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Lay abstract 

 

In this thesis, the finite element method (FEM) is used in analyzing the elastic–plastic 

behavior of sheet metals and investigating ways for enhancing their ductility. The Gurson–

Tvergaard–Needleman (GTN) model is used to simulate the plastic behavior of metals on 

the basis of the effects of void growth and microvoids coalescence, which leads to ductile 

fracture. The GTN model is analyzed, implemented in finite element (FE) software 

ABAQUS, and extended to be suitable for anisotropic metals on the basis of Hill’s 

quadratic anisotropic yield theory. The model application for enhancing the ductility of 

sheet metals under bending is investigated. Two methods, namely, superimposing 

hydrostatic pressure and cladding sheet metals with a soft material, are studied.  
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Abstract 

GTN is analyzed and extended to be suitable for anisotropic matrix materials on the basis 

of Hill’s quadratic anisotropic yield theory. An effective coefficient is defined in the 

extension, and it replaces Hill’s constants to provide the elastic–plastic behavior of metals. 

In this model, three dimensional (3D) and plane stress elements are considered, containing 

ellipsoidal and spherical microvoids in matrix materials. The effect of each case is studied 

and compared with the stress–strain curve of a typical Al alloy.  

Superimposed hydrostatic pressure delays the growth and coalescence of microvoids. Thus, 

bendability is significantly enhanced by superimposing hydrostatic pressure. The effect of 

hydrostatic pressure on tensile test simulation is determined and compared with that 

obtained under bending. This test is simulated under the plane strain state. Sheet metals 

have higher deformation under bending than under tension. The sensitivity of ductile 

fracture parameters in the GTN model to bendability is analyzed and used as the basis for 

exploring the bending response of sheet metals given by this model.  

Cladding sheet metals slows down the development of stress triaxiality, which has a 

significant effect on the fracture of sheet metals. Consequently, the growth and coalescence 

of microvoids are delayed, and this condition leads to high bendability and increases 

fracture strain. A transition zone in the location of failure initiation is observed. This 

transition zone changes with increasing cladding thickness ratio (𝛤). Fracture initiation 

changes from the core material close to the clad–core interface to the clad material on the 

outer surface of the specimen at increased 𝛤. The effect of mandrel span length as well as 
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stress–strain curves for clad materials on bendability is investigated and used as the basis 

for understanding changes in transition zones.  
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CHAPTER 1 Introduction 

 

1.1. Material modeling 

 

Trial-and-error loops are eliminated using material models and simulation tools during the 

manufacturing and development of materials and relevant components. The material 

models illustrate the complexity of loads and make the predictions of material behavior 

feasible, especially in the development process. 

Depicted in Figure 1.1, different fracture mechanisms, such as brittle, fully plastic, ductile, 

and shear, were explained by Ashby et al. [1]. Fracture mode changes under superimposed 

hydrostatic pressure or temperature. A fully plastic failure occurs when all other fracture 

mechanisms are suppressed. The material starts to neck, and strain localizes in the necked 

region. At constant strain, the section reduces to a point of zero area. Such a failure mode 

can occur under superimposed hydrostatic pressure when void growth and nucleation are 

suppressed. 
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Figure 1. 1. Four different modes of fracture [1]  

 

The nucleation, growth, and coalescence of microvoids are the most common phenomena 

leading to the ductile fracture of metals. Void nucleation is created by decohesion in the 

interface between matrix metals and second-phase particles or cracking in second-phase 

particles. Then, void grows with the development of localized plastic strain under tension. 

The ratio of the volume of voids to the total volume of a material is defined as the void 

volume fraction (VVF), which is denoted by 𝑓. 𝑓 = 0 is assigned to a fully dense material 

without any void, whereas 𝑓 = 1 is assigned to a material that is completely void and 

cannot carry any stress capacity. Coalescence occurs when two adjacent voids are 

extremely close to each other, voids begin to coalesce, and cracks and fractures exist. These 

steps are shown in Figure 1.2. Damage models can be utilized, in which the effects of 
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microstructural defects are considered in the definition of the relationship between material 

strength and every stage of a particular failure.  

A proper material model should be defined for the capture of the mechanical behavior of 

metal deformation. Phenomenological models must reflect experimentation. Relations and 

material parameters are correlated with experimental observations. One of the typical 

phenomenological material models considering the effects of void growth and microvoid 

coalescence is the Gurson–Tvergaard–Needleman (GTN), which has been extensively 

used in industrial applications.  

 

 

Figure 1. 2. Schematic of the nucleation, growth, and coalescence of voids [2]  
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Matrix materials are generally anisotropic. Anisotropy is inevitable in matrix materials 

during sheet production, particularly during cold rolling. The mechanical properties of 

metals directionally vary as a result of texture development in the plane defined by the 

rolling direction and the one normal to the plane of the sheet [3]. Several approximate yield 

criteria for anisotropic ductile materials, particularly the quadratic and nonquadratic yield 

criteria by Hill [4, 5], Hosford [6], and Barlat and Lian [7], can indicate the plastic 

responses of metals. Moreover, the Gurson model has been extended to be analytically 

suitable for anisotropic matrix materials on the basis of criteria, such as Hill’s quadratic 

yield functions [8], Hosford’s yield criterion [9, 10], and Barlat and Lian’s nonquadratic 

anisotropic yield criterion [11].  

 

1.2. Bending test 

 

Bending is an important deformation mode in many applications, and it is a significant 

property in a range of applications and extensively used in the automotive industry [12, 

13]. The bending properties of various materials have been studied in [14-16]. Z.S. Racz 

et al. [17] studied the relationship between the flexural properties and specimen aspect 

ratio of composite materials under a three-point bending test. A.R. Ragab and C.A. Saleh 

[18] evaluated the bendability of sheet metals and considered various void coalescence 

models. In [18], the effect of width/thickness ratio on bendability was studied. T. Feister 

et al. [19] studied failure predictions during the warm formation of a typical Al alloy under 

bending and presented the minimum radius/thickness ratio at which a sheet can be bent 
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over. A.A. Elsharkawy and A.A. El-Domiaty [20] determined stretch bendability limits 

and investigated springback limits in T-section beams. D.K. Leu [21] presented a 

simplified analytical approach and evaluated the bendability and springback of anisotropic 

sheet metals. J. Sarkar et al. [15] presented the tensile and bending properties of AA5754 

Al alloys. D.J. Lloyd et al. [14] presented the bending properties of AA6111 and AA5754 

Al alloys through a cantilever bending test. They also investigated the effect of prestrain 

on bendability. Using AA6016 sheets, L. Mattei et al. [12] investigated strain localization 

and damage mechanisms under bending through electron backscatter diffraction and 

optical microscopy. A. Davidkov et al. [23] investigated strain localization and damage 

mechanisms under bending in an Al–Mg alloy sheet through scanning electron microscopy 

(SEM) and optical microscopy. The mechanical performance of materials can be studied 

using a three-point bending test [24, 25], in which a sheets rests on two mandrels and a 

punch advances and deforms the sheet. The schematic of the three-point bending test is 

shown in Figure 1.3.  
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Figure 1. 3. Schematic of a three-point bending test [26]  
 

 

1.3. Ductility enhancement in sheet metals 

 

Increase in ductility is a desirable effect in sheet metal forming. Ductility enhancement can 

be performed in various ways, such as heat treatment [27], microstructural control [28, 29], 

stress-induced reverse transformation [30], superimposed hydrostatic pressure [1, 31-35], 

and cladding sheet metals [36-39]. Superimposed hydrostatic pressure and cladding sheet 

metals are performed structurally.  

A superimposed hydrostatic pressure increases tensile ductility because it delays void 

growth and coalescence [8]. Superimposed hydrostatic pressure increases the ductility of 

sheet metals under tension [40] and bending [41]. In these studies, the specimens were 

inserted into load train assemblies in pressure vessels. Following fluid pressurization, the 

subsequent tension testing of the specimens was conducted at the desired level of 
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superimposed hydrostatic pressure. Figure 1.4 shows the schematic of a high-pressure 

testing apparatus used in [52]. This system consists of two cylindrical chambers, which are 

marked as “[1]” and “[2]” in Figure 1.4. These chambers are pressurized by the pressure 

pump supply shown as “[7]”, and a broader gauge (“[8]”) measures the pressure. A double-

ended hydraulic cylinder marked as “[3]” drives a piston for loading and unloading 

samples. In this schematic, “[4]” refers to the pressure-compensated flow control valves 

that control the travel rate. “[5]” is a four-way valve that controls the direction of piston 

travel, and “[6]” is a pump unit that supplies the hydraulic cylinder.  

 

 

Figure 1. 4. Schematic of the high-pressure testing apparatus in [42]  
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Laminated metal composites (LMCs), which consist of various material layers, provide 

favorable composite properties unlike monolithic materials [43]. Figure 1.5 shows a clad 

specimen that consists of parent and clad layers [44], which are bonded. As stated in [45], 

LMCs can significantly improve many properties, such as fracture toughness [46], fatigue 

behavior [47], impact behavior [48], and formability or ductility [36-39]. Combined 

strength and ductility of metals can be provided in clad materials [49]. 

 

 

 

 

Figure 1. 5. Tensile specimens: (a) parent metal, (b) clad layer, and (c) tensile specimen of a clad 

material [44]  
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1.4. Finite element method 

 

The finite element method (FEM) is a numerical method that approximately solves 

complex problems, such as partial, differential, and integral equations. This method is 

suitable for problems in which exact solutions cannot be obtained easily [50]. It was first 

introduced in the 1950s [51] and applied more to physical concepts than mathematical 

insights initially [52]. The concepts of FEM are dividing structures into several elements, 

analyzing each of the elements individually, and reconnecting the elements by nodes that 

hold the elements together [52]. Figure 1.6 demonstrates a typical structure that is divided 

into several elements [52]. The nodes that hold the elements together are also shown. 

 

 

Figure 1. 6. FE mesh for gear tooth [52] 
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Owing to the developments in computer equipment since the 1950s and the invention of 

the CAD system, all problems can be simulated through FEM. Several finite element (FE) 

commercial packages, such as ANSYS, ABAQUS, SAS, NASTRAN, and LS-DYNA, are 

available. Each software has its own capabilities. ABAQUS is used in this work.  

The FEM subdivides a continuum system into simpler FEs. This approach analyzes the 

element properties mathematically and assembles the results of every element in 

calculating the approximate behavior of an entire system. FEM can be used to predict 

metal-cutting performance, such as the wear of tools and the plastic deformation of 

machined workpieces. W. Cha and N. Kim [53] used FEM to quantify the microcracks on 

the bending surface of roll-formed products. Z.W. Liu et al. [54] used FE software LS-

DYNA to study the influence of heat treatment conditions on the bending properties of a 

typical Al alloy. C. Soyarslan [55] used FE software ABAQUS to investigate ductile 

fracture in bending for dual-phase steels. J. H. Kim et al. [56] studied the draw–bend failure 

of advanced high strength steels through FEM. Y. Shi et al. [13] used ABAQUS to analyze 

the surface roughening in AA6111 Al alloy under bending. J. Kim et al. [26] implemented 

a constitutive law to describe the anisotropic and asymmetric mechanical behavior of a 

typical Mg alloy sheet in ABAQUS. L. Jin et al. [57] performed an in situ investigation on 

the microstructural evolution and plasticity of Mg alloys under bending and compared the 

results with those obtained using FEM. V. L. Tagarielli [58] analytically studied the 

collapse response of sandwich beams under bending and compared the results with those 

obtained using FEM. P. Hou et al. [24] studied the influence of punch radius on elastic 

modulus in a three-point bending test using FEM. 
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1.5. Problem formulation and research scope 

 

This thesis compiles the results presented in three peer-reviewed journals. They are 

structured as follows: 

 

1.5.1. Anisotropic Gurson–Tvergaard–Needleman plasticity and damage model for 

finite element analysis of elastic–plastic problems 

 

Although in [59-61], the GTN model was extended for anisotropic materials using the 

algorithm presented by N. Aravas [62] on the basis of Hill’s quadratic anisotropic yield 

criterion, and the exact algorithm for isotropic matrix material was applied. N. Aravas [62] 

presented a lucid algorithm for the GTN model, but it works solely for isotropic metals. In 

[59-61], the effective stress for isotropic materials was replaced with the effective stress 

for anisotropic materials, and this approach cannot be accepted. In the current study, the 

algorithm presented in [62] is analyzed in detail and extended to be suitable for anisotropic 

materials in ABAQUS-Standard FE code, and changes in the algorithm are made when 

necessary. The algorithm is prepared for 3D and plane stress elements and implemented 

for ellipsoidal- and spherical-shaped voids. The results of each case in tensile tests are 

obtained and compared with those in experiments. 
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1.5.2. Study of the influence of superimposed hydrostatic pressure on the bendability 

of sheet metals 

 

As mentioned previously, the ductility of metals is desired to enhance, and one of the 

methods is to superimpose hydrostatic pressure. Hydrostatic pressure delays the void 

growth and nucleation and significantly increases fracture strain. This phenomenon is 

numerically studied in ABAQUS by using the GTN model, and the effect of hydrostatic 

pressure on sheet metals under a three-point bending test is analyzed. The reasons for 

increased bendability by hydrostatic pressure are elucidated. The results of a bending test 

under various hydrostatic pressures are compared with those under tension. A sheet metal 

has more deformation under bending than under tension. Overall, this study aims to 

understand what causes the increase in bendability by superimposed hydrostatic pressure.  

 

1.5.3. Enhanced bendability in sheet metals produced by cladding a ductile layer 

 

Cladding sheet metals is another method for enhancing ductility. Cladding a sheet metal 

with a soft material increases ductility because the development of stress triaxiality is 

inhibited. This condition causes considerable increases in bendability and fracture strain. 

The numerical study of this phenomenon is performed in ABAQUS using the GTN model 

under a three-point bending test. The reasons for increased bendability by cladding are 

elaborated. The results for different mandrel span lengths and cladding thickness ratios 

(𝛤) are presented. The changes in the fracture initiation transition zone are numerically 
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analyzed. The effect of hardening on clad materials is investigated, and the result indicates 

that bendability increases with the rate of hardening in clad materials. This study aims to 

determine what causes the increase in bendability by cladding sheet metals. 

 

1.6. Contribution of research 

 

This work: 

[1]. Implementation of the GTN model suitable for anisotropic metals and presentation of 

the correct algorithm 

[2]. Implementation of the GTN model considering ellipsoidal microvoids in a matrix 

material and analysis of its effects on the uniaxial stress–strain response of the material 

[3]. Numerical study of the effect of superimposed hydrostatic pressure on bendability 

[4]. Numerical study of the effect of cladding on bendability 

 

1.7. Organization of research and thesis document 

 

This thesis is based on three journal articles that constitute the result section of the thesis 

along with other supplementary chapters that provide a survey of related literature and 

context, conclusions, and recommendations. The information provided in this study is 

presented in six chapters:  

Chapter 1 presents an introduction to the GTN model and the effects of superimposed 

hydrostatic pressure and cladding on the bendability of sheet metals.  
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Chapter 2 consists of a review of the studies conducted on the GTN model and the effects 

of superimposed hydrostatic pressure and cladding on the bendability of sheet metals.  

Chapter 3 is about the first journal article entitled “Anisotropic Gurson-Tvergaard-

Needleman Plasticity and Damage Model for Finite Element Analysis of Elastic-Plastic 

Problems.” It presents an implementation and description of an anisotropic GTN model 

for sheet metals. 

Chapter 4 focuses on the second journal article entitled “Study of influence of 

superimposed hydrostatic pressure on the bendability of sheet metals.” It presents the effect 

of hydrostatic pressure on the bendability of sheet metals. 

Chapter 5 concentrates on the third journal article entitled “Enhanced bendability in sheet 

metals produced by cladding a ductile layer.” It presents the effect of cladding on the 

bendability of sheet metals. 

Chapter 6 provides conclusions and recommendations for future work. 

 

1.8. A note to the reader 

 

As a result of the editorial requirements for publishing a series of separate journal articles, 

some overlap of materials contained in this thesis occurs. In particular, the sections of each 

journal article pertaining to numerical modeling are repeated. The literature review section 

of each article also contains similar materials. However, each of these review sections is 

targeted and does contain specific references related to the work presented in each paper. 
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Chapter 2 Literature Review 

 

2.1. Introduction 

 

This thesis section provides a comprehensive review of the relevant studies on the GTN 

model and its applications for increasing the ductility and bendability of metals. The 

literature reviewed in each journal article contained in this thesis is relatively brief to fit 

the publication requirement. A detailed review is presented in this chapter to provide 

insights and context to the work performed in this thesis. The chapter begins with a 

discussion of the GTN model, followed by a review of its application for increasing the 

ductility and bendability of metals by superimposing hydrostatic pressure and cladding 

sheet metals. 

 

2.2. Gurson-Needleman-Tvergaard model 

 

Gurson [63] presented a widely constitutive law for the plastic response of porous metals 

in 1977. In this model, the effect of hydrostatic pressure and the effect of void growth on 

flow stress are considered. The yield criterion is approximated using the upper bound 

approach. A unit cube containing a spherical void is considered a representative volume 

element (Figure 2.1). The matrix material is homogeneous, incompressible, and rigid–
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plastic and follows the von Mises criterion. A velocity field is applied to the unit cell 

conforming to the macroscopic stress state of the material. Upper bounds to the 

macroscopic stress fields required for yield are obtained using a distribution of 

macroscopic flow fields and by working through a dissipation integral. Then, the yield 

locus is formed by the locus in the stress space of upper bounds to the macroscopic stress 

fields. The flow rule results for this yield locus are shown. Gurson developed the 

approximate functional forms for yield loci. The obtained approximate yield is as follows: 

𝛷(𝝈, 𝜎, 𝑓) =
𝜎𝑒

2

𝜎̅2 + 2𝑓𝑐𝑜𝑠ℎ (
3𝑞2𝜎𝐻

2𝜎̅
) − [1.0 + 𝑓2] = 0                            (1) 

where 𝝈  is the macroscopic Cauchy stress tensor; 𝜎𝑒 ,  𝜎𝐻 , and 𝜎  are the equivalent, 

hydrostatic, and matrix stresses, respectively; and 𝑓 is the void volume fraction. 
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Figure 2. 1. Void-matrix aggregate in which voids are distributed randomly (The macroscopic and 

microscopic stress tensors are shown.) 

 

Researchers have found the Gurson model attractive and used this model in analyzing 

various applications. The model can be used to predict the analytical forming limit diagram 

(FLD). One of the well-accepted approaches for the analytical prediction of FLD for sheet 

materials is the so-called Marciniak–Kuczynski (M–K) method [64]. A slight reduction in 

sheet thickness in the form of a band in a certain region of the sheet specimen as a pre-

existing imperfection is considered in this method. Gurson’s original model for isotropic 

matrix materials has been extended analytically for anisotropic matrix materials on the 

basis of several criteria, such as Hill’s quadratic yield functions [8], Hosford’s yield 

criterion [9, 10], and Barlat and Lian’s nonquadratic anisotropic yield criterion [11]. Son 
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and Kim [65] used the extension of the Gurson model based on Barlat 89 to predict the 

analytical FLD through the M–K method.  

In 1982, Viggo Tvergaard [66] analyzed the macroscopic properties of a porous ductile 

medium by using the approximate yield function suggested by Gurson and showed that the 

Gurson model does not prove a good agreement to analyze bifurcation into a localized 

mode under several loading conditions. Therefore, V. Tvergaard [66] modified the model 

and presented the following approximate yield function: 

 

𝛷(𝝈, 𝜎, 𝑓) =
𝜎𝑒

2

𝜎̅2 + 2𝑓∗𝑞1𝑐𝑜𝑠ℎ (
3𝑞2𝜎𝐻

2𝜎̅
) − [1.0 + (𝑞2𝑓

∗)2] = 0                     (2) 

 

Here, when 𝑞1 = 𝑞2 = 1.0 , Equation (2) turns into the approximate yield function 

suggested by Gurson (Equation [1]). From [66], the results for values 𝑞1 = 1.0 and 𝑞2 =

1.5 are in good agreement and can be used to analyze the bifurcation mode of porous 

metals. The Gurson model was modified by V. Tvergaard and A. Needleman [67]. They 

introduced additional damage parameters and considered void coalescence and ductile 

fracture. In this modified model, referred to as the GTN model, the damage-induced plastic 

instability (or necking) process is governed by the growth of existing voids, the nucleation 

of new voids during deformation, and the microcrack coalescence in the neck region. The 

approximate yield function for the GTN model is as follows: 

 

𝛷(𝝈, 𝜎, 𝑓) =
𝜎𝑒

2

𝜎̅2 + 2𝑓∗𝑞1𝑐𝑜𝑠ℎ (
3𝑞2𝜎𝐻

2𝜎̅
) − [1.0 + (𝑞2𝑓

∗)2] = 0                     (3) 
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and                                          𝑓∗ = {
𝑓                                     𝑓𝑜𝑟 𝑓 ≤ 𝑓𝑐

𝑓𝑐 +
𝑓𝑢

∗−𝑓𝑐

𝑓𝑓−𝑓𝑐
(𝑓 − 𝑓𝑐)    𝑓𝑜𝑟 𝑓 > 𝑓𝑐

 

where 𝑓𝑐 is the critical void volume fraction when coalescence occurs, and 𝑓𝑓 is the void 

volume fraction at failure. Lastly, the parameter 𝑓𝑢
∗ =

1

𝑞1
 is defined. The growth of existing 

voids and the nucleation of new voids are considered in the evolution of void volume 

fraction (𝑓̇ = 𝑓̇𝑔𝑟𝑜𝑤𝑡ℎ + 𝑓𝑛̇𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛). The growth of existing voids is a function of a plastic 

strain rate, and the growth of voids because of the nucleation of new voids is based on a 

normal distribution, as suggested by Chu and Needleman [68]. 

A. Needleman and V. Tvergaard [69] used the GTN model and analyzed the ductile 

fracture in axisymmetric and plane strain notched tensile specimens. From [69], failure 

occurs at the center of the notched section of axisymmetric specimens; on the contrary, 

failure occurs on the surface in plane strain specimens with sharp notches, and this 

condition is in good agreement with experiments. W. Cha and N. Kim [53] identified GTN 

parameters using load-displacement curves obtained from a tensile test through the 

response surface method. The obtained parameters were used in ABAQUS for the 

simulation of the bending test. Void volume fraction (𝑓) on the outer surface of a specimen 

was observed and compared with the microcrack size observed using SEM. The result 

indicated that GTN can be used to quantify the microcrack size observed in SEM. The 

GTN model has an extensive use in the analysis of different plastic deformation processes 

[59-61, 70-80]. T.N. Zaman [81] used the GTN model in the M–K method to predict 

analytical FLD and studied the effect of strain path changes on predicted FLD. 
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Aravas [62] presented a numerical implementation of the isotropic GTN model into 

ABAQUS/Standard FE code in 1987, in which 3D and plane stress cases were considered.  

In this algorithm, the spherical-shaped voids considered in the original GTN model [67] 

are used. The backward Euler method, which is unconditionally stable and suitable for 

finite element analysis (FEA), is used. This method is also the most accurate member of 

the generalized trapezoidal family for strain increments that are several times the size of 

the yield surface in strain space. The algorithm was integrated implicitly, and the tangent 

moduli were obtained by consistent linearization of the elastoplastic constitutive equations. 

