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ABSTRACT 

High-latitude ecosystems have experienced substantial warming over the past 40 years, 
which is expected to continue into the foreseeable future. Consequently, an increase in vegetation 
growth has occurred throughout the circumpolar North as documented through remote sensing and 
plot-level studies. A major component of this change is shrub expansion (shrubbing) in arctic and 
subarctic ecotones. However, these changes are highly variable depending on plant species, 
topographic position, hydrology, soils and other ecosystem properties. Changes in shrub and other 
vegetation properties are critical to document due to their first-order control on water, energy and 
carbon balances. This study uses a combination of multi-temporal LiDAR (Light Detection and 
Ranging) and field surveys to measure temporal changes in shrub vegetation cover over the Wolf 
Creek Research Basin (WCRB), a 180 km2 long-term watershed research facility located ~15 km 
south of Whitehorse, Yukon Territory. This work focuses on the smaller Granger Basin, a 7.6 km2 
subarctic headwater catchment that straddles WCRB’s subalpine and alpine tundra ecozones with a 
wide range of elevation, landscape topography, and vegetation. Airborne LiDAR surveys of WCRB 
were conducted in August 2007 and 2018, providing an ideal opportunity to explore vegetation 
changes between survey years. Vegetation surveys were conducted throughout Granger Basin in 
summer 2019 to evaluate shrub properties for comparisons to the LiDAR. Machine learning 
classification algorithms were used to predict shrub presence/absence in 2018 based on rasterized 
LiDAR metrics with up to 97% overall independent accuracy compared to field validation points, 
with the best-performing model applied to the 2007 LiDAR to create binary shrub cover layers to 
compare between survey years. Results show a 63.3% total increase in detectable shrub cover > 0.45 
m in height throughout Granger Basin between 2007 and 2018, with an average yearly expansion of 
5.8%. These changes in detectable shrub cover were compared across terrain derivatives created 
using the LiDAR to quantify the influence of topography on shrub expansion. The terrain comparison 
results show that shrubs in the study area are located in and are preferentially expanding into lower 
and flatter areas near stream networks, at lower slope positions and with a higher potential for 
topographic wetness. The greatest differences in terrain derivative value distributions across the 
shrub and non-shrub change categories were found in terms of stream distance, elevation, and 
relative slope position. This expansion of shrubs into higher-resource areas is consistent with 
previous studies and is supported by established physical processes. As vegetation responses to 
warming have far-reaching influences on surface energy exchange, nutrient cycling, and the 
overall water balance, this increase in detectable shrub cover has a wide range of impacts on the 
future of northern watersheds. Overall, the findings from this research reinforce the documented 
increase in pan-Arctic shrub vegetation in recent years, quantify the variation in shrub expansion 
over terrain derivatives at the landscape scale, and demonstrate the feasibility of using LiDAR to 
compare changes in shrub properties over time. 
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CHAPTER 1: INTRODUCTION 

High-latitude ecosystems have experienced substantial warming over the past 40 years, 

which is expected to continue into the foreseeable future (Hinzman et al., 2005; Overpeck et al., 

1997; Tape et al., 2006). Consequently, an increase in vegetation growth has occurred throughout the 

circumpolar North as documented through remote sensing and plot-level studies (Epstein et al., 2013; 

Myers-Smith et al., 2011; Sturm et al., 2001a; Tape et al., 2006). Satellite remote sensing has shown 

a regionally variable but overall increase in normalized difference vegetation index (NDVI), 

estimated vegetation productivity, and aboveground biomass across the pan-Arctic since 1982, 

largely based on data from the relatively coarse-resolution NOAA AVHRR sensors (Epstein et al., 

2012; Epstein et al., 2013; Tape et al., 2006).  

A major component of this change is shrub expansion (shrubbing) in arctic and subarctic 

ecotones, whereas the migration of boreal forest treeline is less pronounced (Epstein et al., 2013; 

Tape et al., 2012). Tape et al. (2006) proposed three distinct types of arctic shrub expansion: shrub 

in-filling, increasing shrub sizes, and expansion into new areas. Most studies to date have focused on 

individual shrub species in arctic tundra environments, with a notable lack of research on subalpine 

vegetation development in subarctic environments. Changes in shrub and other vegetation properties 

are critical to document due to their first-order control on water, energy and carbon balances (Epstein 

et al., 2013). The presence of tall shrub patches can substantially modify the local environment in 

taiga-tundra ecotones, decreasing the richness of plant species and altering habitat availability 

(Wallace & Baltzer, 2019). The cycling of nitrogen, phosphorus, carbon, and methane in tundra 

ecosystems are all affected by interactions between the abiotic and biotic influences of shrub 

canopies (Myers-Smith et al., 2011). In addition, both expansion and densification of shrubs 

decreases surface reflectance and increases absorption of solar radiation, leading to a positive global 

warming feedback (Ménard et al., 2014). 
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Changes in the overall water balance, streamflow regimes, and water quality due to 

vegetation responses to warming have far-reaching implications for northern freshwater ecology 

(Tetzlaff et al., 2013). Shrub rainfall interception loss is a major component of the water balance in 

tundra environments, with birch patches reducing effective below-canopy rainfall by up to 30% 

(Zwieback et al., 2019). The increase in tall shrubs has contributed to a decline in erosion in Arctic 

streams and floodplain areas, along with an increase in stabilized soil (Tape et al., 2011). The 

interactions between shrub canopies and snow cover influence soil and permafrost temperatures 

(Myers-Smith et al., 2011). Increases in shrub cover in Arctic basins lead to increased snow storage, 

with higher accumulation of snow in shrub tundra largely resulting from exposed shrubs increasing 

aerodynamic roughness (Essery et al., 2006; Pohl et al., 2007). As a result of complex interactions 

between net radiation, turbulent transfer, and sensible heat fluxes, snowmelt rates are generally 

enhanced under shrub canopies compared to sparsely vegetated tundra (Pomeroy et al., 2006). 

Increased plant biomass also leads to shallower thaw depths due to the insulative effects of 

vegetation and highly organic soil horizons (Walker et al., 2003). The relative influence of shrubs on 

local ground shading and active layer thickness versus their effects on large-scale climate warming 

feedbacks lead to complex potential permafrost responses (Blok et al., 2010; Lawrence & Swenson; 

2011). Understanding how vegetation development varies under different conditions is therefore 

critical for predicting the future of northern watersheds under a rapidly changing climate. 

The rates of shrub expansion are not uniform, both throughout the arctic and subarctic 

ecotones and within individual study areas (Naito & Cairns, 2011a). These changes have been found 

to be highly variable depending on plant species, topographic position, hydrology, soils and other 

ecosystem properties (Epstein et al., 2013). Photo pairs from Tape et al. (2006) showed a large 

percentage of increasing shrubs overall, while these changes were most easily detected on hillslopes 

and valley bottoms. Naito & Cairns (2011a) found that shrubs preferentially expand into areas with 
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higher topographic potential for soil moisture. When examining increases in woody vegetation cover 

in Eastern Nunavik, Quebec, Tremblay et al. (2012) found that these occurred mainly on south-facing 

slopes, with the rates of expansion varying across slope gradient and altitude. Tape et al. (2006) and 

Naito & Cairns (2011a) concluded that increases in shrub cover predominantly occurred in or near 

riparian areas at lower slope positions. Land-surface parameters with influences on vegetation growth 

such as these are commonly derived from gridded digital elevation models (DEMs) in a GIS 

environment (Hengl & Reuter, 2009).  

1.1 Remote Sensing of Vegetation 

1.1.1 Overview 

Remotely sensed data can be used along with field surveys to map vegetation over relatively 

large areas, along with evaluating how land cover and other properties change over time (Langley et 

al., 2001). As the responses in arctic and subarctic vegetation to warming may occur at fine scales, 

broad-scale satellite imagery can be ineffective in detecting and quantifying changes (Lantz et al., 

2010). Though multi-temporal coarse- to medium-resolution satellite imagery is useful due to its 

widespread coverage of the pan-Arctic, these sensors cannot capture the heterogeneity of vegetation 

change within pixels (Naito & Cairns, 2011a; Tape et al., 2012).  

In regards to long-term monitoring of arctic vegetation, studies to date have used remotely 

sensed data from repeated historical airphoto pairs (Naito & Cairns, 2011a; Sturm et al., 2001a; Tape 

et al., 2012), the NOAA AVHRR (Epstein et al., 2012; Tape et al., 2006),  SPOT imagery (Tape et 

al., 2011; Tape et al., 2012), Landsat imagery (Campbell et al., 2020; Fraser et al., 2011; Tape et al., 

2011), and higher-resolution commercial satellites such as the WorldView and QuickBird sensors 

(Naito & Cairns, 2015). However, conventional sensors such as these have significant limitations for 

ecological and vegetation-focused applications (Lefsky et al., 2002). Optical imagery is limited by its 
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inability to sense height or density of vegetation and lack of penetration with cloud cover (Millard & 

Richardson, 2013). Spectral signatures of woody vegetation such as trees and shrubs are often similar 

to adjacent lower-stature vegetation such as grasses, leading to potential difficulty in differentiating 

between classes (Leckie et al., 2005). 

1.1.2 LiDAR Remote Sensing of Vegetation 

Airborne laser scanning, commonly referred to as LiDAR (Light Detection and Ranging) is 

an active remote sensing method used to characterize objects at or near the earth’s surface where 

pulses of light are emitted from an aircraft-mounted laser instrument (Farid et al., 2008; Hopkinson et 

al, 2006; Wehr & Lohr, 1999). When emitted light is reflected back to the sensor above a certain 

threshold of energy, a single point or “return” is recorded (Roussel et al., 2017). By knowing the 

speed of light, the location and orientation of the laser emitting and receiving instruments, and the 

time between pulse emission and its arrival back to the receiver, the location of this return in 3D 

space can be computed (Hopkinson et al., 2006). LiDAR has become one of the most efficient 

remote sensing techniques for acquiring detailed and accurate 3D data on landscape topography and 

vegetation, and can make up for several shortcomings of traditional satellite remote sensing (Wu et 

al., 2016). As the light pulses from LiDAR sensors can penetrate vegetation cover, they can directly 

measure the 3D distribution of canopies and the topography below (Lefsky et al, 2002). The addition 

of vertical information from integrating LiDAR data can reduce the problems in distinguishing 

vegetation classes with optical imagery alone (Castillo et al. 2012; Ghosh et al. 2014). 

Though LiDAR has been shown to reliably estimate forestry metrics such as height, canopy 

cover, and biomass, obtaining accurate estimates for lower-stature vegetation is more challenging 

(Estornell et al., 2011; Greaves et al., 2016; Hopkinson et al., 2005; Streuker & Glenn, 2006). The 

low height of shrub vegetation requires high levels of accuracy in the methodology and 
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characteristics of the LiDAR data used (Estornell et al., 2011). Hopkinson et al. (2005) found that 

both low (< 2 m) and high (2-5 m) shrubs display high levels of vegetation surface underestimation 

compared to field height measurements, with this error representing over 50% of the total shrub 

height. These errors can be attributed to factors such as the low heights and densities of shrub 

canopies, sampling errors due to pulse density, and the strong influence of ground surface 

classification. The relatively open structure and low foliage densities typical of short shrubs can lead 

to considerable amounts of foliage penetration by the LiDAR pulses before they generate a return, 

leading to large proportional underestimations in height (Hopkinson et al., 2005). Low sampling rates 

(i.e. return densities) make LiDAR pulses more likely to miss the highest points of vegetation and 

underestimate heights compared to field measurements (Zhao et al., 2018), and potentially miss them 

entirely. As noted in Streuker & Glenn (2006), a LiDAR survey with a return density of 1.2/m2 and a 

footprint diameter of ~20 cm would only sample less than 10% of the actual ground surface. The 

limitations of laser sensor thresholds for separating first- and intermediate-returns can also be an 

issue (Greaves et al., 2016). 

