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Abstract

One of the questions arising as regards to structured materials is how one can compute

their cluster concentrations. Specifically, we are interested in deriving the concentra-

tions of the micro-structures in the NMC (Nickel-Manganese-Cobalt) layer of the cath-

odes of Li-ion batteries. A simulated annealing approach has been used lately for detect-

ing the structure of the whole lattice which is computationally heavy. Here we propose

a mathematical model, called cluster approximation model, in the form of a dynamical

system for describing the concentrations of different clusters inside the lattice. How-

ever, the dynamical system is hierarchical which requires to be truncated. Truncation

of the hierarchical system is performed by the nearest-neighbor closure scheme. Also,

a novel framework is proposed for an optimal closure of the dynamical system in order

to enhance the accuracy of the model. The parameters of the model are reconstructed

by the least square approach as a constrained optimization problem by minimizing the

mismatch between the experimental data and the model outputs. The model is validated

based on the experimental data on a known Li-ion battery cathode and different approx-

imation schemes are compared. The results clearly show that the proposed approach

significantly outperforms the conventional method.

iii



Acknowledgements

First and foremost is my deepest gratitude to my supervisor, professor Bartosz Protas,

for his massive support. His academic wisdom and intelligence have always assisted

me through this research and has enlightened my work. His guidance has helped me in

every aspect of my academic life. His advice and supervision will undoubtedly continue

to benefit me in my research and writing throughout my academic and career life. With

great enthusiasm I am looking forward to starting my PhD studies under his supervision.

I would also like to express my gratitude to my supervisory committee member,

Dr. Jamie Foster, for his great support throughout this research. He has watched our

work closely and has always provided us with great research ideas. He has had a great

contribution to our team by providing necessary information and tools from his work.

His insight and brilliance in this field has always helped us in this research. I would also

like to thank professor Li Xi for reviewing our work and providing us with insightful

comments.

I am also thankful to all staff, faculty members and graduate students of School of

Computational Science and Engineering and Department of Mathematics for making

my stay warm and pleasant.

Finally, many thanks to my family for their love and support through this journey.

Their patience and guidance have always been with me in my life. Without their support,

iv



the pursuit of this degree would have been much harder for me. Last but not least, is

my appreciation for my lovely girlfriend, Yasaman. She has helped me tremendously in

every aspect of my life. Undoubtedly, she has made one of the most challenging periods

of my life into one of the best. I can’t wait for our journey to begin together and many

more achievements to come by your side.

v



Symbols

Ei Local energy of the i-th oxygen site

C(TMi) Charge of the i-th transition metal

P (∆E) Probability assigned to an element swap

Ci Marginal probability of finding a singlet in the i state

Cij Probability of finding a pair in the ij state

Cijk Probability of finding a linear triplet in the ijk state

C”ijk Probability of finding an open triplet in the ijk state

CÈijk Probability of finding a triangular triplet in the ijk state

ki Rate constant

Qi Equilibrium constant

Pi/j Conditional probability of being in state i with a neighbor in state j

Qij Pair correlation of nearest-neighbor elements

Tijk Triple correlation of a triplet

θ Probability of finding a closed triplet in a lattice

N Population size

m Number of neighbors of each site

βi Ratios of equilibrium constants

F Cost functional of regression problem

J Cost functional of inverse problem

C̃ Experimental concentrations
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Q̃ Experimental equilibrium constants

T Final time
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Chapter 1

Introduction

Lithium-ion batteries are one of the emerging technologies that are impacting our lives

significantly. They are the leading technology used in the portable electronic devices

such as tablets and phones [26]. Also, they are getting more attention in the field of

electric vehicles [37], where the combination of electricity and carbon fuel is used to

mitigate the carbon footprint. The technology has also found applications in aerospace

engineering and medical devices such as hearing aids. It has given rise to miniaturized

high-density rechargeable power sources to be used in small medical devices for drug-

delivery and glucose sensing applications [25]. The technology still needs to develop

in the field of power supply systems, leaving a huge gap in the industry to be filled

by emerging technologies. Lithium-ion batteries present great potential as regards to

sustainable energies and mitigation of carbon emission [23].

Different materials have been used for the chemistry of batteries, however, lithium is

among the most promising ones. Light weight, high electropositivity, wide accessibility

and being nontoxic are some of the reasons that lithium is the primary choice for batter-
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ies [24]. Also, high energy-to-weight ratio, low self-discharge, excellent cycle life and

no memory effect are the other advantages of lithium batteries over its rivals [30, 31].

In addition to all these advantages, lithium is highly reactive which makes its safe use

challenging. This problem is addressed by using compounds of lithium, rather than the

metallic lithium. These compounds provide ionic lithium used in the reversible reac-

tions inside the battery.

Each battery cell consists of four parts, namely, cathode, anode, electrolyte and sepa-

rator. During the charge of the battery, lithium ions migrate from the cathode toward the

anode through the electrolyte. However, the reverse happens during the discharge of the

battery. The intercalation and insertion of lithium ions occurs on the surface of the cath-

ode material, which is the solid host for arriving ions. The electrolyte contains a solvent

which provides the medium for migration of lithium ions. The separator is a barrier

which prevents the direct contact of the cathode and anode (short-circuit), while letting

lithium ions pass through it. The schematic of a Li-ion battery is shown in figure 1.1.

Normally, Li-ion batteries are named after their cathode type, which is a lithium metal

oxide material such as lithium cobalt oxide (LCO), lithium manganese oxide (LMO),

lithium iron phosphate (LFP), lithium nickel cobalt aluminum oxide (NCA) and nickel

manganese oxide (NMO) [24]. Later, Co was added to Li(Ni1/2Mn1/2)O2 to further

enhance its structure stability [27, 30]. This new cathode is commercially called NMC

cathode and has the chemical composition Li(Ni1/3Co1/3Mn1/3)O2. It has a layered

structure where layers of oxygen are surrounded by a lithium layer and a transition

metal layer. NMC cathodes have been investigated widely with different stoichiome-

tries of metals in the NMC layer. Recently, a new generation of Li-rich and Mn-rich

batteries has been introduced such as Li2MnO3, which have higher capacities than nor-

mal NMC cathodes [28]. Also, a significant irreversible capacity loss during the first

charge/discharge cycle of the cathode is associated with these high capacity batteries

which has impeded their commercial use [46,47]. Some examples of these newly intro-
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duced materials can be found in [32, 33]. Although these materials are being explored

for high capacity batteries, the crystal structure of their cathodes is not yet completely

understood [36]. Moreover, the capacity enhancement of these Li-excess batteries and

the irreversible capacity loss during the first cycle are attributed to their local micro-

scopic structures of the NMC layer [34, 36]. Further refinement and commercialization

of these batteries requires knowledge on their microscopic structure and ordering of the

elements in the NMC layer of the cathode.

Figure 1.1: Schematic of a Li-ion battery [49].

The aforementioned problem is addressed by mathematical modeling [13,48]. Harris

et al. [13] has used NMR spectroscopy data [35] to find the structures corresponding to

different temperatures of the system. Simulated annealing is a stochastic optimization

method designed in analogy to annealing solid materials and is based on an iterative

Monte-Carlo algorithm. The structure of the lattice is randomly initialized at the start

of the process and each site is filled with elements chosen at random. At each iteration

of the Monte-Carlo algorithm microscopic rearrangements of the elements of two dif-

ferent sites are performed and the change in the energy is used to control the update at

each iteration. Accepting only those element swaps that lead to a lower energy state of

the lattice will result in a rapid quenching of the system from the highest to the lowest

temperature and consequently the meta-stable state of the system [22]. In order to pre-
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vent this situation, the Metropolis-Hastings algorithm is used in which steps that result

in a higher energy level of the lattice are incorporated in the simulation in a controlled

manner.

The cathode of Li-ion batteries has a layered structure where each layer of oxygen

is surrounded by a layer of Li and a NMC layer as shown in figure 1.2. Due to the

triangular structure of the lattice, each oxygen site is surrounded by three Li ions on the

above layer and 3 transition metals on the lower layer. Transition metals could be Ni, Mn

or Co for the NMC cathodes. As the oxygen element tends to remain in the oxidation

state of −2, the lowest energy state is obtained when it is surrounded by the elements

that contribute +2 to the state of the oxygen. As each neighbor element contributes 1/6

of its charge to the oxygen state, a total charge balance of +12 is required around the

oxygen site to be in the lowest energy state. Each Li ion has a charge of +1 and three

lithium ions are in the lower layer of the oxygen site. Hence, charge balance of +9 is

needed from three transition metals in a triangle. Therefore, the local energy balance on

each oxygen site is defined as [13]

Ei = |C(TM1) + C(TM2) + C(TM3)− 9|, (1.1)

where C represents the charge of each transition metal atom in a triangle and Ei is the

energy balance on the i-th oxygen site. In this algorithm two elements of the lattice are

randomly chosen and swapped with each other. Every element swap in the transition

metal layer affects 6 triangles on each site. The local energy change is calculated based

on the change on the energy of each one of these triangles. if ∆E ≤ 0, the element swap

is accepted and the lattice configuration is updated. However, if ∆E > 0, a probability

is assigned to its displacement. Based on the Boltzmann distribution, the probability of

4
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the displacement is calculated as

P (∆E) =


exp(−∆E

T
) if ∆E > 0

1 if ∆E ≤ 0

(1.2)

where T is the temperature at which the swap is happening. Note that the concept of

temperature being used here is not equivalent to the physical temperature of the sys-

tem. This parameter is a pseudo-temperature which accounts for the term kBθ in the

Boltzmann distribution, kB being the Boltzmann constant and θ being the thermody-

namic temperature of the system. T for the initial state and the final state of the lattice is

chosen in a way that simulation slowly converges to the equilibrium state. Next, a ran-

domly generated number with uniform distribution in (0,1) is compared to P (∆E) and

the element swap is accepted only if the probability is higher than the random number.

This allows the system to step back to the higher energy states in order to avoid rapid

quenching of the system to a state corresponding to a local minimum. These steps are

repeated sufficiently many times such that the system reaches equilibrium. The choice

of how the temperature is decreased is arbitrary, however, the equilibrium state must be

reached at the end of the process for every arbitrarily chosen temperature profile.

Figure 1.2: Schematic of the NMC cathode [13].

One of the know materials used as the cathode in Li-ion batteries isLi[Li1/3Mn2/3]O2.

5
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The simulated annealing method has been validated on this material by Harris, et al.

[13]. The initial state of the algorithm had a high energy and was generated randomly.

However, the final state had the lowest energy state and its structure matched the crystal

structure of this material. In order to reach the equilibrium, 105 iterations were used.

At equilibrium, each triangle consists of two Mn elements and one Li element. Figure

1.3 demonstrates the results of the simulated annealing experiment and its energy state

before and after the simulation. In this example the temperature was reduced linearly,

giving it enough time to stabilize. Hence, there will be two states of the lattice, the initial

random state and the final equilibrium state. Note that an equilibrium state is occurring

at each specific temperature by giving the lattice enough time to reach equilibrium at

that temperature.

(a) (b) (c)

Figure 1.3: (a) Initial random state, (b) final ordered state of the lattice for
Li1/3Mn2/3 system and (c) the local energy change of the lattice (black) and
linear decrease of temperature (red). Blue and red circles represent Li ions (or
negative ions in the cluster approximation model) and Mn ions (or positive ions
in the cluster approximation model) respectively.

In order to obtain the micro-structure concentrations, we consider two different types

of clusters of size 2 (2-clusters) and 3 (3-clusters) as shown in figure 1.4. 2-clusters

or pairs consist of 2 nearest neighbor elements. 3-clusters are clusters containing 3

elements which can be in the shape of a triangle (triangular 3-cluster), an open triplet

with 120 degree bond (open 3-cluster) or linear. The pair and triangular concentrations

have been calculated for each lattice. Table 1.1 demonstrates the results for the initial

and final states of the lattice. As can be observed, the Li − Li pair does not exist in

6
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the final state of the Li1/3Mn2/3 structure. Similarly, all triangles are in the form of

Mn −Mn − Li and concentrations of all other triangles are zero. For simplicity, Mn

and Li elements are represented by + and− from now on. Note that these notations are

not an indicator of the charge of the elements.

(a) (b) (c) (d)

Figure 1.4: Schematic of (a) 2-cluster, (b) triangular 3-cluster, (c) open 3-cluster
and (d) linear 3-cluster.

Pair Concentrations

Cluster Type Initial State Final State

C++ or CMnMn 0.5065 0.3325

C−− or CLiLi 0.1143 0.0000

C+− or CMnLi 0.1896 0.3338

Triangular Concentrations

Initial State Final State

C+++ or CMnMnMn 0.4049 0.0000

C−−− or CLiLiLi 0.0330 0.0000

C++− or CMnMnLi 0.1184 0.3333

C+−− or CMnLiLi 0.0689 0.0000

Table 1.1: Pair concentrations and triangular concentrations calculated for the
initial state and the final state of the lattice of the Li1/3Mn2/3 system.

The simulated annealing approach has some advantages. Specifically it allows for the

direct matching of NMR spectroscopy data to the model outputs. However, it is compu-
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tationally heavy as it is based on the random visits of lattice states. One reason for this

excessive cost is that the simulated annealing approach predicts an entire lattice struc-

ture. On the other hand, for comparison with the results of NMR spectroscopy we only

need information about concentrations of certain clusters. In contrast, we would like

to propose a novel approach called cluster approximation, which attempts to build dy-

namical systems for the evolution of concentrations of different clusters. Thus, instead

of obtaining the whole structure of the lattice, we will be looking into approximations

of concentrations of micro-structures inside the lattice. This method has been inspired

from Ben-Avraham et al [1]. The cluster approximation models have applications in

random sequential adsorption in determining the structure of different polymers [38].

They also have been extensively used in ecology for determining the propagation of a

disease [4]. The only difference in our model is that the NMC layer of cathodes have

a triangular shaped lattice which requires different truncation strategies than those used

in the random sequential adsorption processes. Pair approximation along with a novel

approximation scheme is used to truncate the hierarchy of the dynamical systems.

The goal of this work is to find approximations of the concentrations of different

clusters inside the lattice. Cluster approximation model is developed at different levels,

however, the parameters of this model are unknown. In order to find the parameters

of the model, we will try to minimize the mismatch between the model outputs and the

experimental results (which are the simulated annealing results in this document), which

is called "inverse modeling". An inverse problem, in contrast to a forward problem, is

comprised of using the actual data and measurements in order to deduce the values

of the parameters that characterize a physical system [39]. Inverse problems have been

widely used in many different fields of technology such as engineering, electrochemistry

[44, 45], machine learning [40], biomedical imaging [41], psychology [42], geophysics

[43], etc. The goal is to obtain better predictions of desired properties via indirect

measurements. We will use this approach to obtain the parameters of the constructed
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dynamical model.

In chapter 2 and 3 we will build the dynamical model, with respect to clusters of

size 2 and 3 respectively. We will also propose the analytic solution of the dynamical

system at equilibrium. Chapter 4 presents computational frameworks for calculating the

parameters of the model. It also proposes a new approach for truncating the hierarchical

systems. Chapter 5 presents the results. Chapter 6 discusses the obtained results and

provides some conclusions.

9



Chapter 2

Two-Element Model

In this chapter, we will be developing a system of evolution equations for a lattice con-

taining two types of elements. For simplicity, plus (+) and minus (−) are the symbols

that will be used for each type of element. This notation is not an indicator of the

charge of the elements. Two different, yet interconnected, models have been developed,

namely, a two-cluster model and triangular-cluster model. The former seeks to generate

evolution equations for concentrations of cluster of size 2 (pair concentrations), how-

ever, the latter generates a system for the evolution of triangular clusters (clusters with

3 elements in each vertex of a triangle). In order to formulate the cluster approxima-

tion model on a 2D lattice, one needs to know the lattice type of the transition metal

layer of the cathode. Harris et al. [13] supposed that TM layer of cathode holds trian-

gular lattice shape in which each element has 6 nearest neighbors as shown in figure

2.1. Ben-Avraham et al. [1] introduced an approach called the "window method" for

a 1D system that considers swaps of nearest-neighbor elements in order to derive rate

equations for the rate of change in concentrations of specific clusters. In other words,
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this model predicts the concentrations of different clusters inside the lattice. However,

our definition of concentration is different from its original meaning. Concentration of

a specific cluster is defined as the probability of picking one cluster of the same size and

shape from the lattice being in the desired state and is denoted by C. In this method,

each element inside a cluster can swap with its nearest neighbors to build or destroy

specific clusters with a particular rate constant. In the 2D lattice case, each element can

swap with any of its nearest neighbors to produce or destroy a specific cluster within

the window. In the two-cluster model, we are interested in determining probabilities of

clusters of size 2 (2-clusters). Figure 2.1 demonstrates all possible ways that a neighbor

can swap with an element inside a specific cluster. These element swaps will be used in

order to generate system of evolution equations in the next sections.

11
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Figure 2.1: Schematic of a triangular lattice structure - possible element swaps
in a two-cluster model. Elements shown in blue represent a window in which the
probability of the cluster inside the window is to be determined. The element
shown in red represents a nearest neighbor to at least one of the elements inside
the window. Black arrows indicate a possible swap between one of the elements
inside the window and the nearest neighbor element.

2.1 Evolution of Two-Clusters

In order to derive rate equations for each cluster type one needs to consider all possible

3-clusters that may produce or destroy that particular cluster by swapping the third ele-
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ment with one of the elements inside the window. Considering 2-clusters with two types

of elements (positive ( +©) and negative ( –©) elements), four distinct configurations can

be observed inside the window: ( +© +©), ( –© –©), ( +© –©) and ( –© +©). All possible ways

that these configurations can be destroyed or produced are discussed in the following

sections.

Remark. The normalization condition states that the sum of the concentrations

(or probabilities) of all possible n-clusters should be equal to one, where n denotes

the size of the cluster [1]:

∑
X1,X2,...,Xn

C(X1,X2,...,Xn) = 1, (2.1)

in which 1, 2, 3, .., n indices denote different sites of the lattice where each two

subsequent ones are nearest neighbors to each other and X denotes the state of

that specific site (which could be +© or –© in this example). Applying this to 1-

clusters and 2-clusters in our model, the following equations are derived from the

normalization condition:

C
(
+©
)

+ C
(
–©
)

= 1 (2.2.1)

C
(
+©+©

)
+ C

(
–© –©

)
+ C

(
+© –©

)
+ C

(
–©+©

)
= 1

⇒ C
(
+©+©

)
+ C

(
–© –©

)
+ 2C

(
+© –©

)
= 1.

(2.2.2)

As can be observed the concentration of (+−) and (−+) clusters are the same as

stated in Theorem 7.1.1 in Appendix. Equation (2.2.1) is satisfied by all configu-

rations of the system. In the upcoming sections, we introduce a rate equation for

one of (+−) or (−+) clusters as they are translations of each other.
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2.1.1 Production and Destruction of (+©+©) Cluster

In this section, we investigate possible reactions that will produce or destroy the ( +© +©)

cluster via nearest neighbor element swaps. The window method introduced by Ben-

Avraham et al. [1] is used to generate the rate equations. This method states that one

has to determine a window in which the elements are in the desired state before the

destruction (or after the production) by swapping with one of the nearest neighbor ele-

ments outside the window. In each of the reactions in figure 2.2, the neighbor element

(highlighted in red) will swap with one of the elements of the window (highlighted in

blue) to produce a ( +© +©) cluster. Also, figure 2.3 illustrates all possible ways to destroy

a ( +© +©) cluster inside the blue window.

+ –
+

1 + +
–

– +
+

2 + +
–

– +
+ 3 + +

–
+ –
+ 4 + +

–

+ –
+ 5 + +

–
– +

+ 6 + +
–

– +
+

7 + +
–

+ –
+

8 + +
–

+ – + 9 + + – – ++
10

+ +–

Figure 2.2: All possible reactions to produce a (+○+○) cluster.
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+ +
–

1 + –
+

+ +
–

2 – +
+

+ +
– 3 – +

+
+ +
– 4 + –

+

+ +
– 5 + –

+
+ +

– 6 – +
+

+ +
–

7 – +
+

+ +
–

8 + –
+

+ + – 9 + – + + +–
10

– ++

Figure 2.3: All possible reactions to destroy a (+○+○) cluster.

Some assumptions must be taken into consideration prior to deriving the rate equa-

tions:

• Some of the reactions in figure 2.2 and 2.3 are indeed symmetry transformations

of the others due to the translational and reflectional symmetry of the system.

Theorems 7.1.2 and 7.1.3 in Appendix state how these translations can occur in

the lattice. In both figures, each one of the following groups of reactions can be

obtained from one reaction inside the group by performing suitable rotations and

reflections: (1 & 2 & 3 & 4), (5 & 6 & 7 & 8) and (9 & 10). Thus, according to

the translational and reflectional symmetry of the system, these reactions can be

considered the same in deriving rate equations.

• Considering reactions 1, 2, 3 and 4 in figure 2.2 and 2.3, it can be observed that

production or reduction of a ( +© +©) cluster does not affect the total count of ( +© +©)

clusters. In other words, all of the aforementioned reactions have one ( +© +©)

cluster and two ( +© –©) clusters on the left hand side of the reaction and the count

remains the same on the right hand side too. However, the orientation of the

clusters has been altered. Hence, translational symmetry of the system dictates
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to eliminate all reactions (element swaps) that take place in a triangular-shaped

cluster in deriving the rate of change for each cluster type.

• Reaction 5 (reaction 9) has 4 (2) translations. This means the aforesaid reactions

have to be accounted 4 (2) times with the same rate constant in deriving the rate

equations for the system.

Taking into account all these factors, the number of unique reactions for deriving rate

equations will reduce significantly. Figure 2.4 demonstrates all of the reactions with a

unique rate constant written as reversible reactions for producing or destroying a ( +© +©)

cluster.

+ –
+ k1

k3

+ +
–

+ – +
k2

k4

+ + –

Figure 2.4: Unique reversible reactions, after considering translational symmetries,
to destroy or produce a (+○+○) cluster.

k1 to k4 are called rate constants. Each unique reaction has a unique rate constant.

The rate constant has the unit of 1/time and controls the evolution of different clusters

through a reaction. It links the concentration of reactants to the rate of the chemical

reaction. These parameters are unknown in our physical system and they will be dis-

cussed thoroughly in chapter 4 and 5. Considering reactions in figure 2.4, the following

rate equation can be deduced to govern the system for a ( +© +©) cluster:

d

dt
C

Å
• +© +© •
• • •
• • •

ã
= 4k1C

Å
• +© –© •
• • +©

• • •

ã
+ 2k2C

Å
• +© –© +©
• • •
• • •

ã
−4k3C

Å
• +© +© •
• • –©

• • •

ã
− 2k4C

Å
• +© +© –©
• • •
• • •

ã
.

(2.3)

Note that each site in the lattice can be in the ( +©) or ( –©) state and (•) indicates an

unspecified state.
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2.1.2 Production and Destruction of ( –© –©) Cluster

In a very similar way, the reactions for producing or destroying ( –© –©) clusters will

be generated using nearest neighbor element swaps. According to assumptions intro-

duced in section 2.1.1, i.e. translational and rotational symmetries and dismissing of

triangular-shaped clusters, the unique reactions to produce or destroy a ( –© –©) cluster

will reduce to ones shown in figure 2.5.

– +
– k5

k7

– –
+

– + –
k6

k8

– – +

Figure 2.5: Unique reversible reactions, after considering translational symmetries,
to destroy or produce a ( –○ –○) cluster.

In order to study the behavior of ( –© –©) cluster in the lattice, the following rate

equation can be inferred from unique reactions in figure 2.5:

d

dt
C

Å
• –© –© •
• • •
• • •

ã
= 4k5C

Å
• –© +© •
• • –©

• • •

ã
+ 2k6C

Å
• –© +© –©
• • •
• • •

ã
−4k7C

Å
• –© –© •
• • +©

• • •

ã
− 2k8C

Å
• –© –© +©
• • •
• • •

ã
.

(2.4)

2.1.3 Production and Destruction of (+© –©) Cluster

Before deriving the corresponding rate equations, one should note that ( +© –©) and

( –© +©) clusters are mirror reflections of each other and it is intuitive to assume equal

concentrations for them. According to Ben-Avraham et al. [1], cluster probabilities are

independent of the position of the cluster on the lattice. Theorem 7.1.1 explains linear

relations between 2-clusters. Consequently, the translational invariance of clusters in the

lattice allows us to deduce the rate equation for one of these clusters only. Again, the

triangular-shaped clusters will be disregarded as they do not affect the count of clusters.

Also, the clusters with translations will get the same rate constant, however, they will

be accounted by the number of their translations in deriving the rate equations. More-
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over, the reactions that produce or destroy a ( +© –©) cluster are the same as the reactions

that destroy or produce a ( +© +©) or ( –© –©) cluster. Hence, these type of reactions are

repetitions of the previous ones as demonstrated in figure 2.6.

