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Lay Abstract

Diagnosis of osteoporosis and consequently hip fracture risk is based on the
measurement of bone mineral density in clinical imaging called DXA scanning. However,
studies have shown that this method is not sufficient in identifying all patients at high risk

of sustaining a hip fracture.

The purpose of this work was to incorporate the geometry and bone mineral density
distribution of the proximal femur in hip fracture risk prediction through image processing
of DXA scans. Two algorithms of 2D and 3D statistical shape and appearance modeling
were implemented and evaluated in a cadaveric study (comparing the predicted fracture
load to measured ones) as well as a clinical study (comparing the fracture predictions to

the fracture history of patients).

The results indicated that new techniques can enhance hip fracture risk estimation
compared to the clinical standard method, and hence the devastating injury can be

prevented through applying protective measures.



Abstract

Hip fractures in older adults have severe effects on patients’ morbidity as well as
mortality, so it is crucial to avoid this injury through the early identification of patients at
high risk. Currently, the diagnosis of osteoporosis and consequently hip fracture risk is
done through the measurement of bone mineral density by a dual-energy X-ray
absorptiometry (DXA) scan. However, studies show that this method is not accurate
enough, and a high percentage of patients who sustain a hip fracture had non-osteoporotic

DXA scans less than a year before the incidence.

In this research, to enhance the hip fracture risk prediction, the effect of a femur’s
geometry and bone mineral density distribution was considered in the hip fracture risk
estimation. This was done through 2D and 3D statistical shape and appearance modeling
of the proximal femur using standard clinical DXA scans. To assess the proposed
techniques, destructive mechanical tests were performed on 16 isolated cadaveric femurs.
Also, through collaboration with the Canadian Osteoporosis Study (CaMos), the proposed
statistical techniques to predict the hip fracture risk were evaluated in a clinical population

as well.

The results of this study showed that new techniques can enhance hip fracture risk
estimation; in the clinical study, 2D and 3D statistical modeling were able to improve
identifying patients at high risk by 40% and 44% over the clinical standard method. Also,
the percentage of correct predictions using 2D statistical models did not differ significantly

from the 3D predictions. Therefore, by applying these techniques in clinical practice it



could be possible to identify patients at high risk of sustaining a hip fracture more
accurately and eventually reduce the incidence of hip fractures and the pain and social and

economic burden that comes with it.
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Ph.D. Thesis — F. Jazinizadeh McMaster University — Mechanical Engineering

CHAPTER 1- Introduction

Overview: Hip fractures in older adults with osteoporosis are a
significant cause of morbidity and mortality, and due to the associated
complications, it is crucial to identify people at high risk so that these
injuries can be prevented through protective measures. Currently,
diagnosis of osteoporosis and consequently hip fracture risk is done
through the measurement of bone mineral density (BMD) in the proximal
femur; however, studies have shown that this method is not effective enough.
Therefore, more accurate methods with higher sensitivity are required to
correctly identify patients at high risk. This chapter outlines the anatomy of
the proximal femur and hip, a summary of statistical analyses used in this
thesis, a review of the factors that have an effect of the femur’s structural
integrity, and evaluation techniques. It concludes with the study’s overall

goal, objectives, the corresponding hypotheses, and a thesis overview?.

1.1 Motivation

Osteoporosis is a generalized skeletal disorder in which a reduction in Bone Mineral
Density (BMD) decreases the bone’s strength, which may result in an increased risk of
fracture. This disease is most common in older adults and is the main reason for a broken

bone among them [1]. A previous study has shown that osteoporotic fractures occur more

! Due to the interdisciplinary nature of this work, a glossary of anatomical terms is included as Appendix A.

1
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frequently than heart attacks and strokes combined in the United States [2], and with the

global aging population, these numbers are expected to rise in the coming years.

The hip is one of the most common sites affected by osteoporosis, the fracture of
which has a severe effect on the patient’s morbidity and mortality. A study in 2009 [3]
showed that there is an 8% to 36% excess mortality rate for patients one year after hip
fracture, compared to adults without one. Hip fractures are not only associated with pain
and reduced quality of life for the patients but also are responsible for high health care costs
for society [4]. A large percentage of patients who suffer from hip fractures never regain
the same level of functional independence as before and need to live in assisted living
facilities [5]. In addition, many hip fracture patients have also multiple health issues that
negatively affect recovery time [6]. Economically speaking, the acute cost for treating hip
fractures in Canada annually is about $620 million in comparison with $553 million for all
other fragility fractures combined. Adding indirect expenses, the cost associated with
osteoporosis can go as high as $3.2 billion each year, only in Canada [7]. Therefore, it is
crucial to prevent fractures from happening through early identification of people at
greatest risk of sustaining the injury, who may then use protective measures such as hip
protectors [8], energy attenuating floors [9], targeted exercise [10], and pharmacological

interventions [11].

Currently, the primary diagnosis of osteoporosis relies on the measurement of the
Bone Mineral Density (BMD) derived from a Dual-energy X-ray Absorptiometry (DXA)

scan [12]. The measured BMD is normalized to the mean and standard deviation of the
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BMD of a young adult reference population to calculate the T-score (which represents the
number of standard deviations below or above the average). According to the World Health
Organization (WHO), a patient with a T-score of -2.5 at the hip or spine is considered to
suffer from osteoporosis [13]. Some studies have shown that using the BMD measurement
from the DXA scans alone is not sufficient in identifying all patients at risk of a hip fracture,
and a large proportion of hip fractures occur in women with a non-osteoporotic diagnosis
based on a DXA scan [14,15]. The urgent need to improve the assessment of fracture risk
in older adults has led researchers toward using numerical analyses such as finite element

analysis (FEA) and image processing techniques.

Finite element analysis has great potential for predicting the strength of bones since
it gives information about the complete state of strain and stress throughout an object [16].
It can provide 3D information about the structure of the bone as well as it’s BMD
distribution, yielding potentially the most accurate method to predict the bone’s behavior
under mechanical loading [17-22]. However, the implementation of FEA in clinical
practice is disputed due to the substantial computation time, accessibility, and high level
of radiation exposure (e.g. Computed Tomography (CT)- based FEA). There are also a fair
number of challenges in validating the results of these models. Therefore, it is anticipated
that DXA scans will remain for the foreseeable future the primary means of osteoporosis

diagnosis and subsequently hip fracture risk [23].

Femur structural strength depends on its geometry, spatial BMD distribution, and

the structure of the trabecula [24]. The clinician’s gold standard for predicting fracture risk
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is only based on the average areal BMD (aBMD) in certain regions, so there is potential to
develop better methods for predicting fracture risk based on the factors mentioned above.
Therefore, the overall purpose of this research was to apply various image processing
techniques to DXA scans to investigate their potential as tools to identify patients at high
risk of sustaining a hip fracture in comparison to the standard method. To examine the
accuracy of the techniques the results were evaluated through both an isolated cadaveric

femur study and a clinical population study.

1.2 Hip and Femur Anatomy

The femur is the bone of the upper leg (thigh) and is the strongest and longest bone
in the human body. The round head of the femur forms a ball-and-socket joint with the
concave part of the pelvis known as the acetabulum [25]. This joint is called the hip and is
held together by strong surrounding ligaments. The upper part of the femur (close to the
pelvis) is called the proximal femur, and can be classified into four regions: the femoral

head, neck, trochanteric, and subtrochanteric areas (Figure 1.1).

The femoral head is roughly a hemispherical structure that sits in the hip joint, and
also is adjacent to the femoral neck. Its main purpose is to provide a smooth articulation
with the acetabulum with a large range of motion, and accept load from the pelvis and
transfer it to the diaphysis by way of the neck. The femoral neck offsets the head from the
long axis of the femur and is the bridge between the head and the trochanteric area [26].
The trochanteric area is located between the femoral neck and femoral shaft (also known

as diaphysis), and has two major protrusions. The lateral (further from the mid-line of the
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Femoral
neck

Femoral

head
Greater

trochanter

Femoral
trochanter

Lesser

trochanter
Subtrochanteric
< region

Figure 1.1: The Anterior View of the Proximal Femur.

The overall purpose of the proximal femur is the hip articulation, transferring load
in multiple directions to the strong diaphysis, and also providing a site for muscle
attachments. It can be divided into four regions: femoral head, neck, trochanter, and

subtrochanteric areas (a part of the femoral diaphysis).
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body) and more prominent one is called the greater trochanter and the smaller one on the
medial (close to the mid-line of the body) aspect is called the lesser trochanter. The
trochanteric region performs as an important muscle attachment site. The subtrochanteric
area is defined as part of the femoral diaphysis that is situated approximately below the
lesser trochanter and is the bridge between the femoral trochanter and the rest of the femoral

shaft [27].

1.3 Factors Affecting the Hip Fracture Risk and Current Evaluation Methods

The factors affecting the risk of sustaining a hip fracture in older adults can be
classified into three categories of 1) bone strength, 2) fall probability, and 3) fall impact
force.

The strength of the proximal femur depends on its material properties, which can
be evaluated by the average BMD measured in a DXA scan. However, it should be noted
that only 70% of bone consists of mineral content and the rest is organic materials and
water [28]. Hence, considering only the BMD as a representation of the material properties
can be a simplifying assumption. In addition to the material properties, the quality of the
material (e.g. trabecular quality, and presence of microdamage) [29,30], the distribution of
the bone density [31], and the geometry of the bone [32] are other contributing factors to
the structural integrity of the proximal femur.

The probability of sustaining a fall depends on many personal and clinical factors.
Some of these factors rely on how much a patient is prone to be in a high risk situation (e.g.

level of activity, and equipment assisted walking ) [33], and the others are related to the
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patient’s balance maintenance (e.g. age, cognitive issues, comorbidities, and reflexes) [34].
Therefore, in addition to the strength status of the bone, personal and clinical factors play
an important role, too.

The last category of factors that contribute to the hip fracture risk is the force that
is experienced during a fall, since an acute fracture (not a fatigue fracture) is sustained only
when the experienced force exceeds the strength of the bone [28]. The amount of force
during a fall depends on hip impact velocity, soft tissue damping, and the effective mass
during the impact [35]. Most of these factors rely on the anthropometric measurement of
the person. For example, a taller person most likely experiences a higher impact velocity,
and a person with a higher body mass index most likely benefits more from the soft tissue
energy damping during an impact onto the hip (i.e. more mass for their height, therefore
thicker soft tissue over the hip). Both height and weight, as well as body composition,
influence the effective mass during the impact. Also, studies have shown that the condition
in which the fall is initiated, the direction of the fall, and reflexes to avoid the fall would
affect impact velocity and effective mass as well [35].

Considering many elements are affecting the risk of sustaining a hip fracture, it is
worth noting that the main focus of this thesis is to predict the fracture risk based on the
frameworks consisting of factors that affect the structural integrity of the proximal femur
with regards to the feasibility of implementing them in clinical practice. However, in some
studies, additional aspects (e.g. age, BMI, and sex) have been added to the prediction model

as well.
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1.4 Mathematical and Statistical Analyses

Various statistical and mathematical analyses have been used in this field and hence

are reviewed herein.

1.4.1 Principal Component Analysis

Principal Component Analysis (PCA) is a mathematical technique to reduce the
dimensionality of large and complex datasets while preserving as much variability as
possible or needed [36]. This method is mostly used as an approach to summarize the main
characteristics of a dataset and also to make predictive models. Typically, by doing PCA
the data are transformed into a new coordinate system where the largest variance can be
found along the first axis of the new coordinate system (first principal component), and the
next largest variance is found along the second axis (second principal component), etc.
[37]. The proportion of variance explained by each principal component is equal to the

eigenvalue of that principal component (eigenvector).

Conceptually, PCA can be considered as fitting an m-dimensional ellipsoid to the
data with each axis of the ellipsoid being a principal component. If a specific axis is very

small, that axis could be eliminated resulting in the loss of a small portion of the data [37].

The fundamental concept of PCA involves having a dataset (matrix X) consisting
of ‘p’ columns as variables and ‘n’ rows as observations (each observation has p variables).
This permits a linear combination of the matrix columns to be found that has the maximum

variance [36], which can be calculated through eigenvalue decomposition of the covariance
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matrix of the original data. Some of the main advantages of PCA are reduced complexity,
lack of redundancy in the data (given the orthogonal components), and reduction in noise
(since only the main variations are considered, and small variation by the noise are
ignored). However, the main disadvantage of PCA is that even an obvious feature could be
disregarded if not present in the training set; therefore, having the right training set can

have a significant impact on the results [38].

1.4.2 Logistic Regression Analysis

Logistic regression analysis in statistics is used to model the probability of certain
outcomes. A binary logistic model has dependent variables with two possible outcomes
(e.g. fractured vs. non-fractured), labeled as zero and one. In this model, the logarithm of
odds (p/(1-p), where p is the probability), is a linear function of independent variables that
could either be binary or continuous. The calculated probability is between zero and one,
and the function that transforms the logarithm of odd to the probability is called the logistic

function [39].

Some of the advantages of logistic regression analysis are that the input does not
require any scaling, the output is well-calibrated predicted probabilities, it does not require
too many computational resources, it is easy to implement, and efficient to train [40]. The
main disadvantages of this method include not being able to solve non-linear problems and
being vulnerable to overfitting, which is the overreaction of the predictive model to small

fluctuations in the training data. This might happen when there are too many variables
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relative to the number of observations; however, using cross-validation can help to avoid

overfitting [41].

1.4.3 Leave-one-out Cross-Validation

Cross-validation is a statistical method that is used to evaluate how a predictive
model performs in practice, and its main goal is to assess the model’s ability to predict the
outcome for new data that were not used in creating it. Cross-validation uses two datasets:
first, the training set in which the known data are trained to predict the output, and second,
a testing set that uses the trained function created in the training set to predict the output

[42].

The leave-one-out cross-validation is a particular form of cross-validation that involves
using one observation in the testing set and ‘n-1" (n is the number of observations)
observations in the training set. To predict the outcome for each observation, the model has
to iterate ‘n’ times (Figure 1.2). When using the leave-one-out cross-validation, there is
less bias and also no randomness of choosing a testing set and training set from the
observations [41], which makes this method highly desirable. However, this method is

computationally expensive (time and power), especially if the dataset is very big.
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Figure 1.2: Diagram of Leave-one-out Cross-Validation.
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In each iteration, one observation is the test data and the rest of the observations are

the training data, the test error rate is the average of all n errors, the light and dark

blue represent different types of data (e.g. fractured and non-fractures subjects).
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1.4.4 Receiver Operating Characteristic Curve

The Receiver Operating Characteristic (ROC) curve is a widely used [43-46]
graphical plot that demonstrates the diagnostic ability of different predictors based on
various thresholds, and it is created by plotting the true positive rate against the false
positive rate. The true positive rate is also called sensitivity, and the false positive rate can
be calculated as ‘1-specificity’ [47]. The area under the ROC curve is the probability that
a predictor ranks a randomly chosen positive higher than a randomly chosen negative, or
in other words, classifies a higher risk over a lower risk subject correctly [47]. Therefore,

the higher the area under the curve, the stronger a model is in its diagnostic ability.

One of the main advantages of using the ROC curve is that it allows choosing an
optimum threshold based on the desired trade-off between sensitivity and specificity, also
the curve makes the comparison of various diagnostic tests graphically simple. However,

in the case of limited sample size, the plot might look very jagged.

1.5 Texture Analysis

Texture analysis of radiographic images is a tool to assess the architecture of
trabecular bone, and provides insight into the bone quality instead of bone quantity [48].
Several methods of texture analysis exist to estimate the trabecula structure indices from a
2D image [49]. The basis of most of these methods (e.g. homogeneity index (HI), trabecular
bone score (TBS)) is on calculating the gray-level co-occurrence matrices (GLCM). The

GLCM is a matrix defined over an image that represents the co-occurred (pixels of the

12
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same value) grayscale values in a certain direction and offset, and is used to define the

texture of an image.

Homogeneity index is a function that uses the GLCM and represents the spatial
distribution of gray levels in a picture [48]. When applying HI to a trabecular bone image,
it acts as an indication of the trabecular connectivity, where a higher HI is correlated with
higher trabecular connectivity. A modified HI was used in a clinical study [30] to
investigate its ability to predict femoral neck fractures, and their results showed that the

modified HI was a better predictor of the fracture risk than BMD alone.

Trabecular bone score (TBS) is another measure of bone texture correlated with
bone microstructure, and it relies on acquiring information from the measurement of the
statistical properties of image pixels. The logic behind calculating TBS is that in a 2D
image of bone with high trabecular density, it is more likely to have a large number of pixel
value variations of small amplitude. On the other hand, when the density of the trabeculae
is low and the bone is porous, the 2D image is more likely to have a low number of

variations of high amplitude [49].

Generally, a low TBS is associated with a porous and not well-structured bone,
whereas an elevated TBS represents a well-structured trabecula architecture [50]. TBS is
positively correlated with trabecular connectivity density, bone volume fraction, and
trabecula numbers. It is also negatively correlated with trabecular separation indices. It is
worth mentioning that TBS association with trabecular thickness is not yet determined,

since in some studies it showed a negative correlation e.g. [51], whereas in another study

13
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it showed a positive correlation [52]. In practice, TBS is typically calculated from a

standard lumbar spine DXA image, using commercially available software [53].

1.6 Direct Measurement of Geometry and BMD Distribution

To consider the effect of geometry from a 2D image either the direct measurement
of geometrical features or recreating the model of the proximal femur (either 2D or 3D)
based on a DXA image has been used. The direct measurement of BMD distribution has
not been investigated frequently and BMD distribution was usually investigated along with

the geometry (e.g. in Hip Structural Analysis).

1.6.1 Direct Measure of Geometry

Some studies have investigated the relationship between the geometry of the femur
and the types of hip fractures [54-56], while in other similar ones the association of the hip
fracture with different geometry traits such as neck-shaft angle (NSA), hip axis length
(HAL), and femoral length width (FNW) in subjects with hip fractures and a control group
have been explored (Table 1.1). Although these studies provide very useful information,
not all of them are in agreement with each other. The strength of a complex shape like the
proximal femur depends on its entire geometry and cannot be limited to some simplified
geometrical traits. To capture all contributing factors a powerful tool in catching high

dimensional variability is needed.
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Table 1.1: Summary of Research Studies of Hip Geometry in Fracture vs.

Control Groups.
The table is adapted from [57], NSA: neck-shaft angle, HAL: hip axis length, FNW:

femoral neck width, N/A: not available or not measured.

Number of subjects

Geometric Feature — Fracture vs. Control

Study
Fracture | Control NSA HAL FNW
Gnudi et al. [55] 181 366 Increase Increase Not significant
Bergot et al. [58] 49 98 | Notsignificant |  Increase N/A
Partanen et al. [59] 70 40 Increase Not significant | Not significant
Alonso et al. [60] 411 545 Increase Not significant Increase
Gnudi et al. [61] 111 329 Increase Increase Increase
Michelotti and Clark [62] | 43 119 N/A Not significant | crease
Center et al. [63] 36 224 N/A Not significant N/A
Boonen et al. [64] 135 & N/A Increase N/A
64 134 | Not significant Increase Not significant

Faulkner et al. [32]
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1.6.2 Hip Structural Analysis

Hip structural analysis (HSA) is a measure of structural properties of proximal
femurs. These properties are a combination of geometrical and mechanical characteristics
of the bone at various cross-sections [65]. More specifically, HSA accounts for the outer
and inner diameter of the bone, cross-sectional area (excluding the bone marrow and
pores), estimated cortical thickness, cross-sectional moment of inertia, section modulus
(second moment of area divided by the maximum diameter at that cross-section), buckling
ratio (ratio of the outer diameter to the cortical thickness), neck-shaft angle, and hip axis
length. These measurements are done at three locations of the narrowest point of the

femoral neck, trochanteric region, and femoral shaft [66-68].

Some studies have investigated the average measures of HSA in fractured and non-
fractured groups, or have assessed if HSA can enhance hip fracture risk prediction [68—
70]. The results of these studies mostly showed that there was a significant difference
between the fractured and non-fractured groups [69]; however, not all variables added
discriminative value to hip fracture risk prediction [68]. The International Society of
Clinical Densitometry (ISCD) published a position statement in 2015 that HSA should not

be used to assess hip fracture risk with an exception for femur axis length [71].

