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Abstract

This thesis focuses mainly on a finite sum of complex exponential signals. This kind

of signal model usually captures a variety of applications involving damped signals

such as magnetic resonance spectroscopy, gravitational wave bursts, synchronized

neuronal hyppocampal rhythms, financial modelling and the acoustic localization of

underground oil field. Each coefficient and complex exponential function in the sum

signal can be uniquely characterized by the z-transform of the sampling signal of the

continuous-time sum signal as its poles and residues. We study the estimation of all

these parameters using Pade approximation theory. The Pade approximation theory

deals primarily with the optimally asymptotic approximation of a rational fraction

with each of the denominator and numerator having an allowable degree to the z-

transform of a given discrete-time signal. The poles and the residues of the rational

fraction normally provide relatively precise information on the poles and the residues

of the original z-transform. Particularly for the sum of complex exponential signals,

its poles and the residues can be completely characterized by its Pade approximation

rational fraction with a proper degree constraint. Hence, the Pade approximation

theory becomes a very strong mathematical tool for studying such sum of complex

exponential signals. We make two kinds of contributions: (a) When the residues

are all equal to each other, we derive a closed-form formula for determining the

iii



Pade approximation rational fraction as well as for predicting the future data points.

(b) A co-prime sampling scheme is proposed, with a closed-form algorithm being

provided for efficiently determining the original poles and residues using elementary

diophantine theory.
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2.2 Padé approximation with exact degree m&n . . . . . . . . . . . . . . 6

2.3 The Alternative Method: Generalized Eigenvalue Problem . . . . . . 12
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Chapter 1

Introduction and Problem

Statement

1.1 Introduction

With the rapid growth of scientists, investors, companies, or even strategists of coun-

tries to rely on data analysis to make decisions according to their needs, it is vital

to choose the most efficient mathematical model that can help extract the features

of their data. More and more inquiries suggest that the needs of an efficient and

accurate prediction method that can apply to any remote devices such as cell phones,

tablets, or laptops are essential.

Padé approximation has been widely used in many fields for data analysis, mainly

aiming to help involve the cases with damped data, sharp signals, or data with compli-

cated time dependence using its advantages of the time-consuming and shorter period

needed. In general, we conclude all those cases as finite sum of complex exponential
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signals. For damped data, the involving applications like magnetic resonance spec-

troscopy (Belkic and Belkic, 2006) that uses the concept of Fast Fourier Transform

in the field of life and health, customarily used for biochemical tests, especially the

presence of tumors. In the underground oil field, the method can help locate where

the sound is transmitted from, and to determine the data transmission of a right path

and its position in three-dimensional space, such as measuring-while-drilling (Perotti

and Wojtylak, 2018). In the mechanical field, it is applicable for early detection to

find pipe leaks of water distribution (Hunaidi and Chu, 1999) and helicopter shafts,

and so on (Perotti and Wojtylak, 2018). On the other hand, Padé approximation gets

involved in the Finance industry for financial modeling (Junior and Franca, 2011),

such as price expectation and finding the ratios of stock market indices with damped

oscillations (Wu, 2014).

In this thesis, we can find the unique poles of padé approximants when the padé

approximation is represented in matrix form with exact degree of m and n. The dis-

tribution of unique poles represents one of the data features. Similarly, an alternative

way of finding poles of nth Padé approximant is the generalized eigenvalue problem

H̃v = λHv

At this point, H is a Hankel matrix, and H̃ is the corresponding shifted Hankel matrix.

The idea of this method is from (B. Beckermann and Labahn, 2007). The generalized

Eigenvalue problem occurs in numbers of applications such as the reconstructions to

shape a polygon from its moments (Gene H. Golub and Varah, 1999); in algebra,

it helps to find a sparse black box’s hidden powers (Mark Giesbrecht and shin Lee,

2009) and even for the stated problem, which is the poles of Padé approximants.

2
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Unlike the traditional padé approximation, we will not emphasize the problem on

how to use Padé algorithm for data approximation. Our work’s main contribution

is that we have proposed a competitive prediction model by using the features of

data extracted from padé approximation to predict for more related simulation data.

Philosophically speaking, our approach is one of the mathematical models that rely

upon the features of simulation data generated initially from padé approximation

for data prediction. Once we achieve results on current tasks, considerately, we will

move on to the prediction model implementation on simulation data with noise and

real-world training data. Due to convenience in configuration, our resemble model

can be further developed as an off-the-shelf application that can be downloaded on

any remote devices to address the related problems effectively and accurately to help

more target audiences in various fields.

On the other hand, we propose a theory of co-prime sampling, which is one of our

main technical contributions to this thesis that can efficiently determine the original

poles and residues of the sum signal. We also provide detailed proof of the argument

and the simulation data groups within implementations, where the simulation data

have similar features of the sum signals.

1.2 Thesis’s structure

At the beginning of the thesis, it states the reasons and motivations of this thesis.

Then the following chapter 2 will successively review the general padé approximation,

which is categorized into two parts, the background, and theory related features in

exact-degree matrix form. Moreover, the alternative method, which is the generalized

problem of Hankel matrices, is shown in this chapter. Next, chapter 3 introduces our

3
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proposed prediction algorithm based on padé approximation, followed by our own

built simulation data and their implementations. We also compare the simulation

output versus the prediction results after implementations.

Furthermore, the next chapter introduces the co-prime sampling theory. We prove

this theory and show groups of simulation data with implementations. Eventually, We

conclude our work and discuss our plans on potential enhancement and application

of the prediction algorithm based on padé approximation.

4



Chapter 2

Background and Related Work

In this section, we shall briefly discuss the well-known Padé approximation (Nicholas Daras,

2011) and the relations when Padé approximation theory with exact degree m and n

in Exact Arithmetic form. In addition to that, we will demonstrate how to find the

poles of Padé approximants and its alternative method, the generalized eigenvalue

problem.

2.1 General Padé approximation theory

Let f(z) be an analytic function around z = 0 with Taylor series:

f(z) =
∞∑
k=0

ckz
k (2.1.1)

Alternatively, f could be a formal power series. Given a non-negative integer n ≥ 0,
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let Pn[z] denote the set of polynomials of degree at most m, and given another non-

negative m ≥ 0, let Rmn[z] be a set of rational functions that can be written as

p(z)
q(z)

with p(z) ∈ Pm[z] and q(z) ∈ Pn[z], or we call it Padé approximant to func-

tion f when rmn whose Taylor series is equal to zero. It was initially suggested by

Froissart (Froissart, 1969), and now we should recognize poles of Padé approximants

Froissart doublets.