+ +
– k3

k1

+ –
+

– –
+ k7

k5

+ –
–

+ + –
k4

k2

+ – + – –+
k8

k6

+ ––

Figure 2.6: Unique reversible reactions, after considering translational symmetries,
to destroy or produce a (+○ –○) cluster is shown.

It is noticeable that all rate constants in figure 2.6 are repetitions from prior reactions

for producing or destroying ( +© +©) or ( –© –©) clusters. Some of these reactions may not

be found directly in figures 2.4 or 2.5, however, their translations can be marked there.

The rate equation for calculating the concentration of ( +© –©) cluster can be derived as

follows:

d

dt
C

Å
• +© –© •
• • •
• • •

ã
= 2k3C

Å
• +© +© •
• • –©

• • •

ã
+ 2k7C

Å
• –© –© •
• • +©

• • •

ã
+k4C

Å
• +© +© –©
• • •
• • •

ã
+ k8C

Å
• –© –© +©
• • •
• • •

ã
−2k1C

Å
• +© –© •
• • +©

• • •

ã
− 2k5C

Å
• –© +© •
• • –©

• • •

ã
−k2C

Å
• +© –© +©
• • •
• • •

ã
− k6C

Å
• –© +© –©
• • •
• • •

ã
.

(2.5)

Note that in writing eq. (2.5), the following 3-cluster concentrations have been replaced

by their equivalents to make the equations consistent with eq. (2.3) and (2.4). All these
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relations have been presented as Theorems 7.1.2 and 7.1.3

C

Å
• –© –© •
+© • •

• • •

ã
= C

Å
• –© –© •
• • +©

• • •

ã
C

Å
+© –© –© •
• • •
• • •

ã
= C

Å
• –© –© +©
• • •
• • •

ã
C

Å
• +© –© •

–© • •

• • •

ã
= C

Å
• –© +© •
• • –©

• • •

ã
C

Å
–© +© –© •
• • •
• • •

ã
= C

Å
• –© +© –©
• • •
• • •

ã
.

(2.6)

As can be observed in eq. (2.3), (2.4) and (2.5), there are two types of bonds in-

volved in deriving rate equations. The first type is the linear 3-cluster in which the two

bonds are colinear. This can be called a linear cluster. The second type is the cluster in

which there is an obtuse angle of 120 degrees between the bonds due to the triangular

shape of the lattice. Note that in deriving rate equations, there is no acute angle as we

disregarded all triangular-shaped 3-clusters. For simplicity, we will change the notation

for writing down cluster concentrations from now on. To do so, linear clusters will be

represented as linear combination of elements with a straight line on them as [(• • •)],

and angled clusters will be shown as linear combination of elements with a hat sign on

them as [÷(• • •)]. Applying the new notation on previous equations, the following set

of rate equations will be obtained

d

dt
C++ = 4k1C’+−+ + 2k2C+−+ − 4k3C’++− − 2k4C++−, (2.7.1)

d

dt
C−− = 4k5C’−+− + 2k6C−+− − 4k7C’−−+ − 2k8C−−+, (2.7.2)
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d

dt
C+− = 2k3C’++− + 2k7C’−−+ + k4C++− + k8C−−+

−2k1C’+−+ − 2k5C’−+− − k2C+−+ − k6C−+− .

(2.7.3)

Also, the normalization condition can be modified to a dynamic form. By taking deriva-

tive with respect to time from eq. (2.2.2), the following equation will be generated:

d

dt
C++ +

d

dt
C−− + 2

d

dt
C+− = 0. (2.8)

This equation is satisfied by the system of evolution equations. Moreover, considering

reversible reactions in figure 2.4 and 2.5, the rate of forward reaction will be equal

to the rate of backward reaction in chemical equilibrium. Also, the concentration of

each cluster remains constant at equilibrium or steady state of the system, meaning that

the left hand side of the system of ODEs will be zero and it will convert to a system

of algebraic equations. As we are interested in equilibrium state of reactions, a linear

equation can be written for each pair of parameters in equilibrium. Qi, i = 1, ..., 4

denotes the equilibrium constant for each reversible reaction

k1C’+−+ = k3C’++− ⇒ Q1 =
k1

k3

=
C’++−

C’+−+

, (2.9.1)

k2C+−+ = k4C++− ⇒ Q2 =
k2

k4

=
C++−

C+−+

, (2.9.2)

k5C’−+− = k7C’−−+ ⇒ Q3 =
k5

k7

=
C’−−+

C’−+−
, (2.9.3)

k6C−+− = k8C−−+ ⇒ Q4 =
k6

k8

=
C−−+

C−+−
. (2.9.4)

It is notable that Qi can be obtained from the results of a simulated annealing exper-

iment. Also, eq. (2.7.3) can be seen as the summation of eq. (2.7.1) and (2.7.2) in

the equilibrium state. The analytical solution of these equations corresponding to the

equilibrium will be presented in the upcoming sections.
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Generally, cluster approximation model in 2D can be formulated in many different

ways. In the previous approach, 2-clusters were subject of interest and our aim was to

find concentrations of different 2-clusters in terms of 3-clusters. However, this approach

cannot be used for comparing the results to the experimental NMR data. Therefore, we

propose another type of formulation, namely triangular-cluster model, as described in

the following section.

2.2 Evolution of Triangular-Clusters

The same approach can be implemented in another level of cluster concentrations.

This level of 2D cluster approximation model considers triangular 3-clusters. Harris

et al [13] has extracted the concentrations of triangular 3-clusters of the NMC layer of

the cathode using NMR spectroscopy and simulated annealing experiment results have

been matched to the data. Hence, we are interested in the evolution of triangular 3-

clusters. In this approach, concentration of triangular clusters will be written in terms

of 4-clusters. By doing so, the resulting concentrations of cluster approximation model

can be matched to the experimental NMR data. In order to build the model, we need

to consider all nearest neighbor sites to a triangular cluster. Figure 2.7 highlights all

nearest neighbors to at least one of the elements in the triangular cluster. We will be

considering all possible element swaps between the elements inside the triangle and one

of the external elements. Each swap can alter the ordering of the elements and it can

affect the cluster concentrations. Starting from an initial condition for the structure of

the system, elements can swap with specific rates to destroy current clusters and build

new ones. Our effort is to find the rate constants specific to each reaction. Figure 2.7

demonstrates all possible element swaps between an element inside the triangle and an

external one. These configurations will be used in order to derive rate equations for each

specific cluster.
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Figure 2.7: Schematic of a tringular lattice - possible element swaps in a triangular-
cluster model. Blue elements form a triangle inside the window of desired elements.
Red elements are the nearest neighbor elements to at least one of the elements
inside the window, with bright red one being the desired one. Black arrows indicate
a possible swap between elements outside and inside a window.

In this section two types of elements will be considered in the model, namely, pos-

itive and negative elements. As triangular 3-clusters are the subject of interest, 8 con-

figurations for building a 3-cluster can be found, in which some of them are rotations

of the others. Unique configurations are as follows:
(

+© +©
+© )

,
(

–© –©
–© )

,
(

+© +©
–© )

,
(

–© –©
+© )

. Note

that
(

+© –©
+© )

,
(

–© +©
+© )

,
(

+© –©
–© )

and
(

–© +©
–© )

can be obtained by rotating other clusters as stated

by Theorem 7.1.4 in Appendix. Our focus will be on deriving rate equations for the first

4-clusters.
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Remark. The normalization condition introduced in eq. (2.1) states that sum of

the concentrations (or probabilities) of all possible n-clusters should be equal to

one, where n denotes the size of the cluster [1]. Normalization condition for single

site clusters and 2-clusters has been investigated previously in eq. (2.2). In the

current setting we are interested in triangular 3-clusters. eq. (2.10) illustrates this

condition

C

Å
+© +©
+© ã

+ C

Å
–© –©
–© ã

+ C

Å
+© +©
–© ã

+ C

Å
+© –©
+© ã

+C

Å
–© +©
+© ã

+ C

Å
–© –©
+© ã

+ C

Å
+© –©
–© ã

+ C

Å
–© +©
–© ã

= 1

⇒ C

Å
+© +©
+© ã

+ C

Å
–© –©
–© ã

+ 3C

Å
+© +©
–© ã

+ 3C

Å
–© –©
+© ã

= 1.

(2.10)

Some terms in eq. (2.10) are rotations of each other as stated by Theorem 7.1.4

in Appendix. By taking derivative with respect to time of eq. (2.10), following

equation will be generated:

d

dt
C

Å
+© +©
+© ã

+
d

dt
C

Å
–© –©
–© ã

+ 3
d

dt
C

Å
+© +©
–© ã

+ 3
d

dt
C

Å
–© –©
+© ã

= 0. (2.11)

The rate equations derived in this section should satisfy this normalization condi-

tion.

2.2.1 Production and Destruction of (+©+©
+©

) Cluster

In order to derive rate equation for
(

+© +©
+© )

cluster, all possible element swaps that will

produce or destroy this cluster will be considered. Figure 2.8 and 2.9 demonstrate all

potential reactions for producing or destroying a
(

+© +©
+© )

cluster. In each figure, reactions

1 and 3 are distinct, however, another reactions can be obtained by rotating or flipping

unique ones. For example, reactions 4, 7, 8, 11 and 12 are translations of reaction 3.

Theorems 7.1.4 and 7.1.5 in Appendix can shed some light on the translational symme-

tries of the system in this model. Similarly, reactions 2, 5, 6, 9 and 10 can be obtained by
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rotating or flipping reaction 1. The same concept can be used in destroying the clusters

in figure 2.9. In each of these figures, one elements outside the window is swapped by

one of the elements inside the window in order to produce or destroy the desired cluster.

– +
+

+
1

+ +
+

– + +
–

+
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+ +
+

–

– +
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+ +
+–

+ +
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+ +
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+ –
+ + 12

+ +
+ –

Figure 2.8: All possible reactions to produce a (+©+©
+©
) cluster.
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Figure 2.9: All possible reactions to destroy a (+©+©
+©
) cluster.

Consequently, unique reactions in producing or destroying a
(

+© +©
+© )

cluster can be

condensed to reactions described in figure 2.10.

– +
+

+
k9

k11
+ +
+

– – +
++ k10

k12
+ +
+–

Figure 2.10: Unique reversible reactions, after considering translational symme-
tries, to produce or destroy a (+©+©

+©
) cluster.

Notably, reaction 1 in figures 2.8 and 2.9 is repeated 6 times considering all transla-

tions. Same translations are happening for reaction 3. Hence, each one of the reactions

will be accounted for 6 times in deriving the rate equation. Given the reversible and

unique reactions in figure 2.10, the following rate equation can be deduced for
(

+© +©
+© )
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cluster
d

dt
C

Å
+© +©

+© ã
= 6k9C

Å
+© –© +©

+© ã
+ 6k10C

Å
–© +©

+© +© ã
−6k11C

Å
–© +© +©

+© ã
− 6k12C

Å
+© +©

–© +© ã
.

(2.12)

2.2.2 Production and Destruction of ( –© –©
–©

) Cluster

Similarly, all possible element swaps that will destroy or produce the
(

–© –©
–© )

cluster will

be considered. Again, each reaction will have 6 translational symmetries. All unique

reactions in destroying or producing a
(

–© –©
–© )

cluster can be summed up to the reversible

reactions described in figure 2.11.

+ –
–

–
k13

k15
– –
–

+ + –
–– k14

k16
– –
–+

Figure 2.11: Unique reversible reactions, after considering translational symme-
tries, to produce or destroy a ( –© –©

–© ) cluster.

Considering reversible and unique reactions, with 6 translations for each one, fol-

lowing rate equation can be deduced for
(

–© –©
–© )

cluster.

d

dt
C

Å
–© –©

–© ã
= 6k13C

Å
–© +© –©

–© ã
+ 6k14C

Å
+© –©

–© –© ã
−6k15C

Å
+© –© –©

–© ã
− 6k16C

Å
–© –©

+© –© ã (2.13)

2.2.3 Production and Destruction of (+©+©
–©

) Cluster

Deriving rate equation for
(

+© +©
–© )

cluster can be accomplished by considering all possible

element swaps that will destroy or produce this cluster. Note that some of these reactions

will be repetitions of the previous ones, as the production or destruction of this cluster

may result in destruction or production of the
(

+© +©
+© )

cluster respectively. Also, some
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new reactions with unique rate constants will be introduced here. Again, due to the

symmetries of the system, the number of unique reactions will be reduced significantly.

Figure 2.12 displays all of these unique reactions with their rate constants.

– +
–

+
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k21
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– + +
+

–
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+ +
–

+

– +
–+ k18

k22
+ +
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+ +
–+
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k19

k23
+ +
–

–
+ –
–

+

k20

k24
+ +
–

–

Figure 2.12: Unique reversible reactions, after considering translational symme-
tries, to produce or destroy a (+©+©

–©
) cluster.

In order to deduce rate equation for this cluster, reversible reactions in figure 2.12

will be considered. Each of the reactions for producing or destroying the
(

+© +©
–© )

cluster

have 2 translations and hence each term on the right hand side of the Eq. (2.14) will

have a coefficient of 2

d

dt
C

Å
+© +©

–© ã
= 2k17C

Å
+© –© +©

–© ã
+ 2k11C

Å
–© +© +©

+© ã
+ 2k18C

Å
–© +©

+© –© ã
+2k12C

Å
+© +©

–© +© ã
+ 2k19C

Å
+© –© –©

+© ã
+ 2k20C

Å
–© –©

+© +© ã
−2k21C

Å
–© +© +©

–© ã
− 2k9C

Å
+© –© +©

+© ã
− 2k22C

Å
+© +©

–© –© ã
−2k10C

Å
–© +©

+© +© ã
− 2k23C

Å
–© +© –©

+© ã
− 2k24C

Å
+© –©

–© +© ã
.

(2.14)

2.2.4 Production and Destruction of ( –© –©
+©

) Cluster

In this section, the
(

–© –©
+© )

cluster will be considered to derive the rate of change of its

concentration based on the reactions that can produce or destroy this cluster. Similarly,
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the number of unique reactions will diminish significantly by applying translation in-

variance rules. Figure 2.13 demonstrates all unique reactions with their rate constants.

Note that all of the reactions stated here have been introduced in prior sections. Hence

this process will not add to the number of unique parameters of the cluster approxima-

tion model.
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–

k22
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Figure 2.13: Unique reversible reactions, after considering translational symme-
tries, to produce or destroy a ( –© –©

+© ) cluster.

Deriving rate equation for
(

–© –©
+© )

cluster is facilitated by considering the reversible

reactions in figure 2.13. Again, each term in the rate equation has a coefficient of 2 due

to number of translations of each reaction in the system

d

dt
C

Å
–© –©

+© ã
= 2k23C

Å
–© +© –©

+© ã
+ 2k15C

Å
+© –© –©

–© ã
+ 2k24C

Å
+© –©

–© +© ã
+2k16C

Å
–© –©

+© –© ã
+ 2k21C

Å
–© +© +©

–© ã
+ 2k22C

Å
+© +©

–© –© ã
−2k19C

Å
+© –© –©

+© ã
− 2k13C

Å
–© +© –©

–© ã
− 2k20C

Å
–© –©

+© +© ã
−2k14C

Å
+© –©

–© –© ã
− 2k17C

Å
+© –© +©

–© ã
− 2k18C

Å
–© +©

+© –© ã
.

(2.15)

Additionally, triangular 3-clusters were the focus of the current modeling. For sim-

plicity, concentrations of triangular clusters, which up to now has been denoted C

Å
x© y©

z© ã
,

will be written as C(Íxzy), where, the element in the middle (z, in this example) is the
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apex of the triangle. Moreover, as can be observed in equations (2.12), (2.13), (2.14)

and (2.15), there are two types of 4-clusters involved in rate equations. Generally, these

clusters can take one of the following forms:
Å

x© x©
o© x© ã

or
Å

o© x© x©
x© ã

, where, x© denotes a site

inside the triangular 3-cluster and o© denotes an outlier to the triangle. For simplicity,

we will change the notations from now on. If the 4-cluster has an outlier with a bond

with two elements of the triangle, this type of cluster will be denoted C(öÎxxx), where

two dots on top of "o" imply the two bonds. Conversely, if the 4-cluster has an outlier

with a bond with only one element of the triangle, this type of cluster will be denoted

C(ȯÎxxx), where one dot on top of "o" denotes one bond. All previous rate equations

can be then re-written in the following more compact format

d

dt
C(Ï+++) = 6k9C(+̇Ï−++) + 6k10C(+̈Ï−++)

−6k11C(−̇Ï+++) − 6k12C(−̈Ï+++),

(2.16.1)

d

dt
C(Ï−−−) = 6k13C(−̇Ï+−−) + 6k14C(−̈Ï+−−)

−6k15C(+̇Ï−−−) − 6k16C(+̈Ï−−−),

(2.16.2)

d

dt
C(Ï+−+) = 2k17C(+̇Ï−−+) + 2k11C(−̇Ï+++) + 2k18C(+̈Ï−−+)

+2k12C(−̈Ï+++) + 2k19C(+̇Ï−+−) + 2k20C(+̈Ï−+−)

−2k21C(−̇Ï+−+) − 2k9C(+̇Ï−++) − 2k22C(−̈Ï+−+)

−2k10C(+̈Ï−++) − 2k23C(−̇Ï++−) − 2k24C(−̈Ï++−),

(2.16.3)

d

dt
C(Ï−+−) = 2k23C(−̇Ï++−) + 2k15C(+̇Ï−−−) + 2k24C(−̈Ï++−)

+2k16C(+̈Ï−−−) + 2k21C(−̇Ï+−+) + 2k22C(−̈Ï+−+)

−2k19C(+̇Ï−+−) − 2k13C(−̇Ï+−−) − 2k20C(+̈Ï−+−)

−2k14C(−̈Ï+−−) − 2k17C(+̇Ï−−+) − 2k18C(+̈Ï−−+).

(2.16.4)

This system of equations is determined in terms of 24 unique parameters by defining

the evolution of 4 concentrations. Also, the concentrations of 3-clusters are written in
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terms of concentrations of 4-clusters. This modeling approach thus leads to a hierarchy

of equations in which concentration of n-clusters are described by concentrations of

(n+ 1)-clusters. Solving this system of equations is therefore impossible. One remedy

to this issue is to truncate the hierarchy of the equations at some level, which will be

discussed in the next section.

Also, the degree of freedom of system (2.16) can be reduced by introducing the

equilibrium constants into the model rather than the rate constants. As we are interested

in the equilibrium state of the system, rate of the forward reaction will be equal to the

rate of the reverse reaction in equilibrium. Thus, the reactions rates can be grouped

pairwise to produce the following identities

k9C(+̇Ï−++) = k11C(−̇Ï+++) ⇒ Q5 =
k9

k11

=
C(−̇Ï+++)

C(+̇Ï−++)

, (2.17.1)

k10C(+̈Ï−++) = k12C(−̈Ï+++) ⇒ Q6 =
k10

k12

=
C(−̈Ï+++)

C(+̈Ï−++)

, (2.17.2)

k13C(−̇Ï+−−) = k15C(+̇Ï−−−) ⇒ Q7 =
k13

k15

=
C(+̇Ï−−−)

C(−̇Ï+−−)

, (2.17.3)

k14C(−̈Ï+−−) = k16C(+̈Ï−−−) ⇒ Q8 =
k14

k16

=
C(+̈Ï−−−)

C(−̈Ï+−−)

, (2.17.4)

k17C(+̇Ï−−+) = k21C(−̇Ï+−+) ⇒ Q9 =
k17

k21

=
C(−̇Ï+−+)

C(+̇Ï−−+)

, (2.17.5)

k18C(+̈Ï−−+) = k22C(−̈Ï+−+) ⇒ Q10 =
k18

k22

=
C(−̈Ï+−+)

C(+̈Ï−−+)

, (2.17.6)

k19C(+̇Ï−+−) = k23C(−̇Ï++−) ⇒ Q11 =
k19

k23

=
C(−̇Ï++−)

C(+̇Ï−+−)

, (2.17.7)

k20C(+̈Ï−+−) = k24C(−̈Ï++−) ⇒ Q12 =
k20

k24

=
C(−̈Ï++−)

C(+̈Ï−+−)

. (2.17.8)

These equilibrium constants will be used in the following section along with the closed

30



M.Sc. Thesis - A. Ahmadi McMaster University - CSE

dynamical system to obtain an approximate equilibrium solution.

2.3 Moment Closure Approximation

There are many instances of developing hierarchical system of equations, specifically in

reaction-diffusion models that appear in ecology [2–5, 8]. Some models are introduced

without individuality, on a continuous space, although others are individual-based in

a network-based space [9]. Our problem lies in the second category where moment

closure models and mean-field approximations are used for closing the hierarchy of

equations. Cluster approximation model results in a set of hierarchical ODE equations

such as eq. (2.7) and eq. (2.16) which is not closed and hence not solvable. The hi-

erarchy has to get truncated at some level to reach a closed dynamical system. The

truncation is performed by some approximations, in which higher order terms can be

written in terms of lower order ones. There is no single answer to this type of ap-

proximations. Ben-Avraham et al. [1] suggests a class of approximations in 1D lattices

known as (n,m) approximations, where n defines the cluster size and m denotes the

overlap between clusters. The simplest case in this class corresponds to zero overlap

(m = 0) between clusters where the correlations between different clusters are com-

pletely ignored. Assuming a cluster in the form of (X1X2X3...XnXn+1...), the (n, 0)

approximation is introduced as [1]:

C(X1X2X3...XnXn+1...) = C(X1X2X3...Xn)C(Xn+1Xn+2...), (2.18)

where 1, .., n denote different sites of the lattice andX denotes the state of that particular

site. However, in a more complex setting, the correlation is allowed for one site in the

lattice. Hence, the (n, 1) approximation can be written as:

C(X1X2X3...XnXn+1...) = C(X1X2X3...Xn)

C(XnXn+1...)

C(Xn)

. (2.19)
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In this setting, the second factor implies the conditional probability of having a cluster

in state (XnXn+1Xn+2...), given that site n is in state (Xn). The overlap between the

clusters could be increased to account for larger correlations. The (n, n − 1) approxi-

mation is the most exact one as it takes care of translation invariance automatically [1].

This approximation was used to solve the 1D system of ODEs, however, it cannot be

generalized to a higher dimensional setting.

Hierarchical systems of equations are appearing in the field of ecology for modeling

population and evolution dynamics. Different types of regular lattices, such as linear,

hexagonal, square and triangular have been studied in this field. The assumption is

that each site can only interact with its nearest neighbors [11]. The methods proposed

in this field establish a closed dynamical system by using two components: first, the

global densities of the lattice sites to be in a specified state (these probabilities are not

dependent on the state of the neighbors), and second, local densities or conditional prob-

abilities that a randomly sampled nearest neighbor of a site is in a specified state [2].

Mean-field approximation and pair-approximation methods have been proposed to de-

couple clusters which are referred to as moment-closure methods [6, 11].

The state of a site is denoted by S where S ∈ {+,−} for a two particle system.

Global densities are denoted by CS , giving the probability that a randomly chosen site

in the lattice is in state S. Similarly, CSS′ is the global density of a cluster being in state

SS ′. Also, local densities are denoted by PS/S′ , giving the probability that a randomly

chosen nearest neighbor of a site in state S ′ is in state S. Indeed, the local densities are

distinguished from global densities by the effect of nearest-neighbor correlations. These

32



M.Sc. Thesis - A. Ahmadi McMaster University - CSE

local densities can be expressed in terms of global densities [2, 11]

CSS′ = CS′S = CSPS′/S = CS′PS/S′ , (2.20.1)∑
S∈{+,−,0}

CS = 1, (2.20.2)

∑
S∈{+,−,0}

PS/S′ = 1 for any S ′ ∈ {+,−, 0}. (2.20.3)

The first equation also satisfies the translation symmetry of the system. Notably, in

our model, the process of deriving rate equations is spatially homogeneous and hence

global densities are independent of their location in the lattice [11].

2.3.1 Two-Element Two-Cluster Model

In order to close the system of ODEs in eq. (2.7), one should write triplet densities in

terms of densities of pairs and singlets. The approximation that we use here is called

pair approximation as it neglects three-site correlations and decouples them into smaller

clusters [2,4]. Considering a cluster in the form of i© j© k©, the k© element is the nearest

neighbor of j© element and is non-nearest neighbor of i© element. In the pair approxi-

mation method, we neglect the effect of k© element on the i© element. In other words,

it assumes correlation between nearest neighbors only and neglects the effect of non-

nearest neighbors on each other. Hence, the correlation between non-nearest-neighbor

sites is approximately reconstructed through nearest-neighbor correlations [11]. In eq.