1.7 Model Reconstruction

One method to investigate the effects of geometry and BMD distribution on hip

fracture risk is to reconstruct the 2D or 3D shape of the proximal femur from a DXA scan.
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In 2D model reconstruction, the results are mostly used to measure specific traits or
investigate the correlation between its variables (from the reconstruction procedure) and
the fracture risk. In 3D model reconstruction, in addition to these applications, the

estimated model could be used as an input for FEA.

Most of the studies that propose a technique to reconstruct the shape and BMD
distribution of the femur are based on a two-stage procedure, in which a template shape of
the femur is created based on available 2D or 3D models, and stage two is about deforming
the template shape to match the data from any new 2D image. These methods can be
categorized based on their different approaches in creating the template shape, techniques
of altering the template shape to match the 2D image, consideration of BMD distribution,

and type of 2D image used.

1.7.1 Recreating the 2D Model

Baker-LePain et al. [72] used a Statistical Shape Modeling (SSM) algorithm
proposed by Cootes and colleagues [73] on the X-ray radiographs of hips in a population
of clinical subjects with and without hip fractures. To make the template model, landmarks
were assigned on the contour of the femur in the training set and after aligning the points,
the average of the landmarks was calculated to find the template shape. Principal
Component Analysis was then used to find the main modes of variation in the shape of the
femur. To describe the shape of any new femur, the template model was adjusted by the
main modes of variation to minimize the difference between the estimated geometry and

the real geometry of the bone.
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The results of this study showed that by using SSM and logistic regression analysis,
the area under the ROC curve to predict the risk of a hip fracture was improved
significantly; however, it is not clear if they used cross-validation or any other statistical
method to make independent predictions. This study only included the effect of geometry
in fracture risk and did not investigate BMD distribution, and also an X-ray image in

addition to the DXA image was used for the analysis.

Goodyear et. al [44], adopted Statistical Shape and Appearance Modeling (SSAM)
to account for both the effects of geometry and BMD distribution of the proximal femur in
hip fracture risk. They used an open-source software (Active Appearance Modelling
Toolkit Software Manchester University, UK) to create SSAM, and then compared the
modes of variation between two groups of subjects who had sustained a hip fracture and
who had not. Subsequently, they performed a stepwise logistic regression analysis to only
include the variable in the risk assessment that showed a significant effect on the outcome.
Their results demonstrated that using only some specific modes in addition to the BMD
could increase the area under the ROC curve compared to using the BMD alone. However,
using stepwise regression is criticized due to the test bias, and also including fewer
independent variables in the model than the total number of variables in an effort to make

the fit look better.

1.7.2 Recreating the 3D Model Based on a Template Model

In 2009, Langton et al. [74] developed a method to estimate the 3D shape of the

proximal femur from the anterior-posterior projection of CT scans (to be used as the 2D
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image). First, three different maps from CT scan images were derived for each of the bones
in the training set: 1) the ‘offset’ map, defined as the number of voxels from a pre-
determined plane to the first bone voxel in that column, 2) the ‘depth’ map, defined as the
number of voxels between the first and the last bone voxel along the specific column, and
3) the ‘BMD’ map, defined as the integrated BMD content along a particular direction
divided by the area under calculation. Therefore, the shape of each femur could be
described by the offset and depth maps, considering they represented the femur contour in
the frontal plane and how much thickness it had in various locations, and the BMD map

was used as a 2D image.

The process of creating the template shape from these three maps had five stages.
First, landmarks were assigned to the 2D image (BMD map), so that they accounted for the
visible shape features of the femur. Then, general Procrustes analysis (GPA) was used to
eliminate the effect of translation, rotation, and scaling among different landmarks’
coordinates in the 2D BMD images. In stage three, the mean of each specific landmark
among the training sets was calculated to obtain the average landmarks’ coordinates, and
then in stage four, the offset and depth maps of each femur in the training sets were warped
to the average landmarks’ coordinates. Finally, the pixel-by-pixel average of the offset and
depth images were calculated, and the 3D shape represented by these maps was considered
as the template model. After these steps, the template shape (3D grid) was ready to be

altered to match any new image.
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To match the 3D shape to a new 2D image, first, the landmarks were assigned to
the 2D image, and GPA was applied for alignment and scaling purposes, and then the
average 3D grid was warped to the landmarks’ positions by thin-plate splines (TPS, an
interpolation technique). The result of this process is a 3D estimation of the shape that
would have created the 2D image. One of the main limitations of this method was that it
could not capture the right shape if there was any curve with a high angle in the transverse
plane, and also, it was only able to estimate the 3D shape of the proximal femur, and did

not provide any insight into the BMD distribution.

Vaanaanen et al.[75] used this technique and modified it so it could account for the
BMD distribution of the proximal femur to some degree. In their method, the BMD
distribution was considered based on the BMD map. This meant that it could address the
medial-lateral and superior-inferior variation but could not estimate anterior-posterior

variation in the BMD distribution.

In 2012, Vaannanen et al. [76] proposed another method to create a 3D model of a
femur from a 2D BMD image derived from the anterior-posterior projection of CT scan
images. Like other methods, this technique started with creating a template model from a
training set. Landmarks were assigned to the 3D shapes of the femurs within the training
set, and GPA was performed to align and scale the landmarks. Then, the mean values of
each landmark’s position were calculated, and the CT-based 3D models within the training

set were warped to the mean position of the landmarks by TPS. Next, the average of the
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voxel-by-voxel content of the warped images was calculated, so that the template model

included information both about the geometry and BMD distribution throughout the bone.

To estimate the 3D shape from a 2D DXA image, landmarks were assigned to the
estimated DXA image (anterior-posterior projection of the CT scan), and then the 3D
template shape was warped to the BMD image’s shape by matching to the landmarks’
locations. In the end, the 3D volumetric BMD distribution in the warped templated shape
was normalized to match the projection of the 3D shape with the BMD image. The
advantage of this method was that GPA and TPS were used fully in 3D, so the changes in
the anterior-posterior direction were captured better than in previous methods. However,
the alteration of the template model was only based on matching the landmark location,
and the dependant BMD variations inside the template models could not be integrated into

the final model.

1.7.3 Recreating the 3D Model Based on Geometrical Parameters

Thevenot et al. [77] proposed a method to derive a 3D model of femur out of a 2D
image, with a focus on creating trabecular and cortical bone based on some geometric
parameters. The 3D model generation was divided into three steps: 3D shape generation,
meshing, and assigning material properties. To create the 3D shape, a set of eight geometric
parameters were defined: femoral neck axis length, neck-shaft angle, trochanteric width,
femoral head diameter, femoral neck diameter, femoral shaft diameter, femoral shaft
cortex, and calcar femoral cortex width. Then, the relationships between these parameters

and the femur overall geometry were established based on the information from CT scans
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of seven femurs in the training set, and the impact of each parameter on the overall shape
was quantified. Next, the outer surface of the model was defined by a series of curves. The
femoral head was assumed as a hemisphere, and the femoral neck was divided into ten
segments. A relationship was established between each radius and the aforementioned
eight geometrical measures. Therefore, for the reconstruction of a 3D shape from a new
2D image, first, the geometric parameters were measured from the 2D image, and then
based on the established relationships from the training set, the shape of the femur was

estimated, and a smoothed solid was created.

The assignment of mechanical properties was based on the analysis of the trabecular
structure from radiograph images. Young’s modulus was calculated using the homogeneity
index (HI) adjusted by the Hounsfield Units (HU) measured in CT scan images, and the
distribution of the material properties through the trabecular bone was based on Principal
Tensile and Compressive System (PTS, PCS). Trabecular bone is a supportive connective
tissue and its pattern of growth follows the course of stress lines in the bone. During the
load transfer from the femoral head to the diaphysis, the femoral neck and part of the
trochanteric area experience a bending moment, this would generate tension on the lateral
side and compression on the medial side, forming a group of trabecula to bear the load [78].
The group of trabecula on the lateral side that carries the tension is called PTS, and the

ones that carry the compressive load are named as PCS [78].

In the study by Thevenot et al. [77], the PTS was divided into 20 sub-curves, with

the magnitude of Young’s modulus increasing toward the femoral head. The same method
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was applied to PCS, where it was divided into 10 sub-curves with increasing value of
Young’s modulus toward the lower neck. The material outside PTS and PCS was assigned
mechanical properties depending on its location, e.g. shaft, trochanter, femoral head, and
neck. For each new model, the localization of the different regions for assigning material

properties was based on its 2D radiograph.

Although the reconstruction of the proximal femur geometry seemed logically
appropriate (however very labor-intensive), the reconstruction of the BMD distribution was
based on the assumption that specific areas of the femur have the same material properties,

and therefore the distribution of the BMD in the bone was an oversimplification.

1.7.4 Recreating the 3D Model Based on SSAM

The statistical models for constructing 3D models based on 2D images are mainly
based on active shape [73], and active appearance modeling [79], in which first a template
model of an object is created from a large dataset. Then, the new 3D model is constructed
by altering the template model by its modes of variation (eigenvectors) in order to

maximize the similarity between the projection of the template shape and the 2D image.

Whitmarsh et al. [80] proposed a method based on statistical appearance modeling
that could derive not only the shape but also the BMD distribution throughout the femur.
They used CT scans of femurs in the training set and assessed the accuracy of their
technique using DXA images of clinical subjects. The template shape model was built

based on the work of Frangi et al. [81], which used non-rigid registration of the CT volumes
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onto a segmented reference subject with an intensity-based algorithm. After registration,
all data were gathered into a single matrix, and principal component analysis (PCA) was
applied, which allowed any new shape and density distribution to be described as the

template model plus a set of eigenvalues and eigenvectors.

For the reconstruction of a 3D shape from a 2D image, the intensity-based 3D-2D
registration of the template model onto the DXA image was performed, whereby an
iterative optimization process was applied to maximize the similarity of the DXA image to
the digitally reconstructed radiograph (DRR) of the 3D model, which is a simulation of a
2D X-ray image from a CT-scan. The generation of the DRR was based on a ray casting
technique [82], in which a ray was cast through the volume in the direction of the projection
(perpendicular to the DXA image plane). The density value of each pixel is the integral of
density in the 3D model lying in the direction of the casted ray. To maximize the similarity
between the DRR and the DXA image, the instance model together with a pose and scaling
factor can be found through optimization to minimize the differences between the DRR

and the DXA image in terms of femur’s contour and the pixels’ intensity.

Vaannanen et al. [83] proposed a new method to derive the 3D model of a femur
from a 2D DXA image by using statistical shape and appearance models (SSAM) and
feature-based image registration. To create the template shape for SSAMs, first, the
landmarks were registered to the 3D CT-based model of the femurs and pelves within the
training set, and GPA and TPS were used to align, scale and warp the models to the mean

of the landmarks’ position. Next, a template mesh was generated on the mean shape
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considering the cortical bone separately from the trabecular and then warped back to the
shape of each training bone in two iterations. The BMD value of each warped element was
collected after removing GPA. The BMD values for each model in the training set were
normalized to its mean and standard deviation. Finally, all geometry (node coordinates)
and density information (elements” BMD) were collected into a matrix, and PCA was
applied to identify the eigenvectors, so that each new shape could be defined as the

summation of the mean shape and linear combination of the eigenvectors.

In this method, the reconstruction of each femur began with registering the DRR
over the DXA scan. A genetic algorithm in MATLAB was used to register a combination
of translation, rotation, scale, and mode values so that the cost function including the sum
of the absolute error between areal BMD of the image, quality of mesh function, and
anatomical positioning function would be minimized. In this method, the cortical bone was
reconstructed separately, and a threshold was given to the minimum cortical thickness;
therefore, there was an overestimation in the amount of cortical bone in the reconstructed

model.

1.8 Evaluation Techniques

Several methods are used to evaluate new predictive methods, with most of the

previous studies using either a cadaveric study or a clinical observational study.
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1.8.1 Cadaveric Studies

Performing destructive and non-destructive mechanical testing on post-mortem
human specimens or isolated bones provides valuable insight into fracture mechanisms as
well as establishing injury criteria. Some of the advantages of this technique are controlled
orientation of loading, the feasibility of imaging the bones before testing, controlled
loading rate, and a guaranteed fracture, whereas in a clinical population a huge cohort might
be needed to find a few people who sustain a fracture. The main focus of validating a
fracture risk predictor model with a cadaveric study is to predict the fracture loads by the
proposed model and then compared to those measured in the experiment. One of the most
important requirements to get relevant data from these kinds of tests is to simulate the

conditions under which injury most probably occurs.

The primary direction of falls in older adults in which hip fractures occur is a
sideways fall onto the hip [84,85]. Many of the experimental studies that have investigated
the risk of hip fracture have conducted quasi-static destructive tests on proximal femurs
simulating sideways falls [86—-89]. However, in reality, the incidents that lead to a fracture
are never quasi-static or have a constant displacement rate, and are more like an impact
[90]. Quasi-static tests are easier to implement and can be done by a standard material
testing machine, and hence controlling the test conditions can be simpler. Also, numerical
modeling of the quasi-static tests is less complicated. On the other hand, during an impact

test, there is less control over the test conditions, so it is more elaborate to implement, and
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numerical modeling is also more complicated. However, impact testing is a more accurate

representation of the conditions in which a fracture happens.

One of the limitations of cadaveric studies in fracture risk prediction models is that
further studies are still required to correlate the predicted/measured fracture load with the
fracture risk in reality, as there are numerous personal and clinical factors that contribute
to the incidence of sustaining a bone fracture. Some of these factors include soft tissue

thickness, use of assistive devices, physical activity level, and patients’ lifestyle.

1.8.2 Clinical Studies

In contrast to cadaveric studies, studies that are performed on a group of living
subjects provide more insights into the risk factors of sustaining a hip fracture. Some of the
advantages of clinical studies are considering the effects of aging impairments, muscle
activation, soft tissue, real loading direction, and including a variety of people that would

be a better representation of the real world.

However, performing clinical studies has more complications in terms of obtaining
ethics approval, recruiting the subjects, resources, follow-ups, data acquisition, and data
analysis. These studies might also require a long period to find the outcome of interest (e.g.
only a small fraction of participants may ever sustain an injury). Therefore, various types

of clinical studies exist to mitigate the drawbacks.

Case-control studies are a type of observational study in which two groups of

subjects differing in the outcome (e.g. fracture vs. non-fracture) are selected and compared
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based on the supposed contributing factors or exposures (e.g. BMD, smoking). This type
of study is mostly used when the outcomes of interest are rare, and the factor or exposure
of interest is only measured in the cases (subjects who have the condition) and controls
(subjects who do not have the condition) [46]. Case-control studies can nest in large cohort
studies to use data collected previously in that study (nested case-control study), this way
the cost and time of performing a new study can be avoided. In the nested case-control
studies, usually, one to four controls (i.e. those who did not experience fracture) are
selected for each case (i.e. those who experienced fracture), and a previous study has shown

that using three controls could only result in a small efficiency lost [91].

1.9 Study Objectives

The overall goal of this Ph.D. research was to enhance hip fracture risk estimation
in older adults to allow early identification of patients at high risk of sustaining a fracture.
These patients could benefit from protective and preventive measures to avoid the injury

and all the pain, social, and economic burdens that come with it.

Therefore, with a focus on the feasibility of implementing the proposed technique
in clinical practice, image processing of DXA scans was investigated in this research and

four objectives were identified.

1.9.1 Objectives

Objective 1: To compare the proximal femur’s strength in the quasi-static (QS)

scenario with the impact (IM) scenario in the simulation of side-ways falls.
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Obijective 2: To analyze the shape, BMD distribution, and trabecular quality of the
proximal femur based on the 2D statistical shape and appearance modeling of isolated
cadaveric femurs” DXA scans (tested in Objective 1), and investigate how the combination

of different modes and texture analysis is correlated with the strength of the bone.

Objective 3: To investigate the accuracy of 2D image processing of DXA scans in
the prediction of an impending fracture in a population of subjects in a five year follow up
after the baseline imaging using the Canadian Multicentre Osteoporosis Study (CaMos)

database.

Objective 4: To investigate hip fracture risk prediction by analyzing the shape and
BMD distribution of the proximal femur based on the 3D statistical shape and appearance
modeling of DXA scans, and compare the results with 2D SSAM predictions using a subset

of CaMos subjects from Objective 3.

The corresponding hypotheses were:

Hypothesis 1: Femurs’ strength in the impact is greater than the quasi-static one

and the fracture patterns are different, yet highly correlated with each other.

Hypothesis 2: At least one combination of modes from the statistical shape and
appearance modeling can be found that is moderately to highly correlated with the fracture

loads from the experiment.

Hypothesis 3: The proposed technique can identify patients at high risk of

sustaining a hip fracture more accurately than T-score.
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Hypothesis 4: The fracture risk predictions based on 2D are comparable to and not

significantly different from 3D predictions.

1.10 Structure of the Thesis

This thesis is written in a sandwich format as per the definition of the McMaster
University School of Graduate Studies. Chapter 2 outlines comparing the fracture limits of
the proximal femur in a sideways fall configuration in two scenarios of constant
displacement and impact. Chapter 3 describes implementing 2D statistical shape and
appearance modeling and texture analysis of DXA scans of cadaveric specimens to predict
the fracture load for those femurs, and compares the results with the experimental ones.
Chapter 4 outlines applying 2D statistical shape and appearance modeling to DXA scans
of a clinical population from the Canadian Multicentre Osteoporosis Study (CaMos),
predicting the hip fracture risk for them, and finally comparing the results with the BMD
predictions and fracture history of the subjects. Chapter 5 describes creating and
implementing 3D statistical shape and appearance modeling on DXA scans of a clinical
population from Canadian Multicentre Osteoporosis Study (CaMos) and predicting the hip
fracture risk for them and comparing the results with the 2D statistical shape and
appearance modeling predictions. Chapter 6 summarizes the conclusions of this thesis,
outlines the limitations of this research as a whole, as well as discusses the future directions

and clinical implications of the studies presented in this thesis.
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CHAPTER 2 - Comparing the Fracture Limits of The Proximal
Femur Under Impact and Quasi-Static Conditions in Simulation of

a Sideways Fall

Overview: In this chapter, the association of the proximal femur
fracture load in a simulation of sideways fall in two scenarios of impact,
and quasi-static loading rate was investigated to address Objective 1. This
chapter has been published in the Journal of the Mechanical Behavior of
Biomedical Materials (2020, V103, DOI: 10.1016/j.jmbbm.2019.103593).
The proper permission from the copyright holder (Elsevier Ltd.) has been

obtained to include the article in this thesis.
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ARTICLE INFO ABSTRACT

Keywords: Sideways falle onto the hip are responcible for a great number of fractures in older adults. One of the possible
Proximal femur ways to prevent these fractures 1s through early identification of people at greatest risk so that preventive
;Sg:::ﬁ measures can be properly implementad. Many numerical techniques that are designed to predict the femur

S fracture risk are validated through performing quasi-static (8) mechanical tests on isolated cadaveric femurs,
gjp;lizcdd;sm whereas the real hip fracture iz a result of an impact (IM) ineident. The geal of thiz study was to compare the
Rate fracture limits of the proximal femur under IM and Q8 conditions in the simulation of a sideways fall to 1dentify
Hip any poesible relationship between them.

Eight pairs of fresh frozen cadaveric femurs were divided into two groups of 08 and IM (left and night ran-
domized). All femurs were scanned with a Hologic DXA scanner and then cut and potted in a eylindrical tube. To
measure the stiffnezs in two conditions of the zingle-leg stance (SLE) and sideways fall (SWF), non-destructive
teztz at a QS displacement rate were performed on the two groups. For the destructive tests, the QS group
was tested in SWF configuration with the rate of 0.017 mm./s uzing a material testing machine, and the IM group
was tested in the same configuration nzide a pneumatic IM deviee with the projectile target displacement rate of
3 m/se

One of the IM specimens was excluded due to multiple strikes. The result of this study showed that there were
ne zignificant differences in the SLE and SWF stiffnesses between the two groups (P = 0.15 and P = 0.64,
respectively). The destructive test results indicated that there was a significant difference in the fracture loads of
the two groups (P < 0.0000]) with the impact ones being higher; however, they were moderately correlated (Rl
= 0.45). Also, the comparison of the fracture location showed a qualitatively zood agreement between the two
groupe.

