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Abstract 

Application of deep learning in radiology has the potential to automate workflows, support 

radiologists with decision support, and provide patients a logic-based algorithmic 

assessment. Unfortunately, medical datasets are often not uniformly distributed due to a 

naturally occurring imbalance. For this research, a multi-classification of liver MRI 

sequences for imaging of hepatocellular carcinoma (HCC) was conducted on a highly 

imbalanced clinical dataset using deep convolutional neural network. We have compared 

four multiclassification classifiers which were Model A and Model B (both trained using 

imbalanced training data), Model C (trained using augmented training images) and Model 

D (trained using under sampled training images). Data augmentation such as 45-degree 

rotation, horizontal and vertical flip and random under sampling were performed to tackle 

class imbalance. HCC, the third most common cause of cancer-related mortality [1], can be 

diagnosed with high specificity using Magnetic Resonance Imaging (MRI) with the Liver 

Imaging Reporting and Data System (LI-RADS). Each individual MRI sequence reveals 

different characteristics that are useful to determine likelihood of HCC. We developed a 

deep convolutional neural network for the multi-classification of imbalanced MRI 

sequences that will aid when building a model to apply LI-RADS to diagnose HCC. 

Radiologists use these MRI sequences to help them identify specific LI-RADS features, it 

helps automate some of the LIRADS process, and further applications of machine learning 
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to LI-RADS will likely depend on automatic sequence classification as a first step. Our 

study included an imbalanced dataset of 193,868 images containing 10 MRI sequences: in-

phase (IP) chemical shift imaging, out-phase (OOP) chemical shift imaging, T1-weighted 

post contrast imaging (C+, C-, C-C+), fat suppressed T2 weighted imaging (T2FS), T2 

weighted imaging, Diffusion Weighted Imaging (DWI), Apparent Diffusion Coefficient 

map (ADC) and In phase/Out of phase (IPOOP) imaging. Model performance for Models 

A, B, C and D provided a macro average F1 score of 0.97, 0.96, 0.95 and 0.93 respectively. 

Model A showed higher classification scores than models trained using data augmentation 

and under sampling. 

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 



 v 

 

Acknowledgements 

I would like to acknowledge my supervisor Dr.  Thomas Doyle for his immense support, 

guidance and direction throughout the thesis.  

 

I would like to thank Dr.  Christian B van der Pol for his support, providing the image scans 

and suggestions in my research.  

 

I would also like to thank Dr. Mohammadreza Heydarian for his recommendations and 

insight in the project. 

 

Lastly, I would like to thank my family for their moral support throughout my MSc degree. 

  

 

 

 

 

  

 

 

 



 vi 

 

 

Contents 

 

Abstract ............................................................................................................................. iii 

1. Introduction .................................................................................................................. 1 

1.1 Overview ................................................................................................................... 1 

1.2 Motivation and Objective ......................................................................................... 4 

1.3 Thesis Organization .................................................................................................. 6 

2. Background and Related Work .................................................................................. 7 

2.1 Hepatocellular Carcinoma and Imaging ................................................................... 7 

2.2 Artificial Intelligence in Medicine .......................................................................... 12 

2.2.1 Deep Learning .................................................................................................. 13 

2.2.2 Convolutional Neural Network (CNN) ............................................................ 18 

2.3 Imbalanced Dataset Classification .......................................................................... 21 

2.3.1 Dataset Modification ........................................................................................ 23 

2.3.2 Algorithmic Approach ..................................................................................... 25 

2.4 Data Augmentation Methods .................................................................................. 29 



 vii 

2.4.1 Simple Image Augmentation Methods ............................................................ 30 

2.4.2 Algorithm Based Image Augmentation ........................................................... 32 

2.5 Model Architecture Design and Evaluation ............................................................ 35 

2.5.1 Convolutional Neural Network Architectures ................................................. 35 

2.5.2 Evaluation Metrics ........................................................................................... 40 

3. Methodology ............................................................................................................... 43 

3.1 Dataset Characteristics ............................................................................................ 44 

3.1.1 MRI Sequence Dataset ..................................................................................... 44 

3.2 Dataset Structuring .................................................................................................. 50 

3.3 Preprocessing .......................................................................................................... 51 

3.4 Model Design and Validation ................................................................................. 54 

3.4.1 Model Hyperparameters ................................................................................... 56 

3.4.2 Development Environment .............................................................................. 57 

4. Results ......................................................................................................................... 58 

4.1 Model A - Classification Results ............................................................................ 59 

4.2 Model B - Classification Results ............................................................................ 60 

4.3 Model C - Classification Results ............................................................................ 61 

4.4 Model D - Classification Results ............................................................................ 63 

4.5 Summary ................................................................................................................. 68 



 viii 

5. Discussion .................................................................................................................... 70 

5.1 Results Analysis ...................................................................................................... 70 

6. Conclusion ................................................................................................................... 74 

7. References ................................................................................................................... 76 

8. Appendix ..................................................................................................................... 94 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



 ix 

 
 
List of Figures 

 

Figure 1: Overview of our work contribution ..................................................................... 5 

Figure 2: Convolution of a (3x3) filter on a sample input image ..................................... 19 

Figure 3: Distribution of images per MRI sequence. ........................................................ 45 

Figure 4: Dataset preparation for the MRI sequences. ..................................................... 46 

Figure 5: Sample MRI images from the sequence dataset. ............................................... 48 

Figure 6: Test set data distribution for the MRI sequences .............................................. 49 

Figure 7: Validation set data distribution for the MRI sequences .................................... 49 

Figure 8: MRI sequence dataset organization ................................................................... 50 

Figure 9: Data augmentation ............................................................................................. 52 

Figure 10: Random under sampling . ................................................................................ 53 

Figure 11: Architecture X for Model A (baseline model) ................................................ 54 

Figure 12: Architecture Y for models B, C and D. ........................................................... 55 

Figure 13: Confusion matrix results for Model A (sequence dataset) .............................. 59 

Figure 14: Confusion matrix result for Model B (sequence dataset) ................................ 61 

Figure 15: Confusion matrix results for Model C (augmented training set) ..................... 62 

Figure 16: Confusion matrix results for Model D (under sampled training set) .............. 63 

Figure 17: Validation accuracy for all models .................................................................. 65 



 x 

Figure 18: Validation loss for all models .......................................................................... 65 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 xi 

 
 
List of Tables 
 

Table 1: LI-RADS Categories  ........................................................................................... 2 

Table 2: Summary of machine learning and deep learning methods ................................ 13 

Table 3: Sample confusion matrix result for multiclass predictions. ................................ 42 

Table 4: Hyperparameters for training the models on Architectures X and Y ................. 57 

Table 5: Classification report for Model A with sequence dataset ................................... 59 

Table 6: Classification report for Model B with sequence dataset ................................... 61 

Table 7: Classification report for Model C (augmented training set) ............................... 62 

Table 8: Classification report for Model D (under sampled training set) ......................... 64 

Table 9: F1 score report summary for all models. ............................................................ 68 

 

 



 
 
M.Sc. Thesis – A. Trivedi   McMaster – eHealth 

 1 

 

Chapter 1 

 

 

Introduction 

 

1.1 Overview 

Hepatocellular carcinoma (HCC) is the third most common cancer related cause of death. 

Hepatitis B and C are some of the common risk factors for developing into HCC and the 

risk of developing HCC is 2%-8% in cirrhotic patients[1]. Early diagnosis of HCC in 

patients is important for early treatment intervention. Annual new cases of HCC in North 

America are estimated to range from 500,000 to 1 million which leads to increased burden 

on healthcare (median cost of $176,456 per patient per year) [1][2].  

 

Various imaging techniques have been used for diagnosis of HCC such as Ultrasound, 

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI). Among these, 

MRI provides a more definitive screening tool (with no exposing radiation to the body) for 

HCC diagnosis [3]. Using multi-modal MRI (multiple T1 weighted, T2 weighted imaging), 



 
 
M.Sc. Thesis – A. Trivedi   McMaster – eHealth 

 2 

radiologists are able to apply the Liver Imaging Reporting and Data System (LI-RADS) to 

risk stratify a liver observation for HCC [4]. LI-RADS is a standardized algorithm endorsed 

by the American College of Radiology that aims to interpret and report liver examinations 

of patients at risk for HCC. It is used for population of adults older than 18 years of age 

[5]. A score category (Table 1) is assigned to a liver observation that ranges from benign 

to malignant observed in patients with chronic liver disease [5][6]. Gadolinium contrast 

agent is administered to capture imaging characteristics in various post contrast phases 

such as arterial phase, portal venous phase, hepatobiliary phase and transitional phase. 

These characteristic patterns are important for applying the LI-RADS score to a liver 

observation [6]. Thus, a radiologist provides a diagnosis from imaging characteristics 

relevant to HCC obtained from multi MRI sequence and phase information.       

Table 1: LI-RADS Categories [4] 

LI-RADS Category Observation 
LR-NC (Not 
Categorizable) 

Poor image quality  

LR-1 Definitely benign 
LR-2  Probably benign 
LR-3 Intermediate 

malignancy probability 
LR-4 Probably HCC 
LR-5 Definitely HCC 

 

Machine learning seeks to implement automation on tasks ranging from speech translation 

to image classification. Traditional machine learning algorithms require a feature extractor 

which extracts patterns from an image [7]. A sub class of machine learning represented as 

deep learning which is an improvement over machine learning methods do not require a 
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hand-crafted feature extractor to learn patterns from a dataset. Over the past decade, an 

increase in interest towards deep learning has been fueled with optimization of computing 

resources such as GPU (Graphics Processing Unit) [8]. With the increase in availability of 

data the realm of deep learning has expanded to include novel techniques to outperform 

tasks performed by experts. Computer vision tasks are based on the idea of human visual 

recognition and have immense application in the field of radiology [9]. Advances in image 

recognition and classification have allowed deep learning techniques such as convolutional 

neural networks to not only extract features from an image but also determine category 

specific characteristics [10]. Convolutional neural networks (CNN) are a class of 

supervised learning architecture that have shown success in automating clinical decision 

making in medical imaging.  

 

After going through different MRI image scans, radiologists look for imaging patterns that 

are characteristic for a particular disorder.  This process can be physically and mentally 

fatiguing for the radiologist. However, these patterns can be captured by a deep learning 

model such as Convolutional Neural Network (CNN) given a labelled dataset of image 

scans to learn the patterns from. This learning can be compared to what is observed during 

training of a radiologist throughout their medical education with the difference being that 

deep learning models learn the boundary distinctions among different abnormality classes 

in short period of time [9][10]. To aid the radiologist in early diagnosis of HCC, deep 

learning models can be used to classify characteristic patterns observed from liver MRI 

scans.  
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Deep learning systems trained on large number of image dataset perform well with uniform 

distribution of samples among all classes [11]. Real world datasets, such as medical 

imaging, are most often imbalanced with the ratio of abnormal class being lower than that 

of normal class. This imbalance has shown to deteriorate classification performance of 

CNN models as the predictions are biased for the majority class [12]. Various methods of 

balancing the dataset have been explored in our work to design classifiers for sequence 

classification of liver MRI scans on an imbalanced dataset.   

  

1.2 Motivation and Objective 

The objective is to develop a deep CNN to classify liver MRI sequences from an 

imbalanced multiclass dataset. This deep learning model will classify the MRI sequence 

from images, with no sequence label, for further usage by the liver-cancer decision support. 

Data augmentation and random under sampling has been explored for the balancing of 

training data to reduce imbalance and bias towards majority class distribution of images. 

Sequence of a given MRI scan can provide vital information for assigning a LI-RADS 

score to a liver observation. Figure 1 provides a descriptive diagram for our contribution.  
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Figure 1: Overview of our work contribution towards decision support of HCC using LI-

RADS. The different MR image sequences captured for a patient are read by the radiologist 

to highlight characteristic liver observations for HCC.  

 

After sequence information of a liver scan is taken into consideration by a radiologist, key 

imaging characteristics are combined to reach a LI-RADS score category. To automate this 
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current workflow (Figure 1), deep CNN will classify a given image into one of the 10 

sequence classes.  

