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Abstract

Electronic structure methods aim to accurately describe the behaviour of the electrons

in molecules and materials. To be applicable to arbitrary systems, these methods cannot

depend on observations of specific chemical phenomena and must be derived solely from

the fundamental physical constants and laws that govern all electrons. Such methods

are called ab initio methods. Ab initio methods directly solve the electronic Schrödinger

equation to obtain the electronic energy and wavefunction. For more than one electron,

solving the electronic Schrödinger equation is impossible, so it is imperative to develop

approximate methods that cater to the needs of their users, which can vary depending

on the chemical systems under study, the available computational resources and time,

and the desired level of accuracy. The most accessible ab initio approaches, includ-

ing Hartree-Fock methods and Kohn-Sham density functional theory methods, assume

that only one electronic configuration is needed to describe the system. While these

single-reference methods are successful when describing systems where a single elec-

tron configuration dominates, like most closed-shell ground-state organic molecules in

their equilibrium geometries, single-reference methods are unreliable for molecules in

nonequilibrium geometries (e.g., transition states) and molecules containing unpaired

electrons (e.g., transition metal complexes and radicals). For these types of multirefer-

ence systems, accurate results can only be obtained if multiple electronic configurations

are accounted for. Wavefunctions that incorporate many electronic configurations are

called multideterminant wavefunctions.
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This thesis presents a systematic approach to developing multideterminant wave-

functions. First, we establish a framework that outlines the structural components of a

multideterminant wavefunction and propose several novel wavefunction ansätze. Then,

we present a software package that is designed to aid the development of new wavefunc-

tions and algorithms. Using this approach, we develop an algorithm for evaluating the

geminal wavefunctions, a class of multideterminant wavefunctions that are expressed

with respect to electron pairs. Finally, we explore using machine learning to solve the

Schrödinger equation by presenting a neural network wavefunction ansatz and optimiz-

ing its parameters using stochastic gradient descent.

iv



To my parents, 김종회 and 오완, whose love and sacrifice made all this possible.

v



Acknowledgements

First and foremost, I would like to thank Paul W. Ayers for all his guidance over the past

decade. This work would not be possible without his tireless patience in answering our

questions and his selfless commitment in helping us develop as scientists and researchers.

Thank you for believing in me, for being my role model, and for the many late-night

McDonald runs.

I would like to thank to Peter Limacher who was my guide through the early stages

of my graduate studies and set the foundation for much of the content in this work.

In addition, I would like to thank Patrick Bultinck and Toon Verstraelen for their help

during my excursion to Ghent, and the members of CMM who made me feel welcome.

I am forever grateful to my loving parents,김종회 and오완, whose love, support, and

selfless sacrifice remain a source of inspiration, and to my sister, Anna, who supported

me during difficult times.

Finally, I’d like to thank the members of Ayers lab and fellow graduate students,

who were often like a family away from home. I express my heartfelt gratitude to

Xiaotian Yang, Xiaomin Huang, Kumru Dikmenli, Farnaz Heidar-Zadeh, Stijn Fias,

Paul Johnson, Matthew Chan, Lian Pharoah, Wil Adams, Yingxing Cheng, Cristina

Elizabeth González Espinoza, and Ramón Alain Miranda Quintana. And of course,

my friends outside, Roxanne Ban, Rubhen Raiju Murugaanandan, Diem Le, and Diego

Berrocal, who leant their shoulders in times of need. Thank you all for the pleasant

memories.

vi



Contents

Abstract iii

1 Introduction 1

1.1 Approximations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Slater Determinant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Second Quantization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Multideterminant Wavefunctions . . . . . . . . . . . . . . . . . . . . . 12

1.5 Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

1.6 Methods for Determining Electronic Wavefunctions . . . . . . . . . . . 17

1.7 Optimizing Wavefunction Parameters . . . . . . . . . . . . . . . . . . . 22

1.8 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2 Flexible Ansatz for N-body Configuration Interaction 35

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.2 Flexible Ansatz for N-particle Configuration Interaction (FANCI) . . . 42

2.3 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.1 Hartree-Fock . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.3.2 Truncated Configuration Interaction . . . . . . . . . . . . . . . 44

2.3.3 Coupled-Cluster . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

2.3.4 Tensor Product State . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



2.3.5 Antisymmetrized Product of Geminals . . . . . . . . . . . . . . 49

2.3.6 Universality of FANCI . . . . . . . . . . . . . . . . . . . . . . . 51

2.4 Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

2.4.1 Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

2.4.2 Cost . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

2.4.3 Size-Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 59

2.5 Ansätze . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.1 CC with Creators . . . . . . . . . . . . . . . . . . . . . . . . . . 61

2.5.2 TPS Variants . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

2.5.3 APG Generalized to Excitation Operators . . . . . . . . . . . . 66

2.5.4 General Quasiparticle Wavefunctions . . . . . . . . . . . . . . . 67

2.5.5 Changing Solvers . . . . . . . . . . . . . . . . . . . . . . . . . . 70

2.5.6 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

2.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

2.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

2.9 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.9.1 HF . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

2.9.2 APG . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

2.9.3 Product of Linear Combinations of Operators . . . . . . . . . . 88

2.9.4 CC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

2.9.5 CC with Creation Operators . . . . . . . . . . . . . . . . . . . . 95

2.9.6 Generalized Quasiparticle . . . . . . . . . . . . . . . . . . . . . 97

3 Fanpy 99

viii



3.1 What is Fanpy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

3.2 About Fanpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

3.3 Why Fanpy? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

3.4 Features of Fanpy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

3.6 Frequently Asked Questions . . . . . . . . . . . . . . . . . . . . . . . . 119

3.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

3.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

4 Graphical Interpretation of Geminals 130

4.1 From Orbital-Based To Geminal-Based Wavefunctions . . . . . . . . . 132

4.2 From Geminal-Based Wavefunctions to Graphs . . . . . . . . . . . . . . 137

4.3 Orbital Pair Contribution . . . . . . . . . . . . . . . . . . . . . . . . . 141

4.4 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

4.5 Computational Protocol . . . . . . . . . . . . . . . . . . . . . . . . . . 144

4.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

4.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

4.8 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

4.9 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154

4.10 Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163

4.10.1 Explicit Equations corresponding to Figure 4.1 . . . . . . . . . . 163

4.10.2 Proof for Equation 4.10 . . . . . . . . . . . . . . . . . . . . . . 165

5 Applying Concepts from Machine Learning to Solve the Schrödinger

Equation 167

ix



5.1 Neural Network . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169

5.1.1 Overview of Neural Networks . . . . . . . . . . . . . . . . . . . 169

5.1.2 Applications to Quantum Chemistry . . . . . . . . . . . . . . . 172

5.1.3 Objective Functions . . . . . . . . . . . . . . . . . . . . . . . . . 174

5.1.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.1.5 Generalization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

5.2 Stochastic Gradient Descent for the Projected Schrödinger Equation . . 188

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196

5.4 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

6 Conclusion 207

6.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

6.2 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

6.3 Perspective . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212

x



List of Figures

4.1 Graphs to describe the overlap of Slater determinant with occupied spin

orbitals (1, 1̄, 2, 2̄, 3, 3̄): APG (left), APsetG (center), and APIG (right)

wavefunctions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

4.2 Linear H8 chain: α ∈ {0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,

1.8, 1.9, 2, 2.25, 2.5, 3, 4} Angstroms . . . . . . . . . . . . . . . . . . . 145

4.3 Octagonal H8: a = 2 a.u., α ∈ {0, 0.0001, 0.001, 0.003, 0.006, 0.01, 0.03,

0.06, 0.1, 0.5, 1} a.u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

4.4 (a) Energies and (b) energy differences relative to APG in the H8 chain;

see Figure 4.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

4.5 (a) Energies and (b) energy differences relative to APG in the H8 ring;

see Figure 4.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149

5.1 L-Layer Feed-Forward Neural Network . . . . . . . . . . . . . . . . . . 171

5.2 L-Layer Neural Network Wavefunction . . . . . . . . . . . . . . . . . . 182

5.3 Linear H8 chain: α ∈ {0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7,

1.8, 1.9, 2, 2.25, 2.5, 3, 4} Angstroms . . . . . . . . . . . . . . . . . . . 183

5.4 Octagonal H8: a = 2 a.u., α ∈ {0, 0.0001, 0.001, 0.003, 0.006, 0.01, 0.03,

0.06, 0.1, 0.5, 1} a.u. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

5.5 Energies and energy differences with APG wavefunction in linear H8

systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184

5.6 Energies and energy differences with APG wavefunction in H8 ring systems185

xi



Chapter 1

Introduction

While the properties of chemical substances can be observed experimentally, directly

experimental observation of the underlying behaviour of atoms and molecules is typ-

ically impossible. Solving the Schrödinger equation for the ground- and excited-state

wavefunctions and energies provides a complete representation of a chemical system,

and can be used to predict properties, thereby aiding the interpretation of experiment.

Hypothetically, given enough time and computational resources, we can examine all

chemical systems without experimentation, which is especially useful when the sys-

tems under study are not amenable to experimental observations. However, solving the

Schrödinger equation is not practical for many systems of interest to chemists. In this

thesis, we discuss why it is difficult to solve the Schrödinger equation and present new

approaches for solving the Schrödinger equation in the context of molecular electronic

structure theory.

Solving the Schrödinger equation is not the only way to model chemical systems.

There are a wide range of theoretical methods that do not rely on quantum mechanics,

but instead on thermodynamics and classical mechanics. In molecular mechanics, for
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example, each atom, functional group, and moeity interact with another via a classi-

cal force field that is parameterized to fit experimental or computational benchmark

data[1]. Thermodynamic properties can then be estimated by averaging either stochasti-

cally (Monte Carlo)[2] or in time (molecular dynamics, based on classical mechanics)[3].

In practice, molecular mechanics methods perform poorly when the electronic structure

of molecules changes, as they do in a chemical reaction.

In addition to molecular mechanics methods, there are quantum mechanical meth-

ods based on fitting to empirical data[3] and emerging data-based machine-learning

approaches[4]. These empirical (or semi-empirical, when physical reasoning and chemi-

cal data are combined) models are limited by their training data, so it is not possible to

systematically increase the accuracy of the calculations without reinventing the model.

Since semi-empirical models do not converge to the exact result in any systematic way,

it is difficult to determine the accuracy of these methods without comparing to experi-

mental results, so chemists usually interpret the results by appeal to intuition, which can

be slow and unreliable. For chemical systems that are complex or novel, and therefore

difficult to understand, chemical intuition is notoriously unreliable. For example, the re-

activity of metal complexes is difficult to assess with semiempirical methods, especially

for complexes containing multiple, inequivalent, redox centres[5–7]. In contrast, ab initio

methods solve the Schrödinger equation with little to no parameterization beyond fun-

damental physical constants. Many ab initio methods can be improved systematically,

approaching the exact solution in some limit, although that limit is generally computa-

tionally intractable. Ab initio methods, however, are usually much more expensive than

empirical and semiempirical methods[8–10].

2
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1.1 Approximations

It is not possible to exactly solve the Schrödinger equation for the electrons in a molecule

except for the smallest model systems. Moreover, very accurate approximate solutions

are prohibitively expensive for most systems with more than about 50 electrons. This

motivates research into approximations that simplify the process of solving Schrödinger

equation. In this thesis, we always assume that the electrons in a molecule move non-

relativistically, that the potentials that bind the electrons are time-independent, that

positions of the atomic nuclei are fixed, and that the temperature is absolute zero. In

addition to the aforementioned physical assumptions, we make one convenient math-

ematical assumption, namely that the electronic Hamiltonian and its many-electron

wavefunction can be accurately modelled using a one-electron basis set. That is, we

consider only the second-quantized time-independent electronic Schrödinger equation

in the Born-Oppenheimer (clamped nuclei) approximation,

Ĥ |Ψ〉 = E |Ψ〉 (1.1)

This is a Hermitian eigenproblem, but practical computational methods need to exploit

special features that are specific to the electrons in molecules.

Relativistic effects are important for modelling systems with heavier elements, in-

cluding Lanthanides, Actinides, and second- and third-row transition metals. The cor-

rect treatment of relativistic effects requires replacing the Schrödinger equation with the

Dirac equation[11], but various approximations, which are often adequate for chemical

applications, allow the Schrödinger equation to be used even for relativistic systems[12].

3
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The most important ways to incorporate relativistic effects into the Schrödinger equa-

tion include pseudopotentials[13], relativistic corrections to the kinetic energy oper-

ators like the zero-order regular approximation (ZORA)[14, 15], and two-component

approaches based on the Foldy-Wouthuysen transformation of the Dirac equation[16].

The methods in this thesis are directly applicable to these approximate relativistic

Schrödinger equations and could be extended to treat the full four-component Dirac

equation.

When the electrons in a molecule experience time-dependent forces, the time-dependent

Schrödinger equation needs to be solved. This is important for computing molecu-

lar response properties and modelling spectroscopy[17]. Many time-dependent effects

can be modelled by solving the time-independent Schrödinger equation and then us-

ing time-dependent perturbation theory[18]. For computing thermodynamic properties

of molecules, including temperature dependence is important. Temperature-dependent

properties can be modelled explicitly by Boltzmann-weighting ground- and excited-state

properties obtained by solving the time-independent Schrödinger equation[2], or by solv-

ing an effective time-dependent Schrödinger equation with doubled dimensionality in

the thermofield dynamics approach[19]. Though we will not consider it, the methods

in this thesis can be extended to include time-dependent and temperature-dependent

phenomena.

We solve the time-independent electronic Schrödinger equation, thereby neglecting

nuclear quantum effects except insofar as they can be encoded with the adiabatic ap-

proximation. Neglecting the nuclear kinetic-energy operator is justified since the nuclei

are much more massive than the electrons, but this approximation can be remedied

4
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by solving the nuclear Schrödinger equation or modern alternative approaches[20]. The

most important nuclear quantum effects (e.g., zero-point energies and tunnelling cor-

rections) can often be mimicked by post-facto corrections on top of solutions to the

electronic Schrödinger equation[10, 21, 22]. Most of the methods presented in this the-

sis are designed for the electronic structure problem, but they could be adapted to

include nuclear quantum effects.

When solving the time-independent zero-temperature electronic Schrödinger equa-

tion numerically, it is necessary to discretize the problem. We do this by selecting a

finite one-electron basis set, in which we expand the Hamiltonian operator and its

associated eigenfunctions. The accuracy of results can be systematically improved by

increasing the size of the basis set, though the computational cost also grows with

basis-set size[8, 9, 23, 24]. Throughout this thesis, an orthonormal basis set consisting

of molecular orbitals obtained from the (approximate) Hartree-Fock solution to the

electronic Schrödinger equation will be used. For this reason, a one-electron basis func-

tion will often be referred to as a spin-orbital or orbital, in short. Unlike the preceding

assumptions, the assumption of a finite (but perhaps very large) one-electron basis set

is essential to the methods proposed in this thesis.

1.2 Slater Determinant

According to the Pauli principle, the wavefunction is antisymmetric with respect to

the interchange of any two fermions and, conversely, symmetric with respect to the

5
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interchange of any two bosons. Electrons are fermions, so the simplest possible N -

electron wavefunction, Φ(r1, r2, . . . , rN), is an antisymmetrized product of N distinct

one-electron basis functions (spin-orbitals), {χm1 , . . . , χmN}. This wavefunction is called

a Slater determinant[23, 24]:

|Φ(r1, r2, . . . , rN)〉 = 1
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χm1(r1) χm1(r2) . . . χm1rN)

χm2(r1) χm2(r2) . . . χm2(rN)
... ... . . . ...

χmN (r1) χmN (r2) . . . χmN (rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

=
∑
σ∈SN

sgn(σ)
∏
i=1

χi(rσ(i))

(1.2)

Hereon, we will denote a Slater determinant with Φ or, equivalently, with the occupation

vector, m, listing the indices of the occupied spin-orbitals in the Slater determinant.

The Slater determinant is the mathematical representation for an electron configu-

ration: each orbital is considered occupied if it is used to build the Slater determinant.

In accordance with the Pauli exclusion principle, each spin-orbital can contain up to

at most one electron and each spatial orbital can contain up to two electrons, with

opposing spins. A spatial orbital is a set of two spin-orbitals that have the same spatial

component but different spin. By construction, the Slater determinant satisfies the Pauli

exclusion principle because a determinant with identical rows (doubly-occupied spin-

orbitals) or columns (two electrons with the same spin at the same location) is zero[23].

The formulas and derivation that follow are expressed with respect to spin-orbitals for

clarity and generality.

6
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It is important that the one-electron basis functions are orthonormal to one another,

i.e., ∫
χi(r)χj(r)dr = δij (1.3)

Otherwise, the Slater determinants and the related integrals become too expensive (but

not impossible) to compute. Nonorthogonal orbitals are the hallmark of valence-bond

approaches to the electronic structure theory problem[25].

In most single-determinant methods, the goal is to find the set of orthonormal or-

bitals such that the corresponding Slater determinant(s) optimally solve the Schrödinger

equation, albeit perhaps with a modified Hamiltonian. In both Hartree-Fock (HF; where

the true Hamiltonian is used)[23] and Kohn-Sham density-functional theory (KS-DFT;

where a noninteracting model system is considered)[26], the orthogonal spin-orbitals

are transformed with a unitary matrix, and the unitary matrix is chosen to minimize

the energy. Because these methods provide an effective one-electron Hamiltonian, they

produce one orbital for every function in the one-electron basis set, which is usually far

larger than the number of electrons. Orbitals that are not occupied in the lowest-energy

Slater determinant are called virtual orbitals. Excited states can be modelled by a Slater

determinant where orbitals that were occupied in the ground-state Slater determinant

are replaced by virtual orbitals. Obviously, the number of Slater determinants (and

excitations) increases combinatorially with the size of the basis set and the number of

electrons. If there are 2K spin-orbitals and N electrons, then there are
(

2K
N

)
possible

Slater determinants. The focus of this thesis is on multideterminant wavefunctions: lin-

ear combinations of multiple Slater determinants which are used to model systems that

cannot be described with the requisite accuracy using only a single configuration[23].

7
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Though the methods we present are applicable to any orthonormal one-electron basis

set, we will often assume that the basis sets are composed of the molecular orbitals

obtained from HF calculations.

1.3 Second Quantization

Especially when discussing multideterminant wavefunctions, it is helpful to use bra-ket

notation and second quantization. The bra-ket notation is a shorthand for writing the

wavefunction and the associated integrals that makes the vector-space nature of the

Hilbert space of N -electron wavefunctions explicit[24, 26]:

〈Ψ| = Ψ∗(r1, . . . , rN)

|Ψ〉 = Ψ(r1, . . . , rN)

〈Φ|Ψ〉 =
∫
· · ·

∫
Φ∗(r1, . . . , rN)Ψ(r1, . . . , rN)dr1 . . . drN

〈Φ|Ĥ|Ψ〉 =
∫
· · ·

∫
Φ∗(r1, . . . , rN)ĤΨ(r1, . . . , rN)dr1 . . . drN

(1.4)

Note that the positions of the electrons are generally omitted in bra-ket notation and

that the bra is a complex conjugate of the ket and vice versa. The vacuum state is a

quantum state without any particles and is described with an empty bra, 〈|, and ket,

|〉. By convention, 〈|〉 = 1. Occasionally it is useful to use a pseudo-vacuum, but this

does not affect the notation, only the computational implementation of the resulting

equations.

8
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In this thesis, we use the following convention for the Slater determinant:

|Φ(r1, r2, . . . , rN)〉 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

χm1(r1) χm1(r2) . . . χm1(rN)

χm2(r1) χm2(r2) . . . χm2(rN)
... ... . . . ...

χmN−1(r1) χmN−1(r2) . . . χmN−1(rN)

χmN (r1) χmN (r2) . . . χmN (rN)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

= |m1m2 . . .mN−1mN〉

= |m〉

(1.5)

where m = (m1m2 . . .mN−1mN) is the occupation vector. In second quantization, the

occupied spin-orbitals are added to the Slater determinant with a creation operator, a†i ,

and removed with an annihilation operator, ai. For example,

a†i |〉 = |i〉

ai |i〉 = |〉
(1.6)

When the occupation vector contains many indices, the creation operators are created in

the opposite order of the occupation vector, i.e. the right-most index in the occupation

vector is created first and the left-most index is created last.

|m1m2 . . .mN−1mN〉 = a†m1a
†
m2 . . . a

†
mN−1

a†mN |〉 (1.7)

The important characteristics of fermionic wavefunctions, specifically the Pauli exclu-

sion principle and the antisymmetry property, are ensured by defining the behaviour of

the second-quantized operators. The Pauli exclusion principle is enforced by ensuring
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that a spin-orbital cannot be created twice, i.e. creation operator applied to itself is

zero:

a†ia
†
i = 0 (1.8)

Likewise, a spin-orbital cannot be removed twice:

aiai = 0 (1.9)

In fact, annihilating any spin-orbital that is not occupied in the Slater determinant will

result in a zero:

ai/∈{m1,m2,...,mN} |m1m2 . . .mN〉 = 0 (1.10)

Note that Equation 1.10 is valid for any wavefunction in which spin-orbital i is unoc-

cupied.

In second quantization, antisymmetry is enforced by the anticommutation relations

(Equation 1.11).

a†ia
†
j + a†ia

†
j = 0

aiaj + aiaj = 0
(1.11)

The final anticommutation relation ensures that every spin-orbital is either occupied or

empty,

a†iaj + aja
†
i = δij (1.12)
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The following example illustrates the off-diagonal and diagonal implications of this

anticommutation relation by applying a†2a1 and a†1a1 to the Slater determinant |1〉.

a†2a1 |1〉 = (δ12 − a1a
†
2) |1〉

= 0− a1a
†
2a
†
1 |〉

= a1a
†
1a
†
2 |〉

= |2〉

a†1a1 |1〉 = (δ11 − a1a
†
1) |1〉

= |1〉 − 0

= |1〉

(1.13)

Finally, the conjugate transpose of the creation operator is the annihilation operator,

and vice versa (Equation 1.14).

(a†i )† = ai

(ai)† = a†i

(1.14)

Moreover,

(a†ia
†
j)† = ajai

(aiaj)† = a†ja
†
i

(1.15)
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1.4 Multideterminant Wavefunctions

Because the set of all N -electron Slater determinants is a complete basis for the N -

electron wavefunction, all N -electron wavefunctions can be represented exactly (within

the strictures of the presupposed one-electron basis set) as a linear combination of

Slater determinants. Often the exact wavefunction for a chemical system has a single

dominant determinant; such systems are called single-reference[27]. Closed-shell organic

molecules near their equilibrium geometry are often single reference. However, for chem-

ical systems that have many valence orbitals that are nearly degenerate in energy, like

transition-metal complexes, the ground-state electron configuration is ambiguous and

a single electron configuration cannot sufficiently describe the system, often leading

to catastrophically wrong results. Building a N -electron wavefunction for this type of

multiconfigurational molecule requires multiple Slater determinants.

The simplest multideterminant wavefunction is the Configuration Interaction (CI)

wavefunction[23, 24]. It is a simple linear combination of Slater determinants,

|Ψ〉 =
∑

m∈S
cm |m〉 (1.16)

where S is the set of the Slater determinants used and cm is the coefficient of the

Slater determinant m. Since every Slater determinant satisfies the Pauli principle, so

do CI wavefunctions. The cost and the accuracy of a CI wavefunction are controlled

by the number of Slater determinants: the accuracy and cost increase as more Slater

determinants are added.
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CI methods generally supersede methods based on a single Slater determinant. In

fact, an optimized Full CI (FCI) wavefunction, where all
(

2K
N

)
determinants are included

in Equation 1.16, is the exact solution to the Schrödinger equation within a given one-

electron basis set. The primary task of molecular electronic structure theory, then, is

to find computationally feasible approximations to the FCI method. To avoid the pro-

hibitive cost of FCI, Slater determinants are often systematically selected according to

the orders of excitation from the ground-state configuration or are hand-selected based

on chemical intuition or a mathematical estimate of their likely importance[28–38].

Unfortunately, as the system gets larger, the number of Slater determinants required

for a given accuracy grows quickly and accurate CI calculations become infeasible. In

particular, there are a large number of Slater determinants that have relatively small

coefficients, but which are nonetheless essential, in aggregate, for obtaining quantita-

tive accuracy. Including (or at least approximating) these minor contributions is an

important target for research in quantum chemistry.

A particular problem of CI methods is that, except for full-CI, they are not size

consistent[39]. That is, the wavefunction of two noninteracting subsystems will not be

the antisymmetrized product of the subsystems’ wavefunctions, which is a particular

problem when using CI methods to describe molecular dissociation or extended systems.

Size consistency can be restored and contributions from small-coefficient determinants

can be included by parameterizing the CI coefficients with a function, f(m)[40]:

|Ψ〉 =
∑

m∈S
f(m) |m〉 (1.17)

This function is the overlap of the wavefunction with the Slater determinant, f(m) =

13



Ph.D. Thesis - Taewon David Kim McMaster University - Chem & Chem Bio

〈m|Ψ〉. By carefully selecting f , one can ensure size-consistency, along with other de-

sirable mathematical and chemical properties. We’ll discuss this approach further in

Chapter 2.

1.5 Hamiltonian

The FCI method is exact for any N -fermion system. Different systems are distinguished,

then, not by the mathematical structure of their wavefunction but by their Hamilto-

nians. As mentioned previously, in this thesis we are concerned only with the non-

relativistic electronic Hamiltonian of molecular systems[23] which, in atomic units, is

given by

Ĥ = −1
2
∑
i

∇2
i −

∑
i

∑
A

ZA
riA

+
∑
i<j

1
rij

=
∑
i

ĥi +
∑
i<j

ĝij

(1.18)

Here ∇i is the gradient with respect to the position of electron i, ZA is the charge of

the atomic nucleus A, riA is the distance between electron i and nucleus A, and rij is

the distance between electrons i and j. For each electron i, the operators for the kinetic

energy, −1
2∇

2
i , and the nuclear electron attraction, −∑A

ZA
riA

, are grouped together to

form the one-electron operator, ĥi. Likewise, the electron-electron repulsion operator,
1
rij

, is abbreviated as the two-electron operator, ĝij.

Since the wavefunction is a function of the positions of the electrons, the electron

indices, i and j, are needed to keep track of the distinct electronic positions even

14
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though all electrons are equivalent particles. As before, it is helpful to project the

Hamiltonian onto the orbital basis set and reexpress it with second quantization, so

that the electronic positions need not be tracked explicitly. The matrix representations

of the one- and two-electron operators in the orbital basis set are denoted as one-electron

integrals, hij, and two-electron integrals, gijkl, respectively. Explicitly,

hij =
∫
φ∗i (r1)ĥφj(r1)dr1

=
∫
φ∗i (r1)

(
−1

2∇
2 −

∑
A

ZA
|r1 − rA|

)
φj(r1)dr1

(1.19)

gijkl =
∫
φ∗i (r1)φ∗j(r2)ĝφk(r1)φl(r2)dr1dr2

=
∫
φ∗i (r1)φ∗j(r2) 1

|r1 − r2|
φk(r1)φl(r2)dr1dr2

(1.20)

Note that in the literature two-electron integrals are sometimes denoted using physicists’

notation (Equation 1.20) and sometimes using chemists’ notation (Equation 1.21).

gijkl =
∫
φ∗i (r1)φ∗k(r2)ĝφj(r1)φl(r2)dr1dr2 (1.21)

Throughout this work, physicists’ notation will be used. Using the one- and two-electron

integrals, the second-quantized Hamiltonian[24] is:

Ĥ =
∑
ij

hija
†
iaj + 1

2
∑
ijkl

gijkla
†
ia
†
jalak (1.22)

Note that the second-quantized Hamiltonian is valid for any number of fermions, inter-

acting by any type of 1-body and 2-body forces. Thus Equation 1.22, and the numerical
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methods used to solve it, are applicable not only to molecules but to any other system

of interacting elementary fermionic particles.

The Hamiltonian is sometimes modified so that solving the Schrödinger equation is

simpler. For example, the Fock operator is an approximate Hamiltonian where the

two-body operator is subsumed into effective one-body terms[24]. Different single-

determinant methods are associated with different Fock operators, which are in turn

associated with different ways of “averaging” the two-body terms into effective one-body

interactions. For a given Fock operator, the N -fermion Schrödinger equation is separa-

ble, and the occupied orbitals are obtained by simply diagonalizing the Fock operator.

However, because the average two-body interaction depends on the choice of occupied

orbitals, and the choice of occupied orbitals depends on the effective one-body inter-

action, computational methods based on Fock operators are solved iteratively, where

the Fock operator is diagonalized to find the occupied orbitals and the effective one-

body interaction is accordingly updated until the occupied orbitals and the effective

one-body interaction are self-consistent. This self-consistent-field (SCF) approach[23]

is much cheaper and easier than solving the molecular Hamiltonian. However, SCF

approaches discard important details about the two-electron interactions and always

have a single-determinant ground-state wavefunction, which is qualitatively incorrect

for strongly correlated systems like metal complexes and transition states. Instead of

discarding the two-body operator altogether, one can try to simplify it so that the

Schrödinger equation is easier to solve. This is done, for example, in the Hubbard

model, where the Hamiltonian is simplified so that only repulsions between electrons in

the same spatial orbital are included[41]. Though the Hubbard model is often used to

model strongly-correlated systems and to study magnetism and superconductivity, it is
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limited to lattice-like systems and is rarely adequate for making quantitative predictions

about real chemical/physical systems[42, 43].

