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Abstract

When a droplet is placed on a soft material, surface tension forces from the droplet

are able to deform the substrate. This thesis explores the effect of substrate stiffness

on energy dissipation as a droplet is slid along a soft material. We find behaviour is

characterised by two regimes separated by the lengthscale of the deformation in the

substrate. For films approximately the lengthscale of the deformation, dissipation

increases with thickness. As the thickness becomes much larger than the size of

deformation, there is a plateau in dissipation. This result agrees with the model we

use to understand energy dissipation in these systems.
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Chapter 1

Introduction

The motion of droplets is a phenomenon ubiquitous to everyday life from oil slid-

ing around a pan to cactus needles channelling water into their stems. In each of

these cases there is an interplay between several physical effects driving the overall

behaviour. For example, to understand a water droplet moving across a glass car

window, we must consider a balance between the effects of surface tension, internal

fluid interactions and external forces including gravity and air resistance. The prob-

lem comes down to some set of inputs that modify the droplet behaviour. However,

what about the effect the droplet has on its environment? In a stiff substrate such

as glass, we can ignore what the droplet does to the glass, since the droplet cannot

measurably deform the substrate. However, what if the substrate is soft enough to

be deformed by surface tension?

Recently, such soft materials have been developed, resulting in a growing field of

research into studying droplet-soft material interactions [2–5]. Studies in the field

have varied from using geometric softness control to create droplet motion [6] to the

anisotropic deformation of droplets as a result of stretched films [7]. With a physical
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understanding of such systems also come possible applications ranging from microflu-

idics [8] to water collection [9]. One fundamental question in this field is how energy

is dissipated as droplets move across these substrates. There has been research into

dissipation with larger droplets [10–12], however, dissipation in microscopic droplets

on soft substrates remains unexplored. At smaller length-scales the importance of

surface tension becomes larger and the relevance to applications such as microflu-

idics increases. We are therefore interested in understanding droplet-soft substrate

dissipation in the microscopic regime.

In chapter 1 we introduce the physical concepts necessary to understand the ex-

periments and model employed in this thesis. In section 1.1 we discuss the general

aspects and molecular origin of surface tension. In 1.2 we explore wetting, or how

surface tension results in the formation of droplet. In 1.3 we explore continuum me-

chanics and how it can be used to address wetting on soft substrates. Finally in 1.4

we introduce motion and dynamic wetting in soft substrates.

With a theoretical background established in chapter 1, chapter 2 outlines how

the samples were prepared, experiments conducted and data analysed. To control

the effective softness of our substrates, we modify substrate thickness. To measure

dissipation of droplets moving across these substrates we use a micropipette based

force measuring technique. Finally, chapter 3 includes experimental results and a

scaling model for soft substrate dissipation with varying thickness films. We find that

above a cutoff thickness, thicker films dissipate more energy.

2
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1.1 Surface tension and surface energies

1.1.1 Basic Principles

To develop the physics relevant to wetting on soft materials, we first establish relevant

definitions. These definitions can be developed from a simple cartoon model of a

liquid-vapour interface (Fig. 1.1a). We see that molecules at the surface of the liquid

have fewer attractive interactions than those in the bulk. These interactions reduce

the free energy of the molecule and therefore there is a free energy cost per unit area

of an interface which is referred to as the interfacial energy. [1, 13]:

γ =

(
∂F

∂A

)
T,V,N

. (1.1)

We can connect this interfacial energy to a force by using an additional cartoon

(Fig. 1.1b) and the virtual work principle [1]. First we superimpose an imaginary

square of sidelength L on an interface with some energy cost per unit area γ. If

we now translate a side of this square by a distance dl The energy of the interface

increases by Lγdl. This implies a force per unit width parallel to the translation

direction which is defined in the surface tension tensor, Υ. In liquids this surface

tension is isotropic and can simply be given by by the surface energy γδij. However,

the tension-energy equivalence does not necessarily hold in certain soft materials so

it is useful in some cases to keep the definitions separate.

3
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Figure 1.1: a) Commonly used cartoon model for the molecular origin of surface
tension. b) Virtual work principle diagram to relate the change in surface energy to
a surface tension force.

1.1.2 Molecular description

Although the basic description in Fig 1.1a is useful for making definitions and as a

thermodynamic explanation for surface tension, it is also useful to have a molecular

description. Indeed, looking at the surface molecules in Fig. 1.1a, there appears to

be a net force perpendicular to the surface which is contrary to an expected surface

tension parallel to the surface.

To address the apparent inconsistency between bulk and molecular behaviour we

look at the limitations of the simple model in Fig. 1.1a. The first of these limitations is

an assumption of purely attractive interactions between molecules in the liquid phase.

While these attractive interactions may be stronger averaged over all molecules, the

force is distance dependant. This behaviour is commonly modelled with a Lennard-

Jones potential [1] (Fig. 1.2). The shorter range forces in these systems are isotropic

4
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Figure 1.2: Example of a Lennard-Jones plot or intermolecular potential vs radius
that empirically fits the combination of attractive and repulsive interactions between

molecules. The form of this curve is given by ULJ = 4ε
[(

σ
r

)12 − (σ
r

)6]
where σ is a

lengthscale representing the intermolecular interaction distance and ε gives the depth
of the potential well as shown in the plot.

and we can treat them as hard shells that are mostly independent of the molecular

environment [1]. The attractive interactions, on the other hand, are much longer

ranged and can be influenced by the environment including by changed environments

found at surfaces [1]. Along with the simplifications in bonding, the model model in

Fig. 1.1a also assumes a binary step-like interface. In reality, allowing for thermal

fluctuations, there will be a finite sized transition in density between the two phases

[14].

We can incorporate these new concepts to a new model illustrated in Fig. 1.3

(adapted from [1]). In this model we draw out small volumes in equilibrium at

different distances from the interface. We split the forces acting on these volumes into

attractive and repulsive components. We also split the forces into components parallel

5
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and normal to the surface (Fig. 1.3a). We note that the repulsive forces are isotropic

and will only depend on the density which increases with depth. The equilibrium

condition, combined with a lack of symmetry (i.e. lower forces above) means that in

the normal direction repulsive forces must be balanced by attractive forces. However,

looking at the parallel plane, density is constant meaning attractive and repulsive

forces may be imbalanced. While the repulsive isotropic forces show the same depth

behaviour they did in the vertical direction, the long range attractive forces show

weaker depth dependence and there is an enhanced attractive force between molecules

which is referred to as surface tension (Fig. 1.3b) 1.

