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Lay Abstract 

Diagnosis of osteoporosis and consequently hip fracture risk is based on the 

measurement of bone mineral density in clinical imaging called DXA scanning. However, 

studies have shown that this method is not sufficient in identifying all patients at high risk 

of sustaining a hip fracture.  

The purpose of this work was to incorporate the geometry and bone mineral density 

distribution of the proximal femur in hip fracture risk prediction through image processing 

of DXA scans.  Two algorithms of 2D and 3D statistical shape and appearance modeling 

were implemented and evaluated in a cadaveric study (comparing the predicted fracture 

load to measured ones) as well as a clinical study (comparing the fracture predictions to 

the fracture history of patients).  

The results indicated that new techniques can enhance hip fracture risk estimation 

compared to the clinical standard method, and hence the devastating injury can be 

prevented through applying protective measures. 
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Abstract 

Hip fractures in older adults have severe effects on patients’ morbidity as well as 

mortality, so it is crucial to avoid this injury through the early identification of patients at 

high risk. Currently, the diagnosis of osteoporosis and consequently hip fracture risk is 

done through the measurement of bone mineral density by a dual-energy X-ray 

absorptiometry (DXA) scan. However, studies show that this method is not accurate 

enough, and a high percentage of patients who sustain a hip fracture had non-osteoporotic 

DXA scans less than a year before the incidence.  

In this research, to enhance the hip fracture risk prediction, the effect of a femur’s 

geometry and bone mineral density distribution was considered in the hip fracture risk 

estimation. This was done through 2D and 3D statistical shape and appearance modeling 

of the proximal femur using standard clinical DXA scans. To assess the proposed 

techniques, destructive mechanical tests were performed on 16 isolated cadaveric femurs. 

Also, through collaboration with the Canadian Osteoporosis Study (CaMos), the proposed 

statistical techniques to predict the hip fracture risk were evaluated in a clinical population 

as well. 

The results of this study showed that new techniques can enhance hip fracture risk 

estimation; in the clinical study, 2D and 3D statistical modeling were able to improve 

identifying patients at high risk by 40% and 44% over the clinical standard method. Also, 

the percentage of correct predictions using 2D statistical models did not differ significantly 

from the 3D predictions. Therefore, by applying these techniques in clinical practice it 
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could be possible to identify patients at high risk of sustaining a hip fracture more 

accurately and eventually reduce the incidence of hip fractures and the pain and social and 

economic burden that comes with it. 
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CHAPTER 1- Introduction 

Overview: Hip fractures in older adults with osteoporosis are a 

significant cause of morbidity and mortality, and due to the associated 

complications, it is crucial to identify people at high risk so that these 

injuries can be prevented through protective measures. Currently, 

diagnosis of osteoporosis and consequently hip fracture risk is done 

through the measurement of bone mineral density (BMD) in the proximal 

femur; however, studies have shown that this method is not effective enough. 

Therefore, more accurate methods with higher sensitivity are required to 

correctly identify patients at high risk. This chapter outlines the anatomy of 

the proximal femur and hip, a summary of statistical analyses used in this 

thesis, a review of the factors that have an effect of the femur’s structural 

integrity, and evaluation techniques. It concludes with the study’s overall 

goal, objectives, the corresponding hypotheses, and a thesis overview1. 

1.1 Motivation  

Osteoporosis is a generalized skeletal disorder in which a reduction in Bone Mineral 

Density (BMD) decreases the bone’s strength, which may result in an increased risk of 

fracture.  This disease is most common in older adults and is the main reason for a broken 

bone among them [1]. A previous study has shown that osteoporotic fractures occur more 

 
1 Due to the interdisciplinary nature of this work, a glossary of anatomical terms is included as Appendix A.   
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frequently than heart attacks and strokes combined in the United States [2], and with the 

global aging population, these numbers are expected to rise in the coming years. 

The hip is one of the most common sites affected by osteoporosis, the fracture of 

which has a severe effect on the patient’s morbidity and mortality. A study in 2009 [3] 

showed that there is an 8% to 36% excess mortality rate for patients one year after hip 

fracture, compared to adults without one. Hip fractures are not only associated with pain 

and reduced quality of life for the patients but also are responsible for high health care costs 

for society [4]. A large percentage of patients who suffer from hip fractures never regain 

the same level of functional independence as before and need to live in assisted living 

facilities [5]. In addition, many hip fracture patients have also multiple health issues that 

negatively affect recovery time [6]. Economically speaking, the acute cost for treating hip 

fractures in Canada annually is about $620 million in comparison with $553 million for all 

other fragility fractures combined. Adding indirect expenses, the cost associated with 

osteoporosis can go as high as $3.2 billion each year, only in Canada [7]. Therefore, it is 

crucial to prevent fractures from happening through early identification of people at 

greatest risk of sustaining the injury, who may then use protective measures such as hip 

protectors [8], energy attenuating floors [9], targeted exercise [10], and pharmacological 

interventions [11]. 

Currently, the primary diagnosis of osteoporosis relies on the measurement of the 

Bone Mineral Density (BMD) derived from a Dual-energy X-ray Absorptiometry (DXA) 

scan [12]. The measured BMD is normalized to the mean and standard deviation of the 
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BMD of a young adult reference population to calculate the T-score (which represents the 

number of standard deviations below or above the average). According to the World Health 

Organization (WHO), a patient with a T-score of -2.5 at the hip or spine is considered to 

suffer from osteoporosis [13]. Some studies have shown that using the BMD measurement 

from the DXA scans alone is not sufficient in identifying all patients at risk of a hip fracture, 

and a  large proportion of hip fractures occur in women with a non-osteoporotic diagnosis 

based on a DXA scan [14,15]. The urgent need to improve the assessment of fracture risk 

in older adults has led researchers toward using numerical analyses such as finite element 

analysis (FEA) and image processing techniques. 

Finite element analysis has great potential for predicting the strength of bones since 

it gives information about the complete state of strain and stress throughout an object [16].  

It can provide 3D information about the structure of the bone as well as it’s BMD 

distribution, yielding potentially the most accurate method to predict the bone’s behavior 

under mechanical loading [17–22]. However, the implementation of FEA in clinical 

practice is disputed due to the substantial computation time, accessibility, and high level 

of radiation exposure (e.g. Computed Tomography (CT)- based FEA). There are also a fair 

number of challenges in validating the results of these models. Therefore, it is anticipated 

that DXA scans will remain for the foreseeable future the primary means of osteoporosis 

diagnosis and subsequently hip fracture risk [23]. 

Femur structural strength depends on its geometry, spatial BMD distribution, and 

the structure of the trabecula [24]. The clinician’s gold standard for predicting fracture risk 
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is only based on the average areal BMD (aBMD) in certain regions, so there is potential to 

develop better methods for predicting fracture risk based on the factors mentioned above. 

Therefore, the overall purpose of this research was to apply various image processing 

techniques to DXA scans to investigate their potential as tools to identify patients at high 

risk of sustaining a hip fracture in comparison to the standard method. To examine the 

accuracy of the techniques the results were evaluated through both an isolated cadaveric 

femur study and a clinical population study. 

1.2 Hip and Femur Anatomy 

The femur is the bone of the upper leg (thigh) and is the strongest and longest bone 

in the human body. The round head of the femur forms a ball-and-socket joint with the 

concave part of the pelvis known as the acetabulum [25]. This joint is called the hip and is 

held together by strong surrounding ligaments. The upper part of the femur (close to the 

pelvis) is called the proximal femur, and can be classified into four regions: the femoral 

head, neck, trochanteric, and subtrochanteric areas (Figure 1.1). 

The femoral head is roughly a hemispherical structure that sits in the hip joint, and 

also is adjacent to the femoral neck.  Its main purpose is to provide a smooth articulation 

with the acetabulum with a large range of motion, and accept load from the pelvis and 

transfer it to the diaphysis by way of the neck. The femoral neck offsets the head from the 

long axis of the femur and is the bridge between the head and the trochanteric area [26]. 

The trochanteric area is located between the femoral neck and femoral shaft (also known 

as diaphysis), and has two major protrusions. The lateral (further from the mid-line of the   
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Figure 1.1: The Anterior View of the Proximal Femur. 

The overall purpose of the proximal femur is the hip articulation, transferring load 

in multiple directions to the strong diaphysis, and also providing a site for muscle 

attachments. It can be divided into four regions: femoral head, neck, trochanter, and 

subtrochanteric areas (a part of the femoral diaphysis). 
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body) and more prominent one is called the greater trochanter and the smaller one on the 

medial (close to the mid-line of the body) aspect is called the lesser trochanter. The 

trochanteric region performs as an important muscle attachment site. The subtrochanteric 

area is defined as part of the femoral diaphysis that is situated approximately below the 

lesser trochanter and is the bridge between the femoral trochanter and the rest of the femoral 

shaft [27].   

1.3 Factors Affecting the Hip Fracture Risk and Current Evaluation Methods 

The factors affecting the risk of sustaining a hip fracture in older adults can be 

classified into three categories of 1) bone strength, 2) fall probability, and 3) fall impact 

force.  

The strength of the proximal femur depends on its material properties, which can 

be evaluated by the average BMD measured in a DXA scan. However, it should be noted 

that only 70% of bone consists of mineral content and the rest is organic materials and 

water [28]. Hence, considering only the BMD as a representation of the material properties 

can be a simplifying assumption. In addition to the material properties, the quality of the 

material (e.g. trabecular quality, and presence of microdamage) [29,30], the distribution of 

the bone density [31], and the geometry of the bone [32] are other contributing factors to 

the structural integrity of the proximal femur. 

The probability of sustaining a fall depends on many personal and clinical factors. 

Some of these factors rely on how much a patient is prone to be in a high risk situation (e.g. 

level of activity, and equipment assisted walking ) [33], and the others are related to the 
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patient’s balance maintenance (e.g. age, cognitive issues, comorbidities, and reflexes) [34]. 

Therefore, in addition to the strength status of the bone, personal and clinical factors play 

an important role, too. 

The last category of factors that contribute to the hip fracture risk is the force that 

is experienced during a fall, since an acute fracture (not a fatigue fracture) is sustained only 

when the experienced force exceeds the strength of the bone [28]. The amount of force 

during a fall depends on hip impact velocity, soft tissue damping, and the effective mass 

during the impact [35]. Most of these factors rely on the anthropometric measurement of 

the person. For example, a taller person most likely experiences a higher impact velocity, 

and a person with a higher body mass index most likely benefits more from the soft tissue 

energy damping during an impact onto the hip (i.e. more mass for their height, therefore 

thicker soft tissue over the hip). Both height and weight, as well as body composition, 

influence the effective mass during the impact. Also, studies have shown that the condition 

in which the fall is initiated, the direction of the fall, and reflexes to avoid the fall would 

affect impact velocity and effective mass as well [35]. 