The results for the tensile test obtained using the algorithm presented by Aravas have been 

tested with the numerically obtained exact solution, and the results are compared [62]. 

Numerical implementations and subsequent studies of the combination of the earlier GTN 

model with some of new yield criteria are presented in [8-11, 71-80, 82-87]. Furthermore, 

the GTN model has been extended and transformed from an isotropic matrix material to 

an anisotropic matrix in [59-61] on the basis of the algorithm presented by N. Aravas [62]. 

Hill’s quadratic anisotropic yield criterion was used in these studies for the definition of 

equivalent stress. On the contrary, the exact algorithm for isotropic materials is applied in 

the new anisotropic implementation of the GTN model.  

 

2.3. Effect of superimposed hydrostatic pressure 

 

The effect of superimposed hydrostatic pressure on void formation in a tensile test was 

characterized using quantitative metallography, and the fracture mechanism was analyzed 
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through fractography in [40]. A significant increase in the ductility of metals occurred with 

the suppression of microvoid development, and the flow stress change was negligible. 

From [40], externally applied pressure excludes the void-sheet mechanism, which is letting 

shear decohesion to be the dominant failure mechanism because it is minimally sensitive 

to hydrostatic pressure. In this way, the cup–cone mode of fracture under atmospheric 

pressure changes to a slanted structure under high superimposed hydrostatic pressure, as 

shown in Figure 2.2. 

 

 

Figure 2. 2. Fractured surface during tensile tests under various pressures [40] 
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The effect of superimposed hydrostatic pressure on the bending fracture strain of low-

carbon steel containing globular sulfides was studied by Kao et al. [41]. Superimposed 

hydrostatic pressure considerably increased fracture strain and enhanced bendability. The 

experimental results presented in [41] showed that the fracture was due to the nucleation, 

growth, and coalescence of voids; superimposed hydrostatic pressure delayed or 

completely eliminated the nucleation, growth, and coalescence of voids, which resulted in 

increased fracture strain and bendability. Weinrich and French [88] investigated the effect 

of superimposed hydrostatic pressure on the fracture mechanisms of sheet tensile 

specimens. They found that the mode of fracture at room pressure was smooth and planar 

(P-type) and changed to a chisel edge without any void sheet (C-type) at increased 

hydrostatic pressure. Brownrigg et al. [33] showed that hydrostatic pressure insignificantly 

affected the neck development in 1045 steel under tension, flow stress increased slightly, 

and superimposed hydrostatic pressure considerably affected fracture and delayed void 

growth and nucleation. French et al. [32] demonstrated that the fracture strain for free 

machining brass was sensitive to the effect of hydrostatic pressure below 300 MPa but was 

minimally sensitive above this value. In [32], the resultant triaxial stress component 

became tensile at the late stage of deformation, and a highly developed neck existed in the 

specimen. Voids were developed in a narrow region near the neck center. Fracture occurred 

with further deformation, and this condition was the reason for the minimally sensitive 

fracture strain at high pressure. Korbel at al. [34] performed experiments to show the effect 

of superimposed hydrostatic pressure on the formation of localized shear bands in a 

naturally aged A–Zn–Mg alloy. The onset of localized shear was independent of the 
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superimposed hydrostatic pressure, and localized shear was created because of structural 

softening. On the contrary, fracture strain increased with hydrostatic pressure because it 

delayed the void growth and nucleation. French et al. [35] showed that the relative area of 

void coalescence in Cu under tension decreased with an increase in hydrostatic pressure, 

whereas the relative area of shear bands increased. Superimposed hydrostatic pressure is 

generally accepted to increase ductility because it delays or completely eliminates void 

growth and nucleation, as determined in [42, 89, 90]. 

In [91, 92], the effect of superimposed hydrostatic pressure on the formability of sheet 

metals was studied by constructing FLD on the basis of the M–K approach, and the authors 

found that pressure delayed the initiation of necking and that formability increased. The 

transition of fracture surface in a tensile round bar from a cup–cone mode under 

atmospheric pressure to a slanted structure under high pressure was numerically 

reproduced through the GTN model. Peng et al. [93] investigated the effect of 

superimposed hydrostatic pressure on fracture in round bars. They showed that 

superimposed pressure had no evident effect on necking strain because void growth was 

insignificant prior to necking. The numerical results showed that the fracture strain 

increased due to the fact that superimposed pressure delays or eliminates the void 

nucleation and growth completely. The fracture surface changed from a cup–cone mode 

under atmospheric pressure to a slant smooth surface under high pressure. Superimposed 

pressure not only increased the fracture strain but also extended the failure process. The 

effect of superimposed pressure on fracture in sheet metals under tension was studied in 

[94]; the author found that hydrostatic pressure increased the ductility of sheet metals, and 
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the numerical results showed the transition of fracture surface from P-type mode at 

atmospheric pressure to C-type mode under high pressure occurred. The fractured surface 

of specimens predicted using ABAQUS in [94] is shown in Figure 2.3.  

 

 

Figure 2. 3. Fractured surface of a tensile test under various pressures predicted using ABAQUS 

with a typical mesh in [94]  

 

In [95], the effect of superimposed hydrostatic pressure on bendability was numerically 

investigated, and hydrostatic pressure was observed to increase fracture strain. The effect 

of superimposed double-sided pressure on the formability of a biaxially stretched AA6111-



 

Ph.D. Thesis – M.M. Shahzamanian       McMaster University – Mechanical Engineering 

 

 

25 
 

T4 sheet metal was numerically studied in [96] via the GTN model; the author found that 

double-sided pressure increased formability, void nucleation was invariable, and only void 

growth changed and decreased with an increase in pressure.  

 

2.4. Effect of cladding on the ductility of metals 

 

Hu et al. [97] studied the necking behavior of cladding sheets with a rate-sensitive layer 

cladding on a rate-insensitive core material. A nonlinear long-wavelength analysis was 

developed and used in predicting the onset of necking. This mode of analysis is similar to 

that presented by Hutchinson and Neale in 1977 [98]. However, it has been verified by 

FEM. In [97], necking strain increases with the strain-rate sensitivity of the clad layer at a 

fixed volume fraction of cladding, and the necking localization is retarded after volume 

fraction of the cladding layer is increased. 

Stainless steel (SS) was clad with Niobium (Nb) in [99] by roll bonding, and a micron 

thick layer at the interface was generated during annealing. This layer led to a brittle failure 

along the interface between SS core and Nb cladding (Figure 2.4). Hot rolling can provide 

a shear bond strength as reported in [44], for a low-carbon steel/austenitic SS clad 

composite. However, roll bonding is costly, and the “Fusion Technology” technique 

introduced by Novelis Inc. clad sheet metals with a high-strength and oxide-free zone at 

the clad–core interface [37]. Tensile and bending tests for a clad material consisting of 

×609 core and soft AA3003 clad materials were performed in [12], and the results were 

used in confirming the high strength of the clad–core interface. A failure occurred away 
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from the clad–core interface. This finding showed that the two materials were bonded 

perfectly without any delamination.  

 

 

Figure 2. 4. Failure mechanism of a bending test for clad SS and Nb via roll bonding in [99]  

 

 

Fracture under bending was initiated on the outer surface of a specimen, which was a free 

and unconstrained surface due to the strain localization in severe bands developed at grain 

boundaries [12]. Superimposed hydrostatic pressure delays the void growth and 

coalescence of microvoids and increases bendability [31, 41, 95]. However, bendability 

can be improved by cladding a material on the outer surface with a ductile clad layer [12]. 

The Fusion Technology technique was used in [12], and the author found that failure 

initiated in a region close to the core–clad interface and then propagated toward the surface 

of the bent sample; eventually, cladding failed, and the crack grew. This phenomenon 
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proved that a perfect bonding is provided in a clad sheet metal using the Fusion Technology 

technique. Figure 2.5 shows the mechanism of fracture progression in a clad sheet metal 

under bending.  

 

 

Figure 2. 5. Schematic of fracture path progression in a clad sheet under bending [12] through (a) 

to (d) 

 

 

Chen et al. [100, 101] investigated the effect of cladding a ductile layer in ring and sheet 

metals under plane strain tension on necking and fracture strains through FEM. Cladding 

a ductile ring increases necking and fracture strains. Cladding enhanced the hardening, and 

necking strain increased following the rule of mixture. As necking strain increased, 

cladding delayed the void nucleation and growth, which resulted in significant ductility. 

The topological arrangement of cladding in the ring was investigated. Although the 
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topological arrangement of the cladding ring exhibited an evident effect on fracture strain, 

the necking strain was unaffected following the rule of mixture. The authors of [100, 101] 

explained that cladding delayed the growth of stress triaxiality. Stress triaxiality presented 

a significant effect on void growth and coalescence. Therefore, cladding helped delay the 

fracture initiation in sheet metals. Mesh sensitivity was inevitable in predicting the fracture 

pattern on clad tensile samples. A fracture pattern with two different meshes for various 𝛤 

is shown in Figure 2.6. Mesh has a significant effect on the prediction of fracture pattern.  

 



 

Ph.D. Thesis – M.M. Shahzamanian       McMaster University – Mechanical Engineering 

 

 

29 
 

 

Figure 2. 6. Mesh sensitivity on fracture pattern in a clad material under tension [100]  
 

 

2.5. Summary 

 

GTN [67] is a pressure-dependent model, and the effect of void growth on the plastic flow 

stress of metals is considered. Coalescence occurs when the void volume fraction reaches 
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a critical value. The GTN model has been extended and presented in this form after a 

couple of extensions and modifications. It is used in analyzing various applications, such 

as the prediction of analytical FLD in the M–K method. Furthermore, GTN is used in FEM 

and established on FE ABAQUS software by using an algorithm via the backward Euler 

method [62]. Diverse analyses in the elastic–plastic response of metals have been 

performed using the GTN model. 

Superimposed hydrostatic pressure delays the void growth and coalescence in metals and 

helps delay fracture initiation [40]. Several experiments in this regard have been performed 

through tensile tests. Hydrostatic pressure changes the fracture mode in tensile tests, 

excludes the void-sheet mechanism, and leads to shear decohesion. Fracture strain 

increases, given that shear decohesion is insensitive to hydrostatic pressure. Numerical 

studies of the effect of superimposed hydrostatic pressure on the ductility of metals under 

tension have been performed using the GTN model [91, 92]. Articles have explained that 

hydrostatic pressure delays void growth and coalescence and fracture strain increases. 

Cladding sheet metals with a highly ductile material enhances the ductility. Tensile tests 

of clad sheet metals produced using a Fusion Technology technique were performed in 

[37], and fracture occurred away from the clad–core interface. The Fusion Technology 

effectively bonded the two materials. Numerical studies of the effect of cladding on the 

ductility of sheet metals were performed in [100, 101]. These articles numerically 

demonstrated that cladding sheet metals delays the development of stress triaxiality and 

helps increase fracture strain.  
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ABSTRACT 

 

Implementation and analysis of the anisotropic version of the Gurson–Tvergaard–

Needleman (GTN) isotropic damage criterion are performed on the basis of Hill’s 

quadratic anisotropic yield theory with the definition of an effective anisotropic coefficient 

to represent the elastic–plastic behavior of ductile metals. This study aims to analyze the 

extension of the GTN model suitable for anisotropic porous metals and to investigate the 

GTN model extension and its effects on the stress–strain curves of metals. An anisotropic 

damage model is implemented using the user material subroutine in ABAQUS/standard 

finite element (FE) code. The implementation is verified and applied to simulate a uniaxial 

tensile test on a commercially produced aluminum sheet material for three-dimensional 

and plane stress test cases. Spherical and ellipsoidal micro voids are considered in the 

matrix material, and their effects on the uniaxial stress–strain response of the material are 

analyzed. Hill’s quadratic anisotropic yield theory predicts substantially large damage 

evolution and a low stress–strain curve compared with those predicted by the isotropic 

model. An approximate model for anisotropic materials is proposed to avoid increased 

damage evolution. In this approximate model, Hill’s anisotropic constants are replaced 

with an effective anisotropy coefficient. All model-generated stress–strain predictions are 

compared with the experimental stress–strain curve of AA6016-T4 alloy. 

 

Keyword: GTN model, Hill’s quadratic anisotropic yield criterion, finite element method, 

ductile metals. 
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3.1. Introduction and a brief review of literature 

 

Computational simulations with the use of the finite element method are commonly 

conducted to elucidate the plastic deformation and damage behavior of materials. The 

elastoplastic behavior of many metallic materials involves void nucleation, growth, and 

coalescence of micro-voids. Gurson–Tvergaard–Needleman (GTN) is a pressure-

dependent plasticity and damage model that was proposed for isotropic materials [1-4] that 

are commonly used to investigate void-induced damage at large plastic strains in the 

literature. In the original Gurson model [1], plastic flow was analyzed using spherical 

micro-voids with a single-void fraction parameter, and the matrix material was assumed to 

obey the von Mises yield criterion. This model was consequently modified by Tvergaard 

[2,3] and by Needleman and Tvergaard [4,5] by introducing additional damage parameters. 

In this modified model, which is currently referred to as the GTN model, the damage-

induced plastic instability (or necking) process is governed by the growth of existing voids, 

nucleation of new voids during deformation, and micro-crack coalescence in the neck 

region. The GTN model is widely used in analyzing many different plastic deformation 

processes [6-20]. Matrix material has been frequently identified in recent years as 

anisotropic, and micro-voids of non-spherical shapes in different orientations exist within 

the anisotropic matrix. Several approximate yield criteria, such as quadratic and non-

quadratic yield criteria by Hill [21, 22], Hosford [23], and Barlat and Lian [24], for 

anisotropic ductile materials are available in literature. Numerical implementations and 

subsequent studies of the combination of earlier GTN model with some of the newer yield 
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criteria can be found in references [10-19, 25-34]. Furthermore, the GTN model has been 

extended and transformed from an isotropic matrix material to an anisotropic matrix [6, 8, 

9] based on the algorithm presented by N. Aravas [35]. Hill’s quadratic anisotropic yield 

criterion is used in these studies to define equivalent stress, whereas the exact algorithm 

for an isotropic material is applied in the new anisotropic implementations of the GTN 

model. In 1987, Aravas [35] presented a distinct numerical implementation of the isotropic 

GTN model into ABAQUS-Standard finite element (FE) code, where both three-

dimensional and plane stress cases were considered. The algorithm was integrated 

implicitly, and the tangent moduli were obtained by consistent linearization of elastoplastic 

constitutive equations. 

In this study, the extension of isotropic GTN algorithm presented by Aravas [35] to 

anisotropic metals based on Hill’s quadratic anisotropy theory is analyzed. The extension 

of isotropic GTN model cannot predict the stress–strain curve accurately because of 

substantial damage growth when individual Hill’s constants are considered. Therefore, an 

approximate model that replaces individual Hill’s constants with effective anisotropic 

coefficient is proposed to predict the stress–strain curve of metals. The effects of individual 

Hill’s constants are removed, but the substantial damage growth is neglected without 

changing the equivalent stress in anisotropic model. Spherical and ellipsoidal micro-voids 

for 3D and plane stress cases are considered, and model implementation of each case is 

illustrated. Swift law is used to describe the stress–strain curve of matrix material. The 

anisotropic GTN model is implemented to ABAQUS-Standard FE code, and various 
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analyses of uniaxial stress–strain response with different material property parameters are 

compared with previous experimental data for an AA6016 aluminum sheet. 

 

3.2. Stress and strain measures 

 

For clarity, several equations from [35, 36] are reproduced in this section to explain how 

ABAQUS deals with plasticity responses. The macroscopic Cauchy stress tensor and its 

Jaumann rate are used in ABAQUS to formulate the constitutive equations as follows.  

𝝈 = 𝜎𝑖𝑗𝑒𝑖𝑒𝑗                                                                  (1) 

𝝈̇ = 𝜎̇𝑖𝑗𝑒𝑖𝑒𝑗                                                                  (2) 

where, 𝑒𝑘 are the basic vectors of the Cartesian coordinate system. Also, the macroscopic 

velocity gradient to measure an objective strain is [36]: 

𝑳 = 𝑉𝑖,𝑗𝑒𝑖𝑒𝑗                                                                  (3) 

where, 𝑉𝑖,𝑗 is the velocity components. The strain rate is derived based on the following 

equation [36]: 

𝜺̇ =
1

2
(𝑉𝑖,𝑗 + 𝑉𝑗,𝑖)                                                             (4) 

in which the elastic and plastic components of strain rates are decomposed as follows [35, 

36]:  

 𝜺̇ = 𝜺̇𝑒𝑙 + 𝜺̇𝑝𝑙                                                                 (5) 

Thus, the strain increments are described as [35, 36]: 
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𝑑𝜺 = 𝑑𝜺𝑒𝑙 + 𝑑𝜺𝑝𝑙                                                              (6) 

The stress tensor can be written in terms of elastic strain energy potential 𝑊 = 𝑊(𝜺𝒆𝒍) 

as: 

𝝈 =
𝜕𝑊

𝜕𝜺𝑒𝑙                                                                        (7) 

Also, for linear elasticity [35, 36]: 

 𝝈 = 𝑪𝑒𝑙: 𝜺𝑒𝑙                                                                    (8) 

where 𝑪𝑒𝑙 is the fourth order elasticity tensor given as [35, 36]: 

𝐶𝑖𝑗𝑘𝑙
𝑒𝑙 = 2𝐺𝛿𝑖𝑘 𝛿𝑗𝑙 + (𝐾 −

2

3
𝐺) 𝛿𝑖𝑗 𝛿𝑘𝑙                                               (9) 

where 𝛿𝑖𝑗 is kronecker delta and the symbols K and G represent isotropic bulk and shear 

moduli, respectively.  

In this paper, the double dot is used to indicate the following product and boldface symbol 

denote tensor. 

𝑨:𝑩 = 𝐴𝑖𝑗𝐵𝑖𝑗 

3.3. Hill’s quadratic anisotropic yield criterion 

 

Equivalent stress (𝑞) for Hill’s quadratic anisotropic yield criterion for matrix material is 

expressed as: 

𝑞 = √
3

2
𝑆𝑖𝑗𝐻𝑖𝑗𝑘𝑙𝑆𝑘𝑙                                                          (10) 
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where 𝑆𝑖𝑗 and 𝑆𝑘𝑙 are the deviatoric stress tensors and 𝐻𝑖𝑗𝑘𝑙 (𝐻 with subscript) is the forth 

order anisotropy Hill’s tensor that has the following form: 

𝐻𝑖𝑗𝑘𝑙 =

[
 
 
 
 
 
𝐻1111 0 0

0 𝐻2222 0
0 0 𝐻3333

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐻2323 0 0
0 𝐻3131 0
0 0 𝐻1212]

 
 
 
 
 

                                  (11) 

So, Equation (10) can be rewritten as: 

𝑞 = √
3

2
𝑆𝑖𝑗𝐻𝑖𝑗𝑖𝑗𝑆𝑖𝑗                                                           (12) 

Equivalent stress in Equation (12) can be written in the expanded form as: 

𝑞2 =
3

2
(𝐻1111𝑆11

2 + 𝐻2222𝑆22
2 + 𝐻3333𝑆33

2 + 2𝐻2323𝑆23
2 + 2𝐻3131𝑆31

2 + 2𝐻1212𝑆12
2 )      

(13) 

It is to be noted that equivalent stress in Equation (13) is in terms of deviatoric stress 

components. It can also be expressed in terms of stresses as:  

𝑞2 = 𝐹(𝜎22 − 𝜎33)
2 + 𝐺(𝜎33 − 𝜎11)

2 + 𝐻(𝜎11 − 𝜎22)
2 + 2𝐿𝜎23

2 + 2𝑀𝜎31
2 + 2𝑁𝜎12

2      

(14) 

where 𝐹, 𝐺, 𝐻, 𝐿,𝑀 and 𝑁  are anisotropy constants that can be correlated to 

𝐻1111, 𝐻2222, 𝐻3333, 𝐻2323, 𝐻3131 and 𝐻1212 . Generally, for sheet materials, constants 

𝐹, 𝐺, 𝐻, 𝐿,𝑀 and 𝑁 can be obtained by three experimental planar tensile tests along 0o, 

45o and 90o orientations with respect to sheet rolling direction in the following form: 
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𝐹 =
𝑅0

𝑅90(1+𝑅0)
                                                         (15-a) 

𝐺 =
1

1+𝑅0
                                                            (15-b) 

𝐻 =
𝑅0

1+𝑅0
                                                            (15-c) 

𝑀 = 𝑁 = 𝐿 =
(𝑅90+𝑅0)(1+2𝑅45)

2𝑅90(1+𝑅0)
                                            (15-d) 

where, 𝑅0, 𝑅45 and 𝑅90  are the plastic anisotropic parameters along 0o, 45o and 90o 

directions. It is to be noted that 𝐺 + 𝐻 = 1. The relationship between 𝐹, 𝐺, 𝐻, 𝐿,𝑀 and 𝑁 

and 𝐻1111, 𝐻2222, 𝐻3333, 𝐻2323, 𝐻3131 and 𝐻1212 can be expressed as: 

𝐻1111 =
2

3
(2𝐺 + 2𝐻 − 𝐹)                                                 (16-a) 

𝐻2222 =
2

3
(2𝐹 + 2𝐻 − 𝐺)                                                 (16-b) 

𝐻3333 =
2

3
(2𝐹 + 2𝐺 − 𝐻)                                                 (16-c) 

𝐻2323 =
2

3
𝐿                                                             (16-d) 

𝐻3131 =
2

3
𝑀                                                            (16-e) 

𝐻1212 =
2

3
𝑁                                                             (16-f) 

The relationship between Hill’s anisotropy constants and 𝑅0, 𝑅45, 𝑅90  can be found by 

substituting Equations (15) into (16). 
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3.4. Elastoplastic constitutive equations 

 

A yield function that involves the hydrostatic pressure  (𝑝 =

−
1

3
𝝈: 𝑰; 𝑰 is the second order identity tensor) , equivalent stress q and internal state 

variables 𝐻𝛼 (𝐻 with superscript) is expressed in the following general form: 

𝛷(𝑝, 𝑞, 𝐻𝛼) = 0                                                          (17) 

where 𝐻𝛼 are a set of internal state variables, 𝛼 = 1,2, … . . , 𝑛. Based on associative flow 

rule, we have: 

𝑑𝜺𝑝𝑙 = 𝑑𝜆
𝜕𝑔

𝜕𝝈
= 𝑑𝜆 (−

1

3

𝜕𝑔

𝜕𝑝
𝑰 +

𝜕𝑔

𝜕𝑞
𝑵)                                            (18) 

where 𝑑𝜆 is a positive scalar parameter and 𝑔(𝑝, 𝑞, 𝐻𝛼) is the flow potential. Also, 

     𝑵 =
𝜕𝑞

𝜕𝝈
=

3

2𝑞
𝑺́                                                               (19) 

where, 𝑆́𝑖𝑗 = 𝐻𝑖𝑗𝑖𝑗𝑆𝑖𝑗 when there is no sum on 𝑖 and 𝑗. 

