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Abstract

In this study, a computational approach to the solution of an inverse modeling prob-

lem is developed to reconstruct unknown material properties of a Li-ion battery. In-

situ MRI measurements performed on a layered graphite electrode during charging

are used in comparison with Stefan-Maxwell concentrated electrolyte theory, Butler-

Volmer reaction kinetics, and multiphase porous electrode theory to explore the over-

all accuracy of models for Li transport processes in the active material. In particular,

the main research goal here is to determine if the original Cahn-Hilliard formulation

for phase-separation can be improved upon through extension to a periodic bilayer

model (two-layer Cahn-Hilliard). The original model contains a pair of two stable

phases at low and high concentrations that produces the “shrinking core” behav-

ior for lithiated graphite. The comparative advantage of the periodic bilayer model

stems from the capturing of a third stable phase of intermediate concentration as

the average between one concentrated layer and one dilute layer. Calibration is done

simultaneously on concentration and cell voltage profiles through multi-objective op-

timization where the accuracy of a model is assessed based on the quantification of

agreement with experimental data. The periodic bilayer model is found to improve

upon the least-squares error for fitting of concentration profiles by roughly 20%, while

the voltage fittings are too similar to be conclusive.
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Chapter 1

Introduction

1.1 Electrochemistry and Batteries

The entirety of the planet is experiencing rapid climate change at what is a critical

junction in human history. With global emissions at an all-time high, it is a necessity

to innovate clean energy solutions to satisfy power consumption. Renewable energy

sources like solar, tidal, and wind have become cheaper, though are intermittent and

have variable power outputs that fluctuate over time. To compete with the steady

supply from burning fossil fuels, energy storage systems must be put in place to con-

vert and retain excess electricity generated during times of overproduction, helping

maintain the supply of green energy otherwise. While there are many forms of energy

able be stored for later use (e.g., mechanical, thermal), a rechargeable battery with

one or more electrochemical cells remains one of the most popular and effective meth-

ods. In particular, the lithium-ion (Li-ion) battery has low self-discharge when not

being used and one of the best energy-to-mass ratios. Companies such as Tesla have

already demonstrated the effectiveness of large-scale grid storage through installation

1
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of their Megapack in regions with unreliable networks like South Australia. These

large clusters of Li-ion batteries are also positioned to replace “peaker” power plants

that are dirty and expensive to burn natural gas in times of increased demand. On

a local consumer level, Tesla envisions their Solar Roof and Powerwall providing this

approach to electricity generation and storage in each individual household.

While retaining energy represents an important aspect of converting the electrical

grid infrastructure to be green and sustainable, portable modern technology also re-

quires reliable and mobile sources of power. Smaller electronics like cell phones and

laptops are hugely dependent on energy-dense batteries with goals including the light-

est materials with the highest charge capacity. For larger systems able to burn fossil

fuels, improved battery technology is the most important path forward to reducing

these emissions. The automotive industry has targeted a “million mile” battery with

a price of $100/kW h as the threshold at which the production cost of an electric ve-

hicle (EV) becomes less than that using a combustion engine. Certain limitations like

capacity fade from numerous charge/discharge cycles present formidable challenges

when designing a long lasting battery. As such, huge investment has gone into testing

a wide array of battery materials for better performance.

1.2 Ionic Transport

To create a predictive model that can assist in the design of industrial applications,

the main physics of the battery must first be captured. In a conventional Li-ion

battery, one electrochemical cell has two electrodes and an electrolyte as primary

components. Like many physical processes, the system seeks a state of equilibrium

in accordance with a free energy minimization. An electrical circuit connecting the
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electrodes allows for negatively charged electron flow from one to the other, with free

energy able to be either added during charging or extracted when discharging. This

electrical current is made possible by two simultaneous half-cell reactions occurring

at the surface of each electrode. During charging, neutral lithium particles undergo

oxidation by losing their electrons to become ions in the electrolyte when extracted

from a solid Li metal electrode. At the same time, Li-ions undergo reduction by

gaining electrons when intercalated into the solid graphite electrode. At both of

these surfaces, the amount of lithium entering or exiting the electrode is as per a

reaction driving force being the difference in potential between the reduced state and

the oxidized state. The increased internal energy of lithium in the active material is

then accessible at a later time by reversing the reactions.

The electrolyte within the cell can be liquid or solid and serves to complete the

circuit by transporting ionic current between electrodes with both the anion and

cation dissociated species carrying charge. In the present study, the focus is on a

liquid binary electrolyte containing only one solvent and one salt. In general, ions

move in response to the electric field (migration), concentration gradients (diffusion),

and bulk fluid motion (convection is neglected in this work). The fundamental relation

from the first law of thermodynamics is used with conservation of species and charge

to obtain an expression for ionic flux and ionic current. The use of Ohm’s law also

allows for consideration of a total cell voltage measured as the potential difference

between electrodes, which is an important aspect of battery operation. The open-

circuit condition is achieved when the outer electrical circuit has no current and the

system is in a state of equilibrium.

An electrochemical cell can be considered as two halves where half-cell reactions

3
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occur at the surface of each electrode. The “foil” counter electrode is a thin, solid Li

metal and treated as an inexhaustible source of ions where consideration of interior

dynamics is not required. Within the active graphite particles in the porous elec-

trode, however, similar nonequilibrium thermodynamic principles as those used for

the electrolyte are also applied on the microscopic scale to model Li transport on a

lattice. Here, a particular free energy is formulated where calculus of variations can

then be used to find a thermodynamic driving force that evolves the system along a

minimal energy trajectory. The porous electrode also consists of added binder and

conductive material that serve to support and transport current between the active

particles. In this work, simplifications made during mathematical modeling neglect

the consideration of such additives.

Li metal Copper

V

Li+

e− e−

Electrolyte

I

Figure 1.1: Battery schematic.
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1.3 Mathematical and Computational Modeling

An essential tool in battery research and development is a predictive model that saves

on having to run expensive experimental tests. Calibration can be done on this model

using the minimum amount of experimental data required to then extrapolate the

results of untested configurations. The better able the model is to account for physical

phenomena and capture features of the dataset used in calibration, the more faith

can be put in using it to guide the improvement of battery performance. However,

certain physical limitations exist in that a full particle simulation across all length

scales is intractable and would require a vast amount of computational effort. The

goal of any mathematical formulation is hence to distill and simplify the system into

essential elements that do well to approximate the complicated physics of a battery.

The Newman model, as decribed in Section 3.1 with fundamental theory discussed

in Fuller et al. [10], is an example of a streamlined mathematical framework where

arguments made regarding the disparities in length scales reduce the dimensionality

of the problem. While there are many length scales to be considered, the macroscopic

scale in this work is treated as the distance between parallel current collectors over the

length of the full electrochemical cell. The dynamics in the electrolyte can be mod-

eled independently on the macroscopic scale with the Stefan-Maxwell concentrated

solution theory. Graphite particles are represented as volumetric sink/source terms

of Li-ions as they intercalate/deintercalate with reaction rates determined from the

Butler-Volmer reaction type model. Macroscopic quantities like electric potentials,

current densities, and volume-averaged lithium concentrations can then be compared

to measurable laboratory data. This approach is known as porous electrode theory

and was popularized by John Newman and his colleagues. Simplified versions of
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the model use homogenized, solid-state electrode particles with thermodynamics ac-

counted for by using a reaction driving force determined from an open-circuit voltage

that is fitted to experimental data.

An extension of the standard model is to be multi-scale in that macroscopic quanti-

ties are strongly coupled to volume-averaged, microscopic graphite particle dynamics.

Taking advantage of disparities in length scales of the problem simplifies to a pseudo

two-dimensional model that has equations dependent on the macro-scale length of

the battery and the micro-scale radii of electrode particles. It is common to use a

simplified Fickian diffusion first derived by Fick [9] to determine the evolution of

intercalated lithium from gradients in concentration. The Cahn-Hilliard formulation

Cahn and Hilliard [3] for free energy can instead be used to resolve phase transforma-

tions within the solid electrode particles. This added capability produces a “shrinking

core” where during charging, a high concentration exterior is separated by a phase

interface from a low concentration core which diminishes as the particle becomes fully

charged. The stable phases are referred to as “stages” and are observed by Ferguson

and Bazant [8] to produce a measurable change in color of the graphite depending on

degree of saturation with lithium.

One extension of the original model from Smith and Bazant [22] to account for

phase separation is known as multiphase porous electrode theory with the accom-

panying software MPET from Smith, Raymond B. [24]. Here, the numerous coupled

partial differential equations (PDE’s) that define the model are evolved over time

as the system would in reality over the duration of an experiment. An extension of

the Cahn-Hilliard free energy is implemented to capture the higher staging known
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to occur in layered graphite material. The periodic bilayer model features two dif-

ferent repeating layers that are independently able to phase separate into high and

low concentrations as before. Based on competing inter-layer and intra-layer forces,

a third stable phase of an intermediate average concentration is made possible by

simultaneously having one layer full with the other dilute in a particular volume.

To obtain meaningful results from simulating battery dynamics, the various pa-

rameters and material properties that are used in the model must be based on actual

measurements. To simplify the computation, estimations in the literature are used to

fix many of the properties related to the electrolyte dynamics where any errors made

in this regard will notably change the overall simulation outcomes. In the work here,

a number of key electrode and reaction parameters of interest are left unknown and

subject to reconstruction during calibration of the model based on experimental data.

This is known as the inverse problem with one approach being to infer the unknown

values by solving an optimization problem to fit resulting model data. The accuracy

of the mathematical model can then be assessed by the magnitude of the optimal

least-squares error between the datasets. At the end of an optimization algorithm

that iteratively improves upon the fit, the set of parameters producing matching re-

sults to measured quantities can then be used by the model to accurately predict the

behavior of the battery under different conditions.

1.4 Goals & Summary of Main Results

The main focus of this study is in assessing the relative fidelity of the original Cahn-

Hilliard model compared to the extended periodic bilayer (two-layer Cahn-Hilliard)

model. It is hypothesized that additional phases from the increased complexity of
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two-layer free energy considerations will result in macroscopic outputs with closer re-

semblance to experimental concentration and voltage profiles. Physically, it is known

that cross-layer interaction effects between intercalated lithium particles and vacan-

cies play a significant role in determining the higher graphite staging observed exper-

imentally in Ferguson and Bazant [8] that is unable to be captured by the single layer

Cahn-Hilliard model. Given its nature as an extension, the two-layer model should

perform better or just as well by collapsing to the original Cahn-Hilliard model. Mul-

tiobjective optimization is used to simultaneously fit both sets of measurements to

solve the inverse problem and infer effective parameters that characterize the physi-

cal system. Success is measured by the smallness of error functionals quantifying the

least-squares difference between optimal model data and experimental results.

The novelty of this work comes from adapting the inverse modeling approach

from Morales Escalante et al. [15] to use the more advanced computational software

MPET. Doing so enabled the exploration of the 2-layer Cahn-Hilliard model to assess

its ability to reproduce experimental results relative to the original model. Proper

configuration was required to ensure consistency of the mathematical models with

the particular physical experimental setup. This included hard-coded modifications

to account for side reactions from Section 3.1.2.2 and the inclusion of an open-circuit

voltage fit to experimental data in the Bulter-Volmer reaction from Section 3.1.2.1.

These concepts also needed to be extended to apply to the periodic bilayer model

which had not been done before. A wrapper around the MPET software was then

created to implement all aspects of optimization and data handling.

The optimal “Pareto front” for each model was obtained by solving the family

of multi-objective optimization problems with various weights between concentration

8
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and voltage error functionals. The periodic bilayer model was indeed found to improve

upon the fitting obtained to both available datasets. In particular, the concentration

error functional saw the most improvement with the increased complexity of higher

staging in the 2-layer model being better able to capture certain features of the exper-

imental data. The change in voltage profile fitting between models was only marginal

such that a strong conclusion in this regard was unable to be drawn. However, the

results of the multi-objective optimization indicate that the models simultaneously

fit both sets of measurements rather well such that a significant trade-off between

concentration or voltage agreement is not necessary.

1.5 Thesis Structure

This work begins by detailing the experimental setup and corresponding datasets

in Chapter 2. Understanding this physical setup is important to then motivate the

specific derivations of governing equations in Chapter 3 that constitute the mathe-

matical model of transport processes. By comparing the experimental concentration

and voltage profiles to those produced through simulation, the problem of calibrating

the predictive model by reconstructing unknown parameters is formulated through

inverse modeling in Chapter 4. The computational approach to simulating the bat-

tery and the optimization algorithm used to infer material properties from data is

then detailed in Chapter 5. Finally, results of the inverse modeling are presented and

discussed in Chapter 6 with concluding remarks on the outlook of research given in

Chapter 7.

9



Chapter 2

Experiments

Physical measurements of voltage and lithium concentration profiles taken over the

course of an experiment provide a valuable dataset for inferring thermodynamic bat-

tery properties. Inverse modeling discussed in Chapter 4 seeks to most accurately re-

construct unknown parameters and obtain good agreement with experimental results.

Furthermore, close consideration of the battery and testing procedure is required to

establish known quantities in a mathematical model. In this chapter, the experimen-

tal setup and data is summarized from the original work of Krachkovskiy et al. [11].

The description is also consistent with Morales Escalante et al. [15] where it appears

in a similar context as here.

The electrochemical cell is made up of two copper current collectors with a metal-

lic lithium counter electrode attached to one and a copper-foil-supported graphite

electrode attached to the other. The polyether ether ketone (PEEK) cylindrical body

was hermetically sealed by means of PEEK Super Flangeless high-performance liq-

uid chromatography fittings. Electrodes were separated by three glass microfiber

filter membrane discs (# 691, VWR Scientific Products) and soaked in a 1m LiPF6
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in ethylene carbonate/diethyl carbonate (1:1 v/v) battery-grade electrolyte solution

(Sigma-Aldrich). The interelectrode spacing was approximately 200 µm and the thick-

ness of the graphite electrode was 300 µm. The thickness of the solid Li metal counter

electrode is disregarded and does not play a role in this work.

A constant current of 45 µA was applied to the cell for 26 h to partially charge

the graphite. Lithium concentration profiles ĉs(x, tk), k = 1, . . . , N , were collected

every 2.5 h at t1 = 2.5, t2 = 5, . . . , tN = 25 h with N = 10 being the total number of

acquired concentration profiles. They were acquired using the one-dimensional 7Li in

operando MRI measurement technique described by Krachkovskiy et al. [11] and are

shown as functions of the space coordinate x at different time levels in Figure 2.1. The

measurements are not taken instantaneously at each given time but rather assumed

to be an averaged value over some finite acquisition interval much less than the 2.5 h

separation between measurements. Comparison during inverse modeling assumes a

reasonable snapshot approximation and does not take the acquisition interval into

account by time averaging portions of the higher resolution simulation data.

The time dependence of the total amount of Li measured as being intercalated

into graphite can be obtained as the spatial mean of the instantaneous concentration

profiles ĉs(x, tk), k = 1, . . . , N . The total filling fraction or state of charge over time

is shown in Figure 2.2. The galvanostatic current gives a linear relation between

time and total lithium being reduced at the surface of the graphite electrode. Section

3.1.2.4 expresses the current using a charge rate (C-rate) of Cr = 1/44 h, written

as C/44 and interpreted as the inverse of the number of hours required to achieve

maximum charge. The experimental measurements of intercalated lithium normalized
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by the known maximum graphite capacity cs,max instead show a departure from the C-

rate prediction of state of charge at later times. Possible lithium plating or deposition

on the graphite surface begins growing at a constant rate upon achieving a certain

critical state of charge. The Li here still contributes electrically to the overall circuit

but is not measured in the concentration profiles.

Finally, Figure 2.3 shows how the measured cell voltage Φ̂(t) as the potential

between current collectors evolves throughout the experiment. Similarly, the same

experiment but with a slower C-rate of C/100 produces a measurable cell voltage

that can be used as an approximation of the open-circuit voltage (OCV), where the

current is close to zero. Like is done in solid-state variants of the electrode models,

better thermodynamic agreement with experiment is done by using this OCV in the

reaction driving force. The focus in the following chapters will be to develop the

mathematical and computational framework to simulate approximations of the C/44

experimental concentration and voltage profiles.

12
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Figure 2.1: Experimentally obtained concentration profiles ĉs(x, tk) of lithium in
solid-phase electrode as functions of spatial coordinate x at time levels

tk = 2.5, 5, . . . , 25 h. Concentrations are normalized by the total Li site capacity to
be represented by a filling fraction. The dashed vertical line demarcates the 200 µm

long separator from the 300 µm long electrode.
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Figure 2.2: Time dependence of the total amount of lithium ∆x
∑
ĉs(x, tk) in

solid-phase electrode normalized by the total Li site capacity as a filling fraction for
the experimental data is the red line with markers. The green line represents the
state of charge as calculated directly from the C/44 charge rate. The difference
between these two is the black line to demonstrate possible existence of a side

reaction diverting lithium to an SEI layer.
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Figure 2.3: Comparison of experimentally obtained voltage profiles as functions of
filling fraction at two different C-rates. The C/44 curve in red was collected along

with MRI measurements while the C/100 in black demonstrates the distinct voltage
plateaus expected in near open-circuit conditions.
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Chapter 3

Mathematical Models

In this chapter, the mathematical framework for a multi-scale battery model is es-

tablished using nonequilibrium thermodynamics to obtain equations for the Li-ion

transport processes. First, the well known Newman model is discussed which serves

to couple dynamics in the macroscopic liquid electrolyte to those in the microscopic

solid electrode particles. The electrode model is then expanded using the Cahn-

Hilliard formulation to capture the effects of phase separation in layered graphite

material. Finally, an extension to the Cahn-Hilliard model will allow for multiple

phases and higher staging within solid particles through the use of a periodic bilayer

model.

3.1 Newman’s Model

Consider the physical battery model as illustrated in Figure 3.1. On either end of

a narrow container are two copper current collectors connected by a circuit allowing

galvanostatic electron flow from left to right while measuring the cell voltage found
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Figure 3.1: Battery schematic with overlayed MRI and simulation data.

later in (3.1.81). The counter electrode is displayed as a thin gray lithium metal

from which Li+ is stripped and transported away. Ions move through the electrolyte

which permeates both separator and electrode. The full electrode to be modeled

is approximated using graphite spheres of radii a which undergo lithiation as time

progresses. The concentration of lithium within the particles is demonstrated using
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a heatmap at a late time. Strong phase separation shown here produces a dilute

graphite core distinct from the concentrated graphite shell. The bottom part of the

schematic depicts this model data in the pseudo two-dimensional domain (x, r) which

accounts for the full electrode volume given particles here are spherically symmetric.

The total amount of lithium in each particle over the battery length x as comparable

to experimental measurement is given as a bar graph at the top of the schematic.

In the sections to follow, names are assigned to the open spatial domains of the

pseudo two-dimensional system to simplify notation. The dynamics on the macro-

scopic scale occur over the battery length x on the order of hundreds of µm while the

microscopic dynamics of the electrode occur over the particle radius r on the order

of 10 µm. The x coordinate is defined in the following regions,

x = 0, current collector/counter electrode, (3.1.1a)

x ∈ L := (0, Ls + Lc), battery cell, (3.1.1b)

x = Ls + Lc, current collector, (3.1.1c)

where Ls is the length of separator and Lc is the length of solid electrode. Electrolyte

is present in the entire battery domain L which can be segmented into a separator

domain Ls and an electrode domain Lc,

x ∈ Ls := (0, Ls), separator, (3.1.2a)

x = Ls, separator/electrode interface, (3.1.2b)

x ∈ Lc := (Ls, Ls + Lc), graphite electrode, (3.1.2c)

such that L = Ls ∪ Ls ∪ Lc. For the spherical solid electrode particles with x ∈ Lc,
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the following values are possible in the radial coordinate r,

r = 0, particle center, (3.1.3a)

r ∈ R := (0, a), interior volume, (3.1.3b)

r = a, particle surface, (3.1.3c)

Finally, equations will be evolved in time t over the temporal domain T ,

t = 0, initial time, (3.1.4a)

t ∈ T := (0, tf ], experiment duration, (3.1.4b)

where tf is the final time. For generality, vector notation is used in the following

sections. Specializing then to the pseudo two-dimensional x-r domain in the sum-

mary Section 3.3 will take advantage of the disparities in length scales in spherical

graphite particles and the orthogonal battery coordinates. Initial conditions will also

be specified there.

