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Abstract 

 

This work proposes a new approach to fast detection of abnormal behaviour of cooling, IT, 

and power distribution systems in micro data centers based on machine learning 

techniques. Conventional protection of micro data centers focuses on monitoring 

individual parameters such as temperature at different locations and when these parameters 

reach certain high values, then an alarm will be triggered. This research employs machine 

learning techniques to extract normal and abnormal behaviour of the cooling and IT 

systems. Developed data acquisition system together with unsupervised learning methods 

quickly learns the physical dynamics of normal operation and can detect deviations from 

such behaviours. This provides an efficient way for not only producing health index for the 

micro data center, but also a rich label logging system that will be used for the supervised 

learning methods. The effectiveness of the proposed detection technique is evaluated on an 

micro data center placed at Computing Infrastructure Research Center (CIRC) in McMaster 

Innovation Park (MIP), McMaster University. 
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Chapter 1 

1 Introduction 

 

Data Centers are the essential parts of today’s technology, since IT-based companies such 

as banks, hospitals and many governmental institutes depend on the reliable operation of 

data centers. Especially by growing online businesses, data centers became to be the pillar 

of today’s IT society. People are using internet for different purposes such as socializing, 

shopping, sharing information, gaming, attending in online courses, etc. On the other hand, 

mobile technology made an evolution and has changed the way people use the internet 

which led to the rapid growth in the number of internet users. Therefore, web search 

became an everyday necessity, which leads to an obvious increase in the internet usage and 

the demand for real-time data transmission. Persistent increase in the number of customers 

lead to a significant increase in the number of data centers. Figure 1-1 shows an evident 

growth in the number of data centers from 570 in 2020 to 628 in 2021 (Cisco, 2017). 
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Figure 1-1: Global data center growth (Cisco, 2017) 

Data centers are categorized into three groups, micro data centers, mid-size data centers 

and large size data centers. Well known large IT-based corporations like Amazon, 

Facebook, Microsoft and Google are using large size data centers which host more than 

thousands of computers to be able to handle the large number of requests. These 

corporations are growing their data centers in terms of both size and number. For example, 

Amazon has 22 data centers all over the world and Figure 1-2 shows the location of these 

data centers. The number of computers in mid-size data centers and micro data centers are 

less than thousands and less than hundreds respectively. With the growing number of 

internet users, computers and other networking equipment which handles these requests 

have created a huge need for the maintenance equipment, inventories, and technicians. 

Traditional reactive or scheduled maintenance is not economical anymore and data center 

owners are looking for better ways of maintenance to shave off immense downtime costs. 
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The smarter approach is achievable by predictive modeling of normal and abnormal 

operations in data centers which will be discussed in detail in chapter 2.  

 

Figure 1-2: Amazon web services (AWS) data centers worldwide locations  (Singh, 

2019) 

1.1 Data Center Operation 

 Data center’s infrastructure categorized into three subsections, power, cooling, and IT. In 

this configuration, servers are processing the incoming service request from the web and 

the resulting heat is removed by cooling unit and both units are fed though power unit. 

Following subsections, describe each unit in more details. 

1.1.1 Information Technology (IT) 

In a data center, an IT room is allocated to store servers on premises and can comprise 

thousands of servers lined up together. Figure 1-3 shows a typical server room located in 
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Google Iowa data center. Routers and switches are used to transport traffic between these 

servers in the data center and the core network. The quality of these components is very 

important in terms of both increasing the speed of transportations and decreasing failure 

rate in the IT racks. The large number of components in the IT room means that failure 

ratio is high because any given component may have small but non-zero failure rate. 

Therefore, racks should be analyzed carefully in terms of infrastructure and security. In 

large size data center, hundreds of thousands of switches are used especially in the IT room 

and their failure, imposes a big lose for IT-based businesses each year. For instance, 

Microsoft has lost more than 400 switches each year.  That is why data center owners prefer 

to use high quality switches and cables to minimize these kinds of failures. On the other 

hand, Fortunately, because of increasing server capacity and network bandwidth, server’s 

failures are very rare compared to other components in the IT room. The common failure 

that could happen in IT racks is the partial failure of servers where the state of a networking 

component is nominally healthy, but a subset of traffic is either lost or delayed. This type 

of failure which should be analyzed in the server level is not in the scope of this research. 
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Figure 1-3: Google Iowa campus network room (News, 2015) 

1.1.2 Power Distribution  

Power distribution system feeds both cooling and IT units in a data center through electrical 

circuits, electronic converters, and an energy storage system. In the following subsections, 

common approaches to distribute power in a data center is discussed. 

A. Traditional PDU distribution 

In traditional data centers, the low power density of server racks required a low volume of 

under-floor air, and typically one or more branch circuits connects the server racks to the 

main PDUs placed along the side of the server room. Traditional distribution is typically 

used for designs from 50 kVA to 500 kVA  (Torell, 2014). Figure 1-4 shows typical PDU 

within a data center. 
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Figure 1-4: Traditional PDU (Torell, 2014) 

B. Panelboard distribution 

In this method, the main power is distributed to separate panelboards, which usually 

ratings from 1.5 kVA to 75 kVA. Low cost and flexibility in sizing the breakers and 

cables are advantages of panel board distribution method. On the other hand, such 

flexibilities are prone to human error in the installations. Figure 1-5 shows typical 

Panelboard PDU within a data center. 

 

Figure 1-5: Panelboard PDU (Torell, 2014) 
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C. Modular distribution 

Modular power distributions are flexible, more reliable, and more efficient ways of 

delivering power to server racks. Modular distribution has higher initial investment 

costs but because of more reliability and efficiency, it decreases the total cost of 

ownership (TCO). Figure 1-6 shows typical Modular PDU within a data center. 

 

Figure 1-6: Modular PDU (Torell, 2014) 

Modular panel can be connected to the distribution systems in three different ways, under 

floor, overhead, and floor mounted that are shown in Figure 1-7.  
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Figure 1-7:  Examples of Under floor, Overhead and Floor mounted within a data center 

(Torell, 2014) 

1.1.3 Cooling Unit 

Servers are generating heat which should be removed from the server racks and IT rooms. 

Cooling system is the key component that consumes a large portion of the incoming power 

in a data center to avoid overheating the components (Ahuja, 2013). Therefore, even small 

improvements in efficiency of cooling unit, could lead to considerable savings in energy 

and power consumption. Air-cooled and liquid cooled systems are common architectures 

for cooling systems in data centers. In the following subsections cooling architectures and 

their applications has been discussed. 
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A. Liquid cooled system 

These units typically use water or glycol as coolant liquids in the system. Figure 1-8 

illustrates the schematic view of a chilled-water system (Evans, 2012). In these systems 

cooled water is piped throughout the building and the air handlers to cool down the IT 

equipment. The main drawback of this systems is the maintaining of water in an acceptable 

level since it could be vaporized during daily operations of cooling unit.  

 

Figure 1-8: Water-cooled chilled water system (Evans, 2012) 

B. Air cooled system 

Air cooled systems are widely used in cooling IT infrastructure of a data center where low 

cost implementation and easy maintenance are priorities (Naguib, 2011). Higher power 

consumption time consuming maintenance downtimes and difficulties in scaling are the 

main disadvantages of air-cooled systems. Figure 1-9 shows the layout of an air-cooled 
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system with four major components, condenser, evaporator, expansion valve and 

compressor. 

 

Figure 1-9: An air-cooled system (Evans T. , 2012) 

1.2 Data Center Maintenance 

Data center downtime costs could lead to huge financial losses. These losses can be reduced 

by proactively maintaining the equipment. Generally, maintenance management is divided 

into planned or unplanned programs (Mobley, 2002). Different types of planned and 

unplanned maintenance are shown in Figure 1-10 and have been described in the following 

subsections.  



 

 
Master Thesis – Negin Piran                    McMaster – Electrical & Computer Engineering  

11 

 

 

Figure 1-10: Maintenance methodologies (Fiix, 2019) 

1.2.1 Unplanned Maintenance 

An unplanned maintenance, limits expenditure on proactive maintenance and seems to 

have lower costs but in fact could lead to very high financial losses because of the process 

interruptions. Finding the root cause of a breakdown could be hard since there is no 

maintenance strategy and most probably can put technicians in the high risk. Corrective 

maintenance and Reactive maintenance are the two types of unplanned maintenance.  

 Corrective maintenance consists of repairing an equipment that is still running 

within acceptable ranges but near to the unsafe operation region. Replacing a 

partially exposed wire is an example of this type of maintenance. 

 Reactive maintenance is performed when equipment is completely failed. This type 

of maintenance should be performed immediately due to high cost of interruption 

in the process or safety hazards that it could create (such as fixing a broken engine). 
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1.2.2 Planned Maintenance 

Planned maintenance program is divided into three types, planned breakdown, preventive 

and predictive maintenance.  

 In planned breakdown which is also called run-to-fail failure, equipment would be 

in service until it stops due to problem in any of its components. This method is 

different from reactive maintenance since there is a plan for the failures and 

replacing the failed equipment.  

 Preventive maintenance tries to lower down the failures and interruptions by regular 

maintaining of the equipment. This maintenance can be scheduled in fixed time 

intervals or based on the amount of usage in a specific asset. The main drawback 

of this method is the over/under maintaining of the equipment because of the 

inaccurate estimate for the time that maintenance should be performed on the 

equipment. 

 Predictive maintenance is a type of planned maintenance where predictive models 

try to estimate the health of different parts of a system. The goal is to perform the 

maintenance just in time and avoid over spending on maintenance and system 

interruptions at the same time. 

1.3 Micro Data Centers 

Emerging new technologies such as self-driving cars or pervasive healthcare systems 

require online processing of huge amount of data instantly. Processing massive data with 
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very low processing time requires edge processing where data processor units are close to 

IT loads. Micro data centers are new solutions to this problem and these days many 

organizations that need to share and analyze a quickly growing amount of data are turning 

to localized micro data centers installed on the place that is close to their central office.  

To improve the reliability of any system, first thing to do is truly understanding the model, 

operation and design of that system. In this section the components of data center and their 

functions are analyzed. Information technology (IT), Cooling system and power supply are 

the three main parts of micro data centers. As it mentioned, micro data centers are smaller 

versions of a traditional data centers and are a good fit for office spaces which is located 

as close as possible to the end users. In normal operation, input power to servers (IT racks) 

will be transformed to heat and should be removed by cooling system. Figure 1-11 shows 

the holistic model of a micro data center. Cooling system includes chiller unit and air 

handler unit (AHU). And the shown pump in Figure 1-11 circulates water between these 

two units. In this figure a model of air cooled chiller is considered since in the setup of this 

research a packaged air cooled is used. Following are the four main air cooled chiller 

components and their functions:  

 The evaporator allows the low pressure liquid refrigerant to absorb heat from the 

indoor air of the IT racks. 

 The compressor takes the low pressure vapor from the evaporator and compresses 

it into high pressure vapor and also circulates the refrigerant in the system.   

 The condenser condenses the refrigerant from air to water.  
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 The expansion valve performs two functions. It drops the pressure of the 

refrigerant liquid and separates the high and low pressure sides of the system while 

controlling the flow of liquid refrigerant between the condenser and the evaporator. 

 

Figure 1-11: The holistic model of a micro data center 

The above process is repeating for removing heat generated by servers in a rack till the 

indoor temperature in the rack drops below the set temperature value (usually around 

10°C). If the rack temperature goes below than the minimum temperature set point, cooling 

units stop from working till the temperature goes up to a higher temperature set point 
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(usually around 15°C). Now, if for any reason such as fan failure in the AHU, the AHU 

fails or the circulation of coolant slows down due to the pump abnormal behavior, then the 

cooling system will not be able to remove the heat from the server racks effectively. This 

will disrupt the normal operation of the IT system which generates heat, and cooling system 

cannot remove the heat properly. Data center failures not only costs of recovery time but 

also lost revenue, lost productivity and lost customers are other outcomes and average cost 

of unplanned data center failure is profound (Ponemon L. , 2016). While micro data centers 

have provided solutions for big data analysis of newly introduced industries, maintaining 

them is the main challenge for the owners of such facilities. This challenge originates from 

the fact that not only it is not economical to have expert technicians on-board for 

maintaining physical assets in micro data centers, but also number of qualified experts 

would be very limited with the proliferation of micro data center usage. These days, by 

growing the technology and increasing internet users, the reliability of data centers and 

micro data centers has taken more important than in the past. 

1.4 Micro Data Center Predictive Maintenance and Fault detection 

Total cost of ownership in data centers could be grouped into the following two categories,  

 Capital expenditure (CapEx): Includes costs related to commercial space and 

equipment installed in the data center.  

 Operational expenditure (OpEx): Costs related to energy usage (electricity and 

water), equipment maintenance, and staff salaries are the top operational costs in 

data centers.  
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While some of these costs are fixed and cannot be optimized, there is good opportunity in 

preventing financial losses using smart maintenance through predictive modeling. 

Data center failures not only costs recovery time, but also leads to lose revenue, 

productivity, and customers (Patterson D. A., 2002). According to the study by Ponemon 

Institute, the average cost of a data center outage was 8,851 dollars per minute in 2016 

which shows data centers outages could lead to huge financial losses. Emerson (Ponemon, 

Ponemon Institute, 2013) proposed the causes of data center outages. In their study, battery 

failure, cybercrime, and human error are recognized as the top three reasons for data center 

failures. With the growing demand of micro data centers, as they are the integral parts of 

today’s technology, it is necessary to have a real-time anomaly detection and detect 

abnormalities before causing serious failures in the system. Thus, learning the correlations 

between IT, cooling, and power units will create unique opportunities for the predictive 

models to learn normal and healthy operations. These models can flag any deviations from 

the normal situation in a very nascent time which prevents cascading failures in the system. 

The details will be given in chapter 3. 

1.5 Research Objectives 

In this thesis, a new approach to fast detection of abnormal behavior of cooling and IT 

systems in micro data centers based on machine learning techniques is proposed. In 

particular, the thesis attempts to tackle the following objectives: 

 Consolidate and analyses the fault mechanisms in micro data centers 
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 A data acquisition system (DAQ) is developed to collect electro-mechanical signals 

from micro data center (discussed in chapter 4). 

  The real-time anomaly detection method detects abnormalities before causing 

serious failures in the system and has the following main features: 

 Using Current Sensors: Current data centers are using only temperature 

sensors to detect, predict and localize the anomalies. In this research, beside the 

temperature sensors we used current sensors which have low correlation with 

the existed temperature sensors. The low correlation between current and 

temperature sensors helps machine learning approaches to have fast and 

accurate detection and localization of the failures.  

 Holistic View in Detection: Decision making based on independent variables 

(such as temperatures or power consumptions) would lead to suboptimal 

results. Our method looks at a holistic view of the entire data center and learns 

normal operations inside such complex environment and flags abnormal 

situations even if individual meters are showing normal readings.   