2.2 Padé approximation with exact degree m&n

According to the general theory of Padé approximation, f(z) = c0 + c1z + c2z
2 + ...

is a function in a neighborhood of z = 0 with Taylor series. We consider its vector

of coefficients ck := (c0, c1, c2 . . . ). As mentioned above, let Pn denote the set of

polynomials of degree at most n, and, given m ≥ 0 and n ≥ 0, let Rmn be the set

of a rational function of p(z)/q(z), or Padé approximants of type(m,n). Throughout

the whole thesis, assuming the relationship of degree is m = n − 1. If µ ≤ m and

ν ≤ n such that r ∈ Rµν , then we say that r is of exact type(µ, ν) had and δ =

min{m−µ, n−ν} ≥= 0 as to Rmn. Based on the first chapter of (Pedro Gonnet and

Trefethen, 2018), the Padé approximant to f(z) is when the difference of rmn ∈ Rmn

and its function f of Taylor series at z = 0 compares with function f :

rmn(z)− f(z) = O(zmaximum) (2.2.1)

From (G. A. Baker and Graves-Morris, 1996), we know that the rational function rmn

is unique. The above is a nonlinear equation, in order to get a linear relationship,

6
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multiplying (2.2.1) by the denominator q(z) of rmn to get series at z = 0 is

p(z) = O(zmaximum) + f(z)q(z) (2.2.2)

However, to get to this point, we lack preconditions since it only could be achieved

by taking p(z) and q(z) as zero. In order to make itself meaningful, it has to satisfy

that q(z) 6= 0. With the requirement, we can only write the equation with degree m

and n as

p(z) = O(zm+n+1) + f(z)q(z) (2.2.3)

Assume p(z) and q(z) satisfy all the preconditions for equation (2.2.3). Suppose a is

a size of (m + 1) vector, it is also the set of coefficients of polynomials p(z) ∈ Pm.

Similarly, b is an (n + 1) vector containing all the coefficients of the denominator

q(z) ∈ pn, which respectively are

a =



a0

a1

...

am


b =



b0

b1

...

bn


(2.2.4)

p(z) =
m∑
l=0

alz
l q(z) =

n∑
l=0

blz
l

7
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Since the conditions of m = n − 1, m ≤ n. The equations of vectors p(z) and q(z)

can be represented in matrix form. Normally each coefficient is normalized such as

b0 = 1, where might cause the linear system of (2.2.3) to be singular. In order to

avoid this problem, we need to satisfy the normalization condition (Pedro Gonnet and

Trefethen, 2011) that ‖b‖ = 1, where‖.‖ is the vector 2-norm. The matrix displays



a0

a1

...

am

an

an+1

...

am+n



=



c0

c1 c0

...
...

. . .

cm cm−1 . . . c0

cn cm . . . c1 c0

cn+1 cn cm . . . c1

...
...

. . .
...

cm+n c2m c2m−1 . . . cm





b0

b1

b2

...

bn


(2.2.5)

Based on the vector a and b from (2.2.4), it indicates that an = an+1 = ... = am+n = 0,

where a is obtained by multiplying matrix C which above the line; therefore, the

matrix below the line should be null. Since m = n − 1, let us separate the matrix

into two parts, where the n × (n + 1) upper matrix above the line called matrix C,

8
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and any entries with an index that less than zero will be null.

C =



c0

c1 c0

c2 c1 c0

...
...

. . .
...

cm cm−1 . . . c0


(2.2.6)

Correspondingly, the lower matrix below the line named C̃, which is a Toeplitz matrix

with the same size as upper matrix C.

C̃ =



cn cm . . . c1 c0

cn+1 cn cm . . . c1

...
...

. . .
...

cm+n c2m c2m−1 . . . cm


(2.2.7)

Accordingly, b will be a product of the null vector if multiplying a and C̃. Since C̃

is a non-convertible matrix, it always has a non-trivial null vector if we ignore all the

other trivial vectors that we can confirm the linear relationship.

C̃b = 0 (2.2.8)

9
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In details:



cn cm . . . c1 c0

cn+1 cn cm . . . c1

...
...

. . .
...

cm+n c2m c2m−1 . . . cm





b0

b1

b2

...

bn


= 0

The product of upper matrix C and vector b will become vector a, where b is a

non-null vector. The equation takes the form:

Cb = a (2.2.9)

In details, 

a0

a1

...

am


=



c0

c1 c0

c2 c1 c0

...
...

. . .
...

cm cm−1 . . . c0





b0

b1

b2

...

bn


Padé approximation solves this linear equation if the determinant of a matrix is

nonzero. Otherwise it cannot be solved. To get the roots of denominator q(z), we

shall use Singular Values Decomposition, SVD (Robert M. Corless and Watt, 1995) of

matrix C̃, a factorization to find the nonzero vector b, in which defines the coefficients

of q(z).

C̃ = UΣVT (2.2.10)

10
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U is an n× n square matrix and a unitary whose inverse equals its conjugate trans-

pose (Szabo, 2015). Σ is an n × (n + 1) diagonal matrix with diagonal entries that

σ1 ≥ σ2 ≥ σ3 ≥ · · · ≥ σn ≥ 0, and V is an (n + 1) × (n + 1) matrix which is a

unitary at the same time. We also call Σ a matrix of singular values. Suppose in

this thesis all the diagonal entries σn > 0, then C̃ will be rank efficient, which can

also lead to V’s final column become the nonzero coefficients of q(z) (Pedro Gonnet

and Trefethen, 2018). Let Ĉ denote the n × n matrix obtained by deleting the first

column of C̃. It is noticeable that matrix Ĉ can be flipped horizontally into a Hankel

matrix, which we can use its features such as (Beckermann, 2000) to help analyze

further problems. The matrix Ĉ is

Ĉ =



cm . . . c1 c0

cn cm . . . c1

...
. . .

...

c2m c2m−1 . . . cm


(2.2.11)

According to the paper (Pedro Gonnet and Trefethen, 2018), If matrix Ĉ is singular,

it only has a determinant of 0, then b0 = 0, which also implies a0 = 0, thus p(z) and

q(z) share one common factor. Since we state ‖b‖ = 1, the defect of Ĉ’s singularity

does not exist. If Ĉ is non-singular, then b0 must be nonzero.