Molecular dynamics simulations have been completed on such interfaces which

shown the validity of this picture [15–17]. For the typical intermolecular bond strengths

of liquids E ∼ kT (here k is the Boltzmann constant and T is the temperature), simu-

lations show the lengthscale of the molecular concentration gradient is on the order of

the average intermolecular distance [1]. The molecular concentration gradient results

in a density transition occurring over fractions of a nm, LDT . Above this lengthscale,

we can treat surface tension effects as a boundary condition in a continuum prob-

lem. With a continuum treatment, we are able to more simply determine some of the

consequences of such a horizontal force at an interface.

1.1.3 Laplace Pressure

The Laplace pressure refers to the pressure differential across a curved interface as a

result of the interfacial energy cost. To illustrate why surface energy leads to Laplace

pressure, we use the simplest case of a small volume of liquid surrounded by a gas in

1There is some additional physics that arises when considering a solid-liquid interface where the
liquid also interacts with the solid (see [1]), however, we can still use a surface tension formulation.

6
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Figure 1.3: Molecular model of surface tension adapted from [1]. Solid arrows indicate
attractive forces and dotted arrows indicate repulsive forces. a) Forces along the
vertical and horizontal directions split into attractive and repulsive forces. c) Net
force after summing the results of plot a.

the absence of external forces. In this case we can write the work done by the liquid

drop as follows[13]:

δW = −pldVl − pvdVv + γdA . (1.2)

Where we have terms accounting for the pressure work, pdV , and the work to over-

come surface tension, γdA. We account for the separate work on each volume with

subscripts l and v for liquid and vapour respectively. The volume with the lowest sur-

face area is a sphere so we expect dVl = −dVv = 4πR2dR and dA = 8πRdR where R

is the radius of a circle. Using these relations and applying an equilibrium condition,

δW = 0, we get:

δp = pl − pv =
2γ

R
. (1.3)

7
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This equation can be generalised to a surface with arbitrary curvature to give what

is known as the Laplace pressure. [13]:

δp = γ

(
1

R
+

1

R′

)
= γC , (1.4)

where R and R′ are radii of curvature and C is the curvature. The consequence of this

relation is that liquids will tend to maintain constant curvature. Out of equilibrium,

a liquid will flow to a region of lower curvature. This phenomenon is what drives, for

example, water flow towards the base of cactus needles [18]. In the case of interest

here, if we want to create flow in droplets, we must induce lower curvature in the

direction of motion.

1.1.4 Energy scale and capillary length

To get a sense for the actual magnitude of these interfacial energies for a typical

liquid, we can use a simple thermodynamic scaling argument. We expect in a given

unit area at the surface that the number of bonds is proportional to 1
σ2 where σ is an

average intermolecular distance. We also know the energy, ε, of each of these bonds

and multiply to get:

γ ∼ ε

σ2
. (1.5)

For most liquids where van der Waals forces are the dominant intermolecular interac-

tion (ε kT ) this formulation gives γ of order 10 mJ/m2 which matches experimental

measurements [1].

Along with having an absolute value, comparison to gravitational energies in a

system can be helpful to determine whether we need to include gravity in our analysis.

8



M.Sc. Thesis - Hamza Khattak McMaster - Physics & Astronomy

We can equate the Laplace pressure (γ/R) and the hydrostatic pressure due to gravity

∼ ρgR to get the gravity capillary length LGC [13]

LGC =

√
γ

ρg
. (1.6)

Below this lengthscale, which is of order mm for many liquids, we can safely ignore

the effect of gravity on the system. Here we study systems with sizes << LGC and

therefore, unless otherwise noted, we will work under the assumption that gravity can

be ignored.

1.2 Wetting

1.2.1 Definitions

Wetting is generally defined as the spreading of a liquid deposited on a substrate

(which can be liquid or solid). Depending on the strength of system interfacial inter-

actions, wetting can be split into two regimes which depend on a wetting parameter

S. For a liquid droplet on a solid surface we define:

S = γsv − (γsl + γlv) ; (1.7)

where each γ is the interfacial energy, with the two materials in contact defined by

by the subscript (s for solid, l for a liquid and v for a vapour). If S > 0 the lowest

energy configuration is simply a maximally spread liquid layer (Fig. 1.4a). However,

if S < 0 there is a competition between minimising the region wetted by the droplet

and minimising the area of the liquid-gas interface. This results in a contact angle, θ

9
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Figure 1.4: a) Maximally spread layer from S > 0. b) Partial wetting (S < 0) where
there is a defined contact angle.

between the substrate and the droplet 1.4b). We will be considering only cases where

S < 0 and there is a non-zero contact angle for the interface.

1.2.2 Simple cases of wetting

It is possible to treat some simple cases of wetting with arguments based on a force

balance at the contact line and Laplace pressure. In these models interfacial energy is

assumed to be equivalent to interfacial tension and so γ and Υ are used interchange-

ably. Young’s equation is a classical equation in wetting that relates the contact

angle of a droplet on a stiff surface to interfacial tensions. The standard formulation

for Young’s equation is described in Fig. 1.5a where a horizontal force balance is

performed on the edge of a droplet. Simple vector summation along the horizontal

leads to Young’s equation:

γsv = γsl + γlv cos θ . (1.8)

This equation defines the contact angle of the droplet, θ, as a function of its interfacial

energies. At equilibrium, the droplet must also have a constant internal pressure.

10
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Figure 1.5: fig:a) Illustration of force balance at contact line at stiff balance to derive
Young’s equation. b) Droplet on liquid substrate illustrating the Neumann force
balance at the contact line and formation of two curved surfaces.

Using the Laplace equation (eq 1.4) we then know the droplet will be a constant

curvature spherical cap. Although the Young’s equation is useful in many instances,

we note that the force at the contact line is not balanced in the vertical direction

(Fig. 1.5a). This is since the model assumes a sufficiently stiff substrate such that

the forces exerted by the droplet on the the substrate can be ignored. We will see

this is not the case with soft substrates.

On the other extreme of a stiff substrate is a liquid substrate. In such a case we

can use the so called Neumann construction to get a prediction for droplet geometry.

We note that at the edge of the droplet (Fig 1.5b) the total stresses must sum to 0,

giving the Neumann condition which is expressed in a one plane vector as:

Υlv + Υlsl + Υlsv = 0 , (1.9)

where we now also have a ls subscript element to differentiate between the liquid

11
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droplet, l, and liquid substrate, ls
2. Along with the Neumann condition constraint

at the edge of the droplet, the shape of the droplet is also constrained by Laplace

pressure requirements. Since the interface between the vapour and substrate liquid is

uncurved at the relvant lengthscales, they must have equal pressure pv = pls . Also, the

pressure inside the droplet must be constant to maintain equilibrium. We therefore

have:

γlslClsl = γlvClv . (1.10)

With this set of equations, knowing surface tension, we can uniquely define the ge-

ometry of a droplet on a liquid substrate.

1.2.3 Energy minimisation

To demonstrate the validity of these force based methods we can use a more rigorous

variational energy minimisation approach to solving wetting problems. In particular,

we closely follow [19] to develop these techniques using a droplet on a stiff substrate.