1.6 Methods for Determining Electronic Wavefunc-

tions

Once the Hamiltonian is constructed and the wavefunction model is selected, the

Schrödinger equation can be solved. The traditional form of the Schrödinger equation

(Equation 1.1) is rarely useful because it involves solving a many-body nonseparable

partial differential equation, which is intractable except for one-particle systems and

a few, unphysical, N -particle model Hamiltonians[23, 24]. Once a finite one-electron

basis set is selected, solving the Schrödinger equation becomes equivalent to a
(

2K
N

)
-

dimensional ordinary eigenvalue problem. This is still intractable for almost all systems

of chemical interest. This motivates the development of alternative approaches for de-

termining the wavefunction.

Multiplying the Schrödinger equation on the left by the complex conjugate of the

wavefunction and integrating gives an explicit expression for the expectation value of

the energy for the wavefunction in question:

〈Ψ|Ĥ|Ψ〉 = E 〈Ψ|Ψ〉

E = 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉

(1.23)
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It is easy to show that Equation 1.23 is always greater than or equal to the true

energy, and equal to the true energy only when the wavefunction model gives the exact

ground state[10]. This means that the parameters in the wavefunction model can be

determined by minimizing the energy expression. This strategy works well for selected

CI methods, but for parameterized CI methods, Equation 1.17, the energy is typically

a non-convex function of the wavefunction parameters, and many local minima exist.

Global optimization algorithms are usually intractable except for systems so small that

FCI is tractable. Nonetheless, local minima of the energy functional (Equation 1.23)

often provide reasonable approximate energies, especially when good initial guesses are

available.

Variational methods are only feasible when the normalization of the wavefunction

〈Ψ|Ψ〉 and the associated matrix elements of the 2-body operator 〈Ψ|a†ia
†
jalak|Ψ〉 can

be computed efficiently. If one denotes the cost of evaluating matrix elements like these

as Cwfn, then the cost of evaluating the energy expectation value scales as O(CwfnK
4),

where K is the size of the orbital basis. This is the case for single-determinant wave-

functions like Hartree-Fock and for special multideterminant wavefunctions like Matrix

Product States (MPS)[44].

Even when the wavefunction cannot be integrated efficiently with itself, it is some-

times efficient to compute the coefficients of the expansion of the wavefunction in Slater

determinants 〈m|Ψ〉. In this case it is useful to reformulate the energy expression (Equa-

tion 1.23) to include a projection operator P = ∑
m |m〉 〈m|, where the sum is over all
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M determinants that have nonzero coefficients in the model wavefunction |Ψ〉:

E = 〈Ψ|PĤ|Ψ〉
〈Ψ|P|Ψ〉

=
∑

m 〈Ψ|m〉 〈m|Ĥ|Ψ〉∑
n 〈Ψ|n〉 〈n|Ψ〉

=
∑

m 〈Ψ|m〉 〈Ĥm|Ψ〉∑
n |〈Ψ|n〉|2

(1.24)

In the last line we explicitly indicate that the Hamiltonian is applied to the Slater de-

terminants, rather than to the complicated multideterminant wavefunction. The cost

of evaluating Equation 1.24 scales as O(CsdMK4). This is preferred to the direct eval-

uation of the variational energy expression when O(CsdM) < O(Cwfn).

Unfortunately, as we mentioned earlier, accurate multideterminant wavefunctions al-

ways include an enormous number of Slater determinants, most of which are individually

relatively unimportant, but collectively critical for quantitative accuracy. Equation 1.24

is thus prohibitively expensive except for very small systems. This suggests that only

a subset of the determinants with nonzero coefficients should be included in the pro-

jector, even though truncating the projector means that the energy expectation value

from Equation 1.24 is no longer guaranteed to be an upper bound to the true energy.

One approach to restricting the projection space is orbital space variational Quan-

tum Monte Carlo[45–47], which controls the cost by limiting the number of Slater

determinants at each optimization step, but potentially allows all Slater determinants
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to contribute throughout the entire optimization. The energy

E =
∑

m 〈Ψ|m〉 〈m|Ĥ|Ψ〉∑
n |〈Ψ|n〉|2

=
∑
m

|〈Ψ|m〉|2∑
n |〈Ψ|n〉|2

〈m|Ĥ|Ψ〉
〈m|Ψ〉

= Em∼p(m)

[
〈m|Ĥ|Ψ〉
〈m|Ψ〉

]

≈ 1
M

∑
m

〈m|Ĥ|Ψ〉
〈m|Ψ〉

(1.25)

is computed by sampling the Slater determinants according to the following probability

distribution in Equation 1.26.

p(m) = |〈Ψ|m〉|2∑
n |〈Ψ|n〉|2

(1.26)

The last step in Equation 1.25 assumes that the Slater determinants are sampled inde-

pendently from identical distributions (i.i.d.), p(m). If enough Slater determinants are

sampled, i.e. i.i.d. approximation is valid, the energy is (approximately) variational. In

orbital-space variational Quantum Monte Carlo, therefore, the variational principle is

still valid, within an error that can be made arbitrarily small by sufficient sampling.

In Equation 1.24, the wavefunction is projected onto the Slater determinants that

compose a projection operator P . Similarly, the energy expression in orbital space varia-

tional quantum Monte Carlo uses an adaptive projection of the wavefunction onto a set

of Slater determinants. These strategies may seem distant from the original Schrödinger

eigenproblem, Equation 1.1, which did not involve any integration. To establish the link

with the eigenproblem, notice that the solutions to the Schrödinger equation will also
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satisfy the equation after integrating on the left with an arbitrary function. In other

words, if

Ĥ |Ψ〉 = E |Ψ〉 (1.27)

then

〈Φ|Ĥ|Ψ〉 = E 〈Ψ|Φ〉 ∀ Φ (1.28)

Equation 1.28 is called the weak form of the eigenproblem, or the projected Schrödinger

equation.

In the projected Schrödinger equation, the Schrödinger equation is integrated with

a set of functions, termed the projection space, to form a system of nonlinear equa-

tions[48–50]:

〈Φ1|Ĥ|Ψ〉 − E 〈Φ1|Ψ〉 = 0
...

〈ΦM |Ĥ|Ψ〉 − E 〈ΦM |Ψ〉 = 0

(1.29)

The equations are rearranged to equal zero so that they are more compatible with

software for solving nonlinear equations. To avoid the trivial solution, Ψ = 0, a nor-

malization constraint is often added as an extra equation. If all of the equations are

satisfied, the wavefunction and energy are the solutions to the Schrödinger equation

within the selected projection space. When the projection space is complete, i.e. it en-

compasses all possible Slater determinants, the solutions are exact within the basis set

approximation. If the formulation of the wavefunction cannot produce a solution for

the given Hamiltonian, the cost function for the system of nonlinear equations solver

(typically a residual sum of squares) provides a measure of the error in the optimized
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wavefunction and energy. The least-squares solution for a complete projection space is

an upper bound to the energy, and this energetic upper bound, minus the residual sum

of squares from the equations, is a lower bound to the energy[51–53]. As before, using

a complete projection space is impractical, but the projection space can be adaptively

selected. Adaptively sampling of the projection space is explored in Chapter 5.

1.7 Optimizing Wavefunction Parameters

Once the Schrödinger equation is reformulated in a tractable form, iterative optimiza-

tion algorithms are applied to find the (approximate) solution. There are many standard

optimization algorithms that are appropriate for the equations in Section 1.6.

For the energy equations (Equations 1.23, 1.24, and 1.25), optimization algorithms

for scalar functions can be used. To be efficient, some type of gradient information

is necessary, as the gradient indicates how to change the wavefunction parameters to

reduce the expectation value for the energy[54]. Stochastic algorithms model the poten-

tial energy surface with a probability distribution by sampling the energies at different

parameters[55–57]. Typically, the stochastic algorithms are less likely to get stuck in

(undesired) local minima, so they are often used for the initial stages of the optimiza-

tion. Gradient-based algorithms are more efficient near local minima, where they exhibit

superlinear convergence, so they are used at the end of the optimization.

Scalar optimization algorithms can be directly applied to optimize the system of

nonlinear equations associated with the projected Schrödinger equation by using the

residual-sum-of-squares in the nonlinear equations as an objective function. However,
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it is often more efficient to solve the nonlinear equations directly, using the Jacobian of

the nonlinear system[54, 58].

In both variational and projected formulations, black-box algorithms have severe lim-

itations when the optimization problem becomes sufficiently complex. Within quantum

chemistry, the problem of solving the Schödinger equation is almost certainly nonlinear

and, in certain situations, not even smooth. In addition, as the system gets larger, the

number of parameters and Slater determinants increase, resulting in a more complex

and expensive optimization process. Larger systems have larger energies, yet the energy

range for chemical accuracy (approx. 1 kcal/mol) does not change with the size of the

system. This means that the optimization algorithm must find a more accurate solution

(relatively) as the system gets larger - the haystack grows, but the needle stays the same

size.

Often, approximations that make the Schrödinger equation cheaper to solve without

a significant loss in accuracy or generalizability increase the complexity of the opti-

mization process. For example, parameterizing the coefficients of the Slater determi-

nants (Equation 1.17) results in highly nonlinear equations. In addition, truncating the

projection space may result in uneven contribution of the coefficients to the objective

function. In the extreme case, if the energy (Equation 1.24) is computed by projecting

onto Slater determinants that have negligible CI coefficients, the nonlinear system will

be extremely ill-conditioned.

Though the exact impact of each approximation on the high-dimensional solution

space is unclear, it is clear that (1) the optimization problems presented in quantum
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chemistry are diverse and complicated, (2) the methods must have sufficient sophisti-

cation to accurately and tractably model a wide range of systems, and (3) the wave-

functions with the highest complexity are most difficult to optimize. The difficulty in

optimization may be presented as an abundance of local minima (and saddle points),

discontinuity in the second derivative, or flat regions. Many of the black-box optimiza-

tion algorithms will have trouble finding a good solution without preconditioning or

tinkering with the optimization hyperparameters. In most cases, a good solution is

guaranteed to exist, but it may be very difficult to find computationally.

Therefore, it is absolutely necessary to build a specialized optimization algorithm if

the method is to be cheap and accurate for a wide range of systems. This algorithm may

be specific to the approximations used in solving the Schrödinger equation (e.g., the

formulations of the wavefunction, Hamiltonian, and objective) and to the systems under

study. For example, the Density Matrix Renormalization Group (DMRG)[44] algorithm

minimizes the energy variationally for the MPS wavefunction but is specialized for linear

systems (though it can be used for other systems). In contrast, the quantum Monte

Carlo algorithm[46] is more general and can be used with different wavefunctions and

systems but may be more difficult to use. These methods are two of the more popular

methods for benchmark calculations, providing some of the most accurate results of

moderately large systems (< 100 electrons). Of course, a specialized algorithm is not

necessary if the problem is made simpler, by simplifying the Hamiltonian, for example,

or if the method is specialized for certain systems, by building functionals in DFT[59],

for example, but these methods sacrifice accuracy and reliability. A method that is

reliably accurate for a wide range of systems at a reasonable cost will likely require a

specialized algorithm without which many non-optimal solutions will be found, making
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the method neither accurate nor reliable.

In addition to specialized algorithms, a good initial guess is critical. A poor initial

guess, in contrast, may result in solutions that correspond to the excited states, or

worse, to unphysical local minima that arise from the mathematical formulation, rather

than the system’s behavior. To achieve a good initial guess, it is often best to start by

optimizing a simpler, less accurate method, then use this approximate wavefunction to

provide initial guesses for the parameters in a more complex wavefunction form. For

example, the initial guess to a CI wavefunction can be obtained by first optimizing a CI

wavefunction with a subset of the Slater determinants, and initial guesses for Coupled

Cluster (CC) and geminal wavefunctions are often obtained using perturbation theory

around the Hartree-Fock limit[60]. In some cases, the complexity of the method is

controlled with a hyperparameter whose value controls both the cost and accuracy of

the method. MPS wavefunctions use the size of the matrices, D, to control its accuracy

and cost: increasing D improves accuracy at a larger cost[44]. Results from small D

provide good guesses for calculations at a larger D. Along these lines, in Chapter 4,

we introduce a threshold that is used to limit the number of pairing schemes in the

Antisymmeterized Product of Geminal (APG) wavefunctions. These hyperparameters

provides greater control over the methods and, therefore, the optimization process.
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1.8 Overview of the Thesis

In ab initio method development, the goal is to build methods that are (relatively)

cheap and accurate for a wide range of systems, especially for systems where single-

determinant methods are insufficient. Unfortunately, the systems for which single-

determinant methods perform poorly are often (1) large, which means that the method

must have cost and accuracy that scale well with size, and (2) strongly correlated, which

means that many states are nearly degenerate, which makes the correct solution more

difficult to obtain. Furthermore, using a tractable method with enough complexity to

be accurate may cause the final equation to be even harder to optimize.

Above, we addressed the four different components involved within an orbital-based

ab initio method: the wavefunction model, the Hamiltonian, the objective function, and

the optimization algorithm. A new method or a modification to an existing method

often focuses on at least one of these components, usually improving on its cost and/or

accuracy. However, modifying one of these components can affect the other components

in ways that are often difficult to predict. In particular, relatively small changes to

a wavefunction model can greatly enhance the difficulty of optimizing the objective

function. Often the objective function and the optimization algorithm must be tweaked

based on experience, which unfortunately restricts the usage of some methods to a

select few.

We do not provide direct solutions to these problems in this thesis. Instead, we de-

velop a tool to help those that wish to explore these problems further. In particular,
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in Chapter 2, we propose a general framework, called FANCI, from which any mul-

tideterminant wavefunction can be built and characterized. FANCI consolidates the

formulations of different wavefunction ansatz into a single framework such that a wave-

function can easily be extended upon and a new wavefunction can be easily derived

from existing ansätze. We believe that subsuming all multideterminant methods in a

single framework will not only inspire new works but allow researchers to systematically

explore the best objective functions and optimization strategies. To demonstrate the

power and flexibility of this approach, we propose several new wavefunction structures

motivated by existing wavefunction ansätze.

In Chapter 3, we present an open-source Python library called Fanpy as a platform

for developing new methods in ab inito electronic structure theory based on the FANCI

framework. Mirroring the organization of this introduction, the Fanpy library is divided

into four independent modules: the wavefunction model, the Hamiltonian of the sys-

tem, the objective function, and the optimization algorithm. Fanpy’s modular design,

extensive documentation, and user-friendly templates and scripts allow researchers to

quickly prototype new methods without an extensive understanding of the library. This

library is used extensively to implement and test the ideas presented in the remainder

of the thesis.

In Chapter 4, we propose an algorithm that improves the performance of the Anti-

symmeterized Product of Geminals (APG) wavefunction (and other geminal wavefunc-

tions). Within the FANCI framework, the cost and accuracy of the APG wavefunction

can be controlled by hyperparameters that modify the wavefunction. These hyperpa-

rameters limit the number of terms that contribute to the wavefunction so that the
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cost can be lowered at the expense of the accuracy. They are used by an algorithm to

dynamically alter the wavefunction throughout the optimization process. Improving the

algorithm may provide key insights for utilizing complex quasiparticle wavefunctions.

In Chapter 5, we look for insights into solving the Schrödinger equation from re-

cent advances in neural networks. Over the last few decades, neural networks have

been proven to be effective for modelling complex problems, such as image recogni-

tion[61–64], speech recognition[65–67], and language processing[68–71]. These advances

in neural network were possible, in part, due to improvements in the models and opti-

mization algorithms, and due to the development of accessible tools and computational

resources. Despite their success in machine learning problems, we find that direct im-

plementation of these models and algorithms are ill-suited for solving the Schrödinger

equation. For example, the stochastic gradient descent algorithm is a popular algorithm

for optimizing neural networks but does not seem effective when applied to the pro-

jected Schrödinger equation. However, adjusting the implementation for the projected

Schrödinger equation results in an objective function similar to that of orbital space

variational quantum Monte Carlo. In addition, a feed-forward neural network, with

some minor modifications, can effectively model the overlap of the wavefunction but

has difficulty with optimization as the network becomes deeper. This chapter provides

both a demonstration of the flexibility of the FANCI strategy, a cautionary tale about

the näıve application of machine-learning methods, and an indication of how future

ML-based FANCI methods may be designed.
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Abstract

We present a Flexible Ansatz for N-body Configuration Interaction (FANCI)

that includes any multideterminant wavefunction. This ansatz is a generaliza-

tion of the Configuration Interaction (CI) wavefunction, where the coefficients

are replaced by a specified function of certain parameters. By making an appro-

priate choice for this function, we can reproduce popular wavefunction structures

like CI, Coupled-Cluster, Tensor Network States, and geminal-product wavefunc-

tions. The universality of this framework suggests a programming structure that

allows for the easy construction and optimization of arbitrary wavefunctions.

Here, we will discuss the structures of the FANCI framework and its implications

for wavefunction properties, particularly accuracy, cost, and size-consistency. We
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demonstrate the flexibility of this framework by reconstructing popular wavefunc-

tion ansätze and modifying them to construct novel wavefunction forms. FANCI

provides a powerful framework for exploring, developing, and testing new wave-

function forms.

2.1 Introduction

In this paper, we focus on electronic systems, whose Hamiltonian can be written as

Ĥelec =
∑
ij

hija
†
iaj + 1

2
∑
ijkl

gijkla
†
ia
†
jalak (2.1)

where hij and gijkl are the one- and two-electron integrals and a†i (ai) creates (anni-

hilates) the ith spin-orbital. The exact solutions to the electronic Hamiltonian can be

written as a linear combination of all possible N -electron basis functions (Slater de-

terminants) formed from the given set of spin-orbitals. This is the Full Configuration

Interaction (FCI) wavefunction[1]:

|ΨFCI〉 =
(2K
N )∑
m

Cm |m〉 (2.2)

where 2K is the number of spin-orbitals, N is the number of electrons, and Cm is the

coefficient of the Slater determinant |m〉. We can think of m as an occupation vector

that specifies which of the 2K spin-orbitals are occupied to construct the N -electron

basis functions. The number of parameters for the FCI wavefunction scales combina-

torially with the number of orbitals and electrons, so brute-force direct calculations of

37



Ph.D. Thesis - Taewon David Kim McMaster University - Chem & Chem Bio

the FCI wavefunctions are restricted to small systems with small basis sets.

Various approximations can be made to the Schrödinger equation to bring down its

cost: (1) simplify the Hamiltonian, (2) find alternative algorithms, and (3) parameterize

the FCI wavefunction[2–10]. In this article, we focus on the parameterization of the FCI

wavefunction. The simplest approximation to the FCI wavefunction involves explicitly

selecting (or truncating) the Slater determinants that contribute to the wavefunction.

Such wavefunctions are broadly termed selected Configuration Interaction (CI) wave-

functions:

|ΨCI〉 =
∑

m∈S
Cm |m〉 (2.3)

where S is a subset of the Slater determinants within the given basis. The Slater de-

terminants can be selected by seniority, such as the doubly occupied CI (DOCI) wave-

function[11–22], or by excitation-level relative to a reference Slater determinant, such

as CI singles and doubles (CISD) wavefunction[23]. Alternatively, we can select all (or

many) of the Slater determinants in a given set of orbitals. This leads to active-space

methods like CASSCF[24], RASSCF [25], and MCSCF[26]. Finally, if the orbitals are

localized, the Slater determinants that embody chemically intuitive concepts can be

linearly combined to construct Valence Bond (VB) structures[27–31]. This leads to

VBCI methods. While there are many variants of the CI wavefunction, most are not

size-consistent and choosing an efficient set of orbitals/determinants is molecule and

geometry dependent. For truly strongly-correlated systems, which have myriad Slater

determinants with small yet significant contributions, selected CI methods generally

fail.
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Alternatively, the FCI wavefunction can be approximated by an alternative form

(ansatz), such as a nonlinear function of parameters that are not simply the coeffi-

cients of the Slater determinants. For example, the Coupled-Cluster (CC) wavefunction

parameterizes the CI wavefunction using an exponential ansatz[32–37]:

|ΨCC〉 = exp
∑

i

∑
a

tai Ê
a
i +

∑
i<j

∑
a<b

tabij Ê
ab
ij + . . .

 |ΦHF〉

= exp


∑
i,a

Êa
i ∈S̃Ê

tai Ê
a
i

 |ΦHF〉
(2.4)

where Êa
i is an excitation operator that excites electrons from a set of occupied orbitals

i to a set of virtual orbitals a, tai is the associated coefficient/amplitude, and S̃Ê is the

set of allowed excitation operators. Just as in CI wavefunctions, the complexity of the

wavefunction (and the number of parameters) can be controlled by truncating the set

of excitation operators used.

Tensor Product State (TPS) wavefunctions are expressed with respect to parame-

ters that describe the correlations between spatial orbitals of different states (occupa-

tions)[38–50]:

|ΨTPS〉 =
∑

n1...nK

∑
i12...i1K
i23...i2K

...
iK−1K

(M1)n1
i12...i1K (M2)n2

i12i23...i2K . . . (MK)nKi1K ...iK−1K |n1 . . . nK〉
(2.5)

where nj is the occupation of the jth spatial orbital, ijk is an auxiliary index that

represents the correlation of jth orbital with the kth orbital, and Mj is a tensor that
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describes the correlation between the jth orbital and the other orbitals. Each tensor

is connected to others by at least one auxiliary index, meaning that the correlation

between orbitals is represented by tensor contraction on the auxiliary indices. The

specific auxiliary indices used in the tensor-contraction control the correlations that

the wavefunction explicitly captures and thereby the complexity of the wavefunction.

The Matrix Product State (MPS) wavefunction simplifies the TPS wavefunction by

only correlating the orbitals that are adjacent to each other in an ordered list [13, 51–

54]:

|ΨMPS〉 =
∑

n1,n2,...,nK−1,nK
i12,i23,...,iK−1K

(M1)n1
i12(M2)n2

i12i23 . . . (MK)nKiK−1K |n1n2 . . . nK−1nK〉 (2.6)

MPS wavefunctions are usually optimized using the Density Matrix Renormalization

Group (DMRG) algorithm[9, 55–65].

While MPS and TPS wavefunctions describe, in essence, the contribution of each or-

bital to the wavefunction, the Antisymmetrized Product of Geminals (APG) wavefunc-

tion describes the contribution of each electron pair (geminal) to the wavefunction[52,

53, 66–74]:

|ΨAPG〉 =
N/2∏
p=1

G†p |0〉

G†p |0〉 =
2K∑
ij

Cp;ija
†
ia
†
j |0〉

(2.7)

where G†p is the creation operator of the pth geminal and Cp;ij is the contribution of

the ith and jth spin-orbitals to the pth geminal. Again, the complexity and the accu-

racy of this wavefunction can be controlled by limiting the number of terms in the
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wavefunction. For example, we can choose a set of orbital pairs that contribute to the

wavefunction. The Antisymmetrized Product of Interacting Geminals (APIG) wave-

functions and its variants[54, 75–102], such as Antisymmetrized Product of 1-Reference

Orbital Geminals (AP1roG)[103] and Antisymmetrized Product of Rank-2 Geminals

(APr2G) wavefunctions[104] only use spin-orbital pairs from the same spatial orbital:

|ΨAPIG〉 =
N/2∏
p

G†p |0〉

=
N/2∏
p

K∑
i

Cp;ia
†
ia
†
ı̄ |0〉

(2.8)

where a†i and a†ı̄ are the creation operators of the alpha and beta spin-orbitals corre-

sponding to the ith spatial orbital.

Each of these wavefunction ansätze seems to be fundamentally different in its nomen-

clature, structure, and computation. Yet every wavefunction approximates the FCI

wavefunction, and through this common goal, they are intrinsically connected to one

another. There are known mathematical connections between certain ansätze and these

are occasionally exploited to derive new flavours of these methods. For example, many

geminal methods can be rewritten as special CC wavefunctions[81–83, 85, 103]. How-

ever, these insights are seldom transferred between ansätze and the development of new

ansätze seems even rarer. If the goal within electronic structure theory is to find the

ansatz that strikes the best balance between the cost and accuracy for a given system,

then do we not limit ourselves by committing to a particular ansatz and its assump-

tions? In this article, we present a general wavefunction structure in which new ansätze

can be easily developed and relations between existing ansätze can be elucidated. We
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express popular existing multideterminant ansätze (CI, CC, TPS, and APG wavefunc-

tions) within this framework and develop new structures by combining their features.

We hope to demonstrate that wavefunction design can be reduced to unique combina-

tions of modular structures, indicating that an incredible number of “new” ansätze can

be trivially developed.

2.2 Flexible Ansatz for N-particle Configuration In-

teraction (FANCI)

The proposed wavefunction structure is quite simple and resembles the CI wavefunction

(Equation 2.3):

|ΨFANCI〉 =
∑

m∈Sm

f(m, ~P ) |m〉 (2.9)

where Sm is a set of allowed Slater determinants and f is a function that controls

the weight of each Slater determinant, m, using the parameters, ~P . Since Slater de-

terminants can be uniquely represented with an excitation operator and a reference,

Equation 2.9 can be rewritten with respect to excitation operators, Ê.

|ΨFANCI〉 =
∑
Ê∈SÊ

f(Ê, ~P )Ê |Φref〉 (2.10)

where SÊ is a set of allowed excitation operators and f is a function that maps the weight

of the excitation operator from Ê and ~P . The Sm and SÊ are equivalent representations

of a set of Slater determinants and can be used interchangeably.
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In this paper, we aim to demonstrate the generality, utility, and flexibility of this

framework. In the next section, we show that the framework is general by expressing

popular ansätze as FANCI wavefunctions. Then, in Section 2.4, we discuss how the

choices of S, ~P , and f affect the accuracy, cost, and size-consistency of the wavefunc-

tion. Finally, we demonstrate the flexibility of this framework by constructing novel

wavefunction structures.

2.3 Examples

2.3.1 Hartree-Fock

The ground-state Hartree-Fock (HF) wavefunction is the Slater determinant of or-

thonormal orbitals that provides the lowest energy[105, 106]. Starting from an arbitrary

set of orthonormal orbitals, created by {a†j}, the HF wavefunction can be obtained by

optimizing the unitary transformation that provides the lowest energy.

|ΨHF〉 =
N∏
i=1

 2K∑
j=1

a†jUji

 |0〉
=
∑
m
|U(m)|− |m〉

(2.11)

where U is a unitary matrix, and U(m) is a submatrix of U obtained by selecting

the rows that correspond to the spin-orbitals in m. The derivation is given in the

Appendix 2.9.1. If only N orthonormal orbitals are rotated, or alternatively, if there is

no mixing of the occupied and virtual orbitals, then the HF wavefunction is obtained
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trivially:

|ΨHF〉 =
N∏
i=1

 N∑
j=1

a†jUji

 |0〉
= |U(m)|− |m〉

(2.12)

where m is the set of the occupied orbitals. With normalization, |U(m)|− becomes 1.

In other words, the HF wavefunction is invariant to rotation of the occupied orbitals if

there is no mixing between occupied and virtual orbitals [107].

2.3.2 Truncated Configuration Interaction

The truncated CI wavefunction (Equation 2.3) is a linear combination of selected Slater

determinants[108]. Such wavefunctions can be trivially described in the proposed frame-

work: the set of allowed Slater determinants, S, is the same; the parameters, ~P , are the

coefficients of the Slater determinants, ~C; and the parameterizing function, f , simply

selects the appropriate coefficient, Cm, given the Slater determinant, m.

f(m, ~C) = ~em · ~C

where ~em is a vector that gives 1 in the position of m and 0 elsewhere. Altogether, the

CI wavefunction is

|ΨCI〉 =
∑

m∈Sm

(
~em · ~C

)
|m〉 (2.13)

44



Ph.D. Thesis - Taewon David Kim McMaster University - Chem & Chem Bio

If the CI wavefunction is expressed with respect to excitations on a reference, we get

|ΨCI〉 =
∑

Êa
i ∈SÊ

(
~eÊa

i
· ~C
)
Êa

i |Φref〉 (2.14)

2.3.3 Coupled-Cluster

The CC wavefunction (Equation 2.4) uses the exponential operator to approximate

high-order excitations as a product of lower-order excitations [109].

|ΨCC〉 = exp(T̂ ) |ΦHF〉

=
∞∑
n=0

1
n! T̂

n |ΦHF〉
(2.15)

where

T̂ =
∑

Êa
i ∈S̃Ê

tai Ê
a
i (2.16)

and S̃Ê is a set of excitation operators. The Maclaurin series in Equation 2.15 lets one

express the CI coefficients in terms of CC cluster amplitudes tai . Specifically, the clus-

ter amplitudes are cumulants of the CI coefficients [110–114]. The powers of T̂ (cluster

operator) give the wavefunction access to excitations beyond those allowed (S̃Ê) by gen-

erating all (product-wise) combinations of the allowed excitation operators. However,

an excitation can be described with different combinations of excitation operators, and

the cumulant can be simplified by grouping together terms that correspond to the same

excitation (or Slater determinant). Each combination corresponds to a subset of S̃Ê,

such that the set of all Slater determinants in the CC wavefunction can be described
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in terms of all possible subsets of S̃Ê:

SÊ =

 ∏
Êk∈T

Êk

∣∣∣∣∣∣T ⊆ S̃Ê

 (2.17)

Then, the wavefunction can be written as a sum over all possible Slater determinants

and a sum over all possible combinations of excitation operators that produce the given

Slater determinant.

f(Êa
i , t) =

∑
{Êa1

i1
...Êan

in }⊆S̃Ê
sgn
∏n

k=1 Ê
ak
ik

=Êa
i

sgn(σÊa1
i1
...Êan

in
) 1
n!