 Non-invasive Data Collection: Data is collected from temperature and current 

sensors in data center in a non-invasive way that eliminates costly downtimes 

for implementing smart monitoring solution developed in this research. 

 Costs Effective: Parts used in the design makes the DAQ system very 

affordable for any micro data center owner. This cost is under 100 CAD in 2019 

to log and process 8 different channels. The low-cost hardware makes it easier 
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to collect more signals and add new features to machine learning algorithms 

that eventually will increase their accuracy.  

1.6 Thesis Organization 

The following is an overview of the contents of each chapter in this thesis. Chapter 2 

reviews the related work on improving the data center efficiency and reliability. In this 

chapter, predictive maintenance method is introduced for enhancing the reliability of the 

data centers. Machine learning based predictive maintenance methods are innovative ways 

of predicting or localizing failures and are discussed in chapter 3. Chapter 4 presents the 

mathematical presentations of proposed techniques and the experimental results and their 

effectiveness in predicting and localizing failures. And finally, in Chapter 5, we conclude 

our findings in this thesis. 
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Chapter 2 

 

2 Review of Efficiency and Reliability in 

Data Centers 

 

Data centers are centralized or distributed facilities responsible for processing daily web 

requests and thus play vital role in continuity of service for many industries. They retain 

different subsystems (cooling units, IT room, PDU) and each subsystem has various 

components. Figure 2-1 shows the major components of a typical data center.  
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Figure 2-1: Major components of a typical data center (Goiri, 2015), (Wang T. S., 2014) 

Proliferation of such complex systems has created extensive research grounds to increase 

safety through improving reliability and decrease financial losses through improving 

efficiencies. The following subsections have been dedicated to review related researches 

to efficiency (Section 2.1) and reliability (Section 2.1.22.2) in data centers. 

2.1 Data Center Efficiency 

In a data center electrical, mechanical and control system all are working together. 

Therefore, improving data center efficiency is a multidimensional challenge that is 

requiring a concerted effort to optimize power distribution, cooling infrastructure, IT 
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equipment and IT output. Hence, energy efficiency can be analyzed in different parts of a 

data center separately. 

2.1.1 Efficiency Related Metrics in Data Centers 

Following metrics are commonly used in data center operation and management, 

A. Power usage effectiveness (PUE):  

Incoming power to the data center can be lost in different parts of it. Figure 2-2 shows the 

major components with high power losses ratio in a typical data center.  

 

Figure 2-2: power losses in a typical data center (Tiwari, 2011) 

PUE  is the total power consumed by the data center divided by the power used by the 

servers (Avelar, 2010). This quantity shows how much power delivered to a data center is 

lost before it consumed by servers. 
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 PUE =  
Power delivered to data center

Power consumed by servers 
=

𝑃𝑖𝑛

𝑃𝐼𝐶𝑇

(2-1 ) 

The lower the value of the PUE, the better the energy efficiency of the data center. A PUE 

value of 1 would represent the optimal data center efficiency which means that all the 

energy consumption in the data center is only consumed by the computing servers. 

Typically, operators are measuring PUE several times in a week to calculate the average 

weekly PUE of their data centers. The average PUE is 1.8 according to a study conducted 

by the Uptime Institute, (Miller, 2011). However, the average PUE in Google data centers 

is 1.11 (Google, n.d.).  

B. Energy reuse effectiveness (ERE)  

This metric called also as a green tool for data centers. ERE of a data center can be 

calculated according to the equation (Patterson M. K., 2012). 

ERF =  
𝑃𝑟𝑒𝑢𝑠𝑒

𝑃𝑖𝑛
 (2-2) 

Where 𝑃𝑟𝑒𝑢𝑠𝑒  is the amount of waste energy from the data center that can be used 

elsewhere.  

C. Total cost of ownership (TCO)  

Low TCO (Barroso, 2009) is very important especially for IT-based companies. 

𝑇𝐶𝑂 = 𝐶𝑎𝑝𝐸𝑥 + 𝑂𝑝𝐸𝑥 (2-3) 
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Where CapEx and OpEx stand for capital expenses and operational expenses respectively 

which are described in the previous section. Cost-effective topology design is important to 

data center to decrease CapEx, while using high efficiency equipment as well as monitoring 

data center to detect and predict failures can decrease OpEx. 

D. Server compute efficiency (SCE) 

It is important to determine whether or not a server is being used as a primary server, 

secondary server, etc. Conventionally, only CPU usage is used to determine whether or not 

a server is being used for primary services. But todays the SCE metric (Blackburn, 2010) 

is a new parameter which can determine the type of servers in a data center. Beside CPU 

usage, SCE measures disk and network I/O, incoming session-based connection requests 

and interactive logins to determine if the server is providing primary services or not. 

Because looking only at CPU usage, the sever may sometimes misclassified into a failed 

server although in reality it is working as a secondary server. SCE can be a better metric 

for correctly classifying the servers (Blackburn, 2010). 

E. Computational efficiency: 

Computational efficiency (Uddin, 2014) of servers is a quantity that is used to calculate 

server’s efficiency. 

Computational Efficiency =  
average compute rate

average energy consumption rate 
(2-4) 
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2.1.2 Infrastructure Efficiency in IT room 

By increasing web search and internet demand, there is an exponential growth in the 

number of servers in data centers. Considering the high cost of building data centers, 

designers always try to use as much servers as possible that can be supported by a given 

infrastructure installation. Techniques such as power capping (The row-level power budget 

is enforced by physical circuit breakers and fuses) seek to increase infrastructure efficiency 

by increasing the number of server supported by a given installation (Wang G. W., 2016). 

Increasing number of servers in a data center with a fixed power budget increases the 

computation capacity, and high computational capacity together with low power usage are 

important factors when determining the efficiency of data center (Shehabi, 2016).  

Servers are one of key building blocks in a data center and improving their efficiency could 

have a great impact on data center overall efficiency. According to a study by Emerson 

Network (Power, 2009) any reduction in power consumption of IT will also reduce losses 

in the server power supply and the power distribution. Both of these reductions will reduce 

the amount of cooling energy required. This cascaded effect makes IT room more 

important in terms of saving energy in the whole system. There are many rack level studies 

for data centers that try to find the optimal server configuration and operation. Followings 

are the typical methodologies and the examples:  

 Turning servers off when they are not in use: This is a very basic but effective 

way to control servers in a data center (Cole, 2011). There are always non-used or 

lightly-used servers which consume 70-85% of the power of a server running at 
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100% CPU load but produce no useful output. These types of servers also called as 

"Ghost servers" which turning them off will decrease the total amount of power 

drawn by IT racks. CPU utilization is a good metric to identify ghost servers. But 

the problem is that considering only the amount of utilization of servers can be 

misleading in determining secondary servers (like servers which are responsible to 

backup emails) and turning them off. That is where SCE can make a huge 

improvement in classifying servers into the right groups. Even if the ghost servers 

are identified correctly, the problem with this approach is often the setup time, the 

time required to turn a server off and back on (Chen G. H., 2008). Time is a very 

important factor especially for some applications such as autonomous driving cars 

or sensitive medical devises that require almost online responses from servers.  

 Replacing traditional servers with efficient servers: New advancements in 

semiconductor industry, provided the opportunity to build efficient processors that 

are able to align their energy usage with the load level that they are serving. The 

new generations of servers have multi-core processors that are significantly energy 

efficient compared to the traditional single-core servers. Having high processing 

power in these servers also helps data center designers to increase the capacity of 

IT racks and thus creates extra spaces in server rooms (Cole, 2011).  

 Servers consolidation: Combining legacy servers into a virtual system creates an 

IT environment that resources can be shared. This method is usually called server 

consolidation and can improve efficiencies in many traditional data centers.  Figure 

X shows the consolidation servers.  
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Figure 2-3: Server consolidation technique (Dickason) 

In a consolidation server, additional servers will be used only when demand 

increases and using this methodology, server CPU usage can be increased by 40-

60%. There are different studies to improve the efficiency of consolidation servers. 

For instance, in (Marty, 2007) they developed a CMP memory systems for server 

consolidation. This memory will help to maximize shared memory accesses 

serviced within a Virtual Machines (VMs) by supporting content-based page 

sharing among VMs.  

 Load balancing: Load balancing is the technique which distributes workload 

uniformly among all the servers in a data center to achieve evenly distributed power 

in order to reduce hot spots and decrease latency (Sharma, 2005).  Having hot spots 

in server rooms not only increases the damages to equipment, but also causes 

inefficient cooling scenarios. 
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2.1.3 Infrastructure Efficiency in Cooling Units 

In a data center, cooling system is the key component that avoids overheating of 

components and consumes a large portion of the incoming power to the data center (Ahuja, 

2013). A significant operational efficiency can be gained from how to choose to cool the 

data center. An insufficient cooling system can lead to overheating of the resources, 

reducing system reliability and device lifetime which all will make overhead costs. To 

avoid these costs and improve the reliability of the data center, it is essential to make the 

data center more efficient. Trade-off between (high) temperature setting and (low) power 

consumption is a challenging optimization problem. Followings are the summary of 

present cooling unit approaches which help to increase the overall data center efficiency. 

 Multiple cooling units: Overcooling is a common issue in a data center where 

some parts of the data center being cooled more than the requirements. Using 

multiple cooling units in a data center is one of the basic ideas which can avoid 

overheating and overcooling. In data centers with multiple cooling units, each of 

the cooling units can be controlled independently or they can communicate in order 

to create a distributed cooling system which has higher efficiency than central 

cooling units.  

 Dynamic smart cooling (DSC): Monitoring a network of temperature sensors at 

the air inlet and exhaust of equipment racks is the conventional method of 

controlling the cooling unit. Data from the sensors is fed to a controller where it is 

evaluated, and the controller can independently manipulate the supply air 
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temperature and airflow rate of each computer room air conditioning (CRAC) in 

the data center. In order to accomplish this efficiently, the impact of each CRAC in 

the data center must be evaluated with respect to each sensor. The result of such an 

evaluation will define the regions of influence for each CRAC unit. This 

information is used to determine which CRACs to manipulate when a given sensor 

location requires more or less cool air. In this case the efficiency of cooling unit 

can be calculated by the following equation (Wemhoff, 2013). 

Coefficiency of performance (COP) =
amount of heat that is removed by the CRAC (Q)

total amount of energy (E)
(2-5) 

2.1.4 Infrastructure Efficiency in Power Distribution Units 

Looking at Figure 2-2, around 10 % of losses in a data center relates to losses in 

power units. If we can reduce the losses in the power system, more of the incoming 

power to the data center will feed the IT racks. This will improve the energy 

efficiency and keep PUE close to the optimal point. There are some techniques that 

are useful to improve the infrastructure efficiency in PDU for a data center; 

 Oversubscribing power: This technique is oversubscribing a data center’s 

power infrastructure with more servers than it can support (Sakalkar, 2020). 

Figure 2-4 shows the diagram of an oversubscribed power delivery system 

in a data center. This method can maximize resource utilization, increase 

the operator profit, and reduce the tenant costs. However, without an 

appropriate power control mechanism, oversubscription can lead to 

expensive unplanned service outages. In this method, power should never 
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exceed the rated power capacity because it can throw a circuit breaker and 

take a section of the data center offline. Also, overloading power can 

damage the component permanently.  

 

Figure 2-4: Schematic of a) a traditional power distribution system with N+1 redundancy 

at the PDU level, b) an Oversubscribing power delivery system (Sakalkar, 2020) (Fu, 

2011) 

 power capping: Power capping is like a safety mechanism that is used to 

ensure maximum power levels are not exceeded and circuit breakers are not 

tripped (which was the major problem of oversubscribing power in data 

center). In this method, throttling server power (via frequency/voltage 

scaling) is used as the safety mechanism to Techniques such as power 
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routing seek to increase infrastructure efficiency by reducing the amount of 

power infrastructure equipment needed (Kontorinis, 2012). 

 Power routing: Capital costs can be further reduced by using Power 

Routing (Liserre, 2016), which allows load to be shifted among PDUs 

during imbalances. 

It should be also mentioned that all of these techniques require software mechanisms to 

track and predict peak power, to manage power budgets at each server, circuit, and PDU, 

while minimizing performance throttling. Though peak power could be tracked with 

explicit metering and logging, assessing peak power directly from operating system-level 

metrics can drastically reduce costs. 

2.2 Data Center Reliability 

Data centers are an increasingly vital infrastructure and their failures can be expensive due 

to business disruption and lost revenue. Failures can happen in any part of a data center. 

Figure 2-5 shows the failure causes in data centers where “battery failure” and “UPS 

capacity exceeded”, are recognized as the top two failures (Ponemon Institute, 2013).  
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Figure 2-5: Causes of downtime in Data Centers (Ponemon Institute, 2013) 

With the recent growth of online businesses, improving data center reliability has gained 

lots of attractions among researchers and data center designers. This section is reviewing 

the methods that are useful to enhance the data center reliability and availability.  

2.2.1 Reliability Related Metrics in Data Centers 

Following metrics are commonly used in data center operation and reliability management, 

A. Failure rate 

Failure rate (𝛼) can be defined for any equipment (see equation 2-6). Which is assumed to 

be constant over component’s lifetime (Heising, 2007).  

𝛼 =
1

𝑀𝑇𝐵𝐹
(2-6) 
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where, MTTF is the mean time between consecutive failures of a component and usually 

is expressed in hour per failure. 

B. Repair rate 

Repair rate (𝜇) can be defined for the components with repair distribution (see equation 2-

7). Similar to failure rate, 𝜇 is assumed to be constant over component’s lifetime too 

(Heising, 2007).   

𝜇 =
1

𝑀𝑇𝑇𝑅
(2-7) 

where, MTTR is the mean time to repair the faulty component. 

C. Reliability 

For one component with a constant failure rate 𝛼, the reliability of the system can be 

calculated according to the following equation (Heising, 2007). 