(2.7), triplet densities can be written as multiplication of doublet densities and local

densities as stated here

C(’+−+) = C+−P(◊�+/+−)
, (2.21)

where the first term in the right hand side of the equation is the global probability of a

randomly chosen site being in state (+−), and the second term is the conditional prob-

ability that a randomly chosen nearest neighbor site of (+−) cluster is in state (+).
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Mean-Field Theory The mean-field approximation completely overlooks the spa-

tial structure of the lattice. Hence, the local densities such as P (+/+) are assumed to be

equal to singlet densities asC(+). This is true in the case where the lattice is completely

random [3]. We are not going to apply mean-field approach to our system of equations.

Pair Approximation Assuming a square lattice in the pair approximation method,

the term P(+/+−) is approximated by P(+/−), meaning that the probability of finding a

randomly sampled nearest neighbor of (−) in state (+) is not affected by its nearest

neighbor. Underlying this assumption is the fact that those two nearest neighbors of

(−) are not nearest neighbors of each other and elements will be less affected by distant

neighbors [2, 3, 11]. Figure 2.14 explains this assumption in a square lattice. In this

figure, P(0/+0) in the left is replaced by P(0/+) in a square lattice [4, 11].

+ 0

0

+

0

Figure 2.14: The underlying assumption of pair approximation method.

First, let us apply this concept on a 1D ring of elements. Assuming a triplet in the

form of (−++), the global density of this cluster can be expressed in terms of densities

of smaller ones (assuming that the window under consideration is (++)) as follows:

C(−++) = P(−/++)C(++) ≈ P(−/+)C(++) =
C(−+)

C+

C(++). (2.22)

Surprisingly, this equation is the same as applying the (2, 1) approximation on the clus-
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ter introduced by Ben-Avraham et al [1]. As another example, if we assume a 4-cluster

in the form of (− + ++), it can be expressed in terms of densities of triplets by using

the same concept

C(−+++) = P(−/+++)C(+++) ≈ P(−/++)C(+++) =
C(−++)

C(++)

C(+++). (2.23)

Equation (2.23) also can be seen as the (3, 2) approximation of the (− + ++) cluster.

All in all, this approximation method could be considered as an extension of the (n,m)

approximation in higher dimensions. The idea of pair approximation is to write triplet

densities in terms of pair densities. The knowledge of spatial geometry of the lattice

can assist in finding better approximations for lattices with fixed number of neighbors

per element (regular lattices) [12]. Even if the lattice sites have variable number of

neighbors, some methods for approximation are proposed by Morris [6] and Rand [7].

Ordinary Pair Approximation Let us start by considering a random lattice in

which each element is randomly connected to n other neighbors. If the size of the

lattice is too large, it would be less likely that pair elements have neighbors in common.

Following this assumption, a nearest neighbor to an element will have no correlation

with other neighbors of aforementioned element [12]. Thus, the probability of a triplet

being in state (ijk) can be written as stated in eq. (2.24). Note that element i and

element k will not be nearest neighbors

Cijk = CiCjCkQijQjkTijk, (2.24)

where Ci, Cj and Ck denotes the global densities of singlets, Qij and Qik are the pair

correlation of nearest neighbors and Tijk is the triple correlation of the chain. Notice

that there is no Qik term in the equation as they are not nearest neighbors and their

correlation is presented in Tijk. Pair correlations of nearest neighbors can be found as
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follows

Qij =
Cij
CiCj

. (2.25)

Van Baleen [12] suggests that there is no deterministic way of finding triple correlations

and some assumptions have to be made in order to close the hierarchical system of

equations. The standard pair approximation method is derived by neglecting all triple

correlations as Tijk = 1 of every triple clusters [12]

Pi/jk =
Cijk
Cjk

=
CiCjCkQijQjk

CjCkQjk

= CiQij = Pi/j. (2.26)

Hence, for a chain-like triplet, k element can be overlooked and Pi/jk can be estimated

by Pi/j in this method [12].

Improved Pair Approximation Similarly triplet densities in triangular lattices

can be broken down into smaller clusters by using the same concept. However, triplets

can be chain-like (with an obtuse angle between pairs) or triangular (with an acute angle

between pairs). Thus, the triple correlation term will have an effect in calculations. The

probability that a randomly chosen triplet is in a closed state (and not an open chain)

is denoted by θ. For a triangular lattice, θ is equal to 2/5 as demonstrated in figure

2.15 [12].
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k

Figure 2.15: Schematic of a 2D triangular lattice - Different types of 3-clusters.

Knowing the value of θ, the triplet densities for an open-chain and a closed-chain

can be calculated as [12]

C∠ijk = CiCjCkQijQjkT∠ijk, (2.27.1)

C4ijk = CiCjCkQijQjkQkiT4ijk. (2.27.2)

Notice that Qki is included for a triangle cluster. Taking into account these relations,

one can write:

Pi/jk = Pi/j((1− θ)T∠ijk + θQikT4ijk). (2.28)

There is no a priori assumption that triple correlations should be the same. A naive

approximation of triple correlations is that T4ijk = T∠ijk = 1. Considering eq. (2.28),

it will hold to be true only if Qik = 1, which means that the elements i and k are totally

uncorrelated. This assumption is similar to the random lattice assumption with no triple
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correlations. Another approach could be to consider T∠ijk = 1 and T4ijk = 1/Qik.

This also has the same effect as the previous assumption as it eliminates the effect

of θ from calculations [12]. In the two-cluster model, open chain triplets are merely

used in deriving rate equations and triangular correlations have been totally neglected.

Disregarding the fact that elements i and k have correlations, triplet densities can be

viewed as a random lattice model. Alternatively, in deriving rate equations in a two-

cluster model, there are 3 different types of triplets: triangular triplet, open triplet with a

120 degree angle between bonds and open triplet with 180 degree angle between bonds.

In our model, different types of triplets are distinguished and hence eq. (2.28) cannot

be used in our calculations. The reason is that this equation disregards the structure of

the triplets and evaluates all as one. In other words, it seeks to present a mean-field

solution for finding Pi/jk conditional probability regardless of the configuration of the

triplets. Nonetheless, we are looking for specific approximations for each configuration

of the triplet, as the triangular and chain-like triplets have been discretely expressed in

our model.

Morris [6] and Keeling [7] have proposed a formula for approximating the number of

closed or open triplets in a specific state of (ijk) for a regular lattice with fixed number

of neighbors per site by taking into account the clumping effect of triangles in the lattice.

Each regular lattice can be defined by two parameters: number of neighbors per site and

proportion of triangles to triplets, which determines the clumping intensity of the lattice.

For instance, a triangular lattice has m = 6 neighbors per site and θ = 2/5. The total

number of open (i, j, k) paths and closed < i, j, k > paths can be approximated by eq.

(2.29) for a general regular lattice [5–7, 10]

(i, j, k) = (1− θ)(m− 1)

m

(ij)(jk)

(j)
, (2.29.1)

< i, j, k >=
θN

m

(m− 1)

m

(ij)(jk)(ki)

(i)(j)(k)
. (2.29.2)
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Note that N is the population size. (ij) denotes the number of nearest neighbor pairs

in state ij and (i) denotes the total number of sites in state i. These approximations can

provide total number of open and closed paths in a particular state and fail to produce

corresponding probabilities. One approach is to divide each term by its corresponding

aggregate number in order to calculate probabilities. For a regular lattice with N el-

ements grid, total number of pairs can be approximated by mN and total number of

triplets by m(m− 1)N [7]. By applying this conversion eq. (2.30) will be achieved

C∠ijk =
(i, j, k)

m(m− 1)N
= (1− θ) 1

m(m− 1)N

(m− 1)

m

(ij)
mN

(jk)
mN

(j)
N

m2N2

N
= (1− θ)CijCjk

Cj
,

(2.30.1)

C4ijk =
< i, j, k >

m(m− 1)N
=

1

m(m− 1)N

θN

m

(m− 1)

m

(ij)(jk)(ki)
m3N3

(i)(j)(k)
N3

m3N3

N3
= θ

CijCjkCki
CiCjCk

.

(2.30.2)

As can be seen, a chain-like triplet can be approximated by assuming correlation be-

tween nearest neighbors merely. This is the same as eq. (2.27.1) by assuming a factor

of (1 − θ) as the triple correlation. Also, all pair correlations for a triangular triplet

have been considered and a factor of θ represents the triple correlation. Notice that in

two-cluster model there are two types of chain-like triples with 120 degree angle and

180 degree angle between bonds. Referring to figure 2.15, there are 2 configurations

involving a 120 degree angle and one configuration with 180 degree angle for a triple

site to be in state (ijk). Hence, there is 1/3 probability that the chain-like triplet is a

straight triplet and 2/3 for the other one. It can be proposed that concentrations for each

type of triplets can be estimated as in eq. (2.31) where ijk denotes a straight cluster, ”ijk
denotes an open triplet with 120 degree bonds and Èijk denotes a closed triangle with 60
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degree bonds

Cijk = (1− θ)1

3

CijCjk
Cj

, (2.31.1)

C”ijk = (1− θ)2

3

CijCjk
Cj

, (2.31.2)

CÈijk = θ
CijCjkCki
CiCjCk

. (2.31.3)

Based on this approximation, we can rewrite the system of ODEs in eq. (2.7) as a

closed system of equations as follows:

d

dt
C++ = 4k1

2

3
(1− θ)

C2
+−

C−
+ 2k2

1

3
(1− θ)

C2
+−

C−

−4k3
2

3
(1− θ)C++C+−

C+

− 2k4
1

3
(1− θ)C++C+−

C+

,

(2.32.1)

d

dt
C−− = 4k5

2

3
(1− θ)

C2
+−

C+

+ 2k6
1

3
(1− θ)

C2
+−

C+

−4k7
2

3
(1− θ)C−−C+−

C−
− 2k8

1

3
(1− θ)C−−C+−

C−
,

(2.32.2)

d

dt
C+− = 2k3

2

3
(1− θ)C++C+−

C+

+ 2k7
2

3
(1− θ)C−−C+−

C−

+k4
1

3
(1− θ)C++C+−

C+

+ k8
1

3
(1− θ)C−−C+−

C−

−2k1
2

3
(1− θ)

C2
+−

C−
− 2k5

2

3
(1− θ)

C2
+−

C+

−k2
1

3
(1− θ)

C2
+−

C−
− k6

1

3
(1− θ)

C2
+−

C+

.

(2.32.3)

A two-cluster model is developed for a two-element model with 3 independent non-

linear equations and 8 unique parameters. The aim is to deduce rate constants k1, ..., k8

from some knowledge of concentrations. As we are interested in equilibrium state of the

system, evolutionary system of equations can be converted to the algebraic system of

equations in equilibrium. After applying moment closure approximations to the model
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and simplifying them, following system of equations will govern the system in equilib-

rium

4k1

C2
+−

C−
+ k2

C2
+−

C−
− 4k3

C++C+−

C+

− k4
C++C+−

C+

= 0, (2.33.1)

4k5

C2
+−

C+

+ k6

C2
+−

C+

− 4k7
C−−C+−

C−
− k8

C−−C+−

C−
= 0, (2.33.2)

k1C’+−+ = k3C’++− ⇒ Q1 =
k1

k3

=
C’++−

C’+−+

=
C++C−
C+−C+

, (2.33.3)

k2C(+−+) = k4C(++−) ⇒ Q2 =
k2

k4

=
C(++−)

C(+−+)

=
C++C−
C+−C+

, (2.33.4)

k5C’−+− = k7C’−−+ ⇒ Q3 =
k5

k7

=
C’−−+

C’−+−
=
C−−C+

C+−C−
, (2.33.5)

k6C(−+−) = k8C(−−+) ⇒ Q4 =
k6

k8

=
C(−−+)

C(−+−)

=
C−−C+

C+−C−
, (2.33.6)

C++ + C−− + 2C+− = 1, (2.33.7)

where Q1 to Q4 are the equilibrium constants for unique reversible reactions of two-

cluster model. As can be seen, each equilibrium constant has a unique definition. Taking

closer look at the reversible reactions of figure 2.4,Q1 andQ2 both represent destruction

of (+−) cluster and production of (++) cluster. The only difference is in the angle of

the bonds, which is a 120 degree angle for the first one and straight for the second.

However, the after applying the approximation both are expressed in the same terms.

Also, to make the equations more consistent, the moment closure approximations have

to be used not only for the rate equations, but also for the derivation of equilibrium

constants to have a valid meaning and value. Hence,eq. (2.33.3) to (2.33.6) have been

written in terms of pair and single concentrations.

The rate constants are not individually important in solving the system in equilib-
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rium. Nonetheless, the ratios of parameters, which are called equilibrium constants

play vital roles in controlling the system at the equilibrium. In other words, there are no

bounds in choosing rate constants (unless they have to be positive to be plausible in a

physical system), however, their ratios determine how different clusters are engaged in

reversible reactions in the system. Taking into account all these factors, we can re-write

system of equations in eq. (2.33) in terms of ratios of rate constants in order to dimin-

ish the degree of freedom of the underdetermined system. The complete derivation of

equations can also be found in Appendix 7.2

(4Q1β1 +Q2)
C2

+−

C−
− (4β1 + 1)

C++C+−

C+

= 0, (2.34.1)

(4Q3β2 +Q4)
C2

+−

C+

− (4β2 + 1)
C−−C+−

C−
= 0, (2.34.2)

Q1 = Q2 =
C++C−
C+−C+

, Q3 = Q4 =
C−−C+

C+−C−
, β1 =

k3

k4

, β2 =
k7

k8

, (2.34.3)

where β1 and β2 are newly introduced ratios. This transformation leads to 2 unique

reactions and 4 equilibrium constants namely, Q1-Q4. Substituting eq. (2.34.3) into the

(2.34.1) and (2.34.2), the rate equations will be satisfied for all real values of β1 and β2.

Note that the newly introduced parameters β1 and β2 are the ratios of the rate constants

that do not correspond to a same reversible reaction, however, equilibrium constants are

defined as the ratios of the rate constants which correspond to the forward and reverse

reactions of the same reversible reaction. Intuitively, k3 and k4 are the only reaction

rates that lead to the destruction of (++) cluster. Indeed, β1 is the ratio of rate constants

for destroying a (++) cluster in an angled element swap versus the straight one. Hence,

it is a representative of the tendency of particles to swap in an angled position rather

than a straight position. Similarly, β2 represents the tendency of destruction of (−−)

cluster in the angled bond versus the straight one. All in all, the result indicates that
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the values of β1 and β2 are not a key factor in determining the equilibrium state of the

system, however, they might be influential in intermediate states that will lead to the

equilibrium.

Some other methods have been developed for moment closure models in which

Pi/jk = εPi/j . In the ordinary pair approximation model ε = 1 for all different types

of elements. However, improved pair approximation methods seek to find an optimal

value for ε via comparing their results to computer simulations. The choice of ε is highly

dependent to the dynamics of each specific problem [4]. These types of improvements

in the approximation are discussed in chapters 4 and 5.

2.3.2 Two-Element Triangular-Cluster Model

Another approach to derive rate equations was based on considering triangular triples

and the reactions that can produce or destroy these reactions. Hence, 4-clusters will be

involved in the model and have to be approximated by smaller clusters to close the dy-

namical system. Equation (2.16) is an instance of this formulation for the two-element

model. The approximation method for this case is called triple approximation [6]. In-

stead of closing hierarchical equations at the level of pairs by writing third order clusters

in terms of second order ones, it is necessary to truncate this hierarchy in the level of

triplets by writing fourth-order densities in terms of smaller ones [8].

First, let us have a closer look at eq. (2.31) and its derivation. The coefficient in

equations (2.31.1), (2.31.2) and (2.31.3) is equal to 1/5, 2/5 and 2/5 respectively. This

coefficient actually represents the probability of finding the corresponding cluster shape

in the lattice. For instance, there is 1/5 probability that we can find the (ijk) triple as

a straight line. Moreover, putting coefficients aside, eq. 2.31.1 and 2.31.2 have been

derived by assuming no correlation between non-nearest neighbors. Hence, for both of
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them we can write

Cijk = (1− θ)1

3
Cijk = (1− θ)1

3
CijPij/k ≈ (1− θ)1

3
CijPj/k = (1− θ)1

3
Cij

Cjk
Cj

.

(2.35)

Derivation of eq. (2.31.2) is the same. However, eq. 2.31.3 is for a triangle whose

density will be estimated by assuming pair correlations between all pairs. Similarly, all

of these equations can be obtained from eq. (2.27) by neglecting triple correlations in

the lattice. The only difference is that we have added a coefficient which accounts for

the spatial structure of each configuration.

Considering the triangular-cluster model, the target is to write 4-cluster concentra-

tions in terms of triangular clusters. We will be applying the same concept to this

model, knowing that there are two distinct spatial structures for 4-clusters. Figure 2.16

demonstrates these spatial structures. As can be observed, there is 1/3 probability that

a 4-cluster in state hijk is in the closed shape and 2/3 probability otherwise. These

coefficients are indeed the coefficients of the concentration terms.

h i

j

k h

i k

j

h

i k

j

Figure 2.16: Schematic of a 2D triangular lattice - Different types of 4-clusters.
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Considering a 4-cluster in a closed shape, its concentration can be broken down as

C
ḧÈijk =

1

3
CÈijkPh/Èijk ≈ 1

3
CÈijkPh/ij =

1

3
CÈijkCÍijhCij

. (2.36)

Note that P
h/Èijk is the probability that a randomly chosen nearest neighbor of a triangle

in state ijk is in state h. But, due to the fact that we are looking for that particular neigh-

bor which forms a closed structure with the triangle, the coefficient 1/3 have also been

included. As long as element h is not a nearest neighbor of element k, their correlation

will be neglected and P
h/Èijk can be approximated by Ph/ij [2]. It is notable that if we

extend eq. (2.36) to triple densities based on singlets, pairs and triple correlations as in

eq. (2.27), we obtain a definition for a 4-cluster density which complies by the concept

introduced in eq. (2.27). The only difference is that all triple and quartet correlations

have been neglected.

Similarly, considering an open 4-cluster, the element h is the nearest neighbor of i

only. So its correlation with j and k will be neglected

C
ḣÈijk =

2

3
CÈijkPh/Èijk ≈ 2

3
CÈijkPh/i =

2

3
CÈijkCihCi . (2.37)

This equation is true if i and j sites are actually occupied by the same elements. Other-

wise, it has to be rewritten for each one of them with a 1/3 coefficient.

Taking into account these approximations, system of ODEs (2.16) can be rewritten

in the following closed format
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d

dt
CÏ+++ = 6k9

2

3
CÏ++−

C(+−)

C−
+ 6k10

1

3
CÏ++−

CÏ++−

C+−

−6k11
2

3
CÏ+++

C(+−)

C+

− 6k12
1

3
CÏ+++

CÏ++−

C++

,

(2.38.1)

d

dt
CÏ−−− = 6k13

2

3
CÏ−−+

C(+−)

C+

+ 6k14
1

3
CÏ−−+

CÏ−−+

C+−

−6k15
2

3
CÏ−−−C(+−)

C−
− 6k16

1

3
CÏ−−−CÏ−−+

C−−
,

(2.38.2)

d

dt
CÏ++− = 2k17

2

3
CÏ−−+

C(+−)

C−
+ 2k11

2

3
CÏ+++

C(+−)

C+

+ 2k18
1

3
CÏ−−+

CÏ−−+

C−−

+2k12
1

3
CÏ+++

CÏ++−

C++

+ 2k19
2

3
CÏ−−+

C(+−)

C−
+ 2k20

1

3
CÏ−−+

CÏ++−

C+−

−2k21
2

3
CÏ++−

C(+−)

C+

− 2k9
2

3
CÏ++−

C(+−)

C−
− 2k22

1

3
CÏ++−

CÏ−−+

C+−

−2k10
1

3
CÏ++−

CÏ++−

C+−
− 2k23

2

3
CÏ++−

C(+−)

C+

− 2k24
1

3
CÏ++−

CÏ++−

C++

,

(2.38.3)

d

dt
CÏ−−+ = 2k23

2

3
CÏ++−

C(+−)

C+

+ 2k15
2

3
CÏ−−−C(+−)

C−
+ 2k24

1

3
CÏ++−

CÏ++−

C++

+2k16
1

3
CÏ−−−CÏ−−+

C−−
+ 2k21

2

3
CÏ++−

C(+−)

C+

+ 2k22
1

3
CÏ++−

CÏ−−+

C+−

−2k19
2

3
CÏ−−+

C(+−)

C−
− 2k13

2

3
CÏ−−+

C(+−)

C+

− 2k20
1

3
CÏ−−+

CÏ++−

C+−

−2k14
1

3
CÏ−−+

CÏ−−+

C+−
− 2k17

2

3
CÏ−−+

C(+−)

C−
− 2k18

1

3
CÏ−−+

CÏ−−+

C−−
.

(2.38.4)

As can be observed, the quartet densities have been written in terms of triplets and dou-

blets. Hence, as we are interested in the equilibrium state of the system, the following
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system of equations can be solved to calculate triplet and doublet densities

6k9
2

3
CÏ++−

C(+−)

C−
+ 6k10

1

3
CÏ++−

CÏ++−

C+−

−6k11
2

3
CÏ+++

C(+−)

C+

− 6k12
1

3
CÏ+++

CÏ++−

C++

= 0,

(2.39.1)

6k13
2

3
CÏ−−+

C(+−)

C+

+ 6k14
1

3
CÏ−−+

CÏ−−+

C+−

−6k15
2

3
CÏ−−−C(+−)

C−
− 6k16

1

3
CÏ−−−CÏ−−+

C−−
= 0,

(2.39.2)

2k17
2

3
CÏ−−+

C(+−)

C−
+ 2k11

2

3
CÏ+++

C(+−)

C+

+ 2k18
1

3
CÏ−−+

CÏ−−+

C−−

+2k12
1

3
CÏ+++

CÏ++−

C++

+ 2k19
2

3
CÏ−−+

C(+−)

C−
+ 2k20

1

3
CÏ−−+

CÏ++−

C+−

−2k21
2

3
CÏ++−

C(+−)

C+

− 2k9
2

3
CÏ++−

C(+−)

C−
− 2k22

1

3
CÏ++−

CÏ−−+

C+−

−2k10
1

3
CÏ++−

CÏ++−

C+−
− 2k23

2

3
CÏ++−

C(+−)

C+

− 2k24
1

3
CÏ++−

CÏ++−

C++

= 0,

(2.39.3)

CÏ+++ + CÏ−−− + 3CÏ++− + 3CÏ−−+ = 1. (2.39.4)

Also, to reduce the degree of freedom in the system equilibrium constants can be taken

into account as in eq. (2.17). Note that equilibrium constants are written in terms of 4-

clusters which needs to be approximated by smaller clusters. Consistency of equations

dictates us to break down 4-clusters into 3-clusters and further to 2-clusters. Hence,

the equilibrium constants are all approximated by pair and single concentrations. The

equations (2.39.1) to (2.39.3) need to be re-written in terms of equilibrium constants

rather than the rate constants. Equation (2.40) demonstrates the system of equations

after applying moment closure approximation and substituting constants with ratios
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2Q5β3

C++C
3
+−

C2
+C

2
−

+Q6

C2
++C

3
+−

C4
+C

2
−
− 2β3

C3
++C+−

C4
+

−
C3

++C
2
+−

C5
+C−

= 0, (2.40.1)

2Q7β4

C−−C
3
+−

C2
−C

2
+

+Q8

C2
−−C

3
+−

C4
−C

2
+

− 2β4

C3
−−C+−

C4
−

−
C3
−−C

2
+−

C5
−C+

= 0, (2.40.2)

2Q9β5β7

C−−C
3
+−

C3
−C+

+Q10β7

C−−C
4
+−

C4
−C

2
+

+ 2Q11β6

C−−C
3
+−

C3
−C+

+Q12

C++C−−C
3
+−

C3
+C

3
−

− 2β5β7

C++C
3
+−

C3
+C−

− β7

C++C−−C
3
+−

C3
+C

3
−

−2β6

C++C
3
+−

C3
+C−

−
C++C

4
+−

C4
+C

2
−

= 0,

(2.40.3)

Q5 =
k9

k11

=
C2

++C
2
−

C2
+−C

2
+

, Q6 =
k10

k12

=
C++C−
C+−C+

, Q7 =
k13

k15

=
C2
−−C

2
+

C2
+−C

2
−
,

Q8 =
k14

k16

=
C−−C+

C+−C−
, Q9 =

k17

k21

=
C++C

2
−

C−−C2
+

, Q10 =
k18

k22

=
C++C−
C+−C+

,

Q11 =
k19

k23

=
C++C

2
−

C−−C2
+

, Q12 =
k20

k24

=
C+−C−
C−−C+

, β3 =
k11

k12

,

β4 =
k15

k16

, β5 =
k21

k22

, β6 =
k23

k24

, β7 =
k22

k24

.

