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Lay Abstract

The increase in online retail and the improvements in mobile technologies has lead

to advantages and opportunities for both customers and retailers. One of these ad-

vantages is the ability to keep and efficiently access records of historical orders for

both customers and retailers. In addition, online retailing has dramatically decreased

the cost of price adjustments and discounts compared to the brick and mortar envi-

ronment. At the same time, with the increase in online retailing we are witnessing

proliferations of online reviews in e-commerce platforms. Given this availability of

data and the new capabilities in an online retail environment, there is a need to

develop pricing optimization models that integrate all these new features. The over-

arching motivation and theme of this thesis is to review these opportunities and

provide methods and models in the context of retailers’ online pricing decisions.
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Abstract

With the rise of online retailer giants like Amazon, and enhancements in internet and

mobile technologies, online shopping is becoming increasingly popular. This has lead

to new opportunities in online price optimization. The overarching motivation and

theme of this thesis is to review these opportunities and provide methods and models

in the context of retailers’ online pricing decisions.

In Chapter 2 a multi-period revenue maximization and pricing optimization prob-

lem in the presence of reference prices is formulated as a mixed integer nonlinear

program. Two algorithms are developed to solve the optimization problem: a gener-

alized Benders’ decomposition algorithm and a myopic heuristic. This is followed by

numerical computations to illustrate the efficiency of the solution approaches as well

as some managerial pricing insights.

In Chapter 3 a data-driven quadratic programming optimization model for online

pricing in the presence of customer ratings is proposed. A new demand function is

developed for a multi-product, finite horizon, online retail environment. To solve the

optimization problem, a myopic pricing heuristic as well as exact solution approaches

are introduced. Using customer reviews ratings data from Amazon.com, a new cus-

tomer rating forecasting model is validated. This is followed by several analytical and

numerical insights.
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In Chapter 4 a multinomial choice model is used for customer purchase decision

to find optimal personalized price discounts for an online retailer that incorporates

customer locations and feedback from their reviews. Closed form solutions are derived

for two special cases of this problem. To gain some analytical insights extensive nu-

merical experiments are carried followed by several analytical and numerical insights.
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Notation

List of Notations: Chapter 2

Indices

t Period in horizon (t = 1, 2, · · · , T )

k Iteration of the GBD

Parameters

a Estimate of the market size in the linear demand function Dt = a− bpt, a ≥ 0.

b Estimate of the price sensitivity parameter in the linear demand function b ≥ 0.

βG Gain parameter, 0 ≤ βG ≤ βL.

βL Loss parameter, 0 ≤ βG ≤ βL.

τ Gain threshold, τ ≥ 0.

ρ Loss threshold, ρ ≥ 0.

α The parameter in exponential smoothing reference price model, 0.1 ≤ α ≤ 0.4.

ωi Parameters in approximation of reference prices i = 1, 2, 3, ωi ≥ 0.

c Constant unit cost, c ≥ 0

Decision Variables

pt Price in period t, pt ≥ 0.

YG,t Binary gain indicator

YL,t Binary loss indicator

qL,k

Linearizing binary variable for loss history constraints in (GBD-Master)

in iteration k

qG,k

Linearizing binary variable for gain history constraints in (GBD-Master)

in iteration k

Table 1: List of notations (Chapter 2)
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List of Notations: Chapter 3

Symbols

ri,t Reference price for product i in period t.

ηi,t Consumer rating for product i during period t.

Di,t Demand for product i in period t.

Indices

t Period in horizon (t = 1, 2, · · · , T ).

i, j Products, i, j ∈ {1, 2}.

Parameters

ai Estimate of the market size for product i in the linear demand function

Di,t = ai − bipi,t, ai ≥ 0.

bi Estimate of the price sensitivity parameter in the linear demand function bi ≥ 0.

ci Constant unit cost for product i, ci ≥ 0.

R Maximum possible rating.

βi Reference price weight parameter for product i, βi ≥ 0.

λi, j Weight of the difference between ratings of product i and j in demand model for

product i.

γi, j Weight of the difference between prices of product i and j in demand model for

product i.

α The parameter in exponential smoothing reference price . model, 0.1 ≤ α ≤ 0.4.

ωk Parameters in approximation of reference prices k = 1, 2, 3, ωi ≥ 0.

θ The parameter in exponential smoothing consumer rating model, 0.1 ≤ α ≤ 0.4.

θk Parameters in approximation of consumer ratings k = 1, 2, 3, ωi ≥ 0.

φi Reasonable price upper bound for product i.

Decision Variables

pi,t Price of product i in period t, pi,t ≥ 0.

Table 2: List of notations (Chapter 3)
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List of Notations: Chapter 4

Decision Variables

di,j The amount of discount provided to consumer i for product j

Symbols

Ui,j The utility that consumer i enjoys from action j.

χi,j The probability that consumer i chooses action j.

πi,j The expected profits from selling product j to consumer i.

πi The expected profits from consumer i.

Πi,j Expected total profits.

Indices

i Customers (i ∈ I)

j Products

Parameters

Li,j Consumer i’s loyalty to product j.

bi Consumer i’s price sensitivity parameter.

pj List price of product j.

cj Unit cost of product j, ci ≥ 0.

si,j Cost of shipping product j to consumer i.

βi Consumer i’s sensitivity to price departures from reference price.

λi Customer i’s weight for ratings

ηj Consumer rating for product j.

rj Reference price for product j.

Table 3: List of notations (Chapter 4)
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Chapter 1

Introduction

1.1 Motivation

With the rise of online retailer giants like Amazon, and enhancements in internet and

mobile technologies, online shopping is becoming increasingly popular. In Canada,

about 84% of internet users shopped online reaching $57.4 billion spending in 2018

[58]. That is a large increase compared to $18.9 billion in 2012 [58]. In addition,

between 2016 and 2018, Canadian online sales have risen by 58% compared to 5%

increase in traditional retail sales [50, 58]. The recent COVID-19 pandemic has further

contributed to the rise in online retailing. For example e-commerce sales increased by

about 40% in the week of May 26, 2020 compared to that of Feb 24, 2020 [7], and the

number of US households that have placed online orders for groceries has doubled to

reach 40 million in March 2020, compared to August 2019 [51]. In addition, many

businesses are forced to invest and adjust to implement stronger online presence which

will likely lead to permanent increase in online sales [42].

The increase in online retail and the improvements in mobile technologies has
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lead to advantages and opportunities for both customers and retailers. One of these

advantages is the ability to keep and efficiently access records of historical orders

for both customers and retailers. This can improve retailers’ estimate of reference

prices. In addition this helps customers to form a more uniform historical-price based

reference prices, the price customers use as benchmark for their purchase decisions

[61]. This visibility of historical purchase order data for both the customer and the

retailer is making it more practical and meaningful to incorporate reference prices in

pricing optimization models.

In addition, online retailing has dramatically decreased the cost of price adjust-

ments and discounts compared to the brick and mortar environment. For example, it

has been reported that Amazon adjusted prices more than 2.5 million times every day

in December 2013 [23]. At the same time, with the increase in online retailing we are

witnessing proliferations of online reviews in e-commerce platforms. As an example,

TripAdvisor observed a 15% increase in the number of reviews in 2019 reaching 859

million reviews [36]. Also, according to a study, online ratings affect the purchase

decision of 93% of customers [49]. It is also reported that customers are willing to

pay a higher premium for products with higher quality and that online ratings is a

representation of product quality [49]. This speaks to the importance of customer

reviews and the need to incorporate its impact in demand function modelling as well

as pricing optimization models.

Furthermore, with the increasing popularity of online shopping, we are witness-

ing an increasing number of websites and browser extensions for online discount

codes such as PromoCodes, Wikibuy, RetailMeNot, Slickdeals, Honey, Groupon, and

2
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Ebates. As of 2019, about 60% of online shoppers worldwide looked for online dis-

count codes before making a purchase [14]. For example, there was an average of 68

million monthly visits to Slickdeals website as of March 2019 [14]. Customers adopt

various shopping strategies to acquire discounts. For example, some customers fill the

virtual shopping cart and “abandon” it realizing that a majority of companies will

send discount codes as an incentive to convince them to complete their purchase [15].

In addition, many customers connecting with brands on social media do so in the

hope of receiving regular coupons and other promotions [14]. Given the availability

of data on prices and the ease of making price discounts online, there is a need to

develop pricing optimization models that integrate all these new features.

The overarching motivation and theme of this thesis is to review these oppor-

tunities and provide methods and models in the context of retailers’ online pricing

decisions. In order to provide a unified conceptual framework, a brief overview of the

literature in this area is provided in Section 1.2. A summary of contributions and

thesis overview is presented in Section 1.3.

1.2 Background and Literature Review

In this section a general overview of the background material necessary for the re-

mainder of this thesis is provided. The remaining chapters of this dissertation consist

of work published in or submitted for publication in peer-reviewed journals. There

is some overlap between the material in this section and those produced in chapters

2-4. The purpose of this section is to provide a unified background for the remaining

chapters of the thesis, and thus, the review of the literature in this chapter is kept

brief. With this purpose in mind, an overview of the literature on reference prices,

3
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customer ratings, customer choice, shipping fees, and product discounts are provided

in sections 1.2.1-1.2.5.

1.2.1 Reference Prices and Demand

Reference price is the price that customers take as a point of reference to decide on

whether an observed price is a good deal or not [43]. Many studies have considered

modelling and applications of reference prices (e.g., see [8, 27, 30, 43]). We briefly

discuss the most relevant studies. A more comprehensive review of this topic can be

found in Chapters 2 and 3.

The general literature on reference prices can be grouped into two sections. Some

studies have focused on modelling reference prices. To name a few, Briesch et al. [8]

concluded that different product categories require different reference price models.

Wang [64] studied different formulations of reference prices in a multi-product setting.

Nasiry and Popescu explore a memory-based reference price model based on the peak-

end rule; that is, the reference price is modelled as a weighted average of the lowest

price and the most recent price [46]. Mazumdar et al. present a review of reference

price research [43]. They model reference price in a selling period as the weighted

average of the price and reference price in the previous period. This model is widely

adopted in the literature (e.g., see [2, 43, 61]) and is used throughout this thesis.

To find optimal pricing strategies, another group of studies have considered mod-

elling customers’ response and demand function in the presence of reference prices.

Yuan and Lee [66] showed that advertised online reference prices influence customers’

price perceptions. In these cases, the retailer presents a marked up price (the adver-

tised reference price) and a lower sale price (the observed price). Hsieh and Dye [25]

4
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consider an additive reference price effect on demand in an infinite selling horizon

for deteriorating goods. Under certain conditions, they show that in loss-neutral and

loss-averse markets, optimal prices converge monotonically to a long-term equilibrium

price and in loss-seeking market, a high-low pricing policy is optimal [25].

Von Massow and Hassini [61] have considered reference prices to have an additive

effect on the linear demand function and introduced thresholds to the model. In

particular, they modelled the demand function as

Dt =


a− bpt + βG(rt − τ − pt) pt ≤ rt − τ

a− bpt rt − τ ≤ pt ≤ rt + ρ

a− bpt + βL(rt + ρ− pt) pt ≥ rt + ρ.

(1.2.1)

where subscript t denotes the period in the selling horizon; Dt, pt, rt, βG, and βL

denote the demand, price, reference price, gain, and loss parameters, respectively.

The term a − bpt represents the traditional linear demand. Parameters τ ≥ 0 and

ρ ≥ 0 denote the gain threshold below the reference price and the loss threshold

above the reference price, respectively. Note that in this demand model, reference

price effects the demand only if pt ≤ rt − τ or pt ≥ rt + ρ. This demand model is

adopted in Chapter 2. Anderson et al. [2] have considered a duopoly multiplicative

model where the demand for each period is the previous period’s demand multiplied

by a function of reference price. They have considered a two-firm market of different

sizes with the objective to maximize the profits of the smaller firm in different pricing

decision scenarios [2]. Casado and Ferrer [10] introduce a customer utility model that

estimates price thresholds and its impact on demand elasticity, taking into account

customer heterogeneity. Lu et al. [39] studied joint pricing strategies with reference

5
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price effect for a monopolistic firm. They considered all four possible combinations

of dynamic and static strategies for pricing and advertising effort levels. The study

concluded that the dynamic strategies result in higher profits than static strategies

[39]. Li and Teng [33] use a multiplicative form of price, reference price, freshness,

and displayed stock level to model the demand for perishable goods. They show

that price and periodic ending inventory level converge monotonically to a long term

equilibrium [33].

1.2.2 Customer Ratings

The bulk of literature on customer rating can be divided into tow main groups. The

first group studies the effects of ratings on sales and prices. The other, studies factors

affecting the ratings.

Effect of Customer Rating on Sales

Many have studied the effects of customer reviews on sales (e.g., [5, 11, 28, 34]).

Anand et al. [1] provide a comprehensive review of this literature. Zhu and Zhang

[68] show that on average one point increase in average customer ratings increases the

sales of a video game by 4%. Some have focused on the asymmetric effects of positive

and negative ratings on sales (e.g., [13, 48]). These studies argue that extreme ratings,

positive or negative, have more effect on customer choice than moderate ratings and

the magnitude of the effect is asymmetric with negative ratings having a larger impact.

Some studies consider the effects of the volume of reviews on sales (e.g., [6, 18,

41]). Generally these studies argue that the volume of online reviews positively affect

product sales. However, Maslowska et al. [41] concluded that customer rating affects

6
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the purchase decision and the magnitude of the effect increases as the volume of

the reviews increase. They further argue that this effect is increased if the price is

relatively high. Others have considered the effect of the variability of customer ratings

on sales [4, 60, 69]. Generally it is argued that variability of ratings has a negative

effect on sales as customers view variability in ratings as an increased risk. Sun [60],

however, concluded that the effect of the variance of ratings on demand depends on

the average rating. In particular, a high variance in customer ratings decreases the

demand when the average rating is high and increases it when the average rating is

low.

De Maeyer [16] provides a review of the literature on online customer reviews and

sales. One of the common findings in the literature is that high product ratings reduce

customers’ price sensitivity and increase the price premium customers are willing to

pay. For example, Smith et al. [57] investigate the effects of customer ratings on prices

using a large data set of ratings and prices of beer. They conclude that an increase

in customer ratings is positively related to an increase in prices.

Wang et al. [62] study the optimal pricing strategy of an online seller in a duopoly

market competing with an off-line seller. They show that the online seller’s optimal

price decreases at the early stages where the amount of information (customer ratings)

is low and increases as the amount of information increase.

He and Chen [23] show that it may be beneficial to use low prices for high-quality

products at the beginning stages to speed-up the customer learning process.

7
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Factors Affecting Ratings

Many have studied possible factors that affect customer ratings. The vast majority

consider factors other than prices (e.g., [3, 12, 24, 35, 65]). Ho et al. [24] model the

individuals’ rating as a linear combination of experienced performance, the difference

between pre and post purchase evaluations, and other control variables. Lin et al.

[35] study the effects of free product sampling on product ratings. They conclude

that free product sampling increases product ratings on average by 1.1%. They also

note that the magnitude of this bias is larger when the product list price is higher.

Very few studies consider prices affecting customer ratings. Shapiro [55] conducted

an experimental study and concluded that price can be viewed by some customers

as an indication of the quality of the product and thus affect their rating decision.

Li and Hitt [34] note that customer reviews are affected not only by quality factors,

but are also biased by price effects. Engler et al. [19] argue that online customer

ratings represent customers satisfaction. They show that customer satisfaction is

explained by their pre-purchase expectation (formed from product rating, price, and

brand reputation) and their post-purchase observed performance. Stenzel et al. [59]

also consider prices having direct negative effect on customer ratings.

Some have considered customer ratings in a profit maximization problem as a two

stage game where customers in the second period/stage observe the price and ratings

from customers in the first period. For example, Kuksov and Xie [28] show that the

customer rating is decreasing with respect to price. Similarly, Feng et al. [20] show

price has a negative effect on reviews.
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1.2.3 Customer Choice

Customer choice models are used to estimate customers’ willingness to pay and prod-

uct preference. Some studies have investigated customers’ screening rules and prob-

abilities of purchase.

Bucklin and Lattin [9] introduce a probabilistic model for purchase incident and

brand choice. Some, such as Gilbride and Allenby [22] and Wang et al. [63], model

customers’ decision making as a two stage process. In the first stage a “consideration

set” is chosen from all available options. Customers’ then make a final purchase deci-

sion from this set. Lachaab et al. [29] model evolution of customers preferences using

Bayesian state space models. They show that customers preferences not only differ

across customers, it also changes over time. In particular they find that customers

become more price sensitive over time. They explain that this effect may be due

to frequent price promotions that reduce customers’ reference price. Several studies

have used customer choice models to investigate product recommendation systems

(e.g., [37, 38, 52, 67]).

1.2.4 Shipping Fees

With the ever growing e-commerce platforms, there has been increasing studies con-

sidering the effects of free-shipping policies on customer purchase decisions and ulti-

mately on revenues. Lewis et al. [32] study the impact of shipping fees on customer

purchasing behaviour. Leng et al. [31] investigate when shipping fee promotions im-

prove profits and derive several managerial insights for monopoly and duopoly market

structures. Ma [40] showed that delivery time does not have a large impact on cus-

tomer satisfaction but it has a significant impact on purchase intentions. They also

9
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noted that customers are willing to pay a premium for quick delivery.

1.2.5 Product Discounts

The literature in product discounts can be divided into three groups. Some have

studied advance purchase discounts. Gale and Holmes [21] study the optimal pricing

policy for a monopolistic airline and show that if capacity constraints are present, the

monopolist must divert peak period demand to off peak period by offering advance

purchase discounts. Möller and Watanabe [44] find conditions under which for a

monopolist, early price discount or late clearance sales are optimal. Nocke et al. [47]

present necessary and sufficient condition under which advance purchase discounts is

an optimal strategy when capacity constraints are not present.

Others have studied quantity discounts. For example, Dolan [17] studies motiva-

tions for quantity discounts and provides guidelines for quantity discount schedules.

The last category addresses product bundle discounts. Sheng et al. [56] study the

effects of discounts on the discounted product in bundles. They show that these

types of discounts negatively affect customers’ evaluations of the discounted product.

Janiszewski and Cunha [26] show that the customer evaluation of price discounts in

bundled products depend on which product in the bundle is being discounted.

1.3 Contributions and Thesis Overview

The main contribution of this thesis is to close some of the gaps in literature on pricing

optimization in an e-commerce context. In doing so, this research also contributes to

new models and solution methods that builds on previous literature. Contributions
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of Chapters 2-4 are summarized below.

In Chapter 2 price optimization in the presence of reference prices with thresholds

are studied. The existing literature in this area has mostly relied on dynamic pro-

gramming. This has allowed for obtaining some structural pricing results, but under

stringent conditions. As a results, only small problems were solved computationally

due to the “curse of dimensionality” that exists in dynamic programming algorithms.

However, with the growth in e-commerce industry there is an increasing need to solve

large pricing problems. It is the goal of this chapter to fill this gap by developing an

efficient methodology for solving realistic and large scale price optimization problems

in the presence of reference prices and thresholds. This chapter builds on the mod-

els used in [61] with several significant differences: First, there is a difference in the

modelling approach. As we will see, the constraints used in this chapter are necessary

and sufficient as opposed to sufficient constraints used in [61] which can exclude some

feasible, and possibly optimal, pricing combinations. Second, different solution tech-

niques are introduced to efficiently solve large optimization problems. These include

a heuristic approach as well as a Benders’ decomposition method. Finally, unlike [61],

no optimal price patterns (such as pricing cycles) are assumed.

The focus of Chapter 3 is to consider the effect of customer ratings on optimal

prices and vice versa in a multi-period, multi-product environment. The effects of

customer reviews, reference price, and cross-price effects on demand have been studied

in the literature on revenue management (e.g., [2, 8, 43, 53, 54, 61]). As discussed

in Section 1.2.2, very few studies have considered customer ratings as a response to

prices. There are no studies that explicitly study customer ratings as a response to

prices where prices are decision variables in a revenue optimization problem utilizing
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reference prices, customer ratings, and cross-price effects. This chapters bridges this

gap in the literature and offers some insights on how prices impact customer ratings.

In doing so, a new model for forecasting reviews is introduced and validated using

Amazon data. Finally, a comprehensive price optimization model that incorporates

the impact of reviews and historical prices on optimal prices for multiple products

in an online retail environment is developed. A linear demand model that accounts

for reference prices, cross-price effects, and customer ratings is used in the price

optimization problem. To solve the optimization problem, a heuristic method is

introduced and compared with commercial solvers. In addition, conditions under

which the heuristic produces close to optimal results are provided.

In previous research it has been shown that discount coupons are efficient tools

for price discrimination (e.g., [45]). The current literature consists of studies on

discounts, shipping fees, and customer purchase behaviour. However, there are no

studies that explicitly study personalised product discount optimization in a multi-

nomial choice model utilizing customer locations, in the form of shipping costs, and

product review data. In Chapter 4, a nonlinear programming model is introduced

that uses multinomial customer choice utility function. In addition, customers’ utility

and purchase probabilities from customer choice literature are modified to account

for prices, discounts, and ratings. Furthermore, exact solutions for two special cases

are provided followed by extensive numerical analysis and insights.

The remainder of this thesis is organized as follows. Three works published in

or submitted for publication in peer-reviewed journals are presented in Chapters 2-4

(discussed above). Chapter 5 concludes the thesis and offers remarks on the overall

theme and potential avenues for future research.
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1.4 Author’s Statement of Contribution

I am the author of this thesis and the first author of all works submitted or accepted
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Abstract

We consider a multi-period revenue maximization and pricing optimization

problem in the presence of reference prices. We formulate the problem as a

mixed integer non program and develop a generalized Benders’ decomposition

algorithm to solve it. In addition, we propose a myopic heuristic and discuss the

conditions under which it produces efficient solutions. We provide analytical

results as well as numerical computations to illustrate the efficiency of the

solution approaches as well as some managerial pricing insights.
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2.1 Introduction

Developing a pricing strategy is one of the most important operations aspects of any

firm in a given market [4, 14, 16, 26]. Marn et al. reported that a 1% improvement

in pricing can result in 8% improvement in profits [18]. Studies aimed at finding

optimal pricing strategies have led researchers to consider reference prices in the

development of a pricing strategy [2, 12, 15, 19]. Reference prices, used widely in the

mainstream marketing literature, is the price consumers use to determine whether or

not an observed price is a good deal [25].

Kalyanaram and Winer studied the effects of consistent price promotions [12].

They found that the later promotions are not seen as a good deal as the earlier ones,

and reverting to the original price can be perceived by customers as a price increase

[12]. They also concluded that consumers’ responses to gain and loss are asymmetric.

Here, gain is defined as when the observed price is below the reference price, and

loss is when the observed price is above the reference price [12]. Briesch et al. [2]

studied different models of household reference prices and concluded that the model

of reference price differs between different product categories.

Mazumdar et al. present a review of reference price research [19]. The authors

model reference price based on the “adaptive expectation” model introduced by

Nerlove [22]. Specifically, they use the following model

rt = αrt−1 + (1− α)pt−1 α ∈ [0, 1]. (2.1.1)
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where pt and rt denote price and reference price in period t, respectively, and α is a

memory parameter. They also suggested that α usually ranges between 0.15 and 0.4.

This exponential smoothing model for calculating reference prices is widely adopted

in the literature (e.g., see [1, 19, 25]) and will be used in this paper.

Nasiry and Popescu explore a memory-based reference price model based on the

peak-end rule; that is, the reference price is modelled as a weighted average of the

lowest price and the most recent price [21]. This model assumes that consumers can

remember the lowest prices indefinitely. This may be a reasonable assumption when

transaction frequency is high relative to the length of the horizon. However, this is

not a reasonable assumption in general. Also, in their modelling of demand, they did

not consider thresholds in the reference price effect. They concluded that behavioural

regularities cause prices to converge over time and lead to constant pricing strategies

[21].

To find an optimal pricing strategy with the consideration of the reference price,

one must first model the demand function. Huang et al. [9] provide a comprehensive

survey of demand models. Linear, exponential, and iso-elastic demand functions are a

few of many demand functions used in the literature. In this paper, we will assume a

piece-wise linear demand function because of the the relative simplicity to estimate its

parameters, price dependent demand elasticity, and the lack of unrealistic asymptotic

behaviour. For example, when iso-elastic demand functions are used, the demand

approaches infinity as the price approaches zero which is an unrealistic behaviour

as the market size is finite [9]. Also, the linear demand functions require a finite

upper bound on price which reflects the finite upper limit on consumers’ acceptable

price range (e.g., see [20]). This also limits the search area in the price optimization
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problem.

Von Massow and Hassini have considered reference price to have an additive effect

on the traditional linear demand function for each period [25]. In particular, they

modelled the demand function as

Dt =


a− bpt + βG(rt − pt) pt ≤ rt Gain

a− bpt pt = rt

a− bpt + βL(rt − pt) pt ≥ rt Loss

(2.1.2)

rt = αrt−1 + (1− α)pt−1 α ∈ [0, 1], (2.1.3)

where Dt, pt, and rt denote the demand, price, and reference price in period t, re-

spectively. The term a− bpt represents the traditional linear demand. The constants

βG and βL denote gain and loss parameters, respectively. Von Massow and Hassini

also introduced thresholds to the above model. The rationale for introducing the

thresholds is that the consumers only react if the difference between the reference

price and price are outside a threshold range, i.e., when the customer perceives the

difference in prices to be significant [25]. Letting τ ≥ 0 and ρ ≥ 0 denote the gain

threshold below the reference price and the loss threshold above the reference price,

respectively, they introduced the following demand function [25]:

Dt =


a− bpt + βG(rt − τ − pt) pt ≤ rt − τ

a− bpt rt − τ ≤ pt ≤ rt + ρ

a− bpt + βL(rt + ρ− pt) pt ≥ rt + ρ.

(2.1.4)
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Note that in the above demand model, reference price effects the demand only if

pt ≤ rt−τ or pt ≥ rt+ρ. We adopt this demand model in this paper. Here, parameters

a, b, βG, and βL can be estimated by multivariate linear regression. In addition,

the memory parameter α in (2.1.1) can be estimated as explained by Greenleaf [6];

particularly by varying α and choosing the one that maximizes the explanatory power

of (2.1.4). An initial estimate of reference price thresholds τ and ρ can be made by

market research experiments and surveys. This estimation can be further improved by

varying their values in the initial guess neighbourhood to maximize the explanatory

power of (2.1.4).

There is significant evidence in the literature and is commonly adopted that con-

sumers’ response to gains and losses are asymmetric. It is further widely accepted

that consumers are usually loss-averse; i.e., βG ≤ βL (e.g., see [7, 10, 11]). Note that

if the price is lower than the reference price (Gain), the demand will be greater than

the linear demand and if the price is higher than the reference price (Loss), the de-

mand will be lower than the traditional linear demand. We will further assume that

b ≥ βL. This is reasonable as it means that changes in price affect the traditional

linear demand portion more than the reference price part; that is, the overall “trend”

of the demand function is linearly decreasing.