Considering many elements are affecting the risk of sustaining a hip fracture, it is 

worth noting that the main focus of this thesis is to predict the fracture risk based on the 

frameworks consisting of factors that affect the structural integrity of the proximal femur 

with regards to the feasibility of implementing them in clinical practice. However, in some 

studies, additional aspects (e.g. age, BMI, and sex) have been added to the prediction model 

as well. 
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1.4 Mathematical and Statistical Analyses 

Various statistical and mathematical analyses have been used in this field and hence 

are reviewed herein.  

1.4.1 Principal Component Analysis 

Principal Component Analysis (PCA) is a mathematical technique to reduce the 

dimensionality of large and complex datasets while preserving as much variability as 

possible or needed [36]. This method is mostly used as an approach to summarize the main 

characteristics of a dataset and also to make predictive models. Typically, by doing PCA 

the data are transformed into a new coordinate system where the largest variance can be 

found along the first axis of the new coordinate system (first principal component), and the 

next largest variance is found along the second axis (second principal component), etc. 

[37]. The proportion of variance explained by each principal component is equal to the 

eigenvalue of that principal component (eigenvector). 

Conceptually, PCA can be considered as fitting an m-dimensional ellipsoid to the 

data with each axis of the ellipsoid being a principal component. If a specific axis is very 

small, that axis could be eliminated resulting in the loss of a small portion of the data [37]. 

The fundamental concept of PCA involves having a dataset (matrix X) consisting 

of ‘p’ columns as variables and ‘n’ rows as observations (each observation has p variables). 

This permits a linear combination of the matrix columns to be found that has the maximum 

variance [36], which can be calculated through eigenvalue decomposition of the covariance 
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matrix of the original data. Some of the main advantages of PCA are reduced complexity, 

lack of redundancy in the data (given the orthogonal components), and reduction in noise 

(since only the main variations are considered, and small variation by the noise are 

ignored). However, the main disadvantage of PCA is that even an obvious feature could be 

disregarded if not present in the training set; therefore, having the right training set can 

have a significant impact on the results [38].  

1.4.2 Logistic Regression Analysis 

Logistic regression analysis in statistics is used to model the probability of certain 

outcomes. A binary logistic model has dependent variables with two possible outcomes 

(e.g. fractured vs. non-fractured), labeled as zero and one. In this model, the logarithm of 

odds (p/(1-p), where p is the probability), is a linear function of independent variables that 

could either be binary or continuous. The calculated probability is between zero and one, 

and the function that transforms the logarithm of odd to the probability is called the logistic 

function [39].  

Some of the advantages of logistic regression analysis are that the input does not 

require any scaling, the output is well-calibrated predicted probabilities, it does not require 

too many computational resources, it is easy to implement, and efficient to train [40]. The 

main disadvantages of this method include not being able to solve non-linear problems and 

being vulnerable to overfitting, which is the overreaction of the predictive model to small 

fluctuations in the training data. This might happen when there are too many variables 
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relative to the number of observations; however, using cross-validation can help to avoid 

overfitting [41]. 

1.4.3 Leave-one-out Cross-Validation 

Cross-validation is a statistical method that is used to evaluate how a predictive 

model performs in practice, and its main goal is to assess the model’s ability to predict the 

outcome for new data that were not used in creating it. Cross-validation uses two datasets: 

first, the training set in which the known data are trained to predict the output, and second, 

a testing set that uses the trained function created in the training set to predict the output 

[42]. 

The leave-one-out cross-validation is a particular form of cross-validation that involves 

using one observation in the testing set and ‘n-1’ (n is the number of observations) 

observations in the training set. To predict the outcome for each observation, the model has 

to iterate ‘n’ times (Figure 1.2). When using the leave-one-out cross-validation, there is 

less bias and also no randomness of choosing a testing set and training set from the 

observations [41], which makes this method highly desirable. However, this method is 

computationally expensive (time and power), especially if the dataset is very big. 
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Figure 1.2: Diagram of Leave-one-out Cross-Validation. 

In each iteration, one observation is the test data and the rest of the observations are 

the training data, the test error rate is the average of all n errors, the light and dark 

blue represent different types of data (e.g. fractured and non-fractures subjects). 
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1.4.4 Receiver Operating Characteristic Curve 

The Receiver Operating Characteristic (ROC) curve is a widely used [43–46] 

graphical plot that demonstrates the diagnostic ability of different predictors based on 

various thresholds, and it is created by plotting the true positive rate against the false 

positive rate. The true positive rate is also called sensitivity, and the false positive rate can 

be calculated as ‘1-specificity’ [47]. The area under the ROC curve is the probability that 

a predictor ranks a randomly chosen positive higher than a randomly chosen negative, or 

in other words, classifies a higher risk over a lower risk subject correctly [47]. Therefore, 

the higher the area under the curve, the stronger a model is in its diagnostic ability. 

One of the main advantages of using the ROC curve is that it allows choosing an 

optimum threshold based on the desired trade-off between sensitivity and specificity, also 

the curve makes the comparison of various diagnostic tests graphically simple. However, 

in the case of limited sample size, the plot might look very jagged. 

1.5 Texture Analysis 

Texture analysis of radiographic images is a tool to assess the architecture of 

trabecular bone, and provides insight into the bone quality instead of bone quantity [48]. 

Several methods of texture analysis exist to estimate the trabecula structure indices from a 

2D image [49]. The basis of most of these methods (e.g. homogeneity index (HI), trabecular 

bone score (TBS)) is on calculating the gray-level co-occurrence matrices (GLCM). The 

GLCM is a matrix defined over an image that represents the co-occurred (pixels of the 
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same value) grayscale values in a certain direction and offset, and is used to define the 

texture of an image. 

Homogeneity index is a function that uses the GLCM and represents the spatial 

distribution of gray levels in a picture [48]. When applying HI to a trabecular bone image, 

it acts as an indication of the trabecular connectivity, where a higher HI is correlated with 

higher trabecular connectivity. A modified HI was used in a clinical study [30] to 

investigate its ability to predict femoral neck fractures, and their results showed that the 

modified HI  was a better predictor of the fracture risk than BMD alone. 

Trabecular bone score (TBS) is another measure of bone texture correlated with 

bone microstructure, and it relies on acquiring information from the measurement of the 

statistical properties of image pixels. The logic behind calculating TBS is that in a 2D 

image of bone with high trabecular density, it is more likely to have a large number of pixel 

value variations of small amplitude. On the other hand, when the density of the trabeculae 

is low and the bone is porous, the 2D image is more likely to have a low number of 

variations of high amplitude [49]. 

Generally, a low TBS is associated with a porous and not well-structured bone, 

whereas an elevated TBS represents a well-structured trabecula architecture [50]. TBS is 

positively correlated with trabecular connectivity density, bone volume fraction, and 

trabecula numbers. It is also negatively correlated with trabecular separation indices. It is 

worth mentioning that TBS association with trabecular thickness is not yet determined, 

since in some studies it showed a negative correlation e.g. [51], whereas in another study 
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it showed a positive correlation [52]. In practice, TBS is typically calculated from a 

standard lumbar spine DXA image, using commercially available software [53]. 

1.6 Direct Measurement of Geometry and BMD Distribution  

To consider the effect of geometry from a 2D image either the direct measurement 

of geometrical features or recreating the model of the proximal femur (either 2D or 3D) 

based on a DXA image has been used. The direct measurement of BMD distribution has 

not been investigated frequently and BMD distribution was usually investigated along with 

the geometry (e.g. in Hip Structural Analysis).  

1.6.1 Direct Measure of Geometry   

Some studies have investigated the relationship between the geometry of the femur 

and the types of hip fractures [54–56], while in other similar ones the association of the hip 

fracture with different geometry traits such as neck-shaft angle (NSA), hip axis length 

(HAL), and femoral length width (FNW) in subjects with hip fractures and a control group 

have been explored (Table 1.1). Although these studies provide very useful information, 

not all of them are in agreement with each other. The strength of a complex shape like the 

proximal femur depends on its entire geometry and cannot be limited to some simplified 

geometrical traits. To capture all contributing factors a powerful tool in catching high 

dimensional variability is needed. 
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Table 1.1: Summary of Research Studies of Hip Geometry in Fracture vs. 

Control Groups. 

The table is adapted from [57], NSA: neck-shaft angle, HAL: hip axis length, FNW: 

femoral neck width, N/A: not available or not measured. 

Study 

Number of subjects 

 

Geometric Feature – Fracture vs. Control 

Fracture Control NSA HAL FNW 

Gnudi et al. [55] 181 366 Increase Increase Not significant 

Bergot et al. [58] 49 98 Not significant Increase N/A 

Partanen et al. [59] 70 40 Increase Not significant Not significant 

Alonso et al. [60] 411 545 Increase Not significant Increase 

Gnudi et al. [61] 111 329 Increase Increase Increase 

Michelotti and Clark [62] 43 119 N/A Not significant 
Increase 

Center et al. [63] 36 224 N/A Not significant N/A 

Boonen et al. [64] 135 75 N/A Increase N/A 

Faulkner et al. [32] 64 134 Not significant Increase Not significant 
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1.6.2 Hip Structural Analysis 

Hip structural analysis (HSA) is a measure of structural properties of proximal 

femurs. These properties are a combination of geometrical and mechanical characteristics 

of the bone at various cross-sections [65]. More specifically, HSA accounts for the outer 

and inner diameter of the bone, cross-sectional area (excluding the bone marrow and 

pores), estimated cortical thickness, cross-sectional moment of inertia, section modulus 

(second moment of area divided by the maximum diameter at that cross-section), buckling 

ratio (ratio of the outer diameter to the cortical thickness), neck-shaft angle, and hip axis 

length. These measurements are done at three locations of the narrowest point of the 

femoral neck, trochanteric region, and femoral shaft [66–68]. 

Some studies have investigated the average measures of HSA in fractured and non-

fractured groups, or have assessed if HSA can enhance hip fracture risk prediction [68–

70]. The results of these studies mostly showed that there was a significant difference 

between the fractured and non-fractured groups [69]; however, not all variables added 

discriminative value to hip fracture risk prediction [68]. The International Society of 

Clinical Densitometry (ISCD) published a position statement in 2015 that HSA should not 

be used to assess hip fracture risk with an exception for femur axis length [71]. 

1.7 Model Reconstruction 

One method to investigate the effects of geometry and BMD distribution on hip 

fracture risk is to reconstruct the 2D or 3D shape of the proximal femur from a DXA scan. 
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In 2D model reconstruction, the results are mostly used to measure specific traits or 

investigate the correlation between its variables (from the reconstruction procedure) and 

the fracture risk. In 3D model reconstruction, in addition to these applications, the 

estimated model could be used as an input for FEA. 