3.1.1 Electrolyte Model

Consider the electrolyte mixture of a dissociating salt and solvent from the experimen-

tal description in Chapter 2. The cation and anion concentrations cl,± are assigned to

components of the binary salt while the solvent has a neutral species concentration

cl,0. The thermodynamic treatment of transport in Latz and Zausch [14] reduces the

three component system to just one by imposing two constraints. Assuming there is

no heat transfer from bulk fluid transport as convection, any volume element has a
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center of mass at rest,

M0dcl,0 +M+dcl,+ +M−dcl,− = 0. (3.1.5)

Here, dcl,j is an infinitesimal change in concentration and Mj are molar masses of

each component j = 0,±.

The second assumption of local electroneutrality is also detailed in Latz and

Zausch [14] where they assert the electric field would need to be much larger than

those present to induce charge separation on the µm scale that the electrolyte is

modeled. On such length scales, it is a reasonable approximation the charge density

vanishes ρe ≈ 0. It is noted that the approximation breaks down at the neglected

double layer surrounding solid particles on the scale of 10−20 nm, though the present

theory is restricted to scales greater than 100 nm. For a binary electrolyte in a Li-ion

battery, charge neutrality is expressed as,

e(ν+z+cl,+ + ν−z−cl,−) = 0, (3.1.6)

where the cation/anion dissociation numbers ν± = 1 represent the degree each com-

ponent participates in a reaction. The charge numbers or valences z± = ±1 quantify

the amount of charge for each component in increments of the electron charge e. The

electrolyte Li concentration is then chosen as cl with (3.1.6) giving,

cl(x, t) =
cl,−
ν−

=
cl,+
ν+

, t ∈ T x ∈ L. (3.1.7)

The model equations that govern the evolution of lithium transport in the electrolyte
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are then obtained by imposing conservation laws on species, charge, and energy.

3.1.1.1 Thermodynamic Potentials & Conservation Equations

The first law of thermodynamics is stated by Carter [4] to equate the increase in

internal energy dU to the configurational work done on the system d̄Wc, plus the heat

flow into the system d̄Q = TdS where S is entropy and T is temperature. Changing

now to the corresponding molar densities u, s, w, internal energy also increases from

chemical reactions through added matter dcl,j with chemical potentials µl,j for species

j = 0,±,

du = Tds+ µl,+dcl,− + µl,−dcl,− + µl,0dcl +d̄w. (3.1.8)

Given the system in question is isochoric, the configurational work excludes pressure

and volume as PdV = 0. Instead, Carter [4] gives intensive variables electric field

E and magnetic field H with corresponding extensive variables polarization P and

magnetization M in determining the work d̄w = E · dP + H · dM. Now, the electric

displacement D can be used in equation for polarization P = D − ε0E where ε0 is

the permittivity of free space. Similarly, the magnetic induction B can be used in

equation for magnetization M = B−µ0H where µ0 is the permeability of free space.

Since E · dE = 0 and H · dH = 0, the fundamental thermodynamic relation can be

written as that found in Latz and Zausch [14],

du = Tds+ µldcl + E · dD + H · dB. (3.1.9)
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Here, a combined chemical potential is found using (3.1.5) and (3.1.7),

µl = µl,+ + µl,− −
M− +M+

M0

µl,0. (3.1.10)

In the treatment by Latz and Zausch [14], a Maxwell equation is written as

E · ∂D

∂t
+ H · ∂B

∂t
= −∇ · (E×H)− il · E, (3.1.11)

such that substitution into the rate of change of internal energy (3.1.9) gives,

∂u

∂t
= T

∂s

∂t
+ µl

∂cl
∂t
−∇ · (E×H)− il · E, x ∈ L, t ∈ T . (3.1.12)

Here, il is the electrolyte current density.

Conservation laws can be expressed in a stronger form as a local continuity equa-

tion that describes the transport of some quantity. Following Smith and Bazant [22],

the differential forms of the continuity equations for the conservation of species are

expressed as

ε(x)
∂cl,−
∂t

= −∇ · Fl,−, x ∈ L, t ∈ T , (3.1.13a)

ε(x)
∂cl,+
∂t

= −∇ · Fl,+ +
RV

ν+

, x ∈ L, t ∈ T , (3.1.13b)

where the reaction rate RV = RV,+ for cations is later determined in (3.1.88a). The

electrolyte species fluxes Fl,± require that only one be simulated and the other post-

calculated using (3.1.7). Hence, it is better to use an effective flux Fl = Fl,− as the

anion flux where the volumetric source/sink term is RV,− = 0 since only cations are

reacting at the electrode surfaces. Note that concentration is defined per unit volume
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of electrolyte while flux is per unit area of porous medium as a whole. Accordingly,

the porosity ε(x) is the electrolyte liquid fraction of the total volume with dependence

on x specifying a different constant value for separator Ls and electrode Lc,

ε(x) :=


εl,s, x ∈ Ls,

εl, x ∈ Lc.
(3.1.14)

The compliment (1 − εl) for x ∈ Lc is the volume fraction occupied by the active

material in the solid electrode.

The current density il depends on both anion and cation fluxes, weighted by the

amount of charge they carry,

il = z−eFl,− + z+eFl,+. (3.1.15)

Consider now the charge density with the result of local electroneutrality (3.1.7),

ρe = z+ecl,+ + z−ecl,− = 0. (3.1.16)

Taking the divergence of electrolyte current density (3.1.15) and substituting conser-

vation of species equations (3.1.13) then gives the continuity equation for conservation

of charge,

−∇ · il + z+eRV = ε(x)
∂ρe
∂t

= 0, x ∈ L, t ∈ T . (3.1.17)

The reference Latz and Zausch [14] proceeds to suggest an additional continuity
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equation as a local conservation law for entropy,

∂s

∂t
= −∇ ·

(q

T

)
+
R

T
, x ∈ L, t ∈ T , (3.1.18)

where q is heat flux and R is the rate of entropy production. The conservation of

total energy in the system gives a further constraint in that the local change in energy

must also satisfy a continuity equation for energy flux Je with no source/sink terms,

∂u

∂t
= −∇ · Je, x ∈ L, t ∈ T . (3.1.19)

Substitution of (3.1.13a), (3.1.18), and (3.1.19) into (3.1.12) yields the expression,

−∇ · Je = −∇ ·
(

q + µl
Fl

ν−
+ E×H

)
+R + Fl ·∇µl − il · E, (3.1.20)

Here, note the product rule was used to write µl∇ · Fl = ∇ · (µlFl)− Fl ·∇µl.

The absence of a sink/source term in (3.1.19) constrains all the terms not under

the divergence ∇ · . . . in (3.1.20) to sum to zero. The entropy production R is then

found such that it negates the other terms. Simplified from that in Latz and Zausch

[14],

R = −Fl ·∇µl + il · E. (3.1.21)

Here, the model is reduced as in Smith and Bazant [22] to be isothermal such that

there is no heat flux q = 0 and no temperature gradient ∇T = 0. Constitutive

relations are then needed for independent thermodynamic fluxes Fl and il. The

general expressions for fluxes can be written as linear combinations of the forces ∇µl

and E. Here, note the electric field is conservative ∇×E = 0 and able to be written
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as E = −∇φl, where φl is the electrolyte electric potential. In such a case, the

Onsager’s reciprocal relations can be written in matrix form using the constitutive

relations, Fl

il

 =

L11 L12

L21 L22


∇µl

∇φl

 . (3.1.22)

The second law of thermodynamics constrains the total entropy production R in

(3.1.21) to be zero or positive. As such, the associated Onsager’s coefficient matrix

must then be symmetric L12 = L21 and positive semidefinite L11L22 − L12L21 ≥ 0.

Since the chemical potential µl is hard to measure, Latz and Zausch [14] also gives

(3.1.21) using cl as an independent variable instead of µl through the chain rule,

R = −∂µl
∂cl

Fl ·∇cl + il · E. (3.1.23)

The alternate form of Onsager’s reciprocal relations is similarly,


∂µl
∂cl

Fl

il

 =


(
∂µl
∂cl

)2

L11
∂µl
∂cl

L12

∂µl
∂cl

L21 L22


∇cl

∇φl

 , (3.1.24)

Finally, the more standard presentation of equations is

Fl =
∂µl
∂cl

L11∇cl + L12∇φl, x ∈ L (3.1.25a)

n · Fl = 0, x = 0, x = Ls + Lc, (3.1.25b)
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and,

il =
∂µl
∂cl

L21∇cl + L22∇φl, x ∈ L (3.1.26a)

n · il = icell, x = 0, (3.1.26b)

n · il = 0, x = Ls + Lc, (3.1.26c)

where t ∈ T and n is the unit normal vector at the impermeable current collectors.

The boundary condition at the counter electrode (3.1.26b) is detailed in (3.1.77) in

terms of its Butler-Volmer kinetics for a thin Li metal foil. Opposite the separator,

current through the full graphite electrode x ∈ Lc completing the galvanostatic circuit

is instead found later in (3.1.86) as the sum of charge from lithium reduced in the solid

particle surface reactions. The current collector in (3.1.26c) is electrically connected to

the conductive active material in the graphite electrode and has no electrolyte current

contribution, as is the case for flux boundary conditions (3.1.25b). The electrolyte

model is then defined by (3.1.25) and (3.1.26) with conservation equations (3.1.13a)

and (3.1.17).

3.1.1.2 Nernst-Planck Dilute Solution

In the discussion on linear irreversible thermodynamics (LIT) of diffusion in Bazant

[2], the diagonal Onsager coefficient L11 is given in terms of an anion mobility M−

as L11 = M−ν−cl. Mobility is then further tied to diffusivity using the Einstein

relation D− = M−kBT where kB is the Boltzmann constant and T is the temperature.

Applying the same approach to current density il expressed in terms of fluxes in
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(3.1.15), the off-diagonal term is accordingly,

L21 = cl
ν−z−eD− + ν+z+eD+

kBT
. (3.1.27)

Fick’s first law of diffusion gives coefficients D± to be the constants of proportionality

between the fluxes Fl,± and the gradients of concentrations ∇cl,±. The current density

from (3.1.15) as a net sum of fluxes is the Fickian relation −(ν−z−D−+ν+z+D+)e∇cl.

From the Onsager coefficient matrix (3.1.24) with substitution of (3.1.27), comparison

of the ∇cl term gives,

−(ν−z−D− + ν+z+D+)e =
∂µNP

l

∂cl

(
−ν−z−D− + ν+z+D+

kBT
ecl

)
, (3.1.28)

which further reduces to,

∂µNP
l

∂cl
=
kBT

cl
. (3.1.29)

Satisfying such an equality is the Nernst-Planck expression for electrolyte chemical

potential,

µNP
l = kBT ln

(
ν−

cl
cl,ref

)
, x ∈ L, t ∈ T , (3.1.30)

where the reference cl,ref is the initial lithium concentration in the electrolyte.

Imposing symmetry of the Onsager’s matrix L21 = L12, flux in (3.1.25a) can then

be expressed,

FNP
l = − ε

τ
cl

(
ν−D−
kBT

∇µl +
ν−z−D− + ν+z+D+

kBT
e∇φl

)
. (3.1.31)

Important to note is the inclusion tortuosity τ as a function of porosity ε which is
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commonly that of the Bruggeman relation τ = ε−1/2. Flux from (3.1.31) can then be

expressed as,

FNP
l = − ε

τ

(
ν−D−∇cl +

ν−z−D− + ν+z+D+

kBT
ecl∇φl

)
, (3.1.32)

where the simplification cl∇ ln (ν±cl/cl,ref) = ∇cl results from the gradient of (3.1.30).

Similarly, current density from (3.1.24) is expressed as,

iNP
l = − ε

τ

(
[ν−z−D− + ν+z+D+]e∇cl + σNP

l cl∇φl
)
, (3.1.33)

where the electrolyte conductivity comes from L22 = σNP
l cl.

Consider a simplified case of (3.1.32) such that electrolyte flux for anions has no

electromagnetic influence from cations, valid in the limit of a dilute solution. Now in

the form presented in Smith and Bazant [22], the Nernst-Planck flux is,

FNP
l = − ε

τ
ν−

(
D−∇cl +

D−z−e

kBT
cl∇φl

)
. (3.1.34)

Conversely, it follows that the cation flux in the absence of anion interaction is

FNP
l,+ = − ε

τ
ν+

(
D+∇cl +

D+z+e

kBT
cl∇φl

)
. (3.1.35)

It is useful to express the diffusional electrochemical potential of the oxidized state

as,

µNP
O = kBT ln

(
ν+

cl
cl,ref

)
+ z+eφl, (3.1.36)
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where the cation flux could simplify to,

FNP
l,+ = − ε

τ
ν+

D+

kBT
cl∇µNP

O , x ∈ L, t ∈ T . (3.1.37)

The new expression for current density is obtained by substituting fluxes into (3.1.15)

as,

iNP
l = − ε

τ

(
(ν−z−D− + ν+z+D+)e∇cl +

ν−z
2
−D− + ν+z

2
+D+

kBT
e2cl∇φl

)
. (3.1.38)

Note that in this case, (3.1.33) is compared to determine the form of electrolyte

conductivity σNP
l ,

σNP
l =

ν−z
2
−D− + ν+z

2
+D+

kBT
e2, x ∈ L, t ∈ T . (3.1.39)

The Nernst-Plank dilute electrolyte model is then defined by (3.1.37) and (3.1.38)

with conservation equations (3.1.13a) and (3.1.17).

3.1.1.3 Stefan-Maxwell Concentrated Solution

It is often the case that elements of flux corresponding to cross electromagnetic effects

between anions and cations play a significant role in more concentrated solutions. The

equations are tractable for a binary electrolyte but can be difficult when presented

with a many component system. The approach taken by Newman and Thomas-Alyea

[17] reformulates the diffusion equation in terms of species velocities vj for j = 0,±,

cl,j∇µl,j =
∑
k

Kjk(vk − vj) = kBT
∑
k

cl,jcl,k
cl,TDjk

(vk − vj). (3.1.40)
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Here, drag coefficients Kjk = Kkj are functions of species concentrations, correspond-

ing diffusion coefficients Djk, and total concentration cl,T =
∑

j cl,j for j = 0,±. It is

now useful to express a net diffusion coefficient of the electrolyte D as

D =
D0+D0−(z+ − z−)

z+D0+ − z−D0−
. (3.1.41)

The transference numbers t0± are the fraction of total electrical current carried by

each individual species,

t0+ = 1− t0− =
z+D0+

z+D0+ − z−D0−
. (3.1.42)

Rearranging ± cation/anion diffusion equations (3.1.40) and using a combined chem-

ical potential,

µl,e = ν+µl,+ + ν−µl,−, (3.1.43)

it is then possible to recover the fluxes Fl,± = cl,±v±,

FSM
l = − ε

τ

D
kBT

ν−
ν
cl∇µl,e +

1− t0+
z−e

iSM
l , (3.1.44)

where the term with current density iSM
l uses its definition in terms of fluxes (3.1.15)

and the combined dissociation number ν = ν+ +ν−. Similarly, the cation flux is given

as

FSM
l,+ = − ε

τ

D
kBT

ν+

ν
cl∇µl,e +

t0+
z+e

iSM
l . (3.1.45)

The solvent here is assumed to vary negligibly with salt concentration and is used as

the frame of reference such that v0 = 0. Note that the constituitive relations for fluxes

have cross interaction terms with thermodyanamic driving forces from gradients in

30



M.Sc. Thesis – A. Mitchell McMaster University – CSE

the chemical potential of other species. The reference Newman and Thomas-Alyea

[17] proceeds to substitute the fluxes (3.1.44) and (3.1.45) into the diffusion equation

(3.1.40) to obtain,

1

z−
∇µl,− = − e

σSM
l

iSM
l −

t0+
z+ν+

∇µl,e. (3.1.46)

Here, the conductivity σSM
l was defined as

σSM
l = −cl,T z+z−e

2

kBT

(
cl,+D+−D0−

cl,+D0− + cl,0t0−D+−

)
. (3.1.47)

Consider now the treatment in Newman and Thomas-Alyea [17] where the equi-

librium electrode reaction equation gives potentials that follow from thermodynamic

principles as,

s−∇µl,− + s+∇µl,+ + s0∇µl,0 = −ne∇φl, (3.1.48)

where sj are stoichiometric coefficients and n is the number of electrons transferred

in the reaction. Recall that electroneutrality gives a charge density (3.1.16) of zero,

allowing for the first two terms of (3.1.48) to be modified as,

s−∇µl,− + s+∇µl,+ = s−∇µl,− + s+

[
∇µl,+ +

(
ν−
ν+

+
z+

z−

)
∇µl,−

]
. (3.1.49)

The relation s+z+ + s−z− = −n and a substitution of µl,e from (3.1.43) to eliminate

µl,+ then gives that found in Newman and Thomas-Alyea [17],

s−∇µl,− + s+∇µl,+ =
s+

ν+

∇µl,e −
n

z−
∇µl,−. (3.1.50)

At this point, the remaining term ∇µl,0 in (3.1.48) can be expressed in terms of the

other variables by noting that not all chemical potentials are independent and must
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satisfy the Gibbs-Duhem equation,

cl,−∇µl,− + cl,+∇µl,+ + cl,0∇µl,0 = 0. (3.1.51)

Applying then the relation between concentrations (3.1.7),

∇µl,0 = − cl
cl,0

(ν−∇µl,− + ν+∇µl,+) = − cl
cl,0

∇µl,e. (3.1.52)

The above, along with the substitution of (3.1.50) then allows for the potentials in

(3.1.48) to be expressed as,

−e∇φl =

(
s+

nν+

− s0cl
ncl,0

)
∇µl,e −

1

z−
∇µl,−. (3.1.53)

Using (3.1.46) to eliminate µl,− in (3.1.53), the particular form of electrolyte current

density il is finally found to be,

iSM
l = − ε

τ
σSM
l

(
∇φl +

1

e

(
s+

nν+

+
t0+
ν+z+

− s0cl
ncl,0

)
∇µl,e

)
. (3.1.54)

As was the case in (3.1.30), the chemical potential in (3.1.43) is able to be ex-

pressed as,

µl,e = kBT

[
ν+ ln

(
ν+

cl
cl,ref

)
+ ν− ln

(
ν−

cl
cl,ref

)]
, x ∈ L, t ∈ T . (3.1.55)

The standard form of equations as presented in Smith and Bazant [22] substitutes
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the above in fluxes (3.1.44) and (3.1.45) as,

FSM
l = − ε

τ
Dν−∇cl +

1− t0+
z−e

iSM
l , x ∈ L, t ∈ T , (3.1.56)

and,

FSM
l,+ = − ε

τ
Dν+∇cl +

t0+
z+e

iSM
l , x ∈ L, t ∈ T . (3.1.57)

The current density (3.1.54) is similarly expressed as,

iSM
l = − ε

τ
σSM
l

(
∇φl + ν

kBT

e

(
s+

nν+

+
t0+
ν+z+

− s0cl
ncl,0

)
∇cl
cl

)
. (3.1.58)

Though left in the general form, note that in a Li-ion battery, s+ = −1 and s− = s0 =

0 allows for further simplification. In Smith and Bazant [22] for the Stefan-Maxwell

model, the diffusional electrochemical potential of the oxidized state is given by only

the electric potential in the electrolyte,

µSM
O = z+eφl. (3.1.59)

The replacement of a constant diffusivity with that having concentration depen-

dance is able to better match experimental data. The functional dependance on

electrolyte concentration and temperature is originally given in Valøen and Reimers

[25] where coefficients were fit to results from experiment for LiPF6. Under constant

temperature conditions, this appears as

D(cl) = D0 exp

(
b
cl
cl,ref

)
, (3.1.60)
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where D0 is the electrolyte dimensional diffusivity prefactor. Again following the

functional form with experimentally fit coefficients a0, a1, a2 from Valøen and Reimers

[25], the ionic conductivity for constant temperature is

σSM
l (cl) = σ0

cl
cl,ref

[
a0 + a1

cl
cl,ref

+ a2

(
cl
cl,ref

)2
]2

, (3.1.61)

where σ0 is the dimensional conductivity prefactor. The Stefan-Maxwell concentrated

electrolyte model is then defined by (3.1.56) and (3.1.58) with conservation equations

(3.1.13a) and (3.1.17).