Casado and Ferrer [3] introduce a consumer utility model that estimates price

thresholds and its impact on demand elasticity, taking into account consumer hetero-

geneity. They call the interval between gain threshold below the reference price and

loss threshold above the reference price as the latitude of acceptance. They conclude

that within the latitude of acceptance consumers are less sensitive to price changes

and beyond the thresholds there is significant change in elasticity of demand. They
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also conclude that the threshold values are mostly asymmetric where it is expected

that the loss threshold is smaller than the gain threshold. However, in many cases

of their study, the opposite was true; that is, the gain threshold was smaller than

the loss threshold. They determined that that unexpected outcome was the result of

high consumer brand loyalty for the studied products [3]. Lu et al. [17] studied joint

pricing strategies with reference price effect for a monopolistic firm. They considered

all four possible combinations of dynamic and static strategies for pricing and adver-

tising effort level. The study concluded that the dynamic strategies result in higher

profits than static strategies [17].

The existing literature on pricing optimization with reference prices has mostly

relied on dynamic programming. This has allowed for obtaining some structural pric-

ing results, but under stringent conditions. It also meant that only small problems

were solved computationally, due to the curse of dimensionality of dynamic program-

ming algorithms. However, in practice we noticed the increasing need to solve large

dynamic pricing problems. This is largely due to the availability of data in the online

shopping world (where customers have access to historical prices that can go back

years, such as with amazon) as well as the increasing use of loyalty cards that al-

low retailers to have better visibility of customers shopping behaviours for extended

periods of time. It is thus our goal in this paper to fill this gap by developing an

efficient methodology for solving realistic and large scale price optimization problems

in the presence of reference prices and thresholds. Our work builds on the models

used in [25]. This paper has several significant differences from that of [25]. First,

there is a difference in our modelling approach where we introduce a more general

non-negativity constraint. As we show in Proposition 2.2.2, the constraint in [25]
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may unnecessarily exclude some feasible pricing combinations. Second, we propose

different solution techniques to efficiently solve larger problems. The solution pro-

cedure introduced in [25] uses dynamic programming which runs into the “curse of

dimensionality” [23] and therefore is not useful for solving large scale problems. To

overcome this computational difficulty, we propose a heuristic approach as well as a

Benders’ decomposition method to solve larger problems. Finally, unlike [25], in our

model and computational experiments we do not assume any optimal price patterns

such as pricing cycles.

The remainder of the paper is organized as follows. In Section 2.2 we present the

problem and its mixed integer nonlinear (MINLP) formulation for maximizing the

total profit for a horizon of length T . we will then introduce a myopic heuristic ap-

proach in Section 2.3 and show that in some cases it produces good quality solutions.

A modified generalized Benders’ decomposition(GBD) method will be developed in

Section 2.4 to solve the MINLP for large values of T . We show that the MINLP is a

special case of mixed integer cubic problem where fixing the integer variables result

in a convex quadratic programming problems. We make use of this fact to design the

GBD algorithm and establish some of its analytical properties. Our computational

analysis and insight is reported in Section 2.5. Unlike our proposed approaches, cur-

rent commercial solvers cannot solve the MINLP efficiently for small values of T ; that

is, they produce feasible solutions and not optimal solutions to the MINLP problem,

or produce solutions of the NLP relaxed problem. In addition, commercial solvers

cannot provide feasible solutions for larger values of T . Finally, in Section 2.7 we

summarize our findings and propose some future directions for research. The proofs

of all results are provided in the appendix 2.7 and a list of notations is provided in
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appendix 2.7.

2.2 The Problem Statement and Formulation

As discussed in Section 2.1, in this paper, we consider a price optimization problem

in the presence of reference prices with threshold. In Section 2.2.1 we will describe

the problem. This will be followed by MINLP formulation of the problem in Section

2.2.2.

2.2.1 Problem Description

As mentioned in Section 2.1, we adopt the demand model (2.1.4) introduced by Von

Massow [24]. The profit in period t denoted by πt, assuming reference price rt and a

constant per unit cost c, can be shown as

πt = (pt − c)Dt (2.2.1)

where Dt is the demand in period t shown in (2.1.4). This can be re-written as

Dt = a− bpt + (βGYG,t + βLYL,t)(rt − pt + ρYL,t − τYG,t) (2.2.2)

where YG,t and YL,t are defined as

YG,t =


1 if pt ≤ rt − τ

0 o.w.

, YL,t =


1 if pt ≥ rt + ρ

0 o.w.

(2.2.3)
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Proposition 2.2.1. As presented in Section 2.1, Mazumdar et al. [19] concluded that

0.15 ≤ α ≤ 0.4. Von Massow [24] showed that in this case, the impact of previous

prices diminishes very quickly and for a given r1, we can approximate rt as

r2 = ω1p1 + (1− ω1)r1 (2.2.4)

r3 = ω1p2 + ω2p1 + ω3r1 (2.2.5)

rt = ω1pt−1 + ω2pt−2 + ω3pt−3 ∀t ≥ 4 (2.2.6)

where

ω1 =
1− α
1− α3

, ω2 =
α(1− α)

1− α3
, ω3 =

α2(1− α)

1− α3
.

The price optimization problem is to find optimal prices that maximize the total

profit π during the finite horizon t = 1, 2, · · · , T ; i.e.,

max
pt∈P

π =
T∑
t=1

(pt − c)
[
a− bpt + (βGYG,t + βLYL,t)(rt − pt + ρYL,t − τYG,t)

]
(2.2.7)

where P is a set of feasible prices.

This model aids the retailers in solving their price and revenue optimization prob-

lems. It is helpful for products and services for which customers have developed a

reference price. These would include loyal customer, that can be identified through

loyalty card programs, as well as other customers who may be shopping around for

deals and have a good idea about expected product prices. Given that our solution

procedures address large scale problems, our model may particularly be attractive to
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online retailers where it is relatively easier to collect big data about customers and

their purchasing behaviours.

2.2.2 MINLP Formulation

In this Section, we re-introduce the MINLP formulation as proposed by Von Massow

[24] and adjust its demand non-negativity constraints. For a given r1 Von Massow

[24] introduced the following MINLP:

max
p,r,Y

π =
T∑
t=1

πt (VonMassow-MINLP)

s.t.

r2 = ω1p1 + (1− ω1)r1 (2.2.8a)

r3 = ω1p2 + ω2p1 + ω3r1 (2.2.8b)

rt = ω1pt−1 + ω2pt−2 + ω3pt−3 ∀t ∈ {4, 5, · · · , T} (2.2.8c)

(rt − pt − τ)YG,t ≥ 0 ∀t ∈ {1, 2, · · · , T} (2.2.8d)

(rt − pt − τ)(1− YG,t) ≤ 0 ∀t ∈ {1, 2, · · · , T} (2.2.8e)

(rt − pt + ρ)YL,t ≤ 0 ∀t ∈ {1, 2, · · · , T} (2.2.8f)

(rt − pt + ρ)(1− YL,t) ≥ 0 ∀t ∈ {1, 2, · · · , T} (2.2.8g)

YG,t + YL,t ≤ 1 ∀t ∈ {1, 2, · · · , T} (2.2.8h)

c ≤ pt ≤
a+ βLrt
b+ βL

∀t ∈ {1, 2, · · · , T} (2.2.8i)

YG,t, YL,t ∈ {0, 1} ∀t ∈ {1, 2, · · · , T} (2.2.8j)

Constraints (2.2.8a)-(2.2.8c) in (VonMassow-MINLP) define the reference price

for periods 2, . . . , T , constraints (2.2.8d)-(2.2.8h) define whether we have a gain or
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loss situation, and constraints (2.2.8i) and (2.2.8j) define bounds on price and binary

variables, respectively. The constraints (2.2.8i) are to ensure demand is non-negative.

Although constraints (2.2.8i) are sufficient to guarantee the non-negativity of demand,

they are not necessary as shown in Proposition 2.2.2.

Proposition 2.2.2. The constraints pt ≤ a+βLrt
b+βL

in (VonMassow-MINLP) are not

necessary to guarantee the non-negativity of demand.

In Proposition 2.2.3 we provide sufficient and necessary conditions for the non-

negativity of demand.

Proposition 2.2.3. Let

χt = βGYG,t + βLYL,t ∀t ∈ {1, 2, · · · , T} (2.2.9)

φt = ρYL,t − τYG,t ∀t ∈ {1, 2, · · · , T} (2.2.10)

Then the necessary and sufficient conditions to ensure non-negative demand are

(b+ χt)pt ≤ a+ χt(r1 + φt) t = 1 (2.2.11)

(b+ χt)pt − ω1χtpt−1 ≤ a+ χt
(
(1− ω1)r1 + φt

)
t = 2 (2.2.12)

(b+ χt)pt − χt(ω1pt−1 + ω2pt−2) ≤ a+ χt(ω3r1 + φt) t = 3 (2.2.13)

(b+ χt)pt − χt(ω1pt−1 + ω2pt−2 + ω3pt−3) ≤ a− χtφt ∀t ∈ {4, · · · , T} (2.2.14)

Using the results from Proposition 2.2.3 we can adjust (VonMassow-MINLP) as

follows

max
p,r,Y

π =
T∑
t=1

πt (MINLP)
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s.t.

r2 = ω1p1 + (1− ω1)r1 (2.2.15a)

r3 = ω1p2 + ω2p1 + ω3r1 (2.2.15b)

rt = ω1pt−1 + ω2pt−2 + ω3pt−3 ∀t ∈ {4, 5, · · · , T} (2.2.15c)

(rt − pt − τ)YG,t ≥ 0 ∀t ∈ {1, 2, · · · , T} (2.2.15d)

(rt − pt − τ)(1− YG,t) ≤ 0 ∀t ∈ {1, 2, · · · , T} (2.2.15e)

(rt − pt + ρ)YL,t ≤ 0 ∀t ∈ {1, 2, · · · , T} (2.2.15f)

(rt − pt + ρ)(1− YL,t) ≥ 0 ∀t ∈ {1, 2, · · · , T} (2.2.15g)

YG,t + YL,t ≤ 1 ∀t ∈ {1, 2, · · · , T} (2.2.15h)

(b+ χt)pt ≤ a+ χt(r1 + φt) t = 1 (2.2.15i)

(b+ χt)pt − ω1χtpt−1 ≤ a+ χt
(
(1− ω1)r1 + φt

)
t = 2 (2.2.15j)

(b+ χt)pt − χt(ω1pt−1 + ω2pt−2) ≤ a+ χt(ω3r1 + φt) t = 3 (2.2.15k)

(b+ χt)pt − χt(ω1pt−1 + ω2pt−2 + ω3pt−3) ≤ a− χtφt ∀t ∈ {4, · · · , T} (2.2.15l)

pt ≥ 0 ∀t ∈ {1, 2, · · · , T} (2.2.15m)

YG,t, YL,t ∈ {0, 1} ∀t ∈ {1, 2, · · · , T} (2.2.15n)

Note that in (MINLP) the lower bound of prices are set to 0 instead of c. This is

done so that we can allow for cases where it may be optimal to make negative profits

in a period to increase total profit in during the planning horizon. The demand

non-negativity constraints ensure positive demand in each period and thus avoid

double negativity (negative demand and negative per unit profit) causing false positive

profits. As mentioned in Section 2.1, current commercial MINLP solvers are unable

to solve medium and large sizes of problem (MINLP). Therefore there is a need to
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solve the problem efficiently for medium to long planning horizons. In the next two

sections we propose a heuristic and a modified Benders’ decomposition methods to

solve large instances of problem (MINLP).

2.3 A Myopic Heuristic Approach

In this section, we propose a myopic heuristic to solve the profit maximization problem

(MINLP). The main idea of this method is to time-decompose the problem and solve

each period’s pricing problem independently of other periods. In Proposition 2.3.1

we will show that we can find closed form optimal solutions for each period’s pricing

problem. Later, in Section 2.5, we show numerically that, in some cases, the heuristic

leads to close to optimal solutions for problem (MINLP).

Proposition 2.3.1. Let

πt =


(pt − c)

(
a− bpt + βG(rt − τ − pt)

)
pt ≤ rt − τ

(pt − c) (a− bpt) rt − τ ≤ pt ≤ rt + ρ

(pt − c)
(
a− bpt + βL(rt + ρ− pt)

)
rt + ρ ≤ pt

(2.3.1)

and

z1 = a+(b+βG)c
2b+βG

+ τ z2 = a+bc
2b

+ τ

z3 = a+bc
2b
− ρ z4 = a+(b+βL)c

2b+βL
− ρ
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Then

p∗t = arg max
p
∗(i)
t

{
πt|p∗(1)t

, πt|p∗(2)t
, πt|p∗(3)t

}

maximizes πt where

p
∗(1)
t =


rt − τ if rt < z1

a+βG(rt−τ)+(b+βG)c
2(b+βG)

o.w.

p
∗(2)
t =


rt − τ if rt > z2

rt + ρ if rt < z3

a+bc
2b

o.w.

p
∗(3)
t =


rt + ρ if rt > z4

a+βL(rt+ρ)+(b+βL)c
2(b+βL)

o.w.

Using Proposition 2.3.1, we define Algorithm 2.3.1.

Algorithm 2.3.1 (Myopic Pricing Heuristic). Input: α, βL, βG, a, b, c, τ , ρ, p0, r0,

T .

Initialization:

z1 = a+(b+βG)c
2b+βG

+ τ z2 = a+bc
2b

+ τ

z3 = a+bc
2b
− ρ z4 = a+(b+βL)c

2b+βL
− ρ
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Loop:

For t = 1 to T do

rt = αrt−1 + (1− α)pt−1

p
∗(1)
t =


rt − τ if rt < z1

a+βG(rt−τ)+(b+βG)c
2(b+βG)

o.w.

p
∗(2)
t =


rt − τ if rt > z2

rt + ρ if rt < z3

a+bc
2b

o.w.

p
∗(3)
t =


rt + ρ if rt > z4

a+βL(rt+ρ)+(b+βL)c
2(b+βL)

o.w.

p∗t = arg max
p
∗(i)
t

{
πt|p∗(1)t

, πt|p∗(2)t
, πt|p∗(3)t

}

Note that to increase computational efficiency, we only calculate range identifiers

z1, · · · , z4 at the initialization step. These values remain constant for all iterations.

As we will see in Section 2.5, this approach produces very close to optimal results in

some cases, however, in other combinations, the results may be far from optimal. In

Section 2.4 we provide an exact algorithm for solving problem (MINLP).
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2.4 A Modified Generalized Benders’ Decomposi-

tion Method

As shown in previous sections, the need to solve (MINLP)) efficiently is well justi-

fied. The complexity of the problem stems from its mixed integer nonlinear nature.

Multiple attempts have been made to linearize (MINLP), however, the results were

not encouraging. In this section, we develop a modified version of the generalized

Benders’ decomposition (GBD) method [5]. To do so, and for brevity, we will rewrite

the problem in matrix form. Define

W =



−1

ω1 −1

ω2 ω1 −1

ω3 ω2 ω1 −1

ω3 ω2 ω1 −1

. . . . . . . . . . . .

ω3 ω2 ω1 −1



where



ω1 = 1−α
1−α3

ω2 = α(1−α)
1−α3

ω3 = α2(1−α)
1−α3

ω1 + ω2 + ω3 = 1

(2.4.1)

and let

p =

(
p1 p2 · · · pT

)T
, dY =

(
d1 d2 · · · dT

)T
(2.4.2)
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where

d1 = c
[
ω1(βGYG,2 + βLYL,2) + ω2(βGYG,3 + βLYL,3) + ω3(βGYG,4 + βLYL,4)

]
(2.4.3)

−
[
a+ bc+ βGYG,1(c− τ) + βLYL,1(c+ ρ) + βGYG,1 + βLYL,1

]
d2 = c

[
ω1(βGYG,3 + βLYL,3) + ω2(βGYG,4 + βLYL,4) + ω3(βGYG,5 + βLYL,5)

]
−
[
a+ bc+ βGYG,2(c− τ) + βLYL,2(c+ ρ) + (1− ω1)r1(βGYG,2 + βLYL,2)

]
d3 = c

[
ω1(βGYG,4 + βLYL,4) + ω2(βGYG,5 + βLYL,5) + ω3(βGYG,6 + βLYL,6)

]
−
[
a+ bc+ βGYG,3(c− τ) + βLYL,3(c+ ρ) + ω3r1(βGYG,3 + βLYL,3)

]
dt = c

[
ω1(βGYG,t+1 + βLYL,t+1) + ω2(βGYG,t+2 + βLYL,t+2) + ω3(βGYG,t+3 + βLYL,t+3)

]
−
[
a+ bc+ βGYG,t(c− τ) + βLYL,t(c+ ρ)

]
∀t = 4, · · · , T − 3

dT−2 = c
[
ω1(βGYG,T−1 + βLYL,T−1) + ω2(βGYG,T + βLYL,T )

]
−
[
a+ bc+ βGYG,T−2(c− τ) + βLYL,T−2(c+ ρ)

]
dT−1 = c

[
ω1(βGYG,T + βLYL,T )

]
−
[
a+ bc+ βGYG,T−1(c− τ) + βLYL,T−1(c+ ρ)

]
dT = −

[
a+ bc+ βGYG,T (c− τ) + βLYL,T (c+ ρ)

]
Define the T × T symmetric sparse matrix HY = [Hi,j] such that

Ht,t = −2(b+ βGYG,t + βLYL,t) ∀t = 1, · · · , T (2.4.4)

Ht,t−1 = Ht−1,t = ω1(βGYG,t + βLYL,t) ∀t = 2, · · · , T

Ht,t−2 = Ht−2,t = ω2(βGYG,t + βLYL,t) ∀t = 3, · · · , T

Ht,t−3 = Ht−3,t = ω3(βGYG,t + βLYL,t) ∀t = 4, · · · , T
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Let

YG = diag{YG,1, YG,2, · · · , YG,T} (2.4.5)

YL = diag{YL,1, YL,2, · · · , YL,T} (2.4.6)

Y =

(
−YG , I − YG , YL , −(I − YL)

)′
(2.4.7)

Define the T × T sparse matrix BY = [Bi,j] such that

Bt,t = b+ βGYG,t + βLYL,t ∀t = 1, · · · , T (2.4.8a)

Bt,t−1 = −ω1(βGYG,t + βLYL,t) ∀t = 2, · · · , T (2.4.8b)

Bt,t−2 = −ω2(βGYG,t + βLYL,t) ∀t = 3, · · · , T (2.4.8c)

Bt,t−3 = −ω3(βGYG,t + βLYL,t) ∀t = 4, · · · , T (2.4.8d)

and define the 6T × T matrix AY as

AY =


YW

BY

−IT

 (2.4.9)

41



Ph.D. Thesis – S. Shams-Shoaaee McMaster University – Computational Sci.&Eng.

where IT is the T × T identity matrix. Let the 6T × 1 vector bY be defined as

bY =



YGvG

−(I − YG)vG

−YLvL

(I − YL)vL

a+ (βGYG,1 + βLYL,1)(r1 − ρYL,1 + τYG,1)

a+ (βGYG,2 + βLYL,2)((1− ω1)r1 − ρYL,2 + τYG,2)

a+ (βGYG,3 + βLYL,3)(ω3r1 − ρYL,3 + τYG,3)

a− (βGYG,4 + βLYL,4)(ρYL,4 − τYG,4)

...

a− (βGYG,T + βLYL,T )(ρYL,T − τYG,T )

0

...

0



(2.4.10)

where

vG =

(
r1 − τ , (1− ω1)r1 − τ , ω3r1 − τ , −τ , · · · , −τ

)′
(2.4.11)

vL =

(
r1 + ρ , (1− ω1)r1 + ρ , ω3r1 + ρ , ρ , · · · , ρ

)′
(2.4.12)

The profit maximization problem (MINLP) in matrix form is

max π =
1

2
pTHY p− dTY p+ c

T∑
t=1

(βGYG,tτ − βLYL,tρ)− cr1

[
(βGYG,1 + βLYL,1)
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+ (1− ω1)(βGYG,2 + βLYL,2) + ω3(βGYG,3 + βLYL,3)
]

(2.4.13)

s.t. AY p ≤ bY

YG,t, YL,t ∈ {0, 1} ∀t ∈ {1, 2, · · · , T}

This can be re-written as

max
Y ∈Ω

{
max
p

{
1

2
pTHY p− dTY p s.t. AY p ≤ bY

}
(2.4.14)

+ c
T∑
t=1

(βGYG,tτ − βLYL,tρ)− cr1

[
(βGYG,1 + βLYL,1)

+ (1− ω1)(βGYG,2 + βLYL,2) + ω3(βGYG,3 + βLYL,3)
]}

where Ω is the set of feasible values for Y . If Y is fixed to a feasible configuration Y ,

the resulting problem is

max
p

{
1

2
pTHY p− dTY p s.t. AY p ≤ bY

}
+ c

T∑
t=1

(βGY G,tτ − βLY L,tρ) (2.4.15)

− cr1

[
(βGY G,1 + βLY L,1) + (1− ω1)(βGY G,2 + βLY L,2) + ω3(βGY G,3 + βLY L,3)

]

Lemma 2.4.1 and Proposition 2.4.1 will help us form Benders’ subproblem.

Lemma 2.4.1. If b ≥ max{βL, βG} then HY is symmetric negative semi-definite and

HY is symmetric negative definite if b > max{βL, βG}.

Proposition 2.4.1. For b ≥ max{βL, βG}, the dual of the inner maximization prob-

lem in (2.4.14) is

min uT bY −
1

2
pTHY p (2.4.16)
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s.t. −HT
Y
p+ ATu+ dY = 0

u ≥ 0

We can now define the generalized Benders’ decomposition(GBD) subproblem

when Y is fixed to a feasible configuration Y as

min
u,p≥0

uT bY −
1

2
pTHY p+ c

T∑
t=1

(βGY G,tτ − βLY L,tρ) (GBD-Sub)

− cr1

[
(βGY G,1 + βLY L,1) + (1− ω1)(βGY G,2 + βLY L,2)

+ ω3(βGY G,3 + βLY L,3)
]

s.t. −HT
Y
p+ ATu+ dY = 0

We can also define the relaxed master problem as

max
YL,YG,z

z (Master)

s.t. z ≤ 1

2

(
p(k)
)T

HY p
(k) − dTY p(k) +

(
u(k)
)T

(bY − Ap(k))

+ c
T∑
t=1

(βGYG,tτ − βLYL,tρ)− cr1

[
(βGYG,1 + βLYL,1)

+ (1− ω1)(βGYG,2 + βLYL,2) + ω3(βGYG,3 + βLYL,3)
]
∀k ∈ {1, · · · , K},

where p(k) and u(k) are the solutions from the subproblem in iteration k ∈ {1, 2, · · · , K}

with K being the most recent iteration.

In Proposition 2.4.2 we define some valid inequalities to enhance the performance

of the GBD algorithm.

Proposition 2.4.2. Let Y
(k)
L,t and Y

(k)
G,t be optimal solutions produced from the master
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problem (Master) in iteration k with k ∈ {1, · · · , K}, t ∈ {1, · · · , T}, and K the most

recent (current) iteration. To increase computational efficiency, we add the following

constraints to the master problem (Master) so that it does not produce a solution that

it has produced before.

∣∣∣∣∣∣
T∑
t=1

2t−1
(
YL,t − Y (k)

L,t

)∣∣∣∣∣∣ ≥ 1 (2.4.17)

∣∣∣∣∣∣
T∑
t=1

2t−1
(
YG,t − Y (k)

G,t

)∣∣∣∣∣∣ ≥ 1 (2.4.18)

The constraints above can be replaced by the following linearised constraints

T∑
t=1

2t−1
(
YL,t − Y (k)

L,t

)
+MqL,k ≥ 1 (2.4.19)

−
T∑
t=1

2t−1
(
YL,t − Y (k)

L,t

)
+M(1− qL,k) ≥ 1 (2.4.20)

T∑
t=1

2t−1
(
YG,t − Y (k)

G,t

)
+MqG,k ≥ 1 (2.4.21)

−
T∑
t=1

2t−1
(
YG,t − Y (k)

G,t

)
+M(1− qG,k) ≥ 1 (2.4.22)

where M is a large number (ex. 2T ); qL,k and qG,k are binary variables for all k ∈

{1, · · · , K}.

Using Proposition 2.4.2, we can define the new GBD master problem as

max z (GBD-Master)

s.t. z ≤ 1

2

(
p(k)
)T

HY p
(k) − dTY p(k) +

(
u(k)
)T

(bY − Ap(k))
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+ c
T∑
t=1

(βGYG,tτ − βLYL,tρ)− cr1

[
(βGYG,1 + βLYL,1)

+ (1− ω1)(βGYG,2 + βLYL,2) + ω3(βGYG,3 + βLYL,3)
]

∀k ∈ {1, · · · , K}

YL,t + YG,t ≤ 1 ∀t ∈ {1, · · · , T}
T∑
t=1

2t−1
(
YL,t − Y (k)

L,t

)
+MqL,k ≥ 1 ∀k ∈ {1, · · · , K}

T∑
t=1

2t−1
(
YL,t − Y (k)

L,t

)
+M(1− qL,k) ≥ 1 ∀k ∈ {1, · · · , K}

T∑
t=1

2t−1
(
YG,t − Y (k)

G,t

)
+MqG,k ≥ 1 ∀k ∈ {1, · · · , K}

T∑
t=1

2t−1
(
YG,t − Y (k)

G,t

)
+M(1− qG,k) ≥ 1 ∀k ∈ {1, · · · , K}

YL,t, YG,t ∈ {0, 1} ∀t ∈ {1, · · · , T}

qL,k, qG,k ∈ {0, 1} ∀k ∈ {1, · · · , K}

We summarize the main steps of our proposed modified GBD approach in Algo-

rithm 2.4.1.

Algorithm 2.4.1 (Modified GBD). Assume Ystart,L,t, Ystart,L,t be the initial binary

values for t = 1, · · · , T be given. Let ε be the convergence criteria.

Step 1: Let K = 1. For all t ∈ {1, · · · , T}, let Y L,t = Ystart,L,t, Y G,t = Ystart,G,t,

Y
(K)
L,t = Y L,t, Y

(K)
G,t = Y G,t, LB = −∞, and UB = +∞.

Step 2: Solve the subproblem (GBD-Sub). Let π(K), p(K), and u(K) denote the optimal
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objective value, p, and u, respectively. If π(K) > LB, let

LB = π(k)

Best(u) = u(K)

Best(p) = p(K)

Best(YL) = Y L

Best(YG) = Y G

Step 3: Solve (GBD-Master). Let UB, Y L, and Y G be the optimal values of z, YL, and

YG, respectively.