(2.40.4)

The complete derivation of equations can be found in Appendix 7.3. As can be ob-

served, some new ratios have been introduced in the equations which are unknown.

However, for all values of β3 to β7 the system of rate equations will be satisfied. Also,

Q5 toQ12 can be found using reversible reactions in equilibrium and momentum closure

models.

To recapitulate, a regular triangular lattice is considered with two types of elements

in it. The concentration of micro-structures inside the lattice can be described by writing

the rate equations for different types of clusters, using two-cluster or triangular-cluster

model. In each model, the system of hierarchical equations is not closed. The pair

approximation model is proposed to truncate the hierarchy of the equations at the level

of 2-clusters or 3-clusters. Also, to make the system of equations determined, ratios

of rate constants were used at equilibrium rather than rates constants itself. The state

of the system at equilibrium is dependant on the values of the equilibrium constants.
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Analytical solution for the equations in equilibrium were proposed in this section. Also,

the calculation of the rate constants will be investigated in the chapters 4 and 5. In the

next chapter, the three-element model will be proposed, which is a representative of the

NMC cathodes in Li-ion batteries.
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Chapter 3

Three-Element Model

The previous chapter developed a cluster approximation model for different types of

clusters based on existence of 2 types of elements in the lattice, namely, plus ( +©) and

minus ( –©). The cluster approximation model can be modified to account for interac-

tions between 3 types of elements in a 2D lattice. This formulation is representative

of NMC layer in Li-ion batteries, as it consists of Nickel, Manganese and Cobalt. In-

teractions between 3 different types of elements will be considered in order to predict

the concentration of micro-structures in the lattice. Similar to the two-element setting,

deriving rate equations for each specific cluster requires us to contemplate all possi-

ble 3-clusters that may produce or destroy the cluster of interest by swapping nearest-

neighbor elements. Here, 3 different types of elements (positive ( +©), negative ( –©) and

neutral ( o©) elements) are considered. It is notable that the name of these elements does

not correspond to their charge, as the model has no assumptions on the charge of the

elements.
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3.1 Evolution of Two-Clusters

The 3 types of elements can have different interactions with each other to form a variety

of 2-clusters. Combinations of these elements can create the following configurations

in building a 2-cluster: ( +© +©), ( –© –©), ( o© o©) ( +© –©), ( –© +©), ( +© o©), ( o© +©), ( –© o©)

and ( o© –©). We will be examining all possible ways that these configurations will be

destroyed or produced in order to derive rate equations for each one of them. Note that

translations of the 2-clusters will have the same concentration as stated by translational

symmetry in Theorem 7.1.1.

Remark. The normalization condition for the three-element model states that the

sum of the concentrations of all possible 2-clusters should be equal to one. The same

statement is true for the 1-clusters. Some of the concentrations have symmetries

which require to be accounted for. The following equations will be derived from the

normalization condition:

C
(
+©
)

+ C
(
–©
)

+ C
(
o○
)

= 1,

(3.1.1)

C
(
+©+©

)
+ C

(
–© –©

)
+ C

(
o○ o○

)
+ 2C

(
+© –©

)
+ 2C

(
+© o○

)
+ 2C

(
–© o○

)
= 1.

(3.1.2)

Eq. (3.1.1) is satisfied for all configurations at all times of the system. By taking

the derivatives of eq. (3.1.2), the following equation will be generated:

d

dt
C
(
+©+©

)
+
d

dt
C
(
–© –©

)
+
d

dt
C
(
o○ o○

)
+2

d

dt
C
(
+© –©

)
+ 2

d

dt
C
(
+© o○

)
+ 2

d

dt
C
(
–© o○

)
= 0.

(3.2)

The normalization condition introduced in eq. (3.2) is satisfied by the rate equa-

tions introduced in the following sections.
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The rate of change in the concentration of each one of these clusters will be derived

in terms of concentrations of bigger clusters as stated in the following sections. Note

that each reaction has some translational symmetries and the coefficients introduced in

the derivation of rate equations represent the number of translations that each reaction

can have.

3.1.1 Production and Destruction of (+©+©) Cluster

In each of the reactions in figure 3.1, the neighbor element (highlighted in red) will

swap with one of the elements of the window (highlighted in blue) to produce a ( +© +©)

cluster in the forward reaction. Conversely, the reverse reactions illustrate all possible

ways to destroy a ( +© +©) cluster inside the blue window. Figure 3.1 shows all possible

unique reactions to produce or destroy a ( +© +©) cluster.

+ –
+ k1

k3

+ +
–

+ – +
k2

k4

+ + –

+ 0
+ k5

k7

+ +
0

+ 0 +
k6

k8

+ + 0

Figure 3.1: Unique reactions, after considering translational symmetries, to destroy
or produce a (+©+©) cluster.

According to the forward and backward reactions in the figure 3.1, the rate equation

for the rate of change of +© +© cluster will be derived as follows. Note that this equation

is similar to the equation derived for the two-element model with additional terms for

the interaction of +© and o© elements

d

dt
C++ = 4k1C’+−+ + 2k2C+−+ − 4k3C’++− − 2k4C++−

+4k5C’+0+
+ 2k6C+0+ − 4k7C’++0

− 2k8C++0.

(3.3)
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3.1.2 Production and Destruction of ( –© –©) Cluster

Similarly, all possible unique reactions to produce or destroy the ( –© –©) cluster are

shown in figure 3.2. Each one of these reactions have some translational symmetries,

which have been taken care of in the derivation of the rate equation in eq. (3.4).

– +
– k9

k11

– –
+

– + –
k10

k12

– – +

– 0
– k13

k15

– –
0

– 0 –
k14

k16

– – 0

Figure 3.2: Unique reactions, after considering translational symmetries, to destroy
or produce a ( –© –©) cluster.

8 specific rate constants are introduced in this rate equation

d

dt
C−− = 4k9C’−+− + 2k10C−+− − 4k11C’−−+ − 2k12C−−+

+4k13C’−0− + 2k14C−0− − 4k15C’−−0
− 2k16C−−0.

(3.4)

3.1.3 Production and Destruction of ( o○ o○) Cluster

In each of the reactions in figure 3.3, one of the nearest-neighbor elements will swap

with one of the elements of the window to form a ( o© o©) cluster in the forward reaction.

Conversely, the backward reactions will destroy this specific cluster.

0 +
0 k17

k19

0 0
+

0 + 0
k18

k20

0 0 +

0 –
0 k21

k23

0 0
–

0 – 0
k22

k24

0 0 –

Figure 3.3: Unique reactions, after considering translational symmetries, to destroy
or produce a ( o○ o○) cluster.

The rate equation for the rate of change in concentration of o© o© cluster is shown in
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eq. (3.5) by accounting for the translations of each reaction

d

dt
C00 = 4k17C‘0+0 + 2k18C0+0 − 4k19C‘00+ − 2k20C00+

+4k21C‘0−0 + 2k22C0−0 − 4k23C‘00− − 2k24C00−.

(3.5)

3.1.4 Production and Destruction of (+© –©) Cluster

In order to find the reaction rate for the ( +© –©) cluster, one needs to look for the neares-

neighbor element swaps that may build or destroy this specific cluster inside the 2-

cluster window. This can be accomplished by considering all interactions between dif-

ferent types of elements. All possible unique reactions to produce or destroy this cluster

are shown in figure 3.4. Note that the number of translations that each reaction can have

is not equal to that of previous clusters.

+ +
– k3

k1

+ –
+

– –
+ k11

k9

+ –
–

+ + –
k4

k2

+ – + – –+
k12

k10

+ ––

+ 0
– k25

k27

+ –
0

0 –
+ k26

k28

+ –
0

+ 0 –
k29

k31

+ – 0 0 –+
k30

k32

+ –0

Figure 3.4: Unique reactions, after considering translational symmetries, to destroy
or produce a (+© –©) cluster.
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The rate equation for the ( +© –©) cluster will be presented as

d

dt
C+− = 2k3C’++− + 2k11C’−−+ − 2k1C’+−+ − 2k9C’−+−

+k4C++− + k12C−−+ − k2C+−+ − k10C−+−

2k25C’+0− + 2k26C’−0+
− 2k27C’+−0

− 2k28C’−+0

+k29C+0− + k30C−0+ − k31C+−0 − k32C−+0.

(3.6)

3.1.5 Production and Destruction of (+© o○) Cluster

Similar to the +© –© cluster, the reversible reactions for producing or destroying the

( +© o©) cluster are introduced by figure 3.5. Note that some of these reversible reactions

are repetitions or translations of the other reactions, thereby their unique rate constant

have been utilized here.

+ +
0 k7

k5

+ 0
+

0 0
+ k19

k17

+ 0
0

+ + 0
k8

k6

+ 0 + 0 0+
k20

k18

+ 00

+ –
0 k27

k25

+ 0
–

– 0
+ k33

k35

+ 0
–

+ – 0
k31

k29

+ 0 – – 0+
k34

k36

+ 0–

Figure 3.5: Unique reactions, after considering translational symmetries, to destroy
or produce a (+© o○) cluster.
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The rate equation for stating the concentration of the ( +© o©) cluster is derived as

d

dt
C+0 = 2k7C’++0

+ 2k19C‘00+ − 2k5C’+0+
− 2k17C‘0+0

+k8C++0 + k20C00+ − k6C+0+ − k18C0+0

2k27C’+−0
+ 2k33C’0−+

− 2k25C’+0− − 2k35C’0+−

+k31C+−0 + k34C0−+ − k29C+0− − k36C0+−.

(3.7)

3.1.6 Production and Destruction of ( –© o○) Cluster

All possible unique reactions to produce or destroy the ( –© o©) cluster are shown in

figure 3.6. It is worth mentioning that all of these reactions are repetitions of the ones

in figures 3.2, 3.3, 3.4 and 3.5 with their specific rate constants. Thereby, this equation

is the complement of all other rate equations in (3.3)-(3.7) and satisfies the aforesaid

normalization condition.

– –
0 k15

k13

– 0
–

0 0
– k23

k21

– 0
0

– – 0
k16

k14

– 0 – 0 0–
k24

k22

– 00

– +
0 k28

k26

– 0
+

+ 0
– k35

k33

– 0
+

– + 0
k32

k30

– 0 + + 0–
k36

k34

– 0+

Figure 3.6: Unique reactions, after considering translational symmetries, to destroy
or produce a ( –© o○) cluster.

The following equation represents the rate of change in the concentration of the
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( –© o©) cluster

d

dt
C−0 = 2k15C’−−0

+ 2k23C‘00− − 2k13C’−0− − 2k21C‘0−0

+k16C−−0 + k24C00− − k14C−0− − k22C0−0

2k28C’−+0
+ 2k35C’0+− − 2k26C’−0+

− 2k33C’0−+

+k32C−+0 + k36C0+− − k30C−0+ − k34C0−+.

(3.8)

In summary, the following set of rate equations has been derived for the rate of

change of specific clusters in the three-element model. These equations satisfy the nor-

malization condition introduced in eq. (3.2). Hence, one of the equations in eq. (3.9) is

redundant and can be dropped

d

dt
C++ = 4k1C’+−+ + 2k2C+−+ − 4k3C’++− − 2k4C++−

+4k5C’+0+
+ 2k6C+0+ − 4k7C’++0

− 2k8C++0,

(3.9.1)

d

dt
C−− = 4k9C’−+− + 2k10C−+− − 4k11C’−−+ − 2k12C−−+

+4k13C’−0− + 2k14C−0− − 4k15C’−−0
− 2k16C−−0,

(3.9.2)

d

dt
C00 = 4k17C‘0+0 + 2k18C0+0 − 4k19C‘00+ − 2k20C00+

+4k21C‘0−0 + 2k22C0−0 − 4k23C‘00− − 2k24C00−,

(3.9.3)

d

dt
C+− = 2k3C’++− + 2k11C’−−+ − 2k1C’+−+ − 2k9C’−+−

+k4C++− + k12C−−+ − k2C+−+ − k10C−+−

+2k25C’+0− + 2k26C’−0+
− 2k27C’+−0

− 2k28C’−+0

+k29C+0− + k30C−0+ − k31C+−0 − k32C−+0,

(3.9.4)

d

dt
C+0 = 2k7C’++0

+ 2k19C‘00+ − 2k5C’+0+
− 2k17C‘0+0

+k8C++0 + k20C00+ − k6C+0+ − k18C0+0

+2k27C’+−0
+ 2k33C’0−+

− 2k25C’+0− − 2k35C’0+−

+k31C+−0 + k34C0−+ − k29C+0− − k36C0+−,

(3.9.5)
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d

dt
C−0 = 2k15C’−−0

+ 2k23C‘00− − 2k13C’−0− − 2k21C‘0−0

+k16C−−0 + k24C00− − k14C−0− − k22C0−0

+2k28C’−+0
+ 2k35C’0+− − 2k26C’−0+

− 2k33C’0−+

+k32C−+0 + k36C0+− − k30C−0+ − k34C0−+.

(3.9.6)

As can be observed, these equations form a hierarchical system of ODEs, in which the

rate of change of each cluster concentration is given in terms of higher order clusters.

One solution to this problem is the truncation of this hierarchy, which will be investi-

gated in the next sections.

3.2 Evolution of Triangular-Clusters

In this section, the triangular cluster model will be developed for a system consisting of

3 types of elements, namely, positive, negative and neutral ones. The goal of this section

is to find the concentrations of 3-clusters with the shape of a triangle. As mentioned

before, there are three different spatial shapes of a triplet in the lattice: closed triplets

or triangles, open triplets with 180 degree bonds and open triplets with 120 degree

bonds. Triangular concentrations are a matter of interest as we are seeking to match

the predictions of the cluster approximation model with the NMR spectroscopy results.

There are 10 different combinations for a triangle with three particles:
(

+© +©
+© )

,
(

–© –©
–© )

,(
o© o©

o© )
,
(

+© +©
–© )

,
(

–© –©
+© )

,
(

+© +©
o© )

,
(

o© o©
+© )

,
(

–© –©
o© )

,
(

o© o©
–© )

,
(

+© –©
o© )

. As stated by Theorem 7.1.4,

there are some other configurations which are rotational translations of these triangles.

In this section, the focus will be on obtaining rate equations for the rate of change of

concentrations of these triangles, thereby establishing a dynamical system in order to

comprehend the behavior of the triangular clusters.

Remark. The normalization condition can be written for the triangular clusters

with 3 types of species. This condition was investigated previously in eq. (2.2)
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for single site clusters and 2-clusters. In the current setting we are interested in

triangular 3-clusters. The following equation represents this condition

C
Å

+© +©
+© ã

+ C
Å

–© –©
–© ã

+ C
Å

o○ o○
o○ ã

+ C
Å

+© +©
–© ã

+ C
Å

+© –©
+© ã

+ C
Å

–© +©
+© ã

+C
Å

–© –©
+© ã

+ C
Å

+© –©
–© ã

+ C
Å

–© +©
–© ã

+ C
Å

+© +©
o○ ã

+ C
Å

+© o○
+© ã

+ C
Å

o○ +©
+© ã

+C
Å

o○ o○
+© ã

+ C
Å

+© o○
o○ ã

+ C
Å

o○ +©
o○ ã

+ C
Å

–© –©
o○ ã

+ C
Å

–© o○
–© ã

+ C
Å

o○ –©
–© ã

+C
Å

o○ o○
–© ã

+ C
Å

–© o○
o○ ã

+ C
Å

o○ –©
o○ ã

+ C
Å

+© –©
o○ ã

+ C
Å

–© +©
o○ ã

+ C
Å

+© o○
–© ã

+C
Å

o○ +©
–© ã

+ C
Å

–© o○
+© ã

+ C
Å

o○ –©
+© ã

= 1,

⇒ C
Å

+© +©
+© ã

+ C
Å

–© –©
–© ã

+ C
Å

o○ o○
o○ ã

+3C
Å

+© +©
–© ã

+ 3C
Å

–© –©
+© ã

+ 3C
Å

+© +©
o○ ã

+3C
Å

o○ o○
+© ã

+ 3C
Å

–© –©
o○ ã

+ 3C
Å

o○ o○
–© ã

+ 6C
Å

+© –©
o○ ã

= 1.

(3.10)

Some terms in eq. (3.10) are translations of each other as stated by Theorem 7.1.4.

By taking derivatives of eq. (3.10), the following equation is generated

d

dt
C
Å

+© +©
+© ã

+
d

dt
C
Å

–© –©
–© ã

+
d

dt
C
Å

o○ o○
o○ ã

+3
d

dt
C
Å

+© +©
–© ã

+ 3
d

dt
C
Å

–© –©
+© ã

+ 3
d

dt
C
Å

+© +©
o○ ã

+3
d

dt
C
Å

o○ o○
+© ã

+ 3
d

dt
C
Å

–© –©
o○ ã

+ 3
d

dt
C
Å

o○ o○
–© ã

+ 6
d

dt
C
Å

+© –©
o○ ã

= 0.

(3.11)

This condition will be investigated after deriving all rate equations for different

3-clusters.

3.2.1 Production and Destruction of (+©+©
+©

) Cluster

In order to derive the rate equation for the
(

+© +©
+© )

cluster, all possible element swaps that

will build or destroy this cluster will be considered. Figure 2.8 and 2.9 in the previous

sections demonstrate all potential reactions for producing or destroying a
(

+© +©
+© )

cluster

by considering interactions between +© and –© elements. Currently, the o© element is
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also added to the model, which requires us to contemplate the interactions of +© element

with it. The rules for producing and destroying this triangle are the same as before, with

similar translational symmetries. The possible reversible reactions that are unique are

presented in figure 3.7.

– +
+

+
k37

k39
+ +
+

– – +
++ k38

k40
+ +
+–

0 +
+

+
k41

k43
+ +
+

0 0 +
++ k42

k44
+ +
+0

Figure 3.7: Unique reversible reactions, after considering translational symmetries,
to produce or destroy a (+©+©

+©
) cluster.

Notably, each one of the reversible reactions have 6 translational symmetries, as

referred to in the previous sections, and will be accounted for 6 times in deriving the

rate equations. The rate equation for this cluster can be derived by subtracting its rate

of production from its rate of destruction

d

dt
C(Ï+++) = 6k37C(+̇Ï−++) + 6k38C(+̈Ï−++) − 6k39C(−̇Ï+++) − 6k40C(−̈Ï+++)

+6k41C(+̇Ï0++)
+ 6k42C(+̈Ï0++)

− 6k43C(0̇Ï+++) − 6k44C(0̈Ï+++).

(3.12)

3.2.2 Production and Destruction of ( –© –©
–©

) Cluster

Similarly, deriving the rate equation for the
(

–© –©
–© )

cluster requires considering all possi-

ble element swaps that will destroy or produce this cluster. Figure 3.8 demonstrates all

potential reactions for producing or destroying a
(

–© –©
–© )

cluster, considering interactions

of –© with +© and o© elements.
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+ –
–

–
k45

k47
– –
–

+ + –
–– k46

k48
– –
–+

0 –
–

–
k49

k51
– –
–

0 0 –
–– k50

k52
– –
–0

Figure 3.8: Unique reversible reactions, after considering translational symmetries,
to produce or destroy a ( –© –©

–© ) cluster.

Considering reversible and unique reactions in figure 3.8, the following rate equation

can be deduced for
(

–© –©
–© )

cluster

d

dt
C(Ï−−−) = 6k45C(−̇Ï+−−) + 6k46C(−̈Ï+−−) − 6k47C(+̇Ï−−−) − 6k48C(+̈Ï−−−)

+6k49C(−̇Ï0−−)
+ 6k50C(−̈Ï0−−)

− 6k51C(0̇Ï−−−) − 6k52C(0̈Ï−−−).

(3.13)

3.2.3 Production and Destruction of ( o○ o○
o○

) Cluster

Following the same rules, we will derive the rate equation for a
(

o© o©
o© )

cluster. We will

consider interactions of o© element with +© and –© elements. The following reversible

reactions will be found with their specific rate constants.

+ 0
0

0
k53

k55
0 0
0

+ + 0
00 k54

k56
0 0
0+

– 0
0

0
k57

k59
0 0
0

– – 0
00 k58

k60
0 0
0–

Figure 3.9: Unique reversible reactions, after considering translational symmetries,
to produce or destroy a ( o○ o○

o○
) cluster.

Considering reversible and unique reactions in figure 3.9, the following rate equation
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can be deduced for
(

o© o©
o© )

cluster.

d

dt
C(Í000) = 6k53C(0̇Î+00) + 6k54C(0̈Î+00) − 6k55C(+̇Í000) − 6k56C(+̈Í000)

+6k57C(0̇Î−00) + 6k58C(0̈Î−00) − 6k59C(−̇Í000) − 6k60C(−̈Í000).

(3.14)

3.2.4 Production and Destruction of (+©+©
–©

) Cluster

Deriving the rate equation for the
(

+© +©
–© )

cluster can be accomplished by considering all

possible element swaps that will destroy or produce this cluster. Figure 3.10 demon-

strates these reactions. Note that translational symmetries are taken into account to

reduce number of reactions.
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+ +
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0
+ 0
–

+

k78
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+ +
–

0

Figure 3.10: Unique reversible reactions, after considering translational symme-
tries, to produce or destroy a (+©+©

–©
) cluster.

Each one of the reactions in figure 3.10 for producing or destroying the
(

+© +©
–© )

clus-

62



M.Sc. Thesis - A. Ahmadi McMaster University - CSE

ter has 2 translational symmetries. Here we have introduced the unique ones and will

account for each one of them two times in the equation. Some of the rate constants are

the same as some of the previous ones, however, some new constants have been added

to the system to account for interactions between +© and –© elements

d

dt
C(Ï+−+) = 2k61C(+̇Ï−−+) + 2k39C(−̇Ï+++) − 2k63C(−̇Ï+−+) − 2k37C(+̇Ï−++)

+2k62C(+̈Ï−−+) + 2k40C(−̈Ï+++) − 2k64C(−̈Ï+−+) − 2k38C(+̈Ï+−+)

+2k65C(+̇Ï−+−) + 2k66C(+̈Ï+−−) − 2k67C(−̇Ï++−) − 2k68C(−̈Ï++−)

+2k69C(+̇Ï0−+)
+ 2k70C(−̇Ï0++)

− 2k71C(0̇Ï+−+) − 2k72C(0̇Ï−++)

+2k73C(+̈Ï0−+)
+ 2k74C(−̈Ï+0+)

− 2k75C(0̈Ï+−+) − 2k76C(0̈Ï+−+)

+2k77C(+̇Ï0+−)
+ 2k78C(+̈Ï+0−)

− 2k79C(0̇Ï++−) − 2k80C(0̈Ï++−).

(3.15)

3.2.5 Production and Destruction of ( –© –©
+©

) Cluster

Similarly, the rate of change of the
(

–© –©
+© )

cluster can be obtained by looking into the

reactions that will build or destroy this cluster. In addition to the interactions between +©

and –© elements, the o© element would also come into play. Figure 3.11 demonstrates

all possible unique reactions after considering translational symmetries to produce or

destroy this cluster. Note that some of the reactions might be similar to previous ones.
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Figure 3.11: Unique reversible reactions, after considering translational symme-
tries, to produce or destroy a ( –© –©

+© ) cluster.

One can write the rate equation for the
(

–© –©
+© )

cluster by considering the reversible

reactions in figure 3.11. Again, each term in the rate equation has a coefficient of 2 due

to translation invariance of the system

d

dt
C(Ï−+−) = 2k67C(−̇Ï++−) + 2k47C(+̇Ï−−−) − 2k65C(+̇Ï−+−) − 2k45C(−̇Ï+−−)

+2k68C(−̈Ï++−) + 2k48C(+̈Ï−−−) − 2k66C(+̈Ï−+−) − 2k46C(−̈Ï+−−)

+2k63C(−̇Ï+−+) + 2k64C(−̈Ï+−+) − 2k61C(+̇Ï−−+) − 2k62C(+̈Ï−−+)

+2k82C(−̇Ï0+−)
+ 2k85C(+̇Ï0−−)

− 2k84C(0̇Ï−+−) − 2k87C(0̇Ï+−−)

+2k86C(−̈Ï0+−)
+ 2k89C(+̈Ï−0−)

− 2k88C(0̈Ï−+−) − 2k91C(0̈Ï+−−)

+2k90C(−̇Ï0−+)
+ 2k93C(−̈Ï0−+)

− 2k92C(0̇Ï−−+) − 2k95C(0̈Ï−−+).

(3.16)
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3.2.6 Production and Destruction of (+©+©
o○

) Cluster

Likewise, the dynamics of the
(

+© +©
o© )

cluster can be represented by some reversible reac-

tions. Figure 3.12 demonstrates all potential reactions for producing or destroying this

cluster by considering interaction between different elements.