By defining 𝛥𝜀𝑃 = −𝛥𝜆
𝜕𝑔

𝜕𝑝
 and 𝛥𝜀𝑞 = 𝛥𝜆

𝜕𝑔

𝜕𝑞
, Equation (18) leads to: 

𝛥𝜺𝑝𝑙 =
1

3
𝛥𝜀𝑝𝑰 + 𝛥𝜀𝑞𝑵                                                       (20) 

Further, on eliminating 𝛥𝜆 in Equation (18), one obtains: 

𝛥𝜀𝑝
𝜕𝑔

𝜕𝑞
+ 𝛥𝜀𝑞

𝜕𝑔

𝜕𝑝
= 0                                                          (21) 

The stress tensor can be written in the following form: 
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𝝈 = −𝑝𝑰 +
2

3
𝑞𝑵́                                                          (22) 

where, 𝑁́𝑖𝑗 =
𝑁𝑖𝑗

𝐻𝑖𝑗𝑖𝑗
 when there is no sum on 𝑖 and 𝑗. 

Lastly, a homogeneous function of ℎ̅𝛼can be defined to describe the evolution of the state 

variables with continuing plastic strain increment as follows: 

𝛥𝐻𝛼 = ℎ̅𝛼(𝛥𝜀̅𝑝𝑙, 𝝈, 𝐻𝛽)                                                    (23) 

 

3.5. Integration algorithm for elastoplastic constitutive relations 

 

In FE analysis, the increment rate is calculated with the knowledge of the known values at 

the integration points at the start of each increment to integrate the constitutive laws. In 

this analysis, Euler’s implicit integration procedure is used for numerical integration where 

𝑓𝑡+𝛥𝑡  is the value of 𝑓 at 𝑡 + 𝛥𝑡 which can be approximated as: 

𝑓𝑡+𝛥𝑡 = 𝑓𝑡 + 𝑓̇𝑡+𝛥𝑡 𝛥𝑡                                                        (24) 

where                                         𝑓̇𝑡+𝛥𝑡 𝛥𝑡 = 𝛥𝑓                                                              

In Equation (24),  𝑓𝑡  is the value of 𝑓 at 𝑡. In this paper, only the superscript 𝑡 is used and 

if a symbol does not have a superscript, it means that it corresponds to the value at 𝑡 + 𝛥𝑡. 

In this section, the tensors are presented with indices to clarify the content. 
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3.5.1. 3-D case 

 

Stress state at the end of time increment based on known value for total strain can be 

written as:  

𝜎𝑖𝑗 = 𝐶𝑖𝑗𝑘𝑙
𝑒𝑙 𝜀𝑘𝑙

𝑒𝑙 = 𝐶𝑖𝑗𝑘𝑙
𝑒𝑙 ( 𝜀𝑘𝑙

𝑒𝑙𝑡 + 𝛥𝜀𝑘𝑙 − 𝛥𝜀𝑘𝑙
𝑝𝑙)                                 (25) 

Elastic predictor stress tensor is given by: 

𝜎𝑖𝑗
𝑒𝑙 = 𝐶𝑖𝑗𝑘𝑙

𝑒𝑙 ( 𝜀𝑘𝑙
𝑒𝑙𝑡 + 𝛥𝜀𝑘𝑙)                                                 (26) 

Therefore,                                 𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑒𝑙 − 𝐶𝑖𝑗𝑘𝑙

𝑒𝑙 𝛥𝜀𝑘𝑙
𝑝𝑙

                                                    (27) 

On substituting Equation (20) into (27), one obtains: 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑒𝑙 − 𝐾𝛥𝜀𝑝𝛿𝑖𝑗 − 2𝐺𝛥𝜀𝑞𝑁𝑖𝑗                                        (28-a) 

𝜎𝑖𝑗 = 𝜎𝑖𝑗
𝑒𝑙 − 𝐾𝛥𝜀𝑝𝛿𝑖𝑗 −

3𝐺𝛥𝜀𝑞

𝑞
𝑆́𝑖𝑗                                        (28-b) 

Deviatoric stress based on Equations (28) can be written as:  

𝑆𝑖𝑗 = 𝑆𝑖𝑗
𝑒𝑙 −

3𝐺𝛥𝜀𝑞

𝑞
(𝑆́𝑖𝑗 −

𝑆́𝑘𝑘

3
𝛿𝑖𝑗)                                           (29) 

Equation (29) leads to the following equation: 

𝑆𝑖𝑗 = 𝑆𝑖̅𝑗
𝑒𝑙 +

𝐺𝛥𝜀𝑞

𝑞
𝑆̂𝑖𝑗                                                      (30) 

where, 𝑆𝑖̅𝑗
𝑒𝑙 =  𝜆𝑖𝑗𝑆𝑖𝑗

𝑒𝑙  and 𝑆̂𝑖𝑗 =  𝜆𝑖𝑗𝑆́𝑖𝑗𝛿𝑖𝑗  when there is no sum on 𝑖 and 𝑗  and  𝜆𝑖𝑗 =

1

1+
3𝐺𝛥𝜀𝑞𝐻𝑖𝑗𝑖𝑗

𝑞

.                                               
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The deviatoric stress tensor using Equation (30) can be expressed as: 

   𝑆𝑖𝑗 = 𝑆𝑖̅𝑗
𝑒𝑙 +

𝐺𝛥𝜀𝑞

𝑞
(

𝐻𝑘𝑘𝑘𝑘𝑆̅𝑘𝑘
𝑒𝑙

1−
𝐺𝛥𝜀𝑞

𝑞
(𝐻𝑘𝑘𝑘𝑘𝜆𝑘𝑘)

)  𝜆́𝑖𝑗                                        (31) 

where,  𝜆́𝑖𝑗 =  𝜆𝑖𝑗𝛿𝑖𝑗 when there is no sum on 𝑖 and 𝑗.  

On expanding Equation (31), the deviatoric stresses are: 

𝑆11 =  𝜆11𝑆11
𝑒𝑙 +

𝐺𝛥𝜀𝑞

𝑞
 𝜆11 (

𝐻1111 𝜆11𝑆11
𝑒𝑙 + 𝐻2222 𝜆22𝑆22

𝑒𝑙 + 𝐻3333 𝜆33𝑆33
𝑒𝑙

1 −
𝐺𝛥𝜀𝑞

𝑞
(𝐻1111 𝜆11 + 𝐻2222 𝜆22 + 𝐻3333 𝜆33)

) 

𝑆22 =  𝜆22𝑆22
𝑒𝑙 +

𝐺𝛥𝜀𝑞

𝑞
 𝜆22 (

𝐻1111 𝜆11𝑆11
𝑒𝑙 + 𝐻2222 𝜆22𝑆22

𝑒𝑙 + 𝐻3333 𝜆33𝑆33
𝑒𝑙

1 −
𝐺𝛥𝜀𝑞

𝑞
(𝐻1111 𝜆11 + 𝐻2222 𝜆22 + 𝐻3333 𝜆33)

) 

𝑆33 =  𝜆33𝑆33
𝑒𝑙 +

𝐺𝛥𝜀𝑞

𝑞
 𝜆33 (

𝐻1111 𝜆11𝑆11
𝑒𝑙 + 𝐻2222 𝜆22𝑆22

𝑒𝑙 + 𝐻3333 𝜆33𝑆33
𝑒𝑙

1 −
𝐺𝛥𝜀𝑞

𝑞
(𝐻1111 𝜆11 + 𝐻2222 𝜆22 + 𝐻3333 𝜆33)

) 

𝑆12 =  𝜆12𝑆12
𝑒𝑙  

𝑆13 =  𝜆13𝑆13
𝑒𝑙  

𝑆23 =  𝜆23𝑆23
𝑒𝑙  

New values for deviatoric stresses based on deviatoric elastic predictor stresses can be 

found from Equations (31), and consequently the values of  𝑁𝑖𝑗  can be obtained from 

Equation (19). However, in contrast to the isotropic case,  𝜆𝑖𝑗 components are different 

from each other in the anisotropic case, and the relationship 𝑞 − 𝑞𝑒𝑙 cannot be obtained 
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directly. As a result, the scalar relationship of 𝑞 − 𝑞𝑒𝑙  in the anisotropic case can be 

obtained by assuming a scalar value of 𝜆̅. All 𝜆𝑖𝑗 components are considered equal to 𝜆̅ 

( 𝜆𝑖𝑗 = 𝜆̅). In fact, 𝜆̅ is the effective value for all  𝜆𝑖𝑗 components. 

As a result, 𝜆̅  is considered for all  𝜆𝑖𝑗  components to relate the deviatoric total and 

deviatoric elastic predictor stresses in Equation (32) to obtain the scalar value of 𝑞 − 𝑞𝑒𝑙 

relationship. 

𝑆𝑖𝑗 = 𝜆̅ 𝑆𝑖𝑗
𝑒𝑙                                                                  (32-a) 

𝜆̅ =
1

1+
3𝐺𝛥𝜀𝑞𝐻̅

𝑞

                                                                 (32-b) 

In order to obtain effective anisotropy coefficient (𝐻̅) for 𝐻𝑖𝑗 components, Equation (33) 

is used to relate deviatoric total and deviatoric elastic predictor stresses. The expression 

for 𝐻̅ can be written as:  

𝐻̅ = (
√

3

2
𝑆𝑖𝑗

𝑒𝑙𝐻𝑖𝑗𝑖𝑗 𝑆𝑖𝑗
𝑒𝑙

√
3

2
𝑆𝑖𝑗

𝑒𝑙𝑆𝑖𝑗
𝑒𝑙

)

2

= (
𝑞𝑒𝑙

𝑞𝑖𝑠𝑜
𝑒𝑙 )

2

                                               (33-a) 

where                       √
3

2
𝑆𝑖𝑗

𝑒𝑙𝐻𝑖𝑗𝑖𝑗  𝑆𝑖𝑗
𝑒𝑙 = √

3

2
𝑆𝑖𝑗

𝑒𝑙𝐻̅𝑖𝑗𝑖𝑗 𝑆𝑖𝑗
𝑒𝑙 = 𝑞𝑒𝑙                                      (33-b) 

and                                           𝑯̅ =

[
 
 
 
 
 
𝐻̅ 0 0
0 𝐻̅ 0
0 0 𝐻̅

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

𝐻̅ 0 0
0 𝐻̅ 0
0 0 𝐻̅]

 
 
 
 
 

 

The expression for 𝑞𝑖𝑠𝑜
𝑒𝑙  is: 
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𝑞𝑖𝑠𝑜
𝑒𝑙 = √

3

2
𝑆𝑖𝑗

𝑒𝑙𝑆𝑖𝑗
𝑒𝑙                                                          (33-c) 

where  𝐻𝑖𝑗 = 1.0 for an isotropic material.  

The difference between 𝑞 and 𝑞𝑒𝑙 can be obtained by considering the effective values of 

𝐻̅ and 𝜆̅ as follows: 

  𝑞 − 𝑞𝑒𝑙 = √
3

2
𝑆𝑖𝑗𝐻𝑖𝑗𝑖𝑗  𝑆𝑖𝑗 − √

3

2
𝑆𝑖𝑗

𝑒𝑙𝐻𝑖𝑗𝑖𝑗 𝑆𝑖𝑗
𝑒𝑙                                     (34-a) 

or                         𝑞 − 𝑞𝑒𝑙 = √
3

2
𝑆𝑖𝑗𝐻𝑖𝑗𝑖𝑗  𝑆𝑖𝑗 − √

3

2
𝑆𝑖𝑗

𝑒𝑙𝐻̅𝑖𝑗𝑖𝑗  𝑆𝑖𝑗
𝑒𝑙                                    (34-b) 

or                           𝑞 − 𝑞𝑒𝑙 = √
3

2
𝑆𝑖𝑗𝐻𝑖𝑗𝑖𝑗  𝑆𝑖𝑗 −

1

𝜆̅
√

3

2
𝑆𝑖𝑗𝐻̅𝑖𝑗𝑖𝑗  𝑆𝑖𝑗                                 (34-c) 

where                              𝑞 = √
3

2
𝑆𝑖𝑗𝐻̅𝑖𝑗𝑖𝑗  𝑆𝑖𝑗 = √

3

2
𝑆𝑖𝑗𝐻𝑖𝑗𝑖𝑗  𝑆𝑖𝑗                                         

or                            𝑞 − 𝑞𝑒𝑙 = (1 −
1

𝜆̅
) 𝑞 = (1 − 1 −

3𝐺𝛥𝜀𝑞𝐻̅

𝑞
) 𝑞                                (34-d) 

Equation (34) thus yields:                     𝑞 = 𝑞𝑒𝑙 − 3𝐺𝛥𝜀𝑞𝐻̅                                           (35) 

Since 𝐻̅ = 1 for an isotropic material, one obtains, 

                                                              𝑞 = 𝑞𝑒𝑙 − 3𝐺𝛥𝜀𝑞  

Again, 𝜆̅  and 𝐻̅  are calculated and considered for all  𝜆𝑖𝑗  and  𝐻𝑖𝑗𝑖𝑗  components, 

respectively, to provide the same value for 𝑞𝑒𝑙 when 𝐻𝑖𝑗𝑖𝑗 components are considered. The 

only reason why we consider 𝐻̅  for all  𝐻𝑖𝑗𝑖𝑗 components is because of the need to 
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determine the relationship between the scalar values of 𝑞 and 𝑞𝑒𝑙. In reality, identifying 

the mentioned relationship if  𝐻𝑖𝑗𝑖𝑗 components are considered for 𝑞𝑒𝑙 is quite impossible. 

The relationship between 𝑝 and 𝑝𝑒𝑙 is now expressed as: 

𝑝 = 𝑝𝑒𝑙 + 𝐾𝛥𝜀𝑝                                                             (36) 

Therefore, the problem of integration of elastoplastic equations reduces to the solution of 

the following set of non-linear equations:  

𝛥𝜀𝑝
𝜕𝑔

𝜕𝑞
+ 𝛥𝜀𝑞

𝜕𝑔

𝜕𝑝
= 0                                                    (21) 

𝛷(𝑝, 𝑞, 𝐻𝛽) = 0                                                         (17) 

𝑝 = 𝑝𝑒𝑙 + 𝐾𝛥𝜀𝑝                                                       (36) 

𝑞 = 𝑞𝑒𝑙 − 3𝐺𝛥𝜀𝑞𝐻̅                                                     (35) 

𝛥𝐻𝛼 = ℎ𝛼(𝛥𝜀𝑝, 𝛥𝜀𝑞 , 𝑝, 𝑞, 𝐻𝛽)                                           (37) 

The above set of equations is solved using Newton-Raphson method which is based on 

Taylor-series expansions. The application of Taylor-series-method to 𝐹𝑖  is: 

𝐹𝑖 +
𝜕𝐹𝑖

𝜕𝛥𝜀𝑝
𝑑𝛥𝜀𝑝 +

𝜕𝐹𝑖

𝜕𝛥𝜀𝑞
𝑑𝛥𝜀𝑞 +

𝜕𝐹𝑖

𝜕𝐻𝛼 𝑑𝐻𝛼 = 0                                    (38) 

where                                          𝐹1 = 𝛥𝜀𝑝
𝜕𝑔

𝜕𝑞
+ 𝛥𝜀𝑞

𝜕𝑔

𝜕𝑝
 and 𝐹2 = 𝛷  

By considering 𝑑𝛥𝜀𝑝 = 𝑐𝑝, 𝑑𝛥𝜀𝑞 = 𝑐𝑞, and the above expressions for F1 and 𝐹2, Equation 

(38) yields: 
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𝐴11𝑐𝑝 + 𝐴12𝑐𝑞 = 𝑏1                                                      (39-a) 

𝐴21𝑐𝑝 + 𝐴22𝑐𝑞 = 𝑏2                                                      (39-b) 

where constants 𝐴𝑖𝑗 and 𝑏𝑖 are presented in Appendix I. The incremental strains 𝑐𝑝 and 𝑐𝑞 

are obtained by solving Equations (39) and then updating the values of  𝛥𝜀𝑝 and 𝛥𝜀𝑞 as 

follows: 

𝛥𝜀𝑝 ⟵ 𝛥𝜀𝑝 + 𝑐𝑝                                                         (40-a) 

𝛥𝜀𝑞 ⟵ 𝛥𝜀𝑞 + 𝑐𝑄                                                         (40-b) 

3.5.2. Plane stress case 

 

For the case of plane stress, as mentioned in [35], the out-of-plane strain components are 

not defined kinematically. Consequently, some modifications for this case are required. 

The elasticity equations are written as:  

𝑝 = −𝐾( 𝜀𝑘𝑘
𝑒𝑙𝑡 + 𝛥𝜀𝑘𝑘

𝑒𝑙 )                                                          (41) 

In Equation (41), superscript (𝑡) defines the current time. As previously mentioned, the 

superscript 𝑡 + 𝛥𝑡 has been dropped in the revised manuscript. Thus, all quantities without 

superscript belong to 𝑡 + 𝛥𝑡. Also, 

𝑆𝑖𝑗 = 2𝐺( 𝑒𝑖𝑗
𝑒𝑙𝑡 + 𝛥𝑒𝑖𝑗

𝑒𝑙)                                                          (42) 

where 𝑒𝑖𝑗
𝑒𝑙 and 𝛥𝑒𝑖𝑗

𝑒𝑙 are deviatoric parts of 𝜀𝑖𝑗
𝑒𝑙 and 𝛥𝜀𝑖𝑗

𝑒𝑙, respectively. Now, following [35], 

a rectangular co-ordinate system with in-plane stresses in 𝑥1, 𝑥2 plane are considered. Also, 
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strain increments, 𝛥𝜀11, 𝛥𝜀22 and 𝛥𝜀12 are known, and 𝛥𝜀3 is the normal component of 

strain increment.  Therefore, out-of-plane strain component is expressed as:  

𝜟𝜺 = 𝜟𝜺̅ + 𝛥𝜀3𝒂                                                         (43) 

where                         𝜟𝜺̅ = 𝛥𝜀11𝒆𝟏𝒆𝟏 + 𝛥𝜀22𝒆𝟐𝒆𝟐 + 𝛥𝜀12(𝒆𝟏𝒆𝟐 + 𝒆𝟐𝒆𝟏) 

and                                                               𝒂 = 𝒆𝟑𝒆𝟑 

here, 𝑒𝑖, 𝑖 = 1, 2, and 3  are unit vectors along the co-ordinate axes. The hydrostatic 

pressure p and deviatoric stress tensor 𝑆𝑖𝑗 are expressed as: 

𝑝 = 𝑝𝑒𝑙 − 𝐾(𝛥𝜀3 − 𝛥𝜀𝑝)                                                           (44) 

𝑺 = 𝑺𝒆𝒍 + 2𝐺 (𝛥𝜀3𝒂́ −
3

2

𝛥𝜀𝑞

𝑞
(𝑺́ −

𝑺́

3
𝑰))                                      (45) 

where, 𝒂́ is the deviatoric part of 𝒂. Lastly, 𝑞 can be expressed as: 

𝑞 = −3𝐺𝛥𝜀𝑞𝐻̅ + √𝑞𝑒𝑙2 + 4𝐻3333𝐺2𝛥𝜀3
2 + 6𝐺𝐻3333𝑆33

𝑒𝑙𝛥𝜀3                         (46) 

Since stress in normal direction is zero, unknown 𝛥𝜀3  can be determined from the 

following constraint: 

𝜎33 = 𝑆33 − 𝑝 = 0                                                               (47) 

where 𝑆33 is given by: 

𝑆33 = 𝑆33
𝑒𝑙 +

4

3
𝐺𝛥𝜀3 −

3𝐺𝛥𝜀𝑞𝐻̅

𝑞
𝑆33                                             (48) 
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By substituting Equation (47) into Equation (48), one obtains: 

(𝑞 + 3𝐺𝛥𝜀𝑞𝐻̅)𝑝 − (𝑆33
𝑒𝑙 +

4

3
𝐺𝛥𝜀3) 𝑞 = 0                                       (49) 

Therefore, derivative of 𝑞 with respect to 𝛥𝜀3 can be written as: 

𝜕𝑞

𝜕𝛥𝜀3
=

3𝐺𝐻3333𝑆33
𝑒𝑙 +4𝐺2𝐻3333𝛥𝜀3

𝑞+3𝐺𝛥𝜀𝑞𝐻̅
                                                      (50) 

Summarizing the backward Euler method as applied to elastoplastic equations, anisotropic 

materials included, one has the following set of the equations: 

𝛥𝜀𝑝
𝜕𝑔

𝜕𝑞
+ 𝛥𝜀𝑞

𝜕𝑔

𝜕𝑝
= 0                                                             (21) 

𝛷(𝑝, 𝑞, 𝐻𝛼) = 0                                                                (17) 

(𝑞 + 3𝐺𝛥𝜀𝑞𝐻̅)𝑝 − (𝑆33
𝑒𝑙 +

4

3
𝐺𝛥𝜀3) 𝑞 = 0                                           (49) 

𝑝 = 𝑝𝑒𝑙 − 𝐾(𝛥𝜀3 − 𝛥𝜀𝑝)                                                       (44) 

𝑞 = −3𝐺𝛥𝜀𝑞𝐻̅ + √𝑞𝑒𝑙2 + 6𝐺𝐻3333𝑆33
𝑒𝑙𝛥𝜀3 + 4𝐺2𝐻3333𝛥𝜀3

2                      (46) 

𝛥𝐻𝛼 = ℎ𝛼(𝛥𝜀𝑝, 𝛥𝜀𝑞 , 𝑝, 𝑞, 𝐻𝛽)                                             (37) 

The application of Taylor-series-method to 𝐹𝑖 for plane stress case is: 

𝐹𝑖 +
𝜕𝐹𝑖

𝜕𝛥𝜀𝑝
𝑑𝛥𝜀𝑝 +

𝜕𝐹𝑖

𝜕𝛥𝜀𝑞
𝑑𝛥𝜀𝑞 +

𝜕𝐹𝑖

𝜕𝛥𝜀3
𝑑𝛥𝜀3 +

𝜕𝐹𝑖

𝜕𝐻𝛼 𝑑𝐻𝛼 = 0                            (51) 

Expressing, 𝑑𝛥𝜀𝑝 = 𝑐𝑝, 𝑑𝛥𝜀𝑞 = 𝑐𝑞, 𝑑𝛥𝜀3 = 𝑐3, 𝐹1 = 𝛥𝜀𝑝
𝜕𝑔

𝜕𝑞
+ 𝛥𝜀𝑞

𝜕𝑔

𝜕𝑝
 , 𝐹2 = 𝛷 and 𝐹3 =

(𝑞 + 3𝐺𝛥𝜀𝑞𝐻̅)𝑝 − (𝑆33
𝑒𝑙 +

4

3
𝐺𝛥𝜀3) 𝑞, following set of equations is obtained: 
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𝐴11𝑐𝑝 + 𝐴12𝑐𝑞 + 𝐴13𝑐3 = 𝑏1                                                      (52) 

𝐴21𝑐𝑝 + 𝐴22𝑐𝑞 + 𝐴23𝑐3 = 𝑏2                                                      (53) 

𝐴31𝑐𝑝 + 𝐴32𝑐𝑞 + 𝐴33𝑐3 = 𝑏3                                                      (54) 

where, constants 𝐴11, 𝐴12, 𝐴21, 𝐴22, 𝑏1  and 𝑏2  are defined in Appendix I, and 

𝐴13, 𝐴23, 𝐴31, 𝐴32 and 𝑏3  in Appendix II. The quantities 𝑐𝑝 , 𝑐𝑞 and 𝑐3  are obtained by 

solving Equations (52), (53) and (54), and then the values of  𝛥𝜀𝑝  , 𝛥𝜀𝑞  and 𝛥𝜀3  are 

updated as follows: 

𝛥𝜀𝑝 ⟵ 𝛥𝜀𝑝 + 𝑐𝑝                                                              (55-a) 

𝛥𝜀𝑞 ⟵ 𝛥𝜀𝑞 + 𝑐𝑞                                                              (55-b) 

𝛥𝜀3 ⟵ 𝛥𝜀3 + 𝑐3                                                               (55-c) 

3.6. Stress updates  

 

After updating 𝛥𝜀𝑝, 𝛥𝜀𝑞, 𝑝 and 𝑞, new stress values from Equation (22) are: 

𝝈 = −𝑝𝑰 +
2

3
𝑞𝑵́                                                      (22) 

and                                               𝝈𝒆𝒍 = −𝑝𝑒𝑙𝑰 +
2

3
𝑞𝑒𝑙𝑵̅𝒆𝒍                                             (56) 

where 𝑁̅𝑖𝑗
𝑒𝑙 =

𝑁𝑖𝑗
𝑒𝑙

𝐻𝑖𝑗𝑖𝑗
 and 𝑁𝑖𝑗

𝑒𝑙 =
3

2𝑞𝑒𝑙 𝑆𝑖̅𝑗
𝑒𝑙 when there is no sum on 𝑖 and 𝑗.                   