∣∣∣∣∣∣∣∣∣∣∣∣

ta1
i1

. . . tanin
... . . . ...

ta1
i1

. . . tanin

∣∣∣∣∣∣∣∣∣∣∣∣

+

=
∑

{Êa1
i1
...Êan

in }⊆S̃Ê
sgn
∏n

k=1 Ê
ak
ik

=Êa
i

sgn(σÊa1
i1
...Êan

in
)
n∏
k=1

takik

(2.18)

where n is the dimension of the subset {Êa1
i1
. . . Êan

in }. The sum can be interpreted as a

sum over all possible partitions of a given excitation operator, Êa
i , into excitations from

the given set. The signature of the permutation, sgn(σÊa1
i1
...Êan

in
), results from reordering

the creation and annihilation operators of the lower-order excitations to the same order

as the given excitation operator:

Êa
i = sgn(σÊa1

i1
...Êan

in
)Êa1

i1
· · · Êan

in (2.19)
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The permanent, |A|+, accounts for all possible orderings within a given set of excitation

operators. Altogether, the CC wavefunction can be reformulated as

|ΨCC〉 =
∑

Êa
i ∈SÊ


∑

{Êa1
i1
...Êan

in }⊆S̃Ê
sgn
∏n

k=1 Ê
ak
ik

=Êa
i

sgn(σÊa1
i1
...Êan

in
)
n∏
k=1

takik

 Ê
a
i |ΦHF〉 (2.20)

More details are provided in the Appendix 2.9.4.

2.3.4 Tensor Product State

The TPS (and MPS) wavefunction (Equation 2.5) determines the weight of a Slater

determinant by tensor (and matrix) contractions, where each shared index corresponds

to a correlation between orbitals[9, 42]:

|ΨTPS〉 =
∑

n1...nK

∑
i12...i1K
i23...i2K

...
iK−1K

(M1)n1
i12...i1K (M2)n2

i12i23...i2K . . . (MK)nKi1K ...iK−1K |n1 . . . nK〉

Each spatial orbital, k, is associated with a tensor, Mk, and each tensor is associated

with the occupation of its spatial orbital (i.e. its state), nk, and with other tensors

using its auxiliary indices, {i1k . . . ik−1 k ik k+1 . . . ikK}. Then, the coefficient associated

with the Slater determinant, represented by {n1 . . . nK}, is approximated by tensor-

contraction. Many variants of TPS, including MPS, impose some structure on the tensor

product so that the evaluation and optimization of the wavefunction are computation-

ally tractable.
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Since {n1 . . . nK} is yet another representation of the Slater determinant, we can

describe the wavefunction with respect to n:

n = {n1 . . . nK}

Therefore, the TPS wavefunction can be rewritten as

|ΨTPS〉 =
∑

n∈SFCI

K⊙
k=1

(Mk)nk |n〉 (2.21)

whereK is the number of spatial orbitals, and⊙ describes the specific tensor-contraction

used in the wavefunction. While it is not common to do so, the TPS wavefunctions can

be equivalently expressed with respect to spin-orbitals. If each state of the TPS wave-

function corresponds to the occupation of a spin-orbital, mk, then the same notation

can be used as in Equation 2.9

|ΨTPS〉 =
∑

m∈SFCI

2K⊙
k=1

(Mk)mk |m〉 (2.22)

where Mk is the tensor associated with spin-orbital k.
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2.3.5 Antisymmetrized Product of Geminals

Just as the HF wavefunction is constructed as an antisymmetrized product of one-

electron wavefunctions (orbitals), the APG wavefunction is constructed as an antisym-

metrized product of two-electron wavefunctions (geminals)[66, 68, 69, 74]:

|ΨAPG〉 =
N/2∏
p=1

G†p |0〉

=
N/2∏
p=1

2K∑
ij

Cp;ija
†
ia
†
j |0〉

=
N/2∏
p=1

∑
mk

Cp;mk
A†mk

|0〉

where the mk denotes a set of a pair of indices and A†mk
denotes the creation operator

that corresponds to mk. Similar to the CC wavefunction, the product of sums can be

expanded out as a sum over each Slater determinant and a sum over the different com-

binations of electron pairs that create the Slater determinant. In the HF wavefunction,

the product of sums results in a determinant due to the antisymmetry with respect

to the interchange of electrons. In the APG wavefunction, however, the interchange of

electron pairs is symmetric, and the product of sums results in a permanent. Given the

set of all possible two-electron creation operators, S̃, a subset of exactly N
2 two-electron

creators, {A†m1 . . . A
†
mN/2
}, is needed to construct a given Slater determinant, m, where

the number of electrons, N , is even. Since an orbital cannot be occupied more than once

and all the orbitals are necessary to construct a given Slater determinant, any selection
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of orbital pairs, {m1 . . .mN/2}, must be disjoint and exhaustive.

f(m,C) =
∑

{m1...mN/2}⊆S̃
N/2⋃
k=1

mk=m

mp∩mq=∅ ∀p 6=q

sgn(σm1...mN/2)|C(m1, . . . ,mN/2)|+

=
∑

{m1...mN/2}⊆S̃
sgnA†m1 ...A

†
mN/2 |0〉=|m〉

sgn(σm1...mN/2)|C(m1, . . . ,mN/2)|+

(2.23)

where the orbital pairs, {m1 . . .mN/2}, are selected such that they result in the given

Slater determinant, m, without duplicate orbitals. Similar to the CC wavefunction

(Equation 2.18), the sum can be interpreted as a sum over all allowed partitions of

the given Slater determinant into the electron pairs. The signature of the permutation,

sgn(σm1...mN/2), results from reordering the creation operators in the electron pairs to

the same order as in the given Slater determinant:

∏
i∈m

a†i = sgn(σm1...mN/2)
N/2∏
p=1

A†mp
(2.24)

Altogether, the APG wavefunction is reformulated as

|ΨAPG〉 =
∑

m∈SFCI
m


∑

{m1...mN/2}⊆S̃
sgnA†m1 ...A

†
mN/2 |0〉=|m〉

sgn(σm1...mN/2)|C(m1, . . . ,mN/2)|+

 |m〉 (2.25)

where SFCI
m is a set of all possible Slater determinants (i.e. Slater determinants of a FCI

wavefunction). The derivation is given in the Appendix 2.9.2.
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The Antisymmetrized Product of Interacting Geminals (APIG) is a special case

of the APG wavefunction such that only the electron pairs within the same spatial

orbital, i.e. doubly occupied spatial orbitals, are used to build the wavefunction[102].

The sum over the partitions reduces to a single element because there is only one way

to construct a given (seniority-zero) Slater determinant from electron pairs of doubly

occupied orbitals.

|ΨAPIG〉 =
∑

m∈SDOCI
m

|C(m)|+ |m〉 (2.26)

where SDOCI
m is the set of all seniority-zero (no unpaired electrons) Slater determinants,

and |C(m)|+ is a permanent of the parameters that correspond to the spatial orbitals

used to construct m. The APIG wavefunction can be further simplified by imposing

structures onto the permanent: the Antisymmetrized Product of 1-reference Orbitals

Geminals (AP1roG) wavefunction assumes that a large portion of the coefficient ma-

trix is an identity matrix [103]; and the Antisymmetrized Product of rank-2 Geminals

(APr2G) wavefunction assumes that the coefficient matrix is a Cauchy matrix[104].

APr2G reduces the cost of evaluating a permanent (O(n!)) to that of a determinant

(O(n3)). AP1roG has the cost of O(m!) where m is the order of excitation with respect

to the reference Slater determinant. It is cheap to evaluate the overlap of the AP1roG

wavefunction with low-order excitations of the reference determinant.

2.3.6 Universality of FANCI

The CI, CC, TPS, and APG wavefunctions and their variants can be expressed within

the FANCI framework using different S, ~P , and f . We can define a multideterminant

wavefunction as a function that has a well-defined overlap with a set of orthonormal
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Slater determinants. Provided that the wavefunction exists within the space spanned by

the Slater determinants, the wavefunction can be re-expressed as a linear combination

of Slater determinants via a projection:

|Ψ(~P )〉 =
∑

m∈Sm

|m〉 〈m|Ψ(~P )〉

=
∑

m∈Sm

f(m, ~P ) |m〉
(2.27)

where

f(m, ~P ) = 〈m|Ψ(~P )〉 (2.28)

Therefore, all multideterminant wavefunctions, as defined above, can be expressed

within the framework of Equation 2.9: S is the minimal set of Slater determinants

required to fully describe the wavefunction; ~P is the parameters of the wavefunction;

and f is the overlap of the wavefunction with the Slater determinant, m.

2.4 Characteristics

In the formulation of Equation 2.9, a multideterminant wavefunction is defined using

only a specified (sub)set of Slater determinants, S, wavefunction parameters, ~P , and

function f . Since the characteristics of a wavefunction ansatz depend on its structure,

all characteristics of a multideterminant wavefunction can be deduced from the spec-

ified S, ~P , and f . Designing a wavefunction with desirable characteristics, therefore,

merely requires selecting S, ~P , and f . We propose to approach method development in
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electronic structure theory as a search for S, ~P , and f that induce the desired wavefunc-

tion features. While many features can be considered, and we shall consider additional

features in future work, here we shall address just three important characteristics: ac-

curacy, cost, and size-consistency.

2.4.1 Accuracy

Ultimately, the FANCI wavefunction models the FCI wavefunction by parameterizing

the weights of each Slater determinant. If there are Slater determinants absent from the

FANCI wavefunction, i.e. S ⊂ SFCI, then the omitted Slater determinants are assumed

to have no contributions to the FCI wavefunction. The effects of S can be viewed as a

modification of the parameterizing function.

|ΨFANCI〉 =
∑

m∈SFCI

g(m, ~P ) |m〉

where

g(m, ~P ) =


f(m, ~P ) ; m ∈ S

0 ; m 6∈ S

Alternatively, the FANCI wavefunction can be viewed as a model for the CI wavefunc-

tion built using the same restricted set of Slater determinants. In either case, preventing

Slater determinants from contributing to the wavefunction will cause deviations from

the FCI wavefunction.

As with any parameterization (or fitting) problem, it becomes easier to find a func-

tion that accurately describes each weight as the number of parameters increase. FANCI
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wavefunctions cannot be exact, in general, unless the number of parameters is greater

than or equal to the number of parameters in the Hamiltonian which, in the case of

electronic structure theory, means there should be at least as many parameters as there

are two-electron integrals[115, 116]. Methods with many fewer parameters are, typi-

cally, static correlation methods. On the other hand, appropriately constructed FANCI

ansätze should approach the FCI limit as the number of parameters approaches the

number of Slater determinants. However, the cost associated with optimizing the wave-

function typically increases superlinearly as the number of parameters increases.

2.4.2 Cost

The cost associated with a wavefunction can be divided into the cost of its storage,

evaluation, and optimization, all of which are intricately linked. The cost of storage is

associated with the number of parameters needed to describe the wavefunction. The

cost of evaluating the wavefunction depends on the cost of evaluating f and on the

number of times f needs to be evaluated. For example, in order to evaluate the norm

of a wavefunction, f must be evaluated for every Slater determinant in S.

〈Ψ|Ψ〉 =
∑

m∈S

∑
n∈S

f ∗(m) 〈m|n〉 f(n)

=
∑

m∈S
f ∗(m)f(m)
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Upon optimization, a new set of parameters are found such that the wavefunction

satisfies the Schrödinger equation.

Ĥ |Ψ〉 = E |Ψ〉 (2.29)

Equation 2.29 is often rewritten in its variational form or its projected form to make it

easier to solve numerically. The optimization procedure and the associated costs depend

on the equations that are being solved.

The variational Schrödinger equation involves integrating both sides of Equation 2.29

with the wavefunction[1].

〈Ψ|Ĥ|Ψ〉 = E 〈Ψ|Ψ〉∑
m,n∈S

f ∗(m, ~P ) 〈m|Ĥ|n〉 f(n, ~P ) = E
∑

m∈S
f ∗(m, ~P )f(m, ~P )

(2.30)

If the number of Slater determinants in S is comparable to those in the FCI wavefunc-

tion, even setting up Equation 2.30 will require far too many evaluations of f to be

computationally tractable. During the optimization, all terms need to be evaluated at

each step, where the number of steps needed for convergence varies depending on the

system and the optimization algorithm.

In the projected Schrödinger equation, Equation 2.29 is integrated against an arbi-

trary function, Φ[85].

〈Φ|Ĥ|Ψ〉 = E 〈Φ|Ψ〉 (2.31)

If Φ is not Ψ, then certain components of Ψ may be projected out, imposing additional

structure on the wavefunction through the optimization process. We can express this
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projection explicitly with a projection operator onto some set of basis functions. When

projected onto a complete set of Slater determinants, the objective function in the

variational Schrödinger equation can be re-expressed as:

〈Ψ|Ĥ|Ψ〉 = E 〈Ψ|Ψ〉

〈Ψ|
 ∑

m∈SFCI

|m〉 〈m|

 Ĥ |Ψ〉 = E 〈Ψ|
 ∑

m∈SFCI

|m〉 〈m|

 |Ψ〉
∑

m∈SFCI

〈Ψ|m〉 〈m|Ĥ|Ψ〉 = E
∑

m∈SFCI

〈Ψ|m〉 〈m|Ψ〉

(2.32)

Then, this equation can be separated out as a system of equations

〈Ψ|m1〉 〈m1|Ĥ|Ψ〉 = E 〈Ψ|m1〉 〈m1|Ψ〉
...

〈Ψ|mM〉 〈mM |Ĥ|Ψ〉 = E 〈Ψ|mM〉 〈mM |Ψ〉

(2.33)

or equivalently,

〈m1|Ĥ|Ψ〉 = E 〈m1|Ψ〉
...

〈mM |Ĥ|Ψ〉 = E 〈mM |Ψ〉

(2.34)

Therefore, we can approximate the variational solution by solving the projected Schrödinger

equation using a set of functions that capture the important characteristics of the

wavefunction. The cost of evaluating Equation 2.31 and 2.34 depends on the func-

tions onto which the Schrödinger equation is projected. Some wavefunction structures

have special functions such that Equation 2.31 or 2.34 can be evaluated cheaply. For
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example, the CC wavefunctions are often projected against 〈ΦHF| exp(−T̂ ) because

〈ΦHF| exp(−T̂ )Ĥ exp(T̂ )|ΦHF〉, can be simplified using the Baker-Campbell-Hausdorff

expansion[117]. For a general FANCI wavefunction, however, it is convenient to project

onto a set of Slater determinants, {m1 . . .mM}, obtaining a system of (generally non-

linear) equations to solve:

∑
m∈S

f(m, ~P ) 〈m1|Ĥ|m〉 = Ef(m1, ~P )

...∑
m∈S

f(m, ~P ) 〈mM |Ĥ|m〉 = Ef(mM , ~P )

(2.35)

In order to find a solution, the number of equations in the system of equations must be

greater than the number of unknowns. Since the number of possible Slater determinants

grows exponentially, there will not be a shortage of equations (Slater determinants), and

the number of equations will almost always be greater than the number of unknowns.

If the least-squares solution of the nonlinear equations is found, then the residual can

be used to measure the error associated with the optimized wavefunction (and energy).

We can derive the projected Schrödinger equation (Equation 2.34) directly from

Equation 2.29 without integrating.

Ĥ |Ψ〉 = E |Ψ〉 ∑
m∈SFCI

|m〉 〈m|

 Ĥ |Ψ〉 = E

 ∑
m∈SFCI

|m〉 〈m|

 |Ψ〉
∑

m∈SFCI

|m〉 〈m|Ĥ|Ψ〉 = E
∑

m∈SFCI

|m〉 〈m|Ψ〉

(2.36)
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where both sides of the equations are projected onto a complete set of Slater determi-

nants. This equation can be separated for each Slater determinant to produce Equa-

tion 2.34

〈m1|Ĥ|Ψ〉 = E 〈m1|Ψ〉

〈m2|Ĥ|Ψ〉 = E 〈m2|Ψ〉
...

(2.37)

Essentially, the Schrödinger equation (Equation 2.29) is broken apart into separate

equations for each contributing Slater determinant. If the projection operator is not

complete (i.e. contributions from certain Slater determinants are discarded) then the

equation (or system of equations) will be an approximation of the original Equation 2.29.

Unless there is a special algorithm that limits the number of evaluated terms in

the variational Schrödinger equation (Equation 2.30) or a function Φ that allows cheap

integration of the Schrödinger equation (Equation 2.31), a wavefunction should be eval-

uated using the projected Schrödinger equation (Equation 2.33 and 2.34) to control the

optimization process. Both the cost and accuracy of the wavefunction can be controlled;

as the number of projections increases, both accuracy and cost increases. In addition,

we can impose symmetry on the wavefunction by projecting the Schrödinger equation

onto a space that satisfies a particular symmetry [8, 99, 118–120]. For example, we can

reintroduce particle number symmetry onto a number-symmetry broken wavefunction

by projecting it onto Slater determinants with the selected particle number.
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2.4.3 Size-Consistency

Let there be a system, AB, composed of two non-interacting subsystems, A and B.

Then, a wavefunction is size-consistent if the energy of the wavefunction for AB is the

sum of the energies of the wavefunctions for A and B, [117] i.e.

HAB |ΨAB〉 = EAB |ΨAB〉

= (EA + EB) |ΨAB〉
(2.38)

where

HA |ΨA〉 = EA |ΨA〉

HB |ΨB〉 = EB |ΨB〉
(2.39)

Since subsystems A and B are non-interacting, there are no nonzero terms in the

Hamiltonian that couple A and B, i.e. HAB = HA+HB. Then, the (partially symmetry

broken) wavefunction ΨAB can be written as a product of the (orthogonal) subsystem

wavefunctions, ΨA and ΨB.

|ΨAB〉 = |ΨA〉 |ΨB〉
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Similarly, a FANCI wavefunction is size-consistent if the weight function is multi-

plicatively separable:

|ΨAB〉 =
∑

m∈SAB
fAB(m, ~P ) |m〉

=
∑

mA∈SA

∑
mB∈SB

fA(mA, ~PA)fB(mB, ~PB) |mA〉 |mB〉

=
∑

mA∈SA
fA(mA, ~PA) |mA〉

∑
mB∈SB

fB(mB, ~PB) |mB〉

= |ΨA〉 |ΨB〉

(2.40)

where subscripts A and B designate that the quantity belongs only to subsystem A

and B, respectively. This not only requires that f be multiplicatively separable f , i.e.

fAB = fAfB, but also that the Slater determinants, m, and the parameters, ~P , must be

divisible into two disjoint parts, {mA,mB} and {~PA, ~PB} respectively. To separate each

Slater determinant into the subsystems, m must be expressed using orbitals localized

to each subsystem. Since each m can have varying contribution from the subsystems

A and B, SA and SB contain Slater determinants with different numbers of electrons.

However, we can impose the particle number symmetry during the optimization process.

Similarly, the parameters must represent quantities that are specific to each subsystem.

Notice that fAB = fAfB is true when f is a determinant (Hartree-Fock), exponential

(Coupled-Cluster), or permanent (geminals).
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2.5 Ansätze

In the formulation of Equation 2.9, a multideterminant wavefunction can be entirely

expressed with a set of Slater determinants, S, parameters, ~P , and a weight function, f .

Altering the S, ~P , or f of a given ansatz will effectively result in a new ansatz. Addition-

ally, the optimization method can be modified to produce an “ansatz” with a different

accuracy and cost. For example, DMRG is an algorithm for optimizing MPS[121]. Here,

we modify the FANCI forms of the CC (Equation 2.20), TPS (Equation 2.21), and APG

(Equation 2.25) wavefunctions to construct several new wavefunction structures.

2.5.1 CC with Creators

Just as the TPS and APG wavefunctions are expressed with respect to creation op-

erators, we can replace the excitation operators in the CC wavefunction with creation

operators.

|ΨCC〉 = exp
∑

bi

CbiÂ
†
bi +

∑
fi

CfiÂ
†
fi

 |0〉 (2.41)

where A†bi is a creation operator of even number of electrons (denoted as even-electron),

A†fi is a creation operator of odd number of electrons (denoted as odd-electron), bi is

the set of orbitals created by A†bi , and fi is the set of orbitals created by A†fi . For a

consistent notation, we define S̃b and S̃f as the set of allowed creation operators. Since

each creation operator can create a different number of electrons, the total number of

operators needed for m can vary depending on the selection of creation operators. For

a given Slater determinant, let nb be the number of even-electron creators and nf be
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the number of odd-electron creators. Similar to the APG wavefunction, there can be

multiple combinations of creation operators that give the same Slater determinant. We

represent these combinations as a sum over {b1 . . .bnbf1 . . . fnf} such that the product

of the associated creators results in the given Slater determinant:

∏
i∈m

a†i = sgn
(
σ(Â†b1

. . . Â†bnb
Â†f1

. . . Â†fnf
)
)
Â†b1

. . . Â†bnb
Â†f1

. . . Â†fnf
(2.42)

Similar to the signature in the CC wavefunction, sgn
(
σ(Â†b1

. . . Â†bnb
Â†f1

. . . Â†fnf
)
)

is

the signature resulting from reordering the one-electron creators into the same order as

the given Slater determinant.

In the CC wavefunction, all of the excitation operators commute with one another.

Accounting for all possible orderings of the operators results in a permanent of the

parameters with identical rows, i.e.

∣∣∣∣∣∣∣∣∣∣∣∣

ta1
i1

. . . taNiN
... . . . ...

ta1
i1

. . . taNiN

∣∣∣∣∣∣∣∣∣∣∣∣

+

Similarly, if all of the creation operators commute with one another, i.e. they are all

even-electron creators, then

|Ψ〉 =
∑

m∈Sm


∑

{b1...bnb}⊆S̃b

sgnÂ†b1
...Â†bnb

|0〉=|m〉

sgn
(
σ(Â†b1

. . . Â†bnb
)
) nb∏
i=1

Cbi

 |m〉 (2.43)

62



Ph.D. Thesis - Taewon David Kim McMaster University - Chem & Chem Bio

where

Sm =


∏
Â†
k
∈T

Â†k |0〉

∣∣∣∣∣∣∣T ⊆ S̃b


For systems with an odd number of electrons, there must be at least one odd-electron

creator. The anticommutation between these creators results in a determinant. Unlike

the permanent, the determinant of a matrix with identical rows is zero. Therefore, there

must be one odd-electron creator within a set of creation operators that construct m.

|Ψ〉 =
∑

m∈Sm


∑

{b1...bnb}⊆S̃b, f∈S̃f

sgnÂ†b1
...Â†bnb

Â†f |0〉=|m〉

sgn
(
σ(Â†b1

. . . Â†bnb
Â†f )

)( nb∏
i=1

Cbi

)
Cf

 |m〉 (2.44)

The derivation is provided in the Appendix 2.9.5.

In the case where only two-electron creation operators are used, this wavefunction

reduces to the Antisymmetrized Geminal Power (AGP)[91], HF-Bogoliubov[122], or the

BCS superconducting[123] wavefunction (Equation 2.45).

|Ψ〉 = exp
∑

ij

cija
†
ia
†
j

 |0〉

=
∑

m∈Sm


∑

{m1...mN/2}⊆S̃
sgnA†m1 ...A

†
mN/2 |0〉=|m〉

sgn(σm1...mN/2)
N/2∏
k=1

Cmk

 |m〉
(2.45)

Notice that this type of coupled-cluster wavefunction is not size consistent and that

it breaks particle number symmetry (unless it is restored with a projection onto correct
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particle number).

2.5.2 TPS Variants

TPS with Quasiparticles

In the TPS wavefunction (Equation 2.22), each parameter in (Mk)nk describes the

correlation between a spatial orbital, k, and all of the other orbitals. In the APG wave-

function (Equation 2.7) and CC-motivated quasiparticle wavefunction (Equation 2.44),

each parameter is associated with a cluster of spatial orbitals (quasiparticle). Then, we

should be able to build a TPS-like wavefunction using creation operators of an arbitrary

number of electrons, rather than the one-electron creation operators.

|Ψ〉 =
∑

m∈Sm


∑

{m1...mn}⊆S̃
sgnA†m1 ...A

†
mn |0〉=|m〉

sgn(σm1...mn)
⊙
k∈S̃

(Mk)δ(k,{m1...mn})

 |m〉 (2.46)

where

Sm =


∏
Â†k∈T

Â†k |0〉

∣∣∣∣∣∣∣T ⊆ S̃


Mk is a tensor that corresponds to the creation operator Â†k, and δ is a function that

checks if the creator Â†k is in a set of creators, {m1 . . .mn}.

δ(k, {m1 . . .mn}) =


1 if k ∈ {m1 . . .mn}

0 if k 6∈ {m1 . . .mn}
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Then, (Mk)0 and (Mk)1 are tensors that correspond to the absence and presence of the

creator Â†k, respectively.

TPS with Excitation Operators

Just as the CC wavefunction can be rebuilt with creation operators, we can rebuild the

TPS wavefunction with excitation operators. Each tensor, tÊa
i
, can be associated with

Êa
i , and has auxiliary indices that describe the correlation between operators.

|Ψ〉 =
∑

Êa
i ∈SÊ


∑

{Êa1
i1
...Êan

in }⊆S̃Ê
sgn
∏n

k=1 Ê
ak
ik

=Êa
i

sgn(σÊa1
i1
...Êan

in
)
⊙

Êk∈S̃Ê

(tÊk)
δ(Êk,{Ê

a1
i1
...Êan

in })

 Ê
a
i |ΦHF〉 (2.47)

where

SÊ =

 ∏
Êk∈T

Êk

∣∣∣∣∣∣T ⊆ S̃Ê


and δ describes the presence of an excitation operator, Êk, in the given set, {Êa1

i1
. . . Êan

in }

δ(Êk, {Êa1
i1
. . . Êan

in }) =


1 if Êk ∈ {Êa1

i1
. . . Êan

in }

0 if Êk 6∈ {Êa1
i1
. . . Êan

in }
(2.48)

Comparing Equation 2.47 with Equation 2.20, the CC wavefunction can be consid-

ered a special case of this wavefunction, where the tensor (tÊk)
δk is 1 if δk = 0 and a

variable scalar value if δk = 1.
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2.5.3 APG Generalized to Excitation Operators

Just as the TPS wavefunction can be built with excitation operators (Equation 2.47),

we can rewrite the APG wavefunction with excitation operators.

|Ψ〉 =
n∏
p=1

 ∑
Êk∈S̃Ê

tp;ÊkÊk

 |ΦHF〉 (2.49)

where n is the number of excitation operators that will be multiplied together. Unlike

the CC wavefunction, which can generate all possible combinations of the excitation

operators, this wavefunction can only account for the combinations of n excitation

operators. The corresponding weight function in the FANCI notation is

|Ψ〉 =
∑

Êa
i ∈SÊ


∑

{Êa1
i1
...Êan

in }⊆S̃Ê
sgn
∏n

k=1 Êk=Êa
i

sgn(σÊa1
i1
...Êan

in
)

∣∣∣∣∣∣∣∣∣∣∣∣

t1;Êa1
i1

. . . t1;Êan
in

... . . . ...

tn;Êa1
i1

. . . tn;Êan
in

∣∣∣∣∣∣∣∣∣∣∣∣

+ Ê
a
i |ΦHF〉 (2.50)

where

SÊ =

 ∏
Êk∈T

Êk

∣∣∣∣∣∣T ⊆ S̃Ê


and sgn(σÊa1

i1
...Êan

in
) is the signature of the permutation of the one-electron creation and

annihilation operators from the product of excitation operators, Êa1
i1
· · · Êan

in , to the

given excitation operator, i.e.

Êa
i = sgn(σÊa1

i1
...Êan

in
)Êa1

i1
· · · Êan

in (2.51)
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Other combinations of excitation operators can be included into Equation 2.49 via

the summation.

|Ψ〉 =
∑
n∈P

1
n!

n∏
p=1

 ∑
Êk∈S̃Ê

tp;ÊkÊk

 |ΦHF〉 (2.52)

where P is the allowed number of excitation operators that can be combined. Recall

that removing an index (so that all the geminals are identical) in the traditional APG

wavefunction form leads to the AGP wavefunction. Similarly, when one removes the

index, p, from the excitation-based APG wavefunction form and allows all possible

combinations of excitation operators, one obtains the CC wavefunction:

|ΨCC〉 =
∞∑
n=0

1
n!

n∏
p=1

 ∑
Êk∈S̃Ê

tÊkÊk

 |ΦHF〉

=
∞∑
n=0

1
n!