0 +
0

+
k94

k96
+ +
0

0 + +
+

0
k43

k41
+ +
0

+

0 +
0+ k97

k99
+ +
00

+ +
+0 k44

k42
+ +
0+

0 +
0

+

k98

k100
+ +
0

0
+ 0
0

+

k101

k103
+ +
0

0

– +
0

+
k102

k104
+ +
0

– + +
–

0
k72

k70
+ +
0

–

– +
0+ k105

k107
+ +
0–

+ +
–0 k76

k74
+ +
0–

– +
0

+

k106

k108
+ +
0

–
+ –
0

+

k109

k111
+ +
0

–

Figure 3.12: Unique reversible reactions, after considering translational symme-
tries, to produce or destroy a (+©+©

o○
) cluster.

Each of the reactions in figure 3.10 for producing or destroying the
(

+© +©
o© )

cluster has

2 translations. Here we have introduced the unique ones only and will account for each
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one of them two times in the equation

d

dt
C

(Ï+0+)
= 2k94C(+̇Î00+) + 2k43C(0̇Ï+++) − 2k96C(0̇Ï+0+)

− 2k41C(+̇Ï0++)

+2k97C(+̈Î00+) + 2k44C(0̈Ï+++) − 2k99C(0̈Ï+0+)
− 2k42C(+̈Ï+0+)

+2k98C(+̇Î0+0) + 2k101C(+̈Î+00) − 2k100C(0̇Ï++0)
− 2k103C(0̈Ï++0)

+2k102C(+̇Ï−0+)
+ 2k72C(0̇Ï−++) − 2k104C(−̇Ï+0+)

− 2k70C(−̇Ï0++)

+2k105C(+̈Ï−0+)
+ 2k76C(0̈Ï+−+) − 2k107C(−̈Ï+0+)

− 2k74C(−̈Ï+0+)

+2k106C(+̇Ï−+0)
+ 2k109C(+̈Ï+−0)

− 2k108C(−̇Ï++0)
− 2k111C(−̈Ï++0)

.

(3.17)

3.2.7 Production and Destruction of ( o○ o○
+©

) Cluster

In a similar manner, one can find a set of reversible reactions in which the
(

o© o©
+© )

clus-

ter can be found on one side of the reactions. Figure 3.13 demonstrates all possible

reactions of such type.
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Figure 3.13: Unique reversible reactions, after considering translational symme-
tries, to produce or destroy a ( o○ o○

+©
) cluster.

We can write the rate equation for the
(

o© o©
+© )

cluster by considering the reversible

reactions in figure 3.13. Again, each term in the rate equation has a coefficient of 2

corresponding to its spatial translational symmetries

d

dt
C(Î0+0) = 2k100C(0̇Ï++0)

+ 2k55C(+̇Í000) − 2k98C(+̇Î0+0) − 2k53C(0̇Î+00)

+2k103C(0̈Ï++0)
+ 2k56C(+̈Í000) − 2k101C(+̈Î0+0) − 2k54C(0̈Î+00)

+2k96C(0̇Ï+0+)
+ 2k99C(0̈Ï+0+)

− 2k94C(+̇Î00+) − 2k97C(+̈Î00+)

+2k110C(0̇Ï−+0)
+ 2k113C(+̇Î−00) − 2k112C(−̇Î0+0) − 2k115C(−̇Î+00)

+2k114C(0̈Ï−+0)
+ 2k117C(+̈Î0−0) − 2k116C(−̈Î0+0) − 2k119C(−̈Î+00)

+2k118C(0̇Ï−0+)
+ 2k121C(0̈Ï−0+)

− 2k120C(−̇Î00+) − 2k123C(−̈Î00+).

(3.18)
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3.2.8 Production and Destruction of ( –© –©
o○

) Cluster

Following the same procedure for the
(

–© –©
o© )

cluster, its rate of change of concentration

can be deduced by investigating all possible elements swaps that involve this cluster.

Figure 3.14 displays all possible unique reactions after considering translational sym-

metries to produce or destroy this cluster. Note that some of the reactions might be

similar to previous ones.
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Figure 3.14: Unique reversible reactions, after considering translational symme-
tries, to produce or destroy a ( –© –©

o○
) cluster.

The rate equation for the
(

–© –©
o© )

cluster will be obtained based on the reversible reac-

tions in figure 3.14. Again, each term in the rate equation has a coefficient of 2 due to
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translation invariance of the system

d

dt
C

(Ï−0−)
= 2k122C(−̇Î00−) + 2k51C(0̇Ï−−−) − 2k124C(0̇Ï−0−)

− 2k49C(−̇Ï0−−)

+2k125C(−̈Î00−) + 2k52C(0̈Ï−−−) − 2k127C(0̈Ï−0−)
− 2k50C(−̈Ï0−−)

+2k126C(−̇Î0−0) + 2k129C(−̈Î0−0) − 2k128C(0̇Ï−−0)
− 2k131C(0̈Ï−−0)

+2k130C(−̇Ï+0−)
+ 2k87C(0̇Ï+−−) − 2k132C(+̇Ï−0−)

− 2k85C(+̇Ï0−−)

+2k133C(−̈Ï+0−)
+ 2k91C(0̈Ï−+−) − 2k135C(+̈Ï−0−)

− 2k89C(+̈Ï0−−)

+2k134C(−̇Ï+−0)
+ 2k137C(−̈Ï+−0)

− 2k136C(+̇Ï−−0)
− 2k139C(+̈Ï−−0)

.

(3.19)

3.2.9 Production and Destruction of ( o○ o○
–©

) Cluster

Similarly, the reactions leading in producing or destroying the
(

o© o©
–© )

cluster are obtained

by investigating the element swaps between nearest neighbors to the elements of the blue

window. Figure 3.15 highlights the aforementioned reactions.
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Figure 3.15: Unique reversible reactions, after considering translational symme-
tries, to produce or destroy a ( o○ o○

–©
) cluster.

Considering the number of spatial translations for each reversible reaction, the fol-

lowing rate equation will be derived

d

dt
C(Î0−0) = 2k128C(0̇Ï−−0)

+ 2k59C(−̇Í000) − 2k126C(−̇Î0−0) − 2k57C(0̇Î−00)

+2k131C(0̈Ï−−0)
+ 2k60C(−̈Í000) − 2k129C(−̈Î0−0) − 2k58C(0̈Î−00)

+2k124C(0̇Ï−0−)
+ 2k127C(0̈Ï−0−)

− 2k122C(−̇Î00−) − 2k125C(−̈Î00−)

+2k138C(0̇Ï+−0)
+ 2k115C(−̇Î+00) − 2k140C(+̇Î0−0) − 2k113C(+̇Î−00)

+2k141C(0̈Ï+−0)
+ 2k119C(−̈Î0+0) − 2k143C(+̈Î0−0) − 2k117C(+̈Î−00)

+2k142C(0̇Ï+0−)
+ 2k145C(0̈Ï+0−)

− 2k144C(+̇Î00−) − 2k147C(+̈Î00−).

(3.20)
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3.2.10 Production and Destruction of (+© –©
o○

) Cluster

Deriving the rate equation for the
(

+© –©
o© )

cluster is performed by considering all possible

reactions that involve 3 types of elements. It is notable that all of the rate constants

introduced here have been already introduced in the previous sections. Hence, there

will not be any new rate constants specific to this type of cluster. Here, we skip the

representation of the reversible reactions, as they have been constructed earlier in this

section. Each of the reversible reactions for this cluster has only one translation. Totally,

there are 24 different element swaps that can happen to destroy a cluster of this form

and produce a new cluster. All of the translational symmetries of this cluster will be

accounted for in the normalization condition of the system. The following rate equation

can be deduced

d

dt
C

(Ï+0−)
= −k69C(+̇Ï0−+)

+ k71C(0̇Ï+−+) − k73C(+̈Ï0−+)
+ k75C(0̈Ï+−+)

−k77C(+̇Ï0+−)
− k78C(+̈Ï+0−)

+ k79C(0̇Ï++−) + k80C(0̈Ï++−)

−k82C(−̇Ï0+−)
+ k84C(0̇Ï−+−) − k86C(−̈Ï0+−)

+ k88C(0̈Ï−+−)

−k90C(−̇Ï0−+)
− k93C(−̈Ï0−+)

+ k92C(0̇Ï−−+) + k95C(0̈Ï−−+)

−k102C(+̇Ï−0+)
+ k104C(−̇Ï+0+)

− k105C(+̈Ï−0+)
+ k107C(−̈Ï+0+)

−k106C(+̇Ï−+0)
− k109C(+̈Ï+−0)

+ k108C(−̇Ï++0)
+ k111C(−̈Ï++0)

−k110C(0̇Ï−+0)
+ k112C(−̇Î0+0) − k114C(0̈Ï−+0)

+ k116C(−̈Î0+0)

−k118C(0̇Ï−0+)
− k121C(0̈Ï−0+)

+ k120C(−̇Î00+) + k123C(−̈Î00+)

−k130C(−̇Ï+0−)
+ k132C(+̇Ï−0−)

− k133C(−̈Ï+0−)
+ k135C(+̈Ï−0−)

−k134C(−̇Ï+−0)
− k137C(−̈Ï+−0)

+ k136C(+̇Ï−−0)
+ k139C(+̈Ï−− 0)

−k138C(0̇Ï+−0)
+ k140C(+̇Î0−0) − k141C(0̈Ï+−0)

+ k143C(+̈Î0−0)

−k142C(0̇Ï+0−)
− k145C(0̈Ï+0−)

+ k144C(+̇Î00−) + k147C(+̈Î00−).

(3.21)

All in all, the triangular cluster model produces a system of ODEs for the rate of
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change of concentrations of different cluster types. In this case, considering 3 types of

elements in the model, the triangular model consists of 10 ODEs, along with 109 unique

rate constants for each reaction type. The system is not closed and cannot be solved

without further simplification. Additionally, the system of equations is hierarchical, in

the sense that the rate of change of concentration of 3-clusters is calculated from 4-

cluster concentrations. In the following section, we will investigate how the moment

closure model will truncate the hierarchy at the level of 3-clusters and make it a closed

system of equations.

3.3 Moment Closure Approximation

3.3.1 Three-Element Two-Cluster Model

In order to solve system of equations eq. (3.9), one must truncate the hierarchical dy-

namical system. Hierarchical system of ODEs arise when the rate of change of the

concentrations of n clusters are written in terms of the concentrations of n+ 1 clusters,

where n denotes the size of the cluster. Truncation of this hierarchy by some approxima-

tions will allow us to solve the system in a desired closed form. As introduced in section

2.3, the pair approximation model will be used for truncating the system of equations.

Eq. (2.31) is used to write triplets’ concentrations in terms of the concentrations of pairs

and singlets. Applying the moment closure scheme to eq. (3.9) will produce following

closed dynamical system
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(3.22.2)
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(3.22.6)

As we are interested in the equilibrium state of the system, the rate of change of the

concentrations for each specific cluster will be equal to zero, as the rates of the forward

and backward reactions will be the same. Hence, the right hand sides of the ODE system
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in eq. (3.22) will be equal to zero, resulting in a system of algebraic equations
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4k15
C−−C−0

C−
+ 4k23
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− 4k13

C2
−0

C0

− 4k21

C2
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C−
+ k24
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C0

− k14

C2
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− k22

C2
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+4k28
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+ 4k35
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C+

− 4k26
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C0

− 4k33
C+−C−0

C−

+k32
C+−C+0

C+

+ k36
C+−C+0

C+

− k30
C+0C−0

C0

− k34
C+−C−0

C−
= 0.

(3.23.6)

Also, in the equilibrium state, the reversible reactions will have equal forward and back-

ward reaction rates. All unique reversible reactions in the two-cluster model with three

elements can be found in figures 3.1, 3.2, 3.3, 3.4 and 3.5. Hence, the equilibrium con-

stants can be deduced from these reversible reactions in equilibrium. These constants

can be used to reduce the number of the degrees of freedom in the system of equations.

In addition, pair approximation is used to break down the triplet concentrations and

write them in terms of smaller clusters

k1C’+−+ = k3C’++− ⇒ Q1 =
k1

k3

=
C’++−

C’+−+

=
C++C−
C+−C+

, (3.24.1)

k2C(+−+) = k4C(++−) ⇒ Q2 =
k2

k4

=
C(++−)

C(+−+)

=
C++C−
C+−C+

, (3.24.2)

k5C’+0+
= k7C’++0

⇒ Q3 =
k5

k7

=
C’++0

C’+0+

=
C++C0

C+0C+

, (3.24.3)

k6C+0+ = k8C++0 ⇒ Q4 =
k6

k8

=
C++0

C+0+

=
C++C0

C+0C+

, (3.24.4)

k9C’−+− = k11C’−−+ ⇒ Q5 =
k9

k11

=
C’−−+

C’−+−
=
C−−C+

C+−C−
, (3.24.5)

k10C(−+−) = k12C(−−+) ⇒ Q6 =
k10

k12

=
C(−−+)

C(−+−)

=
C−−C+

C+−C−
(3.24.6)

k13C’−0− = k15C’−−0
⇒ Q7 =

k13

k15

=
C’−−0

C’−0−
=
C−−C0

C−0C−
, (3.24.7)

k14C(−0−) = k16C(−−0) ⇒ Q8 =
k14

k16

=
C(−−0)

C(−0−)

=
C−−C0

C0−C−
(3.24.8)
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k17C÷0+−0
= k19C‘00+ ⇒ Q9 =

k17

k19

=
C‘00+

C‘0+0

=
C00C+

C+0C0

, (3.24.9)

k18C(0+0) = k20C(00+) ⇒ Q10 =
k18

k20

=
C(00+)

C(0+0)

=
C00C+

C+0C0

(3.24.10)

k21C‘0−0 = k23C‘00− ⇒ Q11 =
k21

k23

=
C‘00−

C‘0−0

=
C00C−
C−0C0

, (3.24.11)

k22C0−0 = k24C00− ⇒ Q12 =
k22

k24

=
C00−

C0−0

=
C00C−
C−0C0

, (3.24.12)

k25C’+0− = k27C’+−0
⇒ Q13 =

k25

k27

=
C’+−0

C’+0−
=
C+−C0

C+0C−
, (3.24.13)

k26C’−0+
= k28C’−+0

⇒ Q14 =
k26

k28

=
C’−+0

C’−0+

=
C+−C0

C−0C+

, (3.24.14)

k29C+0− = k31C+−0 ⇒ Q15 =
k29

k31

=
C+−0

C+0−
=
C+−C0

C+0C−
, (3.24.15)

k30C−0+ = k32C−+0 ⇒ Q16 =
k30

k32

=
C−+0

C−0+

=
C+−C0

C−0C+

, (3.24.16)

k33C’0−+
= k35C’0+− ⇒ Q17 =

k33

k35

=
C’0+−

C’0−+

=
C+0C−
C−0C+

, (3.24.17)

k34C0−+ = k36C0+− ⇒ Q18 =
k34

k36

=
C0+−

C0−+

=
C+0C−
C−0C+

. (3.24.18)

As can be observed, after applying the moment closure approximations, the following

equilibrium constants will be equal and will further reduce the number of the degrees

of freedom of the system: Q1 = Q2, Q3 = Q4, Q5 = Q6, Q7 = Q8, Q9 = Q10,

Q11 = Q12, Q13 = Q15, Q14 = Q16 and Q17 = Q18. The next step is to write eq.

(3.23) in terms of equilibrium constants, Q1 to Q18. Appendix 7.5 demonstrates the full

derivation of the resulting equations. First, equilibrium constants will be substituted into

the equations in place of the rate constants, then some extra ratios will be introduced.

For this reason, the number of unknowns will diminish significantly. As a result, the

76



M.Sc. Thesis - A. Ahmadi McMaster University - CSE

system (3.23) takes the following form

(4β1 + β2)Q1

C2
+−

C−
− (4β1 + β2)

C++C+−

C+

+(4β3 + 1)Q3

C2
+0

C0

− (4β3 + 1)
C++C+0

C+

= 0,

(3.25.1)

(4β4 + β5)Q5

C2
+−

C+

− (4β4 + β5)
C−−C+−

C−

+(4β6 + 1)Q7

C2
−0

C0

− (4β6 + 1)
C−−C−0

C−
= 0,

(3.25.2)

(4β7 + β8)Q9

C2
+0

C+

− (4β7 + β8)
C00C+0

C0

+(4β9 + 1)Q11

C2
−0

C−
− (4β9 + 1)

C00C−0

C0

= 0,

(3.25.3)

(4β10 + β11)
C++C+−

C+

− (4β10 + β11)Q1

C2
+−

C−

−(4β12 + β13)Q5

C2
+−

C+

+ (4β12 + β13)
C−−C+−

C−

+(4β14 + β16)Q13
C+0C−0

C0

− (4β14 + β16)
C+−C−0

C−

+(4β15 + 1)Q14
C+0C−0

C0

− (4β15 + 1)
C+−C+0

C+

= 0,

(3.25.4)

(4β17 + β18)
C++C+0

C+

− (4β17 + β18)Q3

C2
+0

C0

+(4β19 + β20)
C00C+0

C0

− (4β19 + β20)Q9

C2
+0

C+

+(4β21 + β22)
C+−C−0

C−
− (4β21 − β22)Q13

C+0C−0

C0

+(4β23 + 1)Q17
C+−C−0

C−
− (4β23 − 1)

C+−C+0

C+

= 0,

(3.25.5)
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(4β24 + β25)
C−−C−0

C−
− (4β24 + β25)Q7

C2
−0

C0

+(4β26 + β27)
C00C−0

C0

− (4β26 + β27)Q11

C2
−0

C−

+(4β28 + β29)
C+−C+0

C+

− (4β28 + β29)Q14
C+0C−0

C0

+(4β30 + 1)
C+−C+0

C+

− (4β30 + 1)Q17
C+−C−0

C−
= 0.

(3.25.6)

As can be observed, this model contains 18 equilibrium constants Q1-Q18 and 30 ad-

ditional ratios β1-β30. As noted before, equilibrium constants are calculated based on

the unique reversible reactions in equilibrium and further broken down in terms of pairs

and singlets concentrations. Each of the extra parameters, namely β1 to β30, is the ratio

of the rate constants which do not correspond to the same reversible reaction. The pa-

rameters are chosen arbitrarily without influencing the equilibrium phase of the system.

Nonetheless, the choice of these arbitrary parameters might influence the intermedi-

ate states of the system. In other words, as long as the equilibrium constants are not

changing, the system will reach the same equilibrium phase regardless of the choice of

additional parameters. However, changing these arbitrary parameters from one experi-

ment to another might affect the intermediate states of the system when converging to

the same equilibrium.

3.3.2 Three-Element Triangular-Cluster Model

In section 3.2, we derived the rate equations for each triangular cluster type. The sys-

tem of equations is significantly under-determined and with a hierarchy that needs to

be truncated. The moment closure model introduced earlier will be used to truncate the

hierarchy of the system at the level of 3-clusters. Additionally, we are interested in the

equilibrium phase of the system, where the rate of change of concentrations for differ-

ent clusters remains constant as the forward reaction rate will be equal to the backward

reaction rate. Adding the assumption of equilibrium will assist us in reducing the num-

ber of parameters in the model by calculating the equilibrium constants of the model.
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The ODE system of equations in equilibrium will then become an algebraic system of

equations. The following equations will be derived for equilibrium after applying the

moment closure scheme on ODE equations

k37

C++C
3
+−

C2
+C

2
−

+
1

5
k38
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++C
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+−
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+
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+
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(3.26.1)
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−
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+k49

C−−C
3
−0

C2
0C

2
−
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−
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(3.26.2)
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(3.26.3)
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(3.26.4)
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(3.26.9)

Same for the two-element model, the rate of forward reactions and backward reactions

will be equal for reversible reactions in equilibrium. The following equilibrium con-

stants can be introduced based on reversible reactions in equilibrium. Each one of them

is broken down by applying the moment closure approximations.

Q19 =
k37

k39

=
C(−̇Ï+++)

C(+̇Ï−++)

=
CÏ+++C−

CÏ−++C+

=
C2

++C
2
−

C2
+−C

2
+

, (3.27.1)

Q20 =
k38

k40

=
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=
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=
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, (3.27.2)
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, (3.27.3)
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=
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, (3.27.4)
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, (3.27.5)
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, (3.27.6)
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, (3.27.14)

Q33 =
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, (3.27.15)

Q34 =
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=
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, (3.27.16)
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, (3.27.17)
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, (3.27.19)
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, (3.27.20)
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, (3.27.21)
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Q41 =
k82

k84

=
C(0̇Ï−+−)

C
(−̇Ï0+−)

=
CÏ−+−C0

CÏ0+−C−
=
C−−C+−C

2
0

C+0C−0C2
−
, (3.27.23)
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, (3.27.25)
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, (3.27.31)
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, (3.27.32)
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, (3.27.33)

Q52 =
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=
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, (3.27.34)
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, (3.27.35)
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, (3.27.37)
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, (3.27.49)
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. (3.27.54)

As can be observed, after applying the moment closure scheme, some of the equilibrium

constants are equal to each other. The rate equations derived in eq. (3.26) will be

written in terms of equilibrium constants and will be closed by moment closure scheme

in terms of 2-clusters. Appendix 7.6 provides the full derivation of these new equations.

Note that one of the rate equations is redundant as it can be deduced by imposing the

normalization condition
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3
+0

C+C3
0

− β58

C++C
3
+0

C3
+C0

+
1

5
Q48β59

C00C
4
+0

C2
+C

4
0

−1

5
β59

C++C00C
3
+0

C3
+C

3
0

+Q49β60

C00C
3
+0

C+C3
0

+
1

5
Q50β61

C++C00C
3
+0

C3
+C

3
0

−β60

C++C
3
+0

C3
+C0

− 1

5
β61

C++C
4
+0

C4
+C

2
0

+Q51β62

C2
+−C+0C−0

C+C2
−C0

+β63

C++C
2
+−C−0

C2
+C

2
−

− β62

C++C
2
+0C+−

C3
+C0

−Q36β63

C++C
2
+0C−0

C2
+C

2
0

+
1

5
Q52β64

C2
+−C

2
+0C−0

C2
+C

2
−C

2
0

+
1

5
β65

C++C
2
+−C+0C−0

C3
+C

2
−C0

− 1

5
β64

C++C+−C
2
+0C−0

C3
+C−C

2
0

−1

5
Q38β65

C++C+−C
2
+0C−0

C3
+C−C

2
0

+Q53β66

C2
+−C+0C−0

C+C2
−C0

+
1

5
Q54

C++C
2
+−C+0C−0

C3
+C

2
−C0

−β66

C++C+−C
2
+0

C3
+C0

− 1

5

C++C
2
+−C

2
+0

C4
+C−C0

= 0,

(3.28.6)

β67

C++C
3
+0

C3
+C0

−Q49β67

C00C
3
+0

C+C3
0

+
1

5
β68

C++C
4
+0

C4
+C

2
0

−1

5
Q50β68

C++C00C
3
+0

C3
+C

3
0

+ β69

C++C
3
+0

C3
+C0

+
1

5
β70

C++C00C
3
+0

C3
+C

3
0

−Q47β69

C00C
3
+0

C+C3
0

− 1

5
Q48β70

C00C
4
+0

C2
+C

4
0

+Q55β71

C+−C+0C
2
−0

C+C2
−C0

+Q56β72

C00C+−C
2
−0

C2
−C

2
0

− β71

C00C
2
+0C−0

C+C3
0

− β72

C00C+−C
2
+0

C2
+C

2
0

+
1

5
Q57β73

C+−C
2
+0C

2
−0

C2
+C

2
−C

2
0

+
1

5
Q58β74

C00C+−C+0C
2
−0

C+C2
−C

3
0

− 1

5
β73

C00C+−C
2
+0C−0

C2
+C−C

3
0

−1

5
β74

C00C+−C
2
+0C−0

C2
+C−C

3
0

+Q59β75

C+−C+0C
2
−0

C+C2
−C0

+
1

5
Q60

C00C+−C+0C
2
−0

C+C2
−C

3
0

−β75

C00C
2
+0C−0

C+C3
0

− 1

5

C00C
2
+0C

2
−0

C+C−C4
0

= 0,

(3.28.7)
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Q61β76

C00C
3
−0

C−C3
0

− β76

C−−C
3
−0

C3
−C0

+
1

5
Q62β77

C00C
4
−0

C4
0C

2
−

−1

5
β77

C−−C00C
3
−0

C3
−C

3
0

+Q63β78

C00C
3
−0

C−C3
0

+
1

5
Q64β79

C−−C00C
3
−0

C3
−C

3
0

−β78

C−−C
3
−0

C3
−C0

− 1

5
β79

C−−C
4
−0

C4
−C

2
0

+Q65β80

C2
+−C+0C−0

C2
+C−C0

+β81

C−−C
2
+−C+0

C2
+C

2
−

− β80

C−−C+−C
2
−0

C3
−C0

−Q42β81

C−−C+0C
2
−0

C2
−C

2
0

+
1

5
Q66β82

C2
+−C+0C

2
−0

C2
+C

2
−C

2
0

+
1

5
β83

C−−C
2
+−C+0C−0

C2
+C

3
−C0

− 1

5
β82

C−−C+−C+0C
2
−0

C+C3
−C

2
0

−1

5
Q44β83

C−−C+−C+0C
2
−0

C+C3
−C

2
0

+Q67β84

C2
+−C+0C−0

C2
+C−C0

+
1

5
Q68

C−−C
2
+−C+0C−0

C2
+C

3
−C0

−β84

C−−C+−C
2
−0

C3
−C0

− 1

5

C−−C
2
+−C

2
−0

C+C4
−C0

= 0,

(3.28.8)

β85

C−−C
3
−0

C3
−C0

−Q63β85

C00C
3
−0

C−C3
0

+
1

5
β86

C−−C
4
−0

C4
−C

2
0

−1

5
Q64β86

C−−C00C
3
−0

C3
−C

3
0

+ β87

C−−C
3
−0

C3
−C0

+
1

5
β88

C−−C00C
3
−0

C3
−C

3
0

−Q61β87

C00C
3
−0

C−C3
0

− 1

5
Q62β88

C00C
4
−0

C4
0C

2
−

+Q69β89

C+−C
2
+0C−0

C2
+C−C0

+β90

C00C+−C
2
+0

C2
+C

2
0

− β89

C00C+0C
2
−0

C−C3
0

−Q56β90

C00C+−C
2
−0

C2
−C

2
0

+
1

5
Q70β91

C+−C
2
+0C

2
−0

C2
+C

2
−C

2
0

+
1

5
β92

C00C+−C
2
+0C−0

C2
+C−C

3
0

− 1

5
β91

C00C+−C+0C
2
−0

C+C2
−C

3
0

−1

5
Q58β92

C00C+−C+0C
2
−0

C+C2
−C

3
0

+Q71β93

C+−C
2
+0C−0

C2
+C−C0

+
1

5
Q72

C00C+−C
2
+0C−0

C2
+C−C

3
0

−β93

C00C+0C
2
−0

C−C3
0

− 1

5

C00C
2
+0C

2
−0

C+C−C4
0

= 0.