Equations (22) and (56) yield: 
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𝝈 = 𝝈𝒆𝒍 − (𝑝 − 𝑝𝑒𝑙)𝑰 −
2

3
𝑞𝑒𝑙𝑵̅𝒆𝒍 +

2

3
𝑞𝑵́                                (57) 

with                       𝑝 − 𝑝𝑒𝑙 = −𝐾(𝛥𝜀3 − 𝛥𝜀𝑝) 

and                                𝑞 = −3𝐺𝛥𝜀𝑞𝐻̅ + √𝑞𝑒𝑙2 + 6𝐺𝐻3333𝑆33
𝑒𝑙𝛥𝜀3 + 4𝐺2𝐻3333𝛥𝜀3

2 

In the general 3-D implementation, 𝛥𝜀3 is automatically zero and one obtains: 

𝑝 = 𝐾𝛥𝜀𝑝 + 𝑝𝑒𝑙 

        𝑞 = −3𝐺𝛥𝜀𝑞𝐻̅ + 𝑞𝑒𝑙 

Also, it should be mentioned that in the isotropic case, when 𝐻𝑖𝑗 = 1, 𝑁𝑖𝑗 = 𝑁𝑖𝑗
𝑒𝑙. However, 

in the case of anisotropy, 𝑁𝑖𝑗 ≠ 𝑁𝑖𝑗
𝑒𝑙and this will affect the values of new stresses.  

 

3.7. Linearization of moduli 

 

Equilibrium equations in an implicit FE code are defined at the end of each increment. The 

linearized moduli (𝐷), or so-called Jacobian matrix, defines the variation in stress at 𝑡 +

𝛥𝑡 caused by variation of the total strain at 𝑡 + 𝛥𝑡 as:  

𝑫 = (
𝜕𝝈

𝜕𝜺
)
𝑡+𝛥𝑡

                                                          (58) 

The Jacobian matrix for both three-dimensional and plane stress cases are derived below.  
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3.7.1. Jacobian matrix in 3-D 

 

Starting with elasticity Equation (28-a), one obtains: 

𝝈 = 𝑪𝑒𝑙: (𝜺 − 𝜺𝑝𝑙𝑡 −
1

3
𝛥𝜀𝑝𝑰 − 𝛥𝜀𝑞𝑵)                                     (59) 

and                             𝜕𝝈 = 𝑪𝑒𝑙: (𝜕𝜺 −
1

3
𝜕𝛥𝜀𝑝𝑰 − 𝜕𝛥𝜀𝑞𝑵 − 𝛥𝜀𝑞

𝜕𝑵

𝜕𝝈
: 𝜕𝝈)                    (60) 

where,  

𝜕𝑵

𝜕𝝈
=

1

𝑞
(
3

2
𝑯 −

𝑯̂

2
− 𝑵𝑵)                                               (61) 

where, 𝐻̂𝑖𝑗𝑘𝑙 =

[
 
 
 
 
 
𝐻1111 0 0

0 𝐻2222 0
0 0 𝐻3333

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0

0 0 0
0 0 0
0 0 0]

 
 
 
 
 

. 

By using Equation (21), the variations 𝜕𝛥𝜀𝑝 and 𝜕𝛥𝜀𝑞 in terms of 𝜕𝜎 can be expressed as 

follows: 

𝜕 (𝛥𝜀𝑝
𝜕𝑔

𝜕𝑞
) + 𝜕 (𝛥𝜀𝑞

𝜕𝑔

𝜕𝑝
) = 0                                            (62-a) 

𝜕𝛥𝜀𝑝

𝜕𝑔

𝜕𝑞
+ 𝛥𝜀𝑝 ((

𝜕2𝑔

𝜕𝑞𝜕𝑝

𝜕𝑝

𝜕𝝈
+

𝜕2𝑔

𝜕𝑞2

𝜕𝑞

𝜕𝝈
) : 𝜕𝝈 + ∑ {

𝜕2𝑔

𝜕𝑞𝜕𝐻𝛼
𝜕𝐻𝛼}

𝑛

𝛼=1

) + 𝜕𝛥𝜀𝑞

𝜕𝑔

𝜕𝑝
+ 

𝛥𝜀𝑞 ((
𝜕2𝑔

𝜕𝑝2

𝜕𝑝

𝜕𝝈
+

𝜕2𝑔

𝜕𝑞𝜕𝑝

𝜕𝑞

𝜕𝝈
) : 𝜕𝝈 + ∑ {

𝜕2𝑔

𝜕𝑝𝜕𝐻𝛼
𝜕𝐻𝛼}𝑛

𝛼=1 ) = 0                      

(62-b) 
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Also, from Equation (17), we have: 

(
𝜕𝛷

𝜕𝑝

𝜕𝑝

𝜕𝝈
+

𝜕𝛷

𝜕𝑞

𝜕𝑞

𝜕𝝈
) : 𝜕𝝈 + ∑ {

𝜕𝛷

𝜕𝐻𝛼
𝜕𝐻𝛼}𝑛

𝛼=1 = 0                                (63) 

where, 
𝜕𝑝

𝜕𝝈
= −

1

3
𝑰 and 

𝜕𝑞

𝜕𝝈
= 𝑵. 

The resulting equations, as shown in Appendix III, are: 

𝐴11𝜕𝛥𝜀𝑝 + 𝐴12𝜕𝛥𝜀𝑞 = (𝐵11𝑰 + 𝐵12𝑵): 𝜕𝝈                                   (64) 

𝐴21𝜕𝛥𝜀𝑝 + 𝐴22𝜕𝛥𝜀𝑞 = (𝐵21𝐼 + 𝐵22𝑵): 𝜕𝝈                                   (65) 

Equations (64) and (65) are solved for 𝜕𝛥𝜀𝑝 and 𝜕𝛥𝜀𝑞 as follows: 

𝜕𝛥𝜀𝑝 = (𝑚𝑝𝑖𝐼 + 𝑚𝑝𝑛𝑁): 𝜕𝝈                                                  (66) 

𝜕𝛥𝜀𝑞 = (𝑚𝑞𝑖𝐼 + 𝑚𝑞𝑛𝑁): 𝜕𝝈                                                  (67) 

where                                 [
𝑚𝑝𝑖 𝑚𝑝𝑛

𝑚𝑞𝑖 𝑚𝑞𝑛
] = ⌈

𝐴11 𝐴12

𝐴21 𝐴22
⌉
−1

⌈
𝐵11 𝐵12

𝐵21 𝐵22
⌉                          (68) 

Substituting Equations (66) and (67) into (60), one obtains: 

(𝑱 + 𝑪𝑒𝑙: 𝑀): 𝜕𝝈 = 𝑪𝑒𝑙: 𝜕𝜺                                                   (69) 

where,         

                       𝑴 =
1

3
𝑚𝑝𝑖𝑰𝑰 +

1

3
𝑚𝑝𝑛𝑰𝑵 + 𝑚𝑞𝑖𝑵𝑰 + 𝑚𝑞𝑛𝑵𝑵 + 𝛥𝜀𝑄

𝜕𝑵

𝜕𝝈
                        (70) 

By using Equation (70), the material matrix is found to be: 

𝑫 = (
𝜕𝝈

𝜕𝜺
)
𝑡+𝛥𝑡

= (𝑱 + 𝑪𝑒𝑙:𝑀)−1: 𝑪𝑒𝑙                                            
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(71) 

which can be written as: 

𝑫 = (𝑀 + 𝑪𝑒𝑙−1
)
−1

 

 

(72 ) 

3.7.2. Jacobian matrix in plane stress case 

 

Stress in the normal direction can be assumed to be zero (𝜕𝜎33 = 0). Therefore, for the 

calculation of consistent material tangent for plane stress, we have:  

𝜕𝜎33 = 𝐷3311𝜕𝜀11 + 𝐷3322𝜕𝜀22 + 2𝐷3312𝜕𝜀12 + 𝐷3333𝜕𝜀33 = 0              (73) 

which leads to: 

𝜕𝜀33 = 𝛺31𝜕𝜀11 + 𝛺32𝜕𝜀22 + 2𝛺33𝜕𝜀12                                   (74) 

where                                                         𝛺31 = −
𝐷3311

𝐷3333
 

                                                                   𝛺32 = −
𝐷3322

𝐷3333
 

                                                                   𝛺33 = −2
𝐷3312

𝐷3333
 

Therefore, Jacobian matrix for plane stress case becomes:  

{

𝜕𝜎11

𝜕𝜎22

𝜕𝜎12

} = [

𝐷1111 + 𝛺31𝐷1133 𝐷1122 + 𝛺32𝐷1133 𝐷1112 + 𝛺33𝐷1133

𝐷2211 + 𝛺31𝐷2233 𝐷2222 + 𝛺32𝐷2233 𝐷2212 + 𝛺33𝐷2233

𝐷1211 + 𝛺31𝐷1233 𝐷1222 + 𝛺32𝐷1233 𝐷1212 + 𝛺33𝐷1233

] {

𝜕𝜀11

𝜕𝜀22

𝜕𝜀12

}       (75) 
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3.8. GTN yield criterion 

 

The GTN yield function for symmetric spherical voids is expressed as [6]: 

𝛷 = (
𝑞

𝜎̅𝑀
)
2

+ 2𝑞1𝑓
∗𝑐𝑜𝑠ℎ (−

3𝑞2𝑝

2𝜎̅𝑀
) − (1 + 𝑞3𝑓

∗2) = 0                          (76) 

where 𝑞  and 𝑝  are equivalent stress and hydrostatic pressure respectively and 

𝑞1, 𝑞2 and 𝑞3(= 𝑞1
2) are fit parameters and 𝜎𝑀 is the effective stress in matrix material. 

The relationship between 𝑓∗ and void volume fraction 𝑓 is given by [6]:  

𝑓∗ = {
𝑓                             𝑓 ≤ 𝑓𝑐

𝑓𝑐 + 𝑘(𝑓 − 𝑓𝑐)    𝑓 > 𝑓𝑐
                                               (77) 

where 𝑘 =
𝑓∗

𝑢−𝑓𝑐

𝑓𝐹−𝑓𝑐
 and 𝑓∗

𝑢
=

1

𝑞1
. The latter is the ultimate value of 𝑓∗ at ductile rupture. 

The parameter 𝑓𝐹 represents the void volume fraction at final fracture, and 𝑓𝑐 is the critical 

void volume fraction at the start of micro-void coalescence when the load carrying 

capability of the material drops sharply. In this model, two internal state variables 𝐻1 and 

𝐻2 are related to plastic strain of the matrix material (𝜀̅𝑝𝑙) and void volume fraction (𝑓) 

respectively, as noted below [35]. 

𝐻1 ≡ 𝜀̅𝑝𝑙                                                                  (78) 

𝐻2 ≡ 𝑓                                                                    (79) 

As a result, yield function (𝛷) is dependent on actual macroscopic stress states and internal 

scalar state variables as follows [35, 36]: 
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𝛷(𝝈,𝐻𝛼) = {
< 0     𝑉 𝛷̇ < 0                                        𝐿𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟
= 0      𝐿𝑖𝑛𝑒𝑎𝑟 𝑒𝑙𝑎𝑠𝑡𝑖𝑐 − 𝑠𝑡𝑟𝑎𝑖𝑛 ℎ𝑎𝑟𝑑𝑒𝑛𝑖𝑛𝑔 𝑝𝑙𝑎𝑠𝑡𝑖𝑐 𝑏𝑒ℎ𝑎𝑣𝑖𝑜𝑢𝑟 

      (80) 

To evaluate the internal state variables, the plastic strain rate in the matrix 𝜀𝑝̅𝑙̇  can be 

expressed in the following form [35]: 

(1 − 𝑓)𝜎̅𝑀𝜀𝑝̅𝑙̇ = 𝝈: 𝜺̇𝑝𝑙 ⟶ 𝜀𝑝̅𝑙̇ =
𝝈:𝜺̇𝑝𝑙

(1−𝑓)𝜎̅𝑀
                                 (81) 

Both void growth and void nucleation are assumed to contribute towards void volume 

fraction as follows [6]: 

  𝑓̇ = 𝑓̇𝑔𝑟𝑜𝑤𝑡ℎ + 𝑓𝑛̇𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛                                           (82) 

where 

𝑓𝑔̇𝑟𝑜𝑤𝑡ℎ = (1 − 𝑓)𝜺̇𝑝𝑙: 𝑰                                           (83) 

and  

𝑓𝑛̇𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛 = 𝐴𝜀𝑝̅𝑙̇                                                     (84) 

where                                             

                                                 𝐴 =
𝑓𝑁

𝑆𝑁√2𝜋
𝑒𝑥𝑝 {−

1

2
[
𝜀̅𝑝𝑙−∈𝑁

𝑆𝑁
]
2

}                                       (85) 

and 𝑓𝑁 is the volume fraction of nucleating particles. In Equation (85), a mean equivalent 

plastic strain ∈𝑁 exists and the nucleation strain is assumed to be distributed normally 

about ∈𝑁 with standard deviation 𝑆𝑁. By substituting Equation (20) into Equation (81), 

one obtains: 
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𝛥𝜀̅𝑝𝑙 =
𝝈:(

1

3
𝛥𝜀𝑝𝑰+𝛥𝜀𝑞𝑵)

(1−𝑓)𝜎̅𝑀(𝜀̅𝑝𝑙,𝜀̅𝑝𝑙̇ ,𝑇)
                                                            (86)                                 

By substituting Equation (19) into Equation (86), we have: 

𝛥𝐻1 ≡ 𝛥𝜀̅𝑝𝑙 =
(−𝑝𝛥𝜀𝑝+𝑞𝛥𝜀𝑞−

3𝑝

2𝑞
(𝐻𝑖𝑖𝑖𝑖𝑆𝑖𝑖)𝛥𝜀𝑞)

(1−𝑓)𝜎̅𝑀(𝜀̅𝑝𝑙,𝜀̅𝑝𝑙̇ ,𝑇)
                                            (87) 

By using Equations (19), (20), (82), (83), (84) and (85), we have: 

𝛥𝐻2 ≡ 𝛥𝑓 = (1 − 𝑓)𝛥𝜺𝑝𝑙: 𝑰 + (
𝑓𝑁

𝑆𝑁√2𝜋
𝑒𝑥𝑝 {−

1

2
[
𝜀̅𝑝𝑙−∈𝑁

𝑆𝑁
]
2

})𝛥𝜀̅𝑝𝑙                   (88-a) 

or  𝛥𝐻2 ≡ 𝛥𝑓 = (1 − 𝑓) (𝛥𝜀𝑝 + (𝐻1111𝑆11 + 𝐻2222𝑆22 + 𝐻3333𝑆33)
3 𝛥𝜀𝑞

2𝑞
) +

(
𝑓𝑁

𝑆𝑁√2𝜋
𝑒𝑥𝑝 {−

1

2
[
𝜀̅𝑝𝑙−∈𝑁

𝑆𝑁
]
2

})𝛥𝜀̅𝑝𝑙                                                                          (88-b) 

 

3.8.1. Prolate ellipsoidal voids 

 

The configuration of a single axisymmetric prolate ellipsoidal void with a major semi-axis 

(along the Oz direction) is shown in Figure 3.1. A prolate ellipsoidal void with major and 

minor radii of 𝑎1 and 𝑏1 is embedded in a matrix with major and minor raii of 𝑎2 and 𝑏2. 

The foci of these ellipsoidal voids are located at 𝑧 = ±𝑐 and 𝑒1 =
𝑐

𝑎1
 and 𝑒2 =

𝑐

𝑎2
 are the 

eccentricities of inner and outer ellipsoids [37]. 
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Figure 3. 1. Prolate ellipsoidal void configuration [37] 

 

Yield function presented in Equation (76) only considers a spherical void. In the case of 

ellipsoidal voids, the yield function was revised to the following [38]: 

𝛷 = (
𝑞

𝜎̅𝑀
)
2

+ 2𝑞1𝑓
∗ 𝑐𝑜𝑠ℎ (−𝑘

𝑝

𝜎̅𝑀
) − (1 + 𝑞3𝑓

∗2) = 0                         (89) 

where                                    𝑘 = [
1

√3
+ (√3 − 2)

𝑙𝑛(
𝑒1
𝑒2

)

𝑙𝑛(𝑓∗)
]

−1

                                                    

(90) 

𝑒1 = √1 − 𝑒−2𝑆                                                            (91) 

𝑒2 = √𝑓∗(1 − 𝑒2
2)(1 − 𝑒1

2)3
𝑒1                                                 (92) 

when 𝑆 = 𝑙𝑛
𝑎1

𝑏1
 is the shape function and 𝑒2  is obtained by solving the above cubic 

Equation (92). The rate of change of shape function (𝑆̇) can be expressed as [38]: 
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𝑆̇ = 3 (
1−3𝐾1

𝑓∗ + 3𝐾2 − 1) 𝜀𝑚̇                                            (93) 

where                                              𝜀𝑚̇ =
𝑓∗̇

3(1−𝑓∗)
                                                            (94) 

                                               𝐾1 =
1

2𝑒1
2 −

1−𝑒1
2

2𝑒1
3 𝑡𝑎𝑛ℎ−1𝑒1                                               (95) 

𝐾2 =
1

2𝑒2
2 −

1−𝑒2
2

2𝑒2
3 𝑡𝑎𝑛ℎ−1𝑒2                                              (96) 

Lastly, the increment of shape function becomes:  

𝑑𝑆 =
1

(1−𝑓∗)
(
1−3𝐾1

𝑓∗ + 3𝐾2 − 1) × 𝑑𝑓∗                                    (97) 

It should be noted that 
𝜕𝛷

𝜕𝑝
, 

𝜕2𝛷

𝜕𝑝2 , 
𝜕2𝛷

𝜕𝑝𝜕𝜀̅𝑝𝑙 ,
𝜕2𝛷

𝜕𝑝𝜕𝑓
,

𝜕𝛷

𝜕𝜀̅𝑝𝑙  and 
𝜕𝛷

𝜕𝑓
 must be recalculated for 

ellipsoidal voids in order to obtain the constants in Appendices I, II and III. This is shown 

in Appendix IV. 

 

3.9. Flow chart of algorithm 

 

The flow chart of the algorithm considering the GTN model for the 3D case that takes into 

account spherical voids is presented in Figure 3.2.  
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Figure 3. 2. Flow chart of the algorithm for the 3D case considering spherical voids 
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3.10. Numerical results and discussion 

 

The GTN yield criterion based on Hill’s quadratic anisotropic theory, as developed in the 

previous sections, is implemented using the UMAT subroutine of ABAQUS FE 

computational code to model the plastic and damage behavior of anisotropic ductile metals. 

In this section, the result for the isotropic case has been verified using a one-element FE 

model (Figure 3.3) and compared with the result presented in [35]. Subsequently, the 

results of different test models are presented for a 3D one-element model to understand the 

nature of each model. Afterward, a uniaxial tensile test configuration with a large number 

of elements is used to present the stress–strain curves for the isotropic and anisotropic 

models with an effective anisotropic coefficient. Finally, the effect of microvoid shape is 

scrutinized and a ductile fracture parametric study is performed. 

 

 3.10.1. One-element test 

 

For verification of UMAT implementation, first, the Hill’s quadratic anisotropic model in 

the GTN criterion is switched off by choosing a value of unity for the Hill’s coefficients. 

Then, the results are compared with those presented in reference [35]. These results are 

shown in Figure 3.3 where a close agreement can be observed. A plane stress element is 

used for this case with the following constitutive law for the matrix material.  

𝜎̅𝑀

𝜎𝑦
= (

𝜎̅𝑀

𝜎𝑦
+

3𝐺

𝜎𝑦
𝜀̅𝑝𝑙)

𝑁

                                                      (98) 
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where 𝜎𝑦 and 𝐺 are the tensile yield stress and shear modulus respectively. Also, to be 

consistent with the data utilized by Aravas [35], 𝑁 = 0.1, 𝜎𝑦 𝐸⁄ = 1 300⁄ , 𝜈 = 0.3, 𝑞1 =

1.5, 𝑞2 = 1.0, 𝑞3 = 2.25 are selected for the matrix material elastic-plastic properties. 

Further, 𝑓𝑁 = 0.04, 𝜀𝑁 = 0.3, 𝑆𝑁 = 0.1 and 𝑓𝑜 = 0 are assumed to describe the plastic 

strain-controlled nucleation.  

 

 

Figure 3. 3. Comparison results of our model and Aravas [35] 

 

The equivalent stress versus strain curves and stress-11 versus strain-11 curves in a 3D 

element are shown in Figures 3.4–3.5 for different cases such as Von Mises, Hill’s, and 

Gurson models with three cases of isotropic, anisotropic, and anisotropic with anisotropy 

coefficient to show the behavior of each case. Displacement in 1 direction is applied on 

only one surface of the 3D element which is perpendicular to 1 direction, and the opposite 
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surface is constrained. The data used in Figure 3.3 are considered when 𝜎𝑦 = 250 𝑀𝑃𝑎 

and 𝐻1111 = 𝐻2222 = 0.941, 𝐻3333 = 0.51, 𝐻2323 = 𝐻1313 = 𝐻1212 = 0.941  for 

anisotropic cases. As shown in Figures 3.4 and 3.5, the equivalent stresses in cases of Von 

Mises and Hills criteria are the same when stress-11 is different. Damage growth is zero 

in Von Mises and Hill’s criteria, and the equivalent stress–strain curves rise similar to the 

stress–strain curve of matrix material following Equation (98). Stress-11 and equivalent 

stress are the same in Von Mises material, but stress-11 is higher than the equivalent stress 

in Hill’s criterion. The reason is that the Hill’s constants are not equal to one in equivalent 

stress following Equation (12).  