Step 4: If UB−LB
LB

≤ ε or if the master problem is infeasible (all Y ’s have been consid-

ered), “STOP”, otherwise let K = K + 1 and proceed to “Step 2”.

In Propositions 2.4.3 and 2.4.4 we establish the optimality and convergence of our

proposed modified GBD method, respectively.

Proposition 2.4.3. Let Y
(k)
L and Y

(k)
G be the optimal solutions from (Master) in

iteration k and p(k+1) be the optimal solutions from (GBD-Sub) in iteration k + 1. If

Y
(k)
L and Y

(k)
G are the optimal solutions to (MINLP), then p(k+1) is also the optimal

solution to (MINLP); i.e., the combination Y
(k)
L , YG(k), and p(k+1) is an optimal

solution to (MINLP).

Proposition 2.4.4. Algorithm 2.4.1 converges in a finite number of iterations.

We note that the condition b > β = max{βL, βG}, implies that the demand

price sensitivity is stronger than the demand sensitivity to reference prices threshold,
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which is reasonable in the real world. Under such reasonable conditions, HY is a

symmetric negative semi-definite matrix; that is, the objective function of (GBD-

Sub) is convex regardless of the value of T . The feasible region of (GBD-Sub) is

also convex as it is formed of linear constraints. Therefore, (GBD-Sub) is always a

convex quadratic problem. Note that (GBD-Master) is a linear problem with linear

constraints. Therefore, Using common solvers for linear and quadratic problems, we

can find close to optimal solutions for the original MINLP for large values of T .

2.5 Numerical Experiments

In this section we will present results from computational experiments. In Section

2.5.1 we describe the data and specification of the computer and software used for

computational experiments. We will then illustrate numerical results in Section 2.5.2.

2.5.1 Problem Data

For the purpose of numerical experiments, we used 1296 different combinations of

parameter sets shown in Table 2.1. For all of these combinations of parameters com-

mercial solvers including Baron, were only able to solve (MINLP) for horizons with

up to 6 periods. Our computations were executed using Matlab R2014b. Each op-

timization problem in the generalized Benders’ decomposition method and complete

enumeration was solved by calling GAMS 24.8.5 through Matlab and by using CPLEX

12.8 solver on a machine running Windows Server 2008 R2 Standard with Intel(R)

Xeon(R) E5-2640 v2(8 cores, 16 threads) 2.00 gigahertz - 2.50 gigahertz processor

and 64 gigabytes RAM.
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Parameter Values
a 10
b 0.6, 0.8, 1
c 0.5, 2
βL 0.2, 0.4
βG 0.2, 0.4
τ 0.2, 0.5, 0.7
ρ 0.2, 0.5, 0.7
r1 2, 2.75
α 0.1, 0.2, 0.3, 0.4

Table 2.1: Parameter Values

To measure the optimality of the heuristic approach explained in Section 2.3 and

the generalized Benders’ decomposition(GBD) method from Section 2.4, we compare

the results and computation time of these methods with a complete enumeration(CE)

method where the primal problem (2.4.15) is solved for all possible combinations of

YL,t, YG,t and the best result is chosen. Since the computation time of the complete

enumeration method increases exponentially, O(3T ), only the case with T = 10 is

used. We use these results as a benchmark to measure the accuracy of the other two

methods. We further compare the results of the two methods, myopic heuristic(ME)

and GBD, for larger values of T .

Let π∗i denote the optimal objective value of (MINLP) when the method i is used.

Define the comparative index CIi,j as

CIi,j =
π∗i − π∗j
π∗j

, i, j = CE, BDH, MH, BDL (2.5.1)

where CE, BDH, MH, BDL refer to complete enumeration, Benders’ decomposition

with a high limit on iterations (1,000), myopic heuristic, and Benders’ decomposition

with a low limit on iterations (100), respectively.
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2.5.2 Results

As shown in Table 2.2, results from the Benders’ decomposition method are very

close to the optimal results obtained by using the complete enumeration method.

Figure 2.1 and Figure 2.2 also show this graphically. Note that in Table 2.2 methods

CE and MH are only compared with BDH to avoid redundant results. However, we

have presented the comparison between BDH and BDL; and therefore CE and MH

can be compared with BDL indirectly.

T i, j min
(
CIi,j

)
avg

(
CIi,j

)
max

(
CIi,j

)
SD

(
CIi,j

)

10

CE,BDH 0.0034 % 2.2184 % 9.1157 % 2.4832 %

CE,MH 13.9161 % 69.6544 % 131.0846 % 52.7251 %

BDL,MH 8.5651 % 54.6538 % 132.5032 % 42.3646 %

BDL,BDH 0.0000 % 0.0000 % 0.0000 % 0.0000 %

20
BDH,MH 2.6383 % 54.0444 % 127.3851 % 41.7312 %

BDH,BDL 0.0000 % 0.0000 % 0.0000 % 0.0000 %

30
BDH,MH 9.5835 % 53.7530 % 126.3211 % 41.2386 %

BDH,BDL 0.0000 % 0.0004 % 0.2402 % 0.0082 %

50
BDH,MH 2.8381 % 54.4323 % 126.5213 % 41.8863 %

BDH,BDL 0.0000 % 0.0007 % 0.6407 % 0.0181 %

Table 2.2: Optimality of methods

As shown in Figure 2.2 the average prices of the complete enumeration method

and the modified GBD method are very close if not identical in most cases. In

Figure 2.1, it is illustrated that the results from modified GBD method with 100 and

1000 iteration limits are very similar and both methods’ are considerably better than
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(a) T = 10 (b) T = 20

(c) T = 30 (d) T = 50

Figure 2.1: Summary results

(a) (b)

Figure 2.2: Objective values in (a) and average prices in (b) for T = 10 for 20
randomly selected parameter combinations for all three methods.

the myopic heuristic. Table 2.3 shows that the computation time for the complete

enumeration is 4-5 hours for a horizon with T = 10 compared to less than 4 seconds

51



Ph.D. Thesis – S. Shams-Shoaaee McMaster University – Computational Sci.&Eng.

for all other methods. As expected, the computation time of all of the methods

increase as we increase T .

T Method Min Avg Max SD

10

CE 9,585.8058 11,788.6143 13,596.2032 1,229.2566
BDH 0.6956 0.9964 3.9314 0.3315
MH 0.0003 0.0004 0.0022 0.0001
BDL 0.6956 0.9964 3.9314 0.3315

20
BDH 0.7537 12.4443 1,909.6366 143.5793
MH 0.0005 0.0007 0.0028 0.0003
BDL 0.7475 1.5157 66.7713 4.6907

30
BDH 0.8133 92.0837 5,595.1819 586.3591
MH 0.0007 0.0010 0.0332 0.0010
BDL 0.8655 4.8885 129.7584 16.4642

50
BDH 1.0258 821.6214 72,084.6508 4,407.5662
MH 0.0011 0.0017 0.0054 0.0007
BDL 1.0628 27.3011 1,839.1405 110.4442

Table 2.3: Computation times of methods in seconds

Taking into account the optimality comparisons in Table 2.2 and the computation

times in Table 2.3, when we limit the number of iterations in the modified Benders’

decomposition method to 100, the computation time decreases significantly but the

optimality only decreases slightly; we therefore can increase the value of the con-

vergence criteria for the GBD method slightly and decrease the computation time

significantly. The myopic heuristic approach by far has the shortest computation

times and under certain conditions, discussed in Section 2.6.5, it produces very close

to optimal results.
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T Method Min Avg Max SD

10
BDH 2 2.18 7 0.49
BDL 2 2.18 7 0.49

20
BDH 2 10.44 1,000 78.18
BDL 2 2.89 100 7.68

30
BDH 2 59.71 1,000 148.24
BDL 2 6.17 100 17.50

50
BDH 2 453.20 1,000 266.27
BDL 2 13.45 100 28.88

Table 2.4: Number of iterations for Benders’ decomposition methods

2.6 Managerial Insights

Given that our model is general, in that we do not impose any particular conditions

on optimal prices, it is not always possible to obtain analytical results on the price

patterns. In this section, we will report on additional computational results that will

allow us to numerically analyze the changes in total profit, price patterns, and the

performance of the heuristic method. In particular, in Section 2.6.1 we will illustrate

the effects of gain and loss parameters, βG and βL, respectively. Section 2.6.2 outlines

the effects of varying threshold parameters τ and ρ. In Section 2.6.3 we discuss the

effects of changes in the memory parameter α. Finally, Sections 2.6.4 and 2.6.5 discuss

price patterns and the optimality of the heuristic method, respectively.

2.6.1 Effects of Gain and Loss Parameters on Total Profit

The total profits increase as the value of the gain parameter βG increases. This is

an expected results and can easily be proven analytically since the first derivative

of π with respect to βG is non-negative, whenever the price is larger than the cost.

In addition, it seems that increasing the value of βG also increases the magnitude of
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the effects of the changes in gain threshold in total profit. Table 2.5 illustrates an

example of the effects of the gain parameter on total profits. Varying the values of

the loss parameter βL seems to have no effect on the optimal total profit.

a b c βL βG τ ρ α π
10 1 0.5 0.9 0.3 0.5 0.5 0.2 248.1213
10 1 0.5 0.9 0.6 0.5 0.5 0.2 250.3011
10 1 0.5 0.9 0.9 0.5 0.5 0.2 252.8410
10 1 0.5 0.9 0.3 0.2 0.8 0.2 249.4249
10 1 0.5 0.9 0.6 0.2 0.8 0.2 253.5629
10 1 0.5 0.9 0.9 0.2 0.8 0.2 258.2754
10 1 0.5 0.9 0.3 0.2 0.2 0.3 248.7188
10 1 0.5 0.9 0.6 0.2 0.2 0.3 250.3517
10 1 0.5 0.9 0.9 0.2 0.2 0.3 252.2637

Table 2.5: The effect of changes in gain parameter βG on profits

2.6.2 Effects of Gain and Loss Thresholds on Total Profit

The loss threshold is viewed as a measure of brand loyalty in some studies (see [25]).

It is intuitive that increased brand loyalty results in increased profits; that is, total

profit increases as the value of the loss threshold ρ is increased. This is observed in

the study of our model and an example of this is shown in Table 2.6. In addition, it

seems that the total profits decrease as the value of the gain threshold τ is increases

(see Table 2.7).

2.6.3 Effects of the Memory Parameter on Total Profit

We expect the total profits to decrease as the memory parameter α increases. This

is because when the value of α increases, the reference prices react more slowly in

response to increasing prices which results in lower total profits. An example of this
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a b c βL βG τ ρ α π
10 1 0.5 0.6 0.6 0.2 0.2 0.4 250.2569
10 1 0.5 0.6 0.6 0.2 0.5 0.4 251.8334
10 1 0.5 0.6 0.6 0.2 0.8 0.4 252.5897
10 1 0.5 0.9 0.6 0.2 0.2 0.2 250.4545
10 1 0.5 0.9 0.6 0.2 0.5 0.2 252.5025
10 1 0.5 0.9 0.6 0.2 0.8 0.2 253.5629
10 1 0.5 0.9 0.9 0.2 0.2 0.3 252.2637
10 1 0.5 0.9 0.9 0.2 0.5 0.3 255.6647
10 1 0.5 0.9 0.9 0.2 0.8 0.3 257.6115

Table 2.6: The effect of changes in loss threshold ρ on profits

a b c βL βG τ ρ α π
10 1 0.5 0.6 0.6 0.2 0.5 0.2 252.5025
10 1 0.5 0.6 0.6 0.5 0.5 0.2 250.3011
10 1 0.5 0.6 0.6 0.8 0.5 0.2 248.6111
10 1 0.5 0.6 0.6 0.2 0.8 0.2 253.5629
10 1 0.5 0.6 0.6 0.5 0.8 0.2 250.9736
10 1 0.5 0.6 0.6 0.8 0.8 0.2 248.8700
10 1 0.5 0.9 0.9 0.2 0.8 0.2 258.2754
10 1 0.5 0.9 0.9 0.5 0.8 0.2 255.1344
10 1 0.5 0.9 0.9 0.8 0.8 0.2 252.0424

Table 2.7: The effect of changes in gain threshold τ on profits

is shown in Tables 2.8 and 2.9. In addition, the marginal change in profits decrease

as the memory parameter α increases.

2.6.4 Price Patterns

By examining the different prices, we observed three general patterns: (1) cyclic; (2)

constant; (3) constant with price shocks and drops. These patterns were generated

based on the data used in Tables 2.1 and 2.10. In practice these observed patterns

could apply for a new product that is in its growth phase, occasional disruptions in

supply, or high-low pricing. Studying and determining conditions on price patterns
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a b c βL βG τ ρ α π
10 1 0.5 0.9 0.9 0.5 0.2 0.2 250.3023
10 1 0.5 0.9 0.9 0.5 0.2 0.3 250.1644
10 1 0.5 0.9 0.9 0.5 0.2 0.4 250.0412
10 1 0.5 0.9 0.9 0.5 0.5 0.2 252.8410
10 1 0.5 0.9 0.9 0.5 0.5 0.3 252.4827
10 1 0.5 0.9 0.9 0.5 0.5 0.4 252.2069
10 1 0.5 0.9 0.9 0.5 0.8 0.2 255.1344
10 1 0.5 0.9 0.9 0.5 0.8 0.3 254.2700
10 1 0.5 0.9 0.9 0.5 0.8 0.4 253.4105

Table 2.8: The effect of changes in memory parameter α on profits and changes on
its magnitude when loss threshold ρ varies

a b c βL βG τ ρ α π
10 1 0.5 0.9 0.9 0.2 0.5 0.2 256.0729
10 1 0.5 0.9 0.9 0.2 0.5 0.3 255.6647
10 1 0.5 0.9 0.9 0.2 0.5 0.4 255.3587
10 1 0.5 0.9 0.9 0.5 0.5 0.2 252.8410
10 1 0.5 0.9 0.9 0.5 0.5 0.3 252.4827
10 1 0.5 0.9 0.9 0.5 0.5 0.4 252.2069
10 1 0.5 0.9 0.9 0.8 0.5 0.2 250.7895
10 1 0.5 0.9 0.9 0.8 0.5 0.3 250.4593
10 1 0.5 0.9 0.9 0.8 0.5 0.4 250.1632

Table 2.9: The effect of changes in memory parameter α on profits and changes on
its magnitude when gain threshold τ varies

Parameter Values
βL 0.3, 0.6, 0.9
βG 0.3, 0.6, 0.9
τ 0.2, 0.5, 0.8
ρ 0.2, 0.5, 0.8
α 0.2, 0.3, 0.4

Table 2.10: Parameter Values

seemed to be dependent on the values of α, βG, βL, τ , and ρ. We observed that prices

have cyclic pattern when βG is large. Note that large βG results in large βL since we
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assume loss averse consumers with βG ≤ βL. This result holds unless ρ is very small

(0.2). In addition, when βG is small (0.3), we only observe cyclic price patterns when

τ is also very small. These results are consistent with findings in [13]. In other cases

prices generally take constant or constant with price shock and drop patterns. The

constant price in these cases are the same as the heuristic solution. Figure 2.3 shows

these price patterns.

(a)
(βL, βG, τ, ρ, α) = (0.9, 0.3, 0.2, 0.5, 0.2)

(b)
(βL, βG, τ, ρ, α) = (0.9, 0.6, 0.8, 0.5, 0.3)

(c)
(βL, βG, τ, ρ, α) = (0.6, 0.3, 0.5, 0.2, 0.3)

(d)
(βL, βG, τ, ρ, α) = (0.3, 0.3, 0.5, 0.2, 0.2)

Figure 2.3: Price patterns. (a) and (b) illustrate cyclic pasterns. (c) and (d)
illustrate constant and constant with price shock and drop patterns, respectively.
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2.6.5 Optimality of the Heuristic Method

As discussed in Section 2.5.2, the myopic heuristic approach is very efficient in terms

of computation time and, in some cases, produces very close to optimal results. From

all the parameter sets used in our computational experiments, the heuristic method’s

relative error was less than 10% in approximately 5% of cases and less than 20% in 50%

of cases. In all cases with low unit cost (c = 0.5), the heuristic produced results within

20% of the optimal solution. Table 2.11 summarizes the results from multiple linear

regression analysis where the optimality margin is the dependent variable. As shown,

all coefficients are statistically significant at 90% confidence level. The coefficients

from Table 2.11 indicate that the relative optimality margin of the heuristic method

is decreasing in b, c, βL, and βG and increasing in the size of the threshold interval;

i.e., τ and ρ.

Estimate Std. Error t-value Pr(> |t|)
(Intercept) −0.17918 0.00196 −91.417 < 2e− 16
b 0.25748 0.00174 147.985 < 2e− 16
c 0.22166 0.00038 588.050 < 2e− 16
βL 0.02817 0.00288 9.762 < 2e− 16
βG 0.00534 0.00295 1.809 0.0706
ρ −0.01767 0.00111 −15.848 < 2e− 16
τ −0.00246 0.00111 −2.206 0.0274
Residual standard error: 0.02282 on 8537 degrees of freedom
Multiple R-squared: 0.9773, Adjusted R-squared: 0.9773
F-statistic: 6.125e+ 04 on 6 and 8537 DF, p-value: < 2.2e− 16

Table 2.11: Multiple linear regression results where the optimality margin of the
heuristic is the dependent variable.

Analytically, when βL and βG are very small, or equivalently, b+βG
b

and b+βL
b

are

close to 1, we can ignore the reference price effects; that is, we have βGYG,t+βLYL,t ≈ 0
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and therefore,

π =
T∑
t=1

(pt − c)
[
a− bpt + (βGYG,t + βLYL,t)(rt − pt + ρYL,t − τYG,t)

]
(2.6.1)

≈
T∑
t=1

(pt − c) (a− bpt) (2.6.2)

In such a case, heuristic algorithm is approximately optimal. In the extreme case

where βL and βG are zero, the heuristic method produces optimal results. In summary,

we can say that the heuristic procedure is more likely to produce close to optimal

results for products that show high customer loyalty and high profit margins.

2.7 Conclusions and Future Research

As we discussed in Section 2.1, the existing literature on pricing optimization mostly

relies on dynamic programming which suffer from the curse of dimensionality and

thus have been used only to solve small problems. However, in practice, the need

to solve large problems is evident. This is specially true in online retail markets due

to the large availability of data. In response to this gap in literature, we have pro-

posed a myopic heuristic and a modified generalized Benders’ decomposition method

to find optimal pricing in a multi-period pricing problem with reference pricing and

thresholds. We established analytical results for finding optimal solutions for the

approximate heuristics problems as well as the sub problems in the modified GBD

approach. We performed numerical computations that show that the heuristic works

well for some set of problems. The modified GBD outperforms the heuristic. Fur-

thermore, running it for 100 iterations achieves solutions similar in quality to the case
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when it is ran for 1000 iterations, but at much lower computational times.

As we seen in Section 2.5 for products with high profit margin and consumer brand

loyalty, the heuristic method performs very well. Because using the myopic heuristic

does not require any solver licensing and it requires minimal computation time, in

these cases it may be preferable to the GBD method. However, in other cases, the

GBD outperforms the myopic heuristic significantly. Also, solving the multi-period

profit maximization problem can assist managers in deciding about general pricing

strategies, such, every day low pricing or high-low pricing.

Our work can be extended in several ways. First, As demand in a market is not

always deterministic, it is important to incorporate uncertainty in the demand func-

tion. This can be accomplished by adding a stochastic term to the demand function

in (2.1.4) and solve the new profit maximization problem. Inventory holding and

ordering costs, lead time, and the costs associated with loss of market share as result

of shortages also need to be added in future research. Second, the demand function

(2.1.4) and the model of reference price (2.1.1) ignore the effect of competition in

the reference price and demand. When competition is significant, we need to develop

a new reference price function that incorporates the effects of competition. Finally,

pricing may be impacted by other factors, such as consumer reviews in on-line retail

environments. It is interesting in such environments to consider a demand function

that reflects such impacts as well as any cross-impacts.
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Appendix A: Proofs

Proof of Proposition 2.2.1. This proof is originally illustrated by VonMassow

[24]. We have rt = (1− α)pt−1 + αrt−1. Then for a given r1,

r2 = (1− α)p1 + αr1 (2..1)

r3 = (1− α)p2 + αr2 (2..2)

= (1− α)p2 + α
[
(1− α)p1 + αr1

]
(2..3)

= (1− α)p2 + α(1− α)p1 + α2r1 (2..4)

r4 = (1− α)p3 + αr2 (2..5)

= (1− α)p3 + α
[
(1− α)p2 + α(1− α)p1 + α2r1

]
(2..6)

= (1− α)p3 + α(1− α)p2 + α2(1− α)p1 + α3r1 (2..7)

rt = (1− α)
t−1∑
j=0

αjpt−j + αt−1r1 ∀ t ∈ {4, · · · , T} (2..8)

Assuming α is in the closed interval [0.15, 0.4] as noted in [19], the impact of the

weights quickly vanish. Ignoring the weights beyond the first three terms for each rt,

rt ≈ (1− α)pt−1 + α(1− α)pt−2 + α2(1− α)pt−2 ∀ t ∈ {4, · · · , T} (2..9)

Normalizing the weights above so that they sum to one, we have

rt = ω1pt−1 + ω2pt−2 + ω3pt−3 ∀ t ∈ {4, · · · , T} (2..10)
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where

ω1 =
1− α
1− α3

, ω2 =
α(1− α)

1− α3
, ω3 =

α2(1− α)

1− α3
.

To keep the approximation consistent, we also use these weights for r2 and r3; that

is,

r2 = ω1p1 + (1− ω1)r1 (2..11)

r3 = ω1p2 + ω2p1 + ω3r1 (2..12)

Proof of Proposition 2.2.2. Consider a loss situation in period t; that is, YG,t = 0

and YL,t = 1. The demand for such a situation is

Dt = a− bpt + βL(rt − pt + ρ) (2..13)

The demand non-negativity constraint is therefore

pt ≤
a+ βL (rt + ρ)

b+ βL
. (2..14)

Since a+βL(rt+ρ)
b+βL

> a+βLrt
b+βL

, this constraint is less restrictive than pt ≤ a+βLrt
b+βL

. The

result follows.

Proof of Proposition 2.2.3. Demand in period t is given by

Dt = a− bpt + (βGYG,t + βLYL,t)(rt − pt + ρYL,t − τYG,t) (2..15)
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= a− (b+ βGYG,t + βLYL,t)pt + (βGYG,t + βLYL,t)rt

+ (βGYG,t + βLYL,t)(ρYL,t − τYG,t)

Letting Dt ≥ 0, we have

(b+ βGYG,t + βLYL,t)pt − (βGYG,t + βLYL,t)rt ≤ a+ (βGYG,t + βLYL,t)(ρYL,t − τYG,t)

(2..16)

Substituting for rt will give the results.

Proof of Proposition 2.3.1. We have

∂

∂pt
πt =


a− 2bpt + βG (rt − τ − 2pt + c) + bc pt ≤ rt − τ

a− 2bpt + bc rt − τ ≤ pt ≤ rt + ρ

a− 2bpt + βL (rt + ρ− 2pt + c) + bc rt + ρ ≤ pt

(2..17)

⇒ ∂2

∂p2
t

πt =


−2b− 2βG ≤ 0 pt ≤ rt − τ

−2b ≤ 0 rt − τ ≤ pt ≤ rt + ρ

−2b− 2βL ≤ 0 rt + ρ ≤ pt

(2..18)

Since ∂2

∂p2t
πt ≤ 0 in 2..18 and πt is continuous, then the profit function is piecewise

concave in each interval and we can find the maximum value as follows.

1. For pt ≤ rt − τ :

p̄t
(1) solves ∂

∂pt
πt = 0 where

p̄t
(1) =

a+ βG(rt − τ) + (b+ βG)c

2 (b+ βG)
(2..19)
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If p̄t
(1) is not realizable in [0, rt − τ ], i.e., p̄t

(1) > rt − τ , then πt is increasing

for pt ∈ [0, rt − τ ] and the maximum value of πt in this interval occurs at the

right end point rt − τ and so p
∗(1)
t = rt − τ . Otherwise, p

∗(1)
t = p̄t

(1). Note that

p̄t
(1) > rt − τ if and only if

rt <
a+ (b+ βG)c

2b+ βG
+ τ (2..20)

2. For rt − τ ≤ pt ≤ rt + ρ:

p̄t
(2) solves ∂

∂pt
πt = 0 where

p̄t
(2) =

a+ bc

2b
(2..21)

If p̄t
(2) < rt − τ , πt is decreasing for rt − τ ≤ pt ≤ rt + ρ and the maximum

value of πt in this interval occurs at the left end point; i.e., p
∗(2)
t = rt − τ .

If p̄t
(2) > rt + ρ, πt is increasing for rt − τ ≤ pt ≤ rt + ρ and the maximum

value of πt in this interval occurs at the right end point; i.e., p
∗(2)
t = rt + ρ. If

rt − τ ≤ p̄t
(2) ≤ rt + ρ, then p

∗(2)
t = p̄t

(2). Note that p̄t
(2) < rt − τ if and only if

rt >
a+ bc

2b
+ τ (2..22)

and p̄t
(2) > rt + ρ if and only if

rt <
a+ bc

2b
− ρ (2..23)

3. For pt ≥ rt + ρ:
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p̄t
(3) solves ∂

∂pt
πt = 0 where

p̄t
(3) =

a+ βL(rt + ρ) + (b+ βL)c

2 (b+ βL)
(2..24)

If p̄t
(3) < rt + ρ, then πt is decreasing for rt + ρ < pt and the maximum value

of πt in this interval occurs at the left end point; i.e., p
∗(3)
t = rt + ρ. Otherwise,

p
∗(3)
t = p̄t

(3). Note that p̄t
(3) < rt + ρ if and only if

rt >
a+ (b+ βL)c

2b+ βL
− ρ (2..25)

It is clear that the optimal price p∗t in each period is given by

p∗t = arg max
p
∗(i)
t

{
πt|p∗(1)t

, πt|p∗(2)t
, πt|p∗(3)t

}
(2..26)

Proof of Lemma 2.4.1. Let Si denote the sum of the magnitude of non-diagonal

elements in row i of matrix HY in (2.4.4) and β = max{βG, βL}. Then

S1 =ω1(βGYG,2 + βLYL,2) + ω2(βGYG,3 + βLYL,3) + ω3(βGYG,4 + βLYL,4) ≤ β

(2..27)

S2 =ω1

[
(βGYG,2 + βLYL,2) + (βGYG,3 + βLYL,3)

]
+ ω2(βGYG,4 + βLYL,4)

+ ω3(βGYG,5 + βLYL,5) (2..28)

S3 =ω1

[
(βGYG,3 + βLYL,3) + (βGYG,4 + βLYL,4)

]
+ ω2

[
(βGYG,3 + βLYL,3)

(βGYG,5 + βLYL,5)
]

+ ω3(βGYG,6 + βLYL,6) (2..29)
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St =(βGYG,t + βLYL,t) + ω1(βGYG,t+1 + βLYL,t+1) + ω2(βGYG,t+2 + βLYL,t+2)

+ ω3(βGYG,t+3 + βLYL,t+3) ∀t = 4, · · · , T − 3 (2..30)

ST−2 =(βGYG,T−2 + βLYL,T−2) + ω1(βGYG,T−1 + βLYL,T−1)

+ ω2(βGYG,T + βLYL,T ) (2..31)

ST−1 =(βGYG,T−1 + βLYL,T−1) + ω1(βGYG,T + βLYL,T ) (2..32)

ST =(βGYG,T + βLYL,T ) (2..33)

Ht,t =− 2(b+ βGYG,t + βLYL,t) ∀t = 1, · · · , T (2..34)

If b ≥ β = max{βG, βL}, then |St| < |Ht,t| for all t = 1, · · · , T ; that is, −HY is a Her-

mitian diagonally dominant matrix with real positive diagonal entries. A Hermitian

diagonally dominant matrix with real non-negative diagonal entries is positive semi-

definite [8]. Therefore, −HY is a symmetric positive semi-definite matrix; that is, HY

is a symmetric negative semi-definite matrix. Note that for b > β = max βG, βL, HY

is a symmetric negative definite matrix.