 

1.3 Thesis Organization 

The flow of the thesis is as follows: 

1. Background and Related Work 

This section is included to give the reader sufficient information on the background 

of the thesis and gaps in current work. 

2. Methodology 

Methods and design of the experiments are included in this section. 

3. Results 

Presentation of the results obtained based on the methodology undertaken. 

4. Discussion 

Evaluation of the results are discussed in this section. 

5. Conclusion and Future Work 

This section explores the future steps based on the lessons learned. 
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Chapter 2  

 

Background and Related Work 

This chapter provides an overview of relevant background and related work to support this 

thesis.  The sections of this chapter begin with providing background on Hepatocellular 

carcinoma and the role of artificial intelligence in imaging. Furthermore, a comparison of 

machine learning frameworks and deep learning has been provided. In particular, deep 

learning framework such as convolutional neural networks have been explored. Lastly, 

different methods (algorithmic and data level) of classification of imbalanced datasets have 

been discussed.   

  

2.1 Hepatocellular Carcinoma and Imaging 
 
 
Hepatocellular carcinoma (HCC) is the third most common primary cancer of the liver and 

can be challenging to treat at a more advanced stage [13]. Diagnosis and treatment at an 

earlier stage is therefore critical to optimize health outcomes. Imaging exams such as 
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ultrasonography (US), computed tomography (CT), and magnetic resonance imaging 

(MRI) are all frequently used to assess the liver in patients at risk of HCC [14][15]. HCC 

is the fifth common tumor type in Western societies, 80% of HCC cases develop in patients 

suffering from a cirrhotic liver [1][2]. Patients with chronic hepatic inflammation or non-

alcoholic steatohepatitis are also at risk of developing HCC [16]. Family history of HCC, 

obesity and heavy alcohol consumption are other factors that increase chances of HCC in 

patients [17]. For primary surveillance, ultrasonography has been used though a more 

definitive imaging examination using multiphasic MRI and CT is then used to confirm the 

diagnosis [3].  

 

Ultrasound is used for screening for HCC in high risk patients. Intravenously injected non-

nephrotoxic microbubble based contrast agents serve as markers of blood in CEUS [18]. 

This technique shows higher sensitivity to detect arterial-phase hypervascularity and 

washout of HCC as compared to CT or MRI [19]. A study by Jang et al showed that the 

moderately differentiated HCC showed hypervascularity more often than poorly 

differentiated ones which hints that pathology of HCC is related to its enhancement patterns 

[20]. Deeply located (more than 12 cm) liver parenchyma lesions are difficult to diagnose 

using CEUS. Furthermore, detecting different lesions in same liver requires more than once 

administration of the contrast agent. Lastly, quality of  CEUS scans are limited by bowel 

gas or large body habitus [21].     
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A multi-sequence MRI is also used to provide diagnosis of liver observations relating to 

HCC. In order to have fast acquisition of data, T1 weighted MR imaging is usually 

performed with requiring the patient to hold their breath while undergoing scanning. T2 

weighted imaging can also be obtained using breath hold [22].   HCC confirmation using 

MRI is achieved using a multiphasic approach wherein diffusion weighted imaging (DWI) 

can provide increased detection rate [23]. There can be institutional variations with regards 

to the MRI sequences protocol though basic methodology is based on the Liver Imaging 

Reporting and Data System (LIRADS). T2 weighted imaging is less sensitive than DWI 

while non-enhanced T1 and T2 weighted are useful in focal liver disease characterization. 

DWI detects the Brownian motion of water molecules within the liver tissues and is similar 

in accuracy to contrast enhanced imaging  [24]. Thus, DWI followed by contrast-enhanced 

imaging provides superior detection and characterization of liver observations [25]. 

Furthermore, DWI can be helpful in detecting small observations which otherwise are 

unnoticeable in contrast enhanced images [26]. Thus, a multi sequence approach provides 

for characteristic liver observations. 

 

Gadolinium based chelating contrast agent is used to capture detailed lesion 

characterization in contrast enhanced MRI imaging. Arterial dominant, delayed, venous 

and interstitial phases of enhancement are usually captured. Then to obtain arterial nodule 

enhancement, unenhanced images are subtracted from contrast enhanced arterial phase. 

However, such method requires careful breath holds during patient scanning.  It should 
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also be noted that only 3-5% of administered gadolinium contrast agent is take up the liver 

cells thus most is excreted through the renal system [27].  

  

By assessing imaging features of a liver observation on a multi-sequence MRI, radiologists 

can risk stratify the likelihood of HCC using LI-RADS. This requires the radiologist to 

assess multiple sequences to identify the presence or absence of major and ancillary 

features, which are used to assign a score between LI-RADS 1 (definitely benign) and LI-

RADS 5 (definitely HCC) for each liver observation. LI-RADS has been endorsed by the 

American Association of Study of Liver Diseases (AASLD) and is becoming more 

commonly used in clinical practice around the world. LI-RADS helps radiologists to be 

consistent when applying a level of risk to a liver observation for HCC in high-risk patients 

[4] [28]. A LI-RADS 5 liver observation is highly specific for HCC and generally does not 

require tissue sampling prior to treatment. 

 

Other imaging techniques have also been considered for diagnosis of HCC. Sequential 

imaging wherein inconclusive MRI findings followed by Computed Tomography (CT) 

scan for HCC were found to be costly and left about 20% of cases undiagnosed [29]. 

Ultrasound guided biopsies of the liver are an invasive technique that use normal greyscale 

US to increase target tissue selection. Since only 33% of HCC nodule characterisation meet 

the imaging diagnostic criteria laid out by American Association for the Study of Liver 

Diseases [30], 50-70% of cases require a liver biopsy to confirm the HCC diagnosis. Thus, 

liver biopsies are useful when there are conflicting observations from imaging results for 
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small focal lesions [31]. However, liver biopsy can cause pain and discomfort and could 

possibly show a seeding risk [32].   

 

Hence, as compared to ultrasound guided biopsy, MRI stands out as non-invasive tool. 

Contrast administered post contrast sequences such as C+, C-C+, C- provide further 

information for the HCC enhancement patterns. Arterial phase (AP) liver MRI capture is 

crucial in applying LI-RADS algorithm which helps to identify major  observations related 

to HCC diagnosis; it is characterized by complete enhancement of hepatic artery [5]. It is 

further divided into early (EAP) and late arterial phase (LAP). In the early Arterial phase, 

no enhancement of portal vein is observed while the late Arterial shows enhancement of 

the hepatic veins. HCC enhancement is usually maximum in the late Arterial phase [6]. 

Thus, Arterial phase shows post contrast injection observations relating to HCC. Delayed 

phase (DP) also represents observation from post contrast imaging and is obtained after 

Portal Venous phase. Portal Venous phase (PVP) provides full enhancement of portal veins 

and the liver parenchyma [33]. Transitional phase (TP) is acquired before Hepatobiliary 

phase (HBP) and characterized by high liver parenchyma enhancement or signal intensity. 

The HBP is obtained last (20 minutes after contrast injection) as the contrast agent is getting 

excreted through the biliary system [6]. In HBP, the liver blood vessels appear hypo intense 

than the liver parenchyma. Vernuccio et al [34] have evaluated diagnostic performance of 

HBP hypo intensity for HCC diagnosis. Through a multi institution study they report 80% 

specificity for HCC when HBP was used to stratify the liver observation to a LI-RADS 
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score. Thus, along with MRI sequence information, phase of enhancement in post contrast 

sequences is also useful in application of LI-RADS. 

 

2.2 Artificial Intelligence in Medicine 

 
On an average, radiologists have to report one image in less than five seconds and with the 

increase in workload there is a possibility for errors in diagnosis [9]. It is estimated that 

implementing clinical decision support tools to supplement radiologist’s workflow can not 

only improve efficiency but also reduce the chance for possible misdiagnosis [35]. 

 

Artificial Intelligence is a broad term that encompasses machine learning and deep learning 

methods which aims to learn patterns or boundary distinctions among categories from a 

given data distribution. Feature extraction methods used in machine learning require 

manual preparation for the images to learn the targeted features of interest.  Various 

approaches have been implemented for feature learning however, deep learning has 

emerged as an approach that reduces reliance on manual selection of feature extraction 

methods [9]. 

 

The following sub sections will explore different methods in machine learning and deep 

learning that have been applied in different imaging datasets. 
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2.2.1 Deep Learning  

Various machine learning methods for feature extraction and classification along with deep 

learning methods have been explored and summarized in Table 2.  

 
 
Table 2: Summary of machine learning and deep learning methods 

Study Reference Objective Method Findings 
Meng et al [7] Two-class tumor 

classification on 
dataset of 100 MRI 
images 

SVM (Support 
Vector Machine) 

Average accuracy 
of 83% was 
reported 

Levman et al [38] Breast lesion 
classification from 94 
MRI scans 

SVM classifier 
for breast cancer 
using DCE-MRI 

Area under ROC 
curve (classification 
measure) was 0.74  

Faria et al [39] Feature extraction 
from brain scans 

PCA (Principal 
Component 
Analysis) 

Accuracy of 88% in 
distinguishing 
Primary Progressive 
Aphasia from 
normal scans 

Evangelia et al [40] Brain tumor 
detection in multi-
sequence MRI 
dataset 

SVM High computational 
cost for 
multiclassification 

Siddiqui et al [41] Feature extraction for 
brain MRI diseases 

Discrete Wavelet 
Transform 

Overfitting on a 
small dataset and 
manual tuning of 
wavelet coefficient 
was required  

Qureshi et al [43] Feature extraction for 
ADHD classification 

Recursive Feature 
Elimination 
(RFE) SVM 

Based on ranking 
list and shows good 
results for 
metabolomics 

Zhang et al [45] Feature extraction 
and tumor 
classification 

PCA was used for 
feature extraction 
and SVM for 
tumor 
classification 

Requires careful 
tuning and selection 
of the region of 
interest that needs 
to be extracted 
using PCA 
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from three MRI 
sequences 

Sun et al [47] Image classification 
(Liver CT images)  

Comparison of 
SVM to LDA 
(Linear 
Discriminant 
Analysis) and 
PCA for 
classification 
tasks 

SVM showed 
higher performance 
(72% accuracy for 
binary classification 
of liver CT images) 

Li et al [48] Brain glioma feature 
classification 

Linear SVM 88 % accuracy 
reported though 
expert intervention 
was required to 
select features from 
image scans 

Yasaka et al [51] Classification of five 
types of liver masses 
from CT image scans 

Deep 
Convolutional 
Neural Networks 
(CNN) 

The classification 
accuracy reported 
was 95% without 
any manual feature 
selection 

Nawaz et al [54] Classification of 
breast cancer into 
benign and malignant 

DenseNet CNN An accuracy of 95% 
was reported using 
the transfer learning 
approach 

Lakhani [55] Tuberculosis 
identification from 
chest radiographs 

Deep CNN  The classifier 
achieved an 
accuracy of more 
than 90% 

Mohsen [56] Brain tumor 
classification from 
T2 weighted MRI 
scans 

Deep Neural 
Network with 
seven hidden 
layers 

DNN achieved an 
accuracy of 91% 
over machine 
learning techniques 
such as K-Nearest 
Neighbors and 
SVM 

Noughci et al [57] Multi-classification 
of brain MR image 
sequence 

GoogleNet and 
AlexNet DCNNs  

Both architectures 
achieved an 
accuracy of at least 
90% 
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Computer-aided diagnostic classification has been used to expedite early detection of liver 

cancers using US [36][37]. Machine learning techniques which learn the association 

between the input and output from a labelled dataset are called supervised learning 

algorithms. Supervised machine learning techniques such as support vector machines 

(SVM) have been used to classify cancers using MRI and CT scans. A  two-class tumor 

classification with Radial Basis function (RBF) using only T2-weighted MR images 

achieved an accuracy of 86% [7]. Studies have also explored using SVM techniques for 

brain and breast cancer classification. Dynamic contrast enhanced magnetic resonance 

imaging (DCE-MRI) were used to classify breast lesions as either cancer and benign 

wherein cancer was further separated into two classes (non-invasive and invasive) leading 

to a three-class classification achieved using SVM [38]. Using T1- weighted images, Faria 

et al showed that principal component analysis (PCA) can be used as a feature extractor for 

brain MRI scans [39]. With a multisequence MR image dataset of brain tumors in adult 

population, SVM with automated feature extraction was utilized for both binary and 

multiclass classification which gave an accuracy of 85%. Feature ranking and feature 

subset selection method used in this study cannot be applied to high dimensional 

classification tasks due to higher computational cost [40]. Discrete wavelet transform 

(DWT) used to extract features for multiclass brain MRI disease classification with SVM 

classifier showed more than 85% accuracy [41]. However, it should be noted that the 

dataset used in the DWT type method was small (less than 500 images) which could have 

let to overfitting and that DWT requires careful analysis of wavelet coefficient [42]. 