Figures 3.4 and 3.5 show that the stresses in isotropic Gurson model are lower than those 

in Von Mises criterion as damage grows and drops the stresses. However, the stresses in 

anisotropic Gurson case are much lower than those in isotropic Gurson case. Damage 

growth in the anisotropic case is high due to the additional term (𝐻1111𝑆11 + 𝐻2222𝑆22 +

𝐻3333𝑆33) ×
3 𝛥𝜀𝑞

2𝑞
× (1 − 𝑓)  for 𝛥𝑓  in Equation (88). Using effective anisotropy 

coefficient instead of all Hill’s quadratic anisotropy constants yields 

𝐻1111𝑆11 + 𝐻2222𝑆22 + 𝐻3333𝑆33 = 𝐻̅(𝑆11 + 𝑆22 + 𝑆33) = 0                       (99) 

Consequently, void volume fraction increment, as presented in Equation (88), will be 

reduced and becomes similar to that in the isotropic materials as follows: 

𝛥𝑓 = (1 − 𝑓)𝛥𝜀𝑝 + (
𝑓𝑁

𝑆𝑁√2𝜋
𝑒𝑥𝑝 {−

1

2
[
𝜀̅𝑝𝑙−∈𝑁

𝑆𝑁
]
2

})𝛥𝜀̅𝑝𝑙                        (100) 
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The results of the anisotropic case with effective anisotropy coefficient as replacement of 

individual Hill’s constants (𝐻𝑖𝑗𝑖𝑗 = 𝐻̅) are shown in Figures 3.4 and 3.5. The equivalent 

stresses in isotropic and anisotropic Gurson models using effective anisotropy coefficient 

are similar, but stress-11 in the two models differs because the Hill’s constant in the latter 

is not equal to one. 

High values of stresses for matrix material must be considered with different Swift law 

parameters to predict the experimental stress–strain curve in anisotropic Gurson case. 

Using effective anisotropy coefficient instead of Hill’s constants can improve stress–strain 

prediction with same Swift law parameters as those in the isotropic case. Effective stress 

is used following Hill’s quadratic criteria based on Equations (33) and (34) when effective 

anisotropy coefficients are used. The damage-free stress–strain curve of matrix material 

for this case is realistic in metals, especially for aluminum alloys. 
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Figure 3. 4. Equivalent stress versus strain for different models in one 3D element 
 

 

Figure 3. 5. Stress-11 versus strain-11 for different models in one 3D element 
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3.10.2. Brief discussion of using specific GTN parameters in modeling 

 

Parametric studies of ductile damage using the GTN model for various metals [13, 39, 40] 

show that each parameter has a significant effect on the predicted results. However, the 

GTN model parameters of 𝑞1, 𝑞2, 𝑞3, 𝑓0, 𝑓𝑐 , 𝑘̅, 𝑓𝑁 , 𝑆𝑁 and 𝜀𝑁 , as well as the hardening 

parameters that provide a damage-free stress–strain curve for the matrix material are 

obtained through curve fitting in [6, 7, 9, 41, 42]. In [10, 43-46], experimental models at 

micro-scale are used to identify the GTN model parameters. In [10], 5A06 aluminum alloy 

is screened by X-ray radiography to characterize damage. In [43], experiments with 

macroscopic and microscopic observations are used to characterize the aluminum alloy 

AL5182H19 quantitatively and to calibrate constitutive and damage models. However, 

void nucleation in the GTN model is defined by three parameters, namely, 𝑓𝑁 , 𝑆𝑁 , and 𝜀𝑁, 

and [11, 47] suggested to consider 𝑆𝑁 and 𝜀𝑁 as constant and to only present a value for 

𝑓𝑁. Furthermore, response surface methodology (RSM) is used in [8, 11, 15] to predict 

four parameters for aluminum alloys, namely, 𝑓0, 𝑓𝑐 , 𝑘̅, and 𝑓𝑁. Global sets of information, 

such as force-displacement or force-necking curves, are used to identify the parameters in 

the GTN model by minimizing the least-squares function via a gradient base method in 

[48]. The global load-displacement is also used in [49] to determine the fracture parameters 

in the GTN. Meanwhile, a micromechanical modeling for ductile damage is used in [50] 

to determine the relevant parameters. 
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However, different values of 𝑓𝑁 for AL6016 alloy are present in the literature, for example, 

𝑓𝑁 = 0.036 in [7] and 𝑓𝑁 = 0.075 in [51] for AL6016 and 𝑓𝑁 = 0.05 in [15] and 𝑓𝑁 =

0.095 in [52] for AL6016-T4. In [52], the hardening parameters for AL6016 alloy are 

initially identified, such as in the RSM method, and void nucleation is considered for 

ductile damage only. Parameters related to ductile damage ( 𝑆𝑁 , 𝑓𝑁 , 𝜀𝑁  and 𝑓𝑐 ) are 

identified through optimization. However, [52] stated that finding such a parameter set is 

extremely difficult, and nucleation parameters might be free for optimization. More 

importantly, it is stated in [52] that the void volume fraction evolution presented by Chu 

and Needleman model may not be suitable for AL6016 alloy. As a result, 𝑓𝑁 = 0.0 is 

considered for AL6016 alloy in this study first. Then, a ductile damage parametric study 

is performed to elucidate the sensitivity of the parameters on the results. This study aims 

to describe the extended Gurson model by using Hill’s criterion for anisotropic metals. The 

GTN model is not considered in the algorithm presented in [35], and only the Gurson 

model for isotropic material is discussed.  

 

3.10.3. Tensile test 

 

Tensile test simulation results are reported here for comparison with experimental results 

of Brunet et al. [7] for AA6016 aluminum sheet. Sample geometry in ABAQUS is shown 

in Figure 3.6. The 8-node solid element C3D8 is considered and displacements on both 

sides of the specimen are applied. Plastic anisotropy ratios of 𝑅0 = 𝑅45 = 𝑅90 = 0.7 are 

considered based on the experimental results presented in [7] and Swift law in the form 
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𝜎 = 𝐵(𝐶 + 𝜀̅𝑝𝑙)𝑛. Young’s modulus and Poisson’s ratio of 70 GPa and 0.33 respectively, 

typical of aluminum sheet, are assumed. In the following subsections, the results of 

proposed model for different test cases are presented and the parameters 

𝑓0, 𝑆𝑁, 𝜀𝑁 , 𝑓𝑁 , 𝑓𝑐, 𝑘, 𝐵, 𝐶 and 𝑛  are calibrated based on the ability of the model to reproduce 

the experimental results. The load–displacement curve of uniaxial tensile test in ABAQUS 

is calculated to present the engineering stress–strain curve, which is compared with 

experimental stress–strain curve. 

 

 

  

                             (a) Isometric view                                             (b) In-plane view 

Figure 3. 6. Tensile test specimen geometry 
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3.10.3.1. Isotropic case 

 

The result of the isotropic case, 𝐻𝑖𝑗𝑖𝑗 = 1.0, are first obtained using calibrated parameters 

shown in Table 3.1. The results, in Figure 3.7, show good agreement with the experiments.  

 

Table 3. 1. Calibrated material parameters for the isotropic case 
 

𝑓0 𝑆𝑁 𝜀𝑁 𝑓𝑁 𝑓𝑐 𝑘̅ 𝐵 𝐶 𝑛 

0.001 0.01 0.3 0.0 0.0013 45 780 MPa 0.0380445 0.525 

 

 

Figure 3. 7. Comparison with experimental results for the isotropic case 
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3.10.3.2. Anisotropic case using effective anisotropy coefficient 

 

As shown in subsection 3.10.1, damage growth in the anisotropic case is high due to the 

additional term (𝐻1111𝑆11 + 𝐻2222𝑆22 + 𝐻3333𝑆33) ×
3 𝛥𝜀𝑞

2𝑞
× (1 − 𝑓)  for 𝛥𝑓 in Equation 

(88). Void volume fraction increment as presented in Equation (88) will be reduced and 

becomes similar to that in the isotropic materials using effective anisotropy coefficient 

instead of all Hill’s quadratic anisotropy constants following Equation (100).  

As mentioned earlier, load–displacement curve is calculated to predict the engineering 

stress–strain curve in metals. Load is calculated on the basis of generated stress in the 

direction where displacement is applied. Figure 3.5 shows that the generated stress in 

anisotropic cases is higher than that in isotropic cases. Therefore, a higher stress in matrix 

material must be considered in anisotropic case using effective anisotropy coefficient than 

that considered in isotropic case. The result of the anisotropic case with effective 

anisotropy coefficient as replacement of individual Hill’s constants (𝐻𝑖𝑗𝑖𝑗 = 𝐻̅) is shown 

in Figure 3.8. The calibrated parameters are shown in Table 3.2.  

The effective stress in anisotropic case with effective anisotropy coefficient is used 

following Hill’s quadratic criteria based on Equations (33) and (34) when effective 

anisotropy coefficients are considered. The damage-free stress–strain curve of matrix 

material for this case is realistic in metals, especially for aluminum alloys. Very high 

values for matrix material must be considered if anisotropic GTN model with effective 

anisotropy coefficients is utilized.  
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Table 3. 2. Calibrated parameters for the anisotropic case using effective anisotropy coefficient 
 

𝑓0 𝑆𝑁 𝜀𝑁 𝑓𝑁 𝑓𝑐 𝑘̅ 𝐵 𝐶 𝑛 

0.001 0.01 0.3 0.0 0.0013 26 740 MPa 0.062450 0.6 

 

 

 

Figure 3. 8. Comparison with experimental results for the anisotropic case using effective 

anisotropy coefficient 
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3.10.3.3. Spherical voids versus ellipsoidal voids 

 

In this section, the effect of evolution of void volume fraction and void shape parameter 

(𝑆) in ellipsoidal voids with effective local plastic strain is investigated. As mentioned 

earlier for Equations (90–92), parameter 𝑘 will vary with 𝑆. This parameter is considered 

instead of q2, which is a constant for spherical voids. Figure 3.9(a) shows void volume 

fraction versus effective local plastic strain for spherical and ellipsoidal voids at a point 

where necking occurs in the uniaxial tensile test for the anisotropic case using effective 

anisotropy coefficient. Void shape parameter 𝑆  versus effective local plastic strain in 

ellipsoidal voids is also shown in Figure 3.9(b) in which the initial 𝑆 value is assumed to 

be 1.6. The exact initial value for 𝑆 must be obtained experimentally, but this paper only 

aims to describe the implementation and extension of GTN model for various cases. 

Clearly, void volume fraction and 𝑆 variation vary considerably with effective local plastic 

strain when 𝑓 = 𝑓𝑐 , following Equation (77). Overall, 𝑓 reaches 𝑓𝑐  with lower value of 

local plastic strain in ellipsoidal voids than that in spherical voids, and necking occurs early. 

𝑆 value decreases with the increase in plastic strain, and a reduction in S value indicates 

that ellipsoidal voids have a tendency to become spherical as reported in [38]. 
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                                     (a)                                                             (b) 

Figure 3. 9. A comparison of evolution of void volume fraction and void shape parameter with 

effective local plastic strain for initially spherical and ellipsoidal voids, (a) void volume fraction, 

and (b) void shape parameter (𝑆), in the anisotropic case using anisotropy coefficient 

 

3.10.3.4. Ductile fracture parametric study 

 

As mentioned earlier, it is suggested in literature to consider 𝑆𝑁 and 𝜀𝑁 as constant and 

only to deal with 𝑓𝑁. Furthermore, four parameters, such as 𝑓0, 𝑓𝑐 , 𝑘̅, and 𝑓𝑁, defined the 

ductile damage of the material. Moreover, the exact value of 𝑓𝑁for Al6016 alloy is not 

available in literature, and zero value has been considered to present the result in this study, 

as mentioned in section 10.2. The anisotropic model does not provide good results. 

Therefore, an anisotropic model with an effective anisotropic coefficient was proposed. 

Hill’s criterion, as an effective stress, is used for the anisotropic model with an effective 

anisotropic coefficient to define the anisotropy of the material.  



 

Ph.D. Thesis – M.M. Shahzamanian       McMaster University – Mechanical Engineering 

 

 

73 
 

In this section, we analyzed the sensitivity of the results with 𝑓𝑁, 𝑓𝑐, and 𝑘̅ in the case of 

anisotropic when the effective anisotropic coefficient is used. In these results, 𝑓0 = 0.001 

and its sensitivity is not investigated because a low value initial void volume fraction is a 

reasonable consideration. Figure 3.10 presents the stress–strain curves for two different 

cases with varying 𝑓𝑁 values when other parameters are constant. Ductile damage clearly 

occurs early with the increase in 𝑓𝑁. 𝑓𝑐 must be recalibrated to match the simulation results 

with experimental data. However, in Figure 3.10, 𝑓𝑐 is considered constant to show the 

effect of 𝑓𝑁. Figure 3.11 presents the results with varying 𝑓𝑐 values when other parameters 

are constant. Figure 3.11 shows that ductile damage occurs early with the decrease in 𝑓𝑐.  

 

  

Figure 3. 10. 𝑓𝑁 sensitivity on ductile damage 
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Figure 3  .11  . 𝑓𝑐 sensitivity on ductile damage 

 

The sensitivity of the results with 𝑘̅  is presented in Figure 3.12. The load-carrying 

capability of the material drops when 𝑓 = 𝑓𝑐. The void volume fraction increases linearly 

with the slope,𝑘̅, following Equation (77). Thus, the load capability of the material at 

ductile damage decreases with the increase in 𝑘̅. Figure 3.12(a) shows that 𝑓𝑁 = 0, which 

does not affect the ductile damage. The load capability of the material also does not drop 

sharply. Drop in load capability of material occurs first with nearly the same rate with 

different 𝑘̅ values, and then it changes sharply at different strains. In Figure 3.12(b), the 

effect of 𝑘̅ on drop in load capability of material has been investigated by considering a 

non-zero value for 𝑓𝑁  (𝑓𝑁 = 0.036). In this way, 𝑓𝑐  must be recalibrated to match the 

simulation results with experimental data. Figure 3.12(b) shows that load capability of 

material drops at the same strain with varying 𝑘̅ but with different slopes.  
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(a) 𝑓𝑁 = 0 

 

(b) 𝑓𝑁 = 0.036 

Figure 3   .12  𝑘̅ sensitivity on ductile damage 
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3.11. Conclusions 

 

In the present study, GTN plasticity and damage criterion are extended to cover Hill’s 

quadratic anisotropy to predict plastic and damage responses of anisotropic ductile metals. 

ABAQUS-Standard FE code is used to implement Hill’s quadratic anisotropic matrix 

based on the GTN material model with linearized tangent moduli formulation as a user 

material subroutine. A uniaxial tensile test sample geometry is used, and the required 

parameters for simulation are calibrated to reproduce the experimental result of the 

AA6016 sheet. Swift law parameters in constitutive law for damage-free stress–strain 

curve of matrix material are initially obtained. Next, the ductile damage parameters are 

calibrated by the model’s ability to reproduce the experimental results. Hill’s quadratic 

anisotropy case indicates higher damage evolution compared with the isotropic case. Thus, 

higher values for the damage-free stress–strain curve must be considered to reproduce the 

experimental results. Hence, effective anisotropic coefficients are used instead of Hill’s 

anisotropic coefficients to reduce damage growth. Moreover, algorithm implementations 

for ellipsoidal voids and plane stress element for the anisotropic case are performed and 

described in detail. The results show that the uniaxial stress–strain responses for 3D and 

plane stress elements are nearly identical. Finally, the salient conclusions of this study can 

be summarized as follows: 

• The results for three-dimensional and plane stress elements are similar. 
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• Void volume fraction reaches a critical value in ellipsoidal voids earlier than in 

spherical voids. As a result, necking occurs earlier in the material in ellipsoidal 

voids. 

• Anisotropic case presents higher damage evolution compared with the 

experimental results. Thus, higher values for the damage-free stress-strain curve in 

the matrix should be considered to reproduce the experimental data which is 

unrealistic in metals. 

• An approximate model is considered to predict the plastic response of the 

anisotropic metals. In this approximate model, the effective anisotropy coefficient 

is used for Hill’s 48 constants. The effects of individual Hill’s constants are 

removed, but the substantial damage growth is neglected without changing the 

equivalent stress in anisotropic model. 

 

Appendix I - Parameters to define 𝑐𝑝 and 𝑐𝑞in 3-D case 

 

𝐴11 =
𝜕𝑔

𝜕𝑞
+ 𝛥𝜀𝑝 (

𝜕2𝑔

𝜕𝑞𝜕𝑝

𝜕𝑝

𝜕𝛥𝜀𝑝
+ ∑ {

𝜕2𝑔

𝜕𝑞𝜕𝐻𝛼

𝜕𝐻𝛼

𝜕𝛥𝜀𝑝
}

𝑛

𝛼=1

)

+ 𝛥𝜀𝑞 (
𝜕2𝑔

𝜕𝑝2

𝜕𝑝

𝜕𝛥𝜀𝑝
+ ∑ {

𝜕2𝑔

𝜕𝑝𝜕𝐻𝛼

𝜕𝐻𝛼

𝜕𝛥𝜀𝑝
}

𝑛

𝛼=1

) 
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𝐴12 =
𝜕𝑔

𝜕𝑝
+ 𝛥𝜀𝑝 (

𝜕2𝑔

𝜕𝑞2

𝜕𝑞

𝜕𝛥𝜀𝑞
+ ∑ {

𝜕2𝑔

𝜕𝑞𝜕𝐻𝛼

𝜕𝐻𝛼

𝜕𝛥𝜀𝑞
}

𝑛

𝛼=1

)

+ 𝛥𝜀𝑞 (
𝜕2𝑔

𝜕𝑞𝜕𝑝

𝜕𝑞

𝜕𝛥𝜀𝑞
+ ∑ {

𝜕2𝑔

𝜕𝑝𝜕𝐻𝛼

𝜕𝐻𝛼

𝜕𝛥𝜀𝑞
}

𝑛

𝛼=1

) 

𝐴21 =
𝜕𝛷

𝜕𝑝

𝜕𝑝

𝜕𝛥𝜀𝑝
+ ∑ {

𝜕𝛷

𝜕𝐻𝛼

𝜕𝐻𝛼

𝜕𝛥𝜀𝑝
}

𝑛

𝛼=1

 

𝐴22 =
𝜕𝛷

𝜕𝑞

𝜕𝑞

𝜕𝛥𝜀𝑞
+ ∑ {

𝜕𝛷

𝜕𝐻𝛼

𝜕𝐻𝛼

𝜕𝛥𝜀𝑞
}

𝑛

𝛼=1

 

𝑏1 = −𝛥𝜀𝑝

𝜕𝑔

𝜕𝑞
− 𝛥𝜀𝑞

𝜕𝑔

𝜕𝑝
 

𝑏2 = −𝛷 

𝜕𝐻𝛼

𝜕𝛥𝜀𝑝
= ∑ 𝑐𝛼𝛽 (

𝜕ℎ𝛽

𝜕𝛥𝜀𝑝
+

𝜕ℎ𝛽

𝜕𝑝

𝜕𝑝

𝜕𝛥𝜀𝑝
)

𝑛

𝛽=1

 

𝜕𝐻𝛼

𝜕𝛥𝜀𝑞
= ∑ 𝑐𝛼𝛽 (

𝜕ℎ𝛽

𝜕𝛥𝜀𝑞
+

𝜕ℎ𝛽

𝜕𝑞

𝜕𝑞

𝜕𝛥𝜀𝑞
)

𝑛

𝛽=1

 

where, 
𝜕𝑝

𝜕𝛥𝜀𝑝
= 𝐾 , 

𝜕𝑞

𝜕𝛥𝜀𝑞
= −3𝐺𝐻̅ , and 𝑐𝛼𝛽 is defined as: 

𝑐𝛼𝛽 = (𝛿𝛼𝛽 −
𝜕ℎ𝛼

𝜕𝐻𝛽
)
−1
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Appendix II - Parameters to define 𝑐𝑝 , 𝑐𝑞and 𝑐3 in the plane stress case 

 

𝐴13 = 𝛥𝜀𝑝 (
𝜕2𝑔

𝜕𝑞2

𝜕𝑞

𝜕𝛥𝜀3
+

𝜕2𝑔

𝜕𝑞𝜕𝑝

𝜕𝑝

𝜕𝛥𝜀3
) + 𝛥𝜀𝑞 (

𝜕2𝑔

𝜕𝑝2

𝜕𝑝

𝜕𝛥𝜀3
+

𝜕2𝑔

𝜕𝑞𝜕𝑝

𝜕𝑞

𝜕𝛥𝜀3
) 

𝐴23 =
𝜕𝛷

𝜕𝑝

𝜕𝑝

𝜕𝛥𝜀3
+

𝜕𝛷

𝜕𝑞

𝜕𝑞

𝜕𝛥𝜀3
 

𝐴31 = (𝑞 + 3𝐺𝛥𝜀𝑞𝐻̅)
𝜕𝑝

𝜕𝛥𝜀𝑝
 

𝐴32 = −(𝑆33
𝑒𝑙 +

4

3
𝐺𝛥𝜀3)

𝜕𝑞

𝜕𝛥𝜀𝑞
 

𝐴33 =
𝜕𝑞

𝜕𝛥𝜀3
𝑝 + (𝑞 + 3𝐺𝛥𝜀𝑞𝐻̅)

𝜕𝑝

𝜕𝛥𝜀3
−

4

3
𝐺𝑞 − (𝑆33

𝑒𝑙 +
4

3
𝐺𝛥𝜀3)

𝜕𝑞

𝜕𝛥𝜀3
 

𝑏3 = (𝑞 + 3𝐺𝛥𝜀𝑞𝐻̅)𝑝 − (𝑆33
𝑒𝑙 +

4

3
𝐺𝛥𝜀3) 𝑞 

where, 

𝜕𝑝

𝜕𝛥𝜀𝑝
= 𝐾, 

𝜕𝑝

𝜕𝛥𝜀3
= −𝐾 ,

𝜕𝑞

𝜕𝛥𝜀𝑞
= −3𝐺𝐻̅ , 

𝜕𝑞

𝜕𝛥𝜀3
=

3𝐺𝐻3333𝑆33
𝑒𝑙+4𝐺2𝐻3333𝛥𝜀3

𝑞+3𝐺𝛥𝜀𝑞𝐻̅
 and 

𝜕2𝛷

𝜕𝑞𝜕𝑝
= 0.  

Also, 𝐴11, 𝐴12, 𝐴21, 𝐴22, 𝑏1 𝑎𝑛𝑑 𝑏2 are the same as in Appendix I.        