Proof of Proposition 2.4.1. From Lemma 2.4.1 we know that HY is symmetric

negative definite. Geoffrion [5] shows that a quadratic programming problem of the

form

min
x

{
1

2
xTCx− cTx s.t. Ax ≤ b

}
, (2..35)

where C is a symmetric positive semidefinite matrix, has a dual of the form

max
λ≥0,x

{
−λT b− 1

2
xTCx s.t. CTx+ ATλ− c = 0

}
(2..36)
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Change the minimization problem (2..35) to a maximization problem for the negative

of the objective function and let HY = −C and dY = −c, and the result follows.

Proof of Proposition 2.4.2. Consider sequences (YL,1, · · · , YL,T ), (YG,1, · · · , YG,T ),

(Y
(k)
L,1 , · · · , Y (k)

L,T ), and (Y
(k)
G,1 , · · · , Y (k)

G,T ), as numbers in base 2; i.e., let

Y G =
T∑
t=1

2t−1YL,t (2..37)

Y L =
T∑
t=1

2t−1YG,t (2..38)

Y L(k) =
T∑
t=1

2t−1Y
(k)
L,t (2..39)

Y G(k) =
T∑
t=1

2t−1Y
(k)
G,t (2..40)

Two numbers in any base are equal if and only if each pair of corresponding digits

are equal; and the results follow.

Proof of Proposition 2.4.3. The results follow directly from a complete enumer-

ation method; that is, if we fix the values YL and YG to an optimal combination, the

subproblem (GBD-Sub) will produce an optimal solution.

Proof of Proposition 2.4.4. Because we avoid repeating Y ’s in the master prob-

lem and there are finite number of possible combinations for Y ’s, the algorithm con-

verges in a finite number of combinations.
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Appendix B: Notation

Indices

t Period in horizon (t = 1, 2, · · · , T )

k Iteration of the GBD

Parameters

a Estimate of the market size in the linear demand function Dt = a− bpt, a ≥ 0.

b Estimate of the price sensitivity parameter in the linear demand function b ≥ 0.

βG Gain parameter, 0 ≤ βG ≤ βL.

βL Loss parameter, 0 ≤ βG ≤ βL.

τ Gain threshold, τ ≥ 0.

ρ Loss threshold, ρ ≥ 0.

α The parameter in exponential smoothing reference price model, 0.1 ≤ α ≤ 0.4.

ωi Parameters in approximation of reference prices i = 1, 2, 3, ωi ≥ 0.

c Constant unit cost, c ≥ 0

Decision Variables

pt Price in period t, pt ≥ 0.

YG,t Binary gain indicator

YL,t Binary loss indicator

qL,k

Linearizing binary variable for loss history constraints in (GBD-Master)

in iteration k

qG,k

Linearizing binary variable for gain history constraints in (GBD-Master)

in iteration k

Table 2.12: List of notations
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Abstract

We propose a quadratic programming model for online pricing optimization

in the presence of customer reviews ratings. To account for ratings, we develop

a new demand function for a multi-product, finite horizon, online retail envi-

ronment. We validate our new demand model with Amazon.com pricing and

customer reviews rating data. To solve the problem we introduce a myopic

pricing heuristic as well as exact solution approaches. We provide several an-

alytical results and numerical insights. In addition, we identify optimal prices

that result in demand cannibalization and promotional pricing.
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Keywords: Pricing, customer rating, e-commerce, reference price, quadratic pro-

gramming.

3.1 Introduction

With the rise of online retailer giants like Amazon, and the widespread use of Internet

and mobile technologies, online shopping is increasingly becoming more popular. For

example, between 2016 and 2018, Canadian Internet customer sales have risen by 58%,

at a far higher rate than traditional retail sales, where the increase was less than 5%

[38, 45]. In addition, a recent Canada Post study has found that 80% of Canadians

buy online, with 4 million of them making more than 25 purchases per year [38].

The recent COVID-19 pandemic is only reinforcing this trend as companies, such as

Ikea and Homedepot, closed their brick-and-mortar stores and sell online only. With

the state of emergency declared in many cities around the world, online shopping is

becoming the only buying channel for most customers.

At the same time we are witnessing a proliferations of online reviews in the com-

mon e-commerce platforms. For example, TripAdvisor had 859 million reviews and

opinions in 2019, representing an increase of 15% (129 million) over the previous

year [33]. With a review averaging about 200 characters [39], this represents a text

database that is about 57 million pages long! Young online shoppers (18-34 years

old who also lead in online shopping) are expecting that each product will have at

least about 160 reviews [11]. A recent study by Podium has also found that online

reviews impact purchasing decision for 93% of shoppers [37]. Furthermore, the same

study found that shoppers do consider the star ratings when deciding on purchases

and their threshold for considering purchases is 3.3 stars [37]. It was also reported
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that customers are willing to pay up to 15% more in order to secure a better expe-

rience with the product or service and that a proxy for assessing the quality of that

experience is online reviews.

Online shopping has also provided the convenience of keeping an accurate record

of historical orders. For example, Amazon provides customers with a searchable

database of all their past orders that also includes categories such as “Open Order”,

“Buy Again” items and “Cancelled Orders”. The order include several information

items such as the date the order was placed, the date it was delivered and the price.

The latter makes it easier for a customer to form a reference price from its historical

purchases.

The increase in online shopping and reviews, and the sharing and storing of order

and product information by online sellers has motivated our research in this paper.

We are interested in how can an online retailer use the historical prices, in the form of

reference prices, and product review data to optimize its online pricing? In particular,

we would like to answer the following research questions: How can we incorporate

customer review ratings in a demand function? What should be the retailer’s optimal

prices? What insights can we obtain in regards to prices that lead to promotions and

demand cannibalization?

The effects of customer reviews, reference price, and cross-price effects on demand

have been studied in the literature on Revenue Management (e.g., see [2, 7, 35, 40, 41,

49]). The majority of studies consider prices as a response to the market behaviour

factors such as customer rating. Although retail firms adjust prices based on market

factors, market factors also change in response to prices. Very few studies have

considered customer ratings as a response to prices where prices are decision variables

77



Ph.D. Thesis – S. Shams-Shoaaee McMaster University – Computational Sci.&Eng.

in a multi-product revenue optimization problem. We will discuss this further in

Section 3.2 where we provide a brief review of the relevant literature. The focus

of this paper is to close this gap in the literature and offer some insights on how

prices impact customer ratings. We first propose a model for forecasting customer

ratings using current prices and ratings. Then, we develop a linear demand model

that accounts for reference prices, cross-price effects, and customer ratings to be used

in a price optimization problem. Following this, the price optimization problem is

developed to study the effect of prices on future ratings and reference prices which in

turn affect future demand.

The remainder of this paper is organized as follows. We will provide a review of

the relevant literature in Section 3.2. In Section 3.3 we present a model for forecast-

ing customer ratings and use it in a price optimization model. We develop several

analytical results relating to the demand function and convexity of the pricing prob-

lem. We then introduce a myopic heuristic approach in Section 3.4 and provide closed

form solutions for prices. In Section 3.3.2, we present evidence from Amazon data

to support some aspects of our modelling efforts. Our computational analysis and

insights are reported in Section 3.5. Finally, in Section 3.6 we summarize our findings

and propose some future directions for research. The proofs of all results are provided

in the Appendix A and a list of notations is provided in Appendix B.

3.2 Related Literature

There is a vast amount of literature on price optimization (e.g., see [12, 25, 29, 52]).

We provide a brief overview of the literature on reference prices and cross-price effects

in Section 3.2.1. This is followed by a review of relevant literature on customer ratings
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in Section 3.2.2.

3.2.1 Reference Price Effects

Reference price is the price that customers refer to decide whether an observed price

is a good deal or not. There are many studies in the literature that investigate

various aspects and applications of reference prices and cross-price effects (e.g., see

[7, 24, 28, 35]). Here we only discuss the most relevant studies.

Some studies have focused on modelling the reference prices. Briesch et al. [7]

studied different models of household reference prices and concluded that different

product categories require different reference price models. Wang [51] studied different

formulations of reference prices and the corresponding optimal pricing policies in

a multi-product setting. More specifically, the author considered cases where the

reference price is the lowest price amongst a set of available products, the assortment

variety of the set, and the nth lowest price amongst the set of products. Mazumdar

et al. present a review of reference price research [35]. They model reference price

in period t as the weighted average of the price and reference price in period t − 1.

This model for calculating reference prices is widely adopted in the literature (e.g.,

see [2, 35, 41, 49]) and will be used in this paper.

A less number of studies have considered multi-product or multi-firm cases. An-

derson et al. [2] have studied a duopoly multiplicative model where the demand for

each period is the previous period’s demand multiplied by a function of reference

price. They have considered a market in which there are only two firms of different

sizes operating. Their objective is to maximize profit for the smaller firm using differ-

ent pricing decision scenarios. Sethuraman et al. [40] study cross-price effects. They
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conclude that products have higher cross-price effects when their prices are closer to

each other. They also note that higher priced products have higher cross-price effect

on lower priced products.

3.2.2 Customer Ratings and Reviews

The literature on customer rating can be grouped into three categories. The bulk

of the literature on customer ratings is focused on the effects of the ratings on sales

(Section 3.2.2) and the factors affecting the ratings (Section 3.2.2). Some studies

have considered the effect of the ratings on prices in general or on the optimal pricing

problem. Very few of these studies consider the effects of prices on customer ratings

(Section 3.2.2).

Effect of Customer Rating on Sales

Many studies have emphasized the effects of customer reviews on sales (eg. [5, 8,

26, 30]). Anand et al. [1] provide a comprehensive review of this literature. Gu et

al. [19] study the effects of internal and external word of mouth on retailer sales for

high-involvement products and conclude that external word of mouth has a more

significant effect. Zhu and Zhang [57] use a nested logit demand model and show

that on average one point increase in average customer ratings, increases the sales of

a video game by 4%.

Some studies focus on the asymmetric effects of positive and negative ratings

on sales. Chevalier and Mayzlin [10] study the relationship between sales rank and

customer ratings. They show that extreme negative or positive ratings have more

effect on sales. Furthermore, they find that negative ratings have more impact on
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sales than positive ones. They also studied the effect of positive reviews on two

different websites for the same products. They concluded that positive reviews on

one website increases sales relative to the other website. Similarly, Park and Nicolau

[36] argue that extreme ratings, positive or negative, have more effect on customer

choice than moderate ratings. They further note that the magnitude of the effect is

asymmetric with negative ratings having a larger impact.

A group of studies consider the effects of the volume of reviews on sales. Duan et al.

[14] study customer reviews in the movie industry. They find that the volume of online

reviews positively affect product sales. Berger et al. [6] show that negative reviews

increase demand for unknown products because they increase publicity. Maslowska

et al. [34] study the effects of customer reviews on customer purchase decisions. They

conclude that customer rating effects the purchase decision and the magnitude of the

effect increases as the volume of the reviews increase; this effect is further increased

if the price of the product is relatively high.

Other studies have considered the effect of the variability in customer ratings on

sales. Babić Rosario et al. [4] investigate the effects of electronic word of mouth on

sales. They note that on average, customer rating is positively correlated with sales.

They also, argue that variability of customer rating has a negative effect on sales as

customers view variability in ratings as an increased risk. They note that when a

composite valence-volume (e.g., total number of five-star rating) is used, valence has

a stronger effect on sales than volume consistently across platforms. Sun [47] conclude

that the effect of the variance of customer ratings on demand depends on the average

rating. In particular, a high variance in customer ratings decreases the demand

when the average rating is high and increases it when the average rating is low.
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Zimmermann et al. [58] note that both increase in volume and average ratings increase

demand. They argue that if the variance of customer ratings is from differences in

customer preferences, it decreases demand and increases the optimal price. However,

if the variance is as a result of failure risk, it decreases both demand and optimal

price. They also note that the risk averse customers prefer a product with lower

variance when ratings are the same.

In a broader sense, Kwark et al. [27] study the effects of online customer reviews

on different players in the market. They note that quality information increases

competition and benefits retailer but hurts manufacturers. Conversely, fit information

softens the competition and benefits manufacturers but hurts retailers. Forman et al.

[17] study different aspects of customer reviews and concluded that there is evidence

that geographic location and other reviewer characteristics affect the decision making

of customers.

Li et al. [31] study the effects of numerical customer ratings and sentiments ex-

pressed as text in customer reviews on product sales performance. They use a joint

sentiment-topic modelling technique to mine customer reviews and sentiments. They

conclude that both numerical and textual reviews have significant impact on product

sales. They also note that the mean ratings alone is insufficient to capture all ef-

fects of customer reviews on sales and that their technique provides a way to extract

aspects of products that are important to customers.

Zhang et al. [55] propose a new method for product sales forecasting based on

online reviews and macroeconomic indicators. They they combine prospect theory

and sentiment analysis resulting a nonlinear autoregressive model. They validate the

method by online sales data for three vehicles from 2008 to 2018.
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Factors Affecting Customer Ratings

Chen et al. [9] study various marketing variables and their effects on the customer

review behaviors. Some studies have considered the effects of price on customer rat-

ings. Kuksov and Xie [26] is one of the very few studies that investigate the effects

of prices on customer ratings. They study a two-period, single-product case where

customers in the second period observe the rating from customers in the first period.

They formulate the profit maximization problem as a two stage game with incomplete

information and show that the customer rating is decreasing with respect to price.

Shapiro [42] conducted an experimental study and concluded that price can be viewed

by some customers as an indication of the quality of the product and thus affect their

rating decision. Engler et al. [15] argue that online customer ratings represent cus-

tomers satisfaction with the product and are not a representation of its quality. They

further show that customer satisfaction is explained by their pre-purchase expectation

of the product and their post-purchase observed performance of the product. Using

path coefficient analysis, they show that there is a positive linear causation relation-

ship between customer ratings and both pre-purchase expectation and post-purchase

performance. They further argue that customers form their pre-purchase expecta-

tion using previous product rating, price, and brand reputation.They note that the

effect of pre-purchase expectation on customer satisfaction is higher than that of post-

purchase performance. This may seem counter intuitive. However, assuming constant

quality goods, the effect of performance is captured in early reviews.

Ho et al. [21] study the effects of the difference between post-purchase expectation

and post-purchase assessment of the product on individuals online feedback. They

assume the pre-purchase expectation follows a normal distribution centred at average
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ratings adjusted for system bias and model the post-purchase evaluation using long-

term average ratings adjusted for individual and product random terms. They then

model the individual’s rating as a linear combination of experienced performance, the

difference between pre and post purchase evaluations, and other control variables.

They show that their model is 98% accurate for predicting whether or not individuals

post a review and 38.6% accurate for the rating they post.

Lin et al. [32] study the effects of free product sampling on product ratings. They

conclude that free product sampling increases product ratings on average by 1.1%.

They also note that the magnitude of this bias is larger when the product list price

is higher.

Yin et al. [54] study the effect of customer bias on how they perceive other reviews

helpful. They conclude that customers tend to consider reviews that confirm their

initial belief, formed from the aggregate customer reviews, as helpful.

Archak et al. [3] use text mining techniques to identify important product features

and corresponding customer opinions from online reviews. They then use these scores

to estimate product sales rank using a linear model. They argue that a single scalar

product rating is not adequate. In their study they note that reducing a complex

review to one number assumes that the product quality is one-dimensional and unless

the preferences of a given customer and a given reviewer are identical, a single scalar

rating may not provide all necessary information about the purchase decision. This

claim holds for each individual review and customer. However, with the reasonable

assumption that the pool of reviews are a representative sample of the preferences

of the customer base for a given product category, a single rating is a representative

estimate of the overall preferences of the customer base and thus can be used in
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estimation of the aggregate demand.

Effect of Customer Reviews on Prices

De Maeyer [13] provides a review of the literature on online customer reviews and

sales. One of the common findings in the literature is that high product ratings reduce

customers’ price sensitivity and increase the price premium customers are willing to

pay. An example of a study in agreement with these findings are provided by Smith

et al. [44] where they investigate the effects of customer ratings on prices. They use a

large data set from customer ratings and prices of beer and conclude that an increase

in customer ratings is positively related to an increase in prices.

Li and Hitt [30] use an analytical model to investigate the effects of customer

reviews on firms’ optimal pricing and customer welfare in a two-period monopoly

and duopoly environments. They note that customer reviews are affected not only

by quality factors, but are also biased by price effects. They also note that this is

especially true for the commonly used uni-dimensional rating systems. The complex-

ity of the optimization problem is, however, exponential with respect to T where T

represents the number of periods in the horizon. Therefore, application of the model

to horizons with large T is inefficient.

Wang et al. [50] study the optimal pricing strategy of an online seller in a duopoly

market competing with an off-line seller. They argue that purchase price affects

customers’ positive feedback. They conclude that the online seller’s optimal price

decreases at the early stages where the amount of information (customer ratings) is

low and increases as the amount of information increase.
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He and Chen [20] study a dynamic pricing problem where customers arrive fol-

lowing a Poisson process, observe the price, and either make a purchase and leave

a review or do not make a purchase and leave the platform. They assume binary

reviews; that is, customers leave either a positive or negative feedback. The Bernoulli

review outcomes are used to form and update the Bayesian posterior distribution of

public belief. Public belief here is defined as publicized belief of whether the product

is of high or low quality. They then formulate and solve a dynamic programming pric-

ing problem. They show that it may be beneficial to use low prices for high-quality

products at the beginning stages to speed-up the customer learning process. Jiang

and Yang [23] study a firm’s price and quality decision for a new product using a

dynamic, game theoretic model. They show that in equilibrium, a firm with higher

cost efficiency chooses higher quality.

Yang and Zhang [53] study a joint pricing and inventory replenishment problem

in presence of online customer ratings for the first time in the literature. At the

beginning of each period in the horizon, the firm decides its list price and replenish-

ment level based on current stock level and average product rating. Customers who

are served immediately (because of available inventory) will have higher probability

to leave positive rating than customers who are wait-listed. The net rating in turn

affects future demand for the product. They study the profit maximization prob-

lem and introduce a dynamic look-ahead heuristic for solving the problem with small

optimality gaps.

Later Shin et al. [43] study the revenue maximization problem with customer

ratings using fluid approximations. They first consider a one product case where

customers’ belief of product quality is updated over time. Customers who choose to
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purchase the product leave ratings with a constant probability. Customers’ rating

affect future customers’ belief of the product quality. The price, together with this

belief affects future demand. They consider multiple pricing strategies. They use

book sales data from Amazon. As we will see in Section 3.3.2 Some of their results

differ than that or ours. In particular, they consider book sales data set where price

may signal book quality (this also applies to luxury products). Our model studies

customers’ rating behaviour for bargain brand products where higher prices play a

negative roll in customers’ product evaluation.

Huang et al. [22] study a case where a monopolist offers a service to two types of

customers (naive and sophisticated) in a M/M/1 queue. They assume that the market

size is large enough so that congestion is the major factor in customer consumption

utility (service reward minus waiting time). They also assume the rating that cus-

tomers leave are equal to their consumption utility. Here, congestion is controlled

by price and average rating and customer rating is determined by their consumption

utility. They show that in such a case, optimal pricing strategy is a cyclic high-low

pricing strategy. They note that this model does not work for goods market. Similarly,

Zhao and Zhang [56], using dynamic programming, study the optimal quality-price

strategy for a service provider.

Very few studies consider the effects of prices on customer ratings. Feng et al.

[16] show price has a negative effect on reviews and study a two period profit maxi-

mization. They formulate the problem as a two stage game where in the first stage

the seller sets a price p0 for customers with product quality expectation q0. The

price p0 affects amount of sales and customers’ post-purchase enjoyed utility. This

post-purchase utility is assumed to be equal to the product rating at the end of first
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period/stage q1 (this is also equal to pre-purchase expectation of customers in second

stage/period). The rating q1 in turn affects sales in second stage. They use book

price and review data to show that sellers can use customer rating data to develop

better pricing strategies. Stenzel et al. [46] also consider prices having direct negative

effect on customer ratings. They study a revenue maximization problem considering

customer ratings.

As outlined above, in the literature, the effects of reference price, cross-price ef-

fects, and effects of customer reviews on demand have been studied. To the best of

our knowledge there are no studies that explicitly study customer rating as a response

to prices where prices are decision variables in a revenue optimization problem utiliz-

ing reference prices, customer rating, and cross-price effects. The main contributions

of this paper are:

• Close the gap in the literature by explicitly modelling the impact of customer

ratings in a revenue optimization model.

• We propose a new demand function that incorporates reviewers ratings and

validate it with Amazon data.

• We propose a comprehensive price optimization model that incorporates the

impact of reviews and historical prices on optimal prices for two products in an

online retail environment.

• We develop solution procedures for finding optimal prices for two products.

• We identify prices under promotions and demand cannibalization conditions.
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3.3 Demand Model and Problem Formulation

In this section we state our assumption, present a demand function and formulate

the price optimization problem.

3.3.1 Assumptions

We assume products are in the same price/quality category; that is, high price/quality

or low price/quality. Also, for computational simplicity and without the loss of gen-

erality, we will use a single scalar rating model. Our model can extended to a multi-

dimensional rating system.

The majority of online retailers display average product rating in a star system (for

example a five star rating system by Amazon.com). If a product has a high number

of reviews however, any recent review will have a negligible effect on the average

product rating. In this paper, we assume customers form their pre-purchase rating

expectation from recent customer ratings. If we assume reviews arrive following a

Poisson distribution, in our approach each review (on average) has the same weight.

3.3.2 Demand Model

We introduce a new demand model inspired by the results from [15] and [30] and

building on reference pricing models in [49] and [41]. Let ηi,t denote the average

rating from period t for product i. Inspired from the results from Feng et al. [16],

Engler et al. [15], Kuksov and Xie [26], Ho et al. [21], and Stenzel et al. [46], we define

ηi,t = θηi,t−1 + (1− θ)R
(

1− pi,t−1

φi

)
(3.3.1)
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where 0 ≤ θ ≤ 1 is a parameter, φi is a reasonable upper bound for pi,t, and ηi,t

are in interval [1, η] where R ≥ 1 is an integer. Here, ηi,0 is estimated using brand

reputation and third-party reviewers such as Consumer Report in the United States,

Stiftung Warentest in Germany, or Sharp helmet rating in the United Kingdom. In

Section 3.3.2, we provide evidence for this customer rating model (3.3.1).

Mazumdar et al. [35] model the reference price in period t for product i as

ri,t = αri,t−1 + (1− α)pi,t−1 α ∈ [0, 1]. (3.3.2)

where α is the memory parameter and pi,t−1 is product i price in period t − 1. Von

Massow [48] showed that the impact of previous prices diminishes very quickly. We

can therefore approximate ri,t in a similar manner to [41, 48]:

ri,2 ≈ ω1pi,1 + (1− ω1)ri,1 (3.3.3)

ri,3 ≈ ω1pi,2 + ω2pi,1 + ωi,3ri,1 (3.3.4)

ri,t ≈ ω1pi,t−1 + ω2pi,t−2 + ω3pi,t−3 ∀t ≥ 4 (3.3.5)

where

ω1 =
1− α
1− α3

, ω2 =
α(1− α)

1− α3
, and ω3 =

α2(1− α)

1− α3
.

Using a similar logic, we can approximate ηi,t for a given ηi,0 as follows:

ηi,1 ≈ θ1R
(

1− pi,1
φi

)
+ (1− θ1) ηi,0 (3.3.6)

ηi,2 ≈ θ1R
(

1− pi,2
φi

)
+ θ2R

(
1− pi,1

φi

)
+ θ3ηi,0 (3.3.7)
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ηi,t ≈ θ1R
(

1− pi,t
φi

)
+ θ2R

(
1− pi,t−1

φi

)
+ θ3R

(
1− pi,t−2

φi

)
∀t ∈ {3, · · · , T}

(3.3.8)

where

θ1 =
1− θ
1− θ3

, θ2 =
θ(1− θ)
1− θ3

, and θ3 =
θ2(1− θ)

1− θ3
. (3.3.9)

Using the above formulations for average product ratings and reference prices, we

model the demand for product i in period t as

Di,t = ai − bipi,t + βi
(
ri,t − pi,t

)
+
∑
j 6=i

λi,j
(
ηi,t−1 − ηj,t−1

)
+
∑
j 6=i

γi,j
(
pj,t − pi,t

)
.

(3.3.10)

The function ai− bipi,t represents the classical price-sensitive linear demand function

for non-negative parameters ai and bi. Parameters βi, λi,j, and γi,j are non-negative.

It is intuitive that if the customer rating of product j, a substitute for product i, is

higher than that of product i, some demand will move from product i to product j,

and thus, decrease the demand for product i and vice versa. This is implemented in

the demand function by the terms λi,j
(
ηi,t − ηj,t

)
. A similar argument can be made

for the cross-price effects of the products in terms γi,j
(
pj,t − pi,t

)
. Parameters ai,

bi, βi, λi,j, and γi,j can be estimated by multivariate linear regression. In addition,

parameters α and θ in (3.3.1) and (3.3.2) can be estimated as explained by Green-

leaf [18]; particularly by varying α and θ, and choosing the one that maximizes the

explanatory power of (3.3.10).
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Demand Model Analysis

In Proposition 3.3.1 we show necessary and sufficient conditions for ensuring non-

negative demand in all periods. These conditions are needed in our pricing optimiza-

tion model in order to guarantee that the integrity of the demand function.

