GRCWTH 1N VLCRO OT FHE PROMNE:YU AND FROTH LLIUM OF 1 INUB

By

> LOUISE CAFILM FEOORARO, B.30.
is Thesis
Submitted to the raoulty of Arts and Beience 15 Partial rulfillment of the Requirements for the Degree Master of Selence

McMaster Univeraity
October 1955

McMnsTisR UNIVERSITY Emilton, Ontario.

TITLA: A Study of the Growth in Vitro of the Proembryo and Prothalliun of inus niEre arn. var. austriaca 4 . \& Gr.
aUMHOR: Loulse Cerlyn Pegoraro, B.Sc. (MoMaster University)

SUP世RVISOR: Professor N.W. Radforth
NUMBIGR OF PACES: iv, 97
SCOPE AND CONTENTS: Little is known about fundemental mechanisms of growth control on the growth of single or smal groups of cells of the higher plants. Study of theas effects in vitro requires the knowledge of the primary conditions for growth in $\nabla 1 t r o$. In this work a procedure was outlined en: used in an effort to establish basis for the standard procedure. Also the associated effects ©t the physioal, and to some extent, the chamical enviromment on the growth of the prombryo und prothallium of finus were studied.

PRAFACE

In recent times much emphesis has been pl ced on growth and the fectors causing end controling it. In an effort to enswer some of the muny questions, research has been and is beine conducted in may and often unrelated fields. This is not surprising, as the phenomenon of growth involves meny end complex feetures; so many nd so complex the the cannot all fall within the realm of one scientific discipline. Most fields can contriute something to further the understandine of this extensive problem. In this regerd, this treatise dealswith the alteration of growth expression, caused by the alteration of the chemical and physical enviroment of the growing celle, in perticul r, those of the prothellium and proembryo of thas nigra var. 日ustriace.

This work was undertaken as part of a programe which has been assisted through a erant from the onterio Cincer rreetment and Research Foundetion, for which DreN.W.Radforth is the grantee.

I would like to express my gretitude to Dr. Radforth for his guidance and understunding in conducting my research. Also, I wish to express my apprecietion to the Biology Department of this University for awarding me a Student Assistantship, without which I could not have undertaken this work.

T CDE CP CLETEMTS

i age
latroduction 1
Matorials sed Eroceduro 5
Rowits 13
sfects of diacetion phd tranmer to media 13
Sffect of aterility procautions 13
svaluation of Foulson Fomgent 14
Assescnent of medda 15
Ubeervations in growth and form 31
Discurcion 49
Conclueion and sumary 72
Description of riater 74
Litereture Cited 96

INTRODUCIIUN

It is increcsin ly evident that, although much has been accomplisked regarding the interpretution and applicati n of the factors aftecting and controlline frowth, there remains much more to be achieved, particularly in the recim of single and smell groups of cells. This latter espect has enjoyed greater interest in recent years because of the increased awareness of cancer, with asociated growth and behaviour phenomend.

It is accepted thet genetic inheritance provides the cell with its potentialities for erowth. Mowever, it is also acceoted that chemicel and physical stimuli affect the expression of thet growth. This view is clearly statod by Thomson (14) as follows:"-thet the morphologicel expression of any hereditary feature, whether 1 t hes an old constitutional basis or is due to recent mutati n, cannot be used to determine the course of ph logeny until the extent of its varigbility under dilferent conditions hes been determined and taken into account." Ludford (B) has also shown that milignant cells react to physical and chemical stimuli in their growth and that this reuction varies with different strains. Two facts are emphsized from this:firstly, thet the chemicel und physical environment affects the excression of frowth and secondly, that this eflect varies with the
moterila used. Thi. lotter statemnt 18 not surprising as the oifferent meteriels will vury in genetic constitution or when the miterials ere taken frum different parts of the sume orgenimm, they difter in the type and degree of dirferentiation.

In spite of this, generaliztilun regarding the offeots of the factors could be mede, if a suficiently isfege runge of material wes studied, including that at difforent levels of morphologicel camplenity.
ΔS tbese are periode of ainimum cellul x difereat iation, the zygote and early post-zygotic stages of embryonic development provide cells, ar groups of cells, which heve only the otentialities for extensive gromth sud differentiation. Then, if their chemicel and phyaicul enviromment is altirad, with respoot to their matural stete, an altertiva in the exuression of their growth might also be expected. Thes mesf found to be true by Dr. Radforth (lu) and Woods (15). Dr. Redforth, working with Ginkeofound thst in vitro. the formation of the suspensor, es well as the onset of asymmetrioal development of the proembryo, aun be deferred. Hoods, workine with Einus, hed similay results, notine thet the presence or shsonce of the suspensor is a I sult of a physioloutedi response. He \&1so found thet the redisl or three dimensional gsowth in vitro can be initiated at fert-
ilization or imposed at subsequent stages, the extent of which derends on the degree of differentiation.

Excopt thet the ateration of chemical and physioul factors do imiose changes on the growth of embryos, very little is known about their mode of action with respect to the regulation of growth. Their effects are known only by inference, es above and from the work of others such as Nutman, referred to by skoog (ll), who has correlated the degradation and reabsorption of tissues, enveloping the embryo, with the embryo's staces of development. From this, he has suggested that the envelopinc tissues supply the nutrients r grrmth factors to the embryo as needed. working With Datura, Van Overteek et al (15) were able to develop miture embryos in Vitro from relaively undifferentiated masses of cells, by adding coconut rails to the medium.

To investigute the mode of uction of these factors,
In this instance with respect to the proembryo of pinus, the effect on growth of the basic conditions for in vitro culture must be known. By besic conditions is ment the simplest conditions in which optimum growth will occur, other than the netur 1 state. Following this, variations can be made in the basic environment and the resulting erfects an be compred, not only to those of the in vivo state but elso to thuse of the besic conditions in vitro.

However, until this medium is obtained, relative compurisons con still be mede among the effects of other conditions In vitro and to those of the in vivo state as well.

In order to obtain results, which could be used es \& standerd for comparison, the procedure involved in dissection, processing, staining and ouservetion aust so be standerized to yield consistent results.

It is in this regard thet the work for this treatise Wer undertaken; namely, to attempt to establish a standardized procedure, to contribute informetion regerding the requirementa of the basic medium x for growth of the roembyo of pinus nigre var. austriaca in vitro, and to evaluate the relative chunes, if any, in the expession of groth in both the proembryo and prothallium of this species under several environments Lin Vitro.

MATERIALS AND FROCEDURA

The stendara procedure anst be one in which each of the component steps is such that it can be performed repestedly with accuracy end consistent results. The methods and materials of the followine procedure were selected in an effort to fulpill these requirements.

The female gemetophyte and the proembryo of inus nigra var. austriaca were selected beoause they were used by Woods (18) in his work which deronstreted the need for this investigati a. Also their relativoly large size affords resconable ease of mertipulation, thereby allowing rapid dissection which decreased the possibllity of contamination. woods (18) had found thet dissection, using the micromeaipulator, produced material which was unable to survive in vitro, ap arently due to shock, and he wos only able to get satisfactory results when the whole gamotophyte w1th the inclosed proembryo was usad us the inoculum. However, since accurete and controlled dissection is necessary in the standardized procedure, it wes decided that the micromani uletor would osed. It was thought thet if care whs exercised the incidence of lethel shock could be kept to a low level or avoided completely. In the effort to prevent this shock, the dissection w designed to leave a buffer zone of prothallial cells to protect the
inner proembrgonic masses. This zone was severkl cells in thickness and was smell enough to allow the proemioryos to heve, as much is possible, a unitiorm environment in the media.

The dissection procedure ws as follows:
The femele cone was out along a median lime liom the distal to the busel end to allow ready removal of the seales. The prothallium wts removed inum its integument and nucellus, usinf: a sterile rote and exercisine care to prevent injury. It was then trensferred to a sterile moist chamber, used for micromaipuletion, which ws: provided with a floor of sterlle 4% \>er efol to frevent excessive breikage of the eless implements of the mieromsaipuletor. Th chember containing th: gematofiyta, was luced or the stage of dissectine microscope, where tho dissecti:n, sccurdine to the above stuted requirements, was accomplished.

In order to ingure that all stages, from fertil-
ization to the ostablishment of the pr ombryo, would be obtained, the dissections begsin on June 2Brd, 1854, one week before the suspected tine of fertiliastion (I), and continued on every second day unt11 July 19th, 1954.

As the establishment and muintainance of sterility is essential for succesg in tissue culture, preasutions wore taken to insure as high a degree of sterility es pos-
sible. As well as Eutocluving the medt and ager, End dry sterilizing (heat fiur one hour at 170 degrees centigrade) the serologiaal tuves and pipettes used in the transfer of media and penicillin, three solutions used to render sterile such thinge as e uloment and working area. These were: 70\% ethenol, 5% aqueous phenol, and ssturated oalcium hypchlorite solution, prepared by adding 2כ 8 . of calcium byoc lorite to 280 c.c. of water and filtering the solution, after allowing it to stand for three hours. Esch has diacdvantages which prevented its use throughout the whole procedure. The 70% ethanol was used to sterilize the Glass instruments and the noist chamer, the phenol for the wurkine ares, the equipment and the surrounding air, the calcium hypochlorite for couling the flumed metal instruments and for sterlifing the plece of tissue, used as the inveulum. Calcium hypochlorite does not affect the plant cells if used for a short period of time, but is eilective against surfece contamination (10).

After the diesection, the coll population wesemoved, usine a small, sterile wire loop, transferred to the calcium hyfochlorite solution, for one-belf to one minute, and then pleced in a tube containing the medium. Itsmouth Wes flamed before and after the inoculation in the maner of microbiologists, to insure the mainten nce of sterility.

The medium is one of the most critical factors in a standardized procedure for the culture of tissues. Sinoe many types of media heve been used for virious meterials, experimentation $1 s$ necessery before the best one can be selected for the proembryo of inus nigre var. austriace. In this connection, severel media were designed and em loyed. All had, to poovide minerel selts, the modified Crone's solution. This wae used by Dr. Radrouth (10), in his work with Ginkeo, end was selected by Woods (18) over Knudson's formula, in his work with Finus.

It is prepared as follows: 10 g • pot*ssium chloride; $2.5 \mathrm{e} \cdot \mathrm{calc}$ cium sulphete; 2.5 g. megroeium sulphate; 2.5.g magnesium phosphate; 2.5% iron phosphate are thonoughly mixed and one litre of distilled weter sdded to 1.5 f . of this mixture. This is the "100 percent" modilied Crone's solution. By adding alstilled mater to this solution in the correct proportions, solutions were ibtained that were $50 \%, 25 \%$ ana 12.5\% concentretions of modified Crone!s solution. The hydrogen ion cuncentration wes adjusted to \& pH of 5.5. Following this, esch solutin was divided into eight portions and to each was added one of the following nutrient combinetions: dextrose, 2 B . per $100 \mathrm{c} \cdot \mathrm{c}$: yeast extract, 2 g . per 100 c.c.; yecst extract, 1 g. per 100 c.c. plus dextrose $1 \mathrm{~g} \cdot \mathrm{per} 100 \mathrm{c} \cdot \mathrm{c} \cdot \mathrm{j}$ dextrose, 1 g . per $100 \mathrm{c} \cdot \mathrm{c} \cdot \mathrm{j}$ yesst extract, 1 g. per 100 c.c.; sucrose, 1 g. per. 100 c.c.; yoest extract,

1 g. per 100 c.c. plus sucrose, 1 g. per lov c.c.; sucrose, $28.150 z 100$ c.c.

The resultine twenty-four sulutions were alspensed,
in 10 c.c. ortions, in ordinery 20 c.c. test tubes, which were then fitted with cotton plugs and pleced in an autoclave for twenty minutes et 25 pounds fressure und 130 deerees Centigrade.