                   

Appendix III – Parameters to define Jacobian matrix 

 

𝐴11 =
𝜕𝑔

𝜕𝑞
+ ∑ ∑ {𝛥𝜀𝑝

𝜕2𝑔

𝜕𝑞𝜕𝐻𝛼
+ 𝛥𝜀𝑞

𝜕2𝑔

𝜕𝑝𝜕𝐻𝛼
}

𝑛

𝛽=1

𝑛

𝛼=1

𝑐𝛼𝛽

𝜕ℎ𝛽

𝜕𝛥𝜀𝑝
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𝐴12 =
𝜕𝑔

𝜕𝑝
+ ∑ ∑ {𝛥𝜀𝑝

𝜕2𝑔

𝜕𝑞𝜕𝐻𝛼
+ 𝛥𝜀𝑞

𝜕2𝑔

𝜕𝑝𝜕𝐻𝛼
}

𝑛

𝛽=1

𝑛

𝛼=1

𝑐𝛼𝛽

𝜕ℎ𝛽

𝜕𝛥𝜀𝑞
 

𝐴21 = ∑ ∑
𝜕𝛷

𝜕𝐻𝛼

𝑛

𝛽=1

𝑛

𝛼=1

𝑐𝛼𝛽

𝜕ℎ𝛽

𝜕𝛥𝜀𝑝
 

𝐴22 = ∑ ∑
𝜕𝛷

𝜕𝐻𝛼

𝑛

𝛽=1

𝑛

𝛼=1

𝑐𝛼𝛽

𝜕ℎ𝛽

𝜕𝛥𝜀𝑞
 

𝐵11 =
1

3
𝛥𝜀𝑝 (

𝜕2𝑔

𝜕𝑞𝜕𝑝
+ ∑ ∑

𝜕2𝑔

𝜕𝑞𝜕𝐻𝛼

𝑛

𝛽=1

𝑛

𝛼=1

𝑐𝛼𝛽

𝜕ℎ𝛽

𝜕𝑝
)

+
1

3
𝛥𝜀𝑞 (

𝜕2𝑔

𝜕𝑝2
+ ∑ ∑

𝜕2𝑔

𝜕𝑝𝜕𝐻𝛼

𝑛

𝛽=1

𝑛

𝛼=1

𝑐𝛼𝛽

𝜕ℎ𝛽

𝜕𝑝
) 

𝐵12 = −𝛥𝜀𝑝 (
𝜕2𝑔

𝜕𝑞2
+ ∑ ∑

𝜕2𝑔

𝜕𝑞𝜕𝐻𝛼

𝑛

𝛽=1

𝑛

𝛼=1

𝑐𝛼𝛽

𝜕ℎ𝛽

𝜕𝑞
)

− 𝛥𝜀𝑞 (
𝜕2𝑔

𝜕𝑞𝜕𝑝
+ ∑ ∑

𝜕2𝑔

𝜕𝑝𝜕𝐻𝛼

𝑛

𝛽=1

𝑛

𝛼=1

𝑐𝛼𝛽

𝜕ℎ𝛽

𝜕𝑞
) 

𝐵21 =
1

3
(
𝜕𝛷

𝜕𝑝
+ ∑ ∑

𝜕𝛷

𝜕𝐻𝛼

𝑛

𝛽=1

𝑛

𝛼=1

𝑐𝛼𝛽

𝜕ℎ𝛽

𝜕𝑝
) 

𝐵22 = −(
𝜕𝛷

𝜕𝑞
+ ∑ ∑

𝜕𝛷

𝜕𝐻𝛼

𝑛

𝛽=1

𝑛

𝛼=1

𝑐𝛼𝛽

𝜕ℎ𝛽

𝜕𝑞
) 
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Appendix IV - Terms for calculating constants in Appendices I, II and III for ellipsoidal 

voids 

 

𝜕𝛷

𝜕𝑝
= −2𝑞1𝑓

∗
𝑘

𝜎𝑀
sinh (−𝑘

𝑝

𝜎𝑀
) 

𝜕2𝛷

𝜕𝑝2
= 2𝑞1𝑓

∗
𝑘2

𝜎𝑀
2 cosh (−𝑘

𝑝

𝜎𝑀
) 

𝜕2𝛷

𝜕𝑝𝜕𝜀𝑝̅𝑙
= 2𝑞1𝑓

∗
𝑘

𝜎𝑀
2

𝑑𝜎𝑀

𝑑𝜀𝑝̅𝑙
 {𝑠𝑖𝑛ℎ (−𝑘

𝑝

𝜎𝑀
) −

𝑘𝑝

𝜎𝑀
cosh (−𝑘

𝑝

𝜎𝑀
)} 

𝜕2𝛷

𝜕𝑝𝜕𝑓
= −2𝑞1

𝑘

𝜎𝑀
sinh (−𝑘

𝑝

𝜎𝑀
) ×

𝜕𝑓∗

𝜕𝑓
− 2𝑞1

𝑓∗

𝜎𝑀
sinh (−𝑘

𝑝

𝜎𝑀
) ×

𝜕𝑘

𝜕𝑓

+ 2𝑞1𝑓
∗

𝑘𝑝

𝜎𝑀
2 cosh (−𝑘

𝑝

𝜎𝑀
)
𝜕𝑘

𝜕𝑓
 

where                                                    
𝜕𝑘

𝜕𝑓
=

𝜕𝑘

𝜕𝑓∗ ×
𝜕𝑓∗

𝜕𝑓
 

𝜕𝛷

𝜕𝜀𝑝̅𝑙
= −2

𝑞2

𝜎𝑀
3

𝑑𝜎𝑀

𝑑𝜀𝑝̅𝑙
+ 2𝑞1𝑓

∗ sinh (−
𝑘𝑝

𝜎𝑀
)

𝑘𝑝

𝜎𝑀
2

𝑑𝜎𝑀

𝑑𝜀𝑝̅𝑙
 

𝜕𝛷

𝜕𝑓
= 2𝑞1 cosh (−

𝑘𝑝

𝜎𝑀
)
𝜕𝑓∗

𝜕𝑓
− 2𝑞1𝑓

∗ sinh (−
𝑘𝑝

𝜎𝑀
)

𝑝

𝜎𝑀

𝜕𝑘

𝜕𝑓
− 2𝑞3𝑓

∗
𝜕𝑓∗

𝜕𝑓
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ABSTRACT 

 

The effect of superimposed hydrostatic pressure on the bendability of sheet metal is 

investigated using the finite element method employing the Gurson-Tvergaard-Needleman 

(GTN) model. It is shown that bendability and fracture strain increase significantly by 

imposing hydrostatic pressure as it delays the growth and coalescence of microvoids but it 

has insignificant effect on void nucleation using the GTN model, which is strain controlled 

for void nucleating. Furthermore, the effect of superimposed hydrostatic pressure on 

tensile test simulation under plane strain state is investigated and the predicted fracture 

strains are compared with those corresponding to bending tests. It is demonstrated that 

ductility under various superimposed hydrostatic pressures for bending test are higher than 

those predicted in tensile tests. Lastly, the sensitivity of ductile fracture parameters in the 

GTN model on bendability is considered. Numerical results are found to be in good 

agreement with experimental observations. 

 

Keywords: Superimposed hydrostatic pressure; Bendability; Fracture; Finite element 

analysis (FEA). 

 

4.1. Introduction 

 

Bending is an important deformation mode in many applications and it is an important 

property in a range of applications and extensively used in the auto industry [1,2]. The 
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bending properties of various materials has been studied in [3-5]. Mechanical performance 

of materials can be studied via the three-point bending test [6-8]. On the other hand, a 

superimposed hydrostatic pressure has been proven to increase tensile ductility as it delays 

void growth and coalescence [9]. However, to the best of our knowledge, the effect of a 

superimposed hydrostatic pressure on bendability is not considered in detail elsewhere. 

Different types of fracture mechanisms, such as brittle, fully plastic, ductile and shear 

fractures are explained by Ashby et al. [9] and it is stated that the fracture mode changes 

under a superimposed hydrostatic pressure or temperature. Herein, fully plastic failure 

happens if all other fracture mechanisms are suppressed. The material starts to neck and 

strain localizes in the necked region and consequently with further continuing strain the 

section reduces to a point of zero area. Such a failure mode can happen under superimposed 

hydrostatic pressure when void growth and nucleation are suppressed. The effect of 

superimposed hydrostatic pressure on void formation in the tensile test was characterized 

using quantitative metallography and the fracture mechanism is analyzed through 

fractography in [10]. It was observed that a significant increase in ductility occurs with the 

suppression of microvoid development, while the flow stress change is negligible. It is 

shown in [10] that externally applied pressure excludes the void-sheet mechanism leaving 

shear decohesion as the dominant failure mechanism since it is not very sensitive to 

hydrostatic pressure. In this way, a cup-and-cone mode of fracture under atmospheric 

pressure changes to a slant fracture under high superimposed hydrostatic pressure. The 

effect of superimposed hydrostatic pressure on the bending fracture strain of low carbon 

steel containing globular sulfides was studied by Kao et al. [11]. It was found that a 
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superimposed hydrostatic pressure increased the fracture strain and it enhanced the 

bendability significantly. The experimental results presented in [11] show that the fracture 

is due to the nucleation, growth and coalescence of voids and a superimposed hydrostatic 

pressure delays or completely eliminates the nucleation, growth and coalescence of voids 

which results in increased fracture strain and bendability. Weinrich and French 

investigated the effect of superimposed hydrostatic pressure on the fracture mechanisms 

of sheet tensile specimens [12]. They found that the mode of fracture at room pressure is 

smooth and it is planar (P-type) and it changes to chisel-edge without any void sheet (C-

type) with increase of hydrostatic pressure. Overall, it is generally accepted that a 

superimposed hydrostatic pressure increases ductility as it delays or completely eliminates 

the void growth and nucleation [13-18]. 

Wu et al. [19] studied the effect of superimposed hydrostatic pressure on the formability 

of sheet metal by constructing the forming limit diagram (FLD) based on the M-K 

approach and it was found that pressure delayed the initiation of necking and the 

formability increased.  Furthermore, transition of the fracture surface in a tensile round bar 

from cup-cone mode under atmospheric pressure to a slant structure under high pressure 

is numerically reproduced employing the GTN model. Peng et al. [20] investigated the 

effect of superimposed hydrostatic pressure on fracture in round bars. First, they showed 

that a superimposed pressure has no noticeable effect on the necking strain as void 

formation was not significant prior to necking. The numerical results showed that the 

fracture strain increased due to the fact that a superimposed pressure delayed or eliminated 

void nucleation and growth completely. The fracture surface changes from a cup-cone 
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mode under atmospheric pressure to a slant smooth surface under high pressure. It was 

observed that a superimposed pressure not only increased the fracture strain but also 

extended the failure process. The effect of superimposed pressure on fracture in sheet 

metals under tension was studied in [21] and again it was found that a hydrostatic pressure 

increased the ductility in sheet metal and numerical results show the transition of fracture 

surface from P-type mode at atmospheric pressure to C-type mode under high pressure as 

observed experimentally. Lastly, in [22], the effect of a superimposed hydrostatic pressure 

on bendability was investigated numerically and it was found that a hydrostatic pressure 

increased the fracture strain. 

The aim of this study is to perform a numerical study of the effect of a superimposed 

hydrostatic pressure on fracture in sheet metal under three-point bending. All the 

simulations presented in this study are performed using ABAQUS/Explicit [23] based on 

the GTN model. The effect of hydrostatic pressure on the three-point bending test is 

explained in detail and the sensitivity of ductile fracture parameters in the GTN model 

under various hydrostatic pressures are discussed. Numerical results are found in good 

agreement with experimental observations presented in [11]. 

 

4.2. Constitutive model 

 

The Gurson-Tvergaard-Needleman (GTN) model [24-27] is used in this study which is on 

the basis of damage growth in metals due to nucleation, void growth and coalescence and 
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this model was originally developed by Gurson [28]. The void growth is a function of the 

plastic strain rate 𝐃𝑃: 

(ḟ)
growth

= (1 − f)𝐈: 𝐃P                                                       (1) 

And the void nucleation is assumed to be strain controlled as following: 

(ḟ)
strain controlled nucleation

= A̅ε̇
P
                                              (2) 

where 𝜀̇
𝑃

is the effective plastic strain rate, and the parameter 𝐴̅ is chosen so that nucleation 

follows a normal distribution as suggested by Chu and Needleman [29]: 

A̅ =
fN

SN√2π
exp [−

1

2
(
ε̅p−εN

SN
)
2

]                                               (3) 

here, 𝜀𝑁 is the average void nucleating strain, 𝑓𝑁 is the volume fraction of void nucleating 

particles, 𝑆𝑁 is the standard deviation of void nucleating strain. It is to be noted that in 

ABAQUS, only strain controlled void nucleation is considered and the stress controlled 

void nucleation is not available. In order to implement a void nucleation to be stress 

controlled GTN model in ABAQUS, one must use UMAT/VUMAT subroutine. However, 

assuming void nucleation to be stress controlled we have [30]: 

(ḟ)
stress controlled nucleation

= B(σ̇̅ +
1

3
𝑐σ̇H)                                          (4) 

where, 𝐵 is taken to depend on the current stress state value of the matrix equivalent plastic 

strain. 

B =
fN

SNσy√2π
exp [−

1

2
(
𝜎̅+cσH−σN

SNσy
)
2

]                                                (5) 
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σN is the average nucleation stress and c is a redundant factor for hydrostatic pressure and 

it takes values between 0.3 and 0.4 [31-32].  

The growth of existing voids and the nucleation of new voids are considered in the 

evolution of void volume fraction as follows: 

ḟ = (ḟ)
growth

+ (ḟ)
nucleation

                                                      (6) 

and the function of void volume fraction (𝑓∗(𝑓)) is defined to consider coalescence as 

follows: 

f ∗ = {
f                                  for f ≤ fc

fc +
fu
∗ −fc

ff−fc
(f − fc)    for f > fc

                                                 (7) 

where 𝑓𝑐 is the critical void volume fraction when coalescence happens and 𝑓𝑓 is the void 

volume fraction at failure. Lastly, the parameter 𝑓𝑢
∗ =

1

𝑞1
 is defined. It should be mentioned 

that void growth and nucleation does not happen when the stress state of an element is 

compressive in ABAQUS and void growth and nucleation only happen in tension. 

Finally, the approximate yield function to be used in which 𝑓∗ is distributed randomly is 

as follows: 

Φ(𝛔, σ̅, f) =
σe

2

σ̅2
+ 2f ∗q1cosh (

3q2σH

2σ̅
) − [1.0 + (q1f

∗)2] = 0                     (8) 

where, 𝝈 is the macroscopic Cauchy stress tensor and 𝜎𝑒, 𝜎𝐻 and 𝜎 are equivalent stress, 

hydrostatic stress and matrix stress, respectively. Also, 𝑞1  and 𝑞2  are the calibrated 

parameters.  



 

Ph.D. Thesis – M.M. Shahzamanian       McMaster University – Mechanical Engineering 

 

 

96 
 

The uniaxial elastic-plastic undamaged stress-strain curve for the matrix material is 

provided by the following power-law form: 

ε̅ = {

σ̅

E
,                                       for σ̅ ≤ σy

σy

E
(

σ̅

σy
)
n

,                         for σ̅ > σy

                                            (9) 

 

4.3. Problem formulation and method of solution 

 

The schematic presentation of a sheet metal under pressure with length 𝐿𝑜 and thickness 

𝑡𝑜 is considered and shown in Figure 4.1. It is assumed that the sheet is wide enough with 

no deformation in width direction to consider the plane strain state. Rigid bodies are 

considered for both punch and mandrel with radii 𝑅𝑝 and 𝑅𝑚, respectively. The mandrel 

is stationary with a length span 𝐿𝑚 when the punch applies a force in the middle section 

of the sheet. The superimposed hydrostatic pressure is shown with arrows. The sequence 

of plane strain three-point bending under superimposed hydrostatic pressure is modeled as 

two steps. In the first step, the pressure is applied gradually up to a desired level 𝑝 = −𝛼𝜎𝑦 

without applying any force by the punch and in the second step, the punch applies force to 

the sheet at the constant pressure value of 𝑝 = −𝛼𝜎𝑦. 
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Figure 4. 1. Schematic of three-point bending test of a sheet metal under hydrostatic superimposed 

pressure 

 

 

4.4. Results and discussion 

 

The elastic-plastic properties of the matrix material is specified by 𝜎𝑦 𝐸⁄ = 0.0033, 𝜈 =

0.3 and 𝑛 = 10. It is assumed that the initial void volume fraction is zero and the fit 

parameters in the GTN model (Equation (8)) are 𝑞1 = 1.5 and 𝑞2 = 1.0. Void nucleation 

is assumed to be plastic strain controlled with the volume fraction 𝑓𝑁 = 0.04 of void 

nucleating particles, the mean strain for nucleation is 𝜀𝑁 = 0.3, and the corresponding 

standard deviation is 𝑆𝑁 = 0.1 . The final failure is taken to be characterized by the 

parameters 𝑓𝑐 = 0.15 and 𝑓𝑓 = 0.25. Theses values of mechanical properties are taken 
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from Tvergaard and Needleman [24]. It should be emphasized that the main purpose of the 

present study is to assess the effect of superimposed hydrostatic pressure on the bendability 

of sheet metals, and that the overall results and conclusions are not particularly dependent 

on the above values of the material parameters. However, a parametric study on ductile 

fracture parameters in the GTN model was performed under various superimposed 

hydrostatic pressure to understand the effect of each parameter. 

The Penalty contact method is used for the interaction between sheet and mandrels as well 

as punch. Contact pair interactions are defined by specifying each of the individual surface 

pairs that can interact with each other which searches for node-into-face and edge-into-

edge penetrations in the current configuration. The sheet metal is considered to be under 

plane strain three-point bending. Therefore, plane strain quadrilateral element CPE4R in 

ABAQUS/Explicit is considered for the sheet. Also, rigid body element R2D2 is 

considered for the punch and mandrels. Length of sheet (𝐿𝑜), thickness (𝑡𝑜) and plane 

strain thickness are 20 mm, 2.5 mm and 10 mm, respectively. Also, 𝑅𝑚, 𝑅𝑝 and 𝐿𝑚 are 

0.25 mm, 0.2 mm and 13 mm, respectively.  

As mesh sensitivity is expected in numerical simulations involving localized deformation 

and fracture, different meshes are considered in this simulation. Figure 4.2 shows the FE 

configuration of three-point bending test with a typical mesh for metal sheet consisting of 

60×110 plane strain quadrilateral elements (CPE4R) in which the element distribution in 

the refined area is biased to the middle section of the specimen where fracture is expected 

to occur. The effect of mesh sensitivity on fracture bending strain will be discussed later 
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in this section. Due to the symmetry, only half of the sheet is investigated and symmetric 

boundary conditions are imposed in the middle section of specimen. 

Although three-point bending test is a static analysis, ABAQUS/Explicit is used as 

ABAQUS/Standard is not able to provide failure in the GTN model. However, the mass 

scaling method with sufficient low target time increment is used and it is carefully 

attempted to minimize the dynamic effect of the sample. It is to be noted that the results of 

ABAQUS/Explicit are comparable well with those obtained using ABAQUS/Standard 

before initiation of failure as shown in Figure 4.3.  

 

 

Figure 4. 2. FE configuration of three-point bending test; A typical mesh for metal sheet with 

60×110 quadrilateral elements (CPE4R in ABAQUS/Explicit) 

 

 

Middle section  
of specimen 
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Figure 4. 3. Results comparison between ABAQUS/Explicit and ABAQUS/Standard 

 

Figure 4.4 represents the punch force 𝐹 as a function of the punch stroke δ at room pressure 

(𝛼 = 0) and the effect of mesh sensitivity on the force-displacement curve is also included. 

Initially the load increases linearly with a very small amount of punch movement and the 

sheet is essentially in the elastic state. Then the load increases gradually and reaches its 

maximum followed by a gradually decrease with continued increase in the punch stroke. 

Further punch movement results in a sharp “knee” on the load and punch stroke curve 

which is associated with reaching the critical value of the void volume fraction (𝑓𝑐) at the 

outer surface of the specimen in the middle section which is under tension. Immediately 

after the sharp knee, a burst of void growth and nucleation leads to a rapid drop in punch 

force, indicating a rapid loss of load carrying capacity for the sheet sample. Two different 

meshes of 60×110 elements (60 elements in Y direction and 110 elements in X direction) 

and 100×150 elements (100 elements in Y direction and 150 elements in X direction) are 

investigated and the effect of mesh sensitivity on the force-displacement curves are shown 

in Figure 4.4. These two meshes are very carefully designed to have the aspect ratio close 
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to 1.0 in the middle section of specimen where fracture occurs. It is observed that mesh 

size has a insignificant effect on the initiation of fracture. 

It is to be mentioned that in the numerical study of effects of the superimposed hydrostatic 

pressure on fracture of sheet metals under plane strain tension, Wu et al. [21] stated that 

two crossed shear bands, symmetric to the middle plane are developed after onset of 

necking. Fracture initiates at the center of the neck, where the two shear bands cross each 

other and where the maximum stress triaxiality is expected to occur. Due to the initial 

symmetry, it is expected that cracks will be developed and propagated along the crossed 

shear bands. However, the initial symmetry cannot be retained. Instead, the simulations 

result in a nonsymmetric solution with a single crack as it dissipates less energy. The 

selection of the single crack is however due to numerical round-off errors, which are 

sensitive to the mesh used. In the present study, it was found that the difference in the 

predicted initiation of fracture from the symmetric solution and non-symmetric solution is 

very small, although the two solutions predict very different patterns of crack propagation. 

On the other hand, it is to be noted that the calculated subtle change in appearance of crack 

pattern due to the superimposed hydrostatic pressure can be very sensitive to the mesh used 

and may even be an artefact of the mesh, regardless of symmetric or non-symmetric 

assumption is applied. Nevertheless, it should be emphasized again that the main purpose 

of this study is to assess the influence of the superimposed hydrostatic pressure on the 

bendability, and that the overall results and conclusions are not particularly dependent on 

the symmetry assumption considered as well. 
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Figure 4. 4. Effect of mesh sensitivity on force-displacement curve at room pressure 

(𝛼 = 0) 

 

4.4.1. Superimposed hydrostatic pressure effect in bending test 

 

The effect of a superimposed hydrostatic pressure (𝑝 = −𝛼𝜎𝑦) on fracture under plane 

strain three-point bending test is studied. Figure 4.5 shows the effect of 𝛼  on force-

displacement curve and it is found that the maximum force does not change but the 

hydrostatic pressure delays the sharp knee on force-displacement curve. At a relatively 

high pressure 𝑝 = −0.4𝜎𝑦 , the force decreases more gradually than those under lower 

applied pressures and fracture does not occur at pressure higher than 𝑝 = −0.4𝜎𝑦. 

 

Coalescence 
initiation 
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Figure 4. 5. Effect of superimposed hydrostatic pressure on force-displacement curve 

 

 

Figure 4.6 presents the crack patterns in sheet metals under various superimposed 

hydrostatic pressures. It is shown that crack propagates from the outer surface along the 

middle section of the specimen at room pressure and under a pressure 𝑝 = −0.1𝜎𝑦 but it 

propagates in a zig-zag shape as shown in Figure 4.6(c and d) under pressures 𝑝 = −0.2𝜎𝑦 

and 𝑝 = −0.3𝜎𝑦. It is to be noted that the crack shapes in the latter cases were investigated 

using finer meshes and the same patterns were obtained. 
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                                      𝛼 = 0                                              𝛼 = 0.1 

   
                                   𝛼 = 0.2                                              𝛼 = 0.3 

Figure 4. 6. Crack shapes of sheet metals under various superimposed hydrostatic 

pressures 

 

As mentioned in [33], bendability in wrap bend testing is defined by the parameter 
𝑟

𝑡
 where 

𝑟 is the minimum radius of mandrel that the specimen is bent around without appearance 

of fracture on the outer surface of specimen and 𝑡 is the specimen thickness. Also, Kao et 

al. in [11, 13] presented a forming limit diagram obtained from bending test with 

specimens having various width/thickness ratios. The major and minor strains in [11, 13] 

are calculated at the initiation of fracture on the outer surface of specimen. However, the 

effect of superimposed hydrostatic pressure on normalized minimum cross-sectional area 
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(
𝐴𝑚𝑖𝑛

𝐴𝑜
) and bending fracture strain (𝜀𝑓

𝑐) in the middle section of the specimen are shown 

in Figure 4.7. Here, the bending fracture strain 𝜀𝑓
𝑐 is defined as 𝜀𝑓

𝑐 = ln
𝐴𝑜

𝐴𝑚𝑖𝑛
 calculated in 

the middle section of the specimen. 𝐴𝑚𝑖𝑛 is the minimum cross-sectional area of sheet 

which is calculated one step right before fracture initiation in ABAQUS. It is found that 

the minimum cross-sectional area decreases with increasing the hydrostatic pressure and 

it allows the specimen to deform more and it increases the ductility and bending fracture 

strain. 