For simplicity, we will consider a one dimensional problem which reduces the droplet

to a profile h(x). If the droplet extends from a point a to a point b, we have the

following contributions to the energy, noting the energy is proportional to path length.

Solid− Vapour E =

∫ a

−∞
γsv dx+

∫ ∞
b

γsv dx , (1.11)

Solid− Liquid E =

∫ b

a

γsl dx , (1.12)

Liquid− Vapour E =

∫ b

a

γlv
√

1 + h′2 dx . (1.13)

2Note that when expressed as a vector, subscripts of Υ represent materials. If not in vector form,
i.e. Υij , the subscripts represent elements of the surface tension tensor.

12
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For the variational analysis, it is helpful to restrict all variables to a single integral

so we define a function that gives the energy change in energy caused by the wetted

region.

Γ(h, h′) = γlv
√

1 + h′2 + γsl − γsv . (1.14)

This allows us to write out the energy in a more tractable form as :

E[h] =

∫ b

a

Γ(h, h′) dx+

∫ ∞
−∞

γsv dx ,

E[h] =

∫ b

a

Γ(h, h′) dx+ const . (1.15)

We then note that the droplet volume is constant,
∫
h dx = V , so add a Lagrange

multiplier to our variation problem giving ε = E−λ
∫
h dx. Performing this variation

with variable limits a and b gives:

δE = Γ(b)δb− Γ(a)δa+
∂Γ

∂h′
δh|ba +

∫ b

a

dx

(
∂Γ

∂h
− d

dx

∂Γ

∂h′
− λ
)
δh . (1.16)

At equilibrium we expect δε = 0 for any given δh, thus in the bulk we expect the

integral to vanish giving the Euler-Lagrange equation:

∂Γ

∂h
− d

dx

∂Γ

∂h′
− λ = 0 . (1.17)

Substituting in Γ gives λ = λlvC where C is the curvature (h′′/(1 + h′2)3/2) which

matches the Laplace pressure equations from earlier (note that here primers are spatial

derivatives). We can simplify further by multiplying 1.17 by h′ and integrating to

13
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yield a quantity G conserved along the surface:

G = γ − h′ ∂Γ

∂h′
+ γlvCh . (1.18)

To solve eq. 1.18 we use the boundary conditions. We first perform a linear approxi-

mation for δa and δb in terms of δh (i.e. δb = δh(a)/h′(a)). The non integral part of

eq. 1.16 must also be 0 for arbitrary δh giving:

−Γ

h
+
∂Γ

∂h′
= 0 . (1.19)

Comparing this result to equation 1.19 at the boundaries when h = 0 we have:

γlv√
1 + h′2

− (γsv − γsl) + γlvCh = 0 . (1.20)

We note that we can express the slope as tan θ and h = 0 at the contact line which

means eq. 1.20 simplifies to Young’s equation (eq. 1.7) at the contact line. This

variational technique can be extended to work on a broad range of problems including

soft substrates by adding additional energy terms [20].

1.3 Soft Substrates

1.3.1 Definitions

We first define some standard terminology in continuum mechanics. Stress is a force

per unit area applied on a material. To fully define stresses on a material we consider

an infinitesimal cube of material. If we apply a force normal to a plane of the cube,

14
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Figure 1.6: a) Definition of the standard Cauchy stress tensor using an infinitesimal
box. b) Sketch to illustrate definition of traction strain. c) Sketch to illustrate
definition of shear strain.

we have traction stresses (ie tension or compression). If we a apply a force parallel

to one of the planes, we have a shear stress. The standard Cauchy stress tensor σ

compactly specifies all modes of stress acting on our infinitesimal box (Fig 1.6a).

These applied forces cause a deformation of the material which is referred to as

the strain, ε. Strain can be any function that relates the deformation in a material

to a reference length. Like stress, for a general description of strain on a material, we

need to use a tensor formulation. We first define X as our undeformed configuration

and x as the final configuration with a displacement vector u = x−X. We first look

at the transformation of the differential dX. In this case, using x = x(X) we can
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write:

dx =
∂x

∂X
dX . (1.21)

This allows us to define the so called deformation gradient, F [21]:

F =
∂x

∂X
(1.22)

=∇X(x) (1.23)

Fij =
∂xi
∂xj

. (1.24)

This expression can also be rewritten in terms of u as F = I + ∂u
∂X

. We want our

definition for strain to be specific to deformations and since F 6= I when there is a

rigid body rotation we introduce a new quantity called the Green-Lagrange strain

tensor E:

E =
1

2

(
(∇Xu) + (∇Xu)T + (∇Xu)(∇Xu)T

)
. (1.25)

Finally, for small strains which will be the case for most of our analysis, we can ignore

the final term and write the strain εij:

εij =
1

2

(
∂ui
∂Xj

+
∂uj
∂Xi

)
. (1.26)

Along with the more general strain tensor, we use some simpler formulations to

define some commonly used quantities in mechanics. We first have a strain measure

for traction forces, e (Fig 1.6b):

e =

(
δl

lo

)
, (1.27)
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where δl is the change in object length after deformation and lo the initial object

length. For shear forces, we can define strain as (Fig 1.6c):

λ =

(
δx

L

)
, (1.28)

where δx is the change along the direction of the applied stress and L is perpendicular

to the stress plane.

If we have a simple elastic, Hookean material, we can use our strain definitions to

also define some commonly used elastic moduli. We have the Young’s modulus which

applies to traction forces:

E ≡ σ

ε
. (1.29)

The modulus for shear forces is simply known as the shear modulus, and given by:

G ≡ σ

λ
. (1.30)

We can also define the so called Poisson’s ratio which is defined by the strain in a

material perpendicular to the applied stress:

ν = −de⊥σ
de‖σ

. (1.31)

A perfectly isotropic and incompressible elastically deformed material will have a

Poisson’s ratio of 0.5. In this case the material will have a constant density, with

a change in length in one direction compensated by opposite changes in each of the

perpendicular directions.

