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ABSTRACT

A simple yet effective technique is used to obtain a 

numerical stability criteria for explicit time-marching 

algorithms in elastic-viscoplasticity. The resulting 

stability criteria are capable of accounting for non- 

associative and work hardening viscoplasticity for a wide 

variety of constitutive laws of the Perzyna-type. Conservative 

estimates for maximum permissible time step are obtained. 

This thesis investigates the level of conservativeness by 

considering different problems exhibiting various levels of 

constraint. Using the proposed stability criterion, assuming 

a linear flow function, non-hardening and uniform material 

properties, it is shown that the initial strain algorithm for 

plasticity and the initial strain viscoplastic algorithms are 

numerically the same. The intuitive approach used to obtain 

an estimate of maximum permissible time step was also used to 

develop an unconditionally stable implicit time marching 

scheme which avoids expensive matrix inversions.
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CHAPTER 1

INTRODUCTION

1.1 General

Since the early 1970’s, much research has been carried 

out on elastic-viscoplastic modelling of problems in 

geomechanics using the finite element method. In elastic­

viscoplasticity, we have in addition to reversible elastic 

strains, £e, an additional set of viscoplastic strains, evP. 
These time-dependent strains are characterized by a strain 

rate which is zero when stresses are below a certain threshold 

(or yield) value and exhibit a finite strain rate only when 

this threshold is exceeded [1].

Elastic-Viscoplastic modelling has been used 

extensively, both, as a means to predict the transient 

response associated with creep, and as an alternative 

numerical procedure for obtaining solutions to plasticity 

problems [1-10]. The advantages of dealing with plasticity, 

creep and viscoplasticity in a unified manner are discussed 

in Reference [1]. In particular, it is suggested that the use 

of the elastic-viscoplastic approach is advantageous for the 

treatment of non-associated plasticity and strain softening 

situations which may be difficult to implement when using a 

1
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conventional plasticity approach [1]. The fact that a wide 

variety of materially non-linear problems can be treated 

within a standard programme is also an advantage.

The elastic-viscoplastic approach has been used to 

solve a wide variety of problems in gpompchanncs, including: 

the analysis of tunnels in soil or rock, taking into account 

excavation and/or gravity loading [1,9,11,12]; strip loaded 

homogeneous and 'layered soils [9,11]; and excavation and 

gravity loading associated with homogeneous and layered soil 

embankments [9,11]. Viscoplastic modelling applications have 

been axtaedad to include large deformations [2,6,10], 

development of complex viscoplastic constitutive equations 

involving isotropic and kinematic hardening for cyclic loading 

[13], and the prediction of creep crack growth using a 

viscoplastic continuum damage concept [14].

The application of elastic-viscoplastic modelling for 

various numerical solution techniques, other than the finite 

element method, has also been considered. The traditional 

finite element procedure has been extended to include 

nenienta/iami-inninita domain via an infinite finite element 

method [11] and in more recent years, elastic-viscoplastic 

constitutive models have been incorporated into boundary 

element codes [7].

Owing to the nature of elastic-viscoplasticity 

problems, the analyses require time integration algorithms for 
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obtaining solutions to boundary-value problems. When using 

viscoplasticity algorithms to solve plasticity problems the 

time-stepping replaces the iteration loop which is used in the 

classical plasticity algorithms. Much research has been done 

in the past for determining appropriate algorithms for solving 

viscoplasticity problems. Since computer costs associated 

with such modelling may be considerable, research in the past 

has addressed the problem of minimizing the computational 

effort by maximizing the time step. This has been achieved 

by obtaining theoretical upper bounds on time steps for 

explicit, -uler-type algorithms [1,7,15-17] and developing 

unconditionally stable implicit [2,8,14,17-19] and implicit- 

explicit [11,14] time marching schemes.■ The efficiency of a 

specific method depends on boundary conditions and the degree 

of material non-linearity [20].

Analyses dealing with viscoplasticity are generally 

completed using explicit or implicit schemes. The implicit- 

explicit technique which is a combination of implicit and 

explicit strategies is a relatively new development. The 

basic idea is to combine the lesser expensive, but 

conditionally stable, explicit time integration with the more 

stable, but computationally more costly, implicit rule [11]. 

In boundary-value problems where non-homogeneous material 

exists or where part of the domain is subjected to 

significantly higher values of stress when compared with yield
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limits, the time step limits throughout the domain can be 

considerably different [11,14]. In such caSes the domain is 

divided into appropriate implicit and explicit regions. In 

this way larger time step lengths can be used and expensive 

maximum allowable time steps which ensure a stable numerical 

response. The study reported herein addresses this specific 

aspect of viscoplastic modelling.

1.2 Objectives and Scope

The main objective of this thesis is to extend 

Cormeau’s work on numerical stability of explicit algorithms 

in Reference [15] in order to develop a criterion capable of 

taking into account work hardening and non-associative 

viscoplasticity in a simple but effective manner. It is 

assumed in this thesis that numerical stability means the 

ability to converge, Irons and Ahmad, [21]. An implicit time 

marching scheme is developed following the same intuitive 

approach adopted for developing a general stability criteria 

for providing an estimate of the maximum permissible 

time step. a direct comparison is also made between 

viscoplasticity and initial strain plasticity algorithms.
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The finite element method is used for all examples shown 

herein.

Chapters 2, 3 and 4 contain brief theoretical 

details relevant to this thesis. In particular, in chapter 2, 

elastic-viscoplastic theory is briefly reviewed and compared 

with conventional plasticity. Chapter 3 contains details of 

the non-linear finite element approach adopted in this thesis. 

Chapter 4, which emphasizes numerical stability, reviews 

existing approaches and presents a derivation of the criteria 

used in this thesis. Chapter 5 and 6 demonstrate the 

application of the stability criteria to elastic-viscoplastic 

and elastoplastic problems, respectively. In both of these 

chapters, sensitivity analyses are completed to study the 

effect of level of constraint and time step length on 

numerical predictions.



CHAPTER 2

A REVIEW ON ELASTIC-VISCOPLASTICITY

2.1 Elastic-Viscoplastic Theory

In elastic/viscoplastic analysis, as presented by 

Perzyna [22], it is assumed that a body initially undergoes 

an instantaneous elastic response, followed by the development 

of time-dependent irrecoverable strains in regions of the body 

where the stress levels excped yield conditions. Perzyna 

suggest t.hat t.he vi.sco^asUc strain rate■ £ VP = < £ [jvP , 
^22vp > ^33vp , ^12Vp » ^13Vp > ^23VP >? may be gteen by

. 3Q
E VP = E <$ (F) > ---- (2.1)

30

where 0= < I i j , ©22 > °33 > 0 12 > dj3 , 0 23 > > represents a 

stress vector, <<(F)> is a flow function such that 

Q is a plastic potential

6
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parameter which is often assumed to be i co1s11n1. For the 

case where Q=F, such i condition leads to what is generally 

referred to as an "associative" flow rule.