Proposition 3.3.1. The necessary and sufficient conditions to ensure a non-negative

demand in all periods are

p1,t −
(

γ

b1 + β1 + γ

)
p2,t −

a1 + β1r1,t + λ
(
η1,t−1 − η2,t−1

)
b1 + β1 + γ

≤ 0 ∀ t ∈ {1, 2, · · · , T}

(3.3.11)

p2,t −
(

γ

b2 + β2 + γ

)
p1,t −

a2 + β2r2,t + λ
(
η2,t−1 − η1,t−1

)
b2 + β2 + γ

≤ 0 ∀ t ∈ {1, 2, · · · , T}

(3.3.12)

In Propositions 3.3.2 and 3.3.3 we show that the demand model (3.3.10) is in

agreement with common findings in the literature. As suggested in the literature,

increasing customer ratings decreases customers’ price sensitivity Ed (e.g.,see [13, 44]).

This is shown in Propositions 3.3.2 .

Proposition 3.3.2. The changes in customers’ price sensitivity Ed is inversely pro-

portional to changes in customer ratings, i.e., ∂Ed

∂η
≤ 0.

In Proposition 3.3.3 we show that the demand model (3.3.10) is in agreement with

findings in the literature that show that higher customer ratings increase the price

premium customers are willing to pay (e.g., see [13, 44]).

Proposition 3.3.3. For a given D, the changes in customer ratings and prices are

positively related, i.e., ∂p
∂η
≥ 0.
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Evidence to Support the Rating Function in the Demand Model

To provide evidence for the customer rating function (3.3.1), we collected price and

customer rating data from Amazon.com using tools provided by Helium10. Helium10,

founded by a group of Amazon sellers, is a subscription based service that provides

tools such as Amazon product research, keyword research, competitor intelligence,

and listing optimization for Amazon sellers. They provided us with a limited time

academic access to their service to aid us in our research. Below we briefly discuss

the data collection and processing. This is followed by the description and analyses

of the data.

To find products that are suitable for this paper, we needed to find products that

have significant price variations together with significant number of customer reviews.

Using Helium10 tools as a Google Chrome extension, we downloaded customer reviews

including review text, rating, and date of the review as a CSV file. We then extracted

raw price data through source code of the historical price plot and formatted it to

JSON standard. Incorporating “jsonlite” and “openxlsx” packages in R, we loaded

the data-frame and further processed it to convert Amazon date to real date, merging

price and rating data, and aggregating the data-frame to form daily data points.

The data collected consists of price and customer rating data from six different

product categories (action cameras, electric shavers, bags, headphones, TV boxes,

and batteries). The data set, depending on availability, included 307 to 1588 data

points of daily prices and customer ratings for each product. A summary of the results

from regression analysis where R
(

1− pt−1

φ

)
and ηt−1 are the independent variables

and ηt is the dependent variable is provided in Table 3.1.

As we can see in the table, the linear model explains 20% or more of the variation
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Product Coefficient of Coefficient of p-value for p-value for

Category R
(

1− pt−1

φ

)
ηt−1 R

(
1− pt−1

φ

)
ηt−1 r-squared

Action Camera 0.0179 0.9818 0.0010 < 1e− 16 0.9848
Action Camera 0.0152 0.9732 0.0129 < 1e− 16 0.9601
Action Camera 0.0902 0.9329 0.0004 < 1e− 16 0.8979
Electric Shaver 0.1029 0.8773 0.0349 < 1e− 16 0.7804

Bag 0.1372 0.8429 0.0914 < 1e− 16 0.7097
Headphone 0.4188 0.8328 0.0611 < 1e− 16 0.7046
Headphone 0.2717 0.7842 0.0003 < 1e− 16 0.6837

Bag -0.1280 0.7728 0.0478 < 1e− 16 0.6149
Action Camera 0.4171 0.5534 0.0498 < 1e− 16 0.3347
Electric Shaver -0.0368 0.5338 0.0125 < 1e− 16 0.2936

Battery 0.4981 0.4839 0.0053 < 1e− 16 0.2785
Headphone -0.3974 0.4258 0.0007 < 1e− 16 0.2165

Battery -0.0733 0.4382 0.0316 < 1e− 16 0.1982
Electric Shaver 0.3352 0.4023 0.0219 < 1e− 16 0.1699

Battery 0.1864 0.2932 0.0608 < 1e− 8 0.1008
Headphone -0.8554 0.2583 0.0321 < 1e− 8 0.0755
Headphone 0.0847 0.2610 0.0798 < 1e− 16 0.0719

TV Box 0.2780 0.2128 0.0659 < 1e− 4 0.0568

Table 3.1: Summary of linear regression analysis where R
(

1− pt−1

φ

)
and ηt−1 are

the independent variables and ηt is the dependent variable

in customer rating for most of the products (with mostly very small p-values). In

addition, the coefficients ofR
(

1− pt−1

φ

)
and ηt−1 are positive for most products. This

supports the idea that, everything else constant, for commodity products, increasing

prices, decreases the product rating. Also, these results are in agreement with the

results in [15]. In rare cases, we see negative coefficients forR
(

1− pt−1

φ

)
which signals

that increasing price increases customers’ perception of the quality of these particular

products. This behaviour has been discussed in literature previously (e.g.,see [42]).

Figure 3.1 visually illustrates the historical prices (blue) together with customer

ratings (red) for two products. Also included are the linear and polynomial approx-

imations of the behaviour. These two plots provide strong evidence of the discussed
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Figure 3.1: Price (blue) and customer rating (red) over time, including linear and
polynomial approximations of the behaviour.

relationship between prices and customer reviews in this paper; that is, increasing

prices are followed by decreasing reviews and vice versa.

We also looked at the characteristics of the products for which R-squared values

in Table 3.1 are high. A graph of the approximation of the R-squared as a polynomial

function of product average price and product category average price is illustrated in

Figure 3.2. Although the product average prices seems to have small effects on the

R-squared values, the largest effect seems to be from the product category average

prices; that is, the effects of price and previous customer ratings seem to have a more

significant impact on future ratings when the product is from a high price category.
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Figure 3.2: The polynomial approximation of the R-squared from linear regression
results in Table 3.1 vs. the product average price and product category average

price.

3.3.3 Problem Formulation

For constant per unit cost ci for product i, we can define

πi,t = (pi,t − ci)Di,t (3.3.13)

Πt =
∑
i

πi,t (3.3.14)

Π =
∑
t

Πt (3.3.15)

where, πi,t, Πt, and Π are profit from product i in period t, total profit in period t

from all products, and total profit in the horizon, respectively.
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Without loss of generality and for computational simplicity, we consider a two-

product case with λ1,2 = λ2,1 = λ and γ1,2 = γ2,1 = γ. Therefore, we have

Π =
∑
t

2∑
i=1

(pi,t − ci)
[
ai − bipi,t + βi

(
ri,t − pi,t

)
+ λ

(
ηi,t−1 − η3−i,t−1

)
+ γ

(
p3−i,t − pi,t

)]
.

(3.3.16)

We can now define the total profit maximization problem for a horizon with T

periods as the following quadratic programming problem:

max
pi,t

Π (Horizon)

s.t.

ηi,1 = θ1R
(

1− pi,1
φi

)
+ (1− θ1) ηi,0 ∀ i (3.3.17a)

ηi,2 = θ1R
(

1− pi,2
φi

)
+ θ2R

(
1− pi,1

φi

)
+ θ3ηi,0 ∀ i (3.3.17b)

ηi,t = θ1R
(

1− pi,t
φi

)
+ θ2R

(
1− pi,t−1

φi

)
+ θ3R

(
1− pi,t−2

φi

)
∀ t ≥ 3,∀ i (3.3.17c)

ri,2 = ω1pi,1 + (1− ω1)ri,1 ∀ i (3.3.17d)

ri,3 = ω1pi,2 + ω2pi,1 + ωi,3ri,1 ∀ i (3.3.17e)

ri,t = ω1pi,t−1 + ω2pi,t−2 + ω3pi,t−3 ∀ t ≥ 4∀ i (3.3.17f)

pi,t −
(

γ

bi + βi + γ

)
pj,t −

ai + βiri,t + λ
(
ηi,t−1 − ηj,t−1

)
bi + βi + γ

≤ 0 ∀ t , i 6= j ∈ {1, 2}

(3.3.17g)

pi,t ≥ 0 ∀ i, t. (3.3.17h)
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Constraints (3.3.17a)-(3.3.17c) and (3.3.17d)-(3.3.17f) are for approximation of cus-

tomer ratings and reference prices, respectively, and constraint (3.3.17g) is to ensure

non-negative demands.

In Proposition 3.3.4 we provide sufficient conditions for the convexity of the

quadratic optimization problem (Horizon).

Proposition 3.3.4. Let φ = min{φ1, φ2} and b = min{b1, b2}. Then, for all λ ≤ bφ
2R ,

the total profit optimization problem (Horizon) is a convex problem.

The condition in Proposition 3.3.4 can be interpreted as a requirement that the

rating impact of the two products on demand is less than that of the price, which is

a reasonable condition to have as one expect that customers often place more weight

on prices than ratings.

Problem (Horizon) can be solved using current commercial solvers such as CPLEX.

However, these solver often require convexity properties to hold under all parameter

combinations. Furthermore, because of licensing costs, it may be preferable to use

heuristic methods to solve the problem. In Section 3.4 we use a myopic approach with

closed form solutions to maximize the total profit from all products in each period.

We then provide numerical results in Section 3.5.
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3.4 A Myopic Approach

In this section we use a myopic approach in which we consider maximizing the profit

of each period for a two-product case. We define problem (Myopic) for all t as follows:

max
pi,t

Πt (Myopic)

s.t.

pi,t −
(

γ

bi + βi + γ

)
pj,t −

ai + βiri,t + λ
(
ηi,t−1 − ηj,t−1

)
bi + βi + γ

≤ 0 ∀ i 6= j ∈ {1, 2}

pi,t ≥ 0 ∀ i ∈ {1, 2}

In Proposition 3.4.1 we show that (Myopic) is a convex problem.

Proposition 3.4.1. The myopic optimization problem (Myopic) is a convex problem.

Proposition 3.4.1 allows us to use Karush–Kuhn–Tucker (KKT) conditions to solve

problem (Myopic). To this end we propose Algorithm 3.4.1.

Algorithm 3.4.1. Let LB = −∞. For each feasible KKT condition for problem

(Myopic):

1. Solve stationarity and complementary slackness conditions for primal and dual

variables.

2. Check if primal and dual feasibility conditions hold.

3. If all conditions are satisfied, find the objective value Πt.

4. If LB < Πt, let p∗i,t = pi,t and LB = Πt.
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5. Move to the next feasible KKT condition and follow the steps above until all

cases are considered. The optimal solution is p∗i,t with the objective value LB.

The validity of Algorithm 3.4.1 is established in Theorem 3.4.1.

Theorem 3.4.1. Algorithm 3.4.1 finds an optimal solution to problem (Myopic).

We note that at most there will be 16 KKT solutions and we show in the proof

in Appendix A that there are only 11 feasible KKT solutions.

We say product i cannibalizes product j when the prices for the products are set

so that the demand of product j is captured by product i and therefore the demand

for product j diminishes. We are interested in identifying optimal prices that result

in demand cannibalization and promotional pricing, defined as under what conditions

one product is offered for free.

The following propositions, introduce pricing results under free product promotion

and product demand cannibalization strategies. For these propositions, without loss

of generality, we assume η1,t ≤ η2,t.

Proposition 3.4.2 (Promotional Pricing). The optimal promotional pricing is as

follows:

(a) For Product 1 (the product with a lower rating) when Product 2 is free (p2,t =

0):

p∗1,t = arg max
p1,t

{
Πt

∣∣∣∣p1,t ∈ P1

}
(3.4.2)

where

P1 =

{
a1 + β1r1 + (b1 + β1 + γ) c1 + λ (η1 − η2)− γc2

2b1 + 2β1 + 2γ
, (3.4.3)
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λ (η1 − η2) + a1 + β1r1

b1 + β1 + γ

}
.

(b) For Product 2 (the product with a higher rating) when Product 1 is free (p1,t =

0):

p∗2,t = arg max
p2,t

{
Πt

∣∣∣∣p2,t ∈ P2

}
(3.4.4)

where

P2 =

{
a2 + β2r2 + (b2 + β2 + γ) c2 + λ (η2 − η1)− γc1

2b2 + 2β2 + 2γ
, (3.4.5)

λ (η2 − η1) + a2 + β2r2

b2 + β2 + γ
,
λ (η2 − η1)− a1 − β1r1

γ

}
.

We note that the case where the two products have similar demand properties,

except for customer ratings (i.e., η1 6= η2), then the product with the higher customer

ratings will always have a higher promotional price.

Proposition 3.4.3 (Cannibalization Pricing). Under the condition where Product

i is cannibalizing Product j (i, j ∈ {1, 2} and i 6= j), the optimal prices are as follows:

pi =
ci
2

+

(
bj + βj + γ

)
(βiri + ai) + γ

(
βjrj + aj

)
+ λ

(
bj + βj

) (
ηi − ηj

)
2γ
(
bi + βi + bj + βj

)
+ 2

(
bj + βj

)
(bi + βi)

(3.4.6)

pj =
2βjrj + 2aj + γci + 2λ

(
ηj − ηi

)
2bj + 2βj + 2γ

(3.4.7)

+
γ (βiri + ai)

2γ
(
bi + βi + bj + βj

)
+ 2

(
bj + βj

)
(bi + βi)

+
γ2
(
βjrj + aj

)
+ γ

(
bj + βj

)
λ
(
ηi − ηj

)
2
(
γ
(
bi + βi + bj + βj

)
+
(
bj + βj

)
(bi + βi)

) (
bj + βj + γ

) .
101



Ph.D. Thesis – S. Shams-Shoaaee McMaster University – Computational Sci.&Eng.

We note that the above results in Proposition 3.4.3 can also be used to aid in

pricing when one product is in shortage. In such cases, the retailer would like to

price in a way to discourage ordering the stockout product. Another possible use of

the pricing scenarios in Proposition 3.4.3 is when one product has significantly more

inventory than the other product and the retailer would want to price the abundant

product in a way to attract the demand for the product that has limited inventory.

3.5 Numerical Analysis and Insights

For the purpose of numerical experiments, we used 28,187 different pair combinations

of the parameter sets shown in Table 3.2 for the two-product case.

Parameter a b c β r1 η0 α θ λ γ

Values

5 1 0.5 0.5 1 1 0.15 0.1 0.2 0.3
2 1 0.75 2 3 0.45 0.3 0.3 0.5

1 5 0.5 0.4 1
0.7 0.5
0.8
0.9

Table 3.2: Parameter Values

Let π∗i denote the optimal objective value of (Horizon) when method i is used.

Define the optimality comparative index for method i compared to method j as

CIi,j =
π∗i−π∗j
π∗j

. Let MH and CS refer to “myopic heuristic” and “commercial solver”,

respectively. In addition, let subscripts F, IR, and IRC, refer to “full model”, “model

ignoring rating effects”, and “model ignoring both Ratings and cross-price effects”,

respectively. As shown in Table 3.3 when the myopic approach is used, ignoring

customer rating and cross-price effects result in up to approximately 52%, and on

average about 2% loss of total profits. This is also shown in Figure 3.5. In Table
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i, j min
(
CIi,j

)
avg

(
CIi,j

)
max

(
CIi,j

)
MHF , MHIR 0.0003% 0.8672% 11.9512%
MHF , MHIRC 0.0000% 1.9690% 51.5965%

CSF , CSIR 0.0218% 0.6760% 4.5988%
CSF , CSIRC 0.0008% 2.8447% 40.2482%
CSF , MHF 0.0036% 5.9722% 31.5241%

Table 3.3: Comparing optimality of methods

Method min avg max
MHF 0.00 0.01 1.29
CSF 0.99 2.02 121.39

Table 3.4: Computation Time (seconds)

3.3 and Figure 3.4, it is illustrated that when we solve the problem using commercial

solvers, ignoring customer ratings and cross price effects can result in approximately

3% on average and up to 40% loss in profits. In addition comparing the two methods

CSF and MHF in Table 3.3 and Figure 3.3, shows that the heuristic method produces

very close to optimal results in some cases. We will further discuss the optimality of

the myopic heuristic in Section 3.5.4.

The effects of the parameters on total optimal profits, optimality of the results

when customer rating is ignored, and optimality of the results when customer rating

and cross-price effects are ignored are discussed in Sections 3.5.1-3.5.4, respectively.

In the remainder of this section, product one (i = 1) has lower initial rating than

product two (i = 2).

3.5.1 Effect of Parameters on Total Profits

In this section we investigate the effect of parameters on the total optimal profits

when the full model is used with commercial solvers. The result of multiple linear
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Figure 3.3: Optimality margin of the myopic heuristic method for all parameter sets.

(a) Loss of optimality when
customer rating is ignored for

all parameter sets.

(b) Loss of optimality when
customer rating and cross-price

effects are ignored for all
parameter sets.

Figure 3.4: Using commercial solvers for solving the problem for the horizon.

regression analysis when total profits is the dependent variable is provided in Table

3.5. As expected, increasing the values of bi and ci (i = 1, 2) has negative effect on

profits. In addition, increasing the values of βi, the reference price memory parameter

α, the customer rating memory parameter θ, and γ also has a negative effect on profits.

On the other hand, increasing the values of initial reference prices ri,1 and λ has a
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(a) Loss of optimality when
customer rating is ignored for

all parameter sets.

(b) Loss of optimality when
customer rating and cross-price

effects are ignored for all
parameter sets.

Figure 3.5: Using the myopic heuristic method.

positive effect on profits. We will discuss managerial insights from these findings in

Section 3.6.

3.5.2 The Effect of Parameters on Profits when Customer

Rating is Ignored

In Table 3.3 we showed that ignoring customer rating can cause up to approximately

5% loss of profits when we solve the profit optimization problem for the horizon and

up to 12% loss of profits when using the myopic heuristic. In this section we study

the effect of parameters on this loss of optimality. Table 3.6 summarizes the multiple

linear regression results when the optimality loss of the model ignoring customer rat-

ings is the dependent variable. The coefficients for bi, ci, ηi,0 indicate that increasing

the value of these parameters for the product with lower initial rating (i = 1) and
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Estimate Std. Error t-value Pr(> |t|)
(Intercept) 167.3304 0.0656 2549.79 < 2e− 16
b1 -26.0614 0.0193 -1348.81 < 2e− 16
b2 -28.1926 0.0196 -1441.17 < 2e− 16
c1 -21.7722 0.0313 -696.18 < 2e− 16
c2 -17.0119 0.0320 -530.93 < 2e− 16
β1 -1.5296 0.0327 -46.75 < 2e− 16
β2 -1.2374 0.0334 -37.05 < 2e− 16
r1,1 1.1223 0.0189 59.26 < 2e− 16
r2,1 1.5755 0.0178 88.53 < 2e− 16
α -2.7559 0.0459 -60.03 < 2e− 16
θ -0.3970 0.0250 -15.87 < 2e− 16
λ 2.1866 0.0645 33.90 < 2e− 16
γ -0.3265 0.0263 -12.42 < 2e− 16
Residual standard error: 1.153 on 28, 165 degrees of freedom
Multiple R-squared: 0.9977, Adjusted R-squared: 0.9977
F-statistic: 1.03e+ 06 on 12 and 28, 165 DF, p-value: < 2.2e− 16

Table 3.5: Multiple linear regression results where the optimal total profits is the
dependent variable.

decreasing them for the product with higher initial rating (i = 2) improves the per-

formance (decreases the optimality loss) of the model ignoring customer rating. In

addition, as it is expected from the model, increasing the value of λ, the parameter

for the weight of customer rating in demand model increases the optimality loss of the

model ignoring customer ratings. In addition, increasing the value of γ decreases the

optimality loss of the model. This is because increasing γ relative to λ will decrease

the relative effect of customer ratings on demand.
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Estimate Std. Error t-value Pr(> |t|)
(Intercept) -2.5461 0.0204 -124.96 < 2e− 16
b1 -0.3269 0.0054 -60.07 < 2e− 16
b2 0.7170 0.0055 130.23 < 2e− 16
c1 -0.0774 0.0088 -8.83 < 2e− 16
c2 0.6320 0.0090 70.26 < 2e− 16
β1 -0.0464 0.0092 -5.05 < 2e− 16
β2 -0.0532 0.0094 -5.67 < 2e− 16
r2,1 -0.0600 0.0046 -12.92 < 2e− 16
η1,0 -0.3912 0.0024 -165.60 < 2e− 16
η2,0 0.3912 0.0024 165.54 < 2e− 16
α -0.0567 0.0129 -4.39 < 2e− 16
θ 0.2968 0.0070 42.25 < 2e− 16
λ 3.1061 0.0181 171.61 < 2e− 16
γ -0.3099 0.0074 -42.14 < 2e− 16
Residual standard error: 0.3242 on 28, 164 degrees of freedom
Multiple R-squared: 0.7819, Adjusted R-squared: 0.7818
F-statistic: 7, 768 on 13 and 28, 164 DF, p-value: < 2.2e− 16

Table 3.6: Multiple linear regression results where the optimality loss (%) of the
model ignoring customer rating is the dependent variable. Here we are using

commercial solvers to solve the pricing problem for the horizon.

3.5.3 The Effect of Parameters on Profits when Customer

Rating and Cross-Price Effects are Ignored

As we saw in Table 3.3, ignoring customer rating and cross-price effects can result

in up to 40% of loss in total profits. Here, we will investigate how parameters affect

this loss in profits. Table 3.7 summarizes the multiple linear regression results when

the relative optimality loss is the dependent variable. We note that increasing the

customer rating memory parameter θ, customer rating weight in demand λ, and the

weight of cross-price effects in demand γ, increases the loss of profits. This is expected

as increasing these parameters increases the effects of customer rating and cross-price

effects on demand. In addition, increasing the initial rating of the product with lower
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Estimate Std. Error t value Pr(> |t|)
(Intercept) -8.6608 0.1672 -51.79 < 2e− 16

b1 -9.0582 0.0442 -204.82 < 2e− 16
b2 9.5213 0.0447 212.85 < 2e− 16
c1 0.3022 0.0714 4.23 < 2e− 16
c2 1.6331 0.0732 22.31 < 2e− 16
β1 -1.3652 0.0748 -18.26 < 2e− 16
β2 0.7854 0.0763 10.29 < 2e− 16
r1,1 0.5390 0.0433 12.46 < 2e− 16
r2,1 -0.3830 0.0406 -9.42 < 2e− 16
η1,0 -0.6890 0.0192 -35.90 < 2e− 16
η2,0 0.6873 0.0192 35.81 < 2e− 16
α -0.4344 0.1049 -4.14 < 2e− 16
θ 2.1787 0.0571 38.13 < 2e− 16
λ 5.5303 0.1474 37.51 < 2e− 16
γ 3.3453 0.0601 55.71 < 2e− 16

Residual standard error: 2.634 on 28, 163 degrees of freedom
Multiple R-squared: 0.7196, Adjusted R-squared: 0.7195
F-statistic: 5, 163 on 14 and 28, 163 DF, p-value: < 2.2e− 16

Table 3.7: Multiple linear regression results where the optimality loss (%) of the
model ignoring customer rating and cross-price effects is the dependent variable.

Here we are using commercial solvers to solve the pricing problem for the horizon.

initial rating, η1,0 and decreasing the initial rating of the product with higher initial

rating, η2,0, decreases the loss of profits; that is, decreasing the difference between

the initial rating of the products reduces the profit loss. It is also worth mentioning

that when the price sensitivity of demand is high for the product with lower initial

ratings, b1, and is low for the product with higher initial ratings, b2, we can expect

lower loss in profits. In addition, increasing product unit costs ci for i = 1, 2 increases

the loss of profits.
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3.5.4 Optimality of the Myopic Heuristic

The myopic heuristic approach is very efficient in terms of computation time and, in

some cases, produces very close to optimal results as shown in Table 3.4. In fact, from

all the 28,187 parameter sets used in our computational experiments, the heuristic

method’s relative error was less than 10% in approximately 87% of cases and less than

5% in approximately 46% of cases. Table 3.8 summarizes the results from multiple

linear regression analysis where the optimality margin is the dependent variable.

Negative coefficients of b1, c1, η1,0, γ, and ri,1 for i = 1, 2, show that increasing these

parameters results in better performance of the myopic heuristic. On the other hand,

the positive coefficients of b2, c2, η2,0, α, θ, λ, and βi for i = 1, 2, indicate increasing

optimality error of the myopic approach as these parameters increase.

3.6 Conclusions, Managerial Insights, and Future

Research

As discussed in Section 3.1, there are extensive studies that investigate the effects

of reference price, cross-price effects, and effects of customer reviews on demand.

In terms of the relationship between prices and customer rating in the literature,

prices are mostly studied as responses to customer ratings. Although it is known

that market behaviour is also a response to prices, there are no studies that explicitly

investigate customer rating as a response to prices where prices are decision variables

in a revenue optimization context utilizing reference prices, customer rating, and

cross-price effects. This paper bridges this gap in the literature and builds a basis for

further research in this area.
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Estimate Std. Error t value Pr(> |t|)
(Intercept) 0.0091 0.0013 6.82 0.0000
b1 -0.0656 0.0004 -185.24 0.0000
b2 0.0204 0.0004 57.02 0.0000
c1 -0.0180 0.0006 -31.42 0.0000
c2 0.0353 0.0006 60.29 0.0000
β1 0.0450 0.0006 75.12 0.0000
β2 0.0363 0.0006 59.36 0.0000
r1,1 -0.0033 0.0003 -9.55 0.0000
r2,1 -0.0048 0.0003 -14.79 0.0000
η1,0 -0.0023 0.0002 -15.05 0.0000
η2,0 0.0023 0.0002 14.96 0.0000
α 0.0093 0.0008 11.03 0.0000
θ 0.0274 0.0005 59.81 0.0000
λ 0.0291 0.0012 24.69 0.0000
γ 0.0066 0.0005 13.70 0.0000
Residual standard error: 0.02109 on 28, 163 degrees of freedom
Multiple R-squared: 0.7048, Adjusted R-squared: 0.7046
F-statistic: 4, 802 on 14 and 28, 163 DF, p-value: < 2.2e− 16

Table 3.8: Multiple linear regression results where the optimality margin of the
heuristic is the dependent variable.

We discussed the effect of parameters on total profits in Section 3.5.1. As expected,

increasing price sensitivity of demand, unit product cost, and customer sensitivity

to reference prices decrease total profits. It was also shown that increasing initial

reference prices increases total profits. The negative coefficients for the weight of

previous period’s customer rating in the model for customer rating (θ) indicate that

it is to the retailer’s benefit to reduce the value of this parameters directly or try

to reduce the effect of previous periods rating indirectly. This may be one factor

that the default sorting of reviews on online retailers such as Amazon.com is “top

reviews” rather than “recent reviews”. In addition, the negative coefficient for the

weight of the cross-price effects in demand model (γ) indicate that reducing the effect
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of cross-price effects increases retailer’s total profits. This can be a factor in selecting

“relevant products” at the time a customer is observing the product in order to reduce

this effect.