(3.28.9)

Note that expressions for the ratios β31-β93 of the rate constants are provided in Ap-

pendinx 7.6. Each of these parameters is defined as the ratios of the rate constants that

do not correspond to the same reversible reaction. These parameters cannot be calcu-

lated by looking at reversible reactions in the system. However, these parameters can be

chosen arbitrarily without altering the equilibrium phase of the system. Having system
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of equations (3.28), and determining the equilibrium constants from the experimental

results, one will be able to solve the forward problem to calculate concentrations of

micro-states of the system.

All in all, dynamical systems were built for the concentrations of 2-clusters and

3-clusters based on higher order cluster concentrations. The pair-approximation trun-

cation scheme is utilized to truncate the hierarchy of equations. Rate constants were

replaced by their ratios to reduce the number of unknowns in the equations in equilib-

rium. Consequently, the resulting algebraic system of equations is solvable analytically

using equilibrium constants and some additional arbitrary parameters. In order to deter-

mine the rate constants in the dynamical system, we propose a different computational

framework in the next chapter based on inverse modeling approach.
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Chapter 4

Computational Framework for Inverse

Modeling

In the previous chapters we developed a system of evolution equations for the two-

element and three-element systems. Two different, yet interconnected models were

developed for describing the evolution of the concentrations of the clusters at different

levels, namely, two-cluster model and triangular-cluster model, in which the evolution

of 2-clusters and 3-clusters are considered respectively. An analytic solution of the

dynamical system was developed at equilibrium and equilibrium constants were calcu-

lated explicitly from concentrations for each reversible reaction. In this chapter we will

present computational frameworks for proposing a new closure approximation model

and also calculating the rate constants. First, the pair approximation truncation scheme,

which was based on neglecting the non-nearest-neighbor correlations of elements, is im-

proved in order to produce more accurate results. Also, we will propose a computational

framework for deriving the rate constants of each unique reaction. These parameters are
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considered to be constant in this formulation. However, temperature-dependent rate

constants will also be investigated in a more general setting. Section 4.1 proposes a

novel truncation scheme to close the dynamical system and will be subsequently com-

pared to the pair approximation scheme. Section 4.2 discusses the computational frame-

work used for deriving the parameters of the model via an inverse modeling approach.

Finally, section 4.3 suggests a framework for calculating the temperature-dependent rate

constants.

4.1 Optimal Moment Closure Approxima-

tion

The pair approximation scheme introduced in eq. (2.31), (2.36) and (2.37) can be used

to close the hierarchy of the evolution equations. However, the accuracy of this scheme

is questionable as the results are shown in section 5.4. Some analyses have been per-

formed using this scheme which are presented in chapter 5. In order to enhance the

accuracy of the truncation scheme, here we propose a new approach based on a non-

linear regression analysis in order to truncate the hierarchical system of equations more

accurately. The pair approximation scheme attempts to predict the concentrations of the

higher order clusters in terms of lower order ones with a specific functional form. In

the new approach, we attempt to give more degree of freedom to the functional forms

to make them more flexible. The new closure model depends on the same concentra-

tions as before but the functional relation is more general. Table 4.1 demonstrates the

functional forms for each particular triplet using the pair approximation and optimal

closure schemes. PA stands for the pair approximation scheme and OA refers to the

optimal approximation scheme. Note that eq. (2.31) can be expanded for each partic-

ular cluster as shown in Table 4.1. It is notable that the new functional forms are the

generalizations of the original ones obtained by adding more degree of freedom to the
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functions and involving more cluster concentrations. The numerators of the functions

involve the nearest-neighbor 2-clusters such that the effect of non-nearest neighbor ones

are neglected. The denominators, on the other hand, involve the singlet concentrations

that are present in the triplet. The later makes the functional form different from the

pair approximation in some of the cases. Also, the exponents of the concentrations in

the new model are to be determined using nonlinear regression techniques.

Triplet Type PA OA Cost Functional (F ) Γ

C+++
1
5

C2
++

C+

1
5

C
γ1
++

C
γ2
+

F1 = 1
2

∫ T
0

[C+++(t,Γ)− C̃+++(t)]2dt Γ1 = [γ1 γ2]

C−−−
1
5

C2
−−
C−

1
5

C
γ1
−−
C
γ2
−

F2 = 1
2

∫ T
0

[C−−−(t,Γ)− C̃−−−(t)]2dt Γ2 = [γ1 γ2]

C+−+
1
5

C2
+−
C−

1
5

C
γ1
+−

C
γ2
+ C

γ3
−

F3 = 1
2

∫ T
0

[C+−+(t,Γ)− C̃+−+(t)]2dt Γ3 = [γ1 γ2 γ3]

C−+−
1
5

C2
+−
C+

1
5

C
γ1
+−

C
γ2
+ C

γ3
−

F4 = 1
2

∫ T
0

[C−+−(t,Γ)− C̃−+−(t)]2dt Γ4 = [γ1 γ2 γ3]

C++−
1
5
C++C+−

C+

1
5

C
γ1
++C

γ2
+−

C
γ3
+ C

γ4
−

F5 = 1
2

∫ T
0

[C++−(t,Γ)− C̃++−(t)]2dt Γ5 = [γ1 γ2 γ3 γ4]

C−−+
1
5
C−−C+−

C−
1
5

C
γ1
−−C

γ2
+−

C
γ3
+ C

γ4
−

F6 = 1
2

∫ T
0

[C−−+(t,Γ)− C̃−−+(t)]2dt Γ6 = [γ1 γ2 γ3 γ4]

C’+++
2
5

C2
++

C+

2
5

C
γ1
++

C
γ2
+

F7 = 1
2

∫ T
0

[C’+++(t,Γ)− C̃’+++(t)]2dt Γ7 = [γ1 γ2]

C’−−− 2
5

C2
−−
C−

2
5

C
γ1
−−
C
γ2
−

F8 = 1
2

∫ T
0

[C’−−−(t,Γ)− C̃’−−−(t)]2dt Γ8 = [γ1 γ2]

C’+−+
2
5

C2
+−
C−

2
5

C
γ1
+−

C
γ2
+ C

γ3
−

F9 = 1
2

∫ T
0

[C’+−+(t,Γ)− C̃’+−+(t)]2dt Γ9 = [γ1 γ2 γ3]

C’−+−
2
5

C2
+−
C+

2
5

C
γ1
+−

C
γ2
+ C

γ3
−

F10 = 1
2

∫ T
0

[C’−+−(t,Γ)− C̃’−+−(t)]2dt Γ10 = [γ1 γ2 γ3]

C’++−
2
5
C++C+−

C+

2
5

C
γ1
++C

γ2
+−

C
γ3
+ C

γ4
−

F11 = 1
2

∫ T
0

[C’++−(t,Γ)− C̃’++−(t)]2dt Γ11 = [γ1 γ2 γ3 γ4]

C’−−+
2
5
C−−C+−

C−
2
5

C
γ1
−−C

γ2
+−

C
γ3
+ C

γ4
−

F12 = 1
2

∫ T
0

[C’−−+(t,Γ)− C̃’−−+(t)]2dt Γ12 = [γ1 γ2 γ3 γ4]

CÏ+++
2
5

C3
++

C3
+

2
5

C
γ1
++

C
γ2
+

F13 = 1
2

∫ T
0

[CÏ+++(t,Γ)− C̃Ï+++(t)]2dt Γ13 = [γ1 γ2]

CÏ−−− 2
5

C3
−−
C3
−

2
5

C
γ1
−−
C
γ2
−

F14 = 1
2

∫ T
0

[CÏ−−−(t,Γ)− C̃Ï−−−(t)]2dt Γ14 = [γ1 γ2]

CÏ++−
2
5

C++C2
+−

C2
+C−

2
5

C
γ1
++C

γ2
+−

C
γ3
+ C

γ4
−

F15 = 1
2

∫ T
0

[CÏ++−(t,Γ)− C̃Ï++−(t)]2dt Γ15 = [γ1 γ2 γ3 γ4]

CÏ−−+
2
5

C−−C2
+−

C+C2
−

2
5

C
γ1
−−C

γ2
+−

C
γ3
+ C

γ4
−

F16 = 1
2

∫ T
0

[CÏ−−+(t,Γ)− C̃Ï−−+(t)]2dt Γ16 = [γ1 γ2 γ3 γ4]

Table 4.1: The functional forms of pair approximation scheme vs. optimal closure
scheme for each triplet type.
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We will try to find the parameters of these models by minimizing the residuals

between the experimental data and the model output data points for different times

[17–19]. In this formulation the concept of time refers to the iterations of the simu-

lated annealing experiment as time is not an independent variable for this simulation.

Each time step corresponds to number of iterations of the simulated annealing experi-

ment, as the data is sampled here. The functional forms for the pair approximation and

the optimal approximation are proposed in Table 4.1. Also, the error functional to be

minimized is presented for each triplet type. C and C̃ correspond to the model output

concentrations and the experimental concentrations respectively. T is the final time of

the process. Notice that for each specific triplet, a separate regression analysis will be

performed individually. Γ is the vector of exponents in the new functional forms which

is different for each triplet type. Note that the triple concentrations are written in terms

of lower order concentrations and hence, the new functional forms have to preserve the

unit of concentration. Thus, for each functional form, the exponents have to add up

to one to maintain the concentration unit. To do so, we present three distinct formula-

tions for different triplet types based on the number of exponents that they have. The

following nonlinear regression problem needs to be solved

min
Γi

Fi(Γi) i = 1, 2, 7, 8, 13, 14

such that


γ1 > 0,

γ1 − γ2 = 1,

(4.1)

where Fi is the cost functional to be minimized as stated in Table 4.1 and Γ is the vector

of exponent (parameters) of the model. However, this formulation takes another form
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for some other cases, namely,

min
Γi

Fi(Γi) i = 3, 4, 9, 10

such that


γ1 > 0,

γ1 − γ2 − γ3 = 1.

(4.2)

The rest of the cases are analyzed via the following formulation:

min
Γi

Fi(Γi) i = 5, 6, 11, 12, 15, 16

such that


γ1, γ2 > 0,

γ1 + γ2 − γ3 − γ4 = 1.

(4.3)

The reason for making the exponents strictly positive in the numerator is that the nega-

tive exponents can cause the system of ODEs to blow up for concentrations between 0

and 1. In other words, the concentrations are defined for values in [0, 1] and the negative

exponents of the pair concentrations will, in some cases, produce unbounded terms in

the equations, which further leads to the blow up of the ODE system. Note that some of

the functions have two factors on the numerator, however, others preserve one factor in

the numerator. Notably, the exponents on the factors in the denominator are concentra-

tions of singlets, which are constants throughout the process and have no contribution

to the blow up of the ODEs. Optimal closure model presents the new functional forms

which can be used to predict the 3-cluster concentrations from lower order ones. The

unconstrained optimization problem can be solved using standard solvers.
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4.2 An Inverse Modeling Approach for Pa-

rameter Estimation

As we discussed in the previous chapters, the dynamical system at equilibrium becomes

an algebraic system of equations which is solved analytically using the expressions of

equilibrium constants and moment closure approximation truncation scheme. Nonethe-

less, the main goal is to calculate the rate constants from concentrations throughout

the process. The parameters are reconstructed by minimizing the mismatch between

the computational and experimental cluster concentrations [20,21]. The "experimental"

concentrations are obtained by simulating a Monte-Carlo experiment using Metropolis-

Hastings algorithm as shown in chapter 5. Temperature is one of the factors changing

with time in this simulation. One simplifying assumption is that the parameters (rate

constants) of the model are not changing with temperature throughout the process. The

goal is to fit experimental data to model outputs via assuming constant parameters.

However, in a real physical system, the reaction rate constants are changing with tem-

perature. This assumption will be relaxed in the next section. Also, each of the ratios

of the rate constants corresponding to each of the reversible reactions have to be equal

to their equilibrium constants throughout the evolution of the cluster concentrations (for

instance, Q1 = k1
k3

=
C÷++−
C÷+−+

= C++C−
C+−C+

) as stated in eq. (2.33) and eq. (2.40). It is

noteworthy that the ratios of concentrations corresponding to a reversible reaction, as

stated in eq. (2.9) and eq. (2.17), are equal to the ratios of the rate constants corre-

sponding to the same reversible reaction, as the forward and backward rates are equal in

equilibrium (k1
k3

=
C÷++−
C÷+−+

at equilibrium). This statement is not true during the process

as the forward and backward rates of each reversible reactions are not equal. The ratios

of concentrations corresponding to a reversible reaction (
C÷++−
C÷+−+

) are changing during the

process and are referred to as rate quotients. The rate quotient is equal to the equilib-

rium constant only at the equilibrium phase of the system. However, the ratios of the
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rate constants (and not rate quotients) corresponding to a reversible reaction are equal to

the equilibrium constants during the process and in equilibrium. For instance, Q1 = k1
k3

at all times of the process, however, Q1 = k1
k3

=
C÷++−
C÷+−+

only at equilibrium. In order to

find the parameters of the two-cluster model, the following formulation is used

min
K

J(K) =
1

2

∫ T

0

[
C(t,K)− C̃(t)

]2
dt

such that





dC
dt

= f(C; K) on
(
0, T

]
,

C = Ci on t = 0,

C++ + C−− + 2C+− = 1,

Q(K) = ‹Q,
(4.4)

where K is the vector of rate constants, C is the vector of concentrations from the model,

C̃ is the vector of concentration from the experimental results, Ci is the vector of initial

concentrations at the start of the process, Q is the vector of equilibrium constants which

are written as ratios of the rate constants, ‹Q is the vector of equilibrium constants cal-

culated from the simulated annealing results at equilibrium and T is the final time of the

process. The objective function is defined as the discrepancy between the experimental

concentrations and concentrations obtained from the evolutionary system of equations,

both as functions of time. This objective function is calculated for the entire time evo-

lution of the process. Note that the system of differential algebraic equations used as

the constraint satisfies the normalization condition by itself. Hence, the normalization

condition becomes redundant and one can solve the system of equations in time by an

ODE solver. Also, the concentration of (+−) cluster can be written in terms of concen-

trations of the (++) and (−−) clusters based on the normalization condition. Note that

in our approach the vector of concentrations are

C =
[
C++ C−−

]
,

C̃ =
[
C̃++ C̃−−

]
.

(4.5)

97



M.Sc. Thesis - A. Ahmadi McMaster University - CSE

The system of ODEs is solved for the concentrations using an ODE solver. The evolu-

tionary system of equations for the two-cluster two-element model is

dC++

dt
= 4k1C(’+−+) + 2k2C(+−+) − 4k3C(’++−) − 2k4C(++−), (4.6.1)

dC−−
dt

= 4k5C(’−+−) + 2k6C(−+−) − 4k7C(’−−+) − 2k8C(−−+), (4.6.2)

where ki, i = 1, ..., 8 are the unique rate constants of the model which need to be

determined. Equation (4.6) is the hierarchical form of the equation which needs to

be truncated via the pair approximation closure scheme or an alternative one, which is

discussed in the previous section. Chapter 5 demonstrates the results of this analysis.

4.3 Temperature Dependent Rate Constants

Rate constants in chemical processes are generally temperature dependent. Section 4.2

proposes an inverse modeling approach for estimating the rate constants which are con-

stant during the process. In this section, we will neglect this assumption by making the

parameters temperature dependent. To do so, the experimental data which is evolved

in time (and temperature), is divided into a number of sub-intervals. The temperature

is decreased monotonously with time. Each sub-interval covers a range of the temper-

ature decrease. By increasing the number of sub-intervals we can make our grid finer

and obtain rate constants that resolve finer variations with temperature. This can be

performed by introducing a cost functional for minimizing the mismatch between the

experimental concentrations and the model outputs which is evaluated in time for n
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equal sub-intervals

min
K

J(K) =
1

2

∫ T

0

[
C(t,K)− C̃(t)

]2
dt

such that





dC
dt

= f(C; K) on
(
0, T

]
,

C = Ci at t = 0,

C++ + C−− + 2C+− = 1,

K =
[
K1,K2, · · · ,Kn

]
,

Kj ∈ R8 for t ∈
(
(j − 1)∆T, j∆T

]
, j = 1, 2, · · · , n,

Q(K) = ‹Q,
(4.7)

where Kj is the vector of rate constants for each subinterval of the simulation introduced

in R8, ∆T is the time duration for each subinterval, T is the final time which is divided

into n equal sub-intervals, t is simulation time, J is the cost functional to be minimized,

C is the vector of concentrations and Ci is the initial concentration at time zero. In

calculation of the cost functional, the system of ODEs is solved for each sub-interval

depending on their specific rate constants. The ratios of the rate constants (Q) is equal

to the corresponding equilibrium constants throughout the process. This optimization

problem will be solved with standard solvers and the results are presented in chapter 5.

4.4 Computational Tools

In order to solve the constrained optimization problems in eq. (4.4) and (4.7) the

"fmincon" solver in MATLAB is used. This solver is designed for optimizing non-

linear multivariable functions subject to nonlinear constraints. The "SQP" algorithm is

used for optimizing the cost functional as an iterative approach. This algorithm respects

the bounds of the decision variables at all iterations and is able to handle NaN or Inf

values referenced to by the objective function. The reader can refer to [14] and [15] for
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further details regarding this algorithm.

The system introduced in eq. (4.1) to (4.3) is a least square curve-fitting problem.

"lsqcurvefit" solver in MATLAB is used which is a nonlinear curve-fitting solver al-

lowing for bounded decision variables. The optimization problem is solved via iterative

methods due to the nonlinear dependencies. The "trust-region-reflective" algorithm is

used for this optimization problem. The reader can refer to [16] for the details of this

algorithm.

Each iteration of the optimization problem in eq. (4.4) and (4.7) is constrained to

the solutions of a system of ODEs. "ode15s" in MATLAB is used for solving the initial

value problem. The solver is used for solving stiff differential equations and differential

algebraic equations.
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Chapter 5

Results

In the previous chapter we proposed a computational framework for calculating the con-

stant and temperature-dependent parameters in a more general setting from the results

of a simulated annealing experiment. Also, the optimal closure model was proposed for

improving the performance of the moment closure approximation model. The results of

the simulated annealing experiment were introduced in the first chapter of this document

and will be used as "experimental" data in our formulations. In this chapter, first, the

equilibrium constants will be calculated at equilibrium based on the simulated anneal-

ing results. These equilibrium constants will be used later in the calculation of rate con-

stants. The results of the optimal closure approximation will be presented and compared

to the pair approximation model. The rate constants will be calculated based on both

closure approximation models by assuming both constant and temperature-dependent

parameters. Finally, the accuracy of both models will be investigated by reconstructing

higher order concentrations and comparing them to the concentrations obtained from

the simulated annealing experiment.
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5.1 Calculation of Equilibrium Constants

Two different models were developed for describing the evolution of various clusters,

namely, the two-cluster model and the triangular-cluster model. The former predicts

the evolution of 2-clusters from 3-clusters and the latter describes the evolution of

triangular-clusters in terms of 4-clusters. As mentioned in the previous chapters, the

equilibrium state of the system is a matter of interest since the rate of forward and re-

verse reactions are equivalent. The equilibrium constants are defined as the ratios of

the rate constants corresponding to the same reversible reaction. These constants can be

calculated based on the concentrations of different clusters in equilibrium as stated in

eq. (2.33) and (2.40) for the two-cluster model and the triangular-cluster model, respec-

tively. There are 2 unique equilibrium constants involved in the two-cluster model and

8 unique equilibrium constants in the triangular-cluster model that require to be calcu-

lated. The results are presented for the Li1/3Mn2/3 system in Table 5.1. In the ordered

system, some of the equilibrium constants become zero or infinity. We emphasize that

the equilibrium constants are calculated based on concentrations at equilibrium as in

(2.33) and (2.40).
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Constant Formula Approximated Value by Two-Cluster Model

Q1 = Q2
C++C−
C+−C+

0.4980

Q3 = Q4
C−−C+

C+−C−
0.0000

Constant Formula Approximated Value by Triangular-Cluster Model

Q5
C2

++C
2
−

C2
+−C

2
+

0.0827

Q6
C++C−
C+−C+

0.4980

Q7
C2
−−C

2
+

C2
+−C

2
−

0.0000

Q8
C−−C+

C+−C−
0.0000

Q9
C++C2

−
C−−C2

+
∞

Q10
C++C−
C+−C+

0.4995

Q11
C++C2

−
C−−C2

+
∞

Q12
C+−C−
C−−C+

∞

Table 5.1: Equilibrium constants calculated for the Li1/3Mn2/3 system using pair
approximation truncation scheme.

As can be observed, there are some infinite and zero equilibrium constants in the

equilibrium state of this system. The reason is that all equilibrium constants are written

in terms of pair and singlet concentrations and the concentration of Li − Li cluster

is zero in the final state of this regular system as shown in figure 1.3. Substituting

these parameters into eq. (2.40), we notice that eqs. (2.40.1) and (2.40.2) are satisfied.

However, eq. (2.40.3) becomes degenerate in this case as C−− is equal to zero and

some parameters are infinite. In other words, in the limiting case of pair concentrations

equal to zero, the system of algebraic equations can be re-written by eliminating the pair
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concentrations that are zero, as in Appendix 7.4.

Moreover, the equilibrium constants have to satisfy equilibrium conditions, specifi-

cally the ones presented in figures 2.4 and 2.10. In the chemical equilibrium, the rate of

forward reaction has to be equal to the rate of reverse reaction. In other words, while the

forward reaction produces a specific cluster, the backward reaction will destroy it with

the same rate. The equilibrium constant can be written as the ratio of concentration of

products in the reversible reaction over the concentration of reactants. In the final state

of the Li1/3Mn2/3 system, some of the reversible reactions are satisfied even without the

utilization of moment closure approximation. However, the following constants are not

satisfied without the approximation: Q1 = k1
k3
, Q2 = k2

k4
, Q5 = k9

k11
, Q6 = k10

k12
. Consid-

ering Q5 and figure 2.10, this constant can be calculated as Q5 = k9
k11

=
C

(−̇Ì+++)

C
(+̇Ì−++)

before

applying the moment closure approximation. By looking at figure 1.3 at equilibrium, we

notice that C−̇Ï+++ as the product of the reaction of k9, is equal to zero at equilibrium,

however, C+̇Ï−++ as the reactant of the same reaction is not zero. In other words, Q5

should be zero at equilibrium. However, it takes the value of 0.0827 which has been ob-

tained by considering moment closure approximation for the higher order clusters. This

discrepancy is being generated as the result of using moment closure approximation to

make them consistent with other equations. Likewise, the original equilibrium constant

values for Q1, Q2 and Q6 will be different from their approximations. Consequently,

all of the reversible reactions will satisfy the equilibrium constants as long as the higher

order concentrations are written in terms of pairs or singlets.