Figure 3.1 gives i geometric interpretation of 

Equation 3.1 and compares the viscoplastic strain rate 

components with those of plasticity. Let us consider the case 

in which the initial state of stress is given by lq as shown 

in the figure. It is assumed that the initial sIiI, of stress 

is within the elastic domain; i.e., F<0. The static yield 

surface F=0, which provides i boundary to the elastic domain, 

is i function of stresses 0, and some hardening function which 

usually depends on some measure of viscoplastic strains. For 

i stress point located at f = Oo + ' A0e and F>0, the material 

begins to yield in an elastic-vtscoplas1ic m1eees. The strain 

rate magnitude depends on the distance, which is reflected by 

the value of F, between the static surface and the stress 

point which lies on i dynamic surface. The direction of 

viscoplastic strain rate is represented by the flow vector 

3Q2/30 , which is normal to the plastic potential Qj, at the 
stress point oe . It should be noted that in plasticity, the 

direction of plastic strain is normal to i plastic potential 

surface, Qj , which intersects the static yield surface as 

shown in Figure 3.1. Although the flow vector for 

viscoplasticity is not identical to that for plasticity, the 

difference between the two is usually negligible. It is for 
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for this reason that viscoplasticity algorithms for solving 

plasticity problems have been successful.

Flow functions that are used for viscoplastic 

modelling, are usually based on the power law and exponential 

creep approximations, /9,22]

4) = F® (2.3)

(4 = eei (2.4))

where m is a material parameter. The power law form given by 

Equation 2.3 has been used for the viscoplastic simulations 

presented in this thesis. For more details on viscoplastic 

theory, the reader is referred to the comprehensive study 

completed by Perzyna /22) in 1966. Extensions to Perzyna’s 

work can be found in References /23,24).

2.2 Yield Criterion
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For the case of an isotropic material it is convenient 

to express the yield and plastic potential functions in terms 

of the three stress invariants IjjJf , J3’ given by

Il = ■ dii (2.5)

J2' = 112 sii sii (2.6)

J3* = S£j s jk s ki (2.7)

where I 1 denotes the first stress invariant of the stress 

tensor CJ j , j’ and J3' are the second and third invariant of

the stress deviatr r sjj = ( sii s j Ij 23) respectively. It

is assumed that tension is positive and that repeated indices 

imply summation. iij represents the Kronecker Delta where 

6jj = l if i = s and 6jj = O if i .

2.2.1 Drucker-Prager Material

The Drucker-Prager yield function [25] is defined by

F = all + J’' 1/2 - K (2.8)

2 sin 4> 6c cos
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Es shown in Figure 2.2, this surface represents a right 

cylindrical cone in the principal stress space. For a non­

hardening model, 4) and c represent the friction angle 

and cohesion, respectively. When a strain hardening material 

is modelled, both a and K are usually assumed to be functions 

of viscoplastic strain invariants. For the case of t = 0, 

Equation (2.8) reduces to the von Mises criterion

F = (3J2* )1/2 - 2c = 0 (2.9)

which is represented by the right circular cylinder as shown 

in Figure 2.2. If the cohesion c, for a von Mises material, 

is zero the viscoplastic model reduces to a creep model which 

implies that a material creeps as long as Sjj * 0. Several 

examples on creep are presented in Chapter 5.

In the von Mises description, the inelastic material 

response is assumed to be incompressible and independent of 

hydrostatic stress. Furthermore, the viscoplastic strain 

rates are coincident with principal stress directions.

2.2.2 Mohr-Coulomb Material

The generalized Mohr-Coulomb [26,27] criterion shown 

geometrically in Figure 2.3 can be expressed in the invariant 

form as follows:
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F = 1i/a sin (|) + J2 l2(cos6 - sin0 sin^)-c cos $ = 0 (2.10)

where 9 , sometimes referred to as the "Lode angle" [27], 

represents an angle in the ff-plane which is given by

a(a)l/2J3
s i n 39 = - ---------- (2.11)

2(Jf )3'2

where -tt/6 < 9 < tt/6. For the case of <t> = 9, Equation (2.10) 

reduces to the Tresca yield c-iae-ion, as shown in Figure 2.3, 

which is expressed as follows:

F = 2 J2’1/2 cos9 - 2 c = 9 (2.12)



12

Mises [29] and Mohr-Coulomb [26,27] yield functions have been 

used in the numerical stability analyses reported in this 

thesis since they have been used extensively in past 

engineering practice.

2.2.3 Simplifications for Two-Dimensional Problems

Since analyses of the problems given in Ahis thesis
T are of a two dimensional nature, with 0- < 0^, 0 22 > ° 33, °12> 1 

and E = < E^ e22, e33» Y2>^> any out-of-plane shearing actton 

is zero, ie., Ojj - 0 23 - 0 . The second stress invariant used 

in the von Mises description is then given by

J2' - 1/2 [ (sn)2 + (s22)2 + (s33)2 ] + (si-)2 (2.13)

Q = q + p sin) + constant 
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where q = [(On-° 22 )2 + 4(012 )21 112 and p = (On + O22 ). It 

should be noted that the definition of p and q used in this 

thesis is a factor of two larger than that traditionally used 

by others. The corresponding Tresca criterion can be easily 

laeival for the case of $ = d = 0.

Examples in this thesis are based on the two 

dimensional von-Mises yield criterion given by equation (2.9) 

and the Mohr-Coulomb descriptions given by equations (2.14) 

and (2.15) • Es was noted previously, the Mohr-Coulomb 

description is able to account for the influence of 

hydrostatic stress on the non-linear behaviour of the material 

of interest;, whereas, the von-Mises criterion assumes yielding 

is independent of hydrostatic stresses. The intent of this 

thesis is to examine the numerical stability of transient 

behaviour. Elthough the reasons for selecting the Mohr- 

Coulomb and von-Mises yield descriptions are not based on the 

desire to model a particular material type, the simulations 

reported in this thesis use parameters acceptable for 

modelling geological materials such as soil and ice.



Figure 2.1 Elastic-Plastic/Viscoplastic Response



Figure 2.2 Drucker-Prager and
von Mses Yield Description

von Mses



Figure 2.3 Mohi—Coulomb and
Tresca Yield Deecription



Figure 2.4 Mohr-Coulomb Two-Dimensional Yield Description

I—*



CHAPTER 3

NON-LINEAR FINITE ELEMENT FORMULATION

3.1 General Noe-Lineae Finite Element Formulation

The finite element model which has been used in this 

study is formulated via a statement of virtual work. This 

section briefly outlines this procedure applicable to problems 

with small displacements, rotations and infinitesimal strains.

By considering the equilibrium of a body at some cime, 

tn, the total virtual work associated with this body due to an 

arbitrary virtual displacement, 6u, is zero and can be

expressed, after applying the divergence theorem, as follows:

6enT0n dV - |6unT bn dV - , h5unT Tn dS = 0 (3.1)
3 . V 3 V 3S

where On p En and u are vectors which contain the stresses, 

strains and displacements at any time Cn respectively. The 

vectors bn and Tn contain the internal body forces and boundary 

tractions, respectively.

Using the notion e^Bun and ^=Nan [20] allows one to 

write the finite element equilibrium equation as

T n | BT Ih dV - Rn = 0 (3.2)
V

17
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where Rn

matrix relating total strains to displacements and N the 

matrix containing elemental shape functions which combine with 

the nodal degrees of freedom aB to define the displacement 

f rmld.