The accuracy of the DEM and ground-classification routine used to create it has a large 

proportional influence on LiDAR estimates of low-stature vegetation. In order to measure both 

topography and vegetation properties above the ground surface, LiDAR returns from ground and 

non-ground features must be identified and classified. Errors in the creation of a ground surface will 

propagate to errors in the estimates of vegetation heights above it (Hyyppä et al., 2008). The 

identification and removal of non-ground points to create bare-earth DEMs in complex environments 

has proven to be a challenging task (Zhang et al., 2003). Algorithms for ground-classification include 

slope-based methods using TIN refinement (Axelsson, 1999; Axelsson, 2000; Isenburg, 2019), 

mathematical morphology-based methods (Zhang et al., 2003), and surface-based methods (Zhang et 

al., 2016). For a more exhaustive list of existing ground-classification algorithms, see Montealegre et 
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al. (2015). When considering these inherent difficulties associated with low vegetation, accurate 

LiDAR surveys and ground-classification routines are needed for reliable and reproducible results 

(Estornell et al., 2011). 

Due to the challenges in estimating shrub heights from lower-resolution LiDAR (Estornell et 

al., 2011; Greaves et al., 2016; Hopkinson et al., 2005; Streuker & Glenn, 2006), the capability to 

model shrub presence and absence has been explored. This has been accomplished through simple 

presence/absence thresholds based on LiDAR-derived canopy height models (Estornell et al., 2011) 

and surface roughness values based on the standard deviation of LiDAR return heights (Streuker & 

Glenn, 2006). More recently, supervised machine learning algorithms have been used along with 

airborne LiDAR and optical imagery to successfully classify landscapes such as wetlands (Millard & 

Richardson, 20103; Millard & Richardson, 2015), tropical forests (Sothe et al., 2019), urban 

environments (Carlberg et al., 2009) and water areas (Smeeckaert et al., 2013), among others. 

However, there is limited research on the use of these methods to detect and/or classify low-stature 

vegetation. 

One machine learning classifier that has been commonly used in landscape classifications 

(Belgiu, 2016) is the random forests (RF) algorithm proposed by Breiman (2001). This is an 

ensemble learning method that is based on successive Classification and Regression (CART)-like 

trees using different bootstrapped samples of training data, has few user-defined parameters, and is 

robust against overfitting (Liaw & Weiner, 2002; Millard & Richardson, 2015). The support vector 

machines (SVM) group of machine learning classifiers is another widely used algorithm that 

functions on the basis of linearly separable classes (Richards, 2013). The SVM employs optimization 

algorithms to locate optimal boundaries between classes, using a separating hyperplane based on the 

selected kernel function (Huang et al., 2002). Duro et al. (2012) compared the accuracy of classifying 
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agricultural landscapes using RF and. SVM, finding no statistically significant differences in the 

results. 

1.1.3 Change Detection with Multi-Temporal LiDAR 

Forestry metrics such as stand height, wood volume, and above-ground biomass are 

commonly estimated from LiDAR point clouds using statistical models (Roussel et al., 2017). 

LiDAR has been used to evaluate changes in properties such as these between surveys, which can be 

logistically difficult as the structure of point clouds is dependent on the LiDAR instrument used, 

sensor configurations, and flight details (Bater et al., 2011; Roussel et al., 2017). Although there is a 

lack of research on using multi-temporal LiDAR to evaluate changes in low stature vegetation 

properties, Streuker & Glenn (2006) and Estornell et al. (2011) suggested that their threshold-based 

presence/absence methods could feasibly be used to compare changes in shrub cover between 

surveys.  

The stability of forestry metrics derived from different LiDAR point clouds has been 

explored previously, with comparisons between surveys with identical sensors and parameters 

(Hopkinson et al., 2008; Naesset, 2004), the effects of sensor configurations and flight parameters, 

(Naesset, 2009; Roussel et al., 2017), and between different sensor instruments used (Bollandsås et 

al., 2013; Cao et al., 2016; Hopkinson et al., 2008; Naesset, 2009; Zhao et al., 2018). Hopkinson et 

al. (2008) concluded high-resolution LiDAR datasets acquired from comparable surveys can detect 

growth in homogenous red pine conifer plantations at an annual timestep, but increased stand 

heterogeneity such as in natural environments and different survey configurations would introduce 

more uncertainty.  

The effects that acquisition parameters have on the structure of point clouds should be 

considered when evaluating metrics over separate surveys (Roussel et al., 2017). When sampling 
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rates are lower (resulting in a lower return density), LiDAR pulses are more likely to miss the highest 

points of the vegetation and underestimate heights compared to field measures (Zhao et al., 2018). 

However, due how variations in pulse density are accompanied by variations in aircraft altitude and 

therefore return footprint size, conclusions such as these may be overly simplistic (Roussel et al., 

2017).  Such biases caused by different sensor configurations must be corrected for in order for 

comparisons between them to be valid. Cao et al. (2016) found that even with the differences 

between an older ALTM-3100 discrete-return and newer Riegl LMS-Q680i full waveform unit, 

forestry height metrics could be efficiently compared over 6 years between surveys after 

coregistration of the point clouds. 

1.2 Research Objectives 

The primary objective of this study is to use a combination of airborne LiDAR and field 

methods to measure spatial changes in vegetation over 11 years within a well-studied subarctic 

mountain basin. The potential for LiDAR data to accurately capture changes in shrub height between 

survey years is explored along with quantifying changes in detectable cover using supervised 

machine-learning classifications of shrub presence and absence. Due to the documented 

heterogeneity of shrub expansion within individual study areas, terrain derivatives are used for 

quantitative comparisons of these changes over different landscape positions. The wide range of 

elevation, landscape topography, and vegetation within the study area will make these results 

applicable to other northern environments. Considering the rapid change to circumpolar systems, 

results from this study help: 1) quantify how shrub vegetation cover has changed over time in an 

alpine subarctic ecosystem, and 2) link these changes to ecotone and physiographic variables such as 

elevation, aspect, slope position, topographic wetness, and proximity to riparian areas. 

  



M.Sc. Thesis – S. C. Leipe; McMaster University – School of Earth, Environment & Society 

9 
 

CHAPTER 2: METHODS 

2.1 Study Area 

This study was conducted in Granger Basin, a ~7.6 km2 subarctic headwater catchment 

located in the west-central region of the Wolf Creek Research Basin (WCRB) (Carey et al., 2013). 

The WCRB is a ~180 km2 long-term watershed research facility located ~15km south of Whitehorse, 

Yukon Territory with over 20 years of comprehensive meteorological data on record (Janowicz, 

1999; Rasouli et al., 2019).  

 
Figure 2.1: Study area of the Granger Basin sub-catchment, located within the larger WCRB 

 
Granger Basin straddles the subalpine and alpine tundra ecozones of the WCRB, with an 

elevation range of 1356 to 2080 m.a.s.l. (as referenced to the CGVD28 geoid). The climate is 

characterized as continental subarctic, with mean annual precipitation of ~400 mm of and a mean 

annual temperature of -3 oC (Carey et al., 2013). The lower basin contains a mix of low-lying 

grasses, willow shrubs, and dwarf birch shrubs, with taller shrubs (>2 m) along the riparian corridor 

and few isolated patches of white spruce (Piovano et al., 2019). At upper elevations, land cover is 
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dominated by bare rock, short tundra mosses, and grasses (Rasouli et al., 2019). A more 

comprehensive description of Granger Basin is found in McCartney et al. (2006). 

 
2.2 LiDAR Acquisition 

Airborne LiDAR surveys of the WCRB were conducted in August 2007 by Dr. Chris 

Hopkinson and the Applied Geomatics Research Group (AGRG) and August 2018 by Dr. Brian 

Menounos (University of Northern British Columbia). The 2007 survey was delivered from AGRG 

as 115 separate tiles in the ASPRS .las file format, each measuring 2 km by 2 km with 20 m buffers. 

The data was originally projected into the XY coordinate system NAD 1983 UTM Zone 8N, with 

elevations referenced to the CGVD28 geoid (Véronneau et al., 2001). However, no projection 

information was assigned to the actual LAS files as provided. More in-depth details of the LiDAR 

preprocessing from survey to delivery can be found in the survey report (AGRG, 2008) and 

Hopkinson & Chasmer (2009). According to testing from the sensor manufacturer (Ussyshkin et al., 

2006), the ALTM 3100 discrete-return unit has a reported accuracy of 15 cm (as one standard 

deviation) at a flying height of 1200 m.a.g.l. The sensor’s minimum pulse separation required to 

obtain multiple returns is 2.14 m (Ussyshkin & Theriault, 2011). The 2018 survey was delivered as a 

single compressed .laz file, which was extracted to the more commonly used .las format using 

LASzip (Isenburg, 2012). The data was originally projected into the WGS 1984 UTM Zone 8N XY 

coordinate system, with elevations referenced to the WGS84 ellipsoid. According to testing from the 

sensor manufacturer, the Riegl Q-780 full-waveform unit used in the survey has a reported accuracy 

of 2 cm at a range of 250 m. 
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Table 2.1: Flight parameters and scanner properties of both LiDAR surveys used 

Survey 
Date 

Sensor Used Flying Height 
(m.a.g.l.) 

Pulse Frequency 
(Hz) 

Scan Angle 
(degrees) 

Approx. Return 
Density (m-2) 

Aug. 11, 
2007 

Optech 
ALTM 3100 

1350 - 1550 3300 +/-23 0.67 

Aug. 18, 
2018 

Riegl Q-780 3000 - 3030 400 +/-33 11.9 

 
 
2.3 Field Data Collection 

2.3.1 LiDAR Validation  

A Hemisphere S320 GNSS RTK system was used to collect 371 differentially-corrected GPS 

(dGPS) points on relatively hard, flat surfaces such as roads and established trails throughout the 

extent covered by both LiDAR surveys. Only averaged base station positions and points that were 

able to capture an RTK Fixed solution were included in the validation set used to evaluate LiDAR 

survey accuracy. These points were collected in the NAD 1983 UTM Zone 8N XY coordinate 

system, with heights referenced to the WGS84 ellipsoid. 164 total dGPS points from the vegetation 

surveys and shrubline mapping were also captured with an RTK Fixed solution (including averaged 

base station estimates). The base station receiver was configured to store raw logging data every 

second, which can be used for post-corrections of stored coordinates for greater positioning accuracy. 

 
2.3.2 Shrubline Mapping 

When examining preliminary HAG (height above ground) models from both LiDAR 

datasets, there were a significant amount of returns >50 cm above the ground surface which were 

unlikely to be vegetation due to their high elevations within the alpine tundra ecozone (>1650 

m.a.s.l.). In order to help examine the differences between true shrub cover and these artifacts, 

Granger Basin’s shrubline was delineated using the same dGPS unit as used for the LiDAR 

validation. Starting at the south-west corner of the basin and moving north-east, coordinates of the 
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highest shrub patches were recorded with the dGPS, then the shrubs were photographed and their 

heights were measured with an avalanche probe where the dGPS point was taken. As the majority of 

these points were captured with an RTK Fixed solution, they were included in the validation set for 

vegetation. With the highest shrubs in Granger Basin recorded, any non-ground LAS returns above 

this line could be safely assumed to be either large rocks/boulders, flightline noise, or some other 

LiDAR survey error. 