Extracting features from brain MRI scans for Attention Deficit Hyperactivity Disorder 
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(ADHD) types classification using Recursive Feature Elimination (RFE) SVM method 

provided 60% multiclass accuracy while showed higher accuracy for binary classification 

[43]. The RFE-SVM works by using a ranking list and works good for metabolomics since 

there is a need for noise reduction to accurately describe a signal [44]. A multi-kernel SVM 

using T2 weighted, Proton Density (PD) and Flair (Fluid Attenuated Inversion Recovery) 

MRI also employed PCA as a feature extractor to identify tumor classes from the three 

MRI sequences downstream [45]. Other methods such as Linear discriminant analysis 

(LDA) have also been used to classify breast MR images [36][46]. Compared to PCA and 

LDA, SVM has been shown to provide higher accuracy for image classification tasks [47]. 

 

Conventional machine learning techniques, such as SVM, require careful design of feature 

extractor that transforms the image scans into feature vectors which are fed to the classifier 

[10]. Training linear SVM on descriptive features as well as clinical grade based on the 

brain glioma dataset required expertise of neuroradiologist to define the features to be used 

and achieved an accuracy of 88% [48]. This has been the primary limitation of using SVM 

classifiers for big image dataset classification tasks. 

 

Artificial neural networks (ANN) mimic the biological phenomenon through which 

humans learn and coordinate themselves. They have been used in medical image 

classification and provide better performance than conventional machine learning 

approaches [49]. ANN consist of interconnected neurons that communicate with each other 
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to learn associations over the input features to determine respective class outputs. Deep 

neural networks are an extension of ANN with more layers of neurons [49][50]. 

 

Alternatively, deep learning techniques, such as convolutional neural networks (CNN), 

have the ability to self-learn features over large data [50]. Image classification tasks require 

robustness to variations in images such as position, orientation of the object, brightness or 

contrast of the image. Thus, the input-output function needs to be insensitive to changes in 

input image. Using a SVM would hence require micro-tuning of the feature extractor for 

image preprocessing tasks [51]. Compared with feedforward networks, CNNs require 

fewer parameters and connections making them easier to train. However, to train on large 

image sets with complex features, it requires GPU power to achieve high performance 

[52][8][53]. Yasaka et al used Deep CNN (DCNN) to classify five types of liver masses 

from dynamic contrast enhanced CT images and achieved an accuracy of 84% with 

minimal preprocessing. DenseNet CNN architecture developed initially for the ImageNet 

classification challenge, led to a 95% accuracy rate for classifying breast cancers into 

benign and malignant (sub-classes) using transfer learning [54]. Deep learning has also 

achieved high classification accuracy on chest radiography. DCNNs trained using a CUDA 

- enabled Nvidia Titan X 12 GB GPU to identify tuberculosis from chest radiographs 

achieved higher than 90% accuracy [55]. Classification performance of brain tumors 

(glioblastoma, sarcoma, metastatic bronchogenic carcinoma) from MRI (T2-weighted) 

images using DNN (Deep Neural Network) with seven hidden layers was compared with 

K-nearest Neighbors (KNN), SMO-SVM and LDA. It was found that DNN achieved 
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higher accuracy as compared to other methods with less tuning for image preprocessing 

[56]. Nouguchi et al achieved an accuracy of more than 90% to classify six different MR 

image sequences (T2WI, T2*WI, FLAIR, DWI, ADC, TOF-MRA) using the GoogLeNet and 

AlexNet architecture (DCNNs) with a 10-fold cross-validation [57].  

 

 
2.2.2 Convolutional Neural Network (CNN) 
 

Images seen by a human eye are easily interpreted and classified into a categorical object. 

In a field of random objects, the human eye is able to distinguish the object of interest from 

the rest very easily. This approach is explained by the Spotlight model of attention [58]. 

Computer vision tasks are based on a similar approach which aim to mimic the innate  

human tendency to recognize and infer objects around them. Thus, computer vision tasks 

immensely depend on the features that it extracts from given pixels of an image which are 

later used for inference.  

 

Convolutional neural networks (CNN) are an excellent class of feature extractors that have 

shown translational invariance [57]. CNNs learn spatial features from an image ranging 

from both high- and low-level patterns. The CNN method was implemented by Lecun et 

al. using two convolutional operations for document and digit recognition [59]. For CNNs 

to work with raw images a preprocessing is usually undertaken. This Preprocessing may 

include normalization, zero centered or same pixel sizes. From the input image pixels, the 

linear convolutional operation extracts the features which are then subsampled (Average 
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Pooling or Max Pooling). This is then fed to the next convolutional layer which further 

extracts key features making the hierarchy complex. A feature can be defined as the 

characteristic component of the object such as the wings of an airplane or eyes in a human 

face. Thus, on an input image local receptive field features combined with consequent 

layers identify the high level features of the image [59].  

Figure 2: Convolution of a (3x3) filter on a sample input image (4x4x1) with a stride length 

of 1. Image pixel intensities assumed to be in range 0-255 where we see only intensities of 

10 and 200 for this simple example. 
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From Figure 2, it is observed that given an input dimension of an image, a convolutional 

kernel will search for features on the input and will provide an output layer (matrix). This 

output layer then acts as the input for the second convolutional operation. Figure 2 shows 

the working of Sobel horizontal edge-detection filter on an input image. Similarly, different 

types of filter can be used depending on the classification task. 

Figure 2 also shows that the operation of convolutional layer on the input image is not 

regular matrix multiplication of the two. The output is obtained by taking the sum of the 

point-wise multiplication of the filter elements to the underlying elements of the image. 

Below is a description of the formula used to calculate the shape of the output layer given 

an input dimension and convolutional kernel size [59]. 

Let the height of the image dimension be ‘h1’, width be ‘w1’. Then the output dimension 

(h2, w2) is calculated by: 

ℎ! = #
ℎ" − 𝐶# + 2𝑃#
𝑆𝑡𝑟𝑖𝑑𝑒	𝑙𝑒𝑛𝑔𝑡ℎ3 + 1 

𝑤! = #
𝑤" − 𝐶$ + 2𝑃$
𝑆𝑡𝑟𝑖𝑑𝑒	𝑙𝑒𝑛𝑔𝑡ℎ 3 + 1 

 

where (Ch, Cw) represents the convolutional kernel size and (Ph, Pw) represents padding. 

For the image input in Figure 2, the dimensions are 4x4x1 for the grayscale image. The 

height is 4 and width is 4 as well. The CNN filter is 3x3 and the stride length is 1 with no 

padding. Hence using equation 1 and 2 we get: 

ℎ! =
4 − 3
1 + 1 = 2	 

𝑤! =
4 − 3
1 + 1 = 2 
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Thus, the output dimension obtained will be of the shape 2x2 which is observed in  

Figure 2. This will be the input layer for the next convolutional operation in the network. 

 

 
 
 

2.3 Imbalanced Dataset Classification 
 

Clinical diagnostic datasets, similar to fraud detection datasets, inherently possess class 

imbalance. The imbalance refers to the underrepresentation of the minority class(es) as 

compared to the majority class. This occurs in both binary and multiclass classification 

problems [37][60]. Skewed class distribution in a dataset is inherently observed in image 

recognition, cancer classification, medical disease diagnosis and computer security tasks 

[60][61]. Medical data contains intrinsic imbalance while extrinsic imbalance is dependent 

on the data collection or storage methods [11]. Imbalanced class distribution causes over 

estimation of the classifier’s accuracy and there is an increased probability of predicting 

the majority class [62].  According to Japkowicz, linearly separable non-complex 

classifications are unaffected by class rarity, though as the problem becomes complex (e.g., 

CIFAR-10 vs MNIST) sensitivity is reduced [12]. High accuracy and low error rates are 

misleading while evaluating model performance on imbalanced data since it is dominated 

by the majority class. Thus, other metrics, such as sensitivity and specificity, obtained from 

a confusion matrix are required to accurately evaluate classification performance. Receiver 

Operator Curve (ROC) alone also does not provide accurate measure of imbalanced 

classification performance [63].  
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Class imbalance and bias towards majority class can be reduced by three different 

approaches:  

1. The first is at the dataset level, which involves either random under-sampling the 

majority class or random over-sampling the minority class. Under-sampling 

reduces the over representation of majority class and reduces bias while over-

sampling involves increasing the number of minority class samples either 

artificially or by acquiring more data [64]. Synthetic Minority Oversampling 

Technique (SMOTE) has shown to be effective as compared to under-sampling 

though prone to overfitting, and also leads to an increased training time for larger 

image datasets [65].  

2. Cost-sensitive learning is another method at the algorithm level that improves 

overall classification accuracy. This reduces false negative rate with goal of 

reducing the cost function value to a minimum [66].  

3. Class weighting is another technique which is used to assign class weights to the 

different classes with the minority class receiving increased weighting. This allows 

the model to focus on the minority class without altering the original dataset. Since 

it requires careful examination and expertise in correctly assigning the class weights 

it is difficult to optimize over large datasets [67].  

 

The next subsection will provide more examples on approaching imbalanced classification 

for both imaging and non-imaging data. Based on the above points dataset modification 
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and algorithmic approach have been discussed. Sections 2.3.1 and 2.4.1 explain 

augmentation and sampling methods specific to this thesis. 

 
 

2.3.1 Dataset Modification 
 
 
One-Sided Selection  
 
 
One-sided selection used by Kubat and Matwin to balance two class dataset required 

removal of redundant, borderline and noisy samples from majority class that potentially do 

not affect the classification scores [68]. A limitation of this approach is that it requires 

careful selection of samples that have to be left out and not readily scalable to large datasets. 

 

Neighborhood Cleaning Rule 
 
 
Neighborhood cleaning rule (NCR) utilizes selective under-sampling method to balance 

the dataset. This often results in improved sensitivity at the cost of reduced specificity [69].  

NCR is an extension of one-sided selection that includes more selective removal of samples 

from majority class. In this technique, data noise in the neighborhood of the minority 

classes are removed. Emphasis on data cleaning methods prior to data reduction was more 

relied upon in NCR [70]. Heterogenous value difference metric was used by [54][55] over 

the Euclidean distance metric used in the one-sided selection method. With Edited Nearest 

Neighbor rule approach, NCR provided better accuracy as compared to the one-sided 

selection method for multi-class datasets while rates of true positives were insignificant 
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[70]. A limitation of this method points to the inefficiency of applying to datasets that have 

large number of samples as with increased number of samples, data preprocessing and 

reduction become very sensitive and requires expert intervention.    

 

Data Level Approach 
 
 
The CIFAR-10 dataset contains 6000 images in each class and hence is a balanced 

distribution among the classes. Evaluating the performance of CNN in classifying 10 

classes in the CIFAR-10 dataset, [71] introduced artificial imbalance in the dataset and 

compared the classification performance of their classifier. It was observed that the 

distributions with most imbalance among classes (14% of total images were represented 

by airplane class) provided worst accuracy (10%) while the original balanced dataset 

provided 73% accuracy. Random oversampling (duplication of minority class images) 

performed on the underrepresented classes in the imbalanced distribution yielded increased 

performance of the classifier (73% for both) similar to the balanced distribution.  