Uzing the relationship developed herein, results from another study were extrapolated with errors of less than
12%, chowing that meaningful predictions for the impact scenario can be made bazed on the quasi-static tests.
The result of this study suggests that there iz a potential to replace IM tests with Q5 displacement rate tests, and
thizs will provide important information that can be used for future studiss evaluating clinical factors related to
fracture risk.

1. Introduction function, as well as being responsible for high health care costs for so-

ciety (Mears and Kates, 2015). Therefore, it is crucial to prevent frac-

Osteoporosis is a generalized skeletal diserder in which a reduction
in Bone Mineral Density (BMD) decreases bone strength and can result in
an increased risk of fracture. This disease is more common in older
adults and is the one of the main reasons for a broken bone among this
population. One of the sites commonly affected by osteoporosis is the
proximal femur. the fracture of which greatly decreases mobility and

tures from happening through early identification of people at a great
risk of sustaining a fracture, who may then use protective measures such
as hip protectors (Laing and Robinovitch, 2008), energy attenuating
floors (Bhan et al., 2014), targeted exercise (Nikander et al., 2010), and
pharmacological interventions (L. Yang et al., 2014).

To realistically estimate a person’s fracture risk, one needs to
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understand the fracture mechanism. Many studies have endeavored to
create a framework to predict femur fracture risk from a fall. In these
studies, the correlation of the fracture load with Finite Element Analysis
(FEA) predictions (Dall'Ara et al., 201 3; Koivumaki et al., 2012), BMD
(Boehm et al., 2008; Leichter et al., 2001), bone’s geometry (X. J. Yang
et al., 2018), and other factors has been inwvestigated, and typically
validated wia constant-displacement-rate experiments on cadaveric
femur specimens (Gilchrist et al., 2014), However, in reality, the inci-
dent that leads to a fracture is rarely quasi-static (5] or at a constant
displacement rate (Gilchrist et al., 2013).

Investigating how a QS5 constant-displacement-rate experiment
might differ from a fall impaet (IM) simulation has great importance: if
the femur’s structural behavior under impact is comparable to a quasi-
static test, or at least the relationship between them can be estab-
lished, experimental impact testing can be replaced with quasi-static
ones. It also allows us to extrapolate results from previous studies to
conditions more representative of real-life falls.

Bone is well understood to be a viscoelastic material (Carter & Hayes,
1977), and some previous studies have investigated how bone material
properties such as elastic modulus and compressive strength depend on
the strain rate (Linde et al., 1991; Prot et al., 2016). In addition, the
behavior of a whole bone at higher strain rates has been shown to be
different from small samples due to the entrapped marrow (Askarinejad
et al., 2019; Linde et al., 1991). However, the question remains as to
how much this will influence the proximal femur during a sideways fall
with an average impact velocity of 3 m/s (Feldman and Robinovitch,
2007; Fleps et al., 2018; van den Kroonenberg et al., 1996). The effect of
loading rate on the proximal femur fracture load has been investigated
in three previous studies by Courtney et al. (1994), Gilchrist et al.
(2014), and Askarinejad et al., (2019). The results of the first study
showed that beth fracture load and structural stiffness were greater by
20% and 200% with a higher quasi-static displacement rate (displace-
ment rate of 100 mm/s vs. 2 mm/s). In the second study (Gilchrist et al.,
2014), three rates of 0.5 mm/s, 100 mm/s, and 3 m/s (IM) were tested
and the results showed neo significant differences between the stiffness
and fracture load in the IM group (displacement rate of 3 m/s) and the
QS group with a displacement rate of 0.5 mm,/s (Q5 slow). However, the
comparison between the IM group and the Q5 group with a rate of 100
mm/s (S fast) showed a significant difference. Finally, in the third
study (Askarinejad et al., 2019), while most of the fracture loads in the
impact condition were higher than Q5 ones, no statistically significant
difference was observed due to the small sample size and lack of paired
specimens. Although bones are expected to have higher fracture loads in
impaet (Enns-Bray et al., 2018), these three experimental studies
(Askarinejad et al., 2019; Courmey et al., 1994; Gilchrist et al., 2014),
didn’t have a elear and strong consensus on how displacement rate in-
fluences proximal femurs structural fracture load, since the results may
have been influenced either by the different characteristics of each
group (BMD. geometry, age, sex), or lack of statistical power.

Therefore, a new study with paired specimens was proposed to
properly quantify any possible effect of loading rate (quasi-static vs
impact) on the strength of proximal femurs in a sideways fall configu-
ration and investigate if there is a petential relationship between the IM
fracture loads and QS ones. With respect to that, the objectives of this
research were to (1) determine how femeral fracture load differs be-
tween QS loading and IM loading in the simulation of a sideways fall,
and quantify any possible relationship berween them, and (2) to deter-
mine if the fracture patterns differ between these two scenarios.

2. Materials and methods
2.1. Specimen preparation
This research was approved by the Hamilton Integrated Research

Ethics Board (HiREB). Eight pairs of fresh-frozen human cadaveric fe-
murs (67.4 + 6.6 years old, four males and four females, Table 1) were
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obtained and ecleaned of all soft tissues. There were no reported
musculoskeletal diseases for the specimens. To obtain the BMD, each
femur was scanned with a Hologic DXA scanner (Holegic Discovery A,
Hologic, Inc., MA, USA). To simulate the soft tissue during the scan a
plastic container filled with water (to a depth of 15 em) was placed over
the specimens (Chappard et al., 2010), Femurs were then cut to a length
of 27.5 cm and potted distally in cylindrical tubes with 7.62 em (37)
diameter, using dental cement (Denstone type I, Kulzer, Hanau, Ger-
many) toa depth of 6 cm. Four points were marked on each bone: two on
the anterior aspect and two on the lateral aspect, located between 14 and
20 cm from the proximal end (Fig. 1). These were used to create two
longitudinal veetors, and then the position of the femur in the pet was
adjusted (while the dental cement was still wet) so that vertical laser
beams (controlled by a level) would match the identified vectors in both
the sagittal and frontal planes, Fixing the femur in the desired positions
(internal/external rotation and adduction/abduction) in the 5L3 and
SWF conditions was accomplished by the apparatus that was created to
hold the potted specimen. Specimens were kept frozen at —21 °C and
were thawed for at least 4 h before testing.

Each specimen was instrumented with three stacked rosette strain
gauges (F series, Tokye Measuring Instruments Laboratory Ce., Ltd.
Tokyo, Japan). For consistency among samples, geometrical and
anatomical landmarks were used to determine the exact location of each
landmark for each specimen (Fig. 2).

2.2, Mechanical testing

Femurs within each pair were randomly allocated into two groups of
IM and QS. To assess whether the two groups could be considered
equivalent, the stiffness in two orientations of Single Leg Stance (SLS,
defined as 20 degrees of abduction from the wertical axis (Dall’Ara et al.,
2013; Keyak, 2000)), and Sideways Fall (SWF, defined as 15 degrees of
internal rotation and 10 degrees of adduction (Dragomir-Daescu et al.,
2011; Roberts et al., 2010; Wakao et al., 2009)), was measured by
loading all femurs for five eycles each to 250 N at a rate of 0.017 mm/s
using an Instron material testing machine (Instron 5967, Instron, MA,
USA). A custom jig was used to hold the bones in the desired position
during testing, and two PMMA (Simplex, Stryker, Michigan, USA) cups
were molded for the greater trochanter and femoral head for each
specimen to distribute the forees evenly over the region in question in
the SWF testing.

Following this, the Q5 group was preloaded to 250 N and ramp
loaded to fracture under simulated Sideways Fall, using the same
loading rate as above. A bearing plate beneath the proximal end was
used to provide translational degrees of freedom in x and y directions
and rotation around the z axis. Also, the distal end was free to rotate
around the z and y axes (Fig. 3). The IM tests were delivered by a
custom-made pneumatic impacting device (Chakravarty et al., 2017;

Table 1

Summary of specimens’ characteristics. Paired specimens were used, with right
and left femurs from cach doneor randomized into the two groups of Impact and
Quazi-Static. Each bone was DXA scanned, and no differences found between the
specimene allocated to the impact condition and those of the quasi-static con-
dition (p = 0.63).

Specimen Age Sex Total BMD mg/em®
M Specimens 5 specimensz
1 69 F 203 789
2 70 F 827 az1
3 53 F &59 as7
4 67 M 970 ]
5 73 F 244 759
6 70 M 1105 1101
7 70 M 1009 965
] 62 M 1054 1026
Mean = 5D 67.4 = 6.6 N/A 93391152 904.6 = 120.1
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Fig. 1. Mlustration of geometrical landmarks that were uszed to pot the speei-
mens vertically, (a) shows the lateral view and (b) shows the anterior view, the
four peints (indicated with dots) were connected with lasers to define the
vertical alignment in two planes.

Ant. Post.

Fig. 2. Location of the strain gauges: (1) the strain gauge on the anterior side of
the trochanteric area located on the mid-point of the horizontal line that paszes
superior border of the lesser trochanter, (2) the strain gauge on the posterior
zide on the basicervical area at the cross-section of the vertical line that passes
the lateral border of the lesser trochanter and the line parallel to the neck axis
that passes the % of the femoral head diameter (close to the medial part), and
(3) the strain gauge on the superior side of the femoral neck.

Martinez et al., 2018). Briefly, a steel projectile was pushed down an
acceleration tube by compressed air to reach the test chamber (Fig. 4).
The velocity of the projectile was controlled to deliver an impact ve-
locity of 3 m/s to be representative of the speed of impact during a fall
(Feldman and Robinovitch, 2007; Fleps et al., 2018; van den Kroonen-
berg et al., 1996). A 30 mm layer of vinyl nitrile closed cell foam (with a
stiffness of 33.0 kN/m) was placed between the projectile and the load
cell to simulate the attenuation provided by soft tissue on the greater
trochanter (Laing and Robinovitch, 2008; Nielson et al., 2009). Similarly
to the Q5 tests, rotational degrees of freedom at the distal end were
provided in both y and z directions, and rail guides provided
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translational freedom in the x-direction. Due to the orientation of the
impacting device, translations in the y direction at the proximal end
could not be facilitated by bearings, but simply by resting the PMMA cup
on a bleck (Fig. 4).

Specimen four was used as the pilot bone to determine the required
mass to break the bones. The first strikes were associated with low
masses (4-8 kg), but since no injury was induced to the bone, the pro-
jectile mass was then increased to 23 kg, After this increase, specimen
four was broken and then the projectile mass remained the same for the
rest of the specimens. However, due to the additional impacts it sus-
tained, its failure data were excluded from analysis.

To calculate the maximum displacement rate in the IM group, a laser
displacement sensor (IL-300, Keyence, Osaka, Japan) was used to rack
the displacement of the loading plate. The data of the last 1 ms to reach
the peak value were used to calculate the maximum loading rate as well
as the displacement rate in the IM group. For the QS group, the
displacement rate was constant, and the loading rate was calculated for
the last 10 5 to reach the peak force.

The signals from the strain gauges were filtered by a low-pass filter
with a cut-off value of 50 Hz (Zani et al., 2015). For each strain gauge,
the maximum principal strains were calculated, In addition, the data
over the 10 5, and 1 ms period to reach this value were used to calculate
the strain rates for the Q5 and IM tests. respectively.

All statistical analyses and comparisons were performed using stu-
dent t-tests with a significance level of @ = 0.05 after checking for the
normality of data.

3. Results

Comparison of the two groups showed no significant differences in
total BMD (P = 0.63), (Table 1). Also, neither the QS stiffness measure
differed between groups, with SLS averaging 647 + 155 N/m and 748 +
111 N/m for the Q5 and IM, respectively (P = 0.15), and SWF averaging
570 + 131 N/m and 598 + 97 N/m for the QS and IM groups, respec-
tively (P = 0.64).

The average velocity of the projectile in the IM group was 3.24 +
0.08 m/s. with impact durations of less than 30 ms (Fig. 5). Also, in the
05 group (Fig. 6), the duration of the tests from the beginning to the
fracture point was an average of 8.8 = 1.6 min. Displacement and
loading rates during the tests were calculated from the displacement
sensor and the load cell measurements (Table 2).

The average fracture loads for the S and IM groups were signifi-
cantly different, at 3637 + 863 N and 7326 + 771 N, respectively (p <
0.00001). However. a moderate correlation (R% = 0.45) was found be-
tween the paired specimens (Fig. 7). The following relationship was
observed between the fracture loads in the two scenarios of Q5 and IM
from the linear regression:

(IM fracture load) = 0.61*(QS fracture load) + 5173

The fracture load in the Q)5 group was strongly correlated with BMD
(R® = 0.74), whereas for the IM specimens this correlation decreased to
R =0.56 (Fig. 8). Finally, fracture patterns and locations were noted for
each specimen, and for the majority of the pairs were qualitatively very
similar for the two fracture conditions (Fig. 9).

Strain data for one of the QS specimens was missing due to operator
error (specimen 8). There was a significant difference between the
maximum principal strains in the Q5 and IM for the strain gauges on the
posterior side (p = 0.03), and the superior side of the neck (p = 0.02),
but there wasn’t a significant difference in the anterior gauges (p =
0.53). The Coefficient of Variation (GV) for the femoral neck, posterior,
and anterior gauges in the Q5 were 97%, 50%, and 144%, and in IM they
were §3%, 98%, 175%. Strain rates in the IM tests were art least six or-
ders of magnitude higher than QS ones (Table 3).
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the stiffness and the fracture load, two PMMA

Fig. 3. QS testing setup: (A) Simulation of the SLS to e the ctiffs

and (B) st

ion of SWF to

molds at the femoral head and greater trochanter were used to ensure distribution of forces over the bone surface. Bearing plates were uced to provide x and y
translations and rotation around z at the proximal end, and rotation about the ¥ and z axes was provided at the distal end.

Displacement sensor =

Load cell

T i

e

Foams
Velocity

sensor

R i

Direction of the
projectile

Fig. 4. Impact set up. A rail guide and hinge joints were used to provide the required degrees of freedom at the proximal and distal end, the load cell was located after
the foam to enable a more accurate measurement of the force delivered to the bone, a velocity sensor measured the speed of the projectile after being accelerated by
the pneumatic device and just before the impact. Alco, a laser displacement sensor was used to measure the displacement after the impact.

4. Discussion

Sideways falls onto the hip are responsible for a great number of hip
fractures among older adults (Kannus et al., 2006; Parkkari et al., 1999;
Wei et al., 2001). One of the most effective methods to prevent these
fractures is the early identification of people at greatest risk (Johnell
etal., 2005). In addition to BMD measurement, numerical methods such
as finite element analysis and image processing are useful tools currently
receiving a lot of attention (Bessho et al., 2007; Dall’Ara et al., 2016;
Derikx et al., 2011; Duchemin et al., 2008; Keyak, 2001). In most of
these studies, to validate their proposed technique an ex-vivo experiment
on cadaveric human femurs has been performed. However, many of
these studies simulated sideways falls in a quasi-static manner, whereas
areal fall onto the hip is more likely to be an impact incident. Given the
viscoelastic nature of bone, the main goal of the present study was to
compare the structural fracture limits of proximal femurs in sideways
falls at two displacement rates of quasi-static and impact. The use of
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paired specimens to enable a direct comparison between the two groups
was a novel approach, and the previously reported velocity of falls onto
the hip was simulated for the impact group. In addition, due to the
placement of the load cell between the foams (that were simulating the
soft tissue) and the specimen, we were able to measure the exact load
that was delivered to the bone and caused the fracture.

Comparison of BMD, SLS stiffness and SWF stiffness between the two
groups showed that there were no significant differences between the
two groups of QS and IM; however, since the specimens in the two
groups were pairs this was expected. Therefore, the comparison of the
two groups in terms of fracture load and fracture patterns provides
extremely valuable information regarding the effect of loading rate and
eliminated the confounding factor of varied donors that has historically
been present in these types of studies.

Specimen four was used to determine the projectile mass required to
cause a fracture, and thus received additional strikes that may have
caused microdamage so consequently this specimen was removed from
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Fig. 5. A typical force-time graph from the impact testing.
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Fig. 6. A typical force-displacement graph from the 05 testing, the tests was
stopped after a 2000 N foree drop.

further fracture and strain analysis. Results showed that there was a
significant difference in fracture load (P < 0.00001) between the two
displacement rates tested, which is unsurprising given the viseoelastie
nature of bone and nature of the dynamic loading. The relationship
between the fracture loads indicated a moderate correlation (R2 = 0.45).
The cne pair of specimens that did not follow this rend was specimen 3,
where the IM femur had a lower fracture load than the one anticipated
by the wendlines found in both the “IM fracture load-QS fracture load”,
and “IM fracture load-BMD” graphs. If this specimen were removed from
the analysis, a strong coefficient of determination of R = 0.97 for the
relarionship between the fracture loads in Q3 and IM displacement rates,
and R* = 0.90 for the relationship between the IM fracture loads and
BMD, would be observed. This suggests that there is the potential to
develop a reliable relationship between the two test conditions of IM and

Table 2
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Q5, and IM tests (experimentally and numerically) can be replaced by
the QS test in the appropriate context, especially in developing fracture
risk estimation criteria in cadaveric studies.

In order to examine whether the proposed formula of estimating the
IM fracture load from the Q5 one would be able to predict the results
from previous studies, the two pairs of specimens in a previous sudy
(Askarinejad et al., 2019) were choesen and their IM fracture loads were
predicted based on the QS enes. For their second and fourth QS speei-
mens, the IM fracture loads were predicted as 7337 N and 7146 N, while
the real fracture loads from the experiment were 8238 N and 6661 N,
which indicates 7-12% absolute error in the prediction. Censidering
that the experimental setups were entirely different, a maximum abso-
lute error of 12% means that the proposed formula is able to predict the
fracture load well and extrapolation of previous studies results using this
approach ean make meaningful predictions.

In terms of fracture loeation and patterns, almost all the specimens in
the IM group had more complete fractures than the contralateral ones in
the QS group, since the tests in the latter group were terminated after a
2000 N drop in the load (corresponding to initial crack fermation). In
the IM group, the entire energy of the projectile was delivered to the
specimens, and even if the fracture occurred the energy transfer
continued, which led to a more substantial and higher number of cracks.

Generally, in both Q5 and IM groups four main fracture patterns
were observed, and each specimen had one or two of these: (1) cracks
that propagated threugh trabecula’s secondary compressive group from
the inferior medial region toward the rochanterie area, (2) eracks in the
middle of the femoral neck, (3) cracks between the superior greater
trochanter and lateral side of the trechanteric and subtrechanteric area
(which was only seen in the IM group), (4) wedge fractures in the greater
trochanter or subtrochanteric area. One of the contributing factors in
crack propagation in the proximal femur is the pattern of the trabecula.
Fracture types one and two (defined above) were also observed in a
previous study (Askarinejad et al., 2019), and were attributed to the
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Fig. 7. The relationship between IM and 0 fracture loads for the zeven pairs of
specimens, showing a coefficient of determination of B* = 0.45.

Summary of the tests” results. While no differences were found 1n stiffnesses between groups, the fracture load for the impact condition was significantly larger than

that of the guasi-static group.