 
2.3.3 Vegetation Surveys 

29 vegetation transects were spread across Granger Basin in order to evaluate vegetation and 

landscape properties for comparison to LiDAR metrics. Each transect was located on slopes with a 

roughly consistent slope aspect and obvious shrub presence as interpreted from preliminary LiDAR 

HAG models and pan-sharpened WorldView-2 imagery. Transects were spread throughout the basin 

in order to get a roughly even distribution between elevation and aspect directions and capture 

maximum variability. These pre-identified target sites were navigated to using the Collector for 

ArcGIS mobile application, where a decision was made on whether they were acceptable locations 

for a transect before surveying. 
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Figure 2.2: Location of vegetation transects within Granger Basin along with the field-measured 
shrubline 
 

The plot and transect structure were roughly modeled after the shrub transects from Tape et 

al. (2012). Each 40 m transect consisted of 5 circular plots with a 1 m radius, spaced out at every 10 

m using a pre-measured rope. Each plot used a bamboo post to mark out the center, with a rope 

attached with markings at 50 cm and 1 m. These plot centroids were then mapped using the dGPS 

and photographed. At each plot, several characteristics were recorded and/or measured along with 

any relevant notes (weather conditions, cloud cover, LAI 2200 lens cap used, etc.). 
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Figure 2.3: Example vegetation transect in Granger Basin along with diagram of survey 
methodology  
 

Vegetation height was measured using an avalanche probe at 9 regularly-spaced points 

throughout each plot (A, B, C, D, plot center), with the highest species at each point recorded. The 

percent coverage of each species or land cover classification present within the plot was estimated by 

each surveyor present and averaged to get a final value. Volumetric water content at 20 cm depth was 

measured using a HydroSense II soil moisture probe at 3 representative locations per plot. Leaf area 

index (LAI) was also recorded throughout the plot with a single-wand LAI 2200 using 8 above-

canopy measurements and 16 below-canopy measurements. 

 
Table 2.2: Variables measured in vegetation surveys and equipment used 

Variable measured Repetitions (per plot) Instrument used 

Vegetation height 9 Avalanche probe 

Percent cover (per species) 2 n/a (visual estimate) 

Volumetric water content 3 HydroSense II 

Leaf Area Index 8A/16B LAI 2200 

GPS coordinates 1 Hemisphere S320 GNSS RTK 
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2.4 Field Data Processing 

2.4.1 LiDAR Validation 

dGPS points taken during the field campaign were used to determine the accuracy of both 

LiDAR surveys. After conversion of the raw base station .BIN files to RINEX format, post-

processing of the dGPS points was done using Natural Resources Canada’s Precise Point Positioning 

(CSRS-PPP) and TRX tools. CSRS-PPP uses precise GPS orbit and clock products generated 

through international collaboration to improve positioning results by a factor of 2 to 100 when 

compared to uncorrected positions (Tétreault et al, 2005). As CSRS-PPP computes estimated heights 

using the GRS80 ellipsoid, the estimated coordinates from PPP were referenced to the WGS84 

ellipsoid (identical to ITRF 2008 reference frame) using the TRX tool so that they would match the 

2018 LiDAR’s vertical and horizontal spatial references. Positional shifts calculated using CSRS-

PPP and TRX were applied to the original FieldGenius output coordinates in R Statistics (R Core 

Team, 2019), which were then exported as CSVs and shapefiles for further use.  

 
2.4.2 Vegetation Transects 

The dGPS points representing each transect were extracted from each MicroSurvey 

FieldGenius project file containing their respective coordinates and saved in CSV format. Each 

transect CSV was given new fields to store the original transect ID and the plot increment that each 

point represented. Shrub species were separated into willow, dwarf birch, and dead shrub categories 

based on dominant plot area according to the averaged percent cover estimates. Dead shrubs were 

categorized as a separate class, as they were difficult to differentiate into birch or willow but their 

aboveground biomass would still generate LiDAR returns. 

After the vegetation metrics were calculated for each transect and plot, they were appended 

as new fields to transect CSVs converted from the original FieldGenius project files. Plot coordinates 
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were post-processed using CSRS-PPP in the same manner as the validation set. Once the field 

measures were attached to their respective plots, each transect CSV was converted to shapefile 

format based on their final averaged Northing and Easting fields and buffered to radii of 50 cm and 

100 cm in ArcPy. This preparation gave 29 new shapefiles representing all transects for use in 

extracting the LAS metrics within their respective plots. Each transect shapefile contained 5 

individual circular polygons with 100 cm radii, one for each plot increment (0, 10, 20, 30, 40 m). 

This gave 145 total plots with field measures to compare with extracted LiDAR metrics.. 

 
2.5 LiDAR Pre-Processing 

2.5.1 Data Preparation 

As the 2007 and 2018 datasets were surveyed using different spatial references based on 

different datums, these had to be standardized so that both surveys represented the same locations in 

XY space. The 2007 point cloud was also provided without projection information explicitly 

assigned to the LAS files, which were assigned their original projection of NAD 1983 UTM Zone 8N 

to the 2007 tiles using las2las (Isenburg, 2019).  A datum transformation was then applied to the 

2018 point cloud in ArcGIS Pro (ESRI, 2019) to transform the tiles from their original projection in 

WGS 1984 UTM Zone 8N and match the 2007 survey’s spatial reference. The vertical coordinate 

systems were also different between the two datasets, as heights from the 2007 survey were based on 

the CGVD28 geoid while 2018 heights used the WGS 1984 ellipsoid. Respective vertical coordinate 

systems were assigned to the point clouds using the PDAL library (PDAL Contributors, 2019), then 

elevations from the 2018 point cloud were transformed to the CGVD28 geoid model using LAStools 

and GDAL (GDAL/OGR contributors, 2019). 

The original 117 GB point cloud for the 2018 survey was subdivided into individual tiles 

using lastile (Isenburg, 2019), each measuring 500 m by 500 m with 30 m buffers on either side to 

avoid edge effects when processing. Pre-existing buffers within the 2007 point cloud provided by 
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AGRG were not explicitly flagged during their creation in TerraScan, and therefore had to be 

identified and removed through ArcPy and R scripting to avoid duplication artifacts in buffer zones. 

These new LAS files were then merged and re-tiled to the same specifications as the 2018 data. 

Though the 2007 survey return density has been reported as ~1/m2 (AGRG, 2008; Chasmer et 

al., 2008; Hopkinson & Chasmer, 2009), after clipping out duplicate points in buffer zones it was 

found to only contain ~0.67 returns/m2 through testing in both LAStools and lidR. As lower sampling 

rates make LiDAR pulses more likely to miss the highest points of vegetation and underestimate 

heights compared to field measures (Zhao et al., 2018), the differences in return density between the 

2018 (~11.9 returns/m2) and 2007 surveys (~0.67 return/m2) had to be accounted for.  The 2018 

survey was thinned to give the area covering Granger Basin an average density of 0.67 returns/m2 to 

match with 2007 by retaining only a specified fraction of the original points using las2las (Isenburg, 

2019). 

 

Figure 2.4: Height-normalized 100 x 100 m tile of WCRB forest monitoring station showing 
resolution differences between surveys 
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2.5.2. Ground Classification 

Due to the inherent difficulties associated with LiDAR measurements of low-stature 

vegetation, accurate ground-classification routines are essential for valid results (Estornell et al., 

2011; Hopkinson et al., 2005). If enough non-ground returns (i.e. those generated from vegetation) 

are included within the LiDAR-derived ground surface, canopy heights over this surface will be 

underestimated compared to field measures. Conversely, if topography such as ridges is not included 

in the ground surface, these will artificially overestimate any height-above-ground metrics. 

The dGPS points from the vegetation surveys and shrubline mapping captured with a Fixed 

RTK solution were used in order to compare the accuracy of different ground-classification 

algorithms and parameter selections on steeper and more thickly-vegetated surfaces than the 

validation points. Within the LAStools software suite (Isenburg, 2019), the lasground and 

lasground_new functions use a variation of the Axelsson (2000) algorithm. This method uses an 

iterative filtering method based on progressive Triangular Irregular Networks (TIN) densification 

constructed using the point cloud. Other ground-classification algorithms available through the lidR 

package’s lasground function are the Cloth Simulation Filter (csf) and Progressive Morphological 

Filter (pmf) functions (Roussel & Auty, 2019). The csf function is a strict implementation of the 

Zhang et al. (2016) algorithm, which inverts the point cloud and fits a rigid cloth to the inverted 

surface. The pmf function is a modified implementation of the Zhang et al. (2003) algorithm, which 

applies a progressive morphological filter with different thresholds at different scales to the point 

cloud to detect non-ground returns. 

Each of these different algorithms was used to ground-classify the 2007 and thinned 2018 

point clouds with several different combinations of parameter settings. Ground returns from each 

new point cloud were directly compared to dGPS point elevations using lascontrol, while elevations 

from rasterized bare-earth DEMs generated from these returns were also compared to the dGPS 

points in ArcGIS Desktop. Shaded relief maps were created for each new bare-earth DEM to visually 
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inspect if low-stature vegetation was mistakenly included as part of the ground surface. The version 

of the Axelsson (2000) adaptive TIN algorithm in LAStools was found to perform best in terms of 

removing vegetation from the bare-ground surface while still preserving topographic detail. These 

ground-classified returns were interpolated to bare-earth DEMs using the lidR package’s knnidw 

function (Roussel & Auty, 2019), as this gave a smoother and more natural grid surface than 

las2dem’s TIN-based interpolation algorithm at low return densities. LAS files were gridded to bare-

earth DEMs of various resolutions depending on their intended purpose using a 2nd power Inverse 

Distance Weighting function based on each cell center node’s 10 nearest neighbours. 

 
2.5.3 LiDAR Validation 

After post-corrections were applied to field-collected dGPS points within the LiDAR 

validation sets (see section 2.4.1), these modified coordinates were compared directly to returns from 

the point clouds as well as LiDAR-derived raster DEMs to evaluate the accuracies of both surveys. 

lascontrol is a tool that computes the height of a LiDAR point cloud at specified x and y control point 

locations by triangulating nearby points into a TIN, then reports the height difference relative to these 

control points (Isenburg, 2019). This was used to compare elevations from corrected dGPS validation 

points to LiDAR returns and directly evaluate survey accuracy using CSV outputs from lascontrol in 

R. Last- and ground-classified returns were compared to dGPS elevations for the 2007, original 2018, 

and thinned 2018 point clouds by subtracting the dGPs elevations from the LiDAR z-values. 

All DEMs used for validation were interpolated at a 1m resolution using lidR’s grid_terrain 

and knnidw functions with identical parameters. As the grid_terrain function only considers ground-

classified returns, last-returns were extracted from the point clouds using las2las and coerced to Class 

2 (ground) using ArcGIS Pro so that they could all be included in the DEM creation. After rasterizing 

each respective set of LAS tiles, DEM elevations at control point locations were extracted using 
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ArcGIS Desktop 10.7 in order to compute height differences. Shapefile attribute tables containing the 

respective elevations were then imported into R for analysis. 