3.1.2 Reaction Rates

Lithium ions intercalate into the solid electrode by reacting with available sites (va-

cancies) at the surface of the particle in contact with electrolyte liquid. In doing so,

the ions accept an electron as per the chemical equation,

Li+ + e− + θs � Li− θs, (3.1.62)

where θs denotes a lattice site in the solid-phase electrode particle.

3.1.2.1 Butler-Volmer Reaction

The kinetics of the reaction can be described using the Butler-Volmer formulation

which expresses a dependence of the interfacial reaction rate on the reaction driving

force, or activation overpotential ηs. For equivalent anodic and cathodic transfer

coefficients αa = αc = 1/2, the net reduction current i differs from the reaction rate

needed for (3.1.72) and (3.2.24c) by electron charge e. The Arrhenius type equation
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gives net reduction current at the surface of graphite particles as,

i = i0

[
exp

(
−eηs
2kBT

)
− exp

(
eηs

2kBT

)]
. (3.1.63)

In general, the exchange current density i0 has functional dependance on the

activity coefficients of the species. In Smith and Bazant [22], inclusion of the transition

state activity coefficient is able to make predictions on structure such as a decline in

reaction rate as lattice sites become populated. Also diminishing reaction rates are

collapsing empty layers accepting less lithium ions at low filling fractions. Following

the particular formulation of Fuller et al. [10], activity coefficients are taken to be

equal to species concentrations in the expression for exchange current density,

i0 = k0

(
cl
cl,ref

)1/2(
1− cs

cs,max

)1/2(
cs

cs,max

)1/2

, (3.1.64)

where k0 is the exchange rate constant. The concentration at the surface of the

solid particle is denoted as cs(x, r = a; t). Note however the use of corresponding

nondimensional composition c̃s := cs/cs,max such that dimensionality of reduction

current i, exchange current i0, and the exchange rate constant k0 are equivalent. The

form chosen for (3.1.64) is such that the net reduction current is maximized when the

surface concentration is nearest to half-full.

The surface overpotential as the reaction driving force for (3.1.63) is given in

Smith and Bazant [22] as the difference between the electrochemical potential of the

reduced state µR and the combined electrochemical potential of the oxidized state µO
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with the electrochemical potential of electrons µe,

eηs = µR − (µO + µe), x ∈ Lc, r = a, t ∈ T . (3.1.65)

The electrochemical potential of the reduced state µR = µ(x, r = a; t) − EΘ is the

chemical potential at the surface of the solid-phase electrode particle from (3.2.23)

differenced from a reference energy. The electrochemical potential of electrons is

related to the solid electric potential by µe = −eφs(x, t) giving the general expression

for surface overpotential,

ηs =
µ

e
− EΘ −

(µO
e
− φs

)
, x ∈ Lc, r = a, t ∈ T . (3.1.66)

Substitution of the diffusional electrochemical potential of the oxidized state for a

Nernst-Planck dilute electrolyte solution (3.1.36) gives the result,

ηNP
s =

µ

e
−EΘ−

kBT

e
ln

(
ν+

cl
cl,ref

)
−z+φl+φs, x ∈ Lc, r = a, t ∈ T . (3.1.67)

The Stefan-Maxwell formulation with µSM
O from (3.1.59) then gives,

ηSM
s =

µ

e
− EΘ − z+φl + φs, x ∈ Lc, r = a, t ∈ T . (3.1.68)

Newman and Thomas-Alyea [17] descibe the surface overpotential ηs as being the

difference in electric potential between the electrode and electrolyte, minus the open-

circuit potential Veq. This description is consistent with how Smith et al. [23] gives
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the near equilibrium Nernstian OCV,

Veq = EΘ −
µ0

e
, x ∈ Lc, r = a, t ∈ T , (3.1.69)

where µ0 = ∂g0/∂cs is the homogenous chemical potential seen later as the first

term in the variational derivative of free energy (3.2.23). In Morales Escalante et al.

[15], the open-circuit voltage Veq is substituted with the cell voltage from the same

experiment at a much slower charge rate of (C/100) seen earlier in Figure 2.3. An

approximation of the OCV as a function of the surface filling fraction is introduced

as Ueq. The surface overpotential (3.1.68) can then be rewritten using (3.1.69) in

(3.2.23) as,

ηs = −Ueq(c̃s)− κ∇2c̃s − z+φl + φs, x ∈ Lc, r = a, t ∈ T . (3.1.70)

Note that the nonhomogeneous term −κ∇2c̃s does not appear in Morales Escalante

et al. [15] though is found to have a negligible effect on results. In such a case where

an analytical expression is required, Safari and Delacourt [21] suggests the OCV form

for graphite,

Ueq(c̃s) = b0,1 + b1,1 exp (b1,2c̃s) +
8∑
j=2

bj,1 tanh

(
c̃s + bj,2
bj,3

)
,

x ∈ Lc, r = a, t ∈ T ,

(3.1.71)

where extra terms were added to the summation to account for the particular voltage

plateaus here. The coefficients are able to be fit to the experimental C-100 cell voltage

data to minimize the absolute difference between the two as done in Appendix C and
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shown in Table C.1. The full expression for the net reduction current (3.1.63) can

then be used as boundary conditions for flux out of the electrolyte and into the solid

particle.

3.1.2.2 SEI Layer

In practice, loss of charge capacity is common in the form of lithium plating or

dendrite formation known as the solid-electrolyte interphase (SEI) layer on the surface

of the graphite electrode particles. Consider again the experimentally obtained total

intercalated lithium amount integrated over the solid electrode volume as a function

of time shown in Figure 2.2. The deflection in the rate of intercalation beginning near

10 h is illustrated by the upwards trending line representing the difference from the

idealized C-44 charge rate. This departure is an indication that a significant amount of

lithium being reacted as per the galvanostatic constant current does not end up being

intercalated into active material volume. Without accounting for the nonzero side

reaction, significant overestimation of solid electrode lithium concentrations would

occur at later times during simulation.

Modifications to the model with varying degrees of complexity can be made to

address the formation of the SEI layer. In the present state of the simulation software

MPET, Smith and Bazant [22] mentions that predicting battery aging and capacity fade

are left to future extensions. However, an optional specification of film resistance on

surfaces with Butler-Volmer reaction kinetics could give an effective overpotential that

modifies (3.1.66) and (3.1.78) through Ohm’s law. In this work, film resistances are

neglected in favor of an ad-hoc modification that does well to empirically capture the

effects observed in Figure 2.2. Alternatively, the work by Arora [1] may be considered
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as they take a more physical approach to implementing capacity fade and explore the

phenomenon in depth.

Assuming that the rate of Li+ ions leaving the electrolyte and being reduced at the

surface is that of the unaltered Butler-Volmer reaction, a new variable ω is introduced

in Morales Escalante et al. [15] to represent the fraction of lithium that is actually

intercalated into the solid active material. The compliment 1−ω then represents the

remaining fraction of lithium that undergoes the side reaction into a new phase on

the surface of the particle, denoted with concentration cside. The SEI layer formed

is reasonably assumed to be sufficiently thin such that volumetric effects can be ne-

glected with cside being dimensionally consistent with averaged particle concentration

c̄s.

The growth rate of side reaction concentration is the fraction 1 − ω of the net

reduction current i from (3.1.63) that does not enter the solid particle surface in the

boundary condition (3.2.24c),

∂cside

∂t
=
Ap
Vp

(1− ω)
i

e
, x ∈ Lc, r = a, t ∈ T . (3.1.72)

The ratio of surface area to volume of the particle takes a surface to volumetric density

and is given in terms of the particle radius a as

Vp =
4

3
πa3, Ap = 4πa2,

Ap
Vp

=
3

a
. (3.1.73)

The functional form of ω is then chosen by Morales Escalante et al. [15] as

ω(cs) = tanh

(
γ

[
1− cs

cs,max

])
, x ∈ Lc, r = a, t ∈ T , (3.1.74)
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such that at early times when the surface concentration in the particle is low, the SEI

layer undergoes minimal growth in (3.1.72). The parameter γ controls the sharpness

of the step down characteristic of a hyperbolic tangent function. In the case of strong

phase-separation, going from low to high filling fractions happens rapidly. Interme-

diate surfacial concentrations at the elbow in the hyperbolic tangent are passed over

briefly to the effect of a sudden change in slope of total intercalated lithium in Figure

2.2 resembling a piecewise linear deflection.

3.1.2.3 Counter Electrode

In Chapter 2, the counter electrode is described only as metallic lithium on a current

collector. Note here the departure from Morales Escalante et al. [15] which uses an

electrolyte reservoir at x = 0 held at the initial concentration cl,ref. Instead, for

counter electrodes with no volume, Smith and Bazant [22] account for an infinitely

thin Li-foil by assuming Butler-Volmer kinetics apply at the Li metal attached to

the current collector x = 0. Analogous to (3.1.64), the Arrhenius reaction gives the

exchange current density as,

i0,wall = k0,foil

√
cl
cl,ref

, (3.1.75)

where k0,foil is the foil rate constant. The cell current boundary condition from

(3.1.26b) constrains the dependence on overpotential to satisfy counter electrode cur-

rent density,

icell = −i0,wall

[
exp

(
− eηwall

2kBT

)
− exp

(
eηwall

2kBT

)]
, x = 0, t ∈ T . (3.1.76)
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This is rewritten using trigonometric identities as,

icell = −2i0,wall sinh

(
eηwall

2kBT

)
, x = 0, t ∈ T . (3.1.77)

The overpotential at the surface of the counter electrode can then be solved for in

terms of icell as,

ηwall =
2kBT

e
arcsinh

(
− icell

2i0,wall

)
, x = 0, t ∈ T . (3.1.78)

The overall cell voltage is defined by Smith and Bazant [22] as the difference in

electrochemical potential between current collectors. Using the x = Ls +Lc collector

in the graphite electrode as reference of zero, the overpotential at the counter electrode

in (3.1.78) is analogous to (3.1.65) as being the difference between the electrochemical

potential of the reduced state and the oxidized state at x = 0. At the counter

electrode, µR = 0 giving the expression

ηwall = −µO
e
− µe

e
, x = 0, t ∈ T . (3.1.79)

Substituting in the dilute Nernst-Planck chemical potential from (3.1.36) for the

oxidized state, solving for the cell potential φcell = −µe/e gives,

φNP
cell = ηwall +

kBT

e
ln

(
ν+

cl
cl,ref

)
+ z+φl, x = 0, t ∈ T . (3.1.80)

Conversely for the Stefan-Maxwell formulation like in (3.1.68),

φSM
cell = ηwall + z+φl, x = 0, t ∈ T . (3.1.81)
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These are then able to be compared to the experimentally collected data in Figure

2.3 for the voltage fitting optimization later in (4.2.1).

3.1.2.4 Solid Electrode Current

Ohm’s law is applied in Smith and Bazant [22] using an electrode conductivity σs to

relate the solid electrode current density is and solid electric potential φs,

is = −(1− ε)
τs

σs∇φs, x ∈ Lc, t ∈ T , (3.1.82a)

n · is = 0, x = Ls, t ∈ T , (3.1.82b)

n · is = icell, x = Ls + Lc, t ∈ T , (3.1.82c)

where for the solid, tortuosity is again given by the Bruggeman relation τs = (1 −

ε)−1/2. The boundary condition (3.1.82b) exists at the interface of the electrically

insulating separator.

Similar as to imposing conservation of charge on the electrolyte in (3.1.17), the

electrode as per Smith and Bazant [22] is also constrained to follow conservation of

charge with local electroneutrality,

−∇ · is − z+eRV = 0, x ∈ Lc, t ∈ T . (3.1.83)

Here, the divergence of solid phase current density is has a volumetric sink/source

term RV term equal and opposite to that in the analogous electrolyte equation

(3.1.17).

The total macroscopic current I is equal to the current density n · is integrated

over the surface of all particles in the length of the electrode. Consider now the
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divergence theorem,

∫
Ap

n · is dA =

∫
Vp

∇ · is dV, x ∈ Lc, t ∈ T , (3.1.84)

where the volume integral of the divergence of current density gives the surface inte-

gral of current into the particle n · is. The expression for total current using (3.1.84)

and expanding the volume integral is then,

I =

∫ Ls+Lc

Ls

∫
Ap

∇ · is dAdx, t ∈ T . (3.1.85)

Using the conservation of charge equation (3.1.83) then allows current to be expressed

in terms of the volume-averaged reaction rate RV as given in (3.1.88a). The interior

integral is constant and simplifies as the surface area Ap. Dividing area out of the

total current as icell = I/Ap, the final form of the galvanostatic constraint is expressed

as the total cell current density per unit cross-sectional area,

icell =

∫ Ls+Lc

Ls

z+eRV dx, t ∈ T . (3.1.86)

For a galvanostatic experiment with a charge rate of Cr = 1/44 hours to obtain the

maximum concentration cs,max in the absence of the SEI layer, total cell current is

prescribed to be

icell = (1− εl)PLLcecs,max
Cr

3600
t ∈ T , (3.1.87)

where the prefactors serve to account for volume of electrolyte in the porous electrode.

The loading percent of active material is PL = 1 in the absence of an inert conducting

matrix.
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The reaction rate can be defined as per the average solid electrode lithium c̄s

change over time from (3.2.28) in addition to the change in SEI layer cside from

(3.1.72),

RV = −(1− ε)PLVj
(
∂c̄s
∂t

+
∂cside

∂t

)
, x ∈ Lc, t ∈ T , (3.1.88a)

RV = 0, x ∈ Ls, t ∈ T . (3.1.88b)

Each consecutive particle has a fraction of volume Vj = 1 since there are none being

modeled in parallel here in terms of electrolyte access. When multiple particles exist

at each battery position, variation in radii is required to avoid wasted computational

effort by duplicating results.

The model equations for electrolyte transport and reaction rates can now be pre-

sented as the Newman model. It is used to simulate dynamics on the macroscopic

scale with volume-averaged sink/source terms representing electrode particles. A

simplified variant of the model uses a homogenized, solid-state electrode with ther-

modynamics account for by using only a fit OCV to determine the amount of lithium

leaving the electrolyte. In the following sections, the interior microscopic dynam-

ics are also addressed and subsequently volume-averaged to capture the staging or

phase-separation known to occur in graphite.

3.2 Phase-Separating Electrode Model

Consider now the microscopic scale dynamics modeled within the particles r ∈ R.

The boundary conditions explored in Section 3.1.2.1 serve to couple the macroscopic
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electrolyte dynamics to volume-averaged quantities here. Many of the same ther-

modynamic arguments found in Section 3.1.1 can be made again in the context of

lithiated solid graphite particles to find the inward flux of intercalated ions. The

dynamics in the solid evolves for any given Li concentration cs to minimize the Gibbs

free energy. Typical diffusion treatments are characterized by parabolic free energies

with just one stable minimum. Morales Escalante et al. [15] gives a brief historical

context on staging, the particular arrangements of lithium particles and empty lat-

tice sites. The concept of staging was first explored by Rüdorff and Hofmann [20] to

describe the observed staggering of graphite layers with intercalated components. A

more realistic staging model by Daumas and Herold [5] uses defects to describe the

transition in a sequence of stages as the concentration increases during the intercala-

tion process. In this section, the formulation of a free energy with two or more stable

phases is done through enthalpy and entropy considerations. The later introduction

of the periodic bilayer model captures the higher staging observed in experimental

observations as discussed in Ferguson and Bazant [8].

3.2.1 Cahn-Hilliard Model

The generalized continuum model formulated by Cahn and Hilliard [3] is introduced

as a particular form of free energy such that there are two stable minima and the free

energy can be reduced through phase separation within the binodal region. A smaller

subsection of that as will be discussed is the unstable spinodal region where a ho-

mogenous concentration undergoes spinodal decomposition into two separate phases

of high and low concentration. This phenomenon in the context of electrochemistry

is discussed in depth in Bazant [2] and appears as a “shrinking core”. The interface
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between a high concentration shell and a dilute core moves inward as the particle

becomes fully lithiated.

3.2.1.1 Linear Irreversible Thermodynamics

In the interest of determining the set of equations governing system evolution in

the solid electrode, the phenomenological relations between fluxes and forces must

again be considered as was the case for electrolyte in (3.1.37). The thermodynamic

treatment of transport in Latz and Zausch [14] demonstrates that independent ther-

modynamic fluxes for ionic transport, heat transfer, and current are coupled through

constitutive equations involving driving forces in the form of potential gradients. As

an example, electrical current can occur not only as expected through a electric po-

tential gradient, but also from inhomogeneities in density and temperature. To name

a few cross-interaction responses, the Peltier effect describes heat flow as a result of

voltage difference while the converse Seebeck effect describes electrical current caused

by a temperature difference. Similarly, the direct piezoelectric effect shows electrical

current from mechanical stress with a corresponding reverse piezoelectric effect for

deformation from voltage difference.

The constitutive equations in the linear approximation near equilibrium known as

Onsager’s reciprocal relations are consequences of microscopic reversibility and the

principle of detailed balance. The rate of entropy production is derived in Latz and

Zausch [14] in terms of the phenomenological coefficients of the Onsager matrix us-

ing the fundamental thermodynamic relation and continuity equations. Applying the

second law of thermodynamics for positive entropy production, the Onsager matrix is
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found to be necessarily symmetric such that paired converse effects like mentioned be-

fore have equivalent ratios. Furthermore, entropy growth requires a positive-definite

Onsager matrix such that the heat conductivity, electrical conductivity, and interdif-

fusion coefficient are restricted to positive values.

To begin modeling the diffusion of Li in the solid-phase electrode, it is most sim-

ple to assume a diagonal Onsager’s matrix such that there are no coupled fluxes.

Following the approach outlined in Novick-Cohen and Segel [19], consider the inter-

diffusion in a binary mixture between components A and B. In the context of a

lithiated graphite electrode, the corresponding designations are for vacancies A and

lithium particles B configured on a lattice. Ionic fluxes evolve in accordance with

thermodynamic driving forces in the constitutive relations,

FA = −MAA∇µA −MAB∇µB

FB = −MBA∇µA −MBB∇µB,

(3.2.1)

where components of the mobility tensor M relate gradients in the chemical potentials

µA,B to fluxes FA,B. Since the evolution of lithium particles is of interest, a simplified

coordinate system can be chosen for lithium flux relative to that of vacancies F =

FB − FA. The sum of concentrations of both Li and vacancies is the total amount

the lattice can hold cA + cB = cs,max. This constraint allows vacancy concentration

to be post-calculated with a concentration of lithium in the solid electrode cs = cB =

cs,max − cA.

Still following Novick-Cohen and Segel [19], the isothermal and isobaric Gibbs-

Duhem relationship demonstrates the chemical potentials µA,B are not independent,
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(cs,max − cs)∇µA + cs∇µB = 0. (3.2.2)

Further simplification of the net ionic flux F is now possible as

F = −M∇(µB − µA), (3.2.3)

where the net mobility M is related to the mobility tensor components by

M = (cs,max − cs)(MBB −MAB) + cs(MAA −MBA). (3.2.4)

In an orthorhombic crystal lattice, the mobility tensor is diagonal such that the

off-diagonal components are MAB = MBA = 0, but is generally not isotropic. In this

context however, the further assumption of having a cubic crystal is made such that

MAA = MBB = M(cs). The net mobility M in (3.2.4) simplifies to M(cs) and is

furthermore related to the diffusivity D(cs) through the standard Einstein relation

D(cs) = M(cs)kBT with kB being Boltzmann’s constant and T being temperature.

As an aside, the Einstein relation can be obtained through the fluctuation-dissipation

theorem and Green-Kubo relation as per Kubo [12]. An alternative form is the Stokes-

Einstein equation which replaces mobility to demonstrate the inverse proportionality

between the diffusion coefficient and viscosity. The functional dependence of diffu-

sivity on concentration is found in Smith and Bazant [22] and relates to the activity

coefficients of the diffusing state and the diffusing transition state,

M(cs) =
D0

kBT

(
1− cs

cs,max

)
cs

cs,max

, (3.2.5)
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where D0 is the dimensional diffusivity prefactor. With the constitutive relation be-

tween species flux and the thermodynamic driving force established, considerations

of the particular form of free energy the system seeks to minimize gives the evolu-

tion equations required in the next section to model interior dynamics of a lithiated

graphite particle.