We can use these parameters for our definition of a “soft” substrate. We classify
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Figure 1.7: a) Droplet of a soft substrate with R >> LEC > LDT . Inset is zoom of
the capillary ridge. b) Case where the soft layer has h ∼ LEC .

any solid material that can be deformed beyond the atomic scale by the stresses of

surface tension as soft. To quantify softness in our context we use the elastocapillary

length:

LEC =
γ

G
, (1.32)

where γ is interfacial energy as defined previously and G is the shear modulus. If LEC

is much greater than the transition lengthscale, LDT , the forces of surface tension will

deform the substrate (Fig. 1.7a). Although there are several regimes for soft wetting

depending on droplet and substrate geometry we will assume our droplets radius,

R, is much larger the the ridge size (Fig 1.7). We will also only consider either

bulk soft substrates, or thin soft layers h ∼ LEC on stiff substrates (Fig. 1.7b). This

assumption helps split contact angle measurements into two distinct lengthscales. We

define θS for the capillary ridge of the substrate (Fig. 1.7a) and θL for the droplet.
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1.3.2 Cross-linked polymer networks

To determine if these continuum definitions of material properties are appropriate,

we need a basic understanding of the physics of the particular soft substrate under

study. In Fig. 1.8 we see a schematic arrangement of a polydimethylsiloxane (PDMS)

network and the related lengthscales. At the most basic level, we have a monomer,

whose size is governed by its chemical makeup. Generally, the lengthscale of these

monomers are a ∼ 1 nm. Monomers are much smaller than the size of any geometric

features we will consider and we therefore do not need an individual monomer picture.

If we create a chain with Na >> 1 monomers we have a polymer chain. To

determine the lengthscale associated with these chains we use the freely jointed chain,

or random walk, model. Rather than Na monomers, We treat the polymer chain as

made up of Nb randomly oriented, non-interacting, segments of length, b. Although

this is a simple model, it is useful in many polymer systems and will be sufficient to

find a chain lengthscale [22]. To define a lengthscale for the polymer we will use the

radius of gyration:

Rg
2 =

1

N

N∑
i

(ri − rCM)2 , (1.33)

where r specifies the segment locations and rCM the center of mass. It can be shown

that the average chain length, 〈Rg〉 ∝
√
Nb [23]. Although Rg can vary greatly de-

pending on the specific system of interest, typically Rg ∼ 10 − 100 nm. At these

lengthscales, it is possible for geometric confinement effects to modify polymer prop-

erties [24, 25]. Since films of this lengthscale are possible to produce, this effect may

need to be considered. Still, we can use a continuum picture with the use of an

effective modulus of the thin film [25].

Finally, we look at the crosslinks between the chains. In the case of PDMS,
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Figure 1.8: a) Sketch of a typical cross-linked rubber network. Black circles indi-
cate covalent bonds whereas any other crossing lines are simply in another plane
or physically entangled. b) Individual chain lengthscale illustration c) Crosslinking
lengthscale illustration. Note that LCL is point to point distance rather than a dis-
tance along the chain.

cross-linking involves chemical bonds between modified monomer sites of otherwise

chemically similar chains (Fig.1.8a) . Since there are generally multiple cross-link sites

per chain, the lengthscale between cross-link sites will smaller than Rg (Fig.1.8c), and

we can generally ignore cross-linker confinement effects. 3

1.3.3 Shuttleworth effect

When a soft substrate is strained, its interfacial energy may change. The consequence

of this phenomenon is the loss of equivalence between interfacial energy and surface

tension. We consider straining a box of length lo by ε. If we use a surface tension

formulation we use dW = F · dx noting x = lε. We then have the work per unit

3An alternative cross-linking mechanism involves chains with large alternating blocks of chemical
structure. In this case the inhomogeneity can have a lengthscale comparable to Rg and effects of
confinement on crosslinking would need to be considered.
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length:

δW

lo
= Υlo δε . (1.34)

Looking at the same change from a interfacial energy perspective, for a small dis-

placement we can write:

δW

lo
= δlγ (1.35)

= δ[lo(1 + ε)γ] . (1.36)

Comparing 1.34 and 1.36 we arrive at the Shuttleworth equation [26]:

Υ(ε) =
d

dε
[(1 + ε)γ(ε)] = γ + (1 + ε)

dγ

dε
. (1.37)

This correction becomes necessary in the case of either pre-stretched substrates, or

those with especially large deformations where ν 6= 1
2
.

1.3.4 Boundary Conditions

In the case of soft substrates there are two modes of surface deformation and each

mode has its own boundary conditions. Following [20] we consider a capillary ridge

much larger than any atomic effects (Fig. 1.7). We define t and n as vectors parallel

and normal to the interface. We also define a curvilinear coordinate s that runs along

the solid interface, contacting the droplet at a point s = r. If we perform a stress
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balance at any point along the substrate in contact with the liquid:

σ · n−T · n =
∂

∂s
(Υt) , (1.38)

σs − σl =
∂

∂s
(Υt), (1.39)

where σs is the elastic traction and σl is the liquid traction (ie tension compression

parts of stress tensors). Looking at an infinitesimal region around the contact line

(s = r) this simplifies to the same Neumann’s law that is used for liquids [27]. This

condition provides a constraint on translations of the contact line. Written in terms

of our new vectors t and summing over our interfaces i we have our first boundary

condition: ∑
i

υiti = 0 . (1.40)

For our second boundary condition, we imagine the scenario in (Fig. 1.7). In

this case there is no translation of the contact ridge, however, there is a change in

free energy from different portions of the substrate being wetted. This implies a

lack of resistance to sliding in the substrate and is therefore referred to as the “no

pinning” boundary condition. By considering the energy cost of this sliding variation

(ie changing the value of r in Fig. 1.7 ), it is also possible to derive a boundary

condition for this case (see [20]) as a function of strain, ε, and the gradient of elastic

energy ∂Fe

∂r
at the boundary:

[
(1 + ε)2γ′(ε)− ∂Fe

∂r

]r−
r+

= 0 . (1.41)

This second boundary condition is driven by the Shuttleworth effect at the boundary.
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With the boundary conditions the equilibrium geometry problem becomes an energy

minimisation problem which can be treated with variational methods:

F = Fe +
∑
i

∫ ri

−∞
γi(ε) ds . (1.42)

The specific geometry will depend on material properties and the no pinning con-

ditions may not be universally applicable and we therefore reserve application to the

extent necessary to study dynamics. Nevertheless, there is an important result that

follows from such an analysis in the case of small linear strains. When the no pinning

condition applies, it is possible to have a change in the microscopic contact angle,

θS, from film strain without a corresponding change in θL. Although this is associ-

ated with larger strains and is driven by the Shuttleworth effect, we must be careful

in considering how to connect a macroscopic droplet contact angle measurement to

behaviour.

1.4 Dynamics

1.4.1 Rheology Definitions

Rheology is the study of the deformation and flow of materials. We use a graphical

representation (Fig. 1.9) to illustrate some of the basic concepts in this field. We

first look at a material’s shear strain, λ, in response to a step function in stress (Fig.

1.9a). In a perfectly elastic material λ ∝ σ, according to eq 1.29 and we get another

step function in λ. In contrast, a liquid will have an increasing shear given a constant
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stress. The slope of this relationship defines the viscosity, µ of the material4:

µ =
σ

λ̇
. (1.43)

In general, viscosity can be a function of parameters, commonly including the shear

rate, λ̇ (Fig. 1.9b). If the material has both elastic and viscous characteristics, it

is referred to as viscoelastic. In the case when viscosity is constant with respect to

λ and λ̇ the liquid is said to be Newtonian and we use the notation µo = η. Like

with Young’s modulus for solids, viscosity can be used to define different flow regimes

in fluids, simplifying the physics. We consider comparisons of viscous forces with

diffusion, surface tension, and inertial forces.