 

Sampling methods such as under sampling of majority class and over sampling of minority 

class improves the class distribution from the original imbalanced dataset. Random under 

sampling and over sampling approach allows to reduce the degree of imbalance within the 

modified training set [11]. Depending on the dataset, optimal level of under sampling or 

over sampling could be performed to reduce the imbalance. Compared to uniform balance 

it has been observed that performing under sampling on majority class only or minority 
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class oversampling to reduce class imbalance could provide similar results to that of 

balanced distribution [64] [72] [73].  

 

Using MNIST, CIFAR-10 and ImageNet datasets Buda et al [72] used CNN to classify 

images. Varying ratios of class imbalance was introduced in the training sets of the three 

datasets. Model parameters and architecture was kept constant throughout all three 

datasets. It was observed that the method of thresholding (adjusts decision threshold of 

output probabilities and utilized during test phase of a classifier) on the CNN outputs did 

not perform superior to random oversampling method of the minority classes for MNIST 

and CIFAR-10 datasets. Additionally, they report that oversampling did not cause 

overfitting for their predictions. Furthermore, Buda et al suggest that for imbalanced 

datasets using CNN oversampling should always be performed so as to reduce imbalance 

within the distribution prior to training.   

 

2.3.2 Algorithmic Approach 
 

Learning Classifiers 
 
 
Learning classifier systems represent the use of rule-based type of learning which can be 

used in imbalanced datasets classification [73]. Investigation of performance of training 

data resampling on various imbalanced datasets with learning classifier system based on 

rule-based learning (reinforcement learning and supervised learning) provided an average 

accuracy of 65.91% and 68.23% for reinforcement learning and supervised learning 
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systems respectively for small datasets. Using this rule based approach with under 

sampling and oversampling of imbalanced datasets it was observed that compared to over-

sampling under-sampling led to poor classification performance [74].  

 

Transfer Learning 
 
 
Marine plankton dataset (WHOI-Plankton) [75] consists of imbalanced distribution having 

100 classes with only 5 classes representing more than 80% of the dataset. CNN classifier’s 

performance (with and without transfer learning) trained using this dataset was compared 

with data sampling techniques such as random reduction of overrepresented data to balance 

the dataset [76]. Transfer learning with CIFAR10 CNN model was implemented after 

reduction of plankton images from majority class and provided an F1 score of 0.308 while 

a score of 0.177 was observed for the original imbalanced image distribution. The data 

reduction technique increased the classification accuracy of the minority classes while also 

increasing the overall accuracy of the pre-trained CNN classifier. Furthermore, they also 

experimented data augmentation techniques such as rotation, scaling and translation which 

improved the classification score (F1 score of 0.312).  

 

Pouyanfar et al, have explored the use of real-time data augmentation i.e. transform image 

batches for each training step in multi-class dataset [77].  Transfer learning was achieved 

using the InceptionV3 model using the Keras ImageDataGenerator for data augmentation 

(horizontal flip, rotation, shear). It was observed that the model with augmentation 

performed better (F1 score of 0.553) than the imbalanced distribution (F1 score of 0.432).  
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Comparing the results from [71], [76], [77] it was inferred that random over-sampling and 

data augmentation can improve classification performance. Under-sampling requires  

removal of majority class representation and can reduce training time but reduction in 

majority data might require careful intervention so as not to remove representative data for 

that class distribution.   

 
Modifying Model Loss Function 
 
 
Impact of modifying loss functions during the training phase has also been explored to 

overcome class imbalance. Mean Square Error (MSE) is the most common loss function 

used in deep learning tasks, Wang et al [78] experimented with different loss functions 

(Mean False Error and Mean Squared False Error) to evaluate model performance. MFE 

computes error on the samples by taking average sum of the error from two classes. MSFE 

improves upon MFE since MFE loss is insensitive to positive class error rate and reduces 

classification accuracy for the majority class while focusing on the minority class [78].  

 

Using the standard CIFAR-100 dataset, the super classes were further combined into three 

different datasets to artificially introduce imbalance (20%,10% and 5%). Wang et al 

observed that the classification performance was severely affected when the imbalance 

between the two classes was higher (5% of minority samples as compared to the majority 

ones). As compared to the MSE, the classification performance using MSFE and MFE 

reported minor improvement from baseline (had similar F1 scores). Additionally, Focal 

loss used by Lin et al [79] was a similar technique to reduce weighting on majority 
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representation of samples. Their approach builds on the limitation of minority class 

gradient of the work in  [80]. Object detection using R-CNN utilizing a two stage approach 

often encounter class imbalance [81]. Within the two stage object detector approach, the 

first stage identifies the desired objects of interest and then the second stage can use hard 

example mining to perform sampling heuristics [82]. Since the first stage has to look for 

object of interest, there was an imbalance ratio of background samples to the object to be 

detected. The focal loss method  developed by [79] aimed to improve the efficiency of the 

one-stage detector by easily integrating into the existing model architectures. Results from 

using this focal loss method in image classification task of imbalanced architecture dataset 

by [83] for the decomposed classes (from six to three) revealed higher accuracy (83%) 

when the down weighting hyperparameter (increases focus on negative samples) of the loss 

function was set to zero. This value was similar to that obtained by the standard Cross 

Entropy loss which is a standard loss function for multi-class classification problems [84].  

 

In binary classification of imbalanced datasets, [80] used modified backpropagation 

(descent vector) to reduce the error rate of minority class and improve convergence. As 

they report, this method was not extendible to multi-class problems due to very low error 

convergence rate for underrepresented classes in such classifications.  

 

Based on the evidence from above works, it was observed that class imbalance can be 

improved prior to training and techniques such as under sampling prove to be less effective 

as compared to oversampling the minority class which led to less overfitting. Furthermore, 
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it was also found that accuracy cannot provide a robust measure of the classifier’s 

performance in a multi-class dataset. Metrics such as F1 score along with precision and 

recall scores should be used to assess model performance. 

 

The next section will explore the use of data augmentation methods to balance imbalanced 

distribution of data. 

 

2.4 Data Augmentation Methods 

Rotation, translation, zooming or shearing are the most common form of data augmentation 

methods that have been applied to image classification with imbalanced datasets. These 

methods introduce new images in the dataset which are used during training of CNN 

models [85]. Since CNNs are not viewpoint equivariant, geometric transformations are 

useful for CNNs as they make it invariant to image positioning and orientation.  

 

Transformations such as changing the color, contrast and brightness of the images is 

another technique to increase the number of samples in the dataset and prevent overfitting 

[86]. Comparing color transformations of images to that of rotating, flipping and cropping 

[86] report that CNN model accuracy increased when geometric transformations were used. 

Simple geometric transformations are not computationally intensive and are easy to 

implement on the training set.  
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2.4.1 Simple Image Augmentation Methods  

 
Using the Caltech 101 (9146 images with 101 categories) and Pascal VOC (10,000 images 

with 20 categories) datasets, [87] evaluated image augmentations such as flipping and 

cropping on CNN model performance. Mean accuracy reported by [87] shows that model 

performance increased when cropping is combined with flipping. Primary limitation of 

their study was that only mean accuracy was used and hence other metric such as F1-score 

for a multi-class problem is required to validate their results.   

 

Using the Galaxy Zoo dataset consisting of 61,578 images in the training set and 79,975 

images in the test set, [88] explored the use of rotation and cropping to augment the training 

images in a small dataset and to increase robustness of the CNN model. Since rotating the 

images does not affect the classification based on morphology, random rotation of images 

in the range of 0° to 360° was performed. Other geometric transformations such as flipping 

images horizontally was also used. Furthermore, regions of interest were also cropped 

followed by random rotation to provide different viewpoints of each image. As reported by 

[88] their approach provided a score with an RMSE (Root Mean Square Error) value of 

0.075 along with high recall (0.7) and precision (0.8) scores without averaging predictions 

from different models trained on the same dataset. Lastly, [88] report that geometric 

transformations provided better results as compared to photometric transformation such as 

increasing or decreasing brightness of images.  
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In a multi-class (18 categories) balanced fruit dataset, [89] have compared CNN 

classification performance with (3600 images with 200 images per class) and without 

augmented training set. The small fruit dataset consists of only 1800 images in the training 

set which were augmented by rotation (range of -15° to 15°), gamma correction, scaling 

and introducing noise in images to yield a balanced set of 64,800 images in total. Test set 

results show that CNN accuracy, sensitivity and precision scores improved after using the 

augmented images. Accuracy increased by almost 4% for the data augmentation approach 

while non-augmented approach had 86% accuracy.  

 

Using CNN as a feature extractor for Synthetic Aperture Radar (SAR) images, [90] have 

explored data augmentations such as translation, speckle noise and changing pose 

(rotation) of images. Translation of images was performed to make the CNN robust to 

alignment of target features in the image. A set window (30 x 30 pixels) was defined within 

which defined the maximum shift along x and y axis. Speckle noise is inherently present 

in SAR images and reduces the ability of human observer to distinguish the target feature 

from background [91]. Ding et al [90] found that there was no significant difference in test 

accuracy when CNN was trained separately on different augmentations or combined 

augmentation. As reported by [92], when noisy images were used in the training set model 

accuracy was lower than that of image rotation and translation. Mean accuracy of 50% was 

observed for the speckled noisy image set while more than 85% for the translated set [91].  
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Hussain et al [92] compared different augmentation approaches to increase validation 

accuracy on mammography dataset.  Augmentations such as horizontal and vertical flip, 

shear, rotation, Gaussian noise injection, scaling and blurring images were evaluated. The 

dataset consisted of balanced distribution between normal (1650 images) and non-normal 

(1651) mass samples. Images were cropped to reduce its size before and after augmentation 

to reduce number of parameters to train. VGG-16 CNN was then used on the augmented 

15,673 images. Hussain et al report that validation accuracy suffers when noisy images are 

added to the training set. Simple geometric transformation such as flipping images gave 

more than 85% accuracy as compared to 78% accuracy prior to augmentation.  

 

2.4.2 Algorithm Based Image Augmentation  

 
Wang and Perez, explore standard geometric augmentation techniques (horizontal flip, 

cropping and rotating images by 45°) and augmentation using CycleGAN [93]. Generative 

adversarial networks (GAN) use a discriminator and generator network to artificially 

increase the training images. The generator network generates images based on the sample 

images while discriminator compares it to the original image [94]. Using the Dogs vs Cats 

and Dogs vs Goldfish dataset, [93] evaluated the performance of models trained on non-

augmented and augmented training sets. It was observed that traditional augmentation 

(computationally less intensive) provided similar accuracy to that of network trained using 

images generated by GANs. Eighty nine percent validation accuracy was observed for the 

Dogs vs Goldfish data while 77% for Dogs vs Cats data when traditional augmentation was 

used. They also evaluated the use of neural augmentation for the MNIST dataset. Neural 
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augmentation or learning augmentation utilizes two images from each class to generate a 

new image and then the original image and new image are fed to the next layer increasing 

the number of training samples available. However, [93] report that using neural 

augmentation and GAN do not produce significantly different classification accuracy and 

are more computationally expensive than the geometric transformations.  

 

Cubuk et al [95] devised AutoAugment that learns augmentation strategies from the given 

dataset. Using various imaging datasets (CIFAR-10, CIFAR-100 and ImageNet) they have 

compared classification performance of the AutoAugment method. Their approach uses 

Reinforcement Learning to determine possible augmentation approaches (both geometric 

and photometric transformations) that give higher validation accuracy. A recurrent neural 

network is used to determine possible augmentation strategies (translation, color variations, 

sharpness, rotation and inversion) which are reinforced based on the validation accuracy 

received from the set model architecture. Similar approach was used by [96] but using 

GANs.  