3.2.1.2 Gibbs Free Energy

Returning once again to Novick-Cohen and Segel [19], by definition the difference in

chemical potential between lithium particles and vacancies is the change in Gibbs free

energy g(cs) with respect to a change in amount of component,

µB − µA =
∂g

∂cs
. (3.2.6)

The notation is hereafter simplified to no longer require designations A and B with

the net flux in (3.2.3) becoming,

F = − D0

kBT

(
1− cs

cs,max

)
cs

cs,max

∇ ∂g

∂cs
. (3.2.7)

The evolution of concentration profiles then follows a continuity equation obtained

by imposing mass conservation. In the absence of sink or source terms, the rate of

change of concentration is equivalent to the negative divergence of the flux (3.2.7),

∂cs
∂t

= ∇ ·
[
D0

T

(
1− cs

cs,max

)
cs

cs,max

∇ ∂g

∂cs

]
, x ∈ Lc, r ∈ R, t ∈ T . (3.2.8)

For the simplified case of a free energy dependent only on concentration and not its
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derivatives, the total free energy in a volume Vp is

G =

∫
Vp

g (cs(x, r; t)) dV. (3.2.9)

The system will evolve in such a way that total Gibbs free energy is minimized. As

such, the energy extremal configurations must satisfy the Euler-Lagrange equation

with a conservation of composition constraint imposed over the whole volume. The

contraint is expressed in Novick-Cohen and Segel [19] by ignoring the flux through

the particle surface as

∫
Vp

cs,0dV =

∫
Vp

cs(x, r; t) dV, x ∈ Lc, r ∈ R, t ∈ T . (3.2.10)

where cs,0 is some initial concentration. Using calculus of variations to find extrema

gives the result

∂g

∂cs
= constant, x ∈ Lc, r ∈ R, t ∈ T . (3.2.11)

where the constant depends on the constraint (3.2.10).

Before moving on to address the case of free energy with dependence on gradi-

ent terms, some additional work is required such that parallels can later be drawn

between the two formulations. Consider a generic configuration cs as compared to

an equilibrium configuration cs,e. A measure of “distance” from equilibrium is then
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expressed as

G(cs)−G(cs,e) =

∫
Vp

[g(cs)− g(cs,e)] dV

=

∫
Vp

[
∂g

∂cs
(cs,e)(cs − cs,e) +O(cs − cs,e)2

]
dV,

x ∈ Lc, r ∈ R, t ∈ T

(3.2.12)

where g(cs) has been expanded as a Taylor series about cs,e. It is then observed in

Novick-Cohen and Segel [19] that near equilibrium, ∂g/∂cs is approximately propor-

tional to the distance g(cs)−g(cs,e). The chemical potential (3.2.6) is then considered

the thermodynamic driving force for flow.

In the case that g(cs) is a concave up parabola (i.e. g = b0 + b1cs + b2c
2
s with

b2 > 0) and mobility M is constant, then (3.2.8) reduces to the standard diffusion

equation with qualitatively similar behavior as a special case seen later in Figure

3.2. A parabolic free energy has just one stable minimum that prevents separation

between phases. More advanced formulations of the free energy will contain multiple

minima causing the system to separate into multiple phases.

3.2.1.3 Cahn-Hilliard Gradient Energy

Given a solution of concentration cs, the original work of Cahn and Hilliard [3] pro-

vides the first few terms of the Taylor series expansion of local Gibbs free energy g

about the free energy per molecule g0 as,

g(cs,∇cs,∇2cs) =g0(cs) +
∑
j

Pj
∂cs
∂xj

+
∑
jk

κ
(1)
jk

∂2cs
∂xj∂xk

+
1

2

∑
jk

κ
(2)
jk

∂cs
∂xj

∂cs
∂xk

(3.2.13)
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where the series coefficients are

Pj =

[
∂g

∂(∂cs/∂xj)

]
0

,

κ
(1)
jk =

[
∂g

∂(∂2cs/∂xj∂xk)

]
0

,

κ
(2)
jk =

[
∂2g

∂(∂cs/∂xj)∂(∂cs/∂xk)

]
0

.

(3.2.14)

The author describes κ
(1)
jk and κ

(2)
jk as tensors related to crystal symmetry. The po-

larization vector components are Pj in a polar crystal where indices j, k represent

dimensions in a coordinate system.

Assuming the binary solution in question is isotropic such that it has no preferred

direction, expansion coefficients (3.2.14) reduce to

Pj = 0

κ
(1)
jk = δjk

∂g

∂∇2cs

κ
(2)
jk = δjk

∂2g

(∂|∇cs|)2
.

(3.2.15)

Note the appearance of Kronecker deltas leave only diagonal components hereafter

denoted κ1 and κ2. Here, the coordinates xj are dropped in favor of generic gradi-

ents where spherical coordinates can be implemented later given the geometry of the

particle. The isotropic result of (3.2.13) is then simplified as,

g(cs,∇cs,∇2cs) = g0(cs) + κ1∇2cs + κ2(∇cs)
2,

x ∈ Lc, r ∈ R, t ∈ T ,
(3.2.16)

where g0(cs) is referred to as the homogeneous free energy as it would be the only
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nonzero term in a solution with no inhomogeneities or concentration gradients. Here

it is important to assert the reciprocal of intermolecular distance be large compared

to concentration gradient such that truncating the series expansion gives good ap-

proximation.

It is now possible to integrate (3.2.16) over the whole volume to obtain a total

Gibbs free energy G,

G =

∫
Vp

g0(cs) + κ1∇2cs + κ2(∇cs)
2 dV, x ∈ Lc, r ∈ R, t ∈ T , (3.2.17)

where the dependence on number of particles per unit volume is absorbed into the

coefficients.

To simplify further, Cahn and Hilliard [3] then apply the divergence theorem to

the middle term. The term is expanded as

∫
Vp

(κ1∇2cs)dV =

∫
Ap

(κ1∇cs · n)dA−
∫
Vp

dκ1

dcs
(∇cs)

2 dV,

x ∈ Lc, r ∈ R, t ∈ T
(3.2.18)

It is now necessary to impose the natural boundary condition (∇cs · n = 0) which

assumes effects of surface wetting are negligible. This assertion will also be seen

to assist in obtaining the variational Euler-Lagrange equation to determine system

evolution. It is worth noting that Smith and Bazant [22] allow for an optional con-

sideration of wetting and dewetting through a change in surface energy with respect

to concentration.

Upon substitution of (3.2.18), the simplified form of expression (3.2.17) is of par-

ticular relevance and is known as the Landau-Ginzburg free energy, valid in the
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continuum limit. Also known as the coarse-grained free energy, molecular detail

is “washed-out” in the rewritten total Gibbs free energy

G =

∫
Vp

g0 +
1

2
κ(∇cs)

2 dV, x ∈ Lc, t ∈ T , (3.2.19)

where the 1/2 is optionally pulled from the substitution

1

2
κ = κ2 −

dκ1

dcs

=

[
∂2g

(∂|∇cs|)2

]
0

−
[

∂2g

∂cs∂∇2cs

]
0

.

(3.2.20)

The parameter κ is known as the gradient penalty and functionally serves as an

energetic cost to concentration gradients. The regular solution approach will later be

used to establish a functional form of the homogeneous free energy g0(cs). In doing

so, the sharpness of the phase boundary between low and high concentrations will be

shown to have direct dependence on the magnitude of κ.

3.2.1.4 Generalized Potential

Consider again (3.2.19) as is shown in the Landau-Ginzburg free energy form. Notable

here is that κ is assumed to be positive such that formation of spatial inhomogeneities

is not without an energetic price. Novick-Cohen and Segel [19] uses the natural bound-

ary condition mentioned in (3.2.18) and the conservation of composition constraint

(3.2.10) as Lagrange multipliers in the variational problem. The new Euler-Lagrange

equation becomes

∂g0

∂cs
− κ∇2c̃s = constant, x ∈ Lc, r ∈ R, t ∈ T . (3.2.21)
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In the same treatment as before in (3.2.12), the “distance” from equilibrium is

G(cs)−G(cs,e) =

∫
Vp

g(cs)− g(cs,e) dV

=

∫
Vp

[
∂g0(cs)

∂cs
− κ∇2c̃s

]
(cs − cs,e) +O[(cs − cs,e)2] dV.

(3.2.22)

Note that in addition to expanding in a Taylor series, integration by parts and an

additional application of the natural boundary condition were required by Novick-

Cohen and Segel [19] to obtain the result. Parallels between (3.2.12) and the new

forcing term proportional to distance from equilibrium in (3.2.22) suggests the equa-

tion for a new generalized potential equivalent to the variational derivative of total

Gibbs free energy,

µ =
δG

δcs
=
∂g0(cs)

∂cs
− κ∇2c̃s. (3.2.23)

To obtain the new evolution equation, the net flux is treated the same as in (3.2.7)

where it is set to be proportional to the forcing term. In full, the net flux is

F = − D0

kBT

(
1− cs

cs,max

)
cs

cs,max

∇
[
∂g0

∂cs
(cs)− κ∇2c̃s

]
, r ∈ R, (3.2.24a)

n · F = 0, r = 0, (3.2.24b)

n · F = −ω i
e
, r = a, (3.2.24c)

where x ∈ Lc and t ∈ T . The boundary conditions on flux at the surface of the particle

depend on the net reduction current from the Butler-Volmer reaction in (3.1.63) as

well as the fraction ω not diverted to the side reaction in (3.1.74). The zero flux at

the center comes from the assumption the particle is spherically symmetric with no

sink or source both at r = 0 and for r ∈ R. By mass conservation, the generalized
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continuum model is now found as the negative divergence of flux (3.2.24),

∂cs
∂t

= ∇ ·
[
D0

kBT

(
1− cs

cs,max

)
cs

cs,max

∇
(
∂g0

∂cs
(cs)− κ∇2c̃s

)]
,

t ∈ T , x ∈ Lc, r ∈ R.
(3.2.25)

The average concentration c̄s in a whole particle is expressed as,

∂c̄

∂t
=

1

Vp

∫
Vp

∂cs
∂t

dV, x ∈ Lc, t ∈ T . (3.2.26)

The conservation equation (3.2.25) with the divergence theorem,

∫
Vp

∇ · FdV =

∫
Ap

n · F dA, (3.2.27)

allows the flux boundary condition (3.2.24c) to give the average concentration rate of

change in terms of the Butler-Volmer net reduction current density i,

∂c̄

∂t
=

1

Vp

∫
Ap

−n · F dA =
Ap
Vp
ω
i

e
, x ∈ Lc, t ∈ T . (3.2.28)

Note that this is the compliment of the reaction lithium diverted through the side

reaction in (3.1.72). The Cahn-Hilliard model is then defined by boundary conditions

in (3.2.24) and conservation equation (3.2.25) which differs from the standard diffusion

models in its inclusion of the gradient penalty term and use of homogeneous free

energy g0(cs) from regular solution theory. The following section will find the Gibbs

free energy through consideration of the thermodynamic potentials in the fundamental

thermodynamic equation.
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3.2.1.5 Regular Solution Theory

The Gibbs free energy g found in Carter [4] as the fundamental thermodynamic

relation is,

g = h− sT, (3.2.29)

where h is molar enthalpy and s is molar entropy. A number of statistical mechanical

arguments made in Cahn and Hilliard [3] are required to separately treat the enthalpic

contribution and the entropic contribution to obtain a particular concentration de-

pendence of free energy.

To determine the configuration entropy per particle, the lattice is assumed to

be comprised of P equicomposition layers. The Boltzmann expression S = kB lnW

relates the total configuration entropy S to the total number of ways W the particles

on the lattice can be arranged. For number of ways that layer P can be arranged

WP , the total number of ways for all layers is the product of that in each individual

layer such that the Boltzmann expression becomes,

S = kB ln

(∏
P

WP

)
= kB

∑
P

lnWP . (3.2.30)

In each layer P containing NP particles, the number of ways WP is a function of

composition c̃P for a binary mixture of particles and vacancies given by Cahn and

Hilliard [3] as,

WP =
NP !

(c̃PNP )! [(1− c̃P )NP ]!
. (3.2.31)

Finally, applying Stirling’s approximation lnNP ! = NP lnNP −NP +O(lnNP ) to the
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Boltzmann expression (3.2.30) gives the configuration entropy per particle to be,

s = −kB
[
cs ln

(
cs

cs,max

)
+ (cs,max − cs) ln

(
1− cs

cs,max

)]
, (3.2.32)

Important to note is that s, the entropic contribution to the Gibbs free energy, has

no dependence on concentration gradient and is contained within the homogeneous

free energy g0(cs) from (3.2.19).

Consider now the treatment of h, the enthalpic contribution to Gibbs free energy,

for a two-component cubic lattice as given by Cahn and Hilliard [3]. Let C(S1) and

C(S2) be probabilities of finding a lithium particle at sites S1 and S2 respectively.

The probability that an AB bond will be formed by a particle B at site S1 and a

vacancy A at site S2 is then PAB = C(S1)(1−C(S2)). Given a radius vector r of site

S2 relative to S1, expanding C(S2) about S1 to obtain as a function of C(S1) yields

after truncating,

C(S2) = C(S1) + (r ·∇)C(S1) +
1

2!
(r ·∇)2C(S1) +

1

3!
(r ·∇)3C(S1). (3.2.33)

Consider the coordination number Zn (also known as ligancy) denoting the quantity

of molecules in the nth coordination shell at a radius rn from site S1. Coordination

spheres and shells are used in crystallography to describe the number of other particles

that each particle in a crystalline solid contacts as a first-, second-, . . . , or nth-nearest-

neighbor. The probable number of AB bonds between a particle B at S1 and the

vacancies A in its nth coordination shell is then given in Cahn and Hilliard [3] by the
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product,

ZnPAB = ZnC(S1)

[
1− C(S1)

−
(∑

(r ·∇)C(S1) +
1

2!

∑
(r ·∇)2C(S1)

)]
,

(3.2.34)

where summations are over all the sites in the nth shell and the third and higher

derivatives are neglected O ((r ·∇)3C(S1)) = 0. Expressing (3.2.34) in terms of

vector components and performing the summations gives the reduced result,

ZnPAB = Znc̃s(S1)[1− c̃s(S1)]− 1

6
Znc̃s(S1)∇2c̃s(S1), (3.2.35)

where the probability C has been replaced by the corresponding mol fraction c̃s =

cs/cs,max of the lithium particles B.

If νn = EAB − (1/2)(EAA +EBB), where E’s are the intermolecular potentials for

the nth coordination shell, then total energy per molecule at S1 is

U(S1) = c̃s(S1)[1− c̃s(S1)]
∑
n

Znνn −
1

6
c̃s(S1)∇2c̃s(S1)

∑
n

Znr
2
nνn. (3.2.36)

Simplifications can now be made by introducing two new parameters to encapsu-

late the effect of the summations over all coordination shells. The regular solution

parameter is defined to be,

Ωa :=
∑
n

Znνn, (3.2.37)

representing a mean interaction energy. The characteristic interface width is then

defined as,

λ2 :=

∑
n Znr

2
nνn

3
∑

n Znνn
, (3.2.38)
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representing a root-mean-squared effective “interaction distance” for energy in a con-

centration gradient. The expression for the enthalpic contribution to Gibbs free en-

ergy can then be written,

h = Ωacs

(
1− cs

cs,max

)
− 1

2
Ωaλ

2cs
∇2cs
cs,max

. (3.2.39)

It is now possible to express the Gibbs free energy as the regular solution model

with both entropic and enthalpic contributions,

g =kBT

[
cs ln

(
cs

cs,max

)
+ (cs,max − cs) ln

(
1− cs

cs,max

)]
+ Ωacs

(
1− cs

cs,max

)
− 1

2
Ωaλ

2cs
∇2cs
cs,max

,

x ∈ Lc, r ∈ R, t ∈ T .

(3.2.40)

Recall the Gibbs free energy obtained in (3.2.17) which predicted a homogeneous free

energy term in addition to a gradient penalty. In comparing to the newly obtained

(3.2.40), all of the entropic contribution and the first term of the enthalpic contribu-

tion are without gradient dependence and hence contained within the homogeneous

free energy g0. The second term of the enthalpy however can be directly compared

as,

κ1∇2cs + κ2(∇cs)
2 =

1

2
Ωaλ

2cs
∇2cs
cs,max

, (3.2.41)

to give the relations κ1 = −csΩaλ
2 and κ2 = 0 such the relation (3.2.20) gives

a gradient penalty coefficient of κ = 2Ωaλ
2. Solving, an expression may then be

60



M.Sc. Thesis – A. Mitchell McMaster University – CSE

obtained for characteristic interface width,

λ =

√
κ

2Ωa

. (3.2.42)

The relative magnitude of gradient penalty κ to regular solution parameter Ωa is

found to have a direct impact on the thickness of phase separating boundaries between

regions of high and low concentrations.

The now complete total Gibbs free energy is of the form,

G =

∫
Vp

1

2
κ

(∇cs)
2

cs,max

+ g0(cs) dV, x ∈ Lc, r ∈ R, t ∈ T . (3.2.43)

Expanding in full,

G =

∫
Vp

1

2
κ

(∇cs)
2

cs,max

+ Ωacs

(
1− cs

cs,max

)
+ kBT

(
cs ln

(
cs

cs,max

)
+ (cs,max − cs) ln

(
1− cs

cs,max

))
dV

x ∈ Lc, r ∈ R, t ∈ T .

(3.2.44)

Finally, taking the variational derivative from (3.2.23) of the total free energy yields

the expression for chemical potential,

µ = kBT ln
cs

cs,max − cs
+ Ωa

(
1− 2

cs
cs,max

)
− κ∇

2cs
cs,max

. (3.2.45)

It is now possible to examine the second derivative of the Gibbs free energy with

respect to concentration to obtain a condition on convexity of the curve and hence

number of minima. It is found that for small enough regular solution parameters
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Ωa < 2kBT , the behavior of the evolution is similar to that of a parabolic Gibbs free

energy found in standard diffusion models. In such a case there is only one global

minimum as demonstrated in Figure 3.2 that prevents separation into two stable

phases.

Figure 3.2: Homogeneous Gibbs free energy g0 and chemical potential µ0 curves for
Ωa < 2kBT where there is only one stable equilibrium such that no phase separation

occurs.

If instead Ωa > 2kBT as in Figure C.2, the Gibbs free energy forms a central,

concave-down bump that produces two local minima at low and high concentrations.

The “miscibility gap” is described by Bazant [2] as the region between two minima

where the mixture of Li and lattice sites is not completely miscible or homogeneous.
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The Maxwell or common tangent construction is a simple geometrical approach allow-

ing for the determination of a coexistence or binodal region where it is energetically

favorable to separate into a linear combination of two stable states with the same

average concentration. This region can be found using the common tangent to find

the binodal points corresponding to ∂g0/∂cs = µ0 = 0. Upon entering this region,

the free energy can be reduced to the corresponding point on the common tangent

with ratios of each stable phase determined through the lever rule. The “chemical

spinodal” corresponds to the region where convexity is lost within the spinodal points

where ∂2g0/∂c
2
s = ∂µ0/∂cs = 0. Inside this unstable region, infinitesimal fluctuations

can trigger spinodal decomposition into two stable phases. Outside the chemical spin-

odal but still within the binodal region is referred to as metastable and requires large

perturbations away from a homogenized state to trigger phase separation through

nucleation.

3.2.2 Extension to Multiple Phases

It was shown previously in Section 3.2.2 that the coexistence of two stable phases

near the extreme filling fractions (nearly empty and nearly full) is possible within

the miscibility gap in the Gibbs free energy of the solid graphite electrode. With

unstable homogenous compositions, recall the result is a “shrinking core” model with

a higher concentration shell that moves inwards to replace a lower concentration,

dilute center as the particle becomes lithiated. Given lithium concentration also

affects the coloring of graphite, staging or pattern formation in the lattice is directly

observable through imaging of the electrode. Experimental results from Ferguson and

Bazant [8] motivate the need for a more advanced formulation that is able to capture
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three distinct phases. They propose an extension to the Cahn-Hilliard model that

features additional enthapic contributions to the Gibbs free energy.

Recall that in finding the entropic and enthalpic contributions to Gibbs free energy,

it was assumed the graphite volume lattice was comprised of a number of repeating,

equicomposition layers to comprise the entire graphite volume. The simplest pro-

posed adaptation introduces an additional layer that periodically repeats such that

individual concentrations cj for j = 1, 2 evolve with the same intra-layer Cahn-Hilliard

dynamics as before. Additional coupling terms are introduced here to represent the

new inter-layer forces that produce a Gibbs free energy surface with more than two

minima. The new formulation is called the periodic bilayer model as it features

two interacting layers that repeat instead of layered identical slices from the original

model.