 

   
 

   (a) Normalized minimum cross-sectional area          (b) Bending fracture strain 

Figure 4. 7. Predicted (a) normalized minimum cross-sectional area and (b) bending 

fracture strain for various values of α 

 

  

The delay of fracture can be explained by showing how a superimposed hydrostatic 

pressure 𝑝 = −𝛼𝜎𝑦  affects the hydrostatic pressure and stress triaxiality in the middle 

section of specimen which results in delaying or completely eliminating void growth. 

Figure 4.8 presents the hydrostatic pressure 𝜎𝐻 = (1 3⁄ )(𝜎𝑥𝑥 + 𝜎𝑦𝑦 + 𝜎𝑧𝑧)  and stress 
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triaxiality 
𝜎𝐻

𝜎̅
 at point A (see Figure 4.1) where fracture initiates as a function of punch 

stroke under various superimposed hydrostatic pressures. At room pressure 𝑝 = 0, both 

hydrostatic pressure and stress triaxiality develops in a way to assist the void growth but 

hydrostatic pressure (𝜎𝐻)  and stress triaxiality are initially compressive under a 

superimposed hydrostatic pressure 𝑝 = −𝛼𝜎𝑦. This implies that void growth is delayed 

until a sufficiently large tensile component of stress is introduced.  

The effect of superimposed double-sided pressure on the formability of biaxially stretched 

AA6111-T4 sheet metal was studied in [34] numerically employing the GTN model and it 

was found that double-sided pressure increased formability while void nucleation is 

invariable and only the void growth changes, decreasing with an  increase of pressure. 

Figure 4.9(a) shows the effect of superimposed hydrostatic pressure on void nucleation, 

void growth and total volume fraction. It is shown that superimposed hydrostatic pressure 

has no effect on void nucleation as the GTN model used in this study assumes that the 

nucleation is strain controlled (Equations 2-3), and hydrostatic pressure is not involved in 

void nucleation. However, the effect of superimposed hydrostatic pressure on void growth 

is shown in Figure 4.9(b) and it is clearly observed that hydrostatic pressure delays or 

completely eliminates the void growth. Figure 4.9(c) shows the total void volume fraction 

under various superimposed hydrostatic pressures. In this study, the GTN model available 

in ABAQUS is used when the void nucleation is strain controlled. However, the effect of 

superimposed hydrostatic pressure on stress controlled void nucleation is studied and 

discussed later in subsection 4.3 using a subroutine in ABAQUS. 
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(a) Hydrostatic pressure    

                                         

 
                                                           (b) Stress triaxiality 

Figure 4. 8. Effect of superimposed hydrostatic pressure on (a) hydrostatic pressure and (b) stress 

triaxiality at point A 
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         (a) Void nucleation volume fraction           (b) Void growth volume fraction   

 

 
(c) Total void volume fraction 

Figure 4. 9. Predicted (a) void nucleation volume fraction, (b) void growth volume 

fraction and (c) total void volume fraction at point A for various values of α 

 

 

The effect of mesh sensitivity on the force-displacement curve at room pressure was shown 

in Figure 4.4. As mentioned previously, the results of this study are presented 

corresponding to a mesh with 60×110 elements and Figure 4.7(b) presents the 𝜀𝑓
𝑐 under 

various superimposed hydrostatic pressure. The effect of mesh sensitivity on 𝜀𝑓
𝑐 is shown 

in Figure 4.10(a). It is observed that 𝜀𝑓
𝑐 at room pressure are almost similar. Although 𝜀𝑓

𝑐 

are nearly similar for two meshes when α=0.3, mesh sensitivity increases with increasing 
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hydrostatic pressure. The gain in ductility for these two meshes is shown in Figure 4.10(b). 

It is to be noted that the percentage change of 𝜀𝑓
𝑐 under superimposed pressure relative to 

𝜀𝑓
𝑐 at room pressure is defined as a gain in ductility in Figure 4.10(b).  

 

   
     (a) Bending fracture strain                                    (b) Gain in ductility 

 

Figure 4. 10. Effect of mesh sensitivity on (a) bending fracture strain and (b) gain in ductility 

 

 

4.4.2. Fracture strain comparison in tensile and bending tests 

 

As shown in [21], mesh size has a significant effect in the prediction of fracture strain in 

sheet metal under tension with various superimposed hydrostatic pressures. It is to be noted 

that the fracture strain is calculated when complete fracture happens in [21]. It was found 

that mesh size has little influence on the fracture strain when the superimposed hydrostatic 

pressure is close to zero, but the mesh sensitivity increases with increasing superimposed 

hydrostatic pressures. The situation for deformation under bending to calculate the 𝜀𝑓
𝑐 at 

the initiation of fracture is comparable.   
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Figure 4.11 shows the schematic and FE configuration of a tensile test under plane strain 

state with a typical mesh consisting of 100×150 plane strain quadrilateral elements 

(CPE4R) in which the element distribution in the refined area is biased to the middle 

section of the specimen where fracture is expected to occur. A rather stubby specimen is 

considered since only the neck region is concerned. The length of the tensile specimen is 

three times the initial thickness of the tensile sample, as simulated in [21]. In Figure 4.11(a), 

the superimposed hydrostatic pressure is shown with thin arrows and applied strains are 

shown with thick arrows. In this study, the fracture strain for tensile test is calculated one 

step right before the initiation of fracture in ABAQUS.  

Fracture is initiated at the center of specimen in the tensile test and then it propagates 

toward the surfaces along the generated shear bands as reported in [10, 20]. Figure 4.12 

shows the shear bands before and after fracture in tensile test specimen. As mentioned in 

[1], the failure mechanism in bending is different from that in the tensile test. It is to be 

noted that the material points considered in the two tests experience very different loading 

histories and, thus the results are not directly comparable. In the bend test, strain localizes 

in severe bands often associated with grain boundaries close to the outer surface of 

specimen which is a free and unconstrained surface and strain decreases with strain 

gradient through the thickness of the sample to the neutral axis and cracks form on the 

outer surface of specimen. Furthermore, the surface strain developed in the bend test can 

be larger than in tensile deformation [1]. Tensile failure initiates at the uniaxial tensile 

strength (UTS) when a geometrical instability, that is a neck, is initiated and at this stage 

triaxial stresses develop in the neck promoting void nucleation and growth.  On the 
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contrary, geometrical necking does not occur under bending due to the developed gradient 

of strain. Thus, global triaxiality is absent in bending. In fact, only local stress triaxiality 

associated with microstructure is generated. So significant cracks have formed at the 

surface of the bend sample long before bend sample fracture occurs. The experiments 

presented in [35-36] evident that the fracture strain and equivalent plastic strain at failure 

obtained from bending test are higher than those obtained from tensile test. Figure 4.13 

shows the effective plastic strain one step right before the initiation of fracture for both 

bending and tensile tests. The results are obtained at the center of the tensile test specimen 

and at the outer surface in the middle section of bending specimen where fracture is 

expected to occur, fracture initiates at Point A as shown in Figure 4.1. It is clearly shown 

in Figure 4.13 that ductility is higher in the bend test than those obtained in the tensile test 

for various superimposed pressures. 
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(a) Schematic 

 

(b) FE configuration 

Figure 4. 11. Tensile test specimen; (a) schematic and (b) FE configuration with a typical 

mesh with 100×150 quadrilateral elements (CPE4R in ABAQUS/Explicit) 
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(a)                                                                       (b) 

Figure 4. 12. Developed shear bands in tensile test specimen; (a) before fracture (b) after 

fracture 

 

 
 

Figure 4. 13. Effective plastic fracture strain in bending and tensile tests 
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4.4.3. Stress controlled void nucleation 

As mentioned previously, in ABAQUS only strain controlled void nucleation is considered 

and stress controlled void nucleation is not available. As shown in Figure 4.9(a), the 

nucleated void volume fraction is unchanged under various superimposed hydrostatic 

pressures. In order to study the effect of hydrostatic pressure on void nucleation when it is 

stress controlled, the GTN model is implemented via a VUMAT subroutine in which stress 

controlled void nucleation is considered. This subroutine only supports three-dimensional 

elements.  

A very wide specimen (width=100 mm) is considered to simulate the plane stain condition. 

However, this condition is not fully plane strain and it causes a reduction in the fracture 

strain as the width/thickness of the specimen decreases [37]. A low 𝐿𝑚  (=10 mm) is 

considered to increase the fracture strain as the fracture strain increases with a decrease of 

𝐿𝑚  [8]. The stress controlled void nucleation volume fraction, void growth and total 

volume fractions are shown in Figure 4.14. σN = 610 𝑀𝑃𝑎 and c = 0.35 are assumed for 

this study. Fracture occurs when 𝛼 = 0.1 and it does not happen beyond this value. Results 

show that a hydrostatic pressure delays both void nucleation and void growth, contrary to 

strain controlled void nucleation when only void growth is delayed.  
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(a) Stress controlled void nucleation volume fraction      (b) Void growth volume fraction 

 

(c) Total void volume fraction 

 

Figure 4. 14. Predicted (a) stress controlled void nucleation volume fraction, (b) void 

growth volume fraction and (c) total void volume fraction at point A for various values 

of α 
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4.4.4. GTN ductile fracture parametric study in bending test 

 

As presented in Equation (3), normal distribution function is used in the GTN model to 

present the void nucleation growth and 𝑓𝑁, 𝜀𝑁 and 𝑆𝑁 are void nucleation volume fraction, 

average void nucleating strain and standard deviation of void nucleating strain, 

respectively. Furthermore, coalescence happens following Equation (7) and there is a sharp 

increase when void volume fraction reaches critical void volume fraction (𝑓𝑐) and failure 

happens when void volume fraction reaches 𝑓𝑓 . Sensitivity of each ductile fracture 

parameters in the GTN model on force-displacement curve as well as bending fracture 

strain at room pressure and under superimposed pressure 𝑝 = −0.2𝜎𝑦 is studied. The gain 

in ductility for two cases with various pressures are obtained and sensitivity of 𝜀𝑁 and 𝑓𝑐 

is discussed. Although not shown the effect of all parameters here, our numerical testing 

indicates that it is observed that ductility increases with increasing the 𝜀𝑁, 𝑆𝑁 and 𝑓𝑐 and it 

decreases with increasing the 𝑓𝑁 and it is unchanged with variation of 𝑓𝑓. Void volume 

fraction respect to punch stroke increases vertically beyond 𝑓𝑐(= 0.15)  and it can be 

understood that void volume fraction reaches 𝑓𝑓 with a very low punch advancing beyond 

𝑓𝑐. Thus, 𝑓𝑓 does not have significant effect on ductility. Also, the ductility increases with 

increasing the 𝜎𝑁 when the stress-controlled GTN model is used. It is found that gain in 

ductility is higher at room pressure than under superimposed hydrostatic pressure for every 

ductile fracture parametric study. Ductility gain in this parametric study is the fracture 

strain change over the fracture strain of bending test with initial values of a parameters set. 

Superimposed hydrostatic pressure has insignificant effect on fracture strain change. On 
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the other hand, superimposed hydrostatic pressure increases the ductility (or fracture 

strain). Thus, this matter can be a justification as a decrease in ductility gain under 

superimposed hydrostatic pressure. 

 

4.4.4.1. 𝜺𝑵 sensitivity 

 

The sensitivity of 𝜀𝑁  under room pressure and superimposed pressure 𝑝 = −0.2𝜎𝑦  is 

studied and force-displacement curves for each case are shown in Figures 4.15(a-b). As 

expected, ductility increases with increasing 𝜀𝑁because void nucleation delays. Normal 

distribution function for various values of 𝜀𝑁  are shown in Figure 4.15(c) while other 

parameters are constant. It is seen clearly that void nucleation respect to effective plastic 

strain delays with increasing the 𝜀𝑁. Furthermore, bending fracture strains are calculated 

and the gain in ductility for both cases are calculated and shown in Figure 4.15(d). 
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(a) Force-displacement curve (𝛼 = 0)      (b) Force-displacement curve (𝛼 = 0.2) 

 

 

   
       (c) Normal distribution function                        (d) Gain in ductility     

                                           

 

Figure 4. 15. Effect of superimposed hydrostatic pressure on 𝜀𝑁 sensitivity 

 

 

 

 

4.4.4.2. 𝒇𝒄 sensitivity 

 

The sensitivity of 𝑓𝑐  under room pressure and superimposed pressure 𝑝 = −0.2𝜎𝑦  is 

studied and force-displacement curves for each case are shown in Figures 4.16(a-b). As 

explained previously in Figure 4.4, there is a sharp knee on the load when void volume 
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fraction reaches 𝑓𝑐 and then 𝑓 varies linearly with the slope 
𝑓𝑢

∗−𝑓𝑐

𝑓𝑓−𝑓𝑐
 following Equation (7). 

As shown in Figure 4.16(c) ductility increases with increasing 𝑓𝑐 as expected and the gain 

in ductility corresponding to room pressure is higher than that under superimposed 

hydrostatic pressure. 

 

   
(a) Force-displacement curve (𝛼 = 0)       (b) Force-displacement curve (𝛼 = 0.2) 

 

 
                                                          (c) Gain in ductility 

 

Figure 4. 16. Effect of superimposed hydrostatic pressure on 𝑓𝑐 sensitivity 

 

 

 



 

Ph.D. Thesis – M.M. Shahzamanian       McMaster University – Mechanical Engineering 

 

 

120 
 

4.5. Conclusion 

 

In this study, a finite element analysis of plane strain three-point bending test for sheet 

metal under superimposed hydrostatic pressure is carried out. It is found that the 

superimposed hydrostatic pressure increases bendability significantly as hydrostatic 

pressure delays or completely eliminates void growth and coalescence of microvoids or 

microcracks. The fracture strains of bending tests are compared with those obtained in 

tensile tests under various superimposed hydrostatic pressures and it is demonstrated that 

the ductility in bending test is higher than those in tensile test. Lastly, ductile fracture 

parametric study in the GTN model is performed under various superimposed hydrostatic 

pressure and it is observed that ductility increases with increasing the 𝜀𝑁, 𝑆𝑁 and 𝑓𝑐 and it 

decreases with increasing the 𝑓𝑁 and it is unchanged with variation of 𝑓𝑓. 
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ABSTRACT 

 

The effect of cladding on the bendability of sheet metal is investigated numerically using 

the finite element method by employing the Gurson-Tvergaard-Needleman (GTN) model. 

The bendability and fracture strain increase significantly by cladding the sheet. In clad 

sheet metal, the development of the stress triaxiality in the region of the fracture slows 

down, thereby delaying the nucleation and growth of voids. In thin clad layers, the damage 

is initiated in the core but the crack is blunted at the clad core interface until the cladding 

thins and fails with increasing bending.  Failure occurs in the cladding at sufficiently large 

cladding thickness. The effect of mandrel span length on bendability, which reflects the 

degree of bending in a three-point bend test, is also investigated to understand how failure 

transition from core fail to clad failure occurs. Finally, the effect of work hardening in the 

cladding material is examined, and bendability increases if the rate of hardening in the 

cladding material increases. Numerical results are found to be in good agreement with 

experimental observations. 

 

Keywords: Laminated sheet; Bendability; Fracture; Finite element method (FEM). 
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5.1. Introduction 

 

Monolithic materials may not provide the desired mechanical properties for various 

applications but utilizing laminated metal composites (LMCs) composed of alternating 

material layers may produce a more desirable combination of properties for an application 

[1]. As stated in [2], LMCs can improve many properties significantly, including fracture 

toughness [3], fatigue behavior [4], and impact behavior [5], or enhance formability and 

ductility [6–9]. Metal sheet strength and ductility can be provided simultaneously by 

cladding the sheet [10]. Conversely, the mechanical performance of materials can be 

studied through the three-point bending test [11–15]. However, to the best of our 

knowledge, the effect of cladding a sheet metal on bendability has not been considered 

numerically in detail elsewhere. 

Cladding sheet metals has been performed through various methods such as cold roll 

bonding [16], hot-rolling [17], multilayer-friction stir brazing [18], Fusion Technology [7] 

and etc. Stainless steel (SS) has been clad with Niobium (Nb) in [19] via roll bonding and 

a micron-thick layer is generated at the interface during annealing. This layer leads to a 

brittle failure along with the interface between the SS core and Nb cladding. Hot-rolling 

can provide shear bond strength for low-carbon steel/austenitic stainless-steel clad 

composite as reported in [20]. However, roll bonding is costly and the “Fusion Technology” 

technique introduced by Novalis Inc. provides clad sheet metals with high strength and an 

oxide-free zone at the clad-core interface at a reduced cost [7]. To prove that high strength 
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at the clad-core interface is provided and bendability is improved, the tensile and bending 

tests of clad material consisting of an x609 core and softer AA3003 cladding materials 

were reported in [21]. Initial damage occurs away from the clad-core interface. This 

outcome demonstrated that the two materials were bonded with high interfacial strength 

and that interface delamination does not occur when the laminate is deformed. Final 

fracture under bending is initiated on the outer surface of the specimen, which is a free and 

unconstrained surface because of strain distribution in a bend test [21]. A superimposed 

hydrostatic pressure during bending delays void growth and the coalescence of micro-

voids, thereby increasing bendability [22-24]. Nevertheless, bendability can also be 

improved by cladding the outer surface of the sheet with a more ductile layer [21]. Under 

these circumstances, failure initiates in a region close to the core-clad interface and then 

propagates toward the surface of the bent sample. The cladding thins locally and eventually 

fails with the crack propagating to the surface. Figure 5.1 shows the mechanism of fracture 

progression in a clad sheet metal under bending.  
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Figure 5. 1. The schematic of fracture path progression in a clad sheet under bending [21] 

through (a) to (d) 

 
 

Chen et al. [25–26] investigated numerically the effect of cladding a ductile layer on a 

sheet sample and deforming under plane strain tension and assessed the effects of the clad 

layer on the necking and fracture strains using the finite element method. Cladding a 

ductile ring increases both the necking and fracture strains. Cladding enhances the 

hardening and the necking strain increases following the rule of mixture, which inhibits 

void nucleation and growth. Thus, ductility is significantly increased. Moreover, the 

topological arrangement of the cladding had a noticeable effect on the fracture strain while 

the necking strain remained unaffected. Furthermore, Hu et al. [27] studied the necking 

behavior of the clad sheet with a rate-sensitive cladding on rate-insensitive core materials. 
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The necking strain of the laminate increased with increasing strain-rate sensitivity of the 

clad layer and increased volume fraction of the cladding. 

The aim of this study is to perform a numerical study of the effects of cladding on failure 

in sheet metal under three-point bending. All simulations are performed using 

ABAQUS/Explicit [28] according to the GTN model. The effect of cladding on the three-

point bending test is explained in detail, and the effect of work hardening in clad materials 

on bendability is discussed.  

 

5.2. Constitutive model 

 

The Gurson-Tvergaard-Needleman (GTN) model [29-31] is used in this study which is 

based on damage growth in metals due to nucleation, void growth and coalescence. This 

model was originally developed by Gurson [32]. The void growth is a function of the 

plastic strain rate 𝐃𝑃: 

(𝑓̇)
𝑔𝑟𝑜𝑤𝑡ℎ

= (1 − 𝑓)𝐈: 𝐃𝑃                                                       (1) 

and the void nucleation in ABAQUS is assumed to be strain controlled as following: 

𝑓̇ = 𝐴̅𝜀̇
𝑃

                                                                       (2) 

where 𝜀̇
𝑃

is the effective plastic strain rate, and the parameter 𝐴̅ is chosen so that nucleation 

follows a normal distribution as suggested by Chu and Needleman [33]: 

𝐴̅ =
𝑓𝑁

𝑆𝑁√2𝜋
𝑒𝑥𝑝 [−

1

2
(
𝜀̅𝑝−𝜀𝑁

𝑆𝑁
)
2

]                                                      (3) 
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here, 𝜀𝑁 is the average void nucleating strain, 𝑓𝑁 is the volume fraction of void nucleating 

particles and 𝑆𝑁 is the standard deviation of void nucleating strain. 

The growth of existing voids and the nucleation of new voids are considered in the 

evolution of void volume fraction as follows: 

𝑓̇ = (𝑓̇)
𝑔𝑟𝑜𝑤𝑡ℎ

+ (𝑓̇)
𝑛𝑢𝑐𝑙𝑒𝑎𝑡𝑖𝑜𝑛

                                                      (4) 

and the function of void volume fraction (𝑓∗(𝑓)) is defined to consider coalescence as 

follows: 

𝑓∗ = {
𝑓                                     𝑓𝑜𝑟 𝑓 ≤ 𝑓𝑐

𝑓𝑐 +
𝑓𝑢

∗−𝑓𝑐

𝑓𝑓−𝑓𝑐
(𝑓 − 𝑓𝑐)    𝑓𝑜𝑟 𝑓 > 𝑓𝑐

                                                 (5) 

where 𝑓𝑐 is the critical void volume fraction when coalescence happens and 𝑓𝑓 is the void 

volume fraction at failure. Lastly, the parameter 𝑓𝑢
∗ =

1

𝑞1
 is defined. It should be mentioned 

that void growth and nucleation does not happen when the stress state of an element is 

compressive in ABAQUS and void growth and nucleation only occurs in tension. 