Sideways Fall Stiffness (N/m) Single Leg Stance Stiffness (N/m)

Fracture Load (N) Dizplacement Rate (m/s) Loading Rate (N/ms)

570 £ 131
598 = 97

QS Group
IM Group

647 =+ 155
745 = 111

3637 £ 863
7326 = 771

0.000017
1.16 = 0.58

0.002 + 0.001
34 = 1774
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Table 3
Maximum principal strain (ji£), and strain rate (jit/me) measured in the QS (eight specimens) and IM (seven cpecimens) tests, mean and standard deviation (SD).
Max Strain (pe) Max strain rate (p2/ms)
Gauge 1 Gauge 2 Gauge 3 Gauge 1 Gauge 2 Gauge 3
QS testing mean 4043 2614 4700 0.0039 0.0059 0.0030
SD 3924 1295 6749 0.0040 0.0069 0.0012
IM testing mean 25586 37629 8871 9532 13798 2706
SD 21295 36705 15535 9480 14727 5130

delamination of the secondary compressive trabecula and low energy
crack propagation due to the less connected trabecula in the Ward’s
riangle, respectively. Overall, the fracture patterns were comparable to
similar studies (Ariza et al., 2015; Askarinejad et al., 2019; Villette and
Phillips, 2018) and while most of the fractures matched clinically rele-
vant fractures based on the Orthopaedic Trauma Association (OTA)
fracture classification (Meinberg et al., 2018), some of the fracture
patterns might have been influenced by the specimen’s individual shape
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and BMD properties as well as specific loading and boundary conditions
(minor misalignments or motion) during the testing.

In specimens two and seven in the QS group that sustained a com-
plete fracture, the fracture lines on the posterior side were the same as
the contralateral ones in the impact group. So, considering that in the QS
tests the force did not completely return to zero after the peak point, the
crack locations can be assumed to be almost the same in the two groups,
indicating that while the viscoelastic behavior of the proximal femur



Ph.D. Thesis — F. Jazinizadeh McMaster University — Mechanical Engineering

F. Jozinizadeh et al I}oumai of the Mechanical Behavior of Biomedical Materigls 103 (20200 103593

Table 4

Comparizon of the relevant studiez. Three other previous studiez have examined the effect of loading rate on fracture threzhold in the proximal femur, with differences

in methods and findings.

Advantages

Study Minimum rate Maximum rate Findings
tested tested
2 mm/s 0.1 m/s ‘With the higher displacement rate the fracture load was inereased
2 mm/'s 3ms No significant difference was observed
100 mm.'s ‘With the higher displacement rate the fracture load was
deereazed
Askarinejad et al. 0.067 mm/s 4 ms No signifieant difference was observed, however most of the IM
(2019) fracture load tended to be higher than QS ones
The fracture patterns were gualitatively the same
Prezent study 0.017 mm/s 324 m/s

the two scenarios

The fracture patterns were gualitatively the same

With the higher displacement rate the fracture load was increased
A moderate correlation was found for the fracture forces between

Uze of paired rpecimens

Use of the sideways fall displacement rate for the
impact

Uzing a dizplacement rate cloze to the value of
sideways fall for the impact

Having two pairs in the specimenz

Wider range of displacement ratez

Use of eight paired specimens

Usze of the sideways fall displacement rate
placing the load cell after the compliant foam to
measure the actual impact foree

Wider range of displacement ratez

affects the fracture load in a sideways fall, it doesn’t greatly affect the
location of failure of the proximal femur.

Regarding the displacement rate in the IM scenario, it is worth noting
that the velocity of 3 m/s is the speed by which the body (hip) has been
reported to hit the ground, and due to the soft tissue energy attenuation,
the real displacement rate that is delivered to the bone is less than that.
In the present impact setup, the projectile made initial contact with a
speed of 3.24 = 0,08 m/s, and then this speed reduced to 1.16 = 0.58 m/
s a5 a result of using foams for soft tissue simulation. A similar reduction
in the displacement rates could also be observed in a previous work
(Gilchrist et al., 2014).

In this study, the simulated sideways fall impact condition was
compared to quasi-static loading with the displacement rate of 0.0017
mm,/s, with the rationale that these represent the extremities of testing
of proximal femur fracture loads, and if there is a correlation between
these extremities, it's likely thar other quasi-static tests in between
would be correlated with the dynamic testing as well. However, to
examine what really happens at intermediate rates, more paired spee-
imen testing would be required. It is likely that some of quasi-static tests
at the lower displacement rates (e.g. study by Askarinejad et al., 2019)
would be similar to the present enes, but at some point, the strain rate
effects would start to dominate, and alter the fracture load.

The strain gauge data showed that most of the principal strains
measured in the IM group tended to be higher than the corresponding
ones in the Q5 group, which was expected due to the greater number of
eracks on the surface in the IM group; however, it should be noted that
there was high variability in the strain data, and because of that no
statistically significant difference between the strains at the anterior
rochanteric area was found. The coefficient of variation for measured
strains in QS and IM ranged between 50%-144% and 83%-175%
respectively. This high wariability was because the specific strain
measured by each gauge depended on the pattern of crack propagation
around it, and the specific geomety and BMD characteristic of that
bene, which makes developing a generalized strain curve challenging.
Therefore, the strain data would be more beneficial for developing and
validating subject-specific FE models.

The strain rates immediately prior to the fracture in the IM group
ranged from 0.05 to 38 5~ '. Having strain rates above 10 5! (10,000
pe,/ms) indicated that in the sideways fall configuration both viscoelastic
and hydraulic effects contributed to the strength of the bone (Linde
et al., 1991), and this should be an important consideration for the
further numerieal simulations in the appropriate context.

Other previous studies have examined the effect of displacement rate
on femoral fracture load, with conflicting results. In one previous study
(Courmey et al., 1994), an increase in fracture force was cbserved
(Table 4), which agrees with the present results; howewver, it should be
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noted that this study was limited to rates of up to 100 mm/s. In another
previous study (Gilchrist et al., 2014), speeds up to 3 m/s were tested
and compared with two QS rates of 100 mm/s and 2 mm/s, and their
results showed that the yield forces in the IM group were significantly
lower than QS group with the rate of 100 mm/s. However, there was no
significant difference between the IM group and the 05 group with the
rate of 2 mm/s. These differences may be attributed to the use of un-
paired specimens, and potentially BMD and geometric factors domi-
nating the results as discussed in that study as well. In the last study
(Askarinejad et al., 2019), despite having two pairs in their specimens
(out of ten femurs), and although the IM fracture loads tended to be
higher than Q5 ones, no significant differences were observed between
the fracture loads in the twe conditions, which may be attributable to a
lack of statistical power (Table 4).

One of the limitations of the eurrent study was that for the impact
condition the loading was applied herizontally (z direction) due to the
design of the pneumatic impact device, requiring the vertical degree of
freedom (y direction) to be constrained against gravity. This is the one
boundary condition that differed from the QS setup, where both in plane
(x,¥) linear degrees of freedom were unconstrained. It is possible that
thiz additional constraint increased the reaction force; however, no
substantial movement was observed in the anterior-peosterior direction
during QS tests, thus suggesting that any such effect was likely relatively
minor. The limited number of specimens (16} was another limitation of
this study; however, similar studies in our lab (Chakravarty et al., 2017;
Martinez et al., 2018) with six pairs of samples have shown that using
the paired specimens greatly reduces the variabilities berween the two
groups and can detect the changes of interest properly.

This study is unique in that it related the structural behavier and
fracture limits of the proximal femur in the Q5 displacement rate (as
used in the validation of many previous studies assessing hip fracture
risk) and the impact one (as happens in reality). It is the first study to the
authors” knowledge that directly compares the results of ex-vivo side-
‘ways fall destruetive tests using only paired specimens for two relevant
scenarios of quasi-static and impaect displacement rates, which slimi-
nates many potentially confounding factors such as BMD and geometry
when using unpaired samples. Also, extrapolating results from other
studies with less than 12% error showed that meaningful predictions for
the impact scenario can be made based on the quasi-static tests. This
study will provide important information that can be used for future
studies evaluating clinical factors related to fracture risk.
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CHAPTER 3 - Enhancing Hip Fracture Risk Prediction by

Statistical Modeling and Texture Analysis on DXA Images

Overview: In this chapter, 2D SSAM and texture analysis were
applied to the DXA scans of the cadaveric femurs to investigate whether
these techniques can improve the hip fracture risk estimation to assess
Obijective 2. This chapter has been published in the Journal of Medical
Engineering and Physics (2020, V78, Pages 14-20, DOI:
10.1016/j.medengphy.2020.01.015). The proper permission from the
copyright holder (Elsevier Ltd.) has been obtained to include the article in

this thesis.
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Each year in the US more than 300,000 older adults suffer from hip fractures. While protective measures
exist, identification of those at greatest risk by DXA scanning has proved inadequate. This study proposed
a new technique to enhance hip fracture risk prediction by accounting for many contributing factors to
the strength of the proximal femur.

Twenty-two isolated cadaveric femurs were DXA scanned, 16 of which had been mechanically tested to
failure. A function consisting of the calculated modes from the statistical shape and appearance modeling
(to consider the shape and BMD distribution), homogeneity index (representing trabecular quality), BMD,
age and sex of the donor was created in a training set and used to predict the fracture load in a test
group. To classify patients as “high risk” or “low risk”, fracture load thresholds were investigated.

Hip fracture load estimation was significantly enhanced using the new technique in comparison to using
t-score or BMD alone (average R® of 0.68, 0.32, and 0.50, respectively) (P = 0.05). Using a fracture cut-off
of 3400 N correctly predicted risk in 94% of specimens, a substantial improvement over t-score classifica-
tion (38%). Ultimately, by identifying patients at high risk more accurately, devastating hip fractures can
be prevented through applying protective measures.

© 2020 [PEM. Published by Elsevier Ltd. All rights reserved.

1. Introduction

Osteoporosis is a disease that is characterized by a reduction
in bone density, resulting in an increased risk of fragility fractures.
The incidence of osteoporosis is likely to grow drastically in the
coming years due to the aging population. Hip fractures have a
significant impact on mobility and function, and they are not only
associated with pain and reduced quality of life for the patients,
but also are responsible for high health care costs [1]. As such, it
is crucial to prevent these fractures through early diagnosis and
by implementing preventive measures such as hip protectors and
pharmaceurtical interventions.

In clinical practice, diagnosis of osteoporosis and correspond-
ingly hip fracture risk is done based on the assessment of Bone
Mineral Density (BMD) using a Dual Energy X-ray Absorptiometry
(DXA) scan [2,3]. However, studies suggest that BMD measurement
alone is not sufficient to predict an impending hip fracture [3-5],
and there is a substantial overlap between the BMD of patients
who have suffered a hip fracture and those who have not [6]. Nu-

* Corresponding author at: Department of Mechanical Engineering, McMaster
University, 1280 Main St. West, Hamilton, Ontario L85 418, Canada.
E-mail address: quennev@mcmaster.ca (CE Quenneville).
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merical tools such as Finite Element Analysis (FEA) and hip struc-
tural analysis have been increasingly used to enhance the predic-
tion of fracture risk in the femur [7-10]. Studies have shown that
3D Quantitative Compurted Tomography (QCT-based, and Magnetic
Resonance Imaging (MRI)-guided subject-specific FEA predictions
of the proximal femur fracture loads were highly correlated with
the measured ones [10-14]; however, due to the cost, high dose of
radiation, and inaccessibility, clinical implementation of CT-based
FEA is disputed and it is likely that DXA scans will remain as the
primary imaging technique in osteoporosis clinics [5]. Therefore, to
find more accessible methods that would be compatible with the
current clinical gold standard, image processing techniques have
recently been used to extract more information from DXA images.

In some recent studies, the effects of trabecular network quality
[15-17], geometry [18-20], and BMD distribution [21,22] on the
strength of the femur have been investigated. Texture analysis has
been used as an indirect measurement of trabecular quality in
medical images [23-25]. Due to the complex structure of femurs,
characterizing the effect of geometry and BMD distribution on
bone fracture risk estimation is complicated. Statistical Shape
and Appearance Modeling (SSAM) is an image processing tech-
nique that uses Principal Component Analysis (PCA) to reduce
dimensionality of contributing variables and has been used to
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either create a 3D FE model of a bone [26] or predict fracture risk
based on the calculated eigenvalues, also known as modes [27,28].
Studies have also shown that in addition to the known mechanical
and marerial factors, age and sex also play an important role in
the probability of sustaining a hip fracture [29,30].

To the best knowledge of the authors, no study has considered
all contributing factors together to predict the strength and con-
sequently the fracture risk of an individual’s proximal femur. The
goals of the present study were to (1) construct a 2D S5AM of the
proximal femur based on a training set of DXA scans and evaluate
its accuracy in reconstructing the shape and BMD distribution
of femurs in a test group, and (2) use the model to predict the
fracture load for each femur in the test group and compare it o
the measured one from previous experimental tests.

2. Materials and methods

This research was approved by the Hamilton Integrated Re-
search Ethics Board (HiREB). Twenty-two (22) fresh-frozen human
cadaveric femurs (eight male and 14 female, 68.5 + 13.4 years old)
were cleaned of all soft tissues and scanned with a Hologic DXA
scanner (Hologic Discovery A, Hologic, Inc., MA, USA). A water
container filled with 15 cm of water was placed over the bone
to represent the x-ray attenuation by the soft tissue [31]. Of the
22 femurs, 16 had been tested experimentally to failure under
quasi-static conditions simulating a sideways fall [32]. The other
six femurs were used for a separate study, and therefore only their
scans were available for the current work.

2.1. Making the SSAM

To describe the shape and BMD distribution of the proximal
femur numerically, fourteen DXA scans were chosen to create
a training set, which was used to build an average model, also
known as the template model, using MATLAB (R2017b, The
MathWorks, Inc, MA, USA). For each subsequent DXA scan, the
shape and BMD distribution would then be described based on
its variation from the template model (Fig. 2). The training set
consisted of eight of the experimentally tested femurs scans
(randomly selected) and the six non-tested scans (N = 14). To
create the template model, a series of anaromical and geometrical
landmarks (Fig. 1) on the perimeter of the bone were assigned
to each of the scans in the training set. Procrustes Analysis (PA)
was used to align the data and remove any effect of translation,
rotation, and scaling. The first shape in the training set was used
as the reference shape and all other shapes were superimposed to
the reference image by (1) translating the center (average of the
landmarks) of the shape to the center of the reference shape, (2)
scaling the shape so that the root mean square distance (RMSD) of
the landmarks from the center of the translated shape was equal
to the RMSD of the reference shape, and (3) rotating the shape
so that the difference between the shape’s landmarks and the
landmarks in the reference shape was minimized. The average of
each landmark location across the training set was then calcularted
and used as the mean model. Next, the (x), and (y) coordinates of
all landmarks for all DXA scans in the training set were gathered
into a matrix and PCA was applied to find the main variations in
describing the geometry of the femur.

To find the main variations in BMD distribution, each shape in
the training set was warped to the mean model through mapping
its landmarks to the mean shape's landmarks. For each warped
image, the intensity of the pixels inside the femur's geometry was
obtained and normalized to the average and the standard deviation
of all pixels for that individual's scan. The average of the normal-
ized BMD values across the training set was calculated as the mean
BMD distribution model, and then PCA was applied on the matrix
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Fig. 1. The location of the landmarks and region of interest (o calculate HI), nine-
teen landmarks were used, some of which were anatomical (Landmark 1, 2, 4, 6, 8,
10, 12, 14, 16, 18, and 19) and the rest were geometrical (locating at the mid-point
of two anatomical landmarks).

containing all normalized pixel intensity vectors in the training set
to find the main variations in describing the BMD distribution.

To combine the geometry and the BMD distribution models,
the geometry and BMD distribution eigenvalues for the femurs in
the training set were put together in a matrix and the average for
each mode (eigenvalue) was calculated (average of modes), and
subsequently, PCA was applied to the matrix of modes to find the
eigenvectors in the combined model.

Homogeneity Index (HI) was used to analyze the trabecular
quality in the proximal femurs. The details about the texture anal-
ysis and calculating HI can be found in the works of Thevenot et al.
[23,25]. The principal compression system, located at the femoral
neck (Fig. 1), was used as the Region of Interest (ROI) due to its
vulnerability in the sideways fall condition. After selecting the ROI
of 100 x 100 pixels, the noise was removed from the image by
median filtering and it was rotated to the main orientation of the
trabecula. To obtain the Gray Level Co-occurrence Matrix (GLCM),
a representation of the co-occurred grayscale values at a certain
direction and offset, first the Laplacian of the image perpendicular
to the main orientation of the trabecular was calculated, and then
the GLCM in the same direction was determined. At the end, the
HI was assessed from the GLCM matrix.

2.2. Method evaluation

Each new DXA image was described based on the template
model plus any variation from it based on the specific eigenvalues
of that scan. To do so, first, the same landmarks were assigned to
the femur's shape in the DXA scan. Landmarks were aligned with
the mean geometry model using PA, and then the femur shape
was warped to the template shape and pixel intensities from the
warped model were obtained and normalized. The template model
was then changed by its mode to match the new image, and by
minimizing the difference between the adjusted template model
and the landmark locations in the new image. In the next step, the
BMD distribution template model was changed to match the BMD
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Fig. 2. Flowchart of creating the template model from the training set and adjusting it to describe a new shape in the test group, LM: Landmarks, PA: Procrustes Analysis,

PCA: Principal Component Analysis.
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I
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(14 femurs)
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(8 femurs)

Fig. 3. Flowchart showing training set and test group selection.

map of the image and the BMD modes were calculated. The com-
puted geometry and BMD modes were gathered in a new vector,
and the average combined modes were changed to martch the new
input and the modes for the combined model were determined.

Of the 14 femurs in the training set, only eight of them had
fracture force data available and as such this subset was used to
determine the coefficients combining the various factors (modes,
BMD, HI, age, and sex) through optimization to minimize the
difference between the predicted and measured fracture load.
After finding the coefficients, the function was used to predict the
fracture load in the test group (N = 8).

Due to the small number of specimens in the present study, ten
training sets were created to make sure that the bones selected
in the training set would not affect the results. Each training set
consisted of eight randomly selected DXA scans from the “16
mechanically tested group”, plus all six DXA scans from the group
with only their DXA scans available. The remaining eight femurs
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were then assigned to the test group, and their fracture loads
were predicted based on the previously described method (Fig. 3).
Also, in each test group, the standard clinical metric of toral BMD
was plotted against the experimental fracture load to create a
baseline for comparison with the new method's predictions. The
coefficient of determination (R?) was calculated for each of these
methods (new technique and BMD vs. the measured fracture load)
over the ten test groups, and a student t-test at a significant level
of & = 0.05 was used to identify any differences between them.

In order to be used as a discriminating tool to classify patients
as “high risk” or “low risk”, two fracture thresholds were tested,
at 3000 N and 3400 N. For each specimen, the predicted fracture
forces from all test groups were averaged (to minimize the effect
of training set selection) and then assigned accordingly. This clas-
sification was also performed using the experimentally-measured
fracture forces as well as t-score (where —2.5 was used as the
threshold).



Ph.D. Thesis — F. Jazinizadeh

F. Jazinizadeh and CE. Quenneville/Medical Engineering and Physics 78 (2020) 14-20

Table 1
Specimen characteristics.
Specimen Sex Age EMD T-score Fracture
number (Mg/cm?) load (N)
1 F 57 933 -0.1 3368
2 F 69 780 -13 2635
3 F 65 953 01 2300
4 F 70 821 -1.0 3114
5 M 61 789 -1.6 2920
6 F 53 857 —0.7 3310
7 M 67 919 -0.8 4582
8 F 73 844 —0.8 2744
9 M 70 110 04 4584
10 M 72 808 -0.9 2703
11 M 47 989 -0.3 4384
12 F 61 724 -1.8 3279
13 M 44 868 —11 4433
14 M 70 965 —0.5 3403
15 F 70 661 -21 2258
16 M 62 1026 01 4731
17 F a4 544 —33 NIA
18 F 80 680 -21 NA
19 F 76 550 -31 N/A
20 F o9 627 —2.6 NfA
21 F 85 684 -2.1 NIA
22 F 61 745 -1.6 NIA
38D Mean Model -3SD

(b)

Fig. 4. Demonstration of the first geometry modes (on the top), and BMD distribu-
tion (on the bottom).

3. Results

The average BMD value and fracture loads for the 16 mechan-
ically tested femurs were 884 + 114 mg/cm? and 3427 + 846 N
(Table 1). The average BMD value for the eight non-tested femurs
was 639 + 78 mg/cm? The correlation of determination between
the measured fracture loads and BMD and age were R? = 0.42 and
R? = 0.20, respectively.