Stage 1’

dilute

Stage 2

half-full

Stage 1

nearly full

Figure 3.3: Staging diagrams for the periodic bilayer model of a graphite lattice
with intercalated lithium.

The three stable phases possible in the new formulation are referred to as stages

and shown in Figure 3.3 with a particular numbering scheme to identify each. Stage

1’ and stage 1 are analogous to both layers being in the original two phases that

existed for low and high concentrations respectively seen at the binodal points in

Figure C.2. Stage 1’ represents the two repeating layers being both nearly empty

while conversely, stage 1 represents the two being both nearly full. With the periodic

bilayer model, an additional stage 2 is considered to be half-full with one layer having
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high concentration while the other is dilute. Since the layers are indistinguishable,

the labeling of each is interchangeable and stage 2 also exists in the symmetrical

case when concentrations are swapped. Recall in the original Cahn-Hilliard model

that the ratio of phase separation between stable equilibria in the Gibbs free energy

was determined by the lever rule with free energy being reduced to a point on the

common tangent. The common tangent construction now gives up to two planes that

are tangent to the surface of the Gibbs free energy as a function of the two layer

concentrations. Stage 1’ and stage 1 are found at tangent points in the diagonal

corners while the two possibilities for stage 2 are in the off-diagonal corners of the

Gibbs free energy illustrated in Figures C.4 and C.5.

It was previously discussed that the generalized potential is the variational deriva-

tive of free energy such that the tangent points in a particular tangent plane will

have equivalent effective chemical potentials. With two possible common tangent

planes, a phase-separating system reducing its free energy can produce two flat volt-

age plateaus. While “staircase” voltages are commonly seen in experimental open-

circuit potentials, Smith et al. [23] describes how additional repeating layers with

a greater number of dilute stages are required to capture the high voltage plateaus

for low-filling fractions seen in the C/100 cell voltage from Figure 2.3. Furthermore,

Ferguson and Bazant [8] remarks there are at least five distinct phases in graphite

during lithium insertion. The periodic bilayer model as a first approximation however

has the ability to capture the large voltage drop occurring at a filling fraction of one

half discussed in the next section.
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3.2.2.1 Cross-Layer Interaction Energy

Within each individual layer j, a local free energy of the form (3.2.44) still applies

with a total concentration now determined by a sum of local concentrations c1 + c2.

The free energy is replicated here with a subscript j to denote intralayer configuration,

gj(cj,∇cj) =Ωacj

(
1− cj

cs,ref

)
+ cj ln

(
cj
cs,ref

)
+ (cs,ref − cj) ln

(
1− cj

cs,ref

)
+

1

2
κ

(∇c̃j)
2

cs,ref

,

x ∈ Lc, r ∈ R, t ∈ T ,

(3.2.46)

where cs,ref = cs,max/2 is the maximum capacity in a layer occupying half the vol-

ume. The extension explored by Smith et al. [23] and Ferguson and Bazant [8] now

becomes relevant as the total free energy will not only be the sum of the intralayer

configurations but also require extra cross-interaction terms to account for the mixing

enthalpies between layers.

The Gibbs free energy for the periodic bilayer model is a combination of intralayer

effects (3.2.46) with the addition of an interaction free energy gint that depends on

compositions in both layers,

g = g1(c1,∇c1) + g2(c2,∇c2) + gint(c1, c2). (3.2.47)

The intralayer free energies are again double-welled and are able to phase-separate

into low concentration stage 1’ and high concentration stage 1. Stage 2 phases with

every other layer full are stabilized by a repulsive interaction free energy that penalizes

the proximity of lithium in adjacent layers. The reference Ferguson and Bazant [8]
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gives the particular polynomial form of additional terms as an extension to that found

in the enthalpic considerations of (3.2.39),

gint(c1, c2) = Ωb
c1c2

cs,ref

+ Ωcc1

(
1− c1

cs,ref

)
c2

cs,ref

(
1− c2

cs,ref

)
. (3.2.48)

Two new parameters are introduced in the additional enthalpic terms that have

physical implications. Common to experimental results is a “staircase” voltage plateau

in near-equilibrium charge or discharge curves occuring at the half filling fraction de-

picted in Figure C.6. The difference between the plateaus is set by the Ωb > 0 term

which represents the repulsive interaction between cross-plane particles and increases

the free energy of the nearly full stage 1 relative to the more sparse stage 1’ and

2. The other Ωc > 0 term, as discussed in Ferguson and Bazant [8], represents a

particle-vacancy cross-plane mixing enthalpy that penalizes partially filled layers and

further stabilizes stage 2 phases. Functionally this term has a similar effect as Ωa in

that there is increased energenic penalty to homogenous states c1 ≈ c2. Though not

done here, Smith et al. [23] suggests setting Ωc = 0 to save on computational cost

given its effect overlaps with an existing enthalpic term. The system evolution then

traces out a path g∗ on the Gibbs free energy.

The generalized chemical potential for each layer is analogous to (3.2.45) for the

one layer model,

µj =
δG

δcj
=

∂g

∂cj
− κ∇2c̃j, x ∈ Lc, r ∈ R, t ∈ T . (3.2.49)
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Expanding in full gives,

µj =kBT ln
c̃j

1− c̃j
+ Ωa(1− 2c̃j)− κ∇2c̃j

+ Ωbc̃k + Ωcc̃k(1− c̃k)(1− 2c̃j)

x ∈ Lc, r ∈ R, t ∈ T .

(3.2.50)

where j, k = 1, 2 and j 6= k. The flux of lithium within each graphite layer is then

similar to before in (3.2.24) as they relate to the gradient in chemical potentials µj

for j = 1, 2,

Fj = − D0

kBT
(1− c̃j) c̃j∇

δG

δcj
, r ∈ R, (3.2.51a)

n · Fj = 0, r = 0, (3.2.51b)

n · Fj = −1

2
ω
ij
e
, r = a, (3.2.51c)

where x ∈ Lc and t ∈ T . Applying the conservation of mass continuity equation in

each layer gives

∂cj
∂t

= ∇ ·
[
D0

kBT
(1− c̃j) c̃j∇

δG

δcj

]
, t ∈ T , (3.2.52)

where x ∈ Lc and r ∈ R. Here, if lithium particles were physically moving between

layers it could be captured by a sink/source term. Note that intercalation reactions

at the surface are stated by Ferguson and Bazant [8] to proceed independently as if

they were separate reactants. As such, many of the reaction equations in Section 3.1.2

are duplicated and made local to each of the two layers. Accordingly, the boundary

condition (3.2.51c) differs from (3.2.24c) by a factor of 1/2 given each layer occupies
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half the surface area receiving their respective net reduction currents ij expressed in

the next section.

3.2.2.2 Multilayer Reaction Rates

The average concentration c̄s change in a whole particle is analogous to (3.2.26),

∂c̄

∂t
=

1

Vp

∫
Vp

∂c1

∂t
+
∂c2

∂t
dV =

Ap
Vp
ω
i1 + i2

2e
, x ∈ Lc, t ∈ T , (3.2.53)

such that the Butler-Volumer net reduction current is still recovered as in (3.2.28)

though with an altered fraction of Li accepted into particle,

ω = tanh

(
γ

[
1− c̃1 + c̃2

2

])
, x ∈ Lc, r = a, t ∈ T . (3.2.54)

Here, it was decided to use the average surface composition in the calculation of

fraction ω as opposed to defining two separate parameters ωj, j = 1, 2. This is in

line with the assumption the macroscopic quantities such as cside(x, t) and c̄s(x, t) are

blind to the individual layers within the particles.

The remaining extensions from the one layer model pertain to the coupling equa-

tions through the Butler-Volmer net reduction current (3.1.63) and side reactions

(3.1.72). The side reaction rate and compliment to (3.2.51c) is then the average of

the reduction currents,

∂cside

∂t
=
Ap
Vp

(1− ω)

(
i1 + i2

2

)
, x ∈ Lc, r = a, t ∈ T . (3.2.55)
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Here, reduction currents are presented expanded already with the exchange rate,

ij = k0

(
cl
cl,ref

)1/2

(1− c̃j)1/2 (c̃j)
1/2

[
exp

(
−eηj
2kBT

)
− exp

(
eηj

2kBT

)]
,

x ∈ Lc, r = a, t ∈ T .
(3.2.56)

Surface overpotentials for each layer j = 1, 2 are analogous to before in (3.1.66),

ηj =
µj
e
− Eθ −

(µO
e
− φs

)
x ∈ Lc, r = a, t ∈ T . (3.2.57)

Note that the diffusional chemical potential of the oxidized state µO is able to be

replaced as before with the chosen Nernst-Planck from (3.1.36) or Stefan-Maxwell

formulation as in (3.1.68).

In this extended periodic bilayer model, the chemical potential in each layer can

be simplified by collecting the common terms that appear in both equations from

symmetry,

µj = µeff − κ∇2c̃j. (3.2.58)

The reference Smith et al. [23] finds the effective chemical potential to be,

µeff =
∂g∗

∂(c1 + c2)
, (3.2.59)

where g∗ is the particular free energy path the system evolves along with the sum

c1 + c2 constrained to the charge rate. In keeping with Morales Escalante et al. [15],

the Nernst voltage Veq = Eθ − µeff/e can be replaced with the function fit to C/100
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experimental data given in (3.1.71) in the equation for surface overpotential,

ηj = −Ueq

(
c̃1 + c̃2

2

)
− κ∇2c̃j

e
− µO

e
x ∈ Lc, r = a, t ∈ T . (3.2.60)

As a final note, any relevant equations from macroscopic electrolyte dynamics not

reproduced here in Section 3.2.2 are equivalent to those covered in Section 3.1 that

do not have dependence on the solid concentration cs.

3.3 Summary of Model Equations

Disparities in length scales allows for an assumption of translational symmetry and

homogenization in the coordinate plane orthogonal to battery length x and spherical

symmetry in the graphite particles. Model equations can then be expressed less

generally in terms of the pseudo two-dimensional x-r domain. Accordingly, vector

quantities are reduced to being their components only along the relevant coordinates.

Particular initial conditions are also given in the equations here that are replicated

from earlier and condensed into the relevant PDE’s to solve.

3.3.1 Stefan-Maxwell Concentrated Electrolyte

The evolution equations from Section 3.1.1 for transport in a concentrated liquid-

phase binary electrolyte for a Li-ion battery come from the conservation of anions
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(3.1.13a) using flux boundary conditions (3.1.25) with the particular form of Stefan-

Maxwell (SM) flux (3.1.56),

ε
∂cl
∂t

= −∂Fl
∂x

, x ∈ L, t ∈ T , (3.3.1a)

Fl = −
(
ε

τ
D∂cl
∂x

+
1− t0+
e

il

)
, x ∈ L, t ∈ T , (3.3.1b)

Fl = 0, x = 0, Ls + Lc, t ∈ T , (3.3.1c)

cl = cl,ref, x ∈ L, t = 0, (3.3.1d)

where cl,ref is the initial homogeneous lithium concentration in the electrolyte. The

current density has boundary conditions discussed in (3.1.26) with the particular form

for the (SM) model (3.1.58),

il = − ε
τ
σSM
l

(
∂φl
∂x

+ 2
kBT

ecl

(
t0+ − 1

) ∂cl
∂x

)
, x ∈ L, t ∈ T , (3.3.2a)

il = icell, x = 0, t ∈ T , (3.3.2b)

il = 0, x = Ls + Lc, t ∈ T . (3.3.2c)

The electric potential at the current collector in the porous electrode is chosen as

the reference and cell voltage is measured at the counter electrode from (3.1.81),

φcell =
2kBT

e
arcsinh

(
− icell

2k0,foilc̃l
1/2

)
+ φl, x = 0, t ∈ T , (3.3.3a)

φs = 0, x = Ls + Lc, t ∈ T . (3.3.3b)

Ohm’s law from (3.1.82) gives a current density in the solid-phase electrode to be
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related to the solid electric potential,

is = −(1− ε)
τs

σs
∂φs
∂x

, x ∈ Lc, t ∈ T , (3.3.4a)

is = 0, x = Ls, t ∈ T , (3.3.4b)

is = icell, x = Ls + Lc, t ∈ T . (3.3.4c)

Each of the above equations are applicable on the macroscopic scale and appear

in both phase-separating electrode models. The following sections will detail the

particular coupling equations and electrode evolution equations as they pertain to

the original Cahn-Hilliard model and then the periodic bilayer model.

3.3.2 Cahn-Hilliard Model (CHR)

The conservation of liquid electrolyte current density (3.1.17) and the conservation

of solid electrode current density (3.1.83) have equal and opposite sink/source terms

(3.1.88) from Section 3.1.2,

∂il
∂x

= 0, x ∈ Ls, t ∈ T , (3.3.5a)

∂il
∂x

=
3

a
(1− ε)i, x ∈ Lc, t ∈ T , (3.3.5b)

∂is
∂x

= −3

a
(1− ε)i, x ∈ Lc, t ∈ T , (3.3.5c)

(3.3.5d)

The net reduction current from (3.1.63) for (CHR) serves to couple volume-averaged

transport on macroscopic scales to the microscopic transport dynamics within the
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solid-phase electrode particles,

i = k0c̃
1/2
l (1− c̃s)1/2 c̃1/2

s

[
exp

(
−eηs
2kBT

)
− exp

(
eηs

2kBT

)]
x ∈ Lc, r = a, t ∈ T .

(3.3.6)

Furthermore, the surface overpotential from (3.1.70) as the reaction driving force is,

ηs = −Ueq(c̃s)− κ∇2c̃s − φl + φs, x ∈ Lc, r = a, t ∈ T . (3.3.7)

The side reaction fraction from (3.1.74) then controls the amount of flux actually

entering the electrode versus being diverted to the SEI layer,

ω(cs) = tanh

(
γ

[
1− cs

cs,max

])
, x ∈ Lc, r = a, t ∈ T . (3.3.8)

The dynamics of lithium transport in each solid-phase electrode particle in the

(CHR) model from Section 3.2.1 follow the evolution equation (3.2.25). For a homo-

geneous initial lithium concentration cs,0,

∂cs
∂t

=
1

r2

∂

∂r

[
r2M(cs)

∂

∂r

δG

δcs

]
, x ∈ Lc, r ∈ R, t ∈ T , (3.3.9a)

M(cs)
∂

∂r

δG

δcs
= 0 x ∈ Lc, r = 0, t ∈ T , (3.3.9b)

M(cs)
∂

∂r

δG

δcs
= −ω i

e
x ∈ Lc, r = a, t ∈ T , (3.3.9c)

∂cs
∂r

= 0, x ∈ Lc, r = 0, t ∈ T , (3.3.9d)

∂cs
∂r

= 0, x ∈ Lc, r = a, t ∈ T , (3.3.9e)

cs(r, 0) = cs,0, x ∈ Lc, r ∈ R, t = 0. (3.3.9f)
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Here, boundary conditions come from flux considerations in (3.2.24). The initial

condition is a homogeneous concentration cs,0 that begins very small for a depleted

electrode. The mobility from (3.2.5) is,

M(cs) =
D0

kBT

(
1− cs

cs,max

)
cs

cs,max

. (3.3.10)

The variational derivative of the total Gibbs free energy is the chemical potential

from (3.2.45),

δG

δcs
= kBT ln

c̃s
1− c̃s

+ Ωa (1− 2c̃s)− κ
1

r2

∂2

∂r2

(
r2c̃s

)
. (3.3.11)

The solid electrode evolution equations are then simulated for each and every particle

placed in the electrochemical cell.

3.3.3 Periodic Bilayer Model (CHR2)

The conservation of liquid electrolyte current density (3.1.17) and the conservation

of solid electrode current density (3.1.83) have equal and opposite sink/source terms

(3.1.88) from Section 3.1.2,

∂il
∂x

= 0, x ∈ Ls, t ∈ T , (3.3.12a)

∂il
∂x

=
3

a
(1− ε)i1 + i2

2
, x ∈ Lc, t ∈ T , (3.3.12b)

∂is
∂x

= −3

a
(1− ε)i1 + i2

2
, x ∈ Lc, t ∈ T . (3.3.12c)

The net reduction currents (3.2.56) for (CHR2) serve to couple volume-averaged

transport on macroscopic scales to the microscopic transport dynamics within the
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solid-phase electrode particles,

ij = k0c̃l
1/2 (1− c̃j)1/2 (c̃j)

1/2

[
exp

(
−eηj
2kBT

)
− exp

(
eηj

2kBT

)]
,

x ∈ Lc, r = a, t ∈ T .
(3.3.13)

Surface overpotentials for each layer j = 1, 2 are from (3.2.57),

ηj = −Ueq

(
c̃1 + c̃2

2

)
− κ∇2c̃j

e
− φl + φs, x ∈ Lc, r = a, t ∈ T . (3.3.14)

The side reaction fraction from (3.2.54) then controls the amount of flux actually

entering each electrode particle layer versus that being diverted to the SEI layer,

ω = tanh

(
γ

[
1− c̃1 + c̃2

2

])
, x ∈ Lc, r = a, t ∈ T . (3.3.15)

The (CHR2) model from Section 3.2.2 then has evolution equations for each layer

j = 1, 2 from (3.2.52) with flux boundary conditions (3.2.51),

∂cj
∂t

=
1

r2

∂

∂r

[
r2M(cj)

∂

∂r

δG

δcj

]
, x ∈ Lc, r ∈ R, t ∈ T , (3.3.16a)

M(cj)
∂

∂r

δG

δcj
= 0 x ∈ Lc, r = 0, t ∈ T , (3.3.16b)

M(cj)
∂

∂r

δG

δcj
= −ω ij

2e
x ∈ Lc, r = a, t ∈ T , (3.3.16c)

∂cj
∂r

= 0, x ∈ Lc, r = 0, t ∈ T , (3.3.16d)

∂cj
∂r

= 0, x ∈ Lc, r = a, t ∈ T , (3.3.16e)

cj =
cs,0
2
, x ∈ Lc, r ∈ R, t = 0. (3.3.16f)
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The mobility from (3.2.5) is,

M(cj) =
D0

kBT

(
1− cj

cs,ref

)
cj
cs,ref

. (3.3.17)

The chemical potential for the (CHR2) model comes from (3.2.50),

δG

δcj
= kBT ln

c̃j
1− c̃j

+ Ωa(1− 2c̃j)− κ
1

r2

∂2

∂r2

(
r2c̃j

)
+ Ωbc̃k + Ωcc̃k(1− c̃k)(1− 2c̃j).

(3.3.18)

The sets of PDE’s in this section summarizing the mathematical models would then

need to be discretized and nondimensionalized in order to simulate battery dynamics

computationally. These aspects however are beyond the scope of this work which

requires only a working level understanding of the simulation software MPET to solve

the inverse problem discussed in the following chapters.
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Chapter 4

Inverse Modeling

In this chapter, an optimization problem is formulated as one way to solve the in-

verse problem. The goal is to infer a set of optimal parameters that characterize the

modeled system. The optimal solution corresponds to a minimized error functional

quantifying the discrepancy between experimental data from Chapter 2 and simu-

lation data of the various models from Chapter 3. Available data for comparison

at a given time collected during the C/44 experiment includes lithium concentration

profiles in the solid-phase electrode discussed in Section 4.1, as well as the overall

cell voltage in Section 4.2. Many of the thermodynamic properties, mainly those that

pertain to the electrolyte, are obtained from the literature and are not subject to vari-

ation in seeking an optimal solution. Refer to Appendix A for these tabulated values.

The remaining p unknown parameters are denoted with vector m ∈ Rp and inferred

from the solution of an optimization problem. The accuracy of the final reconstructed

properties allowing the model to match the experimental data most closely will then

depend on the correctness of fixed parameters, in addition to the ability of the model

to capture the physics of the system. Any approximations or concessions made in
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these two regards instead produce an optimal solution with effective parameters that

may differ from actual physical values by way of compensating for those inadequacies.