 

Cubuk et al also experimented using AutoAugment transfer approach which involves using 

the learned strategies from dataset such as ImageNet or CIFAR-100 and apply them to new 

datasets such as Caltech-101. They report that their transfer approach led to 2% reduction 

in error rate from baseline models though it should be noted that the size of training images 

had to be reduced. AutoAugment cannot perform on the whole dataset and requires a core 

sub sample for the training set on which the search algorithm works best. From the original 
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training set (~550,000 images) of SVHN (Street View House Numbers)  dataset 73, 257 

images [97] were chosen for the core training set on which AutoAugment approach 

provided geometric transformation as the most common augmentation strategy over 

photometric transformation. An average reduction in error rate of 0.4% (before 

augmentation test error was 1.5%) was observed for the SVHN dataset after training on 

augmented set which is not significant given the increased computational time (5000 GPU 

hours on CIFAR-10) [98] spent on augmentation search.  

 

To overcome the challenge of class rarity in brain MRI datasets, [99] have used GAN to 

synthetically augment abnormal brain MR images. Using pix2pix GAN, they were able to 

generate T1 weighted, T2 weighted and FLAIR images and also control the location of 

tumor on the brain scan. The ADNI (Alzheimer’s Disease Neuroimaging dataset) is a small 

dataset with 3000 images and thus due to its small size an approach involving GAN was 

used [100]. However, it should be noted that images had to be cropped and resized to a 

smaller size for the ADNI, focusing on the region of interest so as to reduce the time taken 

to generate the synthetic image.  

Overall, it has been observed that simple geometric data augmentation methods such as 

flipping, rotating or translating the images can help to artificially increase the class balance 

as compared to data augmentation using GANs or AutoAugment that require increased 

computational time and resources. 
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2.5 Model Architecture Design and Evaluation 

This section focuses on previous work on deep CNN model designs along with hyper 

parameter tuning which improves classification performance. Multiple architectures have 

been explored for imaging datasets. 

 
2.5.1 Convolutional Neural Network Architectures 
 
 
Deep learning models can converge and scale well when training samples are increased. 

Very deep learning models as used by [101] show that model error rate converges faster 

when more convolutional layers are used. More than 10 convolutional layers were used 

with 3x3 as the kernel size for all layers. The dataset was imbalanced facial recognition 

images and the model performance was evaluated on the EmotioNet challenge. They have 

compared classification error rates for deep (18 layers) and shallow (6 layers) network 

architectures. Max pooling was used after the first convolutional layer with a stride of 2 

and size of 2x2. They report faster error convergence rate when deeper network was used. 

Furthermore, their 10 layered CNN network provided higher F1 score (0.641) for the 

majority class as there was no attempt to balance the dataset prior to training. 

 

Several CNN architectures have been designed with optimizations to parameter, variation 

of regularization techniques and stacked layering [102]. LeCun et al developed the first 

CNN architecture for digit classification [103]. It included five convolutional followed by 

pooling layers. AlexNet was later developed overcoming the shortcomings from LeNet to 

be applicable to image classification tasks [104].  
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Hyperparameters 
 
 
Hyperparameters such as but not limited to learning rate, activation function and batch size 

determine the training behavior of a deep learning algorithm. They impact the ability of the 

model to learn features from an input sample and are set prior to training models. Below 

methods cover different hyperparameters that were used in well-known deep learning 

architectures for image classification. 

 
 
AlexNet as compared to LeNet is not a shallow deep learning model. AlexNet consists of 

five convolutional layers with pooling layers after every two convolutional blocks. 

Additionally, there are three fully connected layers and regularization such as dropout 

[105]. Dropout is a simple technique that aims to reduce overfitting. It is applied in the 

dense layers wherein certain connections among neurons are turned off or dropped 

temporarily while training the model. Usual dropout rate is set to 0.5 which means that 

50% of the nodes will be turned off randomly. For large dataset, Srivastava et al found 

default setting (drop out set to 0.5) to give optimal performance on the MNIST dataset and 

reduced overfitting. On the ILSVRC-2012 competition, CNN network (five convolutional 

layers) with dropout (0.5) achieved a top-5 error rate of 16% as compared to 26% achieved 

by classifier not using dropout [105].  Furthermore, AlexNet also employed using ReLU 

(Rectified Linear Unit) as the activation function to overcome the problem of vanishing 

gradient. Using ReLU [105] achieved a 20% improvement over other competitors at the 

ImageNet challenge. Models using the non-linear activation function ReLU, trained faster 
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as compared to models using the tanh activation function. With using ReLU comes the 

need to consider the hyperparameter learning rate (affects rate of model convergence). 

Krizhevsky et al set the learning rate to 0.01 and then reduced it by factor of 10 manually 

when error did not change [105].  

 

VGGnet is another popular architecture developed by [106] and builds on AlexNet 

architecture for image recognition and classification tasks. Simonyan and Zisserman have 

evaluated the performance of CNN with respect to increasing depth which eventually led 

them to first position at the 2014 ImageNet challenge. Their architecture consisted of 3x3 

CNN with 11, 13 and 16 layers. Max pooling (2x2) was added after each convolutional 

block. Two dense layers with 4096 nodes and 1000 nodes in the last layer were used. With 

increase in depth of the network, there was a significant increase in the number of trainable 

parameters (~130M) which then led to increased computational burden [102]. A learning 

rate of 0.001 was used along with Glorot Uniform [107] as the random weight initializer 

during training. As compared to AlexNet (top-5 test error of 16%) the deeper VGGnet 

provided a top-5 test error of 6.8% thus showing that deeper model can lead to improved 

accuracy without pre-training but at the cost of increased training time. 

 

In summary, dropout regularization (0.5) along with ReLU as the activation function and 

Glorot Uniform as the random initializer have been used to achieve high classification 

scores on image classification datasets. Additionally, initial learning rate of 0.001 provided 

improved model convergence on test data. 
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Computational Efficiency 
 
 
Dimensionality reduction refers to the technique wherein the number of samples of input 

data are reduced so that there occurs reduction in the number of parameters to train. As the 

computational requirement to train a deep learning model is proportional to the number of 

parameters, dimensionality reduction reduces computational burden. 

 

The 2014-ILSVRC competition was won by the GoogleNet architecture. Their goal was to 

speed up training and reduce computational cost [108] and builds on top of [109] which 

uses the idea of having micro networks stacked together. GoogleNet uses 22 layers of CNN 

while reducing the trainable parameters to just 4M. As compared to previous architectures 

GoogleNet uses different kernel sizes for the convolution operation that can extract varying 

levels of features [110]. This is the underlying idea behind Inception block used by 

GoogleNet. Inception block serves the purpose for dimensionality reduction and hence 

lower the number of parameters. To achieve this, 1x1 convolution operation is utilized. 

Within each Inception block a 1x1 convolution is added either before the 3x3 and 5x5 

convolution or after. Dropout (0.4) was used in the fully connected layers with 1024 nodes 

(only one dense layer). Using ensemble approach on differently tuned training models, it 

achieved top-5 error rate of 6%. Primary limitation of using GoogleNet is cited as the 

careful manual crafting of the Inception block design to suit the classification problem 

[111].  
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Improved Performance Using Non-Complex CNN Architectures 
 
 
Performance of a deep learning system refers to the model’s ability to train over the input 

features with optimal training time and computational resources. A comparison of state-of-

the-art deep CNN architectures with shallow CNN models has been provided. 

 
 
A popular CNN architecture, ResNet, used 152 CNN layers for the ImageNet challenge 

[112]. Their architecture won the 2015-ILSVRC competition and used the idea of residual 

blocks. Residual blocks are also called skip connections and are based on the idea of 

Highway networks which aim to improve model convergence in large networks [113].  

Deeper models often lead to increased training error and accuracy saturation [114], hence 

introduction of residual blocks which is also similar to that observed in LSTM (Long Short 

Term Memory) networks led to differential training based on error backpropagation [112].  

The model (ResNet-101) was evaluated on the COCO object detection dataset and achieved 

28% improvement than VGG-16. It should also be noted that using SimpleNet, Hasanpour 

et al [115] achieved 95.32% accuracy (without hyperparameter tuning and augmentation) 

which is similar to ResNet-110L /1202L on CIFAR-10 dataset. Their architecture, 

SimpleNet had 13 convolutional layers (3x3 kernel size) with max pooling (2x2). The last 

two layers had 1x1 convolutional operation. Since no augmentation was considered, batch 

normalization was used along with ReLU as the activation function. Their work hints that 

the optimal model performance can also be achieved with few layers in the model. 
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Using a balanced dataset of CT lung images, Qing et al [116] developed a CNN model with 

one layer convolution (7x7) and max pooling (2x2) for multi classification (5 classes) of 

patches of lung disease. The model had two fully connected layers with 100 and 50 nodes 

in the two layers leading the final layer (5 nodes). Dropout was set to 0.6 while ReLU was 

used as the activation function. Precision (0.80) and recall (0.76) scores show high 

classification scores with just one convolutional layer. The ILD dataset [117] (texture-

based images) used for their model evaluation did not have increased features to learn from 

and thus deeper models were not required in their case.   

 

From the above review, it is inferred that deep CNN models with different kernel size can 

capture both high- and low-level features from images. Deeper and shallower models were 

compared and was found that depending on the dataset, prior training set data augmentation 

should be performed to have better model convergence and classification score on the 

unseen test data. The next section provides details on the evaluation metrics for 

classification on an imbalanced imaging dataset.   

 
 
2.5.2 Evaluation Metrics 
 
 
Confusion matrix results along with classification report were used to evaluate 

classification results of the different models. Model accuracy nor AUC score can provide 

a better picture of the classifier’s performance in the case of an imbalanced multiclass 

dataset [36].  
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Keras categorical accuracy: is calculated as the percentage of predicted values that match 

true values and gives measure of model accuracy during training. 

Precision and recall scores calculated from confusion matrix for a multi-class classification 

determine the true positives from all positive predictions and sensitivity respectively. 

Precision:    
!"

!"#$"
 

It is the ratio of true positives (TP) to that of sum of true positives and false positives (FP). 

Recall:    
!"

!"#$%
 

It is defined as the ratio of true positive to that of the sum of true positive and false negative. 

It is also referred as sensitivity. 

F1 score:  2	 ∗ $"&'()*)+,∗.'(/00
"&'()*)+,#.'(/00

% 

It is a multiclass performance evaluator for each class. It is defined as twice the ratio of the 

product of precision and recall to sum of precision and recall. 

Weighted average:  
*12(	($5	*(+&'∗*166+&7	6'&	(0/**)	)

*12(*166+&7)	
 

It is the weighted sum of F1 scores. Support represents the number of samples of that class  

Macro average: is the mean of F1 scores without weighting 

Accuracy:  
!"#!%

!"#!%#$"#$%
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It is the ratio of sum of true positive and true negative to that of sum of true negatives, true 

positives, false negatives and false positives. 

Table 3: Sample confusion matrix result for multiclass predictions. Support refers to the 

number of samples per class. 

        Predicted 

True  

Class A Class B Class C Support 

Class A 45 5 10 60 

Class B 10 35 5 50 

Class C 10 10 50 70 

In Table 3, precision score for class A can be calculated by taking the number of correct 

prediction and dividing by row sum. 

Precision	(Class	A) =
45

45 + 5 + 10
= 0.75	 

Recall can be calculated by taking the number of correct predictions and dividing by the 

column sum in a confusion matrix. 

Recall	(Class	A) =
45

45 + 10 + 10
= 0.6 

F1 score for Class A can be calculated from recall and precision scores, 

F1	(Class	A) = 2 ∗ =
0.75	 ∗ 	0.69
0.75 + 0.69?

= 0.72 
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Chapter 3 

 

Methodology 

We have chosen three approaches to multiclassification of liver MRI sequences  

1. Baseline using imbalanced dataset, 

2. Data augmentation for the minority classes and  

3. Random under sampling of majority classes 

 
Our methodology is based on the approach taken by [87], [90] and [92] which consider 

data level approach to deal with class imbalance in datasets. This section provides 

preprocessing pipeline for MRI images to be used by the deep learning model to learn 

features from input images. Additionally, model architectures along with hyperparameters 

used for training have also been provided. 