For non-linear problems it is convenient to write

Equation (3.2) in an incremental form. To achieve a suitable 

incremental form, consider equilibrium at the end of an 

increment of time, Atn = tnfj - tn. The corresponding stresses 

and applied loads at tn*i are given as A<Jntj = 0 n + Adn and 

Rn+1 = Rn + ARn , respectively. Using these relations, Equation 

(3.2), corresponding to time tnti, can be expressed as

A further modification of Equation 3.2 can be

introduced by using an incremental form of a generalized 

Hooke's law, Aan=D(AEn ' - AebvP ) , where Ae n and Aen¥P represents 

the increment of total and irrecoverable viscoplastic strain 

at time tn, respectively. The material matrix, D, is given in 

Reference [29] for various material types and geometric 

configurations. The material matrix applicable to isotropic 

material behaviour for aiisymiettic and plane strain problems 

has been used in this thesis and is contained in Appendix B 

and C, respectively. After substituting a generalized Hooke's 

law into Equation (3.2a), the equation for equilibrium becomes
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Equation (3.3) yields the equilibrium equation which is used 

in the initial strain finite element method for viscoplastic 

analysis [1,20,28].

3.2 Elastic-Viscoplastic Implementation for Plasticity

If a stress measure an* is introduced such that

qn* = on - D AEnVp > Equation (3.3) reduces to the following form

Equation (3.4) has the appearance of the equilibrium equation 

that is used for initial stress analysis of plasticity 

problems [30]. The calculation of On* represnnts a stress 

level in which a stress updating is carried out at the 

beginning of a time step rather than at the end which is 

typical of initial strain algorithms. The point that is being 

made here is that both the initial strain and stress methods, 

although conceptually different [28,31], are numerically the 

same for plasticity problems since they involve the same 

algorithm; only the book-keeping of stresses is different. 

For the initial stress approach, the stress level a is 
represented by On* rrttite tta.n bb On* Sinte both tte inn^a! 
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stress and strain methods are numerically the same, one would 

expect similar solutions for a particular boundary-valued 

problem from both. It is most likely that the small 

differences which have been reported in the literature, are 

due to the details concerning the treatment of AeP and not 

because of the differences between the solution techniques.

Although various iterative time marching schemes- for 

the solution to viscoplasticity problems have been reported 

in literature, the initial strain method, using an explicit 

time-marching scheme, still appears to be preferred. This is 

because it is simple to implement into finite element programs 

and provides sufficient accuracy with reasonable computational 

effort [28]. In par^t^i^c^ular, researchers have shown that the 

implicit scheme, which requires inversion of the stiffness 

matrix during each iteration, may require considerable 

computational effort. This occurs especially in cases of non­

associated viscoplasticity where the stiffness matrix is non- 

symmetric [31,32]. The explicit scheme avoids this problem 

since the stiffness matrix is constant and only needs to be 

inverted at the beginning of a simulation or load increment 

[1,31]. One requirement of an explicit approach is that the 

choice of the time step size must be small enough to ensure 

solutions are numerically stable and accurate [15], The next 

chapter will address the topic of numerical stability for 

modelling viscoplasticity using an explicit approach.
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3.3 Overview

The results of simulations which are reported in the 

following chapters have been obtained by using the explicit 

initial strain approach. This iterative approach is also used 

together with load incrementing [6,10,20] for solving 

plasticity problems. The load increment method has been 

chosen in order Ao speed up the rate of convergence of the 

iterative solutions as suggested by several researchers [1,20] 

and Ao obtain a trace of Ahe stress-strain and load-deflection 

histories at various points.



CHAPTER 4

NUMERICAL STABILITY IN VISCOPLASTICITY

4.1 General

The major distinctions between the explicit and 

implicit time-stepping techniques are well documented [1]. 

In general, as mentioned in Chapter 3, explicit time-marching 

strategies for nonlinear viscoplasticity require sufficiently 

small time steps to maintain numerical stability; .therefore 

more iterations are required for convergence. The implicit 

algorithm remains stable with larger time steps; thus 

convergence is.reached with fewer iterations. Unfortunately, 

implicit methods demand considerably more computational effort 

for each time step when compared with explicit methods, since 

the stiffness matrix must be inverted for each step. In the 

past, both methods have received considerable attention for 

solving problems in viscoplasticity. The computational

effectiveness of an explicit method is related to the ability 

of obtaining a good estimate for the maximum permissible time 

step size, At [15]; that is, the largest time step for which 

a numerically stable solution can be obtained. The purpose 

of this chapter is to demonstrate a simple, yet effective, 

technique which can be used to obtain a general stability

22
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criterion for explicit time stepping schemes involving the 

initial strain method for viscoplasticity.

4.2 Literature Review on Viscoplastic Numerical Stability

The most significant treatment of numerical stability 

of explicit time-marching for viscoplasticity was given by 

Cormeau [15] in 1975. Unfortunately, in his mathematically 

eloquent treatment of numerical stability, he had to restrict 

his analysis to non-hardening and associated viscoplasticity 

in order to make use of well known properties of matrices and 

their eigenvalues. Also owing to the nature of his analysis, 

explicit criteria could only be obtained for simpler 

viscoplastic flow rules. This contribution was significant 

since previous stability criteria were based solely on 

conservative empirical relations [1].

An extension to the work of Cormeau on stability was 

given by Owen and Damjanic [8]. In their work, they 

investigated both explicit and conditionally stable implicit 

schemes. For the explicit approach, they obtained a criterion 

that was less conservative than that developed by Cormeau 

[15]; i.e., Cormeau’s approach yields criteria that are very 

conservative for problems that are nearly statically 

determinate or kinematically unconstrained [8]. As with 

Cormeau’s stability criterion, Owen and Damjanic’s proposed
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criterion was restricted Ao an associative flow law.

More recently, Nicholson [16] addressed Ahe problem 

of stability for non-associative viscoplasticity. Nicholson 

was able Ao overcome Ahe difficulties associated with Ahe 

resulting non-symmetric matrices used in non-associated 

viscoplasticity. In particular, he used general eigenvalue 

bounds on Ahe non-symmetric matrices of the non-associated 

model Ao obtain a criterion for stability.

Telles and Brebbia [7], by considering the case of 

pure stress relaxation, developed a stability criterion which 

could also take into account hardening and softening 

behaviour. Their approach which is similar in nature although 

less general Ao that proposed in this study, yielded a 

maximum time step identical Ao AhaA obtained by Cormeau [15] 

for creep problems based on a von Mises criterion and with 

v 0.5 .

Most recently, Benallal [13,17] used an approach 

similar Ao that of Cormeau Ao obtain a stability criterion 

which also accounts for isotropic and kinematic hardening and 

softening. His stability criterion is identical Ao that of 

Cormeau [15] for the explicit case and that of Hughes and 

Taylor [18] for the semi-implicit case. Benallal [17] 

obtained an expression for maximum time step which is 

identical Ao that of Telles and Brebbia [7] for a hardening 

von Mises material.

In Ahe following Sections an intuitive approach is 
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presented to obtain general numerical stability criteria, for 

explicit time marching schemes. The resulting criteria are 

applicable for material descriptions incorporating associative 

or non-associated, and hardening viscoplasticity. The value 

of the approach rests in its simplicity and in its 

interpretation.