To hali of esch medium, penicillin, dissolved in sterile, distilled water, was added such aach ml. of the resulting solutions conteined 10 units of penicillin. The media were then dispensed, under sterile conditions, into sterile serological tubes, each tube receiving $0.5 . \mathrm{ml}$. of the medium. These tubes were also ifted with coton plugs.

AII ciassware, as veiated with the preparetion of the media, was made chemioally clean using ε saturated solution of chromic acid in coneentrated (98\%) sulyhuric acid. This wes rinsed out with tap water followed by sever 1 wasings with distilled water.

The inoculated media were placed, for ten days, in En inaulated cabinet where the temperature flucturted betwaen $25^{\circ} \mathrm{C}$ and $28^{\circ} \mathrm{C}$. The leneth of the incubation period was chosen aruitrarily on the basis of Woods' (15) disclosures. The fluctuation was not considered injurious to the growth of the tissues, as it was found that there was a

Veriation in the internel temperature of the cone in ita netur 1 state and thi: veristion exceede thet in the csbinet. To determine this internal tempereture, a therqumeter was inserted into the cone while on the tree and the temperatures were noted for several cones under a variety of conditions, including size, relative position on the tree, degree ol sunlight and externul temperature.

After the incubation period, the tubes were removed from the cabinet. The media were decanted and repleced with distilled water as H wash, which in turn was decented to be replaced by Carnoy's solution (5), a killing and fixinf reagent. This was allowed to remin for one-htif hour. The pieces uf tissue were then removed und pleced in vials, containigg 70\% ethanol, which wexe corked and paced in a resrigarator to prevent excessive evaporation.

A condition of the investigation was thet the fixative must not contein compounds with aldehyde groups, s.s their presence would interfere with the feuleen reaction (3). CErnoy's solution was selected from the group of fixstives without such compounds, bs it permitted immediate trensfer to 70% ethanol for storgege, made necessary by the fact that the plant material was only available for short periods of time This made continuous processing im ossiole when lurge amounts of meterial mere used.

Using 7\%\% ethanol as the stor-ge medium, permitted the direct transfer of the meterial from it to the first solution of the butyl aloohol series, used for the deLydretion and int゙iltration procedure. This series was selected, rather than the ethanol-xylul method, beceuse of the greater iflexibility in procedure, while results are comprable.

The muterici was embedded in Tissue Mat and sectioned to a thicknoss of liz micre.

Since the Feulgen resgent is considered to be highly specific for nuclei, its ase in the standard proceature is desirable, an it would make observationa more consistent ind prevent misinterpretations. Since this is a chemical reaction, it yields quantitative as well es qualitetive results; the degroe of the frmer depending on the method of preparetion end esminetion. In this instenoe, it wes possible to mx ke comparative estimetions, with respect to size chromosome number (whether the nucleus was diploid or heploid) End the condition of the nuclous.

The sections were mounted on slides usine Meyer"s adhesive (5) and were trest d to remove the lissue Mat, replacing it with water, usine the method outlined by Johansen (5). Following this, the seotions were submitted to a period of hydrolysis in $1 \mathrm{~N} . \operatorname{HCl}$, at $60^{\circ} \mathrm{C}$ for 6 minutes. The hydrom
lysis medium is us recomended by Fiillary (3) and the time wes determined experimentelly for this perticular m-terial. Alter rinsine with distilled water the sections were trested With the Feulgen reegent, prepared accordine to [ifllury (3), for not leas than four hours. This period of raection was also arrived at through experimentetion.

Removed from the reagent, the sections were placed in three differentiated beths of sulphur dioxide water, each ten minutes in duration, after inilsry (3): washed in runalaf" water for five minutes; dehydrated, using the ethanal serles; cleared in clove oll solution (5); treated with xylol and mounted in Caneda belsum.

In vivo examples for controls were excised on each day of inoculation and were placed directly into Carnoy's solution. They then underment the sume processing as the in vitro meterial.

Eflects of disboction ars hoafer to medib：
In the dissection
accomplished uink tho microranizul：tor end ocedure ort Ilaed in tat proceang suction，the proentago of failure， due to ghock，was less then 40% and wobably ia low as en mi the ensct parcentige mas difincult to determine beceuse filure to grow in tav aedic could result from othor ceuses． The eerly post－zygotic gtages indicated a yreater degree of semsitivity to this shock．

Therefore，the zone of prothallial cells that was left to protect the proembryo was adoquate in most oases． Fycept for the oages showing later stages uf embryonio de－ velo ment，this zone of cells wes also nerrow enough to en－ courage tie view thst tac caviromment within the medium would We adequatoly uniform Eround the prothellium．In the later at ges of developmat，the erothallal cells intrifered vi the growth of the lower aituated ambryonic misses．巴ffecta of storllity recautioas：

Contsmination occurred in
only 7．0\％of the 872 cultures．This ws considerably lower than thet experienced by wooda（15），as be found bontemination a serious impediment which was not the aage hore．

Ienici.ilin, in the concentrations used, was iound to be inefiective in preventing contamintion. in the penicilincontainine medio, the contaminetion was slightiy hieher than In those without it. This alfference is not sicnifioent, however as B.o. onntemination oocurred in the peniciling treated media as compered vith 7.7% occurring in the non-treet a media.

There 酗s a great increase in the incidence of contarainstion in the culturec inocul ted on the lith and 13 th of July. This cuincided witi a stenticant increase in the size of the inocula and, it was cunsidered that the time of decontrinintion in tha aalciun hypochlorite solution was not sufficient for these lurger fieces of materifi. acoordingly, the time was incraased to ap roximately one minute for the dissected materful of the $15 \mathrm{th}, 27 \mathrm{th}$, zand 18 th of July. The incidence of contamination in their cultures aropped to the level or the earlier group. The evaluation of the Feylgen reagent:

In the majority of the
slldas, the keulgen reugent g ve tiae desired results, mening the nuclei ond mitotic ficures clearly outstanding atainst the beckerround of the unstained oytoplesm. Also the quality of the reaction wes such that the heploid and diploid nuclei could be clearly distinguished and the conditiun of the nuclei,
es comp red to those of the in vivo materil, could be detormined.

There were sever 1 slides which exhibited faint or no resiotion with the Fsulfen reagent. Those fith no reaction may be classified into two groups: those with no nucleor material containine desoxyribose nucleic acid essenti for the reaction and those which appacent ly hsd this meterial, but which felled to onter into the reaction for some other resson. There apperis to be a connection between the second group and that materici Rhich showed only efeint reaction. hssessment ol the inedia:

The medic were aysessed on tbeir

 ebility to prumute frowth, which wae determined in eccordance with arbiturily selected criterit. Thi ability was olassified linder three min heudings; pour, fuir, and good. Any medium with a poor ability was cunsidered ag not supporting growth. On eximinution of the meteriul, it wes observed that there wes not alweys Egreement in the response uf the gemetophytic and embryonic cells to each medium. Hence, the media were assessed separately with respect to their efieot on the growth of both the prothallial and embryonic cells. Ine data obtained are found in Tables I to VII.In all of the tables the rigures were otained by determining the percentage of masses in which growth occurred,

In the totel nunher of tissues in the ferticulex gr up 2 anは10.ter.

Table I shows the deta for erouth in tha soparete

 01 the modis'ied Grune's sulution.

to tie concoatretion of the modilied Orone's a lution usad, disregaiding the nutrient combination used.

Tible III uad IV show the pereentage of meterial inaloating growth with respect tu the nutrient combination. The data here are for the gametophyte only, as fertilization had not occurred or its occurrance was not frequent enough to yiela suificiently sicnificant figures.
l'ables V,VI and VII are sinilar to Tables II and IV but include the date for the embryonic cells.

In the tables, code letters are used to represent the nutrient combinations in order to facilitate the compilin of the tables.

The key to these oode letters is es follows:
A- 2 2 dextrose
B-- 2\% yeast extrect
C-- 1% yeast extract plus 1% dextrose

D-- 1\% joxtrose
y-- 1% yesst estruet

$\mathrm{H}-\mathrm{D}_{2}$ 3unroge
The division of the the 1 culture pariod, into tha sub-pariods used, w. 3 detrained by the atuge of ombry inic तeveloprent in the mefortty of the incul at the time of inoculetion. The auh-periode are:June 23 rd to Junc 25th, the nerfod of prefertilization; June 27th to July lat, the period of fertilizetion; July 3rd to July 7th the oriod of Juspensorial erowth; July 8th to July 1.ath, the perfod of aftablishment of the cells ot the tip of the suspinsor; July 15 th to July l9th, the pariod of established embryonse messes in the lower portions of the prothallia.

TABLE I

Incidence of Growth for the Total Ferlod of Culture Nutr't \% prothellic overell overell \%embryos overall comb. showine Erowth

Fercentage of total gametophytes ahoming growth is 41.2 g Percentege of totel embryos showing growth is 37.3%

TrBLE II

Incidence of Growth Por the Totel Perlod of Culture Concentretion \quad \% of prothellit of emoryos
of Crone's sol'n showing growth showing growth

50%	32.5	39.2
25%	42.2	38.8
12.5%	44.6	33.9

TABLE III
Incidence of Growth for the Sub-period of June 23rd to June 25th Nutr't \% of prothe llia comb. showine growth

A
25.3

B
0.0

C
70.0

D
0.0

E
3313
F 37.5
G 71.4
II
44.4

> Inoldence of erowth for all media is 39.0%

TABLis IV

Incidence of Growth for the Sub-period of June 27 th to July 1st Nutrit 度 of prothellia
comb. show ing growth

A
45.5

B $\quad 20.0$
C 71.4

D 50.0
$\mathrm{E} \quad 0.0$
$F \quad 36.4$
$G \quad 60.0$
H 27.3

> Incidence of growth for a 11 media is 37.20

TaBL二 V
Incidence of Growth for the Sub-period of July 3rd to July 7th Nutret \% of prothellia \% of embryos comb. showing erowth showing growth

$\dot{\square}$	27.3	18.2
B	23.0	8.1
c	61.6	37.5
D	28.6	20.0
E	7.7	10.2
F'	9.0	22.2
G	62.5	64.3
H	35.7	15.4
of growth in prothalla for all media is 33.0% e of egruth in embryos for ell media is 26.4%		

TABLE VI

Incidence of Growth for the Sub-period of J.ly 9th to July 13th Nutrit \% of prothellia \% of embryos comb. showing growth showing growth

A	81.3	37.5
B	0.0	31.3
C	56.3	68.8
D	68.8	37.5
E	6.7	40.6
H	46.2	38.5
H	33.3	58.3
	58.8	35.3

Incidence of growth in prothallia for all media 1s 44.6\% Incidence of growth in embryos for all media is 43.0%

Incidence of growth for the Submperiod of July l5th to July l9th Nutr't $\%$ proth-11ia \% of embryos comb. showing growth shuming erofth
A
60.0
33.3
B
12.5
12.5
C
53.3
53.3
D
38.5
38.5
E
29.4
41.2
F
61.5
69.2
G
37.5
37.5
H

60.0

73.3

Incidence of growth in prothalife for all media is 43.5% Incidence of growth in embryos for all media 1844.2%

The data of the preceedine tables ere grephicelly represented in the following diagrans.

Graphs 1 and 2 represent table I; graphs 3 and 4 represent tables III and IV; grephs 5 and 6 represent table V; graphs 7 and 8 represent table VI; graphs 9 and 10 represent tible VII.

In text-figures IV to VII, diagrems 11 to 26 11lustidate the data of the first ten diagrums. Here the date bas been resorted to indicete the effect of individual nutrient combinations on the expression of growth in vitro.