 



 
 
M.Sc. Thesis – A. Trivedi   McMaster – eHealth 

 44 

3.1 Dataset Characteristics 

In this section we have presented our imbalanced MRI sequence dataset and distribution 

of images per class using data augmentation and random under sampling. Furthermore, we 

have provided the workflow undertaken to experiment the dataset balancing approaches. 

 

3.1.1 MRI Sequence Dataset 

 
A total of 193,868 images are present in this dataset.  There are 10 classes in the dataset 

with imbalanced distribution of images per class as observed in Figure 3. The class IPOOP 

contains the least number of images as compared to other classes. The number of post-

contrast sequences C+ and C- are more than 20,000 each (Figure 3).  

The ten classes are: 

1. Apparent Diffusion Coefficient map (calculated from DWI), 

2. T1-weighted post contrast imaging C-,  

3. T1-weighted post contrast imaging C+, 

4. T1-weighted post contrast imaging C-C+,  

5. Diffusion Weighted Imaging (DWI),  

6. in-phase (IP) chemical shift imaging,  

7. In phase/Out of phase (IPOOP) imaging,  

8. Out-phase (OOP) chemical shift imaging,  
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9. T2 weighted imaging and 

10.  Fat suppressed T2 weighted imaging (T2FS) 

The purpose of these sequences is for liver observation and for determining  

presence/absence of LI-RADS features (major and ancillary).  

 

 
 

 

Figure 3: Distribution of images per MRI sequence. As compared to the T1-weighted post-

contrast (C- and C+) phases, all other phases have significantly lower samples 

 

 

7

40

64

17 17 16

3

16

8 8

0

10

20

30

40

50

60

ADC C- C+
C-C+

DW
I IP

IPOOP
OOP T2

T2FS

N
um

be
r o

f i
m

ag
es

 (t
ho

us
an

ds
) 

Number of MRI sequences in the dataset



 
 
M.Sc. Thesis – A. Trivedi   McMaster – eHealth 

 46 

Figure 4: Dataset preparation for the MRI sequences. The dataset was randomly shuffled 

before partitioning data into Training, Validation, and Test sets.  

The original dataset of MRI sequences with 10 classes was in the DICOM (Digital Imaging 

and Communication in Medicine) format (Figure 4). The MRI images were converted to 

PNG format using the Matplotlib library because the Keras deep learning library was 

unable to read the DICOM image format.  

 

Images were randomly shuffled and then partitioned into Training (80%), Validation (10%) 

and Test (10%) sets. The test set is untouched during training phase wherein only the 

validation set is used for updating the model.  
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Four deep learning models (A, B, C and D) were developed and trained using two 

architectures (X, Y) with training and validation test from Figure 4: 

Model A (baseline), architecture X, was trained using the unaugmented Training set  

Model B, architecture Y, was trained using the unaugmented Training set  

Model C, architecture Y, was trained using augmented Training set  

Model D, architecture Y, was trained using under sampled Training set 

 

As shown in Figure 5, the ten MRI sample images would provide a specialist with different 

imaging characteristics that provide information for the liver parenchyma or other features 

for LIRADs and detection of HCC. 
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Figure 5: Sample MRI images from the sequence dataset. 
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Figure 6: Test set data distribution for the MRI sequences 

 
Figure 7: Validation set data distribution for the MRI sequences 
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From Figure 6 and Figure 7 it was observed that the distribution of images in the Test and 

Validation sets are not balanced; however, by visual comparison the distributions are a 

representative sample of the original imaging dataset by using random sampling. Both Test 

and Validation sets have an approximately equal total number of images per class. 

 

3.2 Dataset Structuring 

Since ImageDataGenerator from the Keras library was used the training, test and validation 

sets were organized into directory format with each class being represented as a folder as 

shown in below figure. The ImageDataGenerator class automatically infers the class names 

when images were loaded.  

 

 

 

 

 

 

Figure 8: MRI sequence dataset organization for reading the images by 

ImageDataGenerator 

 

train
ADC

C+

C-

C-C+

T2FS

T2

IP

IPOOP

DWI

OOP

val
ADC

C+

C-

C-C+

T2FS

T2

IP

IPOOP

DWI

OOP

test
ADC

C+

C-

C-C+

T2FS

T2

IP

IPOOP

DWI

OOP



 
 
M.Sc. Thesis – A. Trivedi   McMaster – eHealth 

 51 

3.3 Preprocessing 

As observed from Figure 4, the datasets are split into Train, Validation and Test sets after 

shuffling the dataset. Training contains 80% of the split while validation and test sets 

contain 10% each. This method of dataset partitioning ensures that the test set is only used 

during model evaluation and validation is used during training. Furthermore, for large 

datasets such partitioning is preferred over cross validation due to increased number of 

training parameters and features in deep learning systems [118].   

Augmentation was performed on only the training set after partition into the three sets 

which included rotation by 45 degrees, horizontal flip and vertical flip on the images 

(Figure 9) using the Pillow Library. This was performed to increase the balance among the 

classes.  
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Figure 9: Increasing the number of samples per class except C- and C+ using data 

augmentation. Horizontal flip, vertical flip and rotation by 45 degrees was performed. 

 
Data augmentation as observed in Figure 9 above led to artificial increase in the number of 

images per minority class. The augmented class included the original images plus the 

geometrically transformed images. As reported by [93] and [92] models trained on 

geometric transformations such as horizontal/vertical flip and rotation of training images 

had shown to provide better classification accuracy on the test set. 
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Figure 10: Random under sampling was performed for the T1-weighted post contrast (C+ 

and C-) classes. The number of images were under sampled to 3000 each. 

Since the training of deep CNN suffers from imbalanced data distribution data 

augmentation is performed for the training set and model performance is compared with 

and without augmented training data. Additionally, model training was also performed on 

under sampled dataset (Figure 10).  
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3.4 Model Design and Validation 

 
Architecture X (Figure 11) was designed for the baseline model (Model A) which only had 

three convolutional layers. As observed in [103], Model A was designed as a shallow model 

with smaller kernel or filter sizes to determine model’s performance on simple architecture.  

 

 
Figure 11: Architecture X for Model A (baseline model). Max pooling (not shown) was 

used after each convolution layer. Dense layers are not shown; however dense layers are 

included after the flatten layer. 

Architecture Y (Figure 12) was chosen for Models B, C and D. This was designed to build 

on top of the Architecture X with two more convolutional layers and two additional dense 

layers. Additional convolutional filters would extract more higher-level features and fine-

grained features that could increase model’s performance [104].  
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Figure 12: Architecture Y for models B, C and D.  The above shows the CNN layers. Dense 

layers and max pooling are not shown; however, dense layers are included after the flatten 

layer.  

For the sequence classification (10 classes), two model architectures were constructed. The 

baseline model (Model A) had 3 convolutional layers and one dense layer (1028 nodes) 

while a deeper network (Model B, C and D) with 5 convolutional layers and three dense 

layers (1028 nodes each) was also devised. A large kernel size of 9x9 was used in Model 

A which aims to capture high level features of the input image while the smaller kernel 

sizes (5x5 and 3x3) in the subsequent layers look for fine grained features [59].  

Models were trained on both architectures. Model A and Model B were trained on 

imbalanced training set (Figure 3) while Model C was trained on augmented training set 

(Figure 9) and Model D was trained on the under sampled training set (Figure 10).  Similar 

scheme proposed by [88][89] (refer to 2.4.1) was followed to compare model performance 

when image augmentation and under sampling was used. Since the geometric 

transformations do not alter the most of property related to the MRI sequence images, 

training CNN models with such image augmentation can provide robustness to image 
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spatial orientations. To better assess the classification scores of models, F1 score (a 

multiclass evaluator) metric was used to compare among the different models. 

Furthermore, to investigate the effect of adding more layers on the classification accuracy, 

Architecture Y was used as it was observed by Szegedy that adding more layers increases 

model convergence [110]. Model B, C and D had the same architecture.   

 

3.4.1 Model Hyperparameters 

Keras’ Glorot Uniform was used as the random weight initializer with a learning rate of 

0.001 as reported by [94][102]. Learning rate refers to the ability of the model to converge 

to a classification problem. High learning rates will lead to less number of epochs required 

but most often result in sub-optimal accuracy [105]. Batch size of 64 was used for model 

training. The hyperparameter, batch size, refers to the number of samples or images that 

will be passed to the model during training before updating the model weights. A batch 

size of 64 in our big dataset ensures optimal training efficiency and model convergence.  

Adam optimizer was used as it has been reported to provide faster model convergence 

[65][93]. ReLU was used as the activation function along with dropout (0.5) regularization 

[97][103][92]. Dropout regularization was used after each dense layer for Models B, C and 

D but was not used in the baseline model (Model A).  
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Table 4: Hyperparameters used for training the models on Architectures X and Y. A batch 

size of 64 was used for all models. 

 

Model 

Hyperparameters 

Learning rate Activation 
function 

Optimizer Early 
Stopping 

Model A 0.001 ReLU Adam Patience 
value of 7 

Model B 0.001 ReLU Adam Patience 
value of 7 

Model C 0.001 ReLU Adam Patience 
value of 7 

Model D 0.001 ReLU Adam Patience 
value of 7 

 

3.4.2 Development Environment 

Development environment used for training was TensorFlow 2.0, Python 3.8.2 and 

Lambda Labs Stack (3x2080Ti GPU). Libraries used for the model training and evaluation 

were Keras and ScikitLearn. ImageDataGenerator class was used for loading the datasets. 

Training was run for maximum of 12 epochs for each model.  
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Chapter 4 

 

Results 

 

In this section, results of the four trained models are presented. Models A, B, C and D were 

evaluated for their predictive ability to classify MRI sequences from the unseen test set 

images (19,387).  

 

Multi-class F1-scores for each class label prediction and confusion matrix results were 

reported. Confusion matrix in particular provides a more robust measure of sensitivity and 

precision scores for the model performance for imbalanced data distribution. Furthermore, 

classification reports for each model’s performance on classifying the different classes was 

also included. 
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4.1 Model A - Classification Results 

We report precision, recall and F1 scores calculated from confusion matrix (Figure 13) for 

baseline model (Model A) from predictions on test set. Classification scores are reported 

in  

Table 5. 

 

Figure 13: Confusion matrix results for Model A (sequence Test dataset)  

Table 5: Classification report for (Model A) with sequence Test dataset 

  precision recall F1-score support 
ADC 1 1 1 644 
C+ 0.88 0.96 0.92 6338 
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C- 0.94 0.79 0.86 3989 
C-C+ 0.96 0.98 0.97 1736 
DWI 0.99 1 0.99 1651 
IP 0.99 1 1 1562 
IPOOP 1 0.94 0.97 306 
OOP 0.99 1 1 1625 
T2 1 0.99 0.99 749 
T2FS 0.99 0.98 0.99 787 
accuracy     0.94 19387 
macro avg 0.97 0.96 0.97 19387 
weighted avg 0.94 0.94 0.94 19387 

 

4.2 Model B - Classification Results 

Model B was trained on the Architecture Y and we report the classification scores in 

Table 6.  
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Figure 14: Confusion matrix result for Model B (sequence Test dataset)  

 
Table 6: Classification report for Model B with sequence Test dataset  

  precision recall F1-score support 
ADC 1 1 1 644 
C+ 0.87 0.96 0.92 6338 
C- 0.92 0.78 0.84 3989 
C-C+ 0.97 0.94 0.95 1736 
DWI 1 0.99 0.99 1651 
IP 0.99 1 0.99 1562 
IPOOP 0.99 0.93 0.96 306 
OOP 0.99 0.99 0.99 1625 
T2 0.98 0.96 0.97 749 
T2FS 0.96 0.98 0.97 787 
accuracy     0.93 19387 
macro avg 0.97 0.95 0.96 19387 
weighted avg 0.93 0.93 0.93 19387 

 

4.3 Model C - Classification Results 

 
Using Architecture Y, the classification predictions on test set for Model C are reported 

here. Model C was trained on the augmented training set. Model B and C only differ on the 

type of training data that was used to train the models. Results from Figure 15 and Table 7 

show similar precision and recall scores as compared to Model B. 
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Figure 15: Confusion matrix results for Model C (augmented Training set)  

Table 7: Classification report for Model C (augmented Training set)  

  precision recall F1-score support 
ADC 1 1 1 644 
C+ 0.84 0.96 0.9 6338 
C- 0.94 0.71 0.81 3989 
C-C+ 0.94 0.97 0.95 1736 
DWI 1 0.99 1 1651 
IP 0.99 0.99 0.99 1562 
IPOOP 0.98 0.92 0.94 306 
OOP 0.98 0.99 0.99 1625 
T2 1 0.96 0.98 749 
T2FS 0.94 0.99 0.96 787 
accuracy     0.92 19387 
macro avg 0.96 0.95 0.95 19387 
weighted avg 0.93 0.92 0.92 19387 
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4.4 Model D - Classification Results 

 
Classification predictions for Model D which was trained on the under sampled training 

set has been reported here. The majority class (T1-weighted post contrast C+ and C-) 

were under sampled to reduce class imbalance. 