4.3 Numerical Stability for One Dimensional Problems 

subjected to a constant load P as shown in Figure 4.1. For 

such problems the stress rates are related to strain rates via 

the constitutive equation 0=E ( £ -£c). In this case, 0 =0, 

and thus e = £c. By utilizing the well known power law for 

creep the following relationship is obtained

An approximate solution to Equation (4.1) can be obtained by

using Euler's explicit time stepping scheme as follows:
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Using a finite difference equivalent of Equation (4.4) 

with an Euler time-marching scheme, the solution for this 

equation can be expressed in an approximate form by the 

following recursion equation

0n tl = °n — V Etn I O n I® 1 ) (4»7)

The numerical solution to such a recursion equation can only 

remain stable for Etn less than some upper bound on time step. 

Based on comparing the numerical and closed form solutions of 

Equation (4.4), it is possible to identify three levels of 

stability:

Ataax <

:stable no oscillaiions: (4.8)

asymptotically

:stable with oscillations: (4.9)

stress oscillates with

:unstable:

Figures 4.3
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size, Atjai , is not exceeded the numerical time stepping 

solution converges while remaining stable with no 

oscillations. Using a time step size between Atlax and A tcrit 

the numerical solution converges with stable oscillations. 

If a critical time step At^it > is exceeded then solutions 

become unstable and do not converge.

In the previous section, the case of pure stress 

relaxation was used to obtain a stability criterion for a 

uniaxial creep problem. By investigating the stress 

relaxation characteristics at the highly stressed points of 

any boundary-value problem in a similar manner, it should be 

possible to obtain . a stability criterion for a more general 

multi-dimensional problem with a more complex yield criterion 

and material behaviour. This is the philosophy adopted in 

this thesis. Before introducing the approach proposed in this 

thesis, the traditional eigenvalue approach used for 

multidimensional problems for obtaining a stability criterion 

is briefly discussed in the following section. The brief 

review is given in order to help demonstrate the difference 

between the approach described herein'and traditional ones.

4.4 Tradiionaal Approach for Numerical Stability

The numerical stability of explicit time-marching 

schemes for non-linear, first order systems of differential 

equations applicable to elastic-viscoplasticity was 
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investigated by Cormeau [15] in 1975. The first step in his 

analysis was to convert Equation 3.3 into a system of non­

linear differential equations

where f represents a system of nonlinear functions of Z which 

is a vector containing stresses at all numerical integration 

points. Through a piece-wise linearization of f using a 

truncated Taylor's expansion, Equation (4.11) takes on the 

linear form

where C = f(En) - Jn ' Z n represents a constant and J = 9f/9E , 

which depends on the viscoplastic description, is the Jacobian 

matrix of f.

Cormeau [15] suggested that Equation (4.11) remains 

stable provided that the time intervals are kept within the 

limits

where
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J. Since a full eigenvalue analysis of J is a lengthy process 

itself, simplifications were introduced via Rayleigh’s 

Quotient. Where possible, a further simplification was made, 

by obtaining analytical forms of Xaax. This was done to avoid 

the lengthy computation time associated with computing Aaax at 

every integration point. The point which the author wishes 

to elude to in this section is that closed form stability 

criteria for complex material descriptions are not easily 

obtained via an eigenvalue analysis.

4-4 Proposed Approach for a Numerical Stability Criterion

In order to understand the proposed approach, it is 

essential to focus on the physical response of a body which 

is undergoing viscoplastic deformation. During the time­

dependent deformation there is a redistribution of stresses 

in the body such that the yield function F, and hence the flow 
function <<>(F)>, decreases with time at every point in the 

body where F>0. This suggests that the numerical stability 

may be analyzed by studying how T = ' A < (|) (F) > decays with 

time in the region where the body is stressed the greatest. 

To do this, T is expanded by using a truncated Taylor’s 

expansion:

rn + 1 = rn + r’ [( 3F/ 9an )TAdn + F 3F/ 3 Kn )Akb] (4.1) )
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where 3 F/ 3a n = < 3 F/ Ban, 9 F/ 3O22> 3F/ 3OJ2, 3 F/ 3 0 33>T , 

r* = 3T/ 3F and K represenAs a hardening parameAer such as

volumetric or deviatoric plastic strains. The other terms are 

the same as defined previously. Substituting the non- 

associative flow rule, ie. Equation (2.1), and a Generalized 

Hooke’s law into (4.14), and using an explicit time-marching 

scheme yields:

r„ + J = [ 1 - r’( He + Hp ) AtB ] r B + ( 3 F/ 3sb )TD Aen (4.15)

where He= (3 F/BOd )tD( 3Q/30n ) , Hp = - ( 3 F/3k ) (3</3En )T (3 Q/3on ) is 

a viscoplastic hardening parameter and 3Q/3O = < 3Q/ 9ou,

3 Q/ 3022, 3Q/ 3d 12, 3 Q/ 30j3>t. By analyzing Ahe worst case

which is pure stress relaxation [7,8,15], ie., AeB = 0, and 

noting Ahe similarities between Equations (4.15) and (4.7), 

the numerical stability criterion can be directly written as:

1
AA S A Abox = (4.16)

r'(He+Hp)

for the case where oscillations are not allowed. By

considering pure relaxation as the worst case for numerical 

stability, Equation (4.16) gives an estimate for the maximum 

time step. AA this point iA should be noted that if 

oscillatory stability behaviour is acceptable, a second bound 

given by AAcrit - 2 AAssx can be used as a stability criterion. 

While overall non-oscillatory behaviour of F is maintained for 
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Et < Etaax , it may be possible that certain individual stress 

components may oscillate, since the stability criterion is 

based on examining the behaviour of the scalar function T.

For a hardening material where Hp>0, Etaax is 

overestimated when ignoring the influence on the maximum time 

step. This was also observed by Telles and Brebbia [7] for 

the case of a von Mises yield criterion.

In the application of Equation (4.16) an important 

assumption is made; ie., it is assumed that non-oscillatory 

stability of the overall problem can be maintained, provided 

that oscillations can be suppressed at the most critical point 

in the domain [8]. The validity of this assumption for 

associated viscoplasticity has been shown in a formal manner 

by Cormeau [15]. As will be shown in examples presented in 

the following sections, this assumption may, for some 

problems, provide an extremely conservative estimate of 

critical time step.

Equation (4.16) has been applied to Mohr-Coulomb and 

von Mises yield functions which are used to solve problems 

that are presented in the following chapters. The numerical 

stability criteria based on these yield functions are given 

in the next section for cases of non-hardening.

One last point should be made before leaving this 

section. That is, Equation (4.14) can be used to derive an 

implicit elastic-viscoplastic constitutive matrix. In order 

to avoid taking the emphasis away from stability, a brief
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derivation of the implicit scheme is given in Appendix A. The 

advantage of using a fully implicit scheme results from the 

fact that unconditional stability is guaranteed and only the 

desired accuracy limits the time step size used [8].

4.5 Examples of Numerical Stability Criterion Expressions

The application of Equation (4.16) to a non- 

associative constitutive description using the plane strain 

Mohr-Coulomb yield criterion given in Chapter 2, results , in 

the following criterion for non-oscillatory stability:

(y+v)(y—2v)
Atnax - ------------------------ (4.17)

2m F1' 1 EA( y — 2v+nne> sinP )

where E is the elastic modulus, v is Poisson’s ratio and 

the other terms are the same as described previously. It can 

be shown for associated viscoplasticity, that Ataax = At^it /2 
is exactly the same as that given by Cormeau [15]. It is clear 

from Equation (4.17) that the stability of a viscoplastic time 

marching scheme is sensitive to both $ and i.