 ∑
Êk∈S̃Ê

tÊkÊk


n

|ΦHF〉

= exp

 ∑
Êk∈S̃Ê

tÊkÊk

 |ΦHF〉

(2.53)

2.5.4 General Quasiparticle Wavefunctions

In the Equation 2.44, any creation operator can be used (within the sets S̃b and S̃f ) to

construct a Slater determinant. Similarly, we can generalize the APG wavefunction to

include all even-electron creation operators.

|Ψ〉 =
n∏
p=1

 ∑
Â†
k
∈S̃b

Cp;mk
Â†k

 |0〉 (2.54)
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where n is the number of quasiparticles in the wavefunction (i.e. number of opera-

tors used to construct a Slater determinant), and S̃b is a set of even-electron creation

operators. In the FANCI formulation,

|Ψ〉 =
∑

m∈Sm


∑

{m1...mn}⊆S̃b

sgnA†m1 ...A
†
mn |0〉=|m〉

sgn(σm1...mn)

∣∣∣∣∣∣∣∣∣∣∣∣

C1;m1 . . . C1;mn

... . . . ...

Cn;m1 . . . Cn;mn

∣∣∣∣∣∣∣∣∣∣∣∣

+ |m〉 (2.55)

where S̃b is a set of allowed even-electron creation operators,

Sm =


∏
Â†
k
∈T

Â†k |0〉

∣∣∣∣∣∣∣T ⊆ S̃b


and sgn(σm1...mn) is the signature of the permutation needed to reorder the one-electron

creation operators from the product of quasiparticle creation operators to the given

Slater determinant. ∏
i∈m

a†i = sgn(σm1...mn)
n∏
k=1

∏
i∈mk

a†i (2.56)

Note that the zero-electron creation operator can be considered as an even-electron

creation operator.

Similarly, the wavefunction constructed using only odd-electron creation operator

can be expressed using a determinant.

|Ψ〉 =
∑

m∈Sm


∑

{m1...mn}⊆S̃f

sgnA†m1 ...A
†
mn |0〉=|m〉

sgn(σm1...mn)

∣∣∣∣∣∣∣∣∣∣∣∣

C1;m1 . . . C1;mn

... . . . ...

Cn;m1 . . . Cn;mn

∣∣∣∣∣∣∣∣∣∣∣∣

− |m〉 (2.57)
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where

Sm =


∏
Â†
k
∈T

Â†k |0〉

∣∣∣∣∣∣∣T ⊆ S̃f


and S̃f is a set of selected odd-electron creation operators.

When both even and odd-electron creation operators are present in S̃, the inter-

change of creators commutes or anticommutes depending on the pair of creators, and

additional structure is necessary to account for this behaviour. First, we distinguish

between the set of even and odd orbitals with bi and fj, respectively. A given Slater

determinant m is constructed with n = nb + nf creation operators, where nb is the

number of even-electron creators and nf is the number of odd-electron creators. A

permanent is needed to account for all possible ordering of the even-electron creators

and the resulting commutations. A determinant is needed to account for all possible

ordering of the odd-electron creators and the resulting anticommutations. Finally, the

commutation between an even-electron and an odd-electron creator can be accounted

for by a sum over all possible selections of the nb even-electron creators from n posi-

tions, i.e. {ib1 . . . ibnb} ⊆ {b1 . . .bnbf1 . . . fnf}. The positions of the odd-electron creators

are the remaining nf positions, i.e. {if1 . . . ifnf} = {b1 . . .bnbf1 . . . fnf}\{ib1 . . . ibnb}. Then,

we can construct the generalized quasiparticle wavefunction (Equation 2.54) in which

any set of creators can be used.

|Ψ〉 =
∑
m


∑

{b1...bnb}⊆S̃b, {f1...fnf }⊆S̃f

sgnÂ†b1
...Â†bnb

Â†f1
...Â†fnf

|0〉=|m〉

sgn(σÂ†b1
...Â†bnb

Â†f1
...Â†fnf

)
∑

{ib1...i
b
nb
}⊆{b1...bnb ,f1...fnf }

{if1 ...i
f
nf
}={b1...bnb ,f1...fnf }\{i

b
1...i

b
nb
}

∣∣∣∣∣∣∣∣∣∣
Cb

1ib1
. . . Cb

1ibnb... . . . ...
Cb
nbi

b
1
. . . Cb

nbibnb

∣∣∣∣∣∣∣∣∣∣

+ ∣∣∣∣∣∣∣∣∣∣∣
Cf

1if1
. . . Cf

1ifnf... . . . ...
Cf

nf i
f
1
. . . Cf

nf i
f
nf

∣∣∣∣∣∣∣∣∣∣∣

−

|m〉

(2.58)
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where

Sm =


∏
Â†
k
∈T

Â†k |0〉

∣∣∣∣∣∣∣T ⊆ S̃b ∪ S̃f


∏
i∈m

a†i = sgn(σÂ†b1
...Â†bnb

Â†f1
...Â†fnf

)
nb∏
k=1

A†bk

nf∏
l=1

A†fl

and C is a n×dim(S̃b∪ S̃f ) matrix. Note that the set of orbitals, bi and fj, correspond

to a column in C and thus are used as a column index. Here, the column indices are

made explicit using the index i.

The derivation and more details are in the Appendix 2.9.6.

2.5.5 Changing Solvers

Often times, the algorithm for optimizing the parameters is synonymous with the wave-

functon ansatz. For example, DMRG is often associated with MPS wavefunctions, and

Quantum Monte-Carlo (QMC) is often associated with FCI wavefunctions. Using dif-

ferent algorithms to optimize the parameters will change the cost and the reliability

of the wavefunction. Certain algorithms can be applied to a wide range of wavefunc-

tion structures and systems; whereas specialized algorithms are cheaper, but are often

limited to specific wavefunction structures and systems.

For example, the DMRG algorithm with the MPS wavefunction provides variational

results and is effective in describing linear systems. The algorithm is specific to the

MPS wavefunction, wherein the orbitals are ordered such that adjacent orbitals are

more correlated than the rest. As a result, DMRG must be extended beyond MPS

to more general TPS forms, but these algorithms do not seem to be as elegant or as
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computationally efficient. Solving the TPS wavefunction as a projected Schrödinger

equation mitigates certain complications that are present in DMRG, such as ordering

of the orbitals and generalizing a one-dimensional algorithm to multiple dimensions.

It is true, however, that the tensor structures that are most efficiently optimized in a

variational ansatz are, at least in all cases we have considered, the same as those that

are most efficiently optimized using the projected Schrödinger equation.

2.5.6 Generalization

Above, we constructed new wavefunction structures by constructing the CC wavefunc-

tion with creation operators and the TPS and APG wavefunctions using excitation

operators. Effectively, the parameters are changed from the contributions of creation

operators to those of excitation operators, and vice versa. Since both operators origi-

nate from orbitals, the wavefunctions are size-consistent if f is selected appropriately,

provided the orbitals are localized. In Equation 2.44, 2.55, 2.57, and 2.58, particle num-

ber symmetry is not conserved, which is not a problem since the wavefunction can be

optimized and projected onto the appropriate particle number. Then, just as excitation

operators change the state of a reference Slater determinant, products of an arbitrary

number of creation and annihilation operators can be used to explore different particle

numbers with respect to the reference. For example, the product of creators and anni-

hilators, where the number of creators exceeds the number of annihilators, will ionize

a Slater determinant. Expressing the wavefunction with respect to different operators

will result in different sets of parameters, even if these operators make no reference to
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the Slater determinants or creation operators. For example, grid-based wavefunctions

will have parameters for each point in space.

So far, we have seen weight functions, f , in various forms: the CC wavefunction

(Equation 2.20) uses a cumulant; the TPS wavefunction (Equation 2.21) uses a tensor

product; the even-electron quasiparticle wavefunction (Equation 2.57) uses a perma-

nent; the odd-electron quasiparticle wavefunction (Equation 2.55) uses a determinant;

and the generalized quasiparticle wavefunction (Equation 2.58) uses some mix of a

permanent and determinant (an immanent). In Equations 2.25, 2.44, 2.46, and 2.58,

creators of arbitrary number of electrons are combined in fairly complicated manner.

Since creators have distinct commutative (and anticommutative) relations with one an-

other, the corresponding f must be symmetric (and antisymmetric) with respect to

interchange of different creation operators (or parameters). Grouping together all the

terms that correspond to the same set of creation operators results in a sum over all

combinations of products of parameters. These combinatorial variants of product func-

tions seem to be useful for size-consistency since they are multiplicatively separable

by construction. Therefore, we can construct novel wavefunctions with quasiparticle

origins using different symmetric (or antisymmetric) polynomial functions, including

but not limited to determinant, permanent, immanent[124], pfaffian [125], hafnian[126,

127], hyperdeterminant [128], multidimensional permanent[129], hyperpfaffian[130], hy-

perhafnian[131], and mixed discriminant[132]. Unfortunately, among all the aforemen-

tioned size-consistent combinatoric forms, only the determinant can be evaluated in

polynomial time. If we disregard size-consistency and do not require any quasiparticle

structure, then any function can be chosen. One alternative, however, is to use a ratio of
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a product of determinants as the overlap; this form retains size-consistency and compu-

tational feasibility, and generalizes a single Slater determinant (one determinant in the

numerator, none in the denominator) and the APr2G wavefunction (a special case with

one structure determinant in the denominator and the determinant of its element-wise

square in the numerator). If the total number of determinants is odd, this wavefunction

describes a normal fermionic wavefunction, while if the number of determinants is even,

this wavefunction represents a bosonic seniority-zero structure.

A great deal of flexibility is available within the proposed wavefunction framework:

the set of Slater determinants, S, can be any set of orthonormal (for convenience)

Slater determinants; the parameters, ~P , can be any set of numbers that describe the

wavefunction or the operators with which it is built; the parameterizing function, f , can

be any function that maps the parameters to a coefficient for a given Slater determinant.

We hope to find the combination that effectively models the optimized coefficients of

the FCI wavefunction (for accuracy) using the minimal number of parameters (for cost)

for as many systems as possible (for generality).

2.6 Conclusion

In the proposed framework, any multideterminant wavefunction can be expressed with

respect to the components S, ~P , and f . A wavefunction can be characterized using

only these components and different combinations will result in different wavefunction

characteristics. Then, we can systematically develop new structures by simply finding

novel combinations. While the proposed wavefunctions are not necessarily cheap to
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compute, the general ansatz does not need to be cheap to be effective. For example, the

CC wavefunction with all orders of excitations, the TPS wavefunction with infinitely

large tensors, and the quasiparticle wavefunctions with N electron quasiparticles are no

less expensive than the FCI wavefunction. However, different wavefunction structures

inspire different approximations and new algorithms that reduce the computational

cost to a tractable level. The greatest advantage to this perspective is that it is prag-

matic: approximations and algorithms that were restricted to one wavefunction can be

generalized to others using the FANCI framework; and many different methods can

be implemented computationally using a common framework. Though we will defer

detailed discussions on dynamical correlation corrections and orbital optimization to

future papers, these elaborations to FANCI are clearly possible and are performed using

similar techniques to what one would use in traditional selected CI and CC methods.
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2.9 Appendix

2.9.1 HF

|ΨHF〉 =
N∏
i=1

 2K∑
j=1

a†jUji

 |0〉
=
 2K∑
j1=1

a†j1Uj11

 2K∑
j2=1

a†j2Uj22

 . . .
 2K∑
jN=1

a†jNUjNN

 |0〉
=

2K∑
j1=1

2K∑
j2=1
· · ·

2K∑
jN=1

a†j1a
†
j2 . . . a

†
jN
Uj11Uj22 . . . UjNN |0〉

(2.59)

We can group together the terms that result in the same Slater determinant, defined

here by the set of creation operators, {a†j1a
†
j2 . . . a

†
jN
}. Since the order of operators only

affects the sign of the Slater determinant, we can split the sum over all indices into a

sum over the set of creation operators and a sum over the different orderings of the

given set of creation operators.

|ΨHF〉 =
2K∑

j1<j2···<jN

∑
σ∈SN

Ujσ(1)1Ujσ(2)2 . . . Ujσ(N)Na
†
jσ(1)

a†jσ(2)
. . . a†jσ(N)

|0〉

=
2K∑

j1<j2···<jN

∑
σ∈SN

sgn(σ)Ujσ(1)1Ujσ(2)2 . . . Ujσ(N)Na
†
j1a
†
j2 . . . a

†
jN
|0〉

(2.60)

where sgn(σ) is the signature of the permutation σ.

sgn(σ) =


1 if σ is even

−1 if σ is odd
(2.61)
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Using the definition of the determinant,

|A|− =
∑
σ∈SN

sgn(σ)
N∏
i=1

Aiσ(i)

=
∑
σ∈SN

sgn(σ)
N∏
i=1

Aσ(i)i

(2.62)

we find

|ΨHF〉 =
K∑

j1<j2···<jN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Uj11 Uj12 . . . Uj1N

Uj21 Uj22 . . . Uj2N
... ... . . . ...

UjN1 UjN2 . . . UjNN

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

−

a†j1a
†
j2 . . . a

†
jN
|0〉

=
∑
m
|U(m)|− |m〉

(2.63)

where m = {j1, j2, . . . , jN}, |m〉 = a†j1a
†
j2 . . . a

†
jN
|0〉 where j1 < j2 < · · · < jN , and

U(m) is a submatrix of U composed of rows that correspond to m.

2.9.2 APG

For convenience, let P = N
2 .

|ΨAPG〉 =
P∏
p=1

2K∑
ij

Cp;ija
†
ia
†
j |0〉

=
 2K∑
i1j1

a†i1a
†
j1C1;i1j1

 2K∑
i2j2

a†i2a
†
j2C2;i2j2

 . . .
 2K∑
iP jP

a†iP a
†
jP
CP ;iP jP

 |0〉
=

2K∑
i1j1

2K∑
i2j2

· · ·
2K∑
iP jP

a†i1a
†
j1a
†
i2a
†
j2 . . . a

†
iP
a†jPC1;i1j1C2;i2j2 . . . CP ;iP jP |0〉
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Just as in the HF derivation, we can group together the creation operators, {a†i1 , a
†
j1 , . . . , a

†
iP
, a†jP },

that corresponds to the same Slater determinant. However, there are multiple ways to

construct a Slater determinant from a set of pairs of creators, {a†i1a
†
j1 , a

†
i2a
†
j2 , . . . , a

†
iP
a†jP }

(Note the placement of commas). Since the Slater determinant is expressed with respect

to a specific ordering of the one-electron creation operators, the sign resulting from or-

dering the product of creator pairs to this specific ordering must be taken into account.

Then, the sum over all indices can be split into a sum over each Slater determinant, a

sum over different orbital pairs that construct the given Slater determinant, and a sum

over the permutation of the orbital pair creation operators.

|ΨAPG〉 =
∑

m∈S

∑
{i1j1,...,iP jP }=m

∑
τ∈SP

C1;iτ(1)jτ(1) . . . CP ;iτ(P )jτ(P )a
†
iτ(1)

a†jτ(1)
. . . a†iτ(P )

a†jτ(P )
|0〉

=
∑

m∈S

∑
{i1j1,...,iP jP }=m

sgn
(
σ(i1j1, . . . , iP jP )

) ∑
τ∈SP

C1;iτ(1)jτ(1) . . . CP ;iτ(P )jτ(P )a
†
i1a
†
j1 . . . a

†
iP
a†jP |0〉

(2.64)

where σ is the permutation for ordering the creation operators to that of the Slater

determinant and τ is the permutation of the given pairs of creation operators. Note

that the pair of creation operators commute with one another. From the definition of a

permanent,

|A|+ =
∑
τ∈SN

N∏
i=1

Aiτ(i)

=
∑
τ∈SN

N∏
i=1

Aτ(i)i

(2.65)
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we find

|ΨAPG〉 =
∑

m∈S

∑
{i1,j1,...,iP ,jP }=m

sgn
(
σ(i1, j1, . . . , iP , jP )

)
∣∣∣∣∣∣∣∣∣∣∣∣

C1;i1j1 . . . C1;iP jP
... . . . ...

CP ;i1j1 . . . CP ;iP jP

∣∣∣∣∣∣∣∣∣∣∣∣

+

a†i1a
†
j1 . . . a

†
iP
a†jP |0〉

=
∑

m∈S

∑
{m1...mP }

sgnA†m1 ...A
†
mP
|0〉=|m〉

sgn
(
σ(m1 . . .mP )

)
|C(m1, . . . ,mP )|+ |m〉

(2.66)

where mp = {ip, jp}, A†mp
= a†ipa

†
jp , |m〉 = a†i1a

†
j1 . . . a

†
iP
a†jP |0〉, and C(m1, . . . ,mP ) is a

submatrix of C composed of columns that correspond to the orbital pairs, {m1 . . .mP}.

2.9.3 Product of Linear Combinations of Operators

Using the two examples above, we can generalize the approach to reformulating wave-

functions of the form

|Ψ〉 =
n∏
i=1

∑
j

CijQ̂j |θ〉 (2.67)
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where Q̂j is an operator, Cij is a coefficient that corresponds to the index i and operator

Q̂j, and θ is some vacuum/reference. Taking the same approach as above,

|Ψ〉 =
n∏
i=1

∑
j

CijQ̂j |θ〉

=
∑

j1

C1j1Q̂j1

 . . .
∑

jn

CnjnQ̂jn

 |θ〉
=
∑
j1

· · ·
∑
jn

C1j1 . . . CnjnQ̂j1 . . . Q̂jn |θ〉

=
∑
m︸ ︷︷ ︸

sum over

Slater deter-

minants

∑
{Q̂j1 ...Q̂jn}7→m︸ ︷︷ ︸
sum over all

{Q̂j1 . . . Q̂jn}

that produce

the given Slater

determinant

sgn
(
σ(Q̂j1 . . . Q̂jn)

)
︸ ︷︷ ︸
signature for ordering

the one-electron

operators

∑
τ∈Sn

sgn(τ)C1jτ(1) . . . Cnjτ(n)︸ ︷︷ ︸
sum over the permutation

of the given operators

|m〉

(2.68)

Depending on the commutation/anticommutation relationships between the elements

of {Q̂j1 . . . Q̂jn}, the sgn(τ) is different.

If all operators are expressed with an even number of one-electron operators (which

we will denote as even-electron operators), then

sgn(τ) = 1
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and

∑
τ∈Sn

sgn(τ)C1jτ(1) . . . Cnjτ(n) =

∣∣∣∣∣∣∣∣∣∣∣∣

C1j1 . . . C1jn
... . . . ...

Cnj1 . . . Cnjn

∣∣∣∣∣∣∣∣∣∣∣∣

+

(2.69)

If all operators are expressed with an odd number of one-electron operators (which

we will denote as odd-electron operators), then

sgn(τ) =


1 if even

−1 if odd

and

∑
τ∈Sn

sgn(τ)C1jτ(1) . . . Cnjτ(n) =

∣∣∣∣∣∣∣∣∣∣∣∣

C1j1 . . . C1jn
... . . . ...

Cnj1 . . . Cnjn

∣∣∣∣∣∣∣∣∣∣∣∣

−

(2.70)

If the operators are a mix of even and odd-electron operators, then τ must be split

into three components: τb for permutation of the positions of even-electron operators,

τf for permutation of the positions of odd-electron operators, and τbf for remaining

permutations that mix the positions of even-electron operators with the odd-electron
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operators.

τ = τbτfτbf

sgn(τ) = sgn(τb)sgn(τf )sgn(τbf )

sgn(τb) = 1

sgn(τf ) =


1 if even

−1 if odd

sgn(τbf ) = 1

(2.71)

Let there be nb even-electron operators and nf odd-electron operators.

n = nb + nf

We will assume (with no loss of generality) that the first nb columns of the coefficients

correspond to the even-electron and the rest to the odd-electron operators. Then τbf

would correspond to swapping the first nb columns with the rest of the columns. After

the swapped columns are obtained, the τb will permute the first nb columns and τf will
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permute the others.

∑
τ∈Sn

sgn(τ)C1jτ(1) . . . Cnjτ(n)

=
∑

τf∈Snf

∑
τb∈Snb

∑
τbf∈Sn\Snb\Snf

sgn(τb)sgn(τf )sgn(τbf )C1jτbτbf (1) . . . Cnbjτbτbf (nb)C(nb+1)jτf τbf (nb+1) . . . Cnjτf τbf (n)

=
∑

τbf∈Sn\Snb\Snf

sgn(τbf )
∑

τb∈Snb

sgn(τb)C1jτbτbf (1) . . . Cnbjτbτbf (nb)

∑
τf∈Snf

sgn(τf )C(nb+1)jτf τbf (nb+1) . . . Cnjτf τbf (n)

=
∑

τbf∈Sn\Snb\Snf

∣∣∣∣∣∣∣∣∣∣∣∣

C1jτbf (1) . . . C1jτbf (nb)

... . . . ...

Cnbjτbf (1) . . . Cnbjτbf (nb)

∣∣∣∣∣∣∣∣∣∣∣∣

+ ∣∣∣∣∣∣∣∣∣∣∣∣

C(nb+1)jτbf (nb+1) . . . C(nb+1)jτbf (n)

... . . . ...

Cnjτbf (nb+1) . . . Cnjτbf (n)

∣∣∣∣∣∣∣∣∣∣∣∣

−

(2.72)

where Sn, Snb , and Snf are sets of permutations of all indices, first nb indices, and the

remaining nf indices, respectively. Then Sn \Snb \Snf is the set of permutations of the

first nb columns with the rest.

In other words, τbf accounts for the different ways in which the columns of the

coefficient matrix can be split into two, one for τb and other for τf . Since only the first

nb rows are needed for the sum over τb and the remaining rows for the sum over τf ,

we will denote Cb as the submatrix composed of the first nb rows of C, and Cf as the

submatrix composed of the remaining rows. Note that Cb has dimensions nb × n and

Cf has dimensions nf ×n. Then, we can rewrite the sum over τbf to be somewhat more
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transparent:

∑
τ∈Sn

sgn(τ)C1jτ(1) . . . Cnjτ(n) =
∑

{ib1...i
b
nf
}⊆{j1...jn}

{if1 ...i
f
nb
}={j1...jn}\{ib1...ibnf }

∣∣∣∣∣∣∣∣∣∣
Cb

1ib1
. . . Cb

1ibnb... . . . ...
Cb
nbi

b
1
. . . Cb

nbibnb

∣∣∣∣∣∣∣∣∣∣

+ ∣∣∣∣∣∣∣∣∣∣∣
Cf

1if1
. . . Cf

1ifnf... . . . ...
Cf

nf i
f
1
. . . Cf

nf i
f
nf

∣∣∣∣∣∣∣∣∣∣∣

−

(2.73)

If the given operators do not commute or anticommute with one another, then an

explicit sum through every permutation might be necessary, along with the signature

of each permutation, unless there is a specialized structure that simplifies this sum.

2.9.4 CC

|ΨCC〉 = exp
(∑

ia
tai Ê

a
i

)
|ΦHF〉

=
∞∑
n=0

1
n!

(∑
ia
tai Ê

a
i

)n
|ΦHF〉

=
∞∑
n=0

1
n!

n∏
k=1

∑
ia
tai Ê

a
i |ΦHF〉

(2.74)

For each n, we can treat ∏n
k=1

∑
ia t

a
i Ê

a
i with the approach from Equation 2.68. Then,

the operators, {Q̂j1 . . . Q̂jn}, are excitation operators, {Êa1
i1
. . . Êan

in }, and n controls

the number of operators used in the second summation of Equation 2.68. Since they all

commute with one another, sgn(τ) = 1 which means that the final sum of Equation 2.68
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will be a permanent (Equation 2.18).

n∏
k=1

∑
ia
tai Ê

a
i =

∑
m

∑
{Êa1

i1
...Êan

in }⊆S̃Ê
sgn
∏n

k=1 Ê
ak
ik
|ΦHF〉=|m〉

sgn
(
σ(Êa1

i1
. . . Êan

in )
) ∑
τ∈Sn

t
aτ(1)
iτ(1)

. . . t
aτ(n)
iτ(n)
|m〉

=
∑
m

∑
{Êa1

i1
...Êan

in }⊆S̃Ê
sgn
∏n

k=1 Ê
ak
ik
|ΦHF〉=|m〉

sgn
(
σ(Êa1

i1
. . . Êan

in )
)
n!

n∏
k=1

takik |m〉

(2.75)

where S̃Ê is the set of all excitation operators used in the wavefunction. Substituting

into the Equation 2.74, we get

|ΨCC〉 =
∞∑
n=0

1
n!
∑
m

∑
{Êa1

i1
...Êan

in }⊆S̃Ê
sgn
∏n

k=1 Ê
ak
ik
|ΦHF〉=|m〉

sgn
(
σ(Êa1

i1
. . . Êan

in )
)
n!

n∏
k=1

takik |m〉

=
∑
m

∞∑
n=0

∑
{Êa1

i1
...Êan

in }⊆S̃Ê
sgn
∏n

k=1 Ê
ak
ik
|ΦHF〉=|m〉

sgn
(
σ(Êa1

i1
. . . Êan

in )
) n∏
k=1

takik |m〉

=
∑
m

∑
{Êa1

i1
...Êan

in |n∈N}⊆S̃Ê
sgn
∏n

k=1 Ê
ak
ik
|ΦHF〉=|m〉

sgn
(
σ(Êa1

i1
. . . Êan

in )
) n∏
k=1

takik |m〉

(2.76)

where the second sum is the sum over all possible combinations of excitations that would

produce the given Slater determinant from the reference. Though it is unnecessary,

n ∈ N was included to specify that the subset is no longer constrained to be of a certain

size by an external variable, n. In the rest of the article, this notation will be dropped.

94



Ph.D. Thesis - Taewon David Kim McMaster University - Chem & Chem Bio

2.9.5 CC with Creation Operators

Let bi be a set of an even number of orbitals, fi be a set of an odd number of orbitals,

Â†bi and Â†fi be the creation operators that create these orbitals, and Cbi and Cfi are

the coefficient for the associated creation operators. Then, the CC wavefunction using

creation operators will be

|ΨCC〉 = exp
∑

bi

CbiÂ
†
bi +

∑
fi

CfiÂ
†
fi

 |0〉 (2.77)

Taking the same approach as Equation 2.68, we have operators, {Q̂j1 . . . Q̂jn}, that

are creation operators, {Âb1 . . . Âbnb Âf1 . . . Âfnf }, and the sum over the permutation is

given by Equation 2.73. Following Equation 2.68 and 2.73,

|Ψ〉 =
∑
m

∞∑
n=0

1
n!

∑
{b1...bnb}⊆S̃b, {f1...fnf }⊆S̃f

sgnÂ†b1
...Â†bnb

Â†f1
...Â†fnf

|0〉=|m〉

sgn
(
σ(Â†b1

. . . Â†bnb
Â†f1

. . . Â†fnf
)
) ∑
{ib1...i

b
nb
}⊆{1...n}

{if1 ...i
f
nf
}={1...n}\{ib1...ibnb}

∣∣∣∣∣∣∣∣∣∣
Cb1 . . . Cbnb

... . . . ...
Cb1 . . . Cbnb

∣∣∣∣∣∣∣∣∣∣

+ ∣∣∣∣∣∣∣∣∣∣
Cf1 . . . Cfnf
... . . . ...
Cf1 . . . Cfnf

∣∣∣∣∣∣∣∣∣∣

−

|m〉

=
∑
m

∑
{b1...bnb}⊆S̃b, {f1...fnf }⊆S̃f

sgnÂ†b1
...Â†bnb

Â†f1
...Â†fnf

|0〉=|m〉

sgn
(
σ(Â†b1

. . . Â†bnb
Â†f1

. . . Â†fnf
)
) 1
n!

(
n

nb

) ∣∣∣∣∣∣∣∣∣∣
Cb1 . . . Cbnb

... . . . ...
Cb1 . . . Cbnb

∣∣∣∣∣∣∣∣∣∣

+ ∣∣∣∣∣∣∣∣∣∣
Cf1 . . . Cfnf
... . . . ...
Cf1 . . . Cfnf

∣∣∣∣∣∣∣∣∣∣

−

|m〉

=
∑
m

∑
{b1...bnb}⊆S̃b, {f1...fnf }⊆S̃f

sgnÂ†b1
...Â†bnb

Â†f1
...Â†fnf

|0〉=|m〉

sgn
(
σ(Â†b1

. . . Â†bnb
Â†f1

. . . Â†fnf
)
) 1
nb!nf !

∣∣∣∣∣∣∣∣∣∣
Cb1 . . . Cbnb

... . . . ...
Cb1 . . . Cbnb

∣∣∣∣∣∣∣∣∣∣

+ ∣∣∣∣∣∣∣∣∣∣
Cf1 . . . Cfnf
... . . . ...
Cf1 . . . Cfnf

∣∣∣∣∣∣∣∣∣∣

−

|m〉

(2.78)
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Note that the n ∈ N was omitted and it is implied that the size of the subset is not

constrained by an external variable.