Finally, the approximate yield function to be used in which 𝑓∗ is distributed randomly is 

as follows: 

𝛷(𝝈, 𝜎, 𝑓) =
𝜎𝑒

2

𝜎̅2 + 2𝑓∗𝑞1𝑐𝑜𝑠ℎ (
3𝑞2𝜎𝐻

2𝜎̅
) − [1.0 + (𝑞2𝑓

∗)2] = 0                     (6) 

where, 𝝈 is the macroscopic Cauchy stress tensor and 𝜎𝑒, 𝜎𝐻 and 𝜎 are equivalent stress, 

hydrostatic stress and matrix stress, respectively. Also, 𝑞1  and 𝑞2  are the calibrated 
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parameters. The uniaxial elastic-plastic undamaged stress-strain curve for the matrix 

material is provided by the following power-law form: 

𝜎 = {
𝐸𝜀,̅                            𝑓𝑜𝑟 𝜎 ≤ 𝜎𝑦

𝐾𝜀̅𝑛,                         𝑓𝑜𝑟 𝜎 > 𝜎𝑦
                                              (7) 

 

5.3. Problem formulation and method of solution 

 

The schematic presentation of a clad metal sheet with a length 𝐿𝑜  and thickness 𝑡𝑜  is 

considered (Figure 5.2). Due to the symmetry, only half of the sheet is investigated. The 

sheet is assumed to be wide enough with no deformation in the width direction to consider 

the plane strain state. The sheet is presumed to consist of a soft cladding layer with a 

thickness 𝑡𝑜̅ and a core with thickness of 𝑡𝑜 − 𝑡𝑜̅. Thus, the cladding ratio is defined as 

𝛤 =
𝑡̅𝑜

𝑡𝑜
. In [7], the cladding layer and core are assumed to be bonded perfectly. Rigid bodies 

are considered for both punch and mandrel with radii 𝑅𝑝  and 𝑅𝑚 , respectively. The 

Mandrel is stationary with a span length 𝐿𝑚 when the punch applies force in the middle 

section of the sheet.  
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Figure 5. 2. Schematic of three-point bending test for a clad sheet metal 5.4. Results 
 

 

5.4. Results 

 

The elastic-plastic properties of the matrix and cladding materials are specified as 

presented in Table 5.1. The values of the mechanical properties regarding the GTN model 

for the matrix material are taken from Tvergaard and Needleman [34].  
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Table 5. 1. Matrix and cladding material constants 
 

 𝐸 (𝐺𝑃𝑎) 𝜈 𝜎𝑦 (𝑀𝑃𝑎) 𝐾 𝑛 𝑞1 𝑞2 𝑓𝑁 𝜀𝑁 𝑆𝑁 𝑓𝑐 𝑓𝑓 

Matrix 

material 

71 0.3 234.3 414.9 0.1 1.5 1.0 0.04 0.3 0.1 0.15 0.25 

Cladding 

material 

71 0.3 142 492.1 0.2 1.5 1.0 0.03 0.5 0.1 0.25 0.35 

 

The purpose of cladding in this study is to enhance formability and ductility, the clad 

material is assumed to have higher work hardening and greater ductility than the core 

material. In other words, compared with the core material, the clad material has relatively 

lower yielding stress but higher hardening and higher resistance to void nucleation [25]. 

Therefore, the values of the material parameters for the cladding material are supposed to 

be similar to those for the core except for 𝐸, 𝜎𝑦 , 𝐾, 𝑛, 𝑓𝑁, 𝜀𝑁, 𝑓𝑐, and 𝑓𝑓. Figure 5.3 shows 

the true stress and true strain curves of the core and cladding materials under homogeneous 

uniaxial tension. It should be emphasized that the main purpose of the present research is 

to assess the effect of cladding on the bendability of sheet metals and that the overall results 

and conclusions are not particularly dependent on the above values of the material 

parameters.  
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Figure 5. 3. Uniaxial tension stress and strain curves of the core and cladding materials 

 

The penalty contact method is considered for the contact interaction between the sheet and 

mandrels and the punch. Contact pair interactions are defined by specifying each of the 

individual surface pairs that can interact with each other and which searches for node-into-

face and edge-into-edge penetrations in the current configuration. The plane strain is 

considered for the sheet metal in the three-point bending test. Thus, the plane strain 

quadrilateral element CPE4R in ABAQUS/Explicit is used for the sheet. The rigid body 

element R2D2 is also utilized for the punch and mandrels. The length of the sheet (𝐿𝑜), 

thickness (𝑡𝑜), and plane strain thicknesses are 20, 2.5, and 10 mm, respectively. Moreover, 

𝑅𝑚 and 𝑅𝑝 are 0.25 and 0.2 mm, respectively.  
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ABAQUS/Explicit is used in this analysis because ABAQUS/Standard does not provide 

failure in the GTN model. To minimize the dynamic effect of the sample, the mass scaling 

method with enough low target time increment is applied. The ABAQUS/Explicit results 

and those obtained with ABAQUS/Standard before initiation of failure showed satisfactory 

agreement.  

Mesh sensitivity is inevitable in finite element simulations, especially those involving 

localized deformation and fracture. Thus, different meshes are considered in this 

simulation. Figure 5.4 shows the finite element (FE) configuration of a three-point bending 

test for a monolithic specimen (𝛤 = 0) with a typical mesh consisting of 30 × 500 plane 

strain quadrilateral elements (CPE4R) distributed uniformly. The effect of mesh sensitivity 

on bending fracture strain will be discussed later in this section. Due to the symmetry, only 

half of the sheet is considered, and symmetric boundary conditions are applied in the 

middle section of the specimen. 
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Figure 5. 4. FE configuration of the three-point bending test: a typical mesh for a metal 

sheet with 30 × 500 quadrilateral elements (CPE4R in ABAQUS/Explicit) 

 

 

Figure 5.5 shows the punch force 𝐹 as a function of punch stroke d for the core material 

(𝛤 = 0). The effect of mesh sensitivity on the force–displacement curve is also shown in 

this figure. First, the load increases linearly with a very small amount of punch stroke in 

which the sheet is in the elastic state. Then, the force increases gradually and reaches its 

maximum followed by a gradual decrease with further a punch stroke. The additional 

punch stroke leads to a sharp “knee” on the force. At this stage, the void volume fraction 

(𝑓) at the outer surface in the middle of the specimen section, which is under tension, 

reaches the critical void volume fraction (𝑓𝑐). Immediately after the sharp knee, a burst of 

void growth and nucleation results in a rapid drop in the punch force, thereby implying a 

rapid loss of load carrying capacity for the sheet metal specimen. Two different meshes of 

30 × 500 elements (30 elements in the Y direction and 500 elements in the X direction) 

Middle section  
of specimen 
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and 45 × 750 elements (45 elements in Y direction and 750 elements in X direction) are 

examined and the effect of mesh sensitivity on the force–displacement curves are presented 

in Figure 5.5. These two meshes are very carefully designed to have an aspect ratio close 

to 1.0 in the middle section of the specimen where the fracture occurs. The size of the 

elements has an insignificant effect on fracture initiation. 

 

 

Figure 5. 5. Effect of mesh sensitivity on the force–displacement curve (𝛤 = 0) 

 

5.4.1. Effect of span length of mandrel 

 

The bending moment increases with the decreasing mandrel span length as stated in [35]. 

Moreover, the three-point bending test requires more load to deform the sheet metal than 

the test with a longer span. Figure 5.6(a) shows the force–displacement curves of 
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monolithic sheets (𝛤 = 0) with various spans while the thickness is kept constant. The 

maximum value of the force increases with decreasing span length. Furthermore, 

decreasing the span causes less deflection and prompts the material to fail earlier as the 

concentrated load in the middle section of the sheet specimen increases. Figure 5.6(b) 

shows that the fracture strain decreases with an increasing span length. 
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(a) Force-displacement curves 

 

 
 

(b) Fracture bending strains 

 

Figure 5. 6. Effect of the mandrel span length on the bendability of sheet metals: (a) force–

displacement curves and (b) bending fracture strains 
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5.4.2. Effect of cladding thickness ratio (𝜞) 

 

 

The effect of the cladding ratio,  𝛤 on fracture under plane strain three-point bending test 

was studied. Figure 5.7 shows the effect of 𝛤 on the force–displacement curve. The force 

in the clad sheet first decreases and then increases with punch advancement compared to 

the force in the monolithic sheet. This phenomenon is consistent with the stress-strain 

behavior of the core and clad materials shown in Figure 5.3. The sharp knee on the force–

displacement curve is delayed with an increase in 𝛤. The effect of 𝛤 was investigated for 

three different cases of  
𝐿𝑚

2
= 4.5, 5.0, and 5.5 𝑚𝑚. Fracture did not occur for cladding 

ratios higher than 𝛤 = 0.3 and 𝛤 = 0.2 for cases with 
𝐿𝑚

2
= 5.0 mm and 

𝐿𝑚

2
= 5.5 𝑚𝑚, 

respectively. 
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(b) 
𝐿𝑚

2
= 5.0 𝑚𝑚 

 

(c) 
𝐿𝑚

2
= 5.5 𝑚𝑚 

Figure 5. 7. Effect of 𝛤 on the force–displacement curves for three different 𝐿𝑚 values: 

(a) 
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2
= 4.5 𝑚𝑚 (b) 
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Figure 5.8 presents the crack patterns in the clad sheet metals for various 𝛤 with three 

different values of  
𝐿𝑚

2
= 4.5, 5.0, and 5.5 𝑚𝑚. The location of failure initiation changes 

with an increase of 𝛤  and a variation in the span length. In Figure 5.8, the core clad 

interface is indicated with arrows. Decreasing the span length increases the bending strain 

for any punch displacement. For the highest bending strain 
𝐿𝑚

2
= 4.5, failure initiation is 

dominated by failure in the core for cladding ratios below 0.3; conversely, failure initiation 

occurs in the core and cladding above this level until failure of the cladding predominates 

at a cladding ratio above 0.4. This progression of failure in the core to that in the cladding 

is also observed at the other span lengths but the cladding ratio at which they occur changes 

and in some cases no bend failure occurs for high cladding ratios.  These trends are 

consistent with the force displacement plots shown in Fig. 7.     
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(a) 
𝐿𝑚

2
= 4.5 

 

 

𝛤 = 0 
 (crack in core) 

𝛤 = 0.1 
 (crack in core) 

Γ = 0.2 
 (crack in core) 

𝛤 = 0.3 
 (𝑐𝑟𝑎𝑐𝑘 𝑖𝑛 𝑐𝑜𝑟𝑒 𝑎𝑛𝑑 𝑐𝑙𝑎𝑑) 

𝛤 = 0.4 
 (𝑐𝑟𝑎𝑐𝑘 𝑖𝑛 𝑐𝑙𝑎𝑑) 

𝛤 = 0.5  
(𝑐𝑟𝑎𝑐𝑘 𝑖𝑛 𝑐𝑙𝑎𝑑) 

𝛤 = 0.6  
(𝑐𝑟𝑎𝑐𝑘 𝑖𝑛 𝑐𝑙𝑎𝑑) 

𝛤 = 0.7 
 (𝑐𝑟𝑎𝑐𝑘 𝑖𝑛 𝑐𝑙𝑎𝑑) 

𝛤 = 0.8 
 (𝑐𝑟𝑎𝑐𝑘 𝑖𝑛 𝑐𝑙𝑎𝑑) 
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(b) 
𝐿𝑚

2
= 5.0 𝑚𝑚 

 

 

 

 

 

 

(c) 
𝐿𝑚

2
= 5.5 𝑚𝑚 

Figure 5. 8. Crack shapes of sheet metals for various 𝛤 with three different cases: (a) 
𝐿𝑚

2
=

4.5 𝑚𝑚, (b) 
𝐿𝑚

2
= 5.0 𝑚𝑚, and (c) 

𝐿𝑚

2
= 5.5 𝑚𝑚 

𝛤 = 0 
 (𝑐𝑟𝑎𝑐𝑘 𝑐𝑜𝑟𝑒) 

𝛤 = 0.1 
 (𝑐𝑟𝑎𝑐𝑘 𝑖𝑛 𝑐𝑙𝑎𝑑) 

𝛤 = 0.2  
(crack in clad) 

𝛤 = 0.25 (core and clad) 

𝑐𝑟𝑎𝑐𝑘 𝑖𝑛 𝑐𝑜𝑟𝑒 𝑖𝑠 𝑑𝑜𝑚𝑖𝑛𝑎𝑛𝑡 

𝛤 = 0.35 (No fracture) 𝛤 = 0.3 (core and clad) 𝛤 = 0.4 (No fracture) 
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𝛤 = 0.25 
(No fracture) 
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The effect of 𝛤  on the normalized minimum cross-sectional area (
𝐴𝑚𝑖𝑛

𝐴𝑜
)  and bending 

fracture strain 𝜀𝑓
𝑐 = ln 

𝐴𝑜

𝐴𝑚𝑖𝑛
 in the middle section of the specimen are shown in Figures 5.9 

and 10. 𝐴𝑚𝑖𝑛 is the minimum cross-sectional area of the sheet which is calculated one step 

right before fracture initiation in ABAQUS. Note that the cross-sectional area in the tensile 

test decreases because of neck development, but macroscopic necking does not occur in a 

bend test. The cross-sectional area of a specimen decreases because of the general thinning 

of the bending sample in response to the punch stroke.  A bigger 𝜀𝑓
𝑐 means more ductility 

because the punch advances more without fracture initiation in the specimen. The 

minimum cross-sectional area decreases with increasing 𝛤 and allows the specimen to 

deform more, thereby increasing the ductility and bending fracture strain. 

 

Figure 5. 9. Normalized minimum cross-sectional area (
𝐿𝑚

2
= 4.5 𝑚𝑚) 
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(b) 
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Figure 5. 10. Fracture bending strain; (a) 
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Cladding also affects the development of  hydrostatic pressure 𝜎𝐻 = (1 3⁄ )(𝜎𝑥𝑥 + 𝜎𝑦𝑦 +

𝜎𝑧𝑧)  and stress triaxiality 
𝜎𝐻

𝜎̅
 at the fracture initiation site. Figure 5.11 presents the 

hydrostatic pressure and stress triaxiality at the fracture site when 
𝐿𝑚

2
= 4.5 𝑚𝑚  for 

various values of 𝛤. Hydrostatic pressure and stress triaxiality change at different locations 

in a bent specimen due to the generated strain gradient and fracture initiates at different 

locations with various values of 𝛤 . Fracture occurs at the outer surface in the middle 

section of the specimen for case 𝛤 = 0. For cases 𝛤 = 0.1 and 𝛤 = 0.2, fracture appears 

in the core close to the clad-core interface of cladding material. For cases with 𝛤 > 0.2, 

fracture transpires at the outer surface of the specimen where the material is clad. In general, 

the hydrostatic stress increases with increasing cladding ratio, as does the stress triaxiality. 

Both effects are pronounced particularly at large bending strains. Figure 5.12 presents the 

void volume fraction growth at fracture sites with various values of 𝛤 when 
𝐿𝑚

2
= 4.5 𝑚𝑚. 

Clearly, the void volume fraction slows down with the increase of 𝛤. For cases 𝛤 ≤ 0.2, 

fracture initiates in the core material when the 𝑓𝑓 = 0.25 and for cases 𝛤 > 0.2 fracture 

initiates in the cladding material when 𝑓𝑓 = 0.35. 
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(a) Hydrostatic pressure  

 

(b) Stress triaxiality 

Figure 5. 11. Effect of cladding on (a) hydrostatic pressure and (b) stress triaxiality at fracture sites 
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Figure 5. 12. Effect of 𝛤 on void volume fraction (
𝐿𝑚

2
= 4.5 𝑚𝑚) 
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bending force increases with higher values of stress in the cladding material. These figures 

indicate that “K” has an insignificant effect on bendability, but “n” has a significant effect.  
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(a) “K” sensitivity 

 
(b) “n” sensitivity 

 

Figure 5. 13. Stress-strain curves for the matrix and cladding materials with various values of (a) 

“K” and (b) “n” 

 

0

100

200

300

400

500

600

0 0.2 0.4 0.6 0.8 1 1.2

St
re

ss
 (

M
Pa

)

Strain

Matrix (K=414.9, n=0.1)
clad (K=492.1, n=0.2)
clad (K=415.7, n=0.2)
clad (K=341.7, n=0.2)
clad (K=292.4, n=0.2)

0

50

100

150

200

250

300

350

400

450

0 0.2 0.4 0.6 0.8 1 1.2

St
re

ss
 (

M
Pa

)

Strain

Matrix (K=414.9, n=0.1)

clad (K=341.7, n=0.2)

clad (K=341.7, n=0.1)

clad (K=341.7, n=0.05)



 

Ph.D. Thesis – M.M. Shahzamanian       McMaster University – Mechanical Engineering 

 

 

154 
 

  

                (a) “K” sensitivity, 𝛤 = 0.1                         (b) “K” sensitivity, 𝛤 = 0.2 

  

                 (c) “n” sensitivity, 𝛤 = 0.1                         (d) “n” sensitivity, 𝛤 = 0.2 

Figure 5. 14. Effects of “K” and “n” on force-displacement curves (
𝐿𝑚

2
= 5.5 𝑚𝑚) 
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(a) “K” sensitivity 

 

               
(b) “n” sensitivity 

 

Figure 5. 15. Effects of (a) “K” and (b) “n” on fracture bending strain (
𝐿𝑚

2
= 5.5 𝑚𝑚) 
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has established the strain gradients developed in bending and demonstrated that failure is 

fracture controlled [36, 37]. When a clad layer is placed on the outer bend surface of a 

sheet, several factors come in to play: 

1.  The clad surface has the highest strain but since the clad surface is more ductile, 

its bending fracture strain is larger than that of the underlying, lower ductility core. 

2.  As the cladding thickness increases, the strain developed in the core is decreased 

for any bending deformation. 

3.  The development of hydrostatic and triaxial stresses in the core, which is the most 

susceptible region for failure, is modified. The effects are particularly apparent in 

the latter period of bending as fracture develops. 

The present results quantitatively demonstrate the increase in bendability with the 

increasing clad thickness (Figure 5.7). At low clad thickness, the strain in the cladding 

exceeds the fracture strain in the core and damage is initiated in the core close to the clad-

core interface, where the strain in the core is highest and the core is especially softer and 

less ductile than the clad material. As the clad thickness increases as a result of the strain 

gradients in the sheet, the strain in the core decrease, as does the damage in the core. 

Meanwhile, larger strains develop in the cladding due to its higher ductility. Eventually, 

however, the cladding thins and fails. At higher clad thickness, the strain developed in the 

core is insufficient to cause clad failure and the sample does not fail. The amount of 

generated strain in the bent specimen increases with the decrease of 𝐿𝑚 . This matter 

explains why the fracture initiation transition zone happens with lower values of 𝛤 with 

the decrease of 𝐿𝑚. 
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As the strain in the core decreases, the hydrostatic and triaxial stresses are modified, 

thereby reflecting the evolution of the damage with bending strains (Figure 5.11). As the 

failure transitions from the core to cladding with increasing clad thickness, the hydrostatic 

and triaxial components increase in the cladding, reflecting the higher strain regions. 

Modifying the plastic response of the cladding affects bendability. Increasing the work 

hardening rate of the cladding, as reflected in an increase in “n” in the Power Law 

formulation, will result in an increase in the fracture strain and a consequent increase in 

bendability. 

The present modeling results are consistent with strain gradient development under 

bending and the notion that bending is controlled by factors that influence fracture. 

 

5.6. Conclusion 

 

The present results show that at low cladding thicknesses, the damage is initiated in the 

core, but the resulting crack is blunted by the cladding. Additional bending is required until 

the cladding thins and fails under bending surface strain. At thicker levels of cladding, the 

strain in the core and the level of core damage decrease. Thus, a higher level of strain is 

required in the cladding to produce failure. At large cladding thickness, the bending strain 

in the core is insufficient to produce damage in either the core or the cladding and specimen 

failure does not occur. Factors that influence the plasticity and fracture of cladding affects 



 

Ph.D. Thesis – M.M. Shahzamanian       McMaster University – Mechanical Engineering 

 

 

158 
 

the bendability of the sheet. Hence, the choice of cladding has an important effect on sheet 

bendability. 
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CHAPTER 6 

 

Conclusions and Recommendations for Future Work 

 

6.1. Conclusions 

 

The GTN model is extended to be suitable for anisotropic metals to present their elastic–

plastic response in FEAs. The effects of void growth and microvoid coalescence, which 

lead to final ductile fracture, are considered in the model. GTN is first analyzed for 

understanding, and various elements and void shapes are considered. Its application is then 

investigated to enhance the ductility of metals under bending by superimposing hydrostatic 

pressure and cladding the sheet metals with a soft material. 

First, the GTN model is extended on the basis of Hill’s quadratic anisotropic criterion for 

the simulation of the plastic and damage responses of anisotropic sheet metals. The FE 

software ABAQUS is used, and the model is implemented in the user material subroutine 

with a linearized tangent moduli formulation. The ductile damage parameters are 

calibrated by the model’s ability to reproduce the experimental results for simulating the 

tensile test for a typical Al alloy. Hill’s quadratic anisotropy case predicts a substantial 

damage evolution compared with that obtained with the isotropic GTN model. Thus, high 
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values for the damage-free stress–strain curve in the matrix should be considered to 

reproduce the experimental results. Such consideration, however, is unrealistic. 

Consequently, Hill’s anisotropic coefficients are proposed to be replaced with an effective 

anisotropic coefficient to reduce the damage growth. The effects of individual Hill’s 

constants are eliminated, but the damage growth was inhibited when the equivalent stress 

in the anisotropic model is unchanged. For this model implementation, algorithms 

considering ellipsoidal voids are presented. Void volume fraction reaches a critical value 

in ellipsoidal voids earlier than in spherical voids. As a result, necking occurs earlier in the 

material in ellipsoidal voids. An algorithm for plane stress elements is implemented, and 

the results show that the uniaxial stress–strain responses for 3D and plane stress elements 

are nearly identical.  

Second, the effect of superimposed hydrostatic pressure on the ductility of sheet metals 

under a plane strain three-point bending test is evaluated via FEM. Superimposed 

hydrostatic pressure delays or completely eliminates void growth and coalescence and 

leads to high ductility in sheet metals. Fracture strain increases with rising superimposed 

hydrostatic pressure. The ductility of sheet metals is higher under bending than under 

tension for various superimposed hydrostatic pressures. The ductile fracture parametric 

study in the GTN model shows that ductility increases with increasing 𝜀𝑁 , 𝑆𝑁 , and 𝑓𝑐 , 

decreases with increasing 𝑓𝑁, and is unchanged with a variation in 𝑓𝑓. 

Third, FEA of a plane strain three-point bending test for clad sheet metals with various 𝛤 

is performed. Cladding significantly increases bendability because it slows down the 
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development of stress triaxiality. Fracture initiation location changes from the core 

material to the clad material with increasing 𝛤. The effect of the span length of mandrel on 

bendability is studied. The transition zone in failure initiation, where fracture occurs at the 

core and clad materials, is determined at lower values of 𝛤 with an increase in span length. 

Finally, bendability increases with an increase in hardening exponent in the clad material. 

The change in bendability is insignificant if the stress–strain curve in the clad material 

varies but the hardening exponent is constant.  

In sum, the GTN model is analyzed, implemented in ABAQUS and extended to be suitable 

for anisotropic metals. Hill’s constants should be replaced with an effective anisotropic 

coefficient to eliminate the substantial generated damage. The ductility of sheet metals is 

increased with hydrostatic pressure because it delays void growth and coalescence. The 

bendability increases by cladding a sheet metal when the development of stress triaxiality 

slows down in soft materials. 

 

6.2. Recommendations for future work 

 

The implementation of the GTN model suitable for anisotropic metals is presented in this 

study and the application of the isotropic GTN model to enhance the ductility of metals by 

superimposing hydrostatic pressure and cladding sheet metals are investigated. The 

recommendations for future work can be summarized as follows: 

[1]. Implementation of the GTN model and considering the strain rate sensitivity of matrix 

materials. 
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[2]. Numerical study on the effect of pre-strain on the bendability of sheet metals using the 

GTN model. 

[3]. Numerical study on the effect of width/thickness ratio on bendability using the GTN 

model. 

[4]. Numerical study on the effect of superimposed hydrostatic pressure on the ductility of 

metal rings under compression. 
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