For the Tresca case of p = P = 0, the following 

stability criterion is obtained

(1+v)
A taax ~------- 7 (4.18)

2AAmF”'i



34

For a von Mises material the stability criterion is given by

Detailed derivations of the aforementioned maximum time steps 

are contained in Appendix C. The applicability of these 

criteria are examined in the next chapter. Maximum time steps 

for the volumetric and the deviatoric material descriptions 

are presented in Appendix B. The author is not familiar with 

any literature that provides a numerical stability criterion 

for the latter two material descriptions.
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Figure 4.1 One-Dimensional Constant Stress

Creep CoriOigguation

Creep Corniguration



Figure 4.3 OnerDimmrnional InstaXility DermnstraXion : m = 1
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Figure 4.4 One-Dittesiosal Instability Detonstratio: : m 8 3
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CHAPTER 5

ELASTIC AND VISCOPLASTIC FINITE ELEMENT SIMULATIONS

5.1 Introduction

This chapter contains examples of specific boundary­

valued problems which were modelled using a non-linear, time­

dependent finite element model. The finite element program 

which was modified for this study, was verified by comparing 

finite element and closed-form solutions for both linear 

elastic and creep boundary-value problems. The first example 

demonstrates that the finite element model is capable of 

simulating elastic results for a strip loaded footing. The 

second example was used to compare elastic and creep solutions 

for a thick-walled cylinder. For all simulations, the eight- 

noded isoparametric element was used.

5.2 Comparison with Steady State Creep and Elasticity

In the first example, which was used to verify the 

finite element program, the author modelled a flexible strip 

footing on an elastic half space as shown in Figure 5.1. The 

elastic modulus, E, and Poisson’s ratio, v, used for the 

simulations were 4800 kPa and 0.2, respectively [33]. The 

38
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theoretical results for normal and shear stresses, are given 

in Reference [34].

Figures 5.2, 5.3 and 5.4 compare the theoretical and 

finite element solutions for normal and shear stress 

variations with depth, respectively. These results, are given 

for horizontal locations, corresponding to integration points
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in which m is a power law exponent;; rj and r0 are Ahe inner 

and outer radii of the cylinder, respectively; r is the radial 

distance where Ahe stresses of interest are determined; and 

Pi is the applied pressure. IA should be noted that Equation 

(5.1) is independent of A<4(F)>, and Ahe elastic properties 

E and v. More ' details of the creep law are given in Ahe 

following section.

Figure 5.6 shows, both, Ahe predicted elastic and 

steady state creep radial stress variations with those 

obtained from the closed form solutions. The steady state 

creep results are given for a linear (m=l) and non-linear 

(m=3) creep power law. The elastic solution can be obtained 

from Equation (5.1) by letting m = 1; see eg. Reference [35]. 

Es in the first example the finite element solutions compare 

exceptionally well Ao closed-form solutions, thereby 

suggesting AhaA Ahe finite element model used for Ahis study 

was free of major computer coding errors when applied Ao 

elastic and creep simulations.

5.3 Numerical Instability EssociaAed with Creep Problems

The emphasis in the previous Awo problems was on 

verifying the finite element algorithm; the next few examples 

address numerical stability applied Ao creep problems. The 

standard power law creep problem is modelled where Ahe yield
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stress is reduced to zero. The result is that finite creep 

strain rates exist at all levels of stlass.

5.3.1 Stress Relaxation Problems

In the first example of this section, the results of 

pure stress relaxation for an axisymmatrnc stress 

configuration are presented. In this problem, as shown in 

Figure 5.7, all edges of the boundary were constrained; ie., 

Aejj = As jg = Ae 33 =0. Initial stresses were introduced via 

initial strains, as described in Reference [5]. Although this 

problem could have been easily solved using a hand calculator, 

the finite element method was used. This analysis provided 

a further check on the finite element code.

The following multi-axial creep law using a von Mises 

yield criterion was incorporated into a finite element program

£ijvp = 3/2 A a/’1 sij (5.2)
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necessary in this example to apply initial strains which 

produced an initial non-hydrostatic stress state. These 

initial strains are given as follows:

ell = eZ2 0= -001 , £33 o= .0005, E12 o = 0 (5.3)

The maximum permissible time step, according to 

Equations (4.19) and (5.2) is given by,

2(1+v)
Ahilax = J- (5.4) 

3EAm Oe®-1

This stability criterion is consistent with the one developed 

by Cormeau [15] where Atcrjt = 2 Ataax for a material obeying a 

von Mises criterion.

Figure 5.8 shows that for the linear creep law, the 

numerical stability criterion is satisfied exactly. For the 

case of a non-linear creep law (ie., m = 3), the numerical 

stability criterion was not able to predict the limiting 

stability of the system accurately, as shown in Figure 5.9. 

The criterion given by Equation (5.4) however, did provide a 

conservative estimate of the maximum time step for a non­

linear creep law.

Since the numerical stability criterion was unable to 

accurately predict the limiting stability for the case of a 

non-linear creep law, a second possible stability criterion 
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was studied where changes in the yield function F, rather than 

in T, were considered. Following the same procedure used for 

obtaining a stability criterion based on changes in T , the 

following stability criterion can be developed for F

which for a von Mises material description, with Hp=O, can be 

written as follows:

F 2(l+v)
Ataax - -- m ZVtmax (5.6)

3EA 0ea-1

As shown above, the criterion for . Ataax‘ is equal to 

Ataax times the power law creep exponent m. Figures 5.8 and 

5.9 demonstrate that this alternative criterion was able to 

provide a better estimate of the actual Atcrxt ( = 2 Atsax ) 

than the previous criterion based on T . Recall that Atcrxt 

represents a limit on oscillatory stability whereas Ataax 

represents a limit on non-oscillatory stability.

The next example presented in this section, is similar 

to the previous one except that the radial boundary was free 

follows: 
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observed critical time step ( Atcrjt ) is greater than that for 

the previous case where all sides were constrained.

Owing to the simple state of stress of this problem, 

it is possible to obtain a closed-form maximum time step by 

reducing the problem to one-dimensional form as given in 

Appendix D. The results of such an algebraic exercise reveal 

that the maximum time step yielding non-oscillatory behaviour 

is given by

Comparison of Equations

It is clear from this equation, that for a nonlinear creep 

law, the stability criterion based on T is very conservative.

If one were to substitute into Equation (5.8) the 

appropriate material properties for this problem, the 

resulting non-oscillatory estimates on time step would be:

AtBax1D ~ l.l2 Ataax , for m = 1 (5.9)

AtaaxID _ 3.36 Ataax > for m = 3 (5.1)) 
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Figures 5.10 and 5.11 verify these calculations since non- 

oscillatory stability is preserved for 1.1 AtBax for the linear 

(m=l) case and for 3.25 Ataax for a nonlinear (m=3) creep law.

For the case of unstable oscillatory behaviour, the

(m=l) and with AA > 6.72 AAaax for nonlinear creep (m=3).