Since the determinant is zero when any two rows are equivalent, nf ≤ 1. In contrast,

we can take the permanent of a matrix with repeating rows:

∣∣∣∣∣∣∣∣∣∣∣∣

a1 . . . an
... . . . ...

a1 . . . an

∣∣∣∣∣∣∣∣∣∣∣∣

+

=
∑
σ∈Sn

∏
i=1

ai

= n!
∏
i=1

ai

(2.79)

Therefore, we get

|Ψ〉 =
∑
m



∑
{b1...bnb}⊆S̃b, f∈S̃f

sgnÂ†b1
...Â†bnb

Â†f |0〉=|m〉

sgn
(
σ(Â†b1

. . . Â†bnb
Â†f )

)( nb∏
i=1

Cbi

)
Cf

+
∑

{b1...bnb}⊆S̃b

sgnÂ†b1
...Â†bnb

|0〉=|m〉

sgn
(
σ(Â†b1

. . . Â†bnb
)
) nb∏
i=1

Cbi


|m〉 (2.80)

Since the sum over {b1 . . .bnbf} only occurs when m has an odd number of electrons

and the sum over {b1 . . .bnb} only occurs when m has an even number of electrons,

we can separate these two cases if the desired number of electrons in the system, N , is
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either even or odd.

|Ψ〉 =



∑
m

∑
{b1...bnb}⊆S̃b, f∈S̃f

sgnÂ†b1
...Â†bnb

Â†f |0〉=|m〉

sgn
(
σ(Â†b1

. . . Â†bnb
Â†f )

)( nb∏
i=1

Cbi

)
Cf |m〉 if N is odd

∑
m

∑
{b1...bnb}⊆S̃b

sgnÂ†b1
...Â†bnb

|0〉=|m〉

sgn
(
σ(Â†b1

. . . Â†bnb
)
) nb∏
i=1

Cbi |m〉 if N is even
(2.81)

2.9.6 Generalized Quasiparticle

Just as in Section 2.9.5, let bi be a set of an even number of orbitals, fi be a set

of an odd number of orbitals, Â†bi and Â†fi be the creation operators that create the

associated orbitals. We can construct a quasiparticle as a linear combination of these

creation operators. The desired wavefunction is a product of these quasiparticles

|Ψ〉 =
n∏
p=1

∑
bi

Cp;biÂ
†
bi +

∑
fi

Cp;fiÂ
†
fi

 |0〉 (2.82)

where Cp;bi and Cp;fi are coefficients of the creation operators Â†bi and Â†fi in the con-

struction of the pth quasiparticle.

Taking the same approach as Equation 2.68, we have operators, {Q̂j1 . . . Q̂jn}, that

are creation operators, {Âb1 . . . Âbnb Âf1 . . . Âfnf }, and the sum over the permutation is
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given by Equation 2.73.

|Ψ〉 =
∑
m

∑
{b1...bnb}⊆S̃b, {f1...fnf }⊆S̃f

sgnÂ†b1
...Â†bnb

Â†f1
...Â†fnf

|0〉=|m〉

sgn
(
σ(Â†b1

. . . Â†bnb
Â†f1

. . . Â†fnf
)
) ∑

{ib1...i
b
nb
}⊆{b1...bnb f1...fnf }

{if1 ...i
f
nf
}={b1...bnb f1...fnf }\{i

b
1...i

b
nb
}

∣∣∣∣∣∣∣∣∣∣
Cb

1ib1
. . . Cb

1ibnb... . . . ...
Cb
nbi

b
1
. . . Cb

nbibnb

∣∣∣∣∣∣∣∣∣∣

+ ∣∣∣∣∣∣∣∣∣∣∣
Cf

1if1
. . . Cf

1ifnf... . . . ...
Cf

nf i
f
1
. . . Cf

nf i
f
nf

∣∣∣∣∣∣∣∣∣∣∣

−

|m〉

(2.83)

where Cb is the submatrix of C composed of the first nb rows and Cf is composed of the

remaining rows. It was assumed that the first nb columns belong to the even-electron

operators and the remaining columns to the odd-electron operators.
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Abstract

Fanpy is a free and open-source Python library for developing and testing
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multideterminant wavefunctions and related ab initio methods in electronic struc-

ture theory. The main use of Fanpy is to quickly prototype new methods by de-

creasing the barrier required to translate the mathematical conception of a new

wavefunction ansätze to a working implementation. Fanpy uses the framework of

our recently introduced Flexible Ansatz for N-electron Configuration Interaction

(FANCI), where multideterminant wavefunctions are represented by their over-

laps with Slater determinants of orthonormal spin-orbitals. In the simplest case,

then, a new wavefunction ansatz can be implemented by simply writing a function

for evaluating its overlap with an arbitrary Slater determinant. Fanpy is modular

in both implementation and theory: the wavefunction model, the system’s Hamil-

tonian, and the objective function to be optimized are all independent modules.

This modular structure makes it easy for users to mix and match different meth-

ods and for developers to quickly try new ideas. Fanpy is written purely in Python

with standard dependencies, making it accessible for most operating systems; it

adheres to principles of modern software development, including comprehensive

documentation, extensive testing, and continuous integration and delivery pro-

tocols. This article is considered to be the official release notes for the Fanpy

library.

3.1 What is Fanpy?

Fanpy is a free and open-source Python 3 library for ab initio electronic structure calcu-

lations. The key innovation is the adoption of the Flexible Ansatz for N-electron Config-

uration Interaction (FANCI) mathematical framework[1]. By adopting this framework,

ab initio electronic structure methods are represented as a collection of four parts, each
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of which is represented by an independent module of Fanpy: (a) the (multideterminant)

wavefunction model (b) the system Hamiltonian, as represented by its one- and two-

electron integrals (c) an equation (or system of equations) to solve that is equivalent

to the Schrödinger equation, (d) an algorithm for optimizing the objective function(s).

Section 3.4 details the features of each module, though the main advantage of Fanpy

is that new methods can be implemented easily. For more information on the FANCI

framework, consult FANCI article[1].

Although the FANCI framework allows overlaps with any convenient set of reference

states (e.g., Richardson eigenfunctions) to be used, in Fanpy the aforementioned com-

ponents are expressed explicitly in terms of Slater determinants and the wavefunction

ansätze of interest are multideterminant wavefunctions with parameterized coefficients,

|ΨFANCI〉 =
∑

m∈Sm

f(m, ~P ) |m〉 (3.1)

where

|m〉 = |m1m2 . . .mN−1mN〉 = a†m1a
†
m2 . . . a

†
mN−1

a†mN |〉 (3.2)

denotes a Slater determinant, Sm is the set of Slater determinants included in the wave-

function, and f is a function that determines the coefficient of each Slater determinant,

m, using the parameters, ~P . Note that f is simply the overlap of the parameterized

wavefunction with the Slater determinant,

f(m, ~P ) = 〈m|ΨFANCI〉 (3.3)
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Similarly, the Hamiltonian is expressed in terms of its integrals with Slater determinants

(CI matrix elements),

〈m|Ĥ|n〉 = 〈m|
∑
ij

hija
†
iaj + 1

2
∑
ijkl

gijkla
†
ia
†
jalak|n〉 (3.4)

The objective functions supported by Fanpy combine the overlaps and the CI matrix

elements to approximate the Schrödinger equation.

3.2 About Fanpy

Fanpy source code is maintained on GitHub; see https://github.com/quantumelephant/

fanpy, and its documentation is hosted on Read the Docs; see https://fanpy.readthedocs.

io/en/latest/index.html. We strive to ensure that the Fanpy source code and its as-

sociated website are comprehensively documented, including useful tests, scripts, and

examples. As that documentation is maintained with the software, providing detailed

(and eventually outdated) release notes here seems unwise. Instead, we will briefly list

the distinguishing features and key capabilities of Fanpy in section 3.4 to establish its

philosophy and framework, and exemplify them in section 3.5.
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3.3 Why Fanpy?

Many quantum chemistry packages enable computations using multideterminant meth-

ods. Most (e.g. Gaussian[2] and MolPro[3]) are closed-source, making it nearly impossi-

ble to develop new methods without special permission. Even for packages whose source

code is available, the code is often monolithic, making it difficult to implement new fun-

damental methods without thoroughly understanding nearly the entire code base, from

the top down. Moreover, the low-level code is often highly optimized, abstracts away

critical components of ab initio methods, and not intended to be subsequently read or

modified. Such code can, and does, remain unchanged for decades, has little documenta-

tion, and rarely follows modern software development principles. Though some packages

try to address this issue, the development of post-HF methods remains difficult. For

example, Psi4Numpy[4] is a collection of Python scripts and Jupyter notebooks that

implement several post-HF methods using Psi4 to generate necessary inputs, such as CI

matrices and one- and two-electron integrals. Though these scripts can serve as excel-

lent tools for learning about standard quantum chemistry methods from the ground up

or when implementing some types of minor embellishments of standard methods, devel-

oping a novel method (e.g. a new wavefunction ansatz) requires all related processes to

be implemented in Psi4 (e.g. optimization algorithm and action of the Hamiltonian on

the model wavefunction), which requires a thorough understanding of the Psi4 package

as a whole[5].

Due to the difficulty of developing new methods in these legacy codes, we developed

our own Helpful Open-Source Research TOol for N-electron systems (HORTON)[6].
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The first two versions of HORTON were monolithic, and wavefunction models that

were simple on paper were difficult to implement. HORTON 3 is strictly modular, with

separate modules for input/output, numerical integration, Gaussian-basis-set evaluation

and integrals, geometry optimization, and self-consistent field calculations. Fanpy is the

correlated wavefunction module of HORTON 3.

Fanpy was developed as a development tool for new correlated-wavefunction meth-

ods; the goal is to help researchers quickly implement and test their ideas. Towards this

goal, Fanpy is designed to be modular and general. Its modularity helps to isolate and

minimize the necessary part of the code that needs to be understood and extended upon.

For example, implementing a new wavefunction ansatz uses only the wavefunction mod-

ule, and does not require explicit consideration of how the Hamiltonian will act upon

that wavefunction nor of how the orbitals and parameters within the wavefunction will

be optimized (unless desired). The modules of Fanpy are designed to be as general as

possible, so that features from one module are compatible with features from the other

modules. The compatibility between the modules ensures that any developed method

(e.g. a wavefunction ansatz) can be used in conjunction with the other methods (e.g.

orbital optimization, model Hamiltonians, the projected Schrödinger equation, etc). We

provide comprehensive documentation and examples to further aid the development of

new methods in Fanpy.
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3.4 Features of Fanpy

We display various features of Fanpy by discussing each module and their intended

purposes:

• The wavefunction module is developed in accordance with the FANCI frame-

work[1]. In the FANCI framework, the wavefunction is entirely represented by its

overlaps with Slater determinants built from orthonormal orbitals. Similarly, each

wavefunction in Fanpy is defined by its parameters and a function that returns

an overlap for the given Slater determinant. The overlap can be defined within a

class structure, templated using abstract base class or as a standalone function.

The following wavefunctions have already been implemented: configuration inter-

action (CI) with single and double excitations (CISD)[7]; doubly-occupied config-

uration interaction (DOCI)[8–11]; full CI[12]; and selected CI wavefunctions with

a user-specified set of Slater determinants; antisymmetrized products of gemi-

nals (APG)[13–23]; antisymmetrized products of geminals with disjoint orbital

sets (APsetG)[24]; antisymmetrized product of interacting geminals (APIG)[24–

52]; antisymmetric product of 1-reference-orbital interacting geminals (AP1roG;

equivalent to pair-coupled-cluster doubles)[53]; antisymmetric product of rank-

two interacting geminals (APr2G)[54]; determinant ratio wavefunctions[1]; an-

tisymmetrized products of tetrets (4-electron wavefunctions)[1]; matrix product

states (MPS)[55]; neural network wavefunctions; coupled-cluster (CC) with arbi-

trary excitations (including, but not limited to, CCSD, CCSDT, and CC with

106



Ph.D. Thesis - Taewon David Kim McMaster University - Chem & Chem Bio

seniority-specific excitations)[1, 56–61], and geminal coupled-cluster wavefunc-

tions[32–34, 36, 53]. We also support these wavefunctions with nonorthogonal

orbitals, and linear combinations of any of the aforementioned wavefunctions.

• The Hamiltonian module contains Hamiltonians commonly used in electronic

structure theory. Similar to the wavefunctions, each Hamiltonian in Fanpy is de-

fined by its representation in orbital basis set (i.e. one- and two-electron integrals)

and a function that returns the integral of the Hamiltonian with respect to the

given Slater determinants. The following Hamiltonians have already been imple-

mented: the electronic Hamiltonian in the restricted, unrestricted, and general-

ized basis; the seniority-zero electronic Hamiltonian[62]; and the Fock operator in

the restricted basis. In addition, the Pariser-Parr-Pople[63–66], Hubbard[66, 67],

Hückel[66, 68], Ising[66, 69, 70], Heisenberg[66, 70, 71], and Richardson[72, 73]

model Hamiltonians are available as restricted electronic Hamiltonians through

the ModelHamiltonian GitHub repository[74]. Orbital optimization is available if

a function returning the derivative with respect to orbital rotation parameters is

provided. At the moment, only restricted electronic Hamiltonians in the restricted

basis support orbital optimization.

• The objective module is responsible for combining the wavefunction and the

Hamiltonian to form an equation or a system of equations that represents the

Schrödinger equation. In Fanpy, the objective function can be the variational op-

timization of the expectation value of the energy[75–79], the projected Schrödinger

equation[24, 36, 49], or a local energy expression to be sampled (as in variational

quantum Monte Carlo)[80–85].
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• The solver module contains algorithms that optimize/solve the equations from

the objective module. It supports optimizers from SciPy[86], which includes con-

strained/unconstrained local/global optimizers for multivariate scalar functions

(i.e. energy) and algorithms for solving nonlinear least-squares problems and for

finding roots of a system of nonlinear equations (i.e., projected Schrödinger equa-

tion). For CI wavefunctions, we also support a brute-force eigenvalue decom-

position of the CI matrix. In addition, Fanpy interfaces to several algorithms

for derivative-free global optimization problems including the Covariance Matrix

Adaptation Evolution Strategy (CMA-ES) algorithm from pycma[87] and algo-

rithms using decision trees and Bayesian optimization from scikit-optimize[88].

At the moment, no in-house optimization algorithms specialized for electronic

structure theory problems are included. However, Fanpy’s modular design makes

it easier to develop sophisticated domain-specific optimization algorithms. The

objective module provides high-level control over the parameters involved in the

optimization (e.g., active and frozen parameters) and can be changed dynamically

throughout the optimization process. These parameters can be saved as a check-

point throughout the optimization. (The default is to checkpoint at each function

evaluation.) Furthermore, the objective module provides flexibility to add addi-

tional parameters (e.g., model hyperparameters) and to add nonlinear constraints

to the Projected Schrödinger equation.

• The tool module provides various utility functions used throughout the Fanpy

package. Though some tools have specialized uses, the tools for manipulating and

generating Slater determinants are used frequently throughout Fanpy. These tools

are essential when developing methods in Fanpy because Slater determinants are
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the common language of the independent modules. The slater module provides

functions for manipulating Slater determinants and converting them from one

form to another. Within Fanpy, Slater determinants are represented as a binary

number, where the positions of 1’s are the indices of the occupied spin-orbitals

(ordered alpha orbitals first then beta orbitals). The slater module can, for

example, provide the occupied spin orbital indices from the given Slater deter-

minant. The sdlist module provides easy ways to generate Slater determinants

of the desired characteristics (e.g. order of excitation from ground-state, spin,

seniority). This module is frequently used to construct the projection space by

which the objective function is evaluated. In addition, the tool module provides

wrappers to other modules of HORTON and other quantum chemistry software, in-

cluding Gaussian[2], PySCF[89], and Psi4[5]. These programs can then be used

to generate one- and two-electron integrals for Fanpy.

3.5 Examples

For the most updated documentation and examples on how to use Fanpy, please refer to

the Fanpy website. Here, we showcase several ways Fanpy can be used and incorporated

into various workflows. Please note that these examples are based on version 1.0 of

Fanpy, and the user might need to modify them if using a future major release of the

Fanpy library. Within minor and bug-fix releases, backward compatibility is guaranteed.
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Running a calculation: A calculation in Fanpy can be run by creating and ex-

ecuting a Python script and by running its command-line tool, fanpy_run_calc. It is

recommended to create and execute a Python script because it provides a transpar-

ent record of the calculation and the full range of Fanpy’s features. For assistance in

creating a Python script, Fanpy provides a command-line tool, fanpy_make_script.

This tool creates a script from the given specifications, which can then be modified if

a desired feature is not available in the tool.

The following example of a Python script runs an AP1roG calculation for oxygen

molecule in a double zeta basis set:

1 import numpy as np
2 from fanpy.wfn.geminal.ap1rog import AP1roG
3 from fanpy.ham.restricted_chemical import RestrictedMolecularHamiltonian
4 from fanpy.eqn.projected import ProjectedSchrodinger
5 from fanpy.solver.system import least_squares
6 from fanpy.tools.sd_list import sd_list
7

8 nelec = 16
9

10 # Hamiltonian
11 oneint = np.load(’one_oxygen.npy’)
12 twoint = np.load(’two_oxygen.npy’)
13 ham = RestrictedMolecularHamiltonian(oneint, twoint)
14

15 # Wavefunction
16 wfn = AP1roG(nelec, ham.nspin)
17

18 # Projection space of first and second order excitation
19 pspace = sd_list(nelec, ham.nspin, exc_orders=[2], seniority=0)
20

21 # Projected Schrodinger Equation
22 eqns = ProjectedSchrodinger(wfn, ham, pspace=pspace)
23

24 # Solve
25 results = least_squares(eqns)
26 print(’AP1roG electronic energy (Hartree):’, results[’energy’])
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Since Fanpy targets post-HF methods, the orbitals (and the corresponding system

specific information) must be provided in the form of one- and two-electron integrals.

The one- and two-electron integrals must be provided as two- and four-dimensional

numpy arrays, respectively, whose indices are in the same order as the integrals in the

physicists’ notation. To generate the integrals from a single-determinant calculation,

Fanpy provides wrappers for HORTON, PySCF, and Psi4 via the fanpy.tools.wrapper

module. The Gaussian .fchk file can be converted into .npy file using the HORTON

wrapper.

Implementing a wavefunction: New wavefunctions can be implemented in Fanpy

by making a subclass of the wavefunction base class or by providing the overlap function

to a utility function. The subclass requires the method get_overlap to be defined.

Following is an example of an implementation of the nonorthogonal Slater determi-

nant expressed in terms of orthogonal Slater determinants (Equation 3.5):

|Ψ〉 =
N∏
i=1

2K∑
j

Cija
†
j |θ〉

=
∑
m
|C(m)|− |m〉

(3.5)

1 import numpy as np
2 from fanpy.wfn.base import BaseWavefunction
3 from fanpy.tools.slater import occ_indices
4

5 class NonorthogonalSlaterDeterminant(BaseWavefunction):
6 def get_overlap(self, sd, deriv=None):
7 # get indices of the occupied spin orbitals
8 occs = occ_indices(sd)
9 # reshape the parameters
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10 # NOTE: parameters are stored as a one-dimensional array by default
11 params = self.params.reshape(self.nelec, self.nspin)
12 # compute the overlap
13 if deriv is None:
14 return np.linalg.det(params[:, occs])
15

16 # compute the derivative of the overlap
17 output = np.zeros(params.shape)
18 for deriv_row in range(self.nelec):
19 for j, deriv_col in enumerate(occs):
20 # compute the sign associated with Laplace formula
21 sign = (-1)**(deriv_row + j)
22 # get rows and columns with the appropriate row/column removed
23 row_inds = np.arange(self.nelec)
24 row_inds = row_inds[row_inds != deriv_row]
25 col_inds = occs[occs != deriv_col]
26 # compute minors (determinant after removing row and column)
27 minor = np.linalg.det(params[row_inds[:, None], col_inds[None, :]])
28 output[deriv_row, deriv_col] = sign * minor
29 # derivative is returned as a flattened array
30 # deriv contains the indices of the parameters with respect to which
31 # the overlap is derivatized
32 return output.ravel()[deriv]

The method get_overlap returns the overlap of the given Slater determinant when

deriv=None and returns its gradient with respect to the parameters specified by deriv

otherwise (deriv is a one-dimensional numpy array of parameter indices). For details on

the API of get_overlap, consult the documentation. Unlike the wavefunctions already

implemented in Fanpy, this wavefunction does not have default initial parameters, which

means that it must be supplied when instantiating the wavefunction.

1 from fanpy.tools.slater import ground, occ_indices
2

3 # get indices of the HF ground state
4 ground_indices = occ_indices(ground(16, 36))
5 # initial parameters (only contain the occupied orbitals in HF ground state)
6 hf_params = np.zeros((16, 36))
7 hf_params[np.arange(16), ground_indices] = 1
8

9 wfn = NonorthogonalSlaterDeterminant(16, 36)
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10 # assign parameters
11 wfn.assign_params(hf_params)

Here, the initial parameters are set to the ground-state (orthogonal) Slater determinant.

Alternatively, the wavefunction can be constructed using the utility function: wfn_factory.

1 import numpy as np
2 from fanpy.wfn.utils import wfn_factory
3

4 def olp(sd, params):
5 occs = occ_indices(sd)
6 # NOTE: Since the only information available come from the arguments sd and
7 # params, additional information that would otherwise be stored as
8 # instance’s attributes and properties must be explicitly defined
9 nelc = 16

10 nspin = 36
11 # reshape the parameters
12 params = params.reshape(nelec, nspin)
13 return np.linalg.det(params[:, occs])
14

15 def olp_deriv(sd, params):
16 occs = occ_indices(sd)
17 # Hardcode essential information
18 nelc = 16
19 nspin = 36
20 # reshape the parameters
21 params = params.reshape(nelec, nspin)
22 # same as above except replace self.nelec with nelec
23 # ...
24 # NOTE: the overlap is derivatized with respect to all wavefunction
25 # parameters unlike above
26 return output.ravel()
27

28

29 wfn = wfn_factory(olp, olp_deriv, 16, 36, hf_params)
30 # third argument is the number of electrons
31 # fourth argument is the number of spin orbitals
32 # fifth argument is the initial parameters
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It is recommended to implement wavefunctions using the class structure because it

helps make the code cleaner by limiting repetitions and makes the code easier to unit

test by breaking the code into smaller pieces. For a quick and dirty implementation,

however, the utility function may be easier.

Implementing a Hamiltonian: Similar to the wavefunction, new Hamiltonians

can be implemented in Fanpy by making a subclass of the Hamiltonian base class or by

passing a function that evaluates the integrals to a utility function. In addition to the

general Hamiltonian base class, Fanpy provides base classes according to the type of

orbitals used in the Hamiltonian: restricted, unrestricted, and generalized. The subclass

to the orbital specific Hamiltonian base class requires the method integrate_sd_sd to

be defined.

Following is an example of an implementation of the Hückel Hamiltonian[66] (Equa-

tion 3.6) in restricted orbitals:

Ĥ =
∑
ij

∑
σ

hija
†
iσajσ

hij =



αi if i = j

βij if spatial orbitals i and j belong to atoms that participate in a bond

0 else

(3.6)
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1 from fanpy.ham.base import BaseHamiltonian
2 from fanpy.tools import slater
3

4 class HuckelHamiltonian(BaseHamiltonian):
5 def __init__(self, one_int):
6 # NOTE: provided integrals correspond to spatial orbitals
7 self.one_int = one_int
8

9 @property
10 def nspin(self):
11 return self.one_int.shape[0] * 2
12

13 def integrate_sd_wfn(self, wfn, sd, wfn_deriv=None, ham_deriv=None):
14 # use the default method except only the first order excitations are used
15 return super().integrate_sd_wfn(
16 wfn, sd, wfn_deriv=wfn_deriv, ham_deriv=ham_deriv, orders=(1,)
17 )
18

19 def integrate_sd_sd(self, sd1, sd2, deriv=None, components=False):
20 # get the difference of the Slater determinants (i.e. which orbitals are
21 # occupied in one determinant but not in the other)
22 diff_sd1, diff_sd2 = slater.diff_orbs(sd1, sd2)
23 # derivative not supported here
24 if deriv:
25 raise NotImplementedError
26 # If order of excitation between the two Slater determinants is two or greater
27 if len(diff_sd1) >= 2 or len(diff_sd2) >= 2:
28 return 0.0
29 # If two Slater determinants do not have the same number of electrons
30 if len(diff_sd1) != len(diff_sd2):
31 return 0.0
32 # If two Slater determinants are the same
33 if len(diff_sd1) == 0:
34 # get the indices of the spatial orbitals that correspond to the
35 # occupied spin orbitals
36 shared_alpha_sd, shared_beta_sd = slater.split_spin(
37 slater.shared_sd(sd1, sd2), self.nspatial
38 )
39 shared_alpha = slater.occ_indices(shared_alpha_sd)
40 shared_beta = slater.occ_indices(shared_beta_sd)
41 # sum over the occupied orbitals
42 output = np.sum(self.one_int[shared_alpha, shared_alpha])
43 output += np.sum(self.one_int[shared_beta, shared_beta])
44 return output
45 # If two Slater determinants are different by one-electron excitation
46 # get indices of the spatial orbitals
47 spatial_ind1 = slater.spatial_index(diff_sd1[0], self.nspatial)
48 spatial_ind2 = slater.spatial_index(diff_sd2[0], self.nspatial)
49 return self.one_int[spatial_ind1, spatial_ind2]
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Though it is not necessary, the subclass defines integrate_sd_wfn to specify that the

Hamiltonian only contains one-body operators. By default, integrate_sd_wfn assumes

that the Hamiltonian contains one- and two-body operators.

Alternatively, the hamiltonian can be constructed using the utility function

1 from fanpy.ham.utils.factory import ham_factory
2 from fanpy.tools import slater
3

4 def integrate_sd_sd(sd1, sd2, one_int):
5 diff_sd1, diff_sd2 = slater.diff_orbs(sd1, sd2)
6 nspatial = one_int.shape[0]
7 # same as above except replace self.one_int with one_int
8 # and self.nspatial with nspatial
9 # ...

10

11 ham = ham_factory(integrate_sd_sd, oneint, 36, orders=(1,))
12 # third argument is the number of electrons

Again, using the class structure is encouraged because its structure can be cleaner

and more transparent and because it provides finer control over the Hamiltonian. For

example, if integrate_sd_wfn is directly implemented rather than integrate_sd_sd,

then integrate_sd_wfn can be vectorized over the given Slater determinant and its

excitations associated with the application of the Hamiltonian. When the derivative of

the integral is not provided, orbital optimization is only available through gradient-free

optimization algorithms, such as CMA-ES.

Since the Hückel Hamiltonian is defined by its one-electron integrals, this class can

be used to describe any Hamiltonian with only one-body operators. The integrals for

the Hückel Hamiltonian (and other model Hamiltonians) can be generated using the

ModelHamiltonian GitHub repository[74].
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Implementing an Objective: New objectives can be implemented in Fanpy

by making a subclass of the objective base class. The subclass requires the method

objective to be defined. To use the gradient (or Jacobian) in the optimization algo-

rithm, the subclass must also contain the method gradient (or jacobian).

Here is an example of an implementation of the local energy used in the orbital space

variational Quantum Monte Carlo[82] (Equation 3.7).

EL =
∑
i

〈Φi|Ĥ|Ψ〉
〈Φi|Ψ〉

(3.7)

where the Slater determinant, Φi, is sampled according to the distribution p(Φi) =
〈Ψ|Φi〉2∑
k
〈Ψ|Φj〉2

.

1 from fanpy.eqn.base import BaseSchrodinger
2

3 class LocalEnergy(BaseSchrodinger):
4 def __init__(self, wfn, ham, pspace, param_selection=None):
5 super().__init__(wfn, ham, param_selection=param_selection)
6 # param_selection is used to select the parameters that are active
7 # throughout the optimization
8 self.pspace = pspace
9 # pspace is the list of Slater determinants from which local energy is

10 # computed
11

12 @property
13 def num_eqns(self):
14 # number of equations is used to differentiate objectives in the solver
15 return 1
16

17 def objective(self, params):
18 # assign (active) parameters to the respective wavefunction and
19 # Hamiltonian
20 # note that params is always flattened (1-dimensional) for compatibility
21 # with solvers
22 self.assign_params(params)
23 output = 0.0
24 for sd in self.pspace:
25 output += self.ham.integrate_sd_wfn(sd, self.wfn) / self.wfn.get_overlap(sd)
26 return output

117



Ph.D. Thesis - Taewon David Kim McMaster University - Chem & Chem Bio

27

28 def gradient(self, params):
29 self.assign_params(params)
30 # note that gradient of the objective is also flattened (1-dimensional)
31 output = np.zeros(params.size)
32 for sd in self.pspace:
33 # indices of the wavefunction parameters that are active
34 wfn_inds_component = self.indices_component_params[self.wfn]
35 if wfn_inds_component.size > 0:
36 # indices of the objective parameters that correspond to the
37 # wavefunction
38 wfn_inds_objective = self.indices_objective_params[self.wfn]
39

40 # differentiate local energy with respect to wavefunction parameters
41 output[wfn_inds_objective] += (
42 self.ham.integrate_sd_wfn(sd, self.wfn, wfn_deriv=wfn_inds_component)
43 / self.wfn.get_overlap(sd)
44 )
45 output[wfn_inds_objective] -= (
46 self.ham.integrate_sd_wfn(sd, self.wfn)
47 * self.wfn.get_overlap(sd, deriv=wfn_inds_component)
48 / self.wfn.get_overlap(sd) ** 2
49 )
50 # Indices of the Hamiltonian parameters that are active
51 # Used when hamiltonian has parameters to optimize (e.g. orbital
52 # optimization)
53 ham_inds_component = self.indices_component_params[self.ham]
54 if ham_inds_component.size > 0:
55 # indices of the objective parameters that correspond to the
56 # hamiltonian
57 ham_inds_objective = self.indices_objective_params[self.ham]
58

59 # differentiate local energy with respect to Hamiltonian parameters
60 output[ham_inds_objective] += (
61 self.ham.integrate_sd_wfn(sd, self.wfn, ham_deriv=ham_inds_component)
62 / self.wfn.get_overlap(sd)
63 )
64 return output

Though it is not required, providing the indices in the gradient ensures that users

can specify the parameters that are active during the optimization via the attribute

param_selection.
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3.6 Frequently Asked Questions

Who is Fanpy for? Fanpy was designed to be used by developers of post-HF meth-

ods, especially those interested in new multireference wavefunction ansätze. Extensive

programming experience is not necessary: Fanpy’s modular design and extensive docu-

mentation make it easy to understand and extend the existing methods and base classes.