In Sections 3.5.2 and 3.5.3 we discussed the effect of parameters on total profits

when customer ratings or both customer ratings and cross price effects are ignored.

We showed that ignoring customer rating and/or cross-price effects can lead to large

profit losses when

• the difference in initial rating of products is high,

• the product with lower initial rating has low demand price sensitivity,

• the product with higher initial rating has high demand price sensitivity,

• the customer reference price memory parameter (α), is low, and

• the customer memory parameter for rating (θ) and the weight of difference in

ratings in demand (λ) are high.

It is also expected that if the weight of the cross-price effects in demand is high,

ignoring cross-price effects will result in large losses in profits.

We also discussed the performance of the myopic heuristic in Section 3.5.4. We

noted that from 28,187 parameter sets used in our computational experiments, the

heuristic method’s relative error was less than 10% in approximately 87% of cases

and less than 5% in approximately 46% of cases. To put the findings in Table 3.8 in

perspective, the myopic heuristic performs well when

• the difference in initial ratings is high,
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• the product with higher initial rating has high customer price sensitivity and

low profit margin, and

• the product with lower initial rating has low customer price sensitivity and high

profit margin.

Under the circumstances described above, the retailer may prefer to use the myopic

heuristic instead of commercial solvers due to the licensing costs of commercial solvers

and the computational performance of the myopic heuristic.

Our work can be extended in several ways. First, as demand in a market is

not always deterministic, it is important to incorporate uncertainty in the demand

function. This can be accomplished by adding a stochastic term to the demand

function in (3.3.10) in a multiplicative or additive manner. Inventory holding and

ordering costs, lead time, and the costs associated with loss of market share as a

result of shortages also need to be added in future research. Second, in this paper,

we only considered a one-retailer, two-product case. This study can be extended to

a duopoly market. Also, the model of customer rating can further be expanded to

capture the effects of reference price and other factors.
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Appendix A: Proofs

Proof of Proposition 3.3.2. Price sensitivity is defined as a percentage change in

demand divided by the percentage change in price. For simplicity we show a two

product case. The proof is applicable to the general case as well. Let the demand be

(as defined in (3.3.10))

D1 = a− bp+ β (r − p) + λ
(
η − η′

)
+ γ

(
p− p′

)
(3..1)

where η′ and p′ be the rating and price of the other product. Everything else constant,

increasing price p to p+ ∆p the demand will be

D2 = a− b (p+ ∆p) + β
(
r − (p+ ∆p)

)
+ λ

(
η − η′

)
+ γ

(
(p+ ∆p)− p′

)
(3..2)

The price sensitivity is then defined as

Ed =

∣∣∣D2−D1

D1

∣∣∣∣∣∣∆pp ∣∣∣ =

∣∣∣ −(b+β−γ)
a−bp+β(r−p)+λ(η−η′)+γ(p−p′)

∣∣∣∣∣∣∆pp ∣∣∣ (3..3)

Everything else constant, increasing η increases the denominator of the numerator in

(3..3) and therefore decreases the price sensitivity; and the result follows.

Proof of Proposition 3.3.3. For simplicity we show a two product case . Let the

demand be (as defined in (3.3.10))

D = a− bp+ β (r − p) + λ
(
η − η′

)
+ γ

(
p− p′

)
(3..4)

It is clear that increasing η increases D and therefore, the retailer can increase the
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price to keep D constant; i.e., the customers’ are willing to pay higher price premium

for the product when ratings are higher.

Proof of Proposition 3.3.1. Results follow directly by letting Di,t ≥ 0 for i ∈

{1, 2}.

Proof of Proposition 3.3.4. Let J denote the 2T × 2T Jacobian matrix for the

horizon optimization problem (Horizon). Let

J =

J (1) J (2)

J (3) J (4)

 (3..5)

where all J (l) matrices are T × T diagonal matrices defined as

J
(1)
k,k = −2 (b1 + β1 + γ) (3..6)

J
(1)
k,k+1 = J1k+1,k =

−λ θ1R+ β1ω1φ1

φ1

(3..7)

J
(1)
k,k+2 = J1k+2,k =

−λ θ2R+ β1ω2φ1

φ1

(3..8)

J
(1)
k,k+3 = J1k+3,k =

−λ θ3R+ β1ω3φ1

φ1

(3..9)

J
(2)
k,k = J

(3)
k,k = 2γ (3..10)

J
(2)
k,k+1 = J

(3)
k+1,k =

λ θ1R
φ1

(3..11)

J
(2)
k,k+2 = J

(3)
k+2,k =

λ θ2R
φ1

(3..12)

J
(2)
k,k+3 = J

(3)
k+3,k =

λ θ3R
φ1

(3..13)
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J
(2)
k+1,k = J

(3)
k,k+1 =

λ θ1R
φ2

(3..14)

J
(2)
k+2,k = J

(3)
k,k+2 =

λ θ2R
φ2

(3..15)

J
(2)
k+3,k = J

(3)
k,k+3 =

λ θ3R
φ2

(3..16)

J
(4)
k,k = −2 (b2 + β2 + γ) (3..17)

J
(4)
k,k+1 = J1k+1,k =

−λ θ1R+ β2ω1φ1

φ2

(3..18)

J
(4)
k,k+2 = J1k+2,k =

−λ θ2R+ β2ω2φ1

φ2

(3..19)

J
(4)
k,k+3 = J1k+3,k =

−λ θ3R+ β2ω3φ1

φ2

(3..20)

The largest sum of the magnitude of non-diagonal entries in upper half of the Jacobian

matrix
[
J (1) J (2)

]
is

2

(∣∣∣∣−λ θ1R+ β1ω1φ1

φ1

∣∣∣∣+

∣∣∣∣−λ θ2R+ β1ω2φ1

φ1

∣∣∣∣+

∣∣∣∣−λ θ3R+ β1ω3φ1

φ1

∣∣∣∣
)

+ 2γ +
λR
φ1

+
λR
φ2

(3..21)

with the magnitude of diagonal entries

2 (b1 + β1 + γ) (3..22)

Let φ = min{φ1, φ2} and b = min{b1, b2} and

λ ≤ bφ

2R
=

2b
4R
φ

(3..23)
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Then

λ ≤ 2b1

3R
φ1

+ R
φ2

(3..24)

⇒ 2b1 ≥ λ

(
3R
φ1

+
R
φ2

)
(3..25)

⇒ 2b1 ≥ 3

(
λR
φ1

)
+
λmathcalR

φ2

(3..26)

⇒ 2 (b1 + β1 + γ) ≥ 2

(
β1 +

λR
φ1

)
+ 2γ +

λR
φ1

+
λR
φ2

(3..27)

We know that

2

(
β1 +

λR
φ1

)
+ 2γ +

λR
φ1

+
λR
φ2

(3..28)

≥ 2

(∣∣∣∣−λ θ1R+ β1ω1φ1

φ1

∣∣∣∣+

∣∣∣∣−λ θ2R+ β1ω2φ1

φ1

∣∣∣∣+

∣∣∣∣−λ θ3R+ β1ω3φ1

φ1

∣∣∣∣
)

+ 2γ +
λR
φ1

+
λR
φ2

(3..29)

Therefore

2 (b1 + β1 + γ) (3..30)

≥ 2

(∣∣∣∣−λ θ1R+ β1ω1φ1

φ1

∣∣∣∣+

∣∣∣∣−λ θ2R+ β1ω2φ1

φ1

∣∣∣∣+

∣∣∣∣−λ θ3R+ β1ω3φ1

φ1

∣∣∣∣
)

+ 2γ +
λR
φ1

+
λR
φ2

.

(3..31)

A similar argument follows for the bottom submatrix of the Jacobian; i.e.,
[
J (3) J (4)

]
.

Therefore −J is a diagonally dominant Hermitian matrix with positive diagonal ele-

ments; i.e., −J is a positive semidefinite matrix. Thus, J is a negative semidefinite
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matrix. This results in problem (Horizon) being a maximization problem with con-

cave objective function and linear constraints; that is, problem (Horizon) is a convex

optimization problem.

Proof of Proposition 3.4.1. We have

Πt =
∑
i

(pi,t − ci)
[
ai − bipi,t + βi

(
ri,t − pi,t

)
(3..32)

+
∑
j 6=i

λi,j
(
ηi,t−1 − ηj,t−1

)
+
∑
j 6=i

γi,j
(
pj,t − pi,t

) ]
.

Then

∂2Πt

∂p2
i,t

= −2(bi + βi + γ) (3..33)

∂2Πt

∂pi,tpj,t
= 2γ ∀ i 6= j (3..34)

with Jacobian matrix

J =

−2(bi + βi + γ) 2γ

2γ −2(bi + βi + γ)

 . (3..35)

Therefore −J is a diagonally dominant Hermitian matrix with positive diagonal el-

ements; i.e., −J is a positive semi-definite matrix. Therefore J is a negative semi-

definite matrix. This results in problem (3.4) being a maximization problem with

concave objective function and linear constraints; that is, problem (3.4) is a convex

optimization problem.

Proof of Theorem 3.4.1. Proposition 3.4.1 allows us to apply KKT conditions
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to solve problem (Myopic). Below we state the KKT conditions corresponding to

problem (Myopic) for each t in horizon:

Primal Feasibility

pi,t −
(

γ

bi + βi + γ

)
pj,t −

ai + βiri,t + λ
(
ηi,t−1 − ηj,t−1

)
bi + βi + γ

≤ 0 ∀ i 6= j ∈ {1, 2}

(3..36)

pi,t ≥ 0 ∀ i, j ∈ {1, 2}

(3..37)

Dual Feasibility

µi ≥ 0 ∀i ∈ {1, 2} (3..38)

ui ≥ 0 ∀i ∈ {1, 2} (3..39)

Stationarity

∂Πt

∂pi,t
− µi +

(
γ

bj + βj + γ

)
µj + ui = 0 ∀ i 6= j ∈ {1, 2} (3..40)

Complementary Slackness

µi

[
pi,t −

(
γ

bi + βi + γ

)
pj,t −

ai + βiri,t + λ
(
ηi,t−1 − ηj,t−1

)
bi + βi + γ

]
= 0 (3..41)

∀ i, j ∈ {1, 2} , i 6= j

uipi,t ≥ 0 ∀i ∈ {1, 2} (3..42)

We use the following Lemma to prove the proposition.
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Lemma 3..1. If three or more of µ1, µ2, u1, u2 are greater than zero, the KKT con-

ditions (3..41)-(3..42) are infeasible.

Proof of Lemma 3..1 is as follows: For any i ∈ {1, 2} , from complementary

slackness conditions (3..41)-(3..42)

µi > 0⇒ Di,t = 0 (3..43)

ui > 0⇒ pi,t = 0 (3..44)

If three or more of dual variables are strictly positive, the resulting case will be one

of the following


D1,t = 0

D2,t = 0

p1,t = 0

,


D1,t = 0

D2,t = 0

p2,t = 0

,


D1,t = 0

p1,t = 0

p2,t = 0

,


D2,t = 0

p1,t = 0

p2,t = 0

,



D1,t = 0

D2,t = 0

p1,t = 0

p2,t = 0

(3..45)

It is clear that all of these cases are infeasible. We therefore will use the results from

this lemma to continue the proof for Proposition 3.4.1. First, we show that there are

eleven cases that are not deemed infeasible by Lemma 3..1. From lemma 3..1, we can

have either none, one, or two of dual variables to be strictly greater than zero. This

therefore is a simple counting problem adding up to eleven cases as follows:

• There are six cases where two of the four dual variables are strictly greater than

zero;

• There are four cases where only one of the four dual variables is strictly greater
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than zero;

• There is one case where all dual variables are zero.

Closed form solutions for all cases are provided below. Each case can be confirmed

by substitution.

• Case 1: (µ1 = 0 , µ2 = 0 , u1 = 0 , u2 = 0)

p1 =
c1

2
+

(b2 + β2 + γ) (β1r1 + a1) + γ (β2r2 + a2) + λ (b2 + β2) (η1 − η2)

2γ (b1 + β1 + b2 + β2) + 2 (b2 + β2) (b1 + β1)

(3..46)

p2 =
c2

2
+

(b1 + β1 + γ) (β2r2 + a2) + γ (β1r1 + a1) + λ (b1 + β1) (η2 − η1)

2γ (b1 + β1 + b2 + β2) + 2 (b2 + β2) (b1 + β1)
.

(3..47)

• Case 2: (µ1 = 0 , µ2 = 0 , u1 = 0 , u2 > 0)

p1 =
a1 + β1r1 + (b1 + β1 + γ) c1 + λ (η1 − η2)− γc2

2b1 + 2β1 + 2γ
(3..48)

p2 =0. (3..49)

• Case 3: (µ1 = 0 , µ2 = 0 , u1 > 0 , u2 = 0)

p1 =0 (3..50)

p2 =
−γc1 + (b2 + β2 + γ) c2 + λ (η2 − η1) + β2r2 + a2

2b2 + 2β2 + 2γ
. (3..51)

• Case 4: (µ1 = 0 , µ2 = 0 , u1 > 0 , u2 > 0)

p1 = 0 (3..52)
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p2 = 0. (3..53)

• Case 5: ( µ1 = 0 , µ2 > 0 , u1 = 0 , u2 = 0)

p1 =
c1

2
+

(b2 + β2 + γ) (β1r1 + a1) + γ (β2r2 + a2) + λ (b2 + β2) (η1 − η2)

2γ (b1 + β1 + b2 + β2) + 2 (b2 + β2) (b1 + β1)

(3..54)

p2 =
2β2r2 + 2a2 + γc1 + 2λ (η2 − η1)

2b2 + 2β2 + 2γ

+
γ (β1r1 + a1)

2γ (b1 + β1 + b2 + β2) + 2 (b2 + β2) (b1 + β1)

+
γ2 (β2r2 + a2) + γ (b2 + β2)λ (η1 − η2)

2
(
γ (b1 + β1 + b2 + β2) + (b2 + β2) (b1 + β1)

)
(b2 + β2 + γ)

. (3..55)

• Case 6: (µ1 = 0 , µ2 > 0 , u1 = 0 , u2 > 0)

p1 =
−β2r2 + λ (η1 − η2)− a2

γ
(3..56)

p2 =0. (3..57)

• Case 7: (µ1 = 0 , µ2 > 0 , u1 > 0 , u2 = 0)

p1 =0 (3..58)

p2 =
λ (η2 − η1) + a2 + β2r2

b2 + β2 + γ
. (3..59)

• Case 8: (µ1 > 0 , µ2 = 0 , u1 = 0 , u2 = 0)

p1 =
2β1r1 + 2a1 + γc2 + 2λ (η1 − η2)

2b1 + 2β1 + 2γ
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+
γ (β2r2 + a2)

2γ (b1 + β1 + b2 + β2) + 2 (b2 + β2) (b1 + β1)

+
γ2 (β1r1 + a1) + γ (b1 + β1)λ (η2 − η1)

2
(
γ (b1 + β1 + b2 + β2) + (b2 + β2) (b1 + β1)

)
(b1 + β1 + γ)

(3..60)

p2 =
c2

2
+

(b1 + β1 + γ) (β2r2 + a2) + γ (β1r1 + a1) + λ (b1 + β1) (η2 − η1)

2γ (b1 + β1 + b2 + β2) + 2 (b2 + β2) (b1 + β1)
.

(3..61)

• Case 9: (µ1 > 0 , µ2 = 0 , u1 = 0 , u2 > 0)

p1 =
λ (η1 − η2) + a1 + β1r1

b1 + β1 + γ
(3..62)

p2 =0. (3..63)

• Case 10: (µ1 > 0 , µ2 = 0 , u1 > 0 , u2 = 0)

p1 =0 (3..64)

p2 =− λ (η1 − η2) + a1 + β1r1

γ
. (3..65)

• Case 11: (µ1 > 0 , µ2 > 0 , u1 = 0 , u2 = 0)

p1 =

(
λ (η1 − η2) + a1 + β1r1

)
(b2 + β2) + γ (β1r1 + β2r2 + a1 + a2)

γ (b1 + β1 + b2 + β2) + (b2 + β2) (b1 + β1)
(3..66)

p2 =
(b1 + β1)

(
λ (η2 − η1) + a2 + β2r2

)
+ γ (β1r1 + β2r2 + a1 + a2)

γ (b1 + β1 + b2 + β2) + (b2 + β2) (b1 + β1)
. (3..67)

Proof of Proposition 3.4.2. In part (a) we seek for the optimal price for product

1 under free product 2 promotion. Setting the price of product 2 to zero is equivalent
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to setting the dual variable u2 > 0 in KKT conditions in the proof of Proposition 3.4.1

above. This corresponds to KKT cases 2, 4, 6, and 9. Under the assumption that

η1,t ≤ η2,t, the price for product 1 in case 6, however becomes negative and therefore

infeasible. The prices for product 1 in (3.4.3) refers to KKT cases 2, 4, and 9, and

the result follows.

In part (b) we seek for the optimal price for product 2 under free product 1

promotion. Setting the price of product 1 to zero is equivalent to setting the dual

variable u1 > 0 in KKT conditions in the proof of Proposition 3.4.1 above. This

corresponds to KKT cases 3, 4, 7, and 10. The prices for product 2 in (3.4.5) refers

to these cases and the result follows.

Proof of Proposition 3.4.3. When product i is cannibalizing product j, we must

set a price so that the demand for product j becomes zero when the demand for

product i is non-zero. This is equivalent to setting µi = 0 and µj > 0 in KKT cases

in the proof of Proposition 3.4.1 above; that is cases 5 or 6 depending on the values

of i and j. The prices refer to these cases and the results follow.
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Appendix B: Notation

Symbols

ri,t Reference price for product i in period t.

ηi,t Customer rating for product i during period t.

Di,t Demand for product i in period t.

Indices

t Period in horizon (t = 1, 2, · · · , T ).

i, j Products, i, j ∈ {1, 2}.

Parameters

ai Estimate of the market size for product i in the linear demand function

Di,t = ai − bipi,t, ai ≥ 0.

bi Estimate of the price sensitivity parameter in the linear demand function bi ≥ 0.

ci Constant unit cost for product i, ci ≥ 0.

R Maximum possible rating.

βi Reference price weight parameter for product i, βi ≥ 0.

λi, j Weight of the difference between ratings of product i and j in demand model for

product i.

γi, j Weight of the difference between prices of product i and j in demand model for

product i.

α The parameter in exponential smoothing reference price . model, 0.1 ≤ α ≤ 0.4.

ωk Parameters in approximation of reference prices k = 1, 2, 3, ωi ≥ 0.

θ The parameter in exponential smoothing customer rating model, 0.1 ≤ α ≤ 0.4.

θk Parameters in approximation of customer ratings k = 1, 2, 3, ωi ≥ 0.

φi Reasonable price upper bound for product i.

Decision Variables

pi,t Price of product i in period t, pi,t ≥ 0.

Table 3.9: List of notations
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the Presence of Customer Ratings

The content of this chapter is revision of the manuscript submitted for publication

under the following title:

Shams-Shoaaee, Seyed Shervin, and Elkafi Hassini. “Optimal online personalized

location based price discounts in presence of customer ratings”.
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Abstract

We use a multinomial choice model for customer purchase decision to find

optimal personalized price discounts for an online retailer that incorporates

customer locations and feedback from their reviews. We then consider two

special cases of this problem and derive closed form solutions. To gain some

analytical insights we carried extensive numerical experiments. For a two-

customer and two-product case, we find that: (i) the product with lower rating

is discounted more frequently than the product with higher rating, (ii) the
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two products should not be discounted simultaneously for a customer, (iii) a

large difference between product ratings increases total profits and decreases

(increases) price discounts for the product with a higher (lower) rating, (iv)

and, as expected, increased customer product loyalty decreases price discounts.

Keywords: Personalized price discounts, nonlinear programming, customer rating,

e-commerce.

4.1 Introduction

With enhancements in mobile technology and the rise of online retailers like Amazon,

online shopping is increasingly becoming the shopping method of choice. For example,

about 84% of internet users in Canada shopped online reaching $57.4 billion spending

in 2018, compared to $18.9 billion in 2012 [32]. The recent COVID-19 pandemic has

further contributed to increase in online retailing. The e-commerce sales increased

about 40% in the week of May 26, 2020 compared to that of Feb 24, 2020 [3]. In

addition, many business are forced to invest and adjust to implement stronger online

presence which will likely lead to permanent increase in online sales [24].

One of the advantages of online retailing is the relatively low cost and ease of

price adjustments and discounts compared to a brick and mortar environment. For

example, it has been reported that Amazon adjusted prices more than 2.5 million

times every day in December 2013 [10]. With the increasing popularity of online

shopping, we are witnessing a proliferation of discount codes enticing customers to

buy. The popularity and importance of online discounts is apparent in the increasing

number of websites and browser extensions designed specifically for online discount

codes (e.g., PromoCodes, Wikibuy, RetailMeNot, Slickdeals, Honey, Groupon, and
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Ebates). For example, there was an average of 68 million monthly visits to Slickdeals

website as of March 2019 [6]. Also, about 60% of online shoppers worldwide looked

for online discount codes before making a purchase as of June 2019 [6].

In addition, online retailers such as Amazon can provide price discounts instan-

taneously depending on what the customer has viewed or picked so far and the state

of their inventory and logistics costs. For example, if there are existing orders for

the area of a new customer’s delivery location, the marginal shipping cost absorbed

by the retailer for the new customer’s order may become negligible (depending on

delivery capacity constraints). In such a case it may be beneficial to the retailer to

offer a limited time discount coupon to the customer to entice a purchase decision.

This, together with the increase in online shopping, reviews, and online discounts has

motivated our research. In particular, we are interested in how can an online retailer

use the customer locations, in the form of shipping costs, and product review data to

optimally design personalized online price discounts for them.

The remainder of this paper is organized as follows. We provide an overview of

the relevant literature in Section 4.2 followed by this paper’s contributions in Section

4.3. In Section 4.4 we present a customer purchase decision model and formulate

the discount pricing problem. Our computational analysis and insights are reported

in Section 4.5. Finally, in Section 4.6 we summarize our findings and propose some

future directions for research. The proofs of all results are provided in appendix 4.6

and a list of notations is provided in appendix 4.6.
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4.2 Related Literature

In this section we will discuss the most relevant literature. The literature on customer

choice and product recommendation systems are discussed in Section 4.2.1. Our

customer purchase decision models are mainly inspired by this literature. We will then

present the literature on location-based pricing and shipping fees, price discounts, and

reference prices in Sections 4.2.2, 4.2.3, and 4.2.4, respectively. We will see that some

studies consider using discount coupons as ways of price discrimination. However,

there are no studies considering customer ratings and shipping costs for optimizing

individualized discounts in a multi-product online market environment.

4.2.1 Customer Choice and Product Recommendation Sys-

tems

Customer choice models are used to estimate customers’ willingness to pay and prod-

uct preference. The literature in this section is the inspiration for our customer choice

model.

Some studies have investigated customers’ screening rules and probabilities. Buck-

lin and Lattin [5] introduce a probabilistic model for purchase incident and brand

choice. Gilbride and Allenby [9] model customers’ decision making as a two stage

process. In the first stage a “consideration set” is chosen from all available options.

Customers’ then make a final purchase decision from this set; i.e., if a product is not

included in the consideration set at the first stage, it has zero probability of being

selected. They derive empirical results from an experiment on customers’ choice of

cameras. They find evidence of a conjunctive screening rule; that is, if an item does
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not satisfy requirements of a set of attributes, it will no be included in the considera-

tion set. They also conclude that customers use well known attributes as opposed to

new attributes in their screening process. Similarly, Wang et al. [34] study customers’

purchase process from a “Consider-then-Choose” point of view. They explain that

PP = CP× ChP (4.2.1)

where PP is the probability that a customer purchases a product after inspecting

it (Purchase Probability), CP is the probability that a product is selected in the

consideration set after being inspected (Consideration Probability), and ChP is the

probability that a product from customer’s consideration set is chosen for purchase

(Choice Probability). Their focus is on estimating the CPs. In our study we present

a purchase probability model for products already in the “consideration set”.

Lachaab et al. [16] model evolution of customers preferences using Bayesian state

space models. They show that customers preferences not only differ across customers,

it also changes over time. In particular they find that customers become more price

sensitive over time. They explain that this effect may be due to frequent price pro-

motions that reduce customers’ reference price.

Built on customer choice models, there is a vast amount of research on product

recommendation systems. Lopes and Roy [21] explain the importance of recommen-

dation systems in the ever growing e-commerce platforms. They introduce a product

recommendation system that relies on customers “click-stream” data to increase cus-

tomers satisfaction. Zhaao et al. [37] use a training data set from a small set of

products using a biding and lottery experiment and machine learning to predict cus-

tomers’ willingness to pay (WTP) for other products. They then incorporate this
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in a product recommendation mechanism that includes personalized price discounts

based on customers’ WTP. Scholz et al. [30] introduce a new product recommendation

system where unlike other systems it does not assume well-trained customers who are

willing to spend time and effort in their selection process. Louca et al. [22] propose

a recommendation system model for e-commerce platforms to maximize the sum of

the probability of purchase and revenue.

4.2.2 Location-Based Pricing and Shipping Fees

Hotelling [12] was among the first to consider location based pricing. Many have

studied variations and applications of Hotelling’s model. For example, Anderson [2]

studied a generalization of the Hotelling model of spatial competition with quadratic

transportation costs. Hernandez [11] studied the impact of spatial differentiation on

relative prices in a duopoly market where both firms offer two products of high and

low quality. Others have studied retailers’ location selection decisions. For example,

Ledered and Hurter [18] study the problem of setting location and price schedules.

Zhu and Singh [38] study the factors affecting entry and location selection decisions of

Wal-Mart, Kmart, and Target. Among their conclusions, they find that the majority

of these firm’s profits are form populations that are closer to their stores. In addition,

they found that these retailers have negative effects on each other when they are in

close proximity.

There has been many studies considering the effects of free-shipping policies on

customer purchase decisions and ultimately on revenues. Lewis et al. [20] study the

impact of shipping fees on customer purchasing behaviour. They find that while

shipping fees significantly affect order frequency and amount, customer responses to
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shipping fees are heterogeneous; i.e., the market can be divided in different segments

each with different response levels. They also conclude that free shipping when offered

to all orders, increases order frequency but leads to smaller order sizes. When free

shipping is offered for orders larger than a threshold amount, it has minimal effects

on order frequency but leads to larger orders. Leng et al. [19] investigate when

shipping fee promotions improves profits and derive several managerial insights for

monopoly and duopoly market structures. They also note that shipping strategies

that offer free shipping for orders larger than a threshold result in higher shipping costs

absorbed by the retailer. Amazon.com introduced such a shipping policy in January

2002 and has gradually reduced the threshold amount until 2006. As a result, its

shipping costs (as a percentage of sales) have increased from 0.61% in 2001 to 2.96%

in 2006 [19]. Ma [23] investigated the effects of delivery times and shipping charges

on customers’ satisfaction and purchase intention. They concluded that delivery time

does not have a large impact on customer satisfaction but it has a significant impact

on purchase intentions. They also noted that customers are willing to pay a premium

for quick delivery. Lastly, they showed that when shipping is free, customers do not

differentiate between lengthy or medium delivery time, i.e., they only notice fast or

lengthy delivery.