It was shown in Chapter 3, there are a number of different options in selecting

components of the multi-scale model. The macroscopic, volume-averaged electrolyte

equations from Section 3.1.1 can be that of the dilute Nernst-Planck model (NP) or

instead the concentrated Stefan-Maxwell model (SM). While multiple options also

exist for reaction rates (e.g., Marcus kinetics from Bazant [2]), all cases here will be

that of the Butler-Volmer reaction type (BV) from Section 3.1.2. On the microscopic

scale within the graphite particles, two variants of the Cahn-Hilliard reaction model

are introduced in Section 3.2: the original one layer (CHR) and the extended periodic

bilayer model (CHR2). The main focus of this work is in assessing the relative fidelity

of the following combined two formulations for solid-phase electrode,

• model (SM)-(BV)-(CHR), denoted (CHR) for brevity, features 6 unknown pa-

rameters m = {k0,foil, k0, γ, σs, D0,Ωa},

• model (SM)-(BV)-(CHR2), denoted (CHR2), features 8 unknown parameters

m = {k0,foil, k0, γ, σs, D0,Ωa,Ωb,Ωc}.

It is notable that parameters applicable on the microscopic scale are inferred from

comparison of macroscopic quantities. Such inference across scales is made possible

through the strong coupling between the solid electrode and liquid electrolyte from

the reaction rate at the surface of graphite particles. The net reduction current scales

with the exchange rate constant k0 through (3.1.64). The analogous reaction occurs

at the counter electrode with foil rate constant k0,foil which serves predominantly to

shift cell voltage up and down by changing the overpotential in (3.1.81). The fraction

of lithium reacted into a graphite particle instead of the SEI layer depends on the
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side reaction parameter γ from (3.1.72). The conductivity σs enters in the solid

current density (3.1.82) through Ohm’s law. The regular solution parameter Ωa in

(3.2.40) and secondary interaction parameters Ωb, Ωc unique to (CHR2) in (3.2.48)

determine the shape of the free energy and control the phase-separating behavior

within the electrode. The diffusivity coefficient D0 in (3.2.25) and (3.2.52) then affects

the propagation of lithium within the electrode particles. All other parameters are

inherited from the work by Morales Escalante et al. [15] and held constant throughout

the duration of an optimization that looks to minimize the problems in the following

sections.

4.1 Concentration Error Functional

Experimentally obtained profiles ĉs(x, tk), k = 1, . . . , N , from Figure 2.1 are spatially

resolved over the length of the battery and measure the concentration of intercalated

lithium. The corresponding model variable is the averaged concentration c̄s(x, t)

obtained through a normalized integral of solid-phase concentration cs(x, r; t) over

the volume of particles at a given position, as was the case in (3.2.26). The error

functional as found in Morales Escalante et al. [15] is formulated as the least-squares

difference between the model-based prediction and the measured quantity,

Jcs(m) =
1

2NLc

N∑
k=1

∫ Ls+Lc

Ls

[
c̄s(x, tk)

cs,max

− ĉs(x, tk)

cs,max

]2

dx. (4.1.1)

The prefactor here serves to average the error over the domain of integration. Note

again the “snapshot” approximation is applied to the simulation data at each of the

discrete times when the experimental profiles are defined. Another limiting factor is
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the spatial resolution of the MRI measurements over the length of the electrode. To

reduce computational work while retaining some benefit of higher model resolution,

for each of the six battery positions available in the experimental data, two cell

volumes are averaged such that twelve total graphite particles are placed along the

length of the battery. More intensive simulations may choose to average even higher

multiples of the experimental resolution. Multiple particles may also be placed at a

single cell volume in parallel with regards to electrolyte access to capture the effect

of particle size distribution.

4.2 Cell Voltage Error Functional

The other optimization problem of interest differs from that found in Morales Es-

calante et al. [15] due an overall cell voltage φcell(t) expressed in (3.1.81) that includes

the effects of a Li-metal counter electrode. For C/44 experimental cell voltage data

Φ̂(t), the error functional is,

JΦ(m) =
1

2tf

∫ tf

0

[
(φcell(t)− IRser)− Φ̂(t)

]2

dt. (4.2.1)

where Rser is the series resistance that modifies cell voltage through Ohm’s law. Since

the voltage data is collected continuously over the course of the experiment, the least-

squares error is able to be compared at a greater number of times than concentration

profiles.
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4.3 Multiobjective Optimization

In keeping with Morales Escalante et al. [15], a weighted average of errors is proposed

as,

Jρ(m) = (1− ρ)Jcs(m) + ρJΦ(m), 0 ≤ ρ ≤ 1. (4.3.1)

Accordingly, the optimization problem becomes for a given ρ,

min
m∈Rp

Jρ(m). (4.3.2)

It is noted in attempting a multi-objective optimization to minimize both Jcs and

JΦ that the particular weight relative to each other is unknown. By solving the

optimization problem over a range of ρ values, the so-called Pareto front is obtained as

the parametrized curve in a plot of JΦ versus Jcs . In visualizing all of the potentially

optimal solutions, a particular value of ρ and the corresponding optimal parameters

can be selected depending on the trade-off between the two errors deemed most

appropriate.
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Chapter 5

Computational Models

In this chapter, the software MPET is used to simulate the mathematical models de-

tailed in Chapter 3. The results of simulating the battery dynamics of both Cahn-

Hilliard models enables comparison with experimental results. Configuring the solver

to run the particular formulation in this work requires a number of modifications to

the original source code Smith, Raymond B. [24] in Python. The use of a Mat-

lab optimization routine to find a solution to the problem (4.3.2) then uses MPET

as a black box program to reconstruct the unknown parameters of the model that

produce approximate laboratory data.

5.1 Multiphase Porous Electrode Theory (MPET)

The Newman model, as decribed in Section 3.1 with fundamental theory discussed

in Fuller et al. [10], is a widely popular, multiscale model of an electrochemical cell

that predicts macroscopic battery behavior from microscopic physical models. The

accompanying software Dualfoil from Newman, J. [18] is written in Fortran and is
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what the software Multiphase Porous Electrode Theory (MPET) from Smith, Raymond

B. [24] written in Python replaces. The most basic formulation is to homogenize the

battery in directions parallel to the current collectors and within the particle to obtain

a one-dimensional model along the battery length x. The typical treatment of porous

electrode theory (PET) then uses solid-state electrode particles as determined from

surface reactions and concentration field driven transport in the electrolyte. In such

a case, accounting for the thermodynamics of the system requires fitting of the open-

circuit voltage to act as a reaction driving force.

More complex, phase separating materials are discussed in Smith and Bazant [22]

where inhomogeneous concentration profiles within particles instead give voltage as

an emergent property. These particles are positioned in the electrode domain as

volumetric sink/source terms for ions and electrons. In addition to having much of

the same functionality as Dualfoil, MPET allows for the use of a Cahn-Hilliard phase-

field models (3.3.9a) and (3.3.16a) based on nonequilibrium thermodynamics in the

pseudo two-dimensional x-r domain. Validation of the open-source MPET was done by

the authors against the popular commercial software COMSOL using a finite element

method.

In Smith and Bazant [22], the PDE’s outlined in Section 3.3 are chosen to be

represented and evaluated in the form of differential algebraic equations (DAE) using

a type of finite volume method (FVM). Since this spatial discretization does not use

a finite difference method, MPET does well to handle the sharp interface that charac-

terizes strong phase separation. The method is additionally credited with a precision

of numerical accuracy in assuring conservation of species. Given the large variation

in the dynamical system’s time rate of change, MPET uses a variable-order adaptive
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time stepper. The integration method used in the implicit IDAS time stepper from

SUNDIALS (Suite of Nonlinear and Differential/Algebraic Equation Solvers) applies

the backward differentiation formula (BDF) to the DAE system.

Smith and Bazant [22] discusses the use of the ADOL-C automatic differentiation

library to form the analytical-accuracy Jacobian matrix to help solve the nonlinear

equations. Modifications and additions to the model are made easier by not requiring

manual input of analytical derivatives or relying on approximations of the Jacobian.

DAE Tools from Dragan D. [6] wraps IDAS with ADOL-C such that a high-level model-

ing language environment in Python handles the interactions with low-level software

packages. Smith and Bazant [22] use the object oriented framework of the Python en-

vironment to separately define the overall cell model from the active material models.

The use of DAE Tools allows for easy definition of a simulation setup that initializes

model instances with starting configurations. Any number of electrode particles may

be simulated and communicate only the necessary information to the electrolytic cell.

The next section details the necessary code injections to successfully implement the

particular mathematical model of interest.

5.1.1 Modifications

Customizing MPET to match the experimental setup in Chapter 2 and mathematical

models in Chapter 3 is primarily done through the input configuration files with

entries tabulated in Appendix A. Each option chosen was available in the vanilla

version of Smith, Raymond B. [24], with detailed descriptions found in their sample

configuration file. Further modification was then required for certain hard-coded

aspects of MPET with changes made to the source code:
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• mpetrun.py as the starting function that calls main.

– Attempting too small of discretization may result in runaway memory

consumption leading to an unresponsive computer. The solution by the

user “Ulises CT” on Stack Overflow allowed for the memory use to be

limited on Linux systems through Python.

• io_utils.py as the module for creating data structures from input files.

– The added side reaction parameter γ needed to be retrieved from the in-

put electrode configuration file and stored in the dictionary for electrode

particle parameters.

– Treating γ like the other configurable model parameters, it is also dupli-

cated in a dictionary of nondimensionalized parameters, though without

any scaling.

• mod_electrode.py for options CHR and CHR2.

– A DAE variable is first created for later use in either the (CHR) or (CHR2)

model to track the time rate of change in the concentration of the side

reaction.

– The analytical function Ueq(cs) from (3.1.71) is added with an input of

(CHR) surface filling fraction or a (CHR2) average of the two layer surface

fractions. Coefficients for the fit function are given in Table C.1 from

Appendix C.

– The function Ueq(cs) and the nonhomogeneous gradient penalty term of the

chemical potential at the particle surface are then used to replace µ/e in
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(3.1.68) for (CHR) and (3.2.60) for (CHR2) to calculate the overpotential

in the Butler-Volmer net reduction current.

– The side reaction fraction ω from (3.1.74) as a function of (CHR) surface

filling fraction or (3.2.54) with averaged (CHR2) fractions are calculated

using the additionally imported parameter γ.

– The flux boundary conditions are multiplied by side reaction fraction ω for

consistency with (3.3.9c) and (3.3.16c).

– The DAE equations for calculating variable ∂cside/∂t from (3.1.72) for (CHR)

and (3.2.55) for (CHR2) are implemented using the compliment (1 − ω)

and the calculated net reduction currents.

• mod_cell.py for assuring conservation of charge (3.1.83) and calculating total

current (3.1.86) from reaction rates.

– The volumetric sink/source term (3.1.88) must be modified to add the rate

of lithium entering the SEI layer from DAE variable ∂cside/∂t to the change

in average ∂c̄s/∂t for each instance of an electrode particle.

• props_elyte.py for the (SM) model with the property set valoen reimers.

– The transference number t0+ from (3.1.42) is made to be that from Ap-

pendix A.

– The diffusivity D(cl) must be made to be the expression (3.1.60) with the

appropriate constants from Appendix A.

– The thermal factor is not used in this model and is made to be unity such

that there is no further dependence on concentrations.
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– The conductivity in the electrolyte σSM
l (cl) chooses temperature depen-

dent terms to have coefficients of zero for consistency with (3.1.61). See

Appendix A for the particular nonzero constants used.

• props_am.py for (CHR) option LiFePO4 and (CHR2) option LiC6.

– The reference chemical potential µΘ for each of the two options needs to

be set to that from Appendix A.

5.2 Numerical Approaches to Optimization

The simplest approach to optimizing a multivariable function is by breaking the

problem into two parts such that linear programming (LP) can be used. For some

initial set of unknown parameters m0, first a suitable search direction is found. Using

the line search strategy to minimize along that direction, a new point is found to

then repeat the process on. Edgar et al. [7] describes how these two steps can be

iterated until some convergence criteria for termination is met and the approximate

optimal solution is obtained. Speed of convergence will depend on how sophisticated

the methods are for choosing a search direction and finding the appropriate step size

from the line search during each iteration. Alternatively, a nonlinear programming

(NLP) method is better suited to solve an optimization problem where the objective

function is nonlinear. As discussed in Edgar et al. [7], generating search directions

sometimes involves evaluating partial derivatives either analytically or with usually

less accuracy using finite difference methods. In the case here, the governing system

is too complicated to obtain analytical derivatives.

There is also a family of optimization methods known as direct search that do not
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require information about the gradient of the objective function with respect to the

unknown parameters and rely on direct evaluations only. They have the advantage of

being able to handle discontinuities or sharp changes in slope otherwise causing errant

behavior in derivative calculations requiring some degree of smoothness. Similarly,

direct search methods often naturally handle return values of NaN and Inf from the

objective function that require special consideration in algorithms based on gradient

information. The drawback of derivative-free searching is they often rely on trial and

error approaches to finding an optimal solution that are in general more inefficient

for certain well-behaved problems able to take advantage of gradients in determining

search directions.

The number of iterations in an optimization depends on a solver’s stopping criteria

which are in general set tolerances that halt progression when some threshold is

achieved. One such termination condition is a step tolerance that characterizes the

change in magnitude of input parameters used in the objective function from the

previous iterative step. This value is chosen depending on the desired precision of the

parameters yielding an approximate optimal solution. Another common criterion is

a function value tolerance which represents the lower bound on the change in value

of the objective function during a step. Meeting this threshold is an indication the

algorithm has achieved sufficient flatness in the objective function that it can be

considered an extremal value. Certain implementations of optimization algorithms

also make use of an optimality tolerance that depends on a first-order optimality

measure of how close the solution is to optimal. Each unique optimization method

may require any one or more stopping criteria be achieved before ending the iterations.
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Tolerances used as stopping criteria are specified as either absolute values or in-

stead relative to the previous step values. Relative tolerances have the advantage of

handling poorly scaled problems which can have unknown parameters with different

orders of magnitude. Trying to use an absolute step tolerance would cause numer-

ical difficulties in that contributions of larger magnitude variables would dominate

smaller magnitude ones and lead to loss of information. Certain algorithms allow for

specification of typical parameter values such that differing orders of magnitude can

be accounted for. In general, it is safest to properly scale both the input parameters

as well as output of the objective function so the algorithm only deals with values

of order unity. Characteristic scales can be obtained for the physical parameters

through dimensional analysis. Alternatively, scaling input parameters by the initial

point m0 and corresponding objective function evaluation Jρ(m0) guarantees that

the optimization algorithm begins with well scaled variables provided they do not

end up changing drastically as the routine proceeds.

In solving the optimization problems in Chapter 4, central to choosing an appropri-

ate algorithm is a distinction made between a constrained or unconstrained problem.

For each of the unknown parameters m, thermodynamic arguments made previously

require simple inequality constraints of being nonnegative. In Matlab, the routine

fmincon is a constrained nonlinear multivariable optimization algorithm that can

handle inequality constraints on unknown parameters. Depending on the problem be-

ing solved, the particular constrained algorithm used may be one of: interior-point,

trust-region-reflective, sqp, or active-set.

The positivity of the thermodynamic properties can instead be addressed by ex-

pressing such parameters in terms of squares of auxiliary real variables. Within the
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objective function, each application of input parameter is subsequently squared such

that any attempts by the optimization algorithm to make them negative are reflected

about zero. Unconstrained multivariable solvers can be used with this approach such

as Matlab’s fminsearch as a derivative-free, direct search Nelder-Mead simplex

method applied to find the minimum of the objective function (4.3.1).

5.2.1 Nelder-Mead Simplex Method

The Nelder-Mead technique, also known as the downhill simplex method, is based

on function comparison rather than gradient evaluations and is commonly used on

nonlinear problems where derivatives are unknown. Geometrically, a simplex for any

number of dimensions is a generalization of a triangle or tetrahedron. A p-simplex is

made up of p+1 vertices with edges connecting each such that a 0-simplex is a point,

a 1-simplex is a line, a 2-simplex is a triangle, a 3-simplex is a tetrahedron, and so

forth. The authors Nelder and Mead [16] found that evaluating an objective function

output at a set of points in the input parameter space could allow for optimization by

adapting the corresponding simplex to the local landscape of the objective function.

Continually updating the simplex with particular new vertices to replace the old ones

in search of a minimum allows for the polytope to elongate down slopes, follow the

direction of angled valleys, and contract in the neighborhood of the solution.

It should be noted however that the downhill simplex method is a heuristic search

method with the potential to converge to non-stationary solutions. As such, it can be

useful to perform one or more restarts that use the returned solution of a completed

optimization as the initial value for another attempt. If subsequent optimizations

also return the same result, it may be regarded as a local minimum. Additionally,
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this method is not a global optimizer and benefits from sampling initial points from

various regions of the parameter-space that may be otherwise inaccessible in hopes

of finding a global solution.

While there are a number of modern improvements to the Nelder-Mead algorithm,

the particular variation used in fminsearch is as described in Lagarias et al. [13].

To begin, an initial simplex must be formed with p+ 1 points where p is the number

of unknown parameters. A specified initial point m0 ∈ Rp is used as one of the

vertices in the initial simplex. The remaining p points of the simplex are each found

by adding 5% to one of the p unknown parameters in the initial guess. Note that

by optimizing with respect to the square-root of the original parameters, the initial

simplex becomes 10.25% in each direction. More sophisticated choices may be more

appropriate given an initial simplex too small causes the algorithm to perform a local

search such that a non-optimal solution is returned. An initial simplex too large could

have difficulties finding the most optimal result given the method works best when

the objective function is unimodal and varies smoothly. This aspect however is not

something that can be modified in fminsearch natively and again emphasizes the

importance of trying a variety of initial guesses.

A single, generic iteration will typically replace the worst point in the simplex

with a new, better vertex from an objective function standpoint. In the event a

shrink is performed however, only the vertex with the lowest error is kept while p new

points replace the remaining ones in the simplex. Lagarias et al. [13] describes how a

complete Nelder-Mead method is defined by four scaler coefficients that modify the

particular operation being performed at each iteration. The standard choice is that

the coefficient of reflection be 1, expansion be 2, contraction be 1/2, and shrinkage
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also be 1/2. These operations shown in Figure 5.1 are in order of attempt to locate a

point with a value of error functional smaller than any of those in the current simplex:

• Reflect the worst point mp+1 about the centroid m̄ in the hyperspace of the

other points to get reflection point mr.

• Expand in the direction beyond mr by calculating the expansion point me.

• Contract outside the current simplex by doing a contraction between centroid

m̄ and reflection mr.

• Contract inside by doing a contraction between centroid m̄ and worst point

mp+1.

• Shrink as a last resort by keeping only the best point m1 and halving the

distance between all of the others.

Algorithm 1 describes the full fminsearch optimization routine as implemented by

Matlab.