In the first ten diagrams, the horizontal line rem presents the percentage of totel massos, either prothellial or embryonic, whioh indicate growth in vitro. The vertical colums represent the difference in the percentige of masses indicating growth for each nutrient combination, relative to the percentage expressed by the horizontal 11 ne. In the rest of the diagrams, the horimontel line is placed at 0.0% and the vertical columng represent the increese or decrease in the percentage of masses showing growth relative to the percentages represented by the horizontal lines in diagrame 1 to 10 for each sub-period.

x...TMEICUME 12

TEXT-2LOURT IV

盟..xforgount VLI

Observation in growth and form:
Grest irredulertty, with respect to the dete of iertilization in this species mas noted. mils 1s in acordance with the sindiags of woode (18) but in disgerement with Coultar tud Chamborlain (1), who set the fairly rigid Bate, July lat, for the fartilization of cinus. Corroborating the observations of $W a d e s t i l$ further, it wes noted that there was a vadiation, with r apeot su the time of fertilization, amone the srohegonia of e singlo prothalIIum and amons the prutixille of single cone. It was found thet fertilizution ocourred most irequently betwean June 27 th ad July 1at. However, it was elso observed to fuv occur red as early as the 25th of Juno and as lato as the 5th of July.

Wherear moods reportad a hich peroentege of non-fert1112Etion 10 his material, it wes found that, excent for those ovules diseacted in the prefertilizetion period, a very high percentage of fertilizetion had occurred in the material under study. No ovule was round whthout at least one oase of festillz tion and frequently more than one archegomium Wes Pertilizad.

Tho instanoes of whet may be termed 'twin gemeto-
phytes' were observed; thet is a single ovule contained two gemetophytes, complete with the usual complement of archegonia. The members of these pairs were smaller thed usual and mere somewhat misshapen, due possibly to their existence in the oonfined space normally occupied by only one gametophyte. Exoept fur this, they ap eared nomal and showed no difference in behaviour in vitro as comptred to the normel material. Une of the two pairs was dissected in the prescribed manner and placed in culture. On examination of the marial in vitro, it was found that growth of some form bad occurred in more than helf of the cultures. Thi figure is slightly bigher than those Eppearing in Table I; the resson being thet, in some ouses, growth hed occurred in the proerbryo without having occurred in the prothallium. The reverse ins also noted.

The followine oriteria were used to determine whether growth hed occurred in the tissues wille in the oultare medis;

1. The appearance of mitotic figures in the in Vitro atorial.
2. The increase in mean cell size, as compared to the oells of the in Vivo meterial.
3. The increase of tissue mas relative to in Vivo condition.
4. Change in growth direction.
5. Change in other morpholoelcal features.
6. The appearance of develomental forms not encountered in the in vivo situation,
7. The presence or atsence of nuclei and the evaluation of their condition, relative to in viro material.

Illustrations of the first criterion are found in Fl. VIII, I1gs. 2,4 \& 6, and in Pl.VII, fig. 11 ; of the second in Fl.VII, P1es. 1 \& 3 ; as compated to Pl. VII, fig 8 ; of the fourth in Pl.VI, fig. 9; of the fifthin FI. VI, fig. 14; as compared to PI. VII, 118.8 , showing thickening of the cell walls in Vitro which is not observed in Vivo; of the sixth in Pl. I, fig. 3 ; and of the sewenth criterion in PI.VII, figs. $3 \& 5$, es compared to PI. VII, fig. 8.

Observations regerding the nuclei would seem to indicate that nuclear decilne could oc ur in more than one manner. A normel nucleus as seen in yivo, has a discontinuous appearence when treat dith the Feulegen reagent. Nuclei of this type are seen in Pl.VII, fic.il. of the in vitro nuclei observed, sume ap eared to be continuous. By 'continuous' it is meant thet there $1 s$, on treatment with Feulgen reagent, a uniform distribution and intensity of the resulting colour throughout the whole nucleus, masking any structurel if atures if they are present. Some of the discontinuous, normal appearing nuclel gave the same response photogrephically as the continuous type, especially those of embryonic origin. an example
of this is shown in PI.VII, 1 ig.3. Of the continuous appearing group, of nuclei, seteral shapea were observed, ranging from the normal, near spherical, to the narrow barlike shepe. A crescent shaped nucleus was not uncomon.

The other posible node of decline was represented by a decrease in the intenaity of reaction with the poulsen reagent, while the discontinuous nsture mas still observed. It is wo thy of note that the second abnormel state did not occur in embryonic celis.

A difference was observed in the size and shape of the prothellial cells in स1tro as compared to those in V1ष0. Although there was an increase in the relative mean cell size of the prothellia in vitro, the degree of this difference varied. This difference cun be seen by comparing PI.VII, figs. $3 \& 4$, to Pl. VII, fig. 8. Only relative and approximate estimetions of the size of these cells culd be made because of the aeture of the preperetion of the meterial snd the state of the cells themselves. The absence of stain in the cell Wells made it impossible to alstinguish them clearly enough for acourate mexsurements. s.lso, the shape of the colls in vitro was very irregular and inconsistent. There was only a slight increase in the size of the prothalial cells erown in the media which contcined yeest extrect and oarbohydrate as well as minerul galts, while those
cells grown in a medium with only carbohydrate added were significantly larger than the cells in vivo. There wes little difference, if any betweon the size of the cells of material grown in the media which contained one percent carbohydrate as compered to that of the cells in media with two percent carbohydrate added. The cells which were seen on the outer edges of the growth area were larger than those in the inner portions. The degree of difference waried with respect to the amount of deed celluler remains in the outer regions; the greater the amount of this material the less the difference in size. There was little difference in size among the in vivo cells with rospect to their position within the protheilium. As mentioned previously, there was a significant alteration in the shape of the cells eromn in vitro es comparea to those of the in vivo material. In the latter instance, a high degree of reeularity, with respeot to shepe, Wus observed among the cells of the prothallium, and their shape could be desorived as spherical, modilied by the close assooiation uith anjacent cells. In ∇ itro a variety of shapes were noted as seen 1n Pl.VIII, I'ig. 9, the cells oit the outer regions of the growth ares were more spherioal than those of the inner regions, which exhibited a great varioty of shapes. Theso shipes could be described as oblong, almost triangular and distorted rectangular. These are 1llustrated in PI. VIII, fic. $6 \& 7$. The
cells along the channel generully resembled elongated rectengles. Those cells grown in medie which contained yeust extract as well as carbohydrate tended to be more regular in ahape than those grown in modie without the yeast extrect. There was litthe difference in the effects of different concentrutions of sugar on the shape of the cells.

In vitro the welle of the prothellial cells were thicker than those in Yivo. as shown in E1. VI, fig. 14, and P1. VII, fie. 8. Usually the degree of thickenine was ereater in the larger cells, except when thsy were located in the outer regions of the growth area.

Grenular inclusions, prominent in the in vivo meterial, are found in great density in those cells below the lower regions of the ohannel, as seen in Pl. VII, fig. 8. These were suspected to be starch grenules but lodine tests were inconclusive in establishing this fact. In vitro the density of these inclusions varied inversely mith the degree of growth in those regions and in several instances the inclusions were not seen. hlso, they were not seen in those cells which were in poor conaition.

In most instances, the cells growing in $\overline{\text { fitro }}$ had very little cytoplasm, as oompured to their size, while the cells In [1vo bud very abundant and dense cytoplasm and few vacuoles. The vaouoles in the cells in vi ro were so lerge that only a
thin layar oi cytoplasm was seen next to the cell wall and occasionally a thin strad was aem transversing the cell. As 4 result, the auolel of these adls were locsted newr the Walls rather than being contrally located us in the normal oslls. Generally the auclel were somembat 3milex tha normal and this was empasized by tho increase in cellulky size. This was not true in all cases, as P1. WI, fle. 4, shows cells with unusuelly large haploid nuclei. These conditions were less extreme in the smaller in vitru oells.

Binucleate cells were seen in geveral instanoes, and thi wes in accordance with the observations by woode of this phenomenon. These are shown in FI. VIII, fig. 10, but were difficult to represont photographioally as the cell werls were not distinct. Howerer, inspeotiun of the slides leit nu doubt that these cells contained at leest two nuclei, end in some instances even more. This ohenomenon occurred only in the materiel cultured in media with only yeast extruct added to the sait solution. It occurred mot frequently in the medis um containing two percent yeast extrect than in thet with only one percent. In some as ses one of the nuclel appeared to bs normal and the othar wes continuous in eppearance after treatmont with the Feuleen reagent. These latter types were smaller in sizo. In the same material, nuclei were seen which resembled budding geast colls. These bud-ilke pro-
trusions were much smiler the n the nucleus 1 tselfend were seen in various numbers on all surdacee of the mucleus. another obsorvation worthy of note was that concernIn the disorfanizetion end degenerition of the jeoket surruundIng the erchegonia. In vivo. following fertiliaztion, the jacket 1s distorted by the beginaing of suspensorisi elongation. Continuation of tais elongation results in the mpture of this facket and the cells breze apart tind die. Their nuclei become smell and irregular in shape and give a continuous appearence atter the reulgen raaction. This process begins at the ond of the alchegonium where the suspensor is formed end greduelly probresses to the opposite end. There the cells remsin inteot 10 some time but eventur lly they too degenoreta.

In vitro the course of events was found to bo much the seme but, instead of the epperentiy orgenimed degenuration, seen in Vivo, a aisorgenized breek up and decline of the cells was observed.

This occurrence was most evident in the early postfertilization stages of embryonic daeelopmert. In both situations, dead cells were seen in the cavity where remnents of the ege oytoplasm were also seen. As a fesult of the thickness of the sections these appeared to be part of thia cytoplasa, and in sminstandes, only the nuclei wore observed. This
phenomenon was difileult to deplet photograpliokily as it usuzlly involved several sections, but PI. VII, lig. 6.7,9, \& 10, shows bome of the reatures involved.

Growth ald not occur at random in the protbililun, nor did it occur uniforaly taroughout the tissue. To facil1tate furthar description, two terns of ruference should be descrited. The term 'channel' has been used previously and reiers to that cavity creuted in tha prothiliun at tiae time of suspensorial eloneation. Thie chunnel facreases in size as enbryonic decelopment progresses, and is coulcul in shape with its base opening into the chumber. The chamber is thet space proviously occupied by the a.caegonial ciuster. Saverel leyers of dead cells line the channel in both the in Vitro and 1⿲ vivo condition. Pl. VII, figs. $\& \& 8$, illustrate tois feature.

In vilue erowth, when it ourred, was most irequentiy and extensively located about the channel and extended outwards to a greater or lesser degree. Generally, it could be described as ocourring in a bund which encircled the chennel and this bud was in turn encircled by a bend composed of deud cells. The extent oi theas two regions usually veried inversely with respect to each other. The region enclosin the Chumber was not ε as consistent with respect to the presence or absence of growth. Frequently, when growth was observed in
the chanci regiun, it wes conspicuously ubsent irom the chamber roslun. This situetion mas more prominent at the time of suspouscriel growth. Tisules excised ot leter stages of embryoulo erowth shomed tiae occurrence of erowing cells in this region, but its appearance w-s suchas to indicute that the origin of growth had been in the lower chanael region.

At the time of this apparent inhibition of growta in the region described, grow th bid occurred 1 n the $\sqrt{\text { gugiun avore }}$ the chamber. The cells involved here were generally amuller and so occurred in greater donsity. Luter, when fr wing cells were observed in the region about tho chamber, ho growth was seen in that arad above the chamber. This epparent inaibition oi growth seems to ocour just after the dsgridation of the jacket cells in the partioular ceatres.

In the pre-fertilization stages of the prothellia,
growth was obsewved involving the cells between the jackets of the archegonia and those of the region about the archegonial cluster. Pl. VII, figg. 1\& 2, illustrate this situation. The jacket cells themselves eppeared to have been iuvolved and in some instances, even appeared to base been the centre of growthe The growth pattern, as 111ustreted in Pl. VII, ilgs. 1 \& 2, and II. VIII, fig. 9, indicete a degree of radiality. Fxamination of the embryonic masses in the in vitro
material, indicates thet there were saveral pariations in gromth as comparod with the in vivo meterial.