𝑅(𝑡) = 𝑒−𝛼𝑡 (2-8) 

The reliability of a system can be calculated according to the series or parallel status of its 

components. Reliability block diagram (RBD) is a typical way of showing the connectivity 

of components in a system. For example Figure 2-6 shows two components that are 

connected to each other in a series (see Figure 2-6 a) and in parallel configuration (see 

Figure 2-6 b).  
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Figure 2-6: Two components series system (a), parallel system (b) 

The reliability for above mentioned series and parallel connections can be derived from: 

𝑅(𝑡)𝑠𝑒𝑟𝑖𝑒𝑠 = 𝑒−𝛼1𝑡 × 𝑒−𝛼2𝑡 (2-9) 

𝑅(𝑡)𝑝𝑎𝑟𝑎𝑙𝑙𝑒𝑙 = 𝑒−𝛼1𝑡 + 𝑒−𝛼2𝑡 − (𝑒−𝛼1𝑡 × 𝑒−𝛼2𝑡) (2-10) 

Where 𝛼1 and 𝛼2 are failure rates for the first and second component respectively. In the 

series system, the system reliability will decrease as the number of components is 

increased. However, having more parallel components in the system will increase 

reliability of the system. Therefore, to enhance the reliability, connecting redundant 

components in parallel would increase the overall reliability. It should be mentioned that 

in a system like data center which there is many components, RBD will become more 

complex.  
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D. Availability 

Availability is the ratio expressed as the percentage of time a system or a component can 

perform its required function. Availability could be formulated with the following equation 

(Heising, 2007): 

𝐴 =
𝑈𝑝𝑇𝑖𝑚𝑒

𝑈𝑝𝑇𝑖𝑚𝑒 + 𝐷𝑜𝑤𝑛𝑇𝑖𝑚𝑒
=

𝑀𝑇𝐵𝐹

𝑀𝑇𝐵𝐹 + 𝑀𝑇𝑅𝑅
(2-11) 

If the faulty component can be repaired instantly (MTTR = 0), then it wouldn't matter what 

the MTBF is, and the availability of system would be 100% (=1) all the time.  

2.2.2 Redundancy  

Backup components will be a great help to avoid costly periods of downtime in a data 

center. Redundancy is one of the possible methods to enhance the reliability and 

availability of the data centers. It refers to a system design where a component is 

duplicated, tripled, etc. A four-tier ranking system is proposed by Uptime institute for 

determining the reliability of data centers (Turner IV, 2006) which grouping data centers 

according to their properties (see Figure 2-7).  
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Figure 2-7: Tires of data centers according to Uptime institute (Turner IV, 2006) (Volico, 

2018) 

Figure 2-8: Topologies for different data center tiers Figure 2-8 shows the different 

topologies for data center tiers. Tiers are progressive, meaning that each tier incorporates 

the requirements of all the lower tiers. Tier 1 and 2 are suitable for small, cheap and short-

term businesses with low reliability and availability, tire 3 (2N configuration) and 4 

(2(N+1) configuration) are good for big and long-term businesses with highest reliability 

and availability. While high level tiers are costly, they lead to saving more money in the 

long term by decreasing the downtime of data center. There is a compromise between 

reliability of a system and total cost (Wiboonrat, 2008). Roy and collogues had an analysis 

on power architectures to identify in which component of data center power system 

redundancy is most needed (Roy, 2001). 
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Figure 2-8: Topologies for different data center tiers (Chalise, 2015) 

In the high level tiers, RBD calculations will be more complicated if the components are 

assumed to be repairable because the mathematical calculations become more complex. 

Using direct current (DC data centers) to feed data center components instead of AC power 

was a good idea to increase the reliability of data centers. Since, DC data centers are using 

less number of conversions which is an important cause of reliability improvement and 

decreasing the downtime of data center. Beside the high reliability and availability, high 

energy efficiency, less carbon footprint, lower installation cost and less maintenance cost, 

scalability, easier integration of renewable energy, lower operational cost and safety are 

advantages of DC data center over AC data centers.  
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2.2.3 Maintenance Programs 

Not having enough redundancies for many components in a data center, could increase the 

failure ratio since any component may have small but non-zero failure rate. Even a small 

failure could have cascading effect and could interrupt the data center and the company’s 

core business, resulting in significant loss especially for large IT-based companies. In such 

situation, a planned maintenance can improve the reliability of system by early detecting 

the abnormalities and avoiding major failures. Over the years, maintenance has evolved to 

embrace the concepts of reliability. In total, three types of planned maintenance can be 

identified, namely corrective, preventive, and predictive maintenance (Azadeh, 2016). 

Figure 2-9 shows the plans of a predictive maintenance which can be grouped into three 

categories, knowledge based condition monitoring, failure detection and failure prediction 

(Wang J. Z., 2017). Predictive maintenance uses predictive analytics to analyze the data 

gathered through the various sensors in order to predict the behavior of components and 

equipment in the future (LaRiviere, 2016). 

 

Figure 2-9: Predictive maintenance plans (Wang J. Z., 2017) 
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There are multiple modeling strategies for predictive maintenance which can increase the 

reliability of a system among which, classification, anomaly detection, and regression are 

the top three used methods for different industries. Following is a brief explanation of each: 

 Classification models are used to predict the class that new observation belongs to. 

For example, predicting if a failure will occur within a given time window or not, 

is a binary classification problem. Another example is to look at the sensor readings 

and identify if the operation belongs to normal or abnormal classes. 

 Regression models are used to predict continues values (and not categorical) for a 

target variable. For example, predict the remaining useful life (RUL) is a regression 

problem that tries to perfume the prediction by observing degradation process in 

different assets. 

  Anomaly behavior detection: This method is able to flag anomalies when there is 

no clear historical data about the failures. Since it is assumed that most of operating 

data is collected in normal operation, these methods usually define the normality 

by measuring the distance of current operation from the center of historical data 

points. 

The concept of predictive maintenance has existed for many years, but recently emerging 

new technologies such as IoT and big data analytics, make the predictive maintenance 

widely accessible (Nguyen, 2015).  

 Internet of Things (IoT): Predictive maintenance has given rise to adaption of IoT 

platforms. IoT technology allows different assets and systems to connect, share, 
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analyze, and act on the data (Atzori, 2010). Captured data from data center’s 

different assets together with IoT technique will be used to monitor component’s 

behavior continuously and provides an online health status of the equipment. This 

technology has made it possible to gather information from smaller sections of the 

data centers which previously were not focused on. Beside the advantages that IoT 

based predictive maintenance has, possible security problems in sensors should be 

considered by the designers.  

 Big data analytics for data preprocessing tasks: Data collected from the system 

is not always usable before preparation. Big data preparation steps such as 

transformations and new feature extractions are essential in many applications 

(Russom, 2011). Figure 2-10 shows some of data preparation techniques with big 

data analysis which will be explained in detail in chapter 3.  

 

Figure 2-10: Data preprocessing tasks (García, 2016) 
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Reducing maintenance cost and time, reducing downtime of the data center, increasing 

operator safety,  and increasing production quality are other advantages of the predictive 

maintenance (Nadabaica, 2012). Because of these advantages of predictive maintenance 

provides for the businesses, the global predictive maintenance market is growing and it is 

expected to reach 10.7 billion USD in 2024 (see Figure 2-11).  

 

Figure 2-11: Global forecast on predictive maintenance market from 2017 to 2024 

(Market, Jun 2019) 

Predictive maintenance uses different strategies to detect/predict failures. Major 

subcategories are knowledge based condition monitoring, traditional machine learning 

(ML) based and deep learning (DL) based approaches (see Figure 2-12). 
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Figure 2-12: predictive maintenance approaches 

A. knowledge based predictive maintenance 

Knowledge based predictive maintenance uses statistical analysis for making predictions. 

A mathematical-based model usually requires a domain specialist that understands the asset 

and its environment. The creation of a mathematical model for an asset is a specific task; its 

main drawback is that the same model cannot be used for different assets. Defining the rules 

by human make this approach noise sensitive. To decrease the noise sensitivity and improve 

the results, most of the time, the combination of knowledge based methods with other 

algorithms like Kalman filter can be helpful. knowledge based predictive maintenance is 

also called knowledge based condition monitoring.  

Collecting data in form of signals from measurable attributes of the asset to show the 

information about current circumstances of an active asset is condition monitoring 

(Marfatia., 2013). To gain the information such as temperature, voltage, vibration, current, 



 

 
Master Thesis – Negin Piran                    McMaster – Electrical & Computer Engineering  

42 

 

etc. from a component different sensors may be used and actions will be recommended 

depends on the current situation. Condition monitoring in industrial robots (Borgi, 2017) 

and industrial boilers (Cauchi, 2017) are some of these studies. 

B. Machine learning based predictive maintenance 

Machine learning based predictive maintenance minimizes failure rates by learning from 

historical data. One of the advantages of ML-based predictive maintenance over 

knowledge-based is the less noise sensitivity (Zare Mehrjardi, 2018).  It is because machine 

learning can dynamically define decision-rules (conditions or thresholds) to predict when 

a machine is fine or need to be maintained and does not need an expert to predefine the 

regulations. There are many machine learning algorithms where artificial neural network 

(ANN), decision tree (DT), support vector machine (SVM), and k-nearest neighbors (k-

NN) are the most popular ones in the area of predictive maintenance (Sorsa, 1993), (Chen 

M. Z., 2004), (Chen K. Y., 2011), (Tian, 2014). Since machine learning based predictive 

maintenance is in the scope of this research, a detailed explanation is given in chapter 3. In 

the following, some of the published researches in predictive maintenance are reviewed:  

Fault diagnosis in bearings is done by Samanta and colloquies (Samanta, 2003). They used 

time domain features for training the ANN algorithm to detect the fault of rolling element 

bearings.  On the other hand, prognosis of bearing acoustic emission signals using 

supervised ANN is used to predicting the RUL of bearings (Elforjani, 2017). ANN 

algorithms have high accuracy in the expense of high computational resources. Also when 
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training the model, the many weight parameters should be tuned properly to avoid 

overfitting since ANN is prone to over-fitting.  

Decision tree is another machine learning algorithm which has gain considerable attraction 

recently since the input-out relations is easy to understand compared to other black-box 

relations in other machine learning algorithms. This approach uses recursive splitting of 

the training data and assigns a class label to leaf by the most frequent class observed and 

then prunes a subtree with a leaf or a branch if lower training error is obtained. But 

generally, trees are less accurate compared to the other machine learning approaches 

because of overfitting problems and should be used with extra care and testing. In (Li, 

2018) fault detection of a refrigerant flow system is analyzed. Zheng and friends used 

decision tree machine learning algorithm for predicting lithium-ion battery failures (Zheng, 

2019). 

Support vector machine (SVM) performs well in small to medium size datasets but it is not 

a good tool for big data training since it a complex and heavy algorithm to train large 

datasets. Cooling failures are common in data centers and many of them are hard to detect 

especially partial failures such as valve blockage etc. About 32% of the system errors are 

caused by hardware and cooling problems (Gray, 1986) and a large portion of the failures 

are related to the abnormal air flows (Choo, 2013). SVM performs well in detecting the 

failures of chiller (Han, 2019) and can be also used to predict the RUL. Lithium-ion 

batteries RUL is predicted by SVM in (Wei, 2017). The structure of this algorithm and the 

way it predicts the clusters will be discussed in the next.  
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KNN algorithm is a machine learning technique which is easy to implement but does not 

have good accuracy when data is unbalanced (Susto, 2014). This is mainly due to using 

only a distance-based measure to classify different observations. Like the other machine 

learning algorithms, it can be used for both diagnosis and prognosis purposes. When 

detecting and predicting fault, K should be tuned depends on the data and output that should 

be predicted. Detecting faults of bearing based on KNN is analysed by Appana and his 

friends (Appana, 2017). On the prognosis side, remaining useful life estimation of insulated 

gate biploar transistors (IGBTs) based on a KNN is analysed (Liu Z. M., 2017). 

C. Deep learning based predictive maintenance 

Recently, deep learning has shown superior ability in feature learning, fault classification 

and fault prediction with multilayer nonlinear transformations. In recent decade, lots of 

deep learning approaches (LeCun, 2015) are invented to extract the complex relationships 

from data which other methods cannot find such a complex relationships in the data. These 

methods need huge datasets to train complex neural networks and if the volume of the 

historical data is not considerable, their performances could be less than traditional 

machine learning algorithms.  

D. Predictive maintenance in data center 

With the expansion of datacenters demands, the need for reliable data centers has 

continuously increased. Nlyte Software, Emerson Network Power, Schneider Electric and 

Device42 are popular vendors of services to increase the reliability of data center IT racks 

(Sverdlik, 2016). They all have condition monitoring and failure detection and prediction 
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of IT racks using different approaches (knowledge, machine learning and deep learning 

based predictive maintenance). But it should be mentioned that they do not have condition 

monitoring, failure detection and prediction in a data center level. Ina data center different 

subsystems such as PDU, IT racks and Cooling unit are analyzed separately and often by 

different vendors and these vendors do not have holistic monitoring of a data center. That 

is where our research can detect some other and new failures just because of the 

abnormality between in the correlation of different subsystems of a data center which will 

be discussed in details in chapter 4.  

2.3 Conclusion 

This chapter provides an overview of present works on improving the efficiency and 

reliability of data centers and micro data centers. Considering the different subsystems of 

a typical data center, the efficiency improvement for different subsystems (IT room, 

cooling system, and power distribution unit) are explained. And on the reliability side, the 

effect of having backup components (redundancy) and maintenance programs are 

discussed. While conventional methods try to improve the reliability simply by adding 

more backup components, modern data centers use maintenance programs to achieve high 

reliabilities.  This thesis focused on developing the predictive maintenance models and to 

this end, the advantages and drawbacks of each approach are discussed. Among these 

approaches, machine learning based predictive maintenance algorithms will be used in this 

thesis. In the next chapter machine learning based failure detection methods will be 

explained in more details. 
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Chapter 3 

 

3 Machine Learning Based Fault 

Detection 

3.1 Introduction 

Traditionally, data center managers try to increase the reliability simply by adding 

redundant units such as servers, cooling or power units. As discussed in section 2.2.2, high 

reliability is achievable by having high level of redundancy (such as dual 

modular redundancy, triple modular redundancy and etc.) which imposes extra costs to the 

system. Unlike conventional health monitoring, smart monitoring minimizes failure rates 

by learning from historical data and without imposing above-mentioned overhead costs. 

One possibility in smart monitoring is predictive maintenance as it discussed at section 

2.2.3, where the historical data is used to detect upcoming failures and schedule 
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maintenance actions. Machine learning based predictive maintenance tries to prevent asset 

failures by analyzing production data and identifying patterns that could be indicative of 

the failures. The idea is coming from the fact that past changes provide the basis for future 

predictions.  

3.2 Machine Learning Based Predictive Maintenance 

The success of predictive maintenance models strongly depends on the framing of the 

problem, having the right data, and evaluating the predictions properly. The process of the 

predictive modeling in most of the recent researches (summarized in the section 2.2.3B) is 

similar and the block diagram of the steps is shown in Figure 3-1. 
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Figure 3-1: System architecture for an intelligent predictive maintenance (Ran, 2019) 

Following is the brief explanation for each step: 

 Step 1 – Data collection: Firstly, critical assets should be identified and then data 

should be collected by adding specific sensors in the appropriate locations. Servers, 

transformer, generator, UPS, cooling tower, CRAC units, chillers components, and 

pumps are some of the critical equipment in a typical data center. The process of 
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data collection and the connectivity of these equipment to the data acquisition 

system are the main reasons why this step is usually called data collection by IoT 

devices. 