The base classes serve as templates to help ensure that the developed method fits to-

gether with the rest of Fanpy seamlessly. Developers with programming experience but

a limited background in post-HF methods should have an easier time understanding

the code because the methods are documented with the corresponding equations (and

their derivations) and are implemented in a simple and straight-forward fashion.

What is the mission of Fanpy? Our goal is to develop a platform where devel-

opers of new ab initio methods can quickly implement and test their ideas. We hope to

make it easier for researchers—whether they are seasoned professors or new graduate

students—to test their ideas without being burdened by undocumented code conven-

tions, mysterious equations, or cumbersome installation processes.

What does Fanpy do? As elaborated in Sections 3.4 and 3.5, Fanpy provides

independent modules that facilitate the development of new multideterminant wave-

functions, Hamiltonians, objectives for the Schrödinger equations, and optimization

algorithms. We designed these modules to be compatible with one another so that
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researchers can easily customize their calculations and experiment with different com-

binations of methods and algorithms.

What are the limits of Fanpy? At present, Fanpy is not designed for high per-

formance. In fact, its performance was often deliberately compromised to ensure ease of

use and development. For accessibility, Fanpy was written in pure Python even though

Python performs poorly for large scale numerical computation. Moreover, while Fanpy’s

modular design is important for its extendibility and customizability, it prevents some

types of algorithmic improvements. Since a method in its early stages of development

is often intractably expensive, calculations in Fanpy are often limited to small model

systems with small basis sets. Some of the more efficient methods, e.g. AP1roG, which

could be extended to thousands of electrons in an efficient implementation, are limited

to about 100 electrons in Fanpy. Consistent with the overall mission of HORTON 3,

therefore, Fanpy should be viewed as a research tool that allows developers to quickly

implement and test their ideas, rather than a comprehensive quantum chemistry suite

that can simulate large chemical systems. The intention is that once researchers estab-

lish that a method is of practical utility, then it can be implemented more efficiently.

How do I install Fanpy? The Fanpy library can be installed directly from its

source code available on GitHub or through the pip and conda package-management

systems. Since Fanpy is purely Python and depends mainly on common Python libraries

(NumPy and SciPy), it can be installed by simply copying the source code onto the

desired directory (though this is not recommended). For the most updated instructions

on how to install Fanpy, please refer to the Fanpy website.
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What is the future direction of Fanpy? In addition to developing additional

methods relevant to our scientific interests, the next iteration of Fanpy will focus on

improving its performance. Its computationally critical components will be outsourced

to highly optimized libraries, such as our in-house CI software, PyCI. Some of the

performance bottlenecks will be removed by reimplementing some features in Cython

or C++. These improvements may cause problems for some users in terms of ease of

use and installation, the pure Python implementation of Fanpy will continue to be

available.

In terms of features, modules for (arbitrary-order) perturbation theory, equations-

of-motion, and quantum-mechanical embedding are in various stages of development.

3.7 Summary

This brief paper introduces Fanpy as a library for developing new post-Hartree-Fock ab

initio methods. Fanpy’s goal is to help researchers quickly test ideas for new correlated

electronic structure theory methods and, to achieve this goal, Fanpy contains many

methods that can be used in countless combinations with one another. These methods

are of intrinsic interest but, moreover, they serve as examples to be extended upon. Base

classes are available as templates to help users develop a structure that is compatible

with the rest of Fanpy.
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Abstract

The Antisymmetrized Product of Geminals (APG) wavefunction is a gen-

eralization of the nonorthogonal Slater determinant where the wavefunction is

constructed as an antisymmetrized product of two-electron wavefunctions (gem-

inals), rather than as an antisymmetrized product of one-electron wavefunctions

(orbitals). Since much of chemistry is expressed in terms of electron pairs, ex-

pressing the wavefunction as a product of geminals provides an intuitive link to

many traditional chemical concepts, such as Lewis structures. However, extensive

use of geminals in wavefunctions has been limited by their high cost stemming

from the many combinations of the two-electron basis functions (orbital pairs)

used to build the geminals. When evaluating the overlap of the APG wavefunc-

tion with an orthogonal Slater determinant, this cost can be interpreted as the

cost of evaluating the permanent, resulting from the symmetry with respect to
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the interchange of orbital pairs, and the cost of assigning the occupied orbitals to

the orbital pairs of the wavefunction. Focusing on the latter, we present a graph-

ical interpretation of the Slater determinant and utilize the maximum weighted

matching algorithm to estimate the combination of orbital pairs with the largest

contribution to the overlap. Then, the cost due to partitioning the occupied or-

bitals in the overlap is reduced from O((N−1)!!) to O(N3 logN). Computational

results show that many of these combinations are not be necessary to obtain an

accurate solution to the wavefunction. Because the APG wavefunction is the most

general of the geminal wavefunctions, this approach can be applied to any of the

simpler geminal wavefunction ansätze. In fact, this approach may even be ex-

tended to generalized quasiparticle wavefunctions, opening the door to tractable

wavefunctions built using components of arbitrary numbers of electrons, not just

two electrons.

4.1 From Orbital-Based To Geminal-Based Wave-

functions

The simplest practical N -electron wavefunction that satisfies the Pauli exclusion prin-

ciple is a Slater determinant of spin-orbitals. In most practical calculations, the spin-

orbitals, which are merely one-electron wavefunctions, are expanded as a linear com-

bination of one-electron basis functions, which are typically chosen to approximate

atomic orbitals. To satisfy the Pauli exclusion principle, an antisymmetric product

(Slater determinant) of N spin-orbitals is constructed. It is common to then optimize

the molecular orbitals by minimizing the energy, resulting in the venerable Hartree-Fock
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wavefunction,

|ΦHF〉 =
N∏
k=1

2K∑
i=1

Ckia
†
i |0〉 (4.1)

where N is the number of electrons, K is the number of spatial basis functions (2K

is the number of spin-basis functions), and C is constrained so that the orbitals are

orthogonal and normalized[1–9].

The Slater determinant wavefunction represents a system of independent fermions,

and intrinsically omits electron correlation. The typical approach to electron correlation

is to correct the Hartree-Fock method by computing contributions from additional

Slater determinants, but this approach can be very inefficient for strongly-correlated

systems, where the Hartree-Fock wavefunction can be a very poor starting point (e.g.,

it may have a very small overlap with the exact wavefunction) and/or myriad Slater

determinants may be required. This suggests an alternative approach, philosophically

similar to the Hartree-Fock method, wherein the wavefunction is constructed as an

antisymmetric product of 2-electron wavefunctions, called geminals. (Obviously, the

method can be extended to composite particles composed of three (ternions), four

(quartets), or more electrons[10, 11].)

In analogy to the basis-set expansion for orbitals, in practical calculations, gemi-

nals are usually expanded as a linear combination of two-electron basis functions. In

analogy to the Slater determinant, the simplest N -electron geminal-based wavefunc-

tion is an antisymmetrized product of P = N/2 geminals[12–15]. (In this paper we

will assume that there are an even number of electrons in the system, but there are

standard approaches for treating odd-electron systems with geminals.) It is convenient

to choose the two-electron basis functions to be orbital pairs: antisymmetrized products
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of one-electron orthonormal basis functions (i.e., orbitals).

In its most general form, the Antisymmetrized Product of Geminals (APG) uses all

possible orbital pairs and imposes no restrictions on their coefficients,

|ΨAPG〉 =
P∏
p=1

2K∑
ij

Cp;ija
†
ia
†
j |0〉

In the APG wavefunction, all creation operators a†i and a†j can be paired with one

another, regardless of their spin[10, 12–21]. For both conceptual and computational

purposes, it is convenient to rewrite the APG wavefunction as a linear combination of

Slater determinants, each of which has a coefficient which is a sum of permanents[11],

|ΨAPG〉 =
∑

m∈dets

∑
{i1,j1,...,iP ,jP }=m

sgn
(
σ(i1, j1, . . . , iP , jP )

)
∣∣∣∣∣∣∣∣∣∣∣∣

C1;i1j1 . . . C1;iP jP
... . . . ...

CP ;i1j1 . . . CP ;iP jP

∣∣∣∣∣∣∣∣∣∣∣∣

+

|m〉

(4.2)

where m is a set of spin-orbitals occupied in the Slater determinant, dets is the set of

all Slater determinants, C is the geminal coefficient matrix whose columns correspond

to the creation operator pairs, ∑
{i1,j1,...,iP ,jP }=m

(4.3)

denotes the sum over all possible combinations of creation operator pairs that construct

the given Slater determinant, sgn(σ) is the signature of the permutation required to

reorder a†i1a
†
j1 . . . a

†
iP
a†jP such that the indices of the creation operators are increasing,
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and ∣∣∣∣∣∣∣∣∣∣∣∣

C1;i1j1 . . . C1;iP jP
... . . . ...

CP ;i1j1 . . . CP ;iP jP

∣∣∣∣∣∣∣∣∣∣∣∣

+

=
∑
τ∈SP

C1;iτ(1)jτ(1) . . . CP ;iτ(P )jτ(P ) (4.4)

is a permanent. In Equation 4.4, τ ∈ SP denotes the sum over all permutations τ . We

will refer to the creation operators as occupied spin orbitals, creation operator pairs as

orbital pairs, and the combinations of creation operator pairs as pairing schemes.

The preceding equation makes it easy to place APG within the more general frame-

work of Flexible Ansatze for N-electron Configuration Interaction (FANCI) wavefunc-

tions[11]. Specifically, the overlap of the APG wavefunction with a Slater determinant,

m, is

〈m|ΨAPG〉 =
∑

{i1,j1,...,iP ,jP }=m
sgn

(
σ(i1, j1, . . . , iP , jP )

)
∣∣∣∣∣∣∣∣∣∣∣∣

C1;i1j1 . . . C1;iP jP
... . . . ...

CP ;i1j1 . . . CP ;iP jP

∣∣∣∣∣∣∣∣∣∣∣∣

+

(4.5)

Each term in the overlap expression corresponds to a combination of the orbital pairs

(pairing scheme) to form the given Slater determinant and each term in the permanent

expression corresponds to an ordering of the orbital pairs from the given pairing scheme.

These two components of the APG make it prohibitively expensive: 1) the number of

terms in the overlap (Equation 4.5) increases double factorially with the number of

electrons, (2P − 1)!!, and 2) the cost of evaluating the permanent increases factorially

with the number of electron pairs, P !.

Different geminal wavefunctions try to offset this computation cost by truncating the
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two-electron (orbital pair) basis set and by constraining the geminal coefficients[22–

50]. By removing orbital pairs from the geminals, the number of terms in the sum

(Equation 4.3) decreases. In the APsetG wavefunction, only the creation operators of

one set, S1 can be paired with the creation operators of a second disjoint set, S2[47].

|ΨAPsetG〉 =
P∏
p

∑
i∈S1

∑
j∈S2

Cp;ija
†
ia
†
j |0〉 (4.6)

In the spin-restricted Antisymmetrized Product of Interacting Geminals (APIG) wave-

function, only the creation operators that correspond to the same spatial orbital can

be paired with one another[50].

|ΨAPIG〉 =
P∏
p

K∑
i

Cpia
†
ia
†
ı̄ |0〉 (4.7)

Here i is the index for the spatial orbital with spin alpha and ı̄ is the index for the

same spatial orbital with spin beta. Both APsetG and APIG wavefunctions limit the

number of terms in the overlap (Equation 4.5) by truncating the orbital pairs: fewer

orbital pairs results in fewer pairing schemes. Specifically, APsetG reduces the terms in

the sum (Equation 4.3) to P !; in APIG, there is only a single term in the sum.

In addition to truncating the orbital pairs, we can apply constraints to the geminal

coefficients. For example, the Antisymmtrized Product of 1-reference orbital Geminals

(AP1roG) wavefunction is an approximation to the APIG wavefunction where much of

the coefficient matrix is fixed to be an identity matrix[51].

|ΨAP1roG〉 =
P∏
p

a†pa†p̄ +
K∑

i=P+1
Cpia

†
ia
†
ı̄

 |0〉 (4.8)
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In this wavefunction, each geminal is dominated by a spatial orbital occupied in the

ground-state HF wavefunction. The cost of its overlap with a Slater determinant is

O(m!) where m is the order of excitation of the given Slater determinant with respect to

the HF ground-state. Unlike the AP1roG wavefunction, which approximates a portion of

the APIG coefficient matrix, the Antisymmetrized Product of rank-2 Geminals (APr2G)

approximates the entire matrix as a Cauchy matrix, whose permanent can be reduced

to a quotient of two determinants[52]. Then, the cost of the overlap reduces to that of

computing the determinants, which is O(P 3). Since these approximations apply only

to the geminal coefficients, they can be applied to any geminal wavefunctions. In this

article, however, we focus on developing new methodologies for selecting orbital pairs

for the APG wavefunction and keep the coefficients unconstrained.

4.2 From Geminal-Based Wavefunctions to Graphs

Unlike the APIG wavefunction, the APsetG and APG wavefunctions can represent the

same Slater determinant with different pairing schemes. For example, suppose we have

the Slater determinant with occupied spin orbitals (1, 2, 1̄, 2̄), where spin orbitals i and

ı̄ correspond to the alpha and beta spin parts of the ith spatial orbital. In the APG

wavefunction, there are three different pairing schemes: (1, 1̄) and (2, 2̄); (1, 2̄) and (2, 1̄);

and (1, 2) and 1̄2̄. The APsetG wavfunction has two pairing schemes: (1, 1̄) and (2, 2̄);

and (1, 2̄) and (2, 1̄). The APIG wavefunction has just one pairing scheme: (1, 1̄) and

(2, 2̄). Each pairing scheme corresponds to a term in the overlap, each term requiring

the evaluation of a permanent.
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Figure 4.1: Graphs to describe the overlap of Slater determinant with
occupied spin orbitals (1, 1̄, 2, 2̄, 3, 3̄): APG (left), APsetG (center), and
APIG (right) wavefunctions

Identifying the pairing schemes associated with a given Slater determinant is analo-

gous to dividing its occupied spin orbitals into disjoint subsets containing two elements.

In other words, a pairing scheme is a set of subsets of two spin orbitals. Consistent with

the Pauli exclusion principle, the subsets are all disjoint; the union of the subsets equals

the set of occupied spin orbitals in the given Slater determinant.

The process of finding the pairing schemes can be simplified by interpreting the

occupied spin-orbitals and subsets/orbital-pairs as vertices and edges of a graph, re-

spectively. For example, the graph for the APG wavefunction is a complete graph since

all orbital pairs can be used. The graph for the APsetG wavefunction, on the other

hand, is a complete bipartite graph because only the orbitals from one set can be

paired with the orbitals from a disjoint set. The graph for the APIG wavefunction is

a perfect matching. The graphs that correspond to the overlaps of the APG, APsetG,

and APIG wavefunctions with the Slater determinant with occupied spin-orbitals la-

beled by {1, 1̄, 2, 2̄, 3, 3̄} are shown in Figure 4.1, and the corresponding mathematical

expressions are shown in the Appendix.
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If the occupied spin orbitals and the allowed orbital pairs are represented as a graph,

then each pairing scheme is a perfect matching of this graph. A perfect matching is a

set of edges of a graph with no shared end points that contains all of the vertices of a

graph; a pairing scheme is a set of orbital pairs with no shared orbitals that contains all

of the occupied spin orbitals of a Slater determinant. Then, the sum over the pairing

schemes within the overlap is equivalent to the sum over the perfect matchings of the

corresponding graph. In the case of the APG wavefunction, there are (2P − 1)!! = (2P )!
P !2P

perfect matchings of the corresponding complete graph of 2P vertices. The number of

pairing schemes grows explosively as the number of vertices/electrons increases, and the

overlap becomes intractable to compute. In contrast, at least for systems of chemical

relevance, it seems the APIG wavefunction is a nearly exact approximation of the

Doubly Occupied Configuration Interaction (DOCI) wavefunction[53–64], despite using

only one pairing scheme per Slater determinant[18, 45, 51]. This suggests that not all

pairing schemes are needed and that some pairing schemes are more important than

others; many terms in the overlap may be negligibly small and thus can be ignored.

The goal of this work is to develop an algorithm that systematically selects the most

important pairing schemes (discarding the rest) for any given Slater determinant. Since

the number of pairing schemes increases exponentially with the number of electrons,

this algorithm cannot consider each pairing scheme. Of course, the orbital pairs can

be truncated from the geminal wavefunction, as in the APIG wavefunction, where

orbital pairs are truncated according to chemical intuition. However, the methods based

on heuristics often break down when the assumptions used are no longer valid for

the system under study. For instance, the spin-restricted APIG wavefunction assumes

that alpha-beta spin orbitals associated with a common spatial orbital are the most
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important pair and that other orbital pairs are not significant. When the system requires

significant contributions from non-seniority zero Slater determinants, the truncated

orbital pairs become more important and the APIG wavefunction is unable to accurately

describe the system.

Fortunately, there already exist algorithms that find the perfect matching with the

largest weights from a graph in polynomial time. In this article, we use the maxi-

mum weighted matching algorithm based on the Edmonds’ Blossom algorithm[65–67].

Though the specifics of this maximum weighted matching algorithm are deferred to the

references[65–67], this algorithm uses the adjacency matrix, a matrix that embodies the

connectivity of the graph and the weights of the edges, to systematically contracts the

graph and iteratively find the (augmenting) path whose sum of weights is maximized.

The cost of the Blossom algorithm is O
((

N
2

)
N logN

)
= O(N3 logN) for a complete

graph with N vertices.

By assigning the weights of the edges so that they correspond to the contributions

of the orbital pairs to a pairing scheme, then using the Blossom algorithm, we can find

the pairing scheme with the largest contribution to the overlap. In the next section,

we discuss how to assign the edge-weights so that they correspond to the importance

of the orbital pairs. Then, in Section 4.4 we present various strategies for predicting

the next most significant pairing schemes using only the weighted maximum matching

algorithm. After presenting our test systems in Section 4.5, we present our numerical

results in Section 4.6.
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4.3 Orbital Pair Contribution

Recall that the Blossom algorithm finds the set of edges (orbital pairs) that maxi-

mizes the sum of the edge-weights. If we can define the weights of the orbital pairs,

{wi1j1 . . . wiP jP }, such that their sum has the same ordering as the size the corresponding

permanents, ∣∣∣∣∣∣∣∣∣∣∣∣

C1;i1j1 . . . C1;iP jP
... . . . ...

CP ;i1j1 . . . CP ;iP jP

∣∣∣∣∣∣∣∣∣∣∣∣

+

then the maximum weighted matching will produce the pairing schemes with the largest

permanents. Because the permanent is expensive to compute, we need to approximate

it with an upper bound. One possibility is the Hadamard-like inequality for perma-

nents[68]:

abs(|A|+) ≤ N !
NN/2

N∏
j=1

norm(Aj) (4.9)

where N is the number of columns, Aj is the jth column of A, and the norm is the

Euclidian norm. However, the scalar factor N !
NN/2 increases very quickly with the size

of the matrix, so this inequality is too loose to be helpful for larger matrices. In par-

ticular, because the geminal wavefunctions are normalized and are optimized starting

from bounded initial guesses, their permanents will likely be bounded from above by a

small positive integer. For example, the initial guess for the APIG wavefunction is often

the coefficient matrix where the only nonzero coefficients are those associated with the

Hartree-Fock ground state. This suggests that the largest contributors to the coefficient

matrix are often identity elements along the diagonal (corresponding to intermediate
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normalization). Therefore, most permanents will likely be less than one. Since the wave-

function is normalized, all of the coefficients will likely remain less than or equal to one

during the course of the optimization. Moreover, if this were not true, one could always

adjust the normalization accordingly.

Here, we propose the following inequality:

abs(|A|+) ≤
N∏
j=1

N∑
i=1
|aij| (4.10)

When the L1-norm, ∑N
i=1 |aij|, is less than or equal to one for all columns, this inequality

should provide a tighter bound than Inequality 4.9. The proof of this inequality is given

in the Appendix.

When the wavefunction is normalized, most of the coefficients should be less than

one and the others close to one. Then, most orbital pairs will have L1-norms that are

less than one, the product of which results in an even smaller upper bound for the

corresponding permanent. This upper bound on small permanents means that when

evaluating the overlap (cf. Equation 4.5) these terms can be safely eliminated from the

sum without significant loss of accuracy.

Using Inequality 4.10, the importance of the pairing schemes, i.e. values of the per-

manents, can be efficiently compared without evaluating the permanents. According

to Equation 4.2, the orbital pair is represented by a column of the geminal coefficient

matrix and the weight of the orbital pair is the L1-norm of the corresponding column.

However, the weight of the matching used in the matching algorithm is the sum of the

weights of the edges, rather than the product. To directly utilize the Inequality 4.10, we
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use the log of the L1-norms as the weights. Numerical issues arise when the L1-norm of

a column is very small, so weights below a threshold are set to zero and, for consistency,

the remaining weights are shifted by the same threshold:

wij =


0 if ∑P

p=1 |Cp;ij| ≤ threshold

log
(∑P

p=1 |Cp;ij|
)
− log(threshold) else

(4.11)

Here wij denotes the weight of the edge that corresponds to pairing spin-orbital i

with spin-orbital j. Using these weights, the maximum weighted matching algorithm

will produce a pairing scheme that has the largest upper bound to the corresponding

permanent. We propose that the ordering of the pairing schemes by the presented upper

bound (Equation 4.10) is similar to the ordering by the permanent values but this is

less important, because we can evaluate all the contributions from permanents larger

than a certain threshold using the upper bound in Equation 4.10.

4.4 Algorithm

When the sum is truncated to one pairing scheme, we can find the pairing scheme with

the largest upper bound of the permanent using the Blossom algorithm. To find the

pairing schemes with the next largest weights, the algorithm for finding K-best perfect

matchings can be used[69]. The K best perfect matchings are the K perfect matchings

with the largest weights. This algorithm involves systematically removing one or more

edges of the matching from the graph and applies the weighted matching algorithm

to the pruned graph. An arbitrary number of pairing schemes can be obtained in the
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order of decreasing weight using the K-best perfect matching algorithm. The cost of

this algorithm scales linearly with the number of selected pairing schemes.

When using the K-best perfect matching algorithm to evaluate Slater determinant

overlaps with a geminal wavefunction, only the orbital pairs whose coefficients have an

L1-norm greater than the threshold are used. If the L1-norm drops below the given

threshold, then this orbital pair will no longer contribute to the wavefunction for the

remainder of the optimization. In addition, it is possible that an orbital pair does

not contribute to the wavefunction despite having an L1-norm above the threshold

because all the pairing schemes to which it belongs have been truncated. To avoid such

situations, noise can be added to the coefficients during the optimization process. The

coefficients to which the noise is added can be determined according to some heuristic

or probability distribution. However, these more sophisticated algorithms have not been

explored in this initial study.

4.5 Computational Protocol

To test the accuracy of the aforementioned method for selecting the most important

perfect matchings, we studied the symmetric dissociation of a H8 chain (Figure 4.2)[51,

70] and symmetric stretch of a ring of four Hydrogen molecules (Figure 4.3)[71], using

the ANO-1s basis set. We chose these systems because accurate full configuration inter-

action (FCI) reference data is available and because, for these small systems, the exact

evaluation of the overlap (Equation 4.5) is feasible. Though these systems have few

electrons and basis functions, they are challenging to model with traditional electronic
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Figure 4.2: Linear H8 chain: α ∈ {0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4,
1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.25, 2.5, 3, 4} Angstroms

Figure 4.3: Octagonal H8: a = 2 a.u., α ∈ {0, 0.0001, 0.001, 0.003,
0.006, 0.01, 0.03, 0.06, 0.1, 0.5, 1} a.u.

structure methods because they are very strongly multiconfigurational, as many bonds

(7 in the H8 chain; 4 in the H8 ring) are being broken simultaneously and there are

many nearly degenerate orbitals near the Fermi level.

The Restricted HF wavefunction was obtained from Gaussian 2016[72] and the 1-

and 2-electron integrals were obtained from the gbasis module of HORTON[73]. The

FCI wavefunction was computed using PySCF[74]. All other wavefunctions were im-

plemented and obtained using our in-house Fanpy package[75]. The Blossom algorithm

was obtained from the networkx package[76]. However, rather than using the efficient

K-best perfect matching algorithm, in this initial study we obtained the K-best pairing

schemes in a brute force fashion, by explicitly ordering weights of the pairing schemes.

The threshold of 10−4 was used for computing the weights of the orbital pairs. With the

exception of the FCI wavefunction, the orbitals of all wavefunctions were optimized.
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4.6 Results and Discussion

We considered the following wavefunctions: Ap1roG, APIG, DOCI, FCI, and APG;

each wavefunction was computed both with and without truncation. The truncated

APG wavefunction will be denoted as -Kps, where K denotes that only the terms in

the sum (Equation 4.3) corresponding to the K-best perfect matchings are included.

The energies of these wavefunctions and the relative energies of the truncated APG-

Kps geminal wavefunctions with respect to the APG wavefunction are shown in Fig-

ures 4.4 and 4.5. The Hartree-Fock energy is very inaccurate in all cases, confirming

the multiconfigurational nature of these test systems. The seniority-zero wavefunctions

(AP1roG, APIG, and DOCI) are all qualitatively correct, and visually indistinguish-

able from one another, confirming once again that the AP1roG wavefunction is a very

good approximation to the APIG wavefunction for systems with repulsive interparticle

interactions and that the APIG wavefunction is, in turn, an excellent approximation

to the DOCI wavefunction[51]. However, the seniority-zero methods are systematically

above the FCI curves due to the absence of dynamic correlation, which is nonnegligible

even in this small basis set, especially for small internuclear distances. Dynamic cor-

relation within electron pairs (but not the more challenging intergeminal correlation

between electron pairs) is included in the APG wavefunction, which is systematically

more accurate to AP1roG and APIG. Note that unlike seniority-zero methods, which

are qualitatively incorrect near α = 0 for the H8 ring because they predict a coni-

cal intersection, APG apparently models the avoided crossing at α = 0 qualitatively

correctly.
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APG is very expensive, so it is reassuring that the energies from the APG-Kps

methods quickly approach the energy from APG as K increases. It is remarkable that

even though APG-1ps uses a single pairing scheme like APIG, its energy error (relative

to exact APG) is about three times smaller. This is because, unlike APIG, where the

pairing scheme is preassigned, the pairing scheme in APG-1ps is dynamically selected

based on APG coefficients and the occupied orbitals (different pairing schemes will be

used for the projection on different Slater determinants). Indeed, the energy-error of

APG-1ps relative to APG is comparable to the energy-error of APG relative to FCI. The

computational cost of APG-Kps grows linearly with K, so allowing including additional

pairing schemes is not prohibitive.

The disadvantage of APG-Kps is that there are derivative discontinuities in the

energy when the elements of the set of K-best pairing schemes changes. This is most

visible in Figure 4.4b, where the errors in APG-Kps are a little erratic, as compared

to the smoother errors in APIG. These discontinuities can be decreased as much as

desired by increasing the number of pairing schemes.

APG-Kps is also useful for optimizing the geminal coefficients in APG. For exam-

ple, one can start by loosely converging the APG-Kps coefficients for a small number

of pairing schemes, and then systematically increase K as the convergence threshold is

tightened, using the previous solution as an accurate initial guess. Similarly, the thresh-

old for the weights of the edges (Equation 4.11) can be systematically tightened during

the convergence procedure. We have not, however, explored these more complicated

algorithms here, as their primary utility would be for larger systems where brute-force

APG calculations are intractable.
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Figure 4.4: (a) Energies and (b) energy differences relative to APG in
the H8 chain; see Figure 4.2
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Figure 4.5: (a) Energies and (b) energy differences relative to APG in
the H8 ring; see Figure 4.3
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Even greater gains can be obtained by making an analogy between selecting pair-

ing schemes in APG-Kps and choosing determinants in selected configuration interac-

tion (CI) methods. In this analogy, the APG wavefunction is analogous to FCI. One

could remove pairing schemes from the APG based on certain system-independent rules;

this gives approaches like APIG and APsetG, which are analogous to systematically-

truncated CI wavefunctions like CISD, CASSCF, DOCI, etc.[77–81]. Though these

wavefunctions are much more affordable, they lack critical correlations. APG-Kps is

analogous to selected-CI algorithms like CIPSI[82] and HCI[83], where one selects con-

figurations based on the estimated size of their coefficient[82–94]. To further extend

APG-Kps, one may be inspired by the FCI-QMC approach[95–108], and selecting the

pairing schemes by sampling from a probability distribution instead of by using a de-

terministic algorithm as we have done here.