The stopping criteria in fminsearch differs from other methods in that it depends

on both an absolute step tolerance and an absolute function tolerance instead of just

one. This condition is found to be too strong in some cases, preventing termination

when the simplex becomes too small with a wide distribution of objective function

values. Also problematic is the opposite case when objective function values in a large

simplex are too similar. This can be addressed by manually tracking the simplex using

Matlab’s output function, called after successful completion of an iteration. Custom

stopping criteria may then be specified to require only one tolerance be met, though

analysis of results should take into consideration the implications of which threshold
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was met. It is also notable that unlike other methods, tolerances are calculated

based on the distribution of points in the simplex rather than from some difference

between iterations. Given they are not relative, good scaling is important to achieve

termination before reaching the set number of maximum iterations. The optimal

solution is then the best point in the simplex after the final iteration.

mp+1

mr

me

mc

mcc

mm1

Figure 5.1: All the operations from Lagarias et al. [13] illustrated using a
two-dimensional simplex analogy including: original simplex (solid black), reflection
(dotted black), expansion (solid red), contraction outside (solid blue), contraction

inside (dashed blue), and shrinkage (dashed red).
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Algorithm 1 Nedler-Mead simplex method as used in fminsearch

Input: Initial guess of unknown parameters m0, objective function Jρ(m), step
tolerance T ∗m, and function value tolerance T ∗F
Output: Optimal solution set m[1, :]

. %comment: First step is to create initial simplex m around the starting point

m0 with p parameters and evaluate the objective function at each%

m[1, :]←m0

F [1]← Jρ(m[1, :])

for j = 2 to p+ 1 do

m[j, :]←m0

m[j, j − 1]← 1.05×m[j, j − 1]

F [j]← Jρ(m[j, :])

end for

repeat

. %comment: Order the p+ 1 vertices to satisfy F [1] ≤ F [2] ≤ · · · ≤ F [p+ 1]%

[F, I]← sort(F )

m← m[I, :]

. %comment: Reflect the worst point about the centroid of the better points%

m̄←
∑p

j=1 m[j, :]/p

mr ← 2× m̄−m[p+ 1, :]

Fr ← Jρ(mr)

if F [1] ≤ Fr < F [p] then

m[p+ 1, :]← mr
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else if Fr < F [1] then

. %comment: Expand by calculating the expansion point%

me ← 2×mr − m̄

Fe ← Jρ(me)

if Fe < Fr then

m[p+ 1, :]← me

else

m[p+ 1, :]← mr

end if

else

flag ← 0

if F [p] ≤ Fr < F [p+ 1] then

. %comment: Contract outside between m̄ and mr%

mc ← (m̄+mr)/2

Fc ← Jρ(mc)

if Fc < Fr then

m[p+ 1, :]← mc

else

flag ← 1

end if

else

. %comment: Contract inside between m̄ and m[p+ 1]%

mcc ← (m̄+m[p+ 1])/2

Fcc ← Jρ(mcc)
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if Fcc < F [p+ 1] then

m[p+ 1, :]← mcc

else

flag ← 1

end if

end if

if flag = 1 then

. %comment: Shrink by keeping the best point and moving the others closer%

for j = 2 to p+ 1 do

m[j, :]← (m[1, :] +m[j, :])/2

F [j]← Jρ(m[j, :])

end for

end if

end if

for j = 1 to p do

Tm[j]← |max(m[:, j])−min(m[:, j])|

end for

Tm ← max(Tm)

TF ← |max(F )−min(F )|

. %comment: Terminate with step tolerance T ∗m and error tolerance T ∗F%

until Tm < T ∗m and TF < T ∗F
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Chapter 6

Results & Discussion

In this chapter, analysis is conducted on inverse modeling results from using both the

classical approach based on a single-objective optimization and an extended multi-

objective optimization approach discussed in Chapter 4. Evaluating the error func-

tionals (4.1.1) and (4.2.1) requires solving the system of PDE’s summarized in Section

3.3 with computational methods discussed in Chapter 5. Comparisons are made be-

tween the (CHR) model and the (CHR2) model to determine the relative benefit of

extending the Cahn-Hilliard formulation to the periodic bilayer model. The opti-

mization algorithm is shown to work as desired through the validation performed in

Appendix B.

When fitting model data, it is important to only take seriously the differences in

quality of fit which are discernible, given limitations from the error present in ex-

perimental data. The original work of Krachkovskiy et al. [11] estimates the error

in total intercalated lithium to be about 3% such that any improvement achieved

between the two models in the concentration fitting must be substantially higher to

98



M.Sc. Thesis – A. Mitchell McMaster University – CSE

be conclusive. An additional consequence of measurement error is obtaining “effec-

tive” reconstructed optimal parameters that possess a certain degree of uncertainty.

Analysis in this regard is left for future work where a full accounting of the statistical

implications of this study can be addressed.

6.1 Single-objective Optimization

Optimization of only one of the two error functionals corresponds to the extremal cases

in the weighted average (4.3.1) where ρ = 0 gives the concentration error (4.1.1) and

ρ = 1 gives the cell voltage error (4.2.1). The focus of this section will be on examin-

ing the optimal solution after fitting concentration profiles only. The values of error

functionals obtained after optimization are presented in Table 6.1 with corresponding

reconstructed unknown parameters in Table 6.2. An improvement in concentration

profile fit of 19.71% is found when extending the Cahn-Hilliard formulation (CHR) to

the periodic bilayer model (CHR2). Note again the fitting is not being performed on

voltage measurements here so analysis in that regard is left for the next section. Mul-

tiple restarts were done to eliminate the possibility of terminating at a non-stationary

value rather than a local minimum. In both models, termination occurred upon sat-

isfying a function value tolerance of 1× 10−3 while a step tolerance of 1× 10−2 was

unmet (noting that optimization is done with respect to square-rooted parameters

and scaled by the initial starting point). This indicates the landscape of the error

functional is flat near the local minimum which typically occurs for ill-posed inverse

problems where a distribution of parameter combinations produce similar concentra-

tion profiles.

99



M.Sc. Thesis – A. Mitchell McMaster University – CSE

(CHR) (CHR2) ∆

Jcs 1.664× 10−4 1.336× 10−4 19.71%

JΦ 2.136× 10−3 2.120× 10−3 0.7491%

Table 6.1: Error functional values for the two models that result from solving the
optimization problem (4.3.2) with ρ = 0 for fitting only concentration profiles.

k0,foil k0 γside σs D0 Ωa Ωb Ωc

10.59 4.690 6.990 1.045 2.001× 10−14 1.052× 10−20 – –

8.993 4.216 5.679 2.212 1.497× 10−14 1.020× 10−20 2.022× 10−22 4.242× 10−24

Table 6.2: (CHR) model (top) and (CHR2) model (bottom) optimal reconstructions
of parameters based on single-objective optimization (4.3.2) with ρ = 0.

The optimal regular solution parameter Ωa is almost the same in both models

where they are larger than the threshold 2kBT at which phase separation becomes

energenically favorable. Smith et al. [23] mentions that the concentration profiles are

relatively insensitive to gradient penalty κ which would otherwise seem like good can-

didate for reconstruction. This was found to be especially true for the (CHR) model

which gives the same objective function result over varying magnitudes of gradient

penalty, provided the corresponding characteristic interface widths from (3.2.42) both

represent a small fraction of the particle radii λ � a. Recall the size of spatial dis-

cretization is set to be half of the characteristic interface width in order to resolve

phase boundaries. Hence, there is a significant impact on computational cost where

too small κ can take a prohibitively large amount of effort to simulate. When the

optimization algorithm attempts such a configuration, MPET may fail to initialize or
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otherwise stall indefinitely. These cases and certain combinations of other parameter

values can produce a return value of Inf from the error functional and underscores the

importance of selecting an optimization routine that can handle such discontinuities.

Here, κ is held at a constant value big enough to give reasonably quick simulation

times and chosen to be that which produces optimal concentration profile results in

the (CHR2) model.

Characteristic scalings as they relate to the electrode particles are displayed in

Table 6.3 and are discussed in Smith et al. [23] to provide insight on how the recon-

structed parameters influence the system’s behavior. A characteristic time scale for

reactions can be expressed as,

τR =
ecl,refa

k0

, (6.1.1)

and for diffusivity in the graphite particles,

τD =
a2

D0

. (6.1.2)

The Damköhler number is then taken as the ratio,

Da =
τD
τR
, (6.1.3)

as discussed in Bazant [2] to capture which the limiting factor is in the balance be-

tween lithium entering through reactions and being carried away from the surface by

diffusion. The longer time scales for the (CHR2) model corresponds to the recon-

structed parameters in Table 6.2 where the Butler-Volmer exchange rate constant k0

and diffusion coefficient D0 are both larger in magnitude for (CHR1).
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(CHR) (CHR2)

Interface width, λ 2.726× 10−8 m 2.768× 10−8 m

Reaction time, τR 1.208 h 1.344 h

Species transport time, τD 1.152 h 1.540 h

Damköhler number, Da 0.954 1.146

Table 6.3: Characteristic scalings for the two models based on parameters obtained
from Table 6.2.

The concentration profiles predicted by the two different models to best match

experimental data are shown in Figure 6.1. The improvement in fit can be noticed

in comparing the fifth time slice ĉs(x, t5) and later. The (CHR2) model is found

to allow the first spatial position to accelerate its filling rate and increase the gap

between the subsequent particles in the battery. Compare this to the (CHR) model

where a smoother transition across the battery does not capture the jump between

the first and second position quite as well. It is possible there exists a better choice of

an initial guess or set of unknown parameters that would further allow the (CHR2)

model to capture the jump seen in the second battery position occurring for ĉs(x, t8)

and later.

Recall that the error functional (4.1.1) and the concentration profiles use the

average in each particle c̄s(x, tk) from (3.2.26). The electrode volumes placed at each

battery position contain a single graphite particle to be simulated with no others in

parallel with regards to electrolyte access. Since the experimental data is discretized

into six partitions along the length of electrode, the number of volumes chosen to be

simulated across the battery cell is twelve such that the model has double the spatial
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resolution with reasonable computational cost. Hence, two particles are averaged

together for each experimental data segment along the battery length.

Within each simulated spherically symmetric particle, concentrations cs(x, r; t)

for (CHR) and c1(x, r; t) + c2(x, r; t) for (CHR2) depend on the radial position. This

pseudo two-dimensional domain (x, r) is presented for the two models in Figure 6.2

where distinct phase separation between high and low concentrations is clearly ev-

ident. Again examining volumes closest to the separator, there is a noticeable dif-

ference between the models. The improvement in fit for the (CHR2) model is at-

tributable to a different phase-separating behavior in the first few particles that does

not occur in the (CHR) model. The emergence of a half-full stage 2 is discernible

in the heatmap at later times in the (CHR2) model as an annulus with intermediate

concentration between the dilute core and the high concentration shell. Time snap-

shots for only the first particle closest to the separator where this effect is strongest

are overlaid in Figure 6.3. There, it is clearly evident the effect of the periodic bilayer

model as phase separation shows the three stable phases of both layers being nearly

empty, one layer being full with the other dilute, and finally both layers being nearly

full approaching the particle surface at later times.

The concentration profiles can be integrated over the length of the battery and

normalized to produce the totaled quantities displayed in Figure 6.4. This corresponds

to the total amount of lithium intercalated into the graphite electrode particle which

is then normalized by the total lattice site capacity cs,max to become a filling fraction

comparable to the state of charge predicted by the C-rate. Both (CHR) and (CHR2)

are nearly identical here and closely match the behavior of the experimental data.

The growth of the SEI layer is seen to occur instantaneously at some critical time and
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proceeds at a constant rate for the remaining duration. The shape of these curves

are influenced by γ which plays a significant role in the fraction ω from (3.1.74)

in determining the amount of lithium diverted from the graphite and into the SEI

layer. The sum of this and the lithium entering the graphite gives a linear relation

with time, characteristic of a galvanostatic experiment with a constant current and

C-rate of C/44. It is notable that at early times in the experiment, the amount of

intercalated lithium is lesser than the idealized charge rate. This is not attributable

to lithium being in the SEI layer as the physical picture of the phenomenon is that

deposition begins at some critical moment and monotonically increases thereafter.

The early discrepancy could however be because the NMR imaging used to collect

the experimental data is not measuring the lithium in the dilute higher stages.

Though voltage is not being fitted here, the comparison of model results to exper-

imental results are still shown in Figure 6.5. In both models, a distinct drop in cell

voltage is seen at about a 1/4 state of charge corresponding to the point at which the

SEI layer begins to grow. This is also the time at which particles across the length of

the battery simultaneously undergo phase separation into a high concentration outer

shell and a low concentration inner core. Given the concentration on the surfaces sud-

denly jump from a small to a large quantity, equations referencing these values like

the OCV from (3.1.71) and the SEI layer fraction from (3.1.74) respond accordingly.

Smith et al. [23] discusses how an ensemble of particles at each battery position

with a distribution of radii will phase-separate at different times and act to smooth

out the instantaneous jump seen in the macroscopic quantity of cell voltage. Due

to the computational cost of simulating a number of particles at each cell volume

however, the model here simulates only one particle per volume with a set radius.
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Note however the voltage drop from the (CHR2) model is slightly less than that of

the (CHR) model and produces marginally better fit voltages as a result.

Another output from the model that gives insight into the system’s dynamics is

the volumetric sink/source term of ions (3.1.88). On clear display in Figure 6.6 is the

galvanostatic constraint from (3.1.86) that necessitates the reaction rate integrated

over the length of the battery be equal to a constant total cell current density. This is

evident when the first few particles spike in the amount of lithium they accept while

the remaining particles have reaction rates that languish as a result. Both models

are similar in this regard with only slight variation between the two plots. The solid

electric potentials are also displayed in Figure 6.7.

Finally, the electrolyte concentration and electric potential are shown respectively

in Figures 6.8 and 6.9 to gain an understanding of the macroscopic dynamics in the

model. At any given time, electrolyte concentration monotonically decreases across

the length of the battery. This is consistent with the counter electrode supplying Li-

ions at x = 0 to replace those removed by the particles along x ∈ Lc. The steepness

of the declining slopes corresponds to the magnitude of the volumetric sink/source

term at that position and time, balanced with the influx of lithium diffusing across

the cell. A characteristic time for electrolyte diffusion can also be found as,

tref =
L2
c

D(cl,ref)
= 309.45 s. (6.1.4)

Given the timescale here is much faster than those in Table 6.3 and the overall length

of experiment, the electrolyte profiles equilibrate rapidly away from the homogeneous

initial state at the reference concentration.

Since experimental data did not measure the quantity of lithium in the electrolyte,
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the properties pertaining to the macroscopic transport processes are inherited from

Morales Escalante et al. [15] and not subject to optimization. Note that for brevity,

only the (CHR) model is plotted for these quantities since they are indistinguishable

from those produced by the (CHR2) model. The electric potential in the electrolyte

takes on an identical shape as its concentration at each time. The electrolyte potential

at the counter electrode is used as a reference to compare relative potential drops

across the cell at different times. These reference values notably produce shape of the

cell voltage through (3.1.81). Animations of the following figures can be viewed for

the (CHR) model at https://youtu.be/H0ISrjiad6s and for the (CHR2) model at

https://youtu.be/neFwizATsDU.
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Figure 6.1: Green bars are normalized experimentally obtained concentration
profiles ĉs(x, tk) versus the spatial coordinate x at time levels tk = 2.5, 5, . . . , 25 h.
Blue circles are c̄s(x, tk) for (CHR) model (top) and (CHR2) model (bottom) with

parameters obtained from Table 6.2. Red stars are the residuals.

107



M.Sc. Thesis – A. Mitchell McMaster University – CSE

Figure 6.2: Heat map of filling fraction c̃s(x, r; tk) from the (CHR) model (top) and
(c̃1(x, r; tk) + c̃2(x, r; tk))/2 from the (CHR2) model (bottom) as a function of solid
electrode length x and radial position r over a series of time slices for k = 1 . . . 10.

Parameters used are from Table 6.2.
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Figure 6.3: Normalized concentration profile c̃s(2.125× 10−4, r; tk) for (CHR) model
(top) and c̃i(2.125× 10−4, r; tk), i = 1, 2 (solid/dotted) for (CHR2) model (bottom)
as a function of radial position r colored based on times tk, k = 1 . . . 10 within the

first electrode particle, closest to the separator. Parameters used are from Table 6.2.
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Figure 6.4: The red line is normalized experimentally obtained total lithium
∆x
∑
ĉs(x, tk). The blue line is normalized total ∆x

∑
c̄s(x, tk) and black line is

normalized total ∆x
∑
c̃side(x, tk) in SEI layer for (CHR) model (top) and (CHR2)

model (bottom) using parameters from Table 6.2. Green is sum of blue and black.
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Figure 6.5: Cell voltage φcell versus state of charge . The solid red line is the C/44
experimentally obtained profile and blue line with circles is from the (CHR) model

(top) and (CHR2) model (bottom) with parameters used from Table 6.2.
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Figure 6.6: Reaction rate from (3.1.88) at the surface of solid electrode particles as
a function of battery position x with color based on times tk, k = 1 . . . 10. Displayed

here is the (CHR) model (top) and (CHR2) model (bottom) with parameters
obtained from Table 6.2.
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Figure 6.7: Solid electrode particle potential φs(x, tk) as a function of battery
position x with color based on times tk, k = 1 . . . 10. Displayed here is the (CHR)

model (top) and (CHR2) model (bottom) with parameters obtained from Table 6.2.
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Figure 6.8: Normalized concentration in the electrolyte c̃l(x, tk) with contours
colored based on their times tk, k = 1 . . . 10 for the (CHR) model results with

parameters obtained from Table 6.2.
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Figure 6.9: Electrical potential in the electrolyte φl(x, tk)− φl(0, tk) with contours
colored based on their times tk, k = 1 . . . 10. Each individual curve uses a reference

potential as that measured at the counter electrode for the (CHR) model results
with parameters obtained from Table 6.2.

6.2 Multi-objective Optimization

The goal of solving the multi-objective optimization problem (4.3.1) is to find a set

of reconstructed unknown parameters that produce simultaneously good fits for both

concentration profiles and cell voltage. A “Pareto front” is obtained by solving the

family of optimization problems in a sweep over various weights between error func-

tionals for the two datasets. This Pareto front allows for the user to then decide
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on an appropriate trade-off between fitting concentration or voltage to obtain the

reconstructed parameters corresponding to that particular value of ρ. Since the mag-

nitudes of each individual error functional can differ wildly, the ideal range of ρ values

is not inherently known. Finer resolution sweeps are required when large jumps are

observed in initial findings, though this is not found to be necessary here.

Since the optimization algorithm used is a local minimizer, the initial guess of pa-

rameters for each weight is very important in determining the optimal result. Hence, a

continuation approach is warranted where each successive value of ρ in the sweep uses

the optimal result of the previous weight as an initial guess. With greater emphasis

placed on concentration fitting in this work, the optimal reconstructed parameters

from the single-objective optimization in Table 6.2 are used as the initial point for

a sweep beginning at ρ = 0. Stepping by increments of 0.1, the optimization prob-

lem (4.3.1) is solved at each weight to produce the culminating results of this work

displayed in Figure 6.10.

Since the goal is to reduce both error functionals, the better results will appear

near the bottom-left of the plot. Both Pareto fronts for the two models feature a

cluster a tight-knit data points that indicate both models can simultaneously fit both

sets of measurements rather well. In particular, variation is on a scale two orders

of magnitude smaller for voltage error functional values and the discrepancy seen in

Figure 6.5 is not reduced without further suppressing phase separation by decreasing

Ωa. Finally, the reconstructed unknown parameters that were obtained through solv-

ing an optimization problem at each ρ are shown in Figure 6.11 for those common

to both models. Those unique to the (CHR2) model only are displayed in Figure

6.12. Refer to Tables 6.4 and 6.5 for the error functionals and optimal reconstructed

116



M.Sc. Thesis – A. Mitchell McMaster University – CSE

parameters corresponding to a weight ρ = 0.4 found to achieve simultaneously good

agreement with both datasets.

Figure 6.10: Pareto fronts for the (CHR) model in black and the (CHR2) model in
blue from multi-objective optimization over a sweep of weights. On the vertical axis
is the error functional for the concentration profiles while the horizontal axis is the
error functional for the cell voltage profiles. Points are colored based on their value
of ρ. Note if a point is not visible it is behind a later value of ρ that did not improve

upon the error functional Jρ(m0).
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Figure 6.11: Optimal reconstructed parameters obtained by solving the optimization
problem (4.3.1) over the range of ρ values corresponding to the Pareto front results

in Figure 6.10. The (CHR) model is black and the (CHR2) model is blue.
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Figure 6.12: Optimal reconstructed parameters unique to the (CHR2) model
obtained by solving the optimization problem (4.3.1) over the range of ρ values

corresponding to the Pareto front results in Figure 6.10.

(CHR) (CHR2) ∆

Jcs 1.664× 10−4 1.347× 10−4 19.05%

JΦ 2.136× 10−3 2.099× 10−3 1.732%

Table 6.4: Error functional values for the two models that result from solving the
optimization problem (4.3.2) with ρ = 0.4 where concentration profiles and voltage

profiles are simultaneously small.

k0,foil k0 γside σs D0 Ωa Ωb Ωc

11.68 4.690 6.990 1.045 2.001× 10−14 1.052× 10−20 – –

9.122 4.276 5.803 2.244 1.518× 10−14 1.027× 10−20 2.045× 10−22 4.303× 10−24

Table 6.5: (CHR) model (top) and (CHR2) model (bottom) optimal reconstructions
of parameters based on multi-objective optimization (4.3.2) with ρ = 0.4.
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Chapter 7

Conclusions & Outlook

In this study, models for lithium transport in the solid electrode graphite particles

were considered based on the original Cahn-Hilliard model and extended periodic

bilayer model to solve the inverse problem by inferring material properties from ex-

perimental data. In particular, error functionals quantifying the difference between

simulated model data and laboratory measurements of concentration and voltage

profiles allowed for the determination of which Gibbs free energy formulation could

more accurately capture certain physical phenomena. The hypothesis of this work

was proven to be correct in that the more complex periodic bilayer model (CHR2) is

found to outperform the original Cahn-Hilliard model (CHR) by both metrics. Ac-

cordingly, the optimal set of unknown parameters obtained by the periodic bilayer

model corresponding to intermediate values of ρ may be considered more accurate

reconstructions of actual, physical material properties.