The purpose of presenting this example was Ao compare 

the general numerical stability criterion of Equation (4.16) 

for a problem in which the actual Atssx can be easily 

ca^u^ed from equilibrium. Since the actaal AA°X^ Aakes 

into account the level of constraint and Atssx does not, Ahe 

difference in results indicate that numerical stability is 

strongly dependant on the level of constraint as anticipated. 

In general, iA may be said that as the degree of . constraint 

leading Ao stress redistribution is reduced, the maximum 

permissible time step increases. Unfortunately, for general 

boundary-value problems, the level of constraint within the 

domain is not known, a priori.

Equation (5.8) also reveals that the stability 
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criterion based on F for nonlinear creep (m=3) yields a much 

better estimate of a maximum time step than that based on T 

for this particular problem. While it is tempting to adopt 

this criterion for stability, the example presented in the 

following section demonstrates that for some problems this 

criterion may not be strict enough.

5.3.2 Creep of a Thick-Walled Cylinder - Instability

The thick-walled cylinder as shown in Figure 5.5 was 

modelled for creep using a von Mises yield criterion (see 

example in section 5.2). The material properties for the 

simulations presented in this section are the same as those 

used in the previous section.

Figure 5.12 and 5.13 show the axial stress, at the 

integration point nearest to the inside wall, verses time for 

linear (m=l) and non-linear (m=3) creep, respectively. The 

results are shown for time steps relative to the maximum time 

step based on the truncated Taylor’s expansion of T.

The results of the simulations for the linear creep 

law (m=l) shown in Figure 5.12 indicate that oscillations and 

instability occurred when the proposed stability criterion was 

not satisfied. Figure 5.13 shows that for cases of non-linear 

creep (m=3) the stability criterion is conservative since the 

solution remained stable even for At > 2.5 Ataax . This leads 

one to consider using the criterion based on F. The 
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relationship between the stability criterion based on F and 

T, as indicated by Equation (5.6), can be expressed as
Ataaa/ = 3 Etttax. By basing stability on F, one would expect 

non-oscillatory stability for Et < 3 Et^ax • Es shown in 

Figure 5.13, the stresses oscillated for At < 3 E tm, which 
is contoary to A-t^^.

It is apparent from this example that a stability 

criterion for non-oscillatory behaviour based on F is not 

strict enough. If one were to use this less restrictive 

criterion, results may become unstable for certain problems, 

indicating an unacceptable shortcoming. The criterion based 

on T produced conservative predictions for all examples 

shown. In the remainder of this thesis only the stability 

criterion given by Equation (4.16) and a linear creep power 

law (m=l) is considered.

5.4 Elastic/viscoplastic Instability

The example presented in this section is used to 

demonstrate the stability behaviour of a elastic/viscoplastic 

material in which, contrary to creep problems, viscoplastic 
strain rates may cease for non-zero Jz' . E typical situation 

where this could arise is when a Mohr-Coulomb yield criterion 

is used with a non-zero frictional angle and/or cohesion.

The geometry of this problem is similar to that shown 

in Figure 5.7 except that the solution here is for a plane
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strain condition with the horizontal direction boundary 

unconstrained. A Mohr-Coulomb criterion, corresponding to the 

following yield function, also given in Chapter 2, is 

expressed as follows:

where q = [( o^- °22>2 + 4( p = ( o 11 + 022 ) , 4> is the



49

presented in which stress redistribution causes the 

elimination of the aforementioned steady state solution enor 

when using an accelerated scheme. In particular, stresses 

that oscillate into the elastic region can later oscillate 

back into the plastic region due stress redistribution.

As was done previously in Section 5.3.1, the maximum 

time step was calculated from the equilibrium expression for 

an "associative" law. The ratio between the calculated time 

stap, AtBax» and the one based on E^aUon (4.1?) is g^en by

AAtaax $ ; Ataax (5.14)
(l-2v) (l — 2iie) + si^nc) )

This equation reveals that the error between the actual and 

proposed maximum time step is dependent on Poisson's ratio and 

the material friction angle. As was already shown in Figure 
S*14^ At^y^n^Bax = 9.4 ^i $ = 30 dageaas and v=0.34. ngure 

5.15 shows that for v=0.34 and increasing friction angle, the 

linfeeenca be^en Ataaxn and Atuax ^creases. Seveea| 

element simulations were performed fox? 'various values of $ and 

the results were as expected from Equation (5.14).

Similar comparisons were made by varying v and It
was fount. that for fow Pofoson’s eatio, v<0.35, Ataaxxn/AtBax was 

primarily dependent on <j> . As v increased beyond 0.35, the 

v3|up of AtBaxn/ AtBax became ^pee^et on both v and $ , with 

the ratio increasing as v and $ are increased.
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The results of this section indicate how conservative 

the proposed stability criterion can be. By introducing the 

influence of level of constraint into the stability criterion, 

one should be able to obtain a more efficient time step size. 

As mentioned previously, the actual level of constraint is not 

known, a priori.

The next chapter deals with using the elastic- 

viscoplastic algorithm to solve plasticity problems. As will 

be shown, the stability criterion examined in the previous 

examples is related to the plastic strain increment.



Figure 5.1 Plane Strain Strip Footing - 70 Element Gid
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Figure 5.2 Vertical Stress Profile - Plane Strain Strip Footing
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Figure 5.3 Horizontal Stress Profile - Plane Strain Strip Footing
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Figure 5.4 Shear Stress Profile - Plane Strain Strip Footing
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Figure 5.5 Axisymmetric Thick-Walled Cylinder - 10 Element Grid



Figure 5.6 Axisymmetric Thick-Walled Cylinder

Elastic and Steady State Creep Solution



Figure 5.7 Stress Relaxation - 1 Element Grid
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Figure 5.8 Instability Demonstration for Pure Stress Relaxation

Ae a = Ae r = Ae 9 = 0 : m = 1



Figure 5.9 Instability Demonstration for Pure Stress Relaxation

Am a = Am r = Ae 9 = 0 : m = 3
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Figure 5.10 Instability Demonstration for Stress Relaxation
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Figure 5.11 Instability Demonstration for Stress Relaxation

Am r * 0 : m = 3
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Figure 5.12 Instability Demonstration : m = 1

Creep of AxisymmoOeic Thick Wih^d Cylinder
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Figure 5.13 Instability Demonstration : m = 3

Creep of AxisyoooOric Thick Walled Cylinder



Figure 5.14 Instability Demonstration

Stress Relaxation : Mohr-Coulomb Plane Strain
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Figure 5.15 Level of Conssrvativesess Demonstrated (v-.34 )

Stress Relaxation : MoOr-Couloob Plane Strain
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CHAPTER 6

ANALYSIS OF PLASTICITY PROBLEMS

6.1 Plasticity Solutions via a Viscoplastic Approach

An important application of elastic-viscoplastic 

modelling is the generation of plasticity solutions [1]. 

Extensive work has been done in this area as mentioned in 

Chapter 1. In particular, it is usually implied that 

plasticity solutions correspond to steady state 

viscoplasticity solutions [1]. This section provides a brief 

comparison between the initial strain plasticity and 

viscoplasticity approaches. The presentation is restricted 

to non-hardening viscoplasticity.