Looking at a small enough scale, we must consider the molecular properties of

fluids. Brownian motion will cause random motion of the molecules resulting trans-

port of mass that competes with mechanical flow. To account for these forces we can

average the mass diffusion through some area per unit time to get the mass diffu-

sion coefficient, D. We can now compare these effects to the bulk or advective flow

through the same area, through what is known as the Peclet number, Pe.

Pe =
lv

D
, (1.44)

where l is a characteristic lengthscale and v a characteristic velocity. If Pe >> 1,

which is generally true in the systems we analyse, we are dominated by bulk flow and

can ignore diffusion.

Next we introduce the capillary number, Ca, (not to be confused with the capillary

4We use the dynamic viscosity definitions, the second commonly used viscosity definition, kine-
matic viscosity, is simply the ratio of dynamic viscosity to material density ρ.
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length) which compares viscous forces to capillary forces:

Ca =
ηv

γ
. (1.45)

Here a large Ca >> 1 would mean we can ignore surface tension forces. With much

of our analysis we are interested in problems where Ca ∼ 1 and there is a competition

between viscous and capillary forces. Since the viscosity of the substrate and droplet

are generally different, the capillary number is not uniquely defined for a droplet on

a soft substrate.

Finally, we define the Reynolds number Re which is the ratio of inertial and viscous

forces on a fluid:

Re =
inertial forces

viscous forces
=
ρvl

η
, (1.46)

where ρ is the material density, v is fluid velocity l is a characteristic lengthscale for

the system. If Re >> 1 the flow is dominated by inertial effects and is more likely

to have what is known as turbulent flow where there are chaotic changes in pressure

and velocity in the fluid. When η << 1 the flow is said to be laminar or viscous.

In many cases, our systems will have low Reynolds numbers and we will be able to

ignore inertial effects.

1.4.2 Bulk viscous dissipation

To understand dissipation in the bulk we can start with momentum conservation.

Using this principle we can establish a continuity equation that relates the flow at at

any point in a material to the stress tensor and external forces at that point [28–30].

Our approach will involve finding both sides of Newton’s second law, dp
dt

= Fnet, of
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an infinitesimal volume. Looking at the left side, we establish the material derivative

Df
Dt

for time and position dependant properties:

Df

Dt
=

d

dt
f(x, t) , (1.47)

=
∂f

∂t
+ v · ∇f . (1.48)

Using this notation the left side becomes:

ma =

∫
V

ρ
Dv

Dt
dV , (1.49)

where, v, is the velocity field. Next we look to rewrite the net force on our infinitesimal

volume. We note that the stress tensor, σ can give us the force acting on each surface

of our infinitesimal volume. We can then integrate over the surface to get the total

force. We also add any external acceleration, f to give:

Fnet =

∫
S

σ · dS +

∫
V

ρf dV . (1.50)

Using the divergence theorem we can rewrite the surface integral as a volume integral,

and comparing integrands of dp
dt

and Fnet we have the Cauchy momentum equation:

ρ
Dv

Dt
=∇ · σ + ρf . (1.51)

This equation applies for any continuous media. To make problems more tractable,

a common practice is to split pressure, p, from viscous drag. To complete the separa-

tion, we assume that the relationship between σ and velocity gradients is linear and

isotropic so we can split σ. This allows the perpendicular and shear components of
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the stress tensor to be written as follows:

σii = −p+ λ∇ · v + 2µ
∂ẋi
∂xi

, (1.52)

σij,i6=j = µ

(
∂vi
∂xj

+
∂vj
∂xi

)
, (1.53)

where λ is known as the volumetric, or bulk viscosity associated with compression

and expansion as opposed to shear. For many fluid flows we can also assume that

density is constant through the volume, the so called incompressible flow condition.

In this case ∇ · v = 0 and have:

σij = −pδij + µ

(
∂vi
∂xj

+
∂vj
∂xi

)
. (1.54)

Substituting this result back into the Cauchy momentum equation we arrive at the

incompressible form of the Navier-Stokes equation:

ρ
Dv

Dt
= −∇p+ µ∇2v + ρf . (1.55)

We can now find a simple form for the dissipation is a volume of material by writing

out the kinetic energy in a portion of fluid:

Ekin =
1

2
ρ

∫
v2 dV , (1.56)

Substituting in eq. 1.55 and noting the incompressibility condition as well as no fluid

motion at infinity we find the energy dissipation per unit volume in a material [28]:

Ėkin =
1

2
η ( ˙εij)

2 . (1.57)
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Equation 1.57 applies to a fluid of viscosity, η, however, we will see that it is not

necessarily limited to Newtonian fluids.

1.4.3 Viscoelastic materials

To analyse viscoelastic materials using the Navier-Stokes equations we exploit the

fact that we study droplets moving at a constant velocity. In this case, a transfor-

mation to the frequency domain allows us to more simply account for the shear rate

dependence of the viscosity. To develop a simplified frequency domain picture we

hold to conditions of the incompressible Navier Stokes equation [31]. As such, the

material must be linearly viscoelastic (µ independant of the magnitude of ε). This

allows us to find the time differential stress dσ = µ dε = µε̇ dt) and the stress-strain

relationship becomes [31]:

σ(x, t) =

∫ t

−∞
µ(t− t′)ε̇(t′) dt′ − p(x, t)I . (1.58)

We can convert to the frequency domain with the transformation:

µ(ω) = iω

∫ ∞
0

µ(t)eiωt dt . (1.59)

In a purely elastic material, we expect the stress to be perfectly in phase with this

stress, whereas it should lag by π/2 for a pure viscous phase. We therefore can define

our complex modulus as follows:

µ(ω) = G′(ω) + iG′′(ω) . (1.60)
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Where G′(ω), the storage modulus, accounts for the elastic portion of the modulus

and G′′(ω), the loss modulus, accounts for the viscous portion. Now we can write

each component of our stress strain matrix as follows [31]:

σij(x, ω) = µ(ω)εij(x, ω)− p(x, ω)δij . (1.61)

Since cross-linked rubbers have a Poisson ratio close to 0.5 and can be treated as

incompressible, this equation is applicable [11]. In these systems, the Chasset-Thirion

equation [32, 33] is commonly used to model a complex modulus:

µ(ω) = µo
(
1 + (iωτ)−m

)
. (1.62)

Where µo is the material storage modulus, τ is a relaxation time and m is a system

dependant exponent. We will treat this as an empirical relationship where each

parameter can be extracted from rheological measurements.

