed 0.4 individuals per mL (Carvalho and Hughes, 1983), and

when stressed by pollution (Ringot et al., 2018). We observe this shift in reproductive

behavior far more frequently in disturbed treatments than in undisturbed treatments

(Figure 3.6). We can rule out light as the cause because tanks shared a uniformly

illuminated space. However, D. magna densities were much higher in perturbed

treatments (Figures 3.7) so this likely contributed to switching reproductive tactics,
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though Booksmythe et al. (2018) did not find increased density leading clearly to

increased ephippia production. Daphnia magna can switch to ephippia production

in new trophic states because the ephippia are resilient to changes in trophic state

(Isanta Navarro et al., 2019). This change in reproductive strategy could signal a

transition to a different state of the system. Alternative stable states often result from

eutrophication (Carpenter et al., 1999).

Physa sp. were more likely to lay eggmasses within the 6 weeks of our experiment

if D. magna were present (Figure 3.11). Lymnea sp. has also been shown to

increase fecundity in the presence of congeneric species, though other snails, though

the mechanism remains unclear (Hershey, 1990). The combination of reduced D.

magna population when Physa sp. is present but increased Physa sp. eggs (and likely

future increased population) when D. magna are present suggests a possible feedback

loop: increase in D. magna −→ increase in Physa sp. reproduction (eggs) −→ eventually

increase in Physa sp. and, likely, some impact of higherPhysa sp. populations on

D. magna. In nature, this coincides with other factors contributing to D. magna

reduction over the course of summer. We mention this to highlight that, although,

some experimental results are informative, long-term consequences of interactions

among the components, even in the simple experimental system we used, may be

confounded by processes unfolding at different time scales. This applies to dynamics

observed under lab conditions, and even more to natural situations.

The differences in the algal community were mostly driven by herbivore treatments

rather than perturbation. This first effect is not surprising as herbivores influence algal

communities through direct and indirect routes (Abrantes et al., 2006; Sterner, 1989).

However, an undetectable signature of perturbation is a surprise because algal species

are known to perform differentially under different nutrient regimes (e.g. Tilman,

1977). Herbivores alter algal communities directly by grazing on edible, high quality
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algae increasing the mortality rate of some species and increasing the survival of other

inedible algae (Agrawal, 1998; Lampert et al., 1986; Sterner et al., 1993). Indirect

affects on algal community occur due to shifting nutrient ratios (Abrantes et al., 2006;

Pinowska, 2002; Sommer, 1988; Sterner, 1989) which can create advantageous and

disadvantageous environments for different species of algae (Schlesinger et al., 1981).

We do indeed observe Daphnia magna shifting the algal community. However, we

expected snails to modify algal communities as well (Mulholland et al., 1994; Arango

et al., 2009; Liess and Kahlert, 2009) but we don’t observe this, likely due to the low

total Physa sp.) populations. Scendesmus spp. made up close to a quarter of the

algal community over time, but is greatly reduced in D. magna only treatments by

the end of the experiment (Figure B.6). Disturbed treatments had higher percentage

of some species that were not well represented in non-disturbed treatments(Figure

B.6, panel C.). In sum, it is possible that the combined and opposing effects of D.

magna grazing and nutrient augmentation introduced noise that masked nutrient

treatment. We thus reiterate that herbivore presence is far more important to algal

community structure than a single eutrophication event. This observation has some

management implications for fish stocking: a stocking decision that cascades down to

reduce grazer numbers would have a potentially multiplicative effect on magnitude of

an eutrophication event.

3.6 Conclusions

Overall, we have some evidence that multiple functional groups have combined, and

sometimes, synergistic effects on the system but we do not see that translate to

resilience across ecosystem measures. Additionally, we are unable to say much about

long-term complex interactions such as long-term ammonium availability and shifts in
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algal communities and edibility. Our study further suggests that resilience may not be

predictable by a simplified approach. Instead, it involves complex interactions that

require knowledge of adaptive species responses and indirect effects.

3.7 Acknowledgments

We would like to thank Josephine Huynh and Adit Chokshi for help with data collection,

Dr. Susan Dudley for access to McMaster Greenhouse and Dr. Ben Bolker for help

with data analysis. JK is supported by NSERC 10531314.

80



PhD Thesis — Jo A. Werba McMaster University — Biology

Bibliography
2014. Manaaki whenua-landcare research: Faiiar: Freshwater algae information, identi-

fication, and action resource. http://www.landcareresearch.co.nz/resources/
identification/algae/identification-guide. Accessed: 2019-09-01.

Abrantes, N., S. Antunes, M. Pereira, and F. Gonçalves 2006. Seasonal succession of
cladocerans and phytoplankton and their interactions in a shallow eutrophic lake
(lake vela, portugal). Acta Oecologica 29 (1), 54–64.

Agrawal, A. A. 1998. Algal defense, grazers, and their interactions in aquatic trophic
cascades. Acta Oecologica 19 (4), 331–337.

Allan, E., W. Weisser, a. Weigelt, C. Roscher, M. Fischer, and H. Hillebrand 2011.
More diverse plant communities have higher functioning over time due to turnover
in complementary dominant species. Proceedings of the National Academy of
Sciences 108 (41), 17034–17039.

Arango, C. P., L. A. Riley, J. L. Tank, and R. O. Hall 2009. Herbivory by an invasive
snail increases nitrogen fixation in a nitrogen-limited stream. Canadian Journal of
Fisheries and Aquatic Sciences 66 (8), 1309–1317.

Bates, D., M. Mächler, B. Bolker, and S. Walker 2015. Fitting linear mixed-effects
models using lme4. Journal of Statistical Software 67 (1), 1–48.

Booksmythe, I., N. Gerber, D. Ebert, and H. Kokko 2018. Daphnia females adjust sex
allocation in response to current sex ratio and density. Ecology Letters 21, 629–637.

Brady, J. K. and A. M. Turner 2010. Species-specific effects of gastropods on leaf
litter processing in pond mesocosms. Hydrobiologia 651 (1), 93–100.

Brede, N., C. Sandrock, D. Straile, P. Spaak, T. Jankowski, B. Streit, and K. Schwenk
2009. The impact of human-made ecological changes on the genetic architecture of
Daphnia species. Proceedings of the National Academy of Sciences of the United
States of America 106 (12), 4758–4763.