Most of the studies that propose a technique to reconstruct the shape and BMD 

distribution of the femur are based on a two-stage procedure, in which a template shape of 

the femur is created based on available 2D or 3D models, and stage two is about deforming 

the template shape to match the data from any new 2D image. These methods can be 

categorized based on their different approaches in creating the template shape, techniques 

of altering the template shape to match the 2D image, consideration of BMD distribution, 

and type of 2D image used.  

1.7.1 Recreating the 2D Model  

Baker-LePain et al. [72] used a Statistical Shape Modeling (SSM) algorithm 

proposed by Cootes and colleagues [73] on the X-ray radiographs of hips in a population 

of clinical subjects with and without hip fractures. To make the template model, landmarks 

were assigned on the contour of the femur in the training set and after aligning the points, 

the average of the landmarks was calculated to find the template shape.  Principal 

Component Analysis was then used to find the main modes of variation in the shape of the 

femur. To describe the shape of any new femur, the template model was adjusted by the 

main modes of variation to minimize the difference between the estimated geometry and 

the real geometry of the bone. 
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The results of this study showed that by using SSM and logistic regression analysis, 

the area under the ROC curve to predict the risk of a hip fracture was improved 

significantly; however, it is not clear if they used cross-validation or any other statistical 

method to make independent predictions. This study only included the effect of geometry 

in fracture risk and did not investigate BMD distribution, and also an X-ray image in 

addition to the DXA image was used for the analysis. 

Goodyear et. al [44], adopted Statistical Shape and Appearance Modeling (SSAM) 

to account for both the effects of geometry and BMD distribution of the proximal femur in 

hip fracture risk. They used an open-source software (Active Appearance Modelling 

Toolkit Software Manchester University, UK) to create SSAM, and then compared the 

modes of variation between two groups of subjects who had sustained a hip fracture and 

who had not. Subsequently, they performed a stepwise logistic regression analysis to only 

include the variable in the risk assessment that showed a significant effect on the outcome. 

Their results demonstrated that using only some specific modes in addition to the BMD 

could increase the area under the ROC curve compared to using the BMD alone. However, 

using stepwise regression is criticized due to the test bias, and also including fewer 

independent variables in the model than the total number of variables in an effort to make 

the fit look better.   

1.7.2 Recreating the 3D Model Based on a Template Model 

In 2009, Langton et al. [74] developed a method to estimate the 3D shape of the 

proximal femur from the anterior-posterior projection of CT scans (to be used as the 2D  
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image). First, three different maps from CT scan images were derived for each of the bones 

in the training set: 1) the ‘offset’ map, defined as the number of voxels from a pre-

determined plane to the first bone voxel in that column, 2) the ‘depth’ map, defined as the 

number of voxels between the first and the last bone voxel along the specific column, and 

3) the ‘BMD’ map, defined as the integrated BMD content along a particular direction 

divided by the area under calculation. Therefore, the shape of each femur could be 

described by the offset and depth maps, considering they represented the femur contour in 

the frontal plane and how much thickness it had in various locations, and the BMD map 

was used as a 2D image.  

The process of creating the template shape from these three maps had five stages. 

First, landmarks were assigned to the 2D image (BMD map), so that they accounted for the 

visible shape features of the femur. Then, general Procrustes analysis (GPA) was used to 

eliminate the effect of translation, rotation, and scaling among different landmarks’ 

coordinates in the 2D BMD images. In stage three, the mean of each specific landmark 

among the training sets was calculated to obtain the average landmarks’ coordinates, and 

then in stage four, the offset and depth maps of each femur in the training sets were warped 

to the average landmarks’ coordinates. Finally, the pixel-by-pixel average of the offset and 

depth images were calculated, and the 3D shape represented by these maps was considered 

as the template model. After these steps, the template shape (3D grid) was ready to be 

altered to match any new image.  
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To match the 3D shape to a new 2D image, first, the landmarks were assigned to 

the 2D image, and GPA was applied for alignment and scaling purposes, and then the 

average 3D grid was warped to the landmarks’ positions by thin-plate splines (TPS, an 

interpolation technique).  The result of this process is a 3D estimation of the shape that 

would have created the 2D image. One of the main limitations of this method was that it 

could not capture the right shape if there was any curve with a high angle in the transverse 

plane, and also, it was only able to estimate the 3D shape of the proximal femur, and did 

not provide any insight into the BMD distribution. 

Vaanaanen et al.[75] used this technique and modified it so it could account for the 

BMD distribution of the proximal femur to some degree. In their method, the BMD 

distribution was considered based on the BMD map. This meant that it could address the 

medial-lateral and superior-inferior variation but could not estimate anterior-posterior 

variation in the BMD distribution. 

In 2012, Vaannanen et al. [76] proposed another method to create a 3D model of a 

femur from a 2D BMD image derived from the anterior-posterior projection of CT scan 

images. Like other methods, this technique started with creating a template model from a 

training set. Landmarks were assigned to the 3D shapes of the femurs within the training 

set, and GPA was performed to align and scale the landmarks. Then, the mean values of 

each landmark’s position were calculated, and the CT-based 3D models within the training 

set were warped to the mean position of the landmarks by TPS. Next, the average of the 
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voxel-by-voxel content of the warped images was calculated, so that the template model 

included information both about the geometry and BMD distribution throughout the bone.  

To estimate the 3D shape from a 2D DXA image, landmarks were assigned to the 

estimated DXA image (anterior-posterior projection of the CT scan), and then the 3D 

template shape was warped to the BMD image’s shape by matching to the landmarks’ 

locations. In the end, the 3D volumetric BMD distribution in the warped templated shape 

was normalized to match the projection of the 3D shape with the BMD image. The 

advantage of this method was that GPA and TPS were used fully in 3D, so the changes in 

the anterior-posterior direction were captured better than in previous methods. However, 

the alteration of the template model was only based on matching the landmark location, 

and the dependant BMD variations inside the template models could not be integrated into 

the final model. 

1.7.3 Recreating the 3D Model Based on Geometrical Parameters 

Thevenot et al. [77] proposed a method to derive a 3D model of femur out of a 2D 

image, with a focus on creating trabecular and cortical bone based on some geometric 

parameters. The 3D model generation was divided into three steps: 3D shape generation, 

meshing, and assigning material properties. To create the 3D shape, a set of eight geometric 

parameters were defined: femoral neck axis length, neck-shaft angle, trochanteric width, 

femoral head diameter, femoral neck diameter, femoral shaft diameter, femoral shaft 

cortex, and calcar femoral cortex width. Then, the relationships between these parameters 

and the femur overall geometry were established based on the information from CT scans 
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of seven femurs in the training set, and the impact of each parameter on the overall shape 

was quantified. Next, the outer surface of the model was defined by a series of curves. The 

femoral head was assumed as a hemisphere, and the femoral neck was divided into ten 

segments. A relationship was established between each radius and the aforementioned 

eight geometrical measures. Therefore, for the reconstruction of a 3D shape from a new 

2D image, first, the geometric parameters were measured from the 2D image, and then 

based on the established relationships from the training set, the shape of the femur was 

estimated, and a smoothed solid was created. 

The assignment of mechanical properties was based on the analysis of the trabecular 

structure from radiograph images. Young’s modulus was calculated using the homogeneity 

index (HI) adjusted by the Hounsfield Units (HU) measured in CT scan images, and the 

distribution of the material properties through the trabecular bone was based on Principal 

Tensile and Compressive System (PTS, PCS). Trabecular bone is a supportive connective 

tissue and its pattern of growth follows the course of stress lines in the bone. During the 

load transfer from the femoral head to the diaphysis, the femoral neck and part of the 

trochanteric area experience a bending moment,  this would generate tension on the lateral 

side and compression on the medial side, forming a group of trabecula to bear the load [78]. 

The group of trabecula on the lateral side that carries the tension is called PTS, and the 

ones that carry the compressive load are named as PCS [78]. 

In the study by Thevenot et al. [77], the PTS was divided into 20 sub-curves, with 

the magnitude of Young’s modulus increasing toward the femoral head. The same method 
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was applied to PCS, where it was divided into 10 sub-curves with increasing value of 

Young’s modulus toward the lower neck. The material outside PTS and PCS was assigned 

mechanical properties depending on its location, e.g. shaft, trochanter, femoral head, and 

neck. For each new model, the localization of the different regions for assigning material 

properties was based on its 2D radiograph. 

Although the reconstruction of the proximal femur geometry seemed logically 

appropriate (however very labor-intensive), the reconstruction of the BMD distribution was 

based on the assumption that specific areas of the femur have the same material properties, 

and therefore the distribution of the BMD in the bone was an oversimplification. 

1.7.4 Recreating the 3D Model Based on SSAM 

The statistical models for constructing 3D models based on 2D images are mainly 

based on active shape [73], and active appearance modeling [79], in which first a template 

model of an object is created from a large dataset. Then, the new 3D model is constructed 

by altering the template model by its modes of variation (eigenvectors) in order to 

maximize the similarity between the projection of the template shape and the 2D image. 

Whitmarsh et al. [80] proposed a method based on statistical appearance modeling 

that could derive not only the shape but also the BMD distribution throughout the femur.  

They used CT scans of femurs in the training set and assessed the accuracy of their 

technique using DXA images of clinical subjects. The template shape model was built 

based on the work of Frangi et al. [81], which used non-rigid registration of the CT volumes 
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onto a segmented reference subject with an intensity-based algorithm. After registration, 

all data were gathered into a single matrix, and principal component analysis (PCA) was 

applied, which allowed any new shape and density distribution to be described as the 

template model plus a set of eigenvalues and eigenvectors. 

For the reconstruction of a 3D shape from a 2D image, the intensity-based 3D-2D 

registration of the template model onto the DXA image was performed, whereby an 

iterative optimization process was applied to maximize the similarity of the DXA image to 

the digitally reconstructed radiograph (DRR) of the 3D model, which is a simulation of a 

2D X-ray image from a CT-scan. The generation of the DRR was based on a ray casting 

technique [82], in which a ray was cast through the volume in the direction of the projection 

(perpendicular to the DXA image plane). The density value of each pixel is the integral of 

density in the 3D model lying in the direction of the casted ray. To maximize the similarity 

between the DRR and the DXA image, the instance model together with a pose and scaling 

factor can be found through optimization to minimize the differences between the DRR 

and the DXA image in terms of femur’s contour and the pixels’ intensity. 