1.4.4 Complications in droplet dissipation

Although the bulk viscous dissipation picture is valid for the volume of the droplet and

substrate, the picture fails in the region immediately surrounding a mathematically

sharp contact line. The failure of this model is due to Huh and Sciven’s paradox

[34, 35]. We imagine a solid surface moving at velocity, V , under a wedge of fluid

with small contact angle, θ. In this region we can then assume that that the height

of the droplet, h(x) ≈ θx. We apply a standard no-slip boundary condition where

the velocity of the liquid and solid must be equivalent at the point of contact and so
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Figure 1.9: a) Plot of the stress and corresponding strain against time for a set of
materials. b) Plot of stress against stain for an example set of liquids with varying
rheology.

our velocity gradient dvx
dz

= U
θx

. According to eq. 1.57 we then have:

Dvisc ≈ η

∫ x2

x1

(
V

θx

)2

θx dx =
ηV 2

θ
lnx2/x1 ; (1.63)

where x1 defines the contact point and x2 defines some droplet lengthscale. If we let

x1 = 0 and integrate over the entire edge, we find the result diverges. Since droplets

do in fact move, we must include microscopic corrections to the bulk viscous picture

when dealing with the contact line.

Real droplets also introduce contact angle hysteresis and pinning which may affect

dissipation measurements [13]. We define contact angle hysteresis through a hypo-

thetical experiment. We consider two paths to reach a given droplet volume on a

sample substrate. We could start with a bare substrate and slowly deposit until we
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reach the required volume. We call the the droplet contact angle during this ap-

plication the advancing contact angle, θa. Conversely, we could remove liquid from

a larger droplet until it reaches the required volume. The angle measured here is

the receding contact angle, θr. For many substrates we find that θa > θb [35]. The

difference δθ = θa− θr describes the degree of contact angle hysteresis in the system.

There are several mechanisms that lead to this hysteresis. The first mechanism

involves microscopic imperfections in the surface such as dust or chemical inhome-

geneities. As the contact line moves over such as surface the potential energy barriers

will cause it to pin and and depin on imperfections, changing the droplet contact

angle [35]. Similar effects happen with nanometric imperfections which cannot be

measured in terms of individual pinning events, however, have a similar effect in

resulting in hysteresis. Careful experiments changing the quantity of these imperfec-

tions on a surface has shown that δθ does indeed scale with imperfection quantity,

with the effect driven by a decrease in the receding contact angle [36]. Although these

effects act in addition to dissipation due to substrate softness which are interested

in studying, there are methods for accounting for them. The larger microscopic dust

particle associated pinning will only result in spikes in dissipation as a droplet moves

across a surface which can be ignored. Careful choice of substrate can minimise the

hysteresis associated with nanometric effects, for example PDMS films often have

minimal hysteresis [10, 20].
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1.4.5 Dissipation due to moving contact ridge

There have been a number of studies on theoretical and experimental details of the

dynamical wetting of soft substrates. These include studies on the shape of the capil-

lary ridge upon on droplet motion [12] and a form of pinning in stick slip dissipation

along the capillary ridge in certain velocity regimes [37].

We are interested in substrate thickness dependant steady state dissipation. To

this end we follow a model from a similar system studied by Zhao et. al. [10]. This

model builds heavily on previous work on static films by Dervaux et. al. and dynamic

wetting by Long. et. al. [11, 38]. We start with determining the equilibrium shape of

a static ridge. Since the size of our droplet is much larger than the size of our ridge,

we can use a 2D description of the ridge geometry. We also constrain our analysis to

an incompressible linear elastic material such that at equilibrium we have:

∇ · σ = 0 , (1.64)

∇ · u = 0 . (1.65)

We consider the case where the soft substrate is of initial height ho and bounded

underneath by a infinitely stiff substrate. This means:

u(x,−ho) = 0 . (1.66)

The model assumes no jump in traction across the substrate (γsl ∼ γsv). Using our

unit tangent to surface t and normal to surface n means the boundary condition eq.
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1.39 condition simplifies to:

σ · n = γsn(∇ · n) . (1.67)

With this model, σ and u are linearly related and with Fourier analysis (see [10]) we

can find the surface profile uy(x, y = 0) = ζ(x) given an arbitrary stress distribution

at the surface.

To address dynamics, the model allows the surface traction to vary with time.

Using the differential form of the Navier-Stokes equations and further Fourier analysis

the substrate dissipation can be determined (see Zhao et. al [10]). The substrate

dissipation can be balanced with energy injected by the capillary force to find the

power dissipation per unit length in a substrate of height ho:

Pdiss ∝ µov(vτ)m
(
γho

3

µo

)(1−m)/4

. (1.68)

Where for the cases relevant to this thesis, v, is the speed of the droplet moving across

the substrate and m the Chasset-Thirion exponent. Equation 1.68 is applicable in

the thin film limit where ho < le. As ho >> le we are in the bulk regime and the

dissipation becomes independant of ho.

The most direct method of measuring this dissipation is with a force measurement.

Assuming dissipation only occurs in the substrate, we expect the dissipation in the

system to be given by:

Pdiss = Fdropv . (1.69)

With a force dissipation relationship, we have an experimentally measurable quantity

we can use to measure dissipation in our system.

33



Chapter 2

Experimental details

2.1 Samples

2.1.1 Silicone chemistry

Much of the work done on the wetting of soft substrates uses commercially available

PDMS formulations, most often SylGard (Dow Corning). This material is generally

coated onto a substrate using either dip coating or spin coating [6, 10]. However,

commercial solutions are not the ideal cross-linked chains that are necessary for our

smaller scale experiments. These solutions have proprietary chemistries with possible

additives to improve mechanical properties which may affect the nanoscale chemistry.

Furthermore, when a PDMS rubber is cured (i.e. heated with a catalyst to create

cross-linking), some chain remain uncrosslinked [39]. The uncrosslinked chains modify

dynamics [39] and with thicker films, these chains are difficult to remove. To this end

we employ a custom PDMS rubber made from pure PDMS chains.

In general, PDMS is defined as any polymer based on the silicon, oxygen repeating
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unit in the polymer backbone outlined in Fig 2.1a. Along with this base structure,

functional groups can replace portions of the chain to modify behaviour. In our

particular case, we chose a polymer with two functional groups to allow cross-linking.

These functional groups are split between two molecules, one referred to as the cross-

linker and the other the main chain. In the cross-linker the end groups are replaced

by a double bonded structure. In the main chain, ∼5% of monomers are replaced by

a group that bonds to the aforementioned end groups. By controlling the relative size

of each molecule we can achieve several different chain configurations (Fig 2.1). If

we have a short main chain and long cross-linking agent, we get a ’star’ like network

(Fig 2.1b). Conversely, with short cross-linkers we get a structure more akin to

a vulcanized, sulfer cross-linked rubber (Fig 2.1c). In the interest of keeping the

viscosity of each sub-component equal, we operate in a regime of equally long cross-

linker and main chain (Fig 2.1d).