In plasticity, the plastic strain rate vector is given 
by ■ Ae P = B 3 Q/30 where B is obtained via a consistency 

condition and Q is a plastic potential function similar to 

that used for viscoplasticity (see, section 2.1). DeBorst and 

Vermeer [37], using an initial strain plasticity approach, 

indicated that the proportionality constant B can be expressed 

as follows:

66
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where He = ( 3F/9o)?D( 3Q/3o) a^cloe = o Q + D Ae is a HcUUous 

stress used to evaluate B. Equation 6.1 is obtained by 

expanding F, using a truncated Taylor’s series, about the 

fictitious stress Oe rather than about a stress 0 which sits 

on the yield surface.

Assuming a linear flow function and non-hardening, 

with the help of Equation (4.16) it may be shown that
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suggests using a deceleration factor when using initial strain 

plasticity.

The following sections are used to demonstrate the 

applicability of the viscoplastic algorithm to solve 

plasticity problems.

6.2 Plasticity Examples

In the examples given in Chapter 5, all results 

pertained to creep or viscoplasticity simulations where only 

one load increment was applied. The remaining set of examples 

were performed by incrementing load and allowing for an 

iterative initial strain loop within each load increment to 

obtain steady state solutions. The solutions to plasticity 

problems were generated by making use of the maximum time step 

based on Equation (4.16) as suggested in the previous section. 

The effect of violating this criterion in order to accelerate 

convergence to a steady state solution within each load 

increment is also briefly addressed.

The convergence criterion adopted in this thesis is 

an extension of a criterion suggested by Marques and Owen 

[11]. In their approach, they suggested that "convergence of 

the time stepping process to steady state conditions is 

monitored by requiring that the current value of the summation 

of the viscoplastic strain rates over the Gauss points be less 

than a specified percentage of that occurring in the first
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time step of the load increment (typically less than

1.0%)". In the author’s criterion, the summation of 

the strain rates were replaced by the square root of the 

summation of the square of all displacement increments, 

yielding

N N
e = [ £ ( AS j A6j)i / E( A6 j A6j )° 11/2 < eaax (6.3)

j=l j=l

6.2.1 Thick Walled Cylinder

Since all shear stresses were zero, it was possible 
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to use the axisymmetric finite element discretization shown 

in Figure 5.5. In this case yielding was dependant on q=°r-a9 

where 0r and Oq are the tangential and radial stresses, 

respectively. The pressure, . px, was incremented in steps of 

0.1 kPa. The pressure was increased only after the iterative 

loop converged. In the example, the progression of plastic 

zones versus applied pressure were compared using a finite 

element and theoretical solution. The theoretical expression 

relating the progression of plastic zones to applied pressure 

is given in Reference [38] and is expressed as follows:

Pi / Y=ln(cx / rx)+l/ 2 (l-£^ii/r02) (6.4)

where rj, ro and cf represent the inner, outer and yielded 

radii, respectively. The yield and applied stress are 

represented by Y=2c and p|, respectively. Figure 6.1 shows 

that the finite element solution compares well with the 

theoretical solution for the case where At=At#ax. Differences 

between the two are attributed to both the size of the load 

increments used and discretizat ion. For At>AtBax, the finite 

element predictions deviate from the closed form solution, as 

anticipated. The deviation increases as the time step size 

is increased. A more thorough examination of the stresses at 

each iteration showed that some of the stresses that were 

plastic previous to convergence became elastic at convergence 

because of stress oscillations.
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It is clear from this example, that in order to 

predict reasonable trends, the simulation must be carried out 

using time steps which do not exceed Atm • With this in 

mind, the stability criterion suggested by Cormeau [15], ie. 

At < 2 Ataax ( = At-crit ) > may not be strict enough.

6.2.2 Strip Footing Problem

The elastic-viscoplastic approach was also used to 

model an elasto-plasticity problem for the flexible strip 

footing configuration shown in Figure 5.1. The finite element 

solution is compared to the closed-form limiting equilibrium 

solution [39] (qf=5.14c) in Figure 6.2. In this figure, it is 

shown that the applied load versus vertical displacement, 

corresponding to point A shown in Figure 5.1, compares 

reasonably well for various values of At. The results once 

again demonstrate how conservative the stability criterion can 

be; since it is shown that a reasonable steady state response 

can be achieved even though the maximum time step (Ataax) is 

exceeded by a factor of 4.

The effect of using a time step larger than Ataax 

during a particular loading increment on ( Ojl-OH) is shown 

in Figure 6.3. While the larger At is suitable for obtaining 

the plastic response, Figure 6.3 clearly shows that larger 

time steps are not suitable if details of a transient response
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are required as would be the case for predicting true 

viscoplastic behaviour.

6.3 Summary of Examples

The purpose of the previous two examples was to study 

the applicability of the numerical stability criterion and to 

assess how sensitive numerical solutions are to time steps 

exceeding At#ax. Of course, for the problems of this chapter, 

At acted as a fictitious parameter controlling the size of the 

plastic strain step; ie. it was not a true measure of time. 

Problems involving more complex yield criterion and non- 

associative flow rules are left for future research work.

The examples clearly reveal that as time steps 

increase beyond Ataax , over-relaxation of stresses may occur, 

causing oscillatory behaviour. If the time step is increased 

beyond some critical value then stresses will redistribute in 

such a manner as to cause numerical instability.

The stability criterion developed in Chapter 4 was shown 

to be a conservative criterion for all examples used. Since 

the numerical stability criterion provides a "lower bound", 

some simulations resulted in an extremely overconservative 

maximum permissible time steps. The demonstrated levels of 

conservativeness associated with Equation (4.16) and therefore 

with that of Cormeau help explain the success which some 

researchers have had when applying acceleration techniques[8] .
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Unfortunately, although accelerations schemes appear to work 

for some problems, there is no guarantee that they will be 

generally successful.



Figure 6.1 Progression of Plastic Zones : Instability

Axisymmetric Thick-Walled Cylinder - Tresca
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Figure 6.2 Surface Displacement at Center of Strip Footing

Plane Strain Tresca - Instabiiity Explored
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Figure 6.3 Stress Osscilations beneath center of Strip Footing
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CHAPTER 7

CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

The main objective of this thesis was to extend 

Cormeau’s work on numerical stability of explicit algorithms 

[15]. The simple, yet effective, approach was capable of 

accounting for work hardening and non-associative 

viscoplasticity which is not possible using Cormeau’s 

approach.

The general expression for maximum permissible time­

step is easily applied to a wide variety of material 

descriptions. For example, the derivation of the maximum 

permissible time step for the volumetric and deviatoric 

hardening models is presented in Appendix B. It was shown 

that the maximum permissible time step for the zero 

viscoplastic hardening and associative, Mohr-Coulomb, von 

Mises, Drucker-Prager and Tresca functions are the same as 

those of Cormeau [15]; that is, noting the relationship with 

Cormeau’s stability criterion, Atcri(; - 2 At^. Several 

examples were presented which show that the conservativeness 

of the criterion is highly problem dependent.

The stability criterion for AtBax for an isotropic and 
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homogeneous material with no viscoplastic hardening and a 

linear power law was capable of producing an expression for 

plastic strain increment which is identical to that used for 

initial strain plasticity. It was shown that for some 

problems it is possible to accelerate convergence by using

At > AtBax with very little difference in the converged 

solution.