Vaannanen et al. [83] proposed a new method to derive the 3D model of a femur 

from a 2D DXA image by using statistical shape and appearance models (SSAM) and 

feature-based image registration. To create the template shape for SSAMs, first, the 

landmarks were registered to the 3D CT-based model of the femurs and pelves within the 

training set, and GPA and TPS were used to align, scale and warp the models to the mean 

of the landmarks’ position. Next, a template mesh was generated on the mean shape 
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considering the cortical bone separately from the trabecular and then warped back to the 

shape of each training bone in two iterations. The BMD value of each warped element was 

collected after removing GPA. The BMD values for each model in the training set were 

normalized to its mean and standard deviation. Finally, all geometry (node coordinates) 

and density information (elements’ BMD) were collected into a matrix, and PCA was 

applied to identify the eigenvectors, so that each new shape could be defined as the 

summation of the mean shape and linear combination of the eigenvectors. 

In this method, the reconstruction of each femur began with registering the DRR 

over the DXA scan. A genetic algorithm in MATLAB was used to register a combination 

of translation, rotation, scale, and mode values so that the cost function including the sum 

of the absolute error between areal BMD of the image, quality of mesh function, and 

anatomical positioning function would be minimized. In this method, the cortical bone was 

reconstructed separately, and a threshold was given to the minimum cortical thickness; 

therefore, there was an overestimation in the amount of cortical bone in the reconstructed 

model.  

1.8 Evaluation Techniques 

Several methods are used to evaluate new predictive methods, with most of the 

previous studies using either a cadaveric study or a clinical observational study. 
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1.8.1 Cadaveric Studies 

Performing destructive and non-destructive mechanical testing on post-mortem 

human specimens or isolated bones provides valuable insight into fracture mechanisms as 

well as establishing injury criteria. Some of the advantages of this technique are controlled 

orientation of loading, the feasibility of imaging the bones before testing, controlled 

loading rate, and a guaranteed fracture, whereas in a clinical population a huge cohort might 

be needed to find a few people who sustain a fracture. The main focus of validating a 

fracture risk predictor model with a cadaveric study is to predict the fracture loads by the 

proposed model and then compared to those measured in the experiment. One of the most 

important requirements to get relevant data from these kinds of tests is to simulate the 

conditions under which injury most probably occurs.  

The primary direction of falls in older adults in which hip fractures occur is a 

sideways fall onto the hip [84,85]. Many of the experimental studies that have investigated 

the risk of hip fracture have conducted quasi-static destructive tests on proximal femurs 

simulating sideways falls [86–89]. However, in reality, the incidents that lead to a fracture 

are never quasi-static or have a constant displacement rate, and are more like an impact 

[90]. Quasi-static tests are easier to implement and can be done by a standard material 

testing machine, and hence controlling the test conditions can be simpler. Also, numerical 

modeling of the quasi-static tests is less complicated. On the other hand, during an impact 

test, there is less control over the test conditions, so it is more elaborate to implement, and 
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numerical modeling is also more complicated. However, impact testing is a more accurate 

representation of the conditions in which a fracture happens. 

 One of the limitations of cadaveric studies in fracture risk prediction models is that 

further studies are still required to correlate the predicted/measured fracture load with the 

fracture risk in reality, as there are numerous personal and clinical factors that contribute 

to the incidence of sustaining a bone fracture. Some of these factors include soft tissue 

thickness, use of assistive devices, physical activity level, and patients’ lifestyle.  

1.8.2 Clinical Studies 

In contrast to cadaveric studies, studies that are performed on a group of living 

subjects provide more insights into the risk factors of sustaining a hip fracture. Some of the 

advantages of clinical studies are considering the effects of aging impairments, muscle 

activation, soft tissue, real loading direction, and including a variety of people that would 

be a better representation of the real world.   

However, performing clinical studies has more complications in terms of obtaining 

ethics approval, recruiting the subjects, resources, follow-ups, data acquisition, and data 

analysis. These studies might also require a long period to find the outcome of interest (e.g. 

only a small fraction of participants may ever sustain an injury). Therefore, various types 

of clinical studies exist to mitigate the drawbacks. 

Case-control studies are a type of observational study in which two groups of 

subjects differing in the outcome (e.g. fracture vs. non-fracture) are selected and compared 
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based on the supposed contributing factors or exposures (e.g. BMD, smoking). This type 

of study is mostly used when the outcomes of interest are rare, and the factor or exposure 

of interest is only measured in the cases (subjects who have the condition) and controls 

(subjects who do not have the condition) [46]. Case-control studies can nest in large cohort 

studies to use data collected previously in that study (nested case-control study), this way 

the cost and time of performing a new study can be avoided. In the nested case-control 

studies, usually, one to four controls (i.e. those who did not experience fracture) are 

selected for each case (i.e. those who experienced fracture), and a previous study has shown 

that using three controls could only result in a small efficiency lost [91]. 

1.9 Study Objectives  

The overall goal of this Ph.D. research was to enhance hip fracture risk estimation 

in older adults to allow early identification of patients at high risk of sustaining a fracture. 

These patients could benefit from protective and preventive measures to avoid the injury 

and all the pain, social, and economic burdens that come with it. 

Therefore, with a focus on the feasibility of implementing the proposed technique 

in clinical practice, image processing of DXA scans was investigated in this research and 

four objectives were identified.  

1.9.1 Objectives  

Objective 1: To compare the proximal femur’s strength in the quasi-static (QS) 

scenario with the impact (IM) scenario in the simulation of side-ways falls.  
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Objective 2: To analyze the shape, BMD distribution, and trabecular quality of the 

proximal femur based on the 2D statistical shape and appearance modeling of isolated 

cadaveric femurs’ DXA scans (tested in Objective 1), and investigate how the combination 

of different modes and texture analysis is correlated with the strength of the bone. 

Objective 3: To investigate the accuracy of 2D image processing of DXA scans in 

the prediction of an impending fracture in a population of subjects in a five year follow up 

after the baseline imaging using the Canadian Multicentre Osteoporosis Study (CaMos) 

database. 

Objective 4: To investigate hip fracture risk prediction by analyzing the shape and 

BMD distribution of the proximal femur based on the 3D statistical shape and appearance 

modeling of DXA scans, and compare the results with 2D SSAM predictions using a subset 

of CaMos subjects from Objective 3. 

The corresponding hypotheses were: 

Hypothesis 1: Femurs’ strength in the impact is greater than the quasi-static one 

and the fracture patterns are different, yet highly correlated with each other.  

Hypothesis 2: At least one combination of modes from the statistical shape and 

appearance modeling can be found that is moderately to highly correlated with the fracture 

loads from the experiment.  

Hypothesis 3: The proposed technique can identify patients at high risk of 

sustaining a hip fracture more accurately than T-score. 
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Hypothesis 4: The fracture risk predictions based on 2D are comparable to and not 

significantly different from 3D predictions.  

1.10 Structure of the Thesis 

This thesis is written in a sandwich format as per the definition of the McMaster 

University School of Graduate Studies. Chapter 2 outlines comparing the fracture limits of 

the proximal femur in a sideways fall configuration in two scenarios of constant 

displacement and impact. Chapter 3 describes implementing 2D statistical shape and 

appearance modeling and texture analysis of DXA scans of cadaveric specimens to predict 

the fracture load for those femurs, and compares the results with the experimental ones. 

Chapter 4 outlines applying 2D statistical shape and appearance modeling to DXA scans 

of a clinical population from the Canadian Multicentre Osteoporosis Study (CaMos), 

predicting the hip fracture risk for them, and finally comparing the results with the BMD 

predictions and fracture history of the subjects. Chapter 5 describes creating and 

implementing 3D statistical shape and appearance modeling on DXA scans of a clinical 

population from Canadian Multicentre Osteoporosis Study (CaMos) and predicting the hip 

fracture risk for them and comparing the results with the 2D statistical shape and 

appearance modeling predictions. Chapter 6 summarizes the conclusions of this thesis, 

outlines the limitations of this research as a whole, as well as discusses the future directions 

and clinical implications of the studies presented in this thesis.  
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CHAPTER 2 - Comparing the Fracture Limits of The Proximal 

Femur Under Impact and Quasi-Static Conditions in Simulation of 

a Sideways Fall 

Overview: In this chapter, the association of the proximal femur 

fracture load in a simulation of sideways fall in two scenarios of impact, 

and quasi-static loading rate was investigated to address Objective 1. This 

chapter has been published in the Journal of the Mechanical Behavior of 

Biomedical Materials (2020, V103, DOI: 10.1016/j.jmbbm.2019.103593). 

The proper permission from the copyright holder (Elsevier Ltd.) has been 

obtained to include the article in this thesis. 
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CHAPTER 3 - Enhancing Hip Fracture Risk Prediction by 

Statistical Modeling and Texture Analysis on DXA Images 

Overview: In this chapter, 2D SSAM and texture analysis were 

applied to the DXA scans of the cadaveric femurs to investigate whether 

these techniques can improve the hip fracture risk estimation to assess 

Objective 2. This chapter has been published in the Journal of Medical 

Engineering and Physics (2020, V78, Pages 14-20, DOI: 

10.1016/j.medengphy.2020.01.015). The proper permission from the 

copyright holder (Elsevier Ltd.) has been obtained to include the article in 

this thesis. 

  

https://doi.org/10.1016/j.jmbbm.2019


Ph.D. Thesis – F. Jazinizadeh                            McMaster University – Mechanical Engineering 

 

51 

 

 



Ph.D. Thesis – F. Jazinizadeh                            McMaster University – Mechanical Engineering 

 

52 

 

 



Ph.D. Thesis – F. Jazinizadeh                            McMaster University – Mechanical Engineering 

 

53 

 

 



Ph.D. Thesis – F. Jazinizadeh                            McMaster University – Mechanical Engineering 

 

54 

 

 

 



Ph.D. Thesis – F. Jazinizadeh                            McMaster University – Mechanical Engineering 

 

55 

 

 



Ph.D. Thesis – F. Jazinizadeh                            McMaster University – Mechanical Engineering 

 

56 

 

 



Ph.D. Thesis – F. Jazinizadeh                            McMaster University – Mechanical Engineering 

 

57 

 

 

  



Ph.D. Thesis – F. Jazinizadeh                            McMaster University – Mechanical Engineering 

 

58 

 

CHAPTER 4 - Advanced 2D Image Processing Technique to Predict 

Hip Fracture Risk in an Older Population Based on Single DXA 

Scans 

Overview: To assess Objective 3, 2D SSAM was applied on the DXA 

scans of a group of subjects from the Canadian Multicentre Osteoporosis 

Study, that were monitored for at least five years with their fracture history 

available. This chapter has been published in the Osteoporosis 

International (2020, DOI: 10.1007/s00198-020-05444-7). the proper 

permission from the copyright holder (Springer Nature) has been obtained 

to include the article in this thesis. 
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 CHAPTER 5 - Comparing the Fracture Limits of The Proximal 

Femur Under Impact and Quasi-Static Conditions in Simulation of 

a Sideways Fall 

Overview: In this chapter, 3D SSAM was applied to the DXA scans 

of a group of subjects from the Canadian Multicentre Osteoporosis Study, 

and the fracture risk predictions were compared to the 2D SSAM and the 

standard clinical methods to address Objective 4. This chapter has been 

submitted to the Annals of Biomedical Engineering, and upon acceptance 

and publication, the proper permission from the copyright holder will be 

obtained to include the article in this thesis. 
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5.1 Abstract 

Osteoporosis is a disease most common in older adults that can cause fragility 

fractures in this population. Due to the adverse impacts of hip fractures on patients’ lives, 

it is crucial to enhance the identification of people at high risk through accessible clinical 

techniques to facilitate the implementation of protective measures.    