2.5.4 Height Normalization 

After ground classification, the height above ground (HAG) of the resulting point cloud was 

computed using lasheight (Isenburg, 2019). This tool triangulates ground-classified returns into a 

temporary TIN and replaces the z-values of non-ground points with their computed height above the 

ground surface. Preliminary HAG derivatives from both LiDAR surveys showed clear non-shrub 

artifacts along overlapping flightlines, which were confirmed to be areas of poor vertical accuracy 

through lasoverlap (Isenburg, 2019). As these artifacts were greater than some measured vegetation 

heights, they led to inaccurate HAG-derived shrub metrics (Streuker & Glenn, 2006). This issue was 

substantially improved by extracting individual flightlines and processing them separately, then 

merging the files back together and re-tiling after the height normalization was complete. Metrics 

from these corrected point clouds were then used as estimates of field-measured vegetation heights. 

 
2.6 LiDAR Derivatives 

2.6.1 Vegetation Height Comparisons 

LAS metrics from the height-normalized point clouds were extracted for each buffered plot 

radius using lascanopy (Isenburg, 2019) and appended to new shapefiles to compare to the average 

and maximum vegetation heights measured in the field. Metrics were extracted from the 2007 point 

cloud, original 2018 point cloud, and the 2018 point cloud after thinning it to match the 2007 survey 

return density. These values were compared to field measures for each plot to evaluate how well the 

LiDAR could estimate the average and maximum heights within the 1 m plots. 
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2.6.2 Shrub Cover Estimation 

Along with the shrub height estimates, the ability of the 2018 LiDAR survey to model shrub 

presence and absence was explored by comparing results from the thinned point cloud to field 

surveys. As most of the vegetation plots had a varying degree of shrub cover within them, detectable 

shrub presence for model training and validation also had to be defined using a cutoff based on 

minimum height and/or cover values. Previous work has also found that operational lower limits for 

vegetation height determination may exist (Streuker & Glenn, 2006). Plots where the average field-

measured height was greater than 45 cm (~RMSE of 2007 LiDAR last-return surface in vegetated 

areas) were therefore considered to be shrub points, giving an N of 114 for presence. An additional 

114 absence points were created by generating random points within Granger Basin and interpreting 

which did not have shrub cover through LiDAR derivatives and pan-sharpened Worldview-2 

imagery. After setting a random seed to ensure reproducibility, these points were separated into a 

70% training set (160 observations) to train the predictive models and a 30% validation set (68 

observations) to independently assess the classification accuracies. 

Binary supervised classifications of shrub presence/absence were conducted using rasterized 

LiDAR metrics from the thinned 2018 point cloud through machine learning algorithms in R. Model 

inputs were gridded from LAS format into raster layers with 2 m spatial resolution, with values taken 

from a 3x3 pixel moving window using lascanopy (Isenburg, 2019). For the vegetation density 

metrics, the 0.45 m threshold was chosen due to the 2007 LiDAR last-return RMSE over variable 

terrain with vegetation cover. This threshold removed the majority of low noise in clearly non-

shrubbed areas for derivatives from both point clouds. Topographic indices other than elevation were 

not included as predictors since the end goal of this study was to compare shrub expansion across 

them. Intensity metrics were standardized between surveys as the ALTM-3100 used in the 2007 

study produced a different range of intensity values than the Riegl Q-780 used in 2018. The 
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rasterized LiDAR metrics that were considered for use as predictor variables are presented in Table 

2.3. 

Table 2.3: Original list of rasterized LiDAR metrics used as predictors for shrub classifications, 
before removal of highly-correlated variables 
Variable Description Generating Software 

Avg. HAG Average HAG of LiDAR LAStools (lascanopy) 

Max. HAG Maximum HAG of LiDAR LAStools (lascanopy) 

Std. of HAG Standard deviation of HAG values of LiDAR LAStools (lascanopy) 

Count >45cm Total number of returns above cover cutoff (45cm HAG) LAStools (lascanopy) 

Cover >45cm Number of first returns above cover cutoff divided by 
number of all first returns 

LAStools (lascanopy) 

Density >45cm Number of all returns above cover cutoff divided by 
number of all returns 

LAStools (lascanopy) 

Max INT Maximum intensity of LiDAR LAStools (lascanopy) 

Avg. INT Average intensity of LiDAR LAStools (lascanopy) 

DEM Elevation of interpolated ground return surface lidR (grid_terrain, 
knnidw) 

 

To obtain reliable classification results when using affordable numbers of training pixels, 

predictors that do not aid discrimination between classes should be removed (Richards, 2013). As 

several of these original input variables were expected to be highly correlated due to their derivation 

from identical physical processes (6 HAG-based, 2 INT-based), Spearman’s rank-order correlation 

coefficient was used to reduce dimensionality and ensure that only less-correlated variables were 

included in the landscape classifications. After the most highly-correlated variables were identified, a 

qualitative decision was made on which to retain for use in the final classifications.  

The reduced set of predictor variables was used to classify Granger Basin into shrub and non-

shrub classes using the random forests (RF) and radial-kernel support vector machine (SVM) 

machine learning classifiers in R (Liaw & Weiner, 2002; Meyer et al., 2019). Optimal 
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hyperparameter settings for these algorithms were determined using a grid search with 5 repeats of 

10-fold cross-validation based on a training set of observations. The overall independent accuracy of 

the shrub cover classifications was assessed using the 30% validation set according to an error matrix 

as in Congalton & Green (2008). The effect of training and validation set selection on classification 

accuracy was explored by running 25 separate classifications for each method using different random 

seeds and computing the overall error and kappa coefficients for each exported error matrix (Leutner 

et al., 2019). The total area classified as shrub and non-shrub were also computed and recorded for 

each classification. Class stability over each of the iterations was assessed to see which areas of 

Granger Basin were most frequently classified as shrubs using similar methodology as Millard & 

Richardson (2015). 

The classification model with the best overall independent accuracy and class stability using 

the thinned 2018 point cloud was applied to the 2007 LiDAR survey to create raster layers 

representing shrub cover in Granger Basin for both 2007 and 2018. These were reclassified so that 

shrub pixels were given a value of 1, with non-shrub pixels having a value of 0. The 2007 raster was 

then subtracted from 2018 so that the resulting vegetation change layer had three categories: 1 = gain, 

0 = no change, and -1 = loss (Naito & Cairns, 2011a). Layers representing stable shrub and stable 

non-shrub pixels were also created from pixels with identical values of 1 and 0 respectively in both 

classifications.  

Due to the presence of large rock fields in the upper Granger Basin that resemble vegetation 

in terms of LiDAR HAG metrics, a small percentage of the shrub-classified pixels in both years 

(0.14% in 2007, 0.53% in 2018) were erroneously located above the true field-measured shrubline 

(see section 2.3.1). These areas were therefore masked out of the final shrub layers. All pixels located 

within known water bodies were also removed, as lake extents differed slightly between the 2007 and 

2018 survey leading to artifacts in the change layer. After these corrections, pixels from the 4 shrub 

change classes (gain, loss, stable shrub, and stable non-shrub) were used for the terrain comparisons. 
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2.6.3 Terrain Comparisons 

As the rates of shrub expansion vary across individual study areas (Naito & Cairns, 2011a; 

Tape et al., 2006; Tremblay et al., 2012,), several terrain derivatives were created in SAGA GIS 

(Conrad et al., 2015) from a 2 m resolution bare-earth DEM created using the 2018 point cloud so 

that changes in shrub cover could be quantified and compared across different landscape properties. 

Elevation, slope gradient, and relative slope position were used to compare how the shrub changes 

vary over their influences on environmental phenomena (Tremblay et al., 2012; Walker, 2000). Slope 

aspect was included in the comparisons due to its significance in regards to solar insolation, 

evapotranspiration, and flora distribution/abundance (Wilson & Gallant, 2000). The sine and cosine 

functions were used to convert the original aspect values of 0-360 into continuous gradients of 

northness and eastness, respectively (Cardoso, 2020; Guisan et al., 1999). Another aspect layer with 

the original values of 0-360 was retained for categorical comparisons based on cardinal direction, but 

with any cells with a slope less than 3 degrees reclassified as flat (-1) as the influence of aspect at this 

level would be minimal (Nichols et al., 2008). 

The influence of proximity to stream networks on shrub expansion was also explored, as 

Tape et al. (2006) and Naito & Cairns (2011a) found that increases in shrub cover predominantly 

occurred in or near riparian areas. A grid of all interconnected stream and lake cells in Granger Basin 

was created using a flow direction grid derived using ArcGIS Hydrology toolset (D8 algorithm), pan-

sharpened WorldView-2 imagery, LiDAR intensity metrics, and knowledge from site visits. This 

stream network was imported along with the bare-earth DEM into SAGA GIS where raster layers 

representing Euclidean distance, horizontal overland flow distance, and vertical distance to the 

channel network were computed. The topographic wetness index (TWI) as proposed by Beven and 

Kirkby (1979) provides a means for assessing and characterizing topographic conditions that control 

soil moisture and groundwater flow (Sørenson et al., 2006). It is calculated based on a pixel’s 
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upslope contributing area and slope percent), with higher values having more potential for wetness 

than surrounding areas. A modified version of the TWI algorithm called the SAGA Wetness Index 

(SWI) was used for this study as it gives more realistic, higher potential soil moisture values in 

topographic incisions when compared to the original index (Bohner et al., 2006). 

Relationships between the terrain derivatives used were explored through Spearman’s rank-

order correlation coefficient. Terrain raster values that fell within each of the change classes (gain, 

loss, stable shrub, and stable non-shrub) as well as the overall Granger Basin were extracted as 

vectors in R for statistical analysis. For the continuous variables, one-sided pairwise Wilcoxon rank-

sum tests were used to determine whether the frequency distributions of pixels in increasing or stable 

shrub classes were statistically different from areas of shrub loss, stable non-shrub, or Granger Basin 

overall. The terrain derivatives used to evaluate shrub expansion and the alternative hypothesis used 

for the Wilcoxon rank-sum tests are shown in Table 2.4: 

Table 2.4: Terrain derivatives and hypothesis used for testing with Wilcoxon rank-sum tests among 
shrub change classes 
Terrain Derivative Hypothesis Tested 

Elevation (m.a.s.l.) Lower elevations are preferential 

Slope gradient (º) Flatter areas are preferential 

Northness (dimensionless) South-facing slopes are preferential 

Eastness (dimensionless) East-facing slopes are preferential 

Euclidean distance to stream network (m) Proximity to streams is preferential 

Overland flow distance to stream network (m) Proximity to streams is preferential 

Vertical distance to stream network (m) Proximity to streams is preferential 

SAGA wetness index (dimensionless) Higher topographic wetness is preferential 

Relative slope position (dimensionless) Lower slope positions are preferential 
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To illustrate shrub change variation across ranges of landscape properties, values from each 

terrain derivative raster were binned into 5 classes based on the Jenks Natural Breaks classifier in 

ArcGIS Desktop (Tremblay et al., 2012) which seeks to group similar values and maximize 

differences between classes (de Smith et al, 2018). The percentage of total pixels in each shrub 

change category falling into individual terrain value classes was tabulated along with the LiDAR 

survey extents within Granger Basin as a whole. 
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CHAPTER 3: RESULTS & DISCUSSION 

3.1 LiDAR Validation 

When comparing ground-return and last-return elevations to dGPS points from the validation 

sets (Table 3.1), the 2007 LiDAR survey accuracy (14 cm and 9 cm respectively) was within the 

positional accuracy listed in the ALTM 3100 sensor documentation of 15 cm at 1-sigma (i.e. one 

standard deviation) at similar flight elevations (Ussyshkin et al., 2006). The 2 cm accuracy reported 

in the Riegl Q-780 technical documentation is for a distance of 250 m, which is difficult to compare 

to the actual flight elevation of 3000-3030 m.a.g.l. However, the 2018 survey accuracy of 6 cm at 1-

sigma for both last- and ground-returns was a high enough level of confidence for the purpose of this 

study. Accuracies from the 2018 point cloud (Table 3.1) were similar before and after thinning to 

match the 2007 return density. Positional errors were much higher on the complex vegetated terrain 

within Granger as compared to the flat surfaces in the validation set, as expected. The increased 

RMSE of 44 cm for last-returns in the 2007 dataset was used as a benchmark for removing low noise 

in the shrub cover classification predictor variables (see section 2.6.2). 
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Table 3.1: LiDAR return height errors vs. dGPS position (m) over different land cover types from 
original 2018, thinned 2018, and 2007 point clouds. AvgAbs represents the average absolute 
difference between dGPS and LiDAR return elevations. 