On the other hand, if σn = 0, the matrix C̃ will be rank-deficient, which we assume

its rank of ρ with zero diagonal entries σρ+1 = · · · = σn = 0. This also infers that C̃

has a zero vector in its first n− ρ place. Then matrix Ĉ must have the rank of ρ or

ρ− 1, and it is singular due to its 0 determinant. However, this defect can be ignored

since it does meet our assumption that all the diagonal entries σn > 0.

11
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In this thesis, we assume that σn > 0, with m = n− 1. According to the relationship

of C̃ and b in (2.2.9), the roots of b will be the poles of denominator q(z). On the

other hand, using equation (2.2.4), the roots of a will be the poles of p(z). If we

remove the common roots of p(z) and q(z), the rest of poles should scatter along the

unit circle (Gilewicz and Pindor, 1997) .

2.3 The Alternative Method: Generalized Eigen-

value Problem

Other than the Padé approximation with exact degree m and n, there is an alter-

native method denoted to find poles of Padé approximants, which is the general-

ized eigenvalue problem stated as H̃v = λHv. The problem is stated originally

from (B. Beckermann and Labahn, 2007). In this case, H is a Hankel matrix, H̃ is

the corresponding shifted Hankel matrix, λ is the groups of generalized eigenvalues,

and v is the eigenvector. Additionally, the Hankel matrix is a square matrix in which

each ascending skew-diagonal from left to right is constant.

Given a group of numbers h0, h1, . . . , h2n−1, to form n × n matrix H and its shifted

n×n matrix H̃ from the generalized eigenvalue problem. For Hankel matrices matrix

H

H =



h0 h1 . . . hn−1

h1 h2 . . . hn
...

...
...

...

hn−1 hn−2 . . . h2n−2


(2.3.1)

12
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and its corresponding shifted matrix H̃

H̃ =



h1 h2 . . . hn

h2 h3 . . . hn+1

...
...

...
...

hn hn−1 . . . h2n−1


(2.3.2)

In terms of Padé approximation problem with exact degree m and n in which men-

tioned in the previous section, Generalized Hankel Eigenvalue Problem in application

of poles of Padé approximants (G. A. Baker and Graves-Morris, 1996). The imple-

mentation of this alternative method uses a size of 2 × n entries of vector c to form

the Hankel matrix A and its corresponding shifted matrix B

A =



c0 c1 . . . cn−1

c1 c2 . . . cn
...

...
...

...

cn−1 cn−2 . . . c2n−2


(2.3.3)

B =



c1 c2 . . . cn

c2 c3 . . . cn+1

...
...

...
...

cn cn−1 . . . c2n−1


(2.3.4)

The first row of matrix A equals the second row of matrix B, and both are in the

same descending order. After the formation of two matrices, we need to find their

13
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generalized eigenvalues.

Bv = λAv

The eigenvalues will follow the following equation:

det(B− λA) = 0 (2.3.5)

v is the generalized eigenvector, and λ is called generalized eigenvalue of A and B.

If the entries of matrix c are complex numbers, the eigenvalues will be complex num-

bers. Since the size of vector c is 2 × n, it will return a column vector containing

the generalized eigenvalues of square matrices A and B, and the size of eigenval-

ues should be half of the vector c’s size, which is n. According to the well-known

(G. A. Baker and Graves-Morris, 1996) and (Gene H. Golub and Varah, 1999), the

result of det(B − λA) is the denominator q(z) of Padé approximants at infinity of

the series f(z). Therefore, the generalized eigenvalues are the estimation of poles of

Padé approximants in Padé approximation. Additionally, there is a coordinate-based

circle which center is at the coordinate (0, 0) with radius 1. The results of generalized

eigenvalues should scatter around this circle on coordinate.

14



Chapter 3

Data Prediction of Padé

Approximation and Its Related

Work

Padé theory is well-known as an approximation method for various applications that

involve finite sum of complex exponential signals in different fields. We have discussed

the background and usage of Padé approximation, and its alternative method of

Hankel Generalized Eigenvalue problem in the former chapter. However, Padé theory

has not been mentioned in the field of data prediction until today. Unlike any other

applications of Padé approximation, our main contribution in this thesis is to propose

a mathematical model to predict future data. This model is established based on the

features extracted from traditional Padé approximation. We call it Data Prediction

of Padé approximation. In this chapter, we will discuss algorithms from our proposed

data prediction method rigorously, and then we will demonstrate the simulation data

sets and their implementations of our proposed method.

15
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3.1 Algorithms of Proposed Method

Let us consider a finite sum of damped oscillation signals, i.e., complex exponential

signals

c(t) =
n∑
`=1

r`e
(−σ`+iΩ`)t

The sample signal c[k] = c(kT ) is represented by

c[k] =
n∑
`=1

r`e
(−σ`+iΩ`)kT =

n∑
`=1

r`z
k
`

where zk = e(−σk+iΩk)T . Hence, the z-transform of c[n] is given by

∞∑
k=0

c[k]zk =
n∑
`=1

r`
1− z`z

=
p(z)

q(z)

Notice that

r` = lim
z→z−1

`

(1− z`z)
p(z)

q(z)
= z−1

` lim
w→z`

(w − z`)
p(w−1)

q(w−1)

Since

p(w−1)

q(w−1)
=
w(a0w

n−1 + a1w
n−2 + · · ·+ an−1)

b0wn + b1wn−1 + · · ·+ bn

16
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we attain

lim
w→z`

(w − z`)
p(w−1)

q(w−1)
= lim

w→z`

w(a0w
n−1 + a1w

n−2 + · · ·+ an−1)
b0wn+b1wn−1+···+bn

w−z`

=
z`(a0z

n−1
` + a1z

n−2
` + · · ·+ an−1)

nb0z
n−1
` + (n− 1)b1z

n−2
` + · · ·+ bn−1

Hence, we have

r` =
a0z

n−1
` + a1z

n−2
` + · · ·+ an−1

nb0z
n−1
` + (n− 1)b1z

n−2
` + · · ·+ bn−1

for ` = 1, 2, · · · , n. If r` = 1, then, we can obtain ai = (n− i)bi for i = 0, 1, · · · , n−1.