Another possible improvement is to use faster methods for selecting the K-best

pairing schemes. State-of-the-art weighted matching algorithms have cost of O(N2
√
N)

for the exact algorithm[109, 110] and O(N2ε−1 log ε−1) for the (1 − ε) approximate

algorithm[111]. The approximate algorithm returns a pairing scheme with a weight that

is within a factor of (1 − ε) of optimal. These matching algorithms are not limited to

complete graphs so they can be used for any geminal wavefunction, including APsetG.

These algorithmic improvements, however, are limited by the APG wavefunction.

The APG wavefunction is not exact for systems with more than two electrons because

it neglects the correlations between geminals. One way to incorporate these intergeminal

correlations is to add basis functions with different numbers of electrons to form a gener-

alized quasiparticle wavefunction[10, 11]. Just as the pairing schemes correspond to the
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perfect matches, each term in the overlap of the generalized quasiparticle wavefunction

corresponds to a partition of the electrons into subsets. In fact, a geminal wavefunction

is a special case of the generalized quasiparticle wavefunctions and a perfect matching

is a special case of partitions. Adding, for example, 3- and 4-electron basis functions

results in an exponential increase in the number of terms in the overlap because there

are many more ways to partition the given occupied orbitals into the available com-

ponents. This wavefunction will be significantly more expensive to compute than the

APG wavefunction, which was already intractable. However, dynamically selecting the

pairing schemes in the APG wavefunction produced results comparable to those using

all pairing schemes, despite being much cheaper. Similarly, it may be possible to omit

many partitions within the overlap of the generalized quasiparticle wavefunction with-

out a significant impact on the wavefunction. This approach allows the basis functions

to be built up systematically, starting from the optimization of the wavefunction with

the smaller body terms, such as 1- and 2-electron basis functions, and subsequently

adding the larger body terms.

Although this article focused on reducing the number of pairing schemes, reducing

the cost of permanent evaluation is arguably even more critical for producing tractable

geminal (and quasiparticle) wavefunctions. The 1-reference-orbital and rank-2 approx-

imations used in AP1roG and APr2G are clearly generalizable to the APG wavefunc-

tion. Since these approximations pertain to the evaluation of permanents, they can

also apply to the generalized quasiparticle wavefunction. These important practical

embellishments on the general strategy we present here are an important target for

future work. To give an idea of the types of performance that can be achieved, if

the 1-reference-orbital structure for evaluating the permanent (analogous to AP1roG),
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then APG-Kps-1ro would have a computational cost that was about K times that of

AP1roG, times the cost of determining the perfect matchings that need to be computed.

The computational scaling of AP-Kps-1ro is thus the same as CCSD, but unlike CCSD,

AP-Kps-1ro is applicable to strongly correlated systems.

4.7 Summary

As the number of electrons, N in a system increases, evaluating the APG wavefunctions

becomes increasing intractable due to the cost of summing over all (N − 1)!! possible

pairing schemes (the outer sum in Equation 4.5) and the O((N/2)!) cost of evaluating

the permanent. Our computational results suggest that only a small number of the pair-

ing schemes are quantitatively important. To exploit this, we derived an efficient upper

bound on the contribution of any given permanent, and then used the link between

optimal pairing schemes and algorithms for selecting the K-best perfect matching of

weighted graphs to select the K most important pairing schemes. (Alternatively, we

could neglect the pairing schemes whose contributions were guaranteed to be less than

a given threshold.) The APG-1ps method, where only a single pairing scheme is cho-

sen, has essentially the computational cost as the venerable APIG method but recovers

about 2/3 of the gap in correlation energy between the APIG and APG methods. As

additional pairing schemes are included, the APG-Kps methods quickly converge to the

exact APG-(N − 1)!!ps results. The APG-Kps method opens the possibility for sophis-

ticated optimization algorithms that select the most appropriate pairing schemes and

the corresponding wavefunction parameters, as well as extensions to more general quasi-

particle wavefunctions. When coupled with efficient parameterizations of the geminal
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coefficients that reduce the cost of evaluating the permanent, the APG-Kps strategy

opens up new possibilities for wavefunctions that are not only reliable for strongly-

correlated molecules, but also computationally tractable, chemically interpretable, and

numerically robust.
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4.10 Appendix

4.10.1 Explicit Equations corresponding to Figure 4.1

Suppose a Slater determinant has occupied spin orbitals (1, 2, 3, 1̄, 2̄, 3̄). The explicit

equation for the overlap of the APG wavefunction with this Slater determinant is:

〈(1, 2, 3, 1̄, 2̄, 3̄)|ΨAPG〉 =
∑

{i1,j1,...,i3,j3}={1,2,3,1̄,2̄,3̄}
sgn

(
σ(i1, j1, . . . , i3, j3)

)
∣∣∣∣∣∣∣∣∣∣∣∣

C1;i1j1 C1;i2j2 C1;i3j3

C2;i1j1 C2;i2j2 C2;i3j3

C3;i1j1 C3;i2j2 C3;i3j3

∣∣∣∣∣∣∣∣∣∣∣∣

+

=

∣∣∣∣∣∣∣∣∣∣∣∣

C1;12 C1;31̄ C1;2̄3̄

C2;12 C2;31̄ C2;2̄3̄

C3;12 C3;31̄ C3;2̄3̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

−

∣∣∣∣∣∣∣∣∣∣∣∣

C1;12 C1;32̄ C1;1̄3̄

C2;12 C2;32̄ C2;1̄3̄

C3;12 C3;32̄ C3;1̄3̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

+

∣∣∣∣∣∣∣∣∣∣∣∣

C1;12 C1;33̄ C1;1̄2̄

C2;12 C2;33̄ C2;1̄2̄

C3;12 C3;33̄ C3;1̄2̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

−

∣∣∣∣∣∣∣∣∣∣∣∣

C1;13 C1;21̄ C1;2̄3̄

C2;13 C2;21̄ C2;2̄3̄

C3;13 C3;21̄ C3;2̄3̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

+

∣∣∣∣∣∣∣∣∣∣∣∣

C1;13 C1;22̄ C1;1̄3̄

C2;13 C2;22̄ C2;1̄3̄

C3;13 C3;22̄ C3;1̄3̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

−

∣∣∣∣∣∣∣∣∣∣∣∣

C1;13 C1;23̄ C1;1̄2̄

C2;13 C2;23̄ C2;1̄2̄

C3;13 C3;23̄ C3;1̄2̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

+

∣∣∣∣∣∣∣∣∣∣∣∣

C1;11̄ C1;23 C1;2̄3̄

C2;11̄ C2;23 C2;2̄3̄

C3;11̄ C3;23 C3;2̄3̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

−

∣∣∣∣∣∣∣∣∣∣∣∣

C1;11̄ C1;22̄ C1;33̄

C2;11̄ C2;22̄ C2;33̄

C3;11̄ C3;22̄ C3;33̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

+

∣∣∣∣∣∣∣∣∣∣∣∣

C1;11̄ C1;23̄ C1;32̄

C2;11̄ C2;23̄ C2;32̄

C3;11̄ C3;23̄ C3;32̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

−

∣∣∣∣∣∣∣∣∣∣∣∣

C1;12̄ C1;23 C1;1̄3̄

C2;12̄ C2;23 C2;1̄3̄

C3;12̄ C3;23 C3;1̄3̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

+

∣∣∣∣∣∣∣∣∣∣∣∣

C1;12̄ C1;21̄ C1;33̄

C2;12̄ C2;21̄ C2;33̄

C3;12̄ C3;21̄ C3;33̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

−

∣∣∣∣∣∣∣∣∣∣∣∣

C1;12̄ C1;23̄ C1;31̄

C2;12̄ C2;23̄ C2;31̄

C3;12̄ C3;23̄ C3;31̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

+

∣∣∣∣∣∣∣∣∣∣∣∣

C1;13̄ C1;23 C1;1̄2̄

C2;13̄ C2;23 C2;1̄2̄

C3;13̄ C3;23 C3;1̄2̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

−

∣∣∣∣∣∣∣∣∣∣∣∣

C1;13̄ C1;21̄ C1;32̄

C2;13̄ C2;21̄ C2;32̄

C3;13̄ C3;21̄ C3;32̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

+

∣∣∣∣∣∣∣∣∣∣∣∣

C1;13̄ C1;22̄ C1;31̄

C2;13̄ C2;22̄ C2;31̄

C3;13̄ C3;22̄ C3;31̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

+

∣∣∣∣∣∣∣∣∣∣∣∣

C1;13̄ C1;23 C1;1̄2̄

C2;13̄ C2;23 C2;1̄2̄

C3;13̄ C3;23 C3;1̄2̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

−

∣∣∣∣∣∣∣∣∣∣∣∣

C1;13̄ C1;21̄ C1;32̄

C2;13̄ C2;21̄ C2;32̄

C3;13̄ C3;21̄ C3;32̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

+

∣∣∣∣∣∣∣∣∣∣∣∣

C1;13̄ C1;22̄ C1;31̄

C2;13̄ C2;22̄ C2;31̄

C3;13̄ C3;22̄ C3;31̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

(4.12)
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Similarly, the explicit equation for the overlap of the APsetG wavefunction with this

Slater determinant is:

〈(1, 2, 3, 1̄, 2̄, 3̄)|ΨAPsetG〉 =
∑

{i1,i2,i3}={1,2,3}
{j1,j2,j3}={1̄,2̄,3̄}

sgn
(
σ(i1, j1, . . . , i3, j3)

)
∣∣∣∣∣∣∣∣∣∣∣∣

C1;i1j1 C1;i2j2 C1;i3j3

C2;i1j1 C2;i2j2 C2;i3j3

C3;i1j1 C3;i2j2 C3;i3j3

∣∣∣∣∣∣∣∣∣∣∣∣

+

= −

∣∣∣∣∣∣∣∣∣∣∣∣

C1;11̄ C1;22̄ C1;33̄

C2;11̄ C2;22̄ C2;33̄

C3;11̄ C3;22̄ C3;33̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

+

∣∣∣∣∣∣∣∣∣∣∣∣

C1;11̄ C1;23̄ C1;32̄

C2;11̄ C2;23̄ C2;32̄

C3;11̄ C3;23̄ C3;32̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

+

∣∣∣∣∣∣∣∣∣∣∣∣

C1;12̄ C1;21̄ C1;33̄

C2;12̄ C2;21̄ C2;33̄

C3;12̄ C3;21̄ C3;33̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

−

∣∣∣∣∣∣∣∣∣∣∣∣

C1;12̄ C1;23̄ C1;31̄

C2;12̄ C2;23̄ C2;31̄

C3;12̄ C3;23̄ C3;31̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

−

∣∣∣∣∣∣∣∣∣∣∣∣

C1;13̄ C1;21̄ C1;32̄

C2;13̄ C2;21̄ C2;32̄

C3;13̄ C3;21̄ C3;32̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

+

∣∣∣∣∣∣∣∣∣∣∣∣

C1;13̄ C1;22̄ C1;31̄

C2;13̄ C2;22̄ C2;31̄

C3;13̄ C3;22̄ C3;31̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

−

∣∣∣∣∣∣∣∣∣∣∣∣

C1;13̄ C1;21̄ C1;32̄

C2;13̄ C2;21̄ C2;32̄

C3;13̄ C3;21̄ C3;32̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

+

∣∣∣∣∣∣∣∣∣∣∣∣

C1;13̄ C1;22̄ C1;31̄

C2;13̄ C2;22̄ C2;31̄

C3;13̄ C3;22̄ C3;31̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

(4.13)

Finally, the explicit equation for the overlap of the APIG wavefunction with this

Slater determinant is:

〈(1, 2, 3, 1̄, 2̄, 3̄)|ΨAPIG〉 = −

∣∣∣∣∣∣∣∣∣∣∣∣

C1;11̄ C1;22̄ C1;33̄

C2;11̄ C2;22̄ C2;33̄

C3;11̄ C3;22̄ C3;33̄

∣∣∣∣∣∣∣∣∣∣∣∣

+

(4.14)
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4.10.2 Proof for Equation 4.10

The proof is by induction. Starting with the 2× 2 permanent.

abs


∣∣∣∣∣∣∣∣
a11 a12

a21 a22

∣∣∣∣∣∣∣∣
+ = |a11a22+a12a21| ≤ (|a11|+|a21|)(|a12|+|a22|) = |a11a22|+|a12a21|+|a11a12|+|a21a22|

(4.15)

abs



∣∣∣∣∣∣∣∣∣∣∣∣

a11 a12 a13

a21 a22 a23

a31 a32 a33

∣∣∣∣∣∣∣∣∣∣∣∣

+ = |a11|

∣∣∣∣∣∣∣∣
a22 a23

a32 a33

∣∣∣∣∣∣∣∣
+

+ |a21|

∣∣∣∣∣∣∣∣
a12 a13

a32 a33

∣∣∣∣∣∣∣∣
+

+ |a31|

∣∣∣∣∣∣∣∣
a12 a13

a22 a23

∣∣∣∣∣∣∣∣
+

≤ (|a11|+ |a21|+ |a31|)max

abs


∣∣∣∣∣∣∣∣
a22 a23

a32 a33

∣∣∣∣∣∣∣∣
+ , abs


∣∣∣∣∣∣∣∣
a12 a13

a32 a33

∣∣∣∣∣∣∣∣
+ , abs


∣∣∣∣∣∣∣∣
a12 a13

a22 a23

∣∣∣∣∣∣∣∣
+


≤ (|a11|+ |a21|+ |a31|)max

(
(|a22|+ |a32|)(|a23|+ |a33|), (|a12|+ |a32|)(|a13|+ |a33|), (|a12|+ |a22|)(|a13|+ |a23|)

)
≤ (|a11|+ |a21|+ |a31|)(|a12|+ |a22|+ |a32|)(|a13|+ |a23|+ |a33|)

(4.16)

For the inductive step, we generalize to the n× n case

|A|+ =
N∑
i=1

ai1Mi1 (4.17)
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where Mij is the minor of A where the row i and column 1 were removed. Then,

abs(|A|+) ≤
(

N∑
i=1
|ai1|

)
maxi

(
abs(Mi1)

)

≤
(

N∑
i=1
|ai1|

)
maxi

 N∏
j=2

N∑
k 6=i
|akj|


≤
(

N∑
i=1
|ai1|

) N∏
j=2

N∑
i=1
|aij|


≤

N∏
j=1

N∑
i=1
|aij|

(4.18)
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In traditional ab initio molecular electronic structure theory, a mathematical for-

malism is derived from fundamental physical laws, and then computational implemen-

tation of the mathematical formalism is designed. This approach requires physical and

chemical insight, obtained through first-hand computational experience and reading the

literature. Over the last few decades, machine learning has emerged as an alternative

to this analytic approach. In machine-learning (ML) approaches, the focus is on finding

a function that fits the inputs of the dataset to their corresponding outputs[1–4]. Using

ML, difficult problems can be modelled using only a dataset of observations, including

applications like simulating fluids[5, 6] and stock market prediction[7–9]. In these cases,

168



Ph.D. Thesis - Taewon David Kim McMaster University - Chem & Chem Bio

the model emerges directly from the data and is sculpted with the goal of reproduc-

ing observations. These supervised learning algorithms are largely agnostic about the

nature of the underlying data, and can be used for a wide range of datasets. One ML

model, called a neural network, has been particularly successful in modelling difficult

problems in cases where abundant data is available. Many of the recent advances in im-

age recognition[10–13], speech recognition[14–16], and language processing[17–20] use

neural networks.

Neural network models have been known since the 1950’s[21, 22], but their emergence

is due, in large part, to the availability of new types of computer hardware, the agglom-

eration of large datasets via the internet, and the development of better optimization

algorithms[23–27]. In this chapter, we explore possible uses of the neural network model

and a popular optimization strategy, stochastic gradient descent (SGD), for solving the

Schrödinger equation. The neural network model is incorporated into the wavefunction

using the framework proposed in Chapter 2 and the SGD algorithm is used to solve the

projected Schrödinger equation is presented in Section 1.6. The concept of sampling

data points in SGD is generalized to adaptively sample the projection space.

5.1 Neural Network

5.1.1 Overview of Neural Networks

A neural network, at its core, involves a sequence of linear transformation followed by

a nonlinear transformation[1, 2]. The simplest neural network, a feed-forward neural
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network, has the following structure:

f(x) = σL

w(L−1)
0 +

KL−1∑
jL−1=1

w
(L−1)
jL−1 . . . σ2

w(1)
0 +

K1∑
j1=1

w
(1)
j2j1σ1

(
w

(0)
0 +

N∑
i=1

w
(0)
j1ixi

) . . .


(5.1)

This neural network consists of L layers, each layer k consisting of linear transformation

via w
(k)
jk+1jk

and w
(k)
0 and nonlinear transformation via the function σk. The input is

linearly transformed into K1 units in the 1st layer, each of which is transformed using

a nonlinear function σ1. These units are then linearly transformed into K2 units in the

2nd layer, then nonlinear transformed with σ2. This process is repeated until the final

layer, which produces the output. The graphical representation of this neural network

is given in Figure 5.1. The first layer is called the input layer, the last layer is called

the output layer, and layers in between are called hidden layers. The units of each

hidden layer are called hidden units and the nonlinear functions are called activation

functions. One interpretation of the neural network is that it is a linear combination of

adaptable basis functions where both the basis functions and the linear combinations

are parameterizable and, thus, optimizable.

Normally, neural networks are optimized to minimize the residual sum of squares

(Equation 5.2) in which the neural network, f , maps the input, xi, to the output,

f(xi), such that it most closely resembles the target value, ti, for every data point,

{xi, ti}.

Remp(P) = 1
M

M∑
i=1

(
f(xi|P)− ti

)2

= 1
M

M∑
i=1

L(xi, ti|P)
(5.2)
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Figure 5.1: L-Layer Feed-Forward Neural Network

Optimizing the neural network in this manner is termed “training” the network. Since

training a network is equivalent to finding a function that approximates the target val-

ues for each data point, the accuracy of the neural network is limited by the functions

that can be represented with a neural network given its structure and parameters. How-

ever, a simple feed-forward neural network can approximate any continuous function

to an arbitrary accuracy by increasing its width (number of hidden units)[28, 29] or by

increasing its depth (number of layers)[30, 31]. Though the performance of the network

depends on the activation functions used, computationally friendly (i.e., easy to differ-

entiate and evaluate) activation functions are preferred since their deficiencies can be

remedied with a more complex network structure (with more hidden units or layers).

The cost of evaluating a neural network (with a sufficiently large number of weights)

scales as O(W ), where W is the number of weights[1]. The evaluation of derivatives

(with respect to weights and input) scales as O(W 2). In addition, neural networks are

easily parallelized, which allows neural networks to make efficient use of computational
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resources for large datasets.

5.1.2 Applications to Quantum Chemistry

Can neural networks be used to solve the Schrödinger equation[32]? There is precedent

for using neural networks to represent wavefunctions in real space for model systems

like harmonic oscillators and hydrogen atoms[33–37]. In these cases, the input to the

network is the coordinates of the wavefunction and the outputs are the values of the

wavefunction at these coordinates. Though the results are promising, the number of data

points (the coordinates and their corresponding wavefunction values) necessarily grows

exponentially with the number of particles, rendering the network too expensive to train

except for a small number of particles[38, 39]. Manzhos et al.[40, 41] partly address this

issue by using the radial basis neural network and a specialized optimization algorithm

that involves solving its linear coefficients as a generalized eigenvalue problem. However,

solving the Schrödinger equation in real-space is not competitive to methods based on

basis sets due to poor scaling in heavier atoms[38, 39]. Nonetheless, by introducing

more complex structures to the neural network, the neural network can become easier

to optimize and require fewer parameters for the same level of accuracy.

In another application, neural networks are given atomic information to produce

molecular energies[42–44]. These networks are designed such that the features of an

atom for one molecular system can be transferred to the network for other systems.

Though these networks show promising results for medium-sized organic molecules in

their ground electronic states, it is likely difficult to train the network for large systems
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with heavier elements, as the scaling seems to grow as the square of the number of dis-

tinct elements. Moreover, heavier elements tend to have a wider range of complex and

nuanced behaviour than ground-state organic systems due to their range of oxidation

states and electron configurations. Complex chemical behaviours may be better de-

scribed by providing the network with quantum chemical information, such as orbitals

in the form of Fock, Coulomb, and exchange integrals[45, 46] or one-electron reduced

density matrix[47]. However, building training data that encompass all such phenomena

seems implausible. Moreover, larger systems have larger energies, so to maintain the

same level of chemical accuracy (∼1 kcal/mol on energy differences) either the relative

accuracy of the model must increase with molecule size or, as with more traditional

quantum chemistry methods, the model must be designed to benefit from the can-

cellation of errors or transferability across different chemical structures. In particular,

obtaining even a single piece of training data for a large metal complex (e.g., a biological

iron-sulfur complex) is prohibitively expensive[48].

More recently, Mills et al.[49] constructed a mapping from two-dimensional poten-

tials to energies using a convolutional neural network. Convolutional neural networks

have structures that group together inputs and hidden units that are closer to one an-

other. It has been shown to be incredibly powerful in processing visual information since

it naturally compartmentalizes into spatially relevant pieces[50]. However, the proposed

network is restricted by the dataset from which it is trained: the size of the grids is

fixed, meaning that larger systems will either have a low resolution or the entire neu-

ral network needs to be re-trained with a larger grid. While Mills et al. exploited the

locality of potentials to determine wavefunctions, Carleo & Troyer[51] build a wavefunc-

tions in terms of its spin states using the restricted Boltzmann machine architecture.
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In contrast, Han et al.[52] and Hermann et al.[53] build neural networks whose inputs

are in real-space (i.e. positions of electrons and nuclei): Han et al.[52] builds a wave-

function as a deep neural network for the real-space quantum Monte Carlo algorithm;

and Hermann et al.[53] builds a wavefunction via a multipart neural network architec-

ture that creates a set of nonorthogonal Slater determinants which are then linearly

combined. Like other traditional quantum chemistry methods, these networks do not

require a dataset and are optimized to solve the Schrödinger equation by minimizing

the energy variationally. Consquently, the networks of Carleo & Troyer, Han et al., and

Hermann et al. fix the number of particles (e.g. spin variables and electron positions),

and a change in the number of particles requires re-training. In a similar spirit, the

network proposed by Schütt[54] and Hegde[55] predict the intermediary quantities used

to build the Schrödinger equation. Specifically, it predicts features that can be used to

build the one-electron Hamiltonian matrix, which can then be diagonalized to obtain

the wavefunction and energy of a single-determinant wavefunction.

5.1.3 Objective Functions

Looking at these applications of neural networks to quantum chemistry, we can identify

the possible problems that arise. Specifically, in order to develop a neural network that

can reliably model the behaviour of complex chemical systems: (1) there must be enough

data for the given training method, (2) an optimized network should be reusable for

other systems or dataset, and (3) the network should be structured such that it can

handle inputs of different sizes.
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Solving the Schrödinger equation is an NP-hard problem and therefore intractable for

larger systems[56]. If a network can successfully solve the Schrödinger equation, whether

directly by finding the N -electron wavefunction or implicitly by directly predicting

energies or other observables, the network is attempting to solve an NP-hard problem.

Since NP-hard problems are unlikely to be solved tractably without approximations[57],

the network will either be intractably expensive to optimize or fail to provide accurate

results for many systems. A common compromise is to develop a method that can

model a subset of the chemical space while ignoring the rest. These methods tend to

be accurate for the systems that resemble the training data but fail catastrophically

if misapplied outside their training domain. For example, the aforementioned networks

above that were designed for small organic systems in their ground electronic state near-

equilibrium geometries are likely to fail, catastrophically, for large inorganic systems

near transition states. Therefore, to handle a wider range of systems, the network must

have a larger dataset from which it is trained.

However, it is difficult to obtain a large high-quality dataset that contains complex

chemical systems. Experimental results are often unavailable and accurate calculations

are too expensive to obtain in bulk. We can use cheaper and less accurate calcula-

tions, but the network trained on these calculations will have (at best) the same level

of accuracy. If there are not enough data to train the network, the network must be

trained with an objective different from the traditional residual sum of squares (Equa-

tion 5.2). Therefore, we feel that if the goal of training the neural network is to solve the

Schrödinger equation (Equation 5.3) by reproducing the dataset that corresponds to its

solutions, the most straight-forward objective is one that directly solves the Schrödinger
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equation.

Ĥ |Ψ〉 = E |Ψ〉 (5.3)

One way is to minimize the expected energy:

E = 〈Ψ|Ĥ|Ψ〉
〈Ψ|Ψ〉 (5.4)

The expected energy follows the variational principle, which means that the calculated

energy will be bound from below by the true energy[58–60]. Therefore, optimizing the

wavefunction to minimize its energy results in an approximate solution that most closely

reproduces the true energy. Another approach is to solve the projected Schrödinger

equation:

〈Φ1|Ĥ|Ψ〉 − E 〈Φ1|Ψ〉 = 0
...

〈ΦM |Ĥ|Ψ〉 − E 〈ΦM |Ψ〉 = 0

(5.5)

By integrating the Schrödinger equation against a set of states (which define the projec-

tion space), a system of nonlinear equations is obtained[61–63]. Optimizing the wave-

function to satisfy this system of equations results in an approximate solution that

most closely satisfies the Schrödinger equation within the space spanned by the pro-

jection space. This approach satisfies the variational principle if the projection space is

complete (contains all possible Slater determinants)[64].

In the examples above, neural networks were incorporated into the Schrödinger equa-

tion by building the wavefunction using a network architecture[51] and by producing
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an intermediary quantity used to solve the Schrödinger equation[54]. Similarly, a net-

work can represent a multideterminant wavefunction by producing the overlap of the

wavefunction for the given Slater determinant:

|Ψ〉 =
∑
m
g(m) |m〉 (5.6)

where m is an occupation vector that corresponds to a Slater determinant and g(m)

is the neural network. These overlaps act as the intermediary quantities for solving

the Schrödinger equation since both Equations 5.4 and 5.5 are expressed with respect

to these overlaps. If this approach is taken, the neural network can be considered a

wavefunction ansatz, specifically a wavefunction ansatz that fits within the Flexible

Ansatz for N-electron Configurate Interaction (FANCI) that we recently presented[65].

The overlaps of the Slater determinants are available in great abundance so constructing

a large dataset is not a problem; in fact, the exponential number of Slater determinants

is the reason that the accurate calculations are expensive, but here this exponential

number of overlaps is exploited as training data. This network can be optimized to

satisfy the Schrödinger equation associated with a Hamiltonian and to minimize the

residual sum of squares associated with a dataset.

For the moment, assume that the neural network will be optimized using only the

Schrödinger equation and that the input to the neural network is only the occupation

vector of the Slater determinant, without any other system-dependent information. In

other words, the network needs to be optimized to solve the Schrödinger equation for

each system separately. Before a network can be designed that can simultaneously solve

many chemical systems, it should solve a single system. Though structural changes are
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necessary to incorporate system-specific information, such as geometry, nuclear charges,

and the Hamiltonian, the lessons learned from designing the network that solves one

chemical system can be used to design the network that can solve multiple systems.

These networks can share much of their structures because they both involve mapping

the occupation vector to the overlap. Furthermore, the limitations of a network can be

quickly demonstrated on the network that solves a single system since its performance

can serve as an upper bound to the performance of the network that solves multiple

systems simultaneously.

When optimizing a wavefunction to solve the Schrödinger equation, it is important

to have a good initial guess. A fully random initial guess, commonly used in neural

networks, is not viable because of the second-quantized Hamiltonian has a factorial

number of eigenstates, only one of which is the desired ground state. A random guess,

then, is overwhelmingly likely to optimize to an excited-state solution of the Schrödinger

equation. Instead, it is preferable to use another (optimized) wavefunction as a starting

point to the calculation. We attempted to use the optimized ground-state Hartree-Fock

(HF) wavefunction, with some random noise to help escape the local minima. Since

the HF wavefunction is a single determinant method, the neural network must return

1 for the ground-state Slater determinant and 0 otherwise to reproduce its behaviour.

The Hartree-Fock network then serves as a starting point for another network. If the

networks have the same structure, i.e. they share the same number of layers, hidden

units, and the connectivity between them, then the network can simply be transferred

and optimized for the other systems. When the networks have different structures,

the network needs to be re-expressed in terms of the structure of the other network,

sometimes requiring transformation of its parameters. The advantage of incorporating a
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network of a different structure is that the complexity of the network, and consequently

the difficulty of the optimization process, can be controlled. For example, a network with

fewer layers and hidden units will be easier to optimize, but will not be as accurate. By

representing this network (after optimization) as one with additional layers or hidden

units, the network will provide better results with an easier optimization process.