 2007 2018 (Original) 2018 (Thinned) 
 Roads Vegetation Roads Vegetation Roads Vegetation 
Last-returns       
Avg -0.09 0.16 0.06 0.30 0.06 0.23 
AvgAbs 0.10 0.28 0.07 0.31 0.07 0.26 
Min -0.60 -0.64 -0.08 -0.20 -0.08 -0.47 
Max 0.38 1.9 0.20 1.76 0.21 1.56 
SD 0.09 0.41 0.06 0.29 0.06 0.30 
RMSE 0.13 0.44 0.08 0.41 0.08 0.37 
 

Ground returns       

Avg -0.17 -0.17 0 -0.08 -0.01 0.15 
AvgAbs 0.18 0.21 0.05 0.13 0.05 0.20 
Min -0.79 -0.92 -0.48 -1.19 -0.48 -0.47 
Max 0.12 0.37 0.15 0.30 0.15 1.28 
SD 0.14 0.21 0.06 0.18 0.06 0.23 
RMSE 0.22 0.27 0.06 0.20 0.06 0.28 
 
3.2 LiDAR Vegetation Height Comparisons 

3.2.1 Overall Accuracy 

Due to the low return density of the 2007 LiDAR and resulting thinned 2018 point cloud, 6 

plots did not contain a LAS return for 2007 while 1 plot was missing for the 2018 survey. This 

reduced the sample size for viable comparisons between years from 145 to 139 plots (as a single plot 

did not contain a 2007 or thinned 2018 return), while the sample size for comparing the accuracies of 

the original and thinned 2018 point clouds was reduced to 144. 64 plots did not contain a non-ground 

LAS return (i.e. HAG > 0) from the thinned 2018 survey. As the majority of these plots contained a 

non-ground return from the original 2018 point cloud before thinning, this can be attributed to 

sampling error due to the artificially lower return density. This is supported by the conclusions 

around lower return densities causing LiDAR pulses to potentially miss individual shrubs in Streuker 

& Glenn (2006). 114 of the plots were dominated by willow shrubs, 27 by dwarf birch shrubs, and 3 

plots were primarily covered with dead shrubs. All direct vegetation height measurements from the 



M.Sc. Thesis – S. C. Leipe; McMaster University – School of Earth, Environment & Society 

29 
 

field surveys are found in Table A.2. Maximum LAS return heights within field survey plots from 

the point clouds are in Table A.3. 

The original high-density 2018 point cloud performed well when estimating maximum field-

measured plot heights, with an average underestimation of only 10% of total vegetation height and an 

adjusted R-squared of 0.80 (Table 3.2). The accuracy of LiDAR vegetation height estimation varied 

across and within the vegetation classes in terms of average proportional underestimation and R2 

(Table 3.2). Maximum heights from the willow shrub class had the strongest correlation with LiDAR 

return heights, with an average underestimation of only 9.5% and an R2 of 0.81. Birch heights had a 

much lower R2 of 0.61 and greater mean underestimation of 12.3%. The poor performance of the 

LiDAR when estimating birch heights compared to the other shrub classes could be due to their 

lower average plot heights of 1.11 m compared to willow shrubs at 1.51 m (Table A.2), but this does 

not explain their larger proportional underestimations. P-values indicate no correlation between field 

and LiDAR heights in plots where only non-shrub vegetation was present. This lack of any 

correlation in plots containing only non-shrub vegetation such as tall grasses was expected due to the 

lack of standing biomass that would generate a LiDAR return within them, which is supported by the 

findings of Hopkinson et al. (2005) when comparing grass and herb heights to LiDAR estimates.   
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Table 3.2: Original 2018 LAS return heights minus field-measured vegetation height metrics within 1 
m radius field survey plots 

 Vegetation class 
 All plots All shrubs Willow Birch Grass/moss 
Maximum field height      
Mean difference -0.14 -0.14 -0.14 -0.14 0.07 
Mean difference  
(% of total) 

-10.0 -10.0 -9.5 -12.3 -24.7 

RMSE 0.32 0.32 0.32 0.34 0.13 
R2 0.80 0.79 0.81 0.61 0.01 
p-value < 0.01 < 0.01 < 0.01 < 0.01 0.82 
 

Average field height      
Mean difference 0.41 0.42 0.43 0.35 0.06 
Mean difference  
(% of total) 

48.1 48.1 46.8 56.3 39.3 

RMSE 0.55 0.55 0.55 0.27 0.11 
R2 0.69 0.68 0.71 0.56 0.08 
p-value < 0.01 < 0.01 < 0.01 < 0.01 0.95 
N 145 142 114 27 3 
 

As more open canopy structures can lead to increased foliage penetration of LiDAR pulses 

before they generate a return (Hopkinson et al., 2005), the increase in R2 from 0.80 to 0.85 when 

comparing maximum heights in plots with over 50% shrub cover using the original 2018 point cloud 

was expected. When only comparing LiDAR heights to plots with an average field-measured height 

>= 0.45 m (~2007 LiDAR accuracy RMSE on vegetation points, N = 114), the average 

underestimation slightly decreased from 10% to 9.1% with an unchanged R2 of 0.80. This suggests 

that the amount of shrub cover and canopy structure has a greater influence on the accuracy of height 

estimations than vegetation height alone. 

The original point cloud also drastically overestimates the average field-measured plot 

heights, with an average overestimation of over 48% and R2 value dropping to 0.69 when considering 

all vegetation classes. The vast majority of average plot heights are overestimated by the LiDAR, as 

seen by the 1:1 line in Figure 3.1. The relation between LiDAR return height and field-measured 

vegetation heights are stronger than in other studies estimating shrub heights (Estornell et al., 2011; 
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Hopkinson et al., 2005; Streuker & Glenn, 2006). However, the LiDAR surveys in these previous 

studies had lower return densities (8/m2, ~3/m2, and 1.2/m2, respectively) than the 11.9 returns/m2 

used here and sensor accuracies have improved over time. 

3.2.2 Influence of Return Density 

The relationships between field-measured plot heights and LAS return heights are much 

weaker after thinning the point cloud to match the 2007 return density of 0.67 returns/m2 (Table 3.3, 

Figure 3.1).  For all vegetation classes under consideration, maximum field-measured plot heights 

were underestimated by 62.6% on average with an R2 of 0.55 when compared to LAS return heights 

from the thinned 2018 point cloud. As with the original point cloud, the lowest average 

underestimation of 60.6% and highest R2 of 0.59 were found when only considering the willow shrub 

class. The LAS return heights did not show a significant relationship with maximum field heights 

from the birch and non-shrub vegetation classes. Figure 3.1 shows that only one of the plots had a 

greater LAS return height than measured in the field, with an underestimated slope coefficient of 

0.87 from the regression line equation. Though the large number of plots without a non-ground return 

after thinning would strongly contribute to the overall height underestimations, the non-ground LAS 

heights in the vast majority of plots are still much lower than the maximum field vegetation heights. 
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Table 3.3: Thinned 2018 LAS return heights minus field-measured vegetation height metrics within 1 
m radius field survey plots 

 Vegetation class 
 All plots All shrubs Willow Birch Grass/moss 
Maximum field height      
Mean difference -0.89 -0.90 -0.91 -0.84 -0.21 
Mean difference  
(% of total) 

-62.8 -62.7 -60.6 -0.76 -77.8 

RMSE 1.01 1.02 1.03 0.97 0.22 
R2 0.55 0.56 0.59 0.13 0.01 
p-value < 0.01 < 0.01 < 0.01 0.06 0.99 
 

Average field height      

Mean difference -0.33 -0.34 -0.33 -0.35 -0.09 
Mean difference  
(% of total) 

-38.7 -38.6 -36.1 -0.56 -58.9 

RMSE 0.54 0.54 0.55 51.0 0.10 
R2 0.64 0.64 0.66 0.33 0.03 
p-value < 0.01 < 0.01 < 0.01 < 0.01 0.89 
N 139 136 108 27 3 
 

The lower-density point cloud performs better when comparing to the average heights 

measured within the plots instead of the maximum heights, as noted in Hopkinson et al. (2005). The 

LAS return heights are much more distributed around the 1:1 line when compared to average field 

heights, with a linear regression slope coefficient of 1.04 (Figure 3.1). Average vegetation heights 

measured within the field plots were underestimated by 38.7%, with an increased R2 of 0.64. This 

value did not increase when only considering plots where the majority of their area was covered by 

shrub vegetation. The best estimations of average field heights are again when only considering 

willow shrubs, with an average underestimation of 36.1% and an R2 of 0.55. Birch shrubs 

consistently perform worse with an average underestimation of 56% and a much lower R2 of 0.33, 

which is a greater difference compared to willow shrubs than when using the original2018 point 

cloud. Only the non-shrub vegetation average heights were found to not have a significant statistical 

relationship with LAS return heights.  
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Figure 3.1: LAS return heights from the original and thinned 2018 point clouds within shrub 
vegetation survey plots compared to field height measurements. The dashed line represents a 1:1 
relationship between field and LiDAR heights. 

When comparing LiDAR heights to average field-measured heights from plots that still 

contained a non-ground return after thinning (N = 84), the average percent underestimation decreased 

from 39% to 16% with an unchanged R2 of 0.64. If only plots with an average plot height >= 0.45 m 

were considered, the average underestimation slightly decreased to 36%, but the R2 also decreased to 
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0.62 which is consistent with the original point cloud. There was a negligible difference in accuracy 

when considering plots with an estimated shrub cover greater than or equal to 50% of the total plot 

area, which was found to improve R2 in the original point cloud. This supports the conclusion that 

sampling error from removal of vegetation returns strongly contributed to the decrease in accuracy 

post-thinning, but does not explain all of the variation.  

The original goal of this project was to compare changes in shrub height across Granger 

Basin between the survey years. However, due to the reduced accuracy of height comparisons after 

thinning the 2018 LiDAR down to the 2007 return density, the decision was made to focus on the 

expansion of shrub-covered area between surveys. When considering the large average proportional 

underestimation compared to field heights using the thinned 2018 point cloud in Table 3.3, it was 

determined that this would not be feasible for accurately computing changes between it and the 2007 

survey. As the HAG metrics from the original high-density 2018 point cloud (11.9 returns/m2) 

correlated well with the field height measures (R2 = 0.79 when compared to maximum plot heights in 

Table 3.2), height comparisons between LiDAR surveys should be possible with surveys of 

appropriate return densities and positional accuracies. 