Eleven (11) modes of variation were identified to account for
more than 95% of variations in describing shape and BMD distribu-
tion of the proximal femur, and the first three modes were respon-
sible for more than 60% of the variations. The first mode of ge-
ometry described the variations in both the length of the femoral
neck as well as its angle with the shaft (Fig. 4a). The first mode
for the BMD distribution was responsible for describing how much
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Fig. 5. The relationship between BMD and predicted fracture loads with the mea-
sured ones from the experimental test for a representative test group, where circles
show the new technique's predictions and triangles show the BMD-based predic-
tions.

BMD was distributed centrally vs. near the borders of the proximal
femur in the neck, trochanteric and subtrochanteric areas (Fig. 4b).

The errors in reconstruction of the proximal femur shape and
BMD distribution (which was measured from the gray value of
each pixel) showed an average of 4.25 mm and 0.12% in the gray
value, respectively. The lowest error in geometric reconstruction
was associated with the geometry of the femoral neck, while the
highest error was found in the femoral head and subtrochanteric
areas (range: 2.22-6.69 mm). The calculated HI for all specimens
ranged between 0.72 and 0.82, with an average of 0.78.

The predicted fracture loads correlated well with the ex-
perimental ones (Fig. 5). Depending on which specimens were
included in the training set, this achieved an average R? of 0.68
(range: 0.55-0.82). In all but one of the training sets, this was su-
perior to the R2 from BMD measurements alone (average of 0.50,
range: 0.21-0.71, p = 0.01). Comparing the results with the t-score,
in all groups, the predictions from the new method were better
correlated than the t-score (average R? of 0.32, range: 0.01-0.55).

When the femurs were classified into two groups of high and
low fracture risk, with a 3000 N cut-off value, both the new
technique and the clinical standard (threshold t-score of —2.5)
were able to “correctly” classify fracture risks with 62.5% accuracy
(verified using the experimental fracture force data). However,
when examining the specimens that were incorrectly classified,
fracture risk underestimation (where a patient at high risk is
incorrectly classified as low risk), occurred in 38% of the clinical
standard technigue, versus only 19% in the new technique.

Using 3400 N value as the cut-off point led to 94% accuracy
in classification of the fracture risk by the new technique, with
0% overestimation and 6% underestimation of the fracture risk,
whereas the t-score yielded only 37.5% accuracy in classifica-
tion of fracture risk (0% fracture risk overestimation and 62.5%
underestimation, Fig. 6).

4. Discussion

Research has shown that the strength of the proximal femur'
depends on its shape [33,34], BMD distribution [35], trabecular
quality [24], age [36], and sex [29], while the clinical gold standard
to estimate fracture risk in older adults only relies on the average
measurement of BMD in the proximal femur. As shown in the
current study this can cause an error in misidentifying these vul-
nerable patients at high risk, and more comprehensive techniques
are required to better identify patients most in need of protective
interventions. To the best of the authors’ knowledge, this is the
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Fig. 6. Comparison of the new method and currently used method in clinical practice in their ability to predict the impending fracture based on the suggested cut-off value
of 3000 N (a), and 3400 N (b), fracture risk overestimation refers to treating a patient at low risk of fracture and fracture risk underestimation refers to missing a patient at

a high risk.

first study that considers the role of all these contributing factors
in fracture risk prediction from a single DXA scan.

The results of this study suggested that by using the new
technique both hip fracture load and fracture risk prediction were
improved compared to using BMD wvalue and the t-score alone,
which was expected due to considering more contributing factors
that have an effect on proximal femurs strength. It is worth noting
thart all these contributing factors were used in a function to esti-
mate the fracture load. So, in the analysis of the results (measured
fracture loads vs. estimated fracture loads, and BMD vs. measured
fracture load graphs) only linear regression analysis was used and
not multiple regression analysis (due to having only one predictor).

For describing the shape and BMD distribution of the proxi-
mal femur based on the template model, 95% of the variations
were accounted for by having 11 modes. To account for 99% of
variations, two more modes would be required, and the results
from adding these two modes to the group one analysis did not
improve the errors in BMD distribution and shape by more than
5%. So, accounting for 95% of variations was considered sufficient
and was used for the rest of the analysis.

To ensure the inclusion of most of the population variations
in the proximal femur's features in the template model, the size
of the training set should be big enough. This number in similar
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previous studies has been between 34 and 111 [26,37]. In the
present study, the size of the training set was 22; however, even
with the limired training ser, significant improvement was found,
and better performance is anticipated in the future by increasing
the training set.

To decrease the influence of the femurs selected for the train-
ing set, ten different training sets were created by randomly
choosing from the tested specimens. This approach was used to
address the limited size of the training set and to investigate how
much variation in the predictions might happen in case of using
different template models. It should be noted that six of the scans
were constant in all of the training sets, which may have skewed
the darta in either a positive or negative way.

On average the fracture load of each experimentally-tested
specimen was predicted five times (across the ten training sets).
The standard deviation of the predictions for each femur ranged
from 54 to 333 N, with an average of 183 N. Considering that the
average measured fracture load was 3427 N, this corresponds to a
5% coefficient of variation. This suggests that the predicted forces
were relatively insensitive to the scans used in the training set. In
the only group where the R? of the new method predictions was
slightly less than the BMD prediction (R? = 0.55 vs. R2 = 0.59),
the specimens in the training set were from a generally weaker
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population. This could have led to a non uniformly distributed
training set and affected both the template model and the frac-
ture load prediction function. Moving forward, having a big and
comprehensive training set will minimize these effects.

In the predicted vs. measured fracture loads graphs, for the new
technique, the average slope and intercept of the linear regression
line were 1.06 + 0.20 and 512 + 307 across the ten groups. These
values in the BMD vs. measured fracture load graphs were much
higher (5.29 + 0.75, and 1265 + 667 respectively). A slope of
one in the linear regression means that the predictions are a
close representation of reality and any changes in the measured
fracture loads will be appropriately reflected in the predicted
ones; however, the average intercept of 512 N indicated that
there was a systematic error in the new technique that should be
addressed.

When assessing a patient, predicting the exact fracture load is
likely not as important to a clinician as classifying their fracture
risk properly into high and low levels. For this reason, two cut-off
values of 3000 N [38] and 3400 N (selected in the present study to
investigate an alternate threshold) were used as potential criteria
to draw a line between high and low fracture risk. The results
showed that when using 3000 N as the cut-off value, the new
technique and the clinical practice gold standard of using the
t-score of —2.5 predicted the fracture risk with the same accuracy.
However, the rate of fracture risk underestimation was higher
in the clinical method than the new technique. Underestimation,
which falsely classifies a patient as being safe from sustaining
a fracture, is a bigger health threat than overestimation, and in
this study, all of the high fracture risk specimens were misdiag-
nosed when using the t-score index (37.5% of the all predictions),
whereas the new technique reduced this error to 19%. This agrees
with other studies that have indicated that a majority of hip frac-
tures occur in people with non-osteoporotic DXA scans [39-41].
Still, having 19% fracture risk underestimation means that one in
five patients will be missed, so there remains room for improve-
ment to reduce the rate of hip fractures through early diagnosis.

When using a new cut-off limit (3400 N), the number of ac-
curate hip fracture risk assessments was as high as 94% with only
one misdiagnosis in 16 cases, whereas using t-score suggested that
10 of the subjects were safe while they were actually at high risk
of fracture (62.5% of all predictions). This illustrates the sensitivity
of classification methods to the thresholds selected; however, in
both cases (3000 N and 3400 N thresholds) the rate of fracture
risk underestimation was much lower by using the new technique.
To determine the optimal limit for fracture risk classification more
studies should be conducted on a larger cohort.

This study had some limitations; first, the number of specimens
used to build the training set (14 femurs), and test the prediction
(eight femurs), was limited; however, by creating ten groups and
comparing and averaging the results among them, the influence of
specimens used in the training set was reduced. Another limitation
of this study was the use of Hologic DXA scans for calculating
the HI Since the DXA scan file from a Hologic scanner does not
provide a separate digital image to be used by other software, the
images had to be opened by the Hologic software (Hologic APEX
v3.4.2. Hologic, Inc., MA, USA) and then the image on the screen
was saved and used for further analysis. Therefore, preparing the
Hologic scans for processing induced some noise that could have
been prevented. In the end, the present work was an ex-vivo
study, and many contributing factors to a real-life fracture (e.g.,
trochanteric soft tissue thickness, lifestyle, weight, height, and etc.)
were not included. Also, due to the inter and intra technician's
inconsistency and variability in patient positioning, DXA scanning
of real patients is associated with more sources of errors. Future
steps are planned to investigate the capability of this technique to
estimate hip fracture risk involving real parients.
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In this research, a novel technique to include many of the con-
tributing factors to the proximal femurs' integrity in the estimation
of the hip fracture risk was presented and the preliminary results
were evaluated by comparing results to the ex-vivo mechanical
tests on the human cadaveric femur. The results indicated that a
significant improvement can be made in fracture risk prediction
based on the proposed technique, which could decrease the hip
fracture rate through early diagnosis and interventions for the
most vulnerable in the population.
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CHAPTER 4 - Advanced 2D Image Processing Technique to Predict
Hip Fracture Risk in an Older Population Based on Single DXA

Scans

Overview: To assess Objective 3, 2D SSAM was applied on the DXA
scans of a group of subjects from the Canadian Multicentre Osteoporosis
Study, that were monitored for at least five years with their fracture history
available. This chapter has been published in the Osteoporosis
International (2020, DOI: 10.1007/s00198-020-05444-7). the proper
permission from the copyright holder (Springer Nature) has been obtained

to include the article in this thesis.
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Abstract

Summary A new technique to enhance hip fracture risk prediction in older adults was presented and assessed. The new method
dramatically improved prediction at high specificity levels using only a standard clinical diagnostic scan. This has the potential to
be implemented in clinical practice to enhance patient fragility diagnosis.

Introduction Diagnosis of osteoporosis is based on the measurement of bone mineral density (BMD) using dual-energy X-ray
absorptiometry (DXA) scans. However, studies have shown this to be insufficient to accurately predict hip fractures. Therefore,
complementary methods are needed to enhance hip fracture risk prediction to identify vulnerable patients.

Methods Hip DXA scans were obtained for 192 subjects from the Canadian Multicenter Osteoporosis Study (CaMos), 50 of
whom had experienced a hip fracture within 5 years of the scan. 2D statistical shape and appearance modeling was performed to
account for the effect of the femur’s geometry and BMD distribution on hip fracture risk. Statistical shape modeling (SSM), and
statistical appearance modeling (SAM) were also used separately to predict the fracture risk based solely on the femur’s geometry
and BMD distribution, respectively. Combined with BMD, age, and body mass index (BMI), logistic regression was performed
to estimate the fracture risk over the 5-year period.

Results Using the new technique, hip fractures were comrectly predicted in 78% of cases compared with 36% when using the T-
score. The accuracy of the prediction was not greatly reduced when using SSM and SAM (78% and 74% correct, respectively).
Various geometric and BMD distribution traits were identified in the fractured and non-fractured groups.

Conclusion 2D SSAM can dramatically improve hip fracture prediction at high specificity levels and estimate the year of the
impending fracture using standard clinical images. This has the potential to be implemented in clinical practice to estimate hip
fracture risk.

Keywords DXA scan - Hip fracture risk - Image processing - Statistical shape and appearance modeling

Introduction osteoporotic fractures is growing. A previous study has shown
that osteoporotic fractures occur more frequently than heart

Osteoporosis is a disease in older adults that is characterized  attacks and strokes combined in the USA [2]. These fractures
by a reduction in bone density and is associated with fragility  can cause disabilities, mortality, and significant healthcare ex-
fractures [1]. With the aging population, the occurrence of  penses [3-5]. It is estimated that one in three women and one
in 12 men will suffer froma hip fracture in their lifetime [6, 7],
and more than 86% ofthese fractures occur in patients aged 65
B4 C.E. Quenneville or older [4]. Hip fractures in older adults severely affect their
quennev @memaster.ca mobility, and often reduce independent living, with studies
showing that these patients have an elevated risk of admission
toassisted living facilities [8]. In addition, there is an increased
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the primary diagnosis of osteoporosis relies on the measure-
ment of the bone mineral density (BMD) derived from a dual-
energy X-ray absorptiometry (DXA) scan [10]. The measured
BMD is normalized to the mean and standard deviation of the
BMD in a young adult reference population to calculate the T-
score, and based on the World Health Organization (WHO), a
patient with a T-score of — 2.5 at the hip or spine is considered
to suffer from osteoporosis [11].

Some studies have shown that using DXA scans alone is
not sufficient in identifying all patients at risk of a hip fracture,
and a large proportion of hip fractures occurs in women with a
non-osteoporotic diagnosis based on a DXA scan [12, 13].
Therefore, it’s crucial to search for complementary methods
to enhance hip fracture risk prediction to identify vulnerable
patients.

In addition to the DXA scan, which is an indirect measure-
ment of bone’s mechanical properties, numerous other factors
have also been identified to have an effect on the patient’s
fracture risk. These factors (e.g., age, sex, body mass index,
history of fracture, smoking, etc.) have been grouped in a
widely adapted algorithm known as fracture risk assessment
tool (FRAX) [14]. FRAX provides an indication of a person’s
10-year risk of fracture probability, with the probability of a
major osteoporotic fracture more than 20% considered to be
high risk and hence phammacologic treatment being required
[11]. However, studies have shown that FRAX ability to dis-
criminate between women who sustained a major osteoporotic
fracture and who did not is suboptimal [15].

Statistical models have been widely used to numerically
describe the shape and the pattern of BMD distribution in
various bones through reducing the dimensionality of the var-
1ables by principal component analysis (PCA) [16-18]. Some
studies have used statistical models for the proximal femur to
investigate the relationship between these variables (called
modes or weighting factors) and hip fracture risk by either
estimating the fracture load in a cadaveric study [19] or inves-
tigating the occurrence of fractures in a patient study [20, 21].
In most of these studies, a 3D template model was built by
averaging the models created from the medical images in a
training set, and then the characteristics (shape and BMD dis-
tribution) of a new femur from a DXA scan were described
based on their variations from the template model. The results
of these studies that have implemented 3D statistical modeling
suggest that using this technique can improve hip fracture risk
prediction. However, while having the 3D model might be a
necessity to perform further investigations like 3D finite cle-
ment analysis (FEA), it's not clear whether 3D statistical
models are needed to just explore the association of the modes
(weighting factors) with the fracture risk since 2D statistical
models can extract similar information from the DXA scan
with fewer resources. Also, a previous cadaveric study has
shown that 2D statistical shape and appearance modeling
(SSAM) can noticeably enhance both the femur’s strength
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estimation and hip fracture risk prediction compared with
the traditional BMD and T-score measurements [22]. In addi-
tion to statistical models, texture analysis, e.g., trabecular bone
score (TBS) and homogeneity index (HI), which is an indirect
measurement of the trabecula quality in microstrutcture level
(trabecular thickness, trabecular spacing, trabecular number,
and connectivity) is also another useful method that can be
used to enhance hip fracture risk prediction independant of the
femur’s geometry and BMD distribution [23, 24].

In developing 2D statistical models, the only required sys-
tem input is the hip DXA scan, while to create 3D statistical
models, magnetic resonance imaging (MRI) or computed to-
mography (CT) scans of the proximal femur are needed to
create the template model. Considering that the DXA scans
are much more accessible, less expensive, and part of routine
osteoporosis assessment, expanding the training set (to in-
clude more geometry and BMD distribution features in a pop-
ulation) in the 2D statistical models can be more attainable.

Furthermore, it is not yet well understood how a femur’s
geometry and its BMD distribution contribute to the predicted
fracture risk. Therefore, looking separately at the capacity of
cach of these factors through statistical shape modeling (SSM)
and statistical appearance modeling (SAM), in addition to
statistical shape and appearance modeling (SSAM) can lead
to valuable findings. This information can direct future studies
and clinical implementation paths in the enhancement of hip
fracture risk estimation in older adults.

Therefore, the aims ofthe present study were to (1) develop
a 2D statistical model of the femur from climcal DXA scans,
(2) investigate if there is a significant difference between dif-
ferent modes of variation in fractured and non-fractured
groups, and (3) predict and compare the fracture risk for the
patients based on the femur’s geometry (SSM), BMD distri-
bution (SAM), and geometry and BMD distribution together
(SSAM).

Methods
Study population

The Canadian Multicentre Osteoporosis Study (CaMos) is a
large prospective study investigating the relationship between
the risk factors for osteoporosis and osteoporosis fragility frac-
tures in the Canadian population. It encompasses more than
9400 subjects in nine centers across Canada. All subjects at
the baseline had a lumbar spine and hip DXA scan and re-
ceived a follow-up questionnaire annually. The subjects also
had repeated scans in years 3, 5, 10 and 16. The self-report of
any fragility fractures was confirmed with medical reports.
For the present study, 50 subjects (37 women, 78 £8 years
old, and 13 men, 79+ 6 years old), who sustained a hip frac-
ture and 142 subjects (60 women 67+9 years old, and 82
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men, 67 £ 10 years old) who did not sustain a hip fracture in a
S-year period after the baseline, were randomly chosen from
the participants who had a hip DXA scanat the baseline with a
Hologic DXA scanner (Hologic, Inc., Marlborough, MA).
The non-fractured group was chosen from the subset popula-
tion that was not taking any osteoporosis medications [10]:
however, most of the subjects in the fractured group were
taking at least one type of medication.

Image processing

Each hip DXA scan was examined using the three following
methods: SAM, SSM, and SSAM. The main algorithm has been
previously discussed [22] but will be briefly described here.

A series of landmarks were assigned to cach DXA scan on
the contour of the femur. By averaging the coordinates of the
landmarks across the training set, a template geometry model
was created, and then by applying principal component anal-
ysis (PCA), the main modes of variation in geometry were
calculated (SSM model). Next, each femur’s geometry was
warped to the template shape, and pixels value were read,
normalized, and gathered in a matrix. The average value of
cach pixel was calculated to create the BMD distribution tem-
plate model, and then by performing PCA on the matrix con-
taining the pixels’ intensities, the main modes of variation in
describing the BMD distribution were obtained (SAM model).
Subsequently, geometry and BMD distribution models were
combined to build the combined shape and appearance model
(SSAM). To compute the weight of each mode of variation for
cach new scan, the same landmarks were assigned to the DXA
scan, and then the shape of the femur was warped to the
template shape to read the pixels” value. Next, through an
optimization procedure to minimize the differences between
the estimated geometry and BMD distribution with the actual
DXA scan, the weights of the main modes of variation were
calculated.

Fracture risk estimation

The leave one out cross-validation method was used in this
study to maximize the number of DXA scans in the training
set. Therefore, to evaluate each scan, the other 191 scans were
used in the training set, and then the weights of the variation
modes were calculated for the scan of interest.

Logistic regression analysis was used to find the probabil-
ity of sustaining a fracture based on the weights of the varia-
tion modes from SSAM, BMD, FRAX, body mass index
(BMI), sex, and patients’ age. The subjects with more than
50% probability of fracture were assigned to the fractured or
high-risk group and the rest were assigned to the non-fractured
or low-risk group.

In addition to the SSAM, weight of variation modes from
SSM (considering only geometry of the femur) and SAM

(considering only BMD distribution of the femur) were used
separately combined with other variables (BMD, BMI, age,
sex) to investigate their ability to predict fractures in the sub-
jects as well. Similar to SSAM, the logistic regression was
used to predict the fracture risk, and based on the threshold
of 50%, subjects were classified in the high- and low-risk
groups. These predictions were then compared with the con-
firmed fractures based on the patients” history.

Also, to investigate the possibility of estimating the year of
the fracture, all subjects were classified into three groups de-
pending on the year and occurrence of the fracture, where the
subjects who sustained a fracture in less than 2 years were
assigned to class one, subjects who sustained a fracture be-
tween three and 5 years were assigned to group two, and
subjects who did not sustain a fracture in a 5-year period were
assigned to class three. For each class, the mean and the stan-
dard deviation of the estimated fracture risk (probability of
fracture) from combined SSAM were calculated and
compared.