Th conditione of hetithy embryonic cells were much similar to those occurrine in vivo except for those of the smaller 1 n vitro mssses. Here the nuclei were ususlly smaller then the others. In sume of the messes the conditions were quite poor and dezoxyribose nuclelc ecid ap eared to hevo diffused into the cytoplasm. Il. II, fie. , and El.IV, fig. 12, show this conaition.

There wag a significant increase in the number of thege groups or entryonic cells in vitro, especially in the later steges of emuryonic development. For example, in one plece of tis sue gevan groups were seen, elz of whiciare
 In vivo material of compurable embryonic development rould beve ebout three prombryos. This increase in number of groupa, as coupared to in vivo conditions, wes found in all moterial exemined in which gromth had tuken place.

In Vitro the frequent occurence of smell or mediam sized roups wes observed, while in vivo they were seldom encountered, except in the stages of suspeasorial elongstion end proembryo establishment. Illustrations of this type of groups are found in Fl. I, figg. 1,2,\&4;F1.III, figs. 1, 8, 11 \& 13 , and PI.VI, fig. 7.

The number os the lafger sround af embryonic cells that were soen 1 上 vitro wes alcanly rolated to the number of proembryos seon in the in yivo matriaj, ou gajparabl enbryonio devoloment. hamplam of this yrup are seon 13 F for
 P1.V,figs. 1,2, 14 ;and 2.VI, fig. 2. Also P1.ITI, f1gs. 10, 11. 12, \& 14, End FI.IV, İiE. A, 1J1ustrate the renge in size of embryonlc mases found in one plece of tissue.

The size of the eroup of embryonic cells was determined by the numer of nuclai that were sean in the largest section of the group, rather than by the ghysical extent of the mass. The groups with fewer then aigh nuclei wore classifled as gme il, those with eluht to twenty as medium, and those with more then twanty nualai were classifisd as 1Ergo.

Embryonic groups were seen throuehout the chennel end ohamber, and generally there was a correlation between the size of the groups and their position. The largest eroups of cells were most frequently found in the lower third of the channel and the size decreased as the distance from the chamber decreased. Howevor, there were exceptions to this, as in several. instances relatively lurge to medium sized groups were sean in the chamber, or only a short distance from 1t, in the chemel. P1.I, figr. $4 \& 9 ; P 1 . I I$, fie. $8 ;$ Pl.III,
 ception．

In bie chaunel iliere ware severah simill ond medium sized masses ouserved，but usubily tisese wers olusely asscei－ ated witi tho edgea of tu chamel as scen in Fl．II，fie．I4；
 they were remanta of decining procmbryos Es in Il．I，ilg．12， をad HL．II，ざg． 2.

There did not aeem to be a prefereuce of position in the ohamer，Es grupp were observed in both the centrel pore tion end nesr the edges，including the top．Examples oi thase
 2；P1．IV，IIgs．6，7，\＆ 9 ，and E1．V，ilg． 6 \＆lo，shoing those
 fige．11，12 \＆15；IL．IV，IIg．8，Ead HI．VI，fís．4，Ehowng those thet mere centrally located．

Accordins to the literatura $(1,4,9 \& 28)$ and the rriter＇s experience，the proembryos in vivo ale oblchs in shape with parellol sides and rounded tips．Eiowever，in vitro the proembryos exalbit radial or three aineasion． f atowth to a greater or lesser extent．The degree of this radility was genarally found to be laust in the lurger groups，－nd incredsed as the size of the mass decreused．A comperison of rl．I，figs．

 wruanbrjos with pronounced radicisty. Size appeared to be related tu pusition, anc thexeiore, radality bea en epperent Ielation to position. Generally, radiality increased es the distance of twe group of embryonic cellspdecreesed with respect to the chamber. Here the msses with the hifhest degree of radiality were seen. Just as there were exceptions to the generaliz tion regaraing size and position end size end radiality, so there were exceptions 由o that rega-ding radiality und position. The greatest expression of 1 adialliy was noted in the medium sized groups of onbryonic colls, as seen in pl.I,
 FI.VI, figs. 5 \& 8 .

In a few inatances, there were indicutiona that radality existed in the arreajemunt of grougs of cells as rell us 1n the arrangement of cells within the eroup. YL.I.IIg.3, and Pl.IV, fig. 10, are iliustrations of this, but it is difficult to 1llustrate adecuately in p photograph, as inspection of several sections is necessary to observe it completaly. erom the literature ($1,4,9$ \& 10$)$ and from inspection of the in vivo material it mas round that the exes of the prom embyos cuinciaed with those of the archegonia. In Vitro
this was not chicived thevery instence, and an ann proemm bryos the txis of develu ment mes seen at vartour encles to tize anis ot the axidugoxin. The extreme oxpreselon of this tamancy is levelulud in tios s gronos here the direction of
 w s secn in its various degrecs of expression in the follawng

 figs. 1 (9. The ultimate expression of alteretion of growth Fipeotion is thet of rediality where growth tends to occur in ell airections, ruther then in one only.

The phenomena of increse in numbers, varistion hn bize of the sroups, Eind the veriation in growth direction and Fadiulity seen to kove oorrelation with the modia in which the tissuas ware grown. 胜tcriel cultured in media with both sugar and yeest extrect added showed the greatest number or embryonio Groupa which were lirger and exhibited greater degree ui radiI1ty as compred with those cultured in other amala. miso there was an increase in the appetrence of troups with anormsi alections of growth and the number of exce tions to the genersilties drawn with respect to size, position cad radiality in this type of medium.

There was e decrecse in the incionce and extent of the alterations in the expression of embryonic growth, when only carbohydrate was added to the modified Crone's solution. This

ふ日crąse was freatest when ond percenk 5 -ther ther two percent carbubydrate was eciad.
 rospuct to tac wher wea, ut tho conoentwition of vae pernent.
 lovel; suciose affected the growth explession in a nanaer resemblint the effect caused by nadie with su\&gy end yeust extrect Edded, more clocely than thet caused by the mediun with two percent dextrose adud.

There were \& rew abnormal phonomane wich occurfed in oniy one or two instincee int are morthy of nota at tnis time.
 embryonic cell. locted within tia arohegualum, comolately ersolosud by jucket cells. Tlk mic showad littia, if anj distortion of situpe, as cotpared mith those of the prerertilizetion period. These jacket cells alau did not ahow way degres of degeneration. The arrangement of the cella within thi. eroup was depinitoly sphericel, while those in the outer regiona were sigalfiosatiy lareer than thos inwaraly gitusted. There was no evisence of \& suspensor bevine been formed.

A similar arrangement of embryonic cells located in the chamber was encountered and is shown in El. F , fig. A. Although both messes were similar in euneral appearance there wore aignficant differences. There was no enclosing jacket seen in the second instance, nor was there any evidence of jacket cell
romins. Fiowsver, cellals ruditis ware bean surroundige the
 mess, and thera m-s o jueresse in tia ancunt of cytoplesm.
 July 5th, bysk and the socund ia tissue oxolised on July llth, 1954.

Fl. II, fig. I, ahom a proanoryo what axhiofted surWature in ita shape resulting freregrovity in vitio. It was not apherical duf its appoarsine indicuted that the direction of its crowth had errduall.d changed. It was locatad in the lower portion of the chamel. Nore or less shafler tendancies were noted in meterial shown in Pl.II, figeb, out in these inatences, the tendency was aut as defindtoly expressed.

The eroup of cells, dium in Pl.IV, fig. 5, bad an 1ndefinite saxpe ead did not indicate a dffinite difection of Growth, or radulity. The component cells reserbled meristametic cells lia yive, add there was a high eroent ge of ratotic
 phed under high power. Themas of cells was loneer then it mas wide ond was situated about midmy down the channel, which Wes quite nerrow especielly at thet point. A few other instances of the phenomenon were noted, but they were mah weaker in exrression, although they could be clessified 85 meterial showing this tendercy.
 appuarmoo, locitad in bat oh muor. This h s hevers bean recorded

 plesm mith nuelei and nuclaur maturdel disporged throubhout. The muciecs material occuraid as irregular qusbes or in grougs of stmatures wixa resemblou chromosomes. WWo otnar initemce of this unexpected phenomonun were noted in the materi 1 stadied but they were not tis lerge or aistinct.

DISCUSSION

The procedure developed seems to provide a sutisfectory besis for the establishment of a stindard procedure for the oulture in vitro of the proembryo of inus.

The method of dissection is adequate but requires some modification. In this instance there wes a low incidence of shock reaction resulting from dissection with the micromenipulator es compared with thet experienced b, Woods (18). Because of this, the use of the micromanipulator was justified. Also, its use is desirable in the standard procedure as it permits more accurate and controlid dissections.

In regard to the pattern of dis section of the protha llia, it would be advisatle to increase the extent of the zone of residual, prot hallial cells surr oundine the proembryo at the early stages of its develoment, as it was round that these stages are more sensitive to shock. This zone could be decreased in the later stages of proembryo dovelopment as these are less sensitive to shock. Thus a more uniform environment for the proembryo would be insured, for with fewer cells there would be less obstruction to the uniform disposition of artificial nutrients with respect to the proembryos.

The precautions taken against contaminati n were suc-
cessful in reducine its occurrence Es compered witb that experienced by Woods (18). Hoviver, refinoments could be made to decresse it still further. Une mient be in connection with the use of the moist chamber of the micromenipulator. During this work, only two chembers mere =vailable and this required thet rany dissections had to be made in the same chamber. This whs not criticol for the first group of excisions but became so in later steges of the work, as indicated by the increase in contaminetion who boccurred at this stage. Contamintion occurs minly at the steps where the excised prothollia are placed in $n d$ removed from the chamber. The first of these steps introduces contominents into the chamber where they cun be spread to othex prothellia. The large gemetophytes are more susceptible to contamintion from the air, possibly by virtue of their size, and so for this stage of development the chamber receives mare conteranants then at erlier stages. The use of several chambers, especially at these letor stages of developmint of the gimetophyte, would diminish the amount and extent of cont.四ination.

The inef ectiveness of penicilin is not considered a Loss, because contuminction cun be reduced by other means. It can be omitted in the stendard procedure. This is edvantagaous as it is desirable, according to the preliminasy terms
of the experiment, to prescrve simplicity in cunstitution of the medium.

The acceptance of the Feulgen reagent into the stundard proeedure warrants some consider\&tlon. In a survey of the literature, it wes found that several workers questioned the specilicity of the reagent for desoxyribose nucleic acid. The besis for this doubt was the fact thet there were inst nces rcorded whe the Feulgen reagent imparted colour to meterial other then the n cleic acid, and other instances where it ald not eive a positive reaction with desoxyribose nucleic acid. The lutter instance सas experienced in this mork.

The occurrence of the former was discussed by Hillary (3), who rported the occurrence of colour instretures containing starch, suberin and other similer substuces. stowell (12) reported on the application of the reulgen reagent, and described it as aresction occurring betweon aldehyde groups, proauced on bydrolysis of desoxyribose nucleic acid und fuchsin sulphurous ecid which results in a ruduct having the characteriatic m\&genta colour. Thus, the reaction is not specific for the aldehyde eroup of the Jydrolysis product of the nucleic ecid, but will occur with uny aldehyde group of compareble reactivity. This would account ror the occurrence of a positive reaction with starch, suberin and lignin which contin curbohydrites, if these certuhydestes could produce the aldehyde
groups of the required activity. Stowell (12), however, accounted for the presence of the apperent reaction with these compounds by indicatine that their colouretion is not due tos s resction pith fuchsin sul hurous cid, but to their absor ption of im urities which may occur in the reagent. He reported that this reधgent, prepered using the colemen modification of filtering the reagent throu hactivuted charcol before use, did not eive this apparent pusitive response to the Feulgen reagent.