As from equations (2.2.4), a and b are two vectors of coefficients for polynomials p(z)

and q(z), with the exact degree of m and n, respectively. We also set m = n − 1

throughout the whole thesis. According to the previous explanation, suppose vector

a has the linear relationship with vector a that

ak = (m− k + 1)bk (3.1.1)

for k = 0, 1, ...m

According to the Padé approximation in terms of degrees m and n from the prior

chapter, the size of vector c should be 2 × n, which are c0, c1, . . . cm, cn, . . . c2n−1.

Suppose a part of the vector from c0 to cn are known, and the first entry of vector

b is b0 = 1. The rest part of the data is what we are looking forward to finding.

To predict the unknown data from cm+2 to cm+n, we require the equation (2.2.9)

that Cb = a, the relationship of Upper matrix C, vector b, and a. Based on this

17
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mentioned multiplication equation of upper matrix C and b, in together with index

k from 0 to m that we can conclude

ak = ckb0 + ck−1b1 + ...+ c0bk

for index

k = 0, 1, 2, . . .m

Index of c is in descending form multiplied with the ascending index of b. It is

noticeable that the sum of each b and c’s indexes is always k. Moreover, with this

property adopted, we can simplify the above equation into a summation equation

that is

ak =
k∑
l=0

blck−l (3.1.2)

In addition to the relationship (3.1.1) above, the combination shows with scalars m,

k, variables bk and ck−l

(m− k + 1)bk =
k∑
l=0

blck−l

We need to find the vector b from b0 to bm in the first place, and b0 = 1 known at the

beginning. In order to simplify the above equation, we can have the representation

of b is

bk = −1

k

k−1∑
l=0

blck−l (3.1.3)

k = 1, 2, . . . ,m

18
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As well as when k equals to n, we can get

bn = − 1

n

n−1∑
l=0

blcn−l (3.1.4)

All the b values could be determined at this point. It is the time to predict for the

rest of c values from cm+2 to cm+n.

Using the relationship of lower matrix C̃ and b (2.2.8), the multiplication of lower

matrix C̃ and b which equals to null, we can get

cm+kb0 + cm+k−1bi...+ cmbk + cm−1bk+1 + ...cm+k−nbn = 0

with index

2 ≤ k ≤ n

It is noticeable that the sum of c and b’s indexes are always m + k, and we can

simplify this equation to a summation algorithm for data prediction, which is

cm+k = −
n∑
l=1

blcm+k−l (3.1.5)

with index

k = 2, 3, ...n

Since we are able to find all the entries vector b from the previous equation (3.1.4),

We can predict the rest of c from cm+2 to cm+n using this prediction algorithm. Above

all, this is the model for data prediction using Padé approximation. If c’s index is

less than 0, the corresponding entry will become zero. Since we have the condition of

m = n− 1, no index will be less than zero.
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3.2 Simulation Data Sets

In this section, we will use the simulation algorithms to generate two groups of sim-

ulation Data sets, which contain the input and output of simulation data in each

group. After that, we will exhibit three more simulation data sets generated with

similar algorithms. First of all, using the extracted features of data from previous

Padé approximation to build the algorithm that generates the first group of simula-

tion data set, where we set m = 2, n = 3 and the first simulation data algorithm will

be

cq = eS1×q + eS2×q + eS3×q (3.2.1)

with index

q = 0, 1, 2,m, n, ...(m+ n)

Coefficients are

S1 = −0.1− 2π × 0.3i;

S2 = −0.05− 2π × 0.28i;

S3 = −0.0001 + 2π × 0.2i

The simulation input data is from c0 to c3, and the rest of c4 and c5 are simulation

output data. The simulation input data are

c0 c1 c2 c3

3.00 + 0.00i −1.489− 0.844i −2.313 + 1.402i 0.252 + 0.575i
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The simulation output data are

c4 c5

1.113− 2.149i −0.237− 0.458i

The second group of simulation data set, where we set m = 4, n = 5 and the second

simulation data algorithm will be

cq = eq×i×π/2 + eq×i×π/3 + eq×i×π/4 + eq×i×π/5 + eq×i×π/6 (3.2.2)

where the index is

q = 0, 1, 2,m, n, ...(m+ n)

The simulation input data is from c0 to c5; the rest of data c6 and c9 are simulation

output data that will compare with the prediction data.

The simulation input data are

c0 c1 c2

5.00 + 0.00i 2.882 + 3.661i −0.691 + 3.683i

c3 c4 c5

0−2.016+1.658i −1.809 + 0.588i −2.073− 0.073i
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The simulation output data are

c6 c7 c8 c9

−1.809− 1.588i 0.032− 2.292i 1.309− 0.951i 0.516 + 0.119i

Similarly, we generate other groups of data sets based on features of the first and

the second simulation algorithms. For example, in the third simulation group, we set

m = 18, n = 19, and this simulation algorithm is an extended version of the first

simulation algorithm, which should contain 14 terms. We also set the values from S1

to S19 as complex numbers. As long as each exponent does not have the same unit

circle, the algorithm can generate simulation data. The simulation input data set has

the size of 20, while the simulation output data should be 18. Moreover, in the forth

group of simulation data, we extend the second simulation algorithm with m = 18,

n = 19, which is

cq = eq×i×π/2 + · · ·+ eq×i×π/9 + eq×i×π/11 + eq×i×π/12 + · · ·+ eq×i×π/20

Therefore, the fourth group includes 20 input and 18 output simulation data. In the

end, we provide a simulation algorithm that combines and extends both the first and

second algorithms, with m = 31 and n = 32. The fifth simulation data group has 33

input simulation data and 31 output simulation data.

In the next step, we will apply all the groups of generated input simulation data into
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our proposed prediction model individually, which is in purpose to get the prediction

results of the index from m + 2 to m + n of c as experimental output. The padé

prediction values will compare with the last m computer simulation output generated

from the simulation algorithms above to check the accuracy of our proposed prediction

model. For the last three simulation data groups, we will only compare their output

and prediction data individually in figures at the end of this chapter.

3.3 Implementation Of Simulation Data and Re-

sults’ Comparisons

In this section, we will demonstrate the data-prediction results using our proposed

prediction model of Padé approximation from the previous chapter within simulation

input data sets to predict entries from the index of m+ 2 to m+ n, assuming there

is no noise in the environment.

First of all, we will input the first simulation data from c0 to cn to predict vector b

within size of 4 using equation (3.1.3) and (3.1.4), b1 = 1 known at the beginning.