Carpenter, S., D. Ludwig, and W. Brock 1999. Management of Eutrophication for
Lakes Subject To Potentially Irreversible Change. Ecological Applications 9 (3),
751–771.

Carvalho, G. R. and R. N. Hughes 1983. The effect of food availability, female
culture-density and photoperiod on ephippia production in Daphnia magna Straus
(Crustacea: Cladocera). Freshwater Biology 13 (1), 37–46.

81

http://www.landcareresearch.co.nz/resources/identification/algae/identification-guide
http://www.landcareresearch.co.nz/resources/identification/algae/identification-guide


PhD Thesis — Jo A. Werba McMaster University — Biology

Donohue, I., E. Verheyen, and K. Irvine 2003. In situ experiments on the effects of
increased sediment loads on littoral rocky shore communities in lake tanganyika,
east africa. Freshwater Biology 48 (9), 1603–1616.

Elmqvist, T., C. Folke, M. Nyström, G. Peterson, J. Bengtsson, B. Walker, and
J. Norberg 2003. Response diversity, ecosystem change, and resilience. Frontiers in
Ecology and the Environment 1 (9), 488–494.

Gilioli, G., G. Schrader, N. Carlsson, E. van Donk, C. H. van Leeuwen, P. R. Martín,
S. Pasquali, M. Vilà, and S. Vos 2017. Environmental risk assessment for invasive
alien species: A case study of apple snails affecting ecosystem services in Europe.
Environmental Impact Assessment Review 65, 1–11.

Griffiths, N. A. and W. R. Hill 2014. Temporal Variation in the Importance of a
Dominant Consumer to Stream Nutrient Cycling. Ecosystems 17 (7), 1169–1185.

Guelzow, N., F. Muijsers, R. Ptacnik, and H. Hillebrand 2017. Functional and struc-
tural stability are linked in phytoplankton metacommunities of different connectivity.
Ecography 40 (6), 719–732.

Hall Jr, R. O., J. L. Tank, and M. F. Dybdahl 2003. Exotic snails dominate nitrogen
and carbon cycling in a highly productive stream. Frontiers in Ecology and the
Environment 1 (8), 407–411.

Hébert, M.-P., B. E. Beisner, and R. Maranger 2016. Linking zooplankton communities
to ecosystem functioning: toward an effect-trait framework. Journal of Plankton
Research 00, 1–10.

Hershey, A. E. 1990. Snail populations in arctic lakes: competition mediated by
predation? Oecologia 82 (1), 26–32.

Hothorn, T., F. Bretz, and P. Westfall 2008. Simultaneous inference in general
parametric models. Biometrical Journal 50 (3), 346–363.

Hulot, F. D., G. Lacroix, and M. Loreau 2014. Differential responses of size-based
functional groups to bottom–up and top–down perturbations in pelagic food webs:
a meta-analysis. Oikos 123 (11), 1291–1300.

Isanta Navarro, J., C. Kowarik, M. Wessels, D. Straile, and D. Martin-Creuzburg 2019.
Resilience to changes in lake trophic state: Nutrient allocation into daphnia resting
eggs. Ecology and Evolution 9 (22), 12813–12825.

James, M., I. Hawes, and M. Weatherhead 2000. Removal of settled sediments and
periphyton from macrophytes by grazing invertebrates in the littoral zone of a large
oligotrophic lake. Freshwater Biology 44 (2), 311–326.

82



PhD Thesis — Jo A. Werba McMaster University — Biology

Kagami, M., E. Van Donk, A. De Bruin, M. Rijkeboer, and B. W. Ibelings 2004. Daph-
nia can protect diatoms from fungal parasitism. Limnology and Oceanography 49 (3),
680–685.

Kalyoncu, H., M. Yıldırım, et al. 2009. Species composition of mollusca in the
aksu river system (turkey) in relation to water quality. Fresenius Environmental
Bulletin 18 (8), 1446–1451.

Karp, D. S., G. Ziv, J. Zook, P. R. Ehrlich, and G. C. Daily 2011. Resilience and
stability in bird guilds across tropical countryside. Proceedings of the National
Academy of Sciences 108 (52), 21134–21139.

Kleiven, O. T., P. Larsson, and A. Hobæk 1992. Sexual reproduction in daphnia
magna requires three stimuli. Oikos, 197–206.

Lampert, W., W. Fleckner, H. Rai, and B. E. Taylor 1986. Phytoplankton control by
grazing zooplankton: A study on the spring clear-water phase 1. Limnology and
Oceanography 31 (3), 478–490.

Lenth, R. 2020. emmeans: Estimated Marginal Means, aka Least-Squares Means. R
package version 1.4.4.

Liess, A. and M. Kahlert 2009. Gastropod grazers affect periphyton nutrient sto-
ichiometry by changing benthic algal taxonomy and through differential nutrient
uptake. Journal of the North American Benthological Society 28 (2), 283–293.

Mackay, N. A. and J. J. Elser 1998. Nutrient recycling by Daphnia reduces N2
fixation by cyanobacteria. Limnology and Oceanography 43 (2), 347–354.

Mulholland, P. J., A. D. Steinman, E. R. Marzolf, D. R. Hart, D. L. DeAngelis,
and E. R. Marzolf D R Hart 1994. International Association for Ecology Effect of
Periphyton Biomass on Hydraulic Characteristics and Nutrient Cycling in Effect
of periphyton biomass on hydraulic characteristics and nutrient cycling in streams.
Oecologia 98 (1), 40–47.

Mulholland, P. J., A. D. Steinman, A. V. Palumbo, and J. W. Elwood 1991. Role of
nutrient cycling and herbivory in regulating periphyton communities in laboratory
streams. Ecology 72 (3), 966–982.

Oksanen, J., F. G. Blanchet, M. Friendly, R. Kindt, P. Legendre, D. McGlinn, P. R.
Minchin, R. B. O’Hara, G. L. Simpson, P. Solymos, M. H. H. Stevens, E. Szoecs,
and H. Wagner 2016. vegan: Community Ecology Package. R package version 2.4-1.