Any factor which would inhibit the availability of the aldehyde group would result in a negutive response to the reagent. Hillary (3) reported that the presence of tannins impeded the reaction, and Lessler (7) showed the Eldehyde coupline reagents, such as bisulphite, semicarbuzides, phenylhydrezine and hydrozyamines, when applied to the material before the Feulgen reagent, caused a negetive r sponse. It would follow thet similar grouns, such as the amino groups of certain amino acids, could have the necessary reactivity to combine with the aldehyde group, tharoby removin, it from the resction with fuchensul hurous acid sind so oase in epparent neeative reaction.

This could account for the failure in the apperance of the expected results with the feulgen r agent in the second group of meterial, described in the pr ceedin section. As
there appeared to be a correlation between this second group and the tissues which gave ofsint reaction with the Yeulgen reagent, this axplanetion should also account for this latter ty e of response. Being a chemical reaction, the Feulgen reaction obeys the laws of such reactions. Thus, if the concentretion of the aldehyde-binding groups is less than that of the aldahyde groups pneduced on hydrolysis, there will be an excess of the letter group and they would still be free to react with the fuchsin sulphurous Ecid. In this oase the concentration of the aldehyde g. oupe wuld be the limiting factor and so decrease the amount of product. Thus, the intensity of the colour would be decreased.

Nuclei of the proembryonic cells were not observed to show the second type of fallure in response to the Feulgen r agent, but they were observed to give a weak reaction. This would be expected on the wasis of the gbove hypothesis, as they contain twice the amount of nuclear msterial as the nuclei of the prothellal cells. Therefore, it seams reasonable to assume that they would heve e greater concentration of aldehyde groups available for reaction with the geulgen reagent. It would tske a Eery large concentration of aldehydembinding groups to inactivate all of these aldehyde groups.

Non-response occurred in those tissues with a high degree of cellular degeneretion. Cellular degeneration in-
volves the destrucion of structural aterial into ita siapler component pris, such as proteins into smeller peptides and amino acids. Freed from their structurel location, such compounds, under the influence of the solvents and solutions, used to remove the purafin ana replace it with wat ar in the cells, could difruse over the cut surface of the section and so enter the nucleus. there, upon the production of the aldehyde groups, these com ounds oould react with them, making them unavilable for the Feulgen reaction.

If thiswas the case, these undesirable compounds might be removed with prolonged washing before the Feulgen reagent is applied. \& possible solvent would be 95% ethenol which stowell (12) recomended for the removal of carbohydrates. Of the media utilized, one would appear to have outstanding attributes to afford the development of a good primery medium. The figures appearing in the tables end graphs do not indicate the actual efficioncy, but only the relative efficiency of the media with respect to their ability to support growth in Vitro, because they are not adjusted to a ocount for the failure in growth resulting from shock. This adjustment could not be mede under the conditions of this experiment.

Anelysis of the tables and graphs indicate the the media conteining yeast extract and sugar in addition to the minerel selts of the moilifed Crone's solution, geve the high-
est and most consistent incidance of growth. Media with only sugars added supported e lower incidence of growth and were not consistent in their ability to do so. This was more prominent in the media with one percent of the suger than in those With two percent of the sugur sded. Media conpused of yeast extract and mineral gelts were untatisfactory in the promotion of growth and there wea little difference in this ability between the media with one percent and that with two percent yeast extract.

The results are not oonclusive en ough to warrent a selection of sucrose or dextrose as the most suiteble carbohydrate for the besic medium for the growth of pinus tissue in vitro. They were also unsatisfactory for the selection of the optimum concentration of the modified Crone's solution. They offectively indioute however, that the proembryonic tissue is less sensitive to the concentration of Crone's solution than is the prothellisl tissue. The proembryo revealed a slightly bigher incidence of growth in the higher ooncentretions, wille the regults for the protballium indicated that the lower concentrations were more suiteble for its growth. In the latter, the concentration of Crone'a solution was a limiting factor only in the poor media. It is possible that osmotic effects are involved.

Reports by La Rue, (6), White (17), and van Cverbeek (16) substantiate the findings. White stated thet, for growth in

Vitro beyond ' residusi growth', the medium should contin galts, to pruvide the major end minor ioms, carbohydrates, vitemins, fad some org-nic supplement. The term 'residual growth", (White acknowledees Carrel sa tho author) is used to designate that increment in growth which occurs at the expense of internel nutrition.

White indicated that sucrose and dextrase are the best carbohydretes und thet sucrose is probubly the better of the two. However, he thought that the efficiency of sucrose depends upon the concentretion of phosphate present in the redium and that the percentage to be used in the medium is largely determined by osmotio effects. Van uverbeek ett al (16) reported th t sucrose was a bottor carbohydrate source then dextrose ad thet two percent concentretion wes optimel for crowth in Vitro of Datura embryos. In view of this, sucrose rather than dextrose seems to be the better source of oarbohydrete for the in Vitro culture of some plant tissues, sud it is reconmended thet it be used in the development of the basic medium, which should also include yesst extrect or a substitute givine compsrable results.

Yeast extrect, used in this instence, supplies vitamins and other orgunio compounds. Also, it probably sup lies the organic rector or equivalent mentioned by Waite. Le Rue (16) ued media aimilar to the one out lined in the procedure, for the
crowth in vitro of maize endosperm. He reported thet jesst extrect was essential for growth, supplying amino acids and ot her substances escontial for growth. Also he found thet suorose, lactose, end dextrose were effective in promoting growth and their efficiency was in the order nemed. This was determined on the besis of wet weight, whioh he sed as the criterion of grow th.

The Arregularity in the time of fertilization, observed in this instance and reportad by linods (18) would indicate that the development of the ovule determines the time of fertilizetion and thetits development is in turn controlled by the environment.

With reference to the discussion of the Feulecn reagent, it would seem that the second ine thod or nuclear decline rufght have been on artifact. The appecrance of the nucLei of this group suggested that there wes a possible decrease in the amount of desoxyribose nuclelo acid present as compared With normal nuclei. Possibly some of it had combined with other groups. The fact thet this type of nuclear decine wes not very frequent in the prothallial cells and did not occur in the embryonic cells would substantiate this explanation. Comment on the response of growth in vitro of gemetophytic tissue to the chemical and physiog factors of the environment may lead to theoretical conclusiong. The size and shepe of the cells were sffected by the result of the inter-
feletion of buth types of factors in some casea, and in othrs one type was the eritical and deteraining one. In vitro, the cells tend to become enlarged, and this enlergement tends to be spturioel in 1ts expression. However, the prosence of adjecant cells decreased the degree of the expression of this tendency, with the gractest expression beine obeerved in the outer edges of the group. In some instances, where there wes a ereat amount of cellular remins surrounda; these outer edges, the tendency was not as great and varied indirectly with the extent of this asterial Also, when the rateram wes very actively growine and indicated cellular reproduction, the cells tended to be ameller than those in eromthares mitha low rite of cell reproduction. The eveluation of the above would indicate that the pr sence of physicul barriers is instrumental in the determination of the size of cells in tissues. Also, the ereat irregularity in shape misht be interm preted as the result of the competition for space among the 1naividusi cells. Frey-Wyssline (2) attributes cell growth, With respect to shape, to the difference in growth potential within a cell wall. If this is true, then the physical presence of adjacent cells or ot her obstacles influences the location end quality of these potentials.

The ohemical factors of the media uffects the shape and size of cells by reguleting errowth in its developmantal
aspects. Media with suger and yeast x!ract addan increased the tendoney for collular reprodution, and as a result, the colla involvad wora somler in siza and mora regular in ahape, and had relstively dense cytoplagm and thin walia. Madia with only sueferg added sup ort the errowth of individuel oells rsther than their reproduction. As a result, the colls wore larger, more irregular in shape, and had thicker walls. Cells on the outer regions of the grovth area still had thin walls a these cells were probably atill increasinc their volume. Secondary wall formation, according to Frey-Wyssline (2) oocurs after the cell has attained its capacity for expunsion. In the case of the internelly situxted cell with the thick Walls, their capscity for expansion could be cetermined by the amount of space avellable to it fior expension.

There has been much controversy regarding the fats of the jacket aells after fertilizstion and the elongation of the suspensor. This has been reviewed by Coulter wid Chamberlain (1), sad the following account is derived from thet scurce.

The jacket oalls diffar from tha reat of the prothallial cells in that they have thick walls which have pits. At first, it was sup,osed that these cells emptied their contents through these pits into the enlarging contral cell and ege. Strasburger did not agree, and showed that these aocalled micratory nuclei were in reality protein vacuolas.

Leter, Arnoldi described the facket cells ss beconine vebuid end passing trrough the walls.

Some clarificetion of this problem is offered throush the use of the Feulgen reagent. Bodies which might be similar to those seen by Strasburger and arnoldi were noted in the present msterial and these were dofinitely nuclear in origin. However, they did not occur in the ege cytoplagm by movement through the walls of the jacket cells, but as previously described, they only appeared to be so situated beceuse of the thiciness of the sections. They were the remeins of the degenarating jacket cells.

The degeneretion of the facket in viva appearud to be organized while that in vitro was disorgenized. This would suggest thet the degeneration is controllod by the development of the proembryo, as Skoog (11) suegested w ith reference to the ifindings of Nutman. In V1tro, the nutritions I requirements of the proembryo were met by the medium. Thus there wes no control Por the decline of the gacket, znd so it proceeded in a random feshion.

It is possible thet the jecket cells control the grouth of the cells surrounding the ohomber, fir it wes observed thet growth did not ocour in the chumer region imediately following the degenergtion of the jacket cells. If this apparent inhibition of growth was essociated with the jecket oells, it was only effective after their degeneration, as growth was seen in
tha grea hefore this ocurrence. man, these s groth in the region above the chamber when there were some cells left intact in the tor of the chamber.

The appes ance of binuclectod cells in the meterisil We subetgntiated by the findince of foods (20), who ettributed thia Fhenomenon to repld frowth. However, in tais instsnce it occurred in tissues erown in modia whoh ere extremely poor in their ability to sup ort growth, and did not occur in eny other media. hn explenetion for this phenornenon, in sccordance with these results, is that yeast extract cantains factors which promote mitosis. When mitosis occurred In a medium without a exrbohydrete and so lacked the metsriti fror Purther growth, even of a primery lamella, frovits could not proceed end in the majority or cases, degeneretion of the nuclei occurred. In tbis regerd, it is notable tht the two nuclei of one cell did not degenerate conourrently, but there was ample evidence of the a.cline of one bafore the other. The phenomenon of budding nuoleif appears to be inex licable at thic stage. It was observ d to occur in the sune tissues as the binucleated cells, but there wes no evidence besides the fuct of comon occurrence, to guggust that the tino phenomens were related. No references were found in the ifteratura with r.spect to this abnormality. However, 3treus (1\%) reported the occurrence of gevervi nuclear ab-
normalities in the ensosperia of maize grown in vitro out none of the types that he has aescribed resemule that which occurred in theae liavestigesions.

The occurr ace of tiae "twin gametophytes" has two possible ex lonations; either two cells, rather than only one, of the sporosenous tissue give rise to linear tetrads, and the surviving spores of esch iudependently gave rise to G gametophyte or tro spores rather thsin one, of a alnule tetrad survived to give rise to independent gametophytes. No record of the previous occurience of this phenomenon was found ana it is difficult to asseas its implicetions on the basis of only two examples. The set of twins which wexe pleced in culture reacted in a msnner sinilar to that of the svorage normal gametophytes of similer development. They were in the premerti11zetion stage of aevelopment.