 Step 2 – Creating a relational database: Collected data is time labeled signals and 

should be stored in relational (or tabular) databases. These data bases can be hosted 

using either cloud services (such as services offered by Google, Amazon, and 

Microsoft) or in the physical servers owned and managed by each company (on-

premise solution). This work utilizes an on-premises solution hosted in a Raspberry 

pi-3 single-board computer which can be placed inside the cooling unit of a data 

center.  

 Step 3 – Data Preprocessing: preprocessing of the data is an important step specially 

when working with sensor data which often contains errors, and noise values or has 

missing values. This is explained in detail in section 3.3.  

 Step 4 – After preprocessing, the data will be split into train and test datasets. 

Typically, 70-90% of the collected original dataset is used for training and 10-30% 

for the test dataset. Train dataset will be used to extract the information and learn 

the signature of the system and train the predictive model. Where the test dataset 

will be used to evaluate and validate the trained model.  

 Step 5 – Model training: The target of this step is to develop a predictive model by 

extracting the information from training (historical) dataset. This historical data can 

be labelled or unlabelled where, labeled data is a group of samples that have been 

tagged with one or more labels. Labels are tags for different classes of data (normal 
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and failure scenarios in the area of predictive maintenance) that machine learning 

algorithms try to predict. If the training data is labeled, it means we have prior 

knowledge about the categories that samples belong to, however, unlabelled data 

does not have any tags or labels associated with the observations. Depending on 

using labelled or unlabelled data, there are mainly two approaches to train 

predictive models:  

 Unsupervised approach, where   there   is   no   need   for labelled training 

samples and thus less human intervention requires in both training and 

testing stages of the model (Xiaojin, 2002) 

 Supervised approach, where labelled data is required for training and testing 

stages of the model and thus necessitates more human interventions 

(Kotsiantis, 2007).  

Since the labels are expensive to collect in many applications, unsupervised 

learning approach can be helpful by avoiding such expenses. 

 Step 6 – Making predictions using test dataset: in this step a portion of the data 

which was not used in the training phase (which is usually called test dataset) will 

be fed to the trained model and the predicted outputs will be populated.   

 Step 7 – Evaluating the trained model: evaluating the performance of a trained 

model is one of the core stages and can be done by calculating the accuracy of 

predictions on the test dataset shows if the trained model has acceptable skills in 

making predictions or not. In fact, steps 5 and 6 should be repeated with different 
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algorithms and hyper parameter settings until the results in step 7 meets a minimum 

accuracy requirements defined by domain experts. Generally, these minimum 

requirements are defined in a way that predictive models are able to outperform 

human based predictions in terms of accuracy, costs, or implementation scales (Van 

der Aalst, 2010).  

In the following sections data preprocessing and model development are explained in more 

details. 

3.3 Data Preprocessing 

Collected raw data has to be processed to be ready for a machine learning algorithm. This 

step is important and has a vital effect on the performance of the data driven model. Data 

preprocessing techniques can be categorized into two group, simple and advance. While 

simple techniques impute missing values and scales different sensor readings, advanced 

preprocessing methods extract new features or drop less informative features to avoid 

overfittings and lower the training times (Lee J. B., 2014).  

3.3.1 Feature Selection 

Reducing the number of features is necessary to decrease the computational efforts and 

avoid overfittings in model training. Theoretically, a greater number of sensors could 

capture richer datasets that lead to higher accuracy in failure detection. In practical 

applications more sensors introduce new challenges from more storage capacity and 

processing time requirements to physical limitations in sensor placement. Also, some 
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information may confuse the model and decrease the accuracy. Feature selection 

techniques by selecting the most relevant and important sub-features can overcome above 

mentioned problems. This process can be done in few different ways such as correlation 

analysis, principal component analysis and entropy calculation. Also, machine learning 

techniques such as generic algorithms and decision trees can been used for feature 

selection.  

A. Correlation analysis 

Correlation analysis (Hair, 2006) evaluates the relationship between features. 

High correlation means that two or more features have a strong relationship with each 

other, while low correlation means the opposite. Often correlations higher than 0.9 shows 

that one of the features doesn’t have significantly new information for the predictive model 

and thus it could be removed from the training dataset. At the same time very low 

correlations between any feature and the target variable shows that such feature is not a 

good predictor of the target variable and could be removed from the training set. 

Followings are common ways in defining correlations among variables: 

 Covariance: The relationship between two features can be summarized by 

calculating the average of the product between the values from each sample, where 

the values have been centered (Brownlee, 2016 ). 

𝑐𝑜𝑣(𝑥, 𝑦) =
1

𝑛 − 1
(∑ ∑(𝑥 − �̅�)(𝑦 − �̿�)

𝑦𝑥

) (3-1) 
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Where 𝑛 is the number of pairs of data (observations), �̅� and �̅� are the means of 

samples for features 𝑥 and 𝑦, respectively. This technique does not have a good 

performance if the amount of observations is low or if there is non-linear correlation 

between the features or if the features do not have Gaussian distribution (Brownlee, 

2016 ).   

 Pearson’s Correlation: since covariance matrix is challenging to explain, Pearson 

correlation is a good way to handle this problem (Rumsey, 2009), (Brownlee, 2016 

). It is in fact the normalized version of the covariance matrix where, covariance 

matrix is divided by the product of the standard deviations of the related features. 

Pearson’s Correlation is easy to interpret because the results are between -1 and +1 

with +1 being the strongest possible positive correlation and -1 being the strongest 

possible negative correlation. While zero shows there is no relationship between 

the related variables.  

𝑃𝑐𝑜𝑟 =
𝑐𝑜𝑣(𝑥, 𝑦)

𝑠𝑥𝑠𝑦

(3-2) 

where 𝑠𝑥 and 𝑠𝑦 are standard deviations of features 𝑥 and 𝑦 respectively. Again, 

like covariance if the features do no not have Gaussian distribution or there is non-

linear relationship between variables this technique will not have accurate results. 

 Spearman Correlation: To deal with nonlinear relationship between features and 

non-Gaussian distributions, Spearman correlation is introduced (Brownlee, 2016 ). 
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𝑆𝑐𝑜𝑟 =
𝑐𝑜𝑣(𝑟𝑎𝑛𝑘(𝑥), 𝑟𝑎𝑛𝑘(𝑦))

𝑠𝑟𝑎𝑛𝑘(𝑥)

(3-3) 

Where 𝑟𝑎𝑛𝑘(𝑥) and 𝑟𝑎𝑛𝑘(𝑦) are sorted values of the features x and y respectively. 

This is where the values are ordered and assigned an integer rank value. 

B. Principal component analyses (PCA)  

PCA is an algorithm to transform the data from higher to lower dimensions without losing 

significant information and variability (Wold, 1987). It is a linear projection method which 

transforms the original 𝑠 dimensional dataset into less dimensional space where, 𝑠 is the 

number of features in dataset. After projecting data points into the new low dimensional 

space, (new) variable with the greatest variance is called the first principal component, the 

second (new) variable with the high variance is called second principal component and so 

on. PCA can be used for reducing dimensionality by selecting the first few principal 

components (in most applications only two first ones) and eliminating the remaining 

principal components. Figure 3-2 shows the basic steps of a PCA.  
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Figure 3-2: Block diagram of steps of principal component analyses technique (Wold, 

1987) 

Assume a dataset as a matrix 𝑋 with 𝑛 × 𝑠 dimension where 𝑛 is the number of 

observations and 𝑠 is the number of features (number of sensors in this research). PCA 

steps are as follows; 

 Data standardization: calculating the mean values of the features and then centering 

the all values is called data standardization. Since in most cases the dataset contains 

variables with various units and scales, it is necessary to standardize the data to give 

each variable the same influence. After standardization each variable has variance 

of one. Equation 3-4 which is done by subtracting the mean of the data from each 
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data point calculates the standardized version (matrix D) of the original dataset 

(matrix X); 

𝐷 = [
𝑥11 − �̅�1 … 𝑥1𝑠 − �̅�𝑠

⋮ ⋱ ⋮
𝑥𝑛1 − �̅�1 … 𝑥𝑛𝑠 − �̅�𝑠

] (3 − 4) 

where �̅�𝑖 is the average of ith feature in the original dataset.  

 Correlation matrix: The next step is calculating the correlation between each 

pairwise features and generate the covariance matrix for the whole dataset which is 

discussed in the previous section. This matrix is always square and symmetric.  

 Calculate eigenvalues and eigenvectors: The next step is calculating the 

eigenvalues and eigenvectors of the created correlation matrix. The idea is that the 

eigenvectors with the largest eigenvalues correspond to the dimensions that have 

the strongest correlation in the dataset. To find the eigenvalues and eigenvectors, 

matrix decomposition methods like singular value decomposition (Golub, 1971) 

can be used. And then by choosing first k greatest eigenvalues and eigenvectors, 

data can be projected into the new low dimensional subspace. 

𝑃𝐶 = 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑔𝑟𝑒𝑎𝑡𝑒𝑠𝑡 𝑒𝑖𝑔𝑒𝑛𝑣𝑎𝑙𝑢𝑒𝑠 𝑎𝑛𝑑 𝑒𝑖𝑔𝑒𝑛𝑣𝑒𝑐𝑡𝑜𝑟𝑠 

 Data projection:  

𝑃𝐶𝐴 = (𝑃𝐶)𝑇 . 𝑋 (3 − 5) 

Where X is the original dataset before projection, (𝑃𝐶)𝑇 is the transpose of the 

chosen principal components and 𝑃𝐶𝐴 is the projection of the original dataset. 

Therefore, by selecting the largest eigenvalues and using them to project dataset 
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into the new space, the dimensionality of data can be reduced without losing 

significant information.  

C. Entropy 

It is used to quantify how much information there is in a feature.  Equation 3-6 calculates 

the entropy (function H) of feature 𝑥  (Shannon, 1949). 

𝐻(𝑥) = − ∑ 𝑝(𝑥𝑖)

𝑛

𝑖=1

𝐼(𝑥𝑖) (3 − 6) 

Finding H(x) is the same as calculating the information for the probability distribution of 

the events for the random variable 𝑥. It gives the average number of bits required to 

represent an event drawn from the probability distribution for the random feature. Where 

𝑛 is the number of events (normal and failure sceneries in the application of predictive 

maintenance), 𝑥𝑖 is a random variable, 𝑝(𝑥𝑖) is the probability that the event 𝑥 occurs. 

I(𝑥𝑖) = log2 (
1

𝑝(𝑥𝑖)
) shows the information content of event 𝑥𝑖 and is 0 for the definite 

contents and is increasing if the event is more rarely to happen. Therefore, 

ℎ𝑖𝑔ℎ 𝐸 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ← 𝑎𝑙𝑙 𝑒𝑣𝑒𝑛𝑡𝑠 ℎ𝑎𝑣𝑒 𝑠𝑎𝑚𝑒 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦
𝑙𝑜𝑤 𝐸 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 ← 𝑚𝑜𝑟𝑒 𝑡ℎ𝑒 𝑖𝑛𝑓𝑜𝑟𝑚𝑎𝑡𝑖𝑜𝑛 𝑐𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑒𝑠 𝑜𝑛 𝑓𝑒𝑤 𝑒𝑣𝑒𝑛𝑡𝑠

  

So whenever a feature has low entropy, it means that it is a valuable feature in the process 

of model training.  
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D. Machine learning based feature selection approaches 

Machine learning approaches, such as genetic algorithms and decision trees can also be 

used for feature selection (Swiniarski R. W., 2003). The goal in this approach is still fining 

subset of highly informative features that can be used for predictive model training. 

3.3.2 Feature Extraction 

Some features are easy for human to understand but typical machine learning methods have 

difficulties to learn from them such as time stamps that a sensor measures a physical input 

from its environment. While human has a solid and easy understanding of such data, 

machine learning algorithms usually prefer to have days, weeks, or months as separate 

features in the training dataset. Feature extraction methods transform the original feature 

space to new feature space (usually with higher dimensions) and streamline the learning 

process for predictive algorithms.  

3.4 Machine Learning Based Predictive Models 

There are different machine learning algorithms which use different structures to 

detect/predict anomalies (data center failures in our case) in the system. Choosing the right 

algorithm is one of the challenging steps in this process. Type of problem, size of training 

set, accuracy, training time, linearity, number of parameters, number of features are the 

important considerations when choosing machine learning algorithms (Ravanshad, 2018). 

Beside these factors, storage capacity is another important factor that should be considered. 

As it is mentioned earlier, depending on the type of training dataset, type of problem can 
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be classified as supervised (Xiaojin, 2002), unsupervised (Schölkopf B. W., 2000) or 

reinforcement learning (Sutton, 1998). 

3.4.1 Unsupervised Machine Learning Models 

As it is mentioned earlier, when the historical data is unlabelled, the problem is 

unsupervised. In the real word, most of the time it is hard and sometimes impossible to 

create the labelled data. Unsupervised algorithms are useful methods in such cases and can 

be used for classifying unlabeled data into groups (such as normal and failure scenarios in 

this research). Figure 3-3 visualizes the process of unsupervised learning in a simple way 

(Goldstein, 2016). First step is training a machine learning algorithm to create a data driven 

model. Applying the trained model to the test data and evaluating the performance is the 

next step. If the results are not satisfying, the model should be improved (either by trying 

different algorithms or hyper parameters) again.  

 

Figure 3-3: Unsupervised anomaly detection technique (Goldstein, 2016) 

Unsupervised anomaly detection approaches can be grouped into four families (Falcão, 

2019), distance-based, and classification-based approaches (see Figure 3-4). Between these 

groups distance-based and classification-based approaches are the most useful methods in 
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the area of anomaly detection and predictive maintenance. Looking at Figure 3-4, the most 

widely used unsupervised algorithms especially in the area of predictive maintenance are 

given for these two group. To make a decision about which one works better, their 

performance should be checked in the specific application. Following is the explanation of 

these methods and have a comparison at the end to determine which one more probably 

performs well in which kind of datasets. 

 

Figure 3-4: Famous anomaly detection machine learning algorithms (Falcão, 2019) 

A. Distance-based Approaches 

Distance measures play an important role in machine learning. There are three different 

distance-based machine learning algorithms, neighbor based, density based, and clustering 

based. It also should be mentioned that sometimes combination of these algorithms may 

improve the performance of the data driven model. For example, combination of a 

neighbour-based algorithm with an angle based algorithm may lead to better predictive 
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models (Kriegel, 2008). The most widely used algorithms of distance based approaches in 

the area of predictive maintenance are k-nearest neighbor (KNN) and K-Means which will 

be discussed in the following sections.  

 Neighborhood Based Clustering, finds clusters based on the neighborhood 

characteristics of the data (Zhou, 2005). KNN is the most common approach in this 

group. While this approach is known as a supervised learning method, it also can 

be used as an unsupervised technique (Prerau, 2000). In this approach by assuming 

that the training dataset belongs to only one cluster (normal), there is the potential 

to detect failure situation of the system without any prior knowledge of their 

existence. In an unsupervised KNN, the whole process is learning the unlabelled 

training dataset and then try to label a new unseen data point by looking at the K-

closest labeled data points. This approach uses Euclidean distance (Zhang Z. H., 

2006) or other distance metrics such as Manhattan, Minkowski, or Hamming 

distance to calculate the distance between a typical data point A and its neighbors. 