Although some of the studies mentioned above consider customers’ location in

deriving optimal pricing strategies, they are different from our study in two major

aspects. First, these studies consider a single price for the product for all customers

where in our study, we consider personalized price discounts for customers. Second,

these studies consider the transportation costs to be absorbed by customers and

therefore affect demand by changing the total cost to customers. In this paper, we
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assume a free-shipping policy for all products, and thus, all transportation costs are

absorbed by the retailer and does not affect demand (for example, consider free prime

shipping on Amazon).

4.2.3 Price Discounts

The main research in product discounts can be divided in three categories. Some have

studied advance purchase discounts. Gale and Holmes [8] study the optimal pricing

policy for a monopolistic airline. They show that if capacity constraints are present,

the monopolist must divert peak period demand to an off peak period by offering

advance purchase discounts. Möller and Watanabe [26] study early price discount

and late clearance sales for a monopoly that faces a market with heterogeneous cus-

tomers and individual demand uncertainty. They find conditions under which each

or a combination of these strategies are optimal. Nocke et al. [29] investigate the mo-

nopolist’s optimal pricing strategy where capacity constraints are not present. They

present necessary and sufficient condition under which advance purchase discounting

is an optimal strategy. They argue that advance purchase discounts can be used as a

tool for price discrimination between customers.

Others have studied quantity discounts. For example, Dolan [7] studies motiva-

tions for quantity discounts and provides guidelines for quantity discount schedules.

Munson and Hu [27] provide procedures for all-units and incremental quantity dis-

count schedules under different strategic purchasing configurations. Viswanathan and

Qinan [33] study quantity and volume discounts and develop methods for determin-

ing optimal discount policies in a single-supplier, single-retailer (buyer) environment.

Here the volume discounts are based on the volume of retailer’s total annual orders.
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Yang [36] studied the optimal quantity discount, pricing, and ordering policy for a

perishable good where demand is price sensitive.

The last category addresses product bundle discounts. Sheng et al. [31] study the

effects of discounts on the discounted product in bundles. They show that these types

of discounts negatively affect customers’ evaluations of the discounted product. They

also show that the magnitude of this effect is reduced by increasing the complemen-

tarity of products. Janiszewski and Cunha [13] show that the customer evaluation

of price discounts in bundled products depend on which product in the bundle is

being discounted. Johnson et al. [14] study the the amount and timing of discount

coupons tailored by households using Bayesian estimation for household preference

parameters.

4.2.4 Reference Prices

Reference price, in marketing literature, is defined as the price customers use as

benchmark to compare with observed prices for making purchase decisions. There

are many studies in the literature that investigate various aspects and applications of

reference prices (e.g., see [4, 15, 17, 25]). Mazumdar et al. present a review of reference

price research [25] and model reference price in period t as the weighted average of

the price and reference price in period t − 1. Briesch et al. [4] studied different

models of household reference prices and concluded that different product categories

require different reference price models. Wang [35] studied different formulations of

reference prices and the corresponding optimal pricing policies in a multi-product

setting. Anderson et al. [1] have considered price optimization problem in a duopoly

market in presence of reference prices.
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As outlined above, the effects of customer choice, free-shipping policies, price

discounts, and reference prices have been studied extensively. It also noted in studies

such as [28] that price discount coupons can be used as an efficient tool for price

discrimination. To the best of our knowledge there are no studies that explicitly study

personalised product discount optimization in a multinomial choice model utilizing

customer locations, in the form of shipping costs, and product review data.

4.3 Contributions

As discussed in Section 4.2, the current literature consists of studies on discounts,

location-based pricing and shipping fees, and customer purchase behaviour. Below,

we have listed the main contributions of this paper.

• Linking customers’ location to price discounts and customer ratings.

• We introduce a nonlinear programming model that uses multinomial customer

choice utility function. In addition, the customers’ utility and purchase prob-

abilities from customer choice literature is modified to account for prices, dis-

counts, and ratings.

• We provide exact solutions for two special cases.

• We conduct extensive numerical analysis followed by insights.

In addition, this paper contributes by filling the gap in literature where there are no

studies that study personalised price discount optimization in a multinomial choice

model utilizing customer locations, in the form of shipping costs, and product review

data.
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4.4 Problem Statement and Formulation

Assume there is a set of customers I, each considering to purchase one of n substitute

products. Let action j be defined as

j =


0 customer chooses not to purchase any product

1, · · · , n customer chooses to purchase product j ∈ {1, · · · , n}
(4.4.1)

Let Ui,j denote the utility that customer i expects to enjoy from action j. Define

Ui,j =


Li,j − bi

(
pj − di,j

)
+ βi

(
rj −

(
pj − di,j

))
+
∑
k 6=j

λi
(
ηj − ηk

)
j ∈ {1, · · · , n}

0 j = 0

(4.4.2)

where pj, rj, and ηj denote price, reference price, and rating of product j, respectively,

and Li,j, bi, βi, and λi denote customer i’s loyalty to product j, price sensitivity,

sensitivity to departures from reference price, and ratings’ weight, respectively. We

assume the customer enjoys a zero utility from not purchasing any of the products;

i.e., Ui,0 = 0 for all customers. Note that the utility function is in agreement with

common sense and general literature in this area (e.g., [5]). As we can see in (4.4.2),

the utility that customer i enjoys from purchasing product j is increasing in the

customer’s loyalty to the product/brand. Considering the rating terms, the customer

expects to enjoy a higher utility from a product that has a higher rating than other

substitute products. In addition, the utility decreases as net price increases. Defining

“gain” (“loss”) as when net price is less (greater) than reference price, customer’s
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utility increases (decreases) in a gain (loss) situation.

Let χi,j denote the probability that customer i chooses action j, then consistent

with the multinomial choice model (e.g., see [5]), define

χi,j =
eUi,j

n∑
k=0

eUi,k

. (4.4.3)

Let cj, si,j, and di,j denote unit cost of product j, shipping cost of product j to

customer i, and the amount of price discount for customer i for product j, respectively.

Then the expected profits from customer i can be written as

πi =
n∑
j=0

χi,j
(
pj − cj − di,j − si,j

)
(4.4.4)

The expected total profits from all customers can then be written as

Π =
∑
i

πi (4.4.5)

=
∑
i

n∑
j=0

χi,j
(
pj − cj − di,j − si,j

)
(4.4.6)

We can now formulate the individualized discount optimization problem as

max
di,j

Π (4.4.7a)

s.t.

di,j ≤ pj − cj − si,j ∀ i , j (4.4.7b)

di,j ≥ 0 ∀ i , j (4.4.7c)

144



Ph.D. Thesis – S. Shams-Shoaaee McMaster University – Computational Sci.&Eng.

where constraints (4.4.7b) ensure non-negative profits from all customers.

In Section 4.4.1 we will present solution methods for 4.4.7 for a case where there

is one product and two customers in the system. We will then expand this case in

Section 4.4.2 where there are two products and two customers in the system and

provide numerical analysis in Section 4.5.

4.4.1 Case 1: One Product and Two Customers

In this section we consider the case where there are two customers and one product

in the system. The utility that customer i enjoys from taking action j is then defined

as

Ui,j =


Li,j − bi

(
pj − di,j

)
+ βi

(
rj −

(
pj − di,j

))
+ λiηj for j = 1

0 o.w.

(4.4.8)

The probability that customer i chooses action j can be written as

χi,j =
exp

{
Ui,j
}

n∑
k=1

exp
{
Ui,k
} (4.4.9)

=


exp

{
Li,j−bi(pj−di,j)+βi

(
rj−(pj−di,j)

)
+λiηj

}
1+exp

{
Li,j−bi(pj−di,j)+βi

(
rj−(pj−di,j)

)
+λiηj

} for j = 1

1

1+exp

{
Li,j−bi(pj−di,j)+βi

(
rj−(pj−di,j)

)
+λiηj

} for j = 0

(4.4.10)

Proposition 4.4.1. Problem (4.4.7) is a convex maximization problem for one-

product, two-customers case (maximization problem with concave objective function

and linear constraints).
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Proposition 4.4.1 allows as to solve problem (4.4.7) using Karush–Kuhn–Tucker

(KKT) conditions. To that end we propose Algorithm 4.4.1 to solve problem (4.4.7).

Algorithm 4.4.1. Let LB = −∞ and iteration counter k = 1. For each feasible

KKT condition for problem (4.4.7):

1. Solve stationarity and complementary slackness conditions for primal and dual

variables.

2. Check if primal and dual feasibility conditions hold.

3. If all conditions are satisfied, find the corresponding objective value Πk.

4. If LB < Π, let d∗i,j = di,j and LB = Π.

5. Let k = k + 1, move to the next feasible KKT case and follow the steps above

until all cases are considered. The optimal solution is d∗i,j with the objective

value LB.

The validity of Algorithm 4.4.1 is established in Theorem 4.4.1.

Theorem 4.4.1. Algorithm 4.4.1 finds an optimal solution to problem (4.4.7).

We note that at most there will be 16 KKT solutions and we show in the proof

in Appendix A that there are only 9 feasible KKT solutions.

4.4.2 Case 2: Two Products and Two Customers

In this section we consider the case where there are two customers and two products

in the system. The utility that customer i ∈ {1, 2} enjoys from taking action j is

then defined as
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Ui,j =


Li,j − bi

(
pj − di,j

)
+ βi

(
rj −

(
pj − di,j

))
+ λi

(
ηj − η3−j

)
for j ∈ {1, 2}

0 o.w.

(4.4.11)

Let

ÑPi = max
{
p1 − c1 − si,1, p2 − c2 − si,2

}
i ∈ {1, 2}. (4.4.12)

The quantity ÑPi can be thought of as the maximum marginal profit for product i.

In Proposition 4.4.2 we establish conditions for the convexity of problem (4.4.7).

Proposition 4.4.2. For a two-product two-customer case problem (4.4.7) is a convex

maximization problem if

max

{
(bi + βi) ÑPi

∣∣∣∣i ∈ 1, 2

}
≤ 2. (4.4.13)

One interpretation of condition (4.4.13), is that it applied to products that have

low profit margins such as in the grocery industry. However, we note that condition

(4.4.13) is not necessary for convexity, i.e., problem (4.4.7) may be convex even if

condition (4.4.13) is violated.

Proposition 4.4.1 allows as to solve problem (4.4.7) using KKT conditions. To

that end we propose Algorithm 4.4.2 for solving problem (4.4.7).

Algorithm 4.4.2. Let LBi = −∞ and iteration counter ki = 1 or i ∈ {1, 2}. For

each feasible KKT condition for problem (4.4.7):
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1. Solve stationarity and complementary slackness conditions for primal and dual

variables.

2. Check if primal and dual feasibility conditions hold

3. If all conditions are satisfied, find the corresponding objective value Π
(k)
i

4. If LBi < Π
(k)
i , let d∗i,j = di,j and LBi = Π

(k)
i The optimal solution is d∗i,j with

the objective value LBi.

The validity of Algorithm 4.4.2 is established in Theorem 4.4.2.

Theorem 4.4.2. Algorithm 4.4.2 finds an optimal solution to problem (4.4.7).

We note that at most there will be 16 KKT solutions and we show in the proof

in Appendix A that there are only 9 feasible KKT solutions.

4.5 Numerical Results and Insights

For the purpose of numerical experiments we consider the two-customers two-products

case discussed in Section 4.4.2. We use 1,927,680 data points defined by combinations

of the parameter sets shown in Table 4.1.

Note that for the purposes of numerical experiments, the customer ratings for

product one is equal or higher than that of product two; i.e., for all parameter set

combinations η1 ≥ η2. In Table 4.2 we present the breakdown of the proportion

of times that customers receive discounts. The two most interesting observations

are that the product with lower rating is discounted more frequently and that the

two products were never discounted simultaneously for a customer. In Sections 4.5.1

and 4.5.2 we will discuss the effects of parameters on profits and discount values,
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Li,j 5.00 10.00 15.00 20.00
si,j 0.50 0.75 1.00
bi 0.40 0.50 0.60 0.70
βi 0.20
λi 0.50 0.75 1.00
pj 3.00 5.00
rj 4.00
ηj 1.00 3.00 5.00
c 2.00

Table 4.1: Parameter Values

respectively. In Section 4.6 we will present managerial implications of our analysis

and suggestions for future research.

Proportion of times a customer received a discount 33.7 %

Proportion of times customer one received a discount 24.3 %

Proportion of times customer 1 received a discount for product 1 8.9 %

Proportion of times customer 1 received a discount for product 2 15.4 %

Proportion of times customer 1 received a discount for both products 0.0 %

Table 4.2: Proportion of discount offerings.

4.5.1 Effect of Parameters on Profits

In this section we discuss the effect of parameters on profits. More specifically, we

will discuss the results from four multiple linear regressions where total profit, profit

from customer 1, profits from selling product 1 to customer 1, and profit from selling

product 2 to customer 1 are the dependent variables.

The results of multiple linear regression where total profits and total profit from

customer 1 are the dependent variable are shown in Tables 4.3 and 4.4, respectively.

149



Ph.D. Thesis – S. Shams-Shoaaee McMaster University – Computational Sci.&Eng.

As expected, the shipping costs si,j have negative impact on profits. The coefficients

of customer brand loyalty parameters Li,j show that profits increase when customers

have higher loyalty to the product with the higher rating and lower loyalty to the

product with the lower rating. In addition, from the coefficients of product ratings

ηj, it is suggested that increasing the difference between product ratings increases

profits.

Although the objective is to maximize total profits, it is beneficial to look at profits

from each product separately. In Tables 4.5 and 4.6 we show the results of multiple

linear regression where profits from selling product 1 and product 2 to customer 1,

respectively. As we expect, shipping costs have negative impact on profits. The

coefficients of customer loyalty parameters L and product ratings η have opposite

signs for the two products; i.e., increasing the customer loyalty parameter for the

product with a higher rating and decreasing it for the product with a lower rating,

increases the profits from the product with a higher rating and decreases the profits

from the product with a lower rating. A similar pattern is observed for customer

ratings. More specifically, when the difference between product ratings increases,

the profits from the product with a higher rating increases; conversely, increasing

the difference between product ratings decreases the profits from the product with a

lower rating. It is also worth mentioning that the coefficient of the shipping costs for

product one s1,1 seem to have no effect on the profit from product 2 (Table 4.6).
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Estimate Std. Error t value Pr(>|t|)

(Intercept) -4.1027 0.0068 -602.85 < 2e− 16

L1,1 0.0017 0.0001 15.12 < 2e− 16

L1,2 -0.0006 0.0001 -5.67 1.44e− 08

L2,1 0.0017 0.0001 15.13 < 2e− 16

L2,2 -0.0006 0.0001 -5.65 1.65e− 08

s1,1 -0.6585 0.0030 -220.80 < 2e− 16

s1,2 -0.3908 0.0030 -131.05 < 2e− 16

s2,1 -0.6561 0.0030 -220.01 < 2e− 16

s2,2 -0.3875 0.0030 -129.94 < 2e− 16

p1 1.2367 0.0006 2003.71 < 2e− 16

p2 0.7128 0.0006 1154.96 < 2e− 16

η1 0.0597 0.0005 126.00 < 2e− 16

η2 -0.0597 0.0005 -126.00 < 2e− 16

λ1 0.0395 0.0027 14.44 < 2e− 16

λ2 0.0395 0.0027 14.45 < 2e− 16

Residual standard error: 0.8492 on 1, 927, 665 degrees of freedom

Multiple R-squared: 0.749, Adjusted R-squared: 0.749

F-statistic: 4.11e+ 05 on 14 and 1927665 DF, p-value: < 2.2e− 16

Table 4.3: Regression results where the total profit (Π) is the dependent variable.
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Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.5196 0.0038 -400.73 < 2e− 16

L1,1 0.0466 0.0001 746.38 < 2e− 16

L1,2 -0.0459 0.0001 -734.01 2.13e− 15

s1,1 -0.6444 0.0017 -382.74 < 2e− 16

s1,2 -0.0055 0.0017 -3.30 < 2e− 16

b1 -0.0119 0.0035 -3.39 8.11e− 09

λ1 0.1265 0.0015 82.04 < 2e− 16

p1 0.5614 0.0004 1591.72 < 2e− 16

p2 0.0616 0.0004 174.95 < 2e− 16

η1 0.1180 0.0003 442.06 < 2e− 16

η2 -0.1180 0.0003 -442.06 < 2e− 16

Residual standard error: 0.5567 on 1, 927, 669 degrees of freedom

Multiple R-squared: 0.6384, Adjusted R-squared: 0.6384

F-statistic: 3.403e+ 05 on 10 and 1, 927, 669 DF, p-value: < 2.2e− 16

Table 4.4: Regression results where the total profit from customer 1 (π1) is the
dependent variable.
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Estimate Std. Error t value Pr(>|t|)

(Intercept) -1.5196 0.0038 -400.73 < 2e− 16

L1,1 0.0466 0.0001 746.38 < 2e− 16

L1,2 -0.0459 0.0001 -734.01 < 2e− 16

s1,1 -0.6444 0.0017 -382.74 < 2e− 16

s1,2 -0.0055 0.0017 -3.30 0.000981

b1 -0.0119 0.0035 -3.39 0.000704

λ1 0.1265 0.0015 82.04 < 2e− 16

p1 0.5614 0.0004 1591.72 < 2e− 16

p2 0.0616 0.0004 174.95 < 2e− 16

η1 0.1180 0.0003 442.06 < 2e− 16

η2 -0.1180 0.0003 -442.06 < 2e− 16

Residual standard error: 0.4786 on 1, 927, 669 degrees of freedom

Multiple R-squared: 0.6752, Adjusted R-squared: 0.6752

F-statistic: 4.006e+ 05 on 10 and 1, 927, 669 DF, p-value: < 2.2e− 16

Table 4.5: Regression results where the profit from customer 1, product 1 (π1,1) is
the dependent variable.

153



Ph.D. Thesis – S. Shams-Shoaaee McMaster University – Computational Sci.&Eng.

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5369 0.0034 -156.32 < 2e− 16

L1,1 -0.0449 0.0001 -757.55 < 2e− 16

L1,2 0.0453 0.0001 764.59 < 2e− 16

s1,2 -0.3710 0.0016 -232.73 < 2e− 16

b1 -0.0119 0.0033 -3.57 0.000354

λ1 -0.0870 0.0015 -59.52 < 2e− 16

p1 0.0566 0.0003 169.58 < 2e− 16

p2 0.2942 0.0003 881.43 < 2e− 16

η1 -0.0882 0.0003 -348.41 < 2e− 16

η2 0.0882 0.0003 348.41 < 2e− 16

Residual standard error: 0.4537 on 1, 927, 670 degrees of freedom

Multiple R-squared: 0.5178, Adjusted R-squared: 0.5178

F-statistic: 2.3e+ 05 on 9 and 1, 927, 670 DF, p-value: < 2.2e− 16

Table 4.6: Regression results where the profit from customer 1, product 2 (π1,2) is
the dependent variable.

4.5.2 Effect of Parameters on Discounts

In this section we present the effects of parameters on optimal discount values. In

Tables 4.7 and 4.8 we show the results from multiple linear regression where the

discount provided to customer 1 for product 1 (d1,1) and the discount provided to

customer 1 for product 2 (d1,2) are dependent variables.

154



Ph.D. Thesis – S. Shams-Shoaaee McMaster University – Computational Sci.&Eng.

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.0874 0.0011 -79.39 < 2e− 16

L1,1 -0.0053 0.0000 -292.05 < 2e− 16

L1,2 0.0053 0.0000 289.36 < 2e− 16

s1,1 -0.0649 0.0005 -132.72 < 2e− 16

s1,2 0.0952 0.0005 194.89 < 2e− 16

b1 0.1434 0.0010 140.23 < 2e− 16

λ1 -0.0065 0.0004 -14.56 < 2e− 16

p1 0.0519 0.0001 506.38 < 2e− 16

p2 -0.0383 0.0001 -374.26 < 2e− 16

η1 -0.0109 0.0001 -140.63 < 2e− 16

η2 0.0109 0.0001 140.63 < 2e− 16

Residual standard error: 0.139 on 1, 927, 669 degrees of freedom

Multiple R-squared: 0.2468, Adjusted R-squared: 0.2468

F-statistic: 6.318e+ 04 on 10 and 1, 927, 669 DF, p-value: < 2.2e− 16

Table 4.7: Multiple linear regression results where the discount provided to
customer 1 for product 1 (d1,1) is the dependent variable.
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Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.1671 0.0014 -119.26 < 2e− 16

L1,1 0.0054 0.0000 232.69 < 2e− 16

L1,2 -0.0054 0.0000 -235.28 < 2e− 16

s1,1 0.1449 0.0006 233.05 < 2e− 16

s1,2 -0.1423 0.0006 -229.04 < 2e− 16

b1 0.2382 0.0013 183.15 < 2e− 16

λ1 0.0105 0.0006 18.38 < 2e− 16

p1 -0.0723 0.0001 -554.92 < 2e− 16

p2 0.0969 0.0001 745.11 < 2e− 16

η1 0.0137 0.0001 139.07 < 2e− 16

η2 -0.0137 0.0001 -139.07 < 2e− 16

Residual standard error: 0.1768 on 1, 927, 669 degrees of freedom

Multiple R-squared: 0.3622, Adjusted R-squared: 0.3622

F-statistic: 1.095e+ 05 on 10 and 1, 927, 669 DF, p-value: < 2.2e− 16

Table 4.8: Multiple linear regression results where the discount provided to
customer 1 for product 2 (d1,2) is the dependent variable.

The effect of customer loyalty and product rating are similar in sign; that is, in-

creasing customer loyalty to a product and/or product rating, decreases the optimal

discount value for the product and increases the discounts for the other (competing)

product. Similar effect is observed with shipping costs. We also observe that in-

creasing price of a product, increases the discount for that product and decreases the

discount for the other (competing) product. It is also worth noting that the customer

price sensitivity parameter b has a positive effect on discounts.
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4.6 Conclusions and Future Research

As discussed in Section 4.1, online shopping is becoming increasingly popular and the

growth in mobile technology has made it easy and cheap to adjust prices frequently,

target marketing messages, and personalize discounts. In addition, we are witnessing

a proliferation of discount codes through retailers and third party websites such as

Wikibuy, RetailMeNot, and Slickdeals. We presented the four main research areas

that are relevant to this paper in Section 4.2, namely, customer choice and product

recommendation systems, location based pricing and shipping fees, price discounts,

and reference prices. We find that there is a gap in the literature on studies that

consider a personalized discount pricing optimization as a tool for price discrimination

taking into account customer location and product ratings in a multinomial choice

model framework. In our study we assumed a free-shipping policy where all shipping

costs are absorbed by the retailer.

In Section 4.4 we presented the problem statement and formulation together with

closed form solutions for special cases. We used 1,927,680 data points for numerical

analysis in Section 4.5. The following are the summary of our findings and managerial

implications:

• The product with lower rating is discounted more frequently than the product

with higher rating.

• The two products were never discounted simultaneously for a customer.

• As expected, the shipping costs si,j’s have negative impact on profits.

• Profits increase when customers have higher loyalty to the product with the

higher rating and lower loyalty to the product with the lower rating; i.e., the
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larger gap between product preference. Managers may consider targeted mar-

keting to achieve this larger gap.

• Increasing the difference between product ratings increases profits. This can

be achieved by adjusting default product review sorting that biases the average

ratings.

• The optimal discount value for a product-customer pair decreases as customer’s

loyalty to the product and the competing product increases and decreases, re-

spectively. Similar effect is observed with shipping costs.

• The optimal discount value for a product-customer pair increase as the product

price and the competing product price increase and decreases, respectively.

Our work can be extended in several ways. First, the work can be expanded to a

multi-period horizon where reference prices and product ratings change as a response

to net prices. Second, inventory holding and ordering costs, lead time, and the costs

associated with loss of market share as a result of shortages can be added in future

research. Third, in this paper, we considered a one-retailer case. This study can be

extended to a duopoly market.
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Appendix A: Proofs

Proof of Proposition 4.4.1. Let J denote the Jacobian matrix defined as

J =

 ∂2Π
∂d21,1

∂2Π
∂d1,1∂d2,1

∂2Π
∂d2,1∂d1,1

∂2Π
∂d22,1

 (4..1)

We have

J1,1 =
− (b1 + β1)(

exp
{
U1,1

}
+ 1
)3 (

exp
{
U2,1

}
+ 1
) [(2 + (b1 + β1) NP1

)
exp

{
2U1,1 + U2,1

}
(4..2)

+
(
2− (b1 + β1) NP1

)
exp

{
U1,1 + U2 ,1

}
+
(
2 + (b1 + β1) NP1

)
exp

{
2U1,1

}
+
(
2− (b1 + β1) NP1

)
exp

{
U1,1

}]
J1,2 =0 (4..3)

J2,1 =0 (4..4)

J2,2 =
− (b2 + β2)(

exp
{
U2,1

}
+ 1
)3 (

exp
{
U1,1

}
+ 1
) [(2 + (b2 + β2) NP2

)
exp

{
2U2,1 + U1,1

}
(4..5)

+
(
2− (b2 + β2) NP2

)
exp

{
U2,1 + U1 ,1

}
+
(
2 + (b2 + β2) NP2

)
exp

{
2U2,1

}
+
(
2− (b2 + β2) NP2

)
exp

{
U2,1

}]

where NPi is the unit net profit from selling the product to customer i; i.e.,

NPi = p1 − di ,1 − si ,1 − c1 (4..6)
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For problem (4.4.7) to be a convex problem, matrix J must be a negative semi-definite

matrix. Since J is a diagonal matrix, we must show that the diagonal entries of J

are non-positive. The term −(b1+β1)(
exp{U1,1}+1

)3(
exp{U2,1}+1

) in (4..3) is negative. We must

then show

J1,1 ≤ 0 (4..7)

⇔
(
2 + (b1 + β1) NP1

)
exp

{
2U1,1 + U2,1

}
+
(
2− (b1 + β1) NP1

)
exp

{
U1,1 + U2 ,1

}
(4..8)

+
(
2 + (b1 + β1) NP1

)
exp

{
2U1,1

}
+
(
2− (b1 + β1) NP1

)
exp

{
U1,1

}
≥ 0

⇔
(
2 + (b1 + β1) NP1

) [
exp

{
2U1,1 + U2,1

}
+ exp

{
2U1,1

}]
(4..9)

+
(
2− (b1 + β1) NP1

) [
exp

{
U1,1 + U2 ,1

}
+ exp

{
U1,1

}]
≥ 0

⇔
(
2 + (b1 + β1) NP1

)
exp

{
2U1,1

}(
1 + exp

{
U2,1

})
(4..10)

+
(
2− (b1 + β1) NP1

)
exp

{
U1,1

}(
1 + exp

{
U2,1

})
≥ 0

⇔
(
2 + (b1 + β1) NP1

)
exp

{
2U1,1

}
+
(
2− (b1 + β1) NP1

)
exp

{
U1,1

}
≥ 0 (4..11)

⇔
(
2 + (b1 + β1) NP1

)
exp

{
U1,1

}
+ 2− (b1 + β1) NP1 ≥ 0 (4..12)

⇔ 2
(

1 + exp
{
U1,1

})
+ (b1 + β1) NP1

(
exp

{
U1,1

}
− 1
)
≥ 0 (4..13)

Since U1,1 ≥ 0, then

exp
{
U1,1

}
− 1 ≥ 0 (4..14)

⇒ 2
(

1 + exp
{
U1,1

})
+ (b1 + β1) NP1

(
exp

{
U1,1

}
− 1
)
≥ 0 (4..15)

⇒ J1,1 ≤ 0 (4..16)
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Similarly, we can show that J2,2 ≤ 0, and the results follow.