A receiver operating characteristic (ROC) curve was gen-
erated to plot the rate of true positive prediction against false
positive ones at various threshold settings. Therefore, this
curve was used to visualize the sensitivity of each method
(total hip BMD, total hip T-score, FRAX, SSAM, SSM,
SAM) to its specificity. The area under the ROC curve, which
illustrates the diagnostic power of each predictor as a scale of
0-1, was used to evaluate the ability of the various methods to
classify patients into high and low risk.

To identify the distinctive features in geometry and BMD
distribution between the fractured and non-fractured groups,
SSAM was applied to all of the DXA scans (all 192 subjects in
the training set). Subsequently, the differences between the
weight of variation modes in the two groups were identified
using a student t test at a significance level of a=0.05. The
average shape and BMD distribution of the femur in the frac-
tured and non-fractured groups were also investigated for
male and female subjects. The neck-shaft angle in the shape
image was measured five times in each image (fractured and
non-fracture, male and female) and then averaged to account
for the repeatability error.

Results

Twenty-six modes of variation were needed to account for
more than 95% of the variations in describing the shape and
BMD distribution of femurs from the DXA scans. Modes one
and two alone were responsible for more than 69% of the
variations (Fig. 1). Comparing the modes between the frac-
tured and non-fractured cases indicated that there was a sig-
nificant difference between some of the modes (Table 1), and
some features such as femoral neck-shaft angle, the outer di-
ameter of the femur at the femoral neck, trochanter and shaft,
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Fig. 1 The percentage of the variances explained by the ber of

SSAM modes used in the analysis; using 20 modes accounted for more

varability in 35M than SAM or S5AM

cortical bone thickness, and BMD concentration in the tro-
chanteric area had a noticeable impact on the vulnerability/
strength of the bones (Figs. 2 and 3). The average femoral
neck-shaft angle in the fractured and non-fractured groups in
female were 130.0° £0.8° and 129.0° £ 1.0°, and in the male
were 129.3°£1.0° and 128.3°£0.6°, respectively. The fe-
murs in the non-fractured group tended to have a smaller outer
diameter, thicker cortical bone in the shaft, and more BMD
concentration in the trochanteric area than the fractured group.

FRAX data was only available for 175 subjects, with an
average score of 18.95% + 10.62% for the fractured group and
6.79% £ 3.98% for the non-fractured group. Using various
predictors to estimate the hip fracture risk over a 5-year period
showed that using combined statistical models (modes from
SSAM, BMD, BMI, age, and sex) could improve the identi-
fication of the people who are at the highest risk of sustaining
a hip fracture by 42% compared with using the T-score alone,
and 46% compared with the FRAX (Table 2). Out of the 50
cases of fracture, the T-score of — 2.5 as the gold standard of
clinical practice was able to correctly identify 18 (36%) frac-
ture cases, and FRAX cormrectly identified 16 (32%) fracture
cases, whereas, FRAX combined with SSAM and BMD

Table 1

correctly identified 37 (74%) fracture cases, and combined
SSAM was able to correctly identify 39 (78%) cases.
Among the variables, sex and BMI did not have much of an
effect on the number of comect predictions, even when the
male and female subjects were investigated separately.
However, considering the age of the patients increased the
number of correct predictions by three cases (6%). The esti-
mated probabilities of the fracture using combined SSAM for
classes one to three were 0.82£0.21, 0.70£ 042, and 0.10 £
0.22, respectively.

Predictions of combined statistical shape models (SSM)
and combined statistical appearance models (SAM) were also
nvestigated in comparison with the combined statistical shape
and appearance models (SSAM), and the results showed that
using statistical shape models resulted in an approximately
similar number of correct predictions (171 in SSM vs 173
and 169 in SSAM and SAM), with combined SSM correctly
identifying 39 (78%) cases of the fractured group, the same as
combined SSAM.

The area under the ROC curve (Fig. 4) was calculated as
0.92, 0.93, 0.91, 0.88, 0.89, and 0.90 for the SSAM, SSM,
SAM, BMD, T-score, and the FRAX, respectively, with the
SSM having the highest value (0.93).

Discussion

In this study, a new technique to create 2D statistical shape
models, statistical appearance models, and statistical shape
and appearance models for proximal femurs were introduced
and performed on the DXA scans of 192 patients, and the risk
of sustaining a hip fracture in the next 5 years for these sub-
jects was estimated. The results of this study are important
since they show that while using SSAM to describe the shape
and BMD distribution in the proximal femur can enhance
fracture risk prediction (compared with using the T-score),
the effect of the geometry of the femur alone (from SSM) is
as accurate in identifying the high fracture risk cases and is
more significant than BMD distribution (from SAM). Also,
using the combined 2D SSAM increased the area under the

Comparing the first ten modes by student t test between the two groups of fractured and non-fractured when using statistical shape modeling

(S5M), statistical appearance modeling (SAM), and statistical shape and appearance modeling (SSAM)

Modes
p value 1 2 3 4 5 6 7 8 9 10
SSM 0.766 0.856 0.259 0.010* 0.508 0.357 0.510 0.099 0.008* 0.028*
SAM 0.000* 0.002* 0.059 0.205 0.141 0.002* 0.065 0.001* 0.004* 0.997
SSAM 0.774 0.400 0.544 0.001* 0.013* 0.234 0.018* 0.001* 0.000* 0.232

*Significant difference at o =0.05
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Fig. 2 Graphical lllustration of
some of the modes that were
significantly different between the
fractured and non-fractured sub-
jects; negative values in the sta-

tistical shape modeling (SSM) SSM
mode 4 and positive values in the
statistical appearance modeling Mode 4
(SAM) mode | comresponded to
increased fracture nsk
SAM
Mode 1

ROC curve by 4% compared with using BMD alone, which
means this could help protect thousands of Canadian from
devastating injuries, when considering the 21,000-27,000
hip fractures that happen annually in Canada [25].
Considering that in this study only 2D analysis was per-
formed, these findings can further shape the development
and implementation of statistical models in clinical practice
for hip fracture risk prediction while still using only the stan-
dard clinical tool (i.c., no other equipment or extra radiation).

Comparing the modes in the SSM, SAM, and SSAM re-
vealed that some of the modes had significantly different
values between the fractured and non-fractured subjects.
These modes highlighted some geometric and BMD distribu-
tion differences between the two groups. For example, mode
four from the SSM was significantly different between the two
groups and showed that in the non-fractured cases (that had
more positive values), the angle between the femoral neck and
shaft tended to be higher and the femoral head diameter, neck
diameter, and greater trochanter were narrower. However, two
points should be considered when referring to these pictures:
first, these shapes illustrate the extreme scenarios of three

Non-fractured

SAM

Fig. 3 The average BMD distribution in the fractured and non-fractured
aroups for all subjects, as well as the differences between the two groups:
the brighter pixels in the difference image, correspond to the higher

Fractured

-3SD

Mean +3 SD

standard deviations (SD) from the mean, and as such are not
representative of a real-world specimen; secondly, the overall
shape of the femur is the summation of all weighted modes,
and should not be considered in isolation. Therefore, to ad-
dress these issues, the average models in the fractured and
non-fractured groups were also depicted for males and fe-
males separately. The results showed that in the fractured
cases, the diameter of the femoral head, neck, and shaft was
higher than non-fractured subjects, which is aligned with pre-
vious studies [26-30] that have investigated the geometric
traits of fractured cases and non-fractured controls. The in-
creased diameter could be attributed to the adaptation mecha-
nism of the body in response to the reduced BMD since the
long bones resist bending failure by the second moment of
mnertia (bigger diameter leads to a higher second moment of
inertia) [31]. In these studies [26-30], while the outer diameter
of the femur in various arcas of the femoral neck, trochanter,
and shaft have been shown to increase in the fractured cases,
the cortical bone thickness was decreased. The same was ob-
served in the present study and by comparing the BMD dis-
tribution figures in the fractured and non-fractured cases

Difference

densities in the non-fractured subjects, whereas darker pixels comespond
to the higher density in the fractured subjects
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Table 2 Summary of the results when using various predictors for hip fracture nisk
Number of predictions (percentage)

Predictors Correct fractured Cormect All correct predictions  Fracture risk overprediction  Fracture risk

non- underprediction

fractured

T-score 18 (36%) 140 (99%) 158 (82%) 2(1%) 32(17%)
FRAX* 16 (32%) 122 (98%) 138 (79%) 3(2%) 34 (68%)
SSAM+ BMD + FRAX* 37 (74%) 118 (94%) 155 (89%) 7 (4%) 13 (7%)
SSAM+ T-score + BMI4+ Age+ Sex 39 (T8%) 133 (94%) 172 (90%:) 9(5%) 11 (6%)
SSAM+ BMD+ BMI+ Age+ Sex 39 (T8%) 134 (94%) 173 (90%:) 8 (4%) 11 (6%)
S5AM+ BMD+ BMI+ Age 39 (78%) 134 (94%) 173 (90%:) 8 (4%) 11 (6%)
SSAM+ BMD+ BMI+ Sex 37 (74%) 131 (92%) 168 (87%) 11 (6%) 13 (7%)
SSAM+ BMD+ Age + Sex 40 (80%) 133 (94%) 173 (90%:) 9(5%) 10 (5%)
SSAM+ BMD 36 (72%) 133 (94%) 169 (88%:) 9(5%) 14 (7%)
BMD+ BMI+ Age+ Sex 36 (72%) 129 (91%) 165 (86%:) 13 (7%) 14 (7%)

*FRAX data and subsequent prediction with FRAX was only available for 175 of the subjects

The bold bers show the b

(Fig. 3). Comparing the neck-shaft angle between the frac-
tured and non-fractured groups showed that the subjects in
the fractured group tended to have a higher angle: however,
there was no statistically significant difference between them.
Studies by Gnudi et al. [32, 33] previously reported that the
wider femoral neck-shaft angle increases the risk of a femoral
neck fracture. However, another study by Ito et al. [34] did not
find any significant difference in the femoral neck-shaft angle
between the cases of femoral neck fracture and the controls,
while the neck-shaft angle affected the risk of trochanteric
fractures. These contradictory results could be because of the

ol

e
3

=
@

True Positive Rate
s o
i
L

03 S5M
—— SAM
0.2 SsAM |7
BMD
0.1 T-score | |
FRAX
0
1] 0.2 0.4 0.6 0.8 1

False Positive Rate
Fig. 4 Receiver operating characteristic (ROC) curve for the various
fracture risk predictors: statistical shape modeling (SSM), statistical ap-
pearance modeling (SAM), statistical shape and appearance modeling
(SS5AM), bone mineral density (BMD), T-score, and FRAX
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(percentage) of correct predictions by the T-score and the proposed technique

effect of other variables that are difficult to eliminate in human
participant studies.

Considering the BMD distribution (Fig. 3), the cortical
bone thickness in the femoral shaft tended to be higher in
the non-fractured groups than fractured ones, which is in
agreement with previous studies [35, 36]. It should be noted
that the BMD distribution images from SAM were normalized
to the mean and standard deviation of ecach scan, and then they
were averaged in the two groups (fractured and non-fractured)
and depicted in Fig. 3. Therefore, these pictures purely show
that if both fractured and non-fractured groups had an equal
BMD, how this BMD would have been distributed. In the
non-fractured group, the BMD was concentrated in the femo-
ral shaft cortex and trochanteric area, whereas in the fractured
groups the BMD was concentrated in the femoral head arcas.
In a DXA scan, the area in the femoral head is partially over-
lapped by the pelvis; therefore it could be concluded that some
of the BMD concentration in the femoral head was likely
influenced by the pelvis.

In addition to the BMD and weighting modes from the
statistical models, other parameters such as BMI, age, and
sex were also used in the logistic regression to estimate the
hip fracture risk, and the results showed that using sex and
BMI did not have a notable effect on the number of correct
fracture predictions, whereas age played a more important
role. The lack of effect of sex in the fracture risk may be
attributed to the fact that it was already reflected in the shape
and the BMD of the proximal femur [37, 38]. Regarding the
BMI, it is a combination of a patient’s weight and height, and
its effect on the fracture risk could be controversial: with in-
creasing weight, there will be more forces applied to the body
during a fall [39]; however, it’s more probable that the soft
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tissue over the greater trochanter will be thicker and can ab-
sorb more energy [40]. Furthermore, if the patient is taller, the
energy of the fall can be greater [20], so there will be a greater
risk of fracture. A study by Shen et al. [41] showed that higher
BMI was associated with less risk of hip fracture in women
but not in men, which could be due to the different distribution
of body fat in men and women. However, in this study when
the fracture risk in men and women were investigated sepa-
rately, there was still no noticeable difference between the
results when not considering the BML Therefore, while there
might be an optimum value for the BMI to balance the con-
tributing factors to deliver the best results to minimize the
fracture risk, it might not be reflected in studies with low
sample sizes.

Including age was shown herein to improve the predictive
capacity of these models, which may be due to the aging effect
not being completely reflected in the other parameters of ge-
ometry and BMD distribution. Aging not only affects the bone
remodeling process but also influences balance maintenance
[42], neurological and musculoskeletal performance [43], and
cognitive impairment [43], all of which have an effect on hip
fracture risk [44]. Therefore, no matter how accurately one
estimates the strength of the proximal femur, the patient’s
age plays an important role in the risk assessment.

The estimated probability of fracture from combined
SSAM showed that the class one (patients who sustained a
fracture in less than 2 years) had the highest average proba-
bility, above classes two and three. Also, there was a signifi-
cant difference between the class three average probability of
fracture with classes one and two; however, no statistically
significant difference was observed between classes one and
two. With more investigation and a bigger training set and test
group, the approximate year of an impending fracture could
possibly be anticipated, and appropriate protective measures
and interventions planned accordingly.

In this study, logistic regression was used to find the rela-
tionship between the contributing parameters and the fracture
risk, and based on the 50% threshold for the probability of
fracture, the subjects were classified into high- and low-risk
groups. The 50% value herein was an arbitrary divider, and that
binary classifications, while easy, reduce the amount of infor-
mation passed along to clinician and patient. However, one of
the limitations of this technique is the number of parameters
that can be included in the analysis to avoid non-convergence in
the logistic regression. For the SSAM to account for more than
95% of the variations, 26 modes were needed, whereas in the
logistic regression, using more than 14 modes led to non-
convergence in the regression. It should be noted that these
14 modes were responsible for 90% of variations, which means
that some of the relevant information might have been missed
in the fracture risk estimation. The same thing happened in the
SAM (only considering the BMD distribution); in this case, the
22 modes that could be considered in the logistic regression

were only responsible for 77% of the variations. In applying
SSM (only considering the geometry), 14 modes could be in-
cluded in the analysis and this number of modes was responsi-
ble for 98% of the variations, whereas, if 80% of variation was
considered (using only two modes), SSM was only able to
predict fracture risk with 85% accuracy (164 correct predictions
out of 192), which is reduced by 8% (171 comect predictions
out of 192). One can conclude that using the geometric data
enables us to account for more variations, and this could lead to
a better prediction of the fracture risk. In addition, the time and
consequently the cost for performing SSM compared with the
SSAM and SAM can be significantly lower, and yet can yield
comparable results.

In this study, to build the appearance model, all of the pixel
intensities were normalized to the mean value, so the appear-
ance model and the shape and appearance model did not in-
clude information regarding the absolute BMD value mea-
sured by the DXA scan. Therefore, combining the statistical
model with the BMD result, which is the primary measure of a
bone’s mechanical strength, is vital to get more accurate pre-
dictions. The area under the ROC curve showed that the com-
bined SSAM model performed better than both the BMD and
the T-score as a discrimination tool in diagnosing people at
high risk of sustaining a hip fracture. Interestingly, while the
maximum improvement for the area under the ROC curve
(that was made by the SSM) was 0.05, at a specificity level
0f 0.80, the new methods were able to increase the sensitivity
by around 14%. A closer look at the ROC curve revealed that
in the high specificity region (close to the left vertical axis),
the proposed techniques led to the much higher sensitivity
(true positive, or correct diagnosis of patients at high risk of
sustaining hip fracture), and it was only at the lower specificity
levels (false positive rate around 50%) that the BMD, T-score,
or the FRAX could perform better in the sensitivity.

One of the limitations of this study was that while efforts
were made to have the non-fractured cases chosen from the
subset of the participants that did not take osteoporosis medi-
cation, most of the fractured cased were receiving at least one
form of medication. Therefore, it is possible that certain medi-
cations might have had an effect on the outcome of the SSAM,
and for future studies, the effect of various medications on the
outcome of the SSAM would be interesting to investigate.

Adding BMI, age, and sex to the BMD increased the cor-
rect fracture prediction by 36%, which is close to the number
of correct fracture prediction by the new technique (42%).
However, when using combined BMD (BMD, BMI, age,
and sex), the percentage of overall correct prediction, inchud-
ing correct fractured and non-fractured cases, placed between
the outcome of using T-score alone (82%) and using the com-
bined SSAM model (90%) with 86% owverall accuracy.
Another way to examine the effectiveness of adding SSAM
to the DXA scan was to compare the prediction of SSAM and
BMD (without BMI, age, and sex) with the prediction of the
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T-score, and one can see that adding SSAM to the measured
BMD from the DXA scan increased the number of cormrect
fracture prediction to 72% (which is a 36% improvement)
and the overall accuracy to 88%. These numbers show that a
significant improvement was made in identifying fractured
cases by adding more contributing factors to the BMD (either
BMI, age, and sex, or SSAM), and after that, adding more
factors only resulted in incremental improvements. Also,
some studies have shown that the texture analysis techniques
such as TBS, HI, Fourier-based analysis, and multifractal
analysis [23, 24, 45] can enhance hip fracture risk independent
of the BMD, so future studies combining statistical model and
texture analysis are recommended to investigate how more
improvement in the hip fracture prediction can be made.

The area under the receiver operating characteristic curve
for 2D SSAM in this study was 0.92, which is between the
range of 0.84-0.94 reported in previous 3D SSAM studies
[20, 21]. Also, a 42% improvement was made in identifying
patients at high risk of sustaining a fracture, which is compa-
rable with 45% from a previous 3D SSAM study [21]. This
suggests that despite using 2D SSAM (that only used DXA
scans in the training set), the fracture risk prediction using this
method had comparable results with those of 3D SSAM (that
used CT scans in their training set). This is important since it
provides significant information for the further development
of SSAM in the clinical routine of diagnosis of high fracture
risk in older adults without the added computational burden of
3D modeling and radiation of CT scanning.
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CHAPTER 5 - Comparing the Fracture Limits of The Proximal
Femur Under Impact and Quasi-Static Conditions in Simulation of

a Sideways Fall

Overview: In this chapter, 3D SSAM was applied to the DXA scans
of a group of subjects from the Canadian Multicentre Osteoporosis Study,
and the fracture risk predictions were compared to the 2D SSAM and the
standard clinical methods to address Objective 4. This chapter has been
submitted to the Annals of Biomedical Engineering, and upon acceptance
and publication, the proper permission from the copyright holder will be

obtained to include the article in this thesis.
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5.1 Abstract

Osteoporosis is a disease most common in older adults that can cause fragility
fractures in this population. Due to the adverse impacts of hip fractures on patients’ lives,
it is crucial to enhance the identification of people at high risk through accessible clinical

techniques to facilitate the implementation of protective measures.

Due to the accessibility, low cost, and low radiation dose, DXA scans remain the
preferred modality for fracture risk prediction, but is limited to 2D. Reconstructing the 3D
geometry and BMD distribution of the proximal femur could be beneficial in enhancing
hip fracture risk predictions; however, it is associated with a high computational burden
and requires a training set of CT scans of the proximal femur. It is also not clear whether

it provides a better performance than 2D model analysis.

The DXA scans and CT scans of 16 cadaveric femurs were used to create training
sets for the 2D and 3D model reconstruction based on the statistical shape and appearance
modeling. Subsequently, these methods were used to predict the risk of sustaining a hip
fracture in a clinical population of 150 subjects (including 50 fractured cases) that were

monitored for five years in the Canadian Multicentre Osteoporosis (CaMos) study.