Vector b from the first data set is

b0 b1 b2 b3

1.00 + 0.00i 0.149 + 0.844i −0.811− 0.575i 0.627 + 0.589i

After gaining the first group of vector b, we can obtain the first group’s simulation

results from index m+ 2 to m+ n of C using the Padé prediction algorithm (3.1.5).
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We name it r

r0 r1

1.113− 2.149i −0.237− 0.458i

Similarly, for the second group of simulation input data, we can have the size of n+ 1

vector b

b0 b1 b2

1.00 + 0.00i 0.149 + 0.844i −0.811− 0.575i

b3 b4 b5

8.258− 3.538i −4.067− 2.274i 0.156 + 0.988i

The prediction results of the second group data set are:

r0 r1 r2 r3

−1.809− 1.588i 0.032− 2.292i 1.309− 0.951i 0.516 + 0.119i
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To compare the prediction results versus the actual simulation output data, we will

also demonstrate them in figures. The first data set comparison has a size of 2 pre-

diction results and simulation output. The results are shown in Figure3.1 at the end

of this chapter.

The representation of prediction result interacts with the actual output, which means

they are the same. The second set of data has the prediction values comparing with

the actual output shown in the Figure3.2.

From the Figure3.2, we can see that our proposed method’s prediction results have

the same values as the actual simulation data set. Similarly, for the last three simula-

tion data groups, we implement our input data to the proposed prediction method to

get the prediction results, and the prediction results are the same as the actual output

simulation data. The comparisons appear in Figure3.3, Figure3.4 and Figure3.5 at

the end.

After that, we will validate the output results using the alternative method, the

generalized Hankel matrices to check if the generalized eigenvalues of two Hankel

matrices, which are built by the simulation input and predicted output could relate

to the values of e’s exponents in the simulation data algorithms that provided at the

beginning. For instance, e’s exponents of the first simulation data group are S1, S2

and S3. Similarly, e’s exponents of the second simulation group are i× π/2, i× π/3,

i × π/4, i × π/5 and i × π/6. The components of e also apply to the results of the

other data groups. In detailed steps, the first group of simulation input comes along

with its prediction results that can form vector c with the size of 6. According to

Hankel matrices, the first simulation data set from c0 to c5 can form two size of 3 ∗ 3
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Hankel matrices A and B as the following format

A =


c0 c1 c2

c1 c2 c3

c2 c3 c4

 (3.3.1)

B =


c1 c2 c3

c2 c3 c4

c3 c4 c5

 (3.3.2)

Where the first row of B is the second row of matrix A. The Hankel matrix is in

symmetric form. If there is a same size Toeplitz matrix (Böttcher and Grudsky,

2005), and both the Toeplitz matrix and Hankel matrix have the same eigenvalues,

then H(m,n) = T(m,n) Jn, where J is an exchange matrix (Mazza and Pestana,

2019). Similarly, applying the above steps to the second group of simulation data

that can form two sizes of 5 ∗ 5 Hankel matrices by using the entries from c0 to c9.

The 2 Hankel matrices of the second group are:

A2 =



c0 c1 c2 c3 c4

c1 c2 c3 c4 c5

c2 c3 c4 c5 c6

c3 c4 c5 c6 c7

c4 c5 c6 c7 c8


(3.3.3)
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B2 =



c1 c2 c3 c4 c5

c2 c3 c4 c5 c6

c3 c4 c5 c6 c7

c4 c5 c6 c7 c8

c5 c6 c7 c8 c9


(3.3.4)

Besides, we also need to find the generated eigenvalues after creating two Hankel

matrices for each data set. It is remarkable that the generated eigenvalues of each

group also distribute along the unit circle, similar to the distribution of padé approx-

imants’ poles. This validation process can apply to the rest of the simulation data

sets, and the consequences are the same. On the other hand, it is essential to note

that each group’s generalized eigenvalues should be equal to the exponential of all

the exponents, which are respectively from their simulation data algorithms, as we

mentioned at the beginning of this section. The generalized eigenvalues of the first

simulation data group should be eS1, eS2 and eS3. The generalized eigenvalues of

the second simulation data group should be ei×π/2, ei×π/3, ei×π/4, ei×π/5 and ei×π/6.

Similar consequences apply to the rest of the simulation data groups.

Overall, both ways show that the prediction method of Padé approximation can be

used accurately with simulation datasets without error.

27



M.A.Sc. Thesis – E. Wang McMaster University – Mathmatics and Engineering

Figure 3.1: First Group: prediction values VS Actual output
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Figure 3.2: Second Group: prediction values VS Actual output
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Figure 3.3: Third Group: prediction values VS Actual output
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Figure 3.4: Fourth Group: prediction values VS Actual output

31



M.A.Sc. Thesis – E. Wang McMaster University – Mathmatics and Engineering

Figure 3.5: Fifth Group: prediction values VS Actual output
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Chapter 4

Co-prime Sampling

This chapter proposes a theory of co-prime sampling to efficiently determine the

original poles and residues of the sum signal. We used features of the sum signal and

the linear Diophantine equation to prove the theory. We will first introduce co-prime

sampling, followed by a detailed proof of this theory in the second section. After

that, we will provide simulation data sets and their implementations of the co-prime

sampling. Before implementations, our generated simulation data needs to utilize

the alternative method of Padé approximation to find Hankel matrices’ generalized

eigenvalues.

4.1 Theory Of Co-prime Sampling

One of our main technical contributions in this thesis is the following theorem:

Theorem 1. Let p and q are co-prime each other, and let c1 = |c| exp(arg(c1)) and

c2 = |c2| exp(arg(c2)) be two complex numbers. Then, a pair of polynomial equations

zp = c1 and zq = c2 has a solution with respect to a complex variable z if and only if

33



M.A.Sc. Thesis – E. Wang McMaster University – Mathmatics and Engineering

the following two conditions must be met simultaneously:

1. The magnitudes of ci must satisfy |c1|1/p = |c2|1/q.

2. The phases of ci must satisfy a) arg(c1)q−arg(c2)p
2π

is an integer, and b) there exist

two integers mp and nq: 0 ≤ mp < q and 0 ≤ nq < p, such that arg(c1)q−arg(c2)p
2π

=

mpp− nqq.

Furthermore, under the above two conditions, the solution of a set of equations: zp =

c1 and zq = c2 is unique, and can be explicitly determined by

mp = kp̄+ q

⌈
−kp̄
q

⌉
nq =

pp̄− 1

q
k + p

⌈
−kp̄
q

⌉

where k = arg(c1)q−arg(c2)p
2π

. �

4.2 Proof Of The Theory

In order to prove this theorem, we need to establish the following two lemmas.