If this distance is larger than a threshold, it shows point A is far from its neighbors 

and thus, it could be flagged as anomalous point. Equation 3-7 calculates Euclidean 

distance between two n dimensional points (Zhang Z. H., 2006).  

𝐸𝑑𝑖𝑠𝑡(𝑎, 𝑏) = √(𝑎1 − 𝑏1)2 + (𝑎2 − 𝑏2)2 + ⋯ + (𝑎𝑛 − 𝑏𝑛)2 (3 − 7) 

where 𝑎𝑖 and 𝑏𝑖  refer to the values of the 𝑖𝑡ℎ feature for observations 𝑎 and 𝑏. The 

number of neighbors (K) should be define by human. For example, if K = 1, then 

the case is simply assigned to the class of its one nearest neighbor but if K is higher 

https://machinelearningmastery.com/tutorial-to-implement-k-nearest-neighbors-in-python-from-scratch/
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than 1, the average should be considered. In most of the cases the accuracy will be 

checked for different values of K to find the optimal number.  

Unsupervised K nearest neighbor algorithm tries to find the distance between any 

point of a dataset with the K nearest neighbors itself. Now, imagine the average 

distance of a typical point A with its K neighbors is bigger than a specific threshold. 

This would be a sign of anomalousness since the point A is far from its neighbors. 

Finding the nearest neighbor is not trivial task and the most naïve way is to calculate 

the distances for all pairs of point A and the rest of the data point (Brute force 

method). In order to reduce this complexity, algorithms such as BallTree, and 

KDTree limit the search space by dividing the feature space to smaller subspaces 

(J. Goldberger, 2005). Table 3-1 below shows the time complexity of these methods 

where D and N are the number of features and observations respectively. 

Table 3-1: Time complexity for different algorithms of KNN 

 Brute-based KD Tree Ball Tree 

Time complexity 𝑂[𝐷𝑁2] 
𝑠𝑚𝑎𝑙𝑙 𝐷: 𝑂[𝐷 log(𝑁)] 

𝑙𝑎𝑟𝑔𝑒 𝐷: 𝑂[𝐷𝑁] 

𝑂[𝐷 log(𝑁)] 

 

Where in low N (N<30 or so), brute based approaches can search the whole feature 

space and would result in better outcomes. Data structure is also having large 

impact on the time complexity when using tree-based approaches. Also, number of 

K which is user defined constant, has high impact on the runtime of tree based 
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approaches because trees will become slower when they require to check larger 

portion of the parameter space.  

 Clustering based approaches: K means (Marroquin, 1993) is the most widely used 

algorithm in this family which takes the unlabeled data points and tries to group 

them into K number of clusters. The first step is randomly initializing k cluster 

centroids and assigning the first training data point to the nearest cluster centroid 

(training step). This distance can be calculated by Euclidean distance (equation 3-

7). Then, new train data point is assigned to the cluster which has the shortest 

distance to the cluster centroid. After that initialized cluster centroids will be 

recalculated and modified once again new data points will be assigned to the 

clusters. This process is repeating till the centroids are not changing anymore. This 

method is very easy to understand but the main drawbacks are high running time 

and the need to specify the number of clusters in the data. That is why this algorithm 

should be tried for different K values which again imposes extra running time in 

the training step.  

 Density based: Any machine learning algorithm which uses the concept of density 

reachability and density connectivity to cluster unlabeled data points is categorized 

into density-based algorithms in unsupervised learning. Local outlier factor (LOF) 

(Breunig, 2000) is the most widely used density based unsupervised machine 

learning approach for the application of anomaly detection and predictive 

maintenance. Figure 3-5 shows LOF step in 6 stages. The problem is calculating 
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LOF score for each point to find the outliers (failures in the area of predictive 

maintenance) based on the scores.  

 

Figure 3-5: Local outlier factor steps (Breunig, 2000) 

First, the distance between all pairs of observations is calculated. By initializing a 

value for K and finding the K nearest neighbor for each point, the distance between 

the observation and k-nearest neighbor will be calculated. The next step is 

calculating local reachability density (LRD). In other words, LRD is an optimal 

distance in any direction from a data point to its neighbors and illustrates how far 

is the point from its neighbors. Mathematically it can be formulated by equation 3-

7 which is the inverse of the average reachability distance.  

𝐿𝑅𝐷 = 1
∑ 𝑟𝑒𝑎𝑐ℎ_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

𝑖
← 𝑝𝑜𝑖𝑛𝑡)𝑘

𝑖=1
𝐾

⁄
(3 − 7)
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Where 𝑟𝑒𝑎𝑐ℎ_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖 ← 𝑝𝑜𝑖𝑛𝑡) is the maximum of distance(point, 

kth neighbor) and distance(point, ith neighbor). To measure this distances Manhattan 

technique is used. Equation 3-8 formulates this technique for two n dimensional 

data points (S., 2011). 

𝑀𝑎𝑛ℎ𝑎𝑡𝑡𝑎𝑛 𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐴, 𝐵) = ∑|𝑎𝑖 − 𝑏𝑖|

𝑛

𝑖=1

(3 − 8) 

After finding LRD for the data points, these values are used to calculate local outlier 

factor (LOF) and tells how likely a certain data point is an outlier/anomaly. In other 

word, LOF score of a data point shows the LRD of that point compared to the LRD of 

its neighbors. LOF for a specific point can be calculated by equation 3-9 which is the 

average LRD of the neighbors divided by the point's own local reachability density. 

𝐿𝑂𝐹 =
∑

𝐿𝑅𝐷(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖)
𝐿𝑅𝐷(𝑝𝑜𝑖𝑛𝑡)

𝑘
𝑖=1

k
=

∑ 𝐿𝑅𝐷(𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟𝑖)
𝑘
𝑖=1

k ∗  𝐿𝑅𝐷(𝑝𝑜𝑖𝑛𝑡)
(3 − 9) 

and if the density of the point is smaller than the densities of its neighbors, LOF will 

be much higher than 1 and illustrates the point is far from dense areas (normal points 

in our case) and can be detected as an outlier data point (faulty situation). But to cluster 

a point as a normal or abnormal group, a value as a threshold should be defined which 

is a drawback of this technique. Setting this threshold mainly depends on data. While 

LOF value of 1 or less is a good indicator of an inlier (normal situation), if the dataset 

is clean, threshold can be 1.01 but if not, LOF value of 2 or more could be indicative 
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of an inlier. It is obvious that if there are fluctuations in the density of the train dataset, 

this technique might not be the best detection method.  

B. Classification-based Approaches:  

 One-class SVM is an unsupervised algorithm which was first introduced by 

Schölkopf et al. (Schölkopf B. P.-T., 2001) for estimating the support of a 

high-dimensional distribution. The aim of using any unsupervised anomaly 

detection method, as mentioned in the previous section, is building a model 

for normal data points (class number one), and then flag points that do not 

follow the created model as anomalies (class number two). One-Class SVM 

tries to find an optimal closed boundary around the normal data points which 

is known as decision boundary. Collected data from the most of the real-

world applications has non-linear characteristics and thus, non-linear 

decision boundaries are needed to separate the normal data points from faulty 

points. Finding the optimal decision boundary can be formulated into an 

optimization problem. The goal is to find a ball (hypersphere) to be as small 

as possible while at the same time, including most of the training data (normal 

data points). To find the optimal hyper-sphere in an 𝑛 dimensional feature 

space, One-Class SVM (Schölkopf B. W., 2000) separates a desired fraction 

of the data points from the origin 𝜌 with maximum margin. Because hyper-

sphere cannot be always found in the original feature space, thus mapping 
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data Φ(𝑥) via a kernel function is needed (see Figure 3-6). There are three 

common kernel functions, linear, polynomial and Gaussian. 

 Linear kernel; 𝐾(𝑥, 𝑦) = (𝑥. 𝑦)  

 Polynomial kernel; 𝐾(𝑥, 𝑦) = (𝑥. 𝑦 + 1)𝑑  where 𝑑 is the degree of 

polynomial 

 Gaussian RBF1 kernel; 𝐾(𝑥, 𝑦) = 𝑒
−

‖𝑥−𝑦‖2

2𝜎2  where 𝜎2 is the variance. 

 

Figure 3-6: Mapping original data from input space to feature space (Wilimitis, 2018 ) 

Because most of the real datasets are not linearly separable, a nonlinear kernel is 

needed (polynomial or Gaussian RBF kernels) to map the dataset from original 

input space to the new high dimensional feature space. Figure 3-7 illustrates the 

feature space with a nonlinear kernel function. The goal is finding the smallest 

hypersphere enclosing the data (green circle) which is equivalent to finding the 

hyperplane that separates the data from the origin (yellow line). The distance 

                                                
1 radial basis function 
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between the hyperplane and the origin is ρ/||w||, where w is the normal vector to the 

hyperplane and R corresponds to the radius of hypersphere. 

 

Figure 3-7: Illustration of the One Class SVM with nonlinear kernel (Mourão-Miranda, 

2011) 

This hyper-sphere can be written as following equation: 

‖𝜑(𝑥) − 𝜌‖2 = 𝑅2 (3 − 12) 

 One-class SVM tries to minimize the radius 𝑅 while keeping the majority of the 

observations inside the hyper-sphere. This condition can be formulated as following 

equation (Schölkopf B. W., 2000), 
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minimize
𝑅,𝜀𝑖,𝜌

𝑅2 +
1

𝑣𝑛
∑ 𝜀𝑖

𝑛

𝑖−1

(3 − 13) 

 Subject to the following constraints: 

‖𝜑(𝑥) − 𝜌‖2 ≤ 𝑅2 + 𝜀𝑖      𝑓𝑜𝑟  𝑖 = 1, … , 𝑛 

𝜀𝑖 ≥ 1      𝑓𝑜𝑟  𝑖 = 1, … , 𝑛 

Table 3-2 shows the parameters and their meaning in optimization.  

Table 3-2: Unsupervised Optimization Parameters 

Parameter Meaning of the parameter 

𝜑 Feature map 

(𝑥𝑖) Training samples 

𝜑(𝑥𝑖) Gaussian kernel for mapping 𝑥𝑖 to feature space 

𝝆 Center of hyper-plane 

𝑹 Radius of hyper-plane 

𝜺𝒊 Slack variables used to penalize observations 

𝑣 Trade-off parameter ∈ [0,1] 

𝑛 Number of training patterns 

 

With small values of 𝑣, the algorithm tries to put more data into the hyper-sphere 

and with larger 𝑣, it tries to minimize the size of the hyper-sphere. The optimization 

problem (Equation 3-13) is a constrained optimization problem and can be solved 

by the Lagrangian multiplier method. Figure 3-8 shows the process in a 2-

dimensional feature space. Looking at the input space, green points can be 
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classifying as one group (normal in this case) and rest can be classifying into the 

failure group. The target here is finding the best hyper-sphere and hyperplane after 

mapping data points into the new feature space. Looking at the feature space, green 

points represents normal while orange ones illustrates the abnormalities. This is 

how one-class SVM can detect failures in the application of predictive 

maintenance. 

 

Figure 3-8: Illustration of detection normal and faulty points using one-class SVM 

algorithm 

After finding the optimal hyper-sphere (decision boundary), the distance between 

any new given point and this boundary is defined as anomaly score. 

𝑓(𝑥𝑖) = ‖𝜑(𝑥) − 𝜌‖2 − 𝑅2 (3 − 14) 

for a given 𝑥𝑖, negative 𝑓(𝑥𝑖) will be classified as a normal point, otherwise, it will 

be classified as an abnormal point. 𝑓(𝑥𝑖) is also called as a decision function. In 

this research we will use the above-mentioned decision boundary to define the 

health index 𝐻(𝑥𝑖) of the system which will be discussed in Chapter 4. 
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 Another most widely used classification method is iForest technique (Liu F. T., 

2008) which can be used in both supervised and unsupervised problems. The idea 

is generating tree by creating partitions repetitively (by first randomly selecting a 

feature and then selecting a random split value between the minimum and 

maximum value of the selected feature) till every single observation isolated. By 

stopping the algorithm from partitioning, the tree is generated. In the generated tree, 

every leaf represents the observation and the distance from the root node to every 

observation (every leave) defines an anomaly score for the observation (see 

equation 3-14). Because this tree will be generated for so many times to make it 

robust against randomness of whole process, every time only a fraction of samples 

will be used and at a very end the average of these trees will be the final tree. This 

algorithm has low linear time-complexity and requires small memory thus could be 

very useful in online anomaly detection algorithms. Equation 3-14 (Liu F. T., 2008) 

shows the decision function 𝐻(𝑥𝑖), 

𝐻(𝑥𝑖) = 2
−

𝐸𝑖(ℎ(𝑥))

𝑐(𝑛) (3 − 14) 

Where ℎ(𝑥) is number of edges from leaf node to the root node.  If it is close to 1, 

it indicates anomalies, and when it is close to 0, it is safe to consider the point and 

normal observation. 
𝐸𝑖(ℎ(𝑥))

𝑐(𝑛)
 is average of ℎ(𝑥) for observation 𝑖 and 𝑐(𝑛) is the 

average of ℎ(𝑥) and can be calculated by equation (3-15) (Liu F. T., 2008). 

𝑐(𝑛) = [2 ln(𝑛 − 1) + 1.154] −
2(𝑛 − 1)

𝑛
(3 − 15) 
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3.4.2 Supervised Machine Learning Models 

If we have prior knowledge of what the output values for our samples should be (having 

labels for the samples), the problem is a supervised one. Supervised machine learning 

algorithms are easy to understand compared to the unsupervised however, creating labelled 

dataset is always expensive and sometimes impossible. Supervised learning problems 

can be grouped into Regression and Classification problems. If the output variable is a 

category the problem is a classification problem wherein prediction of real values as a 

target, is called regression problem. Figure 3-9 shows the list of commonly used supervised 

machine learning algorithms in both regression and classification problems (Brownlee, 

machine learning mastery, 2016 ). For both regression and classification techniques, 

ensemble learning method is also introduced to improve the accuracy in detecting 

abnormalities in the system (DataQuest, 2019). In most of the cases combining the 

predictions of multiple machine learning models avoids overfittings and improves the 

performance.  
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Figure 3-9: Supervised learning machine learning algorithms (Brownlee, machine 

learning mastery, 2016 ) 

A. Regression 

A regression problem is when the output variable is a real or continuous value. Many 

different models can be used, the simplest is the linear regression. It tries to fit data with 

the best hyper-plane which goes through the points and has minimum distance from each 

observation. Support vector regression (SVR), ensemble methods, decision trees and 

neural networks are other famous algorithms in this group (Roman, 2019).  
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B. Classification 

A classification problem is when the output variable is a category (Brownlee, machine 

learning mastery, 2016 ). Given one or more observation from each category to the 

algorithm and train the model will allow the model to classify new unseen data into the 

right categories. Support vector machine (SVM), random forest, and nearest neighbors are 

most popular machine learning algorithms to solve supervised classification problems. In 

this research, our problem is defined as classification problem which tries to classify 

observations into normal and different failure clusters.  