The 3D statistical model was able to reconstruct the geometry and bone mineral
density distribution of the femurs from a single DXA scan with an average geometry error
of 1.6 mm and bone mineral density error of 0.11 g/cm3. This technique was able to
improve the identification of patients who sustained a hip fracture more accurately than the

standard clinical practice of using the T-score (44% improvement). The predictions from
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the 2D statistical model did not differ significantly from the 3D ones (76% correct fracture

prediction compared to 80% from the 3D technique).

These results indicated that, while 3D model reconstruction might be necessary for
further numerical analysis, to enhance hip fracture risk prediction in clinical practice
implementing 2D statistical modeling has comparable performance with lower associated

computational load and easier implementation.

Keywords: hip fracture risk, proximal femur, DXA scanning, 2D statistical

modeling, 3D statistical modeling
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5.2 Introduction

Osteoporosis is a disease most common in older adults, which results in low bone
mass and micro-architectural deterioration, and can lead to a pathologic bone fracture [1].
The hip (proximal femur) is one of the most common sites affected by osteoporosis, the
fracture of which can result in severe morbidity and mortality [2,3]. Patients with an early
diagnosis of osteoporosis can benefit from protective measures to prevent these fractures
[6,5,4]. Currently, the most common method for the diagnosis of osteoporosis relies on the
measurement of bone mineral density (BMD) from a dual-energy X-ray absorptiometry
(DXA) scan [1]. However, studies have shown that the DXA scan alone is not sufficient in

identifying all patients at high risk of sustaining a hip fracture [8,7].

DXA scans mainly measure the average BMD in certain regions of the bone, from
which the mechanical properties of the bone can be inferred; however, the strength of a
femur depends on its geometry [10,9], BMD distribution pattern [12,11], and trabecula’s
quality [14,13] as well. Many studies have tried to incorporate these factors in fracture risk
assessments to enhance the identification of patients at a higher risk of sustaining a fracture
[15]. Considering the effect of a femur’s geometry and BMD distribution can be done in
2D using DXA scans and X-ray radiographs, or in 3D using Computed Tomography (CT)
scans and Magnetic Resonance Imaging (MRI) [16]. While 3D imaging provides more
insight into the whole geometry and density distribution of the bone, it is not always
feasible to use 3D imaging, due to the expense, time, accessibility, and radiation levels.
Therefore, it is anticipated that 2D imaging (DXA scans) will remain as the primary method

of diagnosing osteoporosis and consequently fracture risk [17].
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To enhance hip fracture risk prediction, researchers have performed 2D analysis on
medical images (either DXA scan or another X-ray based radiography of hip) and their
results have shown that it has noticeable improvements over BMD alone [19,18,16]. Also,
to gain the benefits of 3D imaging, other studies have tried to develop 3D structures from
2D scans, using statistical modeling [22,20,21]. This method allows inference of both
geometry and architecture of bones in 3D based on a template model that is created from a
training set. Reconstruction of the 3D model of the proximal femur based on a 2D DXA
image can provide direct measurement of the 3D features that otherwise cannot be
evaluated in a 2D image [23]. The generated 3D model can also be used for further
numerical analysis such as finite element analysis [24]. Some studies have investigated hip
fracture risk by considering the effect of the femur’s shape and BMD distribution through
3D statistical models, and their results showed that fracture risk estimation was

substantially improved compared to using traditional BMD evaluation [20,25].

While generating 3D models might be a necessity in further numerical analysis, it
is not completely clear if recreating the 3D model from a 2D image to only investigate the
geometry and BMD distribution pattern in the femur will have an advantage over
investigating the geometry and BMD distribution pattern in 2D alone. Since the 2D and 3D
model studies to estimate hip fracture risk were performed based on different training sets
and testing groups, the potential to do any direct comparison between them is limited.
Therefore the aims of this study were 1) to create 3D shape and BMD distribution models
of the proximal femur based on DXA scans, 2) investigate the accuracy of the proposed

3D model reconstruction in comparison to CT scans, and 3) apply 2D and 3D model
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analysis methods to a clinical population to estimate their hip fracture risk and compare it

to their fracture history in a five-year period after the baseline.

5.3 Material and Methods

This study had two phases: in phase one, the 2D and 3D analyses were developed
using cadaveric specimens (which had 2D and 3D images). In phase two, the techniques
were tested and evaluated on a clinical population who had 2D images and fracture history

over five years.

Sixteen isolated cadaveric femurs were used for the training sets in this study [26].
Each femur was scanned with a DXA scanner (Hologic Discovery A, Hologic, Inc.,
Marlborough, MA, USA) and a CT scan machine (GE LightSpeed, GE Healthcare,
Chicago, Illinois, USA) with 0.625 mm slice thickness, 0.7 mm in-plane resolution, and
120kV tube voltage, to obtain the geometry and 2D areal and 3D spatial BMD distribution

within the bone.

5.3.1 3D Model Reconstruction from DXA Scan

Image processing was performed using MATLAB Image Processing Toolbox
(MATLAB R2019b, MathWorks, Natick, Massachusetts, US). Reconstruction of the
model consisted of two stages: 1) creating the BMD and geometry template models, where
the 3D template models were created and the main modes of variation in the geometry and
BMD distribution in the training set were found, and 2) assessing a new scan, where each
new DXA scan can be described by the template model plus some variation from it based
on the calculated main modes of variation from the first step. The values of these modes
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were estimated through an optimization process to minimize the differences between the

calculated model and the real DXA scan.

5.3.1.1 Creating the BMD and Geometry Template Models

To create the 3D SSAM, the CT scans of the cadaveric femurs were used to generate 3D
models for the training set (MIMICS 22.0, Materialise NV, Leuven, Belgium). For each
scan, an STL file was generated to represent the geometry of the proximal femur and a
voxel-based mesh was created to describe the BMD distribution in the bones. Twenty-
seven geometric landmarks were assigned to each of the models (Figure 5.1). The
landmarks were placed on the exterior surface of the bone and were based on the
identifiable anatomical features. After aligning and removing the effect of translation,
rotation, and scaling (using General Procrustes Analysis, GPA) the average landmark
coordinates were calculated. Then all models were warped to the average landmark
coordinates. The minimum number of vertices from the CT scan 3D model creation was
2255 vertices, so these were chosen as the reference vertices and corresponding vertices in
other 3D models were selected automatically by a closest point algorithm. The average 3D
shape was thus calculated (creating the template geometry model), and then all 3D models
as well as the voxel-based mesh were warped to the average model. Hounsfield Unit (HU)
values were then captured in 1x1x1 mm voxels for each warped 3D model and normalized
to the mean and standard deviation of that model. They were then averaged for all
specimens to create the template BMD model. Finally, Principal Component Analysis
(PCA) was used on both geometry and BMD data to find the main modes of variation in
them, which were then gathered in a matrix and PCA was used again to find the main

75



Ph.D. Thesis — F. Jazinizadeh McMaster University — Mechanical Engineering

4 \ Aligning and
averaging the
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mean LM and
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\_ PutinglM / mean LM

(vertices and
faces)

l

Choosing the reference
vertices and finding the
corresponding vertices
based on nearest point to
CT scans \ the reference vertex

f

Applying PCA to
find the main modes
of variation in
describing the shape

Warping all voxel
based mesh to the
geometry model and
reading the BMD
values in 1x1x1 mm
voxels

Creating a
voxel based
mesh with the
HU value

Averaging the
vertices to find the
template geometry
model

Applying PCA to
find the main modes
of variation in
describing the
material distribution

Combining the geometry and material distribution modes and applying PCA to find the main modes of

variation in a combined model

Figure 5.1 Flowchart of Creating the 3D Statistical Shape and Appearance

Models.

From the CT scans of isolated cadaveric femurs an STL file to show the surface
geometry and a voxel-based mesh to show the BMD distribution was generated.

LM: Landmarks, PCA: Principal Component Analysis, HU: Hounsfield Unit,

BMD: Bone Mineral Density.
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Modes of variation for SSAM combined.

5.3.1.2 Assessing a New Scan

To create the 3D model of each femur from its DXA scan, 19 landmarks were
assigned on the contour of the femur. Next, the geometry template model was adjusted by
its main modes of variation to minimize the difference between the DXA scan and anterior-
posterior projection of the 3D model (Figure 5.2). After estimating the geometry modes,
the femur’s shape from the 2D DXA scan was warped to the anterior-posterior projection
of the 3D geometry template, and then the gray value of each pixel was captured and
normalized to the mean and standard deviation of all pixels for that scan. In the anterior-
posterior projection of the 3D template model, the intensity of the voxels (representing the
BMD) along the sagittal axis were accumulated to find the each pixel’s intensity in the 2D
projection, and then the intensity of each pixel was normalized to the mean and standard

deviation of all pixels (in the 2D projection).

The 3D BMD template model was changed by its modes, and in each iteration, the
anterior-posterior projection of the adjusted template was compared to the warped DXA
scan to minimize the differences between the two and eventually finding the BMD modes.
In the end, based on the combined geometry and BMD models the combined (SSAM)

modes of variations were calculated.

5.3.2 Evaluation of the 3D Model Reconstruction

To evaluate the accuracy of the 3D model reconstruction, the leave-one-out cross-

validation technique was used on the 16 cadaveric specimens. So, to create the 3D model
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I

Change the geometry

modes
Change the BMD

distribution modes

Create the
anterior-posterior
projection of the
3D model

ry

T

Checking if the sum of the
differences between the
contour of anterior-posterior
projection of the altered 3D

model and the DXA scan is
K minimum /

Warp the DXA scan to the
contour of the anterior-
posterior projection of the
altered 3D model and checking
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Figure 5.2 The flowchart of finding the modes for a new DXA scan.

The modes are found through an optimization process to minimize the difference

between the anterior-posterior projection of the template model and the DXA scan.
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of each femur from its DXA scan, the CT scans of the other 15 specimens were used in the
training set to create the template models and find the main modes of variations. After
reconstructing the 3D model for each femur, the created 3D models were compared to the
CT-based 3D models. This was evaluated based on the minimum point to surface distance
between each vertex from the 3D model reconstruction and the 3D model from the CT

scan, as well as the BMD values of the corresponding voxels.

5.3.3 Clinical Data

The subjects used in this study were recruited by the Canadian Multicentre
Osteoporosis Study (CaMos). A total of 150 patients’ data was used (Table 5.1), 50 of
whom sustained a hip fracture within five years of the baseline DXA scan with a Hologic

DXA scanner (Hologic, Inc, Marlborough, MA).

5.3.3.1 Predicting the Fracture Risk Based on 3D Model Reconstruction

In the clinical application, to create the 3D model of each subject’s proximal femur
from its DXA scan, the training set of 3D models of 16 cadaveric specimens was used, and
the weight of each variation mode was calculated based on the algorithm described earlier
in section 5.3.1.2 Next, to estimate the fracture risk for each subject (‘test group’), the
leave-one-out cross-validation was used, where the other 149 subjects (‘training set group’)
were used to create and train the fracture risk prediction function (based on the reported
fracture history of the subjects) through logistic regression analysis. The variables used in

the functions were the calculated modes, areal BMD, and the mean and standard deviation
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Table 5.1 The summary of patients’ characteristics.

McMaster University — Mechanical Engineering

Subjects Total number | Male Female Age (meanxSD)
Fractured 50 13 37 78.3£7.4
Non-fractured | 100 57 43 66.2+£9.5
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Of pixels from the DXA scan. Subjects with an estimated probability of fracture greater

than 50% were considered high risk (likely to sustain a hip fracture).
5.3.3.2 Predicting the Fracture Risk based on 2D Model Reconstruction

Details regarding the 2D (i.e. DXA-based) SSAM have been described previously
[15]. Briefly, landmarks were assigned to each of the DXA scans and then aligned and
averaged to create the geometry template model. Next, each image was warped to the
geometry template model and the gray value of each pixel (which is an indication of the
areal BMD value) was captured and normalized to the mean and standard deviation of all
pixel values (within the same scan). All captured and normalized pixel values within the
training set were then averaged to create the template BMD model. Principal Component
Analysis (PCA) was used on both models (geometry and BMD) to find the main modes of
variation for each and then combined, then PCA was again used to find the main modes of
variation in describing the geometry and BMD distribution together. To reconstruct the
geometry and BMD distribution of each DXA scan based on the variations in the training
set, a series of landmarks on the contour of the femur were assigned to each DXA scan
[15]. Then, the template geometry and BMD models were adjusted by the main modes of
variation to recreate the DXA scan [15].To estimate the fracture risk based on the 2D model
reconstruction, the leave-one-out cross-validation technique was conducted on the clinical

data, as was done on the 3D model reconstructions.
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5.3.4 Evaluation of the Fracture Risk Predictions

The two new image analysis methods (2D and 3D) were compared to two clinical
metrics: total areal BMD and T-score. The total areal BMD from the DXA scans were also
investigated using logistic regression analysis and leave-one-out cross-validation in the
same way as 2D and 3D SSAM. A threshold of 50% was used to assign each subject to
high or low fracture risk. A T-score of -2.5 (the standard threshold for osteoporosis [27])
was also used to divide the subjects into low and high fracture risk groups. In the end, all
predictions from 2D SSAM, 3D SSAM, BMD and T-score were compared to the fracture

history of the subjects.

To check the diagnostic value of each technique, the Receiver Operating
Characteristic (ROC) curve, which plots the true positive rate (sensitivity) versus the false
positive rate (1-specificity) based on different thresholds, was plotted and the area under
the curve was calculated. To compare the geometry between the average fractured and non-
fractured subjects, the mean location of each vertex was calculated for each group. The
same was done for the BMD and to graphically illustrate the differences, colored heat maps

were created for both.

5.4 Results

To account for more than 95% of the variation in describing the shape and BMD
distribution of the cadaveric femurs nine and 14 modes were needed for 2D and 3D models,
respectively. The average point to surface errors in the reconstruction of geometry was

1.65+0.58 mm (range between 0.56-4.22 mm, Figure 5.3), and the maximum error was
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Figure 5.3 Illustration of the error in reconstruction of the geometry.

The errors have been normalized to the average of the widest thickness of the
femurs in the training set. The maximum error was found at the tip of the greater

trochanter.
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related to the reconstruction of the greater trochanter. To depict the error proportionally to
the geometry of the femur, it was normalized to the average widest anterior-posterior

distance of the femurs in the training set (53 mm).

The average BMD reconstruction error for corresponding voxels (1x1x1 mm) was
0.11+0.09 g/cm? (range between 0-0.84 g/cm?), with the maximum error found in the
cortical bone in the medial trochanteric area. The average BMD value from the 3D model
reconstruction and the CT scans were illustrated for the mid-frontal plane and mid-

transverse plane (Figure 5.4).

In the clinical dataset, 2D SSAM was able to correctly classify 38 (out of 50)
fractured cases and 93 (out of 100) non-fractured cases. Using 3D SSAM, the technique
was able to correctly classify 40 (out of 50) fractured cases and 92 (out of 100) non-
fractured cases. The T-score was able to correctly classify 18 (out of 50) fractured cases
and 99 (out of 100) non-fractured cases (Table 2). The areas under the ROC curve for 2D
SSAM, 3D SSAM, BMD, and T-score were calculated as 0.92, 0.91, 0.88, and 0.89
respectively, with 2D SSAM having the highest value and BMD having the lowest (Figure

5.5).

The differences between the average 3D shape and BMD distribution model for the
fractured and non-fractured subjects were depicted using colored heat maps, and if the
average non-fractured vertices were inside the average fractured geometry the distance was

considered positive (i.e. non-fractured was smaller), and vice versa (Figure 5.6). Generally,
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Average model from Average model from the BMD  yBMD

the CT scans reconstruction g/cm?
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Figure 5.4 lllustration of the Volumetric BMD (vBMD) in the Average Model from

the CT Scans and the Average Model from the BMD Reconstruction in Two Views.

Top: mid-frontal plane, bottom: mid-transverse plane.
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Table 5.2 A summary of the hip fracture risk prediction results for various classifiers.

Fracture risk underprediction refers to the subjects that were identified as low risk but

sustained a hip fracture and fracture risk overprediction refers to the subjects that were

identified as high risk but did not sustain a hip fracture

Predictor Correct Correct Fracture risk | Fracture risk
prediction prediction underprediction | overprediction
for Fx subjects for non-Fx
subjects
2D 38 (76%) 93 (93%) 12 (8%) 8 (5%)
SSAM
3D 40 (80%) 92 (92%) 10 (7%) 7 (5%)
SSAM
BMD 34 (68%) 93 (93%) 16 (11%) 7 (5%)
T-score 18 (36%) 99 (99%) 32 (21%) 1 (1%)

Fx: fractured, non-Fx: non-fractured
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Figure 5.5 Receiver Operating Characteristic (ROC) Curves for

Fracture Risk Predictors.

Various Hip

The area under the curve for 3D and 2D SSAM was slightly higher than BMD and T-score.
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Distance
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Figure 5.6 Surface Geometry Variation Between the Mean Fractured and

2

[a—

-1.5

Non-Fractured Subjects.

The yellow color represents the points where the mean vertices of the non-fracture
subjects were inside the mean fractured geometry (i.e. fractured group was larger
than non-fractured) and the blue points indicate that the mean vertices of the non-
fracture subjects were outside the mean fractured geometry (i.e. the mean fractured
geometry was smaller than the non-fractured).
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the average proximal femur’s geometry for the fractured subjects was larger than the non-

fractured one.

For the BMD distribution comparison between the two groups (fractured and non-
fractured subjects), the difference between the volumetric BMD of the voxels in the mid-
frontal plane was calculated and depicted as a heat map as well, with higher BMD in the
non-fractured group having a positive value (Figure 7). The average volumetric BMD map
in the mid-frontal plane for the fractured subjects was lower than the non-fractured group,

especially in the inner cortex of the trochanteric and subtrochanteric areas.

5.5 Discussion

In this research, a novel approach to create a 3D model of the proximal femur from
a single 2D DXA scan was introduced, evaluated, and its ability to clinically predict hip
fracture risk was assessed in a dataset of patients who were followed for at least five years.
The new technigue was able to significantly enhance hip fracture prediction in the high risk
patients compared to T-score (44% improvement), which means that for the approximately
30,000 hip fractures that happen each year in Canada [28], thousands of patients at high
risk could be identified and protected from this injury by using this technique. While
applying statistical models can greatly enhance hip fracture risk prediction in patients, we
showed that there was no real benefit to adding the 3D reconstruction for injury risk
prediction applications, making this easier and faster for clinical implementation. Also, this
is the first known study to directly compare 2D vs 3D statistical shape and appearance

modeling to predict the hip fracture risk in older adults. This has great importance since
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-0.17

A J

Figure 5.7 Volumetric BMD Variation in the Mid-Frontal Plane Between the Mean

-0.34

Fractured and Non-Fractured Subjects.

The red color indicates demonstrates the voxels that have a higher BMD value in the non-
fractured subjects than the fractured subjects, and the blue color identifies demonstrates the

voxels that have a higher BMD value in the fractured subjects than the fractured ones.
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implementing 2D geometry and BMD distribution model reconstruction is associated with
less computational burden and is more achievable in clinical practice. These results can
shape the future of applying statistical models in clinical practice to predict hip fracture

risk.

Two previous studies have reported reconstruction errors in geometry and BMD
distribution of similar magnitudes to those in the present study [21,29] (average geometry
error of 1.07-1.1 mm, and an average BMD distribution error of 0.07-0.21 g/cm?3).
However, the maximum geometry errors in this study were smaller than those previously

reported (5.4 - 9.2 mm previous, vs. 4.2 mm herein).

Comparing the geometry of the proximal femur in the fractured and non-fractured
subjects revealed that fractured cases were overall larger than non-fractured ones (Figure
5). This is in agreement with other studies that have investigated the effect of the proximal
femur’s geometry on hip fracture risk [31,9,32,33,30]. This effect could be attributed to the
body’s response to a decreased BMD and an effort to resist bending failure by increasing
the diameter to increase the second moment of inertia [34]. It is worth noting that that the
range of the differences between the fractured and non-fractured geometries was between
-1.5 mm to +2 mm, and considering that the average error in the geometry reconstruction
was 1.6 mm, some of the difference between the two geometries might have been affected

by the inherent error in the reconstruction.