3.2.3 Influence of Ground Classification 

The selection of ground segmentation algorithms and their respective parameter settings had 

a strong influence on estimated shrub heights from the LiDAR. Removing vegetation from the 

ground surface without erasing topography was challenging, slightly more so with the 2007 dataset. 

The original plan for choosing the final ground segmentation algorithm was to compare RMSE 

values of fixed-return dGPS points from the vegetation set to ground return elevations. However, this 

did not appear to influence whether vegetation was included as part of the ground surface or not as 

interpreted from shaded relief maps created from ground-classified returns (Figure 3.2). Final 
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decisions were therefore made qualitatively by striking a balance between how well vegetation was 

removed from the ground surface and preservation of topography. Though using more aggressive 

parameters successfully removed all visible vegetation in the bare-earth DEM, LAS returns over 

some of areas of complex topography (ridges/hills/etc.) were not classified as the ground surface 

which artificially inflated plot HAG values and the amount of shrub-classified pixels over both years. 

 

Figure 3.2: Shaded relief maps of Granger Basin, interpolated from ground-returns classified using 
different algorithms from the thinned 2018 LiDAR. All hillshades were derived from bare-earth 
DEMs interpolated using a 2nd power IDW with 10 nearest neighbours at a 1 m spatial resolution. 
The ground segmentation algorithms used in each panel are: a) CSF (Zhang et al., 2016; Roussel & 
Auty, 2019); b) PMF (Zhang et al., 2003; Roussel & Auty, 2019); c) lasground, more aggressive 
parameter settings (Axelson, 2000; Isenburg, 2019); d) lasground, less aggressive settings; e) 
lasground, final parameter combination used. 
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3.3 Shrub Cover Changes 

3.3.1 Variable Reduction 

As all 9 HAG- or INT-based rasterized LiDAR metrics for the thinned 2018 point cloud were 

highly correlated (>0.98), the decision was made to only include one HAG-based metric (ratio of 

above-cutoff LAS returns to ground returns, or dns) and one intensity metric (maximum intensity 

recorded by the returns, or maxINT) along with elevation for use in the final shrub classifications. 

Though dns and maxINT remain highly correlated, both of these rasterized LiDAR metrics were 

included as predictor variables as they represent different physical processes of LAS return height 

and return strength, respectively.  

3.3.2 Overall Change 

When running the 25 seed iterations, the RF classifications resulted in a slightly higher 

average overall accuracy (93.1% vs. 92.7%) and kappa coefficient (0.86 vs. 0.85), with a smaller 

range between the minimum and maximum area classified as shrub (0.51 km2 vs. 0.63 km2) than 

when using SVM (see section 2.6.2 description of methods). The overall independent accuracy from 

the validation set, kappa coefficient, and stability of shrub-classified area presented in Table A.4 

were all considered when selecting the final classification. The RF classification with highest 

independent accuracy (using seed 15 to sample training and validation sets) was applied to the 2018 

and 2007 point clouds and evaluate change between those years. 
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Figure 3.3: Best-performing classifications of detectable shrub cover > 45 cm in height within 
Granger Basin generated using 2007 and 2018 LiDAR metrics 

After the removal of pixels above the shrubline and within lake extents, the best-performing 

RF classifications (with 97.1% overall independent accuracy) gave 1.60 km2 of total shrubbed area 

with heights greater than 0.45 m in 2018 compared to 0.98 km2 in 2007; an overall increase of 63.3% 

(Figure 3.2). In terms of areal coverage, 0.77 km2 of Granger Basin showed an increase in shrub 

cover with 0.15 km2 of loss. Stable shrubs (i.e. pixels with a value of 1 in both classifications) as seen 

in Figure 3.3 had an area of 0.83 km2, while areas of stable non-shrub made up 5.41 km2. 
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Figure 3.4: Changes in detectable shrub cover > 45 cm in height within Granger Basin between 2007 
and 2018, separated into categories used for terrain derivative comparisons 

The average yearly increase in shrub cover of 5.8% in Granger Basin is greater than what has 

been reported in previous works that quantify the expansion of shrub and woody vegetation in 

northern regions (Naito & Cairns, 2011a; Tape et al., 2006; Tape et al., 2012; Tremblay et al., 2012). 

Studies examining shrub expansion in northern Alaska and eastern Nunavik using historical and 

repeated airphotos along with high-resolution satellite imagery have found large amounts of regional 

variation in the rates of increasing vegetation cover, with maximum documented rates that are 

comparable to this study. In the Brooks Range and Northern Slope uplands of Alaska (with latitudes 

of 68 – 69 ºN), Naito & Cairns (2011a) and Tape et al. (2006) found maximum yearly increases in 

shrub cover of 3.5% and 2.5% respectively when only considering patches located within terraces 

and floodplain areas, which are comparable to the 5.8% annual increase found in this study. Overall 
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increases when averaged over all repeated airphotos analyzed were typically much lower than the 

maximum rates found in higher-resource areas such as floodplains, terraces, and riparian zones, 

which could be due to the wide geographic coverage and resulting range of climate and topography 

of the study areas (Naito & Cairns, 2011a; Tape et al., 2006). While Tremblay et al. (2012) examined 

changes in shrub and tree cover over environmental parameter classes at a similar latitude (58 ºN) 

and over a similar area (~6 km2) as Granger Basin, the maximum annual increase in continuous cover 

of 2.7% and average of 0.8% are much lower than found in this study. A potential contributor to 

lower annual expansion rates in the “erect woody vegetation” class used is the inclusion of trees 

along with shrubs, due to their relatively slower rates of areal expansion compared to shrub 

vegetation (Epstein et al., 2013).  

The majority of these previous works focus on longer-term changes (45 – 60 years) in Arctic 

tundra environments located at higher latitudes (>68 ºN) than considered in this work. The increased 

productivity of Granger Basin due to a lower latitude of 60 ºN and warmer continental subarctic 

climate may contribute to the increased magnitude of yearly vegetation change when compared to 

other studies. Another possible explanation for these differences is the increased rate of climate 

warming and resulting change in environmental properties in more recent years (Dillon et al., 2010). 

3.3.3 Classification Sensitivity 

All accuracies and total shrub-classified areas presented in Table A.4 predicted using the 

thinned 2018 LiDAR varied widely depending on the random seed set for splitting points into the 

training and validation sets. Over the 25 classifications for each algorithm, overall accuracies varied 

by 10.29% with RF and 11.76% with SVM, while the amount of shrub-classified area varied by 0.51 

km2 and 0.63 km2 respectively. With only a 0.41% difference in average accuracy between RF and 

SVM, the differences in accuracy between classification iterations was much more sensitive to which 
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points were used for training and validation than the algorithm used to classify them. Class stabilities 

varied slightly more than accuracy over the RF and SVM algorithms, but were also much more 

sensitive to seed selection. There were identical differences in the minimum and average amounts of 

shrub-classified area produced by the classifiers at 0.1 km2, and only a 0.01 km2 difference in the 

maximum. 

The variation in shrubbed area could be due to different characteristics of points used to train 

the classifiers. As the average shrub heights measured in the 114 plots used as detectable shrub 

presence points ranged from 0.45 m to 3.22 m, a large range of predictor variable values would be 

captured when training the models and validating the resulting classifications. As shrubs with lower 

heights and canopy densities may not be captured by the LiDAR and therefore the derived predictor 

variable rasters (Hopkinson et al., 2005; Streuker & Glenn, 2006), the inclusion of more of these 

points in the validation set could lead to lower accuracies. Conversely, if a larger proportion of these 

presence points with lower heights and densities were used to train the models, this could lead to 

overestimation of shrub cover. This is supported by identical minimum accuracies of 86.8% and only 

a 1.5% difference between the maximum accuracies between RF and SVM. 

3.4 Landscape-Scale Variation 

3.4.1 Statistical Differences in Shrub Distribution 

The terrain derivatives with the strongest relationships according to Spearman’s rank 

correlation test were all measures of distance to stream (Euclidean, vertical, overland flow) with the 

minimum level of correlation being 0.86 between vertical and overland, which is expected. All 

stream distance measures were also highly correlated with elevation as the interconnected stream 

network exists within the lower basin, with overland flow being the least correlated with elevation at 
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0.84. Due to these relationships between stream distance metrics, only horizontal overland flow was 

retained for use as it was less strongly correlated to other terrain indices under consideration.  

The Wilcoxon rank-sum test results presented in Table 3.4 show that for all terrain 

derivatives explored, stable and expanding shrub pixels are preferentially located in areas that fulfill 

the alternative hypotheses used when compared to the other change classes in a pairwise manner. An 

alternative hypothesis of “lesser” tests whether the value distribution of a numeric vector is lower 

than another that it is being compared to, while the opposite is true when using the “greater” 

alternative hypothesis. Elevation values in pixels exhibiting an increase in shrub cover were lower 

than areas of stable shrub, shrub loss, stable non-shrub, and the overall Granger basin. For the slope 

gradient, northness, stream distance, and relative slope position, the value distributions of the stable 

shrub pixels were lower than the shrub gain pixels, which were then lower than each of the other 

classes. Shrub loss pixels also had more preferential terrain derivative values than areas of stable 

non-shrub or Granger Basin in all instances. For example, the SWI and northness value distributions 

in the shrub loss category were lower than in the stable shrub or gain pixels, but greater than in the 

stable non-shrub or the overall Granger Basin categories. These results indicate that shrubs in 

Granger Basin are found in and are preferentially expanding into lower and flatter areas near stream 

networks, with lower slope positions and a higher potential for topographic wetness. 

  



M.Sc. Thesis – S. C. Leipe; McMaster University – School of Earth, Environment & Society 

42 
 

Table 3.4: Summary of results from Wilcoxon rank-sum tests, used to explore where stable and 
expanding shrub pixels are preferentially located according to terrain derivative value distributions 

Landscape 
property 

Alternative 
hypothesis Value distributions per change category 

Elevation  Less Gain pixels  < stable shrub, loss, stable non-shrub, Granger (overall) 
  

 
Stable shrub pixels  < loss, stable non-shrub, Granger (overall) 

Slope gradient Less Gain pixels < loss*, stable non-shrub, Granger (overall) 
    Stable shrub pixels  < gain, loss, stable non-shrub, Granger (overall) 
Northness Less Gain pixels < stable non-shrub, Granger (overall) 
  

 
Stable shrub pixels < gain, stable non-shrub, Granger (overall) 

Eastness Greater Gain pixels > stable non-shrub, Granger (overall) 
  

 
Stable shrub pixels > gain, loss, stable non-shrub, Granger (overall) 

Stream distance  
(overland flow) Less Gain pixels < loss, stable non-shrub, Granger (overall) 
    Stable shrub pixels  < gain, loss, stable non-shrub, Granger (overall) 
SAGA wetness 
index Greater Gain pixels > loss, stable non-shrub, Granger (overall) 
    Stable shrub pixels  > gain, loss, stable non-shrub, Granger (overall) 
Relative slope 
position Less Gain pixels < loss, stable non-shrub, Granger (overall) 
    Stable shrub pixels  < gain, loss, stable non-shrub, Granger (overall) 
  * indicates p < 0.05, all other p-values < 0.01 
 

For every terrain derivative other than elevation, the stable shrub pixels had greater 

differences in terrain values than the expanding shrub class when compared to the loss or stable 

shrub classes. Values from the shrub loss class were also closer to the gain and stable shrub than the 

stable non-shrub or overall Granger classes in all cases.  This is contrary to what Naito & Cairns 

(2011a) found when comparing shrub change classes over ranges of topographic wetness values, and 

some of the findings from Tape et al. (2006) when exploring landscape positions of stable and 

expanding patches. As productivity is already high in lowland environments and riparian zones, 

vegetation in these areas may be less responsive to warming (Campbell et al., 2020). Tape et al. 