Due to the accessibility, low cost, and low radiation dose, DXA scans remain the 

preferred modality for fracture risk prediction, but is limited to 2D. Reconstructing the 3D 

geometry and BMD distribution of the proximal femur could be beneficial in enhancing 

hip fracture risk predictions; however, it is associated with a high computational burden 

and requires a training set of CT scans of the proximal femur.  It is also not clear whether 

it provides a better performance than 2D model analysis. 

The DXA scans and CT scans of 16 cadaveric femurs were used to create training 

sets for the 2D and 3D model reconstruction based on the statistical shape and appearance 

modeling. Subsequently, these methods were used to predict the risk of sustaining a hip 

fracture in a clinical population of 150 subjects (including 50 fractured cases) that were 

monitored for five years in the Canadian Multicentre Osteoporosis (CaMos) study. 

The 3D statistical model was able to reconstruct the geometry and bone mineral 

density distribution of the femurs from a single DXA scan with an average geometry error 

of 1.6 mm and bone mineral density error of 0.11 g/cm³. This technique was able to 

improve the identification of patients who sustained a hip fracture more accurately than the 

standard clinical practice of using the T-score (44% improvement). The predictions from 
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the 2D statistical model did not differ significantly from the 3D ones (76% correct fracture 

prediction compared to 80% from the 3D technique). 

These results indicated that, while 3D model reconstruction might be necessary for 

further numerical analysis, to enhance hip fracture risk prediction in clinical practice 

implementing 2D statistical modeling has comparable performance with lower associated 

computational load and easier implementation. 

Keywords: hip fracture risk, proximal femur, DXA scanning, 2D statistical 

modeling, 3D statistical modeling 
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5.2 Introduction 

Osteoporosis is a disease most common in older adults, which results in low bone 

mass and micro-architectural deterioration, and can lead to a pathologic bone fracture [1]. 

The hip (proximal femur) is one of the most common sites affected by osteoporosis, the 

fracture of which can result in severe morbidity and mortality [2,3]. Patients with an early 

diagnosis of osteoporosis can benefit from protective measures to prevent these fractures 

[6,5,4]. Currently, the most common method for the diagnosis of osteoporosis relies on the 

measurement of bone mineral density (BMD) from a dual-energy X-ray absorptiometry 

(DXA) scan [1]. However, studies have shown that the DXA scan alone is not sufficient in 

identifying all patients at high risk of sustaining a hip fracture [8,7]. 

DXA scans mainly measure the average BMD in certain regions of the bone, from 

which the mechanical properties of the bone can be inferred; however, the strength of a 

femur depends on its geometry [10,9], BMD distribution pattern [12,11], and trabecula’s 

quality [14,13] as well. Many studies have tried to incorporate these factors in fracture risk 

assessments to enhance the identification of patients at a higher risk of sustaining a fracture 

[15]. Considering the effect of a femur’s geometry and BMD distribution can be done in 

2D using DXA scans and X-ray radiographs, or in 3D using Computed Tomography (CT) 

scans and Magnetic Resonance Imaging (MRI) [16]. While 3D imaging provides more 

insight into the whole geometry and density distribution of the bone, it is not always 

feasible to use 3D imaging, due to the expense, time, accessibility, and radiation levels. 

Therefore, it is anticipated that 2D imaging (DXA scans) will remain as the primary method 

of diagnosing osteoporosis and consequently fracture risk [17].  
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To enhance hip fracture risk prediction, researchers have performed 2D analysis on 

medical images (either DXA scan or another X-ray based radiography of hip) and their 

results have shown that it has noticeable improvements over BMD alone [19,18,16]. Also, 

to gain the benefits of 3D imaging, other studies have tried to develop 3D structures from 

2D scans, using statistical modeling [22,20,21]. This method allows inference of both 

geometry and architecture of bones in 3D based on a template model that is created from a 

training set. Reconstruction of the 3D model of the proximal femur based on a 2D DXA 

image can provide direct measurement of the 3D features that otherwise cannot be 

evaluated in a 2D image [23]. The generated 3D model can also be used for further 

numerical analysis such as finite element analysis [24]. Some studies have investigated hip 

fracture risk by considering the effect of the femur’s shape and BMD distribution through 

3D statistical models, and their results showed that fracture risk estimation was 

substantially improved compared to using traditional BMD evaluation [20,25]. 

While generating 3D models might be a necessity in further numerical analysis, it 

is not completely clear if recreating the 3D model from a 2D image to only investigate the 

geometry and BMD distribution pattern in the femur will have an advantage over 

investigating the geometry and BMD distribution pattern in 2D alone. Since the 2D and 3D 

model studies to estimate hip fracture risk were performed based on different training sets 

and testing groups, the potential to do any direct comparison between them is limited. 

Therefore the aims of this study were 1) to create 3D shape and BMD distribution models 

of the proximal femur based on DXA scans, 2) investigate the accuracy of the proposed 

3D model reconstruction in comparison to CT scans, and 3) apply 2D and 3D model 
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analysis methods to a clinical population to estimate their hip fracture risk and compare it 

to their fracture history in a five-year period after the baseline. 

5.3 Material and Methods 

This study had two phases: in phase one, the 2D and 3D analyses were developed 

using cadaveric specimens (which had 2D and 3D images).  In phase two, the techniques 

were tested and evaluated on a clinical population who had 2D images and fracture history 

over five years. 

Sixteen isolated cadaveric femurs were used for the training sets in this study [26]. 

Each femur was scanned with a DXA scanner (Hologic Discovery A, Hologic, Inc., 

Marlborough, MA, USA) and a CT scan machine (GE LightSpeed, GE Healthcare, 

Chicago, Illinois, USA) with 0.625 mm slice thickness, 0.7 mm in-plane resolution, and 

120kV tube voltage, to obtain the geometry and 2D areal and 3D spatial BMD distribution 

within the bone.  

5.3.1 3D Model Reconstruction from DXA Scan 

Image processing was performed using MATLAB Image Processing Toolbox 

(MATLAB R2019b, MathWorks, Natick, Massachusetts, US). Reconstruction of the 

model consisted of two stages: 1) creating the BMD and geometry template models, where 

the 3D template models were created and the main modes of variation in the geometry and 

BMD distribution in the training set were found, and 2) assessing a new scan, where each 

new DXA scan can be described by the template model plus some variation from it based 

on the calculated main modes of variation from the first step. The values of these modes 
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were estimated through an optimization process to minimize the differences between the 

calculated model and the real DXA scan. 

5.3.1.1 Creating the BMD and Geometry Template Models 

To create the 3D SSAM, the CT scans of the cadaveric femurs were used to generate 3D 

models for the training set (MIMICS 22.0, Materialise NV, Leuven, Belgium). For each 

scan, an STL file was generated to represent the geometry of the proximal femur and a 

voxel-based mesh was created to describe the BMD distribution in the bones. Twenty-

seven geometric landmarks were assigned to each of the models (Figure 5.1). The 

landmarks were placed on the exterior surface of the bone and were based on the 

identifiable anatomical features. After aligning and removing the effect of translation, 

rotation, and scaling (using General Procrustes Analysis, GPA) the average landmark 

coordinates were calculated. Then all models were warped to the average landmark 

coordinates. The minimum number of vertices from the CT scan 3D model creation was 

2255 vertices, so these were chosen as the reference vertices and corresponding vertices in 

other 3D models were selected automatically by a closest point algorithm. The average 3D 

shape was thus calculated (creating the template geometry model), and then all 3D models 

as well as the voxel-based mesh were warped to the average model. Hounsfield Unit (HU) 

values were then captured in 1x1x1 mm voxels for each warped 3D model and normalized 

to the mean and standard deviation of that model. They were then averaged for all 

specimens to create the template BMD model. Finally, Principal Component Analysis 

(PCA) was used on both geometry and BMD data to find the main modes of variation in 

them, which were then gathered in a matrix and PCA was used again to find the main  
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Figure 5.1 Flowchart of Creating the 3D Statistical Shape and Appearance 

Models. 

From the CT scans of isolated cadaveric femurs an STL file to show the surface 

geometry and a voxel-based mesh to show the BMD distribution was generated. 

LM: Landmarks, PCA: Principal Component Analysis, HU: Hounsfield Unit, 

BMD: Bone Mineral Density. 
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Modes of variation for SSAM combined.  

5.3.1.2 Assessing a New Scan  

To create the 3D model of each femur from its DXA scan, 19 landmarks were 

assigned on the contour of the femur. Next, the geometry template model was adjusted by 

its main modes of variation to minimize the difference between the DXA scan and anterior-

posterior projection of the 3D model (Figure 5.2). After estimating the geometry modes, 

the femur’s shape from the 2D DXA scan was warped to the anterior-posterior projection 

of the 3D geometry template, and then the gray value of each pixel was captured and 

normalized to the mean and standard deviation of all pixels for that scan. In the anterior-

posterior projection of the 3D template model, the intensity of the voxels (representing the 

BMD) along the sagittal axis were accumulated to find the each pixel’s intensity in the 2D 

projection, and then the intensity of each pixel was normalized to the mean and standard 

deviation of all pixels (in the 2D projection). 

The 3D BMD template model was changed by its modes, and in each iteration, the 

anterior-posterior projection of the adjusted template was compared to the warped DXA 

scan to minimize the differences between the two and eventually finding the BMD modes. 

In the end, based on the combined geometry and BMD models the combined (SSAM) 

modes of variations were calculated.  

5.3.2 Evaluation of the 3D Model Reconstruction 

To evaluate the accuracy of the 3D model reconstruction, the leave-one-out cross-

validation technique was used on the 16 cadaveric specimens. So, to create the 3D model  
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Figure 5.2 The flowchart of finding the modes for a new DXA scan.  