2.1.2 Sample preparation and characterisation

We acquire uncrosslinked PDMS chains from Gelest. We choose the cross-linker

(DMS-V35) and the main chain (HMS-064) (PDMS chemistry was done in partnership

with Harry Lu and Mike Brook, Department of Chemistry). These reagents are have

high viscosity (∼ 7000 cS) as well as similar viscosity which we find aids in spin coating

consistency. We mix the materials in a stoichiometric ratio (20:1 cross-linker:main

chain) to minimise uncrosslinked chains. Note that a stoichiometric ratio gives the

maximum possible stiffness of the material and by modifying this ratio, materials can

be made softer as necessary. To prepare PDMS solutions for spin coating we dilute

our mixture with toluene to a desired concentration and mix initially using a glass
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Figure 2.1: a) The main monomer in PDMS polymers, the CH3 groups are often
replaced by a functional group. b) Starlike polymer structure with longer cross-linkers
and shorter main chains c) Traditional rubber structure with shorter cross-linkers d)
Similar length cross-linking and main chains which we use.

Pasteur pipette, followed a 24hr mix by a lab shaker (Thermo Scientific MAXQ2000).

To characterise bulk mechanical properties we first cure a small ∼1 cm3 cube of

our mixture at 80 ◦C for 24hrs. This sample is then placed on a microscope slide on a

standard microbalance. We compress this cube using a second slide which is translated

vertically using a digital micrometer. With this method we are able to measure a force

displacement curve for our cube of material. Any movement in the slide and balance

itself (generally minimal) is accounted for using the same measurement without a

sample 1. To calculate the Young’s modulus we assume an incompressible material

and extract the slope of a pressure-strain plot. We determine the modulus in this

1We assume the measured effective spring constant follows a simple series spring formulation:

kmeasured =
(

1
k + 1

ko

)−1

where k is the spring constant of the material and ko is the no-sample

spring constant
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case is ∼100 kPa.

To prepare films we first cleave ∼1 cm2 sections of Si (University Wafer, 100)

in a laminar flow hood. These can optionally be cleaned in UV Ozone. We then

add diluted PDMS solution to a wafer and immediately spin coat using a Speciality

Coating Systems P6000. We keep our spin coater settings constant with maximum

acceleration, 3500 rpm spin speed and 1 minute spin time. We use the concentration

of PDMS in toluene to control the thickness ranging from 1 µm for 20% wt/wt PDMS

and to 25 nm for 1% wt/wt PDMS. We then cure the films for 2 hrs at 80 ◦C. To

remove uncrosslinked chains, we add toluene to a cured sample, wait 60 s and spin

coat off the excess solution. We repeat toluene addition-spinning process 3 times

after which time we add samples to a large volume of toluene and wait 24 hrs be-

fore spinning off excess a final time. These films are characterised for thickness by

elipsometry (Accurion EP4) and for uniformity by AFM (Bruker Multimode) (Fig

2.2a). To ensure uncrosslinked chains are washed off, elipsometry measurements are

taken with different washing times until further washing does not decrease thickness

(Fig 2.2b). We confirm the chains are washed off by measuring the contact angle of

a droplet before and after a long time period to ensure it is independent of time.

Along with film choice, it is also important to choose an appropriate droplet

liquid. We choose the ionic liquid, 1-ethyl-3-methylimidazolium dicyanamide (Sigma-

Aldrich) based on three primary criteria. First, at the lengthscales of the droplet

studied (∼100 µm), the surface area to volume ratio is large and evaporation is a

concern. With a vapour pressure approaching zero, the ionic liquid essentially elimi-

nates this problem. Secondly the liquid must have a fairly low viscosity since we are

interested in dissipation in the substrate, not the droplet itself. The viscosity of our
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Figure 2.2: a) Sample atomic force microscopy image of a PDMS film thickness
(52 nm) taken using (Bruker Multimode) b) Thickness vs time in toluene for an as-
sortment of PDMS film thicknesses at given starting concentrations.

ionic liquid is 21 cP [40], while this is higher than water at ∼1 cP, the viscosity of the

ionic liquid is much lower than our substrate (∼7000 cP). Finally, the liquid should

have a large contact angle with the substrate to allow for a more mobile, easier to

study droplet. Although this exact value will depend on the substrate, we find this

ionic liquid does have a sufficiently high contact angle on PDMS.

2.2 Apparatus

2.2.1 Measurements

To measure forces we use the micropippette deflection technique outlined in several

papers by our group [41–43]. First we pull a glass capillary (diameter 1 mm) using

a heating element and constant force puller (Narishige PN-31) to a desired diameter

(∼10-100 µm) 2. We melt the end of the pipette closed to avoid any aspiration of

2For thicker diameters a more rudimentary flame heating with elastic band pulling is effective
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the droplet. This pipette acts as a force sensing rod with a defined spring constant

based on thickness and length. From images of the pipette, we use cross-correlation

image analysis to measure pipette deflection to sub-pixel (∼ 1/3 pixels) precision and

are able to measure forces as low as 10 pN [41]. We then calibrate the pipette spring

constant using small known masses (copper wire). This pipette can be inserted into

a droplet to measure the total droplet surface interaction force. Note that this causes

some deformation of the droplet, however, the substrate dissipation occurs at a much

smaller lengthscale far from the pipette and as such is likely unaffected.

Our home-built imaging setup is outlined in Fig 2.3. We first attach the silicon

wafer to a motorised translation stage (Newport LTA-HS) which can move at speeds

ranging from (0.1 µm/s to 0.5 mm/s). Since we operate in the regime where surface

tension dominates gravity, the substrate can be placed into any orientation depending

on application. To manipulate droplets, we include two pipettes, one open to aspirate

droplets and the other closed for force sensing. The system must be aligned such that

the pipette-surface separation distance remains constant to within several microns

over a large (∼5 mm) translation range. The droplet is imaged with a collimated

backlight to allow for dark contrasting edges. We image the droplet at a shallow angle

(∼2◦ which allows for an image of the droplet and its reflection in the substrate. A

secondary simultaneous top down view has also been developed but is not used in

analysis (Fig 2.4b). In a typical experiment, we aspirate a small volume of ionic liquid

onto the substrate and allow it to equilibriate with the environment for 24 hrs. We

then move the substrate back and forth at a constant speed over a typical distance

distance of ∼0.5 mm, since the pipette holds the droplet in place, we create relative

motion of the droplet. The images of the profile of the droplet are taken at regular
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Figure 2.3: Sketch of the apparatus in use for imaging and force sensing droplets in
motion. Note that the substrate is moved in and out of the page and the pipette
would be out of plane in reality. The aspiration pipette is retracted from the droplet
during experiment and not shown here.

intervals throughout the motion.