(2006) found that stable shrub patches occupied broader and less-sloping landscape positions than 

expanding patches, which could explain these results in terms of slope gradient and position. 

Although climatic warming is believed to be the dominant broad-scale driver of Arctic 

vegetation change, the processes underlying finer-scale increases are unclear due to the wide range of 



M.Sc. Thesis – S. C. Leipe; McMaster University – School of Earth, Environment & Society 

43 
 

contributing environmental changes (Tape et al., 2012; Tremblay et al., 2012). This expansion is 

driven by the interaction of temperature, nutrient cycling, decomposition, and soil conditions (Naito 

& Cairns, 2011b; Tape et al., 2012). The preferential location of expanding and stable shrub pixels in 

areas of lower elevation, lower slope gradient and position, higher topographic wetness, and higher 

stream proximity are all consistent with previous findings and supported by established physical 

processes (Tape et al., 2006; Naito & Cairns, 2011a; Tremblay et al., 2012).  

As slopes in arctic and subarctic environments tend to represent a gradient of climate, 

nutrient and moisture availability, their influence on environmental phenomena such as soil drainage, 

depth, and snow accumulation result in vegetation patterns that are strongly correlated with relief 

(Walker, 2006). The association of high SWI values with positive changes in Arctic shrub cover can 

be explained by its determination of nutrition resources with an overwhelming influence on the 

distribution of woody plants (Wu & Archer, 2005; Walker, 2006; Naito & Cairns, 2011a).  Riparian 

areas with preferential water flow are similarly higher-resource environments, which would explain 

the preferential location of stable and expanding shrub pixels closer to the stream network (Myers-

Smith et al., 2011; Naito & Cairns, 2011a; Tape et al., 2012). The elevation range of ~725 m.a.s.l. 

within Granger Basin results in a gradient of climatic and hydrometeorological conditions 

(McCartney et al., 2006), which would contribute to the large contrast between shrub change 

categories across the elevation classes. 

3.4.2 Categorical Comparisons 

These changes were further explored by comparing the percentage of total pixels in each 

shrub change category falling into individual terrain derivative value classes (Table 3.5). This further 

illustrates how much of a difference in terrain value distribution exists between areas of stable shrubs 

and increasing shrubs compared to the overall Granger Basin. As with the Wilcoxon tests, the stable 
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shrub pixels have the largest difference in terrain value distributions compared to Granger Basin 

overall area, followed by areas of increasing and then decreasing shrub presence. For example, while 

only 31.9% of Granger Basin is within 500 m of the stream network (according to overland flow), 

63.7% and 66.6% of the stable shrub and increasing shrub areas respectively are within this distance 

class. This same relationship is seen in the elevation values, with 31.1% of stable shrub pixels located 

< 1450 m.a.s.l. compared to 10.2% of the study area. A smaller but notable difference exists when 

examining the lowest slope gradient class of 0-5 º, with stable shrub and overall Granger areal 

percentages of 32% and 18.5% respectively. Conversely, while 38.8% of Granger Basin has a 

relative slope position of >0.85 (i.e. closer to the tops of ridges), only 15.4% of the increasing shrub 

pixels are located in these areas. Stable and expanding shrub areas are also preferentially located in 

areas of high topographic wetness, with 37.7% and 24.8% of these pixels having SWI values within 

the 2 highest categories (>5) compared to only 12.7% of the overall Granger Basin. Though tundra 

shrubline advance in Yukon’s Kluane Region was not found to be influenced by slope aspect (Myers-

Smith & Hik, 2018), Tremblay et al. (2012) found that increases in standing woody vegetation cover 

at a similar latitude to Granger Basin occurred mainly on south-facing slopes. The Wilcoxon tests 

show that value distributions of stable and expanding shrub pixels have statistically higher eastness 

and lower northness when compared to the other classes, but there does not appear to be much 

difference based on cardinal direction in Table 3.5.The largest differences over the terrain derivative 

value classes are in stream distance, elevation, and relative slope position.  
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Table 3.5: Changes in shrub cover compared over different value classes for selected terrain 
derivatives, represented by the percentage of total pixels within category 

 Shrub change category 
  Stable Shrub Increase Decrease Granger (Overall) 
Overall Coverage 11.6 10.8 2.2 100 
Elevation (m.a.s.l.) 

    1300-1450 31.1 27.9 22.2 10.2 
1450-1600 65.1 67.3 67.2 46.5 
1600-1750 3.8 4.8 10.5 27.5 
1750-1900 0 0 0 9.4 
>1900 0 0 0 6.4 
Slope aspect  

    N 23.3 23.7 20.9 22.3 
E 21.4 23.8 26 23.7 
S 19.5 20.7 23.2 22.6 
W 24.3 24.2 22.1 25.3 
Flat (slope <= 3 º) 11.4 7.6 7.8 6 
Slope gradient (º) 

    0-5 32 23 22.7 18.5 
5-10 41.8 39.7 39.8 36.1 
10-15 15.9 19.9 20.6 22.3 
15-25 9 14.9 13.6 19.9 
>25 1.3 2.4 3.4 3.2 
Overland flow distance to stream (m) 

    0-500 63.7 66.6 53.7 31.9 
500-1000 15.8 16.8 22.1 21.4 
1000-1500 15.6 11.9 18.1 20 
1500-2000 4.6 4.2 5.4 15.6 
>2000 0.2 0.4 0.7 11.1 
SAGA wetness index 

    0-3 0.5 1.6 1.8 6 
3-4 11.9 24.5 24.1 37.7 
4-5 49.8 49.1 55 43.7 
5-6 25.4 18.7 15.5 9.9 
>6 12.3 6.1 3.6 2.8 
Relative slope position 

    0-0.15 55.3 50.3 41.8 28.3 
0.15-0.4 14.9 15.7 14.8 12.2 
0.4-0.6 7 8.2 9.4 7.9 
0.6-0.85 9.4 10.4 13 12.8 
>0.85 13.4 15.4 21 38.8 
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3.5 Implications for Granger Basin 

As the presence of tall shrub patches can substantially modify the local environment in taiga-

tundra ecozones, the rapid rate of shrub expansion within Granger Basin has a wide range of 

implications for the hydrological processes of the study area (Wallace & Baltzer, 2019). The impacts 

of increased shrub cover on the exchange of energy among the atmosphere, vegetation, and soils of 

Granger Basin are varied due to interactions between shrub canopies and snow cover (Myers-Smith 

et al., 2011). Due to the increased aerodynamic roughness of exposed shrubs, a greater amount of 

canopy coverage will lead to increased snow storage in Granger Basin (Essery et al., 2006; Pomeroy 

et al., 2006). The insulative effects of wind-compacted snow layers trapped under tall shrub canopies 

can lead to winter soil temperatures being up to 30 ºC greater than air temperatures (Sturm et al., 

2001b). Due to resulting shallower thaw depths and increased melt rates, the large proportional 

expansion of shrubs at lower elevations will impact the response of the discontinuous permafrost 

within Granger Basin to warming (Essery et al., 2006; Lawrence & Swenson, 2011; McCartney et 

al., 2006; Pomeroy et al., 2006).  Though the specific influences of shrub expansion on permafrost 

vulnerability are complex, an increase in thawing would impact groundwater and hydrological 

responses to change (Bonfils et al., 2012; Carey et al., 2013). 

Shifts in Arctic and subarctic vegetation under future warming are projected to have an 

overall positive feedback to climate due to changes in the energy balance (Pearson et al., 2013). A 

decrease in albedo and resulting greater summer sensible heat flux due to increased shrub cover will 

cause a positive atmospheric heating effect (Lafleur & Humphreys, 2018). Evapotranspiration energy 

is predicted to increase along with shrub vegetation cover, but with a smaller magnitude relative to 

the effects of albedo (Pearson et al., 2013).This positive feedback on warming will have further 

cumulative effects on the energy balance and future climate of Granger Basin, as well as other 

similar northern catchments (Ménard et al., 2014). 
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Increased rainfall interception is a major component of the water balance in Arctic shrub 

tundra ecosystems, with effective below-canopy rainfall being reduced by up to 30% under birch 

canopies (Zwieback et al., 2019). Increased evapotranspiration due to shrub vegetation presence will 

lead to an increased uptake of snowmelt water compared to precipitation used in the summers, as 

found at a similar shrub taiga site within the WCRB (Granger, 1999). Greater transpiration rates from 

shrub cover may also increase atmospheric water vapour concentrations (Bonfils et al., 2012). On 

larger scales, the increased rainfall interception of shrub canopies reduces water yield, which in term 

would decrease the amount of runoff received by downstream ecosystems (Zwieback et al., 2019). 

However, a disproportionate amount of runoff was computed from tall shrub hydrological response 

units in Granger Basin by McCartney et al. (2006), which would be expected to continue with over 

21% of the study area covered by shrubs > 0.45 m in height in 2018 compared to ~13% in 2007.  

The expansion of shrub vegetation into Arctic streams and in floodplain areas will likely lead 

to changes in streamflow pathways and water quality across the lower Granger Basin (Tetzlaff et al., 

2013). The effects of increased riparian vegetation on microclimatic variables and energy inputs due 

to shading of the water column have a variety of influences on stream temperature, with changes in 

vegetation density and height potentially buffering climate change effects (Fabris et al., 2020; Garner 

et al., 2017). Interactions between climate and soils along with vegetation community composition 

will have complex influences on the dynamics of dissolved organic matter within the lakes and 

streams of Granger Basin and the larger WCRB (Shatilla & Carey, 2019). The increase in tall shrubs 

has contributed to a decline in erosion in Arctic floodplains, along with an increase in stabilized soil 

and nitrogen mineralization rates (Myers-Smith et al., 2011; Tape et al., 2011). Carbon cycling rates 

are also enhanced under greater shrub cover, with greater seasonal net CO2 sinks resulting in 

negative feedback to the atmosphere (Lafleur & Humphreys; 2018). 
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3.6 Limitations & Areas for Future Research 

Due to the 2 m spatial resolution of the rasterized LiDAR metrics required by the lower-

density point clouds, this study was unable to distinguish between the different types of shrub 

expansion proposed by Tape et al. (2006). The use of binary shrub and non-shrub classifications 

removes any potential for evaluating changes in vegetation properties other than cover over time, as 

LiDAR vegetation height estimates were found to be too inaccurate to compare across surveys. This 

study also only considers taller shrubs that are >0.45 m in height within the classifications due to the 

limits on the 2007 LiDAR accuracy in steeper and more vegetated terrain. Another potential issue is 

the lack of validation data collected around the 2007 LiDAR survey leading to the inability to assess 

the accuracy of the 2007 shrub classification. Though LiDAR resolutions were standardized to 

mitigate return density bias, potential differences in point cloud structure due to sensor 

configurations and acquisition parameters could lead to shrubs showing different signatures within 

the 2007 and 2018 LiDAR-derived predictor metrics. Future studies with longer-term planning 

should use coincident field vegetation surveys along with each LiDAR acquisition flight to ensure 

that shrub metrics for each year under consideration have the best possible resemblance to reality. 