The average voxels’ BMD in the mid-frontal plane in the fractured cases were lower

than the non-fractured ones (Figure 6). This could be specifically observed in the inner
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contour of the cortical bone in the medial region of the trochanteric area, which can be

attributed to the thinning of the cortical bone in patients with osteoporosis [35].

The area under the ROC curve for both 2D and 3D were noticeably better than T-
score and BMD. When looking at the ROC curve, it can be observed that in the area of
high specificity between 50%-95% (close to the left side of the graph, 5%-50% false
positive rate) the statistical models were noticeably able to identify more true positive cases
(people actually at risk of fracture) than the standard clinical method, which would be more
desirable. It also showed that, only in the area of more than 50% false positive rate (close
to the right side of the graph), the performance of all the methods were similar, and even
in that case the T-score threshold should be modified from the -2.5 that is currently used in

clinical practice to improve this.

The area under the ROC curve for another similar 3D study [22] was reported as
0.83 for aBMD plus age, and 0.93 for 3D reconstruction (considering both geometry and
BMD distribution) plus aBMD and age. However, two other studies that investigated the
2D analysis have reported 0.16 [19], and 0.03 [18] improvement in area under the ROC
curve while considering only the geometry, and geometry plus BMD distribution,
respectively. These results suggest that comparing the improvement made by each method
should be assessed based on various aspects of its performance, and for evaluation of
different techniques a direct comparison based on the same training set and test set should

be preferred.
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There could be several reasons for the lack of difference between 2D and 3D
predictions. The most important one is that it might be possible that there is a correlation
between 2D and 3D geometry and BMD distribution features of the proximal femur. In
some studies to reconstruct the 3D geometry of the proximal femur [36,37], the main
assumption was based on the dependency of 3D features on the 2D ones observed in a 2D
image (either DXA scan or other radiograph of the hip). Their results showed that the 3D
shape reconstruction of the proximal femur with this assumption had an acceptable average
error range, so it could be concluded that the most of the 3D features of proximal femur
correspond with its 2D features, and although to describe a shape in 3D, more variables are

needed, most of these variables are correlated to ones observed in the 2D image.

In addition to the mechanical properties of the proximal femur, many other factors
affect a patients’ hip fracture risk. These factors either relate to the patients’ characteristics
[38] (e.g. medication use, fracture history, tobacco use, alcohol consumption), fall
mechanics [39] (e.g. patients’ height, weight, and reflexes), or fall probability [40] (e.g.
physical activity level, comorbidities, balance and stability, and age). However, in this
research, only features related to the proximal femurs’ structural strength were
investigated. Therefore, a more robust prediction would consider many of these other

factors.

One of the limitations of this study was that in the training set, the DXA scans and
CT scans of isolated cadaveric femurs were used to make 2D and 3D template models,
while for the evaluation of these techniques clinical DXA scans were used. The main

difference between the clinical DXA scans and the ones from the isolated femurs was the
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effect of the overlapping pelvis over the proximal part of the femoral head, which led to
artificially increasing the BMD measure in this area. Also, due to the presence of soft
tissues in the clinical DXA scans, they were associated with more noise artifacts. Therefore,
since these variabilities weren’t captured in the training set, extra error might have been
induced in the BMD distribution reconstruction model. However, the effect of these errors
was minimized by using the clinical scans in creating the fracture risk estimation function

through cross-validation.

This study showed that, while proximal femurs 3D model reconstruction might be
necessary for further numerical analysis (e.g. finite element analysis and direct
measurement of specific 3D traits), it does not add significant value to the hip fracture risk
estimation when compared to 2D model reconstruction. This will have a significant impact
on how statistical models are adopted by clinical practice. Since implementing 2D
techniques is less intensive technically and computationally and uses more accessible and
safer imaging modalities (compared to using CT scans) to expand the training set, it has
great potential to be implemented in clinical practice as part of standard hip fracture risk

estimation in older adults.
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CHAPTER 6 — General Discussion and Conclusions

Overview: In this chapter, the objectives and hypotheses from
chapter one are reviewed, and a summary of the main outcomes of the
studies performed in this thesis is provided. The overall strengths and
limitations of this work are also discussed. This chapter concludes with the
future directions for further investigation, the clinical implications and the

significance of the studies presented herein.

6.1 Summary

Hip fractures as a result of a sideways fall are a significant cause of morbidity as
well as mortality in older adults. Currently, diagnosis of osteoporosis and consequently hip
fracture risk is done by measurement of BMD in the proximal femur through DXA scans;
however, studies have shown that this method alone is not effective to identify all patients
at high risk, and there is an overlap between the BMD of patients who sustained a hip
fracture after a fall with those who did not. Therefore, it is crucial to search for
complementary methods that can be used in addition to BMD measurement by DXA scan
so that more people at high risk of a hip fracture can be identified and benefit from
preventive interventions to avoid these devastating injuries. The overall goal of the studies
presented in this thesis was to enhance hip fracture risk prediction in older adults through
image processing of DXA scans to account for the effects of femur’s geometry and BMD

distribution in the hip fracture risk assessment.
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The first component of this thesis involved performing destructive mechanical
testing on isolated cadaveric femurs in two scenarios of quasi-static and impact loading in
a simulation of a sideways fall (i.e., Objective 1, Chapter 2). This study was performed to
investigate if impact loading (as happens in reality) can be substituted with quasi-static
testing (as happens in research) in the evaluation of the frameworks that are generated to
assess hip fracture risk prediction. The results of this study showed that (except for one
specimen) a strong correlation of determination was found between paired femurs for their
fracture loads in impact and in quasi-static loading. Also, using the relationship developed
herein between the impact fracture loads and the quasi-static ones, the results from another
study were extrapolated with errors of less than 12%, showing that meaningful predictions
for the impact scenario can be made based on quasi-static tests. In addition, the comparison
of the fracture location showed qualitatively good agreement between the two groups (i.e.,

Hypothesis 1 accepted).

The results of the experimental study presented in chapter one were then used to
evaluate the proposed method in the next chapter (i.e., Objective 2, Chapter 3). Chapter
three presented creating and assessing the implementation of 2D statistical shape and
appearance modeling (SSAM) of the proximal femur using the DXA scans. The subjects
used in this study were isolated cadaveric femurs and the results of the fracture risk
prediction were examined based on two methods of fracture load prediction and binary
fracture risk classification based on a threshold. This study showed that using 2D SSAM
was able to enhance hip fracture risk prediction in high risk subjects more accurately than

the T-score alone (i.e., Hypothesis 2 accepted).
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To see how the 2D SSAM would translate to a clinical population, chapter four
investigated the implementation of this technique on a population of clinical subjects
chosen from the Canadian Multicentre Osteoporosis Study (CaMos). Fifty out of the 192
chosen subjects had sustained a hip fracture within a five-year period after the baseline
(i.e., Objective 3, Chapter 4). The results comparing fracture risk predictions based on 2D
SSAM showed superior identification of people at high risk compared to standard clinical
metrics of using T-score and FRAX when considering the fracture history of the subjects

(i.e., Hypothesis 3 accepted).

After investigating the ability of 2D SSAM to predict hip fracture risk, to see
whether a 3D approach would improve the predictive ability, 3D SSAM was created and
assessed in a subset of the subjects from Objective three (i.e., Objective 4, Chapter 5). The
reconstruction of the 3D model from the 2D DXA scan showed the same range of errors
compared to similar studies, with reducing the magnitude of the maximum error. While 3D
SSAM significantly enhanced hip fracture risk prediction for the clinical subjects who
sustained a fracture compared to the T-score, the accuracy did not increase noticeably
compared to using 2D SSAM (i.e., Hypothesis 4 accepted). This means that while 3D
geometry and BMD distribution reconstruction of the proximal femur might be a necessity
for further numerical analysis (e.g. finite element analysis), for estimating the fracture risk
based on considering the effect of a femur’s geometry and BMD distribution, performing
2D SSAM in clinical practice appears to be both more feasible and just as accurate as 3D

SSAM.
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6.2 Strengths and Limitations

The specific strengths and limitations of each study were discussed in detail in their
respective chapters. However, some general ones apply to the whole thesis. In this section,

the major strengths and limitations of each study as well as the overall ones are discussed.

One of the strengths of the experimental part of this research was the use of paired
specimens to compare and demonstrate a relationship between the fracture load of the
proximal femur in impact and quasi-static in simulation of a sideways fall. Paired
specimens allowed us to assume equivalence, reducing variability and develop a
relationship that could be used to convert results from prior QS tests into predicted IM
values. In most of the other similar studies that have investigated hip fracture risk
prediction quasi-static tests were used instead of impact ones to quantify the fracture
strength. Also, in the few studies that had investigated the differences between impact and
quasi-static testing, non-paired specimens were used, which led to a dominant effect of

geometry and BMD on the results and limited the statistical power of their findings.

Another strength of this work was that the imaging techniques were evaluated both
based on a cadaveric study as well as a clinical group. Cadaveric studies provide valuable
information about the strength condition of the bone, as they are guaranteed to fracture and
are easy to image; however, clinical studies are superior, since they can provide a more
comprehensive insight into the risk factors that affect the occurrence of an injury in reality.
Also, clinical studies are a necessity in paving the path for a technique to be implemented

in clinical practice.
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Another major advantage of this thesis was investigating both 2D and 3D model
reconstruction techniques and comparing their ability to predict an individual’s hip fracture
risk. Interestingly, the results of this work showed that using 2D model reconstruction to
consider the effects of geometry and BMD distribution wouldn’t noticeably affect the
correct identification of patients at high risk of sustaining a hip fracture. To create the
training sets for 2D and 3D model reconstructions, DXA scans and CT scans, respectively,
of the proximal femurs were required. DXA scans are more accessible, faster, less
expensive, and are associated with less dose of radiation compared to CT scans, therefore
expanding the training set for 2D model reconstruction in clinical practice is more

attainable and desirable.

In this research, real DXA scans were used and not the anterior-posterior projection
of the CT scans, as has often been done in previous studies (which may have artificially
reduced the error usually induced by the soft tissue and patients positioning). While this is
most representative of the clinical scenario, DXA scans are associated with high noise
artifact partially due to the presence of soft tissue. Also, the positioning of the subjects
during a scan is a major obstacle to consistency. Therefore, while using real DXA scans
induces additional error compared to the studies that have evaluated their technique based
on the projection of the CT scans, it provides a more realistic assessment of this technique

when dealing with real scans in practice.

While this research made many important contributions toward several issues
surrounding enhancing hip fracture risk prediction in older adults with a focus on methods
that would be feasible to implement in clinical practice, there were also several limitations.
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One of the major limitations of this work was the quality of the DXA scans used for the
analysis. In this research, subjects (both cadaveric specimens and clinical population
subjects) were scanned by a Hologic DXA scanner, hence, the images could only be
accessed by the company’s software. To eliminate this problem the scans were first opened
by the software, and then they were de-analyzed to remove the regions that were selected
by the technician, and in the end, a screenshot of the scan was saved for further analysis.
This resulted in decreased image quality and consequently losing some valuable
information. This information could have had a significant effect on the feasibility of
performing further texture analysis on the clinical data. In addition, some of the scans that
were used in the clinical studies were 20 years old, and most of those DXA scanners have
since been replaced. Therefore, using a more recent baseline for the analysis could help to

have a better image quality.

Another limitation of this research was the variability among the subjects, in terms
of personal (age, sex, weight, height, alcohol and tobacco use, and level of activity) and
clinical (medication, comorbidities, and using protective measures) characteristics. When
choosing the subjects, the non-fracture subjects were only selected from the population that
was not taking any osteoporosis medication, while in the selection of the fractured subjects
this was not considered. Therefore, the potential effect of using certain medications might
have been dismissed. Also, the high variability could limit the generation of a
comprehensive model to account for all contributing factors, and further studies are
required to address that. However, it should be noted that even when considering most of

the possible contributing elements, the effect of some factors may still not be possible to

106



Ph.D. Thesis — F. Jazinizadeh McMaster University — Mechanical Engineering

be measured and integrated into a model (e.g. effect of microdamage based on the standard

clinical imaging).

In this research, reconstruction of the 2D and 3D models was initiated by assigning
landmarks to the DXA scans. This assignment was done manually, and hence it could be
slightly time-consuming (two minutes for each scan) and also user-dependent. However,
the reproducibility of the predictions was investigated to account for the effects of inter-
and intra-user dependency. Five subjects (three fractured and two non-fractured) were
randomly chosen and three users were asked to assign the landmarks. Also, one user was
asked to assign the landmarks three times with at least one week in between each
assignment. The results showed that in predicting the fracture risk based on the 2D and 3D
model reconstruction, there was no user effect on the binary classification of the fracture
risk (Table 6.1, Table 6.2, Table 6.3, and Table 6.4). It can be observed that the standard
deviations in most of the predictions are small; however, for some subjects (e.g. subject
two and three) the ratio of standard deviation over the mean was quite high (maximum of
55%) which indicates the importance of creating a fully automatic platform with minimum

user-interference.

6.3 Future Directions

The research conducted in this thesis examined implementing 2D and 3D model
reconstruction to investigate the effect of geometry and BMD distribution in hip fracture
risk. In addition to hip fracture risk prediction, 2D and 3D model reconstruction from a 2D

DXA scan can provide valuable insight into subtle changes in the geometry and BMD
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distribution of the proximal femur over time [1-3]. Therefore, future studies can investigate
using these techniques to monitor the changes that might occur along a period of time or

during a specific treatment.

One of the focuses on this research was on generating a technique that could be
easily implemented in clinical practice. Therefore, automating and creating a user-friendly
platform is a necessary next step towards this goal. Also, for future research, it is
recommended to establish a relationship with the DXA scanner manufacturer to get access
to the original digital image so that texture analysis of the trabecular bone in the femoral

neck and trochanteric area could be included more meaningfully.

Another aspect that should be considered in future studies is evaluating these
techniques in large cohort studies to investigate the effect of all contributing factors. A
large cohort study could allow matching the control (non-fractured subjects) with the
fractured cases to only assess one factor of interest at a time independently, and
consequently creating a comprehensive framework for predicting an impending fracture.
This would form an important component of a more holistic assessment of fracture risk —
while femur geometry and material distribution are important factors, there are not the only
factors — integrating it into a FRAX-like tool would improve the overall evaluation of
fracture risk while considering factors such as balance that aren’t captured from a purely

mechanical assessment.
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Table 6.1 Inter-user reproducibility of fracture risk based on 2D SSAM

The probability of sustaining a hip fracture based on the assignment of landmarks by three
users in 2D SSAM analysis, Fx: fracture, where 1 indicated a fracture was sustained and 0

McMaster University — Mechanical Engineering

indicated no fracture, SD: standard deviation.

Subject | Fx history | User 1 User 2 User 3 Mean SD

1 1 0.69 0.64 0.76 0.70 0.05
2 1 0.79 0.80 0.81 0.80 0.01
3 1 0.21 0.26 0.23 0.23 0.02
4 0 0.00 0.00 0.00 0.00 0.00
S 0 0.71 0.58 0.68 0.66 0.06

Table 6.2 Inter-user reproducibility of fracture risk based on 3D SSAM

The probability of sustaining a hip fracture based on the assignment of landmarks by three
users in 3D SSAM analysis, Fx: fracture, where 1 indicated a fracture was sustained and 0

indicated no fracture, SD: standard deviation.

Subject | Fx history | User 1 User 2 User 3 Mean SD

1 1 0.92 0.90 1 0.94 0.04
2 1 0.00 0.00 0.16 0.05 0.08
3 1 0.21 0.33 0.19 0.24 0.06
4 0 0.00 0.00 0.00 0.00 0.00
5 0 0.00 0.00 0.00 0.00 0.00
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Table 6.3 Intra-user reproducibility of fracture risk based on 2D SSAM

The probability of sustaining a hip fracture based on assignments of landmarks by one user
over three times in 2D SSAM analysis, Fx: fracture, where 1 indicated a fracture was
sustained and O indicated no fracture, SD: standard deviation.

Subject | Fxhistory | 1ttime | 2"time |3"time | Mean SD

1 1 0.72 0.64 0.69 0.68 0.03
2 1 0.79 0.85 0.79 0.81 0.03
3 1 0.48 0.21 0.21 0.30 0.13
4 0 0.00 0.00 0.00 0.00 0.00
5 0 0.72 0.61 0.71 0.68 0.05

Table 6.4 Intra-user reproducibility of fracture risk based on 3D SSAM

The probability of sustaining a hip fracture based on assignments of landmarks by one user
over three times in 3D SSAM analysis, Fx: fracture, where 1 indicated a fracture was
sustained and O indicated no fracture, SD: standard deviation.

Subject | Fx history | 1sttime | 2"9time | 3™time | Mean SD

1 1 0.97 0.86 0.92 0.92 0.04
2 1 0.05 0.03 0.00 0.03 0.02
3 1 0.33 0.07 0.20 0.20 0.11
4 0 0.00 0.00 0.00 0.00 0.00
5 0 0.01 0.00 0.00 0.00 0.00
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6.4 Clinical Significance

In conclusion, in this work, two new methods of 2D and 3D model reconstruction
have been created and evaluated based on the DXA scans and CT scans of a set of isolated
cadaveric femurs. Also, these model reconstructions have been used to consider the effect
of the proximal femur’s geometry and BMD distribution on hip fracture prediction. These
methods were then assessed in two groups of cadaveric and clinical subjects, and the results
showed that both techniques were able to substantially enhance the identification of people

at high risk of sustaining a hip fracture noticeably.

This research also furthered our understanding of how the geometric and material
distribution traits affect the vulnerability of the proximal femur by comparing the features
in the subject who sustained and did not sustain a hip fracture. Another significant impact
of this research was to demonstrate that the hip fracture prediction based on 2D model
reconstruction did not remarkably differ from the 3D model reconstruction, and since the
2D method is associated with a less computational burden and requires less resources, this
finding could shape future of implementing statistical models in clinical practice. This
means that for the approximately 30,000 hip fractures that happen each year in Canada [4],
thousands of patients at high risk could be identified and protected from this injury by using

this technique.
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APPENDIX A — Glossary of the Medical Terms

Overview: this appendix contains a list of the medical terms used
through this thesis to provide assistance to the readers who are not

familiar with this terminology.

Anatomical position: Body upright, with the face and palms forward and the upper

limbs placed at the sides.
Anterior: Situated towards the front of the body when in anatomical position.
Articulation: The contact junction between two bones.
Cadaveric: Of, or pertaining to, a dead body preserved for anatomical study.

Cancellous Bone: A spongy, lattice-like structure of bone. Synonymous with trabecular

bone.
Contralateral: Pertaining to the other side of the body (i.e., left-right).
Cortical Bone: A dense bone structure. Synonymous with compact bone.
Diaphysis: The shaft of a long bone, a tube made of cortical bone.
Distal: Further from the point of reference; away from the midline of the body.
Femur: The large bone in the upper leg, extending from the pelvis to the knee.

FRAX: A diagnostic tool used to evaluate the 10-year probability of bone fracture risk
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Frontal: The plane parallel to the long axis of the body separating the body into front and

back portions.
Inferior: Away from the head; lower
Joint: The location at which two bones make contact, permits relative movement.
Lateral: A position further away from the midline of the body.
Marrow: The soft tissue filling the cavities of bones.
Medial: A position closer to the midline of the body.
Posterior: Located towards the back of the body.
Proximal: Closer to the point of reference; towards the center of the body.

Sagittal: The plane parallel to the long axis of the body separating the body into left and

right portions.
Superior: Toward the head end of the body; upper
Trabecular: See cancellous bone.
Transverse: Placed crosswise, at a right angle to the long axis of a part.

T-score: How much your bone density is higher or lower than the bone density of a

healthy 30-year old adult of the same ethnicity and sex.
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