To discuss the alteration in growth of the proernbryo of Plnus ccused by the enviromment in vitro, it is advisable to rem View oriefly the condition in vivo. The fullowine account is derived from Coulter \& Chamberiain (1), Johunsen (4), MoLesn \& Ivimey-Cook (9) and from observation of the in vivo material. Upon fertilization, twu diploid nuclei are formed which undergo mitosis, foring rou, auclei whict become ellgned in a plane perpendioulen to the axis of the erchegonium at the nonmicropylar end. There, pertiel oell walls are formed ond one
end remains exposed to the ege oytoplasm. hitosis follows to produce two tiers of four cella each; those of the lower tier have incomplete ones. Two separate series of mitosis occur to produce three and then four tiers of four cells aech. All those excent the ones of the upper tier have complete cell walls.

The cells of the second tier (from the bottom) begin to elongato and become the suspensors. Tuis forces the cells of the bot tom tier into the chennel oreated in the prothellium. The cells of the upper two tiens remain in the chamber; those of the third tier are the rosette cells which can, under special conditions, produce proembryos. The continuation of the elongstion of the suspensors force the tip cells furth r 1nto the channel, where they enter into the competition for the apallevle rood. There can be total of twenty-four proambryos in the same ohannel if sll of sif possible arohegonia are fertilized. However, sume of these Gre never formad and otherm never exom beyond a few cells. Approximately two meeks \&fter fertilization only three or four proombryos cun be seen and these are unually quite large.

From the ahove account $1 t$ can be seen the there ero severbl embryonic cells or goups of cells present in the chennel in the early stages of gmbyonic development, but in normel
circumetances only one frombyro develops into the immare 2lent of thes.ed. Thus many proombryoa abort. This may be due to lavir of nutriment, but on the otider bund azy be an effreot of phylogenetic control. Kowever, taunser of ths prothe lliam to amtificial mediun seems to prolong the lives of these 111-fetcd mseb. Therefore more embryunic masses are suen in vitru then in Vivg, and the chtlogenetic factur is not apparent.

There Ere severcl possible sources of the se groups of cells. Thr cells of the upper tier, which are epparently nonfunctional, could be capable of reprouring under in vitio conditions. Sis the roaette cells, which heve been known to produce proabryos in vivo, should show an inctesse in this tendency when plecedin culture. These tro groupg of cells would be responaible for the meny ombryonic eroups seen in the chamber, especially the smil or modiun sized ones, as their source wos probebly unicellular in size. Another potential source would be those embryos which were losing in the competition for survival. These would account for the masses seen in th chennel, espeolelly those 1ocsted near the mouth of the chaber. The size of the resulting mass would depead on the size ol the initial group. It Wes round in vitro that the larger masses weremost fraquently
lucuted weal duwh in tue chetnel, und tho size of the proembryo decrefzed as the dintance from the chember decressed. Those massean essociated with the edge of the chennel mere probably
这 Vivo before inocuil thon. Thus thosa groups, seen in yitro were of the smull or medium sizea eroups as their initial source had probubly beentsuluoad to a fen cells.

Sedia containiag yeast extract as well as suajurs, were generally found to be the gest medis to revive and initiate proembryonic erowth. This is subst-nti, ted by the fact that more groups mere soea in individucl pleces of meterial grown in such media, then in those gromin in other medie. also, these groups were larger in this type of madur ting those in the others.

The degree of radiclity expressed by tgroup of embryonic cells was deterained by its size at the time of inoculation by the position in the ohannel and the medium in which it was cultured (ci. PI.III. P1ess.5,6.7, \& B; P1.V, fle.2; El.VI, fig.2.)

The lareer groups, by virtue of their differentiation, Glthough slieht, wero less able to expreas three dimensionel growth. Small or mediual sized groups, which probebly orié neted from single or smell groups of cells, were relátively undifferentiated at the time of their inoculation tad were apparently free to express this three dimensionsl growth. Also
the presence of physical burmers, such ess tite edese of the channel, would hamper the expression of this tendeney. Thus, the eroups situated lower shuwed a silfint bendency towinds radiality probably bectuse of the preaedee of both of these factors; the phygical barrier of tbs chanael edges and their relitively high decree of dillerentiation. Small groups, located in the chamber or nigh in bhe chanat, hed neither of these epparent limitations. Lossimy beceuse af thite, they 1ndicated a high deeree of radiality. Groups, gssociated with the edges of the cmenmel, genertily showed a lower degree of ridiality, in spite of their amil size. This could be attributed to their position next to tine channel edre, and to the presence of cellular remeins otserved gbout the mases. When the medium is one which sup orts a hish degree of crowth, these prevlously meationed facturs are no lonser cifitidel. Ior the expression of radiality. Tins is corruborated by the eppesiznce cf large mases in the J. כwor portion of the ctuncl goeseseing bleh defree of radiality.

The laref messes found in the upper regions of the channel and in the chember, were probably placed there by the mechanic: lirestment of the tissues in the course of processing. Prombryos arc not ifxed in their positions in the shannel, but rather, they are suspenaed in it by their suspensors. Thus, auch loose messes could be shaken free and re-

Inceted in nnsthns position. This is especioily true of the messce yoctod in the chennel. Im of her then the lower region. Gere the orsanal is nerrow und wiud tend to inhitit this rem $100 t 10 n$.

> If thin occureud berowe fnocul tion, these groupe
would heve e er ater opportuntty for reditil erupth, es the ghysicul verrier of the chrafl sdes would hise bean removed. Those frupa vileh showed b deexee of radiality, c mparable to thet of the russes lucated in the lower regions of the channel, were prubsbly relacated $-f t \in r$ thelr removal from the male.

This postuleted relocation of eabryonic Broups would eccount for those mssses whoae gromth diractiuns were observed to be at various angles to the normel direstion. For in thuse instances, the relocation was not completed. Chet in, the groups were only ro-orientated in their position, nut removed from 1t. Gromth in vitro occurred in these froups in uboomel directions as if no disturbance hea occurred. Thus it would seem that the तirection of growth was determined by tho differention and not by the oriontetion of these sroups. This is significant, as it pould indicate that the direction of prowth in Vivo, whioh is parellci to the exis of the arohegonia and directed eway from them, is deterained not by genetic reotors elone, but by the chemical and physical factore of the environment within the prothrilium. Included in these are the bar-
 nutrieats.
Ci. speci-l sighlifetuce is the sidele ospe of proembryonic ealls aevelopia, within the undistorted end unoroken Erchegunial jacket without the rormetion of a suapensur. This group of embrycnic cells, seen in H1.V, fig. 0 , is probably the first recorded ocourrence of this phenumenon, as no reference to it or similer masses wag jound in the liteleture. Its
 Since this meterial wes oxelsed mithin the period of foritilaation, recorded in this instence, therefore it is probubie that forillization ha ocourred just previoun to, or shoxtly ort r, inoculation. The nuclei resultine from tiartilizetion probably ald not allem thenselves in the customary plane, for, it they hid, the expression of erowth would not have been so definitely spheriar. The presence oI the intsct, undistorted juckot gives further splderce thet the origin of this eruup or cellu was the nuciei resultins from fartilization. The aompete absence of any indication of sumpensor develoment indicrtes that this Peature is auterined in its ocourrence by physical and cherical factors, むithough genetic factors mey give the material the potantiality ius its development.

The occurrence ut a second grcup, similar in appeaxane substantiates the statoment that the expression of growth in an
environment uniform with res fect to ahemicel and playsical ractors, is spheriaal when the origin of that grawth wes a gingle or smell group of cells.

The origin of the second group of cells could not have been the same as that for the first, as there was a distinct difference in the condition of the cells and the size of the nuclei botween the two groups. Also there wes no indication of the presance of a jacket. The fact that this group was axcised six deys after the end of the fertilization period wes influential in deciding against the ossiolity that the ari in of this group wes from the nuclei formed after fertilizetion. It could have originsted from the rosette cells.
slthough there wes only one incldence of curveture in form, there is no doubt thet it resulted from a gredual alteration in the direction of growth in some of the cells. a possible explanation for its ocurrence is that the rate of growth in the embryonic cells exceeds the rete of chennel formation, and this created a physical berrier which aflected the growth direction. The channel at that position was wide enough to permit the masaes to curve away from the channel tip. However, there is not sufricient evidence to warrant on hypothesis, but only to present the above suggestion.

The reason for a eroup of cells to abandon all semblance of shape and form, as in the mass shown in FI.IV, fig.5, in its expression of growth, can not be set forth at this time,
as there is not suificient evidence. They were definitely proliferating, however, as there was a high degree of mitosis observed, and the appearance of the cells indicated that they were undergoing reproduction. As well, these cells appeared to behave as individuals, and showed no evidence of normal differentiation. The general outline of the mass seemed to be deter mined by the edges of the channel which were close together.

The mass of material in Fl.VIII, fig.l, seems to suggest that nuclei can lose all normal features and become a disorganized (not disintegrating) mass of material. Similar occurrences were noted by Straus (13) in maize endosperm grown in Vitro, although the extent of disorganizetion was not as great in the maize endosperm as it was in the material of ginus. Straus referred to a disorganization which occurs after treatment with colchicine, which was similar to abnormal mitosis in untreated human cencer cells. The reason for the occurrence of this mass in this materisl is not apparent, and none can be suggested on the basis of this experiment. It is however, very important in assessing effects of growth controling agents which, in future, will be added to the basic medium substantiated in this work.

CONCLUSLUNE -ND SUHMARY

The results indiaste the excisaion of early embryonic mases of Finus sp. for growth control experimenta can now be effected by a standardized procedure. The attainment of rowth in a stitistically res sonable number of cases supports this claim. Moreover, where growth was achieved in vitro, modification of erowth form and cellular developmentel adjuatment, found to vary with manipuletion of the modium, provided farther encouragement and justifiaation for a proposel thet the stendardized procedure, developed here, is not over-simplified. If fundamental or primary medium is to be seleoted from those tested it would be one which would include salts to provide the required iona, a carbohydrate, preforably sucrose, and yeast extract. The concentration of these components would dopend on the results expected. sugmentine this with additionel nutriments (orgenic) and growth control afencies misht be expect:d to provide adequate experimentel possibilities in future culture work.

With the appliastion of the reulgen technique it is now known thet by examinetion of nuclei with regpect to their size, condition and distribution, the extent and the nature of growth as well as the distinction between beplaid and diploid
tiasues can be ascertained.
Although only relative estimetions of the efieots of alteration in the ohemical and physiaal environment on the expression erowth were possible in these investigations, 1t wes shown that these fuctors were influential in the expression of the gromth poteatials of cells. These results, in particular, substantiated the results of WIOds (18), that the presence or absence of a suspensor is the result of a physiological response. Also they showed that radial growth occurs in pitro when its in vivo bexrlers, of limited disposition of nutrients end preseno of adjecent gemetophytic cells, are remored by dissection and by transfer to an artificisi medium. From the evidence of the poat-fertilizetion embryonic masa found inclosed by the erohegonial jacket, it is geen thit auclear disperski without polarity con be achieved before the edVent of cell walls and this is likely to be the true primitive Erowth pattern.

The degree of veriation was greater in the procmbryonic meterial than in tia prothellial tissue, and this is probebly due to the difference in their aegree of differentiation; the prothallium being more differentiated, even though its component oells are vary airalur in msy respecte.

The occurrence of such phenomens as random proliferation, "buading nuclei", alsorganized nuclevi meterial, and twin gem-
etophytes are significant, as they indicate that there is much more to know then there 13 known about cellular behaviour in growth, as influenced by chaicel and physiaal factors in the environment.

The significance of this work lies in its contribution to the understending of the reçuirements of the beaic conditions for the growth of pinus nifre vare austriace in vitro and in the establishment of standara procedure. Furthermose, it has contributed some underatending of the influenoes of the cherdacl and physiosl stimuli mpon the expression of inherited potentialities.