 

 
Figure 16: Confusion matrix results for Model D (under sampled Training set) 

From Figure 16, it was observed that Model D showed overall good prediction for the 

minority classes while classification prediction was lower for the T1-weighted post contrast 

C+ and C- classes. 
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Table 8: Classification report for Model D (under sampled Training set) 

  precision recall F1-score support 
ADC 0.96 1 0.98 644 
C+ 0.9 0.74 0.81 6338 
C- 0.7 0.78 0.74 3989 
C-C+ 0.81 1 0.9 1736 
DWI 1 1 1 1651 
IP 0.99 0.99 0.99 1562 
IPOOP 0.92 0.96 0.94 306 
OOP 0.92 1 0.96 1625 
T2 0.96 0.99 0.98 749 
T2FS 0.98 0.99 0.99 787 
accuracy   0.87 19387 
macro avg 0.91 0.95 0.93 19387 
weighted avg 0.88 0.87 0.87 19387 
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Figure 17: Validation accuracy for all models during training. Model D shows lowest 

accuracy  

 

 
 
Figure 18: Validation loss for all models during training. 
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Model A      Model B  

 

 Model C     Model D 

Figure 19: Combined visualization of confusion matrix results for Models A, B, C and D 

 

Comparing confusion matrix results from all four models in Figure 19, it was observed that 

Model D showed least correct predictions (4704) for the majority C+ class. There were 

more incorrect C+ predictions for Model D (1347) than Model C (162) while minority class 

predictions were similar to that of Model C. 
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Figure 17 shows that the three models (Models A, B and C) show high accuracy (more than 

85%) during training using the validation set. Figure 18 reports that the models show low 

validation error after the fourth epoch. The validation loss decreases as the validation 

accuracy increases and shows that the models converge to the validation set in just few 

epoch runs. Furthermore, a steady decrease in validation loss was not observed from Figure 

18 for Models B and C but they had lowered validation loss as compared to the baseline 

model (Model A) after the fifth epoch. 

 

From Figure 13, Figure 14 and Figure 15 confusion matrix results for Models A, B and C 

it is reported that the classification scores of individual classes on the test set images is 

observed to have a bias to the majority class. However, the model predicts the minority test 

set images with high accuracy with all three models (Model A, B and C). Model C which 

used the augmented training set further shows that the model still has a bias to the majority 

class and there are 1088 incorrect predictions to the T1-weighted post contrast C- sequence.  

  

The F1-score gives a measure of the multiclass prediction accuracy and for the minority 

classes from Table 5, Table 6 and Table 7 it is observed that as compared to the majority 

C+ and C- MRI sequences, high precision and recall scores were observed. Recall scores 

are representative of sensitivity of the model to class predictions and high recall scores 

from Table 5, Table 6 and Table 7 indicate that the model predictions return most of the 

relevant class predictions. For ADC (Apparent Diffusion Coefficient) class in Table 5, 

Table 6 and Table 7, a recall score of 1 indicates that all images of that particular class 
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were labelled as ADC by the model however, it does not provide information for the 

number of images that were incorrectly labelled as ADC from the other classes. Similarly, 

a precision score of 1 for ADC indicates that every image labelled by the model as ADC 

does indeed belong to the ADC class.  

 

Confusion matrix results from Figure 16 and classification scores reported in Table 8 show 

that Model D has poor accuracy and F1 score as compared to Model C for majority class 

predictions. Furthermore, from Figure 17 and Figure 18 it was also observed that Model D 

had comparatively high validation loss to that of Models A, B and C. 

 

4.5 Summary 

Table 9: F1 score report summary per class for all models trained on the MRI sequence 

datasets. 

 

 

 

 

 

 

 

 

 

                      F1-score  

 Model A Model B Model C Model D 
ADC 1 1 1 0.98 
C+ 0.92 0.92 0.90 0.81 
C- 0.86 0.84 0.81 0.74 
C-C+ 0.97 0.95 0.95 0.9 
DWI 0.99 0.99 1 1 
IP 1 0.99 0.99 0.99 
IPOOP 0.97 0.96 0.94 0.94 
OOP 1 0.99 0.99 0.96 
T2 0.99 0.97 0.98 0.98 
T2FS 0.99 0.97 0.96 0.99 
accuracy 0.94 0.93 0.92 0.87 
macro avg 0.97 0.96 0.95 0.93 
weighted avg 0.94 0.93 0.92 0.87 
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As shown in Table 9, the models show high F1 scores indicating that the misclassifications 

are very low. Macro average score represents the average score for all classes while the 

weighted average considers the relative number of samples per class (column named 

support). From Table 9, all models have a macro / weighted average score of more than 0.9 

and show high accuracy. It was also observed that Model C had a slightly lower accuracy 

(0.92) as compared to Model A (0.94) while Model D had the lowest accuracy (0.87). 

Lastly, Model D reported F1 score of 0.74 and 0.81for the C+ and C- class. 
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Chapter 5 

 

Discussion 

 

5.1 Results Analysis 

From the experiments performed. It was expected that the model trained on the augmented 

training set would show higher classification scores as compared to the baseline model that 

was trained on the imbalanced MRI sequence dataset. As [71] and [72] have shown that 

oversampling minority class using augmentation to balance the dataset reduces model bias 

to majority class, it was expected that Model A would have poor classification performance 

on the test set. However, results from Table 5 indicate that Model A did not suffer from 

imbalance in the dataset. 
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Comparing classification results for all models (Model A, B, C and D) it was found that 

the baseline model (Model A) provided an accuracy of 94% with high F1 scores for all 

classes. Model B had two additional dense layers and five convolutional layers as compared 

to the baseline model. Adding more convolutional layers (Model B) increases the number 

of trainable parameters and it could lead to overfitting wherein the model over fits on the 

training dataset [110]. Results from table 6 show that Model B had comparatively lower 

F1 score to that of Model A however,  Figure 17 and Figure 18 do not show signs of 

overfitting. Furthermore, dropout regularization (0.5) was used which prevents overfitting.  

 

A potential cause of Model B’s performance over Model A could also be due to a larger 

kernel size of 11x11 that was used in the Architecture Y. Larger kernel size could have 

affected the model ability to generalize over the test set. Ozturk et al have experimented 

different convolutional kernel sizes on histopathology image set and report that large kernel 

sizes could lead to higher validation loss [119] as was observed in Figure 18 for Model B.    

 

Buda et [72] have reported that oversampling on the training data prior to training the CNN 

models provide better model convergence and reduces bias to majority class. They had 

used both CIFAR-10 and MNIST dataset and found that with the increased number of 

minority classes (eight classes) along with increase in imbalance ratio from 100, model 

classification suffers. However, our results show that Models A, B and C show similar 

classification performance and that Model A has the best performance.  
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Furthermore, model trained using the random under sampled training set showed poor 

classification scores as compared to Models A, B and C. It was expected that under 

sampling of the majority class would reduce the classification performance for the 

overrepresented class. This was supported by the results from Table 9. A F1 score of 0.74 

was observed for C- class while Models A, B and C showed a score of more than 0.8. The 

F1 score for the minority class was not affected and was similar to the baseline model 

(Model A). Removal of samples from the dataset to balance it prior to training has shown 

to affect the overall model performance as was reported by [12].  

 

From Figure 17 and Figure 18 it was also observed that compared to data augmentation 

method, random under sampling provided lower validation accuracy and higher validation 

loss. After the third epoch Model C shows an accuracy of 90% while Model D showed less 

than 85% accuracy. Additionally, Figure 18 also shows that validation loss for Model D is 

highest among all the models trained. Our results further support that under sampling 

approach affects the model’s ability to generalize on the unseen test set images.  

 

Furthermore, overfitting for Models A, B, C and D was not observed as confusion matrix 

results from Figure 19 show that the classification predictions on the test were correctly 

predicted for minority and majority classes. For the majority class (T1-weighted post 

contrast C+ and C-) there were some misclassifications such as 814 images were 

incorrectly predicted to C- however, most were predicted correctly. Additionally, no 

increase in validation loss (Figure 18) observed during model training which further 



 
 
M.Sc. Thesis – A. Trivedi   McMaster – eHealth 

 73 

suggests that overfitting was not observed [104]. Lastly, drop out regularization was used 

during training which has shown to reduce risk of overfitting [105].  

  

A primary limitation of Model D was the random deletion of the majority class images 

which could have affected classification scores. Future extension would look at addressing 

the under-sampling approach using expert intervention since some of the T1-weighted post 

contrast sequences provide important information for HCC features. Another limitation of 

our approach was the exploration of different optimizer such as AdaGrad and the use of 

Leaky ReLU as the activation function to compare it with Adam optimizer and ReLU 

respectively for imbalanced datasets. Furthermore, model performance using larger batch 

size than 64 was not evaluated due to memory limitation of the GPU. As larger batch would 

reduce the training time, future work would include a learning rate scheduler and using 

batch size of 128 or 256 to evaluate optimal performance for big datasets. 

 

Lastly, another limitation of model design was that the architecture depth as variable 

beyond Architecture Y was not examined.  
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Conclusion 

 

In conclusion, we have developed and tested four deep CNN classifiers to classify MRI 

sequence from an imbalanced distribution in big datasets. Our objective was to balance 

dataset prior to training using data augmentation and random under sampling and evaluate 

the performance of deep CNN models when trained using imbalanced data distribution, 

augmented balanced distribution of training set and lastly under sampled distribution of 

majority classes. 

 

Imbalance in datasets had shown to affect model performance and we had performed data 

augmentation (horizontal flip, vertical flip and 45-degree rotation) to increase the balance 

among classes. Random under sampling was also performed prior to training which 

removed samples from the T1-weighted post contrast C+ and C- class and was compared 

with the augmentation approach.  

 

We conclude that model performance did not suffer when they were trained using 

imbalanced distribution of images among classes. Model A gave a macro average F1 score 

of 0.97 (Table 9). Comparatively, Model D showed poor classification score (macro 
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average F1 score of 0.93) when the majority classes were randomly under sampled. Lastly, 

our simple CNN network architecture (Architecture X) with only three convolutional layers 

and one dense layer provided the best classification prediction over the models trained 

using Architecture Y (Figure 12). However, future experiments should be performed with 

an extension to Architecture Y wherein deeper architectures would be designed to evaluate 

for architecture depth as a variable for model performance. 

 

Future work will explore the use of our CNN classifiers in cases of small multi-class 

datasets with high class imbalance. Another future implementation of our approach will be 

towards real-time classification of medical images. Furthermore, an extension to our work 

will also evaluate the use of transfer learning using a pre-trained network for the 

imbalanced dataset classification. 
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Appendix 

A.1 Classification Predictions of Model A, B and C on Shuffled 

Test Set 

Here, we report classification predictions when the test set is shuffled prior to making 

predictions for classes. 