Oliver, T. H., M. S. Heard, N. J. Isaac, D. B. Roy, D. Procter, F. Eigenbrod,
R. Freckleton, A. Hector, C. D. L. Orme, O. L. Petchey, et al. 2015. Biodiversity
and resilience of ecosystem functions. Trends in ecology & evolution 30 (11), 673–684.

83



PhD Thesis — Jo A. Werba McMaster University — Biology

Paterson, M., D. Findlay, A. Salki, L. Hendzel, and R. Hesslein 2002. The effects
of daphnia on nutrient stoichiometry and filamentous cyanobacteria: a mesocosm
experiment in a eutrophic lake. Freshwater biology 47 (7), 1217–1233.

Pinowska, A. 2002. Effects of snail grazing and nutrient release on growth of the
macrophytes Ceratophyllum demersum and Elodea canadensis and the filamentous
green alga Cladophora sp. Hydrobiologia 479 (1-3), 83–94.

R Core Team 2016. R: a Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing.

Ringot, G., J. Gasparini, M. Wagner, M. Cheikh Albassatneh, and A. Frantz 2018.
More and smaller resting eggs along a gradient for pollution by metals: dispersal,
dormancy and detoxification strategies in Daphnia? Biological Journal of the
Linnean Society, 11–20.

Sarnelle, O. 1993. Herbivore effects on phytoplankton succession in a eutrophic lake.
Ecological Monographs 63 (2), 129–149.

Saunders, D. L., J. J. Meeuwig, and A. C. Vincent 2002. Freshwater protected areas:
Strategies for conservation. Conservation Biology 16 (1), 30–41.

Schlesinger, D., L. Molot, and B. Shuter 1981. Specific growth rates of freshwater
algae in relation to cell size and light intensity. Canadian journal of fisheries and
aquatic sciences 38 (9), 1052–1058.

Smith, V. H. 1998. Cultural eutrophication of inland, estuarine, and coastal waters.
In Successes, limitations, and frontiers in ecosystem science, pp. 7–49. Springer.

Sommer, U. 1988. Phytoplankton succession in microcosm experiments under simulta-
neous grazing pressure and resource limitation. Limnology and Oceanography 33 (5),
1037–1054.

Standish, R. J., R. J. Hobbs, M. M. Mayfield, B. T. Bestelmeyer, K. N. Suding, L. L.
Battaglia, V. Eviner, C. V. Hawkes, V. M. Temperton, V. A. Cramer, et al. 2014.
Resilience in ecology: Abstraction, distraction, or where the action is? Biological
Conservation 177, 43–51.

Sterner, R. W. 1989. Resource competition during seasonal succession toward
dominance by cyanobacteria. Ecology 70 (1), 229–245.

Sterner, R. W., D. D. Hagemeier, W. L. Smith, and R. F. Smith 1993. Phytoplankton
nutrient limitation and food quality for daphnia. Limnology and Oceanography 38 (4),
857–871.

Sterner, R. W. and D. O. Hessen 1994. Algal nutrient limitation and the nutrition of
aquatic herbivores. Annual review of ecology and systematics 25 (1), 1–29.

84



PhD Thesis — Jo A. Werba McMaster University — Biology

Swamikannu, X. and K. D. Hoagland 1989. Effects of snail grazing on the diversity
and structure of a periphyton community in a eutrophic pond. Canadian Journal
of Fisheries and Aquatic Sciences 46 (10), 1698–1704.

Tilman, D. 1977. Resource competition between plankton algae: an experimental and
theoretical approach. Ecology 58 (2), 338–348.

Tilman, D. and J. A. Downing 1994. Biodiversity and stability in grasslands.
Nature 367 (6461), 363–365.

Walsh, J. R., S. R. Carpenter, and M. J. Van Der Zanden 2016. Invasive species
triggers a massive loss of ecosystem services through a trophic cascade. Proceedings
of the National Academy of Sciences of the United States of America 113 (15),
4081–4085.

Wojtal-Frankiewicz, A. and P. Frankiewicz 2011. The impact of pelagic (Daphnia
longispina) and benthic (Dreissena polymorpha) filter feeders on chlorophyll and
nutrient concentration. Limnologica 41 (3), 191–200.

Yachi, S. and M. Loreau 1999. Biodiversity and ecosystem productivity in a fluctuating
environment: the insurance hypothesis. Proceedings of the National Academy of
Sciences 96 (4), 1463–1468.

85



PhD Thesis — Jo A. Werba McMaster University — Biology

Chapter 4: The challenge of life history traits - a
small cladoceran, Ceriodaphnia rigaudi

4.1 Abstract

Using accurate and precise species-specific parameters in mechanistic models can lead

to better predictions of population dynamics and ecosystem function (e.g. nutrient

cycling) across a range of environmental conditions. Zooplankton are important in

the aquatic food web and for nutrient cycling but are highly diverse, but there is only

limited information on specific species. Knowledge of species-specific attributes is

patchy. In particular tropical species are underrepresented in this regard. Here we

gather all the known information about a wide-spread tropical zooplankton member,

Ceriodaphnia rigaudi, and add new information from lab and field experiments. We

determine feeding rate across a range of food concentrations and food-dependent

population growth rate of C. rigaudi. Additionally, we use 16 years of occurrence data

from rock pools in Jamaica to explore environmental characteristics of the habitat

in which C. rigaudi live. We compare our data to world wide records of the species

attributes and create a reference map of its occurrence.
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4.2 Introduction

Functional traits are morphological or physiological aspects of a species that impact

fitness (Violle et al., 2007); often functional traits are also traits of the organisms that

directly interact with the environment (sensu effect traits Hébert et al., 2017; Lavorel

and Garnier, 2002). Functional traits are important for two reasons: 1) making model

predictions involving a specific species of interest (e.g. van der Meer, 2006); 2) enabling

classifications of species into functional groups for classic trait-based models (e.g. Vogt

et al., 2013). Trait-based models are particularly important in aquatic systems due to

high species richness (e.g. phytoplankton) and the desire for species-specific models

(e.g. fisheries). Aquatic systems are well suited to trait-based methods due to a

long history of modelling (Robson, 2014) and combining of high species richness into

subgroups (e.g. phytoplankton: Litchman et al. 2010; zooplankton: Litchman et al.