2.2.2 Analysis

To find contact angles, we use an edge detection algorithm to find the outline of

the droplet (Fig 2.4a). This algorithm is able to exclude any dust particles and

internal refractions in the droplet with connectivity analysis [44]. The sharp transition

between the dark droplet and the air means the droplet profile is known to the micron

lengthscale. The edge of the droplet can be found by the slope discontinuity at the

droplet reflection or the maximum horizontal extent of the droplet. We then perform

an empirical parabolic fit to each edge of the droplet to determine a contact angle.

Droplet radius is simply determined by the difference between the edge locations.

For each frame in a video, we perform cross-correlation analysis by taking the

the intensity profile along a slice of the image containing the pipette. This intensity

profile is then shifted horizontally pixel by pixel to create an array of shifted intensity

profiles. These profiles are compared to a reference profile for an an unforced pipette
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using a standard cross-correlation definition (cav[k] =
∑

n a[n+ k] ∗ v[n] where a and

v are the functions to compare). By finding the peak of this cross-correlation curve

using a Gaussian fit, we can find a sub-pixel value for the displacement of the pipette.

Each of the contact angle and force measurements is repeated for each frame in the

experiment where the droplet is held is place as the substrate moves back and forth.

This process results in a series of force plateaus with spikes causes by the microscopic

defects such as dust particles (Fig 2.4c). We extract the smooth, horizontal regions

from these plateaus to get a value for the steady state force, and therefore dissipation,

in our system.
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Figure 2.4: a) Side profile as well as edge detection of a sample droplet on a substrate.
Note that the droplet is mirrored on the substrate. The cross correlation value is taken
using a slice of the pipette near the droplet. b) Sample top down view of a droplet
with edge detection. The dotted line indicates the symmetry axis of the droplet and
the arrow points in the direction of droplet motion. Although we have developed
this technique, results included in this thesis are from versions of the experiment
without the top down view. c) Plot of force vs time for a sample run (v = 2 µm/s and
hfilm = 150 nm and example of plateau extraction (in orange) to determine steady
state forces. Note that the spikes represent the droplet going over dust particles, and
are repeated in the same location for multiple runs.
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Chapter 3

Results

To explain our results, we build a simple scaling model that incorporates the features

of the more complex model outlined in [10]. We start with the idea that dissipation

is dominated by the contact line and should scale with the perimeter of the droplet.

If we assume that there is minimal elongation of the droplet, the perimeter should in

turn scale with radius of the droplet, r. There are two sources for this dissipation,

either from viscous flow in the droplet, Pd, or viscous flow in the substrate, Ps (Fig

3.1a):

Pdiss ∝ r (Ps + Pd) . (3.1)

Both the dissipation terms should scale with viscosity. Since we only consider

systems where ηs >>> ηd the droplet dissipation term is neglected. Next, since the

dissipative term in the Chasset-Thirion equation has power law frequency behaviour

we posit that dissipation in the substrate will similarly scale with vn where n is an
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Figure 3.1: a) Schematic close up of capillary ridge indicating dissipation occurring at
the edge of the droplet and in the substrate. b) Case where the substrate thickness,
h, is comparable to the elastocapillary length, le such that lr < le. c) Case where
h >> le such that lr ∼ le
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exponent not necessarily equal to the exponent m from the Chasset-Thirion equation.

Pdiss ∝ rβ(h)vn , (3.2)

where β(h) is a parameter introduced to account for substrate thickness effects. To

find the form of this parameter we assume that the dissipation in a ridge will scale

with its volume. A larger ridge should result in greater dissipation. We call the

lengthscale of the ridge, lr (Fig 3.1b), and per unit length we then have:

β(h) ∝ lr
2 . (3.3)

There are two distinct scaling regimes. In the case where the film height is much

greater than the elastocapillary length (ho >> le) we are in the bulk regime where

lr = le (Fig 3.1c). Below le we expect lr to decrease as film height decreases (Fig

3.1b). It can be shown in the thin film regime the ridge size scales with h3/2 [10].

Combining all of this we have:

β(h) ∝ lr
2 ∼


le
2 if ho > le

le
2

(
h

le

)3/2

if ho < le

To test the validity of our model, we examine each term individually. To test the

radius dependence we simply change the size of the droplets keeping all other param-

eters constant. Although there is deformation of the droplet along the direction they

are dragged (Fig. 2.4b), we still find a linear relationship between power dissipated
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Figure 3.2: a) Plot of dissipation vs droplet radius for a sample substrate (thickness
150 µm at a constant speed (9 µm/s). b) Log-log plots of radius normalised dissipation
against speed across a range of thicknesses.

and radius. This indicates that the contact line is indeed the region where the ma-

jority of the dissipation occurs. To test the velocity power law, we now normalise

dissipation by radius and vary the speed across two orders of magnitude. Plotting

on a log-log plot we do indeed see power law behaviour across a range of thicknesses

(Fig 3.2b) with n ∼ 7/4. The intercept of these log-log plots corresponds to the

β parameter, and by running several samples we can test the thickness dependence

of dissipation (Fig 3.3). Again, we see behaviour consistent with our model, with a

P ∝ ho when ho < le followed by a plateau at bulk film thicknesses. Fitting the

data we we find the extracted modulus matches that measured with cube compres-

sion tests well (100 kPa). Overall, we see a qualitative match between our model and

experiments.
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Figure 3.3: Plot of the β parameter against the thickness of the film in a semi-log
plot. The curve fit’s free parameters include the elastocapillary length.
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Conclusions

In this work we explored the physics of soft wetting and in particular how soft dy-

namics is affected by thickness in the microscopic regime. We prepared samples and

built an apparatus that is able measure the force on microscopic droplets in motion.

We find that below the elastocapillary length the dissipation increases with the thick-

ness of the film. Above this lengthscale, the dissipation becomes independent of film

thickness. These results are in agreement with previous work on larger droplets [10].

The physics of wetting is a complex and growing field and looking forward, there

are numerous avenues for future research. Specifically, the ability of our techniques

to simultaneously image and measure forces on a droplets in multiple planes opens up

several opportunities. For example, droplet force measurements on liquid substrates

is difficult since standard gravitational forcing is impossible. Our techniques have

no issues with such systems. Furthermore, by operating below the elastocapillary

length we could more easily study additional geometries such as free standing films

and fibers. Gaining a fundamental physical understanding of such systems could have

applications in numerous fields ranging from water collection to microfluidics.
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Joscha Reimer, Joseph Harrington, Juan Luis Cano Rodŕıguez, Juan Nunez-
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