The thesis provides a proposed implicit time-marching 

scheme which avoids matrix inversions, thereby improving 

computational efficiency. By making use of both the stability 

criterion and the implicit scheme, it should be possible to 

develop efficient implicit-explicit solvers for a much larger 

range of viscoplasticity laws than is currently possible.

In conclusion, the maximum time step derived from the 

traditional eigenvalue approach was based on only a few 

popular yield descriptions and limiting assumptions. At that 

time, there was not a high demand for the development of a 

numerical stability criteria for modelling more complex 

viscoplastic behaviour of materials. The need for an approach 

enabling the determination of stability criteria for more 

complex yield descriptions and hardening laws have increased 

due to more recent developments. It was the intent of this 

research to provide an approach which can be used to obtain 

a numerical stability criterion for these more complex 

viscoplastic descriptions.
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7.2 Recommendations

Based on the work in this thesis several

recommendations for further study can be made:

(i) A comprehensive study of the proposed stability 

criterion applied to non-associative and work hardening 

viscoplasticity.

(ii) Investigate the effectiveness of a criterion making use 

of Equation (4.15) which takes into account the level 

of constraint through Ae ; i.e., using Ae corresponding 

to the previous time increment.

(iii) Applications of the stability criterion to a wider 

variety of material descriptions such as, volumetric 

and deviatoric hardening models.

(iv) A thorough investigation of the proposed implicit 

time-marching scheme for viscoplasticity.



APPENDIX A

AN IMPLICIT VISCOPLASTIC FORMULATION

For certain forms of flow function, the maximum 

allowable time step may be very small, thereby making explicit 

time-marching schemes highly uneconomical. Unconditionally 

stable implicit schemes or implicit-explicit schemes can 

provide numerically efficient alternatives to the preferred 

explicit approach. For most analyses the objective is not to 

use very large time steps, but steps which are small enough 

to capture the essential trends of the phenomenon which one 

is trying to model, yet large enough to make the analysis 

economical. The main reason for the reluctance of adopting 

implicit schemes is the large computational effort, thus cost, 

associated with the inversion of the compliance matrix to 

obtain the elastic-viscoplastic tangent modulus matrix [32]. 

In the remainder of this appendix, an implicit scheme is 

developed which avoids the expensive matrix inversions.

In order to improve the numerical stability of the 

time-marching scheme, the influence of stress changes during 

the time increment must be taken into account. This may be 

accomplished by using Equation (4.14) and assuming that

AO = D [ Me - r b tD ( 3Q/ 3d)] (A. 1) 
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where T =rn + i rather than Tn which was used for deriving the 

stability criterion. After substitution of Equation (A.l) 

into (4.14), one obtain

rn+i = trn r r‘r rF/asOVDAe )/m (a. 2)

with

Mr r r r*AAn(HeeHp) (A. 3)

Substitution of Equation (A.2) into (A.l) yields

A0B = D¥P Aen - ) rn/M) Atn D(<9^j^3(J ) (A.4)

where

DVP = D[I - ( T' /M) Atn ( 3Q/3O ) (3 F/ 30 )T D] (A. 5)

The tangent matrix given by Equation (A.5) resembles that 

obtained in plasticity formulations. - In fact for Atn^’“ , the 

plasticity tangent matrix is obtained exactly. The main 

difference between DVP and the one developed by Kanchi et al.

[2] is that the effect of stress change on the gradient vector 

3Q/ 30 is not taken into account in Equations (A.4) and (A.5).



NUMERICAL STABILITY OF DEVIATORIC AND

VOLUMETRIC HARDENING MODELS

B.1 General

As mentioned in Chapter 4, the author is not familiar 

with any literature that provides a numerical stability 

criterion for the deviatoric and volumetric hardening models. 

In this appendix, the maximum permissible time step associated 

with both these material descriptions are presented for two­

dimensional analysis. In the deviatoric concept, no 

hardening and a non-associative flow will be assumed. In the 

volumetric concept, it will be assumed that no hardening and 

an associative flow rule exists.

B.1.1 Deviatoric model

In this example a non-associative law shall be 

assumed. The yield function and plastic potential may be given 

in the particular form:

F(p,q,EqP)=q-T)p = o (B.l)

Q(p,q) = q + Tc p ln(pVpo) = 0 (B.2) 
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in which q is assumed, to be a hyperbolic function of plastic 
deviatoric strain EqP

Here r| f ,0c represent stress ratio q/p at failure and zero 

dilatancy state, respectively and L is a material constant. 

Assuming a Mohr-Coulomb plane strain representation:

From Equations (B.1),(B.2),(B.4) and (B.5) we get:

He = (3F/3O)tD(3Q/3CF) d Hp is a viscoplast.ic hardening parameter



84

(assumed equal to zero) and I” is defined in Chapter 4.

Substitution of Equations (B.6), (B.7) and the plane strain

elastic matrix

where Ei = E(1-v)/[(1+v)(l-2v) ] into the expression for He 

yields

Substituting Equation (B.9) into the expression for maximum 

time step gives

B.1.2 Volumetric model

in whichhf represents the stress ratio q/p at critical state.
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APPENDIX C

DERIVATION DETAILS OF NUMERICAL STABILITY EXPRESSIONS

C.l General

To obtain an expression for maximum time step using 

Equation (4.16) requires several steps to lengthy to be shown 

in the main body of the thesis. Nevertheless, details of the 

derivations leading to an expression for maximum time step for 

the von Mises and Mohr-Coulomb yield functions are contained 

in this appendix.

C.1.1 Numerical Stability for Mohr-Coulomb Yield Function

The derivation of the stability criterion for the Mohr- 

Coulomb yield description is based on the assumption of plane 

strain, no hardening, ie. Hp=O, and an non-associative law. 

The yield and plastic potential functions are given by 

equations (2.14) and (2.15), respectively. Using these 

Equations, the corresponding expressions can be obtained:

3F/3on - (on - 022)/ q + sin(|)

3F/3O22 = -dll - 0 22 )/ q + sin <|> (C.l)

3F/3c 12 - 4on /q
and
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time step gives



APPENDIX D

CLOSED-FORM 1-D STABILITY CRITERION

Consider the geometric configuration used for the 

stress relaxation problem constrained in the axial direction; 

ie. A£22 = 0. This problem can be reduced to one dimension and 

the resulting stability criterion applicable to an explicit 

time stepping scheme can be obtained. The approach for 

obtaining the corresponding maximum permissible time step is 

summarized in this appendix.

Owing to the boundary conditions associated with this

where E is the elastic modulus. The consistency condition 

relating elastic and viscoplastic strain increments (noting 

that the total strain increment Ac 22 - 0) is expressed as 

follows:

90
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For a von Mises material the viscoplastic strain increment is

= 3/2 A Og8'1 sjj At (D.3)

Since only 022 stresses exist, the second stress deviators is 

given as S22 = 2/1022 - Substitution of S22 into (D.3) gives

AE22vp = AOe8'1 022 At (D.4)

which when substituted into Equation (D.l) gives

0 22 2 -EAoett''o22 Ait (D.5)

Using an explicit finite difference approximation, such that 

on + 1 _on + Ao11 , yie1ds

C^1 2O22n ((--A Of?-1 At) (D.6)
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