Proof of Theorem 4.4.1. The following are the KKT conditions used to solve

problem (4.4.7)

Primal Feasibility

di,j ≤ pj − cj − si,j ∀ i ∈ {1, 2} , j = 1 (4..17a)

di,j ≥ 0 ∀ i ∈ {1, 2} , j = 1 (4..17b)

Dual Feasibility

ui,j ≥ 0 ∀ i ∈ {1, 2} , j = 1 (4..17c)

vi,j ≥ 0 ∀ i ∈ {1, 2} , j = 1 (4..17d)

Stationarity

∂Π

∂di,j
− ui,j + vi,j = 0 ∀ i ∈ {1, 2} , j = 1 (4..17e)

Complementary Slackness

ui,j

[
di,j −

(
pj − cj − si,j

)]
= 0 ∀ i ∈ {1, 2} , j = 1 (4..17f)

vi,jdi,j = 0 ∀ i ∈ {1, 2} , j = 1 (4..17g)

We will use the following Lemma to prove the theorem.

Lemma 4..1. If ui,j > 0 and vi,j > 0 for any i ∈ {1, 2} and j = 1, the KKT

conditions (4..17f) - (4..17g) are infeasible.
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Proof of Lemma 4..1 is as follows:

For a pair (i, j), let ui,j > 0 and vi,j > 0. From complementary slackness conditions

(4..17f)-(4..17g), we must have

ui,j

[
di,j −

(
pj − cj − si,j

)]
= 0 (4..18)

vi,jdi,j = 0 (4..19)

Since ui,j > 0 and vi,j > 0, we must therefore have

di,j = pj − cj − si,j (4..20)

di,j = 0 (4..21)

This is in contradiction with the assumption that pj − cj − si,j > 0 for all (i, j) and

the results from Lemma 4..1 follows.

From Lemma 4..1 we will show that there are nine possible feasible cases with

closed form solutions for KKT conditions (4..17e)-(4..17g). We know that there are

the following three possible cases for a given pair (i, j)

• ui,j = 0 and vi,j = 0

• ui,j > 0 and vi,j = 0

• ui,j = 0 and vi,j > 0

Since j ∈ {1, 2} for i = 1, we have nine feasible solutions with the following closed

form solutions. The solutions are verified by direct substitution.
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Case 1: u1,1 = 0 , u2,1 = 0 , v1,1 = 0 , v2,1 = 0

d1,1 =
1

β1 + b1

[
(p1 − c− s1) (b1 + β1)− 1 (4..22)

− LambertW
(

exp
{

(r1 − c− s1) β1 + (−c− s1) b1 + λ1η1 + L1 − 1
})]

d2,1 =
1

β2 + b2

[
(p1 − c− s2) (b2 + β2)− 1 (4..23)

− LambertW
(

exp
{

(r1 − c− s2) β2 + (−c− s2) b2 + λ2η1 + L2 − 1
})]

Case 2: u1,1 = 0 , u2,1 = 0 , v1,1 = 0 , v2,1 > 0

d1,1 =
1

β1 + b1

[
(p1 − c− s1) (b1 + β1)− 1 (4..24)

− LambertW
(

exp
{

(r1 − c− s1) β1 + (−c− s1) b1 + λ1η1 + L1 − 1
})]

d2,1 = 0 (4..25)

Case 3: u1,1 = 0 , u2,1 = 0 , v1,1 > 0 , v2,1 = 0

d1,1 = 0 (4..26)

d2,1 =
1

β2 + b2

[
(p1 − c− s2) (b2 + β2)− 1 (4..27)

− LambertW
(

exp
{

(r1 − c− s2) β2 + (−c− s2) b2 + λ2η1 + L2 − 1
})]

Case 4: u1,1 = 0 , u2,1 = 0 , v1,1 > 0 , v2,1 > 0

d1,1 = 0 (4..28)

d2,1 = 0

163



Ph.D. Thesis – S. Shams-Shoaaee McMaster University – Computational Sci.&Eng.

Case 5: u1,1 = 0 , u2,1 > 0 , v1,1 = 0 , v2,1 = 0

d1,1 =
1

b1 + β1

[
(p1 − c− s1) (b1 + β1)− 1 (4..29)

−LambertW
(

exp
{

(r1 − c− s1) β1 + (−c− s1) b1 + λ1η1 + L1 − 1
})]

d2,1 = p1 − c− s2 (4..30)

Case 6: u1,1 = 0 , u2,1 > 0 , v1,1 > 0 , v2,1 = 0

d1,1 = 0 (4..31)

d2,1 = p1 − c− s2 (4..32)

Case 7: u1,1 > 0 , u2,1 = 0 , v1,1 = 0 , v2,1 = 0

d1,1 = p1 − c− s1 (4..33)

d2,1 =
1

b2 + β2

[
(p1 − c− s2) (b2 + β2)− 1 (4..34)

− LambertW
(

exp
{

(r1 − c− s2) β2 + (−c− s2) b2 + λ2η1 + L2 − 1
})]

Case 8: u1,1 > 0 , u2,1 = 0 , v1,1 = 0 , v2,1 > 0

d1,1 = p1 − c− s1 (4..35)

d2,1 = 0 (4..36)
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Case 9: u1,1 > 0 , u2,1 > 0 , v1,1 = 0 , v2,1 = 0

d1,1 = p1 − c− s1 (4..37)

d2,1 = p1 − c− s2 (4..38)

Proof of Proposition 4.4.2. Let J denote the Jacobian matrix. The Jacobian

matrix is of the form

J =

J (1,1) J (1,2)

J (2,1) J (2,2)

 (4..39)

where

J (1,1) =

 ∂2Π
∂d21,1

∂2Π
∂d1,1∂d2,1

∂2Π
∂d2,1∂d1,1

∂2Π
∂d22,1

 J (1,2) =

0 0

0 0

 (4..40)

J (2,1) =

0 0

0 0

 J (1,1) =

 ∂2Π
∂d21,2

∂2Π
∂d1,2∂d2,2

∂2Π
∂d2,2∂d1,2

∂2Π
∂d22,2

 (4..41)

Let

NPi,j = pi − ci − si,j − di,j (4..42)

Bi = bi + βi (4..43)
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We have

max

{
BiÑPi

∣∣∣∣i ∈ 1, 2

}
≤ 2 (4..44)

⇒ B1ÑP1 ≤ 2 (4..45)

(4..46)

Then

B1NP1,1

(
exp

{
U1,2

}
− exp

{
U1,1

}
+ 1
)

+B1NP1,2

(
exp

{
U1,1

}
− exp

{
U1,2

})
(4..47)

≤ B1ÑP1

(
exp

{
U1,1

}
+ exp

{
U1,2

}
+ 1
)
≤ 2

(
exp

{
U1,1

}
+ exp

{
U1,2

}
+ 1
)
(4..48)

⇒B1NP1,1

(
exp

{
U1,2

}
+ 1
)2

+B1NP1,2 exp
{
U1,1

}(
exp

{
U1,2

}
+ 1
)

(4..49)

≤ 2
(

exp
{
U1,2

}
+ 1
)(

exp
{
U1,1

}
+ exp

{
U1,2

}
+ 1
)

(4..50)

+
(

exp
{
U1,2

}
+ 1
)(

B1NP1,1 exp
{
U1,1

}
+B1NP1,2 exp

{
U1,2

})
(4..51)

⇒B1NP1,1

(
exp

{
U1,2

}
+ 1
)2

+B1NP1,2 exp
{
U1,1

}
exp

{
U1,2

}
(4..52)

≤ 2
(

exp
{
U1,2

}
+ 1
)(

exp
{
U1,1

}
+ exp

{
U1,2

}
+ 1
)

(4..53)

+
(

exp
{
U1,2

}
+ 1
)(

B1NP1,1 exp
{
U1,1

}
+B1NP1,2 exp

{
U1,2

})
(4..54)

⇒(−2)
[
exp

{
2U1,2

}
+ exp

{
U1,1 + U1,2

}
+ 2 exp

{
U1,2

}
+ exp

{
U1,1

}
+ 1
]

(4..55)

−B1NP1,1

[
exp

{
U1,1

}(
exp

{
U1,2

}
+ 1
)
− exp

{
U1,2

}(
exp

{
U1,2

}
+ 2
)
− 1

]
(4..56)
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−B1NP1,2 exp
{
U1,2

}(
− exp

{
U1,1

}
+ exp

{
U1,2

}
+ 1
)
≤ 0 (4..57)

⇒
[
−2 +

(
NP1,1 − NP1,2

)
B1

]
exp

{
U1,1 + 2U1,2

}
(4..58)

+
[
−2 +

(
NP1,2 − NP1,1

)
B1

]
exp

{
2U1,1 + U1,2

}
(4..59)

+
[
−4 +

(
2NP1,1 − NP1,2

)
B1

]
exp

{
U1,1 + U1,2

}
(4..60)

+B1NP1,1

(
exp

{
U1,1

}
− exp

{
2U1,1

})
− 2 exp

{
U1,1

}
− 2 exp

{
2U1,1

}
≤ 0

(4..61)

⇒ B1(
exp

{
U1,1

}
+ exp

{
U1,2

}
+ 1
)3

{[
−2 +

(
NP1,1 − NP1,2

)
B1

]
exp

{
U1,1 + 2U1,2

}
(4..62)

+
[
−2 +

(
NP1,2 − NP1,1

)
B1

]
exp

{
2U1,1 + U1,2

}
(4..63)

+
[
−4 +

(
2NP1,1 − NP1,2

)
B1

]
exp

{
U1,1 + U1,2

}
(4..64)

+B1NP1,1

(
exp

{
U1,1

}
− exp

{
2U1,1

})
− 2 exp

{
U1,1

}
− 2 exp

{
2U1,1

}}
(4..65)

= J
(1,1)
1,1 ≤ 0 (4..66)

Because Ui,j ≥ 0, we have

exp
{
Ui,j
}
≥ 1 (4..67)

This will result in

det
(
J (1,1)

)
> 0 (4..68)

Therefore, J (1,1) is a negative semi-definite matrix. Similarly, we can show that J (2,2)
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is also a negative semi-definite matrix. This results in J being a negative semi-definite

matrix, and the results follow.

Proof of Theorem 4.4.2. Below are the KKT conditions we will use to solve prob-

lem (4.4.7):

Primal Feasibility

di,j ≤ pj − cj − si,j ∀ i ∈ {1, 2} , j ∈ {1, 2} (4..69a)

di,j ≥ 0 ∀ i ∈ {1, 2} , j ∈ {1, 2} (4..69b)

Dual Feasibility

ui,j ≥ 0 ∀ i ∈ {1, 2} , j ∈ {1, 2} (4..69c)

vi,j ≥ 0 ∀ i ∈ {1, 2} , j ∈ {1, 2} (4..69d)

Stationarity

∂Π

∂di,j
− ui,j + vi,j = 0 ∀ i ∈ {1, 2} , j ∈ {1, 2} (4..69e)

Complementary Slackness

ui,j

[
di,j −

(
pj − cj − si,j

)]
= 0 ∀ i ∈ {1, 2} , j ∈ {1, 2} (4..69f)

vi,jdi,j = 0 ∀ i ∈ {1, 2} , j ∈ {1, 2} (4..69g)

Since KKT conditions (4..69) are independent when decomposed by i, KKT condi-

tions (4..69) can be decomposed by customer i and solved separately. We will use the

168



Ph.D. Thesis – S. Shams-Shoaaee McMaster University – Computational Sci.&Eng.

following Lemma to prove the theorem.

Lemma 4..2. If ui,j > 0 and vi,j > 0 for any i, j ∈ {1, 2}, the KKT conditions

(4..69f)-(4..69g) are infeasible.

Proof of Lemma 4..2 is is similar to that of Lemma 4..1.

From Lemma 4..2, we know that there are the following three possible cases for a

given pair (i, j)

• ui,j = 0 and vi,j = 0

• ui,j > 0 and vi,j = 0

• ui,j = 0 and vi,j > 0

Since j ∈ {1, 2} for for each value of i, we have nine feasible solutions with the

following closed form solutions. The solutions are verified by direct substitution.

Case 1: ui,1 = 0 , vi,1 = 0 , ui,2 = 0 , vi,2 = 0

di,1 =
1

βi + bi

[ (
p1 − si,1 − c1

)
(bi + βi)− 1 (4..70)

− LambertW

((
1 + exp

{(
−si,1 + si,2 − c1 + c2 + r1 − r2

)
βi

+
(
−si,1 + si,2 − c1 + c2

)
bi + 2 (η1 − η2)λi + Li,1 − Li,2

})
× exp

{(
−c2 + r2 − s1,2

)
β1 + λ1 (η2 − η1)− c2b1 − s1,2b1 + L1,2 − 1

})]

di,2 =
1

βi + bi

[ (
p2 − si,2 − c2

)
(bi + βi)− 1 (4..71)

− LambertW

((
1 + exp

{(
−si,1 + si,2 − c1 + c2 + r1 − r2

)
βi
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+
(
−si,1 + si,2 − c1 + c2

)
bi + 2 (η1 − η2)λi + Li,1 − Li,2

})
× exp

{(
−c2 + r2 − s1,2

)
β1 + λ1 (η2 − η1)− c2b1 − s1,2b1 + L1,2 − 1

})]

Case 2: u1,1 = 0 , u2,1 = 0 , v1,1 = 0 , v2,1 > 0

di,1 =
1(

exp
{
Li,2 − bip2 + βi (r2 − p2) + λi (η2 − η1)

}
+ 1
)

(bi + βi)
(4..72)

[(
− exp

{
Li,2 − bip2 + βi (r2 − p2) + λi (η2 − η1)

}
− 1
)

LambertW

((
exp

{
Li,2 − bip2 + βi (r2 − p2) + λi (η2 − η1)

}
+ 1
)−1

exp

{(
exp

{
Li,2 − bip2 + βi (r2 − p2) + λi (η2 − η1)

}
+ 1
)−1

((
−si,1 + si,2 − c1 + c2 − p2

)
(bi + βi) + r1βi + λi (η1 − η2) + Li,1 − 1

)
exp

{
Li,2 − bip2 + βi (r2 − p2) + λi (η2 − η1)

}
+
(
−si,1 − c1 + r1

)
βi +

(
−si,1 − c1

)
bi + λi (η1 − η2) + Li,1 − 1

})

+
((
−si,1 + si,2 − c1 + c2 + p1 − p2

)
(bi + βi)− 1

)
exp

{
Li,2 − bip2 + βi (r2 − p2) + λi (η2 − η1)

}
+
(
−si,1 − c1 + p1

)
(bi + βi)− 1

]

di,2 = 0
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Case 3: u1,1 = 0 , u2,1 = 0 , v1,1 > 0 , v2,1 = 0

di,1 =
1

bi + βi

[
− LambertW

exp
{(
−si,1 − c1

)
(bi + βi) + r1βi + λi (η1 − η2) + Li,1 − 1

}
exp

{(
−si,2 − c2

)
(bi + βi) + r2βi + λi (η2 − η1) + Li,2

}
+ 1


+
(
p1 − si,1 − c1

)
(bi + βi)− 1

]
(4..73)

di,2 = p2 − si,2 − c2 (4..74)

Case 4: u1,1 = 0 , u2,1 = 0 , v1,1 > 0 , v2,1 > 0

di,1 = 0 (4..75)

di,2 =
1(

exp
{
Li,1 − bip1 + βi (r1 − p1) + λi (η1 − η2)

}
+ 1
)

(bi + βi)
(4..76)

[(
− exp

{
Li,1 − bip1 + βi (r1 − p1) + λi (η1 − η2)

}
− 1
)

LambertW

((
exp

{
Li,1 − bip1 + βi (r1 − p1) + λi (η1 − η2)

}
+ 1
)−1

exp

{(
exp

{
Li,1 − bip1 + βi (r1 − p1) + λi (η1 − η2)

}
+ 1
)−1

((
−si,2 + si,1 − c2 + c1 − p1

)
(bi + βi) + r2βi + λi (η2 − η1) + Li,2 − 1

)
exp

{
Li,1 − bip1 + βi (r1 − p1) + λi (η1 − η2)

}
+
(
−si,2 − c2 + r2

)
βi +

(
−si,2 − c2

)
bi + λi (η2 − η1) + Li,2 − 1

})

+
((
−si,2 + si,1 − c2 + c1 + p2 − p1

)
(bi + βi)− 1

)
exp

{
Li,1 − bip1 + βi (r1 − p1) + λi (η1 − η2)

}
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+
(
−si,2 − c2 + p2

)
(bi + βi)− 1

]

Case 5: u1,1 = 0 , u2,1 > 0 , v1,1 = 0 , v2,1 = 0

di,1 = 0 (4..77)

di,2 = 0 (4..78)

Case 6: u1,1 = 0 , u2,1 > 0 , v1,1 = 0 , v2,1 > 0

di,1 = 0 (4..79)

di,2 = p2 − si,2 − c2 (4..80)

Case 7: u1,1 = 0 , u2,1 > 0 , v1,1 > 0 , v2,1 = 0

di,1 = pi − si,1 − ci (4..81)

di,2 =
1

bi + βi

[ (
p2 − si,2 − c2

)
(bi + βi)− 1 (4..82)

− LambertW

exp
{(
−c2 − si,2

)
(bi + βi) + r2βi + λi (η2 − η1) + Li,2 − 1

}
exp

{(
−si,1 − c1

)
(bi + βi) + r1βi + λi (η1 − η2) + Li,1

}
+ 1

]

Case 8: u1,1 = 0 , u2,1 > 0 , v1,1 > 0 , v2,1 > 0

di,1 = p1 − si,1 − c1 (4..83)
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di,2 = 0 (4..84)

Case 9: u1,1 > 0 , u2,1 = 0 , v1,1 = 0 , v2,1 = 0

di,1 = p1 − si,1 − c1 (4..85)

di,2 = p2 − si,2 − c2 (4..86)

(4..87)
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Appendix B: Notation

Decision Variables

di,j The amount of discount provided to customer i for product j

Symbols

Ui,j The utility that customer i enjoys from action j.

χi,j The probability that customer i chooses action j.

πi,j The expected profits from selling product j to customer i.

πi The expected profits from customer i.

Πi,j Expected total profits.

Indices

i Customers (i ∈ I)

j Products

Parameters

Li,j Customer i’s loyalty to product j.

bi Customer i’s price sensitivity parameter.

pj List price of product j.

cj Unit cost of product j, ci ≥ 0.

si,j Cost of shipping product j to customer i.

βi Customer i’s sensitivity to price departures from reference price.

λi Customer i’s weight for ratings

ηj Customer rating for product j.

rj Reference price for product j.

Table 4.9: List of notations
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Chapter 5

Conclusion and Future Research

As discussed in Chapter 1, the main focus of this thesis is to bridge some of the gaps

in the literature on pricing optimization in an e-commerce context. In doing so, this

research significantly contributes to new models and solution methods discussed in

Chapters 2-4.

Chapter 2 focused on price optimization in the presence of reference prices with

threshold. The existing literature in this area has mostly relied on dynamic program-

ming. This has lead to solving small sized problems due to the “curse of dimen-

sionality” that is inevitable in dynamic programming algorithms. With the rise of

e-commerce giants like Amazon, the growing popularity of online retail, and the avail-

ability of data, the need to solve large problems is evident. In response to this need,

in Chapter 2 a myopic heuristic and a modified generalized Benders’ decomposition

(GBD) method for finding optimal pricing in a multi-period pricing problem with ref-

erence pricing and thresholds has been proposed. This was followed by establishing

analytical results for finding optimal solutions for the heuristic algorithm. In terms

of optimality of results, the modified GBD outperforms the heuristic. It was also

180



Ph.D. Thesis – S. Shams-Shoaaee McMaster University – Computational Sci.&Eng.

shown that running the GBD for 100 iterations achieves solutions similar in quality

to the case when it is ran for 1000 iterations, but at much lower computational times.

Numerical experiments show that the heuristic method works well for products with

high profit margin and customer brand loyalty. Because using the myopic heuristic

does not require any solver licensing and it requires minimal computational time, in

these cases it may be preferable to the GBD method. However, in other cases, the

GBD outperforms the myopic heuristic significantly. Also, solving the multi-period

profit maximization problem can assist managers in deciding about general pricing

strategies, such as every day low pricing or high-low pricing.

The focus of Chapter 3 was to explicitly study customer rating as a response to

prices where prices are decision variables in a revenue optimization problem utilizing

reference prices, customer ratings, and cross-price effects. A new model for forecasting

reviews was introduced and then validated using Amazon data. This was followed by

implementing a linear demand model that accounts for reference prices, cross-price

effects, and customer ratings in a comprehensive price optimization model for multiple

products in an online retail environment. In addition, a heuristic solution method

was introduced and compared with commercial solvers. Computational experiments

and the effect of parameters on total profits were then studied. It was shown that

ignoring customer rating and/or cross-price effects can lead to large profit losses when

• the difference in initial rating of products is high,

• the product with lower initial rating has low demand price sensitivity,

• the product with higher initial rating has high demand price sensitivity,

• the customer reference price memory parameter (α), is low, and
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• the customer memory parameter for rating (θ) and the weight of difference in

ratings in demand (λ) are high.

It was also discussed that it is to the retailer’s benefit to reduce the weight of previous

period’s customer rating directly or indirectly. This may be one factor that the de-

fault sorting of reviews on online retailers such as Amazon.com is “top reviews” rather

than “recent reviews”. In addition, reducing the effect of cross-price effects increases

retailer’s total profits. This can lead to further research for selecting “relevant prod-

ucts” at the time a customer is observing the product. It was also noted that form

28,187 parameter sets used in our computational experiments, the heuristic method’s

relative error was less than 10% in approximately 87% of cases and less than 5% in

approximately 46% of cases. Finally, conditions under which the heuristic method

produces close to optimal results and may be preferable over commercial solvers was

presented. As discussed, the myopic heuristic performs well when

• the difference in initial ratings is high,

• the product with higher initial rating has high customer price sensitivity and

low profit margin, and

• the product with lower initial rating has low customer price sensitivity and high

profit margin.

Under such circumstances, a retailer may prefer to use the myopic heuristic instead

of commercial solvers due to the licensing costs of commercial solvers and the com-

putational performance of the myopic heuristic.

Chapter 4 focused on studying personalised price discount optimization in a bi-

nary choice model utilizing customer locations and product review data. To do so,
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customers’ utility and purchase probabilities from customer choice literature was mod-

ified to account for prices, discounts, and ratings. Following this, closed form solutions

were derived for special cases of the price discount optimization problem. For the pur-

pose of computational experiments, 1,927,680 data points were used. The following

are the summary of our findings and managerial implications:

• The product with a lower rating is discounted more frequently than the product

with a higher rating.

• The two products were never discounted simultaneously for a customer.

• As expected, the shipping costs have negative impact on profits.

• Profits increase when customers have higher loyalty to the product with the

higher rating and lower loyalty to the product with the lower rating; i.e., the

larger gap between product preference. Managers may consider targeted mar-

keting to achieve this larger gap.

• Increasing the difference between product ratings increases profits. This can

be achieved by adjusting default product review sorting that biases the average

ratings.

• The optimal discount value for a product-customer pair decreases as customer’s

loyalty to the product and the competing product increases and decreases, re-

spectively. Similar effect is observed with shipping costs.

• The optimal discount value for a product-customer pair increases as the product

price and the competing product price increases and decreases, respectively.
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5.1 Future Research Directions

In this section, future research directions for each chapter are discussed. This is

followed by a general discussion of extensions in the overall thesis theme.

5.1.1 Chapter 2

This work can be extended in several ways. First, by incorporating uncertainty in

the demand function. This can be accomplished by adding a stochastic term to the

demand function. Inventory holding and ordering costs, lead time, and the costs

associated with loss of market share as result of shortages also need to be added in

future research. Second, the demand function and the model of reference price ignore

the effect of competition in the reference price and demand. A new reference price

function can be introduced that incorporates the effects of competition.

5.1.2 Chapter 3

Similar to work in Chapter 2, uncertainty can be incorporated in the demand function.

This can be accomplished by adding a stochastic term to the demand function in a

multiplicative or additive manner. Inventory holding and ordering costs, lead time,

and the costs associated with loss of market share as a result of shortages can also be

considered in future research. In addition, this study can be extended to a duopoly

market. Also, the model of customer rating can further be expanded to capture the

effects of reference price and other factors.
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5.1.3 Chapter 4

The work in this chapter can be expanded to a multi-period horizon where reference

prices and product ratings change as a response to net prices. Second, inventory

holding and ordering costs, lead time, and the costs associated with loss of market

share as a result of shortages can be added in future research. Third, this study can

be extended to a duopoly market.

5.1.4 General Directions for Future Research

The overall theme of the thesis is to achieve optimal pricing, directly or indirectly. In

Chapter 2 this was achieved in the presence of reference prices with thresholds. This

idea was then expanded in Chapter 3 by modelling and adding the effects of customer

ratings. In Chapter 4 the pricing problem was considered indirectly by using discount

coupons as a way of price discrimination considering individual customers’ preferences

and location while taking into account the product rating. As such a natural extension

to the research in this thesis is to consider a multi-product, duopoly market in presence

of reference prices, product ratings in a finite multi-period horizon where prices and

discounts are decision variables. In Chapter 4 it was assumed that shipping fees are

fully absorbed by the retailer. The problem can further be expanded by considering

the free-shipping order threshold as a decision variable. In addition, this problem can

be considered from a courier company’s point view; that is, how should a shipping

company price its services provided to a retailer while taking into account retailer’s

optimal pricing and free shipping policies to achieve competitive advantage. Finally,

an interesting extension of our model in Chapter 4 is to consider the problem of

integrating pricing decisions with routing decisions.
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