ZBSCHIPTION OF PL山TES

PLATE I

1fer．－Sphericel ambyonic mas loceted near perin Fhery of chamber，Mag．B5X．In culture July 11－21．Medium： 50\％mod．Cone＂g sol＂n plus 2\％dextrose．

Fig．2．－Embryonic mass in mouth of channel．Mag． 85 x ． In culture July 11－2l．Medium：25\％mod．Crnne＇ sol＇n plus 2\％dextrose．

Hic．3．－Three embryonio masses located in chamber showing redial exrangement．Mag．85天．In culture July 19－29．

Pig．4．－mbryonic masses located in lower portion
 Crone＇s sol＇n plus 2 dextrose．

F゙18．5．－Lmbryonic mass sssoolated with edge of ohan－ nel．Meg．85x．In culture July 11－21．Medluri：12．5\％mod．Crone＇s sol＇n lus 2% dextrose．
ifg．6．－Bmbyonio mass associated mith channel edges． Megr． 85 ．In culture July 11－21．hediunil2．5 mod．Crone＇s sol＇n plus $2^{\prime \prime}$ dextrose．

Fig．7．－Proembryo loceted in lowest region of chanel． Meg．85X．In culture July 15－25．Medium：12．5\％mod．Crone＇g col＇n plus 2\％dextrose．

Fig． $8 .-\mathrm{Frombryo}$ in lower third of channel shoming irregular polarity．Mag．e5X．In culture July 15－25．Medium： 12.5% mod Crone＇s sol＇n plus 2\％dextrose．

Fig．9．－Large embryonic mass in chumer showing re－ verse polarity．留g．85X．In culture July 15－25．Hedium：12．5\％ mod．Crone＇s sul＇n plus 2^{n} doxtrose．

Fig．10．－Hadial mass with sbnormal polarity looated in upper region of channel．Mage．85x．In culture July 15－25． Medium：l2．5\％mod．Crone＇s sol＇n plus 2^{n} dextrose．

Pig．ll．－Radial amoryonio masa loceted nour cbinnel mouth．Mag．85X．In culture July 15－25．Medium： 12.5% mod．Crone＇s sol＇n plus 2\％dextrose．

Fig.L2.- Declining procmbryos loceted at tip of chanel. Mag. $85 x$. In culture July 9-18. Medium:25\% mod. Crone's sol'n plus 2\% yeast oxtrent.

Pig.l3.- 3Hall ambyonio mass located in the chamber. Mag.85X. In culture July 11-21. Medium:50\% mod. Crone's aol'n plus 2\% yeast extreot.

Fif.l角- Small eroup of embyonic cells located in chamer. Mag.85X. In culture July $9-18$. Nedium:25\% mod.Crone's sol'n plus 2\% jeast exteact.

2 12 Fa I

1上么TII II

Fig．1．－Several declining proembryos located mid－ W＇y down channel．Maç．85X．In oulture July 11－21．Hedium： 50% mod．Crone＇s sol＇r plus 2% yeust extract．

Fig． 2. －Declining procibryo loceted in lomer region of chennel．Hag．85X．In culture July 13－23．Medium：50\％mod． Crone＇s ool＇n plus 2\％yeast extreet．

Fig．3．－Small embryonic meas located in ohmber． Mg g．85X．In culture July 13－23．Medium：50\％mod．Crone＊s sol＇n plus 2\％yeast extrect．

P1g．4．－Embryonic mass located in chamber with ro－ versed polerity and some radiality．Ma．e．85x．In oulture July 19－29．Medium：25\％mod．Crone＇s sul＇n plus 2\％yeest extract．

Fig．5．－Two smell groups of embryonic cells loceted In chembar．Meg．85x．In culture July 17－29．Hedium：25\％mod． Crone＇g sol＇n plus 2% yeast extract．

Fig．6．－Degenereting ambyonic mass locuted mid－wey in oh nnel．确g．85X．In culture July 19－29．Hed ium： 25% mod． Crone＇s sol＇n plus 2% yeust extrict．

F1g．7．－Disorganizing mes of embryonic cellg locuted in lower regions of ohennel．Mag． $85 x$ ．In culture July 19－28． Medium：12．5\％mod．Crone＇s sol＇n plus 2% yeast extract．

Fif．8．－Large embryonic mass looted in chember． Mag．85X．In culture July 19－29．Medium： 25% mod．Crone＇s sol＇n plus 2\％yeast extract．

Fig．9．－Lmbryonic mess in chamber showine poor con－ dition．Mes． 85% ．In culture July 11－21．Medium：12．5 mod． Crone＇s sol＇n plus 1% jeast extract and 1% dextrose．

FiE．10．－Smell mass looatod in chamoer also shows gropth pattern of cells above chamber．Mag． 85% ．In culture July 11－21．Heai um：12．5\％mod．Crone＇s sol＇n plus 1% yeast extrect and 2% dextrose．

Pig.ll. - Small group located in upper region of ohaber. Mag. 85X. In culture July 13-23. Madum:50\% mod. Crone's sol'n plus 1 \% yeast extrat and 1% dextrose.

Fig.12. - Embryonic mese located in ohamber. Magers x. In culture July $13-23$. Fifeduin: 25\% mod. Crone's sol'n plus 1% yeast extrect and 1% dextrose.

Fig.13. - Smil group of emuryonic cells assoolated With chsnnel odge. Mag. 854 . In culture July ll-2l. Mediun: 50% mod. Crone's sol'n plus 1% yeast extraet and 1% extrose.

Fig.14. - Small daclining proambryo associgted with ohennel edges. Mag.85X. In culture July 9-19. Mediums50\% mod. Crone's sol'n plus lit jeest extrot und ly dextrose.

BLafa III

Fig．1．－Small embryonic mess associated with edces
 Crone＇s sol＇r plus 1% yeast catruct and 1 盎 dextrose．

Fig．2．Medium－aized sis in ahamer showing radi－ ality．Hag．85x．In oulture July 11－21．Medim：50\％mod．Crone＇в sol＇n plus 1 篇 yesst extract and 1% dextrose．

Fie．3．－Small embryonic cells associsty wht chen－ nel dize．Mag． 85 ．In culture July 19－29．Medium： 12.5% nod． Crone＇s sol＇n plus l\％yetat extract and ly dextrose．

Pic．4．－Group of emoryonlo cells in chanber shond ng abnormel polarity．Mag．85X．In oulture July 19－29．indium： 12.5% mod．Crone＇s sol＇n plus 1 呂 yeast extreot and 1% dextrose．
fig．5．－Large mass in lower reetons of ohennel showing rudislity．腿． $85 \times$ ．In culture July $13-23$ ．Mediura：25\％ mod．Crone＇s sol＇n plua l舜 yesst extrect and 1% dextrose．

Fie．6．－Two enbryonic masses in lower regions of ch．nnal；lower one shoming redielity．Meg． 35 ．In culture July 13－23．Hedium：25\％mod．Crone＇s sol＇n plus 1% yes刃t ex－ tract and 1\％dextrose．

P1g．7．－Large proembryo－lower reglons of chennel showing radiality．Mag．85x．In oulture July 15－25．Hedium： 50% mod．Crone＇s sol＇n plus 1% yeast extrect and 1% dextrose．

Fig．8．－Large embrycnic maes et tip ci channol showing high degree of rtalality．Meg．85x．In oul ture July 19－ 29．Medium：12．5\％mod．Crone＇s sol＇n plus 1\％yeast extruot ind 1\％dextrose．

HiE．9．－Smyll miss of embyonic cells locsted in chomer．Mige． $85 \bar{x}$ ．In culture July 13－23．Mediunil2．5\％mod． Crone＇s sol＇n plus lo dextrose．

Fig．10．－Moryonic mass associuted with chamber． Mag．85x．In culture July 13－2\％．Lediumi25\％mod．．Crons＇s sol＇n plus 1\％deztrose．

P1g.11. - Small embryonio mass located in chumber. Mag. 85 X . In culture July 15-23. 踏diun:25\% mod. Crone's sol'n plus 2% dextroes.

Tig.12. - Two embryonic mages located in chamer. Mag. 85 X . In culture July 15-23. Mediums50\% mod. Crone ${ }^{\text {s }}$ s sol'm plus 1\% dextrose.

Pig.13. - mmuryonic mass located in ohsmber. 権g. 85x In culture July 13-23. Wedium: 50\% mod. Crone'a sol'n plus 2\% dextrose.

Fig. 14. - Frombryo ehown in lower portion of chennel. Mag. 85X. In oulture July 13-23. inediums25\% mod. Grone's sol'n plus 1% dextroge.

PLATI IV

Fig．1．－Hnbryonic mest locted in chamber．Mag． $85 x$ In culture July 15－2゙．輼odium： 25% mod．Grone＇s sol＇n plus 1\％dextros日．

F1E．2．－ㅍmbryonic mas loosted in chanbor．Mes．85\％ In cultw＇e July 1＇s－23．Hedium：25\％mod．Crone＇s sol＇n plus 1\％dextruse．

Fig．3．－Two proembryos in lower regions；one showing
 25\％dextrose plua 1\％yeast extrect．

Tif．4．－Embryonio mass mid－way down in chanel show－ Ing radiality cud Ebnumal polerity．Meg． 85 E ．In c．lture July 10－29．Medium：25\％mod．Crone＇s sol＇n plus l\％dextrost．

Fif．5．－Group of cells，haltwey down cbunael showing high degree of proliferation．Mug．85X．In culture July 19－29． Medium：50\％mod．Crone＇s sol＇n plus 1% dextrose．

F1G．6．－Romyonic mass loceted in chember．Mag． 85 X ． In culture July 15－25．Medium：12． 5 \％mod．Crone＇s sol＇n plus 1% yeast extract and 1% sucrose．

Iig．7．－Embryonic mass looated in chamber．Mag． 85 X ． In culture July 17－27．Mediuns25\％mod．Crone＇s sol＇n plus 1% yeast extract．

18．B．－Embryonio mass located 10 obt moer．Mag．85X．
 1\％yeest oxtrect．
fig．－Froembryo in channel mouth，showl ne reversed polarity．Meig．85A．In oulture July 19－29．Modium： 25% mod． Crone＇s sol＇n plus lo yeast extraot．

Hig．10．－Proembryo 100 ated in chember．Mag． $85 \times$ ．In culture July 19－29．Hediun：50\％mod．Crone＇s sol＇n plus 1\％ yeast extraot．

Fig．11．－Procmbryo Located at hannel t1p．Mag．85X． In oulture July 2l－21．Medium：25\％mod．Crone＇s sel＇n plus ly yeast extract．

Fig.12. - Deelining proembryos located in lower portion of channel. M ef.85X. In culture July 11-El. Medium:25\% mod. Crone's sol'n plus 1% sucrose.

Fig.18. - Embryonic masa assuci ted with chanol edge. Meg.85X. In culture July 15-25. Nedium:25\% mod. Crone*s sol'n plus 1% sucroae.

Fig.14. - Proembryo in lo:ar portion of chanal showing abnormal pol rity. 5 E.85X. In culture July 13-23. shedium: 50% mod. Crone's sol'n plus 1% sucrose.