Lemma 1. If gcd(p, q) = 1, the Diophantine equation pm + qn = k has integer

solutions with respect to variables m and n. Furthermore, all sets of solutions can be

characterized by m = p̄k + qt, n = 1−pp̄
q
k − pt, where t is any integer and p̄ is such

an integer that 1 ≤ p̄ < q and pp̄ ≡ 1 mod q. �

Proof : From (Hua, 1982) we know that the Diophantine equation pm + qn = k

with respect to integer variables m and n indeed has integer solutions. Now we

only need to characterize all the solutions. To do that, consider the corresponding
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congruent equations: pm ≡ k mod q. Since gcd(p, q) = 1, this congruent equation

has a unique solutions, m = p̄k mod q, where pp̄ ≡ 1 mod q. Hence, all the solutions

can be represented by m = p̄k+ qt, where t is an arbitrary integer. Now, substituting

this m into pm+ qn = k yields n = 1−pp̄
q
k− pt, as required. This completes the proof

of Lemma 1. �

Lemma 2. Let two positive integers p and q be coprime. Then, for any given integer

k, there exists a unique pair of integers m and n such that k = pm+qn for 0 ≤ m < q,

which is explicitly determined by m = kp̄+ q
⌈
−kp̄

q

⌉
and n = 1−pp̄

q
k − p

⌈
−kp̄

q

⌉
. �

We are now in a position to prove Theorem 1.

Proof of Theorem 1 : By Lemma 1, we know that all the solutions to k = pm+ qn

are given by m = p̄k+ qt and n = 1−pp̄
q
k− pt. Now, we only need to prove that under

the constraint 0 ≤ m < q, there exists only one t. To this end, we enforce m = p̄k+qt

to satisfy this constraint, i.e.,

0 ≤ p̄k + qt < q

which is equivalent to − p̄k
q
≤ t < 1− p̄k

q
. Within this interval, there is one and only

one integer t =
⌈
−kp̄

q

⌉
. Hence, we have a unique pair of m = kp̄ + q

⌈
−kp̄

q

⌉
and

n = 1−pp̄
q
k − p

⌈
−kp̄

q

⌉
. This comeplets the proof of Lemma 2. �

Proof : Let z = |z|ejθ with 0 ≤ θ < 2π. Then, a system of equations: zp = c1 and

zq = c2, has a solution if and only if |z| = |c1|1/p = |c2|1/q and there exist two integers

mp and nq such that

pθ = arg(c1) + 2nqπ and qθ = arg(c2) + 2mpπ (4.2.1)
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Since 0 ≤ θ, arg(ck) < 2π, we have 0 ≤ mp < q and 0 ≤ nq < p. Note that a set of

equations (4.2.1) is equivalent to the following fact that 1) arg(c1)q−arg(c2)p
2π

is an integer,

and 2) there exist two integers mp and nq: 0 ≤ mp < q and 0 ≤ nq < p, such that

arg(c1)q − arg(c2)p

2π
= mpp− nqq (4.2.2)

Suppose now that arg(c1)q−arg(c2)p
2π

is an integer, and that a system of equations (4.2.2)

has a solution. Now, by Lemma 2, we have a unique pair of solution, given by

mp = kp̄+ q

⌈
−kp̄
q

⌉
nq =

pp̄− 1

q
k + p

⌈
−kp̄
q

⌉

where k = arg(c1)q−arg(c2)p
2π

. This completes the proof of Theorem 1. �

4.3 Simulation Data Sets And their Implementa-

tions

This section will show several simulation data algorithms, followed by implementa-

tions of those generated data sets in Co-prime sampling. Results will be demonstrated

in both data and figures

First of all, there are two groups of data x which can be created by the formula

xn(t) = e
√

2πit + e
√

3πit + e
√

5πit + e
√

6πit + e
√

7πit
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where the first group of data is produced when t = 3nT , and the other group is when

t = 2nT . Since 2 ×
√

7π ≤ 2π
T

, we can get T ≤ 1
3
. Base on the number of entries in

xn(t), in order to find the two groups of corresponding generalized eigenvalues of two

Hankel matrices, similarly to the forms of (2.3.1) and (2.3.2), which are formed by

these 2 data sets, the size of data need to double of the size of eigenvalues, where

n = 0, 1, 2, . . . 9

.

Data Index x(t = 3nT) x(t = 2nT)

0 5.000 + 0.000i 5.000 + 0.000i

1 −2.618 + 3.592i 0.503 + 4.722i

2 −0.754− 2.878i −3.955 + 0.801i

3 0.853 + 0.850i −0.754− 2.878i

4 −0.082− 1.205i 1.730− 0.332i

5 1.397 + 1.709i −0.381 + 0.744i

6 −2.443 + 0.035i −0.082− 1.205i

7 1.109− 1.571i 1.930 + 0.203i

8 0.296 + 0.978i −0.173 + 2.375i

9 −0.179− 0.178i −2.443 + 0.035i
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As mentioned in the previous section (2.3.1), we can form a Hankel matrix and a

shifted Hankel matrix for each data set. As the result, we can eventually get 2 groups

of generalized eigenvalues respectively, which are individually in a size of 5. The

groups of sorted eigenvalues from minimal phases to maximum phases are

Eigenvalues

Index
E(t = 3nT) E(t = 2nT)

0 e1.481i e0.987i

1 e1.814i e1.209i

2 e2.342i e1.561i

3 e2.565i e1.710i

4 e2.771i e1.847i

The common aspect of those Eigenvalues is that their magnitudes are 1. In other

words, the eigenvalues will scatter along the circle whose center is at coordinate (0, 0)

with radius 1. These two groups of eigenvalues show in the Figure 4.1 and Figure

4.2 at the end of this chapter.

Since the magnitudes of those eigenvalues are approximately equal to 1, each group

of eigenvalues is sorted based on their phase values from smallest to largest. The

corresponding eigenvalues of 2 groups with the same index can be apply to co-prime

theory as c1 and c2. Firstly, using the phases of c1 and c2, and two random pre-

defined co-prime values of p and q (4.2.2) , mp and nq can be determined. Since
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the magnitudes of c1 and c2 are always 1, the first condition of theorem1 is already

satisfied. As for condition 2, using the existing values of q equals 2, and p equals

3. For the phases of eigenvalues, we can get an integer value k. The values mp and

nq are determined from the previous step are proved to be integers, and satisfy the

limits that 0 ≤ mp < q and 0 ≤ nq < p. Since the two conditions of co-prime theory

meet simultaneously, we can find the only value of θ. Therefore, we can find the one

and the only z value for each corresponding θ, which leads to 5 z values in general.