Here, we build a simple feed-forward network for which we can easily obtain its HF

initial guess. Producing an HF initial guess is straight forward if the network produces

N values, rather than 1. To obtain the overlap, the N values are multiplied together. To

ensure that the final output ranges between -1 and 1, a typical range for the overlap of a

normalized wavefunction with a Slater determinant, an appropriate activation function

can be applied to the product. This step can be interpreted as a post-processing step of

a neural network that produces N outputs, or as a specialized layer that pools together

units of the previous layer. This layer can also be loosely interpreted as sequence of

logarithmic activation functions, followed by a sum of the produced units, then an

exponential activation function (note that this is not technically correct due to the

domain of the logarithm function and the range of the exponential function).
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The HF initial guess can be reproduced with the following weights:

wij =



1 0 . . . 0 0 . . . 0

0 1 . . . 0 0 . . . 0
... ... . . . ... ... ... ...

0 0 . . . 1 0 . . . 0


N×2K

=


1 if i = j

0 else

(5.7)

Again, the first N out of 2K spin orbitals are assumed to be occupied in the ground-

state Slater determinant. After the linear transformation, only the ground-state Slater

determinant will produce a vector that does not contain a zero. Multiplying together

the entries of this vector reproduces the overlaps of the HF wavefunction. After the

multiplication, an activation function can be applied provided that it returns 0 with a

0 input and that it ranges between -1 and 1. If not, it can simply be scaled to satisfy

these conditions. One activation function that satisfies these conditions is based on the

hyperbolic tangent (Equation 5.8).

σ(x) = tanh(x)
tanh(1)

= (e2x + 1)(e2 − 1)
(e2x − 1)(e2 + 1)

(5.8)

The scale factor tanh(1)−1 ensures that the HF initial guess is normalized.

The structure above can be interpreted as the output layer of the network and more

layers and hidden units can be added accordingly. Each additional hidden layer can
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be initialized to a linear transformation by choosing the weights as an identity matrix

scaled according to the activation function used in the previous layer:

w(i) =



1
σ(i−1)(1) 0 . . . 0

0 1
σ(i−1)(1) . . . 0

... ... . . . ...

0 0 . . . 1
σ(i−1)(1)


2K×2K

(5.9)

where 2K is the number of spin orbitals and the size of the occupation vector. The

scaling is necessary to ensure that the output of the network are all 1 for the HF

ground state input. Hidden units can be added to a given layer by adding rows of zeros

to the weights of the previous layer and columns of zeros to the current layer. In both of

these modifications, the behaviour of the network is unchanged, which means that they

can be used to find the HF initial guess or to modify an existing network to improve its

complexity. The graphical representation of the L-layer neural network wavefunction is

given in Figure 5.2. Here, we use the hyperbolic tangent as the activation function for

all of the layers, except for the output layer, which uses a modified hyperbolic tangent

given by Equation 5.8. Each hidden layer is assumed to have 2K units.

The output of this neural network can be interpreted as a product-wise decom-

position of the overlap into the contributions by each electron. Though uncommon in

neural networks, multiplying together contributions by components of a Slater determi-

nant is very common when constructing wavefunctions. For example, in quasiparticle

wavefunctions[65, 66], a Slater determinant is expressed in terms of its contributing

quasiparticles: the HF wavefunction with nonorthogonal orbitals divides a Slater deter-

minant into contributions by each electron[58, 60], and geminal product wavefunctions
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Figure 5.2: L-Layer Neural Network Wavefunction

divide a wavefunction into contributions by electron pairs[67–76]. In Coupled-Cluster

wavefunctions, the wavefunction is a product of excitations upon a reference determi-

nant[77–80]. However, the overlaps of these wavefunctions are more complicated than

a simple product, requiring a sum over permutations arising from the antisymmetry

property in the case of quasiparticles and a sum over partitions arising from the use

of the exponential operator in the case of Coupled-Cluster. These complications arise

from the underlying approximations from which the wavefunctions are derived. Ow-

ing to this structure involving a product, the proposed neural network wavefunction is

size-consistent[81] - multiplicatively separable into two noninteracting components[65]

- without the complication. Though the proposed wavefunction was designed without

regard for its theoretical implications, it is, by construction, a universal approximation

and may even be interpretable, especially if an appropriate initial guess was used. Note

that the wavefunction constructed using this neural network is antisymmetric because

the underlying basis functions, Slater determinants, are antisymmetric.
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Figure 5.3: Linear H8 chain: α ∈ {0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4,
1.5, 1.6, 1.7, 1.8, 1.9, 2, 2.25, 2.5, 3, 4} Angstroms

Figure 5.4: Octagonal H8: a = 2 a.u., α ∈ {0, 0.0001, 0.001, 0.003,
0.006, 0.01, 0.03, 0.06, 0.1, 0.5, 1} a.u.

5.1.4 Results

This wavefunction was implemented using Fanpy[82] and was tested on two H8 systems

in the ANO-1s basis set: stretching of an H8 chain (Figure 5.3)[75, 83] and the elongation

of a ring of four H2 molecules (Figure 5.4)[84]. The energies of these systems are given

by Figure 5.5 and 5.6.

As the number of layers increases, the energies of the neural network wavefunctions

approach the FCI energy. The largest improvements come from the addition of one and

two hidden layers; adding additional layers gives small, but systematic, further improve-

ments. As the number of layers increases, the wavefunction gains enough complexity to

represent the FCI wavefunction, but this also increases the number of local minima and
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Figure 5.5: Energies and energy differences with APG wavefunction in
linear H8 systems
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Figure 5.6: Energies and energy differences with APG wavefunction in
H8 ring systems
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makes it difficult to find the global minimum that would reproduce FCI. In our calcu-

lations, we use the optimized result from the network with one fewer layer and, when

possible, estimate initial parameters for systems from other systems with nearby geome-

tries. Though the results are promising (neural networks provide accurate results, are

cheap to evaluate, and can be parallelized efficiently), without an effective optimization

algorithm, large-scale high-throughput calculations involving this wavefunction may be

prohibitively difficult.

5.1.5 Generalization

Furthermore, the presented network is designed to be solved for each system indepen-

dently. Though it is possible to use an optimized network as an initial guess for a similar

system, this initial guess will not be too useful for the systems that are quite different,

especially those with different numbers of spin-orbitals or electrons. Changing the num-

ber of spin orbitals changes the number of input variables in the network, requiring the

subsequent layers to be changed. Likewise, changing the number of electrons affects the

final layer of the network, affecting the previous layers. When adding layers and hidden

units to improve the network’s complexity, the behaviour of the network is unaffected.

However, when the number of spin orbitals or electrons is decreased, it will be unclear

which rows and columns need to be removed and their removal will have a significant

impact on the network. Conversely, if the number of spin orbitals or electrons is in-

creased, we can use the HF initial guess as a guideline and fill in the difference, but

this approach assumes that the behaviour of a wavefunction of a higher number of spin

orbitals and electrons is similar to that with fewer spin orbitals and electrons. Though
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wavefunctions with different numbers of spin orbitals behave similarly, especially for

those of large basis sets, wavefunctions of different numbers of electrons can be quali-

tatively different due to, for example, redox-induced electron transfer[85–87]. Since the

network was designed solely to solve the Schrödinger equation associated with the given

Hamiltonian, an optimized network will not be close to a solution if the Hamiltonian

changes significantly - it can be used as an initial guess only for small changes in the

Hamiltonian (e.g., small changes in molecular geometry).

In the ideal case, a single neural network should simultaneously model multiple

independent systems. Some questions seem to suggest that it might be very difficult

or, worse, not practical to find and optimize such a network. Is it possible to solve an

NP-hard problem (i.e. solving the Schrödinger equation) to the desired level of accuracy

in polynomial (real world) time[56, 57, 88]? This problem becomes increasingly more

difficult as the system gets larger because the problem must be solved more accurately,

relatively, to obtain chemical accuracy (∼ 0.001 Hartree or 1 kcal/mol) It is possible that

modeling the overlaps of Slater determinants will be more forgiving with possibilities

of cancellation of errors. Is solving the Schrödinger equation for the desired region of

chemical space an NP-hard problem? This, of course, depends on the systems considered

and becomes easier as less systems are considered. Since large systems are prohibitively

expensive to solve and have greater chemical diversity and show emergent electron-

correlation phenomena (e.g., superconductivity[89, 90]), it is essential for the network

to generalize from small systems to large systems.

In contrast to the simple feed-forward network proposed here, a sophisticated net-

work structure is necessary to generalize the network to multiple systems. Though the
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specifics of the network structure that can generalize the observations of small chemical

systems to that of large chemical systems is beyond the scope of the current study, some

network structures are worth noting. As was used with SchNet[44] and SchNOrb[54],

structure incorporating convolution will be useful in filtering out the unimportant fea-

tures allowing the useful features to be pooled together. In the case of electronic struc-

ture, the number of possible interactions between the orbitals increases exponentially

with the size of the system. If these interactions can be limited to a fixed set of features

for both large and small systems, convolutions may be important to support systems

of different sizes. Since many properties in quantum chemistry are often described with

a graph, a graph convolution neural network may be an important structure to con-

sider. In addition, long short-term memory and other recurrent network structures have

shown great promise for inputs of arbitrary sizes. Though many state-of-the-art net-

work architectures may hint at an out-of-the-box solution for solving the Schrödinger

equation, much work is likely needed to adapt these networks for the problem at hand:

to figure out how these structural components and the system-specific information, such

as the one- and two-electron integrals of the Hamiltonian or the nuclear coordinates

and charges, fit together within the context of the Schrödinger equation.

5.2 Stochastic Gradient Descent for the Projected

Schrödinger Equation

As mentioned above, one approach to solving the Schrödinger equation is to solve the

system of nonlinear equations obtained by integrating the Schrödinger equation with a
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set of states, {Φ1, . . . ,ΦM}, called projection space[61–63]:

〈Φ1|Ĥ|Ψ〉 = E 〈Φ1|Ψ〉
...

〈ΦM |Ĥ|Ψ〉 = E 〈ΦM |Ψ〉

(5.10)

If the wavefunction and the energy satisfy all of these equations simultaneously, then

the wavefunction is the solution to the Schrödinger equation for all possible linear

combinations of the Slater determinants in the projection space. If the projection space

is complete, i.e. contains all possible Slater determinants, the wavefunction (and the

energy) is the exact solution to the Schrödinger equation for all possible wavefunctions

within the given basis set[64]. The projected Schrödinger equation can be rearranged

to equal to zero, which makes it easier to solve using a system of nonlinear equations

solver.

f(Φ1|P) = 0
...

f(ΦM |P) = 0

(5.11)

where f(Φi|P) = 〈Φi|Ĥ|Ψ〉 − E 〈Φi|Ψ〉 and P are the parameters involved in solving

these equations.

One way to solve a system of nonlinear equations is to use a nonlinear least-squares
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algorithm[91, 92]. In a nonlinear least-squares algorithm, the system of nonlinear equa-

tions is often reduced to a sum of squared residuals:

M∑
i=1

(
f(Φi|P)

)2
(5.12)

As this sum is minimized, each equation becomes closer to being satisfied. All of the

equations are satisfied when the sum is zero. Thus, this sum can serve as an indicator

of how closely the wavefunction (and the energy) satisfies the Schrödinger equation - a

metric that is unavailable when solved variationally.

Interestingly, the sum of squared residuals is the prototypical equation to be opti-

mized in most machine learning problems. In a typical machine learning problem, the

goal is to find the parameters, P, to the function, f , that best maps a set of inputs {xi}

to their target values {ti}:

f(x1|P) ≈ t1

...

f(xM |P) ≈ tM

(5.13)

The most common way to solve this problem is to minimize the mean squared error:

Remp(P) = 1
M

M∑
i=1

(
f(xi|P)− ti

)2

= 1
M

M∑
i=1

L(xi, ti|P)
(5.14)

where the error associated with each data point is represented with the cost function,

L(xi, ti|P) =
(
f(xi|P)−ti

)2
. This equation is identical to the least-squares equation for
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the projected Schrödinger equation (Equation 5.12). In the least-squares equation, the

target values are all 0 and the scalar constant 1
M

is omitted. In fact, 1
M

can be added

to Equation 5.12 without affecting the optimization landscape (except for the scaling).

For brevity, we will often refer to each equation of the projected Schrödinger equation,

f(Φi|P), as a cost function.

Many applications of neural networks within machine learning involve replacing the

desired function, f , with a neural network, and optimizing its parameters to mini-

mize Equation 5.14. Since neural networks are incredibly nonlinear and, oftentimes,

not smooth, Equation 5.14 becomes incredibly difficult to optimize and this difficulty

was one of the main bottlenecks that prevented widespread use of neural networks. In

recent years, however, the neural network model became more ubiquitous in practi-

cal applications thanks (in part) to the development of optimization algorithms that

exploit available computational resources[1–3]. Since the underlying equations of the

projected Schrödinger equation are also very nonlinear and difficult to optimize, the

algorithms effective for optimizing neural networks may also be effective for solving the

projected Schrödinger equation. Here, we explore possible benefits and ramifications of

using one such algorithm, the stochastic gradient descent (SGD), to solve the projected

Schrödinger equation.

The gradient of the mean squared error (Equations 5.12 and 5.14) is an average of

the gradients for each equation in the projected Schrödinger equation 5.13

∇Remp(P) = ∇ 1
M

M∑
i=1

L(xi, ti|P)

= 1
M

M∑
i=1
∇L(xi, ti|P)

(5.15)
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In stochastic gradient descent, the gradient of the objective is approximated with the

gradient of the cost function of one data point[1, 2, 93, 94]. A standard implementation

of stochastic gradient descent involves randomly selecting a data point for the gradient

at each iteration of the optimization process. However, in the case of the projected

Schrödinger equation, using a gradient associated with a random Slater determinant

within the projection space will likely be inefficient, as many of these gradients will

have small contributions to the total gradient. For most ground-state wavefunctions,

the lowest-energy Slater determinant makes the largest contribution to the wavefunction

while excited state determinants make smaller contributions as the order of excitation

increases[58, 59, 95]. The numerical consequence of the Slater determinants (and their

one- and two-electron excitations) with negligibly small contributions is that the cor-

responding equations in the projected Schrödinger equation are nearly zero. Similarly,

the gradients that correspond to these Slater determinants will be small in magnitude.

However, the number of higher-order excitations grows combinatorially with the order

of excitations. This means that if Slater determinants are selected randomly (according

to a uniform distribution), then the Slater determinants of higher-order excitations will

more likely be selected and the gradients used throughout the optimization will likely

(1) be too small to be efficient and (2) favor the minimization of equations that have

small errors (i.e. near zero).

To adapt the stochastic gradient descent to solve the projected Schrödinger equation,

we first look into the motivation for sampling the data points. Assuming that the data

points are selected according to a uniform distribution, i.e. probability of selecting each

data point is 1
M

, the expectation value of the gradient for one data point is equal to the
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total gradient.

Ei∼p(i)
[
∇L(xi, ti|P)

]
=

M∑
i=1

p(Φi)∇L(xi, ti|P)

=
M∑
i=1

1
M
∇L(xi, ti|P)

= ∇Remp(P)

(5.16)

Therefore, the exact gradient does not need to be computed because, over enough

iterations, the total gradient is reproduced (on average).

Just as data points can be sampled to estimate the gradient, we can sample the

projection space and we would expect that the stochastic gradient descent algorithm

will equally be effective for the projected Schrödinger equation. Randomly selecting a

Slater determinant via a uniform distribution is unsuitable for solving the projected

Schrödinger equation because the gradient associated with individual Slater deter-

minants are very different. In other words, not all Slater determinants are equally

important in the projection space. However, if the distribution is not uniform, i.e.

p(Φi) 6= 1
M

, then the expected gradient does not correspond to the gradient of the

projected Schrödinger equation (Equation 5.12).

The projected Schrödinger equation, as it is presented in Equations 5.11 and 5.12,

each equation (i.e., Slater determinant) is weighted equally. If the Slater determinants

are not all equally important, then the equations in the projected Schrödinger equation

need to be weighted according to a distribution that reflects the importance of each
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Slater determinant. The corresponding weighted sum of squared residuals is

M∑
i=1

p(Φi)
(
f(Φi|P)

)2
(5.17)

where p(Φi) is the weight for each residual. Since the weights are arbitrary, they can be

constrained to be probabilities, i.e. 0 ≤ p(Φi) ≤ 1 and ∑M
i=1 p(Φi) = 1. With appropriate

probabilities, the SGD algorithm can more efficiently optimize the projected Schrödinger

equation.

In SGD, the gradient is estimated by sampling Slater determinants from the pro-

jection space. Similarly, the exact projected Schrödinger equation can be estimated

by sampling the projection space from all possible Slater determinants. Provided that

each Slater determinant is independently sampled according to an identical distribution

(i.i.d.), the expected average of the cost functions is equal to the projected Schrödinger

equation with a complete projection space:

NFCI∑
i=1

ρ(Φi)
(
f(Φi|P)

)2
= E

[
1
N

N∑
i=1

(
f(Φi|P)

)2
]

= 1
N

N∑
i=1

E
[(
f(Φi|P)

)2
]

= 1
N

N∑
i=1

NFCI∑
j=1

ρ(Φj)
(
f(Φj|P)

)2

=
NFCI∑
j=1

ρ(Φj)
(
f(Φj|P)

)2

(5.18)

where ρ(Φi) is the probability of selecting Slater determinant Φi for the projection space

and NFCI is the number of all possible Slater determinants. When the i.i.d. approxima-

tion is valid, the average of the cost functions corresponds to the projected Schrödinger
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equation with a complete projection space. However, since the Slater determinants are

independently sampled, the projection space will likely contain repetitions. Grouping

the repetitions together, we can obtain a more compact set of equations:

1
N

∑
Φj∈Sproj

(
f(Φj|P)

)2
= 1
N

M∑
i=1

mi

(
f(Φi|P)

)2

=
M∑
i=1

mi

N

(
f(Φi|P)

)2
(5.19)

where Sproj is the sampled projection space, mi is the number of Slater determinant Φi

in the sampled projection space, N is the size of the sampled projection space, and M

is the number of unique Slater determinants sampled. If the gradient is estimated by

sampling Slater determinants from the (adapted) projection space, then p(Φi) = mi
N

in

accordance to Equation 5.17.

Since the probabilities are arbitrary, existing only as weights in the least-squares

equation, it seems that any distribution of Slater determinants is equally valid. However,

as mentioned above, some Slater determinants, such as those of high-order excitations,

can accurately satisfy the projected Schrödinger equation for the ground state. There-

fore, numerically at least, not all Slater determinants are equal and there may exist a

set of weights that encapsulates these differences. Taking motivation from variational

quantum Monte Carlo[96–101], the Slater determinants can be sampled and weighted

according to the following probability distribution:

ρ(Φi) = |〈Ψ|Φi〉|2∑
j |〈Ψ|Φj〉|2

(5.20)
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If a Slater determinant contributes significantly to the wavefunction, its first and sec-

ond order excitations will likely have non-negligible contributions to the wavefunctions

and the associated cost function, f(Φi|P), will likely be more significant. Unlike vari-

ational quantum Monte Carlo, which has sound theoretical basis for this probability

distribution - it helps make an unbiased estimator of the expected energy - the weights

(and the probability distribution) in the projected Schrödinger equation are arbitrary.

At the moment, it is unclear whether there exists a better probability distribution

with a sound theoretical reasoning or whether this probability distribution is optimal

for the optimization process. Nonetheless, these modifications provide a link to vari-

ational quantum Monte Carlo. For example, the Slater determinants can be sampled

using algorithms typically used in variational quantum Monte Carlo like the Metropolis-

Hastings algorithm[102–104] and the continuous-time Monte Carlo algorithm[98, 105,

106]. Hopefully, these modifications provide similar benefits to solving the projected

Schrödinger equation as the variational quantum Monte Carlo did for minimizing the

energy and as the stochastic gradient descent did for optimizing neural networks. This

will be explored in future work.

5.3 Conclusion

In this chapter, the neural network model and the stochastic gradient descent algo-

rithm are incorporated into ab initio methods to solve the Schrödinger equation. A new

wavefunction ansatz utilizing a simple feed-forward neural network is developed and as-

sessed. For the systems tested, this ansatz seems promising: the wavefunction is cheap

to evaluate and provides accurate results. It is amenable to good initial guesses: HF
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initial guess can be obtained easily and the number of layers can be increased without

changing its behaviour. However, the wavefunction becomes progressively more diffi-

cult to optimize as the network gets deeper. Similar to machine learning applications of

neural networks, practical application will likely involve a specialized network structure

and a specialized optimization algorithm. Stochastic gradient descent (SGD) is one al-

gorithm that was explored. It estimates the gradient of the sum of squared residuals of

the data set with an average of the gradients of the sampled data points. Interpreting

the projected Schrödinger equation as a residual sum of squares, an unbiased estimate

of its gradient can be obtained by sampling Slater determinants from the projection

space. Extending upon this application, an unbiased estimate of the exact projected

Schrödinger equation can be obtained by sampling the projection space, analogous to

quantum Monte Carlo (QMC) algorithms that utilize orbital space. Similar to the QMC

algorithms, the efficacy of this algorithm depends on the probability distribution with

which Slater determinants are drawn, though it is unclear at the moment which formu-

lation is the most practical or elegant within the context of the projected Schrödinger

equation.

The presented usage of the feed-forward neural network and the stochastic gradient

descent algorithm in solving the Schrödinger equation have critical flaws: the neural

network wavefunction is difficult to optimize for deeper structures; the neural network

lacks specialized structures that exploit quantum chemical concepts; the neural net-

work is not designed for machine learning application; and the details of implementing

adaptive sampling of the Slater determinants and projection space into an optimization

algorithm are not clear. However, these applications may be useful as starting points

for practical application of machine learning in ab initio methods in the future.
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Chapter 6

Conclusion

6.1 Summary

The goal in ab initio method development in quantum chemistry is to understand chem-

ical systems and to predict their properties. Brute-force solutions to the Schrödinger

equation are intractable, so useful approximate ab initio methods maintain a delicate

balance between cost and accuracy. Even when a method seems affordable and ade-

quately accurate, close inspection often shows that it breaks down for certain “evil”

systems. It is hard to say that one method is (or will be) superior to all the others when

studying chemical systems in general. Therefore, it is important to explore - we must

develop many methods and algorithms and systematically assess their ability to solve

the Schrödinger equation for different chemical systems.

The goal throughout this thesis is to establish a systematic approach to method

development in electronic structure theory. Chapter 2 introduces a general framework

for multideterminant wavefunctions called the Flexible Ansatz for N-electron Config-

uration Interaction (FANCI). Within this framework, multideterminant wavefunctions

become compatible with one another and the development of new methods becomes
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more transparent, making them more accessible. Moreover, it was possible to math-

ematically specify what makes a multideterminant method have desirable properties

(e.g., size consistency), thereby providing essential guidance on how (and how not to)

develop new wavefunction forms. To demonstrate the power of this idea, many existing

and novel wavefunctions ansätze are presented with respect to this framework. How-

ever, the developed methods must be implemented and tested to fully evaluate their

effectiveness.

Chapter 3 presents an open-source Python library that serves as a platform where re-

searchers can quickly prototype their methods. This library supports the development of

methods that pertain to the multideterminant wavefunction, Hamiltonian, formulation

of the Schrödinger equation, and optimization algorithm, each of which is embodied as

an independent module. Its modular design and user-friendly templates help minimize

the amount of code read and written by new developers that are implementing their

ideas. Each module is designed to be compatible with one another so that researchers

can customize their calculations and experiment with different combinations of methods

and algorithms.

Utilizing the streamlined development process established in the first two chapters,

the remaining two chapters develop novel methods motivated from fields outside of

quantum chemistry. Chapter 4 draws upon graph theory to interpret the geminal wave-

functions as pairing schemes in a graph. Using the weighted perfect matching algorithm,

we present an approximation that significantly decreases the cost associated with gemi-

nal wavefunctions. Numerical evidence suggests that this approximation does not result

in a significant decrease in accuracy and can be incrementally improved by increasing
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the number of pairing schemes. The presented interpretation and the corresponding ap-

proximation pave the way for more sophisticated optimization algorithms and tractable

generalizations to the geminal wavefunctions.

Chapter 5 finds inspiration from neural networks to develop a wavefunction whose

overlap is a neural network and a formulation of the projected Schrödinger equation

analogous to the energy equation from orbital-space variational quantum Monte Carlo.

The neural network wavefunction shows promise as an cheap and accurate wavefunc-

tion ansatz but, like other neural networks, becomes difficult to optimize as the network

becomes deeper. Specialized network structures and optimization algorithms are likely

needed for wide-spread use of this wavefunction. One optimization algorithm we ex-

plored is stochastic gradient descent algorithm, which has been found to successfully

optimize many neural networks. Similar to sampling data points from a data set in

standard stochastic gradient descent implementations, the Slater determinants can be

sampled from the projection space to obtain an unbiased estimate of the least-squared

sum of the projected Schrödinger equation. Furthermore, sampling the Slater determi-

nants to form a projection space results in an unbiased estimate of the exact projected

Schrödinger equation. Analogous to variational quantum Monte Carlo algorithms, sam-

pling Slater determinant alludes to a stochastic optimization algorithm with adaptive

projection space, though its details, such as the optimal distribution from which to

draw the Slater determinants, are not yet clear.
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6.2 Outlook

Using the FANCI framework presented in Chapter 2, a wide range of multideterminant

wavefunctions can be built from a common structure, allowing them to share a wide

range of methods involving different Hamiltonians, objectives, and optimization algo-

rithms, as demonstrated by the extensive customizability within Fanpy of Chapter 3.

Similarly, existing post-processing methods, such as perturbation theory, equations-of-

motion, and embedding, can be expressed terms of the FANCI framework (i.e., expressed

in terms of Slater determinants and possibly involving the projected Schrödinger equa-

tion) and implemented in Fanpy. Then, these methods can be used alongside different

combinations of wavefunctions, Hamitonians, and optimization algorithms.

At the moment, Fanpy uses generic general-purpose optimization methods, rather

than methods specialized for problems in electronic structure theory. However, as ex-

plored in Section 5.2, quantum Monte Carlo algorithms can be implemented to optimize

the energy and the projected Schrödinger equation. Direct inversion of the iterative sub-

space (DIIS), a common optimization technique in quantum chemistry, might be useful

for optimizing the system of nonlinear equations associated with the projected equation.

The performance issues in Fanpy can be addressed by interfacing to numerically

efficient languages, such as C++ and FORTRAN, or by interfacing to performance-oriented

libraries, such as Psi4, PySCF, and PyCI. These may come at the cost of customizability

and ease-of-development, cornerstone features of Fanpy. Nonetheless, providing the

option of a better performance will be useful for those that want to test their methods

in larger systems.
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The APG wavefunction with adaptive selection of pairing schemes, presented in

Chapter 4, is intractable due to the cost of the permanent evaluation. To address

this issue, the one-reference orbital and rank-2 approximations used in AP1roG and

APr2G, respectively, can be generalized to APG wavefunctions. Then, the adaptive

selection algorithm and the permanent approximation can be combined to build the

generalized quasiparticle wavefunction introduced in Chapter 2. This sort of extension

is not difficult in Fanpy but thorough testing of the methods is likely intractable until

improved optimizers are implemented.

The neural network wavefunctions, though cheap and accurate, are difficult to opti-

mize. In addition to better optimization algorithms, suggested above, specialized net-

work structures are needed to make the optimization simpler (often by decreasing the

number of parameters) and to allow generalization of the network to multiple chem-

ical systems. Fortunately, Fanpy’s flexibility and support for Keras, a popular neural

network library, make it easy to explore various network structures.

More generally, when developing new ab initio methods, one needs a way to assess

their performance. The usual metrics are usually only the accuracy of the optimized en-

ergy and the computational cost associated thereto. This clearly ignores other properties

(e.g., the response of the system to external fields) and ignores the system-dependence

of methods’ performance. The blind pursuit of a cheap and accurate method risks over-

looking its deficiencies until the final stages of development, where one might discover

that the method is not viable for practical use due, for example, to technical factors

related to slow convergence or the failure for special types of systems (e.g., diradicals

or zwitterions). We need to develop better metrics by which to evaluate a method, and
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by which to assess the systems for which the methods should be used. One advantage

of the projected Schrödinger equation is that the least-squares error can be used to

provide (approximate) error bars on the energy and the error in the wavefunction, and

these error bars can be made systematically more reliable by augmenting the projection

space. This is a significant advantage over most traditional wavefunction approaches,

whose accuracy can deteriorate without warning.

6.3 Perspective

This thesis presents a new approach, termed the Flexible Ansatze for N-electron Con-

figuration Interaction (FANCI) that subsumes every multideterminant approach. At a

mathematical level, FANCI provides a common framework for new methods and helps

inform the search for new wavefunction ansatze with desirable properties. At the level

of software development, the FANCI idea allows us to write a single software program,

Fanpy, that supports all possible multideterminant wavefunction methods. Many exist-

ing, and new, wavefunctions have been implemented into Fanpy already. The utility of

FANCI and Fanpy is mainly for theoretical exploration; once a method is found to be

effective, it is probably desirable to write efficient, dedicated, software for it, including

nuances related to making accurate initial guesses and robust dedicated optimization

methods. Further corrections (e.g., dynamic correlation) should also be extended.
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