2013). Yet, despite advances in data amalgamation for aquatic species (e.g. Hébert

et al., 2016; Robson et al., 2018), more information is always needed for additional

species to expand the usefulness of trait-based methods.

Zooplankton represent a large and important part of aquatic systems and yet

species-specific information is limited. Zooplankton classifications are usually based

on size and feeding strategy. However, size may not be a good predictor of traits of

interest (e.g. grazing) outside of temperate regions (Pinheiro-Silva et al., 2020) which

may be a larger problem than currently realized because tropical species tend to be

underrepresented (e.g. Hébert et al., 2016; Rizo et al., 2017). One challenge is the

limited scope of studies on life history that makes it impossible to tell if species traits

are consistent throughout their range. With more resolved life history information

more informed and nuanced decisions for trait based classifications should be easier.

Here we provide additional information for a small, tropical cladoceran, Ceriodaphnia
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rigaudi.

Cladocerans are a crucial link between lower trophic levels (microbial) and upper

trophic levels (fish) of the freshwater food web (Burns and Schallenberg, 2001). They

alter algal production and community structure (Sommer et al., 2001), and impact

nutrient cycling (e.g. Migal, 2011). However, most cladoceran species have little life

history information; a meta-analysis by Hébert et al. (2016) found that the genus

Daphnia comprises half of all known cladoceran information. Despite a known 620

unique cladoceran species (Karuthapandi and Rao, 2016), a meta-analysis found

species trait information on less than 70 (Hébert et al., 2016) which is concerning for

the ubiquitous use of species traits in aquatic modelling. Gathering more information

on smaller cladocerans will help identify when size is or is not a good proxy for traits

of interest.

Ceriodaphnia rigaudi are a small cladoceran commonly found throughout tropical

freshwater ponds. Originally thought to be distinguished from Ceriodaphnia cornuta by

the absence of head, shoulder and tail spikes, this classification turns out to potentially

be the result of differential predation and not a true physiological characteristic

(Rietzler et al., 2008). However, recent genetic tests do in fact place C. rigaudi as a

separate species from C. cornuta (Sharma and Kotov, 2013). C. rigaudi have been

considered for use as a water quality indicator species and as such have been used in

some toxicology experiments (e.g. Raymundo et al., 2019; Mohammed, 2007), and

may be important community indicators (Márquez et al., 2016). Because it is also

widespread and may play a dominant role in some systems, understanding its traits and

distribution could be important for nutrient cycling and food web models in specific

locations. However, little is known about their life history traits. Here we amalgamate

all data on the life history and geographical spread of the species and add information

from our own lab experiments and field observations. Life-history information can
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help inform future trait-based studies,parameterize mechanistic models, or determine

if this species is a good indicator species for tropical systems.

4.3 Methods

All analyses were completed in R (R Core Team, 2019). Data and code are available at

https://github.com/jwerba14/Species-Traits/tree/master/Ceriodaphnia.

4.3.1 Lab Conditions

Ceriodaphnia rigaudi has been maintained in our lab continuously for several years.

All individuals used in our experiments came from our lab population. The colony

originated from Jamaican rock pools. Water temperature of the stock cultures varied

from 17-22°C.

4.3.2 Feeding rates

To determine Ceriodaphnia rigaudi uptake rate of green algae (predominantly, Haema-

tococcus sp.) we used five algal concentration treatments (mean ± sd: 0.778 ± 0.0985µg

- Chl-a/L, 3.11 ± 0.321µg - Chl-a/L, 9.43 ± 1.01 µg - Chl-a/L, 16.7 ± 1.24 µg - Chl-

a/L, 20.9 ± 1.27 µg - Chl-a/L) with five replicates each. Each replicate had an average

of 75 individuals. We measured the chlorophyll-a after six hours. We did not expect

discernible growth in the Haematococcus sp. population over six hours, but we did

include three replicates without any C. rigaudi for each chlorophyll-a treatment to

account for any growth or death of algae unrelated to grazing to be used as a reference.

We subtracted the average change of the controls, by treatment, from the experimental

replicates. We ran a linear model across food treatment to determine average uptake
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rate.

4.3.3 Population growth

For population growth we began colonies in 1.1L of water with 30 individuals of

Ceriodaphnia rigaudi each at four food treatments (mean ± sd: 2.93 ± 0.905µg -

Chl-a/L, 9.39 ± 22.5µg - Chl-a/L, 22.3 ± 6.32µg - Chl-a/L, 65.5 ± 10.1 µg - Chl-a/L)

with six replicates each. Every day either algae or distilled water was added to bring

the tanks back to the food treatment level. C. rigaudi were counted weekly in eight

fifty-mL sub-samples. The experiment lasted eight weeks. We fit a logistic growth

curve (4.1) to each replicate separately using the nlmrt package (Nash, 2016) and

then ran a linear regression of each parameter (r,k) against the food treatment.

Nt = k

1 + k−N0
N0

e(−rt) (4.1)

where k is the population asymptote, r is the growth rate and N0 is initial population

size

4.3.4 Literature search

A Google Scholar search on April 23, 2020 for "Ceriodaphnia rigaudi" resulted in 523

hits. We downloaded those papers that had survey data or had life history information

for a total of 196 papers. Of those we found 98 with either geographical information

(96) or life history information (2 papers). After confirming geographical coordinates

we accepted 137 records as sufficiently reliable.
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4.3.5 Distribution

We mapped C. riguadi with the maps package (code by Richard A. Becker et al., 2018).

Our map includes 138 locations (one is our own data). Whenever possible we mapped

the exact sampling locations (considered exact if the coordinates were reported in the

manuscript or we found the body of water mentioned). We did not consider any river

an exact location (unless coordinates were given). All coordinates are the closest we

could establish based on the location description found in the paper.

4.3.6 Jamaican data and Habitat

Rock pools are located on the west coast of Discovery Bay, Jamaica. 50 out of over

200 pools were sampled annually from 1989-2006, (except 2004). We also obtained

salinity and oxygen concentrations as well as pH and temperature from each pool. To

determine which if any environmental factors were associated with the presence or

absence, or level of abundance of C. rigaudi we ran a hurdle model with a negative

binomial error distribution in glmmTMB (Brooks et al., 2017).