 Support vector machine: Most of the time it is hard to find decision boundaries in 

the real space, so SVM algorithm is used to first transform the original data into 

new space (higher dimensional space). This transformation will lead to gain linearly 

separation even if the data is not basically linearly separable. The kernel function 

which defines inner products in the transformed space is used in this research as 

transform function. The optimal decision boundary can be defined from the 

optimization problem 3-17. 

minimize 
𝜔,𝜀

∑ 𝜔𝑖
2

𝑛

𝑖=1

+ 𝑐 ∑ 𝜀𝑖

𝑛

𝑖=1

(3 − 17) 

Subject to the following constraints: 

𝑦𝑖 (𝑤. 𝑥𝑖 + 𝑏) ≥ 1 − 𝜀𝑖        𝑓𝑜𝑟  𝑖 = 1, … , 𝑛 
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where Table 3.2 shows the parameters and their meaning in supervised optimization 

problem (equation 3-17). C is a hyper parameter that decides the trade-off between 

maximizing the margin and minimizing the mistakes when drawing the decision 

boundary. when C is small, miss-classifications are given less importance and focus 

is more on maximizing the margin, whereas when C is large, the target is to avoid 

miss-classification at the expense of keeping the margin small. 

Table 3.2: Supervised optimization parameters 

 

Parameter Meaning of the parameter 

𝒙𝒊 Training samples 

𝝎 Radius of hyper -plane 

𝜺𝒊 Slack variable used to penalize observations 

𝑪 Trade-off parameter ∈ [0,1] 

𝒏 Number of training samples 

𝒚𝒊 Labels for the training samples 

 

 K-Nearest Neighbor: Supervised KNN works similar to unsupervised KNN which 

is discussed in the previous section. The only difference is in the training step where 

there are samples of different classes while unsupervised KNN training dataset has 

only normal data points and the target is clustering new unseen points into normal 

and faulty groups. In the supervised KNN by looking at the K nearest neighbors of 

the new observation, it can be assigned to the group which most of the neighbors 

belong to.  
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 Random Forest: Tree based algorithms are other powerful machine learning 

algorithms. Random forest (Breiman, 2001) is a tree based approach and is useful 

method in classifying data into the groups. Random forests are an ensemble learner 

built by decision trees. So, to understand a process which random forest has, 

decision trees should be discussed first (Quinlan, 1986). Decision tree splits the 

input training dataset to create a binary tree. Each time splitting the data, subsets of 

variables randomly will be selected, so the process will produce different trees. 

Decision trees learn how to best split the dataset into smaller and smaller subsets to 

predict the class which a new observation most likely belongs to. When producing 

a decision tree, splitting the data will be continued till the maximum depth of the 

tree is reached. And each individual created tree in the random forest spits out a 

class prediction and the class with the most votes becomes our model’s prediction.  

One of the important factors in well organizing a tree is a measure called "gini 

index" which shows the impurity criterion for the two descendent nodes is less than 

the parent node.  

3.4.3 Reinforcement Machine Learning Models 

The reinforcement learning technique is a type of machine learning technique which tries 

to detect/predict results for the input data while there is no training dataset to train the 

model. Therefore, the machine learning algorithm is based on a trial and error scheme 

(Sutton, 1998). In the beginning the model will be created in respect to some random 

aspects. This created model predicts results and then the comparison between these results 
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and the expected results will be used to improve the model. This is why this kind of 

algorithms are useful in combination with other learning algorithms to enable an efficient 

adaptive control system for the created data driven model which learns from its own 

experience and behavior. In this research we used supervised and unsupervised learning 

methods, so reinforcement learning is only cited and not described in details. 

3.5 Conclusion 

 This chapter provided an overview and classification of different types of failure and 

relative predictive maintenance models with their advantages and drawbacks. As 

established in Chapter 2, this thesis focuses on the machine learning to learn health and 

unhealthy signature of data center operation. Since the streaming data from sensors are 

prone to noises and interruptions (missing values), data preparation methods are discussed 

to prepare the raw data for machine learning algorithms. And then, the different machine 

learning strategies that are relevant to predictive maintenance (detecting and predicting the 

failures) are introduced. The learning process can be done using two different types of 

datasets, a dataset with having labels (tags for normal and failure scenarios) or a dataset 

without labels. Since collecting labelled data is usually an expensive process especially in 

the area of predictive maintenance which the labels are different failure types, a process of 

unsupervised learning which leads to collecting labels and ultimately supervised learning 

will be discussed in the next chapter. 
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Chapter 4 

4 The Proposed Technique to Detect 

Anomaly Operation of a Micro Data 

Center and Fault localization 

 

4.1 Introduction 

Data centers are the pillars of today’s technology and the global data center market is 

expected to have dramatic growth in the next few years. There are different sizes of data 

centers in the world serving as enterprise or colocation facilities. Beside the large 

corporations with large data centers, small and new start-ups also are trying to have their 

own (micro) data center. As it is worth to notice again, in today’s industrial world, 

unplanned data center outages can be expensive. Fortunately, the reliability of data centers 

can be improved by the application of predictive maintenance. Detecting failures and 
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localizing them are two main goals in using predictive maintenance. There are various 

ways to detect and localize failures which are discussed in Chapter 3 and between the 

mentioned approaches this thesis targets machine learning based methods to detect and 

localize the failures in the data center.  

Machine learning algorithms first should be trained and then the trained model can be used 

to detect and localize the failures. By locating different sensors in different places of the 

data center, both train and test data can be collected. The trained datasets can be labelled 

or unlabelled. If the data is labelled, supervised machine learning algorithms can be used 

while using unlabelled datasets, unsupervised machine learning algorithms will be used to 

train predictive models. It is important to note that collecting labelled data is usually 

expensive. Therefore, since the labeled data is expensive to collect, in this research, data 

center anomaly operation first will be identified by an unsupervised machine learning 

method. And then the fault will be localized using a supervised machine learning algorithm. 

Figure 4-1 shows this process where Figure 4-1 (a) produces health indexes using 

unsupervised learning method and creates labeled dataset for the supervised learning 

algorithm in Figure 4-1 (b).  
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Figure 4-1: (a): unsupervised learning to define health index and assign new given data 

point to normal or abnormal clusters (b): supervised learning to localize failures. 

Temperature and current sensors collect raw data from different subsystems in micro data 

center (A1 in Figure 4-1). Next, we choose typical values for hyper-parameters of 

unsupervised method (A2 in Figure 4-1) which will be updated based on the feedback 

received from the technician (A5 in Figure 4-1). In step A3, collected data from normal 

operation is supplied to unsupervised learning methods, where the decision boundary for 

separating normal versus rest of the dataset (abnormal portion) will be learned. Since the 

majority of observations are from normal operation, the contamination percentage of 

unsupervised algorithms can be set to smaller values. Most probably, the flagged 

contaminations have been originated from transient behaviours where a specific normal 
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operation is transitioning to new normal operation. If the trained models detect anomalies, 

a technician will be notified and s/he needs to clear the anomaly and report the incident 

(labeling the data in A6). If s/he observes more false positives, the thresholds and hyper-

parameters should be tuned (A5 in Figure 4-1).  

The process of labeling should be continued until enough data is collected for the training 

of supervised algorithms (B1 in Figure 4-1). In this thesis, we have intentionally created 

failure scenarios explained in Table 4-1 to be used as the data labeled by technician in real 

world application. Supervised algorithms will be used for specifying the type of the failure 

which usually points out to the location of the failure as well (B2 in Figure 4-1). 

Classification methods produce probabilities of belongship to different operating scenarios 

(B3 in Figure 4-1) and will help technicians to quickly locate and clear the failures or 

anomalous operations. 

Table 4-1: Failure scenarios tested on micro data center located at McMaster Innovation Park 

Scenario Definition (# of samples – Duration (min))  

SC1 Normal operation of micro data center (1097 - 60) 

SC2 Valve blockage of cooling system (202 – 10.77) 

SC3 Compressor electrical failure (110 – 5.8) 

SC4 Pump electrical failure (202 – 10.77) 

SC5 Server rack door left open (90 – 4.8) 

SC6 Instant server reduction to 60% (142 – 7.57) 

SC7 Simultaneous failures of SC2 and SC5 (51 – 2.72) 

SC8 Simultaneous failures of SC2 and SC5 (61 – 3.2) 

SC9 Simultaneous failures of SC2 and SC5 (70 – 3.73) 

SC10 Simultaneous failures of SC2 and SC5 (67 – 3.57) 

SC11 Compressor failure at rest (138 – 7.36) 

SC12 Simultaneous failures of SC5 and SC6 (51 – 2.73) 
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4.2 Defining Data Center Health Index 

Different unsupervised anomaly detection methods have different structures to detect 

anomalies as discussed in previous chapters. After training data any driven model, it can 

give a value for each new unseen data points which indicates the chance of being normality 

or abnormality and each method has different mathematical way to calculate anomaly 

scores for new unseen data points. In this thesis, these scores are used to define the health 

index of micro data center. This equation maps the anomaly scores 𝑓(𝑥𝑖)  to values between 

0 and 1 and is defined in each specified subsections. In this research we will trigger 

anomaly events if health index stays below 0.8 for more than 30 seconds. These thresholds 

are for unsupervised method and have been selected after observing overall behaviour of 

normal operation for the micro data center. In practical applications, these numbers would 

be refined after few weeks (usually less than a month) operation.  

4.3 Developed Data Acquisition System 

As Figure 4-1 shows, the first step in training machine learning algorithms is collecting 

data from the sensitive sections of the physical environment. In this research, data is 

collected from 13 different sensors placed in power, cooling, and IT units of micro data 

center. Optimal number of these sensors can be studied considering the performance of 

unsupervised and supervised methods and will be explained in section 4.5.4. Table 4-1 

shows the type and the location of these sensors. Among the sensors shown in this table, 
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S5-S8, and S9 were already available in the micro data center and the rest of the sensors 

were added to the specified locations. 

Table 4-2: Sensor type and location 

Sensor Type and Location of the sensor 

S1 Input power to IT Rack (A)  

S2 Input power to Compressor (A) 

S3 Input power to Pump (A) 

S4 Input power to Condenser Fans (A) 

S5 IT Rack Temperature (Back, Down) (°C) 

S6 IT Rack Temperature (Front, Up) (°C) 

S7 IT Rack Temperature (Front, Down) (°C) 

S8 IT Rack Temperature (Front, Middle) (°C) 

S9 Condenser Temperature (°C) 

S10 IT Rack Temperature (Back, Up) (°C) 

S11 Ambient Temperature (°C) 

S12 Cold Water Temperature (into IT rack) (°C) 

S13 Hot Water Temperature (out of IT rack) (°C) 

 

Another contribution of this study is the development of a data acquisition system (DAQ) 

which is designed in the form of an electronic shield for the raspberry-pi3. The developed 

electric shield is shown in Figure 4-2 and has an analogue to digital converter (MCP-3008) 

which is able to log 8 channels to RP3.  
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Figure 4-2: Developed analogue to digital converter system 

Raspberry-pi3 (see Figure 4-3) acts as a local storage and processor of the collected data. 

Below are the major features of the raspberry-pi3 used in this study (RUNDLE, 2016): 

 Size: 85.60mm × 56.5mm 

 Weight: 45g 

 CPU: Quad-core 64-bit ARM Cortex A53 clocked at 1.2 GHz 

 GPU: 400MHz Video Core IV multimedia 

 Memory: 1GB LPDDR2-900 SDRAM (i.e. 900MHz) 

 USB ports: 4 

 Video outputs: HDMI, composite video (PAL & NTSC)  

 Network: 10/100Mbps Ethernet and 802.11n Wireless LAN 

 Peripherals: 17 GPIO plus specific functions, and HAT ID bus 

 Bluetooth: 4.1 

 Power source: 5 V via Micro USB or GPIO header 
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Figure 4-3: Raspberry-pi3 

Figure 4-4 shows the developed data system which the upper side is the developed shield 

and the bottom side is the raspberry pi 3 which are connected through 40 GPIO (general 

purpose input output) header. This system not only collects real-time data (no perceivable 

delay in the data collection process), but also cleans and processes them to have an end to 

end hardware/software solution for anomaly detection in micro data centers.  

 

Figure 4-4: The developed data acquisition system 
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It is important to note that collected raw data is usually polluted with noises and outliers 

that can bias the training of machine learning algorithms. To avoid above mentioned 

problems, anomaly quantities have been removed from individual sensor values whenever 

they are greater than 𝑄3 + 1.5 × (𝐼𝑄𝑅) or less than 𝑄1 − 1.5 × (𝐼𝑄𝑅). In these constraints, 

𝑄1 and 𝑄3 are quartile 1 and 3 respectively and interquartile range (𝐼𝑄𝑅) is defined as  

𝐼𝑄𝑅 = 𝑄3 − 𝑄1. Measured quantities can have very different scales which in fact can 

introduce unfair advantages for some of the input features. Thus, the input data should be 

scaled to map all the data points to similar ranges. We have used 𝑍 =
𝑋−𝑢

𝑠
 for scaling sensor 

data where 𝑋, 𝑢 and 𝑠 represent sensor data, mean and variance of x. These stages prepare 

the collected raw data for the unsupervised and supervised machine learning methods. 

4.4 Unsupervised Failure Detection 

The aim of this work is to make a system to detect anomalies in real time thus, a very fast 

process is needed. Therefore, beside the high accuracy and low memory requirement, 

having low processing time is one of the important factors for this work. As described 

previously, 13 sensors have been placed in a micro data center located at McMaster 

Innovation Park (MIP) to log measured current and temperature into the designed data 

acquisition (DAQ) system (see Figure 4-2). Around 1192 observations collected with 3 

seconds intervals. During these intervals, RMS (root mean square) values of the current 

sensors will be recorded. This data is collected in a normal operation of data center. Figure 

4-5 shows the PCA of the normal data which includes both transient (blue points) and 

steady state (orange points) observations. It should be mentioned that all the figures are 
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plotted by using the " Sklearn, seaborn, and Matplotlib" packages of python. Which 

"Sklearn" is a library dedicated to the machine learning algorithms in python and this 

research uses KNN, K-means, One-Class SVM, LOF and isolation Forest libraries which 

are used on Raspberry pi3 for model training and failure detection. 

 

Figure 4-5: PCA of normal data includes transient (blue) and steady state (orange) data 

points 

It is recommended to remove the transient part of the data during the training of the decision 

boundary for the normal operation. 