6

\because

PLenT公 V

Fig．1．－Twu proembryos in tip of chemnel shoung rediclity．Mag．0羔．In culture July 17－27．Hediun：50\％mod． Crone＇s gol＇n plus 1 简 sucrose．

TiE．2．－Proembryo located in tip of channol．Mag． 85x．In culture July 17－27．Medium：50\％mod．Crone＇s sol＇n plus 1% sucroze．

Pig．3．－Mess of embryonio cells enolosed by jacket． Mug．300X．In culture July 5－15．Medium：50\％mod．Crono＇s sol＇n plus 1 䈌 yeast extrect mad 1 落 suc ose．

IF．4．－Lmbryonic cells in chember．Mag． $85 \times$ ．In culture July 12－21．Medium：25\％mod．Crono＇s sol＇n plus 1% yoast extrect and 1% sucrose．

Fif．5．－mbryonic mass located in chamber showing Itdiality．Meg． $85 x$ ．In culture July 11－21．Medi um： 25% mod． Crone＇s sol＇a plus 1% yeast extract and 1% sucrose．

Fif．6．－Froembryo loceted in chember．Meg．B5x．In oulture July 11－21．Medium：25\％mod．Crone＇s sol＇n plua 19 yesst extract end 1 㹸 sucrose．

Fig．7．－Eruembryo looated in chamber．Mbeg． 05 X ．In culture July 15－25．Hedum：25\％mod．Crone＇s sol＇n plus 1\％ yeart extract and I suoroae．
ilf．8．－Mass embryonic cells looated at top of chember．Maje．85X．In culture July 18－29．Hedium： $25 \% \mathrm{mod}$ ． Crone＇s sul＇r plus 2% yeast extract and 1 suorose．

Fif．9．－Mass of ombryonic oolls locatod at mouth of chnnel．Mae185x．In culture July 11－21．Medium：25\％mod． Crone＇s sol＇n plus 1\％yeast extrect and l\％sucrase．

Fig．10．－Mess of embryonio cells located at top of chanber．Mag．85x．In culture July 15－25．Medium：25\％mod． Crone＇s sol＇n plus 1% sucrose and 1% yoast extrect．

Ifg．Il．Three groups of embryonic oells located in chamber．Mag． $85 \times$ ．In culture July 15－25．Medium：25\％mod． Crone＂s nol＇n plus ly yoast extract and 1 sucrose．

Fig. 12. - Mass oí embryonic cells located at mouth of ohannel. Miage65X. In culture Julyll-2l. Nedium:25\% mod. Cronc's sol'n plus 1% yeast extrcot and 1% sucxase.

Fig. 13. - Proeabryo lockted in chennel showing abnormel nolarity. Mag.85X. In culture July 15-25. bledium: 25\% mod. Crone 's sol'n plus 1\% yeaet extrect and 18 sucrose.
ríc. 14. - Two prambryos looated in lower thily ar ohannel and showng radiallty. Mag.85x. In culture July 18-29. Medums 25% mod. Crone's mol'n plus lo yeast axtract and 1% sucrose.

PLAN․․ 7

－10．2． 4 VI

Fig．1．－Froembryo in tip of chennel saowing cur－ pature in form．Meg． 85% ．In culture July 19－27．sedium：50\％ mod．Cronc＂s solin plus 1% yoast extract and 1% eucrose．
 culture July 15－25．Modiun：25\％mod．Srone＇s gol＇n plus ly Jeast extract and 1 笽 sucrose．

1913．3．－Masses of embr onic oells absociated with chanel．Mag． $35 x$ ．In oulture July 15－25．Medium： 12.5 g mod．$_{\text {．}}$ ． Crone＇s sol＇n plus lif yeast estret and ly suorose．

F13．4．－Masses of mbryonic celle and masis Tith disorganizad nuolear material located in chumber．Meg．05X In culture July 13－23．Hedium：25ím wod．Crone＇s sol＇n plua 2% sucrose．

Pif．5．－Proembryo locuted in chanol showne rudielity．－Hess．85K．In cilture July 19－29．Msdum：25，mod． Crone＇s sol＇n plus 2 器 sucrose．

Pig．6．－Mass of ampryomic cells ansuciuted with channel sd and shoving radiality．Bke g． 85 区．In culture July 15－25．Mediun：12． 5% mod．Crone＇s sol＇n plus 2% sucrose．

Fig．7．－Mass of embryonic cells associated with chanel edzes．Mae．85X．In culture July 13－23．Medium：25\％ nod．Crone＇s sol＇n plus 2% sucrose．

Fig．8．－Eroembryo in tip of channel．却e．05s．In culture July 11－21．Medium：12．5\％mod．Crone＇s sol＇n plus 2% sucrose．

Fig．8．－banll promuryo in chanel showne abmormal polurity．Mag．B5x．In culture July 11－21．Medium：is wion mod． Crone＇s sol＇n Ilus 2% suorase．

Fig．10．－Eroembryo Lucated at tip of chandel．Mag． 85x．In culture July 13－23．Medium：25\％mod．Crone＇s sol＇n plus 2\％sucrose．
rig． 11 ．Lár e main or ambryonic oells loceted nesr edge of chennel and showine slight degree of proliferation． Mes． 85 X ．In oulture July 19－28．Modium： 25 mod．Crone＇s sol＇n plus 2\％suerose．

Tie. 12. - Lare mase of embryonic aella located at obennel wouth. Mag.85X. In culture July 19-29. Hedium:50\% mod. Crone's ©01'n plus 2\% suerose.

Y18. 13. - Irothalliel cella. MageB6x. In oulture Juna 29-July 9. Mediun: 2.5% mod. Crone "s sol'n plus 2\% sucrose.

Tig. 14. - Frothallal cells with thick walls. Mag. 85K. In culture July 7-17. Medium: 50% mod. Crone's sol'n plus 2\% sucrose.

PLiTE VII

P18. 1. - Prothallial cella showints growh pettern. Mae. $85 x$. In culture June 25-July 5. Medium:5u\% mod. Crone's sol'n plus 1% yesst extract and 1% dextrose.

Fig. 2. - Prothallial cella involved in rowth betreen arohegonia. Mag.85z. In culture June 25-July 5. Medium 25% mod. Crone's sol'n plus 1% dextrose.

F1g. 3. - Frothallial col1s. Mag.85X. In oulture July 9-18. Medium:50\% mod. Grone's sol'n plus 2\% sucrose.

Fig. 4. - Prothellal cells gome with large nuclei. Meg.85X. In culture July 11-21. Medium:25\% zod. Crone's soln plus 2% dextrose.

Fie. 5. - Dead prothellial cells. Mag. $80 x$. In oulture June 27-July 7. Bedium:12.5\% mod. Crone's sol'n plus 1% yeast extreat ind 1% dextrose.

Fig. 6. - Hosette cellsand portion of suspensor. Hag. $85 x$. In vivo material of July 3.

Pie. A. - Prothallial cells showlag granulci inclus10ns. Mag.85X. In vivo meterial of July 15.

F1g. 9. - Jecket cells shoming slight distortion Mag. $85 x$. In culture June $29-J u l y 9$. Medium:50\% mod. Crone's sol'n plus 2% yeast extract.

F18.10. Jecket cells show ing aistortion Meg.85X. In oulture June 29-July 9. Medium: 25% mod. Crone's sol'n plus 1% yeast extract and 1% sucrose.

F18.11. - Small gioup of embryonic cells with mitotic 11gure in one. Mag. 355 K . In culture July 7-17. Miedium:12.5\% mod. Crone's sol'n plus 2 多 dertrose.

PLaVES VII

PLaTL VIII

Fig. l.- 道ass of cytoplasm with disorganized nuclear material. Wag. 355 . In culture July 13-23. Medium: 25% mod. Crone's sol'n plus 2% sucrose.

Fig. 2.- Group of embryonic cells one with mitotic figure. $\mathrm{Ha} \mathrm{g} \cdot 355 \mathrm{X}$. In culture July 11-21. Medium:50\% mod. Crone's sul'n plus 2% dextrose.

Fig. B.- Fem embryonic cells.Mag. 355 . In culture July ll-2l. Medium:50\% mod. Crone's sol'n plus l\% yeast extract and ly dextrose.

Fie. 4.- Ambryonic cells, one withmitotic figure. Mag.355X. In culture July 17-27. Medium:50\% mod. Crone's sol'n plus 1\% dextrose.

Fig. 5.- Cells of mess of proliferating mass.Mag.355x. In culture July 19-29. Medium:50\% mod. Crone's sol'n plus 1\% dextrose.

Fig. 6 and 7.- Prothallial cells showing mitosis. Mag. 355X. In culture July 1-11. Medium:12.5\% mod. Crone's sol'n plus 2\% dextrose.

Fig. 8.-Prothallial cells. Mag. 355 . In culture July 717. Medium:50\% mod.Crone's sol'n plus 2% sucrose.

Pig. 9.- Prothallial cells showing growth pattern. Mag. 85 . In culture June 23-July 3. Medium:50\% mod, Crone's sol'n plus 1% yeast extract and 1% dextrose.

Fis.10.- Binucleated cells. Mag. 355X. In culture June 29-July9. Medium:50\% mod. Crone's sol'n plus 2% yeast extrect.
rig.ll.- Mass of endryonic oells enclosed by jacket. Mes. 355 X . In culture July 5-July 15. Medium:50\% mod. Crone's sol'n plus 1% yeast extract and 1% sucrose.

Fig.12.- Mitotic ingure in egg sac. Mag. 355 X . In culture June 25-July 5. Medium:25\% mod. Crone's sol'n plus 1\% yesst extwact.

1. Coulter, J.M. and Chamberlain, C.J., Morphology of Gamosperms. Univelizity of Cuiceso Fress.1.17.
2. Frey-Wyssline, an. Physiology of Cell wall Growth. ann. Rev.F1.Physiol. 1: 169-81.1950.
3. Hillary, $V . V$. Use of the F'eulgen Reaction in Cytology. Bot.Gaz.101:276-300.1940.
4. Johansen, D.A. plant Mabryolagy. Chronice Botenica Co.1950.
5. \qquad - Plent Microtechnique. McGraw-IIII Bock Co. Ltd. 1940.
6. Le Rue, C.D. and Streus, J. Maize Endospert Tissue Growth in Vitro I. Culture Reguirements. Amer.Jour.Bot. 41: 687-93. 1954.
7. Lessler, M.A. Nature and Speoificity of the Feulenen Hesction sroh.B10chem. \& B10phys. 32(1): 42-53. 1951.
8. Ludicre, R,J. Comperitive Reactjons of Normi und Milienant Cells in Vitro to Flysical end Chemiol atents. Aroh. fiur zellschung. Bd. XXII.317-24. 1839.
9. McLeen, ReC. and Ivimey -Cook, W.R. Testboak of Theoretical Boteny. vol.1. Lonemens Green \& Co. 1951.
10. Redicith, N.W. The Development in Vitio of the Proembryo of Ginkeo. Roy.Can. Instit. 21:87-94. 1936.
11. Skoog, F. Chemiokl Regulation of Growth In Flants. Dynamics of Growth 1rocesses. 148-82. Princeton University Fress. 1954.
12. Stowell, R.E. Feulgen Reaction for Thymonucleic Acid. Stain Tech. 20: 45-5E. 1945.
13. Streus, J. Mize kndosperm Tissue Grown in Vitro. II Morphology and Cytology, imer.Jour.Bot.41:833-39 1854.
14. Thomson,R.B. "Folyombryony":Sexual anả asexucl tmbryo Initiation. and Food Suply.Trans.Roy.Soo. Cand 34:143-69.1945.
15. Van Overbeek, J.Conklin, mie m , Makaglas, A.F. Cultivetion in Vitro. of Small Deture Embryos. hats. Jour. Bot. 2y: 472-77.194.
16. Van overbeak, J., Siu, R. and Hegaensmit., A.J. Pectors Affecting Growth of Detura Embryos in Vitro. Amæ.Jour. Eot.31: 21习-24. 1844.
17. Whito, I.R. Nutritionul Requiremento of Isolvted Plant T1ssues and Organs. ann.Rev.Fl. Physiol. 2: 231-44. 1951.
18. Woods, $A \cdot B$. The Development in Vitro of the jroembryo of Pinus. Master of Science Thesis.MoM: ater University.