4.4 Results

Feeding rate: Individual C. rigaudi took up marginally more chlorophyll-a per

hour as chlorophyll-a availability increased (Estimate:7.42e-10 µg chl-a per hour, p =

0.009, Figure 4.1).
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Figure 4.1: Feeding rate of each individual per hour
across Chl-a concentrations

Growth rate: We were unable to estimate a non-zero slope across feeding treatments

for either r or k (p > 0.05). Food treatment did not explain much of the variance in

either parameter (R2 < 0.1). The range of r and k estimates for each treatment was

very variable by replicate (Figure 4.2).
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Figure 4.2: Estimates for r and k for C. rigaudi populations
at different constant food treatments. r and k estimates are
on the log scale

Environmental correlates: We find that as pH, oxygen and salinity increase, the

probability of C. riguadi being present declines (p < 0.05, Figure 4.3). Decreases in

pH and salinity increase the abundance of C.riguadi (p < 0.05, Figure 4.3).
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Figure 4.3: Environmental factors contributing to C. rigaudi presence
in Jamaican rock pools

Map of species distribution: We were able to find 138 records of C. rigaudi in

survey data. We see clusters in southern Brazil. Otherwise records spread throughout

Africa, south Central Asia and parts of central America (Figure 4.4). While C. rigaudi

is generally thought of as a tropical species we found records outside the tropics or

subtropics, in the United States and southern Europe.
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Figure 4.4: All of the locations where we found reported sightings
of C. rigaudi. Blue dots indicate exact sampling locations, red dots
indicate general location

4.5 Discussion

We find that feeding rate increases very little as food concentration increases. As far as

we are aware this is the first study of C. rigaudi feeding rate. Estimating population

growth rate was challenging and our fits gave wide possible ranges for k and r. Due

to the high variation among replicates we could not identify a pattern across food

concentration for either parameter. Interestingly, higher food concentrations did not

give reliably higher populations at the end of eight weeks, suggesting that either our

algal species (Scendesmus sp.) were not favored food or that other factors were limiting

their growth (Figure C.1). Previous studies have shown clutch size, survival and day

to first reproduction to vary with different food types and concentrations (all extracted
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data can be found in our metafile (Burgis, 1973; Mohammed, 2007; Martinez-Jeronimo

and Ventura-Lopez, 2011)). Excretion and uptake rates of nutrients for C. riguadi

would be helpful additional traits to measure.

While we find C. rigaudi throughout the tropic and subtropic regions (Figure 4.4),

some of the records are quite old and may no longer be accurate. For example we

didn’t include a record from Garças Reservoir, Sao Paulo, Brazil (Di Genaro et al.,

2015) because the most recent study did not find any C. rigaudi and it appears to

have disappeared since 1997. However, it is unclear if this was seasonal and the species

will return or if it is in fact extirpated. Many of our records are quite old (e.g. Jones,

1958; Egborge, 1987) or single sightings (e.g. Hart and Boane, 2004) and thus make

any extrapolation about continued presence or changes over time impossible.

Tropical freshwater species are understudied. C. rigaudi is a widespread species

that could be useful as a water quality indicator species, but more information about

the species is critical. Here we provide some of the needed information. It is important

to continue to learn about tropical species for water quality and toxicity because their

responses can be quite different than temperate species (Mohammed, 2007).

Trait-based approaches are powerful tools for understanding community assembly

(Cornwell and Ackerly, 2009), species distributions (McGill et al., 2006), and the

impact of particular species on the environment (Lavorel and Garnier, 2002). However,

trait-based methods require a large database of information about a wide array of

species. Furthermore, our experiments indicate that the estimates of crucial parameters

prerequisite for the quantitative evaluation of C. rigaudi role in aquatic systems are

difficult to obtain even under controlled conditions and considerable time investment.

Superimposed on the possible regional variation, this difficulty limits the range of

predictions that trait-based models involving zooplankton species will be able to make.

At the same time, our observations highlight a need for further research into the
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variation of r and k and conditions explaining such variation.

Recent meta-analyses have made tremendous progress gathering data of zooplank-

ton (Hébert et al., 2016; Robson et al., 2018) traits. These data include sizes, excretion

rates, and nutrient ratios. These types of data can be used for easier parameterization

of aquatic models or as a basis for understanding trait-environment interactions in

zooplankton. Community and ecosystem ecology greatly benefits from these databases

because they allow for more accurate tests of community assembly hypothesis, particu-

larly trait-based approaches (McGill et al., 2006). The only way to build foundational

databases is to have data; therefor we think it is imperative for more, particularly

tropical species, to be used in lab experiments for life history information.

4.6 Acknowledgments

We would like to thank Adit Chokshi and Josephine Huynh for help with data collection.

Research was funded by a Natural Sciences and Engineering Research Council of Canada

Discovery Grant.

97



PhD Thesis — Jo A. Werba McMaster University — Biology

Bibliography
Brooks, M. E., K. Kristensen, K. J. van Benthem, A. Magnusson, C. W. Berg,
A. Nielsen, H. J. Skaug, M. Maechler, and B. M. Bolker 2017. glmmTMB
balances speed and flexibility among packages for zero-inflated generalized linear
mixed modeling. The R Journal 9 (2), 378–400.

Burgis, M. J. 1973. Observations on the cladocera of lake george, uganda. Journal of
Zoology 170 (3), 339–349.

Burns, C. W. and M. Schallenberg 2001. Calanoid copepods versus cladocerans:
consumer effects on protozoa in lakes of different trophic status. Limnology and
Oceanography 46 (6), 1558–1565.

code by Richard A. Becker, O. S., A. R. W. R. version by Ray Brownrigg. Enhance-
ments by Thomas P Minka, and A. Deckmyn. 2018. maps: Draw Geographical
Maps. R package version 3.3.0.

Cornwell, W. K. and D. D. Ackerly 2009. Community assembly and shifts in plant
trait distributions across an environmental gradient in coastal California. Ecological
Monographs 79 (1), 109–126.

Di Genaro, A. C., S. Sendacz, M. d. A. B. Moraes, C. T. J. Mercante, et al. 2015.
Dynamics of cladocera community in a tropical hypereutrophic environment (garças
reservoir, sao paulo, brazil). Journal of Water Resource and Protection 7 (05), 379.