The modes are found through an optimization process to minimize the difference 

between the anterior-posterior projection of the template model and the DXA scan. 
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of each femur from its DXA scan, the CT scans of the other 15 specimens were used in the 

training set to create the template models and find the main modes of variations. After 

reconstructing the 3D model for each femur, the created 3D models were compared to the 

CT-based 3D models. This was evaluated based on the minimum point to surface distance 

between each vertex from the 3D model reconstruction and the 3D model from the CT 

scan, as well as the BMD values of the corresponding voxels. 

5.3.3 Clinical Data 

The subjects used in this study were recruited by the Canadian Multicentre 

Osteoporosis Study (CaMos). A total of 150 patients’ data was used (Table 5.1), 50 of 

whom sustained a hip fracture within five years of the baseline DXA scan with a Hologic 

DXA scanner (Hologic, Inc, Marlborough, MA).    

5.3.3.1 Predicting the Fracture Risk Based on 3D Model Reconstruction 

In the clinical application, to create the 3D model of each subject’s proximal femur 

from its DXA scan, the training set of 3D models of 16 cadaveric specimens was used, and 

the weight of each variation mode was calculated based on the algorithm described earlier 

in section 5.3.1.2 Next, to estimate the fracture risk for each subject (‘test group’), the 

leave-one-out cross-validation was used, where the other 149 subjects (‘training set group’) 

were used to create and train the fracture risk prediction function (based on the reported 

fracture history of the subjects) through logistic regression analysis. The variables used in 

the functions were the calculated modes, areal BMD, and the mean and standard deviation  
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Table 5.1 The summary of patients’ characteristics. 

Subjects Total number Male  Female Age (mean±SD) 

Fractured  50 13 37 78.3±7.4 

Non-fractured 100 57 43 66.2±9.5 

 

  



Ph.D. Thesis – F. Jazinizadeh                            McMaster University – Mechanical Engineering 

 

81 

 

Of pixels from the DXA scan. Subjects with an estimated probability of fracture greater 

than 50% were considered high risk (likely to sustain a hip fracture).  

5.3.3.2 Predicting the Fracture Risk based on 2D Model Reconstruction 

Details regarding the 2D (i.e. DXA-based) SSAM have been described previously 

[15]. Briefly, landmarks were assigned to each of the DXA scans and then aligned and 

averaged to create the geometry template model. Next, each image was warped to the 

geometry template model and the gray value of each pixel (which is an indication of the 

areal BMD value) was captured and normalized to the mean and standard deviation of all 

pixel values (within the same scan). All captured and normalized pixel values within the 

training set were then averaged to create the template BMD model. Principal Component 

Analysis (PCA) was used on both models (geometry and BMD) to find the main modes of 

variation for each and then combined, then PCA was again used to find the main modes of 

variation in describing the geometry and BMD distribution together. To reconstruct the 

geometry and BMD distribution of each DXA scan based on the variations in the training 

set, a series of landmarks on the contour of the femur were assigned to each DXA scan 

[15]. Then, the template geometry and BMD models were adjusted by the main modes of 

variation to recreate the DXA scan [15].To estimate the fracture risk based on the 2D model 

reconstruction, the leave-one-out cross-validation technique was conducted on the clinical 

data, as was done on the 3D model reconstructions. 
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5.3.4 Evaluation of the Fracture Risk Predictions 

The two new image analysis methods (2D and 3D) were compared to two clinical 

metrics: total areal BMD and T-score. The total areal BMD from the DXA scans were also 

investigated using logistic regression analysis and leave-one-out cross-validation in the 

same way as 2D and 3D SSAM. A threshold of 50% was used to assign each subject to 

high or low fracture risk. A T-score of -2.5 (the standard threshold for osteoporosis [27]) 

was also used to divide the subjects into low and high fracture risk groups. In the end, all 

predictions from 2D SSAM, 3D SSAM, BMD and T-score were compared to the fracture 

history of the subjects. 

To check the diagnostic value of each technique, the Receiver Operating 

Characteristic (ROC) curve, which plots the true positive rate (sensitivity) versus the false 

positive rate (1-specificity) based on different thresholds, was plotted and the area under 

the curve was calculated. To compare the geometry between the average fractured and non-

fractured subjects, the mean location of each vertex was calculated for each group. The 

same was done for the BMD and to graphically illustrate the differences, colored heat maps 

were created for both. 

5.4 Results 

To account for more than 95% of the variation in describing the shape and BMD 

distribution of the cadaveric femurs nine and 14 modes were needed for 2D and 3D models, 

respectively. The average point to surface errors in the reconstruction of geometry was 

1.65±0.58 mm (range between 0.56-4.22 mm, Figure 5.3), and the maximum error was  
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Figure 5.3 Illustration of the error in reconstruction of the geometry.  

The errors have been normalized to the average of the widest thickness of the 

femurs in the training set. The maximum error was found at the tip of the greater 

trochanter.  
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related to the reconstruction of the greater trochanter. To depict the error proportionally to 

the geometry of the femur, it was normalized to the average widest anterior-posterior 

distance of the femurs in the training set (53 mm). 

 The average BMD reconstruction error for corresponding voxels (1x1x1 mm) was 

0.11±0.09 g/cm³ (range between 0-0.84 g/cm³), with the maximum error found in the 

cortical bone in the medial trochanteric area. The average BMD value from the 3D model 

reconstruction and the CT scans were illustrated for the mid-frontal plane and mid-

transverse plane (Figure 5.4). 

In the clinical dataset, 2D SSAM was able to correctly classify 38 (out of 50) 

fractured cases and 93 (out of 100) non-fractured cases. Using 3D SSAM, the technique 

was able to correctly classify 40 (out of 50) fractured cases and 92 (out of 100) non-

fractured cases. The T-score was able to correctly classify 18 (out of 50) fractured cases 

and 99 (out of 100) non-fractured cases (Table 2).  The areas under the ROC curve for 2D 

SSAM, 3D SSAM, BMD, and T-score were calculated as 0.92, 0.91, 0.88, and 0.89 

respectively, with 2D SSAM having the highest value and BMD having the lowest (Figure 

5.5). 

The differences between the average 3D shape and BMD distribution model for the 

fractured and non-fractured subjects were depicted using colored heat maps, and if the 

average non-fractured vertices were inside the average fractured geometry the distance was 

considered positive (i.e. non-fractured was smaller), and vice versa (Figure 5.6). Generally,  
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Figure 5.4 Illustration of the Volumetric BMD (vBMD) in the Average Model from 

the CT Scans and the Average Model from the BMD Reconstruction in Two Views. 

 Top: mid-frontal plane, bottom: mid-transverse plane. 
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Table 5.2 A summary of the hip fracture risk prediction results for various classifiers. 

Fracture risk underprediction refers to the subjects that were identified as low risk but 

sustained a hip fracture and fracture risk overprediction refers to the subjects that were 

identified as high risk but did not sustain a hip fracture 

Predictor Correct 

prediction 

for Fx subjects 

Correct 

prediction 

for non-Fx 

subjects 

Fracture risk 

underprediction 

Fracture risk 

overprediction 

2D 

SSAM 

38 (76%) 93 (93%) 12 (8%) 8 (5%) 

3D 

SSAM 

40 (80%) 92 (92%) 10 (7%) 7 (5%) 

BMD 34 (68%) 93 (93%) 16 (11%) 7 (5%) 

T-score 18 (36%) 99 (99%) 32 (21%) 1 (1%) 

Fx: fractured, non-Fx: non-fractured 
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Figure 5.5 Receiver Operating Characteristic (ROC) Curves for Various Hip 

Fracture Risk Predictors.  

The area under the curve for 3D and 2D SSAM was slightly higher than BMD and T-score. 
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Figure 5.6 Surface Geometry Variation Between the Mean Fractured and 

Non-Fractured Subjects.  

The yellow color represents the points where the mean vertices of the non-fracture 

subjects were inside the mean fractured geometry (i.e. fractured group was larger 

than non-fractured) and the blue points indicate that the mean vertices of the non-

fracture subjects were outside the mean fractured geometry (i.e. the mean fractured 

geometry was smaller than the non-fractured). 
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the average proximal femur’s geometry for the fractured subjects was larger than the non-

fractured one. 

For the BMD distribution comparison between the two groups (fractured and non-

fractured subjects), the difference between the volumetric BMD of the voxels in the mid-

frontal plane was calculated and depicted as a heat map as well, with higher BMD in the 

non-fractured group having a positive value (Figure 7). The average volumetric BMD map 

in the mid-frontal plane for the fractured subjects was lower than the non-fractured group, 

especially in the inner cortex of the trochanteric and subtrochanteric areas. 

5.5 Discussion 

In this research, a novel approach to create a 3D model of the proximal femur from 

a single 2D DXA scan was introduced, evaluated, and its ability to clinically predict hip 

fracture risk was assessed in a dataset of patients who were followed for at least five years. 

The new technique was able to significantly enhance hip fracture prediction in the high risk 

patients compared to T-score (44% improvement), which means that for the approximately 

30,000 hip fractures that happen each year in Canada [28], thousands of patients at high 

risk could be identified and protected from this injury by using this technique. While 

applying statistical models can greatly enhance hip fracture risk prediction in patients, we 

showed that there was no real benefit to adding the 3D reconstruction for injury risk 

prediction applications, making this easier and faster for clinical implementation. Also, this 

is the first known study to directly compare 2D vs 3D statistical shape and appearance 

modeling to predict the hip fracture risk in older adults. This has great importance since  
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Figure 5.7 Volumetric BMD Variation in the Mid-Frontal Plane Between the Mean 

Fractured and Non-Fractured Subjects.  

The red color indicates demonstrates the voxels that have a higher BMD value in the non-

fractured subjects than the fractured subjects, and the blue color identifies demonstrates the 

voxels that have a higher BMD value in the fractured subjects than the fractured ones. 
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implementing 2D geometry and BMD distribution model reconstruction is associated with 

less computational burden and is more achievable in clinical practice. These results can 

shape the future of applying statistical models in clinical practice to predict hip fracture 

risk. 

Two previous studies have reported reconstruction errors in geometry and BMD 

distribution of similar magnitudes to those in the present study [21,29] (average geometry 

error of 1.07-1.1 mm, and an average BMD distribution error of 0.07-0.21 g/cm³). 

However, the maximum geometry errors in this study were smaller than those previously 

reported (5.4 - 9.2 mm previous, vs. 4.2 mm herein). 