There are different approaches for unsupervised machine learning where each could have 

different performances in different datasets and applications. Unsupervised machine 

learning algorithms can be classifying into two different approaches;  
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- Distance based methods 

- classification based methods  

These are discussed in section 3.4.1. In the following sections the collected data will be 

supplied to various unsupervised machine learning approaches and their performance are 

compared. It is worth to notice that despite having labels for different scenarios, these 

labels are not used in the training of unsupervised algorithms and will be used only to verify 

the performance of unsupervised algorithm: 

4.4.1 K Nearest Neighbor 

Unsupervised K nearest neighbor (KNN) algorithm is one of the simplest methods in 

detecting anomalies which is a distance based approach and tries to find the distance 

between any point of a dataset with its K nearest neighbors. As it mentioned earlier in 

section 3.4.1, KNN has three different approach which is useful in different kind of 

datasets; brute based, KDtree, and Ball Tree based approaches. For this specific 

application, since the number of training dataset is greater than 30 (this is a rule of thumb 

and can be different with different processing power in training phase) brute based KNN 

approach is not suitable for this case. This is because in the brute based method, the time 

complexity is calculated by 𝑂[𝐷𝑁2] where "N" and "D" are number of samples and 

dimension of dataset respectively and can be too expensive for datasets with bigger N. The 

results in Table 4-3 also verifies this issue where the processing time using brute based is 

very higher than tree based methods in any combination. Therefore, in terms of the 

processing time, tree based approaches will be suitable for this application.  
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Beside the processing time, the accuracy in detecting the anomalies should be considered 

in selecting the optimal solution. In order to have the best decision boundaries and find the 

optimal solution (high accuracy within acceptable run-time), KNN algorithm is trained 

with different combination of its hyper-parameters. This process is called Hyper-parameter 

tuning and the results are shown in Table 4-3. The hyper-parameters are number of 

neighbors (K) and type of the algorithm. As discussed in 3.4.1A, K will define the number 

of neighbors to be checked for measuring the distance and the algorithm (Ball tree and 

KDtree) will limit the search space in finding nearest neighbors (brute based algorithm 

searches the whole space). The highlighted setting has the best performance in terms of 

both processing time and the accuracy in finding the anomalies in the selected search space. 

Table 4-3: Unsupervised KNN hyper parameter tuning 

 

 

Hyper-Parameters Results 

Number of neighbors (K) Algorithm Accuracy (%) Processing time (ms) 

1 Ball tree 100 35.90 

1 KDtree 100 25.95 

1 brute 100 179.5 

3 Ball tree 97.31 39.89 

3 KDtree 97.31 31.91 

3 brute 97.31 215.4 

6 Ball tree 94.88 27.92 

6 KDtree 94.88 27.92 

6 brute 94.88 187.4 

10 Ball tree 94.29 47.87 

10 KDtree 94.29 35.90 

10 brute 94.29 207.4 



 

 
Master Thesis – Negin Piran                    McMaster – Electrical & Computer Engineering  

90 

 

As it is mentioned, the trained model will be used for classifying a new unseen data 

point (test data points) into the normal versus faulty clusters. For a new data point 

𝑥𝑖, its average distance to its K nearest neighbors could be viewed as the outlier 

score (𝑓(𝑥𝑖)). Where if the data point on average is far away from the K neighbors, 

the data point is more likely an outlier (anomaly). The average distance between 

the observation and its K nearest neighbors is defined as anomaly scores in this 

application. In this thesis, the health of the system is defined by mapping these 

distances to values between 0 and 1, where 1 shows the healthy situation and 0 

shows the unhealthy situation.  The following steps are used to map the outlier score 

(𝑓(𝑥𝑖)) to health index defined in this thesis (Eq. (4-1)),  

1. reversing the dataset (−𝑓(𝑥𝑖))  

2. shifting it to non-negative values (−𝑓(𝑥𝑖) + |max(𝑓(𝑥𝑖))|)  

3. scaling it to values between 0 and 1 (
−𝑓(𝑥𝑖)+|max(𝑓(𝑥𝑖))|

𝑚𝑎𝑥(𝑓(𝑥𝑖))+|min(𝑓(𝑥𝑖))|
)   

 Eq. (4-1) summarizes these steps to introduce the health index used in this research.  

𝐻(𝑥𝑖) =
−𝑓(𝑥𝑖) + |max(𝑓(𝑥𝑖))|

𝑚𝑎𝑥(𝑓(𝑥𝑖)) + |min(𝑓(𝑥𝑖))|
(4 − 1) 

 

Figure 4-6 shows the health of system with its K=1 neighbors while using KDtree 

method. BallTree method and different K values resulted in very similar graphs so 

we have shown the distance figure with only one setting (K=1 neighbors and 

KDtree method). As Figure 4-6 shows, micro data center operates under normal 

scenarios for 3500 seconds and then a specific failure happens. Right after the 
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failure, the health index is going to drop below 0.8 very quickly and it will stay 

below this threshold for much longer that 30 seconds. Thus, all of the failure 

scenarios will be detected with the selected thresholds (𝐻𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.8 and 

𝑇𝑖𝑚𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 30 𝑠𝑒𝑐𝑜𝑛𝑑𝑠). The title of each plot in Figure 4-6 indicates the 

failure type and if it is a single failure or combinations of two failures (for safety 

reasons, we limited the number of failure scenarios to the ones shown in Figure 

4-6).  
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Figure 4-6: Health  Index of micro data center using unsupervised KNN  
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4.4.2 K-means 

K-means is an unsupervised clustering based machine learning. In the training step, this 

technique tries to partition a training dataset into K clusters where K is user defined 

constant. Because we have used only normal data points to train the machine learning 

algorithm, so K should be set to 1 (K=1). In the following figure blue points are the training 

data points which are collected during normal operation of micro data center and the red 

point is the centroid of the cluster.  

 

Figure 4-7: Normal cluster data points and centroid 

 After training the model using K=1, K-means can detect abnormalities based on their 

distance from the cluster centroid by looking for any values beyond certain thresholds. 

Setting this threshold similar to the previous unsupervised methods depends on the 

application and its dataset. In this application and with looking at health index curve in 

Figure 4-8, the threshold values have been set to (𝐻𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.8 and 𝑇𝑖𝑚𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 =

30 𝑠𝑒𝑐𝑜𝑛𝑑𝑠). These threshold values would lead to the accuracy of 92.8 % and runtime of 

544 milliseconds.  
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Figure 4-8: K-means clustering health index for failure scenarios 
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Figure 4-8 shows the health index which is defined by mapping the distance function to 

numbers between 0 and 1. This process is explained in deriving (Eq. (4-1)) in previous 

section. 

4.4.3 One Class Support Vector Machine 

One class support vector machine (one-class SVM) is a classification based unsupervised 

machine learning approach (section 3.4.1B). SVM tries to find the best decision boundaries 

that separate normal versus abnormal data points. Hyper-parameters are variables that 

should be set before training the model. In order to create the best decision boundaries and 

find the optimal solution (high accuracy within acceptable run-time), unsupervised 

algorithm is trained with different combination of these hyper-parameters. This process is 

called Hyper-parameter tuning and the results are shown in Table 4-4. The highlighted 

setting has the best performance in the selected search space.  

Table 4-4: One class SVM hyper parameter tuning 

 

Hyper-Parameters Results 

Kernel type Kernel coefficient Degree Accuracy (%) Processing time (ms) 

RBF 0.1 - 98.74 31.23 

RBF 0.8 - 98.74 33.26 

Polly 0.1 1 14.93 4.68 

Polly 0.1 4 1.25 6.56 

Polly 0.5 1 14.93 6.16 

Polly 0.8 1 1.25 6.23 
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One of the important parameters is defining the kernel type and since the collected dataset 

is not linearly separable, a nonlinear kernel (such as polynomial or Gaussian RBF kernels) 

would perform better than linear kernels. Kernel coefficient (v in equation 3-13) will define 

the trade-off between overfitting and under-fitting. So, increasing v causes under fitting 

while decreasing it causes overfitting the model. 

{
𝑠𝑚𝑎𝑙𝑙 𝑣 → 𝑜𝑣𝑒𝑟𝑓𝑖𝑡𝑡𝑖𝑛𝑔

𝑙𝑎𝑟𝑔𝑒 𝑣 → 𝑢𝑛𝑑𝑒𝑟 𝑓𝑖𝑡𝑡𝑖𝑛𝑔
 

Training with optimal hyper parameters leads to the decision boundary shown Figure 4-9. 

This boundary surrounds the normal dataset in lower dimensions (projected with principle 

component analysis) for the visualization purposes. 

 
Figure 4-9: Decision  boundary  for  normal  operation  using one class SVM 

In Figure 4-10: Location  of  faulty  data  with  respect  to  normal  operation  decision 

boundary shows the position of test dataset relative to the trained decision boundary. Since 

none of the failures are inside the decision boundary, accuracy of one-class SVM will be 

high in this application.  
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Figure 4-10: Location  of  faulty  data  with  respect  to  normal  operation  decision 

boundary 

As it is mentioned in Chapter 3, one-class SVM can identify the abnormalities by 

using decision function for calculating the anomaly score for any new data point. 

The calculated scores are the distances of any new data point to the separating 

hyperplane learned by the model. The created method uses these scores by 

interpreting positive and negative distances as normal and faulty data points 

respectively. In this study, equation (4-2) is used to map the anomaly scores to 

numbers between 0 and 1 where 1 shows the healthy situation while 0 shows the 

unhealthy operation of the micro data center. The following steps are used to map 

the outlier score (𝑓(𝑥𝑖)) to health index defined in this thesis (Eq. (4-2)),  

1. reversing the dataset (𝑓(𝑥𝑖))  

2. shifting it to non-negative values (𝑓(𝑥𝑖) + |min(𝑓(𝑥𝑖))|)  

3. scaling it to values between 0 and 1 (
𝑓(𝑥𝑖)+|min(𝑓(𝑥𝑖))|

𝑚𝑎𝑥(𝑓(𝑥𝑖))+|min(𝑓(𝑥𝑖))|
)   

 Eq. (4-2) summarizes these steps to introduce the health index used in this research.  
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𝐻(𝑥𝑖) =
𝑓(𝑥𝑖) + |min(𝑓(𝑥𝑖))|

𝑚𝑎𝑥(𝑓(𝑥𝑖)) + |min(𝑓(𝑥𝑖))|
(4 − 2) 

As Figure 4-11 shows, by selecting detection threshold of 𝐻𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.8, most of the 

failures can be detected within few seconds. For example, after pump fails at t=3500 

seconds, health index drops to almost zero in less than one second. Model behaves similarly 

in detecting all failures by selecting 𝐻𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 0.8 and 𝑇𝑖𝑚𝑒𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = 30 𝑠𝑒𝑐𝑜𝑛𝑑𝑠. 

The title of each plot in Figure 4-6 indicates the failure type and if it is a single failure or 

combinations of two failures (for safety reasons, we limited the number of failure scenarios 

to the ones shown in Figure 4-11). 
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Figure 4-11: decision function results for one-class SVM 
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4.4.4 Isolation Forest 

Isolation Forest is another powerful classification based approach which is discussed in 

section 3.4.1B. Figure 4-12 shows the boundary drawn by isolation forest for the normal 

operation. The blue points are identified as anomalies while they are in fact normal data 

points. Isolation forest always classifies the non-dense part of the data as abnormalities 

since these are the close leaves to the root node during tree creation process. 

 

Figure 4-12: Decision  boundaries  for  normal  operation  with  unsupervised Isolation 

Forest) 

After the model is trained, the anomaly score can be calculated for any new unseen data 

point. Isolation forest can calculate these scores in a way which is discussed in section 

3.4.1C and will return the values in the range of [-1, 1] where negative and positive 

numbers correspond to abnormal and normal states of the observations. The measure of 

normality of an observation is the depth of the leaf containing this observation, which is 

equivalent to the number of splits required to isolate this point.  Figure 4-13 shows the 
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predicted clusters (blue: anomalies and orange: normal) after applying the test dataset 

(faulty dataset) to the trained model. Where again there is some miss-classification (orange 

points). Because of the over fitted decision boundary shown in Figure 4-12, this algorithm 

will not be used for obtaining the health of system. 

 

Figure 4-13: Location  of  faulty  data  with  respect  to  normal  operation  decision 

boundary 

4.4.5 Local Outlier Factor  

Local outlier factor (LOF) is a density based machine learning algorithm where the core 

concept of this method is the application of reachability distance in detecting outliers 

(discussed in section 3.4.1). The idea here is using the reachability distance for each data 

point to calculate the local reachability density (LRD). Using LRD measurements, LOF(x) 

can be computed for each data point. As mentioned earlier, LOF computes the local density 

deviation of a given data point with respect to its neighbors and as a result if portion of a 

dataset has lower density than their neighbors, they will be flagged as anomalous operating 
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points. Figure 4-14 shows the results of LOF on both training (Figure 4-14 (a)) and the test 

datasets (Figure 4-14 (a)). In this figure, orange points are inliers (normal) and blue points 

are outliers (abnormal). What can be concluded is that in both steps LOF algorithm does 

not perform well which could be because of low density of the data in parts of the train and 

test datasets. Because of aforementioned problem, this algorithm will not be used for 

obtaining the health of system in this application. 

 

Figure 4-14: a) LOF for normal training dataset with 10 percent contamination, b) 

applying the faulty test dataset to the trained model   

4.4.6 Summary  

The anomalies predicted by the two different groups of machine learning approaches, 

distance based, and classification based are resulted in different performances.  
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 Because of having low density in parts of the normal data, isolation Forest and LOF 

consider these normal but low density portions as anomalies and lower down the 

overall performance drastically.  

 KNN, K-means and one-class SVM show good performance in describing normal 

and abnormal distributions. 

Table 4-5 compares the accuracy and processing time of the above mentioned unsupervised 

algorithms. 