Egborge, A. B. 1987. Salinity and the distribution of Cladocera in Warri River,
Nigeria. Hydrobiologia 145 (1), 159–167.

Hart, R. C. and C. Boane 2004. Limnology of southern African coastal lakes—new
vistas from Mozambique. African Journal of Aquatic Science 29 (2), 145–159.

Hébert, M.-P., B. E. Beisner, and R. Maranger 2017. Linking zooplankton communities
to ecosystem functioning: toward an effect-trait framework. Journal of Plankton
Research 39 (1), 3–12.

Hébert, M.-P., B. E. Beisner, R. Maranger, and G. de Recherche Interuniversitaire
en Limnologie et en environnement aquatique (GRIL) 2016. A meta-analysis of
zooplankton functional traits influencing ecosystem function. Ecology.

Jones, W. H. 1958. Cladocera of Oklahoma. Transactions of the American Micro-
scopical Society 77 (3), 243–257.

Karuthapandi, M. and D. Rao 2016. Cladoceran diversity, distribution and ecological
significance. In Arthropod Diversity and Conservation in the Tropics and Sub-tropics,
pp. 183–196. Springer.

98



PhD Thesis — Jo A. Werba McMaster University — Biology

Lavorel, S. and E. Garnier 2002. Predicting changes in community composition
and ecosystem functioning from plant traits: revisiting the holy grail. Functional
ecology 16 (5), 545–556.

Litchman, E., P. de Tezanos Pinto, C. A. Klausmeier, M. K. Thomas, and
K. Yoshiyama 2010. Linking traits to species diversity and community struc-
ture in phytoplankton. In Fifty years after the “Homage to Santa Rosalia”: Old
and new paradigms on biodiversity in aquatic ecosystems, pp. 15–28. Springer.

Litchman, E., M. D. Ohman, and T. Kiørboe 2013. Trait-based approaches to
zooplankton communities. Journal of plankton research 35 (3), 473–484.

Márquez, J., J. Kolasa, and L. Sciullo 2016. Local versus regional processes and the
control of community structure. Community Ecology 17 (1), 1–7.

Martinez-Jeronimo, F. and C. Ventura-Lopez 2011. Population dynamics of the
tropical cladoceran Ceriodaphnia rigaudi richard, 1894 (crustacea: Anomopoda).
effect of food type and temperature. Journal of environmental biology 32 (4), 513.

McGill, B. J., B. J. Enquist, E. Weiher, and M. Westoby 2006. Rebuilding community
ecology from functional traits. Trends in ecology & evolution 21 (4), 178–185.

Migal, M. G. 2011. The cladoceran trophic status in the nitrogen limited ecosystem
of lake kinneret (israel). Journal of Environmental Biology 32 (4), 455.

Mohammed, A. 2007. Comparative sensitivities of the tropical cladoceran, Ceri-
odaphnia rigaudii and the temperate species Daphnia magna to seven toxicants.
Toxicological & Environmental Chemistry 89 (2), 347–352.

Nash, J. C. 2016. nlmrt: Functions for Nonlinear Least Squares Solutions. R package
version 2016.3.2.

Pinheiro-Silva, L., A. T. Gianuca, M. H. Silveira, and M. M. Petrucio 2020. Grazing
efficiency asymmetry drives zooplankton top-down control on phytoplankton in a
subtropical lake dominated by non-toxic cyanobacteria. Hydrobiologia, 1–14.

R Core Team 2019. R: A Language and Environment for Statistical Computing.
Vienna, Austria: R Foundation for Statistical Computing.

Raymundo, L. B., O. Rocha, R. A. Moreira, M. Miguel, and M. A. Daam 2019.
Sensitivity of tropical cladocerans to chlorpyrifos and other insecticides as compared
to their temperate counterparts. Chemosphere 220, 937–942.

Rietzler, A., O. Rocha, K. Roche, and M. Ribeiro 2008. Laboratory demonstration of
morphological alterations in Ceriodaphnia cornuta sars (1885) fa rigaudi induced
by Chaoborus brasiliensis Theobald (1901). Brazilian Journal of Biology 68 (2),
453–454.

99



PhD Thesis — Jo A. Werba McMaster University — Biology

Rizo, E. Z. C., Y. Gu, R. D. S. Papa, H. J. Dumont, and B.-P. Han 2017. Identifying
functional groups and ecological roles of tropical and subtropical freshwater Cladocera
in Asia. Hydrobiologia 799 (1), 83–99.

Robson, B. J. 2014. When do aquatic systems models provide useful predictions, what
is changing, and what is next? Environmental Modelling and Software 61, 287–296.

Robson, B. J., G. B. Arhonditsis, M. E. Baird, J. Brebion, K. F. Edwards, L. Geoffroy,
M. P. Hébert, V. van Dongen-Vogels, E. M. Jones, C. Kruk, M. Mongin, Y. Shimoda,
J. H. Skerratt, S. M. Trevathan-Tackett, K. Wild-Allen, X. Kong, and A. Steven
2018. Towards evidence-based parameter values and priors for aquatic ecosystem
modelling. Environmental Modelling and Software 100, 74–81.

Sharma, P. and A. A. Kotov 2013. Molecular approach to identify sibling species of
the Ceriodaphnia cornuta complex (Cladocera: Daphniidae) from australia with
notes on the continental endemism of this group. Zootaxa 3702 (1), 79–89.

Sommer, U., F. Sommer, B. Santer, C. Jamieson, M. Boersma, C. Becker, and
T. Hansen 2001. Complementary impact of copepods and cladocerans on phyto-
plankton. Ecology letters 4 (6), 545–550.

van der Meer, J. 2006. An introduction to Dynamic Energy Budget (DEB) models
with special emphasis on parameter estimation. Journal of Sea Research 56 (2),
85–102.

Violle, C., M.-L. Navas, D. Vile, E. Kazakou, C. Fortunel, I. Hummel, and E. Garnier
2007. Let the concept of trait be functional! Oikos 116 (5), 882–892.

Vogt, R. J., P. R. Peres-Neto, and B. E. Beisner 2013. Using functional traits
to investigate the determinants of crustacean zooplankton community structure.
Oikos 122 (12), 1700–1709.