5.2 Optimal Moment Closure

As discussed in the previous chapters, the evolutionary system of equations is hierar-

chical, meaning that the rates of change of concentrations of lower order clusters are

described in terms of higher order ones. Pair approximation truncation scheme was in-
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troduced in section 2.3 in order to close the dynamical system. In order to enhance the

performance of the model, one needs to increase the accuracy of the pair approximation

model. Previously, in the pair approximation model, the functional form was fixed for

all 3-clusters or 4-clusters and it was only dependent on the shape of the triplet as stated

in eqs. (2.31), (2.36) and (2.37). Section 4.1 proposes new functional forms for each

triplet type to be approximated by the nearest-neighbor pairs inside the triplet. How-

ever, the new formulation suggests the functional forms according to the triplet type.

The coefficients of this new model are determined using a nonlinear regression tech-

nique. In order to find the parameters of this model, the triplet and pair concentrations

are obtained as functions of time (temperature) from the results of the simulated anneal-

ing approach. The unknown parameters of the new functional forms are calculated by

fitting the outputs of the nonlinear model to the simulated annealing data.

It is noteworthy that the simulated annealing algorithm is an stochastic optimization

method with judiciously selected updates at each iteration. Due to the stochastic na-

ture of this method, it does not have repeatability on successive runs of the algorithm

with the same initial condition. Moreover, the temperature profile can be chosen arbi-

trarily as long as the simulation converges to the equilibrium state at the end. These

two conditions, namely, repeatability of the simulation and arbitrariness in the choice

of temperature profile, forces us to consider an ensemble of simulated annealing data

sets collected from different experiments with different temperature profiles. This can

result in the system visiting a larger number of states. Different simulated annealing ex-

periments are performed for the Li1/3Mn2/3 system by altering the temperature profile.

The temperature profiles are generated based on the following equation:

T = 1−
Å
t

N

ãα
, α ∈

ß
10, 6, 5, 4, 3, 2, 1,

1

2
,
1

3
,
1

4
,
1

5
,
1

6
,

1

10

™
, (5.1)

where N is the total number of iterations in the simulated annealing experiment and t is

the iteration index. Figure 5.1 demonstrates all different temperature profiles with sim-
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ulation duration. Also, the energy of the lattice for the ensemble of all the experiments

is demonstrated in this figure. As can be observed, all experiments have reached the

equilibrium state after about 60% of the simulation duration.

(a) (b)

Figure 5.1: (a) Temperature profiles and (b) energy of the lattice for the ensemble
of 13 different simulated annealing experiments in Li1/3Mn2/3 system, with the
temperature profiles given in Eq. (5.1)

105 iterations were used for each of the simulated annealing experiments and 100

equally spaced samples are taken from simulated annealing data for each experiment.

The reason is to mitigate the noise of the data and obtain a close to monotonic behaviour

from the data. An ensemble of the data corresponding to different temperature profiles

is used to perform regression analysis for each triplet type. Table 5.2 presents the results

of this analysis.
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Triplet Type PA OA γ1 γ2 γ3 γ4

C+++
1
5

C2
++

C+

1
5

C
γ1
++

C
γ2
+

2.75 1.75 - -

C−−−
1
5

C2
−−
C−

1
5

C
γ1
−−
C
γ2
−

1.41 0.41 - -

C+−+
1
5

C2
+−
C−

1
5

C
γ1
+−

C
γ2
+ C

γ3
−

2.01 -2.32 3.33 -

C−+−
1
5

C2
+−
C+

1
5

C
γ1
+−

C
γ2
+ C

γ3
−

0 2.72 -3.72 -

C++−
1
5
C++C+−

C+

1
5

C
γ1
++C

γ2
+−

C
γ3
+ C

γ4
−

2.51 5.83 -2.32 9.67

C−−+
1
5
C−−C+−

C−
1
5

C
γ1
−−C

γ2
+−

C
γ3
+ C

γ4
−

1.06 1.80 -2.67 4.53

C’+++
2
5

C2
++

C+

2
5

C
γ1
++

C
γ2
+

0 -1 - -

C’−−− 2
5

C2
−−
C−

2
5

C
γ1
−−
C
γ2
−

1.47 0.47 - -

C’+−+
2
5

C2
+−
C−

2
5

C
γ1
+−

C
γ2
+ C

γ3
−

1.94 -1.32 2.26 -

C’−+−
2
5

C2
+−
C+

2
5

C
γ1
+−

C
γ2
+ C

γ3
−

4.29 -1.33 4.62 -

C’++−
2
5
C++C+−

C+

2
5

C
γ1
++C

γ2
+−

C
γ3
+ C

γ4
−

20.94 0 3.75 16.19

C’−−+
2
5
C−−C+−

C−
2
5

C
γ1
−−C

γ2
+−

C
γ3
+ C

γ4
−

1.23 2.95 -2.35 5.53

CÏ+++
2
5

C3
++

C3
+

2
5

C
γ1
++

C
γ2
+

4.18 3.18 - -

CÏ−−− 2
5

C3
−−
C3
−

2
5

C
γ1
−−
C
γ2
−

2.06 1.06 - -

CÏ++−
2
5

C++C2
+−

C2
+C−

2
5

C
γ1
++C

γ2
+−

C
γ3
+ C

γ4
−

1.31 3.25 -1.32 4.89

CÏ−−+
2
5

C−−C2
+−

C+C2
−

2
5

C
γ1
−−C

γ2
+−

C
γ3
+ C

γ4
−

1.02 0.60 -1.43 2.05

Table 5.2: Exponents of the optimal closure approximation scheme for each triplet
type. PA stands for pair approximation and OA refers to the optimal approxima-
tion model.

In order to assess the accuracy of the optimal closure model as compared to the pair
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approximation the triplet concentrations are plotted against the pair concentrations for

each specific triplet type in figures 5.2, 5.3 and 5.4. Black dots represent the results of

the ensemble of simulated annealing experiments which serve as the "true data". The

predictions of the triplet concentrations from the pair concentrations have been inves-

tigated by both pair approximation and the optimal approximation models. Note that

some of the triple concentrations are written as functions of two different pair concen-

trations (such as C++−), hence, surface plots are presented instead of line plots.

Figure 5.2: Experimental data (black dots) and linear triplet concentration predic-
tions from pair concentrations via pair approximation (red) and optimal approxi-
mation (blue) schemes for the Li1/3Mn2/3 system.
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‘

Figure 5.3: Experimental data (black dots) and open triplet concentration predic-
tions from pair concentrations via pair approximation (red) and optimal approxi-
mation (blue) schemes for the Li1/3Mn2/3 system.
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‘

Figure 5.4: Experimental data (black dots) and closed triplet concentration pre-
dictions from pair concentrations via pair approximation (red) and optimal ap-
proximation (blue) schemes for the Li1/3Mn2/3 system.

As can be observed, the prediction accuracy using the optimal closure model is sig-

nificantly improved in almost all of the cases in comparison to the pair approximation

model. The mean-square errors of the non-linear regression analysis for each triplet

type is also presented in figure 5.5.
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Figure 5.5: Mean-square errors of the regression analysis using PA (red bars) and
OA (blue bars) schemes for each triplet type in comparison to the true data for
the Li1/3Mn2/3 system.

As can be observed, the optimal closure model outperforms the pair approximation

model by a few orders of magnitude in most cases. These two truncation schemes will

be used for solving the inverse modeling problem in order to calculate the rate constants

of the model as described in the next section.

5.3 Inverse Problem for Calculation of Rate

Constants

In this section we will be calculating the rate constants of the cluster approximation

model by minimizing the mismatch between the experimental data and the model out-

puts. The rate constants will be calculated by assuming that they are either constant or

temperature-dependent in sections 5.3.1 and 5.3.2.
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5.3.1 Constant Parameters

Considering constant parameters in the cluster approximation model, the inverse model-

ing approach will be used to calculate these parameters by minimizing the discrepancy

between simulated annealing results and the model outputs. The simulated annealing

experiment used here is described in chapter 1. The temperature will be decreased lin-

early during the process. The initial and final temperatures are chosen to be one and

zero, respectively. In order to truncate the hierarchy of the system of ODEs, the pair ap-

proximation and optimal truncation schemes are used. The optimization problem starts

with a random initial guess and converges to a local minimum. In order to probe differ-

ent local minimums this optimization problem is solved 100 times independently and

the results are collected. Table 5.3 presents 10 best results of solving the inverse prob-

lem using the pair approximation scheme where the lowest values of the error functional

were obtained at the end of iterations. The results are sorted based on their error func-

tional values. 8 unique parameters, k1 to k8, are involved in the two-element two-cluster

model for the Li1/3Mn2/3 system.

k1 k2 k3 k4 k5 k6 k7 k8 Function Value

5.07999332e-04 1.01786072e-01 1.01996740e-03 2.04367348e-01 0 0 4.56008251e-02 1.94582406e-02 1.13322747e-03

3.51388596e-03 8.97602673e-02 7.05522416e-03 1.80221786e-01 0 0 3.63248872e-02 5.65610343e-02 1.13322748e-03

6.50987820e-04 1.01211647e-01 1.30706148e-03 2.03214010e-01 0 0 7.91509741e-03 1.70196579e-01 1.13322748e-03

2.57437202e-02 8.36746510e-04 5.16885632e-02 1.68003013e-03 0 0 1.16382089e-03 1.97214229e-01 1.13322751e-03

2.44660734e-02 5.93709763e-03 4.91232880e-02 1.19205788e-02 0 0 1.34488380e-02 1.48073551e-01 1.13322765e-03

8.51382014e-04 1.00409558e-01 1.70940900e-03 2.01603569e-01 0 0 8.61264635e-03 1.67319037e-01 1.13322871e-03

1.96907011e-02 2.49682472e-02 3.95352351e-02 5.01315631e-02 0 0 5.41535284e-03 1.80438140e-01 1.13323439e-03

7.33479572e-05 1.04372869e-01 1.47304016e-04 2.09561151e-01 0 0 5.07526120e-02 6.64693891e-04 1.13370810e-03

2.64111722e-02 4.94505491e-03 5.30286824e-02 9.92873927e-03 0 0 7.33035082e-03 1.80143597e-01 1.15449423e-03

5.46541687e-04 9.95803073e-02 1.09735298e-03 1.99938586e-01 0 0 1.00260496e-01 7.28701238e-01 3.04122211e-03

Table 5.3: 10 best results of solving the inverse problem in (4.4) using the pair
approximation truncation scheme.
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As can be observed, different trials are converging to different local minima. Some

of the parameters such as k5 and k6 remain the same for all of these trials, however,

the others are changing by few orders of magnitude. This indicates varying sensitivity

of the model to different parameters. In order to assess the performance of the cluster

approximation model using these parameters, the system of ODEs is solved numerically

as a forward problem using the best results of the inverse modeling approach. More

specifically, the 3 best results of the calculation of parameters (with the lowest error

function values) are selected and the system of ODEs is solved numerically as an initial

value problem. Figure 5.6 demonstrates the pair concentrations evolved in time using

the cluster approximation model compared to the experimental data.

‘

Figure 5.6: The evolutionary trajectory of pair concentrations using the cluster
approximation model truncated by the pair approximation scheme. Black dots
correspond to the experimental data. Experiments 1, 2 and 3 are obtained as the
solution of the forward problem using the best parameters of the inverse problem.

As can be seen, the difference between the results are negligible for 3 different set

of parameters even though some of their rate constants are different by few orders of

magnitude.

The same analysis is performed by using the optimal approximation truncation scheme.

The inverse problem is again solved 100 independent trials. Note that due to the new

closure scheme, the equilibrium constants are different from Table 5.1. The new equi-

librium constants are presented in Table 5.4. These new equilibrium constants are used

as the constraint of the inverse modeling approach. The 10 best results of solving this

problem are presented in Table 5.5.
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Constant Formula Approximated Value by Two-Cluster Model

Q1
C20.94

++ C−13.93
−

C1.94
+− C

5.07
+

0.0281

Q2
C2.51

++ C−6.34
−

C−3.82
+− C0

+

1.0095

Q3
C1.23
−− C

1.02
+

C1.34
+− C

0.91
−

0

Q4
C1.06
−− C

5.39
+

C−1.8
+− C8.25

−
0

Table 5.4: Equilibrium constants calculated for Li1/3Mn2/3 system using optimal
approximation truncation scheme.

k1 k2 k3 k4 k5 k6 k7 k8 Function Value

1.17200538e-02 9.21985714e-01 4.16770535e-01 9.14415115e-01 0 0 7.00308010e-16 4.19054317e-02 9.18351205e-04

2.75342644e-02 2.19483359e+00 9.79131181e-01 2.17426407e+00 0 0 2.73545836e-08 4.18370670e-02 9.31666648e-04

1.00207681e-02 7.83872314e-01 3.56343176e-01 7.76526029e-01 0 0 4.64664075e-16 4.18994411e-02 9.32743512e-04

1.00011892e-02 7.82881400e-01 3.55646917e-01 7.75544400e-01 0 0 1.18135128e-05 4.19431264e-02 9.32757084e-04

3.66990299e-02 2.98789522e+00 1.30503448e+00 2.95998814e+00 0 0 1.29445702e-15 4.20500621e-02 9.33357848e-04

2.14109117e-02 1.59780412e+00 7.61381926e-01 1.58282983e+00 0 0 2.80246554e-11 4.10202393e-02 9.33454679e-04

2.74975316e-02 2.19895426e+00 9.77824948e-01 2.17834613e+00 0 0 7.53164713e-06 4.22289328e-02 9.33721094e-04

1.94615625e-02 1.47971229e+00 6.92062167e-01 1.46584474e+00 0 0 6.20284780e-07 4.13432321e-02 9.34553059e-04

1.57181800e-02 1.21423278e+00 5.58945752e-01 1.20285325e+00 0 0 7.51773325e-07 4.15682069e-02 9.34597982e-04

1.16306491e-02 9.13472126e-01 4.13591263e-01 9.04911257e-01 0 0 1.78329504e-15 4.18890802e-02 9.34685820e-04

Table 5.5: 10 best results of solving the inverse modeling problem in (4.4) using
the optimal approximation truncation scheme.

As can be observed, the objective function values using the optimal closure trunca-

tion scheme are slightly smaller than those of pair approximation model. Also, some of

the parameters such as k5 and k6 are always the same. However, the rest of the parame-

ters are changing slightly in different trials. It is noteworthy that the order of magnitude

of parameters is remaining the same in most of the trials which is an important improve-
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ment comparing to the pair approximation model results as in Table 5.3. The optimal

closure model is converging to local minima that are producing more accurate fits than

in the pair approximation case. In order to evaluate the performance of the cluster ap-

proximation model using the calculated parameters, the system of ODEs is solved nu-

merically as an initial value problem. The parameters of the 3 best results of the inverse

modeling problem is used along with the optimal closure approximation scheme. The

results are demonstrated in figure 5.7. As can be observed, different parameters result in

‘

Figure 5.7: The evolutionary trajectory of pair concentrations using the cluster
approximation model truncated by the optimal approximation scheme. Black dots
represent the experimental data. Experiments 1, 2 and 3 are the solutions of the
forward problem using the best parameters obtained from the inverse problem.

approximately identical evolutionary trajectories of pair concentrations, indicating the

low sensitivity of the cluster approximation model to the variation of the parameters.

5.3.2 Temperature-Dependent Parameters

In this section we consider the parameters that are temperature-dependent, giving the

model more flexibility to fit the experimental data. The formulation used here is pre-

sented in section 4.3. We try to minimize the discrepancy between the experimental

data and the model outputs by assuming parameters (rate constants) that can change

with time. In a step-like manner, the simulation window is divided into a few subinter-

vals, allowing different vectors of parameters to fit the data in each subinterval. Note

that in the case of constant parameters the optimization initiates with an initial guess

of parameters and is solved 100 times. The best result of the inverse problem (corre-

sponding to the lowest error functional value) is used as the initial guess for solving
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the inverse problem with 2 subintervals. In other words, the vector of parameters with

lowest error functional value is used as the vector of parameters for each subinterval.

This optimization problem again is solved 100 times, using the result of each trial as the

initial guess of the next trial. Solving them 100 times ensures that the error functional

values converge to each other in the subsequent trials. Similarly, the best results for 2

subintervals is used as the initial guess of 4 subintervals. Note that the first and second

subintervals out of 4 subintervals are getting the vector of parameters for the first subin-

terval out of 2 subintervals. Similarly this process continues for 8 subintervals. The best

results of each problem are chosen and their error function values are presented in Table

5.6 using both pair approximation and optimal approximation truncation schemes.

Objective Function Value via Pair Approximation

1 subinterval 2 subintervals 4 subintervals 8 subintervals

1.13322747826335e-03 1.09716778134897e-03 9.84297621794587e-04 9.41550238311428e-04

Objective Function Value via Optimal Approximation

1 subinterval 2 subintervals 4 subintervals 8 subintervals

9.18351205546793e-04 8.58598052208305e-04 7.93552785604102e-04 7.90988553261657e-04

Table 5.6: Error function values obtained by solving the inverse problem using
pair approximation and optimal approximation schemes and different number of
subdivisions of the time window.

As can be observed, the error function values are decreasing as the number of subin-

tervals increases, giving the model more flexibility on fitting the experimental data.

Also, for each case of the number of subintervals, the optimal approximation scheme

outperforms the pair approximation scheme in terms of the accuracy of the fits.

Note that this inverse modeling problem is ill-posed, meaning that no unique solu-

tion can be found in different trials. In other words, small changes in the initial guesses

of the parameters can lead to a significantly different parameters. It is noteworthy that

we are interested in a vector of parameters such that the resulting time-dependent con-
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centrations can match the experimental data. There might be more than one solution to

this problem with slighly different performances. The piecewise-constant rate constants

inferred using different numbers of subintervals are presented in figures 5.8 and 5.9.

Figure 5.8: Rate constants obtained by solving the inverse modeling problem as
constant or temperature-dependent parameters via pair approximation scheme us-
ing different numbers of subintervals.
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Figure 5.9: Rate constants obtained by solving the inverse modeling problem as
constant or temperature-dependent parameters via optimal approximation scheme
using different numbers of subintervals.

As can be observed, in most of the cases the parameters obtained using 2, 4 and 8

subintervals are close to each other. However, in some cases the constant parameter is

different from the temperature dependent ones. Normally, when an interval is split into

2 subintervals, it is plausible to expect that the rate constant will get higher values in

one subinterval and lower values for the other one. Most of the cases are in accordance
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with this statement, however, some of them do not follow this trend. This behaviour can

be justified by the sensitivity of the model to parameters. The model is less sensitive to

some of the parameters, allowing them to change significantly from one trial to another.

Hence, the results for different number of subintervals might vary significantly.

5.4 Model Accuracy

In this section, we present the results as regards the accuracy of the two-cluster model

in terms of quantities not matched in the inverse problem. Two types of approximations

has been used here, the pair approximation and the optimal closure. The performance

of these two methods will be investigated by reconstructing the triple concentrations

and comparing them to the experimental data. There are three types of triplets: triangu-

lar clusters, open triplets with 120 deg bonds and open triplets with 180 deg bonds as

shown in figure 2.1. In these approximations, each triplet has been written in terms of

pair and singlet concentrations. Also the true triple concentrations are generated from

the simulated annealing results. Figures 5.10, 5.11 and 5.12 demonstrate the sampled

simulated annealing data, along with reconstruction of triple concentrations from pair

and singlet concentrations. The inverse problem was solved in order to generate the rate

constants of the model as constant parameters. The initial value problem for the ODE

system was then solved using the best vector of parameters for both pair approximation

and optimal approximation schemes. The time evolution of pair concentrations are used

to reconstruct the concentrations of triplets based on the formulas presented in Table 5.2.

Note that the reconstructed triple concentrations can be obtained in two ways. First, we

can use the simulated annealing data in time for pair concentrations and reconstruct the

triple concentrations using the pair approximation and optimal approximation formulas.

However, as another approach, the time evolution of pair concentrations obtained by

solving the system of ODEs can be used to reconstruct the triple concentrations. Fig-

ures 5.10, 5.11 and 5.12 present the results using both approaches and both truncation
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schemes. Note that in some figures the experimental data (black dots) are not visible as

they are getting zero values and logarithmic scale is used.

Figure 5.10: Reconstruction of closed triple concentrations using pair approxi-
mation and optimal approximation truncation schemes. Black dots represent the
simulated annealing data. Blue and red lines represent the reconstructions by
using the optimal approximation and pair approximation truncation schemes re-
spectively. Solid lines refer to triple concentration reconstructions by using pair
concentrations resulted from solving the system of ODEs. However, the dotted
lines refer to reconstructions resulted from using pair concentrations from the sim-
ulated annealing data.
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Figure 5.11: Reconstruction of open triple concentrations using pair approxima-
tion and optimal approximation truncation schemes. Black dots represent the
simulated annealing data. Blue and red lines represent the reconstructions by
using the optimal approximation and pair approximation truncation schemes re-
spectively. Solid lines refer to triple concentration reconstructions by using pair
concentrations resulted from solving the system of ODEs. However, the dotted
lines refer to reconstructions resulted from using pair concentrations from the sim-
ulated annealing data.
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Figure 5.12: Reconstruction of linear triple concentrations using pair approxima-
tion and optimal approximation truncation schemes. Black dots represent the
simulated annealing data. Blue and red lines represent the reconstructions by
using the optimal approximation and pair approximation truncation schemes re-
spectively. Solid lines refer to triple concentration reconstructions by using pair
concentrations resulted from solving the system of ODEs. However, the dotted
lines refer to reconstructions resulted from using pair concentrations from the sim-
ulated annealing data.

As can be observed, in almost all cases, the reconstructed triple concentrations are

more accurate by using the optimal closure model than when the pair approximation is
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used. The reason is the use of triple concentrations in performing the regression analysis

and building the optimal closure model. Note that in reconstruction of (÷+ + +) cluster

in figure 5.11, both models are performing poorly. The reason is that the exponents of

the functional forms in building the optimal closure approximation model are forced to

be positive as show in figure 5.3, in order to prevent the system of ODEs from blowing

up. This restricts the optimal closure model to predict the triple concentrations in some

cases and decreases the accuracy of the model.
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Chapter 6

Summary and Conclusions

In this study, we were interested in discovering the micro-structure concentrations of

the NMC layer of the cathode of Li-ion batteries. Different dynamical systems are

proposed for describing the evolution of micro-structure concentrations in time. Here is

a summary of key steps we performed.

• A 2D triangular lattice with two or three types of elements has been assumed in

our model which is a representative of the NMC layer of Li-ion batteries’ cath-

odes.

• Simulated annealing approach was used to obtain the structure of the lattice. How-

ever, this approach is computationally heavy and provides unnecessary informa-

tion for comparison to the NMR spectroscopy data.

• Alternatively, a dynamical system for obtaining the micro-structure concentra-

tions is developed. Two different cluster approximation models are built based on

the order of the clusters, namely, two-cluster model and triangular-cluster model.
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The former describes the evolution of the concentrations of 2-clusters in terms of

concentrations of 3-clusters. The latter relates the concentrations of 3-clusters to

the concentrations of 4-clusters.

• The hierarchical dynamical systems for the evolution of concentrations are closed

using standard moment closure schemes. Also, an algorithm for an optimal clo-

sure of the hierarchical systems is proposed and validated.

• An algorithm is used based on the inverse modeling approach to derive the param-

eters of the model by minimizing the mismatch between the experimental data and

the model outputs.

• The parameters of the model, which control the evolution of different clusters in

the lattice, are considered to be either constant or temperature-dependent.

The following conclusions can be drawn from this study.

• No global minima is found by the solution of the inverse problem. Different trials

of solving the inverse problem with different initial guesses converge to a different

local minima. Therefore, the inverse problem is ill-posed.

• The sensitivity of the model to some of its parameters is low, hence allowing

them to change significantly from one trial to another. However, some of the pa-

rameters remain essentially unchanged between different trials, suggesting higher

sensitivity of the model to the small changes of these parameters.

• The optimal approximation model results are more accurate, as the resulting pa-

rameters mostly remain in the same order of magnitude between different trials

of solving the inverse problem. However, the precision of the results are lower in

reconstructing the parameters of the model using the pair approximation scheme.

• The performance of the two-element two-cluster model using both truncation
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schemes is investigated by solving the system of ODEs using the reconstructed

parameters. The pair concentrations obtained by both truncation schemes are fol-

lowing the trajectory of the experimental data, with slightly better results for the

optimal approximation model.

• The prediction capability of both closure models is tested by reconstructing the

concentrations of different 3-clusters in time. The optimal approximation closure

scheme is outperforming the pair approximation one by producing far more accu-

rate predictions for all triplet types. This shows that the optimal closure approx-

imation better represents the intrinsic dynamics of the system than the nearest-

neighbor approximation.