Table 4-5: Accuracy and processing times of unsupervised algorithms 

 KNN Isolation Forest LOF K-means One-class SVM 

Accuracy (%) 100 failed failed 92.8 98.74 

Processing time (ms) 25.95 failed failed 544 31.23 

 

As it is mentioned earlier, the current data centers are using only temperature sensors to 

detect and predict the anomalies. In order to have fast and accurate failure detection, in this 

research we added 4 current sensors which will give new and different angles to machine 

learning methods. Machine learning algorithms have better performance with more 

independent features. Since adding current sensors have low correlations with temperature 

sensors, they can provide independent information for predictive modes to learn from. 
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4.5 Supervised Failure Localization 

As it is explained in the previous section, unsupervised techniques are used to monitor the 

health of micro data center, and any drop in the health status could be the sign of an 

abnormality in the system that should be checked by the operator. Operator will label the 

faulty observation with the failure type anytime that unsupervised algorithm shows a 

significant drop in health index and this labelled data will be used to localize the failures 

in the future (see Figure 4-1 (b)). Having enough labels (logged by the operator) for any 

type of failure gives the opportunity to the supervised learning methods for classifying new 

observations into the right group and localizing the failures. In this research labeled data is 

generated by creating 11 different types of failures in the micro data center. These failure 

scenarios are given in Table 4-1 (SC2, SC3, ..., SC12 and SC1 for normal operation). Table 

4-1 also shows the duration of each scenario and the number of collected samples for each 

failure scenario which in total 1192 faulty observations have been collected with 3 sec 

interval recording. Thus, the dataset contains 13 features (number of placed sensors) and 

2391 observations (normal data points + faulty data points). Figure 4-15 illustrates the class 

distribution by assuming all the faulty data points belong to the failure class and a detailed 

description of classes are shown in Figure 4-16. It should be mentioned that all the figures 

are plotted by using the " Sklearn, seaborn, and Matplotlib" packages of python. Which 

"Sklearn" is a library dedicated to the machine learning algorithms in python and this 

research uses SVM, KNN, Random Forest libraries which are used on Raspberry pi3 for 

model training and failure detection. 
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Figure 4-15: class distribution of collected dataset (0: normal, 1: faulty) 

 

Figure 4-16: A detailed class distribution of collected dataset 



 

 
Master Thesis – Negin Piran                    McMaster – Electrical & Computer Engineering  

106 

 

In the following sections, collected data first is visualized and then is prepared for training 

supervised methods for the failure localization. In order to visualize the collected dataset 

which is originally in 13-dimension, the principal component analysis (PCA) with two 

principal components is used to show dataset in 2-dimension space. Figure 4-17 shows the 

distribution of the different scenarios in a 2D space. This figure shows that while some of 

the classes like Scenario 4 (SC4) which does not have overlaps with other classes is easy 

to identify, some of the other classes (like SC10 and SC11) are very close to each other 

and a full separation of them is not possible. 

 

Figure 4-17: PCA of data (normal and faulty) 
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It is also interesting to know that if there are any significant correlations between the 

predictors. A heatmap is a two-dimensional graphical representation of data where the 

individual values that are contained in a matrix are represented as colors. Figure 4-18 shows 

the correlation between features in collected dataset. In this figure, blue means positive 

correlation and red means negative correlation and the stronger the color is, the larger the 

correlation magnitude is. The heatmap shows, 

 Strong positive correlation between the temperature of front-upper side of the rack, 

with middle-lower side of it. 

 Strong positive correlation between the temperature of back-upper side of the rack, 

with back-lower side of it. 

 Strong negative correlation between Rack front down, condenser and ambient 

temperatures. 

 Features with high correlations don’t have new and independent information for 

machine learning algorithms and in many cases, it is recommended to replace the 

correlated features (multiple features) with their average (single feature). This will 

also help to reduce the dimension of the original dataset.  
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Figure 4-18: Correlation matrix heatmap for the dataset 

Looking at the heatmap plot, the added 4 current sensors have low correlation with 

temperature sensors. Since machine learning methods have better performance with 

independent features, therefore, the newly added current sensors will improve the 

performance in failure localization.  

Another good way to visualize to understand the dataset is looking at the probability 

density of each sensor respect to the normal and failure operations. The below 

subplots show the distribution of each feature (sensor readings) in normal and 
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failure operations. Table 4-6 shows the sensor averages for both normal and failure 

scenarios.  

Table 4-6: Sensor averages for both normal and failure data states 

 

This table compares the average values for all of the placed sensors in both normal 

and failure states. As this figure shows, the probability distribution for not all of the 

sensors are easily separable (their mean for normal and failure states are not far 

from each other in the graph). For example, while the average current drawn by 

compressor (Figure 4-19 (d)) is 168.13 and 61.03 for normal and failure scenarios 

respectively, for other sensors the mean values are closed to each other and a wide 

variance creates a considerable overlap between normal and failure states. This is 

main reason why sensors cannot detect all failure scenarios on their own 

(individually) and machine learning algorithms should be trained for having a 

holistic view of the micro data center. 

Sensor 
Average value 

for failure 

Average value 

for normal 

Input power to IT Rack (A)  188.47 179.07 

Input power to Compressor (A) 61.03 168.13 

Input power to Pump (A) 38.20 45.04 

Input power to Condenser Fans (A) 36.05 47.00 

IT Rack Temperature (Back, Down) (°C) 35.73 30.53 

IT Rack Temperature (Front, Up) (°C) 26.99 20.71 

IT Rack Temperature (Front, Down) (°C) 27.42 19.81 

IT Rack Temperature (Front, Middle) (°C) 27.42 20.41 

Condenser Temperature (°C) 25.65 26.70 

IT Rack Temperature (Back, Up) (°C) 32.61 27.02 

Ambient Temperature (°C) 25.95 26.98 

Cold Water Temperature (into IT rack) (°C) 14.72 11.92 

Hot Water Temperature (out of IT rack) (°C) 16.56 13.38 
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Figure 4-19: Distribution of sensors in normal and failure scenarios 

The target of using supervised learning methods is creating a line or a hyperplane (linear 

or non-linear boundaries) which separates the data into distinct classes. Drawing better 

decision boundary will lead to better classifying of the new unseen. In this case there are 
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12 different groups including one normal and 11 different failures. Like unsupervised 

learning methods, there are many algorithms which can be used in solving the supervised 

problems which are discussed in section 3.4.2. To determine which one works well in this 

application, SVM, random forest, and K-nearest neighbors are applied to the collected data. 

Around 70 percent of the collected data is used for training the model and the rest for 

testing and validating the created model. Percentages of correctly classified scenarios are 

shown in the confusion matrix of Figure 4-20 where, equation (4-3) is used as the measure 

of accuracy:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠 𝐶 =
# 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝐶

# 𝑎𝑙𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠 𝐶
× 100% (4 − 3) 

Since number of samples in anomalous and normal datasets are unbalanced in this 

application, general accuracy measures can not be used directly. The following equations 

are recommended ways of measuring accuracies in unbalanced datasets, 

 Sensitivity or recall which gives true positive rate (Powers, 2011): 

Sensitivity =
TP

TP +  FN
(4 − 4) 

Where TP is true positives (truly detected anomalies), FN is false negative (anomaly 

points which are mislabeled as normal points). 

 Precision which gives the probability of predicting a True Positive from all positive 

predictions (Powers, 2011): 
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Precision =
TP

TP + FP
(4 − 5) 

Where FP is false positive (normal operating points which are mislabeled as abnormal 

points). 

 F1 score which gives the harmonic mean of precision and sensitivity (Powers, 

2011): 

F1 =
2TP

2TP +  FP +  FN
(4 − 6) 

4.5.1 Support Vector Machine  

As discussed in section 3.4.2B, support vector machine classifies different classes by 

maximizing the gap between the observations in each class. The following grid, is the hyper 

parameter space to be searched by GridSearchCV function of Sklearn package in 

python:  

Regularization parameter 'C': [1,10,100,1000], 

Kernel coefficient 'gamma': [1,0.1,0.001,0.0001],  

kernel type: ['linear','rbf']  

 

The optimal hyper parameters obtained by GridSearchCV will be, 

Optimal regularization parameter 'C' = 1000, 

Optimal kernel coefficient 'gamma'= 1,  
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Optimal kernel type: 'rbf' 

Using the tuned hyper parameters above, the final SVC classifier is trained and the 

following confusion matrix shows the result for this optimal configuration, 

 

Figure 4-20: Normalized Confusion matrix using SVM classifier 

The confusion matrix shows that supervised SVC is able to localize different fault scenarios 

with high accuracy. For example the errors for true label (vertical axis) and predicted labels 

(horizontal axis) are zero for many scenarios in Figure 4-20. Few miss-classifications 

shown in this matrix (such as SC8 instead of SC10) could be because of the transient 

behaviors during the failures. After this transient state, the operating point usually settles 
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close to the center of a specific failure cluster. The duration of these transient behaviors 

depends on the thermal inertial and the severity of electrical faults. For example, short 

circuit faults will have different signature and duration than electrical overload faults or 

large data center will have bigger thermal capacity. The effect of these transient behavior 

can be studied for different size and configuration of micro data centers in the future 

studies. 

4.5.2 Random forest 

As discussed in section 3.4.2B, random forest creates multiple trees to classify different 

observations (by selecting random set of features and observations and splitting them to 

reach pure leaf nodes). The following grid, is the hyper parameter space to be searched by 

GridSearchCV function of Sklearn package in python:  

Number of estimators: [200, 500], 

Max features: ['auto', 'sqrt', 'log2'],  

Max depth: [4, 5, 6, 7, 8], 

Criterion: ['gini', 'entropy'] 

 

The optimal hyper parameters obtained by GridSearchCV will be, 

Number of estimators= 500, 

Max features= 'auto',  

Max depth= 8,  
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Criterion= 'gini' 

 

Using the tuned hyper parameters above, the final random forest classifier is trained and 

the following confusion matrix shows the result for this optimal configuration, 

 

Figure 4-21: Normalized Confusion matrix using random forest classifier 

The confusion matrix shows that random forest can localize different fault scenarios with 

high accuracy. For example the errors for true label (vertical axis) and predicted labels 

(horizontal axis) are zero for many scenarios in Figure 4-21. Few miss-classifications 

shown in this matrix (such as SC8 instead of SC10) could be because of the transient 
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behaviors during the failures and the operating point usually settles close to the center of a 

specific failure cluster in steady state operation.  

4.5.3 K nearest neighbor (KNN) 

As discussed in section 3.4.2B, supervised KNN obtains the labels of K nearest neighbors 

for a typical observation A and assigns the most frequently observed labels to the point A. 

The following grid, is the hyper parameter space to be searched by GridSearchCV 

function of Sklearn package in python:  

Number of neighbors: range (1,50), 

Type of algorithm: ['ball_tree', 'kd_tree', 'brute'],  

Max depth: [10, 20, 30 40, 50] 

 

The optimal hyper parameters obtained by GridSearchCV will be, 

Number of neighbors= 1, 

Type of algorithm= 'ball_tree',  

Max depth= 10 

 

Using the tuned hyper parameters above, the final KNN classifier is trained and the 

following confusion matrix shows the result for this optimal configuration, 



 

 
Master Thesis – Negin Piran                    McMaster – Electrical & Computer Engineering  

117 

 

 

Figure 4-22: Normalized Confusion matrix using KNN classifier 

The confusion matrix shows that KNN has high performance in localizing different 

failures. Miss-classifications shown in this matrix (such as SC8 instead of SC10) could be 

because of the transient behaviors during the failures. 

4.5.4 Feature selection 

Many factors can affect the success of machine learning on a given task. Theoretically, 

having more features should result in more discriminating power, however, in lower 

observations this could lead to overfitting of trained model. Another problem with having 

lots of features is to increase hardware requirements to store and process the data specially 

in online applications. Developed data acquisition system uses a raspberry pi module as 
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storage and processing unit, thus selecting most informative features (sensors) could be 

important in practical applications. Feature selection is discussed in section 3.3.1 and 

Figure 4-23 shows the importance of features (sensors) used in this research individually 

using recursive feature elimination (RFE) method. This analysis helps to identify important 

sensors (to maintain them properly) and readjust the number of features to be used in the 

training of predictive models.  

 

Figure 4-23: Sensor importance in supervised learning 

After finding the most important features, other features can be removed without 

significantly loosing information and hurting the performance of the clustering algorithm. 

As  Figure 4-252 shows the accuracy would remain around 97 percent even when we use 

only 8 important sensors (features).  
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Figure 4-24: Accuracy calculation when using only important features in training the 

supervised machine learning algorithms (SVC)Summary 

4.5.5 Summary 

The application of unsupervised learning helps creating labels for different failure 

scenarios and thus the type and location of future failures can be classified with supervised 

learning methods. The performance of three supervised algorithms have been analyzed and 

the results of their F1 scores are given in Figure 4-25. High F1 scores in many scenarios 

shows the good separation between the failure scenarios and between the trained models, 

supervised SVC performs better than other predictive models. Also, the most important 

features have been studied and the result showed that using 8 sensors out of 13 existed ones 

can reduce the computational complexity and at the same time increase the accuracy in the 

failure localization.  
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Figure 4-25: Comparison between f1 scores for different classes using three different 

supervised classifier (blue: KNN, orange: random forest and green: support vector 

machine classifier) 
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Chapter 5 

 

5 Conclusion and Future Work 

 

Data center outages are very expensive and could even impose security risks to operators 

in such facilities. Predictive maintenance is a mathematical approach to study the historical 

operations to decrease the unplanned outages, associated costs and security hazards. The 

current hardware and software (containing predictive algorithms) are mainly covering large 

datacenter applications and are not suitable for micro data centers. This study proposes a 

new approach to real-time monitoring and predictive maintenance of micro data center 

infrastructure by developing affordable and non-invasive hardware together with quickly 

trainable predictive models. This research accomplished: 
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 Failure detection and localization in MDCs: A new approach has developed to 

detect and localize the failures in MDCs quickly. Numerical results show the 

effectiveness of proposed method in the micro data center placed at McMaster 

Innovation Park (MIP): 

 Failure Detection: Since collecting labelled data is usually expensive 

especially in the industrial world, unsupervised machine learning methods 

are used to learn the signature of the normal operation for micro data center. 

The developed machine learning based failure detection model could 

identify abnormalities in a few seconds. In the first step, holistic health 

status of system will be defined where any drop in the health status should 

be considered as a sign of a failure/abnormal situation in the micro data 

center. This is verified by creating 6 single failures and also 5 combined 

failures (totaling to 11 failure scenarios) where the trained model could 

detect all the failures very quickly.  

 Failure Localization: Any consistent drop in health index (below 0.8 for 

more than 30 seconds in this research) will notify the operator by triggering 

an alarm. Operator will clear the event by logging the actual label of the 

event (false or true positive) in the database which these labelled data will 

be used to localize the failures by using supervised machine learning 

algorithms. The numerical results given in chapter 5 show the skills of the 

trained model in classifying the failures into the right groups with 98% 

accuracy.  
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 Hardware design: Also a data acquisition system (DAQ) is developed to collect 

electro-mechanical signals from micro data center (discussed in chapter 4). The 

developed data acquisition system is affordable (the cost was under 100 CAD in 

2019) and easy to implement in micro data centers that usually don't have 

permanent access to technicians. This system collects data from the micro data 

center in a non-invasive approach, thus there is no need to create costly downtimes 

for implementing smart monitoring solution developed in this research.  

This research could be continued and expanded in the following directions, 

 Sensor failures are common specially in harsh environment and thus the bias in 

their readings can effect the performance of predictive models. While there are 

good studies in analysis sensor anomalies, their specific behaviour in micro 

datacenters could be studied in the future works. 

 Micro data centers usually have high dynamics because of their physical size and 

capacity. High dynamics could lead to considerable transient behaviour between 

different operating scenarios and could be studied in the future researches. 
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