Comparing the geometry of the proximal femur in the fractured and non-fractured 

subjects revealed that fractured cases were overall larger than non-fractured ones (Figure 

5). This is in agreement with other studies that have investigated the effect of the proximal 

femur’s geometry on hip fracture risk [31,9,32,33,30]. This effect could be attributed to the 

body’s response to a decreased BMD and an effort to resist bending failure by increasing 

the diameter to increase the second moment of inertia [34]. It is worth noting that that the 

range of the differences between the fractured and non-fractured geometries was between 

-1.5 mm to +2 mm, and considering that the average error in the geometry reconstruction 

was 1.6 mm, some of the difference between the two geometries might have been affected 

by the inherent error in the reconstruction. 

The average voxels’ BMD in the mid-frontal plane in the fractured cases were lower 

than the non-fractured ones (Figure 6). This could be specifically observed in the inner 
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contour of the cortical bone in the medial region of the trochanteric area, which can be 

attributed to the thinning of the cortical bone in patients with osteoporosis [35]. 

The area under the ROC curve for both 2D and 3D were noticeably better than T-

score and BMD. When looking at the ROC curve, it can be observed that in the area of 

high specificity between 50%-95% (close to the left side of the graph, 5%-50% false 

positive rate) the statistical models were noticeably able to identify more true positive cases 

(people actually at risk of fracture) than the standard clinical method, which would be more 

desirable. It also showed that, only in the area of more than 50% false positive rate (close 

to the right side of the graph), the performance of all the methods were similar, and even 

in that case the T-score threshold should be modified from the -2.5 that is currently used in 

clinical practice to improve this. 

The area under the ROC curve for another similar 3D study [22] was reported as 

0.83 for aBMD plus age, and 0.93 for 3D reconstruction (considering both geometry and 

BMD distribution) plus aBMD and age. However, two other studies that investigated the 

2D analysis have reported 0.16 [19], and 0.03 [18] improvement in area under the ROC 

curve while considering only the geometry, and geometry plus BMD distribution, 

respectively. These results suggest that comparing the improvement made by each method 

should be assessed based on various aspects of its performance, and for evaluation of 

different techniques a direct comparison based on the same training set and test set should 

be preferred.  
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There could be several reasons for the lack of difference between 2D and 3D 

predictions. The most important one is that it might be possible that there is a correlation 

between 2D and 3D geometry and BMD distribution features of the proximal femur. In 

some studies to reconstruct the 3D geometry of the proximal femur [36,37], the main 

assumption was based on the dependency of 3D features on the 2D ones observed in a 2D 

image (either DXA scan or other radiograph of the hip). Their results showed that the 3D 

shape reconstruction of the proximal femur with this assumption had an acceptable average 

error range, so it could be concluded that the most of the 3D features of proximal femur 

correspond with its 2D features, and although to describe a shape in 3D, more variables are 

needed, most of these variables are correlated to ones observed in the 2D image. 

In addition to the mechanical properties of the proximal femur, many other factors 

affect a patients’ hip fracture risk. These factors either relate to the patients’ characteristics 

[38] (e.g. medication use, fracture history, tobacco use, alcohol consumption), fall 

mechanics [39] (e.g. patients’ height, weight, and reflexes), or fall probability [40] (e.g. 

physical activity level, comorbidities, balance and stability, and age). However, in this 

research, only features related to the proximal femurs’ structural strength were 

investigated. Therefore, a more robust prediction would consider many of these other 

factors. 

One of the limitations of this study was that in the training set, the DXA scans and 

CT scans of isolated cadaveric femurs were used to make 2D and 3D template models, 

while for the evaluation of these techniques clinical DXA scans were used. The main 

difference between the clinical DXA scans and the ones from the isolated femurs was the 
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effect of the overlapping pelvis over the proximal part of the femoral head, which led to 

artificially increasing the BMD measure in this area. Also, due to the presence of soft 

tissues in the clinical DXA scans, they were associated with more noise artifacts. Therefore, 

since these variabilities weren’t captured in the training set, extra error might have been 

induced in the BMD distribution reconstruction model. However, the effect of these errors 

was minimized by using the clinical scans in creating the fracture risk estimation function 

through cross-validation. 

This study showed that, while proximal femurs 3D model reconstruction might be 

necessary for further numerical analysis (e.g. finite element analysis and direct 

measurement of specific 3D traits), it does not add significant value to the hip fracture risk 

estimation when compared to 2D model reconstruction. This will have a significant impact 

on how statistical models are adopted by clinical practice. Since implementing 2D 

techniques is less intensive technically and computationally and uses more accessible and 

safer imaging modalities (compared to using CT scans) to expand the training set, it has 

great potential to be implemented in clinical practice as part of standard hip fracture risk 

estimation in older adults.  
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CHAPTER 6 – General Discussion and Conclusions 

Overview: In this chapter, the objectives and hypotheses from 

chapter one are reviewed, and a summary of the main outcomes of the 

studies performed in this thesis is provided. The overall strengths and 

limitations of this work are also discussed. This chapter concludes with the 

future directions for further investigation, the clinical implications and the 

significance of the studies presented herein.   

6.1 Summary 

Hip fractures as a result of a sideways fall are a significant cause of morbidity as 

well as mortality in older adults. Currently, diagnosis of osteoporosis and consequently hip 

fracture risk is done by measurement of BMD in the proximal femur through DXA scans; 

however, studies have shown that this method alone is not effective to identify all patients 

at high risk, and there is an overlap between the BMD of patients who sustained a hip 

fracture after a fall with those who did not. Therefore, it is crucial to search for 

complementary methods that can be used in addition to BMD measurement by DXA scan 

so that more people at high risk of a hip fracture can be identified and benefit from 

preventive interventions to avoid these devastating injuries. The overall goal of the studies 

presented in this thesis was to enhance hip fracture risk prediction in older adults through 

image processing of DXA scans to account for the effects of femur’s geometry and BMD 

distribution in the hip fracture risk assessment. 



Ph.D. Thesis – F. Jazinizadeh                            McMaster University – Mechanical Engineering 

 

102 

 

The first component of this thesis involved performing destructive mechanical 

testing on isolated cadaveric femurs in two scenarios of quasi-static and impact loading in 

a simulation of a sideways fall (i.e., Objective 1, Chapter 2). This study was performed to 

investigate if impact loading (as happens in reality) can be substituted with quasi-static 

testing (as happens in research) in the evaluation of the frameworks that are generated to 

assess hip fracture risk prediction. The results of this study showed that (except for one 

specimen) a strong correlation of determination was found between paired femurs for their 

fracture loads in impact and in quasi-static loading. Also, using the relationship developed 

herein between the impact fracture loads and the quasi-static ones, the results from another 

study were extrapolated with errors of less than 12%, showing that meaningful predictions 

for the impact scenario can be made based on quasi-static tests. In addition, the comparison 

of the fracture location showed qualitatively good agreement between the two groups (i.e., 

Hypothesis 1 accepted).  

The results of the experimental study presented in chapter one were then used to 

evaluate the proposed method in the next chapter (i.e., Objective 2, Chapter 3). Chapter 

three presented creating and assessing the implementation of 2D statistical shape and 

appearance modeling (SSAM) of the proximal femur using the DXA scans. The subjects 

used in this study were isolated cadaveric femurs and the results of the fracture risk 

prediction were examined based on two methods of fracture load prediction and binary 

fracture risk classification based on a threshold. This study showed that using 2D SSAM 

was able to enhance hip fracture risk prediction in high risk subjects more accurately than 

the T-score alone (i.e., Hypothesis 2 accepted). 
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To see how the 2D SSAM would translate to a clinical population, chapter four 

investigated the implementation of this technique on a population of clinical subjects 

chosen from the Canadian Multicentre Osteoporosis Study (CaMos). Fifty out of the 192 

chosen subjects had sustained a hip fracture within a five-year period after the baseline 

(i.e., Objective 3, Chapter 4). The results comparing fracture risk predictions based on 2D 

SSAM showed superior identification of people at high risk compared to standard clinical 

metrics of using T-score and FRAX when considering the fracture history of the subjects 

(i.e., Hypothesis 3 accepted). 

After investigating the ability of 2D SSAM to predict hip fracture risk, to see 

whether a 3D approach would improve the predictive ability, 3D SSAM was created and 

assessed in a subset of the subjects from Objective three (i.e., Objective 4, Chapter 5). The 

reconstruction of the 3D model from the 2D DXA scan showed the same range of errors 

compared to similar studies, with reducing the magnitude of the maximum error. While 3D 

SSAM significantly enhanced hip fracture risk prediction for the clinical subjects who 

sustained a fracture compared to the T-score, the accuracy did not increase noticeably 

compared to using 2D SSAM (i.e., Hypothesis 4 accepted). This means that while 3D 

geometry and BMD distribution reconstruction of the proximal femur might be a necessity 

for further numerical analysis (e.g. finite element analysis), for estimating the fracture risk 

based on considering the effect of a femur’s geometry and BMD distribution, performing 

2D SSAM in clinical practice appears to be both more feasible and just as accurate as 3D 

SSAM. 
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6.2 Strengths and Limitations  

The specific strengths and limitations of each study were discussed in detail in their 

respective chapters. However, some general ones apply to the whole thesis. In this section, 

the major strengths and limitations of each study as well as the overall ones are discussed. 

One of the strengths of the experimental part of this research was the use of paired 

specimens to compare and demonstrate a relationship between the fracture load of the 

proximal femur in impact and quasi-static in simulation of a sideways fall. Paired 

specimens allowed us to assume equivalence, reducing variability and develop a 

relationship that could be used to convert results from prior QS tests into predicted IM 

values. In most of the other similar studies that have investigated hip fracture risk 

prediction quasi-static tests were used instead of impact ones to quantify the fracture 

strength. Also, in the few studies that had investigated the differences between impact and 

quasi-static testing, non-paired specimens were used, which led to a dominant effect of 

geometry and BMD on the results and limited the statistical power of their findings.  

Another strength of this work was that the imaging techniques were evaluated both 

based on a cadaveric study as well as a clinical group. Cadaveric studies provide valuable 

information about the strength condition of the bone, as they are guaranteed to fracture and 

are easy to image; however, clinical studies are superior, since they can provide a more 

comprehensive insight into the risk factors that affect the occurrence of an injury in reality. 

Also, clinical studies are a necessity in paving the path for a technique to be implemented 

in clinical practice.   
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  Another major advantage of this thesis was investigating both 2D and 3D model 

reconstruction techniques and comparing their ability to predict an individual’s hip fracture 

risk. Interestingly, the results of this work showed that using 2D model reconstruction to 

consider the effects of geometry and BMD distribution wouldn’t noticeably affect the 

correct identification of patients at high risk of sustaining a hip fracture. To create the 

training sets for 2D and 3D model reconstructions, DXA scans and CT scans, respectively, 

of the proximal femurs were required. DXA scans are more accessible, faster, less 

expensive, and are associated with less dose of radiation compared to CT scans, therefore 

expanding the training set for 2D model reconstruction in clinical practice is more 

attainable and desirable.  