100



PhD Thesis — Jo A. Werba McMaster University — Biology

Chapter 5: Concluding Remarks

In this thesis I explored various methods for using species-specific traits to understand

broad ecological questions.

In Chapter 2 I built and tested a simple nutrient-zooplankton-phytoplankton

model (Franks, 2002) using relationships among nitrogen, algae and Daphnia magna

in a lab-contained system. My goal was to determine how well a simple nutrient-

phytoplankton-zooplankton (NPZ ) model could describe a lab system and predict a

response to perturbation, using only parameters and functional forms in the model

fitted a priori to the same organisms and laboratory conditions.

When I started this journey I thought that building and verifying the “correctness”

of a mechanistic model in a simple, lab system would be straightforward and produce

expected results (i.e. good fits). I planned to explore how different configurations of

species in functional groups improved or worsened the ability of mechanistic models

to make good out of sample predictions. Instead, I discovered that even in a simple

system where most of the interactions between groups has been well studied, a simple

model failed to capture most of the dynamics. Part of this was driven by difficulties

in obtaining appropriate parameter estimates from lab experiments; even using lab

experiments designed to estimate specific parameters was not straightforward. Many

studies in aquatic systems have shown that complex mechanistic models make poor

predictions, and that most successful predictions have been from models where only a

few key model components are the main drivers of the system (e.g. physical dynamics

(Robson, 2014), lake depth; residence time and nutrient load (Chang et al., 2019)).

Moving forward, predictive aquatic mechanistic models require a system-specific focus

— that is, models should seek to understand particular systems without simply adding
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complexity. However, I also believe that knowledge in aquatic ecology has developed

enough that these system-specific models can be built upon well tested mechanistic

foundations. For example, Chang et al. (2019) provides a mechanistic model for lake

managers to understand and plan for eutrophication in their management area. More

general models like this can be used in a first round of analysis in aquatic systems to

identify key components of that system. As a follow-up, more detailed models can

be built and parameterized to understand that system. At the very least, the recent

trend towards more complicated models (Arhonditsis et al., 2007; Robson et al., 2018)

without this foundation is setting the field on a dangerous path.

The Chang et al. (2019) model specifically focuses on lakes and eutrophication;

future work could explore either other aquatic habitats or different or combined

perturbation types. This strategy, of finding only a couple of easily measurable

parameters, is particularly useful for management where larger models are unlikely to

be parameterizable and a primary goal is to make relatively fast decisions and update

those decisions as more data becomes available (Schuwirth et al., 2019; Arhonditsis

et al., 2008).

In Chapter 3 I examined the utility of using functional groups to determine resilience

after a eutrophication event. Theory suggests that increasing diversity should increase

resilience (e.g. Allen and Polimene, 2011; Tilman and Downing, 1994). However,

results remain mixed (e.g. Guelzow et al., 2017); perhaps diverse functional groups

instead of taxonomy are more important for resilience (Karp et al., 2011; Hulot et al.,

2014). The goal of this chapter was to try to separate the effects of functional diversity

and taxonomic diversity on resilience. I was unable to complete as robust a test

of this theory as I initially planned because one of the functional groups, a filter-

feeder,(Ceriodaphnia rigaudi), was unable to live in the greenhouse; thus, I was unable

to separate functional group increase from increases in diversity. However, I think
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that this type of experimental set-up (multiple species in the same functional group

compared to multiple species in different functional groups) is a critical experiment for

furthering understanding of the role of diversity in resilience and as a robust test of

ecological theory. Overall, I found that the relationship between diversity and resilience

is not consistent and instead is based on which ecosystem metrics are used.

One unexpected result from these experiments is that the Physa sp. laid more eggs

when D.magna were present than when they were not. Since snails and Cladocera are

both important to nutrient cycling, from an ecosystem perspective understanding more

about their interactions could be beneficial. From a community ecology perspective,

these two groups are not generally studied together. Most community ecology studies

about species interactions (e.g. not neutrality) focus on within-group interactions (e.g.

direct competition), interactions through the food web (e.g. predator-prey, or trophic

cascades), or direct interactions between disparate species (e.g parasites and hosts,

plants and microbial symbionts) with less work that incorporates indirect interactions

in distantly related genera. The interaction here between Physa sp. and D. magna

falls into the last category, though the mechanism driving this finding remains unclear.

The first step would be to verify that this interaction is actually occurring, and not just

a by-product of our experiment since we didn’t directly set out to test this interaction.

A replicable interaction would raise questions that could lead to insights about

freshwater systems. For example: are D.magna directly interacting with Physa sp. in

some way? Is there an interaction through water chemistry? Why was this interaction

exacerbated by nutrient enrichment? Is the interaction density-dependent? Do more

snail eggs translate into more snail adults? This relationship could lead to new insights

about community development and population dynamics.

In Chapter 4 I add life history information for a ubiquitous tropical Cladocera,

Ceriodaphnia rigaudi, from literature, lab and field experiments. Potential future work
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could include building a species distribution model. In order to use traits to either

build mechanistic models or to make statistical inference larger databases that include

species from a wide range of habitats must be collected. Currently, zooplankton data is

skewed toward temperate, saline species. This can cause biased expectations because

even relationships that are regarded as true (e.g. size to grazing effort) may be different

in tropical species (Mohammed, 2007). Chapter 4 contributes life history information

in order to build a better repository of zooplankton data.

If trait-based approaches are the way forward in uniting ecological theory (McGill

et al., 2006; Litchman et al., 2007) more robust tests of theory must occur. In addition,

more species-specific information must be available across a wide range of habitats

and taxa. Altogether, I demonstrate different ways of incorporating species-specific

trait data to explore both theory and practical applications in aquatic systems.
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Appendix : Additional tables and figures for
Chapter 2
Authors: Jo A. Werba, Ben Bolker and Jurek Kolasa

Treatment Chl (µg/L) SD Chl NH4 (mg/L) SD NH4
1 0.903 0.205 10.9 2.31
2 2.91 0.217 11.5 2.29
3 8.18 1.04 12.3 2.30
4 14.5 1.36 13.4 2.33
5 22.6 1.71 14.7 2.67
6 41.8 3.16 18.1 1.72
7 93.6 8.27 17.2 1.55

Table A.1: Starting food conditions for the feeding and nitrogen recycling rate experi-
ment.