The distribution of z shows in figure4.3

Besides, it can prove that the five angles, θ values gained from the implementation of

co-prime theory are the same as five ω values based on the algorithm of simulation

xn(t), which show in the table:

ω1 ω2 ω3 ω4 ω5

√
2πT

√
3πT

√
5πT

√
6πT

√
7πT

On the other hand, If we change from t = 3nT and t = 2nT to t = 5nT and t = 3nT ,

and give value T = 1/25 based on its limit, we can generate the other 2 new groups

of data whose magnitudes are still equal to one. The data sets generated based on

the previous formula can be

Data Index x(t = 5nT) x(t = 3nT)

0 5.000 + 0.000i 5.000 + 0.000i

1 1.200 + 4.644i 3.466 + 3.500i

2 −3.701 + 2.009i −0.054 + 4.707i

3 −2.182− 2.502i −3.146 + 3.012i

Continued on the next page
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Continued from previous page

Data Index x(t = 5nT) x(t = 3nT)

4 1.446− 1.721i −3.882− 0.151i

5 0.853 + 0.850i −2.182− 2.502i

6 −0.829− 0.065i 0.319− 2.669i

7 0.692− 1.266i 1.705− 1.097i

8 1.879 + 0.840i 1.277 + 0.556i

9 −0.+ 2.345i −0.074 + 0.903i

Similarly, we can get the following 2 groups of generalized eigenvalues with magnitudes

1,

Eigenvalues

Index
E(t = 5nT) E(t = 3nT)

0 e0.889i e0.533i

1 e1.088i e0.653i

2 e1.405i e0.843i

3 e1.539i e0.923i

4 e1.662i e0.997i

Apply the above 2 groups of simulation data into the co-prime theory. As you can

see, all the conditions met the same as the previous implementation except that q = 3
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and p = 5, we can have the same results as the former implementation.

Along with this, we have added coefficients to upgraded the algorithm of simulation

data, and extend the terms of algorithm. The algorithm is xn(t) = 3.2e
√

2πit +

3.7e
√

3πit + 5.2e
√

5πit + 6.3e
√

6πit + 7.1e
√

7πit + 1.3e
√

11πit + 1.11e
√

2.71πit + 9.13e
√

3.91πit +

4.73e
√

11.7πit + e
√

7.57πit. In this case, the restriction of T is still T ≤ 1
3
. In contrast

to the former simulation data sets, I generate 2 groups of data with t = 3nT and

t = 2nT , and choose T = 1/11. The simulation data sets are

Data Index x(t = 9nT) x(t = 7nT)

0 42.800 + 0.000i 42.800 + 0.000i

1 −15.60 + 34.70i 0.731 + 39.840i

2 −18.944−18.60i −32.04 + 2.086i

3 12.040− 9.122i −4.200−21.930i

4 6.543 + 7.472i 12.590− 6.520i

5 −7.337 + 2.550i 7.971 + 6.390i

6 4.715− 3.812i −4.112 + 7.503i

7 5.412 + 6.373i −4.653− 4.781i

8 2.174− 10.510i 6.273 + 0.097i

9 3.456 + 11.518i −5.412 + 6.373i

10 −10.150−8.876i −3.822− 9.617i

11 13.292− 0.535i 11.407 + 1.138i

12 −4.911 + 7.836i −6.923 + 10.424i

13 −2.982− 1.657i −7.421−11.400i

14 −2.152− 4.720i 12.871− 3.913i

Continued on the next page
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Continued from previous page

Data Index x(t = 9nT) x(t = 7nT)

15 6.870 + 0.010i 1.488 + 10.900i

16 −3.350 + 2.801i −6.437 + 1.072i

17 2.852− 0.290i −2.521− 1.423i

18 −5.490 + 1.303i −2.152− 4.719i

19 5.927− 4.001i 6.147− 3.114i

Thus, we can have the following generalized Eigenvalues of 2 Hankel matrices

Eigenvalues

Index
E(t = 9nT) E(t = 7nT)

0 e2.931i e2.280i

1 e2.840i e2.210i

2 e2.357i e1.801i

3 e2.267i e1.733i

4 e2.098i e1.592i

5 e1.915i e1.533i

6 e1.211i e1.319i

7 e1.694i e0.942i

8 e1.484i e1.142i

9 e1.410i e1.062i
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As you can see from the table, the magnitudes of those generalized eigenvalues are

equal to 1. The distribution figures are shown in Figure4.4 and Figure4.5.

As a sequence of implementation, accompanying the condition q = 7, p = 9, will

result in ten θ solutions equal to
√

2πT ,
√

2.71πT ,
√

3πT ,
√

3.91πT ,
√

5πT ,
√

6πT ,
√

7πT ,
√

7.57πT ,
√

11πT ,
√

11.7πT , respectively. Since the magnitudes of z equal to

1, all the z will locate on the unit circle, which is found on figure4.6

Similarly, we extend our simulation data set to a size of 60. For the fourth data

group, we set T = 1/13, the first group of data is X(t = 9nt), and the second group

is X(t = 7nt). The data sets can form four Hankel matrices, resulting in two groups

of the size of 30 generalized eigenvalues. The distribution Figures are Figure4.7 and

Figure4.8. Moreover, the figure4.9 is for the solution z of this simulation set.