It is worth noting that the majority of improvement over the original model was

obtained through capturing specific features in the concentration profile fitting while

the change to the voltage error functional was only marginal. Using the standard
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diffusion equation may rectify discrepancy in voltages but at too much of a penalty

to the concentration fitting. Furthermore, the increased computational cost of sim-

ulating the more complex (CHR2) model was manageable and did not represent a

significant barrier to obtaining results. Accordingly, the (CHR2) model is more ad-

vantageous to use as it represents a better description of the true physics of cross-plane

lithium interaction and stability of additional stable phases. These results were not

directly compared to the findings of Morales Escalante et al. [15] due to differences in

the treatment of counter electrode leading to mismatching electrolyte concentration

profiles and overall cell voltage.

Overall, MPET was found to be a very powerful tool that had most of the mathe-

matics and physics needed here accounted for already. The most challenging aspect

was addressing the multitude of configurable options for the software to be consistent

with the experimental setup and previous work by Morales Escalante et al. [15]. By

requiring close scrutiny for each aspect of the full multi-scale model, a greater under-

standing of battery operation as a whole was gained than if electrode dynamics alone

were considered. The results shown here, while collected over a period of a few short

days, represent the culmination of a long and hard-fought process of iterative discov-

ery. Thousands of hours were sunk into simulating precursor setups that lacked one

feature or another of the present study while gradually understanding and exploring

each component of the complicated multi-scale model.

While the main research question of this work was answered, the successful repro-

duction of experimental results using MPET opens a number of potential future avenues

of research in the area of predicting material properties by modeling the transport

processes in a Li-ion battery:
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• Expand the list of parameters to be reconstructed during inverse modeling to

include any more of those that are unknown and may impact results.

• Infer state-dependent material properties such as is done in Morales Escalante

et al. [15] as functions of concentration instead of being made constant.

• Conduct sensitivity analysis on the input parameters to determine which are

more likely to influence the fitting to experimental data.

• Perform inverse modeling on other experimental datasets using the techniques

developed here.

• Redo this work’s results for other electrolyte models (e.g., Nernst-Planck) and

other reaction types (e.g., Marcus).

• Incorporate neglected aspects of the model like electrical resistances, surface

wetting, and stress.

• Extend the mathematical theory for the Cahn-Hilliard model to feature three

or more periodic layers.

• Formulate a physics-based model to replace the ad-hoc, contrived accounting of

the side reaction rate and SEI layer formation.

• Use other particle shapes than a sphere such as an ellipsoid or cylinder.

• Simulate many graphite particles in parallel with regard to electrolyte access at

each volume with a distribution of radii as shown in Figure 7.1 at a significantly

increased computational cost.
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• Increase the number of volumes and hence discretization along the length of the

battery x at an increased computational cost.

• Recreate the optimization algorithm and data handling wrapper in Python in-

stead of Matlab for more seamless integration with original MPET code.

• Switch to a global optimizer or test an array of initial guesses for further im-

provement of profile fitting.

• Perform the validation by perturbing the parameters that produce the manu-

factured dataset a sufficient number of different ways to assess the optimizer’s

ability to approach a solution from any direction.

V
e− e−

I

ionic
conduction

intercalation reactions electron
conduction

Figure 7.1: Battery schematic of multiple particles per volume.
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Appendix A

Parameter Values

Parameter Units Value

MPET configuration file

Profile type – CC

Charge rate, Cr h−1 1/44

Fraction of full charge to simulate – 26/44

Current ramp time s 1× 10−3

Number of discretization in time – 52

Relative tolerance – 1× 10−6

Absolute tolerance – 1× 10−6

Temperature, T K 298

Random seed – true

Random seed value – 652761

Continued on the next page
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Continued from previous page

Parameter Units Value

Series resistance, Rser Ω 0

Number of electrode volumes – 12

Number of separator volumes – 8

Particles per electrode volume – 1

Li foil exchange rate constant, k0,foil A m−2 See Table 6.2

Li foil film resistance, Rfoil Ω 0

Particle radius, a µm 9.11

Standard deviation of radii – 0

Initial electrode filling fraction, c̃s,0 – 0.001

Simulate bulk electrode conductivity – true

Conductivity, σs S m−1 See Table 6.2

Simulate particle conductivity losses – false

Electrode length, Lc µm 300

Separator length, Ls µm 200

Active material loading percent, PL – 1

Electrolyte liquid volume fraction, εl – 0.1624

Separator liquid volume fraction, εl,s – 0.55

Bruggeman exponent – −1/2

Initial electrolyte concentration, cl,ref mol m−3 1000

Cation/anion charge number, z± – ±1

Continued on the next page
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Continued from previous page

Parameter Units Value

Cation/anion dissociation number, ν± – 1

Electrolyte model – SM

Stefan-Maxwell property set – valoen reimers

Number of electrons in reaction, n – 1

Cation stoichiometric coefficient, s+ – −1

Type of solid particles – CHR or CHR2

Discretization of solid m
1

2

√
κ

2Ωa

Particle shape – sphere

Chemical potential of reduced state – LiFePO4 or LiC6

Log pad – false

Noise – false

Regular solution parameter, Ωa J See Table 6.2

Secondary interaction terms, Ωb,c J See Table 6.2

Gradient penalty, κ J m−1 1.092 939× 10−7

Stress coefficient Pa 0

Van der Waals-like interaction energy – 0

Total Li site density within solid, ρs m−3 1.397 345× 1028

Dimensional diffusivity prefactor, D0 m2 s−1 See Table 6.2

Diffusivity function – lattice

Continued on the next page
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Continued from previous page

Parameter Units Value

Surface wetting J m 0

Reaction type – BV mod01

Exchange rate constant, k0 A m−2 See Table 6.2

Charge transfer coefficient – 1/2

Film resistance – 0

Other MPET properties

Side reaction fraction, γ – See Table 6.2

Reference chemical potential, µθ – 0.08847
e

kBT

Transference number, t0+ – 0.33

Electrolyte conductivity prefactor, σ0 S m−1 0.0014492

Electrolyte conductivity coefficient, a0 – −41.5292

Electrolyte conductivity coefficient, a1 – −9.626

Electrolyte conductivity coefficient, a2 – 1.518

Electrolyte diffusivity prefactor, D0 m2 s−1 6.9864× 10−10

Electrolyte diffusivity coefficient b – −0.87637

Open-circuit voltage coefficients bj,k – See Table C.1
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Appendix B

Inverse Modeling Validation

The goal in this section is to determine the overall ability of the optimization algo-

rithm to obtain an accurate reconstruction of unknown parameters. Recall in Chapter

4 that the least-squares difference between model data and experimental data is used

in the error functional. Consider instead the experimental data replaced with a man-

ufactured dataset also generated using the mathematical model, though now by a

set of known parameters. By knowing ahead of time the exact optimal solution that

produces an objective function value of zero, beginning the optimization routine at

some other initial point will determine its ability to reconstruct that correct result.

Both the initial set of parameters and the set of parameters generating the target

dataset must be chosen to appropriately reflect what a typical optimization using

experimental data would look like. Hence, a good choice for the target data is the op-

timal result from a previously completed optimization, most resembling experimental

data. To select an initial point, the target set of parameters can then be perturbed

by normally distributed random numbers. A number of initial points should be tried
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to gain a complete understanding of the algorithm’s ability to converge from all di-

rections. A standard deviation for the perturbations is chosen such that the initial

objective function evaluation is at least as large as the optimal result using experi-

mental data.

Success can be measured by not only how similar an optimal solution is to the

target set of parameters, but also by how close to zero the objective function can

achieve. A large final cost error functional would indicate the optimization routine

is stuck on a local minimum or non-stationary point and otherwise unable to reach

the target parameter set. A small final cost error functional with an optimal solution

that differs from the targeted parameters would demonstrate the problem is degen-

erate in that the same result is obtainable through various parameter sets. For some

parameters accurately reconstructed and others not, insight is gained on which are

sensitive or insensitive for producing change in the model data.

The results of validation are displayed for the (CHR) model in Table B.1 and for

the (CHR2) model in Table B.2. Parameter values for the initial and final points

are shown as being relative to those in Table 6.2 used to produce the manufactured

datasets. The concentration error functional is seen in Figures B.1 and B.2 to be

greatly reduced by several orders of magnitude over the optimization iterations. This

result alone shows the validation is successful in achieving excellent agreement with

the manufactured data. It is important to note however that while some parameters

such as γ and Ωa were able to be reconstructed almost perfectly by having a strong,

well-defined effect on results, others like k0 and σs did not recover the original target

values. This is further evidence the objective function has many local minima that

produce similar error functional values despite using largely varying parameters. Note
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also that k0,foil is known to affect only voltage profiles such that it would have no

possibility of being recovered in fitting of the concentration profile. The resulting

simplex for each optimization is given in Tables B.3 and B.4. Like most optimizations

ran for this work, the termination criteria met was that for function value tolerance

instead of for parameter step tolerance. This is consistent with the depiction of the

objective function being considerably flat near the optimal solution.

∆̄ k0 D0 k0,foil Ωa γside σs Jcs JΦ

11.5 0.870 0.852 1.104 1.012 0.742 1.037 3.718× 10−4 5.619× 10−5

9.3 1.092 0.894 0.794 0.995 0.976 1.122 8.556× 10−7 2.755× 10−6

Table B.1: Validation is done based on single-objective optimization (4.3.2) with
ρ = 0 to a manufactured dataset from the (CHR) model with parameters from

Table 6.2. This target set of parameters is used to scale those shown here where the
initial point (top) is perturbed by some random amount. The final point (bottom)
in the case of a perfect reconstruction would give all 1s with 0% average difference

from target (∆̄) and error functionals of 0.

∆̄ k0 D0 k0,foil Ωa Ωb Ωc γside σs Jcs JΦ

11.5 1.174 1.099 1.036 1.137 0.925 0.782 1.066 1.114 9.225× 10−4 3.671× 10−4

6.1 1.085 1.027 1.107 0.998 0.852 0.958 0.995 1.075 1.368× 10−6 9.123× 10−7

Table B.2: Validation is done based on single-objective optimization (4.3.2) with
ρ = 0 to a manufactured dataset from the (CHR2) model with parameters from

Table 6.2. This target set of parameters is used to scale those shown here where the
initial point (top) is perturbed by some random amount. The final point (bottom)
in the case of a perfect reconstruction would give all 1s with 0% average difference

from target (∆̄) and error functionals of 0.
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Figure B.1: Semi-log plot of the objective function evaluation of the best vertex in
the simplex at each iteration of the optimization algorithm. Validation is performed

against the manufactured dataset from the (CHR) model with parameters from
Table 6.2.
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Figure B.2: Semi-log plot of the objective function evaluation of the best vertex in
the simplex at each iteration of the optimization algorithm. Validation is performed

against the manufactured dataset from the (CHR2) model with parameters from
Table 6.2.
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– k0 D0 k0,foil Ωa γside σs Jρ

m1 1.121 1.024 0.848 0.991 1.147 1.041 0.002

m2 1.115 1.022 0.853 0.988 1.136 1.046 0.002

m3 1.116 1.018 0.859 0.990 1.146 1.043 0.003

m4 1.113 1.018 0.850 0.990 1.139 1.047 0.003

m5 1.112 1.018 0.863 0.990 1.139 1.047 0.003

m6 1.109 1.022 0.856 0.987 1.132 1.039 0.003

m7 1.104 1.023 0.859 0.989 1.131 1.046 0.003

Maximum function value difference 0.8× 10−3

Maximum step difference 0.017

Table B.3: Final simplex for validation performed on the original (CHR) model to a
manufactured dataset. Parameters here are scaled by the initial point and
square-rooted while the error functional is scaled only by the initial value.
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– k0 D0 k0,foil Ωa Ωb Ωc γside σs Jρ

m1 0.961 0.967 1.034 0.937 0.960 1.106 0.966 0.983 0.001

m2 0.969 0.978 1.029 0.935 0.956 1.106 0.960 0.974 0.002

m3 0.976 0.988 1.027 0.936 0.958 1.097 0.962 0.973 0.002

m4 0.977 0.989 1.027 0.938 0.960 1.094 0.966 0.978 0.002

m5 0.969 0.988 1.029 0.935 0.948 1.112 0.954 0.963 0.002

m6 0.972 0.988 1.027 0.939 0.960 1.094 0.968 0.976 0.002

m7 0.972 0.991 1.028 0.936 0.950 1.099 0.965 0.973 0.002

m8 0.980 0.976 1.027 0.935 0.963 1.100 0.962 0.977 0.002

m9 0.971 0.978 1.029 0.936 0.953 1.106 0.953 0.973 0.002

Maximum function value difference 0.001

Maximum step difference 0.024

Table B.4: Final simplex for validation performed on the extended (CHR2) model
to a manufactured dataset. Parameters here are scaled by the initial point and

square-rooted while the error functional is scaled only by the initial value.
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Appendix C

Open-Circuit Voltage Fitting

Cell voltage data Ûeq(c̃) that approximates the open-circuit voltage of the battery

as a function of state of charge c̃ is also available from an equivalent experiment

using a slower C/100 charge rate. For use of this OCV in the Butler-Volmer surface

overpotential, the analytical function Ueq(c̃) from (3.1.71) must be fit to the tabulated

experimental data for compatibility with the MPET solver (see, Section 5). An optimal

solution b = {b0, b1,1, b1,2, bj,k}, j = 2, 3, . . . 8, k = 1, 2, 3, is given in Table C.1 from

using Matlab’s fit function with a sufficiently close initial guess. The agreement

between the fitting and the dataset is shown in Figure C.1.
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k = 1 k = 2 k = 3

b0,k 5.638 – –

b1,k 1.09 −13.23 –

b2,k 0.003622 −0.2905 −0.0152

b3,k −2.022 −1.376 0.1839

b4,k −12.12 0.007597 0.005092

b5,k −0.01253 −0.5646 0.05742

b6,k −0.02946 −0.1779 −0.02292

b7,k −0.0368 −0.02385 −0.005836

b8,k −4.478 0.3037 −0.002818

Table C.1: Coefficients for the open-circuit voltage function Ueq(c̃s) from (3.1.71), fit
to C/100 experimental data.
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Figure C.1: Comparing cell voltage from the C/100 experiment to the function
approximating OCV Ueq(c̃) with a set of fit parameters from Table C.1.

The chemical potential in (3.2.45) also relates to the open-circuit voltage through

the Nernstian relationship (3.1.69), detailed in Smith et al. [23]. The optimal value

from Table 6.2 for regular solution parameter Ωa from the (CHR) model can be

used to generate Figure C.2 of the local homogeneous Gibbs free energy density from

(3.2.40) and chemical potential from (3.2.45). The common tangent construction is

applied to find the binodal region where the free energy may be reduced through phase

separation. Recall that outside the spinodal region, sufficient perturbation from the

homogenized state is required to trigger phase separation through nucleation. Inside

the region defined by the points located at extrema of µ0, spinodal decomposition
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can trigger separation from infinitesimal perturbations.

In Figure C.3, the chemical potential is used with the reference chemical potential

µΘ in the Nernstian expression (3.1.69) for open-circuit voltage. This is qualitatively

compared against the experimentally measured C/100 cell voltage that approximates

the OCV. Characteristic of the (CHR) model is only one flat voltage plateau that

fails to capture any of the voltage drops in the OCV observed experimentally.

In a similar treatment, the optimal values from Table 6.2 for regular solution

parameters Ωa,Ωb,Ωc from the (CHR2) model can be used to generate Figure C.4 of

the local homogeneous Gibbs free energy density surface from (3.2.47). For a given

state of charge c̃ = (c̃1+ c̃2)/2, the Gibbs free energy surface in the absence of gradient

terms g0(c̃1, c̃2) has a minimum energy found by solving,

min
c̃1

g0(c̃1, 2c̃− c̃1). (C.0.1)

Since the free energy is symmetric with respect to c̃1 and c̃2, there exists two equivalent

minimal energy trajectories. Just one is isolated when the above is made a constrained

optimization problem by imposing 2c̃ − 1 < c̃1 < c̃ and 0 < c̃1 < 1. Solving (C.0.1)

for each of 0 < c̃ < 1 gives a particular c̃1 and c̃2 = 2c̃− c̃1 that are used in (3.2.59)

to obtain the path dependent effective chemical potential as a function of state of

charge µeff(c̃).

As discussed in Section 3.2.2, the free energy may be further reduced through

phase separation when common tangent planes are able to be constructed. Since the

lower tangent plane is known to be parallel to the c̃1c̃2-plane, it will exist when there

are three values within 0 < c̃ < 0.5 that satisfy µeff(c̃) = 0. The zeros corresponding to

where µeff goes from negative to positive are the binodal points. Within the binodal

138



M.Sc. Thesis – A. Mitchell McMaster University – CSE

region, the free energy can be reduced through phase separation to the common

tangent plane such that the effective chemical potential is zero. By exploiting the

symmetry of the problem, the upper common tangent plane is found by reflecting

the first binodal region about c̃ = 0.5. This second plateau will then feature some

constant effective chemical potential µeff > 0.

A subset of the binodal region is the spinodal region defined within the points

at which dµ/dc̃ = 0 (i.e. inflection points of g0). There, spinodal decomposition

triggers separation into two distinct phases from infinitesimal perturbations in the

homogenized state. Outside this subset however, the system would typically require

sufficient perturbation that phase-separation happens through nucleation. In Smith

et al. [23], the metastable region is demonstrated to cause an “overshoot” before

falling to the stable-equilibrium plateau.

The Gibbs free energy surface can alternatively be presented as a contour plot

where the minimal energy trajectory is easier to discern. This and the correspond-

ing chemical potential from (3.2.50) are shown in Figure C.5. Again applying the

Nernstian expression (3.1.69) gives an open-circuit voltage able to be compared to

the experimental approximation in Figure C.6. One of the crowning features of the

(CHR2) model is in being able to capture the half filling fraction open-circuit voltage

drop. This is attributable to parameter Ωb which increases the free energy of the

nearly full stage 1. However, the optimal result of the concentration profile fitting

is a value of Ωb just large enough to produce a very small drop. The experimentally

obtained OCV is observed to contain a pronounced voltage drop though closer to

0.6 than a filling fraction of 1/2. Several other voltage plateaus are also observed at

low filling fractions that represent dilute higher staging and are not captured by the
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chemical potential. It is noted that these plateaus are seen to still possess a partial

slope indicating the mathematical model is still not accounting for some effect in that

regard.

140



M.Sc. Thesis – A. Mitchell McMaster University – CSE

Figure C.2: Homogeneous Gibbs free energy g̃0 versus filling fraction c̃s (top) and
corresponding chemical potential µ̃0 versus filling fraction (bottom) for the (CHR)
model with Ωa obtained from Table 6.2. The solid blue lines are the sections of the
curves outside the binodal region defined by the binodal points (open circles). The

dotted blue line represents the section of curve inside the spinodal region defined by
the spinodal points (green circles). The dashed blue lines are the sections within the

binodal region but outside the spinodal region. The red line represents the path
followed upon phase separation.
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Figure C.3: C/100 cell voltage versus state of charge for experiment (solid black)
and Nernstian voltage from (3.1.69) for the (CHR) model using the chemical

potential displayed in Figure C.2.
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Figure C.4: Homogeneous Gibbs free energy surface g̃0 versus filling fractions c̃i,
i = 1, 2 for the (CHR2) model with Ωa,Ωb,Ωc obtained from Table 6.2. The solid
blue lines are the sections of the minimal energy trajectory outside the binodal

region defined by the binodal points (open circles) while the dashed blue lines are
inside this region. The red line represents the path followed upon phase separation

which lie along the common tangent planes in green.
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Figure C.5: Contour plot of the homogeneous Gibbs free energy g̃0 versus filling
fractions c̃i, i = 1, 2 (top) and corresponding effective chemical potential µ̃eff versus
the average filling fraction of the two layers (bottom) for the (CHR2) model with

Ωa,Ωb,Ωc obtained from Table 6.2. The solid blue lines are the sections of the
minimal energy trajectory outside the binodal region defined by the binodal points

(open circles) while the dashed blue lines are inside this region. The red line
represents the path followed upon phase separation.
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Figure C.6: C/100 cell voltage versus state of charge for experiment (solid black)
and Nernstian voltage from (3.1.69) for the (CHR2) model using the chemical

potential displayed in Figure C.5.
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