Treatment Chl (µg/L) SD Chl Replicates
1 3.36 0.806 17
2 6.76 2.06 19
3 18.2 4.43 19
4 61.6 11.6 18

Table A.2: Starting food conditions for the birth and maturation rate.

Treatment NH4 (mg/L) SD NH4
1 2.76 0.033
2 3.40 0.045
3 5.68 0.09
4 12.91 0.209
5 23.32 1.23
6 46 2.92

Table A.3: Starting nitrogen concentrations for the nitrogen uptake and population
growth experiment.
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param method median lower upper
b1 wide 13.46 10.93 17.67
b2 wide 29.38 18.66 51.24
b1 literature only 3.80 1.63 5.85
b2 literature only 1.00 0.14 6.90
b1 mixed model 3.90 2.06 5.73
b2 mixed model 6.92 0.45 22.70
b1 hyper 8.13 5.65 10.45
b2 hyper 11.39 5.43 18.64
b1 constrained b1 6.33 4.38 8.23
b2 constrained b1 0.25 -19.55 19.59
d2 unweighted 50.41 22.24 84.00
d2 weight: 1/sd 67.55 65.17 69.92
d2 weight: replicate 58.75 55.22 62.28
d2 wide 24.43 22.33 26.70
d2 informed 24.51 22.46 26.72
ha wide 0.09 0.08 0.10
xa wide 52.02 -18.20 124.39
ha mixed model 5.43 -9.88 32.96
xa mixed model 53.97 -16.29 121.64
ha literature only: impute sd 4.63 2.92 6.60
ha literature only: vary slope 20.36 -2.67 43.29
ha impute sd 0.09 0.09 0.10
xa impute sd 51.08 -13.04 118.71
hj wide 0.04 0.03 0.05
g wide 4.82 4.13 5.68
xj wide 155.55 6.91 549.13

Table A.4: Model parameter estimates and 95% confidence intervals for each estimation
method for all D. magna parameters.
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Appendix : Additional tables and figures for
Chapter 3
Authors: Jo A. Werba, Alexander C. Phong, Lakhdeep Brar, Acacia Frempong-
Manso, Ofure Vanessa Oware and Jurek Kolasa
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Model Comparison Estimate
(log10)

SE p

Chlorophyll
Final

None - Physa 9.2 8.4 0.3

None-Daphnia 33 12.3 0.02
None - both 33 12.3 0.02
Physa - Daphnia 24 9.19 0.02
Physa - both 24 9.18 0.02
Daphnia - both -0.02 0.99 0.98

Chlorophyll None-Physa 10.8 11.9 0.4
Maximum None-Daphnia 60 12.1 0.0001

None - both 61 12.2 0.0001
Physa - Daphnia 49 10.6 0.0001
Physa - both 50 10.7 0.0001
Daphnia - both 0.97 1.7 0.58

Ammonium
Final

None - Physa 1.05 1.5 0.5

None-Daphnia 1.7 1.5 0.25
None - both -0.31 1.5 0.8
Physa - Daphnia 0.64 1.4 0.65
Physa - both -1.36 1.4 0.35
Daphnia - both -2 1.3 0.14

Ammonium None-Physa -1.7 2.6 0.5
Maximum None-Daphnia -2.35 2.6 0.4

None - both -4.6 2.85 0.12
Physa - Daphnia -0.66 2.7 0.8
Physa - both -2.9 2.95 0.3
Daphnia - both -2.2 2.9 0.4

Sediment None - Physa -0.24 0.3 0.5
None-Daphnia 0.96 0.35 0.008
None - both 0.52 0.3 0.08
Physa - Daphnia 1.2 0.35 0.001
Physa - both 0.765 0.3 0.01
Daphnia - both -0.44 0.3 0.56

Table B.1: Model estimates for each of our measures of resilience. The estimate is
difference between log10(disturbed)-log10(undisturbed) between herbivore treatments.
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Model Comparison Estimate StDev p
Final Popula-
tions

Disturbed-
Undisturbed

1.04 0.2 <
0.0001

Daphnia-Both -0.19 0.2 0.4
Disturbed:Treatment-0.24 0.3 0.4

Maximum
Populations

Disturbed-
Undisturbed

0.6 0.2 0.005

Daphnia-Both -0.25 0.18 0.18
Disturbed:Treatment-0.23 0.23 0.3

Probability
Ephippia
Present

Disturbed-
Undisturbed

-4.4 2.2 0.04

Daphnia-Both -0.48 1.4 0.7
Disturbed:Treatment1.04 2.3 0.65

Table B.2: Model estimates for Daphnia magna populations

Model Comparison Estimate StDev p
Survival Day -0.09 0.006 <

0.0001
Snail-Both 0.45 0.4 0.2
Disturbed-
Undisturbed

0.19 0.4 0.6

Day:Herbivore
Treatment

-0.02 0.008 0.004

Day:Disturbance -0.003 0.007 0.7
Probability
Eggmass

Disturbed-
Undisturbed

-2.05 0.55 0.0002

Present Snail-Both -4.9 0.7 < 0.001
Disturbed:Treatment2.97 0.8 0.0002

Table B.3: Model estimates for Physa sp. populations
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Figure B.1: Chlorophyll-a (µg/L) final concentrations by treatment. Points are means
and error bars are 95% CI
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Figure B.2: Chlorophyll-a (µg/L) maximum concentrations by treatment. Points are
means and error bars are 95% CI
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Figure B.3: Ammonium (mg/L) final concentrations by treatment. Points are means
and error bars are 95% CI
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Figure B.4: Ammonium (mg/L) maximum concentrations by treatment. Points are
means and error bars are 95% CI
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Figure B.5: Sediment (mL) final amount by treatment. Points are means and error
bars are 95% CI
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Figure B.6: Algal species that represent greater than 0.5% of the community for the
starting (A.), mid-point (B.) and end of the experiment (C.). Point color is herbivore
combination. Point shape is disturbance treatment. Points are mean and error bars
are standard deviation.
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Appendix : Additional tables and figures for
Chapter 4
Authors: Jo A. Werba and Jurek Kolasa
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Figure C.1: Daily C.rigaudi population per day. Color
represents individual populations. The dots are a mean
of eight sub-samples.
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