The LiDAR instruments used, acquisition parameters, and flight conditions should also be as similar 

as possible to reduce any potential bias between surveys. As Hopkinson et al. (2008) found that a 

10% uncertainty in conifer plantation growth estimates could be achieved at a 3-year time interval 

between LiDAR surveys, a similar interval could feasibly capture shrub changes within Granger 

Basin due to the large annual expansion rate found in this study. However, the higher proportional 

LiDAR height underestimation and greater expansion rates relative to trees may lead to differences in 

the minimum return interval required for accurately measuring changes in lower-stature vegetation 

(Epstein et al., 2013; Estornell et al., 2011; Greaves et al., 2016; Hopkinson et al., 2005; Streuker & 

Glenn, 2006). 
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Greaves et al. (2016) used canopy metrics derived from high-resolution LiDAR and 

multispectral imagery to predict shrub biomass with high accuracy, while lower-resolution LiDAR 

has also been used to estimate fractional vegetation cover in forest ecozones (Hopkinson & Chasmer, 

2009). With the advances of higher-resolution drone-mounted LiDAR sensors in recent years, their 

documented uses for forestry practices could potentially carry over to lower-stature shrub vegetation 

(Kellner et al., 2019). The inclusion of high-resolution multispectral imagery and photogrammetric 

point clouds from UAV sensors is another option that could pair well with the high-density 2018 

LiDAR, but is limited by lower areal coverage per survey than plane-mounted LiDAR instruments 

and potential issues with reproducibility due to varying deployment conditions (Harder et al., 2016). 

Coincident plane-mounted LiDAR and photogrammetric point clouds from UAV surveys have been 

used in the past to evaluate change in forestry metrics, with varying levels of accuracy depending on 

vegetation properties (Ali-Sisto & Petteri, 2017). A possibility to explore is the feasibility of 

quantifying shrub changes in Granger Basin by using airborne LiDAR to derive an accurate bare-

ground terrain surface, matched with high-resolution photogrammetric point clouds from UAV 

surveys to provide information on the shrub canopy above this surface. With increased LiDAR 

survey resolutions, better standardization between acquisitions, and the incorporation of other high-

resolution remotely sensed imagery, object-based classifications or regression models could 

potentially distinguish between in-filling, increasing shrub size, and new colonization, as well as 

measure changes in vegetation properties other than cover over time (Lantz et al., 2010; Myers-Smith 

et al., 2011; Greaves et al., 2016).  
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CHAPTER 4: SUMMARY & CONCLUSIONS 

High-latitude ecosystems have experienced substantial warming over the past 40 years, 

causing an increase in vegetation growth throughout the circumpolar North (Hinzman et al., 2005; 

Overpeck et al., 1997; Sturm et al., 2001a; Tape et al., 2006). A major component of this change is 

shrub expansion in arctic and subarctic ecotones (Tape et al., 2006; Epstein et al., 2013; Myers-Smith 

et al., 2011). The rates of shrub expansion are highly variable depending on plant species, 

topographic position, hydrology, soils, and other ecosystem properties (Naito & Cairns, 2011a; Tape 

et al., 2012). Such changes in shrubs and other vegetation are critical to document due to their 

first-order control on water, energy, and carbon balances. This study has used multi-temporal 

LiDAR along with field vegetation surveys to evaluate shrub expansion between 2007 and 2018 

in a well-studied subarctic mountain basin, and quantitatively compared how changes in 

vegetation cover varied over a range of landscape properties. 

The original goal of this research was to compare changes in shrub height across the ~7.6 

km2 Granger Basin between LiDAR surveys. The high-resolution 2018 point cloud was found to 

estimate field-measured vegetation heights with reasonable accuracy, but the resulting large 

proportional height underestimation after standardizing return density to 2007 levels would not 

be feasible for accurately comparing changes. A decision was therefore made to evaluate 

changes in shrub cover using binary presence and absence models, created through machine 

learning classifications based on rasterized LiDAR metrics. The best-performing shrub 

classifications created using the random forests algorithm showed a 63.3% increase in total 

detectable cover > 0.45 m in height between 2007 and 2018, a 5.8% average yearly increase. 

This average annual expansion rate is greater than what has been previously found in the 

literature (Naito & Cairns, 2011a; Tape et al., 2006; Tape et al., 2012; Tremblay et al., 2012), which 
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could be explained by the lower latitude, warmer climate, and resulting higher productivity of 

Granger Basin when compared to the Arctic tundra sites studied in previous works. 

Value distributions of several terrain derivatives were compared to examine landscape-

scale variation between areas of shrub gain, stable shrub, shrub loss, stable non-shrub, and the 

overall Granger Basin. Wilcoxon rank-sum tests found statistical differences in elevation, slope 

gradient, northness, eastness, stream distance, topographic wetness, and relative slope position 

values between areas of stable and expanding compared to the other change categories. Shrubs 

were found to be located in and preferentially expanding into lower and flatter areas near stream 

networks, with lower slope positions and a higher potential for topographic wetness. When stable 

and expanding shrub pixels were compared to Granger Basin as a whole, the greatest differences 

in terrain value distributions were found in terms of stream distance, elevation, and relative slope 

position. The expansion of shrubs into these higher-resource areas is consistent with previous 

studies and is supported by established physical processes. 

This large increase in shrub cover has far-reaching implications for northern freshwater 

ecology due to the influence of vegetation on water, energy, and carbon balances (Epstein et al., 

2013; Lafleur & Humphreys, 2018; Myers-Smith et al., 2011; Tetzlaff et al., 2013). Increased 

snowmelt rates under shrub canopies due to higher winter soil temperatures have complex effects 

on the vulnerability of permafrost to warming, which will in turn impact groundwater and 

streamflow responses. Expansion and densification of shrubs leads to a decrease in albedo and an 

increase in absorbed solar radiation, contributing to a positive global warming feedback that will 

further impact similar catchments across the circumpolar North. Increased interception, snow 

storage, and snowmelt water uptake due to the presence of tall shrubs can lead to substantial 

increases in runoff volume and contribute to major changes in the overall water balance. The 
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interactions between climate soils, and vegetation in riparian areas has complex effects on 

dissolved nutrient dynamics and carbon cycling rates, along with increased shading of the water 

column contributing to changes in stream temperature.  

This study has demonstrated the feasibility of using LiDAR to compare changes in shrub 

properties over time, though the potential for accurately measuring changes in properties other 

than cover are limited by return density. Future studies using higher-resolution LiDAR surveys 

along with coincident optical satellite or UAV imagery could potentially distinguish between the 

different proposed types of Arctic and subarctic shrub expansion (in-filling, increasing shrub size, 

and new colonization), as well as measure changes in vegetation properties other than cover over 

time. A greater understanding of how such changes vary at the landscape scale over different 

physiographic variables is crucial for predicting the future of northern watersheds under a rapidly 

changing climate. 
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APPENDIX 

Table A.1: Rasterized 1 m resolution DEM height errors vs. dGPS position (m) over different land 
cover types created using the original 2018, thinned 2018, and 2007 point clouds.  

 2007 2018 (Original) 2018 (Thinned) 
 Roads Vegetation Roads Vegetation Roads Vegetation 
Last-returns       
Avg -0.07 0.13 0.05 0.28 0.07 0.11 
AvgAbs 0.10 0.26 0.06 0.29 0.09 0.17 
Min -0.55 -0.64 -0.17 -0.39 -0.13 -0.51 
Max 0.37 1.90 0.26 1.87 0.56 1.15 
SD 0.09 0.40 0.06 0.31 0.09 0.21 
RMSE 0.12 0.42 0.08 0.41 0.12 0.23 
Ground returns       
Avg -0.15 -0.19 -0.01 -0.08 0.07 0.13 
AvgAbs 0.17 0.23 0.05 0.15 0.09 0.19 
Min -0.77 -0.10 -0.42 -1.18 -0.13 -0.51 
Max 0.21 0.39 0.21 0.34 0.55 1.43 
SD 0.16 0.21 0.06 0.20 0.09 0.23 
RMSE 0.22 0.28 0.06 0.22 0.12 0.29 
 

Table A.2: Field-measured vegetation heights (in m) from transect surveys: original point 
measurements (9x per plot), averaged per 1 m radius plot, and highest per plot 

 Vegetation class 
 All plots All shrubs Willow Birch Grass/moss 
All point measures      
Avg 0.87 1.09 1.24 0.69 0.15 
Min 0 0 0 0.06 0 
Max 3.70 3.70 3.70 1.75 1.70 
SD 0.69 0.63 0.65 0.34 0.19 
N 1284 981 711 238 303 
Average plot 
height 

     

Avg 0.85 0.88 0.94 0.62 0.15 
Min 0.06 0.06 0.06 0.11 0.11 
Max 3.22 3.22 3.22 1.34 0.18 
SD 0.55 0.55 0.58 0.30 0.04 
N 145 142 114 27 3 
Maximum plot 
height 

     

Avg 1.41 1.43 1.51 1.11 0.27 
Min 0.18 0.18 0.18 0.22 0.20 
Max 3.70 3.70 3.70 1.83 0.36 
SD 0.62 0.61 0.63 0.40 0.08 
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Table A.3: Maximum LAS return heights within 1 m radius field survey plots from 2018 original, 
2018 thinned, and 2007 point clouds  

 Vegetation class 
 All plots All shrubs Willow Birch Grass/moss 
2018 Original 
(11.9/m2) 

     

Avg 1.29 1.29 1.36 0.97 0.20 
Min 0.08 0.08 0.16 0.08 0.10 
Max 3.56 3.56 3.56 2.12 0.34 
SD 0.65 0.64 0.64 0.51 0.12 
N 145 142 114 27 3 
2018 Thinned 
(0.67/ m2) 

     

Avg 0.52 0.53 0.59 0.27 0.06 
Min 0 0 0 0 0 
Max 3.07 3.07 3.07 1.78 0.10 
SD 0.71 0.71 0.75 0.46 0.53 
N 138 135 108 26 3 
2007 (0.67/m2)      
Avg 0.25 0.25 0.28 0.08 0.06 
Min 0 0 0 0 0 
Max 2.23 2.23 2.23 0.53 0.18 
SD 0.41 0.41 0.44 0.14 0.10 
N 139 136 108 27 3 
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Table A.4: Summary statistics for all accuracies and shrubbed areas over 25 different seed iterations for the random forests and support 
vector machines classifiers 

 Producer's 
(Absence) 

User's 
(Absence) 

Producer's 
(Presence) 

Producer's 
(Absence) 

Overall 
Accuracy 

Cohen’s 
kappa 

Shrubbed Area 
(km2) 

Random Forests               
mean 98.95 88.98 87.18 98.64 93.12 0.86 1.55 
std 2.55 4.41 5.94 3.58 2.81 0.06 0.10 
min 88.10 79.07 73.53 82.76 86.76 0.74 1.42 
max 100 96.88 97.22 100 97.06 0.94 1.93 
range 11.90 17.81 23.69 17.24 10.29 0.21 0.51 
Support Vector 
Machines 

       

mean 99.09 88.22 86.27 98.76 92.71 0.85 1.45 
std 2.81 4.43 5.79 3.99 2.83 0.06 0.15 
min 88.10 79.07 73.53 82.76 86.76 0.74 1.32 
max 100 96.97 97.22 100 98.53 0.97 1.94 
range 11.90 17.90 23.69 17.24 11.76 0.24 0.63 
 