 

 

 

 

 

 

 

 

 

 

 
 

 
 

Table A 1: Classification report for the above Model A (sequence dataset) 

 precision recall F1-score support 
ADC 0.04 0.04 0.04 644 
C+ 0.32 0.35 0.34 6338 
C- 0.2 0.17 0.18 3989 
C-C+ 0.09 0.09 0.09 1736 

Figure A 1: Model A (sequence dataset) confusion matrix results 
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DWI 0.1 0.1 0.1 1651 
IP 0.09 0.09 0.09 1562 
IPOOP 0.04 0.04 0.04 306 
OOP 0.09 0.09 0.09 1625 
T2 0.04 0.04 0.04 749 
T2FS 0.03 0.03 0.03 787 
accuracy   0.19 19387 
macro avg 0.11 0.11 0.11 19387 
weighted avg 0.18 0.19 0.18 19387 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

Table A 2: Classification report for Model B (sequence dataset) 

 precision recall F1-score support 
ADC 0.03 0.03 0.03 644 
C+ 0.32 0.37 0.34 6338 
C- 0.21 0.16 0.18 3989 
C-C+ 0.09 0.1 0.1 1736 
DWI 0.08 0.08 0.08 1651 

Figure A 2: Confusion matrix results for Model B (sequence dataset) 
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IP 0.08 0.08 0.08 1562 
IPOOP 0.01 0.01 0.01 306 
OOP 0.08 0.09 0.09 1625 
T2 0.04 0.04 0.04 749 
T2FS 0.05 0.05 0.05 787 
accuracy   0.19 19387 
macro avg 0.1 0.1 0.1 19387 
weighted avg 0.18 0.19 0.18 19387 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table A 3: Classification report for Model C (augmented images) 

 precision recall F1-score support 
ADC 0.03 0.03 0.03 644 
C+ 0.34 0.37 0.35 6338 
C- 0.21 0.18 0.19 3989 
C-C+ 0.1 0.09 0.09 1736 
DWI 0.08 0.08 0.08 1651 

Figure A 3: Confusion matrix results for Model C (using augmented sequence dataset) 
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IP 0.08 0.08 0.08 1562 
IPOOP 0.03 0.03 0.03 306 
OOP 0.08 0.08 0.08 1625 
T2 0.04 0.03 0.04 749 
T2FS 0.05 0.05 0.05 787 
accuracy   0.19 19387 
macro avg 0.1 0.1 0.1 19387 
weighted avg 0.19 0.19 0.19 19387 

 
 
Table A 4: F1 score summary for all models. Test was shuffled prior to making 

predictions 

 F1-score 
 Model A Model B Model C 
ADC 0.04 0.03 0.03 
C+ 0.34 0.34 0.35 
C- 0.18 0.18 0.19 
C-C+ 0.09 0.1 0.09 
DWI 0.1 0.08 0.08 
IP 0.09 0.08 0.08 
IPOOP 0.04 0.01 0.03 
OOP 0.09 0.09 0.08 
T2 0.04 0.04 0.04 
T2FS 0.03 0.05 0.05 

    
accuracy 0.19 0.19 0.19 
macro avg 0.11 0.1 0.1 
weighted avg 0.18 0.18 0.19 

 
From Figure A 1, Figure A 2 and Figure A 3it can be observed that the model fits to the 

training set distribution well but it cannot generalize on a shuffled test set when making 

predictions. Furthermore, tables A1, A2 and A3 show the F1-score reported for the T1-

weighted post contrast images (C-, C+ and C-C+) is higher than the minority classes.  
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A.2 Cross Validation Results  

 
Five-fold cross validation was run using Model A on the imbalanced sequence dataset. This 

was run to experiment whether the imbalanced distribution in the training set would affect 

the model’s ability to classify the minority classes. 

 

From Figure A 4 and Figure A 5 it is observed that the model does not generalize well on 

the test set when the training set is imbalanced. The results show that the model suffers 

significantly when there are high number of samples for the majority class (T1-weighted 

post contrast C-, C+) as compared to the other sequences. 

 

Furthermore, from Figure A 4 and Figure A 5 it is also observed that there is gradient 

saturation when the model weights get updated. This could also be referred to as the 

vanishing gradients problem which leads to no update to the network connections which 

look for particular features on the image. 
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Figure A 4: Accuracy for all five folds during training Model A (baseline) 

 

Figure A 5: Training loss plot as training epochs progressed for five-fold cross validation. 
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Figure A 6: Confusion matrix result for five-fold cross validation using Model A on the 

imbalanced sequence dataset. 

Figure A 6 shows that the model is perfectly biased to the majority C+ class. For the 

confusion matrix result in Figure A 6 it should also be note that prediction probabilities for 

the other minority classes is not shown as the values beyond two decimal points are 

disregarded in the plot.  

 

Cross validation performed on the imbalanced MRI sequence training set showed that the 

model performance of Model A suffers significantly when there is underrepresentation of 

other classes. This indicates that the model training should be performed on a balanced 
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distribution among the classes in the training set. A limitation should be noted that the 

method did not use stratification of samples during each fold. 

 
A.3 MRI Phases Dataset Characteristics  

In this section, dataset statistics for liver MRI phases from the T1-weighted post contrast 

sequences C-, C+ and C-C+ have been provided. 

 
Figure A 7: Distribution of phases in post contrast sequences 
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Figure A 8: Distribution of post contrast sequences in the phases dataset 

In addition to the MRI sequence dataset, phase of enhancement is also considered for the 

LI-RADS application. As observed from Figure A 10, the phase of enhancement is 

determined from the administration of post contrast agent. These are captured in sequences 

shown in Figure A 10.  

 

The phase of enhancement was obtained from the same post contrast sequences as was 

used in the sequence dataset (Figure 3: Distribution of images per MRI sequence. As 

compared to the T1-weighted post-contrast (C- and C+) phases, all other phases have 

significantly lower samples). 
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Figure A 9: Overall distribution of phases per post contrast sequence 

 
As inferred from Figure A 9, C+ contains more images per phase of enhancement. T2FS 

only had 40 images for the delayed phase and not shown in the graph above.  

In order to correctly diagnose a patient to a LI-RADS category post-contrast MRI phases 

(includes administration of contrast agent such as gadolinium) provide the most 

information 
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Figure A 10: Sample images of different phases 
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Figure A 11: Dataset preparation for phase of post contrast sequences (C+, C-, C-C+ and 

T2FS)  

 
Figure A 12: Number of images per phase in the training set 
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Figure A 13: Number of images per phase in the test set after the split 

 

Figure A 14: Number of images per phase in the validation set after the split 
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Figure A 15: Phases dataset organization for reading the images by ImageDataGenerator 
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A.3.1 Training and Classification Results for Model A on MRI 

Phases Dataset 

 

 
Figure A 16: Validation accuracy for baseline model using phases dataset 

 
Figure A 17: Validation loss for model using phases dataset 
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Figure A 18: Confusion matrix for Baseline model using phases dataset. Test set was not 

shuffled 

Table A 5: Classification report for baseline model with phases dataset. Test set was not 

shuffled. 

  precision recall F1-score support 
EAP 0.63 0.96 0.76 2134 
HBP 1 0.99 0.99 672 
IAP 0.9 0.46 0.61 2278 
PVP 0.85 0.88 0.87 1920 
TP 0.86 0.93 0.89 545 
delayed 0.97 0.91 0.94 2010 
accuracy     0.82 9559 
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macro avg 0.87 0.86 0.84 9559 
weighted avg 0.85 0.82 0.81 9559 

 
A.4 ImageNet Dataset  
 
 
To test our model’s efficacy, the publicly available ImageNet dataset was selected.  A 

balanced reference dataset (ImageNet) was chosen having 10 classes. ImageNet consists 

of labelled images belonging to multiple classes and it has been used in deep learning to 

improve and evaluate model architectures for image classification and object detection 

as observed in the ImageNet competition. 

 

Modified version of ImageNet data consisting of 10 classes was used as the reference 

dataset. The dataset was a pre-prepared sub dataset of the original ImageNet dataset. All 

images contained their respective class labels and the dimensions of the images were 

224x224.  

 

The ten classes containing the images were: 

1. Cassette player, 

2. Chain saw,  

3. Church,  

4. Garbage truck, 

5. Gas pump,  
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6. French horn,  

7. Parachute,  

8. Springer, 

9. Tench and 

10. Golf ball 

This dataset was chosen as it represents a multiclass classification similar to the dataset 

for MRI sequence imaging. Since the dataset is balanced, no geometric augmentation 

methods have been applied to the training set. Furthermore, their dataset does not 

contain a validation set as compared to our dataset preparation approach Figure 4 and 

hence hold-out method (train and test split) was used. The training and test sets were 

also pre-prepared and 80% of images were observed for the training and 20% for the test 

set respectively. 
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Figure A 19: Dataset structure for reading the ImageNet training and test images using 

Keras ImageDataGenerator class 
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Figure A 20: Sample images from the ImageNet dataset 
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Figure A 21: Balanced distribution of images per class in the reference dataset 

 
Figure A 22: Training set class distribution in the reference dataset 
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Figure A 23: Test set class distribution for reference dataset 

 
As observed from Figure A 21 to Figure A 23, the distribution of the images per class in 

training, testing and overall is balanced (same number of images per class).  
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4.4 Model E (Imagenet) - Classification Results 

Model E was trained using the Architecture X (Figure 11) on the ImageNet dataset. 

Classification results of the model on the test have been provided here. 

 

Figure A 24: Confusion matrix results for Model D predictions on the ImageNet test set 
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Figure A 25: Validation accuracy plot for Model E (same architecture as baseline Model 

A) training 

 

Figure A 26: Training and validation loss for Model E 
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Table A 6: Classification report for Model E predictions 

 precision recall F1-score support 
casette_player 0.60 0.50 0.54 357 
chain_saw 0.43 0.06 0.11 409 
church 0.57 0.70 0.63 389 
french_horn 0.82 0.32 0.46 399 
garbage_truck 0.59 0.50 0.54 395 
gas_pump 0.55 0.48 0.51 386 
golf_ball 0.48 0.61 0.54 394 
parachute 0.68 0.66 0.67 419 
springer 0.30 0.66 0.41 390 
tench 0.55 0.67 0.61 387 
accuracy   0.52 3925 
macro avg 0.56 0.51 0.50 3925 
weighted avg 0.56 0.52 0.50 3925 

 

Furthermore, for the balanced distribution using ImageNet dataset, Model E had low 

precision and recall scores ( 

Table A 1). An accuracy of 52% was reported for Model E on the test set predictions. As 

observed from Figure A 24, there were misclassifications which relate to the poor accuracy 

score. Additionally, chain_saw class shows the lowest recall (0.06) and precision (0.43) 

scores. Only 36 of chain_saw images were predicted correctly with 13 incorrectly predicted 

as belonging to the french_horn class. 

 

Using the balanced distribution of images per class in the ImageNet dataset, Model E 

showed an accuracy of 52%. Model E had similar architecture as that of Model A and after 

training on the balanced training set it was found that the model does suffers from 
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overfitting. This was evident from the classification results from Figure A 25 and Figure A 

26. This could have been due to the model being not able to distinguish certain features 

that could have overlapped among the classes. For example, the church images had certain 

features of trees and grass that could have overlapped with those of tench or garbage truck 

images. 
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A.5 Model Training Using MRI Sequence Images in JPEG 

Format  

This section provides method workflow for using JPEG image format for training. It was 

found that JPEG conversion resulted in loss of features from MRI sequences Figure A 32 

 

Figure A 27: Hold-out method workflow for conversion of DICOM images to JPEG 

format. 
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Figure A 28: Validation accuracy for models run using JPEG image format. M5 and M4 

used the same architecture as Model A 

 
Figure A 29: Validation loss for M2-M5 trained using JPEG image format. M5 and M4 

used the same architecture as Model A 
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Figure A 30: Confusion matrix result for the M5 model. M5 used the augmented JPEG 

training set 
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Figure A 31: Normalized confusion matrix result for the M5 model. M5 used the 

augmented JPEG training set 
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Figure A 32: Sequence dataset JPEG images converted from DICOM image format using 

OpenCV 

 