In this research, real DXA scans were used and not the anterior-posterior projection 

of the CT scans, as has often been done in previous studies (which may have artificially 

reduced the error usually induced by the soft tissue and patients positioning). While this is 

most representative of the clinical scenario, DXA scans are associated with high noise 

artifact partially due to the presence of soft tissue. Also, the positioning of the subjects 

during a scan is a major obstacle to consistency. Therefore, while using real DXA scans 

induces additional error compared to the studies that have evaluated their technique based 

on the projection of the CT scans, it provides a more realistic assessment of this technique 

when dealing with real scans in practice.  

While this research made many important contributions toward several issues 

surrounding enhancing hip fracture risk prediction in older adults with a focus on methods 

that would be feasible to implement in clinical practice, there were also several limitations. 
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One of the major limitations of this work was the quality of the DXA scans used for the 

analysis. In this research, subjects (both cadaveric specimens and clinical population 

subjects) were scanned by a Hologic DXA scanner, hence, the images could only be 

accessed by the company’s software. To eliminate this problem the scans were first opened 

by the software, and then they were de-analyzed to remove the regions that were selected 

by the technician, and in the end, a screenshot of the scan was saved for further analysis. 

This resulted in decreased image quality and consequently losing some valuable 

information. This information could have had a significant effect on the feasibility of 

performing further texture analysis on the clinical data. In addition, some of the scans that 

were used in the clinical studies were 20 years old, and most of those DXA scanners have 

since been replaced. Therefore, using a more recent baseline for the analysis could help to 

have a better image quality. 

Another limitation of this research was the variability among the subjects, in terms 

of personal (age, sex, weight, height, alcohol and tobacco use, and level of activity) and 

clinical (medication, comorbidities, and using protective measures) characteristics. When 

choosing the subjects, the non-fracture subjects were only selected from the population that 

was not taking any osteoporosis medication, while in the selection of the fractured subjects 

this was not considered. Therefore, the potential effect of using certain medications might 

have been dismissed. Also, the high variability could limit the generation of a 

comprehensive model to account for all contributing factors, and further studies are 

required to address that. However, it should be noted that even when considering most of 

the possible contributing elements, the effect of some factors may still not be possible to 
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be measured and integrated into a model (e.g. effect of microdamage based on the standard 

clinical imaging).  

In this research, reconstruction of the 2D and 3D models was initiated by assigning 

landmarks to the DXA scans. This assignment was done manually, and hence it could be 

slightly time-consuming (two minutes for each scan) and also user-dependent. However, 

the reproducibility of the predictions was investigated to account for the effects of inter- 

and intra-user dependency. Five subjects (three fractured and two non-fractured) were 

randomly chosen and three users were asked to assign the landmarks. Also, one user was 

asked to assign the landmarks three times with at least one week in between each 

assignment. The results showed that in predicting the fracture risk based on the 2D and 3D 

model reconstruction, there was no user effect on the binary classification of the fracture 

risk (Table 6.1, Table 6.2, Table 6.3, and Table 6.4). It can be observed that the standard 

deviations in most of the predictions are small; however, for some subjects (e.g. subject 

two and three) the ratio of standard deviation over the mean was quite high (maximum of 

55%) which indicates the importance of creating a fully automatic platform with minimum 

user-interference. 

6.3 Future Directions 

The research conducted in this thesis examined implementing 2D and 3D model 

reconstruction to investigate the effect of geometry and BMD distribution in hip fracture 

risk. In addition to hip fracture risk prediction, 2D and 3D model reconstruction from a 2D 

DXA scan can provide valuable insight into subtle changes in the geometry and BMD 



Ph.D. Thesis – F. Jazinizadeh                            McMaster University – Mechanical Engineering 

 

108 

 

distribution of the proximal femur over time [1–3]. Therefore, future studies can investigate 

using these techniques to monitor the changes that might occur along a period of time or 

during a specific treatment.  

One of the focuses on this research was on generating a technique that could be 

easily implemented in clinical practice. Therefore, automating and creating a user-friendly 

platform is a necessary next step towards this goal. Also, for future research, it is 

recommended to establish a relationship with the DXA scanner manufacturer to get access 

to the original digital image so that texture analysis of the trabecular bone in the femoral 

neck and trochanteric area could be included more meaningfully.  

Another aspect that should be considered in future studies is evaluating these 

techniques in large cohort studies to investigate the effect of all contributing factors. A 

large cohort study could allow matching the control (non-fractured subjects) with the 

fractured cases to only assess one factor of interest at a time independently, and 

consequently creating a comprehensive framework for predicting an impending fracture. 

This would form an important component of a more holistic assessment of fracture risk – 

while femur geometry and material distribution are important factors, there are not the only 

factors – integrating it into a FRAX-like tool would improve the overall evaluation of 

fracture risk while considering factors such as balance that aren’t captured from a purely 

mechanical assessment. 
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Table 6.1 Inter-user reproducibility of fracture risk based on 2D SSAM 

The probability of sustaining a hip fracture based on the assignment of landmarks by three 

users in 2D SSAM analysis, Fx: fracture, where 1 indicated a fracture was sustained and 0 

indicated no fracture, SD: standard deviation. 

Subject Fx history User 1 User 2 User 3 Mean SD 

1 1 0.69 0.64 0.76 0.70 0.05 

2 1 0.79 0.80 0.81 0.80 0.01 

3 1 0.21 0.26 0.23 0.23 0.02 

4 0 0.00 0.00 0.00 0.00 0.00 

5 0 0.71 0.58 0.68 0.66 0.06 

  

Table 6.2 Inter-user reproducibility of fracture risk based on 3D SSAM 

The probability of sustaining a hip fracture based on the assignment of landmarks by three 

users in 3D SSAM analysis, Fx: fracture, where 1 indicated a fracture was sustained and 0 

indicated no fracture, SD: standard deviation. 

Subject Fx history User 1 User 2 User 3 Mean SD 

1 1 0.92 0.90 1 0.94 0.04 

2 1 0.00 0.00 0.16 0.05 0.08 

3 1 0.21 0.33 0.19 0.24 0.06 

4 0 0.00 0.00 0.00 0.00 0.00 

5 0 0.00 0.00 0.00 0.00 0.00 
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Table 6.3 Intra-user reproducibility of fracture risk based on 2D SSAM 

The probability of sustaining a hip fracture based on assignments of landmarks by one user 

over three times in 2D SSAM analysis, Fx: fracture, where 1 indicated a fracture was 

sustained and 0 indicated no fracture, SD: standard deviation. 

Subject Fx history 1st time 2nd time 3rd time Mean SD 

1 1 0.72 0.64 0.69 0.68 0.03 

2 1 0.79 0.85 0.79 0.81 0.03 

3 1 0.48 0.21 0.21 0.30 0.13  

4 0 0.00 0.00 0.00 0.00 0.00 

5 0 0.72 0.61 0.71 0.68 0.05 

  

Table 6.4 Intra-user reproducibility of fracture risk based on 3D SSAM 

The probability of sustaining a hip fracture based on assignments of landmarks by one user 

over three times in 3D SSAM analysis, Fx: fracture, where 1 indicated a fracture was 

sustained and 0 indicated no fracture, SD: standard deviation. 

Subject Fx history 1st time 2nd time 3rd time Mean SD 

1 1 0.97 0.86 0.92 0.92 0.04 

2 1 0.05 0.03 0.00 0.03 0.02 

3 1 0.33 0.07 0.20 0.20 0.11 

4 0 0.00 0.00 0.00 0.00 0.00 

5 0 0.01 0.00 0.00 0.00 0.00 
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 6.4 Clinical Significance 

In conclusion, in this work, two new methods of 2D and 3D model reconstruction 

have been created and evaluated based on the DXA scans and CT scans of a set of isolated 

cadaveric femurs. Also, these model reconstructions have been used to consider the effect 

of the proximal femur’s geometry and BMD distribution on hip fracture prediction. These 

methods were then assessed in two groups of cadaveric and clinical subjects, and the results 

showed that both techniques were able to substantially enhance the identification of people 

at high risk of sustaining a hip fracture noticeably.  

This research also furthered our understanding of how the geometric and material 

distribution traits affect the vulnerability of the proximal femur by comparing the features 

in the subject who sustained and did not sustain a hip fracture. Another significant impact 

of this research was to demonstrate that the hip fracture prediction based on 2D model 

reconstruction did not remarkably differ from the 3D model reconstruction, and since the 

2D method is associated with a less computational burden and requires less resources, this 

finding could shape future of implementing statistical models in clinical practice. This 

means that for the approximately 30,000 hip fractures that happen each year in Canada [4], 

thousands of patients at high risk could be identified and protected from this injury by using 

this technique. 
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APPENDIX A – Glossary of the Medical Terms 

Overview: this appendix contains a list of the medical terms used 

through this thesis to provide assistance to the readers who are not 

familiar with this terminology.  

Anatomical position: Body upright, with the face and palms forward and the upper 

limbs placed at the sides. 

Anterior: Situated towards the front of the body when in anatomical position. 

Articulation: The contact junction between two bones. 

Cadaveric: Of, or pertaining to, a dead body preserved for anatomical study. 

Cancellous Bone: A spongy, lattice-like structure of bone. Synonymous with trabecular 

bone. 

Contralateral: Pertaining to the other side of the body (i.e., left-right). 

Cortical Bone: A dense bone structure. Synonymous with compact bone. 

Diaphysis: The shaft of a long bone, a tube made of cortical bone. 

Distal: Further from the point of reference; away from the midline of the body. 

Femur: The large bone in the upper leg, extending from the pelvis to the knee. 

FRAX: A diagnostic tool used to evaluate the 10-year probability of bone fracture risk 
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Frontal: The plane parallel to the long axis of the body separating the body into front and 

back portions. 

Inferior: Away from the head; lower 

Joint: The location at which two bones make contact, permits relative movement. 

Lateral: A position further away from the midline of the body. 

Marrow: The soft tissue filling the cavities of bones. 

Medial: A position closer to the midline of the body. 

Posterior: Located towards the back of the body. 

Proximal: Closer to the point of reference; towards the center of the body. 

Sagittal: The plane parallel to the long axis of the body separating the body into left and 

right portions. 

Superior: Toward the head end of the body; upper 

Trabecular: See cancellous bone. 

Transverse: Placed crosswise, at a right angle to the long axis of a part. 

T-score: How much your bone density is higher or lower than the bone density of a 

healthy 30-year old adult of the same ethnicity and sex. 
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