Subsequently, we generate another algorithm to produce simulation data, which is

xn(t) = e
π
3
ti + e

π
5
ti + e

π
7
ti + e

π
11
ti + e

π
13
ti + e

π
17
ti

The limit of T changes to T ≤ 3 Since the algorithm has 6 entries. Thus, we need to

generate each group of data that double this size. Therefore, the index is

i = 0, 1, 2, 3, . . . 11

We also set that T = 1/2, the first group with t = 10nT and the second group with

t = 3nT
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Data Index x(t = 10nT) x(t = 3nT)

0 6.000 + 0.000i 6.000 + 0.000i

1 2.042 + 4.070i 4.176 + 3.476i

2 −0.024 + 2.639i 1.167 + 3.871i

3 −1.571 + 2.573i 0.035 + 2.794i

4 −1.704 + 0.066i −0.286 + 2.724i

5 −0.928 + 1.321i −1.571 + 2.573i

6 −3.332− 0.579i −2.316 + 0.990i

7 −0.313− 2.437i −1.223− 0.048i

8 −0.289− 0.760i −0.601 + 0.925i

9 0.345− 2.080i −2.159 + 1.414i

10 1.256− 0.588i −3.332− 0.579i

11 1.405− 1.300i −1.813− 2.564i

These 2 groups of data lead to 2 groups of Hankel matrices, followed by the same size

of generalized eigenvalues independently, which are sorted as

Eigenvalues

Index
E(t = 10nT) E(t = 3nT)

0 e0.462i e0.277i

1 e0.604i e0.362i

2 e0.714i e0.428i

Continued on the next page
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Continued from previous page

Eigenvalues

Index
E(t = 10nT) E(t = 3nT)

3 e1.122i e0.673i

4 e1.571i e0.942i

5 e2,618i e1.571i

It is redoubtable that the magnitudes of eigenvalues equal to 1. Therefore we use

those eigenvalues to implement into the co-prime theory, with the settings that q = 3

and p = 10. The results of implementation are revealed by the values of θ. Where

θ equal to the ω from the entries of the simulation algorithm. Be more specific that

they are equal to the exponent of each exponential part.

ω1 ω2 ω3 ω4 ω5 ω5

πT
17

πT
13

πT
11

πT
7

πT
5

πT
3

Based on the prior simulation formula, if we only change the values of t that t = 3nT

for the first group of dataset and t = 2nT for the second group, we will get the

simulation data
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Data Index X(t = 3nT) X(t = 2nT)

0 6.000 + 0.000i 6.000 + 0.000i

1 4.176 + 3.476i 5.123 + 2.592i

2 1.167 + 3.871i 3.092 + 3.966i

3 0.035 + 2.794i 1.167 + 3.871i

4 −0.286 + 2.724i 0.191 + 3.103i

5 −1.571 + 2.573i −0.024 + 2.639i

6 −2.316 + 0.990i −0.286 + 2.724i

7 −1.223− 0.048i −1.071 + 2.779i

8 −0.601 + 0.925i −2.009 + 2.168i

9 −2.159 + 1.414i −2.316 + 0.990i

10 −3.332− 0.579i −1.704 + 0.066i

11 −1.813− 2.564i −0.800 + 0.107i

As a result of the 2 simulation data groups, two groups of generalized Eigenvalues

which distribute along the circle of radius 1 will form

Eigenvalues

Index
E(t = 3nT) E(t = 2nT)

0 e0.277i e0.185i

1 e0.362i e0.242i

2 e0.428i e0.286i

Continued on the next page

46



M.A.Sc. Thesis – E. Wang McMaster University – Mathmatics and Engineering

Continued from previous page

Eigenvalues

Index
E(t = 3nT) E(t = 2nT)

3 e0.673i e0.449i

4 e0.942i e0.628i

5 e1.571i e1.047i

Indeed, after implementing the above data sets, the outcome will be identified as the

former implementation.
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Figure 4.1: First simulation group: Distribution of generalized eigenvalues
E(t = 3nT)

Figure 4.2: First simulation group: Distribution of generalized eigenvalues
E(t = 2nT)
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Figure 4.3: z of the first data set
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Figure 4.4: Second simulation group: Distribution of generalized eigenvalues
E(t = 11nT)

Figure 4.5: Second simulation group: Distribution of generalized eigenvalues
E(t = 9nT)
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Figure 4.6: z of the second data set
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Figure 4.7: Third simulation group: Distribution of generalized eigenvalues
E(t = 7nT)

Figure 4.8: Third simulation group: Distribution of generalized eigenvalues
E(t = 9nT)
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Figure 4.9: z of the third data set
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Chapter 5

Conclusion and Future Work

In this thesis, we have demonstrated several traditional ways of Padé approximation,

especially the SVD-based approach of approximation that deals with an exact degree.

Its alternative method that uses generalized Hankel Eigenvalues to find the poles of

Padé approximants. Other than that, the primary purpose of this paper is to propose

a data prediction method that is built based on the features of Padé approximation.

How reliable can this data prediction method be? After proposing this data prediction

model, we display our algorithms to generate simulation data and implement those

data into our prediction model in stages. At the end of implementation, comparisons

between simulation output data and the prediction outcomes are duplicate without

any error. The results denote our proposed data prediction model’s accuracy when

in terms of simulation data.

Besides the proposed data prediction model, we also prove the theory of co-prime sam-

pling with the utilization of padé approximation’s extracted features. In the same

way as chapter 3, we provide detailed proof for this theory and additional evidence

with simulation data groups. Notably, outcomes of all the simulation data groups’
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implementations can prove this theory by using the Generalized Eigenvalues of Han-

kel matrices.

Our proposed data prediction method works precisely with simulation data while more

efforts are required. The first aspect is the data noise. Currently, our simulation data

has not included noise yet. However, to make our proposed data prediction method

applicable, improving the model with noisy data is inescapable. In the future, our

first step is to improve by training our data prediction model with simulation data,

which contains random noise and find the correct regularization to minimize the er-

ror. Afterward, we can consider collecting real-world data in different fields and using

those data to train our proposed model, accompanying them to make adjustments for

our algorithms in different fields to get the best prediction results. This future work

also applies to the co-prime theory.

Our goal is to make our prediction model accurate and efficient, which can be appli-

cable in a variety of fields. For instance, in the financial field, if a mobile devices’

application developed originally from our proposed prediction method would be used

by individual investors who could easily monitor their investments on their mobile

devices anytime. Companies’ strategists who were lack of data to make a decision

would use this application to predict some related data as convincing evidence, or

traders who might not be dependable on this application, but they could use it as an

alert before trading the stocks. Similarly, in the electrical field, the communication

system can use it to predict more signal data; in the health industry, it can be im-

plemented into health monitor equipment to help with doctors’ diagnosis to look for

reliable data that might be the blind point for the equipment. Other possible fields

of application of our proposed method might suffer due to lack of data, such as data
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analyst when they are lack of analysis data they will need to predict more. When

people were lack of data, they could use the current data with Padé approximation to

extract the data features and use data prediction(3.1.5)to gain more reliable statistics

that can overcome the problem.
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