Overall, these findings result in a better prediction of micro-structure concentrations

by using optimal closure truncation scheme. However, many other questions remain

unanswered. The following points highlight some of the possible future avenues of this

study.

• Exploring the prediction accuracy of the reconstructed triple concentrations for

the different systems with different composition of materials.

• Exploring the inverse modeling problem based on the triangular-clusters for re-

constructing the concentrations of triangular clusters and comparing the perfor-

mance of the model with the predictions of the two-cluster model.

• Building cluster approximation models that can match to the NMR spectroscopy

experimental data directly by eliminating the need for the simulated annealing

data.

• Quantifying the uncertainty in the parameters of the model, obtaining the distri-

bution of each one of the parameters and their corresponding confidence intervals

using statistical inference techniques.
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Chapter 7

Appendix

7.1 Theorems

Theorem 7.1.1. Assuming 2-clusters in a 2D triangular lattice, each site can

have 6 nearest neighbors which are positioned in equal angles around the site in

the middle. Every rotation of the 2-cluster in the form of (+© –©) will have the

same concentration.

Proof. Assuming one site with positive element, the concentration of the positive

element can be obtained by summing over concentrations of 2-clusters, in which

the second site can be occupied by all possible elements of the system. Note that
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(•) states an unspecified state in the lattice.
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Theorem 7.1.2. Assuming linear clusters in a 2D lattice with straight angle be-

tween the bonds, 3-clusters in the form of (+©+© –©) and ( –©+©+©) have equal con-

centrations. This, also, can be understood via translational symmetry of the lattice.

Likewise, linear 3-clusters in the form of ( –© –©+©) and (+© –© –©) have equal con-

centrations.

Proof. Assuming 2-clusters with same elements on both sites (both positive or

both negative elements), the concentration of the 2-cluster can be calculated by

summing over concentrations of linear 3-clusters, in which the third site can be

occupied by all possible elements of the system. Note that (•) states an unspecified

state in the lattice.
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Theorem 7.1.3. Assuming angled clusters in a triangular 2D lattice with obtuse

angles between the bonds (120 degrees angle), all angled 3-clusters containing a

( –© –©) cluster and a positive element occupying the third site, have equal concen-

trations. The third site has to be in a position to hold an obtuse angle with the

other two elements. Four different configurations can be found for the aforemen-

tioned cluster; Each of which can be obtained by rotating or flipping the others,

supporting the translational symmetry of the lattice. Likewise, angled 3-clusters

containing a (+©+©) cluster and a third negative element are also translations of

each other.

Proof. Assuming 2-clusters with same elements on both sites (both positive or

both negative elements), the concentration of the 2-cluster can be calculated by

summing over concentrations of obtuse-angled 3-clusters, in which the third site

can be occupied by all possible elements of the system. Note that (•) states an

unspecified state in the lattice.
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Note that the concentration of angled (÷−−−) will be the same regardless of its

orientation, due to the symmetry of the system. Same happens for angled (÷+ + +)

cluster.

Theorem 7.1.4. Assuming angled clusters in a triangular 2D lattice with acute

angle between the bonds (60 degrees angle), all angled 3-clusters containing a ( –© –©)

cluster and a positive element occupying the third site, have equal concentrations.

The third site have to be in a position to hold an acute angle with the other two

elements. Each one the configurations of this form can be obtained by rotating or

flipping the others, supporting the translational symmetry of the lattice. Likewise,

angled 3-clusters containing a (+©+©) cluster and a third negative element, have

also same concentrations.

Proof. Assuming 2-clusters with same elements on both sites (both positive or

both negative elements), the concentration of the 2-cluster can be calculated by

summing over concentrations of acute-angled 3-clusters, in which the third site

can be occupied by all possible elements of the system. Note that (•) states an
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unspecified state in the lattice.
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Similar derivations can also be concluded for 4-clusters.

Theorem 7.1.5. Assuming 4-clusters containing a triangular 3-cluster (with all

positive or all negative elements in the triangle), the fourth site could be occupied

by a different element. All rotations of such clusters have equal concentrations.

Proof. Assuming 3-clusters of the form
(
–© –©
–© )

, the concentration of the 3-cluster

can be calculated by summing over concentrations of 4-clusters, in which the fourth

site can be occupied by all possible elements of the system. Same consideration

can be taken into account for
(
+©+©
+© )

Note that (•) states an unspecified state in
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the lattice.
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All in all, any cluster with an arbitrary size and shape can be rotated in at most 6

different states and the resulting clusters will preserve the concentration of the original

one. This feature can be utilized in order to simplify rate equations.

7.2 Derivations of Two-Element Two-Cluster

Model

System of equations in (2.33) represent the rate equations in equilibrium plus the for-

mulas for concentrations of equilibrium constants. In order to solve the system of equa-

tions, they need to be simplified by writing higher order clusters in terms of 2-clusters

and substituting the rate constants with equilibrium constants. Here, the derivations of
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simplified equations are presented.
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Equation (7.10.1) can be simplified as follows:
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Equation (7.10.2) can be simplified as follows:
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7.3 Derivations of Two-Element Triangular-

Cluster Model

System of equations in (2.39) in equilibrium can be solved by substituting rate constants

with equilibrium constants to make the system of equations determined. The following

equations govern the system in equilibrium after applying moment closure approxima-

tions.
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C+

− 2k9
2

3
CÏ++−

C(+−)

C−
− 2k22

1

3
CÏ++−

CÏ−−+

C+−

−2k10
1

3
CÏ++−

CÏ++−

C+−
− 2k23

2

3
CÏ++−

C(+−)

C+

− 2k24
1

3
CÏ++−

CÏ++−

C++

= 0,

(7.13.3)

Q5 =
k9

k11

=
C2

++C
2
−

C2
+−C

2
+

, Q6 =
k10

k12

=
C++C−
C+−C+

, Q7 =
k13

k15

=
C2
−−C

2
+

C2
+−C

2
−
,

Q8 =
k14

k16

=
C−−C+

C+−C−
, Q9 =

k17

k21

=
C++C

2
−

C−−C2
+

, Q10 =
k18

k22

=
C++C−
C+−C+

,

Q11 =
k19

k23

=
C++C

2
−

C−−C2
+

, Q12 =
k20

k24

=
C+−C−
C−−C+

.

(7.13.4)

Equation (7.13.1) can be simplified as follows:
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6k9
2

3
CÏ++−

C(+−)

C−
+ 6k10

1

3
CÏ++−

CÏ++−

C+−

−6k11
2

3
CÏ+++

C(+−)

C+

− 6k12
1

3
CÏ+++

CÏ++−

C++

= 0⇒

2k9CÏ++−
C(+−)

C−
+ k10CÏ++−

CÏ++−

C+−

−2k11CÏ+++

C(+−)

C+

− k12CÏ+++

CÏ++−

C++

= 0⇒

2Q5k11CÏ++−
C(+−)

C−
+Q6k12CÏ++−

CÏ++−

C+−

−2k11CÏ+++

C(+−)

C+

− k12CÏ+++

CÏ++−

C++

= 0⇒

2Q5β3CÏ++−
C(+−)

C−
+Q6CÏ++−

CÏ++−

C+−

−2β3CÏ+++

C(+−)

C+

− CÏ+++

CÏ++−

C++

= 0, β3 =
k11

k12

⇒

2Q5β3

C++C
2
+−

C2
+C−

C(+−)

C−
+Q6

C2
++C

4
+−

C4
+C

2
−

1

C+−

−2β3

C3
++

C3
+

C(+−)

C+

−
C3

++

C3
+

C++C
2
+−

C2
+C−

1

C++

= 0⇒

2Q5β3

C++C
3
+−

C2
+C

2
−

+Q6

C2
++C

3
+−

C4
+C

2
−

−2β3

C3
++C+−

C4
+

−
C3

++C
2
+−

C5
+C−

= 0⇒

2β3

C2
++C

2
−

C2
+−C

2
+

C++C
3
+−

C2
+C

2
−

+
C++C−
C+−C+

C2
++C

3
+−

C4
+C

2
−

−2β3

C3
++C+−

C4
+

−
C3

++C
2
+−

C5
+C−

= 0⇒

2β3

C3
++C+−

C4
+

+
C3

++C
2
+−

C5
+C−

−2β3

C3
++C+−

C4
+

−
C3

++C
2
+−

C5
+C−

= 0⇒ 0 = 0.

(7.14)

Hence, for all values of β3 the expression is true. Also, eq. (7.13.2) can be simplified
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as follows:

6k13
2

3
CÏ−−+

C(+−)

C+

+ 6k14
1

3
CÏ−−+

CÏ−−+

C+−

−6k15
2

3
CÏ−−−C(+−)

C−
− 6k16

1

3
CÏ−−−CÏ−−+

C−−
= 0⇒

2k13CÏ−−+

C(+−)

C+

+ k14CÏ−−+

CÏ−−+

C+−

−2k15CÏ−−−C(+−)

C−
− k16CÏ−−−CÏ−−+

C−−
= 0⇒

2Q7k15

C−−C
2
+−

C2
−C+

C(+−)

C+

+Q8k16

C2
−−C

4
+−

C4
−C

2
+

1

C+−

−2k15

C3
−−

C3
−

C(+−)

C−
− k16

C3
−−

C3
−

C−−C
2
+−

C2
−C+

1

C−−
= 0⇒

2Q7β4

C−−C
3
+−

C2
−C

2
+

+Q8

C2
−−C

3
+−

C4
−C

2
+

−2β4

C3
−−C+−

C4
−

−
C3
−−C

2
+−

C5
−C+

= 0, β4 =
k15

k16

⇒

2β4

C2
−−C

2
+

C2
+−C

2
−

C−−C
3
+−

C2
−C

2
+

+
C−−C+

C+−C−

C2
−−C

3
+−

C4
−C

2
+

−2β4

C3
−−C+−

C4
−

−
C3
−−C

2
+−

C5
−C+

= 0⇒

2β4

C3
−−C+−

C4
−

+
C3
−−C

2
+−

C5
−C+

−2β4

C3
−−C+−

C4
−

−
C3
−−C

2
+−

C5
−C+

= 0⇒ 0 = 0.

(7.15)

As can be seen, all values of β4 will satisfy this equation. Also, eq. (7.13.3) can be

simplified as follows:
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2k17CÏ−−+

C(+−)

C−
+ 2k11CÏ+++

C(+−)

C+

+ k18CÏ−−+

CÏ−−+

C−−
+ k12CÏ+++

CÏ++−

C++

+2k19CÏ−−+

C(+−)

C−
+ k20CÏ−−+

CÏ++−

C+−
− 2k21CÏ++−

C(+−)

C+

− 2k9CÏ++−
C(+−)

C−

−k22CÏ++−
CÏ−−+

C+−
− k10CÏ++−

CÏ++−

C+−
− 2k23CÏ++−

C(+−)

C+

− k24CÏ++−
CÏ++−

C++

= 0⇒

2k17CÏ−−+

C(+−)

C−
+ k18CÏ−−+

CÏ−−+

C−−
+ 2k19CÏ−−+

C(+−)

C−
+ k20CÏ−−+

CÏ++−

C+−

−2k21CÏ++−
C(+−)

C+

− k22CÏ++−
CÏ−−+

C+−
− 2k23CÏ++−

C(+−)

C+

− k24CÏ++−
CÏ++−

C++

= 0⇒

2Q9k21CÏ−−+

C(+−)

C−
+Q10k22CÏ−−+

CÏ−−+

C−−
+ 2Q11k23CÏ−−+

C(+−)

C−
+Q12k24CÏ−−+

CÏ++−

C+−

−2k21CÏ++−
C(+−)

C+

− k22CÏ++−
CÏ−−+

C+−
− 2k23CÏ++−

C(+−)

C+

− k24CÏ++−
CÏ++−

C++

= 0⇒

2Q9β5k22CÏ−−+

C(+−)

C−
+Q10k22CÏ−−+

CÏ−−+

C−−
+ 2Q11β6k24CÏ−−+

C(+−)

C−
+Q12k24CÏ−−+

CÏ++−

C+−

−2β5k22CÏ++−
C(+−)

C+

− k22CÏ++−
CÏ−−+

C+−
− 2β6k24CÏ++−

C(+−)

C+

− k24CÏ++−
CÏ++−

C++

= 0,

β5 =
k21

k22

, β6 =
k23

k24

⇒

2Q9β5β7CÏ−−+

C(+−)

C−
+Q10β7CÏ−−+

CÏ−−+

C−−
+ 2Q11β6CÏ−−+

C(+−)

C−
+Q12CÏ−−+

CÏ++−

C+−

−2β5β7CÏ++−
C(+−)

C+

− β7CÏ++−
CÏ−−+

C+−
− 2β6CÏ++−

C(+−)

C+

− CÏ++−
CÏ++−

C++

= 0, β7 =
k22

k24

⇒

2β5β7

C++C
2
−

C−−C2
+

C−−C
2
+−

C2
−C+

C(+−)

C−
+ β7

C++C−
C+−C+

C2
−−C

4
+−

C4
−C

2
+

1

C−−
+ 2β6

C++C
2
−

C−−C2
+

C−−C
2
+−

C2
−C+

C(+−)

C−

+
C+−C−
C−−C+

C−−C
2
+−

C2
−C+

C++C
2
+−

C2
+C−

1

C+−
− 2β5β7

C++C
2
+−

C2
+C−

C(+−)

C+

− β7

C++C
2
+−

C2
+C−

C−−C
2
+−

C2
−C+

1

C+−

−2β6

C++C
2
+−

C2
+C−

C(+−)

C+

−
C2

++C
4
+−

C4
+C

2
−

1

C++

= 0⇒

2β5β7

C++C
3
+−

C3
+C−

+ β5

C++C−−C
3
+−

C3
+C

3
−

+ 2β6

C++C
3
+−

C3
+C−

+
C++C

4
+−

C4
+C

2
−

−2β5β7

C++C
3
+−

C3
+C−

− β7

C++C−−C
3
+−

C3
+C

3
−

− 2β6

C++C
3
+−

C3
+C−

−
C++C

4
+−

C4
+C

2
−

= 0⇒

0 = 0.
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Note that the terms containing k9, k10, k11 and k12 are cancelling out as in eq. (7.13.1).

These are the terms associated with producing or reducing (+ + +) triangle, which

simultaneously will produce or destroy (+ + −) triangles. Hence, these terms will be

removed from this equation for simplicity. Likewise, the equation will be satisfied for

all values of β5, β6 and β7.

7.4 Equations of Two-Element Triangular-

Cluster Model for the Regular Case

In this section, I will propose the equations for the triangular-cluster model, in the lim-

iting case of pair concentrations being equal to zero. In the Li1/3Mn2/3 system of

elements, The final state, which corresponds to the minimal energy of the lattice, will

be completely regular. The lattice will be filled with Ú�Mn− Li−Mn clusters, in which

the concentration of Li− Li pair is equal to zero. In this limiting case, the eq. (2.40.3)

becomes degenerate and has to be re-written in the following format.

2Q5β3

C++C
3
+−

C2
+C

2
−

+Q6

C2
++C

3
+−

C4
+C

2
−
− 2β3

C3
++C+−

C4
+

−
C3

++C
2
+−

C5
+C−

= 0, (7.17.1)

2Q7β4

C−−C
3
+−

C2
−C

2
+

+Q8

C2
−−C

3
+−

C4
−C

2
+

− 2β4

C3
−−C+−

C4
−

−
C3
−−C

2
+−

C5
−C+

= 0, (7.17.2)

2β5β7

C++C
3
+−

C3
+C−

+ β7

C++C−−C
3
+−

C3
+C

3
−

+ 2β6

C++C
3
+−

C3
+C−

+
C++C

4
+−

C4
+C

2
−

−2β5β7

C++C
3
+−

C3
+C−

− β7

C++C−−C
3
+−

C3
+C

3
−

− 2β6

C++C
3
+−

C3
+C−

−
C++C

4
+−

C4
+C

2
−

= 0,

(7.17.3)
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Q5 =
k9

k11

=
C2

++C
2
−

C2
+−C

2
+

, Q6 =
k10

k12

=
C++C−
C+−C+

, Q7 =
k13

k15

=
C2
−−C

2
+

C2
+−C

2
−
,

Q8 =
k14

k16

=
C−−C+

C+−C−
, Q9 =

k17

k21

=
C++C

2
−

C−−C2
+

, Q10 =
k18

k22

=
C++C−
C+−C+

,

Q11 =
k19

k23

=
C++C

2
−

C−−C2
+

, Q12 =
k20

k24

=
C+−C−
C−−C+

, β3 =
k11

k12

,

β4 =
k15

k16

, β5 =
k21

k22

, β6 =
k23

k24

, β7 =
k22

k24

.

(7.17.4)

In this formulation, the terms containing (0 ∗ ∞) is eliminated by simplifying the

equations and eliminating the C−− from calculations.

7.5 Derivations of Three-Element Two-Cluster

Model

The three-element two-cluster model produces a set of equations for the rate of change

in concentrations of different 2-clusters in the system. Equations (3.23.1) to (3.23.6)

will govern the physical system in equilibrium by considering the moment closure ap-

proximations to truncate the hierarchy of the equations. These equations will be simpli-

fied in the equations (7.18) - (7.23) respectively by introducing equilibrium constants
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and extra ratios into the model.

4k1

C2
+−

C−
+ k2

C2
+−

C−
− 4k3

C++C+−

C+

− k4
C++C+−

C+

+4k5

C2
+0

C0

+ k6

C2
+0

C0

− 4k7
C++C+0

C+

− k8
C++C+0

C+

= 0⇒

4Q1k3

C2
+−

C−
+Q2k4

C2
+−

C−
− 4k3

C++C+−

C+

− k4
C++C+−

C+

+4Q3k7

C2
+0

C0

+Q4k8

C2
+0

C0

− 4k7
C++C+0

C+

− k8
C++C+0

C+

= 0⇒

4Q1β1

C2
+−

C−
+Q2β2

C2
+−

C−
− 4β1

C++C+−

C+

− β2
C++C+−

C+

+ 4Q3β3

C2
+0

C0

+Q4

C2
+0

C0

− 4β3
C++C+0

C+

− C++C+0

C+

= 0,
k3

k8

= β1,
k4

k8

= β2,
k7

k8

= β3 ⇒

(4β1 + β2)Q1

C2
+−

C−
− (4β1 + β2)

C++C+−

C+

+(4β3 + 1)Q3

C2
+0

C0

− (4β3 + 1)
C++C+0

C+

= 0⇒

(4β1 + β2)
C++C−
C+−C+

C2
+−

C−
− (4β1 + β2)

C++C+−

C+

+(4β3 + 1)
C++C0

C+0C+

C2
+0

C0

− (4β3 + 1)
C++C+0

C+

= 0⇒

(4β1 + β2)
C++C+−

C+

− (4β1 + β2)
C++C+−

C+

+(4β3 + 1)
C++C+0

C+

− (4β3 + 1)
C++C+0

C+

= 0⇒ 0 = 0.

(7.18)
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Eq. (3.23.2) can be simplified as follows:

4k9

C2
+−

C+

+ k10

C2
+−

C+

− 4k11
C−−C+−

C−
− k12

C−−C+−

C−

+4k13

C2
−0

C0

+ k14

C2
−0

C0

− 4k15
C−−C−0

C−
− k16

C−−C−0

C−
= 0⇒

4Q5β4

C2
+−

C+

+Q6β5

C2
+−

C+

− 4β4
C−−C+−

C−
− β5

C−−C+−

C−

+4Q7β6

C2
−0

C0

+Q8

C2
−0

C0

− 4β6
C−−C−0

C−
− C−−C−0

C−
= 0,

k11

k16

= β4,
k12

k16

= β5,
k15

k16

= β6 ⇒

(4β4 + β5)Q5

C2
+−

C+

− (4β4 + β5)
C−−C+−

C−

+(4β6 + 1)Q7

C2
−0

C0

− (4β6 + 1)
C−−C−0

C−
= 0⇒ 0 = 0.

(7.19)

Eq. (3.23.3) can be simplifies as follows:

4k17

C2
+0

C+

+ k18

C2
+0

C+

− 4k19
C00C+0

C0

− k20
C00C+0

C0

+4k21

C2
−0

C−
+ k22

C2
−0

C−
− 4k23

C00C−0

C0

− k24
C00C−0

C0

= 0⇒

4Q9β7

C2
+0

C+

+Q10β8

C2
+0

C+

− 4β7
C00C+0

C0

− β8
C00C+0

C0

+ 4Q11β9

C2
−0

C−

+Q12

C2
−0

C−
− 4β9

C00C−0

C0

− C00C−0

C0

= 0,
k19

k24

= β7,
k20

k24

= β8,
k23

k24

= β9 ⇒

(4β7 + β8)Q9

C2
+0

C+

− (4β7 + β8)
C00C+0

C0

+(4β9 + 1)Q11

C2
−0

C−
− (4β9 + 1)

C00C−0

C0

= 0⇒ 0 = 0.

(7.20)
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Eq. (3.23.4) can be simplifies as follows:

4k3
C++C+−

C+

+ 4k11
C−−C+−

C−
− 4k1

C2
+−

C−
− 4k9

C2
+−

C+

+k4
C++C+−

C+

+ k12
C−−C+−

C−
− k2

C2
+−

C−
− k10

C2
+−

C+

+4k25
C+0C−0

C0

+ 4k26
C+0C−0

C0

− 4k27
C+−C−0

C−
− 4k28

C+−C+0

C+

+k29
C+0C−0

C0

+ k30
C+0C−0

C0

− k31
C+−C−0

C−
− k32

C+−C+0

C+

= 0⇒

4k3
C++C+−

C+

+ k4
C++C+−

C+

− 4Q1k3

C2
+−

C−
−Q2k4

C2
+−

C−

−4Q5k11

C2
+−

C+

−Q6k12

C2
+−

C+

+ 4k11
C−−C+−

C−
+ k12

C−−C+−

C−

+4Q13k27
C+0C−0

C0

+ 4Q14k28
C+0C−0

C0

− 4k27
C+−C−0

C−
− 4k28

C+−C+0

C+

+Q15k31
C+0C−0

C0

+Q16k32
C+0C−0

C0

− k31
C+−C−0

C−
− k32

C+−C+0

C+

= 0⇒

4β10
C++C+−

C+

+ β11
C++C+−

C+

− 4Q1β10

C2
+−

C−
−Q2β11

C2
+−

C−

−4Q5β12

C2
+−

C+

−Q6β13

C2
+−

C+

+ 4β12
C−−C+−

C−
+ β13

C−−C+−

C−

+4Q13β14
C+0C−0

C0

+ 4Q14β15
C+0C−0

C0

− 4β14
C+−C−0

C−
− 4β15

C+−C+0

C+

+Q15β16
C+0C−0

C0

+Q16
C+0C−0

C0

− β16
C+−C−0

C−
− C+−C+0

C+

= 0,

k3

k32

= β10,
k4

k32

= β11,
k11

k32

= β12,
k12

k32

= β13,

k27

k32

= β14,
k28

k32

= β15,
k31

k32

= β16 ⇒

(4β10 + β11)
C++C+−

C+

− (4β10 + β11)Q1

C2
+−

C−

−(4β12 + β13)Q5

C2
+−

C+

+ (4β12 + β13)
C−−C+−

C−

+(4β14 + β16)Q13
C+0C−0

C0

− (4β14 + β16)
C+−C−0

C−

+(4β15 + 1)Q14
C+0C−0

C0

− (4β15 + 1)
C+−C+0

C+

= 0⇒

0 = 0.

(7.21)
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Eq. (3.23.5) can be simplifies as follows:
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(7.22)
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Eq. (3.23.6) can be simplifies as follows:
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(7.23)

The extra ratios that has been introduced into the model in eqs. (7.18) - (7.23), namely,

β1 to β30, are chosen arbitrarily and the equations will be satisfied for all values of these

parameters. In other words, the calculation of equilibrium constants based on eq. (3.24)

is enough to solve the dynamical system in equilibrium. The rest of the ratios can be

chosen arbitrarily without affecting the equilibrium phase of the model.
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7.6 Derivations of Three-Element Triangular-

Cluster Model

The system of algebraic equations in (3.26) will be solved analytically by substituting

rate constants with equilibrium constants and ratios of rate constants. This way, de-

gree of freedom of the system will diminish significantly. Equation (3.26.1) will be

simplified as follows:
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+
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(7.24)
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Following the same procedure, eqs. (3.26.2) and (3.26.3) will be satisfied by our choice

of equilibrium constants. Eq. (3.26.4) can be written in following format.
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−
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(7.25.1)
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(7.25.4)

As can be seen, the rate equation will be satisfied by using equilibrium constants,

which are written in terms of pair and singlet concentrations. Some extra ratios are

defined in the model (β40 − β48) which can take any arbitrary value without changing

the equilibrium phase of the model. Equations (3.26.5) to (3.26.9) can be simplified by
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following the same procedures.
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